Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *	Jay Schulist <jschlst@samba.org>
  12 *	Alexei Starovoitov <ast@plumgrid.com>
  13 *	Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
 
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
 
  30#include <linux/frame.h>
  31#include <linux/rbtree_latch.h>
  32#include <linux/kallsyms.h>
  33#include <linux/rcupdate.h>
  34
 
 
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0	regs[BPF_REG_0]
  39#define BPF_R1	regs[BPF_REG_1]
  40#define BPF_R2	regs[BPF_REG_2]
  41#define BPF_R3	regs[BPF_REG_3]
  42#define BPF_R4	regs[BPF_REG_4]
  43#define BPF_R5	regs[BPF_REG_5]
  44#define BPF_R6	regs[BPF_REG_6]
  45#define BPF_R7	regs[BPF_REG_7]
  46#define BPF_R8	regs[BPF_REG_8]
  47#define BPF_R9	regs[BPF_REG_9]
  48#define BPF_R10	regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST	regs[insn->dst_reg]
  52#define SRC	regs[insn->src_reg]
  53#define FP	regs[BPF_REG_FP]
 
  54#define ARG1	regs[BPF_REG_ARG1]
  55#define CTX	regs[BPF_REG_CTX]
  56#define IMM	insn->imm
  57
  58/* No hurry in this branch
  59 *
  60 * Exported for the bpf jit load helper.
  61 */
  62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63{
  64	u8 *ptr = NULL;
  65
  66	if (k >= SKF_NET_OFF)
  67		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68	else if (k >= SKF_LL_OFF)
  69		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70
  71	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72		return ptr;
  73
  74	return NULL;
  75}
  76
  77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  78{
  79	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  80	struct bpf_prog_aux *aux;
  81	struct bpf_prog *fp;
  82
  83	size = round_up(size, PAGE_SIZE);
  84	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  85	if (fp == NULL)
  86		return NULL;
  87
  88	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89	if (aux == NULL) {
  90		vfree(fp);
  91		return NULL;
  92	}
  93
  94	fp->pages = size / PAGE_SIZE;
  95	fp->aux = aux;
  96	fp->aux->prog = fp;
  97	fp->jit_requested = ebpf_jit_enabled();
  98
  99	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 100
 101	return fp;
 102}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 106				  gfp_t gfp_extra_flags)
 107{
 108	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 109	struct bpf_prog *fp;
 110	u32 pages, delta;
 111	int ret;
 112
 113	BUG_ON(fp_old == NULL);
 114
 115	size = round_up(size, PAGE_SIZE);
 116	pages = size / PAGE_SIZE;
 117	if (pages <= fp_old->pages)
 118		return fp_old;
 119
 120	delta = pages - fp_old->pages;
 121	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 122	if (ret)
 123		return NULL;
 124
 125	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 126	if (fp == NULL) {
 127		__bpf_prog_uncharge(fp_old->aux->user, delta);
 128	} else {
 129		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 130		fp->pages = pages;
 131		fp->aux->prog = fp;
 132
 133		/* We keep fp->aux from fp_old around in the new
 134		 * reallocated structure.
 135		 */
 136		fp_old->aux = NULL;
 137		__bpf_prog_free(fp_old);
 138	}
 139
 140	return fp;
 141}
 142
 143void __bpf_prog_free(struct bpf_prog *fp)
 144{
 145	kfree(fp->aux);
 
 
 
 
 146	vfree(fp);
 147}
 148
 149int bpf_prog_calc_tag(struct bpf_prog *fp)
 150{
 151	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 152	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 153	u32 digest[SHA_DIGEST_WORDS];
 154	u32 ws[SHA_WORKSPACE_WORDS];
 155	u32 i, bsize, psize, blocks;
 156	struct bpf_insn *dst;
 157	bool was_ld_map;
 158	u8 *raw, *todo;
 159	__be32 *result;
 160	__be64 *bits;
 161
 162	raw = vmalloc(raw_size);
 163	if (!raw)
 164		return -ENOMEM;
 165
 166	sha_init(digest);
 167	memset(ws, 0, sizeof(ws));
 168
 169	/* We need to take out the map fd for the digest calculation
 170	 * since they are unstable from user space side.
 171	 */
 172	dst = (void *)raw;
 173	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 174		dst[i] = fp->insnsi[i];
 175		if (!was_ld_map &&
 176		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 177		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 
 178			was_ld_map = true;
 179			dst[i].imm = 0;
 180		} else if (was_ld_map &&
 181			   dst[i].code == 0 &&
 182			   dst[i].dst_reg == 0 &&
 183			   dst[i].src_reg == 0 &&
 184			   dst[i].off == 0) {
 185			was_ld_map = false;
 186			dst[i].imm = 0;
 187		} else {
 188			was_ld_map = false;
 189		}
 190	}
 191
 192	psize = bpf_prog_insn_size(fp);
 193	memset(&raw[psize], 0, raw_size - psize);
 194	raw[psize++] = 0x80;
 195
 196	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 197	blocks = bsize / SHA_MESSAGE_BYTES;
 198	todo   = raw;
 199	if (bsize - psize >= sizeof(__be64)) {
 200		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 201	} else {
 202		bits = (__be64 *)(todo + bsize + bits_offset);
 203		blocks++;
 204	}
 205	*bits = cpu_to_be64((psize - 1) << 3);
 206
 207	while (blocks--) {
 208		sha_transform(digest, todo, ws);
 209		todo += SHA_MESSAGE_BYTES;
 210	}
 211
 212	result = (__force __be32 *)digest;
 213	for (i = 0; i < SHA_DIGEST_WORDS; i++)
 214		result[i] = cpu_to_be32(digest[i]);
 215	memcpy(fp->tag, result, sizeof(fp->tag));
 216
 217	vfree(raw);
 218	return 0;
 219}
 220
 221static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
 222				u32 curr, const bool probe_pass)
 223{
 224	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 
 225	s64 imm = insn->imm;
 226
 227	if (curr < pos && curr + imm + 1 > pos)
 228		imm += delta;
 229	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
 230		imm -= delta;
 231	if (imm < imm_min || imm > imm_max)
 232		return -ERANGE;
 233	if (!probe_pass)
 234		insn->imm = imm;
 235	return 0;
 236}
 237
 238static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
 239				u32 curr, const bool probe_pass)
 240{
 241	const s32 off_min = S16_MIN, off_max = S16_MAX;
 
 242	s32 off = insn->off;
 243
 244	if (curr < pos && curr + off + 1 > pos)
 245		off += delta;
 246	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
 247		off -= delta;
 248	if (off < off_min || off > off_max)
 249		return -ERANGE;
 250	if (!probe_pass)
 251		insn->off = off;
 252	return 0;
 253}
 254
 255static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
 256			    const bool probe_pass)
 257{
 258	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
 259	struct bpf_insn *insn = prog->insnsi;
 260	int ret = 0;
 261
 262	for (i = 0; i < insn_cnt; i++, insn++) {
 263		u8 code;
 264
 265		/* In the probing pass we still operate on the original,
 266		 * unpatched image in order to check overflows before we
 267		 * do any other adjustments. Therefore skip the patchlet.
 268		 */
 269		if (probe_pass && i == pos) {
 270			i += delta + 1;
 271			insn++;
 272		}
 273		code = insn->code;
 274		if (BPF_CLASS(code) != BPF_JMP ||
 
 275		    BPF_OP(code) == BPF_EXIT)
 276			continue;
 277		/* Adjust offset of jmps if we cross patch boundaries. */
 278		if (BPF_OP(code) == BPF_CALL) {
 279			if (insn->src_reg != BPF_PSEUDO_CALL)
 280				continue;
 281			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
 282						   probe_pass);
 283		} else {
 284			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
 285						   probe_pass);
 286		}
 287		if (ret)
 288			break;
 289	}
 290
 291	return ret;
 292}
 293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 295				       const struct bpf_insn *patch, u32 len)
 296{
 297	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 298	const u32 cnt_max = S16_MAX;
 299	struct bpf_prog *prog_adj;
 
 300
 301	/* Since our patchlet doesn't expand the image, we're done. */
 302	if (insn_delta == 0) {
 303		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 304		return prog;
 305	}
 306
 307	insn_adj_cnt = prog->len + insn_delta;
 308
 309	/* Reject anything that would potentially let the insn->off
 310	 * target overflow when we have excessive program expansions.
 311	 * We need to probe here before we do any reallocation where
 312	 * we afterwards may not fail anymore.
 313	 */
 314	if (insn_adj_cnt > cnt_max &&
 315	    bpf_adj_branches(prog, off, insn_delta, true))
 316		return NULL;
 317
 318	/* Several new instructions need to be inserted. Make room
 319	 * for them. Likely, there's no need for a new allocation as
 320	 * last page could have large enough tailroom.
 321	 */
 322	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 323				    GFP_USER);
 324	if (!prog_adj)
 325		return NULL;
 326
 327	prog_adj->len = insn_adj_cnt;
 328
 329	/* Patching happens in 3 steps:
 330	 *
 331	 * 1) Move over tail of insnsi from next instruction onwards,
 332	 *    so we can patch the single target insn with one or more
 333	 *    new ones (patching is always from 1 to n insns, n > 0).
 334	 * 2) Inject new instructions at the target location.
 335	 * 3) Adjust branch offsets if necessary.
 336	 */
 337	insn_rest = insn_adj_cnt - off - len;
 338
 339	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 340		sizeof(*patch) * insn_rest);
 341	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 342
 343	/* We are guaranteed to not fail at this point, otherwise
 344	 * the ship has sailed to reverse to the original state. An
 345	 * overflow cannot happen at this point.
 346	 */
 347	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
 
 
 348
 349	return prog_adj;
 350}
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352#ifdef CONFIG_BPF_JIT
 353/* All BPF JIT sysctl knobs here. */
 354int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
 
 355int bpf_jit_harden   __read_mostly;
 356int bpf_jit_kallsyms __read_mostly;
 357
 358static __always_inline void
 359bpf_get_prog_addr_region(const struct bpf_prog *prog,
 360			 unsigned long *symbol_start,
 361			 unsigned long *symbol_end)
 362{
 363	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 364	unsigned long addr = (unsigned long)hdr;
 365
 366	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 367
 368	*symbol_start = addr;
 369	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
 370}
 371
 372static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 
 373{
 
 374	const char *end = sym + KSYM_NAME_LEN;
 
 
 375
 376	BUILD_BUG_ON(sizeof("bpf_prog_") +
 377		     sizeof(prog->tag) * 2 +
 378		     /* name has been null terminated.
 379		      * We should need +1 for the '_' preceding
 380		      * the name.  However, the null character
 381		      * is double counted between the name and the
 382		      * sizeof("bpf_prog_") above, so we omit
 383		      * the +1 here.
 384		      */
 385		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 386
 387	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 388	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 
 
 
 
 
 
 
 
 
 
 389	if (prog->aux->name[0])
 390		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 391	else
 392		*sym = 0;
 393}
 394
 395static __always_inline unsigned long
 396bpf_get_prog_addr_start(struct latch_tree_node *n)
 397{
 398	unsigned long symbol_start, symbol_end;
 399	const struct bpf_prog_aux *aux;
 400
 401	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 402	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 403
 404	return symbol_start;
 405}
 406
 407static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 408					  struct latch_tree_node *b)
 409{
 410	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 411}
 412
 413static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 414{
 415	unsigned long val = (unsigned long)key;
 416	unsigned long symbol_start, symbol_end;
 417	const struct bpf_prog_aux *aux;
 418
 419	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 420	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 421
 422	if (val < symbol_start)
 423		return -1;
 424	if (val >= symbol_end)
 425		return  1;
 426
 427	return 0;
 428}
 429
 430static const struct latch_tree_ops bpf_tree_ops = {
 431	.less	= bpf_tree_less,
 432	.comp	= bpf_tree_comp,
 433};
 434
 435static DEFINE_SPINLOCK(bpf_lock);
 436static LIST_HEAD(bpf_kallsyms);
 437static struct latch_tree_root bpf_tree __cacheline_aligned;
 438
 439static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 440{
 441	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 442	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 443	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 
 
 444}
 445
 446static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 447{
 448	if (list_empty(&aux->ksym_lnode))
 449		return;
 450
 451	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 452	list_del_rcu(&aux->ksym_lnode);
 
 
 
 
 
 
 
 453}
 454
 455static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 456{
 457	return fp->jited && !bpf_prog_was_classic(fp);
 458}
 459
 460static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 461{
 462	return list_empty(&fp->aux->ksym_lnode) ||
 463	       fp->aux->ksym_lnode.prev == LIST_POISON2;
 464}
 465
 466void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 467{
 468	if (!bpf_prog_kallsyms_candidate(fp) ||
 469	    !capable(CAP_SYS_ADMIN))
 470		return;
 471
 472	spin_lock_bh(&bpf_lock);
 473	bpf_prog_ksym_node_add(fp->aux);
 474	spin_unlock_bh(&bpf_lock);
 
 
 475}
 476
 477void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 478{
 479	if (!bpf_prog_kallsyms_candidate(fp))
 480		return;
 481
 482	spin_lock_bh(&bpf_lock);
 483	bpf_prog_ksym_node_del(fp->aux);
 484	spin_unlock_bh(&bpf_lock);
 485}
 486
 487static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 488{
 489	struct latch_tree_node *n;
 490
 491	if (!bpf_jit_kallsyms_enabled())
 492		return NULL;
 493
 494	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 495	return n ?
 496	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 497	       NULL;
 498}
 499
 500const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 501				 unsigned long *off, char *sym)
 502{
 503	unsigned long symbol_start, symbol_end;
 504	struct bpf_prog *prog;
 505	char *ret = NULL;
 506
 507	rcu_read_lock();
 508	prog = bpf_prog_kallsyms_find(addr);
 509	if (prog) {
 510		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 511		bpf_get_prog_name(prog, sym);
 
 
 512
 513		ret = sym;
 514		if (size)
 515			*size = symbol_end - symbol_start;
 516		if (off)
 517			*off  = addr - symbol_start;
 518	}
 519	rcu_read_unlock();
 520
 521	return ret;
 522}
 523
 524bool is_bpf_text_address(unsigned long addr)
 525{
 526	bool ret;
 527
 528	rcu_read_lock();
 529	ret = bpf_prog_kallsyms_find(addr) != NULL;
 530	rcu_read_unlock();
 531
 532	return ret;
 533}
 534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 536		    char *sym)
 537{
 538	unsigned long symbol_start, symbol_end;
 539	struct bpf_prog_aux *aux;
 540	unsigned int it = 0;
 541	int ret = -ERANGE;
 542
 543	if (!bpf_jit_kallsyms_enabled())
 544		return ret;
 545
 546	rcu_read_lock();
 547	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 548		if (it++ != symnum)
 549			continue;
 550
 551		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 552		bpf_get_prog_name(aux->prog, sym);
 553
 554		*value = symbol_start;
 555		*type  = BPF_SYM_ELF_TYPE;
 556
 557		ret = 0;
 558		break;
 559	}
 560	rcu_read_unlock();
 561
 562	return ret;
 563}
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565struct bpf_binary_header *
 566bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 567		     unsigned int alignment,
 568		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 569{
 570	struct bpf_binary_header *hdr;
 571	unsigned int size, hole, start;
 
 
 
 572
 573	/* Most of BPF filters are really small, but if some of them
 574	 * fill a page, allow at least 128 extra bytes to insert a
 575	 * random section of illegal instructions.
 576	 */
 577	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 578	hdr = module_alloc(size);
 579	if (hdr == NULL)
 
 580		return NULL;
 
 
 
 
 
 581
 582	/* Fill space with illegal/arch-dep instructions. */
 583	bpf_fill_ill_insns(hdr, size);
 584
 585	hdr->pages = size / PAGE_SIZE;
 586	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 587		     PAGE_SIZE - sizeof(*hdr));
 588	start = (get_random_int() % hole) & ~(alignment - 1);
 589
 590	/* Leave a random number of instructions before BPF code. */
 591	*image_ptr = &hdr->image[start];
 592
 593	return hdr;
 594}
 595
 596void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 597{
 598	module_memfree(hdr);
 
 
 
 599}
 600
 601/* This symbol is only overridden by archs that have different
 602 * requirements than the usual eBPF JITs, f.e. when they only
 603 * implement cBPF JIT, do not set images read-only, etc.
 604 */
 605void __weak bpf_jit_free(struct bpf_prog *fp)
 606{
 607	if (fp->jited) {
 608		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 609
 610		bpf_jit_binary_unlock_ro(hdr);
 611		bpf_jit_binary_free(hdr);
 612
 613		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 614	}
 615
 616	bpf_prog_unlock_free(fp);
 617}
 618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619static int bpf_jit_blind_insn(const struct bpf_insn *from,
 620			      const struct bpf_insn *aux,
 621			      struct bpf_insn *to_buff)
 
 622{
 623	struct bpf_insn *to = to_buff;
 624	u32 imm_rnd = get_random_int();
 625	s16 off;
 626
 627	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 628	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630	if (from->imm == 0 &&
 631	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 632	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 633		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 634		goto out;
 635	}
 636
 637	switch (from->code) {
 638	case BPF_ALU | BPF_ADD | BPF_K:
 639	case BPF_ALU | BPF_SUB | BPF_K:
 640	case BPF_ALU | BPF_AND | BPF_K:
 641	case BPF_ALU | BPF_OR  | BPF_K:
 642	case BPF_ALU | BPF_XOR | BPF_K:
 643	case BPF_ALU | BPF_MUL | BPF_K:
 644	case BPF_ALU | BPF_MOV | BPF_K:
 645	case BPF_ALU | BPF_DIV | BPF_K:
 646	case BPF_ALU | BPF_MOD | BPF_K:
 647		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 648		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 649		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 650		break;
 651
 652	case BPF_ALU64 | BPF_ADD | BPF_K:
 653	case BPF_ALU64 | BPF_SUB | BPF_K:
 654	case BPF_ALU64 | BPF_AND | BPF_K:
 655	case BPF_ALU64 | BPF_OR  | BPF_K:
 656	case BPF_ALU64 | BPF_XOR | BPF_K:
 657	case BPF_ALU64 | BPF_MUL | BPF_K:
 658	case BPF_ALU64 | BPF_MOV | BPF_K:
 659	case BPF_ALU64 | BPF_DIV | BPF_K:
 660	case BPF_ALU64 | BPF_MOD | BPF_K:
 661		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 662		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 663		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 664		break;
 665
 666	case BPF_JMP | BPF_JEQ  | BPF_K:
 667	case BPF_JMP | BPF_JNE  | BPF_K:
 668	case BPF_JMP | BPF_JGT  | BPF_K:
 669	case BPF_JMP | BPF_JLT  | BPF_K:
 670	case BPF_JMP | BPF_JGE  | BPF_K:
 671	case BPF_JMP | BPF_JLE  | BPF_K:
 672	case BPF_JMP | BPF_JSGT | BPF_K:
 673	case BPF_JMP | BPF_JSLT | BPF_K:
 674	case BPF_JMP | BPF_JSGE | BPF_K:
 675	case BPF_JMP | BPF_JSLE | BPF_K:
 676	case BPF_JMP | BPF_JSET | BPF_K:
 677		/* Accommodate for extra offset in case of a backjump. */
 678		off = from->off;
 679		if (off < 0)
 680			off -= 2;
 681		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 682		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 683		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 684		break;
 685
 686	case BPF_LD | BPF_ABS | BPF_W:
 687	case BPF_LD | BPF_ABS | BPF_H:
 688	case BPF_LD | BPF_ABS | BPF_B:
 689		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 690		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 691		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 692		break;
 693
 694	case BPF_LD | BPF_IND | BPF_W:
 695	case BPF_LD | BPF_IND | BPF_H:
 696	case BPF_LD | BPF_IND | BPF_B:
 697		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 698		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 699		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 700		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 
 
 
 
 701		break;
 702
 703	case BPF_LD | BPF_IMM | BPF_DW:
 704		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 705		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 706		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 707		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 708		break;
 709	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 710		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 711		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 
 
 712		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 713		break;
 714
 715	case BPF_ST | BPF_MEM | BPF_DW:
 716	case BPF_ST | BPF_MEM | BPF_W:
 717	case BPF_ST | BPF_MEM | BPF_H:
 718	case BPF_ST | BPF_MEM | BPF_B:
 719		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 720		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 721		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 722		break;
 723	}
 724out:
 725	return to - to_buff;
 726}
 727
 728static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 729					      gfp_t gfp_extra_flags)
 730{
 731	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 732	struct bpf_prog *fp;
 733
 734	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 735	if (fp != NULL) {
 736		/* aux->prog still points to the fp_other one, so
 737		 * when promoting the clone to the real program,
 738		 * this still needs to be adapted.
 739		 */
 740		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 741	}
 742
 743	return fp;
 744}
 745
 746static void bpf_prog_clone_free(struct bpf_prog *fp)
 747{
 748	/* aux was stolen by the other clone, so we cannot free
 749	 * it from this path! It will be freed eventually by the
 750	 * other program on release.
 751	 *
 752	 * At this point, we don't need a deferred release since
 753	 * clone is guaranteed to not be locked.
 754	 */
 755	fp->aux = NULL;
 756	__bpf_prog_free(fp);
 757}
 758
 759void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 760{
 761	/* We have to repoint aux->prog to self, as we don't
 762	 * know whether fp here is the clone or the original.
 763	 */
 764	fp->aux->prog = fp;
 765	bpf_prog_clone_free(fp_other);
 766}
 767
 768struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 769{
 770	struct bpf_insn insn_buff[16], aux[2];
 771	struct bpf_prog *clone, *tmp;
 772	int insn_delta, insn_cnt;
 773	struct bpf_insn *insn;
 774	int i, rewritten;
 775
 776	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
 777		return prog;
 778
 779	clone = bpf_prog_clone_create(prog, GFP_USER);
 780	if (!clone)
 781		return ERR_PTR(-ENOMEM);
 782
 783	insn_cnt = clone->len;
 784	insn = clone->insnsi;
 785
 786	for (i = 0; i < insn_cnt; i++, insn++) {
 787		/* We temporarily need to hold the original ld64 insn
 788		 * so that we can still access the first part in the
 789		 * second blinding run.
 790		 */
 791		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 792		    insn[1].code == 0)
 793			memcpy(aux, insn, sizeof(aux));
 794
 795		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 
 796		if (!rewritten)
 797			continue;
 798
 799		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 800		if (!tmp) {
 801			/* Patching may have repointed aux->prog during
 802			 * realloc from the original one, so we need to
 803			 * fix it up here on error.
 804			 */
 805			bpf_jit_prog_release_other(prog, clone);
 806			return ERR_PTR(-ENOMEM);
 807		}
 808
 809		clone = tmp;
 810		insn_delta = rewritten - 1;
 811
 812		/* Walk new program and skip insns we just inserted. */
 813		insn = clone->insnsi + i + insn_delta;
 814		insn_cnt += insn_delta;
 815		i        += insn_delta;
 816	}
 817
 818	clone->blinded = 1;
 819	return clone;
 820}
 821#endif /* CONFIG_BPF_JIT */
 822
 823/* Base function for offset calculation. Needs to go into .text section,
 824 * therefore keeping it non-static as well; will also be used by JITs
 825 * anyway later on, so do not let the compiler omit it. This also needs
 826 * to go into kallsyms for correlation from e.g. bpftool, so naming
 827 * must not change.
 828 */
 829noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 830{
 831	return 0;
 832}
 833EXPORT_SYMBOL_GPL(__bpf_call_base);
 834
 835/* All UAPI available opcodes. */
 836#define BPF_INSN_MAP(INSN_2, INSN_3)		\
 837	/* 32 bit ALU operations. */		\
 838	/*   Register based. */			\
 839	INSN_3(ALU, ADD, X),			\
 840	INSN_3(ALU, SUB, X),			\
 841	INSN_3(ALU, AND, X),			\
 842	INSN_3(ALU, OR,  X),			\
 843	INSN_3(ALU, LSH, X),			\
 844	INSN_3(ALU, RSH, X),			\
 845	INSN_3(ALU, XOR, X),			\
 846	INSN_3(ALU, MUL, X),			\
 847	INSN_3(ALU, MOV, X),			\
 848	INSN_3(ALU, DIV, X),			\
 849	INSN_3(ALU, MOD, X),			\
 
 850	INSN_2(ALU, NEG),			\
 851	INSN_3(ALU, END, TO_BE),		\
 852	INSN_3(ALU, END, TO_LE),		\
 853	/*   Immediate based. */		\
 854	INSN_3(ALU, ADD, K),			\
 855	INSN_3(ALU, SUB, K),			\
 856	INSN_3(ALU, AND, K),			\
 857	INSN_3(ALU, OR,  K),			\
 858	INSN_3(ALU, LSH, K),			\
 859	INSN_3(ALU, RSH, K),			\
 860	INSN_3(ALU, XOR, K),			\
 861	INSN_3(ALU, MUL, K),			\
 862	INSN_3(ALU, MOV, K),			\
 863	INSN_3(ALU, DIV, K),			\
 864	INSN_3(ALU, MOD, K),			\
 
 865	/* 64 bit ALU operations. */		\
 866	/*   Register based. */			\
 867	INSN_3(ALU64, ADD,  X),			\
 868	INSN_3(ALU64, SUB,  X),			\
 869	INSN_3(ALU64, AND,  X),			\
 870	INSN_3(ALU64, OR,   X),			\
 871	INSN_3(ALU64, LSH,  X),			\
 872	INSN_3(ALU64, RSH,  X),			\
 873	INSN_3(ALU64, XOR,  X),			\
 874	INSN_3(ALU64, MUL,  X),			\
 875	INSN_3(ALU64, MOV,  X),			\
 876	INSN_3(ALU64, ARSH, X),			\
 877	INSN_3(ALU64, DIV,  X),			\
 878	INSN_3(ALU64, MOD,  X),			\
 879	INSN_2(ALU64, NEG),			\
 880	/*   Immediate based. */		\
 881	INSN_3(ALU64, ADD,  K),			\
 882	INSN_3(ALU64, SUB,  K),			\
 883	INSN_3(ALU64, AND,  K),			\
 884	INSN_3(ALU64, OR,   K),			\
 885	INSN_3(ALU64, LSH,  K),			\
 886	INSN_3(ALU64, RSH,  K),			\
 887	INSN_3(ALU64, XOR,  K),			\
 888	INSN_3(ALU64, MUL,  K),			\
 889	INSN_3(ALU64, MOV,  K),			\
 890	INSN_3(ALU64, ARSH, K),			\
 891	INSN_3(ALU64, DIV,  K),			\
 892	INSN_3(ALU64, MOD,  K),			\
 893	/* Call instruction. */			\
 894	INSN_2(JMP, CALL),			\
 895	/* Exit instruction. */			\
 896	INSN_2(JMP, EXIT),			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	/* Jump instructions. */		\
 898	/*   Register based. */			\
 899	INSN_3(JMP, JEQ,  X),			\
 900	INSN_3(JMP, JNE,  X),			\
 901	INSN_3(JMP, JGT,  X),			\
 902	INSN_3(JMP, JLT,  X),			\
 903	INSN_3(JMP, JGE,  X),			\
 904	INSN_3(JMP, JLE,  X),			\
 905	INSN_3(JMP, JSGT, X),			\
 906	INSN_3(JMP, JSLT, X),			\
 907	INSN_3(JMP, JSGE, X),			\
 908	INSN_3(JMP, JSLE, X),			\
 909	INSN_3(JMP, JSET, X),			\
 910	/*   Immediate based. */		\
 911	INSN_3(JMP, JEQ,  K),			\
 912	INSN_3(JMP, JNE,  K),			\
 913	INSN_3(JMP, JGT,  K),			\
 914	INSN_3(JMP, JLT,  K),			\
 915	INSN_3(JMP, JGE,  K),			\
 916	INSN_3(JMP, JLE,  K),			\
 917	INSN_3(JMP, JSGT, K),			\
 918	INSN_3(JMP, JSLT, K),			\
 919	INSN_3(JMP, JSGE, K),			\
 920	INSN_3(JMP, JSLE, K),			\
 921	INSN_3(JMP, JSET, K),			\
 922	INSN_2(JMP, JA),			\
 923	/* Store instructions. */		\
 924	/*   Register based. */			\
 925	INSN_3(STX, MEM,  B),			\
 926	INSN_3(STX, MEM,  H),			\
 927	INSN_3(STX, MEM,  W),			\
 928	INSN_3(STX, MEM,  DW),			\
 929	INSN_3(STX, XADD, W),			\
 930	INSN_3(STX, XADD, DW),			\
 931	/*   Immediate based. */		\
 932	INSN_3(ST, MEM, B),			\
 933	INSN_3(ST, MEM, H),			\
 934	INSN_3(ST, MEM, W),			\
 935	INSN_3(ST, MEM, DW),			\
 936	/* Load instructions. */		\
 937	/*   Register based. */			\
 938	INSN_3(LDX, MEM, B),			\
 939	INSN_3(LDX, MEM, H),			\
 940	INSN_3(LDX, MEM, W),			\
 941	INSN_3(LDX, MEM, DW),			\
 942	/*   Immediate based. */		\
 943	INSN_3(LD, IMM, DW),			\
 944	/*   Misc (old cBPF carry-over). */	\
 945	INSN_3(LD, ABS, B),			\
 946	INSN_3(LD, ABS, H),			\
 947	INSN_3(LD, ABS, W),			\
 948	INSN_3(LD, IND, B),			\
 949	INSN_3(LD, IND, H),			\
 950	INSN_3(LD, IND, W)
 951
 952bool bpf_opcode_in_insntable(u8 code)
 953{
 954#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
 955#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
 956	static const bool public_insntable[256] = {
 957		[0 ... 255] = false,
 958		/* Now overwrite non-defaults ... */
 959		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
 
 
 
 
 
 
 
 960	};
 961#undef BPF_INSN_3_TBL
 962#undef BPF_INSN_2_TBL
 963	return public_insntable[code];
 964}
 965
 966#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 
 
 
 
 
 
 967/**
 968 *	__bpf_prog_run - run eBPF program on a given context
 969 *	@ctx: is the data we are operating on
 970 *	@insn: is the array of eBPF instructions
 
 971 *
 972 * Decode and execute eBPF instructions.
 973 */
 974static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
 975{
 976	u64 tmp;
 977#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
 978#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
 979	static const void *jumptable[256] = {
 980		[0 ... 255] = &&default_label,
 981		/* Now overwrite non-defaults ... */
 982		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
 983		/* Non-UAPI available opcodes. */
 984		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
 985		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
 
 
 
 
 986	};
 987#undef BPF_INSN_3_LBL
 988#undef BPF_INSN_2_LBL
 989	u32 tail_call_cnt = 0;
 990	void *ptr;
 991	int off;
 992
 993#define CONT	 ({ insn++; goto select_insn; })
 994#define CONT_JMP ({ insn++; goto select_insn; })
 995
 996select_insn:
 997	goto *jumptable[insn->code];
 998
 999	/* ALU */
1000#define ALU(OPCODE, OP)			\
1001	ALU64_##OPCODE##_X:		\
1002		DST = DST OP SRC;	\
1003		CONT;			\
1004	ALU_##OPCODE##_X:		\
1005		DST = (u32) DST OP (u32) SRC;	\
1006		CONT;			\
1007	ALU64_##OPCODE##_K:		\
1008		DST = DST OP IMM;		\
1009		CONT;			\
1010	ALU_##OPCODE##_K:		\
1011		DST = (u32) DST OP (u32) IMM;	\
1012		CONT;
1013
1014	ALU(ADD,  +)
1015	ALU(SUB,  -)
1016	ALU(AND,  &)
1017	ALU(OR,   |)
1018	ALU(LSH, <<)
1019	ALU(RSH, >>)
1020	ALU(XOR,  ^)
1021	ALU(MUL,  *)
1022#undef ALU
1023	ALU_NEG:
1024		DST = (u32) -DST;
1025		CONT;
1026	ALU64_NEG:
1027		DST = -DST;
1028		CONT;
1029	ALU_MOV_X:
1030		DST = (u32) SRC;
1031		CONT;
1032	ALU_MOV_K:
1033		DST = (u32) IMM;
1034		CONT;
1035	ALU64_MOV_X:
1036		DST = SRC;
1037		CONT;
1038	ALU64_MOV_K:
1039		DST = IMM;
1040		CONT;
1041	LD_IMM_DW:
1042		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1043		insn++;
1044		CONT;
 
 
 
 
 
 
1045	ALU64_ARSH_X:
1046		(*(s64 *) &DST) >>= SRC;
1047		CONT;
1048	ALU64_ARSH_K:
1049		(*(s64 *) &DST) >>= IMM;
1050		CONT;
1051	ALU64_MOD_X:
1052		div64_u64_rem(DST, SRC, &tmp);
1053		DST = tmp;
1054		CONT;
1055	ALU_MOD_X:
1056		tmp = (u32) DST;
1057		DST = do_div(tmp, (u32) SRC);
1058		CONT;
1059	ALU64_MOD_K:
1060		div64_u64_rem(DST, IMM, &tmp);
1061		DST = tmp;
1062		CONT;
1063	ALU_MOD_K:
1064		tmp = (u32) DST;
1065		DST = do_div(tmp, (u32) IMM);
1066		CONT;
1067	ALU64_DIV_X:
1068		DST = div64_u64(DST, SRC);
1069		CONT;
1070	ALU_DIV_X:
1071		tmp = (u32) DST;
1072		do_div(tmp, (u32) SRC);
1073		DST = (u32) tmp;
1074		CONT;
1075	ALU64_DIV_K:
1076		DST = div64_u64(DST, IMM);
1077		CONT;
1078	ALU_DIV_K:
1079		tmp = (u32) DST;
1080		do_div(tmp, (u32) IMM);
1081		DST = (u32) tmp;
1082		CONT;
1083	ALU_END_TO_BE:
1084		switch (IMM) {
1085		case 16:
1086			DST = (__force u16) cpu_to_be16(DST);
1087			break;
1088		case 32:
1089			DST = (__force u32) cpu_to_be32(DST);
1090			break;
1091		case 64:
1092			DST = (__force u64) cpu_to_be64(DST);
1093			break;
1094		}
1095		CONT;
1096	ALU_END_TO_LE:
1097		switch (IMM) {
1098		case 16:
1099			DST = (__force u16) cpu_to_le16(DST);
1100			break;
1101		case 32:
1102			DST = (__force u32) cpu_to_le32(DST);
1103			break;
1104		case 64:
1105			DST = (__force u64) cpu_to_le64(DST);
1106			break;
1107		}
1108		CONT;
1109
1110	/* CALL */
1111	JMP_CALL:
1112		/* Function call scratches BPF_R1-BPF_R5 registers,
1113		 * preserves BPF_R6-BPF_R9, and stores return value
1114		 * into BPF_R0.
1115		 */
1116		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1117						       BPF_R4, BPF_R5);
1118		CONT;
1119
1120	JMP_CALL_ARGS:
1121		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1122							    BPF_R3, BPF_R4,
1123							    BPF_R5,
1124							    insn + insn->off + 1);
1125		CONT;
1126
1127	JMP_TAIL_CALL: {
1128		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1129		struct bpf_array *array = container_of(map, struct bpf_array, map);
1130		struct bpf_prog *prog;
1131		u32 index = BPF_R3;
1132
1133		if (unlikely(index >= array->map.max_entries))
1134			goto out;
1135		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1136			goto out;
1137
1138		tail_call_cnt++;
1139
1140		prog = READ_ONCE(array->ptrs[index]);
1141		if (!prog)
1142			goto out;
1143
1144		/* ARG1 at this point is guaranteed to point to CTX from
1145		 * the verifier side due to the fact that the tail call is
1146		 * handeled like a helper, that is, bpf_tail_call_proto,
1147		 * where arg1_type is ARG_PTR_TO_CTX.
1148		 */
1149		insn = prog->insnsi;
1150		goto select_insn;
1151out:
1152		CONT;
1153	}
1154	/* JMP */
1155	JMP_JA:
1156		insn += insn->off;
1157		CONT;
1158	JMP_JEQ_X:
1159		if (DST == SRC) {
1160			insn += insn->off;
1161			CONT_JMP;
1162		}
1163		CONT;
1164	JMP_JEQ_K:
1165		if (DST == IMM) {
1166			insn += insn->off;
1167			CONT_JMP;
1168		}
1169		CONT;
1170	JMP_JNE_X:
1171		if (DST != SRC) {
1172			insn += insn->off;
1173			CONT_JMP;
1174		}
1175		CONT;
1176	JMP_JNE_K:
1177		if (DST != IMM) {
1178			insn += insn->off;
1179			CONT_JMP;
1180		}
1181		CONT;
1182	JMP_JGT_X:
1183		if (DST > SRC) {
1184			insn += insn->off;
1185			CONT_JMP;
1186		}
1187		CONT;
1188	JMP_JGT_K:
1189		if (DST > IMM) {
1190			insn += insn->off;
1191			CONT_JMP;
1192		}
1193		CONT;
1194	JMP_JLT_X:
1195		if (DST < SRC) {
1196			insn += insn->off;
1197			CONT_JMP;
1198		}
1199		CONT;
1200	JMP_JLT_K:
1201		if (DST < IMM) {
1202			insn += insn->off;
1203			CONT_JMP;
1204		}
1205		CONT;
1206	JMP_JGE_X:
1207		if (DST >= SRC) {
1208			insn += insn->off;
1209			CONT_JMP;
1210		}
1211		CONT;
1212	JMP_JGE_K:
1213		if (DST >= IMM) {
1214			insn += insn->off;
1215			CONT_JMP;
1216		}
1217		CONT;
1218	JMP_JLE_X:
1219		if (DST <= SRC) {
1220			insn += insn->off;
1221			CONT_JMP;
1222		}
1223		CONT;
1224	JMP_JLE_K:
1225		if (DST <= IMM) {
1226			insn += insn->off;
1227			CONT_JMP;
1228		}
1229		CONT;
1230	JMP_JSGT_X:
1231		if (((s64) DST) > ((s64) SRC)) {
1232			insn += insn->off;
1233			CONT_JMP;
1234		}
1235		CONT;
1236	JMP_JSGT_K:
1237		if (((s64) DST) > ((s64) IMM)) {
1238			insn += insn->off;
1239			CONT_JMP;
1240		}
1241		CONT;
1242	JMP_JSLT_X:
1243		if (((s64) DST) < ((s64) SRC)) {
1244			insn += insn->off;
1245			CONT_JMP;
1246		}
1247		CONT;
1248	JMP_JSLT_K:
1249		if (((s64) DST) < ((s64) IMM)) {
1250			insn += insn->off;
1251			CONT_JMP;
1252		}
1253		CONT;
1254	JMP_JSGE_X:
1255		if (((s64) DST) >= ((s64) SRC)) {
1256			insn += insn->off;
1257			CONT_JMP;
1258		}
1259		CONT;
1260	JMP_JSGE_K:
1261		if (((s64) DST) >= ((s64) IMM)) {
1262			insn += insn->off;
1263			CONT_JMP;
1264		}
1265		CONT;
1266	JMP_JSLE_X:
1267		if (((s64) DST) <= ((s64) SRC)) {
1268			insn += insn->off;
1269			CONT_JMP;
1270		}
1271		CONT;
1272	JMP_JSLE_K:
1273		if (((s64) DST) <= ((s64) IMM)) {
1274			insn += insn->off;
1275			CONT_JMP;
1276		}
1277		CONT;
1278	JMP_JSET_X:
1279		if (DST & SRC) {
1280			insn += insn->off;
1281			CONT_JMP;
1282		}
1283		CONT;
1284	JMP_JSET_K:
1285		if (DST & IMM) {
1286			insn += insn->off;
1287			CONT_JMP;
1288		}
1289		CONT;
1290	JMP_EXIT:
1291		return BPF_R0;
1292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293	/* STX and ST and LDX*/
1294#define LDST(SIZEOP, SIZE)						\
1295	STX_MEM_##SIZEOP:						\
1296		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1297		CONT;							\
1298	ST_MEM_##SIZEOP:						\
1299		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1300		CONT;							\
1301	LDX_MEM_##SIZEOP:						\
1302		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1303		CONT;
1304
1305	LDST(B,   u8)
1306	LDST(H,  u16)
1307	LDST(W,  u32)
1308	LDST(DW, u64)
1309#undef LDST
 
 
 
 
 
 
 
 
 
 
1310	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1311		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1312			   (DST + insn->off));
1313		CONT;
1314	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1315		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1316			     (DST + insn->off));
1317		CONT;
1318	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1319		off = IMM;
1320load_word:
1321		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1322		 * appearing in the programs where ctx == skb
1323		 * (see may_access_skb() in the verifier). All programs
1324		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1325		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1326		 * verifier will check that BPF_R6 == ctx.
1327		 *
1328		 * BPF_ABS and BPF_IND are wrappers of function calls,
1329		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1330		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1331		 *
1332		 * Implicit input:
1333		 *   ctx == skb == BPF_R6 == CTX
1334		 *
1335		 * Explicit input:
1336		 *   SRC == any register
1337		 *   IMM == 32-bit immediate
1338		 *
1339		 * Output:
1340		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1341		 */
1342
1343		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1344		if (likely(ptr != NULL)) {
1345			BPF_R0 = get_unaligned_be32(ptr);
1346			CONT;
1347		}
1348
1349		return 0;
1350	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1351		off = IMM;
1352load_half:
1353		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1354		if (likely(ptr != NULL)) {
1355			BPF_R0 = get_unaligned_be16(ptr);
1356			CONT;
1357		}
1358
1359		return 0;
1360	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1361		off = IMM;
1362load_byte:
1363		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1364		if (likely(ptr != NULL)) {
1365			BPF_R0 = *(u8 *)ptr;
1366			CONT;
1367		}
1368
1369		return 0;
1370	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1371		off = IMM + SRC;
1372		goto load_word;
1373	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1374		off = IMM + SRC;
1375		goto load_half;
1376	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1377		off = IMM + SRC;
1378		goto load_byte;
1379
1380	default_label:
1381		/* If we ever reach this, we have a bug somewhere. Die hard here
1382		 * instead of just returning 0; we could be somewhere in a subprog,
1383		 * so execution could continue otherwise which we do /not/ want.
1384		 *
1385		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1386		 */
1387		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1388		BUG_ON(1);
1389		return 0;
1390}
1391STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1392
1393#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1394#define DEFINE_BPF_PROG_RUN(stack_size) \
1395static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1396{ \
1397	u64 stack[stack_size / sizeof(u64)]; \
1398	u64 regs[MAX_BPF_REG]; \
1399\
1400	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1401	ARG1 = (u64) (unsigned long) ctx; \
1402	return ___bpf_prog_run(regs, insn, stack); \
1403}
1404
1405#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1406#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1407static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1408				      const struct bpf_insn *insn) \
1409{ \
1410	u64 stack[stack_size / sizeof(u64)]; \
1411	u64 regs[MAX_BPF_REG]; \
1412\
1413	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1414	BPF_R1 = r1; \
1415	BPF_R2 = r2; \
1416	BPF_R3 = r3; \
1417	BPF_R4 = r4; \
1418	BPF_R5 = r5; \
1419	return ___bpf_prog_run(regs, insn, stack); \
1420}
1421
1422#define EVAL1(FN, X) FN(X)
1423#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1424#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1425#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1426#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1427#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1428
1429EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1430EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1431EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1432
1433EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1434EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1435EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1436
1437#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1438
1439static unsigned int (*interpreters[])(const void *ctx,
1440				      const struct bpf_insn *insn) = {
1441EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1442EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1443EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1444};
1445#undef PROG_NAME_LIST
1446#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1447static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1448				  const struct bpf_insn *insn) = {
1449EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1450EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1451EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1452};
1453#undef PROG_NAME_LIST
1454
1455void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1456{
1457	stack_depth = max_t(u32, stack_depth, 1);
1458	insn->off = (s16) insn->imm;
1459	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1460		__bpf_call_base_args;
1461	insn->code = BPF_JMP | BPF_CALL_ARGS;
1462}
1463
1464#else
1465static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1466					 const struct bpf_insn *insn)
1467{
1468	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1469	 * is not working properly, so warn about it!
1470	 */
1471	WARN_ON_ONCE(1);
1472	return 0;
1473}
1474#endif
1475
1476bool bpf_prog_array_compatible(struct bpf_array *array,
1477			       const struct bpf_prog *fp)
1478{
1479	if (fp->kprobe_override)
1480		return false;
1481
1482	if (!array->owner_prog_type) {
1483		/* There's no owner yet where we could check for
1484		 * compatibility.
1485		 */
1486		array->owner_prog_type = fp->type;
1487		array->owner_jited = fp->jited;
1488
1489		return true;
1490	}
1491
1492	return array->owner_prog_type == fp->type &&
1493	       array->owner_jited == fp->jited;
1494}
1495
1496static int bpf_check_tail_call(const struct bpf_prog *fp)
1497{
1498	struct bpf_prog_aux *aux = fp->aux;
1499	int i;
1500
1501	for (i = 0; i < aux->used_map_cnt; i++) {
1502		struct bpf_map *map = aux->used_maps[i];
1503		struct bpf_array *array;
1504
1505		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1506			continue;
1507
1508		array = container_of(map, struct bpf_array, map);
1509		if (!bpf_prog_array_compatible(array, fp))
1510			return -EINVAL;
1511	}
1512
1513	return 0;
1514}
1515
 
 
 
 
 
 
 
 
 
 
 
1516/**
1517 *	bpf_prog_select_runtime - select exec runtime for BPF program
1518 *	@fp: bpf_prog populated with internal BPF program
1519 *	@err: pointer to error variable
1520 *
1521 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1522 * The BPF program will be executed via BPF_PROG_RUN() macro.
1523 */
1524struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1525{
1526#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1527	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
 
 
 
1528
1529	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1530#else
1531	fp->bpf_func = __bpf_prog_ret0_warn;
1532#endif
1533
1534	/* eBPF JITs can rewrite the program in case constant
1535	 * blinding is active. However, in case of error during
1536	 * blinding, bpf_int_jit_compile() must always return a
1537	 * valid program, which in this case would simply not
1538	 * be JITed, but falls back to the interpreter.
1539	 */
1540	if (!bpf_prog_is_dev_bound(fp->aux)) {
 
 
 
 
1541		fp = bpf_int_jit_compile(fp);
1542#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1543		if (!fp->jited) {
 
 
1544			*err = -ENOTSUPP;
1545			return fp;
1546		}
1547#endif
 
 
 
1548	} else {
1549		*err = bpf_prog_offload_compile(fp);
1550		if (*err)
1551			return fp;
1552	}
 
 
1553	bpf_prog_lock_ro(fp);
1554
1555	/* The tail call compatibility check can only be done at
1556	 * this late stage as we need to determine, if we deal
1557	 * with JITed or non JITed program concatenations and not
1558	 * all eBPF JITs might immediately support all features.
1559	 */
1560	*err = bpf_check_tail_call(fp);
1561
1562	return fp;
1563}
1564EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1565
1566static unsigned int __bpf_prog_ret1(const void *ctx,
1567				    const struct bpf_insn *insn)
1568{
1569	return 1;
1570}
1571
1572static struct bpf_prog_dummy {
1573	struct bpf_prog prog;
1574} dummy_bpf_prog = {
1575	.prog = {
1576		.bpf_func = __bpf_prog_ret1,
1577	},
1578};
1579
1580/* to avoid allocating empty bpf_prog_array for cgroups that
1581 * don't have bpf program attached use one global 'empty_prog_array'
1582 * It will not be modified the caller of bpf_prog_array_alloc()
1583 * (since caller requested prog_cnt == 0)
1584 * that pointer should be 'freed' by bpf_prog_array_free()
1585 */
1586static struct {
1587	struct bpf_prog_array hdr;
1588	struct bpf_prog *null_prog;
1589} empty_prog_array = {
1590	.null_prog = NULL,
1591};
1592
1593struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1594{
1595	if (prog_cnt)
1596		return kzalloc(sizeof(struct bpf_prog_array) +
1597			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
 
1598			       flags);
1599
1600	return &empty_prog_array.hdr;
1601}
1602
1603void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1604{
1605	if (!progs ||
1606	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1607		return;
1608	kfree_rcu(progs, rcu);
1609}
1610
1611int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1612{
1613	struct bpf_prog **prog;
1614	u32 cnt = 0;
1615
1616	rcu_read_lock();
1617	prog = rcu_dereference(progs)->progs;
1618	for (; *prog; prog++)
1619		if (*prog != &dummy_bpf_prog.prog)
1620			cnt++;
1621	rcu_read_unlock();
1622	return cnt;
1623}
1624
1625static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
 
 
 
 
 
 
 
 
 
 
1626				     u32 *prog_ids,
1627				     u32 request_cnt)
1628{
 
1629	int i = 0;
1630
1631	for (; *prog; prog++) {
1632		if (*prog == &dummy_bpf_prog.prog)
1633			continue;
1634		prog_ids[i] = (*prog)->aux->id;
1635		if (++i == request_cnt) {
1636			prog++;
1637			break;
1638		}
1639	}
1640
1641	return !!(*prog);
1642}
1643
1644int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1645				__u32 __user *prog_ids, u32 cnt)
1646{
1647	struct bpf_prog **prog;
1648	unsigned long err = 0;
1649	bool nospc;
1650	u32 *ids;
1651
1652	/* users of this function are doing:
1653	 * cnt = bpf_prog_array_length();
1654	 * if (cnt > 0)
1655	 *     bpf_prog_array_copy_to_user(..., cnt);
1656	 * so below kcalloc doesn't need extra cnt > 0 check, but
1657	 * bpf_prog_array_length() releases rcu lock and
1658	 * prog array could have been swapped with empty or larger array,
1659	 * so always copy 'cnt' prog_ids to the user.
1660	 * In a rare race the user will see zero prog_ids
1661	 */
1662	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1663	if (!ids)
1664		return -ENOMEM;
1665	rcu_read_lock();
1666	prog = rcu_dereference(progs)->progs;
1667	nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1668	rcu_read_unlock();
1669	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1670	kfree(ids);
1671	if (err)
1672		return -EFAULT;
1673	if (nospc)
1674		return -ENOSPC;
1675	return 0;
1676}
1677
1678void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1679				struct bpf_prog *old_prog)
1680{
1681	struct bpf_prog **prog = progs->progs;
1682
1683	for (; *prog; prog++)
1684		if (*prog == old_prog) {
1685			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1686			break;
1687		}
1688}
1689
1690int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691			struct bpf_prog *exclude_prog,
1692			struct bpf_prog *include_prog,
1693			struct bpf_prog_array **new_array)
1694{
1695	int new_prog_cnt, carry_prog_cnt = 0;
1696	struct bpf_prog **existing_prog;
1697	struct bpf_prog_array *array;
 
1698	int new_prog_idx = 0;
1699
1700	/* Figure out how many existing progs we need to carry over to
1701	 * the new array.
1702	 */
1703	if (old_array) {
1704		existing_prog = old_array->progs;
1705		for (; *existing_prog; existing_prog++) {
1706			if (*existing_prog != exclude_prog &&
1707			    *existing_prog != &dummy_bpf_prog.prog)
 
 
 
1708				carry_prog_cnt++;
1709			if (*existing_prog == include_prog)
1710				return -EEXIST;
1711		}
1712	}
1713
 
 
 
1714	/* How many progs (not NULL) will be in the new array? */
1715	new_prog_cnt = carry_prog_cnt;
1716	if (include_prog)
1717		new_prog_cnt += 1;
1718
1719	/* Do we have any prog (not NULL) in the new array? */
1720	if (!new_prog_cnt) {
1721		*new_array = NULL;
1722		return 0;
1723	}
1724
1725	/* +1 as the end of prog_array is marked with NULL */
1726	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1727	if (!array)
1728		return -ENOMEM;
1729
1730	/* Fill in the new prog array */
1731	if (carry_prog_cnt) {
1732		existing_prog = old_array->progs;
1733		for (; *existing_prog; existing_prog++)
1734			if (*existing_prog != exclude_prog &&
1735			    *existing_prog != &dummy_bpf_prog.prog)
1736				array->progs[new_prog_idx++] = *existing_prog;
 
 
1737	}
1738	if (include_prog)
1739		array->progs[new_prog_idx++] = include_prog;
1740	array->progs[new_prog_idx] = NULL;
1741	*new_array = array;
1742	return 0;
1743}
1744
1745int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1746			     u32 *prog_ids, u32 request_cnt,
1747			     u32 *prog_cnt)
1748{
1749	struct bpf_prog **prog;
1750	u32 cnt = 0;
1751
1752	if (array)
1753		cnt = bpf_prog_array_length(array);
1754
1755	*prog_cnt = cnt;
1756
1757	/* return early if user requested only program count or nothing to copy */
1758	if (!request_cnt || !cnt)
1759		return 0;
1760
1761	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1762	prog = rcu_dereference_check(array, 1)->progs;
1763	return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1764								     : 0;
1765}
1766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767static void bpf_prog_free_deferred(struct work_struct *work)
1768{
1769	struct bpf_prog_aux *aux;
1770	int i;
1771
1772	aux = container_of(work, struct bpf_prog_aux, work);
 
1773	if (bpf_prog_is_dev_bound(aux))
1774		bpf_prog_offload_destroy(aux->prog);
 
 
 
 
 
1775	for (i = 0; i < aux->func_cnt; i++)
1776		bpf_jit_free(aux->func[i]);
1777	if (aux->func_cnt) {
1778		kfree(aux->func);
1779		bpf_prog_unlock_free(aux->prog);
1780	} else {
1781		bpf_jit_free(aux->prog);
1782	}
1783}
1784
1785/* Free internal BPF program */
1786void bpf_prog_free(struct bpf_prog *fp)
1787{
1788	struct bpf_prog_aux *aux = fp->aux;
1789
 
 
1790	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1791	schedule_work(&aux->work);
1792}
1793EXPORT_SYMBOL_GPL(bpf_prog_free);
1794
1795/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1796static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1797
1798void bpf_user_rnd_init_once(void)
1799{
1800	prandom_init_once(&bpf_user_rnd_state);
1801}
1802
1803BPF_CALL_0(bpf_user_rnd_u32)
1804{
1805	/* Should someone ever have the rather unwise idea to use some
1806	 * of the registers passed into this function, then note that
1807	 * this function is called from native eBPF and classic-to-eBPF
1808	 * transformations. Register assignments from both sides are
1809	 * different, f.e. classic always sets fn(ctx, A, X) here.
1810	 */
1811	struct rnd_state *state;
1812	u32 res;
1813
1814	state = &get_cpu_var(bpf_user_rnd_state);
1815	res = prandom_u32_state(state);
1816	put_cpu_var(bpf_user_rnd_state);
1817
1818	return res;
1819}
1820
 
 
 
 
 
1821/* Weak definitions of helper functions in case we don't have bpf syscall. */
1822const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1823const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1824const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
 
 
 
 
 
 
1825
1826const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1827const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1828const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1829const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
 
1830
1831const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1832const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1833const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1834const struct bpf_func_proto bpf_sock_map_update_proto __weak;
 
 
 
1835
1836const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1837{
1838	return NULL;
1839}
1840
1841u64 __weak
1842bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1843		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1844{
1845	return -ENOTSUPP;
1846}
 
1847
1848/* Always built-in helper functions. */
1849const struct bpf_func_proto bpf_tail_call_proto = {
1850	.func		= NULL,
1851	.gpl_only	= false,
1852	.ret_type	= RET_VOID,
1853	.arg1_type	= ARG_PTR_TO_CTX,
1854	.arg2_type	= ARG_CONST_MAP_PTR,
1855	.arg3_type	= ARG_ANYTHING,
1856};
1857
1858/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1859 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1860 * eBPF and implicitly also cBPF can get JITed!
1861 */
1862struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1863{
1864	return prog;
1865}
1866
1867/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1868 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1869 */
1870void __weak bpf_jit_compile(struct bpf_prog *prog)
1871{
1872}
1873
1874bool __weak bpf_helper_changes_pkt_data(void *func)
1875{
1876	return false;
1877}
1878
 
 
 
 
 
 
 
 
 
1879/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1880 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1881 */
1882int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1883			 int len)
1884{
1885	return -EFAULT;
1886}
1887
 
 
 
 
 
 
 
 
 
1888/* All definitions of tracepoints related to BPF. */
1889#define CREATE_TRACE_POINTS
1890#include <linux/bpf_trace.h>
1891
1892EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1893
1894/* These are only used within the BPF_SYSCALL code */
1895#ifdef CONFIG_BPF_SYSCALL
1896EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1897EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1898#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
 
 
 
 
 
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/frame.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0	regs[BPF_REG_0]
  39#define BPF_R1	regs[BPF_REG_1]
  40#define BPF_R2	regs[BPF_REG_2]
  41#define BPF_R3	regs[BPF_REG_3]
  42#define BPF_R4	regs[BPF_REG_4]
  43#define BPF_R5	regs[BPF_REG_5]
  44#define BPF_R6	regs[BPF_REG_6]
  45#define BPF_R7	regs[BPF_REG_7]
  46#define BPF_R8	regs[BPF_REG_8]
  47#define BPF_R9	regs[BPF_REG_9]
  48#define BPF_R10	regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST	regs[insn->dst_reg]
  52#define SRC	regs[insn->src_reg]
  53#define FP	regs[BPF_REG_FP]
  54#define AX	regs[BPF_REG_AX]
  55#define ARG1	regs[BPF_REG_ARG1]
  56#define CTX	regs[BPF_REG_CTX]
  57#define IMM	insn->imm
  58
  59/* No hurry in this branch
  60 *
  61 * Exported for the bpf jit load helper.
  62 */
  63void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  64{
  65	u8 *ptr = NULL;
  66
  67	if (k >= SKF_NET_OFF)
  68		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  69	else if (k >= SKF_LL_OFF)
  70		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  71
  72	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  73		return ptr;
  74
  75	return NULL;
  76}
  77
  78struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  79{
  80	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  81	struct bpf_prog_aux *aux;
  82	struct bpf_prog *fp;
  83
  84	size = round_up(size, PAGE_SIZE);
  85	fp = __vmalloc(size, gfp_flags);
  86	if (fp == NULL)
  87		return NULL;
  88
  89	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  90	if (aux == NULL) {
  91		vfree(fp);
  92		return NULL;
  93	}
  94
  95	fp->pages = size / PAGE_SIZE;
  96	fp->aux = aux;
  97	fp->aux->prog = fp;
  98	fp->jit_requested = ebpf_jit_enabled();
  99
 100	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 101
 102	return fp;
 103}
 104
 105struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 106{
 107	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 108	struct bpf_prog *prog;
 109	int cpu;
 110
 111	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 112	if (!prog)
 113		return NULL;
 114
 115	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 116	if (!prog->aux->stats) {
 117		kfree(prog->aux);
 118		vfree(prog);
 119		return NULL;
 120	}
 121
 122	for_each_possible_cpu(cpu) {
 123		struct bpf_prog_stats *pstats;
 124
 125		pstats = per_cpu_ptr(prog->aux->stats, cpu);
 126		u64_stats_init(&pstats->syncp);
 127	}
 128	return prog;
 129}
 130EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 131
 132int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 133{
 134	if (!prog->aux->nr_linfo || !prog->jit_requested)
 135		return 0;
 136
 137	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
 138					 sizeof(*prog->aux->jited_linfo),
 139					 GFP_KERNEL | __GFP_NOWARN);
 140	if (!prog->aux->jited_linfo)
 141		return -ENOMEM;
 142
 143	return 0;
 144}
 145
 146void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
 147{
 148	kfree(prog->aux->jited_linfo);
 149	prog->aux->jited_linfo = NULL;
 150}
 151
 152void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
 153{
 154	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
 155		bpf_prog_free_jited_linfo(prog);
 156}
 157
 158/* The jit engine is responsible to provide an array
 159 * for insn_off to the jited_off mapping (insn_to_jit_off).
 160 *
 161 * The idx to this array is the insn_off.  Hence, the insn_off
 162 * here is relative to the prog itself instead of the main prog.
 163 * This array has one entry for each xlated bpf insn.
 164 *
 165 * jited_off is the byte off to the last byte of the jited insn.
 166 *
 167 * Hence, with
 168 * insn_start:
 169 *      The first bpf insn off of the prog.  The insn off
 170 *      here is relative to the main prog.
 171 *      e.g. if prog is a subprog, insn_start > 0
 172 * linfo_idx:
 173 *      The prog's idx to prog->aux->linfo and jited_linfo
 174 *
 175 * jited_linfo[linfo_idx] = prog->bpf_func
 176 *
 177 * For i > linfo_idx,
 178 *
 179 * jited_linfo[i] = prog->bpf_func +
 180 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 181 */
 182void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 183			       const u32 *insn_to_jit_off)
 184{
 185	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 186	const struct bpf_line_info *linfo;
 187	void **jited_linfo;
 188
 189	if (!prog->aux->jited_linfo)
 190		/* Userspace did not provide linfo */
 191		return;
 192
 193	linfo_idx = prog->aux->linfo_idx;
 194	linfo = &prog->aux->linfo[linfo_idx];
 195	insn_start = linfo[0].insn_off;
 196	insn_end = insn_start + prog->len;
 197
 198	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 199	jited_linfo[0] = prog->bpf_func;
 200
 201	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 202
 203	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 204		/* The verifier ensures that linfo[i].insn_off is
 205		 * strictly increasing
 206		 */
 207		jited_linfo[i] = prog->bpf_func +
 208			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 209}
 210
 211void bpf_prog_free_linfo(struct bpf_prog *prog)
 212{
 213	bpf_prog_free_jited_linfo(prog);
 214	kvfree(prog->aux->linfo);
 215}
 216
 217struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 218				  gfp_t gfp_extra_flags)
 219{
 220	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 221	struct bpf_prog *fp;
 222	u32 pages, delta;
 223	int ret;
 224
 
 
 225	size = round_up(size, PAGE_SIZE);
 226	pages = size / PAGE_SIZE;
 227	if (pages <= fp_old->pages)
 228		return fp_old;
 229
 230	delta = pages - fp_old->pages;
 231	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 232	if (ret)
 233		return NULL;
 234
 235	fp = __vmalloc(size, gfp_flags);
 236	if (fp == NULL) {
 237		__bpf_prog_uncharge(fp_old->aux->user, delta);
 238	} else {
 239		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 240		fp->pages = pages;
 241		fp->aux->prog = fp;
 242
 243		/* We keep fp->aux from fp_old around in the new
 244		 * reallocated structure.
 245		 */
 246		fp_old->aux = NULL;
 247		__bpf_prog_free(fp_old);
 248	}
 249
 250	return fp;
 251}
 252
 253void __bpf_prog_free(struct bpf_prog *fp)
 254{
 255	if (fp->aux) {
 256		free_percpu(fp->aux->stats);
 257		kfree(fp->aux->poke_tab);
 258		kfree(fp->aux);
 259	}
 260	vfree(fp);
 261}
 262
 263int bpf_prog_calc_tag(struct bpf_prog *fp)
 264{
 265	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 266	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 267	u32 digest[SHA1_DIGEST_WORDS];
 268	u32 ws[SHA1_WORKSPACE_WORDS];
 269	u32 i, bsize, psize, blocks;
 270	struct bpf_insn *dst;
 271	bool was_ld_map;
 272	u8 *raw, *todo;
 273	__be32 *result;
 274	__be64 *bits;
 275
 276	raw = vmalloc(raw_size);
 277	if (!raw)
 278		return -ENOMEM;
 279
 280	sha1_init(digest);
 281	memset(ws, 0, sizeof(ws));
 282
 283	/* We need to take out the map fd for the digest calculation
 284	 * since they are unstable from user space side.
 285	 */
 286	dst = (void *)raw;
 287	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 288		dst[i] = fp->insnsi[i];
 289		if (!was_ld_map &&
 290		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 291		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 292		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 293			was_ld_map = true;
 294			dst[i].imm = 0;
 295		} else if (was_ld_map &&
 296			   dst[i].code == 0 &&
 297			   dst[i].dst_reg == 0 &&
 298			   dst[i].src_reg == 0 &&
 299			   dst[i].off == 0) {
 300			was_ld_map = false;
 301			dst[i].imm = 0;
 302		} else {
 303			was_ld_map = false;
 304		}
 305	}
 306
 307	psize = bpf_prog_insn_size(fp);
 308	memset(&raw[psize], 0, raw_size - psize);
 309	raw[psize++] = 0x80;
 310
 311	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 312	blocks = bsize / SHA1_BLOCK_SIZE;
 313	todo   = raw;
 314	if (bsize - psize >= sizeof(__be64)) {
 315		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 316	} else {
 317		bits = (__be64 *)(todo + bsize + bits_offset);
 318		blocks++;
 319	}
 320	*bits = cpu_to_be64((psize - 1) << 3);
 321
 322	while (blocks--) {
 323		sha1_transform(digest, todo, ws);
 324		todo += SHA1_BLOCK_SIZE;
 325	}
 326
 327	result = (__force __be32 *)digest;
 328	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 329		result[i] = cpu_to_be32(digest[i]);
 330	memcpy(fp->tag, result, sizeof(fp->tag));
 331
 332	vfree(raw);
 333	return 0;
 334}
 335
 336static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 337				s32 end_new, s32 curr, const bool probe_pass)
 338{
 339	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 340	s32 delta = end_new - end_old;
 341	s64 imm = insn->imm;
 342
 343	if (curr < pos && curr + imm + 1 >= end_old)
 344		imm += delta;
 345	else if (curr >= end_new && curr + imm + 1 < end_new)
 346		imm -= delta;
 347	if (imm < imm_min || imm > imm_max)
 348		return -ERANGE;
 349	if (!probe_pass)
 350		insn->imm = imm;
 351	return 0;
 352}
 353
 354static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 355				s32 end_new, s32 curr, const bool probe_pass)
 356{
 357	const s32 off_min = S16_MIN, off_max = S16_MAX;
 358	s32 delta = end_new - end_old;
 359	s32 off = insn->off;
 360
 361	if (curr < pos && curr + off + 1 >= end_old)
 362		off += delta;
 363	else if (curr >= end_new && curr + off + 1 < end_new)
 364		off -= delta;
 365	if (off < off_min || off > off_max)
 366		return -ERANGE;
 367	if (!probe_pass)
 368		insn->off = off;
 369	return 0;
 370}
 371
 372static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 373			    s32 end_new, const bool probe_pass)
 374{
 375	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 376	struct bpf_insn *insn = prog->insnsi;
 377	int ret = 0;
 378
 379	for (i = 0; i < insn_cnt; i++, insn++) {
 380		u8 code;
 381
 382		/* In the probing pass we still operate on the original,
 383		 * unpatched image in order to check overflows before we
 384		 * do any other adjustments. Therefore skip the patchlet.
 385		 */
 386		if (probe_pass && i == pos) {
 387			i = end_new;
 388			insn = prog->insnsi + end_old;
 389		}
 390		code = insn->code;
 391		if ((BPF_CLASS(code) != BPF_JMP &&
 392		     BPF_CLASS(code) != BPF_JMP32) ||
 393		    BPF_OP(code) == BPF_EXIT)
 394			continue;
 395		/* Adjust offset of jmps if we cross patch boundaries. */
 396		if (BPF_OP(code) == BPF_CALL) {
 397			if (insn->src_reg != BPF_PSEUDO_CALL)
 398				continue;
 399			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 400						   end_new, i, probe_pass);
 401		} else {
 402			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 403						   end_new, i, probe_pass);
 404		}
 405		if (ret)
 406			break;
 407	}
 408
 409	return ret;
 410}
 411
 412static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 413{
 414	struct bpf_line_info *linfo;
 415	u32 i, nr_linfo;
 416
 417	nr_linfo = prog->aux->nr_linfo;
 418	if (!nr_linfo || !delta)
 419		return;
 420
 421	linfo = prog->aux->linfo;
 422
 423	for (i = 0; i < nr_linfo; i++)
 424		if (off < linfo[i].insn_off)
 425			break;
 426
 427	/* Push all off < linfo[i].insn_off by delta */
 428	for (; i < nr_linfo; i++)
 429		linfo[i].insn_off += delta;
 430}
 431
 432struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 433				       const struct bpf_insn *patch, u32 len)
 434{
 435	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 436	const u32 cnt_max = S16_MAX;
 437	struct bpf_prog *prog_adj;
 438	int err;
 439
 440	/* Since our patchlet doesn't expand the image, we're done. */
 441	if (insn_delta == 0) {
 442		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 443		return prog;
 444	}
 445
 446	insn_adj_cnt = prog->len + insn_delta;
 447
 448	/* Reject anything that would potentially let the insn->off
 449	 * target overflow when we have excessive program expansions.
 450	 * We need to probe here before we do any reallocation where
 451	 * we afterwards may not fail anymore.
 452	 */
 453	if (insn_adj_cnt > cnt_max &&
 454	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 455		return ERR_PTR(err);
 456
 457	/* Several new instructions need to be inserted. Make room
 458	 * for them. Likely, there's no need for a new allocation as
 459	 * last page could have large enough tailroom.
 460	 */
 461	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 462				    GFP_USER);
 463	if (!prog_adj)
 464		return ERR_PTR(-ENOMEM);
 465
 466	prog_adj->len = insn_adj_cnt;
 467
 468	/* Patching happens in 3 steps:
 469	 *
 470	 * 1) Move over tail of insnsi from next instruction onwards,
 471	 *    so we can patch the single target insn with one or more
 472	 *    new ones (patching is always from 1 to n insns, n > 0).
 473	 * 2) Inject new instructions at the target location.
 474	 * 3) Adjust branch offsets if necessary.
 475	 */
 476	insn_rest = insn_adj_cnt - off - len;
 477
 478	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 479		sizeof(*patch) * insn_rest);
 480	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 481
 482	/* We are guaranteed to not fail at this point, otherwise
 483	 * the ship has sailed to reverse to the original state. An
 484	 * overflow cannot happen at this point.
 485	 */
 486	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 487
 488	bpf_adj_linfo(prog_adj, off, insn_delta);
 489
 490	return prog_adj;
 491}
 492
 493int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 494{
 495	/* Branch offsets can't overflow when program is shrinking, no need
 496	 * to call bpf_adj_branches(..., true) here
 497	 */
 498	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 499		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 500	prog->len -= cnt;
 501
 502	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 503}
 504
 505static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 506{
 507	int i;
 508
 509	for (i = 0; i < fp->aux->func_cnt; i++)
 510		bpf_prog_kallsyms_del(fp->aux->func[i]);
 511}
 512
 513void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 514{
 515	bpf_prog_kallsyms_del_subprogs(fp);
 516	bpf_prog_kallsyms_del(fp);
 517}
 518
 519#ifdef CONFIG_BPF_JIT
 520/* All BPF JIT sysctl knobs here. */
 521int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 522int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 523int bpf_jit_harden   __read_mostly;
 524long bpf_jit_limit   __read_mostly;
 525
 526static void
 527bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 
 
 528{
 529	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 530	unsigned long addr = (unsigned long)hdr;
 531
 532	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 533
 534	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 535	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
 536}
 537
 538static void
 539bpf_prog_ksym_set_name(struct bpf_prog *prog)
 540{
 541	char *sym = prog->aux->ksym.name;
 542	const char *end = sym + KSYM_NAME_LEN;
 543	const struct btf_type *type;
 544	const char *func_name;
 545
 546	BUILD_BUG_ON(sizeof("bpf_prog_") +
 547		     sizeof(prog->tag) * 2 +
 548		     /* name has been null terminated.
 549		      * We should need +1 for the '_' preceding
 550		      * the name.  However, the null character
 551		      * is double counted between the name and the
 552		      * sizeof("bpf_prog_") above, so we omit
 553		      * the +1 here.
 554		      */
 555		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 556
 557	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 558	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 559
 560	/* prog->aux->name will be ignored if full btf name is available */
 561	if (prog->aux->func_info_cnt) {
 562		type = btf_type_by_id(prog->aux->btf,
 563				      prog->aux->func_info[prog->aux->func_idx].type_id);
 564		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 565		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 566		return;
 567	}
 568
 569	if (prog->aux->name[0])
 570		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 571	else
 572		*sym = 0;
 573}
 574
 575static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 
 576{
 577	return container_of(n, struct bpf_ksym, tnode)->start;
 
 
 
 
 
 
 578}
 579
 580static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 581					  struct latch_tree_node *b)
 582{
 583	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 584}
 585
 586static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 587{
 588	unsigned long val = (unsigned long)key;
 589	const struct bpf_ksym *ksym;
 
 590
 591	ksym = container_of(n, struct bpf_ksym, tnode);
 
 592
 593	if (val < ksym->start)
 594		return -1;
 595	if (val >= ksym->end)
 596		return  1;
 597
 598	return 0;
 599}
 600
 601static const struct latch_tree_ops bpf_tree_ops = {
 602	.less	= bpf_tree_less,
 603	.comp	= bpf_tree_comp,
 604};
 605
 606static DEFINE_SPINLOCK(bpf_lock);
 607static LIST_HEAD(bpf_kallsyms);
 608static struct latch_tree_root bpf_tree __cacheline_aligned;
 609
 610void bpf_ksym_add(struct bpf_ksym *ksym)
 611{
 612	spin_lock_bh(&bpf_lock);
 613	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 614	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 615	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 616	spin_unlock_bh(&bpf_lock);
 617}
 618
 619static void __bpf_ksym_del(struct bpf_ksym *ksym)
 620{
 621	if (list_empty(&ksym->lnode))
 622		return;
 623
 624	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 625	list_del_rcu(&ksym->lnode);
 626}
 627
 628void bpf_ksym_del(struct bpf_ksym *ksym)
 629{
 630	spin_lock_bh(&bpf_lock);
 631	__bpf_ksym_del(ksym);
 632	spin_unlock_bh(&bpf_lock);
 633}
 634
 635static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 636{
 637	return fp->jited && !bpf_prog_was_classic(fp);
 638}
 639
 640static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 641{
 642	return list_empty(&fp->aux->ksym.lnode) ||
 643	       fp->aux->ksym.lnode.prev == LIST_POISON2;
 644}
 645
 646void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 647{
 648	if (!bpf_prog_kallsyms_candidate(fp) ||
 649	    !bpf_capable())
 650		return;
 651
 652	bpf_prog_ksym_set_addr(fp);
 653	bpf_prog_ksym_set_name(fp);
 654	fp->aux->ksym.prog = true;
 655
 656	bpf_ksym_add(&fp->aux->ksym);
 657}
 658
 659void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 660{
 661	if (!bpf_prog_kallsyms_candidate(fp))
 662		return;
 663
 664	bpf_ksym_del(&fp->aux->ksym);
 
 
 665}
 666
 667static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 668{
 669	struct latch_tree_node *n;
 670
 
 
 
 671	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 672	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 
 
 673}
 674
 675const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 676				 unsigned long *off, char *sym)
 677{
 678	struct bpf_ksym *ksym;
 
 679	char *ret = NULL;
 680
 681	rcu_read_lock();
 682	ksym = bpf_ksym_find(addr);
 683	if (ksym) {
 684		unsigned long symbol_start = ksym->start;
 685		unsigned long symbol_end = ksym->end;
 686
 687		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 688
 689		ret = sym;
 690		if (size)
 691			*size = symbol_end - symbol_start;
 692		if (off)
 693			*off  = addr - symbol_start;
 694	}
 695	rcu_read_unlock();
 696
 697	return ret;
 698}
 699
 700bool is_bpf_text_address(unsigned long addr)
 701{
 702	bool ret;
 703
 704	rcu_read_lock();
 705	ret = bpf_ksym_find(addr) != NULL;
 706	rcu_read_unlock();
 707
 708	return ret;
 709}
 710
 711static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 712{
 713	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 714
 715	return ksym && ksym->prog ?
 716	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 717	       NULL;
 718}
 719
 720const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 721{
 722	const struct exception_table_entry *e = NULL;
 723	struct bpf_prog *prog;
 724
 725	rcu_read_lock();
 726	prog = bpf_prog_ksym_find(addr);
 727	if (!prog)
 728		goto out;
 729	if (!prog->aux->num_exentries)
 730		goto out;
 731
 732	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 733out:
 734	rcu_read_unlock();
 735	return e;
 736}
 737
 738int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 739		    char *sym)
 740{
 741	struct bpf_ksym *ksym;
 
 742	unsigned int it = 0;
 743	int ret = -ERANGE;
 744
 745	if (!bpf_jit_kallsyms_enabled())
 746		return ret;
 747
 748	rcu_read_lock();
 749	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 750		if (it++ != symnum)
 751			continue;
 752
 753		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 
 754
 755		*value = ksym->start;
 756		*type  = BPF_SYM_ELF_TYPE;
 757
 758		ret = 0;
 759		break;
 760	}
 761	rcu_read_unlock();
 762
 763	return ret;
 764}
 765
 766int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 767				struct bpf_jit_poke_descriptor *poke)
 768{
 769	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 770	static const u32 poke_tab_max = 1024;
 771	u32 slot = prog->aux->size_poke_tab;
 772	u32 size = slot + 1;
 773
 774	if (size > poke_tab_max)
 775		return -ENOSPC;
 776	if (poke->ip || poke->ip_stable || poke->adj_off)
 777		return -EINVAL;
 778
 779	switch (poke->reason) {
 780	case BPF_POKE_REASON_TAIL_CALL:
 781		if (!poke->tail_call.map)
 782			return -EINVAL;
 783		break;
 784	default:
 785		return -EINVAL;
 786	}
 787
 788	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 789	if (!tab)
 790		return -ENOMEM;
 791
 792	memcpy(&tab[slot], poke, sizeof(*poke));
 793	prog->aux->size_poke_tab = size;
 794	prog->aux->poke_tab = tab;
 795
 796	return slot;
 797}
 798
 799static atomic_long_t bpf_jit_current;
 800
 801/* Can be overridden by an arch's JIT compiler if it has a custom,
 802 * dedicated BPF backend memory area, or if neither of the two
 803 * below apply.
 804 */
 805u64 __weak bpf_jit_alloc_exec_limit(void)
 806{
 807#if defined(MODULES_VADDR)
 808	return MODULES_END - MODULES_VADDR;
 809#else
 810	return VMALLOC_END - VMALLOC_START;
 811#endif
 812}
 813
 814static int __init bpf_jit_charge_init(void)
 815{
 816	/* Only used as heuristic here to derive limit. */
 817	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
 818					    PAGE_SIZE), LONG_MAX);
 819	return 0;
 820}
 821pure_initcall(bpf_jit_charge_init);
 822
 823static int bpf_jit_charge_modmem(u32 pages)
 824{
 825	if (atomic_long_add_return(pages, &bpf_jit_current) >
 826	    (bpf_jit_limit >> PAGE_SHIFT)) {
 827		if (!capable(CAP_SYS_ADMIN)) {
 828			atomic_long_sub(pages, &bpf_jit_current);
 829			return -EPERM;
 830		}
 831	}
 832
 833	return 0;
 834}
 835
 836static void bpf_jit_uncharge_modmem(u32 pages)
 837{
 838	atomic_long_sub(pages, &bpf_jit_current);
 839}
 840
 841void *__weak bpf_jit_alloc_exec(unsigned long size)
 842{
 843	return module_alloc(size);
 844}
 845
 846void __weak bpf_jit_free_exec(void *addr)
 847{
 848	module_memfree(addr);
 849}
 850
 851struct bpf_binary_header *
 852bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 853		     unsigned int alignment,
 854		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 855{
 856	struct bpf_binary_header *hdr;
 857	u32 size, hole, start, pages;
 858
 859	WARN_ON_ONCE(!is_power_of_2(alignment) ||
 860		     alignment > BPF_IMAGE_ALIGNMENT);
 861
 862	/* Most of BPF filters are really small, but if some of them
 863	 * fill a page, allow at least 128 extra bytes to insert a
 864	 * random section of illegal instructions.
 865	 */
 866	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 867	pages = size / PAGE_SIZE;
 868
 869	if (bpf_jit_charge_modmem(pages))
 870		return NULL;
 871	hdr = bpf_jit_alloc_exec(size);
 872	if (!hdr) {
 873		bpf_jit_uncharge_modmem(pages);
 874		return NULL;
 875	}
 876
 877	/* Fill space with illegal/arch-dep instructions. */
 878	bpf_fill_ill_insns(hdr, size);
 879
 880	hdr->pages = pages;
 881	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 882		     PAGE_SIZE - sizeof(*hdr));
 883	start = (get_random_int() % hole) & ~(alignment - 1);
 884
 885	/* Leave a random number of instructions before BPF code. */
 886	*image_ptr = &hdr->image[start];
 887
 888	return hdr;
 889}
 890
 891void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 892{
 893	u32 pages = hdr->pages;
 894
 895	bpf_jit_free_exec(hdr);
 896	bpf_jit_uncharge_modmem(pages);
 897}
 898
 899/* This symbol is only overridden by archs that have different
 900 * requirements than the usual eBPF JITs, f.e. when they only
 901 * implement cBPF JIT, do not set images read-only, etc.
 902 */
 903void __weak bpf_jit_free(struct bpf_prog *fp)
 904{
 905	if (fp->jited) {
 906		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 907
 
 908		bpf_jit_binary_free(hdr);
 909
 910		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 911	}
 912
 913	bpf_prog_unlock_free(fp);
 914}
 915
 916int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 917			  const struct bpf_insn *insn, bool extra_pass,
 918			  u64 *func_addr, bool *func_addr_fixed)
 919{
 920	s16 off = insn->off;
 921	s32 imm = insn->imm;
 922	u8 *addr;
 923
 924	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
 925	if (!*func_addr_fixed) {
 926		/* Place-holder address till the last pass has collected
 927		 * all addresses for JITed subprograms in which case we
 928		 * can pick them up from prog->aux.
 929		 */
 930		if (!extra_pass)
 931			addr = NULL;
 932		else if (prog->aux->func &&
 933			 off >= 0 && off < prog->aux->func_cnt)
 934			addr = (u8 *)prog->aux->func[off]->bpf_func;
 935		else
 936			return -EINVAL;
 937	} else {
 938		/* Address of a BPF helper call. Since part of the core
 939		 * kernel, it's always at a fixed location. __bpf_call_base
 940		 * and the helper with imm relative to it are both in core
 941		 * kernel.
 942		 */
 943		addr = (u8 *)__bpf_call_base + imm;
 944	}
 945
 946	*func_addr = (unsigned long)addr;
 947	return 0;
 948}
 949
 950static int bpf_jit_blind_insn(const struct bpf_insn *from,
 951			      const struct bpf_insn *aux,
 952			      struct bpf_insn *to_buff,
 953			      bool emit_zext)
 954{
 955	struct bpf_insn *to = to_buff;
 956	u32 imm_rnd = get_random_int();
 957	s16 off;
 958
 959	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 960	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 961
 962	/* Constraints on AX register:
 963	 *
 964	 * AX register is inaccessible from user space. It is mapped in
 965	 * all JITs, and used here for constant blinding rewrites. It is
 966	 * typically "stateless" meaning its contents are only valid within
 967	 * the executed instruction, but not across several instructions.
 968	 * There are a few exceptions however which are further detailed
 969	 * below.
 970	 *
 971	 * Constant blinding is only used by JITs, not in the interpreter.
 972	 * The interpreter uses AX in some occasions as a local temporary
 973	 * register e.g. in DIV or MOD instructions.
 974	 *
 975	 * In restricted circumstances, the verifier can also use the AX
 976	 * register for rewrites as long as they do not interfere with
 977	 * the above cases!
 978	 */
 979	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
 980		goto out;
 981
 982	if (from->imm == 0 &&
 983	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 984	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 985		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 986		goto out;
 987	}
 988
 989	switch (from->code) {
 990	case BPF_ALU | BPF_ADD | BPF_K:
 991	case BPF_ALU | BPF_SUB | BPF_K:
 992	case BPF_ALU | BPF_AND | BPF_K:
 993	case BPF_ALU | BPF_OR  | BPF_K:
 994	case BPF_ALU | BPF_XOR | BPF_K:
 995	case BPF_ALU | BPF_MUL | BPF_K:
 996	case BPF_ALU | BPF_MOV | BPF_K:
 997	case BPF_ALU | BPF_DIV | BPF_K:
 998	case BPF_ALU | BPF_MOD | BPF_K:
 999		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1000		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1001		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1002		break;
1003
1004	case BPF_ALU64 | BPF_ADD | BPF_K:
1005	case BPF_ALU64 | BPF_SUB | BPF_K:
1006	case BPF_ALU64 | BPF_AND | BPF_K:
1007	case BPF_ALU64 | BPF_OR  | BPF_K:
1008	case BPF_ALU64 | BPF_XOR | BPF_K:
1009	case BPF_ALU64 | BPF_MUL | BPF_K:
1010	case BPF_ALU64 | BPF_MOV | BPF_K:
1011	case BPF_ALU64 | BPF_DIV | BPF_K:
1012	case BPF_ALU64 | BPF_MOD | BPF_K:
1013		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1014		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1015		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1016		break;
1017
1018	case BPF_JMP | BPF_JEQ  | BPF_K:
1019	case BPF_JMP | BPF_JNE  | BPF_K:
1020	case BPF_JMP | BPF_JGT  | BPF_K:
1021	case BPF_JMP | BPF_JLT  | BPF_K:
1022	case BPF_JMP | BPF_JGE  | BPF_K:
1023	case BPF_JMP | BPF_JLE  | BPF_K:
1024	case BPF_JMP | BPF_JSGT | BPF_K:
1025	case BPF_JMP | BPF_JSLT | BPF_K:
1026	case BPF_JMP | BPF_JSGE | BPF_K:
1027	case BPF_JMP | BPF_JSLE | BPF_K:
1028	case BPF_JMP | BPF_JSET | BPF_K:
1029		/* Accommodate for extra offset in case of a backjump. */
1030		off = from->off;
1031		if (off < 0)
1032			off -= 2;
1033		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1036		break;
1037
1038	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1039	case BPF_JMP32 | BPF_JNE  | BPF_K:
1040	case BPF_JMP32 | BPF_JGT  | BPF_K:
1041	case BPF_JMP32 | BPF_JLT  | BPF_K:
1042	case BPF_JMP32 | BPF_JGE  | BPF_K:
1043	case BPF_JMP32 | BPF_JLE  | BPF_K:
1044	case BPF_JMP32 | BPF_JSGT | BPF_K:
1045	case BPF_JMP32 | BPF_JSLT | BPF_K:
1046	case BPF_JMP32 | BPF_JSGE | BPF_K:
1047	case BPF_JMP32 | BPF_JSLE | BPF_K:
1048	case BPF_JMP32 | BPF_JSET | BPF_K:
1049		/* Accommodate for extra offset in case of a backjump. */
1050		off = from->off;
1051		if (off < 0)
1052			off -= 2;
1053		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1054		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1055		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1056				      off);
1057		break;
1058
1059	case BPF_LD | BPF_IMM | BPF_DW:
1060		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1061		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1063		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1064		break;
1065	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1066		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1067		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1068		if (emit_zext)
1069			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1070		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1071		break;
1072
1073	case BPF_ST | BPF_MEM | BPF_DW:
1074	case BPF_ST | BPF_MEM | BPF_W:
1075	case BPF_ST | BPF_MEM | BPF_H:
1076	case BPF_ST | BPF_MEM | BPF_B:
1077		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1078		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1079		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1080		break;
1081	}
1082out:
1083	return to - to_buff;
1084}
1085
1086static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1087					      gfp_t gfp_extra_flags)
1088{
1089	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1090	struct bpf_prog *fp;
1091
1092	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1093	if (fp != NULL) {
1094		/* aux->prog still points to the fp_other one, so
1095		 * when promoting the clone to the real program,
1096		 * this still needs to be adapted.
1097		 */
1098		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1099	}
1100
1101	return fp;
1102}
1103
1104static void bpf_prog_clone_free(struct bpf_prog *fp)
1105{
1106	/* aux was stolen by the other clone, so we cannot free
1107	 * it from this path! It will be freed eventually by the
1108	 * other program on release.
1109	 *
1110	 * At this point, we don't need a deferred release since
1111	 * clone is guaranteed to not be locked.
1112	 */
1113	fp->aux = NULL;
1114	__bpf_prog_free(fp);
1115}
1116
1117void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1118{
1119	/* We have to repoint aux->prog to self, as we don't
1120	 * know whether fp here is the clone or the original.
1121	 */
1122	fp->aux->prog = fp;
1123	bpf_prog_clone_free(fp_other);
1124}
1125
1126struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1127{
1128	struct bpf_insn insn_buff[16], aux[2];
1129	struct bpf_prog *clone, *tmp;
1130	int insn_delta, insn_cnt;
1131	struct bpf_insn *insn;
1132	int i, rewritten;
1133
1134	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1135		return prog;
1136
1137	clone = bpf_prog_clone_create(prog, GFP_USER);
1138	if (!clone)
1139		return ERR_PTR(-ENOMEM);
1140
1141	insn_cnt = clone->len;
1142	insn = clone->insnsi;
1143
1144	for (i = 0; i < insn_cnt; i++, insn++) {
1145		/* We temporarily need to hold the original ld64 insn
1146		 * so that we can still access the first part in the
1147		 * second blinding run.
1148		 */
1149		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1150		    insn[1].code == 0)
1151			memcpy(aux, insn, sizeof(aux));
1152
1153		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1154						clone->aux->verifier_zext);
1155		if (!rewritten)
1156			continue;
1157
1158		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1159		if (IS_ERR(tmp)) {
1160			/* Patching may have repointed aux->prog during
1161			 * realloc from the original one, so we need to
1162			 * fix it up here on error.
1163			 */
1164			bpf_jit_prog_release_other(prog, clone);
1165			return tmp;
1166		}
1167
1168		clone = tmp;
1169		insn_delta = rewritten - 1;
1170
1171		/* Walk new program and skip insns we just inserted. */
1172		insn = clone->insnsi + i + insn_delta;
1173		insn_cnt += insn_delta;
1174		i        += insn_delta;
1175	}
1176
1177	clone->blinded = 1;
1178	return clone;
1179}
1180#endif /* CONFIG_BPF_JIT */
1181
1182/* Base function for offset calculation. Needs to go into .text section,
1183 * therefore keeping it non-static as well; will also be used by JITs
1184 * anyway later on, so do not let the compiler omit it. This also needs
1185 * to go into kallsyms for correlation from e.g. bpftool, so naming
1186 * must not change.
1187 */
1188noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1189{
1190	return 0;
1191}
1192EXPORT_SYMBOL_GPL(__bpf_call_base);
1193
1194/* All UAPI available opcodes. */
1195#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1196	/* 32 bit ALU operations. */		\
1197	/*   Register based. */			\
1198	INSN_3(ALU, ADD,  X),			\
1199	INSN_3(ALU, SUB,  X),			\
1200	INSN_3(ALU, AND,  X),			\
1201	INSN_3(ALU, OR,   X),			\
1202	INSN_3(ALU, LSH,  X),			\
1203	INSN_3(ALU, RSH,  X),			\
1204	INSN_3(ALU, XOR,  X),			\
1205	INSN_3(ALU, MUL,  X),			\
1206	INSN_3(ALU, MOV,  X),			\
1207	INSN_3(ALU, ARSH, X),			\
1208	INSN_3(ALU, DIV,  X),			\
1209	INSN_3(ALU, MOD,  X),			\
1210	INSN_2(ALU, NEG),			\
1211	INSN_3(ALU, END, TO_BE),		\
1212	INSN_3(ALU, END, TO_LE),		\
1213	/*   Immediate based. */		\
1214	INSN_3(ALU, ADD,  K),			\
1215	INSN_3(ALU, SUB,  K),			\
1216	INSN_3(ALU, AND,  K),			\
1217	INSN_3(ALU, OR,   K),			\
1218	INSN_3(ALU, LSH,  K),			\
1219	INSN_3(ALU, RSH,  K),			\
1220	INSN_3(ALU, XOR,  K),			\
1221	INSN_3(ALU, MUL,  K),			\
1222	INSN_3(ALU, MOV,  K),			\
1223	INSN_3(ALU, ARSH, K),			\
1224	INSN_3(ALU, DIV,  K),			\
1225	INSN_3(ALU, MOD,  K),			\
1226	/* 64 bit ALU operations. */		\
1227	/*   Register based. */			\
1228	INSN_3(ALU64, ADD,  X),			\
1229	INSN_3(ALU64, SUB,  X),			\
1230	INSN_3(ALU64, AND,  X),			\
1231	INSN_3(ALU64, OR,   X),			\
1232	INSN_3(ALU64, LSH,  X),			\
1233	INSN_3(ALU64, RSH,  X),			\
1234	INSN_3(ALU64, XOR,  X),			\
1235	INSN_3(ALU64, MUL,  X),			\
1236	INSN_3(ALU64, MOV,  X),			\
1237	INSN_3(ALU64, ARSH, X),			\
1238	INSN_3(ALU64, DIV,  X),			\
1239	INSN_3(ALU64, MOD,  X),			\
1240	INSN_2(ALU64, NEG),			\
1241	/*   Immediate based. */		\
1242	INSN_3(ALU64, ADD,  K),			\
1243	INSN_3(ALU64, SUB,  K),			\
1244	INSN_3(ALU64, AND,  K),			\
1245	INSN_3(ALU64, OR,   K),			\
1246	INSN_3(ALU64, LSH,  K),			\
1247	INSN_3(ALU64, RSH,  K),			\
1248	INSN_3(ALU64, XOR,  K),			\
1249	INSN_3(ALU64, MUL,  K),			\
1250	INSN_3(ALU64, MOV,  K),			\
1251	INSN_3(ALU64, ARSH, K),			\
1252	INSN_3(ALU64, DIV,  K),			\
1253	INSN_3(ALU64, MOD,  K),			\
1254	/* Call instruction. */			\
1255	INSN_2(JMP, CALL),			\
1256	/* Exit instruction. */			\
1257	INSN_2(JMP, EXIT),			\
1258	/* 32-bit Jump instructions. */		\
1259	/*   Register based. */			\
1260	INSN_3(JMP32, JEQ,  X),			\
1261	INSN_3(JMP32, JNE,  X),			\
1262	INSN_3(JMP32, JGT,  X),			\
1263	INSN_3(JMP32, JLT,  X),			\
1264	INSN_3(JMP32, JGE,  X),			\
1265	INSN_3(JMP32, JLE,  X),			\
1266	INSN_3(JMP32, JSGT, X),			\
1267	INSN_3(JMP32, JSLT, X),			\
1268	INSN_3(JMP32, JSGE, X),			\
1269	INSN_3(JMP32, JSLE, X),			\
1270	INSN_3(JMP32, JSET, X),			\
1271	/*   Immediate based. */		\
1272	INSN_3(JMP32, JEQ,  K),			\
1273	INSN_3(JMP32, JNE,  K),			\
1274	INSN_3(JMP32, JGT,  K),			\
1275	INSN_3(JMP32, JLT,  K),			\
1276	INSN_3(JMP32, JGE,  K),			\
1277	INSN_3(JMP32, JLE,  K),			\
1278	INSN_3(JMP32, JSGT, K),			\
1279	INSN_3(JMP32, JSLT, K),			\
1280	INSN_3(JMP32, JSGE, K),			\
1281	INSN_3(JMP32, JSLE, K),			\
1282	INSN_3(JMP32, JSET, K),			\
1283	/* Jump instructions. */		\
1284	/*   Register based. */			\
1285	INSN_3(JMP, JEQ,  X),			\
1286	INSN_3(JMP, JNE,  X),			\
1287	INSN_3(JMP, JGT,  X),			\
1288	INSN_3(JMP, JLT,  X),			\
1289	INSN_3(JMP, JGE,  X),			\
1290	INSN_3(JMP, JLE,  X),			\
1291	INSN_3(JMP, JSGT, X),			\
1292	INSN_3(JMP, JSLT, X),			\
1293	INSN_3(JMP, JSGE, X),			\
1294	INSN_3(JMP, JSLE, X),			\
1295	INSN_3(JMP, JSET, X),			\
1296	/*   Immediate based. */		\
1297	INSN_3(JMP, JEQ,  K),			\
1298	INSN_3(JMP, JNE,  K),			\
1299	INSN_3(JMP, JGT,  K),			\
1300	INSN_3(JMP, JLT,  K),			\
1301	INSN_3(JMP, JGE,  K),			\
1302	INSN_3(JMP, JLE,  K),			\
1303	INSN_3(JMP, JSGT, K),			\
1304	INSN_3(JMP, JSLT, K),			\
1305	INSN_3(JMP, JSGE, K),			\
1306	INSN_3(JMP, JSLE, K),			\
1307	INSN_3(JMP, JSET, K),			\
1308	INSN_2(JMP, JA),			\
1309	/* Store instructions. */		\
1310	/*   Register based. */			\
1311	INSN_3(STX, MEM,  B),			\
1312	INSN_3(STX, MEM,  H),			\
1313	INSN_3(STX, MEM,  W),			\
1314	INSN_3(STX, MEM,  DW),			\
1315	INSN_3(STX, XADD, W),			\
1316	INSN_3(STX, XADD, DW),			\
1317	/*   Immediate based. */		\
1318	INSN_3(ST, MEM, B),			\
1319	INSN_3(ST, MEM, H),			\
1320	INSN_3(ST, MEM, W),			\
1321	INSN_3(ST, MEM, DW),			\
1322	/* Load instructions. */		\
1323	/*   Register based. */			\
1324	INSN_3(LDX, MEM, B),			\
1325	INSN_3(LDX, MEM, H),			\
1326	INSN_3(LDX, MEM, W),			\
1327	INSN_3(LDX, MEM, DW),			\
1328	/*   Immediate based. */		\
1329	INSN_3(LD, IMM, DW)
 
 
 
 
 
 
 
1330
1331bool bpf_opcode_in_insntable(u8 code)
1332{
1333#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1334#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1335	static const bool public_insntable[256] = {
1336		[0 ... 255] = false,
1337		/* Now overwrite non-defaults ... */
1338		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1339		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1340		[BPF_LD | BPF_ABS | BPF_B] = true,
1341		[BPF_LD | BPF_ABS | BPF_H] = true,
1342		[BPF_LD | BPF_ABS | BPF_W] = true,
1343		[BPF_LD | BPF_IND | BPF_B] = true,
1344		[BPF_LD | BPF_IND | BPF_H] = true,
1345		[BPF_LD | BPF_IND | BPF_W] = true,
1346	};
1347#undef BPF_INSN_3_TBL
1348#undef BPF_INSN_2_TBL
1349	return public_insntable[code];
1350}
1351
1352#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1353u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1354{
1355	memset(dst, 0, size);
1356	return -EFAULT;
1357}
1358
1359/**
1360 *	__bpf_prog_run - run eBPF program on a given context
1361 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1362 *	@insn: is the array of eBPF instructions
1363 *	@stack: is the eBPF storage stack
1364 *
1365 * Decode and execute eBPF instructions.
1366 */
1367static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1368{
 
1369#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1370#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1371	static const void * const jumptable[256] __annotate_jump_table = {
1372		[0 ... 255] = &&default_label,
1373		/* Now overwrite non-defaults ... */
1374		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1375		/* Non-UAPI available opcodes. */
1376		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1377		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1378		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1379		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1380		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1381		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1382	};
1383#undef BPF_INSN_3_LBL
1384#undef BPF_INSN_2_LBL
1385	u32 tail_call_cnt = 0;
 
 
1386
1387#define CONT	 ({ insn++; goto select_insn; })
1388#define CONT_JMP ({ insn++; goto select_insn; })
1389
1390select_insn:
1391	goto *jumptable[insn->code];
1392
1393	/* ALU */
1394#define ALU(OPCODE, OP)			\
1395	ALU64_##OPCODE##_X:		\
1396		DST = DST OP SRC;	\
1397		CONT;			\
1398	ALU_##OPCODE##_X:		\
1399		DST = (u32) DST OP (u32) SRC;	\
1400		CONT;			\
1401	ALU64_##OPCODE##_K:		\
1402		DST = DST OP IMM;		\
1403		CONT;			\
1404	ALU_##OPCODE##_K:		\
1405		DST = (u32) DST OP (u32) IMM;	\
1406		CONT;
1407
1408	ALU(ADD,  +)
1409	ALU(SUB,  -)
1410	ALU(AND,  &)
1411	ALU(OR,   |)
1412	ALU(LSH, <<)
1413	ALU(RSH, >>)
1414	ALU(XOR,  ^)
1415	ALU(MUL,  *)
1416#undef ALU
1417	ALU_NEG:
1418		DST = (u32) -DST;
1419		CONT;
1420	ALU64_NEG:
1421		DST = -DST;
1422		CONT;
1423	ALU_MOV_X:
1424		DST = (u32) SRC;
1425		CONT;
1426	ALU_MOV_K:
1427		DST = (u32) IMM;
1428		CONT;
1429	ALU64_MOV_X:
1430		DST = SRC;
1431		CONT;
1432	ALU64_MOV_K:
1433		DST = IMM;
1434		CONT;
1435	LD_IMM_DW:
1436		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1437		insn++;
1438		CONT;
1439	ALU_ARSH_X:
1440		DST = (u64) (u32) (((s32) DST) >> SRC);
1441		CONT;
1442	ALU_ARSH_K:
1443		DST = (u64) (u32) (((s32) DST) >> IMM);
1444		CONT;
1445	ALU64_ARSH_X:
1446		(*(s64 *) &DST) >>= SRC;
1447		CONT;
1448	ALU64_ARSH_K:
1449		(*(s64 *) &DST) >>= IMM;
1450		CONT;
1451	ALU64_MOD_X:
1452		div64_u64_rem(DST, SRC, &AX);
1453		DST = AX;
1454		CONT;
1455	ALU_MOD_X:
1456		AX = (u32) DST;
1457		DST = do_div(AX, (u32) SRC);
1458		CONT;
1459	ALU64_MOD_K:
1460		div64_u64_rem(DST, IMM, &AX);
1461		DST = AX;
1462		CONT;
1463	ALU_MOD_K:
1464		AX = (u32) DST;
1465		DST = do_div(AX, (u32) IMM);
1466		CONT;
1467	ALU64_DIV_X:
1468		DST = div64_u64(DST, SRC);
1469		CONT;
1470	ALU_DIV_X:
1471		AX = (u32) DST;
1472		do_div(AX, (u32) SRC);
1473		DST = (u32) AX;
1474		CONT;
1475	ALU64_DIV_K:
1476		DST = div64_u64(DST, IMM);
1477		CONT;
1478	ALU_DIV_K:
1479		AX = (u32) DST;
1480		do_div(AX, (u32) IMM);
1481		DST = (u32) AX;
1482		CONT;
1483	ALU_END_TO_BE:
1484		switch (IMM) {
1485		case 16:
1486			DST = (__force u16) cpu_to_be16(DST);
1487			break;
1488		case 32:
1489			DST = (__force u32) cpu_to_be32(DST);
1490			break;
1491		case 64:
1492			DST = (__force u64) cpu_to_be64(DST);
1493			break;
1494		}
1495		CONT;
1496	ALU_END_TO_LE:
1497		switch (IMM) {
1498		case 16:
1499			DST = (__force u16) cpu_to_le16(DST);
1500			break;
1501		case 32:
1502			DST = (__force u32) cpu_to_le32(DST);
1503			break;
1504		case 64:
1505			DST = (__force u64) cpu_to_le64(DST);
1506			break;
1507		}
1508		CONT;
1509
1510	/* CALL */
1511	JMP_CALL:
1512		/* Function call scratches BPF_R1-BPF_R5 registers,
1513		 * preserves BPF_R6-BPF_R9, and stores return value
1514		 * into BPF_R0.
1515		 */
1516		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1517						       BPF_R4, BPF_R5);
1518		CONT;
1519
1520	JMP_CALL_ARGS:
1521		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1522							    BPF_R3, BPF_R4,
1523							    BPF_R5,
1524							    insn + insn->off + 1);
1525		CONT;
1526
1527	JMP_TAIL_CALL: {
1528		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1529		struct bpf_array *array = container_of(map, struct bpf_array, map);
1530		struct bpf_prog *prog;
1531		u32 index = BPF_R3;
1532
1533		if (unlikely(index >= array->map.max_entries))
1534			goto out;
1535		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1536			goto out;
1537
1538		tail_call_cnt++;
1539
1540		prog = READ_ONCE(array->ptrs[index]);
1541		if (!prog)
1542			goto out;
1543
1544		/* ARG1 at this point is guaranteed to point to CTX from
1545		 * the verifier side due to the fact that the tail call is
1546		 * handled like a helper, that is, bpf_tail_call_proto,
1547		 * where arg1_type is ARG_PTR_TO_CTX.
1548		 */
1549		insn = prog->insnsi;
1550		goto select_insn;
1551out:
1552		CONT;
1553	}
 
1554	JMP_JA:
1555		insn += insn->off;
1556		CONT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557	JMP_EXIT:
1558		return BPF_R0;
1559	/* JMP */
1560#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1561	JMP_##OPCODE##_X:					\
1562		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1563			insn += insn->off;			\
1564			CONT_JMP;				\
1565		}						\
1566		CONT;						\
1567	JMP32_##OPCODE##_X:					\
1568		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1569			insn += insn->off;			\
1570			CONT_JMP;				\
1571		}						\
1572		CONT;						\
1573	JMP_##OPCODE##_K:					\
1574		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1575			insn += insn->off;			\
1576			CONT_JMP;				\
1577		}						\
1578		CONT;						\
1579	JMP32_##OPCODE##_K:					\
1580		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1581			insn += insn->off;			\
1582			CONT_JMP;				\
1583		}						\
1584		CONT;
1585	COND_JMP(u, JEQ, ==)
1586	COND_JMP(u, JNE, !=)
1587	COND_JMP(u, JGT, >)
1588	COND_JMP(u, JLT, <)
1589	COND_JMP(u, JGE, >=)
1590	COND_JMP(u, JLE, <=)
1591	COND_JMP(u, JSET, &)
1592	COND_JMP(s, JSGT, >)
1593	COND_JMP(s, JSLT, <)
1594	COND_JMP(s, JSGE, >=)
1595	COND_JMP(s, JSLE, <=)
1596#undef COND_JMP
1597	/* STX and ST and LDX*/
1598#define LDST(SIZEOP, SIZE)						\
1599	STX_MEM_##SIZEOP:						\
1600		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1601		CONT;							\
1602	ST_MEM_##SIZEOP:						\
1603		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1604		CONT;							\
1605	LDX_MEM_##SIZEOP:						\
1606		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1607		CONT;
1608
1609	LDST(B,   u8)
1610	LDST(H,  u16)
1611	LDST(W,  u32)
1612	LDST(DW, u64)
1613#undef LDST
1614#define LDX_PROBE(SIZEOP, SIZE)							\
1615	LDX_PROBE_MEM_##SIZEOP:							\
1616		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1617		CONT;
1618	LDX_PROBE(B,  1)
1619	LDX_PROBE(H,  2)
1620	LDX_PROBE(W,  4)
1621	LDX_PROBE(DW, 8)
1622#undef LDX_PROBE
1623
1624	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1625		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1626			   (DST + insn->off));
1627		CONT;
1628	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1629		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1630			     (DST + insn->off));
1631		CONT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
1633	default_label:
1634		/* If we ever reach this, we have a bug somewhere. Die hard here
1635		 * instead of just returning 0; we could be somewhere in a subprog,
1636		 * so execution could continue otherwise which we do /not/ want.
1637		 *
1638		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1639		 */
1640		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1641		BUG_ON(1);
1642		return 0;
1643}
 
1644
1645#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1646#define DEFINE_BPF_PROG_RUN(stack_size) \
1647static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1648{ \
1649	u64 stack[stack_size / sizeof(u64)]; \
1650	u64 regs[MAX_BPF_EXT_REG]; \
1651\
1652	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1653	ARG1 = (u64) (unsigned long) ctx; \
1654	return ___bpf_prog_run(regs, insn, stack); \
1655}
1656
1657#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1658#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1659static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1660				      const struct bpf_insn *insn) \
1661{ \
1662	u64 stack[stack_size / sizeof(u64)]; \
1663	u64 regs[MAX_BPF_EXT_REG]; \
1664\
1665	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1666	BPF_R1 = r1; \
1667	BPF_R2 = r2; \
1668	BPF_R3 = r3; \
1669	BPF_R4 = r4; \
1670	BPF_R5 = r5; \
1671	return ___bpf_prog_run(regs, insn, stack); \
1672}
1673
1674#define EVAL1(FN, X) FN(X)
1675#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1676#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1677#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1678#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1679#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1680
1681EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1682EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1683EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1684
1685EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1686EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1687EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1688
1689#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1690
1691static unsigned int (*interpreters[])(const void *ctx,
1692				      const struct bpf_insn *insn) = {
1693EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1694EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1695EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1696};
1697#undef PROG_NAME_LIST
1698#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1699static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1700				  const struct bpf_insn *insn) = {
1701EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1702EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1703EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1704};
1705#undef PROG_NAME_LIST
1706
1707void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1708{
1709	stack_depth = max_t(u32, stack_depth, 1);
1710	insn->off = (s16) insn->imm;
1711	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1712		__bpf_call_base_args;
1713	insn->code = BPF_JMP | BPF_CALL_ARGS;
1714}
1715
1716#else
1717static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1718					 const struct bpf_insn *insn)
1719{
1720	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1721	 * is not working properly, so warn about it!
1722	 */
1723	WARN_ON_ONCE(1);
1724	return 0;
1725}
1726#endif
1727
1728bool bpf_prog_array_compatible(struct bpf_array *array,
1729			       const struct bpf_prog *fp)
1730{
1731	if (fp->kprobe_override)
1732		return false;
1733
1734	if (!array->aux->type) {
1735		/* There's no owner yet where we could check for
1736		 * compatibility.
1737		 */
1738		array->aux->type  = fp->type;
1739		array->aux->jited = fp->jited;
 
1740		return true;
1741	}
1742
1743	return array->aux->type  == fp->type &&
1744	       array->aux->jited == fp->jited;
1745}
1746
1747static int bpf_check_tail_call(const struct bpf_prog *fp)
1748{
1749	struct bpf_prog_aux *aux = fp->aux;
1750	int i;
1751
1752	for (i = 0; i < aux->used_map_cnt; i++) {
1753		struct bpf_map *map = aux->used_maps[i];
1754		struct bpf_array *array;
1755
1756		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1757			continue;
1758
1759		array = container_of(map, struct bpf_array, map);
1760		if (!bpf_prog_array_compatible(array, fp))
1761			return -EINVAL;
1762	}
1763
1764	return 0;
1765}
1766
1767static void bpf_prog_select_func(struct bpf_prog *fp)
1768{
1769#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1770	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1771
1772	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1773#else
1774	fp->bpf_func = __bpf_prog_ret0_warn;
1775#endif
1776}
1777
1778/**
1779 *	bpf_prog_select_runtime - select exec runtime for BPF program
1780 *	@fp: bpf_prog populated with internal BPF program
1781 *	@err: pointer to error variable
1782 *
1783 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1784 * The BPF program will be executed via BPF_PROG_RUN() macro.
1785 */
1786struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1787{
1788	/* In case of BPF to BPF calls, verifier did all the prep
1789	 * work with regards to JITing, etc.
1790	 */
1791	if (fp->bpf_func)
1792		goto finalize;
1793
1794	bpf_prog_select_func(fp);
 
 
 
1795
1796	/* eBPF JITs can rewrite the program in case constant
1797	 * blinding is active. However, in case of error during
1798	 * blinding, bpf_int_jit_compile() must always return a
1799	 * valid program, which in this case would simply not
1800	 * be JITed, but falls back to the interpreter.
1801	 */
1802	if (!bpf_prog_is_dev_bound(fp->aux)) {
1803		*err = bpf_prog_alloc_jited_linfo(fp);
1804		if (*err)
1805			return fp;
1806
1807		fp = bpf_int_jit_compile(fp);
 
1808		if (!fp->jited) {
1809			bpf_prog_free_jited_linfo(fp);
1810#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1811			*err = -ENOTSUPP;
1812			return fp;
 
1813#endif
1814		} else {
1815			bpf_prog_free_unused_jited_linfo(fp);
1816		}
1817	} else {
1818		*err = bpf_prog_offload_compile(fp);
1819		if (*err)
1820			return fp;
1821	}
1822
1823finalize:
1824	bpf_prog_lock_ro(fp);
1825
1826	/* The tail call compatibility check can only be done at
1827	 * this late stage as we need to determine, if we deal
1828	 * with JITed or non JITed program concatenations and not
1829	 * all eBPF JITs might immediately support all features.
1830	 */
1831	*err = bpf_check_tail_call(fp);
1832
1833	return fp;
1834}
1835EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1836
1837static unsigned int __bpf_prog_ret1(const void *ctx,
1838				    const struct bpf_insn *insn)
1839{
1840	return 1;
1841}
1842
1843static struct bpf_prog_dummy {
1844	struct bpf_prog prog;
1845} dummy_bpf_prog = {
1846	.prog = {
1847		.bpf_func = __bpf_prog_ret1,
1848	},
1849};
1850
1851/* to avoid allocating empty bpf_prog_array for cgroups that
1852 * don't have bpf program attached use one global 'empty_prog_array'
1853 * It will not be modified the caller of bpf_prog_array_alloc()
1854 * (since caller requested prog_cnt == 0)
1855 * that pointer should be 'freed' by bpf_prog_array_free()
1856 */
1857static struct {
1858	struct bpf_prog_array hdr;
1859	struct bpf_prog *null_prog;
1860} empty_prog_array = {
1861	.null_prog = NULL,
1862};
1863
1864struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1865{
1866	if (prog_cnt)
1867		return kzalloc(sizeof(struct bpf_prog_array) +
1868			       sizeof(struct bpf_prog_array_item) *
1869			       (prog_cnt + 1),
1870			       flags);
1871
1872	return &empty_prog_array.hdr;
1873}
1874
1875void bpf_prog_array_free(struct bpf_prog_array *progs)
1876{
1877	if (!progs || progs == &empty_prog_array.hdr)
 
1878		return;
1879	kfree_rcu(progs, rcu);
1880}
1881
1882int bpf_prog_array_length(struct bpf_prog_array *array)
1883{
1884	struct bpf_prog_array_item *item;
1885	u32 cnt = 0;
1886
1887	for (item = array->items; item->prog; item++)
1888		if (item->prog != &dummy_bpf_prog.prog)
 
 
1889			cnt++;
 
1890	return cnt;
1891}
1892
1893bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1894{
1895	struct bpf_prog_array_item *item;
1896
1897	for (item = array->items; item->prog; item++)
1898		if (item->prog != &dummy_bpf_prog.prog)
1899			return false;
1900	return true;
1901}
1902
1903static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1904				     u32 *prog_ids,
1905				     u32 request_cnt)
1906{
1907	struct bpf_prog_array_item *item;
1908	int i = 0;
1909
1910	for (item = array->items; item->prog; item++) {
1911		if (item->prog == &dummy_bpf_prog.prog)
1912			continue;
1913		prog_ids[i] = item->prog->aux->id;
1914		if (++i == request_cnt) {
1915			item++;
1916			break;
1917		}
1918	}
1919
1920	return !!(item->prog);
1921}
1922
1923int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1924				__u32 __user *prog_ids, u32 cnt)
1925{
 
1926	unsigned long err = 0;
1927	bool nospc;
1928	u32 *ids;
1929
1930	/* users of this function are doing:
1931	 * cnt = bpf_prog_array_length();
1932	 * if (cnt > 0)
1933	 *     bpf_prog_array_copy_to_user(..., cnt);
1934	 * so below kcalloc doesn't need extra cnt > 0 check.
 
 
 
 
1935	 */
1936	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1937	if (!ids)
1938		return -ENOMEM;
1939	nospc = bpf_prog_array_copy_core(array, ids, cnt);
 
 
 
1940	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1941	kfree(ids);
1942	if (err)
1943		return -EFAULT;
1944	if (nospc)
1945		return -ENOSPC;
1946	return 0;
1947}
1948
1949void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1950				struct bpf_prog *old_prog)
1951{
1952	struct bpf_prog_array_item *item;
1953
1954	for (item = array->items; item->prog; item++)
1955		if (item->prog == old_prog) {
1956			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1957			break;
1958		}
1959}
1960
1961/**
1962 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1963 *                                   index into the program array with
1964 *                                   a dummy no-op program.
1965 * @array: a bpf_prog_array
1966 * @index: the index of the program to replace
1967 *
1968 * Skips over dummy programs, by not counting them, when calculating
1969 * the position of the program to replace.
1970 *
1971 * Return:
1972 * * 0		- Success
1973 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1974 * * -ENOENT	- Index out of range
1975 */
1976int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
1977{
1978	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
1979}
1980
1981/**
1982 * bpf_prog_array_update_at() - Updates the program at the given index
1983 *                              into the program array.
1984 * @array: a bpf_prog_array
1985 * @index: the index of the program to update
1986 * @prog: the program to insert into the array
1987 *
1988 * Skips over dummy programs, by not counting them, when calculating
1989 * the position of the program to update.
1990 *
1991 * Return:
1992 * * 0		- Success
1993 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1994 * * -ENOENT	- Index out of range
1995 */
1996int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1997			     struct bpf_prog *prog)
1998{
1999	struct bpf_prog_array_item *item;
2000
2001	if (unlikely(index < 0))
2002		return -EINVAL;
2003
2004	for (item = array->items; item->prog; item++) {
2005		if (item->prog == &dummy_bpf_prog.prog)
2006			continue;
2007		if (!index) {
2008			WRITE_ONCE(item->prog, prog);
2009			return 0;
2010		}
2011		index--;
2012	}
2013	return -ENOENT;
2014}
2015
2016int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2017			struct bpf_prog *exclude_prog,
2018			struct bpf_prog *include_prog,
2019			struct bpf_prog_array **new_array)
2020{
2021	int new_prog_cnt, carry_prog_cnt = 0;
2022	struct bpf_prog_array_item *existing;
2023	struct bpf_prog_array *array;
2024	bool found_exclude = false;
2025	int new_prog_idx = 0;
2026
2027	/* Figure out how many existing progs we need to carry over to
2028	 * the new array.
2029	 */
2030	if (old_array) {
2031		existing = old_array->items;
2032		for (; existing->prog; existing++) {
2033			if (existing->prog == exclude_prog) {
2034				found_exclude = true;
2035				continue;
2036			}
2037			if (existing->prog != &dummy_bpf_prog.prog)
2038				carry_prog_cnt++;
2039			if (existing->prog == include_prog)
2040				return -EEXIST;
2041		}
2042	}
2043
2044	if (exclude_prog && !found_exclude)
2045		return -ENOENT;
2046
2047	/* How many progs (not NULL) will be in the new array? */
2048	new_prog_cnt = carry_prog_cnt;
2049	if (include_prog)
2050		new_prog_cnt += 1;
2051
2052	/* Do we have any prog (not NULL) in the new array? */
2053	if (!new_prog_cnt) {
2054		*new_array = NULL;
2055		return 0;
2056	}
2057
2058	/* +1 as the end of prog_array is marked with NULL */
2059	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2060	if (!array)
2061		return -ENOMEM;
2062
2063	/* Fill in the new prog array */
2064	if (carry_prog_cnt) {
2065		existing = old_array->items;
2066		for (; existing->prog; existing++)
2067			if (existing->prog != exclude_prog &&
2068			    existing->prog != &dummy_bpf_prog.prog) {
2069				array->items[new_prog_idx++].prog =
2070					existing->prog;
2071			}
2072	}
2073	if (include_prog)
2074		array->items[new_prog_idx++].prog = include_prog;
2075	array->items[new_prog_idx].prog = NULL;
2076	*new_array = array;
2077	return 0;
2078}
2079
2080int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2081			     u32 *prog_ids, u32 request_cnt,
2082			     u32 *prog_cnt)
2083{
 
2084	u32 cnt = 0;
2085
2086	if (array)
2087		cnt = bpf_prog_array_length(array);
2088
2089	*prog_cnt = cnt;
2090
2091	/* return early if user requested only program count or nothing to copy */
2092	if (!request_cnt || !cnt)
2093		return 0;
2094
2095	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2096	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
 
2097								     : 0;
2098}
2099
2100void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2101			  struct bpf_map **used_maps, u32 len)
2102{
2103	struct bpf_map *map;
2104	u32 i;
2105
2106	for (i = 0; i < len; i++) {
2107		map = used_maps[i];
2108		if (map->ops->map_poke_untrack)
2109			map->ops->map_poke_untrack(map, aux);
2110		bpf_map_put(map);
2111	}
2112}
2113
2114static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2115{
2116	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2117	kfree(aux->used_maps);
2118}
2119
2120static void bpf_prog_free_deferred(struct work_struct *work)
2121{
2122	struct bpf_prog_aux *aux;
2123	int i;
2124
2125	aux = container_of(work, struct bpf_prog_aux, work);
2126	bpf_free_used_maps(aux);
2127	if (bpf_prog_is_dev_bound(aux))
2128		bpf_prog_offload_destroy(aux->prog);
2129#ifdef CONFIG_PERF_EVENTS
2130	if (aux->prog->has_callchain_buf)
2131		put_callchain_buffers();
2132#endif
2133	bpf_trampoline_put(aux->trampoline);
2134	for (i = 0; i < aux->func_cnt; i++)
2135		bpf_jit_free(aux->func[i]);
2136	if (aux->func_cnt) {
2137		kfree(aux->func);
2138		bpf_prog_unlock_free(aux->prog);
2139	} else {
2140		bpf_jit_free(aux->prog);
2141	}
2142}
2143
2144/* Free internal BPF program */
2145void bpf_prog_free(struct bpf_prog *fp)
2146{
2147	struct bpf_prog_aux *aux = fp->aux;
2148
2149	if (aux->linked_prog)
2150		bpf_prog_put(aux->linked_prog);
2151	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2152	schedule_work(&aux->work);
2153}
2154EXPORT_SYMBOL_GPL(bpf_prog_free);
2155
2156/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2157static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2158
2159void bpf_user_rnd_init_once(void)
2160{
2161	prandom_init_once(&bpf_user_rnd_state);
2162}
2163
2164BPF_CALL_0(bpf_user_rnd_u32)
2165{
2166	/* Should someone ever have the rather unwise idea to use some
2167	 * of the registers passed into this function, then note that
2168	 * this function is called from native eBPF and classic-to-eBPF
2169	 * transformations. Register assignments from both sides are
2170	 * different, f.e. classic always sets fn(ctx, A, X) here.
2171	 */
2172	struct rnd_state *state;
2173	u32 res;
2174
2175	state = &get_cpu_var(bpf_user_rnd_state);
2176	res = prandom_u32_state(state);
2177	put_cpu_var(bpf_user_rnd_state);
2178
2179	return res;
2180}
2181
2182BPF_CALL_0(bpf_get_raw_cpu_id)
2183{
2184	return raw_smp_processor_id();
2185}
2186
2187/* Weak definitions of helper functions in case we don't have bpf syscall. */
2188const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2189const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2190const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2191const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2192const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2193const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2194const struct bpf_func_proto bpf_spin_lock_proto __weak;
2195const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2196const struct bpf_func_proto bpf_jiffies64_proto __weak;
2197
2198const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2199const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2200const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2201const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2202const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2203
2204const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2205const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2206const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2207const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2208const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2209const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2210const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2211
2212const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2213{
2214	return NULL;
2215}
2216
2217u64 __weak
2218bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2219		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2220{
2221	return -ENOTSUPP;
2222}
2223EXPORT_SYMBOL_GPL(bpf_event_output);
2224
2225/* Always built-in helper functions. */
2226const struct bpf_func_proto bpf_tail_call_proto = {
2227	.func		= NULL,
2228	.gpl_only	= false,
2229	.ret_type	= RET_VOID,
2230	.arg1_type	= ARG_PTR_TO_CTX,
2231	.arg2_type	= ARG_CONST_MAP_PTR,
2232	.arg3_type	= ARG_ANYTHING,
2233};
2234
2235/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2236 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2237 * eBPF and implicitly also cBPF can get JITed!
2238 */
2239struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2240{
2241	return prog;
2242}
2243
2244/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2245 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2246 */
2247void __weak bpf_jit_compile(struct bpf_prog *prog)
2248{
2249}
2250
2251bool __weak bpf_helper_changes_pkt_data(void *func)
2252{
2253	return false;
2254}
2255
2256/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2257 * analysis code and wants explicit zero extension inserted by verifier.
2258 * Otherwise, return FALSE.
2259 */
2260bool __weak bpf_jit_needs_zext(void)
2261{
2262	return false;
2263}
2264
2265/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2266 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2267 */
2268int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2269			 int len)
2270{
2271	return -EFAULT;
2272}
2273
2274int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2275			      void *addr1, void *addr2)
2276{
2277	return -ENOTSUPP;
2278}
2279
2280DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2281EXPORT_SYMBOL(bpf_stats_enabled_key);
2282
2283/* All definitions of tracepoints related to BPF. */
2284#define CREATE_TRACE_POINTS
2285#include <linux/bpf_trace.h>
2286
2287EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2288EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);