Loading...
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/coredump.h>
37#include <linux/sched/signal.h>
38#include <linux/sched/numa_balancing.h>
39#include <linux/sched/task.h>
40#include <linux/pagemap.h>
41#include <linux/perf_event.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/key.h>
45#include <linux/personality.h>
46#include <linux/binfmts.h>
47#include <linux/utsname.h>
48#include <linux/pid_namespace.h>
49#include <linux/module.h>
50#include <linux/namei.h>
51#include <linux/mount.h>
52#include <linux/security.h>
53#include <linux/syscalls.h>
54#include <linux/tsacct_kern.h>
55#include <linux/cn_proc.h>
56#include <linux/audit.h>
57#include <linux/tracehook.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/pipe_fs_i.h>
62#include <linux/oom.h>
63#include <linux/compat.h>
64#include <linux/vmalloc.h>
65
66#include <linux/uaccess.h>
67#include <asm/mmu_context.h>
68#include <asm/tlb.h>
69
70#include <trace/events/task.h>
71#include "internal.h"
72
73#include <trace/events/sched.h>
74
75int suid_dumpable = 0;
76
77static LIST_HEAD(formats);
78static DEFINE_RWLOCK(binfmt_lock);
79
80void __register_binfmt(struct linux_binfmt * fmt, int insert)
81{
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89}
90
91EXPORT_SYMBOL(__register_binfmt);
92
93void unregister_binfmt(struct linux_binfmt * fmt)
94{
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98}
99
100EXPORT_SYMBOL(unregister_binfmt);
101
102static inline void put_binfmt(struct linux_binfmt * fmt)
103{
104 module_put(fmt->module);
105}
106
107bool path_noexec(const struct path *path)
108{
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111}
112
113#ifdef CONFIG_USELIB
114/*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120SYSCALL_DEFINE1(uselib, const char __user *, library)
121{
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168exit:
169 fput(file);
170out:
171 return error;
172}
173#endif /* #ifdef CONFIG_USELIB */
174
175#ifdef CONFIG_MMU
176/*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
182static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183{
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192}
193
194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196{
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201#ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207#endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
224
225 /*
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
228 *
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
235 * correct size.
236 */
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
239 goto fail;
240 size += ptr_size;
241
242 acct_arg_size(bprm, size / PAGE_SIZE);
243
244 /*
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
247 */
248 if (size <= ARG_MAX)
249 return page;
250
251 /*
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
254 * This ensures that:
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
257 * to work from.
258 */
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261 if (size > limit)
262 goto fail;
263 }
264
265 return page;
266
267fail:
268 put_page(page);
269 return NULL;
270}
271
272static void put_arg_page(struct page *page)
273{
274 put_page(page);
275}
276
277static void free_arg_pages(struct linux_binprm *bprm)
278{
279}
280
281static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 struct page *page)
283{
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285}
286
287static int __bprm_mm_init(struct linux_binprm *bprm)
288{
289 int err;
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
292
293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
294 if (!vma)
295 return -ENOMEM;
296
297 if (down_write_killable(&mm->mmap_sem)) {
298 err = -EINTR;
299 goto err_free;
300 }
301 vma->vm_mm = mm;
302
303 /*
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
307 * configured yet.
308 */
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 INIT_LIST_HEAD(&vma->anon_vma_chain);
315
316 err = insert_vm_struct(mm, vma);
317 if (err)
318 goto err;
319
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
324 return 0;
325err:
326 up_write(&mm->mmap_sem);
327err_free:
328 bprm->vma = NULL;
329 kmem_cache_free(vm_area_cachep, vma);
330 return err;
331}
332
333static bool valid_arg_len(struct linux_binprm *bprm, long len)
334{
335 return len <= MAX_ARG_STRLEN;
336}
337
338#else
339
340static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341{
342}
343
344static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 int write)
346{
347 struct page *page;
348
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 if (!page)
353 return NULL;
354 bprm->page[pos / PAGE_SIZE] = page;
355 }
356
357 return page;
358}
359
360static void put_arg_page(struct page *page)
361{
362}
363
364static void free_arg_page(struct linux_binprm *bprm, int i)
365{
366 if (bprm->page[i]) {
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
369 }
370}
371
372static void free_arg_pages(struct linux_binprm *bprm)
373{
374 int i;
375
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
378}
379
380static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 struct page *page)
382{
383}
384
385static int __bprm_mm_init(struct linux_binprm *bprm)
386{
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 return 0;
389}
390
391static bool valid_arg_len(struct linux_binprm *bprm, long len)
392{
393 return len <= bprm->p;
394}
395
396#endif /* CONFIG_MMU */
397
398/*
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
403 */
404static int bprm_mm_init(struct linux_binprm *bprm)
405{
406 int err;
407 struct mm_struct *mm = NULL;
408
409 bprm->mm = mm = mm_alloc();
410 err = -ENOMEM;
411 if (!mm)
412 goto err;
413
414 /* Save current stack limit for all calculations made during exec. */
415 task_lock(current->group_leader);
416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417 task_unlock(current->group_leader);
418
419 err = __bprm_mm_init(bprm);
420 if (err)
421 goto err;
422
423 return 0;
424
425err:
426 if (mm) {
427 bprm->mm = NULL;
428 mmdrop(mm);
429 }
430
431 return err;
432}
433
434struct user_arg_ptr {
435#ifdef CONFIG_COMPAT
436 bool is_compat;
437#endif
438 union {
439 const char __user *const __user *native;
440#ifdef CONFIG_COMPAT
441 const compat_uptr_t __user *compat;
442#endif
443 } ptr;
444};
445
446static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
447{
448 const char __user *native;
449
450#ifdef CONFIG_COMPAT
451 if (unlikely(argv.is_compat)) {
452 compat_uptr_t compat;
453
454 if (get_user(compat, argv.ptr.compat + nr))
455 return ERR_PTR(-EFAULT);
456
457 return compat_ptr(compat);
458 }
459#endif
460
461 if (get_user(native, argv.ptr.native + nr))
462 return ERR_PTR(-EFAULT);
463
464 return native;
465}
466
467/*
468 * count() counts the number of strings in array ARGV.
469 */
470static int count(struct user_arg_ptr argv, int max)
471{
472 int i = 0;
473
474 if (argv.ptr.native != NULL) {
475 for (;;) {
476 const char __user *p = get_user_arg_ptr(argv, i);
477
478 if (!p)
479 break;
480
481 if (IS_ERR(p))
482 return -EFAULT;
483
484 if (i >= max)
485 return -E2BIG;
486 ++i;
487
488 if (fatal_signal_pending(current))
489 return -ERESTARTNOHAND;
490 cond_resched();
491 }
492 }
493 return i;
494}
495
496/*
497 * 'copy_strings()' copies argument/environment strings from the old
498 * processes's memory to the new process's stack. The call to get_user_pages()
499 * ensures the destination page is created and not swapped out.
500 */
501static int copy_strings(int argc, struct user_arg_ptr argv,
502 struct linux_binprm *bprm)
503{
504 struct page *kmapped_page = NULL;
505 char *kaddr = NULL;
506 unsigned long kpos = 0;
507 int ret;
508
509 while (argc-- > 0) {
510 const char __user *str;
511 int len;
512 unsigned long pos;
513
514 ret = -EFAULT;
515 str = get_user_arg_ptr(argv, argc);
516 if (IS_ERR(str))
517 goto out;
518
519 len = strnlen_user(str, MAX_ARG_STRLEN);
520 if (!len)
521 goto out;
522
523 ret = -E2BIG;
524 if (!valid_arg_len(bprm, len))
525 goto out;
526
527 /* We're going to work our way backwords. */
528 pos = bprm->p;
529 str += len;
530 bprm->p -= len;
531
532 while (len > 0) {
533 int offset, bytes_to_copy;
534
535 if (fatal_signal_pending(current)) {
536 ret = -ERESTARTNOHAND;
537 goto out;
538 }
539 cond_resched();
540
541 offset = pos % PAGE_SIZE;
542 if (offset == 0)
543 offset = PAGE_SIZE;
544
545 bytes_to_copy = offset;
546 if (bytes_to_copy > len)
547 bytes_to_copy = len;
548
549 offset -= bytes_to_copy;
550 pos -= bytes_to_copy;
551 str -= bytes_to_copy;
552 len -= bytes_to_copy;
553
554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
555 struct page *page;
556
557 page = get_arg_page(bprm, pos, 1);
558 if (!page) {
559 ret = -E2BIG;
560 goto out;
561 }
562
563 if (kmapped_page) {
564 flush_kernel_dcache_page(kmapped_page);
565 kunmap(kmapped_page);
566 put_arg_page(kmapped_page);
567 }
568 kmapped_page = page;
569 kaddr = kmap(kmapped_page);
570 kpos = pos & PAGE_MASK;
571 flush_arg_page(bprm, kpos, kmapped_page);
572 }
573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
574 ret = -EFAULT;
575 goto out;
576 }
577 }
578 }
579 ret = 0;
580out:
581 if (kmapped_page) {
582 flush_kernel_dcache_page(kmapped_page);
583 kunmap(kmapped_page);
584 put_arg_page(kmapped_page);
585 }
586 return ret;
587}
588
589/*
590 * Like copy_strings, but get argv and its values from kernel memory.
591 */
592int copy_strings_kernel(int argc, const char *const *__argv,
593 struct linux_binprm *bprm)
594{
595 int r;
596 mm_segment_t oldfs = get_fs();
597 struct user_arg_ptr argv = {
598 .ptr.native = (const char __user *const __user *)__argv,
599 };
600
601 set_fs(KERNEL_DS);
602 r = copy_strings(argc, argv, bprm);
603 set_fs(oldfs);
604
605 return r;
606}
607EXPORT_SYMBOL(copy_strings_kernel);
608
609#ifdef CONFIG_MMU
610
611/*
612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
613 * the binfmt code determines where the new stack should reside, we shift it to
614 * its final location. The process proceeds as follows:
615 *
616 * 1) Use shift to calculate the new vma endpoints.
617 * 2) Extend vma to cover both the old and new ranges. This ensures the
618 * arguments passed to subsequent functions are consistent.
619 * 3) Move vma's page tables to the new range.
620 * 4) Free up any cleared pgd range.
621 * 5) Shrink the vma to cover only the new range.
622 */
623static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
624{
625 struct mm_struct *mm = vma->vm_mm;
626 unsigned long old_start = vma->vm_start;
627 unsigned long old_end = vma->vm_end;
628 unsigned long length = old_end - old_start;
629 unsigned long new_start = old_start - shift;
630 unsigned long new_end = old_end - shift;
631 struct mmu_gather tlb;
632
633 BUG_ON(new_start > new_end);
634
635 /*
636 * ensure there are no vmas between where we want to go
637 * and where we are
638 */
639 if (vma != find_vma(mm, new_start))
640 return -EFAULT;
641
642 /*
643 * cover the whole range: [new_start, old_end)
644 */
645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
646 return -ENOMEM;
647
648 /*
649 * move the page tables downwards, on failure we rely on
650 * process cleanup to remove whatever mess we made.
651 */
652 if (length != move_page_tables(vma, old_start,
653 vma, new_start, length, false))
654 return -ENOMEM;
655
656 lru_add_drain();
657 tlb_gather_mmu(&tlb, mm, old_start, old_end);
658 if (new_end > old_start) {
659 /*
660 * when the old and new regions overlap clear from new_end.
661 */
662 free_pgd_range(&tlb, new_end, old_end, new_end,
663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
664 } else {
665 /*
666 * otherwise, clean from old_start; this is done to not touch
667 * the address space in [new_end, old_start) some architectures
668 * have constraints on va-space that make this illegal (IA64) -
669 * for the others its just a little faster.
670 */
671 free_pgd_range(&tlb, old_start, old_end, new_end,
672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
673 }
674 tlb_finish_mmu(&tlb, old_start, old_end);
675
676 /*
677 * Shrink the vma to just the new range. Always succeeds.
678 */
679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680
681 return 0;
682}
683
684/*
685 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686 * the stack is optionally relocated, and some extra space is added.
687 */
688int setup_arg_pages(struct linux_binprm *bprm,
689 unsigned long stack_top,
690 int executable_stack)
691{
692 unsigned long ret;
693 unsigned long stack_shift;
694 struct mm_struct *mm = current->mm;
695 struct vm_area_struct *vma = bprm->vma;
696 struct vm_area_struct *prev = NULL;
697 unsigned long vm_flags;
698 unsigned long stack_base;
699 unsigned long stack_size;
700 unsigned long stack_expand;
701 unsigned long rlim_stack;
702
703#ifdef CONFIG_STACK_GROWSUP
704 /* Limit stack size */
705 stack_base = bprm->rlim_stack.rlim_max;
706 if (stack_base > STACK_SIZE_MAX)
707 stack_base = STACK_SIZE_MAX;
708
709 /* Add space for stack randomization. */
710 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
711
712 /* Make sure we didn't let the argument array grow too large. */
713 if (vma->vm_end - vma->vm_start > stack_base)
714 return -ENOMEM;
715
716 stack_base = PAGE_ALIGN(stack_top - stack_base);
717
718 stack_shift = vma->vm_start - stack_base;
719 mm->arg_start = bprm->p - stack_shift;
720 bprm->p = vma->vm_end - stack_shift;
721#else
722 stack_top = arch_align_stack(stack_top);
723 stack_top = PAGE_ALIGN(stack_top);
724
725 if (unlikely(stack_top < mmap_min_addr) ||
726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
727 return -ENOMEM;
728
729 stack_shift = vma->vm_end - stack_top;
730
731 bprm->p -= stack_shift;
732 mm->arg_start = bprm->p;
733#endif
734
735 if (bprm->loader)
736 bprm->loader -= stack_shift;
737 bprm->exec -= stack_shift;
738
739 if (down_write_killable(&mm->mmap_sem))
740 return -EINTR;
741
742 vm_flags = VM_STACK_FLAGS;
743
744 /*
745 * Adjust stack execute permissions; explicitly enable for
746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 * (arch default) otherwise.
748 */
749 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
750 vm_flags |= VM_EXEC;
751 else if (executable_stack == EXSTACK_DISABLE_X)
752 vm_flags &= ~VM_EXEC;
753 vm_flags |= mm->def_flags;
754 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
755
756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757 vm_flags);
758 if (ret)
759 goto out_unlock;
760 BUG_ON(prev != vma);
761
762 /* Move stack pages down in memory. */
763 if (stack_shift) {
764 ret = shift_arg_pages(vma, stack_shift);
765 if (ret)
766 goto out_unlock;
767 }
768
769 /* mprotect_fixup is overkill to remove the temporary stack flags */
770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
771
772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 stack_size = vma->vm_end - vma->vm_start;
774 /*
775 * Align this down to a page boundary as expand_stack
776 * will align it up.
777 */
778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779#ifdef CONFIG_STACK_GROWSUP
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_start + rlim_stack;
782 else
783 stack_base = vma->vm_end + stack_expand;
784#else
785 if (stack_size + stack_expand > rlim_stack)
786 stack_base = vma->vm_end - rlim_stack;
787 else
788 stack_base = vma->vm_start - stack_expand;
789#endif
790 current->mm->start_stack = bprm->p;
791 ret = expand_stack(vma, stack_base);
792 if (ret)
793 ret = -EFAULT;
794
795out_unlock:
796 up_write(&mm->mmap_sem);
797 return ret;
798}
799EXPORT_SYMBOL(setup_arg_pages);
800
801#else
802
803/*
804 * Transfer the program arguments and environment from the holding pages
805 * onto the stack. The provided stack pointer is adjusted accordingly.
806 */
807int transfer_args_to_stack(struct linux_binprm *bprm,
808 unsigned long *sp_location)
809{
810 unsigned long index, stop, sp;
811 int ret = 0;
812
813 stop = bprm->p >> PAGE_SHIFT;
814 sp = *sp_location;
815
816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818 char *src = kmap(bprm->page[index]) + offset;
819 sp -= PAGE_SIZE - offset;
820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
821 ret = -EFAULT;
822 kunmap(bprm->page[index]);
823 if (ret)
824 goto out;
825 }
826
827 *sp_location = sp;
828
829out:
830 return ret;
831}
832EXPORT_SYMBOL(transfer_args_to_stack);
833
834#endif /* CONFIG_MMU */
835
836static struct file *do_open_execat(int fd, struct filename *name, int flags)
837{
838 struct file *file;
839 int err;
840 struct open_flags open_exec_flags = {
841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842 .acc_mode = MAY_EXEC,
843 .intent = LOOKUP_OPEN,
844 .lookup_flags = LOOKUP_FOLLOW,
845 };
846
847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848 return ERR_PTR(-EINVAL);
849 if (flags & AT_SYMLINK_NOFOLLOW)
850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851 if (flags & AT_EMPTY_PATH)
852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853
854 file = do_filp_open(fd, name, &open_exec_flags);
855 if (IS_ERR(file))
856 goto out;
857
858 err = -EACCES;
859 if (!S_ISREG(file_inode(file)->i_mode))
860 goto exit;
861
862 if (path_noexec(&file->f_path))
863 goto exit;
864
865 err = deny_write_access(file);
866 if (err)
867 goto exit;
868
869 if (name->name[0] != '\0')
870 fsnotify_open(file);
871
872out:
873 return file;
874
875exit:
876 fput(file);
877 return ERR_PTR(err);
878}
879
880struct file *open_exec(const char *name)
881{
882 struct filename *filename = getname_kernel(name);
883 struct file *f = ERR_CAST(filename);
884
885 if (!IS_ERR(filename)) {
886 f = do_open_execat(AT_FDCWD, filename, 0);
887 putname(filename);
888 }
889 return f;
890}
891EXPORT_SYMBOL(open_exec);
892
893int kernel_read_file(struct file *file, void **buf, loff_t *size,
894 loff_t max_size, enum kernel_read_file_id id)
895{
896 loff_t i_size, pos;
897 ssize_t bytes = 0;
898 int ret;
899
900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901 return -EINVAL;
902
903 ret = deny_write_access(file);
904 if (ret)
905 return ret;
906
907 ret = security_kernel_read_file(file, id);
908 if (ret)
909 goto out;
910
911 i_size = i_size_read(file_inode(file));
912 if (max_size > 0 && i_size > max_size) {
913 ret = -EFBIG;
914 goto out;
915 }
916 if (i_size <= 0) {
917 ret = -EINVAL;
918 goto out;
919 }
920
921 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922 *buf = vmalloc(i_size);
923 if (!*buf) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 pos = 0;
929 while (pos < i_size) {
930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931 if (bytes < 0) {
932 ret = bytes;
933 goto out;
934 }
935
936 if (bytes == 0)
937 break;
938 }
939
940 if (pos != i_size) {
941 ret = -EIO;
942 goto out_free;
943 }
944
945 ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 if (!ret)
947 *size = pos;
948
949out_free:
950 if (ret < 0) {
951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952 vfree(*buf);
953 *buf = NULL;
954 }
955 }
956
957out:
958 allow_write_access(file);
959 return ret;
960}
961EXPORT_SYMBOL_GPL(kernel_read_file);
962
963int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964 loff_t max_size, enum kernel_read_file_id id)
965{
966 struct file *file;
967 int ret;
968
969 if (!path || !*path)
970 return -EINVAL;
971
972 file = filp_open(path, O_RDONLY, 0);
973 if (IS_ERR(file))
974 return PTR_ERR(file);
975
976 ret = kernel_read_file(file, buf, size, max_size, id);
977 fput(file);
978 return ret;
979}
980EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981
982int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 enum kernel_read_file_id id)
984{
985 struct fd f = fdget(fd);
986 int ret = -EBADF;
987
988 if (!f.file)
989 goto out;
990
991 ret = kernel_read_file(f.file, buf, size, max_size, id);
992out:
993 fdput(f);
994 return ret;
995}
996EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997
998ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999{
1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001 if (res > 0)
1002 flush_icache_range(addr, addr + len);
1003 return res;
1004}
1005EXPORT_SYMBOL(read_code);
1006
1007static int exec_mmap(struct mm_struct *mm)
1008{
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1011
1012 /* Notify parent that we're no longer interested in the old VM */
1013 tsk = current;
1014 old_mm = current->mm;
1015 mm_release(tsk, old_mm);
1016
1017 if (old_mm) {
1018 sync_mm_rss(old_mm);
1019 /*
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1024 */
1025 down_read(&old_mm->mmap_sem);
1026 if (unlikely(old_mm->core_state)) {
1027 up_read(&old_mm->mmap_sem);
1028 return -EINTR;
1029 }
1030 }
1031 task_lock(tsk);
1032 active_mm = tsk->active_mm;
1033 tsk->mm = mm;
1034 tsk->active_mm = mm;
1035 activate_mm(active_mm, mm);
1036 tsk->mm->vmacache_seqnum = 0;
1037 vmacache_flush(tsk);
1038 task_unlock(tsk);
1039 if (old_mm) {
1040 up_read(&old_mm->mmap_sem);
1041 BUG_ON(active_mm != old_mm);
1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 mm_update_next_owner(old_mm);
1044 mmput(old_mm);
1045 return 0;
1046 }
1047 mmdrop(active_mm);
1048 return 0;
1049}
1050
1051/*
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1056 */
1057static int de_thread(struct task_struct *tsk)
1058{
1059 struct signal_struct *sig = tsk->signal;
1060 struct sighand_struct *oldsighand = tsk->sighand;
1061 spinlock_t *lock = &oldsighand->siglock;
1062
1063 if (thread_group_empty(tsk))
1064 goto no_thread_group;
1065
1066 /*
1067 * Kill all other threads in the thread group.
1068 */
1069 spin_lock_irq(lock);
1070 if (signal_group_exit(sig)) {
1071 /*
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1074 */
1075 spin_unlock_irq(lock);
1076 return -EAGAIN;
1077 }
1078
1079 sig->group_exit_task = tsk;
1080 sig->notify_count = zap_other_threads(tsk);
1081 if (!thread_group_leader(tsk))
1082 sig->notify_count--;
1083
1084 while (sig->notify_count) {
1085 __set_current_state(TASK_KILLABLE);
1086 spin_unlock_irq(lock);
1087 schedule();
1088 if (unlikely(__fatal_signal_pending(tsk)))
1089 goto killed;
1090 spin_lock_irq(lock);
1091 }
1092 spin_unlock_irq(lock);
1093
1094 /*
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1098 */
1099 if (!thread_group_leader(tsk)) {
1100 struct task_struct *leader = tsk->group_leader;
1101
1102 for (;;) {
1103 cgroup_threadgroup_change_begin(tsk);
1104 write_lock_irq(&tasklist_lock);
1105 /*
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1108 */
1109 sig->notify_count = -1;
1110 if (likely(leader->exit_state))
1111 break;
1112 __set_current_state(TASK_KILLABLE);
1113 write_unlock_irq(&tasklist_lock);
1114 cgroup_threadgroup_change_end(tsk);
1115 schedule();
1116 if (unlikely(__fatal_signal_pending(tsk)))
1117 goto killed;
1118 }
1119
1120 /*
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1129 */
1130 tsk->start_time = leader->start_time;
1131 tsk->real_start_time = leader->real_start_time;
1132
1133 BUG_ON(!same_thread_group(leader, tsk));
1134 BUG_ON(has_group_leader_pid(tsk));
1135 /*
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1140 */
1141
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1146 */
1147 tsk->pid = leader->pid;
1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 transfer_pid(leader, tsk, PIDTYPE_PGID);
1150 transfer_pid(leader, tsk, PIDTYPE_SID);
1151
1152 list_replace_rcu(&leader->tasks, &tsk->tasks);
1153 list_replace_init(&leader->sibling, &tsk->sibling);
1154
1155 tsk->group_leader = tsk;
1156 leader->group_leader = tsk;
1157
1158 tsk->exit_signal = SIGCHLD;
1159 leader->exit_signal = -1;
1160
1161 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1162 leader->exit_state = EXIT_DEAD;
1163
1164 /*
1165 * We are going to release_task()->ptrace_unlink() silently,
1166 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167 * the tracer wont't block again waiting for this thread.
1168 */
1169 if (unlikely(leader->ptrace))
1170 __wake_up_parent(leader, leader->parent);
1171 write_unlock_irq(&tasklist_lock);
1172 cgroup_threadgroup_change_end(tsk);
1173
1174 release_task(leader);
1175 }
1176
1177 sig->group_exit_task = NULL;
1178 sig->notify_count = 0;
1179
1180no_thread_group:
1181 /* we have changed execution domain */
1182 tsk->exit_signal = SIGCHLD;
1183
1184#ifdef CONFIG_POSIX_TIMERS
1185 exit_itimers(sig);
1186 flush_itimer_signals();
1187#endif
1188
1189 if (atomic_read(&oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1191 /*
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1194 */
1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196 if (!newsighand)
1197 return -ENOMEM;
1198
1199 atomic_set(&newsighand->count, 1);
1200 memcpy(newsighand->action, oldsighand->action,
1201 sizeof(newsighand->action));
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 rcu_assign_pointer(tsk->sighand, newsighand);
1206 spin_unlock(&oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1208
1209 __cleanup_sighand(oldsighand);
1210 }
1211
1212 BUG_ON(!thread_group_leader(tsk));
1213 return 0;
1214
1215killed:
1216 /* protects against exit_notify() and __exit_signal() */
1217 read_lock(&tasklist_lock);
1218 sig->group_exit_task = NULL;
1219 sig->notify_count = 0;
1220 read_unlock(&tasklist_lock);
1221 return -EAGAIN;
1222}
1223
1224char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1225{
1226 task_lock(tsk);
1227 strncpy(buf, tsk->comm, buf_size);
1228 task_unlock(tsk);
1229 return buf;
1230}
1231EXPORT_SYMBOL_GPL(__get_task_comm);
1232
1233/*
1234 * These functions flushes out all traces of the currently running executable
1235 * so that a new one can be started
1236 */
1237
1238void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1239{
1240 task_lock(tsk);
1241 trace_task_rename(tsk, buf);
1242 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1243 task_unlock(tsk);
1244 perf_event_comm(tsk, exec);
1245}
1246
1247/*
1248 * Calling this is the point of no return. None of the failures will be
1249 * seen by userspace since either the process is already taking a fatal
1250 * signal (via de_thread() or coredump), or will have SEGV raised
1251 * (after exec_mmap()) by search_binary_handlers (see below).
1252 */
1253int flush_old_exec(struct linux_binprm * bprm)
1254{
1255 int retval;
1256
1257 /*
1258 * Make sure we have a private signal table and that
1259 * we are unassociated from the previous thread group.
1260 */
1261 retval = de_thread(current);
1262 if (retval)
1263 goto out;
1264
1265 /*
1266 * Must be called _before_ exec_mmap() as bprm->mm is
1267 * not visibile until then. This also enables the update
1268 * to be lockless.
1269 */
1270 set_mm_exe_file(bprm->mm, bprm->file);
1271
1272 /*
1273 * Release all of the old mmap stuff
1274 */
1275 acct_arg_size(bprm, 0);
1276 retval = exec_mmap(bprm->mm);
1277 if (retval)
1278 goto out;
1279
1280 /*
1281 * After clearing bprm->mm (to mark that current is using the
1282 * prepared mm now), we have nothing left of the original
1283 * process. If anything from here on returns an error, the check
1284 * in search_binary_handler() will SEGV current.
1285 */
1286 bprm->mm = NULL;
1287
1288 set_fs(USER_DS);
1289 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1290 PF_NOFREEZE | PF_NO_SETAFFINITY);
1291 flush_thread();
1292 current->personality &= ~bprm->per_clear;
1293
1294 /*
1295 * We have to apply CLOEXEC before we change whether the process is
1296 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1297 * trying to access the should-be-closed file descriptors of a process
1298 * undergoing exec(2).
1299 */
1300 do_close_on_exec(current->files);
1301 return 0;
1302
1303out:
1304 return retval;
1305}
1306EXPORT_SYMBOL(flush_old_exec);
1307
1308void would_dump(struct linux_binprm *bprm, struct file *file)
1309{
1310 struct inode *inode = file_inode(file);
1311 if (inode_permission(inode, MAY_READ) < 0) {
1312 struct user_namespace *old, *user_ns;
1313 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1314
1315 /* Ensure mm->user_ns contains the executable */
1316 user_ns = old = bprm->mm->user_ns;
1317 while ((user_ns != &init_user_ns) &&
1318 !privileged_wrt_inode_uidgid(user_ns, inode))
1319 user_ns = user_ns->parent;
1320
1321 if (old != user_ns) {
1322 bprm->mm->user_ns = get_user_ns(user_ns);
1323 put_user_ns(old);
1324 }
1325 }
1326}
1327EXPORT_SYMBOL(would_dump);
1328
1329void setup_new_exec(struct linux_binprm * bprm)
1330{
1331 /*
1332 * Once here, prepare_binrpm() will not be called any more, so
1333 * the final state of setuid/setgid/fscaps can be merged into the
1334 * secureexec flag.
1335 */
1336 bprm->secureexec |= bprm->cap_elevated;
1337
1338 if (bprm->secureexec) {
1339 /* Make sure parent cannot signal privileged process. */
1340 current->pdeath_signal = 0;
1341
1342 /*
1343 * For secureexec, reset the stack limit to sane default to
1344 * avoid bad behavior from the prior rlimits. This has to
1345 * happen before arch_pick_mmap_layout(), which examines
1346 * RLIMIT_STACK, but after the point of no return to avoid
1347 * needing to clean up the change on failure.
1348 */
1349 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350 bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 }
1352
1353 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1354
1355 current->sas_ss_sp = current->sas_ss_size = 0;
1356
1357 /*
1358 * Figure out dumpability. Note that this checking only of current
1359 * is wrong, but userspace depends on it. This should be testing
1360 * bprm->secureexec instead.
1361 */
1362 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1363 !(uid_eq(current_euid(), current_uid()) &&
1364 gid_eq(current_egid(), current_gid())))
1365 set_dumpable(current->mm, suid_dumpable);
1366 else
1367 set_dumpable(current->mm, SUID_DUMP_USER);
1368
1369 arch_setup_new_exec();
1370 perf_event_exec();
1371 __set_task_comm(current, kbasename(bprm->filename), true);
1372
1373 /* Set the new mm task size. We have to do that late because it may
1374 * depend on TIF_32BIT which is only updated in flush_thread() on
1375 * some architectures like powerpc
1376 */
1377 current->mm->task_size = TASK_SIZE;
1378
1379 /* An exec changes our domain. We are no longer part of the thread
1380 group */
1381 current->self_exec_id++;
1382 flush_signal_handlers(current, 0);
1383}
1384EXPORT_SYMBOL(setup_new_exec);
1385
1386/* Runs immediately before start_thread() takes over. */
1387void finalize_exec(struct linux_binprm *bprm)
1388{
1389 /* Store any stack rlimit changes before starting thread. */
1390 task_lock(current->group_leader);
1391 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1392 task_unlock(current->group_leader);
1393}
1394EXPORT_SYMBOL(finalize_exec);
1395
1396/*
1397 * Prepare credentials and lock ->cred_guard_mutex.
1398 * install_exec_creds() commits the new creds and drops the lock.
1399 * Or, if exec fails before, free_bprm() should release ->cred and
1400 * and unlock.
1401 */
1402int prepare_bprm_creds(struct linux_binprm *bprm)
1403{
1404 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1405 return -ERESTARTNOINTR;
1406
1407 bprm->cred = prepare_exec_creds();
1408 if (likely(bprm->cred))
1409 return 0;
1410
1411 mutex_unlock(¤t->signal->cred_guard_mutex);
1412 return -ENOMEM;
1413}
1414
1415static void free_bprm(struct linux_binprm *bprm)
1416{
1417 free_arg_pages(bprm);
1418 if (bprm->cred) {
1419 mutex_unlock(¤t->signal->cred_guard_mutex);
1420 abort_creds(bprm->cred);
1421 }
1422 if (bprm->file) {
1423 allow_write_access(bprm->file);
1424 fput(bprm->file);
1425 }
1426 /* If a binfmt changed the interp, free it. */
1427 if (bprm->interp != bprm->filename)
1428 kfree(bprm->interp);
1429 kfree(bprm);
1430}
1431
1432int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1433{
1434 /* If a binfmt changed the interp, free it first. */
1435 if (bprm->interp != bprm->filename)
1436 kfree(bprm->interp);
1437 bprm->interp = kstrdup(interp, GFP_KERNEL);
1438 if (!bprm->interp)
1439 return -ENOMEM;
1440 return 0;
1441}
1442EXPORT_SYMBOL(bprm_change_interp);
1443
1444/*
1445 * install the new credentials for this executable
1446 */
1447void install_exec_creds(struct linux_binprm *bprm)
1448{
1449 security_bprm_committing_creds(bprm);
1450
1451 commit_creds(bprm->cred);
1452 bprm->cred = NULL;
1453
1454 /*
1455 * Disable monitoring for regular users
1456 * when executing setuid binaries. Must
1457 * wait until new credentials are committed
1458 * by commit_creds() above
1459 */
1460 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1461 perf_event_exit_task(current);
1462 /*
1463 * cred_guard_mutex must be held at least to this point to prevent
1464 * ptrace_attach() from altering our determination of the task's
1465 * credentials; any time after this it may be unlocked.
1466 */
1467 security_bprm_committed_creds(bprm);
1468 mutex_unlock(¤t->signal->cred_guard_mutex);
1469}
1470EXPORT_SYMBOL(install_exec_creds);
1471
1472/*
1473 * determine how safe it is to execute the proposed program
1474 * - the caller must hold ->cred_guard_mutex to protect against
1475 * PTRACE_ATTACH or seccomp thread-sync
1476 */
1477static void check_unsafe_exec(struct linux_binprm *bprm)
1478{
1479 struct task_struct *p = current, *t;
1480 unsigned n_fs;
1481
1482 if (p->ptrace)
1483 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1484
1485 /*
1486 * This isn't strictly necessary, but it makes it harder for LSMs to
1487 * mess up.
1488 */
1489 if (task_no_new_privs(current))
1490 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1491
1492 t = p;
1493 n_fs = 1;
1494 spin_lock(&p->fs->lock);
1495 rcu_read_lock();
1496 while_each_thread(p, t) {
1497 if (t->fs == p->fs)
1498 n_fs++;
1499 }
1500 rcu_read_unlock();
1501
1502 if (p->fs->users > n_fs)
1503 bprm->unsafe |= LSM_UNSAFE_SHARE;
1504 else
1505 p->fs->in_exec = 1;
1506 spin_unlock(&p->fs->lock);
1507}
1508
1509static void bprm_fill_uid(struct linux_binprm *bprm)
1510{
1511 struct inode *inode;
1512 unsigned int mode;
1513 kuid_t uid;
1514 kgid_t gid;
1515
1516 /*
1517 * Since this can be called multiple times (via prepare_binprm),
1518 * we must clear any previous work done when setting set[ug]id
1519 * bits from any earlier bprm->file uses (for example when run
1520 * first for a setuid script then again for its interpreter).
1521 */
1522 bprm->cred->euid = current_euid();
1523 bprm->cred->egid = current_egid();
1524
1525 if (!mnt_may_suid(bprm->file->f_path.mnt))
1526 return;
1527
1528 if (task_no_new_privs(current))
1529 return;
1530
1531 inode = bprm->file->f_path.dentry->d_inode;
1532 mode = READ_ONCE(inode->i_mode);
1533 if (!(mode & (S_ISUID|S_ISGID)))
1534 return;
1535
1536 /* Be careful if suid/sgid is set */
1537 inode_lock(inode);
1538
1539 /* reload atomically mode/uid/gid now that lock held */
1540 mode = inode->i_mode;
1541 uid = inode->i_uid;
1542 gid = inode->i_gid;
1543 inode_unlock(inode);
1544
1545 /* We ignore suid/sgid if there are no mappings for them in the ns */
1546 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1547 !kgid_has_mapping(bprm->cred->user_ns, gid))
1548 return;
1549
1550 if (mode & S_ISUID) {
1551 bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 bprm->cred->euid = uid;
1553 }
1554
1555 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1556 bprm->per_clear |= PER_CLEAR_ON_SETID;
1557 bprm->cred->egid = gid;
1558 }
1559}
1560
1561/*
1562 * Fill the binprm structure from the inode.
1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564 *
1565 * This may be called multiple times for binary chains (scripts for example).
1566 */
1567int prepare_binprm(struct linux_binprm *bprm)
1568{
1569 int retval;
1570 loff_t pos = 0;
1571
1572 bprm_fill_uid(bprm);
1573
1574 /* fill in binprm security blob */
1575 retval = security_bprm_set_creds(bprm);
1576 if (retval)
1577 return retval;
1578 bprm->called_set_creds = 1;
1579
1580 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1581 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1582}
1583
1584EXPORT_SYMBOL(prepare_binprm);
1585
1586/*
1587 * Arguments are '\0' separated strings found at the location bprm->p
1588 * points to; chop off the first by relocating brpm->p to right after
1589 * the first '\0' encountered.
1590 */
1591int remove_arg_zero(struct linux_binprm *bprm)
1592{
1593 int ret = 0;
1594 unsigned long offset;
1595 char *kaddr;
1596 struct page *page;
1597
1598 if (!bprm->argc)
1599 return 0;
1600
1601 do {
1602 offset = bprm->p & ~PAGE_MASK;
1603 page = get_arg_page(bprm, bprm->p, 0);
1604 if (!page) {
1605 ret = -EFAULT;
1606 goto out;
1607 }
1608 kaddr = kmap_atomic(page);
1609
1610 for (; offset < PAGE_SIZE && kaddr[offset];
1611 offset++, bprm->p++)
1612 ;
1613
1614 kunmap_atomic(kaddr);
1615 put_arg_page(page);
1616 } while (offset == PAGE_SIZE);
1617
1618 bprm->p++;
1619 bprm->argc--;
1620 ret = 0;
1621
1622out:
1623 return ret;
1624}
1625EXPORT_SYMBOL(remove_arg_zero);
1626
1627#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628/*
1629 * cycle the list of binary formats handler, until one recognizes the image
1630 */
1631int search_binary_handler(struct linux_binprm *bprm)
1632{
1633 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1634 struct linux_binfmt *fmt;
1635 int retval;
1636
1637 /* This allows 4 levels of binfmt rewrites before failing hard. */
1638 if (bprm->recursion_depth > 5)
1639 return -ELOOP;
1640
1641 retval = security_bprm_check(bprm);
1642 if (retval)
1643 return retval;
1644
1645 retval = -ENOENT;
1646 retry:
1647 read_lock(&binfmt_lock);
1648 list_for_each_entry(fmt, &formats, lh) {
1649 if (!try_module_get(fmt->module))
1650 continue;
1651 read_unlock(&binfmt_lock);
1652 bprm->recursion_depth++;
1653 retval = fmt->load_binary(bprm);
1654 read_lock(&binfmt_lock);
1655 put_binfmt(fmt);
1656 bprm->recursion_depth--;
1657 if (retval < 0 && !bprm->mm) {
1658 /* we got to flush_old_exec() and failed after it */
1659 read_unlock(&binfmt_lock);
1660 force_sigsegv(SIGSEGV, current);
1661 return retval;
1662 }
1663 if (retval != -ENOEXEC || !bprm->file) {
1664 read_unlock(&binfmt_lock);
1665 return retval;
1666 }
1667 }
1668 read_unlock(&binfmt_lock);
1669
1670 if (need_retry) {
1671 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1672 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1673 return retval;
1674 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1675 return retval;
1676 need_retry = false;
1677 goto retry;
1678 }
1679
1680 return retval;
1681}
1682EXPORT_SYMBOL(search_binary_handler);
1683
1684static int exec_binprm(struct linux_binprm *bprm)
1685{
1686 pid_t old_pid, old_vpid;
1687 int ret;
1688
1689 /* Need to fetch pid before load_binary changes it */
1690 old_pid = current->pid;
1691 rcu_read_lock();
1692 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1693 rcu_read_unlock();
1694
1695 ret = search_binary_handler(bprm);
1696 if (ret >= 0) {
1697 audit_bprm(bprm);
1698 trace_sched_process_exec(current, old_pid, bprm);
1699 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1700 proc_exec_connector(current);
1701 }
1702
1703 return ret;
1704}
1705
1706/*
1707 * sys_execve() executes a new program.
1708 */
1709static int do_execveat_common(int fd, struct filename *filename,
1710 struct user_arg_ptr argv,
1711 struct user_arg_ptr envp,
1712 int flags)
1713{
1714 char *pathbuf = NULL;
1715 struct linux_binprm *bprm;
1716 struct file *file;
1717 struct files_struct *displaced;
1718 int retval;
1719
1720 if (IS_ERR(filename))
1721 return PTR_ERR(filename);
1722
1723 /*
1724 * We move the actual failure in case of RLIMIT_NPROC excess from
1725 * set*uid() to execve() because too many poorly written programs
1726 * don't check setuid() return code. Here we additionally recheck
1727 * whether NPROC limit is still exceeded.
1728 */
1729 if ((current->flags & PF_NPROC_EXCEEDED) &&
1730 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1731 retval = -EAGAIN;
1732 goto out_ret;
1733 }
1734
1735 /* We're below the limit (still or again), so we don't want to make
1736 * further execve() calls fail. */
1737 current->flags &= ~PF_NPROC_EXCEEDED;
1738
1739 retval = unshare_files(&displaced);
1740 if (retval)
1741 goto out_ret;
1742
1743 retval = -ENOMEM;
1744 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1745 if (!bprm)
1746 goto out_files;
1747
1748 retval = prepare_bprm_creds(bprm);
1749 if (retval)
1750 goto out_free;
1751
1752 check_unsafe_exec(bprm);
1753 current->in_execve = 1;
1754
1755 file = do_open_execat(fd, filename, flags);
1756 retval = PTR_ERR(file);
1757 if (IS_ERR(file))
1758 goto out_unmark;
1759
1760 sched_exec();
1761
1762 bprm->file = file;
1763 if (fd == AT_FDCWD || filename->name[0] == '/') {
1764 bprm->filename = filename->name;
1765 } else {
1766 if (filename->name[0] == '\0')
1767 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1768 else
1769 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1770 fd, filename->name);
1771 if (!pathbuf) {
1772 retval = -ENOMEM;
1773 goto out_unmark;
1774 }
1775 /*
1776 * Record that a name derived from an O_CLOEXEC fd will be
1777 * inaccessible after exec. Relies on having exclusive access to
1778 * current->files (due to unshare_files above).
1779 */
1780 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1781 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1782 bprm->filename = pathbuf;
1783 }
1784 bprm->interp = bprm->filename;
1785
1786 retval = bprm_mm_init(bprm);
1787 if (retval)
1788 goto out_unmark;
1789
1790 bprm->argc = count(argv, MAX_ARG_STRINGS);
1791 if ((retval = bprm->argc) < 0)
1792 goto out;
1793
1794 bprm->envc = count(envp, MAX_ARG_STRINGS);
1795 if ((retval = bprm->envc) < 0)
1796 goto out;
1797
1798 retval = prepare_binprm(bprm);
1799 if (retval < 0)
1800 goto out;
1801
1802 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1803 if (retval < 0)
1804 goto out;
1805
1806 bprm->exec = bprm->p;
1807 retval = copy_strings(bprm->envc, envp, bprm);
1808 if (retval < 0)
1809 goto out;
1810
1811 retval = copy_strings(bprm->argc, argv, bprm);
1812 if (retval < 0)
1813 goto out;
1814
1815 would_dump(bprm, bprm->file);
1816
1817 retval = exec_binprm(bprm);
1818 if (retval < 0)
1819 goto out;
1820
1821 /* execve succeeded */
1822 current->fs->in_exec = 0;
1823 current->in_execve = 0;
1824 membarrier_execve(current);
1825 acct_update_integrals(current);
1826 task_numa_free(current);
1827 free_bprm(bprm);
1828 kfree(pathbuf);
1829 putname(filename);
1830 if (displaced)
1831 put_files_struct(displaced);
1832 return retval;
1833
1834out:
1835 if (bprm->mm) {
1836 acct_arg_size(bprm, 0);
1837 mmput(bprm->mm);
1838 }
1839
1840out_unmark:
1841 current->fs->in_exec = 0;
1842 current->in_execve = 0;
1843
1844out_free:
1845 free_bprm(bprm);
1846 kfree(pathbuf);
1847
1848out_files:
1849 if (displaced)
1850 reset_files_struct(displaced);
1851out_ret:
1852 putname(filename);
1853 return retval;
1854}
1855
1856int do_execve(struct filename *filename,
1857 const char __user *const __user *__argv,
1858 const char __user *const __user *__envp)
1859{
1860 struct user_arg_ptr argv = { .ptr.native = __argv };
1861 struct user_arg_ptr envp = { .ptr.native = __envp };
1862 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1863}
1864
1865int do_execveat(int fd, struct filename *filename,
1866 const char __user *const __user *__argv,
1867 const char __user *const __user *__envp,
1868 int flags)
1869{
1870 struct user_arg_ptr argv = { .ptr.native = __argv };
1871 struct user_arg_ptr envp = { .ptr.native = __envp };
1872
1873 return do_execveat_common(fd, filename, argv, envp, flags);
1874}
1875
1876#ifdef CONFIG_COMPAT
1877static int compat_do_execve(struct filename *filename,
1878 const compat_uptr_t __user *__argv,
1879 const compat_uptr_t __user *__envp)
1880{
1881 struct user_arg_ptr argv = {
1882 .is_compat = true,
1883 .ptr.compat = __argv,
1884 };
1885 struct user_arg_ptr envp = {
1886 .is_compat = true,
1887 .ptr.compat = __envp,
1888 };
1889 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1890}
1891
1892static int compat_do_execveat(int fd, struct filename *filename,
1893 const compat_uptr_t __user *__argv,
1894 const compat_uptr_t __user *__envp,
1895 int flags)
1896{
1897 struct user_arg_ptr argv = {
1898 .is_compat = true,
1899 .ptr.compat = __argv,
1900 };
1901 struct user_arg_ptr envp = {
1902 .is_compat = true,
1903 .ptr.compat = __envp,
1904 };
1905 return do_execveat_common(fd, filename, argv, envp, flags);
1906}
1907#endif
1908
1909void set_binfmt(struct linux_binfmt *new)
1910{
1911 struct mm_struct *mm = current->mm;
1912
1913 if (mm->binfmt)
1914 module_put(mm->binfmt->module);
1915
1916 mm->binfmt = new;
1917 if (new)
1918 __module_get(new->module);
1919}
1920EXPORT_SYMBOL(set_binfmt);
1921
1922/*
1923 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1924 */
1925void set_dumpable(struct mm_struct *mm, int value)
1926{
1927 unsigned long old, new;
1928
1929 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1930 return;
1931
1932 do {
1933 old = READ_ONCE(mm->flags);
1934 new = (old & ~MMF_DUMPABLE_MASK) | value;
1935 } while (cmpxchg(&mm->flags, old, new) != old);
1936}
1937
1938SYSCALL_DEFINE3(execve,
1939 const char __user *, filename,
1940 const char __user *const __user *, argv,
1941 const char __user *const __user *, envp)
1942{
1943 return do_execve(getname(filename), argv, envp);
1944}
1945
1946SYSCALL_DEFINE5(execveat,
1947 int, fd, const char __user *, filename,
1948 const char __user *const __user *, argv,
1949 const char __user *const __user *, envp,
1950 int, flags)
1951{
1952 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1953
1954 return do_execveat(fd,
1955 getname_flags(filename, lookup_flags, NULL),
1956 argv, envp, flags);
1957}
1958
1959#ifdef CONFIG_COMPAT
1960COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1961 const compat_uptr_t __user *, argv,
1962 const compat_uptr_t __user *, envp)
1963{
1964 return compat_do_execve(getname(filename), argv, envp);
1965}
1966
1967COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1968 const char __user *, filename,
1969 const compat_uptr_t __user *, argv,
1970 const compat_uptr_t __user *, envp,
1971 int, flags)
1972{
1973 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1974
1975 return compat_do_execveat(fd,
1976 getname_flags(filename, lookup_flags, NULL),
1977 argv, envp, flags);
1978}
1979#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/slab.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/mm.h>
30#include <linux/vmacache.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/tracehook.h>
59#include <linux/kmod.h>
60#include <linux/fsnotify.h>
61#include <linux/fs_struct.h>
62#include <linux/oom.h>
63#include <linux/compat.h>
64#include <linux/vmalloc.h>
65
66#include <linux/uaccess.h>
67#include <asm/mmu_context.h>
68#include <asm/tlb.h>
69
70#include <trace/events/task.h>
71#include "internal.h"
72
73#include <trace/events/sched.h>
74
75static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77int suid_dumpable = 0;
78
79static LIST_HEAD(formats);
80static DEFINE_RWLOCK(binfmt_lock);
81
82void __register_binfmt(struct linux_binfmt * fmt, int insert)
83{
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91}
92
93EXPORT_SYMBOL(__register_binfmt);
94
95void unregister_binfmt(struct linux_binfmt * fmt)
96{
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100}
101
102EXPORT_SYMBOL(unregister_binfmt);
103
104static inline void put_binfmt(struct linux_binfmt * fmt)
105{
106 module_put(fmt->module);
107}
108
109bool path_noexec(const struct path *path)
110{
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113}
114
115#ifdef CONFIG_USELIB
116/*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122SYSCALL_DEFINE1(uselib, const char __user *, library)
123{
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172exit:
173 fput(file);
174out:
175 return error;
176}
177#endif /* #ifdef CONFIG_USELIB */
178
179#ifdef CONFIG_MMU
180/*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187{
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196}
197
198static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200{
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205#ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211#endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 &page, NULL, NULL);
222 if (ret <= 0)
223 return NULL;
224
225 if (write)
226 acct_arg_size(bprm, vma_pages(bprm->vma));
227
228 return page;
229}
230
231static void put_arg_page(struct page *page)
232{
233 put_page(page);
234}
235
236static void free_arg_pages(struct linux_binprm *bprm)
237{
238}
239
240static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242{
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244}
245
246static int __bprm_mm_init(struct linux_binprm *bprm)
247{
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = vm_area_alloc(mm);
253 if (!vma)
254 return -ENOMEM;
255 vma_set_anonymous(vma);
256
257 if (mmap_write_lock_killable(mm)) {
258 err = -EINTR;
259 goto err_free;
260 }
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273
274 err = insert_vm_struct(mm, vma);
275 if (err)
276 goto err;
277
278 mm->stack_vm = mm->total_vm = 1;
279 mmap_write_unlock(mm);
280 bprm->p = vma->vm_end - sizeof(void *);
281 return 0;
282err:
283 mmap_write_unlock(mm);
284err_free:
285 bprm->vma = NULL;
286 vm_area_free(vma);
287 return err;
288}
289
290static bool valid_arg_len(struct linux_binprm *bprm, long len)
291{
292 return len <= MAX_ARG_STRLEN;
293}
294
295#else
296
297static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298{
299}
300
301static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303{
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315}
316
317static void put_arg_page(struct page *page)
318{
319}
320
321static void free_arg_page(struct linux_binprm *bprm, int i)
322{
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327}
328
329static void free_arg_pages(struct linux_binprm *bprm)
330{
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335}
336
337static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339{
340}
341
342static int __bprm_mm_init(struct linux_binprm *bprm)
343{
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346}
347
348static bool valid_arg_len(struct linux_binprm *bprm, long len)
349{
350 return len <= bprm->p;
351}
352
353#endif /* CONFIG_MMU */
354
355/*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361static int bprm_mm_init(struct linux_binprm *bprm)
362{
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 /* Save current stack limit for all calculations made during exec. */
372 task_lock(current->group_leader);
373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 task_unlock(current->group_leader);
375
376 err = __bprm_mm_init(bprm);
377 if (err)
378 goto err;
379
380 return 0;
381
382err:
383 if (mm) {
384 bprm->mm = NULL;
385 mmdrop(mm);
386 }
387
388 return err;
389}
390
391struct user_arg_ptr {
392#ifdef CONFIG_COMPAT
393 bool is_compat;
394#endif
395 union {
396 const char __user *const __user *native;
397#ifdef CONFIG_COMPAT
398 const compat_uptr_t __user *compat;
399#endif
400 } ptr;
401};
402
403static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404{
405 const char __user *native;
406
407#ifdef CONFIG_COMPAT
408 if (unlikely(argv.is_compat)) {
409 compat_uptr_t compat;
410
411 if (get_user(compat, argv.ptr.compat + nr))
412 return ERR_PTR(-EFAULT);
413
414 return compat_ptr(compat);
415 }
416#endif
417
418 if (get_user(native, argv.ptr.native + nr))
419 return ERR_PTR(-EFAULT);
420
421 return native;
422}
423
424/*
425 * count() counts the number of strings in array ARGV.
426 */
427static int count(struct user_arg_ptr argv, int max)
428{
429 int i = 0;
430
431 if (argv.ptr.native != NULL) {
432 for (;;) {
433 const char __user *p = get_user_arg_ptr(argv, i);
434
435 if (!p)
436 break;
437
438 if (IS_ERR(p))
439 return -EFAULT;
440
441 if (i >= max)
442 return -E2BIG;
443 ++i;
444
445 if (fatal_signal_pending(current))
446 return -ERESTARTNOHAND;
447 cond_resched();
448 }
449 }
450 return i;
451}
452
453static int count_strings_kernel(const char *const *argv)
454{
455 int i;
456
457 if (!argv)
458 return 0;
459
460 for (i = 0; argv[i]; ++i) {
461 if (i >= MAX_ARG_STRINGS)
462 return -E2BIG;
463 if (fatal_signal_pending(current))
464 return -ERESTARTNOHAND;
465 cond_resched();
466 }
467 return i;
468}
469
470static int bprm_stack_limits(struct linux_binprm *bprm)
471{
472 unsigned long limit, ptr_size;
473
474 /*
475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 * (whichever is smaller) for the argv+env strings.
477 * This ensures that:
478 * - the remaining binfmt code will not run out of stack space,
479 * - the program will have a reasonable amount of stack left
480 * to work from.
481 */
482 limit = _STK_LIM / 4 * 3;
483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 /*
485 * We've historically supported up to 32 pages (ARG_MAX)
486 * of argument strings even with small stacks
487 */
488 limit = max_t(unsigned long, limit, ARG_MAX);
489 /*
490 * We must account for the size of all the argv and envp pointers to
491 * the argv and envp strings, since they will also take up space in
492 * the stack. They aren't stored until much later when we can't
493 * signal to the parent that the child has run out of stack space.
494 * Instead, calculate it here so it's possible to fail gracefully.
495 */
496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 if (limit <= ptr_size)
498 return -E2BIG;
499 limit -= ptr_size;
500
501 bprm->argmin = bprm->p - limit;
502 return 0;
503}
504
505/*
506 * 'copy_strings()' copies argument/environment strings from the old
507 * processes's memory to the new process's stack. The call to get_user_pages()
508 * ensures the destination page is created and not swapped out.
509 */
510static int copy_strings(int argc, struct user_arg_ptr argv,
511 struct linux_binprm *bprm)
512{
513 struct page *kmapped_page = NULL;
514 char *kaddr = NULL;
515 unsigned long kpos = 0;
516 int ret;
517
518 while (argc-- > 0) {
519 const char __user *str;
520 int len;
521 unsigned long pos;
522
523 ret = -EFAULT;
524 str = get_user_arg_ptr(argv, argc);
525 if (IS_ERR(str))
526 goto out;
527
528 len = strnlen_user(str, MAX_ARG_STRLEN);
529 if (!len)
530 goto out;
531
532 ret = -E2BIG;
533 if (!valid_arg_len(bprm, len))
534 goto out;
535
536 /* We're going to work our way backwords. */
537 pos = bprm->p;
538 str += len;
539 bprm->p -= len;
540#ifdef CONFIG_MMU
541 if (bprm->p < bprm->argmin)
542 goto out;
543#endif
544
545 while (len > 0) {
546 int offset, bytes_to_copy;
547
548 if (fatal_signal_pending(current)) {
549 ret = -ERESTARTNOHAND;
550 goto out;
551 }
552 cond_resched();
553
554 offset = pos % PAGE_SIZE;
555 if (offset == 0)
556 offset = PAGE_SIZE;
557
558 bytes_to_copy = offset;
559 if (bytes_to_copy > len)
560 bytes_to_copy = len;
561
562 offset -= bytes_to_copy;
563 pos -= bytes_to_copy;
564 str -= bytes_to_copy;
565 len -= bytes_to_copy;
566
567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 struct page *page;
569
570 page = get_arg_page(bprm, pos, 1);
571 if (!page) {
572 ret = -E2BIG;
573 goto out;
574 }
575
576 if (kmapped_page) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
580 }
581 kmapped_page = page;
582 kaddr = kmap(kmapped_page);
583 kpos = pos & PAGE_MASK;
584 flush_arg_page(bprm, kpos, kmapped_page);
585 }
586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 ret = -EFAULT;
588 goto out;
589 }
590 }
591 }
592 ret = 0;
593out:
594 if (kmapped_page) {
595 flush_kernel_dcache_page(kmapped_page);
596 kunmap(kmapped_page);
597 put_arg_page(kmapped_page);
598 }
599 return ret;
600}
601
602/*
603 * Copy and argument/environment string from the kernel to the processes stack.
604 */
605int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606{
607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 unsigned long pos = bprm->p;
609
610 if (len == 0)
611 return -EFAULT;
612 if (!valid_arg_len(bprm, len))
613 return -E2BIG;
614
615 /* We're going to work our way backwards. */
616 arg += len;
617 bprm->p -= len;
618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 return -E2BIG;
620
621 while (len > 0) {
622 unsigned int bytes_to_copy = min_t(unsigned int, len,
623 min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 struct page *page;
625 char *kaddr;
626
627 pos -= bytes_to_copy;
628 arg -= bytes_to_copy;
629 len -= bytes_to_copy;
630
631 page = get_arg_page(bprm, pos, 1);
632 if (!page)
633 return -E2BIG;
634 kaddr = kmap_atomic(page);
635 flush_arg_page(bprm, pos & PAGE_MASK, page);
636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 flush_kernel_dcache_page(page);
638 kunmap_atomic(kaddr);
639 put_arg_page(page);
640 }
641
642 return 0;
643}
644EXPORT_SYMBOL(copy_string_kernel);
645
646static int copy_strings_kernel(int argc, const char *const *argv,
647 struct linux_binprm *bprm)
648{
649 while (argc-- > 0) {
650 int ret = copy_string_kernel(argv[argc], bprm);
651 if (ret < 0)
652 return ret;
653 if (fatal_signal_pending(current))
654 return -ERESTARTNOHAND;
655 cond_resched();
656 }
657 return 0;
658}
659
660#ifdef CONFIG_MMU
661
662/*
663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
664 * the binfmt code determines where the new stack should reside, we shift it to
665 * its final location. The process proceeds as follows:
666 *
667 * 1) Use shift to calculate the new vma endpoints.
668 * 2) Extend vma to cover both the old and new ranges. This ensures the
669 * arguments passed to subsequent functions are consistent.
670 * 3) Move vma's page tables to the new range.
671 * 4) Free up any cleared pgd range.
672 * 5) Shrink the vma to cover only the new range.
673 */
674static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675{
676 struct mm_struct *mm = vma->vm_mm;
677 unsigned long old_start = vma->vm_start;
678 unsigned long old_end = vma->vm_end;
679 unsigned long length = old_end - old_start;
680 unsigned long new_start = old_start - shift;
681 unsigned long new_end = old_end - shift;
682 struct mmu_gather tlb;
683
684 BUG_ON(new_start > new_end);
685
686 /*
687 * ensure there are no vmas between where we want to go
688 * and where we are
689 */
690 if (vma != find_vma(mm, new_start))
691 return -EFAULT;
692
693 /*
694 * cover the whole range: [new_start, old_end)
695 */
696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 return -ENOMEM;
698
699 /*
700 * move the page tables downwards, on failure we rely on
701 * process cleanup to remove whatever mess we made.
702 */
703 if (length != move_page_tables(vma, old_start,
704 vma, new_start, length, false))
705 return -ENOMEM;
706
707 lru_add_drain();
708 tlb_gather_mmu(&tlb, mm, old_start, old_end);
709 if (new_end > old_start) {
710 /*
711 * when the old and new regions overlap clear from new_end.
712 */
713 free_pgd_range(&tlb, new_end, old_end, new_end,
714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 } else {
716 /*
717 * otherwise, clean from old_start; this is done to not touch
718 * the address space in [new_end, old_start) some architectures
719 * have constraints on va-space that make this illegal (IA64) -
720 * for the others its just a little faster.
721 */
722 free_pgd_range(&tlb, old_start, old_end, new_end,
723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 }
725 tlb_finish_mmu(&tlb, old_start, old_end);
726
727 /*
728 * Shrink the vma to just the new range. Always succeeds.
729 */
730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731
732 return 0;
733}
734
735/*
736 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737 * the stack is optionally relocated, and some extra space is added.
738 */
739int setup_arg_pages(struct linux_binprm *bprm,
740 unsigned long stack_top,
741 int executable_stack)
742{
743 unsigned long ret;
744 unsigned long stack_shift;
745 struct mm_struct *mm = current->mm;
746 struct vm_area_struct *vma = bprm->vma;
747 struct vm_area_struct *prev = NULL;
748 unsigned long vm_flags;
749 unsigned long stack_base;
750 unsigned long stack_size;
751 unsigned long stack_expand;
752 unsigned long rlim_stack;
753
754#ifdef CONFIG_STACK_GROWSUP
755 /* Limit stack size */
756 stack_base = bprm->rlim_stack.rlim_max;
757 if (stack_base > STACK_SIZE_MAX)
758 stack_base = STACK_SIZE_MAX;
759
760 /* Add space for stack randomization. */
761 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762
763 /* Make sure we didn't let the argument array grow too large. */
764 if (vma->vm_end - vma->vm_start > stack_base)
765 return -ENOMEM;
766
767 stack_base = PAGE_ALIGN(stack_top - stack_base);
768
769 stack_shift = vma->vm_start - stack_base;
770 mm->arg_start = bprm->p - stack_shift;
771 bprm->p = vma->vm_end - stack_shift;
772#else
773 stack_top = arch_align_stack(stack_top);
774 stack_top = PAGE_ALIGN(stack_top);
775
776 if (unlikely(stack_top < mmap_min_addr) ||
777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 return -ENOMEM;
779
780 stack_shift = vma->vm_end - stack_top;
781
782 bprm->p -= stack_shift;
783 mm->arg_start = bprm->p;
784#endif
785
786 if (bprm->loader)
787 bprm->loader -= stack_shift;
788 bprm->exec -= stack_shift;
789
790 if (mmap_write_lock_killable(mm))
791 return -EINTR;
792
793 vm_flags = VM_STACK_FLAGS;
794
795 /*
796 * Adjust stack execute permissions; explicitly enable for
797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 * (arch default) otherwise.
799 */
800 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 vm_flags |= VM_EXEC;
802 else if (executable_stack == EXSTACK_DISABLE_X)
803 vm_flags &= ~VM_EXEC;
804 vm_flags |= mm->def_flags;
805 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806
807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 vm_flags);
809 if (ret)
810 goto out_unlock;
811 BUG_ON(prev != vma);
812
813 if (unlikely(vm_flags & VM_EXEC)) {
814 pr_warn_once("process '%pD4' started with executable stack\n",
815 bprm->file);
816 }
817
818 /* Move stack pages down in memory. */
819 if (stack_shift) {
820 ret = shift_arg_pages(vma, stack_shift);
821 if (ret)
822 goto out_unlock;
823 }
824
825 /* mprotect_fixup is overkill to remove the temporary stack flags */
826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827
828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 stack_size = vma->vm_end - vma->vm_start;
830 /*
831 * Align this down to a page boundary as expand_stack
832 * will align it up.
833 */
834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835#ifdef CONFIG_STACK_GROWSUP
836 if (stack_size + stack_expand > rlim_stack)
837 stack_base = vma->vm_start + rlim_stack;
838 else
839 stack_base = vma->vm_end + stack_expand;
840#else
841 if (stack_size + stack_expand > rlim_stack)
842 stack_base = vma->vm_end - rlim_stack;
843 else
844 stack_base = vma->vm_start - stack_expand;
845#endif
846 current->mm->start_stack = bprm->p;
847 ret = expand_stack(vma, stack_base);
848 if (ret)
849 ret = -EFAULT;
850
851out_unlock:
852 mmap_write_unlock(mm);
853 return ret;
854}
855EXPORT_SYMBOL(setup_arg_pages);
856
857#else
858
859/*
860 * Transfer the program arguments and environment from the holding pages
861 * onto the stack. The provided stack pointer is adjusted accordingly.
862 */
863int transfer_args_to_stack(struct linux_binprm *bprm,
864 unsigned long *sp_location)
865{
866 unsigned long index, stop, sp;
867 int ret = 0;
868
869 stop = bprm->p >> PAGE_SHIFT;
870 sp = *sp_location;
871
872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 char *src = kmap(bprm->page[index]) + offset;
875 sp -= PAGE_SIZE - offset;
876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 ret = -EFAULT;
878 kunmap(bprm->page[index]);
879 if (ret)
880 goto out;
881 }
882
883 *sp_location = sp;
884
885out:
886 return ret;
887}
888EXPORT_SYMBOL(transfer_args_to_stack);
889
890#endif /* CONFIG_MMU */
891
892static struct file *do_open_execat(int fd, struct filename *name, int flags)
893{
894 struct file *file;
895 int err;
896 struct open_flags open_exec_flags = {
897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 .acc_mode = MAY_EXEC,
899 .intent = LOOKUP_OPEN,
900 .lookup_flags = LOOKUP_FOLLOW,
901 };
902
903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 return ERR_PTR(-EINVAL);
905 if (flags & AT_SYMLINK_NOFOLLOW)
906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 if (flags & AT_EMPTY_PATH)
908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909
910 file = do_filp_open(fd, name, &open_exec_flags);
911 if (IS_ERR(file))
912 goto out;
913
914 /*
915 * may_open() has already checked for this, so it should be
916 * impossible to trip now. But we need to be extra cautious
917 * and check again at the very end too.
918 */
919 err = -EACCES;
920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 path_noexec(&file->f_path)))
922 goto exit;
923
924 err = deny_write_access(file);
925 if (err)
926 goto exit;
927
928 if (name->name[0] != '\0')
929 fsnotify_open(file);
930
931out:
932 return file;
933
934exit:
935 fput(file);
936 return ERR_PTR(err);
937}
938
939struct file *open_exec(const char *name)
940{
941 struct filename *filename = getname_kernel(name);
942 struct file *f = ERR_CAST(filename);
943
944 if (!IS_ERR(filename)) {
945 f = do_open_execat(AT_FDCWD, filename, 0);
946 putname(filename);
947 }
948 return f;
949}
950EXPORT_SYMBOL(open_exec);
951
952int kernel_read_file(struct file *file, void **buf, loff_t *size,
953 loff_t max_size, enum kernel_read_file_id id)
954{
955 loff_t i_size, pos;
956 ssize_t bytes = 0;
957 int ret;
958
959 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
960 return -EINVAL;
961
962 ret = deny_write_access(file);
963 if (ret)
964 return ret;
965
966 ret = security_kernel_read_file(file, id);
967 if (ret)
968 goto out;
969
970 i_size = i_size_read(file_inode(file));
971 if (i_size <= 0) {
972 ret = -EINVAL;
973 goto out;
974 }
975 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
976 ret = -EFBIG;
977 goto out;
978 }
979
980 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
981 *buf = vmalloc(i_size);
982 if (!*buf) {
983 ret = -ENOMEM;
984 goto out;
985 }
986
987 pos = 0;
988 while (pos < i_size) {
989 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
990 if (bytes < 0) {
991 ret = bytes;
992 goto out_free;
993 }
994
995 if (bytes == 0)
996 break;
997 }
998
999 if (pos != i_size) {
1000 ret = -EIO;
1001 goto out_free;
1002 }
1003
1004 ret = security_kernel_post_read_file(file, *buf, i_size, id);
1005 if (!ret)
1006 *size = pos;
1007
1008out_free:
1009 if (ret < 0) {
1010 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1011 vfree(*buf);
1012 *buf = NULL;
1013 }
1014 }
1015
1016out:
1017 allow_write_access(file);
1018 return ret;
1019}
1020EXPORT_SYMBOL_GPL(kernel_read_file);
1021
1022int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1023 loff_t max_size, enum kernel_read_file_id id)
1024{
1025 struct file *file;
1026 int ret;
1027
1028 if (!path || !*path)
1029 return -EINVAL;
1030
1031 file = filp_open(path, O_RDONLY, 0);
1032 if (IS_ERR(file))
1033 return PTR_ERR(file);
1034
1035 ret = kernel_read_file(file, buf, size, max_size, id);
1036 fput(file);
1037 return ret;
1038}
1039EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1040
1041int kernel_read_file_from_path_initns(const char *path, void **buf,
1042 loff_t *size, loff_t max_size,
1043 enum kernel_read_file_id id)
1044{
1045 struct file *file;
1046 struct path root;
1047 int ret;
1048
1049 if (!path || !*path)
1050 return -EINVAL;
1051
1052 task_lock(&init_task);
1053 get_fs_root(init_task.fs, &root);
1054 task_unlock(&init_task);
1055
1056 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1057 path_put(&root);
1058 if (IS_ERR(file))
1059 return PTR_ERR(file);
1060
1061 ret = kernel_read_file(file, buf, size, max_size, id);
1062 fput(file);
1063 return ret;
1064}
1065EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1066
1067int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1068 enum kernel_read_file_id id)
1069{
1070 struct fd f = fdget(fd);
1071 int ret = -EBADF;
1072
1073 if (!f.file)
1074 goto out;
1075
1076 ret = kernel_read_file(f.file, buf, size, max_size, id);
1077out:
1078 fdput(f);
1079 return ret;
1080}
1081EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1082
1083#if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084 defined(CONFIG_BINFMT_ELF_FDPIC)
1085ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1086{
1087 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1088 if (res > 0)
1089 flush_icache_user_range(addr, addr + len);
1090 return res;
1091}
1092EXPORT_SYMBOL(read_code);
1093#endif
1094
1095/*
1096 * Maps the mm_struct mm into the current task struct.
1097 * On success, this function returns with the mutex
1098 * exec_update_mutex locked.
1099 */
1100static int exec_mmap(struct mm_struct *mm)
1101{
1102 struct task_struct *tsk;
1103 struct mm_struct *old_mm, *active_mm;
1104 int ret;
1105
1106 /* Notify parent that we're no longer interested in the old VM */
1107 tsk = current;
1108 old_mm = current->mm;
1109 exec_mm_release(tsk, old_mm);
1110 if (old_mm)
1111 sync_mm_rss(old_mm);
1112
1113 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1114 if (ret)
1115 return ret;
1116
1117 if (old_mm) {
1118 /*
1119 * Make sure that if there is a core dump in progress
1120 * for the old mm, we get out and die instead of going
1121 * through with the exec. We must hold mmap_lock around
1122 * checking core_state and changing tsk->mm.
1123 */
1124 mmap_read_lock(old_mm);
1125 if (unlikely(old_mm->core_state)) {
1126 mmap_read_unlock(old_mm);
1127 mutex_unlock(&tsk->signal->exec_update_mutex);
1128 return -EINTR;
1129 }
1130 }
1131
1132 task_lock(tsk);
1133 active_mm = tsk->active_mm;
1134 membarrier_exec_mmap(mm);
1135 tsk->mm = mm;
1136 tsk->active_mm = mm;
1137 activate_mm(active_mm, mm);
1138 tsk->mm->vmacache_seqnum = 0;
1139 vmacache_flush(tsk);
1140 task_unlock(tsk);
1141 if (old_mm) {
1142 mmap_read_unlock(old_mm);
1143 BUG_ON(active_mm != old_mm);
1144 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1145 mm_update_next_owner(old_mm);
1146 mmput(old_mm);
1147 return 0;
1148 }
1149 mmdrop(active_mm);
1150 return 0;
1151}
1152
1153static int de_thread(struct task_struct *tsk)
1154{
1155 struct signal_struct *sig = tsk->signal;
1156 struct sighand_struct *oldsighand = tsk->sighand;
1157 spinlock_t *lock = &oldsighand->siglock;
1158
1159 if (thread_group_empty(tsk))
1160 goto no_thread_group;
1161
1162 /*
1163 * Kill all other threads in the thread group.
1164 */
1165 spin_lock_irq(lock);
1166 if (signal_group_exit(sig)) {
1167 /*
1168 * Another group action in progress, just
1169 * return so that the signal is processed.
1170 */
1171 spin_unlock_irq(lock);
1172 return -EAGAIN;
1173 }
1174
1175 sig->group_exit_task = tsk;
1176 sig->notify_count = zap_other_threads(tsk);
1177 if (!thread_group_leader(tsk))
1178 sig->notify_count--;
1179
1180 while (sig->notify_count) {
1181 __set_current_state(TASK_KILLABLE);
1182 spin_unlock_irq(lock);
1183 schedule();
1184 if (__fatal_signal_pending(tsk))
1185 goto killed;
1186 spin_lock_irq(lock);
1187 }
1188 spin_unlock_irq(lock);
1189
1190 /*
1191 * At this point all other threads have exited, all we have to
1192 * do is to wait for the thread group leader to become inactive,
1193 * and to assume its PID:
1194 */
1195 if (!thread_group_leader(tsk)) {
1196 struct task_struct *leader = tsk->group_leader;
1197
1198 for (;;) {
1199 cgroup_threadgroup_change_begin(tsk);
1200 write_lock_irq(&tasklist_lock);
1201 /*
1202 * Do this under tasklist_lock to ensure that
1203 * exit_notify() can't miss ->group_exit_task
1204 */
1205 sig->notify_count = -1;
1206 if (likely(leader->exit_state))
1207 break;
1208 __set_current_state(TASK_KILLABLE);
1209 write_unlock_irq(&tasklist_lock);
1210 cgroup_threadgroup_change_end(tsk);
1211 schedule();
1212 if (__fatal_signal_pending(tsk))
1213 goto killed;
1214 }
1215
1216 /*
1217 * The only record we have of the real-time age of a
1218 * process, regardless of execs it's done, is start_time.
1219 * All the past CPU time is accumulated in signal_struct
1220 * from sister threads now dead. But in this non-leader
1221 * exec, nothing survives from the original leader thread,
1222 * whose birth marks the true age of this process now.
1223 * When we take on its identity by switching to its PID, we
1224 * also take its birthdate (always earlier than our own).
1225 */
1226 tsk->start_time = leader->start_time;
1227 tsk->start_boottime = leader->start_boottime;
1228
1229 BUG_ON(!same_thread_group(leader, tsk));
1230 /*
1231 * An exec() starts a new thread group with the
1232 * TGID of the previous thread group. Rehash the
1233 * two threads with a switched PID, and release
1234 * the former thread group leader:
1235 */
1236
1237 /* Become a process group leader with the old leader's pid.
1238 * The old leader becomes a thread of the this thread group.
1239 */
1240 exchange_tids(tsk, leader);
1241 transfer_pid(leader, tsk, PIDTYPE_TGID);
1242 transfer_pid(leader, tsk, PIDTYPE_PGID);
1243 transfer_pid(leader, tsk, PIDTYPE_SID);
1244
1245 list_replace_rcu(&leader->tasks, &tsk->tasks);
1246 list_replace_init(&leader->sibling, &tsk->sibling);
1247
1248 tsk->group_leader = tsk;
1249 leader->group_leader = tsk;
1250
1251 tsk->exit_signal = SIGCHLD;
1252 leader->exit_signal = -1;
1253
1254 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1255 leader->exit_state = EXIT_DEAD;
1256
1257 /*
1258 * We are going to release_task()->ptrace_unlink() silently,
1259 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1260 * the tracer wont't block again waiting for this thread.
1261 */
1262 if (unlikely(leader->ptrace))
1263 __wake_up_parent(leader, leader->parent);
1264 write_unlock_irq(&tasklist_lock);
1265 cgroup_threadgroup_change_end(tsk);
1266
1267 release_task(leader);
1268 }
1269
1270 sig->group_exit_task = NULL;
1271 sig->notify_count = 0;
1272
1273no_thread_group:
1274 /* we have changed execution domain */
1275 tsk->exit_signal = SIGCHLD;
1276
1277 BUG_ON(!thread_group_leader(tsk));
1278 return 0;
1279
1280killed:
1281 /* protects against exit_notify() and __exit_signal() */
1282 read_lock(&tasklist_lock);
1283 sig->group_exit_task = NULL;
1284 sig->notify_count = 0;
1285 read_unlock(&tasklist_lock);
1286 return -EAGAIN;
1287}
1288
1289
1290/*
1291 * This function makes sure the current process has its own signal table,
1292 * so that flush_signal_handlers can later reset the handlers without
1293 * disturbing other processes. (Other processes might share the signal
1294 * table via the CLONE_SIGHAND option to clone().)
1295 */
1296static int unshare_sighand(struct task_struct *me)
1297{
1298 struct sighand_struct *oldsighand = me->sighand;
1299
1300 if (refcount_read(&oldsighand->count) != 1) {
1301 struct sighand_struct *newsighand;
1302 /*
1303 * This ->sighand is shared with the CLONE_SIGHAND
1304 * but not CLONE_THREAD task, switch to the new one.
1305 */
1306 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1307 if (!newsighand)
1308 return -ENOMEM;
1309
1310 refcount_set(&newsighand->count, 1);
1311 memcpy(newsighand->action, oldsighand->action,
1312 sizeof(newsighand->action));
1313
1314 write_lock_irq(&tasklist_lock);
1315 spin_lock(&oldsighand->siglock);
1316 rcu_assign_pointer(me->sighand, newsighand);
1317 spin_unlock(&oldsighand->siglock);
1318 write_unlock_irq(&tasklist_lock);
1319
1320 __cleanup_sighand(oldsighand);
1321 }
1322 return 0;
1323}
1324
1325char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1326{
1327 task_lock(tsk);
1328 strncpy(buf, tsk->comm, buf_size);
1329 task_unlock(tsk);
1330 return buf;
1331}
1332EXPORT_SYMBOL_GPL(__get_task_comm);
1333
1334/*
1335 * These functions flushes out all traces of the currently running executable
1336 * so that a new one can be started
1337 */
1338
1339void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1340{
1341 task_lock(tsk);
1342 trace_task_rename(tsk, buf);
1343 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1344 task_unlock(tsk);
1345 perf_event_comm(tsk, exec);
1346}
1347
1348/*
1349 * Calling this is the point of no return. None of the failures will be
1350 * seen by userspace since either the process is already taking a fatal
1351 * signal (via de_thread() or coredump), or will have SEGV raised
1352 * (after exec_mmap()) by search_binary_handler (see below).
1353 */
1354int begin_new_exec(struct linux_binprm * bprm)
1355{
1356 struct task_struct *me = current;
1357 int retval;
1358
1359 /* Once we are committed compute the creds */
1360 retval = bprm_creds_from_file(bprm);
1361 if (retval)
1362 return retval;
1363
1364 /*
1365 * Ensure all future errors are fatal.
1366 */
1367 bprm->point_of_no_return = true;
1368
1369 /*
1370 * Make this the only thread in the thread group.
1371 */
1372 retval = de_thread(me);
1373 if (retval)
1374 goto out;
1375
1376 /*
1377 * Must be called _before_ exec_mmap() as bprm->mm is
1378 * not visibile until then. This also enables the update
1379 * to be lockless.
1380 */
1381 set_mm_exe_file(bprm->mm, bprm->file);
1382
1383 /* If the binary is not readable then enforce mm->dumpable=0 */
1384 would_dump(bprm, bprm->file);
1385 if (bprm->have_execfd)
1386 would_dump(bprm, bprm->executable);
1387
1388 /*
1389 * Release all of the old mmap stuff
1390 */
1391 acct_arg_size(bprm, 0);
1392 retval = exec_mmap(bprm->mm);
1393 if (retval)
1394 goto out;
1395
1396 bprm->mm = NULL;
1397
1398#ifdef CONFIG_POSIX_TIMERS
1399 exit_itimers(me->signal);
1400 flush_itimer_signals();
1401#endif
1402
1403 /*
1404 * Make the signal table private.
1405 */
1406 retval = unshare_sighand(me);
1407 if (retval)
1408 goto out_unlock;
1409
1410 /*
1411 * Ensure that the uaccess routines can actually operate on userspace
1412 * pointers:
1413 */
1414 force_uaccess_begin();
1415
1416 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1417 PF_NOFREEZE | PF_NO_SETAFFINITY);
1418 flush_thread();
1419 me->personality &= ~bprm->per_clear;
1420
1421 /*
1422 * We have to apply CLOEXEC before we change whether the process is
1423 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1424 * trying to access the should-be-closed file descriptors of a process
1425 * undergoing exec(2).
1426 */
1427 do_close_on_exec(me->files);
1428
1429 if (bprm->secureexec) {
1430 /* Make sure parent cannot signal privileged process. */
1431 me->pdeath_signal = 0;
1432
1433 /*
1434 * For secureexec, reset the stack limit to sane default to
1435 * avoid bad behavior from the prior rlimits. This has to
1436 * happen before arch_pick_mmap_layout(), which examines
1437 * RLIMIT_STACK, but after the point of no return to avoid
1438 * needing to clean up the change on failure.
1439 */
1440 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1441 bprm->rlim_stack.rlim_cur = _STK_LIM;
1442 }
1443
1444 me->sas_ss_sp = me->sas_ss_size = 0;
1445
1446 /*
1447 * Figure out dumpability. Note that this checking only of current
1448 * is wrong, but userspace depends on it. This should be testing
1449 * bprm->secureexec instead.
1450 */
1451 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1452 !(uid_eq(current_euid(), current_uid()) &&
1453 gid_eq(current_egid(), current_gid())))
1454 set_dumpable(current->mm, suid_dumpable);
1455 else
1456 set_dumpable(current->mm, SUID_DUMP_USER);
1457
1458 perf_event_exec();
1459 __set_task_comm(me, kbasename(bprm->filename), true);
1460
1461 /* An exec changes our domain. We are no longer part of the thread
1462 group */
1463 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1464 flush_signal_handlers(me, 0);
1465
1466 /*
1467 * install the new credentials for this executable
1468 */
1469 security_bprm_committing_creds(bprm);
1470
1471 commit_creds(bprm->cred);
1472 bprm->cred = NULL;
1473
1474 /*
1475 * Disable monitoring for regular users
1476 * when executing setuid binaries. Must
1477 * wait until new credentials are committed
1478 * by commit_creds() above
1479 */
1480 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1481 perf_event_exit_task(me);
1482 /*
1483 * cred_guard_mutex must be held at least to this point to prevent
1484 * ptrace_attach() from altering our determination of the task's
1485 * credentials; any time after this it may be unlocked.
1486 */
1487 security_bprm_committed_creds(bprm);
1488
1489 /* Pass the opened binary to the interpreter. */
1490 if (bprm->have_execfd) {
1491 retval = get_unused_fd_flags(0);
1492 if (retval < 0)
1493 goto out_unlock;
1494 fd_install(retval, bprm->executable);
1495 bprm->executable = NULL;
1496 bprm->execfd = retval;
1497 }
1498 return 0;
1499
1500out_unlock:
1501 mutex_unlock(&me->signal->exec_update_mutex);
1502out:
1503 return retval;
1504}
1505EXPORT_SYMBOL(begin_new_exec);
1506
1507void would_dump(struct linux_binprm *bprm, struct file *file)
1508{
1509 struct inode *inode = file_inode(file);
1510 if (inode_permission(inode, MAY_READ) < 0) {
1511 struct user_namespace *old, *user_ns;
1512 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1513
1514 /* Ensure mm->user_ns contains the executable */
1515 user_ns = old = bprm->mm->user_ns;
1516 while ((user_ns != &init_user_ns) &&
1517 !privileged_wrt_inode_uidgid(user_ns, inode))
1518 user_ns = user_ns->parent;
1519
1520 if (old != user_ns) {
1521 bprm->mm->user_ns = get_user_ns(user_ns);
1522 put_user_ns(old);
1523 }
1524 }
1525}
1526EXPORT_SYMBOL(would_dump);
1527
1528void setup_new_exec(struct linux_binprm * bprm)
1529{
1530 /* Setup things that can depend upon the personality */
1531 struct task_struct *me = current;
1532
1533 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1534
1535 arch_setup_new_exec();
1536
1537 /* Set the new mm task size. We have to do that late because it may
1538 * depend on TIF_32BIT which is only updated in flush_thread() on
1539 * some architectures like powerpc
1540 */
1541 me->mm->task_size = TASK_SIZE;
1542 mutex_unlock(&me->signal->exec_update_mutex);
1543 mutex_unlock(&me->signal->cred_guard_mutex);
1544}
1545EXPORT_SYMBOL(setup_new_exec);
1546
1547/* Runs immediately before start_thread() takes over. */
1548void finalize_exec(struct linux_binprm *bprm)
1549{
1550 /* Store any stack rlimit changes before starting thread. */
1551 task_lock(current->group_leader);
1552 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1553 task_unlock(current->group_leader);
1554}
1555EXPORT_SYMBOL(finalize_exec);
1556
1557/*
1558 * Prepare credentials and lock ->cred_guard_mutex.
1559 * setup_new_exec() commits the new creds and drops the lock.
1560 * Or, if exec fails before, free_bprm() should release ->cred and
1561 * and unlock.
1562 */
1563static int prepare_bprm_creds(struct linux_binprm *bprm)
1564{
1565 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1566 return -ERESTARTNOINTR;
1567
1568 bprm->cred = prepare_exec_creds();
1569 if (likely(bprm->cred))
1570 return 0;
1571
1572 mutex_unlock(¤t->signal->cred_guard_mutex);
1573 return -ENOMEM;
1574}
1575
1576static void free_bprm(struct linux_binprm *bprm)
1577{
1578 if (bprm->mm) {
1579 acct_arg_size(bprm, 0);
1580 mmput(bprm->mm);
1581 }
1582 free_arg_pages(bprm);
1583 if (bprm->cred) {
1584 mutex_unlock(¤t->signal->cred_guard_mutex);
1585 abort_creds(bprm->cred);
1586 }
1587 if (bprm->file) {
1588 allow_write_access(bprm->file);
1589 fput(bprm->file);
1590 }
1591 if (bprm->executable)
1592 fput(bprm->executable);
1593 /* If a binfmt changed the interp, free it. */
1594 if (bprm->interp != bprm->filename)
1595 kfree(bprm->interp);
1596 kfree(bprm->fdpath);
1597 kfree(bprm);
1598}
1599
1600static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1601{
1602 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1603 int retval = -ENOMEM;
1604 if (!bprm)
1605 goto out;
1606
1607 if (fd == AT_FDCWD || filename->name[0] == '/') {
1608 bprm->filename = filename->name;
1609 } else {
1610 if (filename->name[0] == '\0')
1611 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1612 else
1613 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1614 fd, filename->name);
1615 if (!bprm->fdpath)
1616 goto out_free;
1617
1618 bprm->filename = bprm->fdpath;
1619 }
1620 bprm->interp = bprm->filename;
1621
1622 retval = bprm_mm_init(bprm);
1623 if (retval)
1624 goto out_free;
1625 return bprm;
1626
1627out_free:
1628 free_bprm(bprm);
1629out:
1630 return ERR_PTR(retval);
1631}
1632
1633int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1634{
1635 /* If a binfmt changed the interp, free it first. */
1636 if (bprm->interp != bprm->filename)
1637 kfree(bprm->interp);
1638 bprm->interp = kstrdup(interp, GFP_KERNEL);
1639 if (!bprm->interp)
1640 return -ENOMEM;
1641 return 0;
1642}
1643EXPORT_SYMBOL(bprm_change_interp);
1644
1645/*
1646 * determine how safe it is to execute the proposed program
1647 * - the caller must hold ->cred_guard_mutex to protect against
1648 * PTRACE_ATTACH or seccomp thread-sync
1649 */
1650static void check_unsafe_exec(struct linux_binprm *bprm)
1651{
1652 struct task_struct *p = current, *t;
1653 unsigned n_fs;
1654
1655 if (p->ptrace)
1656 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1657
1658 /*
1659 * This isn't strictly necessary, but it makes it harder for LSMs to
1660 * mess up.
1661 */
1662 if (task_no_new_privs(current))
1663 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1664
1665 t = p;
1666 n_fs = 1;
1667 spin_lock(&p->fs->lock);
1668 rcu_read_lock();
1669 while_each_thread(p, t) {
1670 if (t->fs == p->fs)
1671 n_fs++;
1672 }
1673 rcu_read_unlock();
1674
1675 if (p->fs->users > n_fs)
1676 bprm->unsafe |= LSM_UNSAFE_SHARE;
1677 else
1678 p->fs->in_exec = 1;
1679 spin_unlock(&p->fs->lock);
1680}
1681
1682static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1683{
1684 /* Handle suid and sgid on files */
1685 struct inode *inode;
1686 unsigned int mode;
1687 kuid_t uid;
1688 kgid_t gid;
1689
1690 if (!mnt_may_suid(file->f_path.mnt))
1691 return;
1692
1693 if (task_no_new_privs(current))
1694 return;
1695
1696 inode = file->f_path.dentry->d_inode;
1697 mode = READ_ONCE(inode->i_mode);
1698 if (!(mode & (S_ISUID|S_ISGID)))
1699 return;
1700
1701 /* Be careful if suid/sgid is set */
1702 inode_lock(inode);
1703
1704 /* reload atomically mode/uid/gid now that lock held */
1705 mode = inode->i_mode;
1706 uid = inode->i_uid;
1707 gid = inode->i_gid;
1708 inode_unlock(inode);
1709
1710 /* We ignore suid/sgid if there are no mappings for them in the ns */
1711 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1712 !kgid_has_mapping(bprm->cred->user_ns, gid))
1713 return;
1714
1715 if (mode & S_ISUID) {
1716 bprm->per_clear |= PER_CLEAR_ON_SETID;
1717 bprm->cred->euid = uid;
1718 }
1719
1720 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1721 bprm->per_clear |= PER_CLEAR_ON_SETID;
1722 bprm->cred->egid = gid;
1723 }
1724}
1725
1726/*
1727 * Compute brpm->cred based upon the final binary.
1728 */
1729static int bprm_creds_from_file(struct linux_binprm *bprm)
1730{
1731 /* Compute creds based on which file? */
1732 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1733
1734 bprm_fill_uid(bprm, file);
1735 return security_bprm_creds_from_file(bprm, file);
1736}
1737
1738/*
1739 * Fill the binprm structure from the inode.
1740 * Read the first BINPRM_BUF_SIZE bytes
1741 *
1742 * This may be called multiple times for binary chains (scripts for example).
1743 */
1744static int prepare_binprm(struct linux_binprm *bprm)
1745{
1746 loff_t pos = 0;
1747
1748 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1749 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1750}
1751
1752/*
1753 * Arguments are '\0' separated strings found at the location bprm->p
1754 * points to; chop off the first by relocating brpm->p to right after
1755 * the first '\0' encountered.
1756 */
1757int remove_arg_zero(struct linux_binprm *bprm)
1758{
1759 int ret = 0;
1760 unsigned long offset;
1761 char *kaddr;
1762 struct page *page;
1763
1764 if (!bprm->argc)
1765 return 0;
1766
1767 do {
1768 offset = bprm->p & ~PAGE_MASK;
1769 page = get_arg_page(bprm, bprm->p, 0);
1770 if (!page) {
1771 ret = -EFAULT;
1772 goto out;
1773 }
1774 kaddr = kmap_atomic(page);
1775
1776 for (; offset < PAGE_SIZE && kaddr[offset];
1777 offset++, bprm->p++)
1778 ;
1779
1780 kunmap_atomic(kaddr);
1781 put_arg_page(page);
1782 } while (offset == PAGE_SIZE);
1783
1784 bprm->p++;
1785 bprm->argc--;
1786 ret = 0;
1787
1788out:
1789 return ret;
1790}
1791EXPORT_SYMBOL(remove_arg_zero);
1792
1793#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1794/*
1795 * cycle the list of binary formats handler, until one recognizes the image
1796 */
1797static int search_binary_handler(struct linux_binprm *bprm)
1798{
1799 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1800 struct linux_binfmt *fmt;
1801 int retval;
1802
1803 retval = prepare_binprm(bprm);
1804 if (retval < 0)
1805 return retval;
1806
1807 retval = security_bprm_check(bprm);
1808 if (retval)
1809 return retval;
1810
1811 retval = -ENOENT;
1812 retry:
1813 read_lock(&binfmt_lock);
1814 list_for_each_entry(fmt, &formats, lh) {
1815 if (!try_module_get(fmt->module))
1816 continue;
1817 read_unlock(&binfmt_lock);
1818
1819 retval = fmt->load_binary(bprm);
1820
1821 read_lock(&binfmt_lock);
1822 put_binfmt(fmt);
1823 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1824 read_unlock(&binfmt_lock);
1825 return retval;
1826 }
1827 }
1828 read_unlock(&binfmt_lock);
1829
1830 if (need_retry) {
1831 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1832 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1833 return retval;
1834 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1835 return retval;
1836 need_retry = false;
1837 goto retry;
1838 }
1839
1840 return retval;
1841}
1842
1843static int exec_binprm(struct linux_binprm *bprm)
1844{
1845 pid_t old_pid, old_vpid;
1846 int ret, depth;
1847
1848 /* Need to fetch pid before load_binary changes it */
1849 old_pid = current->pid;
1850 rcu_read_lock();
1851 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1852 rcu_read_unlock();
1853
1854 /* This allows 4 levels of binfmt rewrites before failing hard. */
1855 for (depth = 0;; depth++) {
1856 struct file *exec;
1857 if (depth > 5)
1858 return -ELOOP;
1859
1860 ret = search_binary_handler(bprm);
1861 if (ret < 0)
1862 return ret;
1863 if (!bprm->interpreter)
1864 break;
1865
1866 exec = bprm->file;
1867 bprm->file = bprm->interpreter;
1868 bprm->interpreter = NULL;
1869
1870 allow_write_access(exec);
1871 if (unlikely(bprm->have_execfd)) {
1872 if (bprm->executable) {
1873 fput(exec);
1874 return -ENOEXEC;
1875 }
1876 bprm->executable = exec;
1877 } else
1878 fput(exec);
1879 }
1880
1881 audit_bprm(bprm);
1882 trace_sched_process_exec(current, old_pid, bprm);
1883 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1884 proc_exec_connector(current);
1885 return 0;
1886}
1887
1888/*
1889 * sys_execve() executes a new program.
1890 */
1891static int bprm_execve(struct linux_binprm *bprm,
1892 int fd, struct filename *filename, int flags)
1893{
1894 struct file *file;
1895 struct files_struct *displaced;
1896 int retval;
1897
1898 retval = unshare_files(&displaced);
1899 if (retval)
1900 return retval;
1901
1902 retval = prepare_bprm_creds(bprm);
1903 if (retval)
1904 goto out_files;
1905
1906 check_unsafe_exec(bprm);
1907 current->in_execve = 1;
1908
1909 file = do_open_execat(fd, filename, flags);
1910 retval = PTR_ERR(file);
1911 if (IS_ERR(file))
1912 goto out_unmark;
1913
1914 sched_exec();
1915
1916 bprm->file = file;
1917 /*
1918 * Record that a name derived from an O_CLOEXEC fd will be
1919 * inaccessible after exec. Relies on having exclusive access to
1920 * current->files (due to unshare_files above).
1921 */
1922 if (bprm->fdpath &&
1923 close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1924 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1925
1926 /* Set the unchanging part of bprm->cred */
1927 retval = security_bprm_creds_for_exec(bprm);
1928 if (retval)
1929 goto out;
1930
1931 retval = exec_binprm(bprm);
1932 if (retval < 0)
1933 goto out;
1934
1935 /* execve succeeded */
1936 current->fs->in_exec = 0;
1937 current->in_execve = 0;
1938 rseq_execve(current);
1939 acct_update_integrals(current);
1940 task_numa_free(current, false);
1941 if (displaced)
1942 put_files_struct(displaced);
1943 return retval;
1944
1945out:
1946 /*
1947 * If past the point of no return ensure the the code never
1948 * returns to the userspace process. Use an existing fatal
1949 * signal if present otherwise terminate the process with
1950 * SIGSEGV.
1951 */
1952 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1953 force_sigsegv(SIGSEGV);
1954
1955out_unmark:
1956 current->fs->in_exec = 0;
1957 current->in_execve = 0;
1958
1959out_files:
1960 if (displaced)
1961 reset_files_struct(displaced);
1962
1963 return retval;
1964}
1965
1966static int do_execveat_common(int fd, struct filename *filename,
1967 struct user_arg_ptr argv,
1968 struct user_arg_ptr envp,
1969 int flags)
1970{
1971 struct linux_binprm *bprm;
1972 int retval;
1973
1974 if (IS_ERR(filename))
1975 return PTR_ERR(filename);
1976
1977 /*
1978 * We move the actual failure in case of RLIMIT_NPROC excess from
1979 * set*uid() to execve() because too many poorly written programs
1980 * don't check setuid() return code. Here we additionally recheck
1981 * whether NPROC limit is still exceeded.
1982 */
1983 if ((current->flags & PF_NPROC_EXCEEDED) &&
1984 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1985 retval = -EAGAIN;
1986 goto out_ret;
1987 }
1988
1989 /* We're below the limit (still or again), so we don't want to make
1990 * further execve() calls fail. */
1991 current->flags &= ~PF_NPROC_EXCEEDED;
1992
1993 bprm = alloc_bprm(fd, filename);
1994 if (IS_ERR(bprm)) {
1995 retval = PTR_ERR(bprm);
1996 goto out_ret;
1997 }
1998
1999 retval = count(argv, MAX_ARG_STRINGS);
2000 if (retval < 0)
2001 goto out_free;
2002 bprm->argc = retval;
2003
2004 retval = count(envp, MAX_ARG_STRINGS);
2005 if (retval < 0)
2006 goto out_free;
2007 bprm->envc = retval;
2008
2009 retval = bprm_stack_limits(bprm);
2010 if (retval < 0)
2011 goto out_free;
2012
2013 retval = copy_string_kernel(bprm->filename, bprm);
2014 if (retval < 0)
2015 goto out_free;
2016 bprm->exec = bprm->p;
2017
2018 retval = copy_strings(bprm->envc, envp, bprm);
2019 if (retval < 0)
2020 goto out_free;
2021
2022 retval = copy_strings(bprm->argc, argv, bprm);
2023 if (retval < 0)
2024 goto out_free;
2025
2026 retval = bprm_execve(bprm, fd, filename, flags);
2027out_free:
2028 free_bprm(bprm);
2029
2030out_ret:
2031 putname(filename);
2032 return retval;
2033}
2034
2035int kernel_execve(const char *kernel_filename,
2036 const char *const *argv, const char *const *envp)
2037{
2038 struct filename *filename;
2039 struct linux_binprm *bprm;
2040 int fd = AT_FDCWD;
2041 int retval;
2042
2043 filename = getname_kernel(kernel_filename);
2044 if (IS_ERR(filename))
2045 return PTR_ERR(filename);
2046
2047 bprm = alloc_bprm(fd, filename);
2048 if (IS_ERR(bprm)) {
2049 retval = PTR_ERR(bprm);
2050 goto out_ret;
2051 }
2052
2053 retval = count_strings_kernel(argv);
2054 if (retval < 0)
2055 goto out_free;
2056 bprm->argc = retval;
2057
2058 retval = count_strings_kernel(envp);
2059 if (retval < 0)
2060 goto out_free;
2061 bprm->envc = retval;
2062
2063 retval = bprm_stack_limits(bprm);
2064 if (retval < 0)
2065 goto out_free;
2066
2067 retval = copy_string_kernel(bprm->filename, bprm);
2068 if (retval < 0)
2069 goto out_free;
2070 bprm->exec = bprm->p;
2071
2072 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2073 if (retval < 0)
2074 goto out_free;
2075
2076 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2077 if (retval < 0)
2078 goto out_free;
2079
2080 retval = bprm_execve(bprm, fd, filename, 0);
2081out_free:
2082 free_bprm(bprm);
2083out_ret:
2084 putname(filename);
2085 return retval;
2086}
2087
2088static int do_execve(struct filename *filename,
2089 const char __user *const __user *__argv,
2090 const char __user *const __user *__envp)
2091{
2092 struct user_arg_ptr argv = { .ptr.native = __argv };
2093 struct user_arg_ptr envp = { .ptr.native = __envp };
2094 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2095}
2096
2097static int do_execveat(int fd, struct filename *filename,
2098 const char __user *const __user *__argv,
2099 const char __user *const __user *__envp,
2100 int flags)
2101{
2102 struct user_arg_ptr argv = { .ptr.native = __argv };
2103 struct user_arg_ptr envp = { .ptr.native = __envp };
2104
2105 return do_execveat_common(fd, filename, argv, envp, flags);
2106}
2107
2108#ifdef CONFIG_COMPAT
2109static int compat_do_execve(struct filename *filename,
2110 const compat_uptr_t __user *__argv,
2111 const compat_uptr_t __user *__envp)
2112{
2113 struct user_arg_ptr argv = {
2114 .is_compat = true,
2115 .ptr.compat = __argv,
2116 };
2117 struct user_arg_ptr envp = {
2118 .is_compat = true,
2119 .ptr.compat = __envp,
2120 };
2121 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2122}
2123
2124static int compat_do_execveat(int fd, struct filename *filename,
2125 const compat_uptr_t __user *__argv,
2126 const compat_uptr_t __user *__envp,
2127 int flags)
2128{
2129 struct user_arg_ptr argv = {
2130 .is_compat = true,
2131 .ptr.compat = __argv,
2132 };
2133 struct user_arg_ptr envp = {
2134 .is_compat = true,
2135 .ptr.compat = __envp,
2136 };
2137 return do_execveat_common(fd, filename, argv, envp, flags);
2138}
2139#endif
2140
2141void set_binfmt(struct linux_binfmt *new)
2142{
2143 struct mm_struct *mm = current->mm;
2144
2145 if (mm->binfmt)
2146 module_put(mm->binfmt->module);
2147
2148 mm->binfmt = new;
2149 if (new)
2150 __module_get(new->module);
2151}
2152EXPORT_SYMBOL(set_binfmt);
2153
2154/*
2155 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2156 */
2157void set_dumpable(struct mm_struct *mm, int value)
2158{
2159 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2160 return;
2161
2162 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2163}
2164
2165SYSCALL_DEFINE3(execve,
2166 const char __user *, filename,
2167 const char __user *const __user *, argv,
2168 const char __user *const __user *, envp)
2169{
2170 return do_execve(getname(filename), argv, envp);
2171}
2172
2173SYSCALL_DEFINE5(execveat,
2174 int, fd, const char __user *, filename,
2175 const char __user *const __user *, argv,
2176 const char __user *const __user *, envp,
2177 int, flags)
2178{
2179 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2180
2181 return do_execveat(fd,
2182 getname_flags(filename, lookup_flags, NULL),
2183 argv, envp, flags);
2184}
2185
2186#ifdef CONFIG_COMPAT
2187COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2188 const compat_uptr_t __user *, argv,
2189 const compat_uptr_t __user *, envp)
2190{
2191 return compat_do_execve(getname(filename), argv, envp);
2192}
2193
2194COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2195 const char __user *, filename,
2196 const compat_uptr_t __user *, argv,
2197 const compat_uptr_t __user *, envp,
2198 int, flags)
2199{
2200 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2201
2202 return compat_do_execveat(fd,
2203 getname_flags(filename, lookup_flags, NULL),
2204 argv, envp, flags);
2205}
2206#endif