Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/stat.h>
  12#include <linux/sched/task.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/sched/cputime.h>
  15#include <linux/interrupt.h>
  16#include <linux/module.h>
  17#include <linux/capability.h>
  18#include <linux/completion.h>
  19#include <linux/personality.h>
  20#include <linux/tty.h>
  21#include <linux/iocontext.h>
  22#include <linux/key.h>
 
  23#include <linux/cpu.h>
  24#include <linux/acct.h>
  25#include <linux/tsacct_kern.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/freezer.h>
  29#include <linux/binfmts.h>
  30#include <linux/nsproxy.h>
  31#include <linux/pid_namespace.h>
  32#include <linux/ptrace.h>
  33#include <linux/profile.h>
  34#include <linux/mount.h>
  35#include <linux/proc_fs.h>
  36#include <linux/kthread.h>
  37#include <linux/mempolicy.h>
  38#include <linux/taskstats_kern.h>
  39#include <linux/delayacct.h>
  40#include <linux/cgroup.h>
  41#include <linux/syscalls.h>
  42#include <linux/signal.h>
  43#include <linux/posix-timers.h>
  44#include <linux/cn_proc.h>
  45#include <linux/mutex.h>
  46#include <linux/futex.h>
  47#include <linux/pipe_fs_i.h>
  48#include <linux/audit.h> /* for audit_free() */
  49#include <linux/resource.h>
  50#include <linux/blkdev.h>
  51#include <linux/task_io_accounting_ops.h>
  52#include <linux/tracehook.h>
  53#include <linux/fs_struct.h>
  54#include <linux/init_task.h>
  55#include <linux/perf_event.h>
  56#include <trace/events/sched.h>
  57#include <linux/hw_breakpoint.h>
  58#include <linux/oom.h>
  59#include <linux/writeback.h>
  60#include <linux/shm.h>
  61#include <linux/kcov.h>
  62#include <linux/random.h>
  63#include <linux/rcuwait.h>
  64#include <linux/compat.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/unistd.h>
  68#include <asm/pgtable.h>
  69#include <asm/mmu_context.h>
  70
  71static void __unhash_process(struct task_struct *p, bool group_dead)
  72{
  73	nr_threads--;
  74	detach_pid(p, PIDTYPE_PID);
  75	if (group_dead) {
  76		detach_pid(p, PIDTYPE_PGID);
  77		detach_pid(p, PIDTYPE_SID);
  78
  79		list_del_rcu(&p->tasks);
  80		list_del_init(&p->sibling);
  81		__this_cpu_dec(process_counts);
  82	}
  83	list_del_rcu(&p->thread_group);
  84	list_del_rcu(&p->thread_node);
  85}
  86
  87/*
  88 * This function expects the tasklist_lock write-locked.
  89 */
  90static void __exit_signal(struct task_struct *tsk)
  91{
  92	struct signal_struct *sig = tsk->signal;
  93	bool group_dead = thread_group_leader(tsk);
  94	struct sighand_struct *sighand;
  95	struct tty_struct *uninitialized_var(tty);
  96	u64 utime, stime;
  97
  98	sighand = rcu_dereference_check(tsk->sighand,
  99					lockdep_tasklist_lock_is_held());
 100	spin_lock(&sighand->siglock);
 101
 102#ifdef CONFIG_POSIX_TIMERS
 103	posix_cpu_timers_exit(tsk);
 104	if (group_dead) {
 105		posix_cpu_timers_exit_group(tsk);
 
 
 106	} else {
 107		/*
 108		 * This can only happen if the caller is de_thread().
 109		 * FIXME: this is the temporary hack, we should teach
 110		 * posix-cpu-timers to handle this case correctly.
 111		 */
 112		if (unlikely(has_group_leader_pid(tsk)))
 113			posix_cpu_timers_exit_group(tsk);
 114	}
 115#endif
 116
 117	if (group_dead) {
 118		tty = sig->tty;
 119		sig->tty = NULL;
 120	} else {
 121		/*
 122		 * If there is any task waiting for the group exit
 123		 * then notify it:
 124		 */
 125		if (sig->notify_count > 0 && !--sig->notify_count)
 126			wake_up_process(sig->group_exit_task);
 127
 128		if (tsk == sig->curr_target)
 129			sig->curr_target = next_thread(tsk);
 130	}
 131
 132	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 133			      sizeof(unsigned long long));
 134
 135	/*
 136	 * Accumulate here the counters for all threads as they die. We could
 137	 * skip the group leader because it is the last user of signal_struct,
 138	 * but we want to avoid the race with thread_group_cputime() which can
 139	 * see the empty ->thread_head list.
 140	 */
 141	task_cputime(tsk, &utime, &stime);
 142	write_seqlock(&sig->stats_lock);
 143	sig->utime += utime;
 144	sig->stime += stime;
 145	sig->gtime += task_gtime(tsk);
 146	sig->min_flt += tsk->min_flt;
 147	sig->maj_flt += tsk->maj_flt;
 148	sig->nvcsw += tsk->nvcsw;
 149	sig->nivcsw += tsk->nivcsw;
 150	sig->inblock += task_io_get_inblock(tsk);
 151	sig->oublock += task_io_get_oublock(tsk);
 152	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 153	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 154	sig->nr_threads--;
 155	__unhash_process(tsk, group_dead);
 156	write_sequnlock(&sig->stats_lock);
 157
 158	/*
 159	 * Do this under ->siglock, we can race with another thread
 160	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 161	 */
 162	flush_sigqueue(&tsk->pending);
 163	tsk->sighand = NULL;
 164	spin_unlock(&sighand->siglock);
 165
 166	__cleanup_sighand(sighand);
 167	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 168	if (group_dead) {
 169		flush_sigqueue(&sig->shared_pending);
 170		tty_kref_put(tty);
 171	}
 172}
 173
 174static void delayed_put_task_struct(struct rcu_head *rhp)
 175{
 176	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 177
 178	perf_event_delayed_put(tsk);
 179	trace_sched_process_free(tsk);
 180	put_task_struct(tsk);
 181}
 182
 183
 184void release_task(struct task_struct *p)
 185{
 186	struct task_struct *leader;
 187	int zap_leader;
 188repeat:
 189	/* don't need to get the RCU readlock here - the process is dead and
 190	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 191	rcu_read_lock();
 192	atomic_dec(&__task_cred(p)->user->processes);
 193	rcu_read_unlock();
 194
 195	proc_flush_task(p);
 196
 197	write_lock_irq(&tasklist_lock);
 198	ptrace_release_task(p);
 199	__exit_signal(p);
 200
 201	/*
 202	 * If we are the last non-leader member of the thread
 203	 * group, and the leader is zombie, then notify the
 204	 * group leader's parent process. (if it wants notification.)
 205	 */
 206	zap_leader = 0;
 207	leader = p->group_leader;
 208	if (leader != p && thread_group_empty(leader)
 209			&& leader->exit_state == EXIT_ZOMBIE) {
 210		/*
 211		 * If we were the last child thread and the leader has
 212		 * exited already, and the leader's parent ignores SIGCHLD,
 213		 * then we are the one who should release the leader.
 214		 */
 215		zap_leader = do_notify_parent(leader, leader->exit_signal);
 216		if (zap_leader)
 217			leader->exit_state = EXIT_DEAD;
 218	}
 219
 220	write_unlock_irq(&tasklist_lock);
 221	release_thread(p);
 222	call_rcu(&p->rcu, delayed_put_task_struct);
 223
 224	p = leader;
 225	if (unlikely(zap_leader))
 226		goto repeat;
 227}
 228
 229/*
 230 * Note that if this function returns a valid task_struct pointer (!NULL)
 231 * task->usage must remain >0 for the duration of the RCU critical section.
 232 */
 233struct task_struct *task_rcu_dereference(struct task_struct **ptask)
 234{
 235	struct sighand_struct *sighand;
 236	struct task_struct *task;
 237
 238	/*
 239	 * We need to verify that release_task() was not called and thus
 240	 * delayed_put_task_struct() can't run and drop the last reference
 241	 * before rcu_read_unlock(). We check task->sighand != NULL,
 242	 * but we can read the already freed and reused memory.
 243	 */
 244retry:
 245	task = rcu_dereference(*ptask);
 246	if (!task)
 247		return NULL;
 248
 249	probe_kernel_address(&task->sighand, sighand);
 250
 251	/*
 252	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
 253	 * was already freed we can not miss the preceding update of this
 254	 * pointer.
 255	 */
 256	smp_rmb();
 257	if (unlikely(task != READ_ONCE(*ptask)))
 258		goto retry;
 259
 260	/*
 261	 * We've re-checked that "task == *ptask", now we have two different
 262	 * cases:
 263	 *
 264	 * 1. This is actually the same task/task_struct. In this case
 265	 *    sighand != NULL tells us it is still alive.
 266	 *
 267	 * 2. This is another task which got the same memory for task_struct.
 268	 *    We can't know this of course, and we can not trust
 269	 *    sighand != NULL.
 270	 *
 271	 *    In this case we actually return a random value, but this is
 272	 *    correct.
 273	 *
 274	 *    If we return NULL - we can pretend that we actually noticed that
 275	 *    *ptask was updated when the previous task has exited. Or pretend
 276	 *    that probe_slab_address(&sighand) reads NULL.
 277	 *
 278	 *    If we return the new task (because sighand is not NULL for any
 279	 *    reason) - this is fine too. This (new) task can't go away before
 280	 *    another gp pass.
 281	 *
 282	 *    And note: We could even eliminate the false positive if re-read
 283	 *    task->sighand once again to avoid the falsely NULL. But this case
 284	 *    is very unlikely so we don't care.
 285	 */
 286	if (!sighand)
 287		return NULL;
 288
 289	return task;
 290}
 291
 292void rcuwait_wake_up(struct rcuwait *w)
 293{
 294	struct task_struct *task;
 295
 296	rcu_read_lock();
 297
 298	/*
 299	 * Order condition vs @task, such that everything prior to the load
 300	 * of @task is visible. This is the condition as to why the user called
 301	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
 302	 * barrier (A) in rcuwait_wait_event().
 303	 *
 304	 *    WAIT                WAKE
 305	 *    [S] tsk = current	  [S] cond = true
 306	 *        MB (A)	      MB (B)
 307	 *    [L] cond		  [L] tsk
 308	 */
 309	smp_rmb(); /* (B) */
 310
 311	/*
 312	 * Avoid using task_rcu_dereference() magic as long as we are careful,
 313	 * see comment in rcuwait_wait_event() regarding ->exit_state.
 314	 */
 315	task = rcu_dereference(w->task);
 316	if (task)
 317		wake_up_process(task);
 318	rcu_read_unlock();
 319}
 320
 321/*
 322 * Determine if a process group is "orphaned", according to the POSIX
 323 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 324 * by terminal-generated stop signals.  Newly orphaned process groups are
 325 * to receive a SIGHUP and a SIGCONT.
 326 *
 327 * "I ask you, have you ever known what it is to be an orphan?"
 328 */
 329static int will_become_orphaned_pgrp(struct pid *pgrp,
 330					struct task_struct *ignored_task)
 331{
 332	struct task_struct *p;
 333
 334	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 335		if ((p == ignored_task) ||
 336		    (p->exit_state && thread_group_empty(p)) ||
 337		    is_global_init(p->real_parent))
 338			continue;
 339
 340		if (task_pgrp(p->real_parent) != pgrp &&
 341		    task_session(p->real_parent) == task_session(p))
 342			return 0;
 343	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 344
 345	return 1;
 346}
 347
 348int is_current_pgrp_orphaned(void)
 349{
 350	int retval;
 351
 352	read_lock(&tasklist_lock);
 353	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 354	read_unlock(&tasklist_lock);
 355
 356	return retval;
 357}
 358
 359static bool has_stopped_jobs(struct pid *pgrp)
 360{
 361	struct task_struct *p;
 362
 363	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 364		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 365			return true;
 366	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 367
 368	return false;
 369}
 370
 371/*
 372 * Check to see if any process groups have become orphaned as
 373 * a result of our exiting, and if they have any stopped jobs,
 374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 375 */
 376static void
 377kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 378{
 379	struct pid *pgrp = task_pgrp(tsk);
 380	struct task_struct *ignored_task = tsk;
 381
 382	if (!parent)
 383		/* exit: our father is in a different pgrp than
 384		 * we are and we were the only connection outside.
 385		 */
 386		parent = tsk->real_parent;
 387	else
 388		/* reparent: our child is in a different pgrp than
 389		 * we are, and it was the only connection outside.
 390		 */
 391		ignored_task = NULL;
 392
 393	if (task_pgrp(parent) != pgrp &&
 394	    task_session(parent) == task_session(tsk) &&
 395	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 396	    has_stopped_jobs(pgrp)) {
 397		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 398		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 399	}
 400}
 401
 402#ifdef CONFIG_MEMCG
 403/*
 404 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 405 */
 406void mm_update_next_owner(struct mm_struct *mm)
 407{
 408	struct task_struct *c, *g, *p = current;
 409
 410retry:
 411	/*
 412	 * If the exiting or execing task is not the owner, it's
 413	 * someone else's problem.
 414	 */
 415	if (mm->owner != p)
 416		return;
 417	/*
 418	 * The current owner is exiting/execing and there are no other
 419	 * candidates.  Do not leave the mm pointing to a possibly
 420	 * freed task structure.
 421	 */
 422	if (atomic_read(&mm->mm_users) <= 1) {
 423		mm->owner = NULL;
 424		return;
 425	}
 426
 427	read_lock(&tasklist_lock);
 428	/*
 429	 * Search in the children
 430	 */
 431	list_for_each_entry(c, &p->children, sibling) {
 432		if (c->mm == mm)
 433			goto assign_new_owner;
 434	}
 435
 436	/*
 437	 * Search in the siblings
 438	 */
 439	list_for_each_entry(c, &p->real_parent->children, sibling) {
 440		if (c->mm == mm)
 441			goto assign_new_owner;
 442	}
 443
 444	/*
 445	 * Search through everything else, we should not get here often.
 446	 */
 447	for_each_process(g) {
 448		if (g->flags & PF_KTHREAD)
 449			continue;
 450		for_each_thread(g, c) {
 451			if (c->mm == mm)
 452				goto assign_new_owner;
 453			if (c->mm)
 454				break;
 455		}
 456	}
 457	read_unlock(&tasklist_lock);
 458	/*
 459	 * We found no owner yet mm_users > 1: this implies that we are
 460	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 461	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 462	 */
 463	mm->owner = NULL;
 464	return;
 465
 466assign_new_owner:
 467	BUG_ON(c == p);
 468	get_task_struct(c);
 469	/*
 470	 * The task_lock protects c->mm from changing.
 471	 * We always want mm->owner->mm == mm
 472	 */
 473	task_lock(c);
 474	/*
 475	 * Delay read_unlock() till we have the task_lock()
 476	 * to ensure that c does not slip away underneath us
 477	 */
 478	read_unlock(&tasklist_lock);
 479	if (c->mm != mm) {
 480		task_unlock(c);
 481		put_task_struct(c);
 482		goto retry;
 483	}
 484	mm->owner = c;
 485	task_unlock(c);
 486	put_task_struct(c);
 487}
 488#endif /* CONFIG_MEMCG */
 489
 490/*
 491 * Turn us into a lazy TLB process if we
 492 * aren't already..
 493 */
 494static void exit_mm(void)
 495{
 496	struct mm_struct *mm = current->mm;
 497	struct core_state *core_state;
 498
 499	mm_release(current, mm);
 500	if (!mm)
 501		return;
 502	sync_mm_rss(mm);
 503	/*
 504	 * Serialize with any possible pending coredump.
 505	 * We must hold mmap_sem around checking core_state
 506	 * and clearing tsk->mm.  The core-inducing thread
 507	 * will increment ->nr_threads for each thread in the
 508	 * group with ->mm != NULL.
 509	 */
 510	down_read(&mm->mmap_sem);
 511	core_state = mm->core_state;
 512	if (core_state) {
 513		struct core_thread self;
 514
 515		up_read(&mm->mmap_sem);
 516
 517		self.task = current;
 518		self.next = xchg(&core_state->dumper.next, &self);
 519		/*
 520		 * Implies mb(), the result of xchg() must be visible
 521		 * to core_state->dumper.
 522		 */
 523		if (atomic_dec_and_test(&core_state->nr_threads))
 524			complete(&core_state->startup);
 525
 526		for (;;) {
 527			set_current_state(TASK_UNINTERRUPTIBLE);
 528			if (!self.task) /* see coredump_finish() */
 529				break;
 530			freezable_schedule();
 531		}
 532		__set_current_state(TASK_RUNNING);
 533		down_read(&mm->mmap_sem);
 534	}
 535	mmgrab(mm);
 536	BUG_ON(mm != current->active_mm);
 537	/* more a memory barrier than a real lock */
 538	task_lock(current);
 539	current->mm = NULL;
 540	up_read(&mm->mmap_sem);
 541	enter_lazy_tlb(mm, current);
 542	task_unlock(current);
 543	mm_update_next_owner(mm);
 544	mmput(mm);
 545	if (test_thread_flag(TIF_MEMDIE))
 546		exit_oom_victim();
 547}
 548
 549static struct task_struct *find_alive_thread(struct task_struct *p)
 550{
 551	struct task_struct *t;
 552
 553	for_each_thread(p, t) {
 554		if (!(t->flags & PF_EXITING))
 555			return t;
 556	}
 557	return NULL;
 558}
 559
 560static struct task_struct *find_child_reaper(struct task_struct *father)
 561	__releases(&tasklist_lock)
 562	__acquires(&tasklist_lock)
 563{
 564	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 565	struct task_struct *reaper = pid_ns->child_reaper;
 566
 567	if (likely(reaper != father))
 568		return reaper;
 569
 570	reaper = find_alive_thread(father);
 571	if (reaper) {
 572		pid_ns->child_reaper = reaper;
 573		return reaper;
 574	}
 575
 576	write_unlock_irq(&tasklist_lock);
 577	if (unlikely(pid_ns == &init_pid_ns)) {
 578		panic("Attempted to kill init! exitcode=0x%08x\n",
 579			father->signal->group_exit_code ?: father->exit_code);
 580	}
 581	zap_pid_ns_processes(pid_ns);
 582	write_lock_irq(&tasklist_lock);
 583
 584	return father;
 585}
 586
 587/*
 588 * When we die, we re-parent all our children, and try to:
 589 * 1. give them to another thread in our thread group, if such a member exists
 590 * 2. give it to the first ancestor process which prctl'd itself as a
 591 *    child_subreaper for its children (like a service manager)
 592 * 3. give it to the init process (PID 1) in our pid namespace
 593 */
 594static struct task_struct *find_new_reaper(struct task_struct *father,
 595					   struct task_struct *child_reaper)
 596{
 597	struct task_struct *thread, *reaper;
 598
 599	thread = find_alive_thread(father);
 600	if (thread)
 601		return thread;
 602
 603	if (father->signal->has_child_subreaper) {
 604		unsigned int ns_level = task_pid(father)->level;
 605		/*
 606		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 607		 * We can't check reaper != child_reaper to ensure we do not
 608		 * cross the namespaces, the exiting parent could be injected
 609		 * by setns() + fork().
 610		 * We check pid->level, this is slightly more efficient than
 611		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 612		 */
 613		for (reaper = father->real_parent;
 614		     task_pid(reaper)->level == ns_level;
 615		     reaper = reaper->real_parent) {
 
 616			if (reaper == &init_task)
 617				break;
 618			if (!reaper->signal->is_child_subreaper)
 619				continue;
 620			thread = find_alive_thread(reaper);
 621			if (thread)
 622				return thread;
 623		}
 624	}
 625
 626	return child_reaper;
 627}
 628
 629/*
 630* Any that need to be release_task'd are put on the @dead list.
 631 */
 632static void reparent_leader(struct task_struct *father, struct task_struct *p,
 633				struct list_head *dead)
 634{
 635	if (unlikely(p->exit_state == EXIT_DEAD))
 636		return;
 637
 638	/* We don't want people slaying init. */
 639	p->exit_signal = SIGCHLD;
 640
 641	/* If it has exited notify the new parent about this child's death. */
 642	if (!p->ptrace &&
 643	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 644		if (do_notify_parent(p, p->exit_signal)) {
 645			p->exit_state = EXIT_DEAD;
 646			list_add(&p->ptrace_entry, dead);
 647		}
 648	}
 649
 650	kill_orphaned_pgrp(p, father);
 651}
 652
 653/*
 654 * This does two things:
 655 *
 656 * A.  Make init inherit all the child processes
 657 * B.  Check to see if any process groups have become orphaned
 658 *	as a result of our exiting, and if they have any stopped
 659 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 660 */
 661static void forget_original_parent(struct task_struct *father,
 662					struct list_head *dead)
 663{
 664	struct task_struct *p, *t, *reaper;
 665
 666	if (unlikely(!list_empty(&father->ptraced)))
 667		exit_ptrace(father, dead);
 668
 669	/* Can drop and reacquire tasklist_lock */
 670	reaper = find_child_reaper(father);
 671	if (list_empty(&father->children))
 672		return;
 673
 674	reaper = find_new_reaper(father, reaper);
 675	list_for_each_entry(p, &father->children, sibling) {
 676		for_each_thread(p, t) {
 677			t->real_parent = reaper;
 678			BUG_ON((!t->ptrace) != (t->parent == father));
 679			if (likely(!t->ptrace))
 680				t->parent = t->real_parent;
 681			if (t->pdeath_signal)
 682				group_send_sig_info(t->pdeath_signal,
 683						    SEND_SIG_NOINFO, t);
 684		}
 685		/*
 686		 * If this is a threaded reparent there is no need to
 687		 * notify anyone anything has happened.
 688		 */
 689		if (!same_thread_group(reaper, father))
 690			reparent_leader(father, p, dead);
 691	}
 692	list_splice_tail_init(&father->children, &reaper->children);
 693}
 694
 695/*
 696 * Send signals to all our closest relatives so that they know
 697 * to properly mourn us..
 698 */
 699static void exit_notify(struct task_struct *tsk, int group_dead)
 700{
 701	bool autoreap;
 702	struct task_struct *p, *n;
 703	LIST_HEAD(dead);
 704
 705	write_lock_irq(&tasklist_lock);
 706	forget_original_parent(tsk, &dead);
 707
 708	if (group_dead)
 709		kill_orphaned_pgrp(tsk->group_leader, NULL);
 710
 711	if (unlikely(tsk->ptrace)) {
 712		int sig = thread_group_leader(tsk) &&
 713				thread_group_empty(tsk) &&
 714				!ptrace_reparented(tsk) ?
 715			tsk->exit_signal : SIGCHLD;
 716		autoreap = do_notify_parent(tsk, sig);
 717	} else if (thread_group_leader(tsk)) {
 718		autoreap = thread_group_empty(tsk) &&
 719			do_notify_parent(tsk, tsk->exit_signal);
 720	} else {
 721		autoreap = true;
 722	}
 723
 724	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 725	if (tsk->exit_state == EXIT_DEAD)
 726		list_add(&tsk->ptrace_entry, &dead);
 727
 728	/* mt-exec, de_thread() is waiting for group leader */
 729	if (unlikely(tsk->signal->notify_count < 0))
 730		wake_up_process(tsk->signal->group_exit_task);
 731	write_unlock_irq(&tasklist_lock);
 732
 733	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 734		list_del_init(&p->ptrace_entry);
 735		release_task(p);
 736	}
 737}
 738
 739#ifdef CONFIG_DEBUG_STACK_USAGE
 740static void check_stack_usage(void)
 741{
 742	static DEFINE_SPINLOCK(low_water_lock);
 743	static int lowest_to_date = THREAD_SIZE;
 744	unsigned long free;
 745
 746	free = stack_not_used(current);
 747
 748	if (free >= lowest_to_date)
 749		return;
 750
 751	spin_lock(&low_water_lock);
 752	if (free < lowest_to_date) {
 753		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 754			current->comm, task_pid_nr(current), free);
 755		lowest_to_date = free;
 756	}
 757	spin_unlock(&low_water_lock);
 758}
 759#else
 760static inline void check_stack_usage(void) {}
 761#endif
 762
 763void __noreturn do_exit(long code)
 764{
 765	struct task_struct *tsk = current;
 766	int group_dead;
 
 767
 768	profile_task_exit(tsk);
 769	kcov_task_exit(tsk);
 770
 771	WARN_ON(blk_needs_flush_plug(tsk));
 772
 773	if (unlikely(in_interrupt()))
 774		panic("Aiee, killing interrupt handler!");
 775	if (unlikely(!tsk->pid))
 776		panic("Attempted to kill the idle task!");
 777
 778	/*
 779	 * If do_exit is called because this processes oopsed, it's possible
 780	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 781	 * continuing. Amongst other possible reasons, this is to prevent
 782	 * mm_release()->clear_child_tid() from writing to a user-controlled
 783	 * kernel address.
 784	 */
 785	set_fs(USER_DS);
 786
 787	ptrace_event(PTRACE_EVENT_EXIT, code);
 788
 789	validate_creds_for_do_exit(tsk);
 790
 791	/*
 792	 * We're taking recursive faults here in do_exit. Safest is to just
 793	 * leave this task alone and wait for reboot.
 794	 */
 795	if (unlikely(tsk->flags & PF_EXITING)) {
 796		pr_alert("Fixing recursive fault but reboot is needed!\n");
 797		/*
 798		 * We can do this unlocked here. The futex code uses
 799		 * this flag just to verify whether the pi state
 800		 * cleanup has been done or not. In the worst case it
 801		 * loops once more. We pretend that the cleanup was
 802		 * done as there is no way to return. Either the
 803		 * OWNER_DIED bit is set by now or we push the blocked
 804		 * task into the wait for ever nirwana as well.
 805		 */
 806		tsk->flags |= PF_EXITPIDONE;
 807		set_current_state(TASK_UNINTERRUPTIBLE);
 808		schedule();
 809	}
 810
 811	exit_signals(tsk);  /* sets PF_EXITING */
 812	/*
 813	 * Ensure that all new tsk->pi_lock acquisitions must observe
 814	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
 815	 */
 816	smp_mb();
 817	/*
 818	 * Ensure that we must observe the pi_state in exit_mm() ->
 819	 * mm_release() -> exit_pi_state_list().
 820	 */
 821	raw_spin_lock_irq(&tsk->pi_lock);
 822	raw_spin_unlock_irq(&tsk->pi_lock);
 823
 824	if (unlikely(in_atomic())) {
 825		pr_info("note: %s[%d] exited with preempt_count %d\n",
 826			current->comm, task_pid_nr(current),
 827			preempt_count());
 828		preempt_count_set(PREEMPT_ENABLED);
 829	}
 830
 831	/* sync mm's RSS info before statistics gathering */
 832	if (tsk->mm)
 833		sync_mm_rss(tsk->mm);
 834	acct_update_integrals(tsk);
 835	group_dead = atomic_dec_and_test(&tsk->signal->live);
 836	if (group_dead) {
 837#ifdef CONFIG_POSIX_TIMERS
 838		hrtimer_cancel(&tsk->signal->real_timer);
 839		exit_itimers(tsk->signal);
 840#endif
 841		if (tsk->mm)
 842			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 843	}
 844	acct_collect(code, group_dead);
 845	if (group_dead)
 846		tty_audit_exit();
 847	audit_free(tsk);
 848
 849	tsk->exit_code = code;
 850	taskstats_exit(tsk, group_dead);
 851
 852	exit_mm();
 853
 854	if (group_dead)
 855		acct_process();
 856	trace_sched_process_exit(tsk);
 857
 858	exit_sem(tsk);
 859	exit_shm(tsk);
 860	exit_files(tsk);
 861	exit_fs(tsk);
 862	if (group_dead)
 863		disassociate_ctty(1);
 864	exit_task_namespaces(tsk);
 865	exit_task_work(tsk);
 866	exit_thread(tsk);
 867
 868	/*
 869	 * Flush inherited counters to the parent - before the parent
 870	 * gets woken up by child-exit notifications.
 871	 *
 872	 * because of cgroup mode, must be called before cgroup_exit()
 873	 */
 874	perf_event_exit_task(tsk);
 875
 876	sched_autogroup_exit_task(tsk);
 877	cgroup_exit(tsk);
 878
 879	/*
 880	 * FIXME: do that only when needed, using sched_exit tracepoint
 881	 */
 882	flush_ptrace_hw_breakpoint(tsk);
 883
 884	exit_tasks_rcu_start();
 
 
 885	exit_notify(tsk, group_dead);
 886	proc_exit_connector(tsk);
 887	mpol_put_task_policy(tsk);
 
 
 
 
 
 888#ifdef CONFIG_FUTEX
 889	if (unlikely(current->pi_state_cache))
 890		kfree(current->pi_state_cache);
 891#endif
 892	/*
 893	 * Make sure we are holding no locks:
 894	 */
 895	debug_check_no_locks_held();
 896	/*
 897	 * We can do this unlocked here. The futex code uses this flag
 898	 * just to verify whether the pi state cleanup has been done
 899	 * or not. In the worst case it loops once more.
 900	 */
 901	tsk->flags |= PF_EXITPIDONE;
 902
 903	if (tsk->io_context)
 904		exit_io_context(tsk);
 905
 906	if (tsk->splice_pipe)
 907		free_pipe_info(tsk->splice_pipe);
 908
 909	if (tsk->task_frag.page)
 910		put_page(tsk->task_frag.page);
 911
 912	validate_creds_for_do_exit(tsk);
 913
 914	check_stack_usage();
 915	preempt_disable();
 916	if (tsk->nr_dirtied)
 917		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 918	exit_rcu();
 919	exit_tasks_rcu_finish();
 920
 921	lockdep_free_task(tsk);
 922	do_task_dead();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923}
 924EXPORT_SYMBOL_GPL(do_exit);
 925
 926void complete_and_exit(struct completion *comp, long code)
 927{
 928	if (comp)
 929		complete(comp);
 930
 931	do_exit(code);
 932}
 933EXPORT_SYMBOL(complete_and_exit);
 934
 935SYSCALL_DEFINE1(exit, int, error_code)
 936{
 937	do_exit((error_code&0xff)<<8);
 938}
 939
 940/*
 941 * Take down every thread in the group.  This is called by fatal signals
 942 * as well as by sys_exit_group (below).
 943 */
 944void
 945do_group_exit(int exit_code)
 946{
 947	struct signal_struct *sig = current->signal;
 948
 949	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 950
 951	if (signal_group_exit(sig))
 952		exit_code = sig->group_exit_code;
 953	else if (!thread_group_empty(current)) {
 954		struct sighand_struct *const sighand = current->sighand;
 955
 956		spin_lock_irq(&sighand->siglock);
 957		if (signal_group_exit(sig))
 958			/* Another thread got here before we took the lock.  */
 959			exit_code = sig->group_exit_code;
 960		else {
 961			sig->group_exit_code = exit_code;
 962			sig->flags = SIGNAL_GROUP_EXIT;
 963			zap_other_threads(current);
 964		}
 965		spin_unlock_irq(&sighand->siglock);
 966	}
 967
 968	do_exit(exit_code);
 969	/* NOTREACHED */
 970}
 971
 972/*
 973 * this kills every thread in the thread group. Note that any externally
 974 * wait4()-ing process will get the correct exit code - even if this
 975 * thread is not the thread group leader.
 976 */
 977SYSCALL_DEFINE1(exit_group, int, error_code)
 978{
 979	do_group_exit((error_code & 0xff) << 8);
 980	/* NOTREACHED */
 981	return 0;
 982}
 983
 984struct waitid_info {
 985	pid_t pid;
 986	uid_t uid;
 987	int status;
 988	int cause;
 989};
 990
 991struct wait_opts {
 992	enum pid_type		wo_type;
 993	int			wo_flags;
 994	struct pid		*wo_pid;
 995
 996	struct waitid_info	*wo_info;
 997	int			wo_stat;
 998	struct rusage		*wo_rusage;
 999
1000	wait_queue_entry_t		child_wait;
1001	int			notask_error;
1002};
1003
1004static inline
1005struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1006{
1007	if (type != PIDTYPE_PID)
1008		task = task->group_leader;
1009	return task->pids[type].pid;
1010}
1011
1012static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1013{
1014	return	wo->wo_type == PIDTYPE_MAX ||
1015		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1016}
1017
1018static int
1019eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1020{
1021	if (!eligible_pid(wo, p))
1022		return 0;
1023
1024	/*
1025	 * Wait for all children (clone and not) if __WALL is set or
1026	 * if it is traced by us.
1027	 */
1028	if (ptrace || (wo->wo_flags & __WALL))
1029		return 1;
1030
1031	/*
1032	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1033	 * otherwise, wait for non-clone children *only*.
1034	 *
1035	 * Note: a "clone" child here is one that reports to its parent
1036	 * using a signal other than SIGCHLD, or a non-leader thread which
1037	 * we can only see if it is traced by us.
1038	 */
1039	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1040		return 0;
1041
1042	return 1;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045/*
1046 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1047 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1048 * the lock and this task is uninteresting.  If we return nonzero, we have
1049 * released the lock and the system call should return.
1050 */
1051static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1052{
1053	int state, status;
1054	pid_t pid = task_pid_vnr(p);
1055	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1056	struct waitid_info *infop;
1057
1058	if (!likely(wo->wo_flags & WEXITED))
1059		return 0;
1060
1061	if (unlikely(wo->wo_flags & WNOWAIT)) {
1062		status = p->exit_code;
 
 
1063		get_task_struct(p);
1064		read_unlock(&tasklist_lock);
1065		sched_annotate_sleep();
1066		if (wo->wo_rusage)
1067			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1068		put_task_struct(p);
1069		goto out_info;
 
 
 
 
 
1070	}
1071	/*
1072	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1073	 */
1074	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1075		EXIT_TRACE : EXIT_DEAD;
1076	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1077		return 0;
1078	/*
1079	 * We own this thread, nobody else can reap it.
1080	 */
1081	read_unlock(&tasklist_lock);
1082	sched_annotate_sleep();
1083
1084	/*
1085	 * Check thread_group_leader() to exclude the traced sub-threads.
1086	 */
1087	if (state == EXIT_DEAD && thread_group_leader(p)) {
1088		struct signal_struct *sig = p->signal;
1089		struct signal_struct *psig = current->signal;
1090		unsigned long maxrss;
1091		u64 tgutime, tgstime;
1092
1093		/*
1094		 * The resource counters for the group leader are in its
1095		 * own task_struct.  Those for dead threads in the group
1096		 * are in its signal_struct, as are those for the child
1097		 * processes it has previously reaped.  All these
1098		 * accumulate in the parent's signal_struct c* fields.
1099		 *
1100		 * We don't bother to take a lock here to protect these
1101		 * p->signal fields because the whole thread group is dead
1102		 * and nobody can change them.
1103		 *
1104		 * psig->stats_lock also protects us from our sub-theads
1105		 * which can reap other children at the same time. Until
1106		 * we change k_getrusage()-like users to rely on this lock
1107		 * we have to take ->siglock as well.
1108		 *
1109		 * We use thread_group_cputime_adjusted() to get times for
1110		 * the thread group, which consolidates times for all threads
1111		 * in the group including the group leader.
1112		 */
1113		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1114		spin_lock_irq(&current->sighand->siglock);
1115		write_seqlock(&psig->stats_lock);
1116		psig->cutime += tgutime + sig->cutime;
1117		psig->cstime += tgstime + sig->cstime;
1118		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1119		psig->cmin_flt +=
1120			p->min_flt + sig->min_flt + sig->cmin_flt;
1121		psig->cmaj_flt +=
1122			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1123		psig->cnvcsw +=
1124			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1125		psig->cnivcsw +=
1126			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1127		psig->cinblock +=
1128			task_io_get_inblock(p) +
1129			sig->inblock + sig->cinblock;
1130		psig->coublock +=
1131			task_io_get_oublock(p) +
1132			sig->oublock + sig->coublock;
1133		maxrss = max(sig->maxrss, sig->cmaxrss);
1134		if (psig->cmaxrss < maxrss)
1135			psig->cmaxrss = maxrss;
1136		task_io_accounting_add(&psig->ioac, &p->ioac);
1137		task_io_accounting_add(&psig->ioac, &sig->ioac);
1138		write_sequnlock(&psig->stats_lock);
1139		spin_unlock_irq(&current->sighand->siglock);
1140	}
1141
1142	if (wo->wo_rusage)
1143		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1144	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1145		? p->signal->group_exit_code : p->exit_code;
1146	wo->wo_stat = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	if (state == EXIT_TRACE) {
1149		write_lock_irq(&tasklist_lock);
1150		/* We dropped tasklist, ptracer could die and untrace */
1151		ptrace_unlink(p);
1152
1153		/* If parent wants a zombie, don't release it now */
1154		state = EXIT_ZOMBIE;
1155		if (do_notify_parent(p, p->exit_signal))
1156			state = EXIT_DEAD;
1157		p->exit_state = state;
1158		write_unlock_irq(&tasklist_lock);
1159	}
1160	if (state == EXIT_DEAD)
1161		release_task(p);
1162
1163out_info:
1164	infop = wo->wo_info;
1165	if (infop) {
1166		if ((status & 0x7f) == 0) {
1167			infop->cause = CLD_EXITED;
1168			infop->status = status >> 8;
1169		} else {
1170			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1171			infop->status = status & 0x7f;
1172		}
1173		infop->pid = pid;
1174		infop->uid = uid;
1175	}
1176
1177	return pid;
1178}
1179
1180static int *task_stopped_code(struct task_struct *p, bool ptrace)
1181{
1182	if (ptrace) {
1183		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1184			return &p->exit_code;
1185	} else {
1186		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1187			return &p->signal->group_exit_code;
1188	}
1189	return NULL;
1190}
1191
1192/**
1193 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1194 * @wo: wait options
1195 * @ptrace: is the wait for ptrace
1196 * @p: task to wait for
1197 *
1198 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1199 *
1200 * CONTEXT:
1201 * read_lock(&tasklist_lock), which is released if return value is
1202 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1203 *
1204 * RETURNS:
1205 * 0 if wait condition didn't exist and search for other wait conditions
1206 * should continue.  Non-zero return, -errno on failure and @p's pid on
1207 * success, implies that tasklist_lock is released and wait condition
1208 * search should terminate.
1209 */
1210static int wait_task_stopped(struct wait_opts *wo,
1211				int ptrace, struct task_struct *p)
1212{
1213	struct waitid_info *infop;
1214	int exit_code, *p_code, why;
1215	uid_t uid = 0; /* unneeded, required by compiler */
1216	pid_t pid;
1217
1218	/*
1219	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1220	 */
1221	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1222		return 0;
1223
1224	if (!task_stopped_code(p, ptrace))
1225		return 0;
1226
1227	exit_code = 0;
1228	spin_lock_irq(&p->sighand->siglock);
1229
1230	p_code = task_stopped_code(p, ptrace);
1231	if (unlikely(!p_code))
1232		goto unlock_sig;
1233
1234	exit_code = *p_code;
1235	if (!exit_code)
1236		goto unlock_sig;
1237
1238	if (!unlikely(wo->wo_flags & WNOWAIT))
1239		*p_code = 0;
1240
1241	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1242unlock_sig:
1243	spin_unlock_irq(&p->sighand->siglock);
1244	if (!exit_code)
1245		return 0;
1246
1247	/*
1248	 * Now we are pretty sure this task is interesting.
1249	 * Make sure it doesn't get reaped out from under us while we
1250	 * give up the lock and then examine it below.  We don't want to
1251	 * keep holding onto the tasklist_lock while we call getrusage and
1252	 * possibly take page faults for user memory.
1253	 */
1254	get_task_struct(p);
1255	pid = task_pid_vnr(p);
1256	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1257	read_unlock(&tasklist_lock);
1258	sched_annotate_sleep();
1259	if (wo->wo_rusage)
1260		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261	put_task_struct(p);
1262
1263	if (likely(!(wo->wo_flags & WNOWAIT)))
1264		wo->wo_stat = (exit_code << 8) | 0x7f;
 
 
 
 
 
1265
1266	infop = wo->wo_info;
1267	if (infop) {
1268		infop->cause = why;
1269		infop->status = exit_code;
1270		infop->pid = pid;
1271		infop->uid = uid;
1272	}
1273	return pid;
 
 
 
 
 
 
 
 
 
 
 
1274}
1275
1276/*
1277 * Handle do_wait work for one task in a live, non-stopped state.
1278 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1279 * the lock and this task is uninteresting.  If we return nonzero, we have
1280 * released the lock and the system call should return.
1281 */
1282static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1283{
1284	struct waitid_info *infop;
1285	pid_t pid;
1286	uid_t uid;
1287
1288	if (!unlikely(wo->wo_flags & WCONTINUED))
1289		return 0;
1290
1291	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1292		return 0;
1293
1294	spin_lock_irq(&p->sighand->siglock);
1295	/* Re-check with the lock held.  */
1296	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1297		spin_unlock_irq(&p->sighand->siglock);
1298		return 0;
1299	}
1300	if (!unlikely(wo->wo_flags & WNOWAIT))
1301		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1302	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1303	spin_unlock_irq(&p->sighand->siglock);
1304
1305	pid = task_pid_vnr(p);
1306	get_task_struct(p);
1307	read_unlock(&tasklist_lock);
1308	sched_annotate_sleep();
1309	if (wo->wo_rusage)
1310		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1311	put_task_struct(p);
1312
1313	infop = wo->wo_info;
1314	if (!infop) {
1315		wo->wo_stat = 0xffff;
 
 
 
 
 
1316	} else {
1317		infop->cause = CLD_CONTINUED;
1318		infop->pid = pid;
1319		infop->uid = uid;
1320		infop->status = SIGCONT;
1321	}
1322	return pid;
 
1323}
1324
1325/*
1326 * Consider @p for a wait by @parent.
1327 *
1328 * -ECHILD should be in ->notask_error before the first call.
1329 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1330 * Returns zero if the search for a child should continue;
1331 * then ->notask_error is 0 if @p is an eligible child,
1332 * or still -ECHILD.
1333 */
1334static int wait_consider_task(struct wait_opts *wo, int ptrace,
1335				struct task_struct *p)
1336{
1337	/*
1338	 * We can race with wait_task_zombie() from another thread.
1339	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1340	 * can't confuse the checks below.
1341	 */
1342	int exit_state = READ_ONCE(p->exit_state);
1343	int ret;
1344
1345	if (unlikely(exit_state == EXIT_DEAD))
1346		return 0;
1347
1348	ret = eligible_child(wo, ptrace, p);
1349	if (!ret)
1350		return ret;
1351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352	if (unlikely(exit_state == EXIT_TRACE)) {
1353		/*
1354		 * ptrace == 0 means we are the natural parent. In this case
1355		 * we should clear notask_error, debugger will notify us.
1356		 */
1357		if (likely(!ptrace))
1358			wo->notask_error = 0;
1359		return 0;
1360	}
1361
1362	if (likely(!ptrace) && unlikely(p->ptrace)) {
1363		/*
1364		 * If it is traced by its real parent's group, just pretend
1365		 * the caller is ptrace_do_wait() and reap this child if it
1366		 * is zombie.
1367		 *
1368		 * This also hides group stop state from real parent; otherwise
1369		 * a single stop can be reported twice as group and ptrace stop.
1370		 * If a ptracer wants to distinguish these two events for its
1371		 * own children it should create a separate process which takes
1372		 * the role of real parent.
1373		 */
1374		if (!ptrace_reparented(p))
1375			ptrace = 1;
1376	}
1377
1378	/* slay zombie? */
1379	if (exit_state == EXIT_ZOMBIE) {
1380		/* we don't reap group leaders with subthreads */
1381		if (!delay_group_leader(p)) {
1382			/*
1383			 * A zombie ptracee is only visible to its ptracer.
1384			 * Notification and reaping will be cascaded to the
1385			 * real parent when the ptracer detaches.
1386			 */
1387			if (unlikely(ptrace) || likely(!p->ptrace))
1388				return wait_task_zombie(wo, p);
1389		}
1390
1391		/*
1392		 * Allow access to stopped/continued state via zombie by
1393		 * falling through.  Clearing of notask_error is complex.
1394		 *
1395		 * When !@ptrace:
1396		 *
1397		 * If WEXITED is set, notask_error should naturally be
1398		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1399		 * so, if there are live subthreads, there are events to
1400		 * wait for.  If all subthreads are dead, it's still safe
1401		 * to clear - this function will be called again in finite
1402		 * amount time once all the subthreads are released and
1403		 * will then return without clearing.
1404		 *
1405		 * When @ptrace:
1406		 *
1407		 * Stopped state is per-task and thus can't change once the
1408		 * target task dies.  Only continued and exited can happen.
1409		 * Clear notask_error if WCONTINUED | WEXITED.
1410		 */
1411		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1412			wo->notask_error = 0;
1413	} else {
1414		/*
1415		 * @p is alive and it's gonna stop, continue or exit, so
1416		 * there always is something to wait for.
1417		 */
1418		wo->notask_error = 0;
1419	}
1420
1421	/*
1422	 * Wait for stopped.  Depending on @ptrace, different stopped state
1423	 * is used and the two don't interact with each other.
1424	 */
1425	ret = wait_task_stopped(wo, ptrace, p);
1426	if (ret)
1427		return ret;
1428
1429	/*
1430	 * Wait for continued.  There's only one continued state and the
1431	 * ptracer can consume it which can confuse the real parent.  Don't
1432	 * use WCONTINUED from ptracer.  You don't need or want it.
1433	 */
1434	return wait_task_continued(wo, p);
1435}
1436
1437/*
1438 * Do the work of do_wait() for one thread in the group, @tsk.
1439 *
1440 * -ECHILD should be in ->notask_error before the first call.
1441 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1442 * Returns zero if the search for a child should continue; then
1443 * ->notask_error is 0 if there were any eligible children,
1444 * or still -ECHILD.
1445 */
1446static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1447{
1448	struct task_struct *p;
1449
1450	list_for_each_entry(p, &tsk->children, sibling) {
1451		int ret = wait_consider_task(wo, 0, p);
1452
1453		if (ret)
1454			return ret;
1455	}
1456
1457	return 0;
1458}
1459
1460static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1461{
1462	struct task_struct *p;
1463
1464	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1465		int ret = wait_consider_task(wo, 1, p);
1466
1467		if (ret)
1468			return ret;
1469	}
1470
1471	return 0;
1472}
1473
1474static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1475				int sync, void *key)
1476{
1477	struct wait_opts *wo = container_of(wait, struct wait_opts,
1478						child_wait);
1479	struct task_struct *p = key;
1480
1481	if (!eligible_pid(wo, p))
1482		return 0;
1483
1484	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1485		return 0;
1486
1487	return default_wake_function(wait, mode, sync, key);
1488}
1489
1490void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1491{
1492	__wake_up_sync_key(&parent->signal->wait_chldexit,
1493				TASK_INTERRUPTIBLE, 1, p);
1494}
1495
1496static long do_wait(struct wait_opts *wo)
1497{
1498	struct task_struct *tsk;
1499	int retval;
1500
1501	trace_sched_process_wait(wo->wo_pid);
1502
1503	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504	wo->child_wait.private = current;
1505	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506repeat:
1507	/*
1508	 * If there is nothing that can match our criteria, just get out.
1509	 * We will clear ->notask_error to zero if we see any child that
1510	 * might later match our criteria, even if we are not able to reap
1511	 * it yet.
1512	 */
1513	wo->notask_error = -ECHILD;
1514	if ((wo->wo_type < PIDTYPE_MAX) &&
1515	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1516		goto notask;
1517
1518	set_current_state(TASK_INTERRUPTIBLE);
1519	read_lock(&tasklist_lock);
1520	tsk = current;
1521	do {
1522		retval = do_wait_thread(wo, tsk);
1523		if (retval)
1524			goto end;
1525
1526		retval = ptrace_do_wait(wo, tsk);
1527		if (retval)
1528			goto end;
1529
1530		if (wo->wo_flags & __WNOTHREAD)
1531			break;
1532	} while_each_thread(current, tsk);
1533	read_unlock(&tasklist_lock);
1534
1535notask:
1536	retval = wo->notask_error;
1537	if (!retval && !(wo->wo_flags & WNOHANG)) {
1538		retval = -ERESTARTSYS;
1539		if (!signal_pending(current)) {
1540			schedule();
1541			goto repeat;
1542		}
1543	}
1544end:
1545	__set_current_state(TASK_RUNNING);
1546	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547	return retval;
1548}
1549
1550static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551			  int options, struct rusage *ru)
1552{
1553	struct wait_opts wo;
1554	struct pid *pid = NULL;
1555	enum pid_type type;
1556	long ret;
1557
1558	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1559			__WNOTHREAD|__WCLONE|__WALL))
1560		return -EINVAL;
1561	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1562		return -EINVAL;
1563
1564	switch (which) {
1565	case P_ALL:
1566		type = PIDTYPE_MAX;
1567		break;
1568	case P_PID:
1569		type = PIDTYPE_PID;
1570		if (upid <= 0)
1571			return -EINVAL;
1572		break;
1573	case P_PGID:
1574		type = PIDTYPE_PGID;
1575		if (upid <= 0)
1576			return -EINVAL;
1577		break;
1578	default:
1579		return -EINVAL;
1580	}
1581
1582	if (type < PIDTYPE_MAX)
1583		pid = find_get_pid(upid);
1584
1585	wo.wo_type	= type;
1586	wo.wo_pid	= pid;
1587	wo.wo_flags	= options;
1588	wo.wo_info	= infop;
 
1589	wo.wo_rusage	= ru;
1590	ret = do_wait(&wo);
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592	put_pid(pid);
1593	return ret;
1594}
1595
1596SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1597		infop, int, options, struct rusage __user *, ru)
1598{
1599	struct rusage r;
1600	struct waitid_info info = {.status = 0};
1601	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1602	int signo = 0;
1603
1604	if (err > 0) {
1605		signo = SIGCHLD;
1606		err = 0;
1607		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1608			return -EFAULT;
1609	}
1610	if (!infop)
1611		return err;
1612
1613	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1614		return -EFAULT;
1615
1616	user_access_begin();
1617	unsafe_put_user(signo, &infop->si_signo, Efault);
1618	unsafe_put_user(0, &infop->si_errno, Efault);
1619	unsafe_put_user(info.cause, &infop->si_code, Efault);
1620	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1621	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1622	unsafe_put_user(info.status, &infop->si_status, Efault);
1623	user_access_end();
1624	return err;
1625Efault:
1626	user_access_end();
1627	return -EFAULT;
1628}
1629
1630long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1631		  struct rusage *ru)
1632{
1633	struct wait_opts wo;
1634	struct pid *pid = NULL;
1635	enum pid_type type;
1636	long ret;
1637
1638	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1639			__WNOTHREAD|__WCLONE|__WALL))
1640		return -EINVAL;
1641
1642	/* -INT_MIN is not defined */
1643	if (upid == INT_MIN)
1644		return -ESRCH;
1645
1646	if (upid == -1)
1647		type = PIDTYPE_MAX;
1648	else if (upid < 0) {
1649		type = PIDTYPE_PGID;
1650		pid = find_get_pid(-upid);
1651	} else if (upid == 0) {
1652		type = PIDTYPE_PGID;
1653		pid = get_task_pid(current, PIDTYPE_PGID);
1654	} else /* upid > 0 */ {
1655		type = PIDTYPE_PID;
1656		pid = find_get_pid(upid);
1657	}
1658
1659	wo.wo_type	= type;
1660	wo.wo_pid	= pid;
1661	wo.wo_flags	= options | WEXITED;
1662	wo.wo_info	= NULL;
1663	wo.wo_stat	= 0;
1664	wo.wo_rusage	= ru;
1665	ret = do_wait(&wo);
1666	put_pid(pid);
1667	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1668		ret = -EFAULT;
1669
1670	return ret;
1671}
1672
1673SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1674		int, options, struct rusage __user *, ru)
1675{
1676	struct rusage r;
1677	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1678
1679	if (err > 0) {
1680		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1681			return -EFAULT;
1682	}
1683	return err;
1684}
1685
1686#ifdef __ARCH_WANT_SYS_WAITPID
1687
1688/*
1689 * sys_waitpid() remains for compatibility. waitpid() should be
1690 * implemented by calling sys_wait4() from libc.a.
1691 */
1692SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1693{
1694	return kernel_wait4(pid, stat_addr, options, NULL);
1695}
1696
1697#endif
1698
1699#ifdef CONFIG_COMPAT
1700COMPAT_SYSCALL_DEFINE4(wait4,
1701	compat_pid_t, pid,
1702	compat_uint_t __user *, stat_addr,
1703	int, options,
1704	struct compat_rusage __user *, ru)
1705{
1706	struct rusage r;
1707	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1708	if (err > 0) {
1709		if (ru && put_compat_rusage(&r, ru))
1710			return -EFAULT;
1711	}
1712	return err;
1713}
1714
1715COMPAT_SYSCALL_DEFINE5(waitid,
1716		int, which, compat_pid_t, pid,
1717		struct compat_siginfo __user *, infop, int, options,
1718		struct compat_rusage __user *, uru)
1719{
1720	struct rusage ru;
1721	struct waitid_info info = {.status = 0};
1722	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1723	int signo = 0;
1724	if (err > 0) {
1725		signo = SIGCHLD;
1726		err = 0;
1727		if (uru) {
1728			/* kernel_waitid() overwrites everything in ru */
1729			if (COMPAT_USE_64BIT_TIME)
1730				err = copy_to_user(uru, &ru, sizeof(ru));
1731			else
1732				err = put_compat_rusage(&ru, uru);
1733			if (err)
1734				return -EFAULT;
1735		}
1736	}
1737
1738	if (!infop)
1739		return err;
1740
1741	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1742		return -EFAULT;
1743
1744	user_access_begin();
1745	unsafe_put_user(signo, &infop->si_signo, Efault);
1746	unsafe_put_user(0, &infop->si_errno, Efault);
1747	unsafe_put_user(info.cause, &infop->si_code, Efault);
1748	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1749	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1750	unsafe_put_user(info.status, &infop->si_status, Efault);
1751	user_access_end();
1752	return err;
1753Efault:
1754	user_access_end();
1755	return -EFAULT;
1756}
1757#endif
1758
1759__weak void abort(void)
1760{
1761	BUG();
1762
1763	/* if that doesn't kill us, halt */
1764	panic("Oops failed to kill thread");
1765}
1766EXPORT_SYMBOL(abort);
v4.6
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
 
 
 
 
 
 
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56#include <linux/kcov.h>
 
 
 
  57
  58#include <asm/uaccess.h>
  59#include <asm/unistd.h>
  60#include <asm/pgtable.h>
  61#include <asm/mmu_context.h>
  62
  63static void __unhash_process(struct task_struct *p, bool group_dead)
  64{
  65	nr_threads--;
  66	detach_pid(p, PIDTYPE_PID);
  67	if (group_dead) {
  68		detach_pid(p, PIDTYPE_PGID);
  69		detach_pid(p, PIDTYPE_SID);
  70
  71		list_del_rcu(&p->tasks);
  72		list_del_init(&p->sibling);
  73		__this_cpu_dec(process_counts);
  74	}
  75	list_del_rcu(&p->thread_group);
  76	list_del_rcu(&p->thread_node);
  77}
  78
  79/*
  80 * This function expects the tasklist_lock write-locked.
  81 */
  82static void __exit_signal(struct task_struct *tsk)
  83{
  84	struct signal_struct *sig = tsk->signal;
  85	bool group_dead = thread_group_leader(tsk);
  86	struct sighand_struct *sighand;
  87	struct tty_struct *uninitialized_var(tty);
  88	cputime_t utime, stime;
  89
  90	sighand = rcu_dereference_check(tsk->sighand,
  91					lockdep_tasklist_lock_is_held());
  92	spin_lock(&sighand->siglock);
  93
 
  94	posix_cpu_timers_exit(tsk);
  95	if (group_dead) {
  96		posix_cpu_timers_exit_group(tsk);
  97		tty = sig->tty;
  98		sig->tty = NULL;
  99	} else {
 100		/*
 101		 * This can only happen if the caller is de_thread().
 102		 * FIXME: this is the temporary hack, we should teach
 103		 * posix-cpu-timers to handle this case correctly.
 104		 */
 105		if (unlikely(has_group_leader_pid(tsk)))
 106			posix_cpu_timers_exit_group(tsk);
 
 
 107
 
 
 
 
 108		/*
 109		 * If there is any task waiting for the group exit
 110		 * then notify it:
 111		 */
 112		if (sig->notify_count > 0 && !--sig->notify_count)
 113			wake_up_process(sig->group_exit_task);
 114
 115		if (tsk == sig->curr_target)
 116			sig->curr_target = next_thread(tsk);
 117	}
 118
 
 
 
 119	/*
 120	 * Accumulate here the counters for all threads as they die. We could
 121	 * skip the group leader because it is the last user of signal_struct,
 122	 * but we want to avoid the race with thread_group_cputime() which can
 123	 * see the empty ->thread_head list.
 124	 */
 125	task_cputime(tsk, &utime, &stime);
 126	write_seqlock(&sig->stats_lock);
 127	sig->utime += utime;
 128	sig->stime += stime;
 129	sig->gtime += task_gtime(tsk);
 130	sig->min_flt += tsk->min_flt;
 131	sig->maj_flt += tsk->maj_flt;
 132	sig->nvcsw += tsk->nvcsw;
 133	sig->nivcsw += tsk->nivcsw;
 134	sig->inblock += task_io_get_inblock(tsk);
 135	sig->oublock += task_io_get_oublock(tsk);
 136	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 137	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 138	sig->nr_threads--;
 139	__unhash_process(tsk, group_dead);
 140	write_sequnlock(&sig->stats_lock);
 141
 142	/*
 143	 * Do this under ->siglock, we can race with another thread
 144	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 145	 */
 146	flush_sigqueue(&tsk->pending);
 147	tsk->sighand = NULL;
 148	spin_unlock(&sighand->siglock);
 149
 150	__cleanup_sighand(sighand);
 151	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 152	if (group_dead) {
 153		flush_sigqueue(&sig->shared_pending);
 154		tty_kref_put(tty);
 155	}
 156}
 157
 158static void delayed_put_task_struct(struct rcu_head *rhp)
 159{
 160	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 161
 162	perf_event_delayed_put(tsk);
 163	trace_sched_process_free(tsk);
 164	put_task_struct(tsk);
 165}
 166
 167
 168void release_task(struct task_struct *p)
 169{
 170	struct task_struct *leader;
 171	int zap_leader;
 172repeat:
 173	/* don't need to get the RCU readlock here - the process is dead and
 174	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 175	rcu_read_lock();
 176	atomic_dec(&__task_cred(p)->user->processes);
 177	rcu_read_unlock();
 178
 179	proc_flush_task(p);
 180
 181	write_lock_irq(&tasklist_lock);
 182	ptrace_release_task(p);
 183	__exit_signal(p);
 184
 185	/*
 186	 * If we are the last non-leader member of the thread
 187	 * group, and the leader is zombie, then notify the
 188	 * group leader's parent process. (if it wants notification.)
 189	 */
 190	zap_leader = 0;
 191	leader = p->group_leader;
 192	if (leader != p && thread_group_empty(leader)
 193			&& leader->exit_state == EXIT_ZOMBIE) {
 194		/*
 195		 * If we were the last child thread and the leader has
 196		 * exited already, and the leader's parent ignores SIGCHLD,
 197		 * then we are the one who should release the leader.
 198		 */
 199		zap_leader = do_notify_parent(leader, leader->exit_signal);
 200		if (zap_leader)
 201			leader->exit_state = EXIT_DEAD;
 202	}
 203
 204	write_unlock_irq(&tasklist_lock);
 205	release_thread(p);
 206	call_rcu(&p->rcu, delayed_put_task_struct);
 207
 208	p = leader;
 209	if (unlikely(zap_leader))
 210		goto repeat;
 211}
 212
 213/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214 * Determine if a process group is "orphaned", according to the POSIX
 215 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 216 * by terminal-generated stop signals.  Newly orphaned process groups are
 217 * to receive a SIGHUP and a SIGCONT.
 218 *
 219 * "I ask you, have you ever known what it is to be an orphan?"
 220 */
 221static int will_become_orphaned_pgrp(struct pid *pgrp,
 222					struct task_struct *ignored_task)
 223{
 224	struct task_struct *p;
 225
 226	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 227		if ((p == ignored_task) ||
 228		    (p->exit_state && thread_group_empty(p)) ||
 229		    is_global_init(p->real_parent))
 230			continue;
 231
 232		if (task_pgrp(p->real_parent) != pgrp &&
 233		    task_session(p->real_parent) == task_session(p))
 234			return 0;
 235	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 236
 237	return 1;
 238}
 239
 240int is_current_pgrp_orphaned(void)
 241{
 242	int retval;
 243
 244	read_lock(&tasklist_lock);
 245	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 246	read_unlock(&tasklist_lock);
 247
 248	return retval;
 249}
 250
 251static bool has_stopped_jobs(struct pid *pgrp)
 252{
 253	struct task_struct *p;
 254
 255	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 256		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 257			return true;
 258	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 259
 260	return false;
 261}
 262
 263/*
 264 * Check to see if any process groups have become orphaned as
 265 * a result of our exiting, and if they have any stopped jobs,
 266 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 267 */
 268static void
 269kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 270{
 271	struct pid *pgrp = task_pgrp(tsk);
 272	struct task_struct *ignored_task = tsk;
 273
 274	if (!parent)
 275		/* exit: our father is in a different pgrp than
 276		 * we are and we were the only connection outside.
 277		 */
 278		parent = tsk->real_parent;
 279	else
 280		/* reparent: our child is in a different pgrp than
 281		 * we are, and it was the only connection outside.
 282		 */
 283		ignored_task = NULL;
 284
 285	if (task_pgrp(parent) != pgrp &&
 286	    task_session(parent) == task_session(tsk) &&
 287	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 288	    has_stopped_jobs(pgrp)) {
 289		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 290		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 291	}
 292}
 293
 294#ifdef CONFIG_MEMCG
 295/*
 296 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 297 */
 298void mm_update_next_owner(struct mm_struct *mm)
 299{
 300	struct task_struct *c, *g, *p = current;
 301
 302retry:
 303	/*
 304	 * If the exiting or execing task is not the owner, it's
 305	 * someone else's problem.
 306	 */
 307	if (mm->owner != p)
 308		return;
 309	/*
 310	 * The current owner is exiting/execing and there are no other
 311	 * candidates.  Do not leave the mm pointing to a possibly
 312	 * freed task structure.
 313	 */
 314	if (atomic_read(&mm->mm_users) <= 1) {
 315		mm->owner = NULL;
 316		return;
 317	}
 318
 319	read_lock(&tasklist_lock);
 320	/*
 321	 * Search in the children
 322	 */
 323	list_for_each_entry(c, &p->children, sibling) {
 324		if (c->mm == mm)
 325			goto assign_new_owner;
 326	}
 327
 328	/*
 329	 * Search in the siblings
 330	 */
 331	list_for_each_entry(c, &p->real_parent->children, sibling) {
 332		if (c->mm == mm)
 333			goto assign_new_owner;
 334	}
 335
 336	/*
 337	 * Search through everything else, we should not get here often.
 338	 */
 339	for_each_process(g) {
 340		if (g->flags & PF_KTHREAD)
 341			continue;
 342		for_each_thread(g, c) {
 343			if (c->mm == mm)
 344				goto assign_new_owner;
 345			if (c->mm)
 346				break;
 347		}
 348	}
 349	read_unlock(&tasklist_lock);
 350	/*
 351	 * We found no owner yet mm_users > 1: this implies that we are
 352	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 353	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 354	 */
 355	mm->owner = NULL;
 356	return;
 357
 358assign_new_owner:
 359	BUG_ON(c == p);
 360	get_task_struct(c);
 361	/*
 362	 * The task_lock protects c->mm from changing.
 363	 * We always want mm->owner->mm == mm
 364	 */
 365	task_lock(c);
 366	/*
 367	 * Delay read_unlock() till we have the task_lock()
 368	 * to ensure that c does not slip away underneath us
 369	 */
 370	read_unlock(&tasklist_lock);
 371	if (c->mm != mm) {
 372		task_unlock(c);
 373		put_task_struct(c);
 374		goto retry;
 375	}
 376	mm->owner = c;
 377	task_unlock(c);
 378	put_task_struct(c);
 379}
 380#endif /* CONFIG_MEMCG */
 381
 382/*
 383 * Turn us into a lazy TLB process if we
 384 * aren't already..
 385 */
 386static void exit_mm(struct task_struct *tsk)
 387{
 388	struct mm_struct *mm = tsk->mm;
 389	struct core_state *core_state;
 390
 391	mm_release(tsk, mm);
 392	if (!mm)
 393		return;
 394	sync_mm_rss(mm);
 395	/*
 396	 * Serialize with any possible pending coredump.
 397	 * We must hold mmap_sem around checking core_state
 398	 * and clearing tsk->mm.  The core-inducing thread
 399	 * will increment ->nr_threads for each thread in the
 400	 * group with ->mm != NULL.
 401	 */
 402	down_read(&mm->mmap_sem);
 403	core_state = mm->core_state;
 404	if (core_state) {
 405		struct core_thread self;
 406
 407		up_read(&mm->mmap_sem);
 408
 409		self.task = tsk;
 410		self.next = xchg(&core_state->dumper.next, &self);
 411		/*
 412		 * Implies mb(), the result of xchg() must be visible
 413		 * to core_state->dumper.
 414		 */
 415		if (atomic_dec_and_test(&core_state->nr_threads))
 416			complete(&core_state->startup);
 417
 418		for (;;) {
 419			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 420			if (!self.task) /* see coredump_finish() */
 421				break;
 422			freezable_schedule();
 423		}
 424		__set_task_state(tsk, TASK_RUNNING);
 425		down_read(&mm->mmap_sem);
 426	}
 427	atomic_inc(&mm->mm_count);
 428	BUG_ON(mm != tsk->active_mm);
 429	/* more a memory barrier than a real lock */
 430	task_lock(tsk);
 431	tsk->mm = NULL;
 432	up_read(&mm->mmap_sem);
 433	enter_lazy_tlb(mm, current);
 434	task_unlock(tsk);
 435	mm_update_next_owner(mm);
 436	mmput(mm);
 437	if (test_thread_flag(TIF_MEMDIE))
 438		exit_oom_victim(tsk);
 439}
 440
 441static struct task_struct *find_alive_thread(struct task_struct *p)
 442{
 443	struct task_struct *t;
 444
 445	for_each_thread(p, t) {
 446		if (!(t->flags & PF_EXITING))
 447			return t;
 448	}
 449	return NULL;
 450}
 451
 452static struct task_struct *find_child_reaper(struct task_struct *father)
 453	__releases(&tasklist_lock)
 454	__acquires(&tasklist_lock)
 455{
 456	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 457	struct task_struct *reaper = pid_ns->child_reaper;
 458
 459	if (likely(reaper != father))
 460		return reaper;
 461
 462	reaper = find_alive_thread(father);
 463	if (reaper) {
 464		pid_ns->child_reaper = reaper;
 465		return reaper;
 466	}
 467
 468	write_unlock_irq(&tasklist_lock);
 469	if (unlikely(pid_ns == &init_pid_ns)) {
 470		panic("Attempted to kill init! exitcode=0x%08x\n",
 471			father->signal->group_exit_code ?: father->exit_code);
 472	}
 473	zap_pid_ns_processes(pid_ns);
 474	write_lock_irq(&tasklist_lock);
 475
 476	return father;
 477}
 478
 479/*
 480 * When we die, we re-parent all our children, and try to:
 481 * 1. give them to another thread in our thread group, if such a member exists
 482 * 2. give it to the first ancestor process which prctl'd itself as a
 483 *    child_subreaper for its children (like a service manager)
 484 * 3. give it to the init process (PID 1) in our pid namespace
 485 */
 486static struct task_struct *find_new_reaper(struct task_struct *father,
 487					   struct task_struct *child_reaper)
 488{
 489	struct task_struct *thread, *reaper;
 490
 491	thread = find_alive_thread(father);
 492	if (thread)
 493		return thread;
 494
 495	if (father->signal->has_child_subreaper) {
 
 496		/*
 497		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 498		 * We start from father to ensure we can not look into another
 499		 * namespace, this is safe because all its threads are dead.
 
 
 
 500		 */
 501		for (reaper = father;
 502		     !same_thread_group(reaper, child_reaper);
 503		     reaper = reaper->real_parent) {
 504			/* call_usermodehelper() descendants need this check */
 505			if (reaper == &init_task)
 506				break;
 507			if (!reaper->signal->is_child_subreaper)
 508				continue;
 509			thread = find_alive_thread(reaper);
 510			if (thread)
 511				return thread;
 512		}
 513	}
 514
 515	return child_reaper;
 516}
 517
 518/*
 519* Any that need to be release_task'd are put on the @dead list.
 520 */
 521static void reparent_leader(struct task_struct *father, struct task_struct *p,
 522				struct list_head *dead)
 523{
 524	if (unlikely(p->exit_state == EXIT_DEAD))
 525		return;
 526
 527	/* We don't want people slaying init. */
 528	p->exit_signal = SIGCHLD;
 529
 530	/* If it has exited notify the new parent about this child's death. */
 531	if (!p->ptrace &&
 532	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 533		if (do_notify_parent(p, p->exit_signal)) {
 534			p->exit_state = EXIT_DEAD;
 535			list_add(&p->ptrace_entry, dead);
 536		}
 537	}
 538
 539	kill_orphaned_pgrp(p, father);
 540}
 541
 542/*
 543 * This does two things:
 544 *
 545 * A.  Make init inherit all the child processes
 546 * B.  Check to see if any process groups have become orphaned
 547 *	as a result of our exiting, and if they have any stopped
 548 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 549 */
 550static void forget_original_parent(struct task_struct *father,
 551					struct list_head *dead)
 552{
 553	struct task_struct *p, *t, *reaper;
 554
 555	if (unlikely(!list_empty(&father->ptraced)))
 556		exit_ptrace(father, dead);
 557
 558	/* Can drop and reacquire tasklist_lock */
 559	reaper = find_child_reaper(father);
 560	if (list_empty(&father->children))
 561		return;
 562
 563	reaper = find_new_reaper(father, reaper);
 564	list_for_each_entry(p, &father->children, sibling) {
 565		for_each_thread(p, t) {
 566			t->real_parent = reaper;
 567			BUG_ON((!t->ptrace) != (t->parent == father));
 568			if (likely(!t->ptrace))
 569				t->parent = t->real_parent;
 570			if (t->pdeath_signal)
 571				group_send_sig_info(t->pdeath_signal,
 572						    SEND_SIG_NOINFO, t);
 573		}
 574		/*
 575		 * If this is a threaded reparent there is no need to
 576		 * notify anyone anything has happened.
 577		 */
 578		if (!same_thread_group(reaper, father))
 579			reparent_leader(father, p, dead);
 580	}
 581	list_splice_tail_init(&father->children, &reaper->children);
 582}
 583
 584/*
 585 * Send signals to all our closest relatives so that they know
 586 * to properly mourn us..
 587 */
 588static void exit_notify(struct task_struct *tsk, int group_dead)
 589{
 590	bool autoreap;
 591	struct task_struct *p, *n;
 592	LIST_HEAD(dead);
 593
 594	write_lock_irq(&tasklist_lock);
 595	forget_original_parent(tsk, &dead);
 596
 597	if (group_dead)
 598		kill_orphaned_pgrp(tsk->group_leader, NULL);
 599
 600	if (unlikely(tsk->ptrace)) {
 601		int sig = thread_group_leader(tsk) &&
 602				thread_group_empty(tsk) &&
 603				!ptrace_reparented(tsk) ?
 604			tsk->exit_signal : SIGCHLD;
 605		autoreap = do_notify_parent(tsk, sig);
 606	} else if (thread_group_leader(tsk)) {
 607		autoreap = thread_group_empty(tsk) &&
 608			do_notify_parent(tsk, tsk->exit_signal);
 609	} else {
 610		autoreap = true;
 611	}
 612
 613	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 614	if (tsk->exit_state == EXIT_DEAD)
 615		list_add(&tsk->ptrace_entry, &dead);
 616
 617	/* mt-exec, de_thread() is waiting for group leader */
 618	if (unlikely(tsk->signal->notify_count < 0))
 619		wake_up_process(tsk->signal->group_exit_task);
 620	write_unlock_irq(&tasklist_lock);
 621
 622	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 623		list_del_init(&p->ptrace_entry);
 624		release_task(p);
 625	}
 626}
 627
 628#ifdef CONFIG_DEBUG_STACK_USAGE
 629static void check_stack_usage(void)
 630{
 631	static DEFINE_SPINLOCK(low_water_lock);
 632	static int lowest_to_date = THREAD_SIZE;
 633	unsigned long free;
 634
 635	free = stack_not_used(current);
 636
 637	if (free >= lowest_to_date)
 638		return;
 639
 640	spin_lock(&low_water_lock);
 641	if (free < lowest_to_date) {
 642		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
 643			current->comm, task_pid_nr(current), free);
 644		lowest_to_date = free;
 645	}
 646	spin_unlock(&low_water_lock);
 647}
 648#else
 649static inline void check_stack_usage(void) {}
 650#endif
 651
 652void do_exit(long code)
 653{
 654	struct task_struct *tsk = current;
 655	int group_dead;
 656	TASKS_RCU(int tasks_rcu_i);
 657
 658	profile_task_exit(tsk);
 659	kcov_task_exit(tsk);
 660
 661	WARN_ON(blk_needs_flush_plug(tsk));
 662
 663	if (unlikely(in_interrupt()))
 664		panic("Aiee, killing interrupt handler!");
 665	if (unlikely(!tsk->pid))
 666		panic("Attempted to kill the idle task!");
 667
 668	/*
 669	 * If do_exit is called because this processes oopsed, it's possible
 670	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 671	 * continuing. Amongst other possible reasons, this is to prevent
 672	 * mm_release()->clear_child_tid() from writing to a user-controlled
 673	 * kernel address.
 674	 */
 675	set_fs(USER_DS);
 676
 677	ptrace_event(PTRACE_EVENT_EXIT, code);
 678
 679	validate_creds_for_do_exit(tsk);
 680
 681	/*
 682	 * We're taking recursive faults here in do_exit. Safest is to just
 683	 * leave this task alone and wait for reboot.
 684	 */
 685	if (unlikely(tsk->flags & PF_EXITING)) {
 686		pr_alert("Fixing recursive fault but reboot is needed!\n");
 687		/*
 688		 * We can do this unlocked here. The futex code uses
 689		 * this flag just to verify whether the pi state
 690		 * cleanup has been done or not. In the worst case it
 691		 * loops once more. We pretend that the cleanup was
 692		 * done as there is no way to return. Either the
 693		 * OWNER_DIED bit is set by now or we push the blocked
 694		 * task into the wait for ever nirwana as well.
 695		 */
 696		tsk->flags |= PF_EXITPIDONE;
 697		set_current_state(TASK_UNINTERRUPTIBLE);
 698		schedule();
 699	}
 700
 701	exit_signals(tsk);  /* sets PF_EXITING */
 702	/*
 703	 * tsk->flags are checked in the futex code to protect against
 704	 * an exiting task cleaning up the robust pi futexes.
 705	 */
 706	smp_mb();
 707	raw_spin_unlock_wait(&tsk->pi_lock);
 
 
 
 
 
 708
 709	if (unlikely(in_atomic())) {
 710		pr_info("note: %s[%d] exited with preempt_count %d\n",
 711			current->comm, task_pid_nr(current),
 712			preempt_count());
 713		preempt_count_set(PREEMPT_ENABLED);
 714	}
 715
 716	/* sync mm's RSS info before statistics gathering */
 717	if (tsk->mm)
 718		sync_mm_rss(tsk->mm);
 719	acct_update_integrals(tsk);
 720	group_dead = atomic_dec_and_test(&tsk->signal->live);
 721	if (group_dead) {
 
 722		hrtimer_cancel(&tsk->signal->real_timer);
 723		exit_itimers(tsk->signal);
 
 724		if (tsk->mm)
 725			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 726	}
 727	acct_collect(code, group_dead);
 728	if (group_dead)
 729		tty_audit_exit();
 730	audit_free(tsk);
 731
 732	tsk->exit_code = code;
 733	taskstats_exit(tsk, group_dead);
 734
 735	exit_mm(tsk);
 736
 737	if (group_dead)
 738		acct_process();
 739	trace_sched_process_exit(tsk);
 740
 741	exit_sem(tsk);
 742	exit_shm(tsk);
 743	exit_files(tsk);
 744	exit_fs(tsk);
 745	if (group_dead)
 746		disassociate_ctty(1);
 747	exit_task_namespaces(tsk);
 748	exit_task_work(tsk);
 749	exit_thread();
 750
 751	/*
 752	 * Flush inherited counters to the parent - before the parent
 753	 * gets woken up by child-exit notifications.
 754	 *
 755	 * because of cgroup mode, must be called before cgroup_exit()
 756	 */
 757	perf_event_exit_task(tsk);
 758
 
 759	cgroup_exit(tsk);
 760
 761	/*
 762	 * FIXME: do that only when needed, using sched_exit tracepoint
 763	 */
 764	flush_ptrace_hw_breakpoint(tsk);
 765
 766	TASKS_RCU(preempt_disable());
 767	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 768	TASKS_RCU(preempt_enable());
 769	exit_notify(tsk, group_dead);
 770	proc_exit_connector(tsk);
 771#ifdef CONFIG_NUMA
 772	task_lock(tsk);
 773	mpol_put(tsk->mempolicy);
 774	tsk->mempolicy = NULL;
 775	task_unlock(tsk);
 776#endif
 777#ifdef CONFIG_FUTEX
 778	if (unlikely(current->pi_state_cache))
 779		kfree(current->pi_state_cache);
 780#endif
 781	/*
 782	 * Make sure we are holding no locks:
 783	 */
 784	debug_check_no_locks_held();
 785	/*
 786	 * We can do this unlocked here. The futex code uses this flag
 787	 * just to verify whether the pi state cleanup has been done
 788	 * or not. In the worst case it loops once more.
 789	 */
 790	tsk->flags |= PF_EXITPIDONE;
 791
 792	if (tsk->io_context)
 793		exit_io_context(tsk);
 794
 795	if (tsk->splice_pipe)
 796		free_pipe_info(tsk->splice_pipe);
 797
 798	if (tsk->task_frag.page)
 799		put_page(tsk->task_frag.page);
 800
 801	validate_creds_for_do_exit(tsk);
 802
 803	check_stack_usage();
 804	preempt_disable();
 805	if (tsk->nr_dirtied)
 806		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 807	exit_rcu();
 808	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 809
 810	/*
 811	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
 812	 * when the following two conditions become true.
 813	 *   - There is race condition of mmap_sem (It is acquired by
 814	 *     exit_mm()), and
 815	 *   - SMI occurs before setting TASK_RUNINNG.
 816	 *     (or hypervisor of virtual machine switches to other guest)
 817	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
 818	 *
 819	 * To avoid it, we have to wait for releasing tsk->pi_lock which
 820	 * is held by try_to_wake_up()
 821	 */
 822	smp_mb();
 823	raw_spin_unlock_wait(&tsk->pi_lock);
 824
 825	/* causes final put_task_struct in finish_task_switch(). */
 826	tsk->state = TASK_DEAD;
 827	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
 828	schedule();
 829	BUG();
 830	/* Avoid "noreturn function does return".  */
 831	for (;;)
 832		cpu_relax();	/* For when BUG is null */
 833}
 834EXPORT_SYMBOL_GPL(do_exit);
 835
 836void complete_and_exit(struct completion *comp, long code)
 837{
 838	if (comp)
 839		complete(comp);
 840
 841	do_exit(code);
 842}
 843EXPORT_SYMBOL(complete_and_exit);
 844
 845SYSCALL_DEFINE1(exit, int, error_code)
 846{
 847	do_exit((error_code&0xff)<<8);
 848}
 849
 850/*
 851 * Take down every thread in the group.  This is called by fatal signals
 852 * as well as by sys_exit_group (below).
 853 */
 854void
 855do_group_exit(int exit_code)
 856{
 857	struct signal_struct *sig = current->signal;
 858
 859	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 860
 861	if (signal_group_exit(sig))
 862		exit_code = sig->group_exit_code;
 863	else if (!thread_group_empty(current)) {
 864		struct sighand_struct *const sighand = current->sighand;
 865
 866		spin_lock_irq(&sighand->siglock);
 867		if (signal_group_exit(sig))
 868			/* Another thread got here before we took the lock.  */
 869			exit_code = sig->group_exit_code;
 870		else {
 871			sig->group_exit_code = exit_code;
 872			sig->flags = SIGNAL_GROUP_EXIT;
 873			zap_other_threads(current);
 874		}
 875		spin_unlock_irq(&sighand->siglock);
 876	}
 877
 878	do_exit(exit_code);
 879	/* NOTREACHED */
 880}
 881
 882/*
 883 * this kills every thread in the thread group. Note that any externally
 884 * wait4()-ing process will get the correct exit code - even if this
 885 * thread is not the thread group leader.
 886 */
 887SYSCALL_DEFINE1(exit_group, int, error_code)
 888{
 889	do_group_exit((error_code & 0xff) << 8);
 890	/* NOTREACHED */
 891	return 0;
 892}
 893
 
 
 
 
 
 
 
 894struct wait_opts {
 895	enum pid_type		wo_type;
 896	int			wo_flags;
 897	struct pid		*wo_pid;
 898
 899	struct siginfo __user	*wo_info;
 900	int __user		*wo_stat;
 901	struct rusage __user	*wo_rusage;
 902
 903	wait_queue_t		child_wait;
 904	int			notask_error;
 905};
 906
 907static inline
 908struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 909{
 910	if (type != PIDTYPE_PID)
 911		task = task->group_leader;
 912	return task->pids[type].pid;
 913}
 914
 915static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 916{
 917	return	wo->wo_type == PIDTYPE_MAX ||
 918		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 919}
 920
 921static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 
 922{
 923	if (!eligible_pid(wo, p))
 924		return 0;
 925	/* Wait for all children (clone and not) if __WALL is set;
 926	 * otherwise, wait for clone children *only* if __WCLONE is
 927	 * set; otherwise, wait for non-clone children *only*.  (Note:
 928	 * A "clone" child here is one that reports to its parent
 929	 * using a signal other than SIGCHLD.) */
 930	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 931	    && !(wo->wo_flags & __WALL))
 
 
 
 
 
 
 
 
 
 
 932		return 0;
 933
 934	return 1;
 935}
 936
 937static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 938				pid_t pid, uid_t uid, int why, int status)
 939{
 940	struct siginfo __user *infop;
 941	int retval = wo->wo_rusage
 942		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 943
 944	put_task_struct(p);
 945	infop = wo->wo_info;
 946	if (infop) {
 947		if (!retval)
 948			retval = put_user(SIGCHLD, &infop->si_signo);
 949		if (!retval)
 950			retval = put_user(0, &infop->si_errno);
 951		if (!retval)
 952			retval = put_user((short)why, &infop->si_code);
 953		if (!retval)
 954			retval = put_user(pid, &infop->si_pid);
 955		if (!retval)
 956			retval = put_user(uid, &infop->si_uid);
 957		if (!retval)
 958			retval = put_user(status, &infop->si_status);
 959	}
 960	if (!retval)
 961		retval = pid;
 962	return retval;
 963}
 964
 965/*
 966 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 967 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 968 * the lock and this task is uninteresting.  If we return nonzero, we have
 969 * released the lock and the system call should return.
 970 */
 971static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 972{
 973	int state, retval, status;
 974	pid_t pid = task_pid_vnr(p);
 975	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 976	struct siginfo __user *infop;
 977
 978	if (!likely(wo->wo_flags & WEXITED))
 979		return 0;
 980
 981	if (unlikely(wo->wo_flags & WNOWAIT)) {
 982		int exit_code = p->exit_code;
 983		int why;
 984
 985		get_task_struct(p);
 986		read_unlock(&tasklist_lock);
 987		sched_annotate_sleep();
 988
 989		if ((exit_code & 0x7f) == 0) {
 990			why = CLD_EXITED;
 991			status = exit_code >> 8;
 992		} else {
 993			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 994			status = exit_code & 0x7f;
 995		}
 996		return wait_noreap_copyout(wo, p, pid, uid, why, status);
 997	}
 998	/*
 999	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1000	 */
1001	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1002		EXIT_TRACE : EXIT_DEAD;
1003	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1004		return 0;
1005	/*
1006	 * We own this thread, nobody else can reap it.
1007	 */
1008	read_unlock(&tasklist_lock);
1009	sched_annotate_sleep();
1010
1011	/*
1012	 * Check thread_group_leader() to exclude the traced sub-threads.
1013	 */
1014	if (state == EXIT_DEAD && thread_group_leader(p)) {
1015		struct signal_struct *sig = p->signal;
1016		struct signal_struct *psig = current->signal;
1017		unsigned long maxrss;
1018		cputime_t tgutime, tgstime;
1019
1020		/*
1021		 * The resource counters for the group leader are in its
1022		 * own task_struct.  Those for dead threads in the group
1023		 * are in its signal_struct, as are those for the child
1024		 * processes it has previously reaped.  All these
1025		 * accumulate in the parent's signal_struct c* fields.
1026		 *
1027		 * We don't bother to take a lock here to protect these
1028		 * p->signal fields because the whole thread group is dead
1029		 * and nobody can change them.
1030		 *
1031		 * psig->stats_lock also protects us from our sub-theads
1032		 * which can reap other children at the same time. Until
1033		 * we change k_getrusage()-like users to rely on this lock
1034		 * we have to take ->siglock as well.
1035		 *
1036		 * We use thread_group_cputime_adjusted() to get times for
1037		 * the thread group, which consolidates times for all threads
1038		 * in the group including the group leader.
1039		 */
1040		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041		spin_lock_irq(&current->sighand->siglock);
1042		write_seqlock(&psig->stats_lock);
1043		psig->cutime += tgutime + sig->cutime;
1044		psig->cstime += tgstime + sig->cstime;
1045		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1046		psig->cmin_flt +=
1047			p->min_flt + sig->min_flt + sig->cmin_flt;
1048		psig->cmaj_flt +=
1049			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1050		psig->cnvcsw +=
1051			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1052		psig->cnivcsw +=
1053			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1054		psig->cinblock +=
1055			task_io_get_inblock(p) +
1056			sig->inblock + sig->cinblock;
1057		psig->coublock +=
1058			task_io_get_oublock(p) +
1059			sig->oublock + sig->coublock;
1060		maxrss = max(sig->maxrss, sig->cmaxrss);
1061		if (psig->cmaxrss < maxrss)
1062			psig->cmaxrss = maxrss;
1063		task_io_accounting_add(&psig->ioac, &p->ioac);
1064		task_io_accounting_add(&psig->ioac, &sig->ioac);
1065		write_sequnlock(&psig->stats_lock);
1066		spin_unlock_irq(&current->sighand->siglock);
1067	}
1068
1069	retval = wo->wo_rusage
1070		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1071	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1072		? p->signal->group_exit_code : p->exit_code;
1073	if (!retval && wo->wo_stat)
1074		retval = put_user(status, wo->wo_stat);
1075
1076	infop = wo->wo_info;
1077	if (!retval && infop)
1078		retval = put_user(SIGCHLD, &infop->si_signo);
1079	if (!retval && infop)
1080		retval = put_user(0, &infop->si_errno);
1081	if (!retval && infop) {
1082		int why;
1083
1084		if ((status & 0x7f) == 0) {
1085			why = CLD_EXITED;
1086			status >>= 8;
1087		} else {
1088			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1089			status &= 0x7f;
1090		}
1091		retval = put_user((short)why, &infop->si_code);
1092		if (!retval)
1093			retval = put_user(status, &infop->si_status);
1094	}
1095	if (!retval && infop)
1096		retval = put_user(pid, &infop->si_pid);
1097	if (!retval && infop)
1098		retval = put_user(uid, &infop->si_uid);
1099	if (!retval)
1100		retval = pid;
1101
1102	if (state == EXIT_TRACE) {
1103		write_lock_irq(&tasklist_lock);
1104		/* We dropped tasklist, ptracer could die and untrace */
1105		ptrace_unlink(p);
1106
1107		/* If parent wants a zombie, don't release it now */
1108		state = EXIT_ZOMBIE;
1109		if (do_notify_parent(p, p->exit_signal))
1110			state = EXIT_DEAD;
1111		p->exit_state = state;
1112		write_unlock_irq(&tasklist_lock);
1113	}
1114	if (state == EXIT_DEAD)
1115		release_task(p);
1116
1117	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118}
1119
1120static int *task_stopped_code(struct task_struct *p, bool ptrace)
1121{
1122	if (ptrace) {
1123		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1124			return &p->exit_code;
1125	} else {
1126		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1127			return &p->signal->group_exit_code;
1128	}
1129	return NULL;
1130}
1131
1132/**
1133 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1134 * @wo: wait options
1135 * @ptrace: is the wait for ptrace
1136 * @p: task to wait for
1137 *
1138 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1139 *
1140 * CONTEXT:
1141 * read_lock(&tasklist_lock), which is released if return value is
1142 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1143 *
1144 * RETURNS:
1145 * 0 if wait condition didn't exist and search for other wait conditions
1146 * should continue.  Non-zero return, -errno on failure and @p's pid on
1147 * success, implies that tasklist_lock is released and wait condition
1148 * search should terminate.
1149 */
1150static int wait_task_stopped(struct wait_opts *wo,
1151				int ptrace, struct task_struct *p)
1152{
1153	struct siginfo __user *infop;
1154	int retval, exit_code, *p_code, why;
1155	uid_t uid = 0; /* unneeded, required by compiler */
1156	pid_t pid;
1157
1158	/*
1159	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1160	 */
1161	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1162		return 0;
1163
1164	if (!task_stopped_code(p, ptrace))
1165		return 0;
1166
1167	exit_code = 0;
1168	spin_lock_irq(&p->sighand->siglock);
1169
1170	p_code = task_stopped_code(p, ptrace);
1171	if (unlikely(!p_code))
1172		goto unlock_sig;
1173
1174	exit_code = *p_code;
1175	if (!exit_code)
1176		goto unlock_sig;
1177
1178	if (!unlikely(wo->wo_flags & WNOWAIT))
1179		*p_code = 0;
1180
1181	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1182unlock_sig:
1183	spin_unlock_irq(&p->sighand->siglock);
1184	if (!exit_code)
1185		return 0;
1186
1187	/*
1188	 * Now we are pretty sure this task is interesting.
1189	 * Make sure it doesn't get reaped out from under us while we
1190	 * give up the lock and then examine it below.  We don't want to
1191	 * keep holding onto the tasklist_lock while we call getrusage and
1192	 * possibly take page faults for user memory.
1193	 */
1194	get_task_struct(p);
1195	pid = task_pid_vnr(p);
1196	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1197	read_unlock(&tasklist_lock);
1198	sched_annotate_sleep();
 
 
 
1199
1200	if (unlikely(wo->wo_flags & WNOWAIT))
1201		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1202
1203	retval = wo->wo_rusage
1204		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1205	if (!retval && wo->wo_stat)
1206		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1207
1208	infop = wo->wo_info;
1209	if (!retval && infop)
1210		retval = put_user(SIGCHLD, &infop->si_signo);
1211	if (!retval && infop)
1212		retval = put_user(0, &infop->si_errno);
1213	if (!retval && infop)
1214		retval = put_user((short)why, &infop->si_code);
1215	if (!retval && infop)
1216		retval = put_user(exit_code, &infop->si_status);
1217	if (!retval && infop)
1218		retval = put_user(pid, &infop->si_pid);
1219	if (!retval && infop)
1220		retval = put_user(uid, &infop->si_uid);
1221	if (!retval)
1222		retval = pid;
1223	put_task_struct(p);
1224
1225	BUG_ON(!retval);
1226	return retval;
1227}
1228
1229/*
1230 * Handle do_wait work for one task in a live, non-stopped state.
1231 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232 * the lock and this task is uninteresting.  If we return nonzero, we have
1233 * released the lock and the system call should return.
1234 */
1235static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236{
1237	int retval;
1238	pid_t pid;
1239	uid_t uid;
1240
1241	if (!unlikely(wo->wo_flags & WCONTINUED))
1242		return 0;
1243
1244	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1245		return 0;
1246
1247	spin_lock_irq(&p->sighand->siglock);
1248	/* Re-check with the lock held.  */
1249	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1250		spin_unlock_irq(&p->sighand->siglock);
1251		return 0;
1252	}
1253	if (!unlikely(wo->wo_flags & WNOWAIT))
1254		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1255	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256	spin_unlock_irq(&p->sighand->siglock);
1257
1258	pid = task_pid_vnr(p);
1259	get_task_struct(p);
1260	read_unlock(&tasklist_lock);
1261	sched_annotate_sleep();
 
 
 
1262
1263	if (!wo->wo_info) {
1264		retval = wo->wo_rusage
1265			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1266		put_task_struct(p);
1267		if (!retval && wo->wo_stat)
1268			retval = put_user(0xffff, wo->wo_stat);
1269		if (!retval)
1270			retval = pid;
1271	} else {
1272		retval = wait_noreap_copyout(wo, p, pid, uid,
1273					     CLD_CONTINUED, SIGCONT);
1274		BUG_ON(retval == 0);
 
1275	}
1276
1277	return retval;
1278}
1279
1280/*
1281 * Consider @p for a wait by @parent.
1282 *
1283 * -ECHILD should be in ->notask_error before the first call.
1284 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1285 * Returns zero if the search for a child should continue;
1286 * then ->notask_error is 0 if @p is an eligible child,
1287 * or another error from security_task_wait(), or still -ECHILD.
1288 */
1289static int wait_consider_task(struct wait_opts *wo, int ptrace,
1290				struct task_struct *p)
1291{
1292	/*
1293	 * We can race with wait_task_zombie() from another thread.
1294	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1295	 * can't confuse the checks below.
1296	 */
1297	int exit_state = ACCESS_ONCE(p->exit_state);
1298	int ret;
1299
1300	if (unlikely(exit_state == EXIT_DEAD))
1301		return 0;
1302
1303	ret = eligible_child(wo, p);
1304	if (!ret)
1305		return ret;
1306
1307	ret = security_task_wait(p);
1308	if (unlikely(ret < 0)) {
1309		/*
1310		 * If we have not yet seen any eligible child,
1311		 * then let this error code replace -ECHILD.
1312		 * A permission error will give the user a clue
1313		 * to look for security policy problems, rather
1314		 * than for mysterious wait bugs.
1315		 */
1316		if (wo->notask_error)
1317			wo->notask_error = ret;
1318		return 0;
1319	}
1320
1321	if (unlikely(exit_state == EXIT_TRACE)) {
1322		/*
1323		 * ptrace == 0 means we are the natural parent. In this case
1324		 * we should clear notask_error, debugger will notify us.
1325		 */
1326		if (likely(!ptrace))
1327			wo->notask_error = 0;
1328		return 0;
1329	}
1330
1331	if (likely(!ptrace) && unlikely(p->ptrace)) {
1332		/*
1333		 * If it is traced by its real parent's group, just pretend
1334		 * the caller is ptrace_do_wait() and reap this child if it
1335		 * is zombie.
1336		 *
1337		 * This also hides group stop state from real parent; otherwise
1338		 * a single stop can be reported twice as group and ptrace stop.
1339		 * If a ptracer wants to distinguish these two events for its
1340		 * own children it should create a separate process which takes
1341		 * the role of real parent.
1342		 */
1343		if (!ptrace_reparented(p))
1344			ptrace = 1;
1345	}
1346
1347	/* slay zombie? */
1348	if (exit_state == EXIT_ZOMBIE) {
1349		/* we don't reap group leaders with subthreads */
1350		if (!delay_group_leader(p)) {
1351			/*
1352			 * A zombie ptracee is only visible to its ptracer.
1353			 * Notification and reaping will be cascaded to the
1354			 * real parent when the ptracer detaches.
1355			 */
1356			if (unlikely(ptrace) || likely(!p->ptrace))
1357				return wait_task_zombie(wo, p);
1358		}
1359
1360		/*
1361		 * Allow access to stopped/continued state via zombie by
1362		 * falling through.  Clearing of notask_error is complex.
1363		 *
1364		 * When !@ptrace:
1365		 *
1366		 * If WEXITED is set, notask_error should naturally be
1367		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1368		 * so, if there are live subthreads, there are events to
1369		 * wait for.  If all subthreads are dead, it's still safe
1370		 * to clear - this function will be called again in finite
1371		 * amount time once all the subthreads are released and
1372		 * will then return without clearing.
1373		 *
1374		 * When @ptrace:
1375		 *
1376		 * Stopped state is per-task and thus can't change once the
1377		 * target task dies.  Only continued and exited can happen.
1378		 * Clear notask_error if WCONTINUED | WEXITED.
1379		 */
1380		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381			wo->notask_error = 0;
1382	} else {
1383		/*
1384		 * @p is alive and it's gonna stop, continue or exit, so
1385		 * there always is something to wait for.
1386		 */
1387		wo->notask_error = 0;
1388	}
1389
1390	/*
1391	 * Wait for stopped.  Depending on @ptrace, different stopped state
1392	 * is used and the two don't interact with each other.
1393	 */
1394	ret = wait_task_stopped(wo, ptrace, p);
1395	if (ret)
1396		return ret;
1397
1398	/*
1399	 * Wait for continued.  There's only one continued state and the
1400	 * ptracer can consume it which can confuse the real parent.  Don't
1401	 * use WCONTINUED from ptracer.  You don't need or want it.
1402	 */
1403	return wait_task_continued(wo, p);
1404}
1405
1406/*
1407 * Do the work of do_wait() for one thread in the group, @tsk.
1408 *
1409 * -ECHILD should be in ->notask_error before the first call.
1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411 * Returns zero if the search for a child should continue; then
1412 * ->notask_error is 0 if there were any eligible children,
1413 * or another error from security_task_wait(), or still -ECHILD.
1414 */
1415static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416{
1417	struct task_struct *p;
1418
1419	list_for_each_entry(p, &tsk->children, sibling) {
1420		int ret = wait_consider_task(wo, 0, p);
1421
1422		if (ret)
1423			return ret;
1424	}
1425
1426	return 0;
1427}
1428
1429static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430{
1431	struct task_struct *p;
1432
1433	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1434		int ret = wait_consider_task(wo, 1, p);
1435
1436		if (ret)
1437			return ret;
1438	}
1439
1440	return 0;
1441}
1442
1443static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1444				int sync, void *key)
1445{
1446	struct wait_opts *wo = container_of(wait, struct wait_opts,
1447						child_wait);
1448	struct task_struct *p = key;
1449
1450	if (!eligible_pid(wo, p))
1451		return 0;
1452
1453	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1454		return 0;
1455
1456	return default_wake_function(wait, mode, sync, key);
1457}
1458
1459void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460{
1461	__wake_up_sync_key(&parent->signal->wait_chldexit,
1462				TASK_INTERRUPTIBLE, 1, p);
1463}
1464
1465static long do_wait(struct wait_opts *wo)
1466{
1467	struct task_struct *tsk;
1468	int retval;
1469
1470	trace_sched_process_wait(wo->wo_pid);
1471
1472	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1473	wo->child_wait.private = current;
1474	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475repeat:
1476	/*
1477	 * If there is nothing that can match our criteria, just get out.
1478	 * We will clear ->notask_error to zero if we see any child that
1479	 * might later match our criteria, even if we are not able to reap
1480	 * it yet.
1481	 */
1482	wo->notask_error = -ECHILD;
1483	if ((wo->wo_type < PIDTYPE_MAX) &&
1484	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1485		goto notask;
1486
1487	set_current_state(TASK_INTERRUPTIBLE);
1488	read_lock(&tasklist_lock);
1489	tsk = current;
1490	do {
1491		retval = do_wait_thread(wo, tsk);
1492		if (retval)
1493			goto end;
1494
1495		retval = ptrace_do_wait(wo, tsk);
1496		if (retval)
1497			goto end;
1498
1499		if (wo->wo_flags & __WNOTHREAD)
1500			break;
1501	} while_each_thread(current, tsk);
1502	read_unlock(&tasklist_lock);
1503
1504notask:
1505	retval = wo->notask_error;
1506	if (!retval && !(wo->wo_flags & WNOHANG)) {
1507		retval = -ERESTARTSYS;
1508		if (!signal_pending(current)) {
1509			schedule();
1510			goto repeat;
1511		}
1512	}
1513end:
1514	__set_current_state(TASK_RUNNING);
1515	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516	return retval;
1517}
1518
1519SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1520		infop, int, options, struct rusage __user *, ru)
1521{
1522	struct wait_opts wo;
1523	struct pid *pid = NULL;
1524	enum pid_type type;
1525	long ret;
1526
1527	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
 
1528		return -EINVAL;
1529	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1530		return -EINVAL;
1531
1532	switch (which) {
1533	case P_ALL:
1534		type = PIDTYPE_MAX;
1535		break;
1536	case P_PID:
1537		type = PIDTYPE_PID;
1538		if (upid <= 0)
1539			return -EINVAL;
1540		break;
1541	case P_PGID:
1542		type = PIDTYPE_PGID;
1543		if (upid <= 0)
1544			return -EINVAL;
1545		break;
1546	default:
1547		return -EINVAL;
1548	}
1549
1550	if (type < PIDTYPE_MAX)
1551		pid = find_get_pid(upid);
1552
1553	wo.wo_type	= type;
1554	wo.wo_pid	= pid;
1555	wo.wo_flags	= options;
1556	wo.wo_info	= infop;
1557	wo.wo_stat	= NULL;
1558	wo.wo_rusage	= ru;
1559	ret = do_wait(&wo);
1560
1561	if (ret > 0) {
1562		ret = 0;
1563	} else if (infop) {
1564		/*
1565		 * For a WNOHANG return, clear out all the fields
1566		 * we would set so the user can easily tell the
1567		 * difference.
1568		 */
1569		if (!ret)
1570			ret = put_user(0, &infop->si_signo);
1571		if (!ret)
1572			ret = put_user(0, &infop->si_errno);
1573		if (!ret)
1574			ret = put_user(0, &infop->si_code);
1575		if (!ret)
1576			ret = put_user(0, &infop->si_pid);
1577		if (!ret)
1578			ret = put_user(0, &infop->si_uid);
1579		if (!ret)
1580			ret = put_user(0, &infop->si_status);
1581	}
1582
1583	put_pid(pid);
1584	return ret;
1585}
1586
1587SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1588		int, options, struct rusage __user *, ru)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589{
1590	struct wait_opts wo;
1591	struct pid *pid = NULL;
1592	enum pid_type type;
1593	long ret;
1594
1595	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596			__WNOTHREAD|__WCLONE|__WALL))
1597		return -EINVAL;
1598
 
 
 
 
1599	if (upid == -1)
1600		type = PIDTYPE_MAX;
1601	else if (upid < 0) {
1602		type = PIDTYPE_PGID;
1603		pid = find_get_pid(-upid);
1604	} else if (upid == 0) {
1605		type = PIDTYPE_PGID;
1606		pid = get_task_pid(current, PIDTYPE_PGID);
1607	} else /* upid > 0 */ {
1608		type = PIDTYPE_PID;
1609		pid = find_get_pid(upid);
1610	}
1611
1612	wo.wo_type	= type;
1613	wo.wo_pid	= pid;
1614	wo.wo_flags	= options | WEXITED;
1615	wo.wo_info	= NULL;
1616	wo.wo_stat	= stat_addr;
1617	wo.wo_rusage	= ru;
1618	ret = do_wait(&wo);
1619	put_pid(pid);
 
 
1620
1621	return ret;
1622}
1623
 
 
 
 
 
 
 
 
 
 
 
 
 
1624#ifdef __ARCH_WANT_SYS_WAITPID
1625
1626/*
1627 * sys_waitpid() remains for compatibility. waitpid() should be
1628 * implemented by calling sys_wait4() from libc.a.
1629 */
1630SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631{
1632	return sys_wait4(pid, stat_addr, options, NULL);
1633}
1634
1635#endif