Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/stat.h>
  12#include <linux/sched/task.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/sched/cputime.h>
  15#include <linux/interrupt.h>
  16#include <linux/module.h>
  17#include <linux/capability.h>
  18#include <linux/completion.h>
  19#include <linux/personality.h>
  20#include <linux/tty.h>
  21#include <linux/iocontext.h>
  22#include <linux/key.h>
  23#include <linux/cpu.h>
  24#include <linux/acct.h>
  25#include <linux/tsacct_kern.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/freezer.h>
  29#include <linux/binfmts.h>
  30#include <linux/nsproxy.h>
  31#include <linux/pid_namespace.h>
  32#include <linux/ptrace.h>
  33#include <linux/profile.h>
  34#include <linux/mount.h>
  35#include <linux/proc_fs.h>
  36#include <linux/kthread.h>
  37#include <linux/mempolicy.h>
  38#include <linux/taskstats_kern.h>
  39#include <linux/delayacct.h>
  40#include <linux/cgroup.h>
  41#include <linux/syscalls.h>
  42#include <linux/signal.h>
  43#include <linux/posix-timers.h>
  44#include <linux/cn_proc.h>
  45#include <linux/mutex.h>
  46#include <linux/futex.h>
  47#include <linux/pipe_fs_i.h>
  48#include <linux/audit.h> /* for audit_free() */
  49#include <linux/resource.h>
  50#include <linux/blkdev.h>
  51#include <linux/task_io_accounting_ops.h>
  52#include <linux/tracehook.h>
  53#include <linux/fs_struct.h>
  54#include <linux/init_task.h>
  55#include <linux/perf_event.h>
  56#include <trace/events/sched.h>
  57#include <linux/hw_breakpoint.h>
  58#include <linux/oom.h>
  59#include <linux/writeback.h>
  60#include <linux/shm.h>
  61#include <linux/kcov.h>
  62#include <linux/random.h>
  63#include <linux/rcuwait.h>
  64#include <linux/compat.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/unistd.h>
  68#include <asm/pgtable.h>
  69#include <asm/mmu_context.h>
  70
  71static void __unhash_process(struct task_struct *p, bool group_dead)
  72{
  73	nr_threads--;
  74	detach_pid(p, PIDTYPE_PID);
  75	if (group_dead) {
 
  76		detach_pid(p, PIDTYPE_PGID);
  77		detach_pid(p, PIDTYPE_SID);
  78
  79		list_del_rcu(&p->tasks);
  80		list_del_init(&p->sibling);
  81		__this_cpu_dec(process_counts);
  82	}
  83	list_del_rcu(&p->thread_group);
  84	list_del_rcu(&p->thread_node);
  85}
  86
  87/*
  88 * This function expects the tasklist_lock write-locked.
  89 */
  90static void __exit_signal(struct task_struct *tsk)
  91{
  92	struct signal_struct *sig = tsk->signal;
  93	bool group_dead = thread_group_leader(tsk);
  94	struct sighand_struct *sighand;
  95	struct tty_struct *uninitialized_var(tty);
  96	u64 utime, stime;
  97
  98	sighand = rcu_dereference_check(tsk->sighand,
  99					lockdep_tasklist_lock_is_held());
 100	spin_lock(&sighand->siglock);
 101
 102#ifdef CONFIG_POSIX_TIMERS
 103	posix_cpu_timers_exit(tsk);
 104	if (group_dead) {
 105		posix_cpu_timers_exit_group(tsk);
 106	} else {
 107		/*
 108		 * This can only happen if the caller is de_thread().
 109		 * FIXME: this is the temporary hack, we should teach
 110		 * posix-cpu-timers to handle this case correctly.
 111		 */
 112		if (unlikely(has_group_leader_pid(tsk)))
 113			posix_cpu_timers_exit_group(tsk);
 114	}
 115#endif
 116
 117	if (group_dead) {
 118		tty = sig->tty;
 119		sig->tty = NULL;
 120	} else {
 121		/*
 122		 * If there is any task waiting for the group exit
 123		 * then notify it:
 124		 */
 125		if (sig->notify_count > 0 && !--sig->notify_count)
 126			wake_up_process(sig->group_exit_task);
 127
 128		if (tsk == sig->curr_target)
 129			sig->curr_target = next_thread(tsk);
 130	}
 131
 132	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 133			      sizeof(unsigned long long));
 134
 135	/*
 136	 * Accumulate here the counters for all threads as they die. We could
 137	 * skip the group leader because it is the last user of signal_struct,
 138	 * but we want to avoid the race with thread_group_cputime() which can
 139	 * see the empty ->thread_head list.
 140	 */
 141	task_cputime(tsk, &utime, &stime);
 142	write_seqlock(&sig->stats_lock);
 143	sig->utime += utime;
 144	sig->stime += stime;
 145	sig->gtime += task_gtime(tsk);
 146	sig->min_flt += tsk->min_flt;
 147	sig->maj_flt += tsk->maj_flt;
 148	sig->nvcsw += tsk->nvcsw;
 149	sig->nivcsw += tsk->nivcsw;
 150	sig->inblock += task_io_get_inblock(tsk);
 151	sig->oublock += task_io_get_oublock(tsk);
 152	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 153	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 154	sig->nr_threads--;
 155	__unhash_process(tsk, group_dead);
 156	write_sequnlock(&sig->stats_lock);
 157
 158	/*
 159	 * Do this under ->siglock, we can race with another thread
 160	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 161	 */
 162	flush_sigqueue(&tsk->pending);
 163	tsk->sighand = NULL;
 164	spin_unlock(&sighand->siglock);
 165
 166	__cleanup_sighand(sighand);
 167	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 168	if (group_dead) {
 169		flush_sigqueue(&sig->shared_pending);
 170		tty_kref_put(tty);
 171	}
 172}
 173
 174static void delayed_put_task_struct(struct rcu_head *rhp)
 175{
 176	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 177
 178	perf_event_delayed_put(tsk);
 179	trace_sched_process_free(tsk);
 180	put_task_struct(tsk);
 181}
 182
 
 
 
 
 
 183
 184void release_task(struct task_struct *p)
 185{
 186	struct task_struct *leader;
 
 187	int zap_leader;
 188repeat:
 189	/* don't need to get the RCU readlock here - the process is dead and
 190	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 191	rcu_read_lock();
 192	atomic_dec(&__task_cred(p)->user->processes);
 193	rcu_read_unlock();
 194
 195	proc_flush_task(p);
 196
 197	write_lock_irq(&tasklist_lock);
 198	ptrace_release_task(p);
 
 199	__exit_signal(p);
 200
 201	/*
 202	 * If we are the last non-leader member of the thread
 203	 * group, and the leader is zombie, then notify the
 204	 * group leader's parent process. (if it wants notification.)
 205	 */
 206	zap_leader = 0;
 207	leader = p->group_leader;
 208	if (leader != p && thread_group_empty(leader)
 209			&& leader->exit_state == EXIT_ZOMBIE) {
 210		/*
 211		 * If we were the last child thread and the leader has
 212		 * exited already, and the leader's parent ignores SIGCHLD,
 213		 * then we are the one who should release the leader.
 214		 */
 215		zap_leader = do_notify_parent(leader, leader->exit_signal);
 216		if (zap_leader)
 217			leader->exit_state = EXIT_DEAD;
 218	}
 219
 220	write_unlock_irq(&tasklist_lock);
 
 
 
 221	release_thread(p);
 222	call_rcu(&p->rcu, delayed_put_task_struct);
 223
 224	p = leader;
 225	if (unlikely(zap_leader))
 226		goto repeat;
 227}
 228
 229/*
 230 * Note that if this function returns a valid task_struct pointer (!NULL)
 231 * task->usage must remain >0 for the duration of the RCU critical section.
 232 */
 233struct task_struct *task_rcu_dereference(struct task_struct **ptask)
 234{
 235	struct sighand_struct *sighand;
 236	struct task_struct *task;
 237
 238	/*
 239	 * We need to verify that release_task() was not called and thus
 240	 * delayed_put_task_struct() can't run and drop the last reference
 241	 * before rcu_read_unlock(). We check task->sighand != NULL,
 242	 * but we can read the already freed and reused memory.
 243	 */
 244retry:
 245	task = rcu_dereference(*ptask);
 246	if (!task)
 247		return NULL;
 248
 249	probe_kernel_address(&task->sighand, sighand);
 250
 251	/*
 252	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
 253	 * was already freed we can not miss the preceding update of this
 254	 * pointer.
 255	 */
 256	smp_rmb();
 257	if (unlikely(task != READ_ONCE(*ptask)))
 258		goto retry;
 259
 260	/*
 261	 * We've re-checked that "task == *ptask", now we have two different
 262	 * cases:
 263	 *
 264	 * 1. This is actually the same task/task_struct. In this case
 265	 *    sighand != NULL tells us it is still alive.
 266	 *
 267	 * 2. This is another task which got the same memory for task_struct.
 268	 *    We can't know this of course, and we can not trust
 269	 *    sighand != NULL.
 270	 *
 271	 *    In this case we actually return a random value, but this is
 272	 *    correct.
 273	 *
 274	 *    If we return NULL - we can pretend that we actually noticed that
 275	 *    *ptask was updated when the previous task has exited. Or pretend
 276	 *    that probe_slab_address(&sighand) reads NULL.
 277	 *
 278	 *    If we return the new task (because sighand is not NULL for any
 279	 *    reason) - this is fine too. This (new) task can't go away before
 280	 *    another gp pass.
 281	 *
 282	 *    And note: We could even eliminate the false positive if re-read
 283	 *    task->sighand once again to avoid the falsely NULL. But this case
 284	 *    is very unlikely so we don't care.
 285	 */
 286	if (!sighand)
 287		return NULL;
 288
 289	return task;
 290}
 291
 292void rcuwait_wake_up(struct rcuwait *w)
 293{
 
 294	struct task_struct *task;
 295
 296	rcu_read_lock();
 297
 298	/*
 299	 * Order condition vs @task, such that everything prior to the load
 300	 * of @task is visible. This is the condition as to why the user called
 301	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
 302	 * barrier (A) in rcuwait_wait_event().
 303	 *
 304	 *    WAIT                WAKE
 305	 *    [S] tsk = current	  [S] cond = true
 306	 *        MB (A)	      MB (B)
 307	 *    [L] cond		  [L] tsk
 308	 */
 309	smp_rmb(); /* (B) */
 310
 311	/*
 312	 * Avoid using task_rcu_dereference() magic as long as we are careful,
 313	 * see comment in rcuwait_wait_event() regarding ->exit_state.
 314	 */
 315	task = rcu_dereference(w->task);
 316	if (task)
 317		wake_up_process(task);
 318	rcu_read_unlock();
 
 
 319}
 
 320
 321/*
 322 * Determine if a process group is "orphaned", according to the POSIX
 323 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 324 * by terminal-generated stop signals.  Newly orphaned process groups are
 325 * to receive a SIGHUP and a SIGCONT.
 326 *
 327 * "I ask you, have you ever known what it is to be an orphan?"
 328 */
 329static int will_become_orphaned_pgrp(struct pid *pgrp,
 330					struct task_struct *ignored_task)
 331{
 332	struct task_struct *p;
 333
 334	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 335		if ((p == ignored_task) ||
 336		    (p->exit_state && thread_group_empty(p)) ||
 337		    is_global_init(p->real_parent))
 338			continue;
 339
 340		if (task_pgrp(p->real_parent) != pgrp &&
 341		    task_session(p->real_parent) == task_session(p))
 342			return 0;
 343	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 344
 345	return 1;
 346}
 347
 348int is_current_pgrp_orphaned(void)
 349{
 350	int retval;
 351
 352	read_lock(&tasklist_lock);
 353	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 354	read_unlock(&tasklist_lock);
 355
 356	return retval;
 357}
 358
 359static bool has_stopped_jobs(struct pid *pgrp)
 360{
 361	struct task_struct *p;
 362
 363	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 364		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 365			return true;
 366	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 367
 368	return false;
 369}
 370
 371/*
 372 * Check to see if any process groups have become orphaned as
 373 * a result of our exiting, and if they have any stopped jobs,
 374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 375 */
 376static void
 377kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 378{
 379	struct pid *pgrp = task_pgrp(tsk);
 380	struct task_struct *ignored_task = tsk;
 381
 382	if (!parent)
 383		/* exit: our father is in a different pgrp than
 384		 * we are and we were the only connection outside.
 385		 */
 386		parent = tsk->real_parent;
 387	else
 388		/* reparent: our child is in a different pgrp than
 389		 * we are, and it was the only connection outside.
 390		 */
 391		ignored_task = NULL;
 392
 393	if (task_pgrp(parent) != pgrp &&
 394	    task_session(parent) == task_session(tsk) &&
 395	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 396	    has_stopped_jobs(pgrp)) {
 397		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 398		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 399	}
 400}
 401
 402#ifdef CONFIG_MEMCG
 403/*
 404 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 405 */
 406void mm_update_next_owner(struct mm_struct *mm)
 407{
 408	struct task_struct *c, *g, *p = current;
 409
 410retry:
 411	/*
 412	 * If the exiting or execing task is not the owner, it's
 413	 * someone else's problem.
 414	 */
 415	if (mm->owner != p)
 416		return;
 417	/*
 418	 * The current owner is exiting/execing and there are no other
 419	 * candidates.  Do not leave the mm pointing to a possibly
 420	 * freed task structure.
 421	 */
 422	if (atomic_read(&mm->mm_users) <= 1) {
 423		mm->owner = NULL;
 424		return;
 425	}
 426
 427	read_lock(&tasklist_lock);
 428	/*
 429	 * Search in the children
 430	 */
 431	list_for_each_entry(c, &p->children, sibling) {
 432		if (c->mm == mm)
 433			goto assign_new_owner;
 434	}
 435
 436	/*
 437	 * Search in the siblings
 438	 */
 439	list_for_each_entry(c, &p->real_parent->children, sibling) {
 440		if (c->mm == mm)
 441			goto assign_new_owner;
 442	}
 443
 444	/*
 445	 * Search through everything else, we should not get here often.
 446	 */
 447	for_each_process(g) {
 448		if (g->flags & PF_KTHREAD)
 449			continue;
 450		for_each_thread(g, c) {
 451			if (c->mm == mm)
 452				goto assign_new_owner;
 453			if (c->mm)
 454				break;
 455		}
 456	}
 457	read_unlock(&tasklist_lock);
 458	/*
 459	 * We found no owner yet mm_users > 1: this implies that we are
 460	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 461	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 462	 */
 463	mm->owner = NULL;
 464	return;
 465
 466assign_new_owner:
 467	BUG_ON(c == p);
 468	get_task_struct(c);
 469	/*
 470	 * The task_lock protects c->mm from changing.
 471	 * We always want mm->owner->mm == mm
 472	 */
 473	task_lock(c);
 474	/*
 475	 * Delay read_unlock() till we have the task_lock()
 476	 * to ensure that c does not slip away underneath us
 477	 */
 478	read_unlock(&tasklist_lock);
 479	if (c->mm != mm) {
 480		task_unlock(c);
 481		put_task_struct(c);
 482		goto retry;
 483	}
 484	mm->owner = c;
 485	task_unlock(c);
 486	put_task_struct(c);
 487}
 488#endif /* CONFIG_MEMCG */
 489
 490/*
 491 * Turn us into a lazy TLB process if we
 492 * aren't already..
 493 */
 494static void exit_mm(void)
 495{
 496	struct mm_struct *mm = current->mm;
 497	struct core_state *core_state;
 498
 499	mm_release(current, mm);
 500	if (!mm)
 501		return;
 502	sync_mm_rss(mm);
 503	/*
 504	 * Serialize with any possible pending coredump.
 505	 * We must hold mmap_sem around checking core_state
 506	 * and clearing tsk->mm.  The core-inducing thread
 507	 * will increment ->nr_threads for each thread in the
 508	 * group with ->mm != NULL.
 509	 */
 510	down_read(&mm->mmap_sem);
 511	core_state = mm->core_state;
 512	if (core_state) {
 513		struct core_thread self;
 514
 515		up_read(&mm->mmap_sem);
 516
 517		self.task = current;
 518		self.next = xchg(&core_state->dumper.next, &self);
 519		/*
 520		 * Implies mb(), the result of xchg() must be visible
 521		 * to core_state->dumper.
 522		 */
 523		if (atomic_dec_and_test(&core_state->nr_threads))
 524			complete(&core_state->startup);
 525
 526		for (;;) {
 527			set_current_state(TASK_UNINTERRUPTIBLE);
 528			if (!self.task) /* see coredump_finish() */
 529				break;
 530			freezable_schedule();
 531		}
 532		__set_current_state(TASK_RUNNING);
 533		down_read(&mm->mmap_sem);
 534	}
 535	mmgrab(mm);
 536	BUG_ON(mm != current->active_mm);
 537	/* more a memory barrier than a real lock */
 538	task_lock(current);
 539	current->mm = NULL;
 540	up_read(&mm->mmap_sem);
 541	enter_lazy_tlb(mm, current);
 542	task_unlock(current);
 543	mm_update_next_owner(mm);
 544	mmput(mm);
 545	if (test_thread_flag(TIF_MEMDIE))
 546		exit_oom_victim();
 547}
 548
 549static struct task_struct *find_alive_thread(struct task_struct *p)
 550{
 551	struct task_struct *t;
 552
 553	for_each_thread(p, t) {
 554		if (!(t->flags & PF_EXITING))
 555			return t;
 556	}
 557	return NULL;
 558}
 559
 560static struct task_struct *find_child_reaper(struct task_struct *father)
 
 561	__releases(&tasklist_lock)
 562	__acquires(&tasklist_lock)
 563{
 564	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 565	struct task_struct *reaper = pid_ns->child_reaper;
 
 566
 567	if (likely(reaper != father))
 568		return reaper;
 569
 570	reaper = find_alive_thread(father);
 571	if (reaper) {
 572		pid_ns->child_reaper = reaper;
 573		return reaper;
 574	}
 575
 576	write_unlock_irq(&tasklist_lock);
 577	if (unlikely(pid_ns == &init_pid_ns)) {
 578		panic("Attempted to kill init! exitcode=0x%08x\n",
 579			father->signal->group_exit_code ?: father->exit_code);
 
 580	}
 
 581	zap_pid_ns_processes(pid_ns);
 582	write_lock_irq(&tasklist_lock);
 583
 584	return father;
 585}
 586
 587/*
 588 * When we die, we re-parent all our children, and try to:
 589 * 1. give them to another thread in our thread group, if such a member exists
 590 * 2. give it to the first ancestor process which prctl'd itself as a
 591 *    child_subreaper for its children (like a service manager)
 592 * 3. give it to the init process (PID 1) in our pid namespace
 593 */
 594static struct task_struct *find_new_reaper(struct task_struct *father,
 595					   struct task_struct *child_reaper)
 596{
 597	struct task_struct *thread, *reaper;
 598
 599	thread = find_alive_thread(father);
 600	if (thread)
 601		return thread;
 602
 603	if (father->signal->has_child_subreaper) {
 604		unsigned int ns_level = task_pid(father)->level;
 605		/*
 606		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 607		 * We can't check reaper != child_reaper to ensure we do not
 608		 * cross the namespaces, the exiting parent could be injected
 609		 * by setns() + fork().
 610		 * We check pid->level, this is slightly more efficient than
 611		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 612		 */
 613		for (reaper = father->real_parent;
 614		     task_pid(reaper)->level == ns_level;
 615		     reaper = reaper->real_parent) {
 616			if (reaper == &init_task)
 617				break;
 618			if (!reaper->signal->is_child_subreaper)
 619				continue;
 620			thread = find_alive_thread(reaper);
 621			if (thread)
 622				return thread;
 623		}
 624	}
 625
 626	return child_reaper;
 627}
 628
 629/*
 630* Any that need to be release_task'd are put on the @dead list.
 631 */
 632static void reparent_leader(struct task_struct *father, struct task_struct *p,
 633				struct list_head *dead)
 634{
 635	if (unlikely(p->exit_state == EXIT_DEAD))
 636		return;
 637
 638	/* We don't want people slaying init. */
 639	p->exit_signal = SIGCHLD;
 640
 641	/* If it has exited notify the new parent about this child's death. */
 642	if (!p->ptrace &&
 643	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 644		if (do_notify_parent(p, p->exit_signal)) {
 645			p->exit_state = EXIT_DEAD;
 646			list_add(&p->ptrace_entry, dead);
 647		}
 648	}
 649
 650	kill_orphaned_pgrp(p, father);
 651}
 652
 653/*
 654 * This does two things:
 655 *
 656 * A.  Make init inherit all the child processes
 657 * B.  Check to see if any process groups have become orphaned
 658 *	as a result of our exiting, and if they have any stopped
 659 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 660 */
 661static void forget_original_parent(struct task_struct *father,
 662					struct list_head *dead)
 663{
 664	struct task_struct *p, *t, *reaper;
 665
 666	if (unlikely(!list_empty(&father->ptraced)))
 667		exit_ptrace(father, dead);
 668
 669	/* Can drop and reacquire tasklist_lock */
 670	reaper = find_child_reaper(father);
 671	if (list_empty(&father->children))
 672		return;
 673
 674	reaper = find_new_reaper(father, reaper);
 675	list_for_each_entry(p, &father->children, sibling) {
 676		for_each_thread(p, t) {
 677			t->real_parent = reaper;
 678			BUG_ON((!t->ptrace) != (t->parent == father));
 679			if (likely(!t->ptrace))
 680				t->parent = t->real_parent;
 681			if (t->pdeath_signal)
 682				group_send_sig_info(t->pdeath_signal,
 683						    SEND_SIG_NOINFO, t);
 
 684		}
 685		/*
 686		 * If this is a threaded reparent there is no need to
 687		 * notify anyone anything has happened.
 688		 */
 689		if (!same_thread_group(reaper, father))
 690			reparent_leader(father, p, dead);
 691	}
 692	list_splice_tail_init(&father->children, &reaper->children);
 693}
 694
 695/*
 696 * Send signals to all our closest relatives so that they know
 697 * to properly mourn us..
 698 */
 699static void exit_notify(struct task_struct *tsk, int group_dead)
 700{
 701	bool autoreap;
 702	struct task_struct *p, *n;
 703	LIST_HEAD(dead);
 704
 705	write_lock_irq(&tasklist_lock);
 706	forget_original_parent(tsk, &dead);
 707
 708	if (group_dead)
 709		kill_orphaned_pgrp(tsk->group_leader, NULL);
 710
 
 711	if (unlikely(tsk->ptrace)) {
 712		int sig = thread_group_leader(tsk) &&
 713				thread_group_empty(tsk) &&
 714				!ptrace_reparented(tsk) ?
 715			tsk->exit_signal : SIGCHLD;
 716		autoreap = do_notify_parent(tsk, sig);
 717	} else if (thread_group_leader(tsk)) {
 718		autoreap = thread_group_empty(tsk) &&
 719			do_notify_parent(tsk, tsk->exit_signal);
 720	} else {
 721		autoreap = true;
 722	}
 723
 724	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 725	if (tsk->exit_state == EXIT_DEAD)
 726		list_add(&tsk->ptrace_entry, &dead);
 
 727
 728	/* mt-exec, de_thread() is waiting for group leader */
 729	if (unlikely(tsk->signal->notify_count < 0))
 730		wake_up_process(tsk->signal->group_exit_task);
 731	write_unlock_irq(&tasklist_lock);
 732
 733	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 734		list_del_init(&p->ptrace_entry);
 735		release_task(p);
 736	}
 737}
 738
 739#ifdef CONFIG_DEBUG_STACK_USAGE
 740static void check_stack_usage(void)
 741{
 742	static DEFINE_SPINLOCK(low_water_lock);
 743	static int lowest_to_date = THREAD_SIZE;
 744	unsigned long free;
 745
 746	free = stack_not_used(current);
 747
 748	if (free >= lowest_to_date)
 749		return;
 750
 751	spin_lock(&low_water_lock);
 752	if (free < lowest_to_date) {
 753		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 754			current->comm, task_pid_nr(current), free);
 755		lowest_to_date = free;
 756	}
 757	spin_unlock(&low_water_lock);
 758}
 759#else
 760static inline void check_stack_usage(void) {}
 761#endif
 762
 763void __noreturn do_exit(long code)
 764{
 765	struct task_struct *tsk = current;
 766	int group_dead;
 767
 768	profile_task_exit(tsk);
 769	kcov_task_exit(tsk);
 
 
 
 
 770
 771	WARN_ON(blk_needs_flush_plug(tsk));
 772
 773	if (unlikely(in_interrupt()))
 774		panic("Aiee, killing interrupt handler!");
 775	if (unlikely(!tsk->pid))
 776		panic("Attempted to kill the idle task!");
 777
 778	/*
 779	 * If do_exit is called because this processes oopsed, it's possible
 780	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 781	 * continuing. Amongst other possible reasons, this is to prevent
 782	 * mm_release()->clear_child_tid() from writing to a user-controlled
 783	 * kernel address.
 784	 */
 785	set_fs(USER_DS);
 
 
 
 
 
 
 
 
 
 
 786
 787	ptrace_event(PTRACE_EVENT_EXIT, code);
 788
 789	validate_creds_for_do_exit(tsk);
 790
 791	/*
 792	 * We're taking recursive faults here in do_exit. Safest is to just
 793	 * leave this task alone and wait for reboot.
 794	 */
 795	if (unlikely(tsk->flags & PF_EXITING)) {
 796		pr_alert("Fixing recursive fault but reboot is needed!\n");
 797		/*
 798		 * We can do this unlocked here. The futex code uses
 799		 * this flag just to verify whether the pi state
 800		 * cleanup has been done or not. In the worst case it
 801		 * loops once more. We pretend that the cleanup was
 802		 * done as there is no way to return. Either the
 803		 * OWNER_DIED bit is set by now or we push the blocked
 804		 * task into the wait for ever nirwana as well.
 805		 */
 806		tsk->flags |= PF_EXITPIDONE;
 807		set_current_state(TASK_UNINTERRUPTIBLE);
 808		schedule();
 809	}
 810
 811	exit_signals(tsk);  /* sets PF_EXITING */
 812	/*
 813	 * Ensure that all new tsk->pi_lock acquisitions must observe
 814	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
 815	 */
 816	smp_mb();
 817	/*
 818	 * Ensure that we must observe the pi_state in exit_mm() ->
 819	 * mm_release() -> exit_pi_state_list().
 820	 */
 821	raw_spin_lock_irq(&tsk->pi_lock);
 822	raw_spin_unlock_irq(&tsk->pi_lock);
 823
 824	if (unlikely(in_atomic())) {
 825		pr_info("note: %s[%d] exited with preempt_count %d\n",
 826			current->comm, task_pid_nr(current),
 827			preempt_count());
 828		preempt_count_set(PREEMPT_ENABLED);
 829	}
 830
 831	/* sync mm's RSS info before statistics gathering */
 832	if (tsk->mm)
 833		sync_mm_rss(tsk->mm);
 834	acct_update_integrals(tsk);
 835	group_dead = atomic_dec_and_test(&tsk->signal->live);
 836	if (group_dead) {
 
 
 
 
 
 
 
 
 837#ifdef CONFIG_POSIX_TIMERS
 838		hrtimer_cancel(&tsk->signal->real_timer);
 839		exit_itimers(tsk->signal);
 840#endif
 841		if (tsk->mm)
 842			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 843	}
 844	acct_collect(code, group_dead);
 845	if (group_dead)
 846		tty_audit_exit();
 847	audit_free(tsk);
 848
 849	tsk->exit_code = code;
 850	taskstats_exit(tsk, group_dead);
 851
 852	exit_mm();
 853
 854	if (group_dead)
 855		acct_process();
 856	trace_sched_process_exit(tsk);
 857
 858	exit_sem(tsk);
 859	exit_shm(tsk);
 860	exit_files(tsk);
 861	exit_fs(tsk);
 862	if (group_dead)
 863		disassociate_ctty(1);
 864	exit_task_namespaces(tsk);
 865	exit_task_work(tsk);
 866	exit_thread(tsk);
 867
 868	/*
 869	 * Flush inherited counters to the parent - before the parent
 870	 * gets woken up by child-exit notifications.
 871	 *
 872	 * because of cgroup mode, must be called before cgroup_exit()
 873	 */
 874	perf_event_exit_task(tsk);
 875
 876	sched_autogroup_exit_task(tsk);
 877	cgroup_exit(tsk);
 878
 879	/*
 880	 * FIXME: do that only when needed, using sched_exit tracepoint
 881	 */
 882	flush_ptrace_hw_breakpoint(tsk);
 883
 884	exit_tasks_rcu_start();
 885	exit_notify(tsk, group_dead);
 886	proc_exit_connector(tsk);
 887	mpol_put_task_policy(tsk);
 888#ifdef CONFIG_FUTEX
 889	if (unlikely(current->pi_state_cache))
 890		kfree(current->pi_state_cache);
 891#endif
 892	/*
 893	 * Make sure we are holding no locks:
 894	 */
 895	debug_check_no_locks_held();
 896	/*
 897	 * We can do this unlocked here. The futex code uses this flag
 898	 * just to verify whether the pi state cleanup has been done
 899	 * or not. In the worst case it loops once more.
 900	 */
 901	tsk->flags |= PF_EXITPIDONE;
 902
 903	if (tsk->io_context)
 904		exit_io_context(tsk);
 905
 906	if (tsk->splice_pipe)
 907		free_pipe_info(tsk->splice_pipe);
 908
 909	if (tsk->task_frag.page)
 910		put_page(tsk->task_frag.page);
 911
 912	validate_creds_for_do_exit(tsk);
 913
 914	check_stack_usage();
 915	preempt_disable();
 916	if (tsk->nr_dirtied)
 917		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 918	exit_rcu();
 919	exit_tasks_rcu_finish();
 920
 921	lockdep_free_task(tsk);
 922	do_task_dead();
 923}
 924EXPORT_SYMBOL_GPL(do_exit);
 925
 926void complete_and_exit(struct completion *comp, long code)
 927{
 928	if (comp)
 929		complete(comp);
 930
 931	do_exit(code);
 932}
 933EXPORT_SYMBOL(complete_and_exit);
 934
 935SYSCALL_DEFINE1(exit, int, error_code)
 936{
 937	do_exit((error_code&0xff)<<8);
 938}
 939
 940/*
 941 * Take down every thread in the group.  This is called by fatal signals
 942 * as well as by sys_exit_group (below).
 943 */
 944void
 945do_group_exit(int exit_code)
 946{
 947	struct signal_struct *sig = current->signal;
 948
 949	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 950
 951	if (signal_group_exit(sig))
 952		exit_code = sig->group_exit_code;
 953	else if (!thread_group_empty(current)) {
 954		struct sighand_struct *const sighand = current->sighand;
 955
 956		spin_lock_irq(&sighand->siglock);
 957		if (signal_group_exit(sig))
 958			/* Another thread got here before we took the lock.  */
 959			exit_code = sig->group_exit_code;
 960		else {
 961			sig->group_exit_code = exit_code;
 962			sig->flags = SIGNAL_GROUP_EXIT;
 963			zap_other_threads(current);
 964		}
 965		spin_unlock_irq(&sighand->siglock);
 966	}
 967
 968	do_exit(exit_code);
 969	/* NOTREACHED */
 970}
 971
 972/*
 973 * this kills every thread in the thread group. Note that any externally
 974 * wait4()-ing process will get the correct exit code - even if this
 975 * thread is not the thread group leader.
 976 */
 977SYSCALL_DEFINE1(exit_group, int, error_code)
 978{
 979	do_group_exit((error_code & 0xff) << 8);
 980	/* NOTREACHED */
 981	return 0;
 982}
 983
 984struct waitid_info {
 985	pid_t pid;
 986	uid_t uid;
 987	int status;
 988	int cause;
 989};
 990
 991struct wait_opts {
 992	enum pid_type		wo_type;
 993	int			wo_flags;
 994	struct pid		*wo_pid;
 995
 996	struct waitid_info	*wo_info;
 997	int			wo_stat;
 998	struct rusage		*wo_rusage;
 999
1000	wait_queue_entry_t		child_wait;
1001	int			notask_error;
1002};
1003
1004static inline
1005struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1006{
1007	if (type != PIDTYPE_PID)
1008		task = task->group_leader;
1009	return task->pids[type].pid;
1010}
1011
1012static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1013{
1014	return	wo->wo_type == PIDTYPE_MAX ||
1015		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1016}
1017
1018static int
1019eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1020{
1021	if (!eligible_pid(wo, p))
1022		return 0;
1023
1024	/*
1025	 * Wait for all children (clone and not) if __WALL is set or
1026	 * if it is traced by us.
1027	 */
1028	if (ptrace || (wo->wo_flags & __WALL))
1029		return 1;
1030
1031	/*
1032	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1033	 * otherwise, wait for non-clone children *only*.
1034	 *
1035	 * Note: a "clone" child here is one that reports to its parent
1036	 * using a signal other than SIGCHLD, or a non-leader thread which
1037	 * we can only see if it is traced by us.
1038	 */
1039	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1040		return 0;
1041
1042	return 1;
1043}
1044
1045/*
1046 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1047 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1048 * the lock and this task is uninteresting.  If we return nonzero, we have
1049 * released the lock and the system call should return.
1050 */
1051static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1052{
1053	int state, status;
1054	pid_t pid = task_pid_vnr(p);
1055	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1056	struct waitid_info *infop;
1057
1058	if (!likely(wo->wo_flags & WEXITED))
1059		return 0;
1060
1061	if (unlikely(wo->wo_flags & WNOWAIT)) {
1062		status = p->exit_code;
1063		get_task_struct(p);
1064		read_unlock(&tasklist_lock);
1065		sched_annotate_sleep();
1066		if (wo->wo_rusage)
1067			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1068		put_task_struct(p);
1069		goto out_info;
1070	}
1071	/*
1072	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1073	 */
1074	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1075		EXIT_TRACE : EXIT_DEAD;
1076	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1077		return 0;
1078	/*
1079	 * We own this thread, nobody else can reap it.
1080	 */
1081	read_unlock(&tasklist_lock);
1082	sched_annotate_sleep();
1083
1084	/*
1085	 * Check thread_group_leader() to exclude the traced sub-threads.
1086	 */
1087	if (state == EXIT_DEAD && thread_group_leader(p)) {
1088		struct signal_struct *sig = p->signal;
1089		struct signal_struct *psig = current->signal;
1090		unsigned long maxrss;
1091		u64 tgutime, tgstime;
1092
1093		/*
1094		 * The resource counters for the group leader are in its
1095		 * own task_struct.  Those for dead threads in the group
1096		 * are in its signal_struct, as are those for the child
1097		 * processes it has previously reaped.  All these
1098		 * accumulate in the parent's signal_struct c* fields.
1099		 *
1100		 * We don't bother to take a lock here to protect these
1101		 * p->signal fields because the whole thread group is dead
1102		 * and nobody can change them.
1103		 *
1104		 * psig->stats_lock also protects us from our sub-theads
1105		 * which can reap other children at the same time. Until
1106		 * we change k_getrusage()-like users to rely on this lock
1107		 * we have to take ->siglock as well.
1108		 *
1109		 * We use thread_group_cputime_adjusted() to get times for
1110		 * the thread group, which consolidates times for all threads
1111		 * in the group including the group leader.
1112		 */
1113		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1114		spin_lock_irq(&current->sighand->siglock);
1115		write_seqlock(&psig->stats_lock);
1116		psig->cutime += tgutime + sig->cutime;
1117		psig->cstime += tgstime + sig->cstime;
1118		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1119		psig->cmin_flt +=
1120			p->min_flt + sig->min_flt + sig->cmin_flt;
1121		psig->cmaj_flt +=
1122			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1123		psig->cnvcsw +=
1124			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1125		psig->cnivcsw +=
1126			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1127		psig->cinblock +=
1128			task_io_get_inblock(p) +
1129			sig->inblock + sig->cinblock;
1130		psig->coublock +=
1131			task_io_get_oublock(p) +
1132			sig->oublock + sig->coublock;
1133		maxrss = max(sig->maxrss, sig->cmaxrss);
1134		if (psig->cmaxrss < maxrss)
1135			psig->cmaxrss = maxrss;
1136		task_io_accounting_add(&psig->ioac, &p->ioac);
1137		task_io_accounting_add(&psig->ioac, &sig->ioac);
1138		write_sequnlock(&psig->stats_lock);
1139		spin_unlock_irq(&current->sighand->siglock);
1140	}
1141
1142	if (wo->wo_rusage)
1143		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1144	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1145		? p->signal->group_exit_code : p->exit_code;
1146	wo->wo_stat = status;
1147
1148	if (state == EXIT_TRACE) {
1149		write_lock_irq(&tasklist_lock);
1150		/* We dropped tasklist, ptracer could die and untrace */
1151		ptrace_unlink(p);
1152
1153		/* If parent wants a zombie, don't release it now */
1154		state = EXIT_ZOMBIE;
1155		if (do_notify_parent(p, p->exit_signal))
1156			state = EXIT_DEAD;
1157		p->exit_state = state;
1158		write_unlock_irq(&tasklist_lock);
1159	}
1160	if (state == EXIT_DEAD)
1161		release_task(p);
1162
1163out_info:
1164	infop = wo->wo_info;
1165	if (infop) {
1166		if ((status & 0x7f) == 0) {
1167			infop->cause = CLD_EXITED;
1168			infop->status = status >> 8;
1169		} else {
1170			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1171			infop->status = status & 0x7f;
1172		}
1173		infop->pid = pid;
1174		infop->uid = uid;
1175	}
1176
1177	return pid;
1178}
1179
1180static int *task_stopped_code(struct task_struct *p, bool ptrace)
1181{
1182	if (ptrace) {
1183		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1184			return &p->exit_code;
1185	} else {
1186		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1187			return &p->signal->group_exit_code;
1188	}
1189	return NULL;
1190}
1191
1192/**
1193 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1194 * @wo: wait options
1195 * @ptrace: is the wait for ptrace
1196 * @p: task to wait for
1197 *
1198 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1199 *
1200 * CONTEXT:
1201 * read_lock(&tasklist_lock), which is released if return value is
1202 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1203 *
1204 * RETURNS:
1205 * 0 if wait condition didn't exist and search for other wait conditions
1206 * should continue.  Non-zero return, -errno on failure and @p's pid on
1207 * success, implies that tasklist_lock is released and wait condition
1208 * search should terminate.
1209 */
1210static int wait_task_stopped(struct wait_opts *wo,
1211				int ptrace, struct task_struct *p)
1212{
1213	struct waitid_info *infop;
1214	int exit_code, *p_code, why;
1215	uid_t uid = 0; /* unneeded, required by compiler */
1216	pid_t pid;
1217
1218	/*
1219	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1220	 */
1221	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1222		return 0;
1223
1224	if (!task_stopped_code(p, ptrace))
1225		return 0;
1226
1227	exit_code = 0;
1228	spin_lock_irq(&p->sighand->siglock);
1229
1230	p_code = task_stopped_code(p, ptrace);
1231	if (unlikely(!p_code))
1232		goto unlock_sig;
1233
1234	exit_code = *p_code;
1235	if (!exit_code)
1236		goto unlock_sig;
1237
1238	if (!unlikely(wo->wo_flags & WNOWAIT))
1239		*p_code = 0;
1240
1241	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1242unlock_sig:
1243	spin_unlock_irq(&p->sighand->siglock);
1244	if (!exit_code)
1245		return 0;
1246
1247	/*
1248	 * Now we are pretty sure this task is interesting.
1249	 * Make sure it doesn't get reaped out from under us while we
1250	 * give up the lock and then examine it below.  We don't want to
1251	 * keep holding onto the tasklist_lock while we call getrusage and
1252	 * possibly take page faults for user memory.
1253	 */
1254	get_task_struct(p);
1255	pid = task_pid_vnr(p);
1256	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1257	read_unlock(&tasklist_lock);
1258	sched_annotate_sleep();
1259	if (wo->wo_rusage)
1260		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261	put_task_struct(p);
1262
1263	if (likely(!(wo->wo_flags & WNOWAIT)))
1264		wo->wo_stat = (exit_code << 8) | 0x7f;
1265
1266	infop = wo->wo_info;
1267	if (infop) {
1268		infop->cause = why;
1269		infop->status = exit_code;
1270		infop->pid = pid;
1271		infop->uid = uid;
1272	}
1273	return pid;
1274}
1275
1276/*
1277 * Handle do_wait work for one task in a live, non-stopped state.
1278 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1279 * the lock and this task is uninteresting.  If we return nonzero, we have
1280 * released the lock and the system call should return.
1281 */
1282static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1283{
1284	struct waitid_info *infop;
1285	pid_t pid;
1286	uid_t uid;
1287
1288	if (!unlikely(wo->wo_flags & WCONTINUED))
1289		return 0;
1290
1291	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1292		return 0;
1293
1294	spin_lock_irq(&p->sighand->siglock);
1295	/* Re-check with the lock held.  */
1296	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1297		spin_unlock_irq(&p->sighand->siglock);
1298		return 0;
1299	}
1300	if (!unlikely(wo->wo_flags & WNOWAIT))
1301		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1302	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1303	spin_unlock_irq(&p->sighand->siglock);
1304
1305	pid = task_pid_vnr(p);
1306	get_task_struct(p);
1307	read_unlock(&tasklist_lock);
1308	sched_annotate_sleep();
1309	if (wo->wo_rusage)
1310		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1311	put_task_struct(p);
1312
1313	infop = wo->wo_info;
1314	if (!infop) {
1315		wo->wo_stat = 0xffff;
1316	} else {
1317		infop->cause = CLD_CONTINUED;
1318		infop->pid = pid;
1319		infop->uid = uid;
1320		infop->status = SIGCONT;
1321	}
1322	return pid;
1323}
1324
1325/*
1326 * Consider @p for a wait by @parent.
1327 *
1328 * -ECHILD should be in ->notask_error before the first call.
1329 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1330 * Returns zero if the search for a child should continue;
1331 * then ->notask_error is 0 if @p is an eligible child,
1332 * or still -ECHILD.
1333 */
1334static int wait_consider_task(struct wait_opts *wo, int ptrace,
1335				struct task_struct *p)
1336{
1337	/*
1338	 * We can race with wait_task_zombie() from another thread.
1339	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1340	 * can't confuse the checks below.
1341	 */
1342	int exit_state = READ_ONCE(p->exit_state);
1343	int ret;
1344
1345	if (unlikely(exit_state == EXIT_DEAD))
1346		return 0;
1347
1348	ret = eligible_child(wo, ptrace, p);
1349	if (!ret)
1350		return ret;
1351
1352	if (unlikely(exit_state == EXIT_TRACE)) {
1353		/*
1354		 * ptrace == 0 means we are the natural parent. In this case
1355		 * we should clear notask_error, debugger will notify us.
1356		 */
1357		if (likely(!ptrace))
1358			wo->notask_error = 0;
1359		return 0;
1360	}
1361
1362	if (likely(!ptrace) && unlikely(p->ptrace)) {
1363		/*
1364		 * If it is traced by its real parent's group, just pretend
1365		 * the caller is ptrace_do_wait() and reap this child if it
1366		 * is zombie.
1367		 *
1368		 * This also hides group stop state from real parent; otherwise
1369		 * a single stop can be reported twice as group and ptrace stop.
1370		 * If a ptracer wants to distinguish these two events for its
1371		 * own children it should create a separate process which takes
1372		 * the role of real parent.
1373		 */
1374		if (!ptrace_reparented(p))
1375			ptrace = 1;
1376	}
1377
1378	/* slay zombie? */
1379	if (exit_state == EXIT_ZOMBIE) {
1380		/* we don't reap group leaders with subthreads */
1381		if (!delay_group_leader(p)) {
1382			/*
1383			 * A zombie ptracee is only visible to its ptracer.
1384			 * Notification and reaping will be cascaded to the
1385			 * real parent when the ptracer detaches.
1386			 */
1387			if (unlikely(ptrace) || likely(!p->ptrace))
1388				return wait_task_zombie(wo, p);
1389		}
1390
1391		/*
1392		 * Allow access to stopped/continued state via zombie by
1393		 * falling through.  Clearing of notask_error is complex.
1394		 *
1395		 * When !@ptrace:
1396		 *
1397		 * If WEXITED is set, notask_error should naturally be
1398		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1399		 * so, if there are live subthreads, there are events to
1400		 * wait for.  If all subthreads are dead, it's still safe
1401		 * to clear - this function will be called again in finite
1402		 * amount time once all the subthreads are released and
1403		 * will then return without clearing.
1404		 *
1405		 * When @ptrace:
1406		 *
1407		 * Stopped state is per-task and thus can't change once the
1408		 * target task dies.  Only continued and exited can happen.
1409		 * Clear notask_error if WCONTINUED | WEXITED.
1410		 */
1411		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1412			wo->notask_error = 0;
1413	} else {
1414		/*
1415		 * @p is alive and it's gonna stop, continue or exit, so
1416		 * there always is something to wait for.
1417		 */
1418		wo->notask_error = 0;
1419	}
1420
1421	/*
1422	 * Wait for stopped.  Depending on @ptrace, different stopped state
1423	 * is used and the two don't interact with each other.
1424	 */
1425	ret = wait_task_stopped(wo, ptrace, p);
1426	if (ret)
1427		return ret;
1428
1429	/*
1430	 * Wait for continued.  There's only one continued state and the
1431	 * ptracer can consume it which can confuse the real parent.  Don't
1432	 * use WCONTINUED from ptracer.  You don't need or want it.
1433	 */
1434	return wait_task_continued(wo, p);
1435}
1436
1437/*
1438 * Do the work of do_wait() for one thread in the group, @tsk.
1439 *
1440 * -ECHILD should be in ->notask_error before the first call.
1441 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1442 * Returns zero if the search for a child should continue; then
1443 * ->notask_error is 0 if there were any eligible children,
1444 * or still -ECHILD.
1445 */
1446static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1447{
1448	struct task_struct *p;
1449
1450	list_for_each_entry(p, &tsk->children, sibling) {
1451		int ret = wait_consider_task(wo, 0, p);
1452
1453		if (ret)
1454			return ret;
1455	}
1456
1457	return 0;
1458}
1459
1460static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1461{
1462	struct task_struct *p;
1463
1464	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1465		int ret = wait_consider_task(wo, 1, p);
1466
1467		if (ret)
1468			return ret;
1469	}
1470
1471	return 0;
1472}
1473
1474static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1475				int sync, void *key)
1476{
1477	struct wait_opts *wo = container_of(wait, struct wait_opts,
1478						child_wait);
1479	struct task_struct *p = key;
1480
1481	if (!eligible_pid(wo, p))
1482		return 0;
1483
1484	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1485		return 0;
1486
1487	return default_wake_function(wait, mode, sync, key);
1488}
1489
1490void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1491{
1492	__wake_up_sync_key(&parent->signal->wait_chldexit,
1493				TASK_INTERRUPTIBLE, 1, p);
1494}
1495
1496static long do_wait(struct wait_opts *wo)
1497{
1498	struct task_struct *tsk;
1499	int retval;
1500
1501	trace_sched_process_wait(wo->wo_pid);
1502
1503	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504	wo->child_wait.private = current;
1505	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506repeat:
1507	/*
1508	 * If there is nothing that can match our criteria, just get out.
1509	 * We will clear ->notask_error to zero if we see any child that
1510	 * might later match our criteria, even if we are not able to reap
1511	 * it yet.
1512	 */
1513	wo->notask_error = -ECHILD;
1514	if ((wo->wo_type < PIDTYPE_MAX) &&
1515	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1516		goto notask;
1517
1518	set_current_state(TASK_INTERRUPTIBLE);
1519	read_lock(&tasklist_lock);
1520	tsk = current;
1521	do {
1522		retval = do_wait_thread(wo, tsk);
1523		if (retval)
1524			goto end;
1525
1526		retval = ptrace_do_wait(wo, tsk);
1527		if (retval)
1528			goto end;
1529
1530		if (wo->wo_flags & __WNOTHREAD)
1531			break;
1532	} while_each_thread(current, tsk);
1533	read_unlock(&tasklist_lock);
1534
1535notask:
1536	retval = wo->notask_error;
1537	if (!retval && !(wo->wo_flags & WNOHANG)) {
1538		retval = -ERESTARTSYS;
1539		if (!signal_pending(current)) {
1540			schedule();
1541			goto repeat;
1542		}
1543	}
1544end:
1545	__set_current_state(TASK_RUNNING);
1546	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547	return retval;
1548}
1549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551			  int options, struct rusage *ru)
1552{
1553	struct wait_opts wo;
1554	struct pid *pid = NULL;
1555	enum pid_type type;
1556	long ret;
1557
1558	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1559			__WNOTHREAD|__WCLONE|__WALL))
1560		return -EINVAL;
1561	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1562		return -EINVAL;
1563
1564	switch (which) {
1565	case P_ALL:
1566		type = PIDTYPE_MAX;
1567		break;
1568	case P_PID:
1569		type = PIDTYPE_PID;
1570		if (upid <= 0)
1571			return -EINVAL;
 
 
1572		break;
1573	case P_PGID:
1574		type = PIDTYPE_PGID;
1575		if (upid <= 0)
1576			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577		break;
1578	default:
1579		return -EINVAL;
1580	}
1581
1582	if (type < PIDTYPE_MAX)
1583		pid = find_get_pid(upid);
1584
1585	wo.wo_type	= type;
1586	wo.wo_pid	= pid;
1587	wo.wo_flags	= options;
1588	wo.wo_info	= infop;
1589	wo.wo_rusage	= ru;
1590	ret = do_wait(&wo);
1591
1592	put_pid(pid);
1593	return ret;
1594}
1595
1596SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1597		infop, int, options, struct rusage __user *, ru)
1598{
1599	struct rusage r;
1600	struct waitid_info info = {.status = 0};
1601	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1602	int signo = 0;
1603
1604	if (err > 0) {
1605		signo = SIGCHLD;
1606		err = 0;
1607		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1608			return -EFAULT;
1609	}
1610	if (!infop)
1611		return err;
1612
1613	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1614		return -EFAULT;
1615
1616	user_access_begin();
1617	unsafe_put_user(signo, &infop->si_signo, Efault);
1618	unsafe_put_user(0, &infop->si_errno, Efault);
1619	unsafe_put_user(info.cause, &infop->si_code, Efault);
1620	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1621	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1622	unsafe_put_user(info.status, &infop->si_status, Efault);
1623	user_access_end();
1624	return err;
1625Efault:
1626	user_access_end();
1627	return -EFAULT;
1628}
1629
1630long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1631		  struct rusage *ru)
1632{
1633	struct wait_opts wo;
1634	struct pid *pid = NULL;
1635	enum pid_type type;
1636	long ret;
1637
1638	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1639			__WNOTHREAD|__WCLONE|__WALL))
1640		return -EINVAL;
1641
1642	/* -INT_MIN is not defined */
1643	if (upid == INT_MIN)
1644		return -ESRCH;
1645
1646	if (upid == -1)
1647		type = PIDTYPE_MAX;
1648	else if (upid < 0) {
1649		type = PIDTYPE_PGID;
1650		pid = find_get_pid(-upid);
1651	} else if (upid == 0) {
1652		type = PIDTYPE_PGID;
1653		pid = get_task_pid(current, PIDTYPE_PGID);
1654	} else /* upid > 0 */ {
1655		type = PIDTYPE_PID;
1656		pid = find_get_pid(upid);
1657	}
1658
1659	wo.wo_type	= type;
1660	wo.wo_pid	= pid;
1661	wo.wo_flags	= options | WEXITED;
1662	wo.wo_info	= NULL;
1663	wo.wo_stat	= 0;
1664	wo.wo_rusage	= ru;
1665	ret = do_wait(&wo);
1666	put_pid(pid);
1667	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1668		ret = -EFAULT;
1669
1670	return ret;
1671}
1672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1674		int, options, struct rusage __user *, ru)
1675{
1676	struct rusage r;
1677	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1678
1679	if (err > 0) {
1680		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1681			return -EFAULT;
1682	}
1683	return err;
1684}
1685
1686#ifdef __ARCH_WANT_SYS_WAITPID
1687
1688/*
1689 * sys_waitpid() remains for compatibility. waitpid() should be
1690 * implemented by calling sys_wait4() from libc.a.
1691 */
1692SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1693{
1694	return kernel_wait4(pid, stat_addr, options, NULL);
1695}
1696
1697#endif
1698
1699#ifdef CONFIG_COMPAT
1700COMPAT_SYSCALL_DEFINE4(wait4,
1701	compat_pid_t, pid,
1702	compat_uint_t __user *, stat_addr,
1703	int, options,
1704	struct compat_rusage __user *, ru)
1705{
1706	struct rusage r;
1707	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1708	if (err > 0) {
1709		if (ru && put_compat_rusage(&r, ru))
1710			return -EFAULT;
1711	}
1712	return err;
1713}
1714
1715COMPAT_SYSCALL_DEFINE5(waitid,
1716		int, which, compat_pid_t, pid,
1717		struct compat_siginfo __user *, infop, int, options,
1718		struct compat_rusage __user *, uru)
1719{
1720	struct rusage ru;
1721	struct waitid_info info = {.status = 0};
1722	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1723	int signo = 0;
1724	if (err > 0) {
1725		signo = SIGCHLD;
1726		err = 0;
1727		if (uru) {
1728			/* kernel_waitid() overwrites everything in ru */
1729			if (COMPAT_USE_64BIT_TIME)
1730				err = copy_to_user(uru, &ru, sizeof(ru));
1731			else
1732				err = put_compat_rusage(&ru, uru);
1733			if (err)
1734				return -EFAULT;
1735		}
1736	}
1737
1738	if (!infop)
1739		return err;
1740
1741	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1742		return -EFAULT;
1743
1744	user_access_begin();
1745	unsafe_put_user(signo, &infop->si_signo, Efault);
1746	unsafe_put_user(0, &infop->si_errno, Efault);
1747	unsafe_put_user(info.cause, &infop->si_code, Efault);
1748	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1749	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1750	unsafe_put_user(info.status, &infop->si_status, Efault);
1751	user_access_end();
1752	return err;
1753Efault:
1754	user_access_end();
1755	return -EFAULT;
1756}
1757#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758
1759__weak void abort(void)
1760{
1761	BUG();
1762
1763	/* if that doesn't kill us, halt */
1764	panic("Oops failed to kill thread");
1765}
1766EXPORT_SYMBOL(abort);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/exit.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/slab.h>
  10#include <linux/sched/autogroup.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/stat.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/sched/cputime.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/capability.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/tty.h>
  22#include <linux/iocontext.h>
  23#include <linux/key.h>
  24#include <linux/cpu.h>
  25#include <linux/acct.h>
  26#include <linux/tsacct_kern.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/freezer.h>
  30#include <linux/binfmts.h>
  31#include <linux/nsproxy.h>
  32#include <linux/pid_namespace.h>
  33#include <linux/ptrace.h>
  34#include <linux/profile.h>
  35#include <linux/mount.h>
  36#include <linux/proc_fs.h>
  37#include <linux/kthread.h>
  38#include <linux/mempolicy.h>
  39#include <linux/taskstats_kern.h>
  40#include <linux/delayacct.h>
  41#include <linux/cgroup.h>
  42#include <linux/syscalls.h>
  43#include <linux/signal.h>
  44#include <linux/posix-timers.h>
  45#include <linux/cn_proc.h>
  46#include <linux/mutex.h>
  47#include <linux/futex.h>
  48#include <linux/pipe_fs_i.h>
  49#include <linux/audit.h> /* for audit_free() */
  50#include <linux/resource.h>
  51#include <linux/blkdev.h>
  52#include <linux/task_io_accounting_ops.h>
  53#include <linux/tracehook.h>
  54#include <linux/fs_struct.h>
  55#include <linux/init_task.h>
  56#include <linux/perf_event.h>
  57#include <trace/events/sched.h>
  58#include <linux/hw_breakpoint.h>
  59#include <linux/oom.h>
  60#include <linux/writeback.h>
  61#include <linux/shm.h>
  62#include <linux/kcov.h>
  63#include <linux/random.h>
  64#include <linux/rcuwait.h>
  65#include <linux/compat.h>
  66
  67#include <linux/uaccess.h>
  68#include <asm/unistd.h>
 
  69#include <asm/mmu_context.h>
  70
  71static void __unhash_process(struct task_struct *p, bool group_dead)
  72{
  73	nr_threads--;
  74	detach_pid(p, PIDTYPE_PID);
  75	if (group_dead) {
  76		detach_pid(p, PIDTYPE_TGID);
  77		detach_pid(p, PIDTYPE_PGID);
  78		detach_pid(p, PIDTYPE_SID);
  79
  80		list_del_rcu(&p->tasks);
  81		list_del_init(&p->sibling);
  82		__this_cpu_dec(process_counts);
  83	}
  84	list_del_rcu(&p->thread_group);
  85	list_del_rcu(&p->thread_node);
  86}
  87
  88/*
  89 * This function expects the tasklist_lock write-locked.
  90 */
  91static void __exit_signal(struct task_struct *tsk)
  92{
  93	struct signal_struct *sig = tsk->signal;
  94	bool group_dead = thread_group_leader(tsk);
  95	struct sighand_struct *sighand;
  96	struct tty_struct *tty;
  97	u64 utime, stime;
  98
  99	sighand = rcu_dereference_check(tsk->sighand,
 100					lockdep_tasklist_lock_is_held());
 101	spin_lock(&sighand->siglock);
 102
 103#ifdef CONFIG_POSIX_TIMERS
 104	posix_cpu_timers_exit(tsk);
 105	if (group_dead)
 106		posix_cpu_timers_exit_group(tsk);
 
 
 
 
 
 
 
 
 
 107#endif
 108
 109	if (group_dead) {
 110		tty = sig->tty;
 111		sig->tty = NULL;
 112	} else {
 113		/*
 114		 * If there is any task waiting for the group exit
 115		 * then notify it:
 116		 */
 117		if (sig->notify_count > 0 && !--sig->notify_count)
 118			wake_up_process(sig->group_exit_task);
 119
 120		if (tsk == sig->curr_target)
 121			sig->curr_target = next_thread(tsk);
 122	}
 123
 124	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 125			      sizeof(unsigned long long));
 126
 127	/*
 128	 * Accumulate here the counters for all threads as they die. We could
 129	 * skip the group leader because it is the last user of signal_struct,
 130	 * but we want to avoid the race with thread_group_cputime() which can
 131	 * see the empty ->thread_head list.
 132	 */
 133	task_cputime(tsk, &utime, &stime);
 134	write_seqlock(&sig->stats_lock);
 135	sig->utime += utime;
 136	sig->stime += stime;
 137	sig->gtime += task_gtime(tsk);
 138	sig->min_flt += tsk->min_flt;
 139	sig->maj_flt += tsk->maj_flt;
 140	sig->nvcsw += tsk->nvcsw;
 141	sig->nivcsw += tsk->nivcsw;
 142	sig->inblock += task_io_get_inblock(tsk);
 143	sig->oublock += task_io_get_oublock(tsk);
 144	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 145	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 146	sig->nr_threads--;
 147	__unhash_process(tsk, group_dead);
 148	write_sequnlock(&sig->stats_lock);
 149
 150	/*
 151	 * Do this under ->siglock, we can race with another thread
 152	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 153	 */
 154	flush_sigqueue(&tsk->pending);
 155	tsk->sighand = NULL;
 156	spin_unlock(&sighand->siglock);
 157
 158	__cleanup_sighand(sighand);
 159	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 160	if (group_dead) {
 161		flush_sigqueue(&sig->shared_pending);
 162		tty_kref_put(tty);
 163	}
 164}
 165
 166static void delayed_put_task_struct(struct rcu_head *rhp)
 167{
 168	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 169
 170	perf_event_delayed_put(tsk);
 171	trace_sched_process_free(tsk);
 172	put_task_struct(tsk);
 173}
 174
 175void put_task_struct_rcu_user(struct task_struct *task)
 176{
 177	if (refcount_dec_and_test(&task->rcu_users))
 178		call_rcu(&task->rcu, delayed_put_task_struct);
 179}
 180
 181void release_task(struct task_struct *p)
 182{
 183	struct task_struct *leader;
 184	struct pid *thread_pid;
 185	int zap_leader;
 186repeat:
 187	/* don't need to get the RCU readlock here - the process is dead and
 188	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 189	rcu_read_lock();
 190	atomic_dec(&__task_cred(p)->user->processes);
 191	rcu_read_unlock();
 192
 193	cgroup_release(p);
 194
 195	write_lock_irq(&tasklist_lock);
 196	ptrace_release_task(p);
 197	thread_pid = get_pid(p->thread_pid);
 198	__exit_signal(p);
 199
 200	/*
 201	 * If we are the last non-leader member of the thread
 202	 * group, and the leader is zombie, then notify the
 203	 * group leader's parent process. (if it wants notification.)
 204	 */
 205	zap_leader = 0;
 206	leader = p->group_leader;
 207	if (leader != p && thread_group_empty(leader)
 208			&& leader->exit_state == EXIT_ZOMBIE) {
 209		/*
 210		 * If we were the last child thread and the leader has
 211		 * exited already, and the leader's parent ignores SIGCHLD,
 212		 * then we are the one who should release the leader.
 213		 */
 214		zap_leader = do_notify_parent(leader, leader->exit_signal);
 215		if (zap_leader)
 216			leader->exit_state = EXIT_DEAD;
 217	}
 218
 219	write_unlock_irq(&tasklist_lock);
 220	seccomp_filter_release(p);
 221	proc_flush_pid(thread_pid);
 222	put_pid(thread_pid);
 223	release_thread(p);
 224	put_task_struct_rcu_user(p);
 225
 226	p = leader;
 227	if (unlikely(zap_leader))
 228		goto repeat;
 229}
 230
 231int rcuwait_wake_up(struct rcuwait *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232{
 233	int ret = 0;
 234	struct task_struct *task;
 235
 236	rcu_read_lock();
 237
 238	/*
 239	 * Order condition vs @task, such that everything prior to the load
 240	 * of @task is visible. This is the condition as to why the user called
 241	 * rcuwait_wake() in the first place. Pairs with set_current_state()
 242	 * barrier (A) in rcuwait_wait_event().
 243	 *
 244	 *    WAIT                WAKE
 245	 *    [S] tsk = current	  [S] cond = true
 246	 *        MB (A)	      MB (B)
 247	 *    [L] cond		  [L] tsk
 248	 */
 249	smp_mb(); /* (B) */
 250
 
 
 
 
 251	task = rcu_dereference(w->task);
 252	if (task)
 253		ret = wake_up_process(task);
 254	rcu_read_unlock();
 255
 256	return ret;
 257}
 258EXPORT_SYMBOL_GPL(rcuwait_wake_up);
 259
 260/*
 261 * Determine if a process group is "orphaned", according to the POSIX
 262 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 263 * by terminal-generated stop signals.  Newly orphaned process groups are
 264 * to receive a SIGHUP and a SIGCONT.
 265 *
 266 * "I ask you, have you ever known what it is to be an orphan?"
 267 */
 268static int will_become_orphaned_pgrp(struct pid *pgrp,
 269					struct task_struct *ignored_task)
 270{
 271	struct task_struct *p;
 272
 273	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 274		if ((p == ignored_task) ||
 275		    (p->exit_state && thread_group_empty(p)) ||
 276		    is_global_init(p->real_parent))
 277			continue;
 278
 279		if (task_pgrp(p->real_parent) != pgrp &&
 280		    task_session(p->real_parent) == task_session(p))
 281			return 0;
 282	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 283
 284	return 1;
 285}
 286
 287int is_current_pgrp_orphaned(void)
 288{
 289	int retval;
 290
 291	read_lock(&tasklist_lock);
 292	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 293	read_unlock(&tasklist_lock);
 294
 295	return retval;
 296}
 297
 298static bool has_stopped_jobs(struct pid *pgrp)
 299{
 300	struct task_struct *p;
 301
 302	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 303		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 304			return true;
 305	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 306
 307	return false;
 308}
 309
 310/*
 311 * Check to see if any process groups have become orphaned as
 312 * a result of our exiting, and if they have any stopped jobs,
 313 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 314 */
 315static void
 316kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 317{
 318	struct pid *pgrp = task_pgrp(tsk);
 319	struct task_struct *ignored_task = tsk;
 320
 321	if (!parent)
 322		/* exit: our father is in a different pgrp than
 323		 * we are and we were the only connection outside.
 324		 */
 325		parent = tsk->real_parent;
 326	else
 327		/* reparent: our child is in a different pgrp than
 328		 * we are, and it was the only connection outside.
 329		 */
 330		ignored_task = NULL;
 331
 332	if (task_pgrp(parent) != pgrp &&
 333	    task_session(parent) == task_session(tsk) &&
 334	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 335	    has_stopped_jobs(pgrp)) {
 336		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 337		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 338	}
 339}
 340
 341#ifdef CONFIG_MEMCG
 342/*
 343 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 344 */
 345void mm_update_next_owner(struct mm_struct *mm)
 346{
 347	struct task_struct *c, *g, *p = current;
 348
 349retry:
 350	/*
 351	 * If the exiting or execing task is not the owner, it's
 352	 * someone else's problem.
 353	 */
 354	if (mm->owner != p)
 355		return;
 356	/*
 357	 * The current owner is exiting/execing and there are no other
 358	 * candidates.  Do not leave the mm pointing to a possibly
 359	 * freed task structure.
 360	 */
 361	if (atomic_read(&mm->mm_users) <= 1) {
 362		WRITE_ONCE(mm->owner, NULL);
 363		return;
 364	}
 365
 366	read_lock(&tasklist_lock);
 367	/*
 368	 * Search in the children
 369	 */
 370	list_for_each_entry(c, &p->children, sibling) {
 371		if (c->mm == mm)
 372			goto assign_new_owner;
 373	}
 374
 375	/*
 376	 * Search in the siblings
 377	 */
 378	list_for_each_entry(c, &p->real_parent->children, sibling) {
 379		if (c->mm == mm)
 380			goto assign_new_owner;
 381	}
 382
 383	/*
 384	 * Search through everything else, we should not get here often.
 385	 */
 386	for_each_process(g) {
 387		if (g->flags & PF_KTHREAD)
 388			continue;
 389		for_each_thread(g, c) {
 390			if (c->mm == mm)
 391				goto assign_new_owner;
 392			if (c->mm)
 393				break;
 394		}
 395	}
 396	read_unlock(&tasklist_lock);
 397	/*
 398	 * We found no owner yet mm_users > 1: this implies that we are
 399	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 400	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 401	 */
 402	WRITE_ONCE(mm->owner, NULL);
 403	return;
 404
 405assign_new_owner:
 406	BUG_ON(c == p);
 407	get_task_struct(c);
 408	/*
 409	 * The task_lock protects c->mm from changing.
 410	 * We always want mm->owner->mm == mm
 411	 */
 412	task_lock(c);
 413	/*
 414	 * Delay read_unlock() till we have the task_lock()
 415	 * to ensure that c does not slip away underneath us
 416	 */
 417	read_unlock(&tasklist_lock);
 418	if (c->mm != mm) {
 419		task_unlock(c);
 420		put_task_struct(c);
 421		goto retry;
 422	}
 423	WRITE_ONCE(mm->owner, c);
 424	task_unlock(c);
 425	put_task_struct(c);
 426}
 427#endif /* CONFIG_MEMCG */
 428
 429/*
 430 * Turn us into a lazy TLB process if we
 431 * aren't already..
 432 */
 433static void exit_mm(void)
 434{
 435	struct mm_struct *mm = current->mm;
 436	struct core_state *core_state;
 437
 438	exit_mm_release(current, mm);
 439	if (!mm)
 440		return;
 441	sync_mm_rss(mm);
 442	/*
 443	 * Serialize with any possible pending coredump.
 444	 * We must hold mmap_lock around checking core_state
 445	 * and clearing tsk->mm.  The core-inducing thread
 446	 * will increment ->nr_threads for each thread in the
 447	 * group with ->mm != NULL.
 448	 */
 449	mmap_read_lock(mm);
 450	core_state = mm->core_state;
 451	if (core_state) {
 452		struct core_thread self;
 453
 454		mmap_read_unlock(mm);
 455
 456		self.task = current;
 457		self.next = xchg(&core_state->dumper.next, &self);
 458		/*
 459		 * Implies mb(), the result of xchg() must be visible
 460		 * to core_state->dumper.
 461		 */
 462		if (atomic_dec_and_test(&core_state->nr_threads))
 463			complete(&core_state->startup);
 464
 465		for (;;) {
 466			set_current_state(TASK_UNINTERRUPTIBLE);
 467			if (!self.task) /* see coredump_finish() */
 468				break;
 469			freezable_schedule();
 470		}
 471		__set_current_state(TASK_RUNNING);
 472		mmap_read_lock(mm);
 473	}
 474	mmgrab(mm);
 475	BUG_ON(mm != current->active_mm);
 476	/* more a memory barrier than a real lock */
 477	task_lock(current);
 478	current->mm = NULL;
 479	mmap_read_unlock(mm);
 480	enter_lazy_tlb(mm, current);
 481	task_unlock(current);
 482	mm_update_next_owner(mm);
 483	mmput(mm);
 484	if (test_thread_flag(TIF_MEMDIE))
 485		exit_oom_victim();
 486}
 487
 488static struct task_struct *find_alive_thread(struct task_struct *p)
 489{
 490	struct task_struct *t;
 491
 492	for_each_thread(p, t) {
 493		if (!(t->flags & PF_EXITING))
 494			return t;
 495	}
 496	return NULL;
 497}
 498
 499static struct task_struct *find_child_reaper(struct task_struct *father,
 500						struct list_head *dead)
 501	__releases(&tasklist_lock)
 502	__acquires(&tasklist_lock)
 503{
 504	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 505	struct task_struct *reaper = pid_ns->child_reaper;
 506	struct task_struct *p, *n;
 507
 508	if (likely(reaper != father))
 509		return reaper;
 510
 511	reaper = find_alive_thread(father);
 512	if (reaper) {
 513		pid_ns->child_reaper = reaper;
 514		return reaper;
 515	}
 516
 517	write_unlock_irq(&tasklist_lock);
 518
 519	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 520		list_del_init(&p->ptrace_entry);
 521		release_task(p);
 522	}
 523
 524	zap_pid_ns_processes(pid_ns);
 525	write_lock_irq(&tasklist_lock);
 526
 527	return father;
 528}
 529
 530/*
 531 * When we die, we re-parent all our children, and try to:
 532 * 1. give them to another thread in our thread group, if such a member exists
 533 * 2. give it to the first ancestor process which prctl'd itself as a
 534 *    child_subreaper for its children (like a service manager)
 535 * 3. give it to the init process (PID 1) in our pid namespace
 536 */
 537static struct task_struct *find_new_reaper(struct task_struct *father,
 538					   struct task_struct *child_reaper)
 539{
 540	struct task_struct *thread, *reaper;
 541
 542	thread = find_alive_thread(father);
 543	if (thread)
 544		return thread;
 545
 546	if (father->signal->has_child_subreaper) {
 547		unsigned int ns_level = task_pid(father)->level;
 548		/*
 549		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 550		 * We can't check reaper != child_reaper to ensure we do not
 551		 * cross the namespaces, the exiting parent could be injected
 552		 * by setns() + fork().
 553		 * We check pid->level, this is slightly more efficient than
 554		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 555		 */
 556		for (reaper = father->real_parent;
 557		     task_pid(reaper)->level == ns_level;
 558		     reaper = reaper->real_parent) {
 559			if (reaper == &init_task)
 560				break;
 561			if (!reaper->signal->is_child_subreaper)
 562				continue;
 563			thread = find_alive_thread(reaper);
 564			if (thread)
 565				return thread;
 566		}
 567	}
 568
 569	return child_reaper;
 570}
 571
 572/*
 573* Any that need to be release_task'd are put on the @dead list.
 574 */
 575static void reparent_leader(struct task_struct *father, struct task_struct *p,
 576				struct list_head *dead)
 577{
 578	if (unlikely(p->exit_state == EXIT_DEAD))
 579		return;
 580
 581	/* We don't want people slaying init. */
 582	p->exit_signal = SIGCHLD;
 583
 584	/* If it has exited notify the new parent about this child's death. */
 585	if (!p->ptrace &&
 586	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 587		if (do_notify_parent(p, p->exit_signal)) {
 588			p->exit_state = EXIT_DEAD;
 589			list_add(&p->ptrace_entry, dead);
 590		}
 591	}
 592
 593	kill_orphaned_pgrp(p, father);
 594}
 595
 596/*
 597 * This does two things:
 598 *
 599 * A.  Make init inherit all the child processes
 600 * B.  Check to see if any process groups have become orphaned
 601 *	as a result of our exiting, and if they have any stopped
 602 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 603 */
 604static void forget_original_parent(struct task_struct *father,
 605					struct list_head *dead)
 606{
 607	struct task_struct *p, *t, *reaper;
 608
 609	if (unlikely(!list_empty(&father->ptraced)))
 610		exit_ptrace(father, dead);
 611
 612	/* Can drop and reacquire tasklist_lock */
 613	reaper = find_child_reaper(father, dead);
 614	if (list_empty(&father->children))
 615		return;
 616
 617	reaper = find_new_reaper(father, reaper);
 618	list_for_each_entry(p, &father->children, sibling) {
 619		for_each_thread(p, t) {
 620			RCU_INIT_POINTER(t->real_parent, reaper);
 621			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
 622			if (likely(!t->ptrace))
 623				t->parent = t->real_parent;
 624			if (t->pdeath_signal)
 625				group_send_sig_info(t->pdeath_signal,
 626						    SEND_SIG_NOINFO, t,
 627						    PIDTYPE_TGID);
 628		}
 629		/*
 630		 * If this is a threaded reparent there is no need to
 631		 * notify anyone anything has happened.
 632		 */
 633		if (!same_thread_group(reaper, father))
 634			reparent_leader(father, p, dead);
 635	}
 636	list_splice_tail_init(&father->children, &reaper->children);
 637}
 638
 639/*
 640 * Send signals to all our closest relatives so that they know
 641 * to properly mourn us..
 642 */
 643static void exit_notify(struct task_struct *tsk, int group_dead)
 644{
 645	bool autoreap;
 646	struct task_struct *p, *n;
 647	LIST_HEAD(dead);
 648
 649	write_lock_irq(&tasklist_lock);
 650	forget_original_parent(tsk, &dead);
 651
 652	if (group_dead)
 653		kill_orphaned_pgrp(tsk->group_leader, NULL);
 654
 655	tsk->exit_state = EXIT_ZOMBIE;
 656	if (unlikely(tsk->ptrace)) {
 657		int sig = thread_group_leader(tsk) &&
 658				thread_group_empty(tsk) &&
 659				!ptrace_reparented(tsk) ?
 660			tsk->exit_signal : SIGCHLD;
 661		autoreap = do_notify_parent(tsk, sig);
 662	} else if (thread_group_leader(tsk)) {
 663		autoreap = thread_group_empty(tsk) &&
 664			do_notify_parent(tsk, tsk->exit_signal);
 665	} else {
 666		autoreap = true;
 667	}
 668
 669	if (autoreap) {
 670		tsk->exit_state = EXIT_DEAD;
 671		list_add(&tsk->ptrace_entry, &dead);
 672	}
 673
 674	/* mt-exec, de_thread() is waiting for group leader */
 675	if (unlikely(tsk->signal->notify_count < 0))
 676		wake_up_process(tsk->signal->group_exit_task);
 677	write_unlock_irq(&tasklist_lock);
 678
 679	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 680		list_del_init(&p->ptrace_entry);
 681		release_task(p);
 682	}
 683}
 684
 685#ifdef CONFIG_DEBUG_STACK_USAGE
 686static void check_stack_usage(void)
 687{
 688	static DEFINE_SPINLOCK(low_water_lock);
 689	static int lowest_to_date = THREAD_SIZE;
 690	unsigned long free;
 691
 692	free = stack_not_used(current);
 693
 694	if (free >= lowest_to_date)
 695		return;
 696
 697	spin_lock(&low_water_lock);
 698	if (free < lowest_to_date) {
 699		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 700			current->comm, task_pid_nr(current), free);
 701		lowest_to_date = free;
 702	}
 703	spin_unlock(&low_water_lock);
 704}
 705#else
 706static inline void check_stack_usage(void) {}
 707#endif
 708
 709void __noreturn do_exit(long code)
 710{
 711	struct task_struct *tsk = current;
 712	int group_dead;
 713
 714	/*
 715	 * We can get here from a kernel oops, sometimes with preemption off.
 716	 * Start by checking for critical errors.
 717	 * Then fix up important state like USER_DS and preemption.
 718	 * Then do everything else.
 719	 */
 720
 721	WARN_ON(blk_needs_flush_plug(tsk));
 722
 723	if (unlikely(in_interrupt()))
 724		panic("Aiee, killing interrupt handler!");
 725	if (unlikely(!tsk->pid))
 726		panic("Attempted to kill the idle task!");
 727
 728	/*
 729	 * If do_exit is called because this processes oopsed, it's possible
 730	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 731	 * continuing. Amongst other possible reasons, this is to prevent
 732	 * mm_release()->clear_child_tid() from writing to a user-controlled
 733	 * kernel address.
 734	 */
 735	force_uaccess_begin();
 736
 737	if (unlikely(in_atomic())) {
 738		pr_info("note: %s[%d] exited with preempt_count %d\n",
 739			current->comm, task_pid_nr(current),
 740			preempt_count());
 741		preempt_count_set(PREEMPT_ENABLED);
 742	}
 743
 744	profile_task_exit(tsk);
 745	kcov_task_exit(tsk);
 746
 747	ptrace_event(PTRACE_EVENT_EXIT, code);
 748
 749	validate_creds_for_do_exit(tsk);
 750
 751	/*
 752	 * We're taking recursive faults here in do_exit. Safest is to just
 753	 * leave this task alone and wait for reboot.
 754	 */
 755	if (unlikely(tsk->flags & PF_EXITING)) {
 756		pr_alert("Fixing recursive fault but reboot is needed!\n");
 757		futex_exit_recursive(tsk);
 
 
 
 
 
 
 
 
 
 758		set_current_state(TASK_UNINTERRUPTIBLE);
 759		schedule();
 760	}
 761
 762	exit_signals(tsk);  /* sets PF_EXITING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763
 764	/* sync mm's RSS info before statistics gathering */
 765	if (tsk->mm)
 766		sync_mm_rss(tsk->mm);
 767	acct_update_integrals(tsk);
 768	group_dead = atomic_dec_and_test(&tsk->signal->live);
 769	if (group_dead) {
 770		/*
 771		 * If the last thread of global init has exited, panic
 772		 * immediately to get a useable coredump.
 773		 */
 774		if (unlikely(is_global_init(tsk)))
 775			panic("Attempted to kill init! exitcode=0x%08x\n",
 776				tsk->signal->group_exit_code ?: (int)code);
 777
 778#ifdef CONFIG_POSIX_TIMERS
 779		hrtimer_cancel(&tsk->signal->real_timer);
 780		exit_itimers(tsk->signal);
 781#endif
 782		if (tsk->mm)
 783			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 784	}
 785	acct_collect(code, group_dead);
 786	if (group_dead)
 787		tty_audit_exit();
 788	audit_free(tsk);
 789
 790	tsk->exit_code = code;
 791	taskstats_exit(tsk, group_dead);
 792
 793	exit_mm();
 794
 795	if (group_dead)
 796		acct_process();
 797	trace_sched_process_exit(tsk);
 798
 799	exit_sem(tsk);
 800	exit_shm(tsk);
 801	exit_files(tsk);
 802	exit_fs(tsk);
 803	if (group_dead)
 804		disassociate_ctty(1);
 805	exit_task_namespaces(tsk);
 806	exit_task_work(tsk);
 807	exit_thread(tsk);
 808
 809	/*
 810	 * Flush inherited counters to the parent - before the parent
 811	 * gets woken up by child-exit notifications.
 812	 *
 813	 * because of cgroup mode, must be called before cgroup_exit()
 814	 */
 815	perf_event_exit_task(tsk);
 816
 817	sched_autogroup_exit_task(tsk);
 818	cgroup_exit(tsk);
 819
 820	/*
 821	 * FIXME: do that only when needed, using sched_exit tracepoint
 822	 */
 823	flush_ptrace_hw_breakpoint(tsk);
 824
 825	exit_tasks_rcu_start();
 826	exit_notify(tsk, group_dead);
 827	proc_exit_connector(tsk);
 828	mpol_put_task_policy(tsk);
 829#ifdef CONFIG_FUTEX
 830	if (unlikely(current->pi_state_cache))
 831		kfree(current->pi_state_cache);
 832#endif
 833	/*
 834	 * Make sure we are holding no locks:
 835	 */
 836	debug_check_no_locks_held();
 
 
 
 
 
 
 837
 838	if (tsk->io_context)
 839		exit_io_context(tsk);
 840
 841	if (tsk->splice_pipe)
 842		free_pipe_info(tsk->splice_pipe);
 843
 844	if (tsk->task_frag.page)
 845		put_page(tsk->task_frag.page);
 846
 847	validate_creds_for_do_exit(tsk);
 848
 849	check_stack_usage();
 850	preempt_disable();
 851	if (tsk->nr_dirtied)
 852		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 853	exit_rcu();
 854	exit_tasks_rcu_finish();
 855
 856	lockdep_free_task(tsk);
 857	do_task_dead();
 858}
 859EXPORT_SYMBOL_GPL(do_exit);
 860
 861void complete_and_exit(struct completion *comp, long code)
 862{
 863	if (comp)
 864		complete(comp);
 865
 866	do_exit(code);
 867}
 868EXPORT_SYMBOL(complete_and_exit);
 869
 870SYSCALL_DEFINE1(exit, int, error_code)
 871{
 872	do_exit((error_code&0xff)<<8);
 873}
 874
 875/*
 876 * Take down every thread in the group.  This is called by fatal signals
 877 * as well as by sys_exit_group (below).
 878 */
 879void
 880do_group_exit(int exit_code)
 881{
 882	struct signal_struct *sig = current->signal;
 883
 884	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 885
 886	if (signal_group_exit(sig))
 887		exit_code = sig->group_exit_code;
 888	else if (!thread_group_empty(current)) {
 889		struct sighand_struct *const sighand = current->sighand;
 890
 891		spin_lock_irq(&sighand->siglock);
 892		if (signal_group_exit(sig))
 893			/* Another thread got here before we took the lock.  */
 894			exit_code = sig->group_exit_code;
 895		else {
 896			sig->group_exit_code = exit_code;
 897			sig->flags = SIGNAL_GROUP_EXIT;
 898			zap_other_threads(current);
 899		}
 900		spin_unlock_irq(&sighand->siglock);
 901	}
 902
 903	do_exit(exit_code);
 904	/* NOTREACHED */
 905}
 906
 907/*
 908 * this kills every thread in the thread group. Note that any externally
 909 * wait4()-ing process will get the correct exit code - even if this
 910 * thread is not the thread group leader.
 911 */
 912SYSCALL_DEFINE1(exit_group, int, error_code)
 913{
 914	do_group_exit((error_code & 0xff) << 8);
 915	/* NOTREACHED */
 916	return 0;
 917}
 918
 919struct waitid_info {
 920	pid_t pid;
 921	uid_t uid;
 922	int status;
 923	int cause;
 924};
 925
 926struct wait_opts {
 927	enum pid_type		wo_type;
 928	int			wo_flags;
 929	struct pid		*wo_pid;
 930
 931	struct waitid_info	*wo_info;
 932	int			wo_stat;
 933	struct rusage		*wo_rusage;
 934
 935	wait_queue_entry_t		child_wait;
 936	int			notask_error;
 937};
 938
 
 
 
 
 
 
 
 
 939static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 940{
 941	return	wo->wo_type == PIDTYPE_MAX ||
 942		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 943}
 944
 945static int
 946eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
 947{
 948	if (!eligible_pid(wo, p))
 949		return 0;
 950
 951	/*
 952	 * Wait for all children (clone and not) if __WALL is set or
 953	 * if it is traced by us.
 954	 */
 955	if (ptrace || (wo->wo_flags & __WALL))
 956		return 1;
 957
 958	/*
 959	 * Otherwise, wait for clone children *only* if __WCLONE is set;
 960	 * otherwise, wait for non-clone children *only*.
 961	 *
 962	 * Note: a "clone" child here is one that reports to its parent
 963	 * using a signal other than SIGCHLD, or a non-leader thread which
 964	 * we can only see if it is traced by us.
 965	 */
 966	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 967		return 0;
 968
 969	return 1;
 970}
 971
 972/*
 973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 974 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 975 * the lock and this task is uninteresting.  If we return nonzero, we have
 976 * released the lock and the system call should return.
 977 */
 978static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 979{
 980	int state, status;
 981	pid_t pid = task_pid_vnr(p);
 982	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 983	struct waitid_info *infop;
 984
 985	if (!likely(wo->wo_flags & WEXITED))
 986		return 0;
 987
 988	if (unlikely(wo->wo_flags & WNOWAIT)) {
 989		status = p->exit_code;
 990		get_task_struct(p);
 991		read_unlock(&tasklist_lock);
 992		sched_annotate_sleep();
 993		if (wo->wo_rusage)
 994			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 995		put_task_struct(p);
 996		goto out_info;
 997	}
 998	/*
 999	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1000	 */
1001	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1002		EXIT_TRACE : EXIT_DEAD;
1003	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1004		return 0;
1005	/*
1006	 * We own this thread, nobody else can reap it.
1007	 */
1008	read_unlock(&tasklist_lock);
1009	sched_annotate_sleep();
1010
1011	/*
1012	 * Check thread_group_leader() to exclude the traced sub-threads.
1013	 */
1014	if (state == EXIT_DEAD && thread_group_leader(p)) {
1015		struct signal_struct *sig = p->signal;
1016		struct signal_struct *psig = current->signal;
1017		unsigned long maxrss;
1018		u64 tgutime, tgstime;
1019
1020		/*
1021		 * The resource counters for the group leader are in its
1022		 * own task_struct.  Those for dead threads in the group
1023		 * are in its signal_struct, as are those for the child
1024		 * processes it has previously reaped.  All these
1025		 * accumulate in the parent's signal_struct c* fields.
1026		 *
1027		 * We don't bother to take a lock here to protect these
1028		 * p->signal fields because the whole thread group is dead
1029		 * and nobody can change them.
1030		 *
1031		 * psig->stats_lock also protects us from our sub-theads
1032		 * which can reap other children at the same time. Until
1033		 * we change k_getrusage()-like users to rely on this lock
1034		 * we have to take ->siglock as well.
1035		 *
1036		 * We use thread_group_cputime_adjusted() to get times for
1037		 * the thread group, which consolidates times for all threads
1038		 * in the group including the group leader.
1039		 */
1040		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041		spin_lock_irq(&current->sighand->siglock);
1042		write_seqlock(&psig->stats_lock);
1043		psig->cutime += tgutime + sig->cutime;
1044		psig->cstime += tgstime + sig->cstime;
1045		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1046		psig->cmin_flt +=
1047			p->min_flt + sig->min_flt + sig->cmin_flt;
1048		psig->cmaj_flt +=
1049			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1050		psig->cnvcsw +=
1051			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1052		psig->cnivcsw +=
1053			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1054		psig->cinblock +=
1055			task_io_get_inblock(p) +
1056			sig->inblock + sig->cinblock;
1057		psig->coublock +=
1058			task_io_get_oublock(p) +
1059			sig->oublock + sig->coublock;
1060		maxrss = max(sig->maxrss, sig->cmaxrss);
1061		if (psig->cmaxrss < maxrss)
1062			psig->cmaxrss = maxrss;
1063		task_io_accounting_add(&psig->ioac, &p->ioac);
1064		task_io_accounting_add(&psig->ioac, &sig->ioac);
1065		write_sequnlock(&psig->stats_lock);
1066		spin_unlock_irq(&current->sighand->siglock);
1067	}
1068
1069	if (wo->wo_rusage)
1070		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1071	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1072		? p->signal->group_exit_code : p->exit_code;
1073	wo->wo_stat = status;
1074
1075	if (state == EXIT_TRACE) {
1076		write_lock_irq(&tasklist_lock);
1077		/* We dropped tasklist, ptracer could die and untrace */
1078		ptrace_unlink(p);
1079
1080		/* If parent wants a zombie, don't release it now */
1081		state = EXIT_ZOMBIE;
1082		if (do_notify_parent(p, p->exit_signal))
1083			state = EXIT_DEAD;
1084		p->exit_state = state;
1085		write_unlock_irq(&tasklist_lock);
1086	}
1087	if (state == EXIT_DEAD)
1088		release_task(p);
1089
1090out_info:
1091	infop = wo->wo_info;
1092	if (infop) {
1093		if ((status & 0x7f) == 0) {
1094			infop->cause = CLD_EXITED;
1095			infop->status = status >> 8;
1096		} else {
1097			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1098			infop->status = status & 0x7f;
1099		}
1100		infop->pid = pid;
1101		infop->uid = uid;
1102	}
1103
1104	return pid;
1105}
1106
1107static int *task_stopped_code(struct task_struct *p, bool ptrace)
1108{
1109	if (ptrace) {
1110		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1111			return &p->exit_code;
1112	} else {
1113		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1114			return &p->signal->group_exit_code;
1115	}
1116	return NULL;
1117}
1118
1119/**
1120 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1121 * @wo: wait options
1122 * @ptrace: is the wait for ptrace
1123 * @p: task to wait for
1124 *
1125 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1126 *
1127 * CONTEXT:
1128 * read_lock(&tasklist_lock), which is released if return value is
1129 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1130 *
1131 * RETURNS:
1132 * 0 if wait condition didn't exist and search for other wait conditions
1133 * should continue.  Non-zero return, -errno on failure and @p's pid on
1134 * success, implies that tasklist_lock is released and wait condition
1135 * search should terminate.
1136 */
1137static int wait_task_stopped(struct wait_opts *wo,
1138				int ptrace, struct task_struct *p)
1139{
1140	struct waitid_info *infop;
1141	int exit_code, *p_code, why;
1142	uid_t uid = 0; /* unneeded, required by compiler */
1143	pid_t pid;
1144
1145	/*
1146	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1147	 */
1148	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1149		return 0;
1150
1151	if (!task_stopped_code(p, ptrace))
1152		return 0;
1153
1154	exit_code = 0;
1155	spin_lock_irq(&p->sighand->siglock);
1156
1157	p_code = task_stopped_code(p, ptrace);
1158	if (unlikely(!p_code))
1159		goto unlock_sig;
1160
1161	exit_code = *p_code;
1162	if (!exit_code)
1163		goto unlock_sig;
1164
1165	if (!unlikely(wo->wo_flags & WNOWAIT))
1166		*p_code = 0;
1167
1168	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1169unlock_sig:
1170	spin_unlock_irq(&p->sighand->siglock);
1171	if (!exit_code)
1172		return 0;
1173
1174	/*
1175	 * Now we are pretty sure this task is interesting.
1176	 * Make sure it doesn't get reaped out from under us while we
1177	 * give up the lock and then examine it below.  We don't want to
1178	 * keep holding onto the tasklist_lock while we call getrusage and
1179	 * possibly take page faults for user memory.
1180	 */
1181	get_task_struct(p);
1182	pid = task_pid_vnr(p);
1183	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1184	read_unlock(&tasklist_lock);
1185	sched_annotate_sleep();
1186	if (wo->wo_rusage)
1187		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188	put_task_struct(p);
1189
1190	if (likely(!(wo->wo_flags & WNOWAIT)))
1191		wo->wo_stat = (exit_code << 8) | 0x7f;
1192
1193	infop = wo->wo_info;
1194	if (infop) {
1195		infop->cause = why;
1196		infop->status = exit_code;
1197		infop->pid = pid;
1198		infop->uid = uid;
1199	}
1200	return pid;
1201}
1202
1203/*
1204 * Handle do_wait work for one task in a live, non-stopped state.
1205 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1206 * the lock and this task is uninteresting.  If we return nonzero, we have
1207 * released the lock and the system call should return.
1208 */
1209static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1210{
1211	struct waitid_info *infop;
1212	pid_t pid;
1213	uid_t uid;
1214
1215	if (!unlikely(wo->wo_flags & WCONTINUED))
1216		return 0;
1217
1218	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1219		return 0;
1220
1221	spin_lock_irq(&p->sighand->siglock);
1222	/* Re-check with the lock held.  */
1223	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1224		spin_unlock_irq(&p->sighand->siglock);
1225		return 0;
1226	}
1227	if (!unlikely(wo->wo_flags & WNOWAIT))
1228		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1229	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1230	spin_unlock_irq(&p->sighand->siglock);
1231
1232	pid = task_pid_vnr(p);
1233	get_task_struct(p);
1234	read_unlock(&tasklist_lock);
1235	sched_annotate_sleep();
1236	if (wo->wo_rusage)
1237		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1238	put_task_struct(p);
1239
1240	infop = wo->wo_info;
1241	if (!infop) {
1242		wo->wo_stat = 0xffff;
1243	} else {
1244		infop->cause = CLD_CONTINUED;
1245		infop->pid = pid;
1246		infop->uid = uid;
1247		infop->status = SIGCONT;
1248	}
1249	return pid;
1250}
1251
1252/*
1253 * Consider @p for a wait by @parent.
1254 *
1255 * -ECHILD should be in ->notask_error before the first call.
1256 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1257 * Returns zero if the search for a child should continue;
1258 * then ->notask_error is 0 if @p is an eligible child,
1259 * or still -ECHILD.
1260 */
1261static int wait_consider_task(struct wait_opts *wo, int ptrace,
1262				struct task_struct *p)
1263{
1264	/*
1265	 * We can race with wait_task_zombie() from another thread.
1266	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1267	 * can't confuse the checks below.
1268	 */
1269	int exit_state = READ_ONCE(p->exit_state);
1270	int ret;
1271
1272	if (unlikely(exit_state == EXIT_DEAD))
1273		return 0;
1274
1275	ret = eligible_child(wo, ptrace, p);
1276	if (!ret)
1277		return ret;
1278
1279	if (unlikely(exit_state == EXIT_TRACE)) {
1280		/*
1281		 * ptrace == 0 means we are the natural parent. In this case
1282		 * we should clear notask_error, debugger will notify us.
1283		 */
1284		if (likely(!ptrace))
1285			wo->notask_error = 0;
1286		return 0;
1287	}
1288
1289	if (likely(!ptrace) && unlikely(p->ptrace)) {
1290		/*
1291		 * If it is traced by its real parent's group, just pretend
1292		 * the caller is ptrace_do_wait() and reap this child if it
1293		 * is zombie.
1294		 *
1295		 * This also hides group stop state from real parent; otherwise
1296		 * a single stop can be reported twice as group and ptrace stop.
1297		 * If a ptracer wants to distinguish these two events for its
1298		 * own children it should create a separate process which takes
1299		 * the role of real parent.
1300		 */
1301		if (!ptrace_reparented(p))
1302			ptrace = 1;
1303	}
1304
1305	/* slay zombie? */
1306	if (exit_state == EXIT_ZOMBIE) {
1307		/* we don't reap group leaders with subthreads */
1308		if (!delay_group_leader(p)) {
1309			/*
1310			 * A zombie ptracee is only visible to its ptracer.
1311			 * Notification and reaping will be cascaded to the
1312			 * real parent when the ptracer detaches.
1313			 */
1314			if (unlikely(ptrace) || likely(!p->ptrace))
1315				return wait_task_zombie(wo, p);
1316		}
1317
1318		/*
1319		 * Allow access to stopped/continued state via zombie by
1320		 * falling through.  Clearing of notask_error is complex.
1321		 *
1322		 * When !@ptrace:
1323		 *
1324		 * If WEXITED is set, notask_error should naturally be
1325		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1326		 * so, if there are live subthreads, there are events to
1327		 * wait for.  If all subthreads are dead, it's still safe
1328		 * to clear - this function will be called again in finite
1329		 * amount time once all the subthreads are released and
1330		 * will then return without clearing.
1331		 *
1332		 * When @ptrace:
1333		 *
1334		 * Stopped state is per-task and thus can't change once the
1335		 * target task dies.  Only continued and exited can happen.
1336		 * Clear notask_error if WCONTINUED | WEXITED.
1337		 */
1338		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1339			wo->notask_error = 0;
1340	} else {
1341		/*
1342		 * @p is alive and it's gonna stop, continue or exit, so
1343		 * there always is something to wait for.
1344		 */
1345		wo->notask_error = 0;
1346	}
1347
1348	/*
1349	 * Wait for stopped.  Depending on @ptrace, different stopped state
1350	 * is used and the two don't interact with each other.
1351	 */
1352	ret = wait_task_stopped(wo, ptrace, p);
1353	if (ret)
1354		return ret;
1355
1356	/*
1357	 * Wait for continued.  There's only one continued state and the
1358	 * ptracer can consume it which can confuse the real parent.  Don't
1359	 * use WCONTINUED from ptracer.  You don't need or want it.
1360	 */
1361	return wait_task_continued(wo, p);
1362}
1363
1364/*
1365 * Do the work of do_wait() for one thread in the group, @tsk.
1366 *
1367 * -ECHILD should be in ->notask_error before the first call.
1368 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1369 * Returns zero if the search for a child should continue; then
1370 * ->notask_error is 0 if there were any eligible children,
1371 * or still -ECHILD.
1372 */
1373static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1374{
1375	struct task_struct *p;
1376
1377	list_for_each_entry(p, &tsk->children, sibling) {
1378		int ret = wait_consider_task(wo, 0, p);
1379
1380		if (ret)
1381			return ret;
1382	}
1383
1384	return 0;
1385}
1386
1387static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1388{
1389	struct task_struct *p;
1390
1391	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1392		int ret = wait_consider_task(wo, 1, p);
1393
1394		if (ret)
1395			return ret;
1396	}
1397
1398	return 0;
1399}
1400
1401static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1402				int sync, void *key)
1403{
1404	struct wait_opts *wo = container_of(wait, struct wait_opts,
1405						child_wait);
1406	struct task_struct *p = key;
1407
1408	if (!eligible_pid(wo, p))
1409		return 0;
1410
1411	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1412		return 0;
1413
1414	return default_wake_function(wait, mode, sync, key);
1415}
1416
1417void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1418{
1419	__wake_up_sync_key(&parent->signal->wait_chldexit,
1420			   TASK_INTERRUPTIBLE, p);
1421}
1422
1423static long do_wait(struct wait_opts *wo)
1424{
1425	struct task_struct *tsk;
1426	int retval;
1427
1428	trace_sched_process_wait(wo->wo_pid);
1429
1430	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1431	wo->child_wait.private = current;
1432	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1433repeat:
1434	/*
1435	 * If there is nothing that can match our criteria, just get out.
1436	 * We will clear ->notask_error to zero if we see any child that
1437	 * might later match our criteria, even if we are not able to reap
1438	 * it yet.
1439	 */
1440	wo->notask_error = -ECHILD;
1441	if ((wo->wo_type < PIDTYPE_MAX) &&
1442	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1443		goto notask;
1444
1445	set_current_state(TASK_INTERRUPTIBLE);
1446	read_lock(&tasklist_lock);
1447	tsk = current;
1448	do {
1449		retval = do_wait_thread(wo, tsk);
1450		if (retval)
1451			goto end;
1452
1453		retval = ptrace_do_wait(wo, tsk);
1454		if (retval)
1455			goto end;
1456
1457		if (wo->wo_flags & __WNOTHREAD)
1458			break;
1459	} while_each_thread(current, tsk);
1460	read_unlock(&tasklist_lock);
1461
1462notask:
1463	retval = wo->notask_error;
1464	if (!retval && !(wo->wo_flags & WNOHANG)) {
1465		retval = -ERESTARTSYS;
1466		if (!signal_pending(current)) {
1467			schedule();
1468			goto repeat;
1469		}
1470	}
1471end:
1472	__set_current_state(TASK_RUNNING);
1473	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1474	return retval;
1475}
1476
1477static struct pid *pidfd_get_pid(unsigned int fd)
1478{
1479	struct fd f;
1480	struct pid *pid;
1481
1482	f = fdget(fd);
1483	if (!f.file)
1484		return ERR_PTR(-EBADF);
1485
1486	pid = pidfd_pid(f.file);
1487	if (!IS_ERR(pid))
1488		get_pid(pid);
1489
1490	fdput(f);
1491	return pid;
1492}
1493
1494static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1495			  int options, struct rusage *ru)
1496{
1497	struct wait_opts wo;
1498	struct pid *pid = NULL;
1499	enum pid_type type;
1500	long ret;
1501
1502	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1503			__WNOTHREAD|__WCLONE|__WALL))
1504		return -EINVAL;
1505	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1506		return -EINVAL;
1507
1508	switch (which) {
1509	case P_ALL:
1510		type = PIDTYPE_MAX;
1511		break;
1512	case P_PID:
1513		type = PIDTYPE_PID;
1514		if (upid <= 0)
1515			return -EINVAL;
1516
1517		pid = find_get_pid(upid);
1518		break;
1519	case P_PGID:
1520		type = PIDTYPE_PGID;
1521		if (upid < 0)
1522			return -EINVAL;
1523
1524		if (upid)
1525			pid = find_get_pid(upid);
1526		else
1527			pid = get_task_pid(current, PIDTYPE_PGID);
1528		break;
1529	case P_PIDFD:
1530		type = PIDTYPE_PID;
1531		if (upid < 0)
1532			return -EINVAL;
1533
1534		pid = pidfd_get_pid(upid);
1535		if (IS_ERR(pid))
1536			return PTR_ERR(pid);
1537		break;
1538	default:
1539		return -EINVAL;
1540	}
1541
 
 
 
1542	wo.wo_type	= type;
1543	wo.wo_pid	= pid;
1544	wo.wo_flags	= options;
1545	wo.wo_info	= infop;
1546	wo.wo_rusage	= ru;
1547	ret = do_wait(&wo);
1548
1549	put_pid(pid);
1550	return ret;
1551}
1552
1553SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1554		infop, int, options, struct rusage __user *, ru)
1555{
1556	struct rusage r;
1557	struct waitid_info info = {.status = 0};
1558	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1559	int signo = 0;
1560
1561	if (err > 0) {
1562		signo = SIGCHLD;
1563		err = 0;
1564		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1565			return -EFAULT;
1566	}
1567	if (!infop)
1568		return err;
1569
1570	if (!user_write_access_begin(infop, sizeof(*infop)))
1571		return -EFAULT;
1572
 
1573	unsafe_put_user(signo, &infop->si_signo, Efault);
1574	unsafe_put_user(0, &infop->si_errno, Efault);
1575	unsafe_put_user(info.cause, &infop->si_code, Efault);
1576	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1577	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1578	unsafe_put_user(info.status, &infop->si_status, Efault);
1579	user_write_access_end();
1580	return err;
1581Efault:
1582	user_write_access_end();
1583	return -EFAULT;
1584}
1585
1586long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1587		  struct rusage *ru)
1588{
1589	struct wait_opts wo;
1590	struct pid *pid = NULL;
1591	enum pid_type type;
1592	long ret;
1593
1594	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1595			__WNOTHREAD|__WCLONE|__WALL))
1596		return -EINVAL;
1597
1598	/* -INT_MIN is not defined */
1599	if (upid == INT_MIN)
1600		return -ESRCH;
1601
1602	if (upid == -1)
1603		type = PIDTYPE_MAX;
1604	else if (upid < 0) {
1605		type = PIDTYPE_PGID;
1606		pid = find_get_pid(-upid);
1607	} else if (upid == 0) {
1608		type = PIDTYPE_PGID;
1609		pid = get_task_pid(current, PIDTYPE_PGID);
1610	} else /* upid > 0 */ {
1611		type = PIDTYPE_PID;
1612		pid = find_get_pid(upid);
1613	}
1614
1615	wo.wo_type	= type;
1616	wo.wo_pid	= pid;
1617	wo.wo_flags	= options | WEXITED;
1618	wo.wo_info	= NULL;
1619	wo.wo_stat	= 0;
1620	wo.wo_rusage	= ru;
1621	ret = do_wait(&wo);
1622	put_pid(pid);
1623	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1624		ret = -EFAULT;
1625
1626	return ret;
1627}
1628
1629int kernel_wait(pid_t pid, int *stat)
1630{
1631	struct wait_opts wo = {
1632		.wo_type	= PIDTYPE_PID,
1633		.wo_pid		= find_get_pid(pid),
1634		.wo_flags	= WEXITED,
1635	};
1636	int ret;
1637
1638	ret = do_wait(&wo);
1639	if (ret > 0 && wo.wo_stat)
1640		*stat = wo.wo_stat;
1641	put_pid(wo.wo_pid);
1642	return ret;
1643}
1644
1645SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1646		int, options, struct rusage __user *, ru)
1647{
1648	struct rusage r;
1649	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1650
1651	if (err > 0) {
1652		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1653			return -EFAULT;
1654	}
1655	return err;
1656}
1657
1658#ifdef __ARCH_WANT_SYS_WAITPID
1659
1660/*
1661 * sys_waitpid() remains for compatibility. waitpid() should be
1662 * implemented by calling sys_wait4() from libc.a.
1663 */
1664SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1665{
1666	return kernel_wait4(pid, stat_addr, options, NULL);
1667}
1668
1669#endif
1670
1671#ifdef CONFIG_COMPAT
1672COMPAT_SYSCALL_DEFINE4(wait4,
1673	compat_pid_t, pid,
1674	compat_uint_t __user *, stat_addr,
1675	int, options,
1676	struct compat_rusage __user *, ru)
1677{
1678	struct rusage r;
1679	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1680	if (err > 0) {
1681		if (ru && put_compat_rusage(&r, ru))
1682			return -EFAULT;
1683	}
1684	return err;
1685}
1686
1687COMPAT_SYSCALL_DEFINE5(waitid,
1688		int, which, compat_pid_t, pid,
1689		struct compat_siginfo __user *, infop, int, options,
1690		struct compat_rusage __user *, uru)
1691{
1692	struct rusage ru;
1693	struct waitid_info info = {.status = 0};
1694	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1695	int signo = 0;
1696	if (err > 0) {
1697		signo = SIGCHLD;
1698		err = 0;
1699		if (uru) {
1700			/* kernel_waitid() overwrites everything in ru */
1701			if (COMPAT_USE_64BIT_TIME)
1702				err = copy_to_user(uru, &ru, sizeof(ru));
1703			else
1704				err = put_compat_rusage(&ru, uru);
1705			if (err)
1706				return -EFAULT;
1707		}
1708	}
1709
1710	if (!infop)
1711		return err;
1712
1713	if (!user_write_access_begin(infop, sizeof(*infop)))
1714		return -EFAULT;
1715
 
1716	unsafe_put_user(signo, &infop->si_signo, Efault);
1717	unsafe_put_user(0, &infop->si_errno, Efault);
1718	unsafe_put_user(info.cause, &infop->si_code, Efault);
1719	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1720	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1721	unsafe_put_user(info.status, &infop->si_status, Efault);
1722	user_write_access_end();
1723	return err;
1724Efault:
1725	user_write_access_end();
1726	return -EFAULT;
1727}
1728#endif
1729
1730/**
1731 * thread_group_exited - check that a thread group has exited
1732 * @pid: tgid of thread group to be checked.
1733 *
1734 * Test if the thread group represented by tgid has exited (all
1735 * threads are zombies, dead or completely gone).
1736 *
1737 * Return: true if the thread group has exited. false otherwise.
1738 */
1739bool thread_group_exited(struct pid *pid)
1740{
1741	struct task_struct *task;
1742	bool exited;
1743
1744	rcu_read_lock();
1745	task = pid_task(pid, PIDTYPE_PID);
1746	exited = !task ||
1747		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1748	rcu_read_unlock();
1749
1750	return exited;
1751}
1752EXPORT_SYMBOL(thread_group_exited);
1753
1754__weak void abort(void)
1755{
1756	BUG();
1757
1758	/* if that doesn't kill us, halt */
1759	panic("Oops failed to kill thread");
1760}
1761EXPORT_SYMBOL(abort);