Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *	Jay Schulist <jschlst@samba.org>
  12 *	Alexei Starovoitov <ast@plumgrid.com>
  13 *	Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31#include <linux/rbtree_latch.h>
  32#include <linux/kallsyms.h>
  33#include <linux/rcupdate.h>
  34
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0	regs[BPF_REG_0]
  39#define BPF_R1	regs[BPF_REG_1]
  40#define BPF_R2	regs[BPF_REG_2]
  41#define BPF_R3	regs[BPF_REG_3]
  42#define BPF_R4	regs[BPF_REG_4]
  43#define BPF_R5	regs[BPF_REG_5]
  44#define BPF_R6	regs[BPF_REG_6]
  45#define BPF_R7	regs[BPF_REG_7]
  46#define BPF_R8	regs[BPF_REG_8]
  47#define BPF_R9	regs[BPF_REG_9]
  48#define BPF_R10	regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST	regs[insn->dst_reg]
  52#define SRC	regs[insn->src_reg]
  53#define FP	regs[BPF_REG_FP]
  54#define ARG1	regs[BPF_REG_ARG1]
  55#define CTX	regs[BPF_REG_CTX]
  56#define IMM	insn->imm
  57
  58/* No hurry in this branch
  59 *
  60 * Exported for the bpf jit load helper.
  61 */
  62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63{
  64	u8 *ptr = NULL;
  65
  66	if (k >= SKF_NET_OFF)
  67		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68	else if (k >= SKF_LL_OFF)
  69		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70
  71	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72		return ptr;
  73
  74	return NULL;
  75}
  76
  77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  78{
  79	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  80	struct bpf_prog_aux *aux;
  81	struct bpf_prog *fp;
  82
  83	size = round_up(size, PAGE_SIZE);
  84	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  85	if (fp == NULL)
  86		return NULL;
  87
  88	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89	if (aux == NULL) {
  90		vfree(fp);
  91		return NULL;
  92	}
  93
  94	fp->pages = size / PAGE_SIZE;
  95	fp->aux = aux;
  96	fp->aux->prog = fp;
  97	fp->jit_requested = ebpf_jit_enabled();
  98
  99	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 100
 101	return fp;
 102}
 103EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 104
 105struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 106				  gfp_t gfp_extra_flags)
 107{
 108	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 109	struct bpf_prog *fp;
 110	u32 pages, delta;
 111	int ret;
 112
 113	BUG_ON(fp_old == NULL);
 114
 115	size = round_up(size, PAGE_SIZE);
 116	pages = size / PAGE_SIZE;
 117	if (pages <= fp_old->pages)
 118		return fp_old;
 119
 120	delta = pages - fp_old->pages;
 121	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 122	if (ret)
 123		return NULL;
 124
 125	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 126	if (fp == NULL) {
 127		__bpf_prog_uncharge(fp_old->aux->user, delta);
 128	} else {
 129		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 130		fp->pages = pages;
 131		fp->aux->prog = fp;
 132
 133		/* We keep fp->aux from fp_old around in the new
 134		 * reallocated structure.
 135		 */
 136		fp_old->aux = NULL;
 137		__bpf_prog_free(fp_old);
 138	}
 139
 140	return fp;
 141}
 142
 143void __bpf_prog_free(struct bpf_prog *fp)
 144{
 145	kfree(fp->aux);
 146	vfree(fp);
 147}
 148
 149int bpf_prog_calc_tag(struct bpf_prog *fp)
 150{
 151	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 152	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 153	u32 digest[SHA_DIGEST_WORDS];
 154	u32 ws[SHA_WORKSPACE_WORDS];
 155	u32 i, bsize, psize, blocks;
 156	struct bpf_insn *dst;
 157	bool was_ld_map;
 158	u8 *raw, *todo;
 159	__be32 *result;
 160	__be64 *bits;
 161
 162	raw = vmalloc(raw_size);
 163	if (!raw)
 164		return -ENOMEM;
 165
 166	sha_init(digest);
 167	memset(ws, 0, sizeof(ws));
 168
 169	/* We need to take out the map fd for the digest calculation
 170	 * since they are unstable from user space side.
 171	 */
 172	dst = (void *)raw;
 173	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 174		dst[i] = fp->insnsi[i];
 175		if (!was_ld_map &&
 176		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 177		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 178			was_ld_map = true;
 179			dst[i].imm = 0;
 180		} else if (was_ld_map &&
 181			   dst[i].code == 0 &&
 182			   dst[i].dst_reg == 0 &&
 183			   dst[i].src_reg == 0 &&
 184			   dst[i].off == 0) {
 185			was_ld_map = false;
 186			dst[i].imm = 0;
 187		} else {
 188			was_ld_map = false;
 189		}
 190	}
 191
 192	psize = bpf_prog_insn_size(fp);
 193	memset(&raw[psize], 0, raw_size - psize);
 194	raw[psize++] = 0x80;
 195
 196	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 197	blocks = bsize / SHA_MESSAGE_BYTES;
 198	todo   = raw;
 199	if (bsize - psize >= sizeof(__be64)) {
 200		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 201	} else {
 202		bits = (__be64 *)(todo + bsize + bits_offset);
 203		blocks++;
 204	}
 205	*bits = cpu_to_be64((psize - 1) << 3);
 206
 207	while (blocks--) {
 208		sha_transform(digest, todo, ws);
 209		todo += SHA_MESSAGE_BYTES;
 210	}
 211
 212	result = (__force __be32 *)digest;
 213	for (i = 0; i < SHA_DIGEST_WORDS; i++)
 214		result[i] = cpu_to_be32(digest[i]);
 215	memcpy(fp->tag, result, sizeof(fp->tag));
 216
 217	vfree(raw);
 218	return 0;
 219}
 220
 221static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
 222				u32 curr, const bool probe_pass)
 223{
 224	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 225	s64 imm = insn->imm;
 226
 227	if (curr < pos && curr + imm + 1 > pos)
 228		imm += delta;
 229	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
 230		imm -= delta;
 231	if (imm < imm_min || imm > imm_max)
 232		return -ERANGE;
 233	if (!probe_pass)
 234		insn->imm = imm;
 235	return 0;
 236}
 237
 238static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
 239				u32 curr, const bool probe_pass)
 240{
 241	const s32 off_min = S16_MIN, off_max = S16_MAX;
 242	s32 off = insn->off;
 243
 244	if (curr < pos && curr + off + 1 > pos)
 245		off += delta;
 246	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
 247		off -= delta;
 248	if (off < off_min || off > off_max)
 249		return -ERANGE;
 250	if (!probe_pass)
 251		insn->off = off;
 252	return 0;
 253}
 254
 255static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
 256			    const bool probe_pass)
 257{
 258	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
 259	struct bpf_insn *insn = prog->insnsi;
 260	int ret = 0;
 261
 262	for (i = 0; i < insn_cnt; i++, insn++) {
 263		u8 code;
 264
 265		/* In the probing pass we still operate on the original,
 266		 * unpatched image in order to check overflows before we
 267		 * do any other adjustments. Therefore skip the patchlet.
 268		 */
 269		if (probe_pass && i == pos) {
 270			i += delta + 1;
 271			insn++;
 272		}
 273		code = insn->code;
 274		if (BPF_CLASS(code) != BPF_JMP ||
 275		    BPF_OP(code) == BPF_EXIT)
 276			continue;
 277		/* Adjust offset of jmps if we cross patch boundaries. */
 278		if (BPF_OP(code) == BPF_CALL) {
 279			if (insn->src_reg != BPF_PSEUDO_CALL)
 280				continue;
 281			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
 282						   probe_pass);
 283		} else {
 284			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
 285						   probe_pass);
 286		}
 287		if (ret)
 288			break;
 289	}
 290
 291	return ret;
 292}
 293
 294struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 295				       const struct bpf_insn *patch, u32 len)
 296{
 297	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 298	const u32 cnt_max = S16_MAX;
 299	struct bpf_prog *prog_adj;
 300
 301	/* Since our patchlet doesn't expand the image, we're done. */
 302	if (insn_delta == 0) {
 303		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 304		return prog;
 305	}
 306
 307	insn_adj_cnt = prog->len + insn_delta;
 308
 309	/* Reject anything that would potentially let the insn->off
 310	 * target overflow when we have excessive program expansions.
 311	 * We need to probe here before we do any reallocation where
 312	 * we afterwards may not fail anymore.
 313	 */
 314	if (insn_adj_cnt > cnt_max &&
 315	    bpf_adj_branches(prog, off, insn_delta, true))
 316		return NULL;
 317
 318	/* Several new instructions need to be inserted. Make room
 319	 * for them. Likely, there's no need for a new allocation as
 320	 * last page could have large enough tailroom.
 321	 */
 322	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 323				    GFP_USER);
 324	if (!prog_adj)
 325		return NULL;
 326
 327	prog_adj->len = insn_adj_cnt;
 328
 329	/* Patching happens in 3 steps:
 330	 *
 331	 * 1) Move over tail of insnsi from next instruction onwards,
 332	 *    so we can patch the single target insn with one or more
 333	 *    new ones (patching is always from 1 to n insns, n > 0).
 334	 * 2) Inject new instructions at the target location.
 335	 * 3) Adjust branch offsets if necessary.
 336	 */
 337	insn_rest = insn_adj_cnt - off - len;
 338
 339	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 340		sizeof(*patch) * insn_rest);
 341	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 342
 343	/* We are guaranteed to not fail at this point, otherwise
 344	 * the ship has sailed to reverse to the original state. An
 345	 * overflow cannot happen at this point.
 346	 */
 347	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
 348
 349	return prog_adj;
 350}
 351
 352#ifdef CONFIG_BPF_JIT
 353/* All BPF JIT sysctl knobs here. */
 354int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
 355int bpf_jit_harden   __read_mostly;
 356int bpf_jit_kallsyms __read_mostly;
 357
 358static __always_inline void
 359bpf_get_prog_addr_region(const struct bpf_prog *prog,
 360			 unsigned long *symbol_start,
 361			 unsigned long *symbol_end)
 362{
 363	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 364	unsigned long addr = (unsigned long)hdr;
 365
 366	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 367
 368	*symbol_start = addr;
 369	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
 370}
 371
 372static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 373{
 374	const char *end = sym + KSYM_NAME_LEN;
 375
 376	BUILD_BUG_ON(sizeof("bpf_prog_") +
 377		     sizeof(prog->tag) * 2 +
 378		     /* name has been null terminated.
 379		      * We should need +1 for the '_' preceding
 380		      * the name.  However, the null character
 381		      * is double counted between the name and the
 382		      * sizeof("bpf_prog_") above, so we omit
 383		      * the +1 here.
 384		      */
 385		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 386
 387	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 388	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 389	if (prog->aux->name[0])
 390		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 391	else
 392		*sym = 0;
 393}
 394
 395static __always_inline unsigned long
 396bpf_get_prog_addr_start(struct latch_tree_node *n)
 397{
 398	unsigned long symbol_start, symbol_end;
 399	const struct bpf_prog_aux *aux;
 400
 401	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 402	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 403
 404	return symbol_start;
 405}
 406
 407static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 408					  struct latch_tree_node *b)
 409{
 410	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 411}
 412
 413static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 414{
 415	unsigned long val = (unsigned long)key;
 416	unsigned long symbol_start, symbol_end;
 417	const struct bpf_prog_aux *aux;
 418
 419	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 420	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 421
 422	if (val < symbol_start)
 423		return -1;
 424	if (val >= symbol_end)
 425		return  1;
 426
 427	return 0;
 428}
 429
 430static const struct latch_tree_ops bpf_tree_ops = {
 431	.less	= bpf_tree_less,
 432	.comp	= bpf_tree_comp,
 433};
 434
 435static DEFINE_SPINLOCK(bpf_lock);
 436static LIST_HEAD(bpf_kallsyms);
 437static struct latch_tree_root bpf_tree __cacheline_aligned;
 438
 439static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 440{
 441	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 442	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 443	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 444}
 445
 446static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 447{
 448	if (list_empty(&aux->ksym_lnode))
 449		return;
 450
 451	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 452	list_del_rcu(&aux->ksym_lnode);
 453}
 454
 455static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 456{
 457	return fp->jited && !bpf_prog_was_classic(fp);
 458}
 459
 460static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 461{
 462	return list_empty(&fp->aux->ksym_lnode) ||
 463	       fp->aux->ksym_lnode.prev == LIST_POISON2;
 464}
 465
 466void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 467{
 468	if (!bpf_prog_kallsyms_candidate(fp) ||
 469	    !capable(CAP_SYS_ADMIN))
 470		return;
 471
 472	spin_lock_bh(&bpf_lock);
 473	bpf_prog_ksym_node_add(fp->aux);
 474	spin_unlock_bh(&bpf_lock);
 475}
 476
 477void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 478{
 479	if (!bpf_prog_kallsyms_candidate(fp))
 480		return;
 481
 482	spin_lock_bh(&bpf_lock);
 483	bpf_prog_ksym_node_del(fp->aux);
 484	spin_unlock_bh(&bpf_lock);
 485}
 486
 487static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 488{
 489	struct latch_tree_node *n;
 490
 491	if (!bpf_jit_kallsyms_enabled())
 492		return NULL;
 493
 494	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 495	return n ?
 496	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 497	       NULL;
 498}
 499
 500const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 501				 unsigned long *off, char *sym)
 502{
 503	unsigned long symbol_start, symbol_end;
 504	struct bpf_prog *prog;
 505	char *ret = NULL;
 506
 507	rcu_read_lock();
 508	prog = bpf_prog_kallsyms_find(addr);
 509	if (prog) {
 510		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 511		bpf_get_prog_name(prog, sym);
 512
 513		ret = sym;
 514		if (size)
 515			*size = symbol_end - symbol_start;
 516		if (off)
 517			*off  = addr - symbol_start;
 518	}
 519	rcu_read_unlock();
 520
 521	return ret;
 522}
 523
 524bool is_bpf_text_address(unsigned long addr)
 525{
 526	bool ret;
 527
 528	rcu_read_lock();
 529	ret = bpf_prog_kallsyms_find(addr) != NULL;
 530	rcu_read_unlock();
 531
 532	return ret;
 533}
 534
 535int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 536		    char *sym)
 537{
 538	unsigned long symbol_start, symbol_end;
 539	struct bpf_prog_aux *aux;
 540	unsigned int it = 0;
 541	int ret = -ERANGE;
 542
 543	if (!bpf_jit_kallsyms_enabled())
 544		return ret;
 545
 546	rcu_read_lock();
 547	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 548		if (it++ != symnum)
 549			continue;
 550
 551		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 552		bpf_get_prog_name(aux->prog, sym);
 553
 554		*value = symbol_start;
 555		*type  = BPF_SYM_ELF_TYPE;
 556
 557		ret = 0;
 558		break;
 559	}
 560	rcu_read_unlock();
 561
 562	return ret;
 563}
 564
 565struct bpf_binary_header *
 566bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 567		     unsigned int alignment,
 568		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 569{
 570	struct bpf_binary_header *hdr;
 571	unsigned int size, hole, start;
 572
 573	/* Most of BPF filters are really small, but if some of them
 574	 * fill a page, allow at least 128 extra bytes to insert a
 575	 * random section of illegal instructions.
 576	 */
 577	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 578	hdr = module_alloc(size);
 579	if (hdr == NULL)
 580		return NULL;
 581
 582	/* Fill space with illegal/arch-dep instructions. */
 583	bpf_fill_ill_insns(hdr, size);
 584
 585	hdr->pages = size / PAGE_SIZE;
 586	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 587		     PAGE_SIZE - sizeof(*hdr));
 588	start = (get_random_int() % hole) & ~(alignment - 1);
 589
 590	/* Leave a random number of instructions before BPF code. */
 591	*image_ptr = &hdr->image[start];
 592
 593	return hdr;
 594}
 595
 596void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 597{
 598	module_memfree(hdr);
 599}
 600
 601/* This symbol is only overridden by archs that have different
 602 * requirements than the usual eBPF JITs, f.e. when they only
 603 * implement cBPF JIT, do not set images read-only, etc.
 604 */
 605void __weak bpf_jit_free(struct bpf_prog *fp)
 606{
 607	if (fp->jited) {
 608		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 609
 610		bpf_jit_binary_unlock_ro(hdr);
 611		bpf_jit_binary_free(hdr);
 612
 613		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 614	}
 615
 616	bpf_prog_unlock_free(fp);
 617}
 618
 619static int bpf_jit_blind_insn(const struct bpf_insn *from,
 620			      const struct bpf_insn *aux,
 621			      struct bpf_insn *to_buff)
 622{
 623	struct bpf_insn *to = to_buff;
 624	u32 imm_rnd = get_random_int();
 625	s16 off;
 626
 627	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 628	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 629
 630	if (from->imm == 0 &&
 631	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 632	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 633		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 634		goto out;
 635	}
 636
 637	switch (from->code) {
 638	case BPF_ALU | BPF_ADD | BPF_K:
 639	case BPF_ALU | BPF_SUB | BPF_K:
 640	case BPF_ALU | BPF_AND | BPF_K:
 641	case BPF_ALU | BPF_OR  | BPF_K:
 642	case BPF_ALU | BPF_XOR | BPF_K:
 643	case BPF_ALU | BPF_MUL | BPF_K:
 644	case BPF_ALU | BPF_MOV | BPF_K:
 645	case BPF_ALU | BPF_DIV | BPF_K:
 646	case BPF_ALU | BPF_MOD | BPF_K:
 647		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 648		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 649		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 650		break;
 651
 652	case BPF_ALU64 | BPF_ADD | BPF_K:
 653	case BPF_ALU64 | BPF_SUB | BPF_K:
 654	case BPF_ALU64 | BPF_AND | BPF_K:
 655	case BPF_ALU64 | BPF_OR  | BPF_K:
 656	case BPF_ALU64 | BPF_XOR | BPF_K:
 657	case BPF_ALU64 | BPF_MUL | BPF_K:
 658	case BPF_ALU64 | BPF_MOV | BPF_K:
 659	case BPF_ALU64 | BPF_DIV | BPF_K:
 660	case BPF_ALU64 | BPF_MOD | BPF_K:
 661		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 662		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 663		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 664		break;
 665
 666	case BPF_JMP | BPF_JEQ  | BPF_K:
 667	case BPF_JMP | BPF_JNE  | BPF_K:
 668	case BPF_JMP | BPF_JGT  | BPF_K:
 669	case BPF_JMP | BPF_JLT  | BPF_K:
 670	case BPF_JMP | BPF_JGE  | BPF_K:
 671	case BPF_JMP | BPF_JLE  | BPF_K:
 672	case BPF_JMP | BPF_JSGT | BPF_K:
 673	case BPF_JMP | BPF_JSLT | BPF_K:
 674	case BPF_JMP | BPF_JSGE | BPF_K:
 675	case BPF_JMP | BPF_JSLE | BPF_K:
 676	case BPF_JMP | BPF_JSET | BPF_K:
 677		/* Accommodate for extra offset in case of a backjump. */
 678		off = from->off;
 679		if (off < 0)
 680			off -= 2;
 681		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 682		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 683		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 684		break;
 685
 686	case BPF_LD | BPF_ABS | BPF_W:
 687	case BPF_LD | BPF_ABS | BPF_H:
 688	case BPF_LD | BPF_ABS | BPF_B:
 689		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 690		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 691		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 692		break;
 693
 694	case BPF_LD | BPF_IND | BPF_W:
 695	case BPF_LD | BPF_IND | BPF_H:
 696	case BPF_LD | BPF_IND | BPF_B:
 697		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 698		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 699		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 700		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 701		break;
 702
 703	case BPF_LD | BPF_IMM | BPF_DW:
 704		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 705		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 706		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 707		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 708		break;
 709	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 710		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 711		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 712		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 713		break;
 714
 715	case BPF_ST | BPF_MEM | BPF_DW:
 716	case BPF_ST | BPF_MEM | BPF_W:
 717	case BPF_ST | BPF_MEM | BPF_H:
 718	case BPF_ST | BPF_MEM | BPF_B:
 719		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 720		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 721		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 722		break;
 723	}
 724out:
 725	return to - to_buff;
 726}
 727
 728static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 729					      gfp_t gfp_extra_flags)
 730{
 731	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 732	struct bpf_prog *fp;
 733
 734	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 735	if (fp != NULL) {
 736		/* aux->prog still points to the fp_other one, so
 737		 * when promoting the clone to the real program,
 738		 * this still needs to be adapted.
 739		 */
 740		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 741	}
 742
 743	return fp;
 744}
 745
 746static void bpf_prog_clone_free(struct bpf_prog *fp)
 747{
 748	/* aux was stolen by the other clone, so we cannot free
 749	 * it from this path! It will be freed eventually by the
 750	 * other program on release.
 751	 *
 752	 * At this point, we don't need a deferred release since
 753	 * clone is guaranteed to not be locked.
 754	 */
 755	fp->aux = NULL;
 756	__bpf_prog_free(fp);
 757}
 758
 759void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 760{
 761	/* We have to repoint aux->prog to self, as we don't
 762	 * know whether fp here is the clone or the original.
 763	 */
 764	fp->aux->prog = fp;
 765	bpf_prog_clone_free(fp_other);
 766}
 767
 768struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 769{
 770	struct bpf_insn insn_buff[16], aux[2];
 771	struct bpf_prog *clone, *tmp;
 772	int insn_delta, insn_cnt;
 773	struct bpf_insn *insn;
 774	int i, rewritten;
 775
 776	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
 777		return prog;
 778
 779	clone = bpf_prog_clone_create(prog, GFP_USER);
 780	if (!clone)
 781		return ERR_PTR(-ENOMEM);
 782
 783	insn_cnt = clone->len;
 784	insn = clone->insnsi;
 785
 786	for (i = 0; i < insn_cnt; i++, insn++) {
 787		/* We temporarily need to hold the original ld64 insn
 788		 * so that we can still access the first part in the
 789		 * second blinding run.
 790		 */
 791		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 792		    insn[1].code == 0)
 793			memcpy(aux, insn, sizeof(aux));
 794
 795		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 796		if (!rewritten)
 797			continue;
 798
 799		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 800		if (!tmp) {
 801			/* Patching may have repointed aux->prog during
 802			 * realloc from the original one, so we need to
 803			 * fix it up here on error.
 804			 */
 805			bpf_jit_prog_release_other(prog, clone);
 806			return ERR_PTR(-ENOMEM);
 807		}
 808
 809		clone = tmp;
 810		insn_delta = rewritten - 1;
 811
 812		/* Walk new program and skip insns we just inserted. */
 813		insn = clone->insnsi + i + insn_delta;
 814		insn_cnt += insn_delta;
 815		i        += insn_delta;
 816	}
 817
 818	clone->blinded = 1;
 819	return clone;
 820}
 821#endif /* CONFIG_BPF_JIT */
 822
 823/* Base function for offset calculation. Needs to go into .text section,
 824 * therefore keeping it non-static as well; will also be used by JITs
 825 * anyway later on, so do not let the compiler omit it. This also needs
 826 * to go into kallsyms for correlation from e.g. bpftool, so naming
 827 * must not change.
 828 */
 829noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 830{
 831	return 0;
 832}
 833EXPORT_SYMBOL_GPL(__bpf_call_base);
 834
 835/* All UAPI available opcodes. */
 836#define BPF_INSN_MAP(INSN_2, INSN_3)		\
 837	/* 32 bit ALU operations. */		\
 838	/*   Register based. */			\
 839	INSN_3(ALU, ADD, X),			\
 840	INSN_3(ALU, SUB, X),			\
 841	INSN_3(ALU, AND, X),			\
 842	INSN_3(ALU, OR,  X),			\
 843	INSN_3(ALU, LSH, X),			\
 844	INSN_3(ALU, RSH, X),			\
 845	INSN_3(ALU, XOR, X),			\
 846	INSN_3(ALU, MUL, X),			\
 847	INSN_3(ALU, MOV, X),			\
 848	INSN_3(ALU, DIV, X),			\
 849	INSN_3(ALU, MOD, X),			\
 850	INSN_2(ALU, NEG),			\
 851	INSN_3(ALU, END, TO_BE),		\
 852	INSN_3(ALU, END, TO_LE),		\
 853	/*   Immediate based. */		\
 854	INSN_3(ALU, ADD, K),			\
 855	INSN_3(ALU, SUB, K),			\
 856	INSN_3(ALU, AND, K),			\
 857	INSN_3(ALU, OR,  K),			\
 858	INSN_3(ALU, LSH, K),			\
 859	INSN_3(ALU, RSH, K),			\
 860	INSN_3(ALU, XOR, K),			\
 861	INSN_3(ALU, MUL, K),			\
 862	INSN_3(ALU, MOV, K),			\
 863	INSN_3(ALU, DIV, K),			\
 864	INSN_3(ALU, MOD, K),			\
 865	/* 64 bit ALU operations. */		\
 866	/*   Register based. */			\
 867	INSN_3(ALU64, ADD,  X),			\
 868	INSN_3(ALU64, SUB,  X),			\
 869	INSN_3(ALU64, AND,  X),			\
 870	INSN_3(ALU64, OR,   X),			\
 871	INSN_3(ALU64, LSH,  X),			\
 872	INSN_3(ALU64, RSH,  X),			\
 873	INSN_3(ALU64, XOR,  X),			\
 874	INSN_3(ALU64, MUL,  X),			\
 875	INSN_3(ALU64, MOV,  X),			\
 876	INSN_3(ALU64, ARSH, X),			\
 877	INSN_3(ALU64, DIV,  X),			\
 878	INSN_3(ALU64, MOD,  X),			\
 879	INSN_2(ALU64, NEG),			\
 880	/*   Immediate based. */		\
 881	INSN_3(ALU64, ADD,  K),			\
 882	INSN_3(ALU64, SUB,  K),			\
 883	INSN_3(ALU64, AND,  K),			\
 884	INSN_3(ALU64, OR,   K),			\
 885	INSN_3(ALU64, LSH,  K),			\
 886	INSN_3(ALU64, RSH,  K),			\
 887	INSN_3(ALU64, XOR,  K),			\
 888	INSN_3(ALU64, MUL,  K),			\
 889	INSN_3(ALU64, MOV,  K),			\
 890	INSN_3(ALU64, ARSH, K),			\
 891	INSN_3(ALU64, DIV,  K),			\
 892	INSN_3(ALU64, MOD,  K),			\
 893	/* Call instruction. */			\
 894	INSN_2(JMP, CALL),			\
 895	/* Exit instruction. */			\
 896	INSN_2(JMP, EXIT),			\
 897	/* Jump instructions. */		\
 898	/*   Register based. */			\
 899	INSN_3(JMP, JEQ,  X),			\
 900	INSN_3(JMP, JNE,  X),			\
 901	INSN_3(JMP, JGT,  X),			\
 902	INSN_3(JMP, JLT,  X),			\
 903	INSN_3(JMP, JGE,  X),			\
 904	INSN_3(JMP, JLE,  X),			\
 905	INSN_3(JMP, JSGT, X),			\
 906	INSN_3(JMP, JSLT, X),			\
 907	INSN_3(JMP, JSGE, X),			\
 908	INSN_3(JMP, JSLE, X),			\
 909	INSN_3(JMP, JSET, X),			\
 910	/*   Immediate based. */		\
 911	INSN_3(JMP, JEQ,  K),			\
 912	INSN_3(JMP, JNE,  K),			\
 913	INSN_3(JMP, JGT,  K),			\
 914	INSN_3(JMP, JLT,  K),			\
 915	INSN_3(JMP, JGE,  K),			\
 916	INSN_3(JMP, JLE,  K),			\
 917	INSN_3(JMP, JSGT, K),			\
 918	INSN_3(JMP, JSLT, K),			\
 919	INSN_3(JMP, JSGE, K),			\
 920	INSN_3(JMP, JSLE, K),			\
 921	INSN_3(JMP, JSET, K),			\
 922	INSN_2(JMP, JA),			\
 923	/* Store instructions. */		\
 924	/*   Register based. */			\
 925	INSN_3(STX, MEM,  B),			\
 926	INSN_3(STX, MEM,  H),			\
 927	INSN_3(STX, MEM,  W),			\
 928	INSN_3(STX, MEM,  DW),			\
 929	INSN_3(STX, XADD, W),			\
 930	INSN_3(STX, XADD, DW),			\
 931	/*   Immediate based. */		\
 932	INSN_3(ST, MEM, B),			\
 933	INSN_3(ST, MEM, H),			\
 934	INSN_3(ST, MEM, W),			\
 935	INSN_3(ST, MEM, DW),			\
 936	/* Load instructions. */		\
 937	/*   Register based. */			\
 938	INSN_3(LDX, MEM, B),			\
 939	INSN_3(LDX, MEM, H),			\
 940	INSN_3(LDX, MEM, W),			\
 941	INSN_3(LDX, MEM, DW),			\
 942	/*   Immediate based. */		\
 943	INSN_3(LD, IMM, DW),			\
 944	/*   Misc (old cBPF carry-over). */	\
 945	INSN_3(LD, ABS, B),			\
 946	INSN_3(LD, ABS, H),			\
 947	INSN_3(LD, ABS, W),			\
 948	INSN_3(LD, IND, B),			\
 949	INSN_3(LD, IND, H),			\
 950	INSN_3(LD, IND, W)
 951
 952bool bpf_opcode_in_insntable(u8 code)
 953{
 954#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
 955#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
 956	static const bool public_insntable[256] = {
 957		[0 ... 255] = false,
 958		/* Now overwrite non-defaults ... */
 959		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
 960	};
 961#undef BPF_INSN_3_TBL
 962#undef BPF_INSN_2_TBL
 963	return public_insntable[code];
 964}
 965
 966#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 967/**
 968 *	__bpf_prog_run - run eBPF program on a given context
 969 *	@ctx: is the data we are operating on
 970 *	@insn: is the array of eBPF instructions
 971 *
 972 * Decode and execute eBPF instructions.
 973 */
 974static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
 975{
 976	u64 tmp;
 977#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
 978#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
 979	static const void *jumptable[256] = {
 980		[0 ... 255] = &&default_label,
 981		/* Now overwrite non-defaults ... */
 982		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
 983		/* Non-UAPI available opcodes. */
 984		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
 985		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
 986	};
 987#undef BPF_INSN_3_LBL
 988#undef BPF_INSN_2_LBL
 989	u32 tail_call_cnt = 0;
 990	void *ptr;
 991	int off;
 992
 993#define CONT	 ({ insn++; goto select_insn; })
 994#define CONT_JMP ({ insn++; goto select_insn; })
 995
 996select_insn:
 997	goto *jumptable[insn->code];
 998
 999	/* ALU */
1000#define ALU(OPCODE, OP)			\
1001	ALU64_##OPCODE##_X:		\
1002		DST = DST OP SRC;	\
1003		CONT;			\
1004	ALU_##OPCODE##_X:		\
1005		DST = (u32) DST OP (u32) SRC;	\
1006		CONT;			\
1007	ALU64_##OPCODE##_K:		\
1008		DST = DST OP IMM;		\
1009		CONT;			\
1010	ALU_##OPCODE##_K:		\
1011		DST = (u32) DST OP (u32) IMM;	\
1012		CONT;
1013
1014	ALU(ADD,  +)
1015	ALU(SUB,  -)
1016	ALU(AND,  &)
1017	ALU(OR,   |)
1018	ALU(LSH, <<)
1019	ALU(RSH, >>)
1020	ALU(XOR,  ^)
1021	ALU(MUL,  *)
1022#undef ALU
1023	ALU_NEG:
1024		DST = (u32) -DST;
1025		CONT;
1026	ALU64_NEG:
1027		DST = -DST;
1028		CONT;
1029	ALU_MOV_X:
1030		DST = (u32) SRC;
1031		CONT;
1032	ALU_MOV_K:
1033		DST = (u32) IMM;
1034		CONT;
1035	ALU64_MOV_X:
1036		DST = SRC;
1037		CONT;
1038	ALU64_MOV_K:
1039		DST = IMM;
1040		CONT;
1041	LD_IMM_DW:
1042		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1043		insn++;
1044		CONT;
1045	ALU64_ARSH_X:
1046		(*(s64 *) &DST) >>= SRC;
1047		CONT;
1048	ALU64_ARSH_K:
1049		(*(s64 *) &DST) >>= IMM;
1050		CONT;
1051	ALU64_MOD_X:
1052		div64_u64_rem(DST, SRC, &tmp);
1053		DST = tmp;
1054		CONT;
1055	ALU_MOD_X:
1056		tmp = (u32) DST;
1057		DST = do_div(tmp, (u32) SRC);
1058		CONT;
1059	ALU64_MOD_K:
1060		div64_u64_rem(DST, IMM, &tmp);
1061		DST = tmp;
1062		CONT;
1063	ALU_MOD_K:
1064		tmp = (u32) DST;
1065		DST = do_div(tmp, (u32) IMM);
1066		CONT;
1067	ALU64_DIV_X:
1068		DST = div64_u64(DST, SRC);
1069		CONT;
1070	ALU_DIV_X:
1071		tmp = (u32) DST;
1072		do_div(tmp, (u32) SRC);
1073		DST = (u32) tmp;
1074		CONT;
1075	ALU64_DIV_K:
1076		DST = div64_u64(DST, IMM);
1077		CONT;
1078	ALU_DIV_K:
1079		tmp = (u32) DST;
1080		do_div(tmp, (u32) IMM);
1081		DST = (u32) tmp;
1082		CONT;
1083	ALU_END_TO_BE:
1084		switch (IMM) {
1085		case 16:
1086			DST = (__force u16) cpu_to_be16(DST);
1087			break;
1088		case 32:
1089			DST = (__force u32) cpu_to_be32(DST);
1090			break;
1091		case 64:
1092			DST = (__force u64) cpu_to_be64(DST);
1093			break;
1094		}
1095		CONT;
1096	ALU_END_TO_LE:
1097		switch (IMM) {
1098		case 16:
1099			DST = (__force u16) cpu_to_le16(DST);
1100			break;
1101		case 32:
1102			DST = (__force u32) cpu_to_le32(DST);
1103			break;
1104		case 64:
1105			DST = (__force u64) cpu_to_le64(DST);
1106			break;
1107		}
1108		CONT;
1109
1110	/* CALL */
1111	JMP_CALL:
1112		/* Function call scratches BPF_R1-BPF_R5 registers,
1113		 * preserves BPF_R6-BPF_R9, and stores return value
1114		 * into BPF_R0.
1115		 */
1116		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1117						       BPF_R4, BPF_R5);
1118		CONT;
1119
1120	JMP_CALL_ARGS:
1121		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1122							    BPF_R3, BPF_R4,
1123							    BPF_R5,
1124							    insn + insn->off + 1);
1125		CONT;
1126
1127	JMP_TAIL_CALL: {
1128		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1129		struct bpf_array *array = container_of(map, struct bpf_array, map);
1130		struct bpf_prog *prog;
1131		u32 index = BPF_R3;
1132
1133		if (unlikely(index >= array->map.max_entries))
1134			goto out;
1135		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1136			goto out;
1137
1138		tail_call_cnt++;
1139
1140		prog = READ_ONCE(array->ptrs[index]);
1141		if (!prog)
1142			goto out;
1143
1144		/* ARG1 at this point is guaranteed to point to CTX from
1145		 * the verifier side due to the fact that the tail call is
1146		 * handeled like a helper, that is, bpf_tail_call_proto,
1147		 * where arg1_type is ARG_PTR_TO_CTX.
1148		 */
1149		insn = prog->insnsi;
1150		goto select_insn;
1151out:
1152		CONT;
1153	}
1154	/* JMP */
1155	JMP_JA:
1156		insn += insn->off;
1157		CONT;
1158	JMP_JEQ_X:
1159		if (DST == SRC) {
1160			insn += insn->off;
1161			CONT_JMP;
1162		}
1163		CONT;
1164	JMP_JEQ_K:
1165		if (DST == IMM) {
1166			insn += insn->off;
1167			CONT_JMP;
1168		}
1169		CONT;
1170	JMP_JNE_X:
1171		if (DST != SRC) {
1172			insn += insn->off;
1173			CONT_JMP;
1174		}
1175		CONT;
1176	JMP_JNE_K:
1177		if (DST != IMM) {
1178			insn += insn->off;
1179			CONT_JMP;
1180		}
1181		CONT;
1182	JMP_JGT_X:
1183		if (DST > SRC) {
1184			insn += insn->off;
1185			CONT_JMP;
1186		}
1187		CONT;
1188	JMP_JGT_K:
1189		if (DST > IMM) {
1190			insn += insn->off;
1191			CONT_JMP;
1192		}
1193		CONT;
1194	JMP_JLT_X:
1195		if (DST < SRC) {
1196			insn += insn->off;
1197			CONT_JMP;
1198		}
1199		CONT;
1200	JMP_JLT_K:
1201		if (DST < IMM) {
1202			insn += insn->off;
1203			CONT_JMP;
1204		}
1205		CONT;
1206	JMP_JGE_X:
1207		if (DST >= SRC) {
1208			insn += insn->off;
1209			CONT_JMP;
1210		}
1211		CONT;
1212	JMP_JGE_K:
1213		if (DST >= IMM) {
1214			insn += insn->off;
1215			CONT_JMP;
1216		}
1217		CONT;
1218	JMP_JLE_X:
1219		if (DST <= SRC) {
1220			insn += insn->off;
1221			CONT_JMP;
1222		}
1223		CONT;
1224	JMP_JLE_K:
1225		if (DST <= IMM) {
1226			insn += insn->off;
1227			CONT_JMP;
1228		}
1229		CONT;
1230	JMP_JSGT_X:
1231		if (((s64) DST) > ((s64) SRC)) {
1232			insn += insn->off;
1233			CONT_JMP;
1234		}
1235		CONT;
1236	JMP_JSGT_K:
1237		if (((s64) DST) > ((s64) IMM)) {
1238			insn += insn->off;
1239			CONT_JMP;
1240		}
1241		CONT;
1242	JMP_JSLT_X:
1243		if (((s64) DST) < ((s64) SRC)) {
1244			insn += insn->off;
1245			CONT_JMP;
1246		}
1247		CONT;
1248	JMP_JSLT_K:
1249		if (((s64) DST) < ((s64) IMM)) {
1250			insn += insn->off;
1251			CONT_JMP;
1252		}
1253		CONT;
1254	JMP_JSGE_X:
1255		if (((s64) DST) >= ((s64) SRC)) {
1256			insn += insn->off;
1257			CONT_JMP;
1258		}
1259		CONT;
1260	JMP_JSGE_K:
1261		if (((s64) DST) >= ((s64) IMM)) {
1262			insn += insn->off;
1263			CONT_JMP;
1264		}
1265		CONT;
1266	JMP_JSLE_X:
1267		if (((s64) DST) <= ((s64) SRC)) {
1268			insn += insn->off;
1269			CONT_JMP;
1270		}
1271		CONT;
1272	JMP_JSLE_K:
1273		if (((s64) DST) <= ((s64) IMM)) {
1274			insn += insn->off;
1275			CONT_JMP;
1276		}
1277		CONT;
1278	JMP_JSET_X:
1279		if (DST & SRC) {
1280			insn += insn->off;
1281			CONT_JMP;
1282		}
1283		CONT;
1284	JMP_JSET_K:
1285		if (DST & IMM) {
1286			insn += insn->off;
1287			CONT_JMP;
1288		}
1289		CONT;
1290	JMP_EXIT:
1291		return BPF_R0;
1292
1293	/* STX and ST and LDX*/
1294#define LDST(SIZEOP, SIZE)						\
1295	STX_MEM_##SIZEOP:						\
1296		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1297		CONT;							\
1298	ST_MEM_##SIZEOP:						\
1299		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1300		CONT;							\
1301	LDX_MEM_##SIZEOP:						\
1302		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1303		CONT;
1304
1305	LDST(B,   u8)
1306	LDST(H,  u16)
1307	LDST(W,  u32)
1308	LDST(DW, u64)
1309#undef LDST
1310	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1311		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1312			   (DST + insn->off));
1313		CONT;
1314	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1315		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1316			     (DST + insn->off));
1317		CONT;
1318	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1319		off = IMM;
1320load_word:
1321		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1322		 * appearing in the programs where ctx == skb
1323		 * (see may_access_skb() in the verifier). All programs
1324		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1325		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1326		 * verifier will check that BPF_R6 == ctx.
1327		 *
1328		 * BPF_ABS and BPF_IND are wrappers of function calls,
1329		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1330		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1331		 *
1332		 * Implicit input:
1333		 *   ctx == skb == BPF_R6 == CTX
1334		 *
1335		 * Explicit input:
1336		 *   SRC == any register
1337		 *   IMM == 32-bit immediate
1338		 *
1339		 * Output:
1340		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1341		 */
1342
1343		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1344		if (likely(ptr != NULL)) {
1345			BPF_R0 = get_unaligned_be32(ptr);
1346			CONT;
1347		}
1348
1349		return 0;
1350	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1351		off = IMM;
1352load_half:
1353		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1354		if (likely(ptr != NULL)) {
1355			BPF_R0 = get_unaligned_be16(ptr);
1356			CONT;
1357		}
1358
1359		return 0;
1360	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1361		off = IMM;
1362load_byte:
1363		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1364		if (likely(ptr != NULL)) {
1365			BPF_R0 = *(u8 *)ptr;
1366			CONT;
1367		}
1368
1369		return 0;
1370	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1371		off = IMM + SRC;
1372		goto load_word;
1373	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1374		off = IMM + SRC;
1375		goto load_half;
1376	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1377		off = IMM + SRC;
1378		goto load_byte;
1379
1380	default_label:
1381		/* If we ever reach this, we have a bug somewhere. Die hard here
1382		 * instead of just returning 0; we could be somewhere in a subprog,
1383		 * so execution could continue otherwise which we do /not/ want.
1384		 *
1385		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1386		 */
1387		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1388		BUG_ON(1);
1389		return 0;
1390}
1391STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1392
1393#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1394#define DEFINE_BPF_PROG_RUN(stack_size) \
1395static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1396{ \
1397	u64 stack[stack_size / sizeof(u64)]; \
1398	u64 regs[MAX_BPF_REG]; \
1399\
1400	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1401	ARG1 = (u64) (unsigned long) ctx; \
1402	return ___bpf_prog_run(regs, insn, stack); \
1403}
1404
1405#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1406#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1407static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1408				      const struct bpf_insn *insn) \
1409{ \
1410	u64 stack[stack_size / sizeof(u64)]; \
1411	u64 regs[MAX_BPF_REG]; \
1412\
1413	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1414	BPF_R1 = r1; \
1415	BPF_R2 = r2; \
1416	BPF_R3 = r3; \
1417	BPF_R4 = r4; \
1418	BPF_R5 = r5; \
1419	return ___bpf_prog_run(regs, insn, stack); \
1420}
1421
1422#define EVAL1(FN, X) FN(X)
1423#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1424#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1425#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1426#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1427#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1428
1429EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1430EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1431EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1432
1433EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1434EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1435EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1436
1437#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1438
1439static unsigned int (*interpreters[])(const void *ctx,
1440				      const struct bpf_insn *insn) = {
1441EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1442EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1443EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1444};
1445#undef PROG_NAME_LIST
1446#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1447static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1448				  const struct bpf_insn *insn) = {
1449EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1450EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1451EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1452};
1453#undef PROG_NAME_LIST
1454
1455void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1456{
1457	stack_depth = max_t(u32, stack_depth, 1);
1458	insn->off = (s16) insn->imm;
1459	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1460		__bpf_call_base_args;
1461	insn->code = BPF_JMP | BPF_CALL_ARGS;
1462}
1463
1464#else
1465static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1466					 const struct bpf_insn *insn)
1467{
1468	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1469	 * is not working properly, so warn about it!
1470	 */
1471	WARN_ON_ONCE(1);
1472	return 0;
1473}
1474#endif
1475
1476bool bpf_prog_array_compatible(struct bpf_array *array,
1477			       const struct bpf_prog *fp)
1478{
1479	if (fp->kprobe_override)
1480		return false;
1481
1482	if (!array->owner_prog_type) {
1483		/* There's no owner yet where we could check for
1484		 * compatibility.
1485		 */
1486		array->owner_prog_type = fp->type;
1487		array->owner_jited = fp->jited;
1488
1489		return true;
1490	}
1491
1492	return array->owner_prog_type == fp->type &&
1493	       array->owner_jited == fp->jited;
1494}
1495
1496static int bpf_check_tail_call(const struct bpf_prog *fp)
1497{
1498	struct bpf_prog_aux *aux = fp->aux;
1499	int i;
1500
1501	for (i = 0; i < aux->used_map_cnt; i++) {
1502		struct bpf_map *map = aux->used_maps[i];
1503		struct bpf_array *array;
1504
1505		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1506			continue;
1507
1508		array = container_of(map, struct bpf_array, map);
1509		if (!bpf_prog_array_compatible(array, fp))
1510			return -EINVAL;
1511	}
1512
1513	return 0;
1514}
1515
1516/**
1517 *	bpf_prog_select_runtime - select exec runtime for BPF program
1518 *	@fp: bpf_prog populated with internal BPF program
1519 *	@err: pointer to error variable
1520 *
1521 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1522 * The BPF program will be executed via BPF_PROG_RUN() macro.
1523 */
1524struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1525{
1526#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1527	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1528
1529	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1530#else
1531	fp->bpf_func = __bpf_prog_ret0_warn;
1532#endif
1533
1534	/* eBPF JITs can rewrite the program in case constant
1535	 * blinding is active. However, in case of error during
1536	 * blinding, bpf_int_jit_compile() must always return a
1537	 * valid program, which in this case would simply not
1538	 * be JITed, but falls back to the interpreter.
1539	 */
1540	if (!bpf_prog_is_dev_bound(fp->aux)) {
1541		fp = bpf_int_jit_compile(fp);
1542#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1543		if (!fp->jited) {
1544			*err = -ENOTSUPP;
1545			return fp;
1546		}
1547#endif
1548	} else {
1549		*err = bpf_prog_offload_compile(fp);
1550		if (*err)
1551			return fp;
1552	}
1553	bpf_prog_lock_ro(fp);
1554
1555	/* The tail call compatibility check can only be done at
1556	 * this late stage as we need to determine, if we deal
1557	 * with JITed or non JITed program concatenations and not
1558	 * all eBPF JITs might immediately support all features.
1559	 */
1560	*err = bpf_check_tail_call(fp);
1561
1562	return fp;
1563}
1564EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1565
1566static unsigned int __bpf_prog_ret1(const void *ctx,
1567				    const struct bpf_insn *insn)
1568{
1569	return 1;
1570}
1571
1572static struct bpf_prog_dummy {
1573	struct bpf_prog prog;
1574} dummy_bpf_prog = {
1575	.prog = {
1576		.bpf_func = __bpf_prog_ret1,
1577	},
1578};
1579
1580/* to avoid allocating empty bpf_prog_array for cgroups that
1581 * don't have bpf program attached use one global 'empty_prog_array'
1582 * It will not be modified the caller of bpf_prog_array_alloc()
1583 * (since caller requested prog_cnt == 0)
1584 * that pointer should be 'freed' by bpf_prog_array_free()
1585 */
1586static struct {
1587	struct bpf_prog_array hdr;
1588	struct bpf_prog *null_prog;
1589} empty_prog_array = {
1590	.null_prog = NULL,
1591};
1592
1593struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1594{
1595	if (prog_cnt)
1596		return kzalloc(sizeof(struct bpf_prog_array) +
1597			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
1598			       flags);
1599
1600	return &empty_prog_array.hdr;
1601}
1602
1603void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1604{
1605	if (!progs ||
1606	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1607		return;
1608	kfree_rcu(progs, rcu);
1609}
1610
1611int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1612{
1613	struct bpf_prog **prog;
1614	u32 cnt = 0;
1615
1616	rcu_read_lock();
1617	prog = rcu_dereference(progs)->progs;
1618	for (; *prog; prog++)
1619		if (*prog != &dummy_bpf_prog.prog)
1620			cnt++;
1621	rcu_read_unlock();
1622	return cnt;
1623}
1624
1625static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1626				     u32 *prog_ids,
1627				     u32 request_cnt)
1628{
1629	int i = 0;
1630
1631	for (; *prog; prog++) {
1632		if (*prog == &dummy_bpf_prog.prog)
1633			continue;
1634		prog_ids[i] = (*prog)->aux->id;
1635		if (++i == request_cnt) {
1636			prog++;
1637			break;
1638		}
1639	}
1640
1641	return !!(*prog);
1642}
1643
1644int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1645				__u32 __user *prog_ids, u32 cnt)
1646{
1647	struct bpf_prog **prog;
1648	unsigned long err = 0;
1649	bool nospc;
1650	u32 *ids;
1651
1652	/* users of this function are doing:
1653	 * cnt = bpf_prog_array_length();
1654	 * if (cnt > 0)
1655	 *     bpf_prog_array_copy_to_user(..., cnt);
1656	 * so below kcalloc doesn't need extra cnt > 0 check, but
1657	 * bpf_prog_array_length() releases rcu lock and
1658	 * prog array could have been swapped with empty or larger array,
1659	 * so always copy 'cnt' prog_ids to the user.
1660	 * In a rare race the user will see zero prog_ids
1661	 */
1662	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1663	if (!ids)
1664		return -ENOMEM;
1665	rcu_read_lock();
1666	prog = rcu_dereference(progs)->progs;
1667	nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1668	rcu_read_unlock();
1669	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1670	kfree(ids);
1671	if (err)
1672		return -EFAULT;
1673	if (nospc)
1674		return -ENOSPC;
1675	return 0;
1676}
1677
1678void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1679				struct bpf_prog *old_prog)
1680{
1681	struct bpf_prog **prog = progs->progs;
1682
1683	for (; *prog; prog++)
1684		if (*prog == old_prog) {
1685			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1686			break;
1687		}
1688}
1689
1690int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1691			struct bpf_prog *exclude_prog,
1692			struct bpf_prog *include_prog,
1693			struct bpf_prog_array **new_array)
1694{
1695	int new_prog_cnt, carry_prog_cnt = 0;
1696	struct bpf_prog **existing_prog;
1697	struct bpf_prog_array *array;
1698	int new_prog_idx = 0;
1699
1700	/* Figure out how many existing progs we need to carry over to
1701	 * the new array.
1702	 */
1703	if (old_array) {
1704		existing_prog = old_array->progs;
1705		for (; *existing_prog; existing_prog++) {
1706			if (*existing_prog != exclude_prog &&
1707			    *existing_prog != &dummy_bpf_prog.prog)
1708				carry_prog_cnt++;
1709			if (*existing_prog == include_prog)
1710				return -EEXIST;
1711		}
1712	}
1713
1714	/* How many progs (not NULL) will be in the new array? */
1715	new_prog_cnt = carry_prog_cnt;
1716	if (include_prog)
1717		new_prog_cnt += 1;
1718
1719	/* Do we have any prog (not NULL) in the new array? */
1720	if (!new_prog_cnt) {
1721		*new_array = NULL;
1722		return 0;
1723	}
1724
1725	/* +1 as the end of prog_array is marked with NULL */
1726	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1727	if (!array)
1728		return -ENOMEM;
1729
1730	/* Fill in the new prog array */
1731	if (carry_prog_cnt) {
1732		existing_prog = old_array->progs;
1733		for (; *existing_prog; existing_prog++)
1734			if (*existing_prog != exclude_prog &&
1735			    *existing_prog != &dummy_bpf_prog.prog)
1736				array->progs[new_prog_idx++] = *existing_prog;
1737	}
1738	if (include_prog)
1739		array->progs[new_prog_idx++] = include_prog;
1740	array->progs[new_prog_idx] = NULL;
1741	*new_array = array;
1742	return 0;
1743}
1744
1745int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1746			     u32 *prog_ids, u32 request_cnt,
1747			     u32 *prog_cnt)
1748{
1749	struct bpf_prog **prog;
1750	u32 cnt = 0;
1751
1752	if (array)
1753		cnt = bpf_prog_array_length(array);
1754
1755	*prog_cnt = cnt;
1756
1757	/* return early if user requested only program count or nothing to copy */
1758	if (!request_cnt || !cnt)
1759		return 0;
1760
1761	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1762	prog = rcu_dereference_check(array, 1)->progs;
1763	return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1764								     : 0;
1765}
1766
1767static void bpf_prog_free_deferred(struct work_struct *work)
1768{
1769	struct bpf_prog_aux *aux;
1770	int i;
1771
1772	aux = container_of(work, struct bpf_prog_aux, work);
1773	if (bpf_prog_is_dev_bound(aux))
1774		bpf_prog_offload_destroy(aux->prog);
1775	for (i = 0; i < aux->func_cnt; i++)
1776		bpf_jit_free(aux->func[i]);
1777	if (aux->func_cnt) {
1778		kfree(aux->func);
1779		bpf_prog_unlock_free(aux->prog);
1780	} else {
1781		bpf_jit_free(aux->prog);
1782	}
1783}
1784
1785/* Free internal BPF program */
1786void bpf_prog_free(struct bpf_prog *fp)
1787{
1788	struct bpf_prog_aux *aux = fp->aux;
1789
1790	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1791	schedule_work(&aux->work);
1792}
1793EXPORT_SYMBOL_GPL(bpf_prog_free);
1794
1795/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1796static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1797
1798void bpf_user_rnd_init_once(void)
1799{
1800	prandom_init_once(&bpf_user_rnd_state);
1801}
1802
1803BPF_CALL_0(bpf_user_rnd_u32)
1804{
1805	/* Should someone ever have the rather unwise idea to use some
1806	 * of the registers passed into this function, then note that
1807	 * this function is called from native eBPF and classic-to-eBPF
1808	 * transformations. Register assignments from both sides are
1809	 * different, f.e. classic always sets fn(ctx, A, X) here.
1810	 */
1811	struct rnd_state *state;
1812	u32 res;
1813
1814	state = &get_cpu_var(bpf_user_rnd_state);
1815	res = prandom_u32_state(state);
1816	put_cpu_var(bpf_user_rnd_state);
1817
1818	return res;
1819}
1820
1821/* Weak definitions of helper functions in case we don't have bpf syscall. */
1822const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1823const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1824const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1825
1826const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1827const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1828const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1829const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1830
1831const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1832const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1833const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1834const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1835
1836const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1837{
1838	return NULL;
1839}
1840
1841u64 __weak
1842bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1843		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1844{
1845	return -ENOTSUPP;
1846}
1847
1848/* Always built-in helper functions. */
1849const struct bpf_func_proto bpf_tail_call_proto = {
1850	.func		= NULL,
1851	.gpl_only	= false,
1852	.ret_type	= RET_VOID,
1853	.arg1_type	= ARG_PTR_TO_CTX,
1854	.arg2_type	= ARG_CONST_MAP_PTR,
1855	.arg3_type	= ARG_ANYTHING,
1856};
1857
1858/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1859 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1860 * eBPF and implicitly also cBPF can get JITed!
1861 */
1862struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1863{
1864	return prog;
1865}
1866
1867/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1868 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1869 */
1870void __weak bpf_jit_compile(struct bpf_prog *prog)
1871{
1872}
1873
1874bool __weak bpf_helper_changes_pkt_data(void *func)
1875{
1876	return false;
1877}
1878
1879/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1880 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1881 */
1882int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1883			 int len)
1884{
1885	return -EFAULT;
1886}
1887
1888/* All definitions of tracepoints related to BPF. */
1889#define CREATE_TRACE_POINTS
1890#include <linux/bpf_trace.h>
1891
1892EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1893
1894/* These are only used within the BPF_SYSCALL code */
1895#ifdef CONFIG_BPF_SYSCALL
1896EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1897EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1898#endif