Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 
 42
 43#include <net/tls.h>
 44
 45MODULE_AUTHOR("Mellanox Technologies");
 46MODULE_DESCRIPTION("Transport Layer Security Support");
 47MODULE_LICENSE("Dual BSD/GPL");
 
 48
 49enum {
 50	TLSV4,
 51	TLSV6,
 52	TLS_NUM_PROTS,
 53};
 54
 55enum {
 56	TLS_BASE,
 57	TLS_SW_TX,
 58	TLS_SW_RX,
 59	TLS_SW_RXTX,
 60	TLS_HW_RECORD,
 61	TLS_NUM_CONFIG,
 62};
 63
 64static struct proto *saved_tcpv6_prot;
 65static DEFINE_MUTEX(tcpv6_prot_mutex);
 
 
 66static LIST_HEAD(device_list);
 67static DEFINE_MUTEX(device_mutex);
 68static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
 69static struct proto_ops tls_sw_proto_ops;
 
 
 70
 71static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 72{
 73	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 74
 75	sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
 76}
 77
 78int wait_on_pending_writer(struct sock *sk, long *timeo)
 79{
 80	int rc = 0;
 81	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 82
 83	add_wait_queue(sk_sleep(sk), &wait);
 84	while (1) {
 85		if (!*timeo) {
 86			rc = -EAGAIN;
 87			break;
 88		}
 89
 90		if (signal_pending(current)) {
 91			rc = sock_intr_errno(*timeo);
 92			break;
 93		}
 94
 95		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 96			break;
 97	}
 98	remove_wait_queue(sk_sleep(sk), &wait);
 99	return rc;
100}
101
102int tls_push_sg(struct sock *sk,
103		struct tls_context *ctx,
104		struct scatterlist *sg,
105		u16 first_offset,
106		int flags)
107{
108	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109	int ret = 0;
110	struct page *p;
111	size_t size;
112	int offset = first_offset;
113
114	size = sg->length - offset;
115	offset += sg->offset;
116
117	ctx->in_tcp_sendpages = true;
118	while (1) {
119		if (sg_is_last(sg))
120			sendpage_flags = flags;
121
122		/* is sending application-limited? */
123		tcp_rate_check_app_limited(sk);
124		p = sg_page(sg);
125retry:
126		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128		if (ret != size) {
129			if (ret > 0) {
130				offset += ret;
131				size -= ret;
132				goto retry;
133			}
134
135			offset -= sg->offset;
136			ctx->partially_sent_offset = offset;
137			ctx->partially_sent_record = (void *)sg;
138			ctx->in_tcp_sendpages = false;
139			return ret;
140		}
141
142		put_page(p);
143		sk_mem_uncharge(sk, sg->length);
144		sg = sg_next(sg);
145		if (!sg)
146			break;
147
148		offset = sg->offset;
149		size = sg->length;
150	}
151
152	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153	ctx->in_tcp_sendpages = false;
154	ctx->sk_write_space(sk);
155
156	return 0;
157}
158
159static int tls_handle_open_record(struct sock *sk, int flags)
160{
161	struct tls_context *ctx = tls_get_ctx(sk);
162
163	if (tls_is_pending_open_record(ctx))
164		return ctx->push_pending_record(sk, flags);
165
166	return 0;
167}
168
169int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170		      unsigned char *record_type)
171{
172	struct cmsghdr *cmsg;
173	int rc = -EINVAL;
174
175	for_each_cmsghdr(cmsg, msg) {
176		if (!CMSG_OK(msg, cmsg))
177			return -EINVAL;
178		if (cmsg->cmsg_level != SOL_TLS)
179			continue;
180
181		switch (cmsg->cmsg_type) {
182		case TLS_SET_RECORD_TYPE:
183			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184				return -EINVAL;
185
186			if (msg->msg_flags & MSG_MORE)
187				return -EINVAL;
188
189			rc = tls_handle_open_record(sk, msg->msg_flags);
190			if (rc)
191				return rc;
192
193			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
194			rc = 0;
195			break;
196		default:
197			return -EINVAL;
198		}
199	}
200
201	return rc;
202}
203
204int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205				   int flags, long *timeo)
206{
207	struct scatterlist *sg;
208	u16 offset;
209
210	if (!tls_is_partially_sent_record(ctx))
211		return ctx->push_pending_record(sk, flags);
212
213	sg = ctx->partially_sent_record;
214	offset = ctx->partially_sent_offset;
215
216	ctx->partially_sent_record = NULL;
217	return tls_push_sg(sk, ctx, sg, offset, flags);
218}
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220static void tls_write_space(struct sock *sk)
221{
222	struct tls_context *ctx = tls_get_ctx(sk);
223
224	/* We are already sending pages, ignore notification */
225	if (ctx->in_tcp_sendpages)
 
 
 
 
226		return;
227
228	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229		gfp_t sk_allocation = sk->sk_allocation;
230		int rc;
231		long timeo = 0;
232
233		sk->sk_allocation = GFP_ATOMIC;
234		rc = tls_push_pending_closed_record(sk, ctx,
235						    MSG_DONTWAIT |
236						    MSG_NOSIGNAL,
237						    &timeo);
238		sk->sk_allocation = sk_allocation;
239
240		if (rc < 0)
241			return;
242	}
243
 
 
 
 
 
 
 
244	ctx->sk_write_space(sk);
245}
246
247static void tls_sk_proto_close(struct sock *sk, long timeout)
 
 
 
 
 
 
 
 
248{
249	struct tls_context *ctx = tls_get_ctx(sk);
250	long timeo = sock_sndtimeo(sk, 0);
251	void (*sk_proto_close)(struct sock *sk, long timeout);
252	bool free_ctx = false;
253
254	lock_sock(sk);
255	sk_proto_close = ctx->sk_proto_close;
 
256
257	if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258		free_ctx = true;
259		goto skip_tx_cleanup;
260	}
 
261
262	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
 
 
 
 
263		tls_handle_open_record(sk, 0);
264
265	if (ctx->partially_sent_record) {
266		struct scatterlist *sg = ctx->partially_sent_record;
 
 
 
 
 
 
267
268		while (1) {
269			put_page(sg_page(sg));
270			sk_mem_uncharge(sk, sg->length);
 
 
271
272			if (sg_is_last(sg))
273				break;
274			sg++;
275		}
276	}
 
277
278	kfree(ctx->tx.rec_seq);
279	kfree(ctx->tx.iv);
280	kfree(ctx->rx.rec_seq);
281	kfree(ctx->rx.iv);
282
283	if (ctx->conf == TLS_SW_TX ||
284	    ctx->conf == TLS_SW_RX ||
285	    ctx->conf == TLS_SW_RXTX) {
286		tls_sw_free_resources(sk);
287	}
288
289skip_tx_cleanup:
 
 
 
 
 
 
290	release_sock(sk);
291	sk_proto_close(sk, timeout);
292	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
293	 * for sk->sk_prot->unhash [tls_hw_unhash]
294	 */
 
 
 
 
295	if (free_ctx)
296		kfree(ctx);
297}
298
299static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300				int __user *optlen)
301{
302	int rc = 0;
303	struct tls_context *ctx = tls_get_ctx(sk);
304	struct tls_crypto_info *crypto_info;
305	int len;
306
307	if (get_user(len, optlen))
308		return -EFAULT;
309
310	if (!optval || (len < sizeof(*crypto_info))) {
311		rc = -EINVAL;
312		goto out;
313	}
314
315	if (!ctx) {
316		rc = -EBUSY;
317		goto out;
318	}
319
320	/* get user crypto info */
321	crypto_info = &ctx->crypto_send;
322
323	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324		rc = -EBUSY;
325		goto out;
326	}
327
328	if (len == sizeof(*crypto_info)) {
329		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330			rc = -EFAULT;
331		goto out;
332	}
333
334	switch (crypto_info->cipher_type) {
335	case TLS_CIPHER_AES_GCM_128: {
336		struct tls12_crypto_info_aes_gcm_128 *
337		  crypto_info_aes_gcm_128 =
338		  container_of(crypto_info,
339			       struct tls12_crypto_info_aes_gcm_128,
340			       info);
341
342		if (len != sizeof(*crypto_info_aes_gcm_128)) {
343			rc = -EINVAL;
344			goto out;
345		}
346		lock_sock(sk);
347		memcpy(crypto_info_aes_gcm_128->iv,
348		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
350		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352		release_sock(sk);
353		if (copy_to_user(optval,
354				 crypto_info_aes_gcm_128,
355				 sizeof(*crypto_info_aes_gcm_128)))
356			rc = -EFAULT;
357		break;
358	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359	default:
360		rc = -EINVAL;
361	}
362
363out:
364	return rc;
365}
366
367static int do_tls_getsockopt(struct sock *sk, int optname,
368			     char __user *optval, int __user *optlen)
369{
370	int rc = 0;
371
372	switch (optname) {
373	case TLS_TX:
374		rc = do_tls_getsockopt_tx(sk, optval, optlen);
375		break;
376	default:
377		rc = -ENOPROTOOPT;
378		break;
379	}
380	return rc;
381}
382
383static int tls_getsockopt(struct sock *sk, int level, int optname,
384			  char __user *optval, int __user *optlen)
385{
386	struct tls_context *ctx = tls_get_ctx(sk);
387
388	if (level != SOL_TLS)
389		return ctx->getsockopt(sk, level, optname, optval, optlen);
 
390
391	return do_tls_getsockopt(sk, optname, optval, optlen);
392}
393
394static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395				  unsigned int optlen, int tx)
396{
397	struct tls_crypto_info *crypto_info;
 
398	struct tls_context *ctx = tls_get_ctx(sk);
 
399	int rc = 0;
400	int conf;
401
402	if (!optval || (optlen < sizeof(*crypto_info))) {
403		rc = -EINVAL;
404		goto out;
405	}
406
407	if (tx)
408		crypto_info = &ctx->crypto_send;
409	else
410		crypto_info = &ctx->crypto_recv;
 
 
 
411
412	/* Currently we don't support set crypto info more than one time */
413	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414		rc = -EBUSY;
415		goto out;
416	}
417
418	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419	if (rc) {
420		rc = -EFAULT;
421		goto err_crypto_info;
422	}
423
424	/* check version */
425	if (crypto_info->version != TLS_1_2_VERSION) {
 
426		rc = -ENOTSUPP;
427		goto err_crypto_info;
428	}
429
430	switch (crypto_info->cipher_type) {
431	case TLS_CIPHER_AES_GCM_128: {
432		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
 
433			rc = -EINVAL;
434			goto err_crypto_info;
435		}
436		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437				    optlen - sizeof(*crypto_info));
438		if (rc) {
439			rc = -EFAULT;
440			goto err_crypto_info;
441		}
 
 
442		break;
443	}
 
 
 
444	default:
445		rc = -EINVAL;
446		goto err_crypto_info;
447	}
448
449	/* currently SW is default, we will have ethtool in future */
450	if (tx) {
451		rc = tls_set_sw_offload(sk, ctx, 1);
452		if (ctx->conf == TLS_SW_RX)
453			conf = TLS_SW_RXTX;
454		else
455			conf = TLS_SW_TX;
456	} else {
457		rc = tls_set_sw_offload(sk, ctx, 0);
458		if (ctx->conf == TLS_SW_TX)
459			conf = TLS_SW_RXTX;
460		else
461			conf = TLS_SW_RX;
462	}
463
464	if (rc)
 
 
 
465		goto err_crypto_info;
 
466
467	ctx->conf = conf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468	update_sk_prot(sk, ctx);
469	if (tx) {
470		ctx->sk_write_space = sk->sk_write_space;
471		sk->sk_write_space = tls_write_space;
472	} else {
473		sk->sk_socket->ops = &tls_sw_proto_ops;
474	}
475	goto out;
476
477err_crypto_info:
478	memset(crypto_info, 0, sizeof(*crypto_info));
479out:
480	return rc;
481}
482
483static int do_tls_setsockopt(struct sock *sk, int optname,
484			     char __user *optval, unsigned int optlen)
485{
486	int rc = 0;
487
488	switch (optname) {
489	case TLS_TX:
490	case TLS_RX:
491		lock_sock(sk);
492		rc = do_tls_setsockopt_conf(sk, optval, optlen,
493					    optname == TLS_TX);
494		release_sock(sk);
495		break;
496	default:
497		rc = -ENOPROTOOPT;
498		break;
499	}
500	return rc;
501}
502
503static int tls_setsockopt(struct sock *sk, int level, int optname,
504			  char __user *optval, unsigned int optlen)
505{
506	struct tls_context *ctx = tls_get_ctx(sk);
507
508	if (level != SOL_TLS)
509		return ctx->setsockopt(sk, level, optname, optval, optlen);
 
510
511	return do_tls_setsockopt(sk, optname, optval, optlen);
512}
513
514static struct tls_context *create_ctx(struct sock *sk)
515{
516	struct inet_connection_sock *icsk = inet_csk(sk);
517	struct tls_context *ctx;
518
519	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520	if (!ctx)
521		return NULL;
522
523	icsk->icsk_ulp_data = ctx;
 
 
524	return ctx;
525}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527static int tls_hw_prot(struct sock *sk)
528{
529	struct tls_context *ctx;
530	struct tls_device *dev;
531	int rc = 0;
532
533	mutex_lock(&device_mutex);
534	list_for_each_entry(dev, &device_list, dev_list) {
535		if (dev->feature && dev->feature(dev)) {
536			ctx = create_ctx(sk);
537			if (!ctx)
538				goto out;
539
540			ctx->hash = sk->sk_prot->hash;
541			ctx->unhash = sk->sk_prot->unhash;
542			ctx->sk_proto_close = sk->sk_prot->close;
543			ctx->conf = TLS_HW_RECORD;
 
 
544			update_sk_prot(sk, ctx);
 
545			rc = 1;
546			break;
547		}
548	}
549out:
550	mutex_unlock(&device_mutex);
551	return rc;
552}
553
554static void tls_hw_unhash(struct sock *sk)
555{
556	struct tls_context *ctx = tls_get_ctx(sk);
557	struct tls_device *dev;
558
559	mutex_lock(&device_mutex);
560	list_for_each_entry(dev, &device_list, dev_list) {
561		if (dev->unhash)
 
 
562			dev->unhash(dev, sk);
 
 
 
563	}
564	mutex_unlock(&device_mutex);
565	ctx->unhash(sk);
566}
567
568static int tls_hw_hash(struct sock *sk)
569{
570	struct tls_context *ctx = tls_get_ctx(sk);
571	struct tls_device *dev;
572	int err;
573
574	err = ctx->hash(sk);
575	mutex_lock(&device_mutex);
576	list_for_each_entry(dev, &device_list, dev_list) {
577		if (dev->hash)
 
 
578			err |= dev->hash(dev, sk);
 
 
 
579	}
580	mutex_unlock(&device_mutex);
581
582	if (err)
583		tls_hw_unhash(sk);
584	return err;
585}
586
587static void build_protos(struct proto *prot, struct proto *base)
 
588{
589	prot[TLS_BASE] = *base;
590	prot[TLS_BASE].setsockopt	= tls_setsockopt;
591	prot[TLS_BASE].getsockopt	= tls_getsockopt;
592	prot[TLS_BASE].close		= tls_sk_proto_close;
593
594	prot[TLS_SW_TX] = prot[TLS_BASE];
595	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
596	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
597
598	prot[TLS_SW_RX] = prot[TLS_BASE];
599	prot[TLS_SW_RX].recvmsg		= tls_sw_recvmsg;
600	prot[TLS_SW_RX].close		= tls_sk_proto_close;
601
602	prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603	prot[TLS_SW_RXTX].recvmsg	= tls_sw_recvmsg;
604	prot[TLS_SW_RXTX].close		= tls_sk_proto_close;
605
606	prot[TLS_HW_RECORD] = *base;
607	prot[TLS_HW_RECORD].hash	= tls_hw_hash;
608	prot[TLS_HW_RECORD].unhash	= tls_hw_unhash;
609	prot[TLS_HW_RECORD].close	= tls_sk_proto_close;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610}
611
612static int tls_init(struct sock *sk)
613{
614	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615	struct tls_context *ctx;
616	int rc = 0;
617
618	if (tls_hw_prot(sk))
619		goto out;
620
621	/* The TLS ulp is currently supported only for TCP sockets
622	 * in ESTABLISHED state.
623	 * Supporting sockets in LISTEN state will require us
624	 * to modify the accept implementation to clone rather then
625	 * share the ulp context.
626	 */
627	if (sk->sk_state != TCP_ESTABLISHED)
628		return -ENOTSUPP;
629
 
 
630	/* allocate tls context */
 
631	ctx = create_ctx(sk);
632	if (!ctx) {
633		rc = -ENOMEM;
634		goto out;
635	}
636	ctx->setsockopt = sk->sk_prot->setsockopt;
637	ctx->getsockopt = sk->sk_prot->getsockopt;
638	ctx->sk_proto_close = sk->sk_prot->close;
639
640	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641	if (ip_ver == TLSV6 &&
642	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643		mutex_lock(&tcpv6_prot_mutex);
644		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645			build_protos(tls_prots[TLSV6], sk->sk_prot);
646			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647		}
648		mutex_unlock(&tcpv6_prot_mutex);
649	}
650
651	ctx->conf = TLS_BASE;
652	update_sk_prot(sk, ctx);
653out:
 
654	return rc;
655}
656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657void tls_register_device(struct tls_device *device)
658{
659	mutex_lock(&device_mutex);
660	list_add_tail(&device->dev_list, &device_list);
661	mutex_unlock(&device_mutex);
662}
663EXPORT_SYMBOL(tls_register_device);
664
665void tls_unregister_device(struct tls_device *device)
666{
667	mutex_lock(&device_mutex);
668	list_del(&device->dev_list);
669	mutex_unlock(&device_mutex);
670}
671EXPORT_SYMBOL(tls_unregister_device);
672
673static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674	.name			= "tls",
675	.uid			= TCP_ULP_TLS,
676	.user_visible		= true,
677	.owner			= THIS_MODULE,
678	.init			= tls_init,
 
 
 
679};
680
681static int __init tls_register(void)
682{
683	build_protos(tls_prots[TLSV4], &tcp_prot);
684
685	tls_sw_proto_ops = inet_stream_ops;
686	tls_sw_proto_ops.poll = tls_sw_poll;
687	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
 
688
 
689	tcp_register_ulp(&tcp_tls_ulp_ops);
690
691	return 0;
692}
693
694static void __exit tls_unregister(void)
695{
696	tcp_unregister_ulp(&tcp_tls_ulp_ops);
 
697}
698
699module_init(tls_register);
700module_exit(tls_unregister);
v5.4
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 44#include <net/tls.h>
 45
 46MODULE_AUTHOR("Mellanox Technologies");
 47MODULE_DESCRIPTION("Transport Layer Security Support");
 48MODULE_LICENSE("Dual BSD/GPL");
 49MODULE_ALIAS_TCP_ULP("tls");
 50
 51enum {
 52	TLSV4,
 53	TLSV6,
 54	TLS_NUM_PROTS,
 55};
 56
 
 
 
 
 
 
 
 
 
 57static struct proto *saved_tcpv6_prot;
 58static DEFINE_MUTEX(tcpv6_prot_mutex);
 59static struct proto *saved_tcpv4_prot;
 60static DEFINE_MUTEX(tcpv4_prot_mutex);
 61static LIST_HEAD(device_list);
 62static DEFINE_SPINLOCK(device_spinlock);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 struct proto *base);
 67
 68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
 73}
 74
 75int wait_on_pending_writer(struct sock *sk, long *timeo)
 76{
 77	int rc = 0;
 78	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 79
 80	add_wait_queue(sk_sleep(sk), &wait);
 81	while (1) {
 82		if (!*timeo) {
 83			rc = -EAGAIN;
 84			break;
 85		}
 86
 87		if (signal_pending(current)) {
 88			rc = sock_intr_errno(*timeo);
 89			break;
 90		}
 91
 92		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 93			break;
 94	}
 95	remove_wait_queue(sk_sleep(sk), &wait);
 96	return rc;
 97}
 98
 99int tls_push_sg(struct sock *sk,
100		struct tls_context *ctx,
101		struct scatterlist *sg,
102		u16 first_offset,
103		int flags)
104{
105	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106	int ret = 0;
107	struct page *p;
108	size_t size;
109	int offset = first_offset;
110
111	size = sg->length - offset;
112	offset += sg->offset;
113
114	ctx->in_tcp_sendpages = true;
115	while (1) {
116		if (sg_is_last(sg))
117			sendpage_flags = flags;
118
119		/* is sending application-limited? */
120		tcp_rate_check_app_limited(sk);
121		p = sg_page(sg);
122retry:
123		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125		if (ret != size) {
126			if (ret > 0) {
127				offset += ret;
128				size -= ret;
129				goto retry;
130			}
131
132			offset -= sg->offset;
133			ctx->partially_sent_offset = offset;
134			ctx->partially_sent_record = (void *)sg;
135			ctx->in_tcp_sendpages = false;
136			return ret;
137		}
138
139		put_page(p);
140		sk_mem_uncharge(sk, sg->length);
141		sg = sg_next(sg);
142		if (!sg)
143			break;
144
145		offset = sg->offset;
146		size = sg->length;
147	}
148
 
149	ctx->in_tcp_sendpages = false;
 
150
151	return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156	struct tls_context *ctx = tls_get_ctx(sk);
157
158	if (tls_is_pending_open_record(ctx))
159		return ctx->push_pending_record(sk, flags);
160
161	return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165		      unsigned char *record_type)
166{
167	struct cmsghdr *cmsg;
168	int rc = -EINVAL;
169
170	for_each_cmsghdr(cmsg, msg) {
171		if (!CMSG_OK(msg, cmsg))
172			return -EINVAL;
173		if (cmsg->cmsg_level != SOL_TLS)
174			continue;
175
176		switch (cmsg->cmsg_type) {
177		case TLS_SET_RECORD_TYPE:
178			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179				return -EINVAL;
180
181			if (msg->msg_flags & MSG_MORE)
182				return -EINVAL;
183
184			rc = tls_handle_open_record(sk, msg->msg_flags);
185			if (rc)
186				return rc;
187
188			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189			rc = 0;
190			break;
191		default:
192			return -EINVAL;
193		}
194	}
195
196	return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200			    int flags)
201{
202	struct scatterlist *sg;
203	u16 offset;
204
 
 
 
205	sg = ctx->partially_sent_record;
206	offset = ctx->partially_sent_offset;
207
208	ctx->partially_sent_record = NULL;
209	return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214	struct scatterlist *sg;
215
216	sg = ctx->partially_sent_record;
217	if (!sg)
218		return false;
219
220	while (1) {
221		put_page(sg_page(sg));
222		sk_mem_uncharge(sk, sg->length);
223
224		if (sg_is_last(sg))
225			break;
226		sg++;
227	}
228	ctx->partially_sent_record = NULL;
229	return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234	struct tls_context *ctx = tls_get_ctx(sk);
235
236	/* If in_tcp_sendpages call lower protocol write space handler
237	 * to ensure we wake up any waiting operations there. For example
238	 * if do_tcp_sendpages where to call sk_wait_event.
239	 */
240	if (ctx->in_tcp_sendpages) {
241		ctx->sk_write_space(sk);
242		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243	}
244
245#ifdef CONFIG_TLS_DEVICE
246	if (ctx->tx_conf == TLS_HW)
247		tls_device_write_space(sk, ctx);
248	else
249#endif
250		tls_sw_write_space(sk, ctx);
251
252	ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk:  socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265	if (!ctx)
266		return;
 
 
267
268	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270	mutex_destroy(&ctx->tx_lock);
271
272	if (sk)
273		kfree_rcu(ctx, rcu);
274	else
275		kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279				 struct tls_context *ctx, long timeo)
280{
281	if (unlikely(sk->sk_write_pending) &&
282	    !wait_on_pending_writer(sk, &timeo))
283		tls_handle_open_record(sk, 0);
284
285	/* We need these for tls_sw_fallback handling of other packets */
286	if (ctx->tx_conf == TLS_SW) {
287		kfree(ctx->tx.rec_seq);
288		kfree(ctx->tx.iv);
289		tls_sw_release_resources_tx(sk);
290	} else if (ctx->tx_conf == TLS_HW) {
291		tls_device_free_resources_tx(sk);
292	}
293
294	if (ctx->rx_conf == TLS_SW)
295		tls_sw_release_resources_rx(sk);
296	else if (ctx->rx_conf == TLS_HW)
297		tls_device_offload_cleanup_rx(sk);
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302	struct inet_connection_sock *icsk = inet_csk(sk);
303	struct tls_context *ctx = tls_get_ctx(sk);
304	long timeo = sock_sndtimeo(sk, 0);
305	bool free_ctx;
306
307	if (ctx->tx_conf == TLS_SW)
308		tls_sw_cancel_work_tx(ctx);
 
 
309
310	lock_sock(sk);
311	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314		tls_sk_proto_cleanup(sk, ctx, timeo);
315
316	write_lock_bh(&sk->sk_callback_lock);
317	if (free_ctx)
318		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319	sk->sk_prot = ctx->sk_proto;
320	if (sk->sk_write_space == tls_write_space)
321		sk->sk_write_space = ctx->sk_write_space;
322	write_unlock_bh(&sk->sk_callback_lock);
323	release_sock(sk);
324	if (ctx->tx_conf == TLS_SW)
325		tls_sw_free_ctx_tx(ctx);
326	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327		tls_sw_strparser_done(ctx);
328	if (ctx->rx_conf == TLS_SW)
329		tls_sw_free_ctx_rx(ctx);
330	ctx->sk_proto->close(sk, timeout);
331
332	if (free_ctx)
333		tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337				int __user *optlen)
338{
339	int rc = 0;
340	struct tls_context *ctx = tls_get_ctx(sk);
341	struct tls_crypto_info *crypto_info;
342	int len;
343
344	if (get_user(len, optlen))
345		return -EFAULT;
346
347	if (!optval || (len < sizeof(*crypto_info))) {
348		rc = -EINVAL;
349		goto out;
350	}
351
352	if (!ctx) {
353		rc = -EBUSY;
354		goto out;
355	}
356
357	/* get user crypto info */
358	crypto_info = &ctx->crypto_send.info;
359
360	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361		rc = -EBUSY;
362		goto out;
363	}
364
365	if (len == sizeof(*crypto_info)) {
366		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367			rc = -EFAULT;
368		goto out;
369	}
370
371	switch (crypto_info->cipher_type) {
372	case TLS_CIPHER_AES_GCM_128: {
373		struct tls12_crypto_info_aes_gcm_128 *
374		  crypto_info_aes_gcm_128 =
375		  container_of(crypto_info,
376			       struct tls12_crypto_info_aes_gcm_128,
377			       info);
378
379		if (len != sizeof(*crypto_info_aes_gcm_128)) {
380			rc = -EINVAL;
381			goto out;
382		}
383		lock_sock(sk);
384		memcpy(crypto_info_aes_gcm_128->iv,
385		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
387		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389		release_sock(sk);
390		if (copy_to_user(optval,
391				 crypto_info_aes_gcm_128,
392				 sizeof(*crypto_info_aes_gcm_128)))
393			rc = -EFAULT;
394		break;
395	}
396	case TLS_CIPHER_AES_GCM_256: {
397		struct tls12_crypto_info_aes_gcm_256 *
398		  crypto_info_aes_gcm_256 =
399		  container_of(crypto_info,
400			       struct tls12_crypto_info_aes_gcm_256,
401			       info);
402
403		if (len != sizeof(*crypto_info_aes_gcm_256)) {
404			rc = -EINVAL;
405			goto out;
406		}
407		lock_sock(sk);
408		memcpy(crypto_info_aes_gcm_256->iv,
409		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
411		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413		release_sock(sk);
414		if (copy_to_user(optval,
415				 crypto_info_aes_gcm_256,
416				 sizeof(*crypto_info_aes_gcm_256)))
417			rc = -EFAULT;
418		break;
419	}
420	default:
421		rc = -EINVAL;
422	}
423
424out:
425	return rc;
426}
427
428static int do_tls_getsockopt(struct sock *sk, int optname,
429			     char __user *optval, int __user *optlen)
430{
431	int rc = 0;
432
433	switch (optname) {
434	case TLS_TX:
435		rc = do_tls_getsockopt_tx(sk, optval, optlen);
436		break;
437	default:
438		rc = -ENOPROTOOPT;
439		break;
440	}
441	return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445			  char __user *optval, int __user *optlen)
446{
447	struct tls_context *ctx = tls_get_ctx(sk);
448
449	if (level != SOL_TLS)
450		return ctx->sk_proto->getsockopt(sk, level,
451						 optname, optval, optlen);
452
453	return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457				  unsigned int optlen, int tx)
458{
459	struct tls_crypto_info *crypto_info;
460	struct tls_crypto_info *alt_crypto_info;
461	struct tls_context *ctx = tls_get_ctx(sk);
462	size_t optsize;
463	int rc = 0;
464	int conf;
465
466	if (!optval || (optlen < sizeof(*crypto_info))) {
467		rc = -EINVAL;
468		goto out;
469	}
470
471	if (tx) {
472		crypto_info = &ctx->crypto_send.info;
473		alt_crypto_info = &ctx->crypto_recv.info;
474	} else {
475		crypto_info = &ctx->crypto_recv.info;
476		alt_crypto_info = &ctx->crypto_send.info;
477	}
478
479	/* Currently we don't support set crypto info more than one time */
480	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481		rc = -EBUSY;
482		goto out;
483	}
484
485	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486	if (rc) {
487		rc = -EFAULT;
488		goto err_crypto_info;
489	}
490
491	/* check version */
492	if (crypto_info->version != TLS_1_2_VERSION &&
493	    crypto_info->version != TLS_1_3_VERSION) {
494		rc = -ENOTSUPP;
495		goto err_crypto_info;
496	}
497
498	/* Ensure that TLS version and ciphers are same in both directions */
499	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500		if (alt_crypto_info->version != crypto_info->version ||
501		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502			rc = -EINVAL;
503			goto err_crypto_info;
504		}
505	}
506
507	switch (crypto_info->cipher_type) {
508	case TLS_CIPHER_AES_GCM_128:
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510		break;
511	case TLS_CIPHER_AES_GCM_256: {
512		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513		break;
514	}
515	case TLS_CIPHER_AES_CCM_128:
516		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517		break;
518	default:
519		rc = -EINVAL;
520		goto err_crypto_info;
521	}
522
523	if (optlen != optsize) {
524		rc = -EINVAL;
525		goto err_crypto_info;
 
 
 
 
 
 
 
 
 
 
526	}
527
528	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529			    optlen - sizeof(*crypto_info));
530	if (rc) {
531		rc = -EFAULT;
532		goto err_crypto_info;
533	}
534
535	if (tx) {
536		rc = tls_set_device_offload(sk, ctx);
537		conf = TLS_HW;
538		if (rc) {
539			rc = tls_set_sw_offload(sk, ctx, 1);
540			if (rc)
541				goto err_crypto_info;
542			conf = TLS_SW;
543		}
544	} else {
545		rc = tls_set_device_offload_rx(sk, ctx);
546		conf = TLS_HW;
547		if (rc) {
548			rc = tls_set_sw_offload(sk, ctx, 0);
549			if (rc)
550				goto err_crypto_info;
551			conf = TLS_SW;
552		}
553		tls_sw_strparser_arm(sk, ctx);
554	}
555
556	if (tx)
557		ctx->tx_conf = conf;
558	else
559		ctx->rx_conf = conf;
560	update_sk_prot(sk, ctx);
561	if (tx) {
562		ctx->sk_write_space = sk->sk_write_space;
563		sk->sk_write_space = tls_write_space;
564	} else {
565		sk->sk_socket->ops = &tls_sw_proto_ops;
566	}
567	goto out;
568
569err_crypto_info:
570	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
572	return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576			     char __user *optval, unsigned int optlen)
577{
578	int rc = 0;
579
580	switch (optname) {
581	case TLS_TX:
582	case TLS_RX:
583		lock_sock(sk);
584		rc = do_tls_setsockopt_conf(sk, optval, optlen,
585					    optname == TLS_TX);
586		release_sock(sk);
587		break;
588	default:
589		rc = -ENOPROTOOPT;
590		break;
591	}
592	return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596			  char __user *optval, unsigned int optlen)
597{
598	struct tls_context *ctx = tls_get_ctx(sk);
599
600	if (level != SOL_TLS)
601		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602						 optlen);
603
604	return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609	struct inet_connection_sock *icsk = inet_csk(sk);
610	struct tls_context *ctx;
611
612	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613	if (!ctx)
614		return NULL;
615
616	mutex_init(&ctx->tx_lock);
617	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618	ctx->sk_proto = sk->sk_prot;
619	return ctx;
620}
621
622static void tls_build_proto(struct sock *sk)
623{
624	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
625
626	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627	if (ip_ver == TLSV6 &&
628	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629		mutex_lock(&tcpv6_prot_mutex);
630		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631			build_protos(tls_prots[TLSV6], sk->sk_prot);
632			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633		}
634		mutex_unlock(&tcpv6_prot_mutex);
635	}
636
637	if (ip_ver == TLSV4 &&
638	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639		mutex_lock(&tcpv4_prot_mutex);
640		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641			build_protos(tls_prots[TLSV4], sk->sk_prot);
642			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643		}
644		mutex_unlock(&tcpv4_prot_mutex);
645	}
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650	struct tls_context *ctx = tls_get_ctx(sk);
651	struct inet_connection_sock *icsk = inet_csk(sk);
652
653	ctx->sk_destruct(sk);
654	/* Free ctx */
655	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656	tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661	struct tls_context *ctx;
662	struct tls_device *dev;
663	int rc = 0;
664
665	spin_lock_bh(&device_spinlock);
666	list_for_each_entry(dev, &device_list, dev_list) {
667		if (dev->feature && dev->feature(dev)) {
668			ctx = create_ctx(sk);
669			if (!ctx)
670				goto out;
671
672			spin_unlock_bh(&device_spinlock);
673			tls_build_proto(sk);
674			ctx->sk_destruct = sk->sk_destruct;
675			sk->sk_destruct = tls_hw_sk_destruct;
676			ctx->rx_conf = TLS_HW_RECORD;
677			ctx->tx_conf = TLS_HW_RECORD;
678			update_sk_prot(sk, ctx);
679			spin_lock_bh(&device_spinlock);
680			rc = 1;
681			break;
682		}
683	}
684out:
685	spin_unlock_bh(&device_spinlock);
686	return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691	struct tls_context *ctx = tls_get_ctx(sk);
692	struct tls_device *dev;
693
694	spin_lock_bh(&device_spinlock);
695	list_for_each_entry(dev, &device_list, dev_list) {
696		if (dev->unhash) {
697			kref_get(&dev->kref);
698			spin_unlock_bh(&device_spinlock);
699			dev->unhash(dev, sk);
700			kref_put(&dev->kref, dev->release);
701			spin_lock_bh(&device_spinlock);
702		}
703	}
704	spin_unlock_bh(&device_spinlock);
705	ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710	struct tls_context *ctx = tls_get_ctx(sk);
711	struct tls_device *dev;
712	int err;
713
714	err = ctx->sk_proto->hash(sk);
715	spin_lock_bh(&device_spinlock);
716	list_for_each_entry(dev, &device_list, dev_list) {
717		if (dev->hash) {
718			kref_get(&dev->kref);
719			spin_unlock_bh(&device_spinlock);
720			err |= dev->hash(dev, sk);
721			kref_put(&dev->kref, dev->release);
722			spin_lock_bh(&device_spinlock);
723		}
724	}
725	spin_unlock_bh(&device_spinlock);
726
727	if (err)
728		tls_hw_unhash(sk);
729	return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733			 struct proto *base)
734{
735	prot[TLS_BASE][TLS_BASE] = *base;
736	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
737	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
738	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
739
740	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
742	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
743
744	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
746	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
748
749	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
751	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
752	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
757	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
758
759	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
761	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
762
763	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
772	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
773}
774
775static int tls_init(struct sock *sk)
776{
 
777	struct tls_context *ctx;
778	int rc = 0;
779
780	if (tls_hw_prot(sk))
781		return 0;
782
783	/* The TLS ulp is currently supported only for TCP sockets
784	 * in ESTABLISHED state.
785	 * Supporting sockets in LISTEN state will require us
786	 * to modify the accept implementation to clone rather then
787	 * share the ulp context.
788	 */
789	if (sk->sk_state != TCP_ESTABLISHED)
790		return -ENOTSUPP;
791
792	tls_build_proto(sk);
793
794	/* allocate tls context */
795	write_lock_bh(&sk->sk_callback_lock);
796	ctx = create_ctx(sk);
797	if (!ctx) {
798		rc = -ENOMEM;
799		goto out;
800	}
 
 
 
801
802	ctx->tx_conf = TLS_BASE;
803	ctx->rx_conf = TLS_BASE;
 
 
 
 
 
 
 
 
 
 
804	update_sk_prot(sk, ctx);
805out:
806	write_unlock_bh(&sk->sk_callback_lock);
807	return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
811{
812	struct tls_context *ctx;
813
814	ctx = tls_get_ctx(sk);
815	if (likely(ctx))
816		ctx->sk_proto = p;
817	else
818		sk->sk_prot = p;
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823	u16 version, cipher_type;
824	struct tls_context *ctx;
825	struct nlattr *start;
826	int err;
827
828	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829	if (!start)
830		return -EMSGSIZE;
831
832	rcu_read_lock();
833	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834	if (!ctx) {
835		err = 0;
836		goto nla_failure;
837	}
838	version = ctx->prot_info.version;
839	if (version) {
840		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841		if (err)
842			goto nla_failure;
843	}
844	cipher_type = ctx->prot_info.cipher_type;
845	if (cipher_type) {
846		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847		if (err)
848			goto nla_failure;
849	}
850	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851	if (err)
852		goto nla_failure;
853
854	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855	if (err)
856		goto nla_failure;
857
858	rcu_read_unlock();
859	nla_nest_end(skb, start);
860	return 0;
861
862nla_failure:
863	rcu_read_unlock();
864	nla_nest_cancel(skb, start);
865	return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870	size_t size = 0;
871
872	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
873		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
874		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
875		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
876		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
877		0;
878
879	return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884	spin_lock_bh(&device_spinlock);
885	list_add_tail(&device->dev_list, &device_list);
886	spin_unlock_bh(&device_spinlock);
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892	spin_lock_bh(&device_spinlock);
893	list_del(&device->dev_list);
894	spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899	.name			= "tls",
 
 
900	.owner			= THIS_MODULE,
901	.init			= tls_init,
902	.update			= tls_update,
903	.get_info		= tls_get_info,
904	.get_info_size		= tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
 
 
909	tls_sw_proto_ops = inet_stream_ops;
 
910	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
912
913	tls_device_init();
914	tcp_register_ulp(&tcp_tls_ulp_ops);
915
916	return 0;
917}
918
919static void __exit tls_unregister(void)
920{
921	tcp_unregister_ulp(&tcp_tls_ulp_ops);
922	tls_device_cleanup();
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);