Loading...
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/coredump.h>
37#include <linux/sched/signal.h>
38#include <linux/sched/numa_balancing.h>
39#include <linux/sched/task.h>
40#include <linux/pagemap.h>
41#include <linux/perf_event.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/key.h>
45#include <linux/personality.h>
46#include <linux/binfmts.h>
47#include <linux/utsname.h>
48#include <linux/pid_namespace.h>
49#include <linux/module.h>
50#include <linux/namei.h>
51#include <linux/mount.h>
52#include <linux/security.h>
53#include <linux/syscalls.h>
54#include <linux/tsacct_kern.h>
55#include <linux/cn_proc.h>
56#include <linux/audit.h>
57#include <linux/tracehook.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/pipe_fs_i.h>
62#include <linux/oom.h>
63#include <linux/compat.h>
64#include <linux/vmalloc.h>
65
66#include <linux/uaccess.h>
67#include <asm/mmu_context.h>
68#include <asm/tlb.h>
69
70#include <trace/events/task.h>
71#include "internal.h"
72
73#include <trace/events/sched.h>
74
75int suid_dumpable = 0;
76
77static LIST_HEAD(formats);
78static DEFINE_RWLOCK(binfmt_lock);
79
80void __register_binfmt(struct linux_binfmt * fmt, int insert)
81{
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89}
90
91EXPORT_SYMBOL(__register_binfmt);
92
93void unregister_binfmt(struct linux_binfmt * fmt)
94{
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98}
99
100EXPORT_SYMBOL(unregister_binfmt);
101
102static inline void put_binfmt(struct linux_binfmt * fmt)
103{
104 module_put(fmt->module);
105}
106
107bool path_noexec(const struct path *path)
108{
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111}
112
113#ifdef CONFIG_USELIB
114/*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120SYSCALL_DEFINE1(uselib, const char __user *, library)
121{
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168exit:
169 fput(file);
170out:
171 return error;
172}
173#endif /* #ifdef CONFIG_USELIB */
174
175#ifdef CONFIG_MMU
176/*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
182static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183{
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192}
193
194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196{
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201#ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207#endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
224
225 /*
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
228 *
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
235 * correct size.
236 */
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
239 goto fail;
240 size += ptr_size;
241
242 acct_arg_size(bprm, size / PAGE_SIZE);
243
244 /*
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
247 */
248 if (size <= ARG_MAX)
249 return page;
250
251 /*
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
254 * This ensures that:
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
257 * to work from.
258 */
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261 if (size > limit)
262 goto fail;
263 }
264
265 return page;
266
267fail:
268 put_page(page);
269 return NULL;
270}
271
272static void put_arg_page(struct page *page)
273{
274 put_page(page);
275}
276
277static void free_arg_pages(struct linux_binprm *bprm)
278{
279}
280
281static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 struct page *page)
283{
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285}
286
287static int __bprm_mm_init(struct linux_binprm *bprm)
288{
289 int err;
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
292
293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
294 if (!vma)
295 return -ENOMEM;
296
297 if (down_write_killable(&mm->mmap_sem)) {
298 err = -EINTR;
299 goto err_free;
300 }
301 vma->vm_mm = mm;
302
303 /*
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
307 * configured yet.
308 */
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 INIT_LIST_HEAD(&vma->anon_vma_chain);
315
316 err = insert_vm_struct(mm, vma);
317 if (err)
318 goto err;
319
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
324 return 0;
325err:
326 up_write(&mm->mmap_sem);
327err_free:
328 bprm->vma = NULL;
329 kmem_cache_free(vm_area_cachep, vma);
330 return err;
331}
332
333static bool valid_arg_len(struct linux_binprm *bprm, long len)
334{
335 return len <= MAX_ARG_STRLEN;
336}
337
338#else
339
340static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341{
342}
343
344static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 int write)
346{
347 struct page *page;
348
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 if (!page)
353 return NULL;
354 bprm->page[pos / PAGE_SIZE] = page;
355 }
356
357 return page;
358}
359
360static void put_arg_page(struct page *page)
361{
362}
363
364static void free_arg_page(struct linux_binprm *bprm, int i)
365{
366 if (bprm->page[i]) {
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
369 }
370}
371
372static void free_arg_pages(struct linux_binprm *bprm)
373{
374 int i;
375
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
378}
379
380static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 struct page *page)
382{
383}
384
385static int __bprm_mm_init(struct linux_binprm *bprm)
386{
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 return 0;
389}
390
391static bool valid_arg_len(struct linux_binprm *bprm, long len)
392{
393 return len <= bprm->p;
394}
395
396#endif /* CONFIG_MMU */
397
398/*
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
403 */
404static int bprm_mm_init(struct linux_binprm *bprm)
405{
406 int err;
407 struct mm_struct *mm = NULL;
408
409 bprm->mm = mm = mm_alloc();
410 err = -ENOMEM;
411 if (!mm)
412 goto err;
413
414 /* Save current stack limit for all calculations made during exec. */
415 task_lock(current->group_leader);
416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417 task_unlock(current->group_leader);
418
419 err = __bprm_mm_init(bprm);
420 if (err)
421 goto err;
422
423 return 0;
424
425err:
426 if (mm) {
427 bprm->mm = NULL;
428 mmdrop(mm);
429 }
430
431 return err;
432}
433
434struct user_arg_ptr {
435#ifdef CONFIG_COMPAT
436 bool is_compat;
437#endif
438 union {
439 const char __user *const __user *native;
440#ifdef CONFIG_COMPAT
441 const compat_uptr_t __user *compat;
442#endif
443 } ptr;
444};
445
446static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
447{
448 const char __user *native;
449
450#ifdef CONFIG_COMPAT
451 if (unlikely(argv.is_compat)) {
452 compat_uptr_t compat;
453
454 if (get_user(compat, argv.ptr.compat + nr))
455 return ERR_PTR(-EFAULT);
456
457 return compat_ptr(compat);
458 }
459#endif
460
461 if (get_user(native, argv.ptr.native + nr))
462 return ERR_PTR(-EFAULT);
463
464 return native;
465}
466
467/*
468 * count() counts the number of strings in array ARGV.
469 */
470static int count(struct user_arg_ptr argv, int max)
471{
472 int i = 0;
473
474 if (argv.ptr.native != NULL) {
475 for (;;) {
476 const char __user *p = get_user_arg_ptr(argv, i);
477
478 if (!p)
479 break;
480
481 if (IS_ERR(p))
482 return -EFAULT;
483
484 if (i >= max)
485 return -E2BIG;
486 ++i;
487
488 if (fatal_signal_pending(current))
489 return -ERESTARTNOHAND;
490 cond_resched();
491 }
492 }
493 return i;
494}
495
496/*
497 * 'copy_strings()' copies argument/environment strings from the old
498 * processes's memory to the new process's stack. The call to get_user_pages()
499 * ensures the destination page is created and not swapped out.
500 */
501static int copy_strings(int argc, struct user_arg_ptr argv,
502 struct linux_binprm *bprm)
503{
504 struct page *kmapped_page = NULL;
505 char *kaddr = NULL;
506 unsigned long kpos = 0;
507 int ret;
508
509 while (argc-- > 0) {
510 const char __user *str;
511 int len;
512 unsigned long pos;
513
514 ret = -EFAULT;
515 str = get_user_arg_ptr(argv, argc);
516 if (IS_ERR(str))
517 goto out;
518
519 len = strnlen_user(str, MAX_ARG_STRLEN);
520 if (!len)
521 goto out;
522
523 ret = -E2BIG;
524 if (!valid_arg_len(bprm, len))
525 goto out;
526
527 /* We're going to work our way backwords. */
528 pos = bprm->p;
529 str += len;
530 bprm->p -= len;
531
532 while (len > 0) {
533 int offset, bytes_to_copy;
534
535 if (fatal_signal_pending(current)) {
536 ret = -ERESTARTNOHAND;
537 goto out;
538 }
539 cond_resched();
540
541 offset = pos % PAGE_SIZE;
542 if (offset == 0)
543 offset = PAGE_SIZE;
544
545 bytes_to_copy = offset;
546 if (bytes_to_copy > len)
547 bytes_to_copy = len;
548
549 offset -= bytes_to_copy;
550 pos -= bytes_to_copy;
551 str -= bytes_to_copy;
552 len -= bytes_to_copy;
553
554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
555 struct page *page;
556
557 page = get_arg_page(bprm, pos, 1);
558 if (!page) {
559 ret = -E2BIG;
560 goto out;
561 }
562
563 if (kmapped_page) {
564 flush_kernel_dcache_page(kmapped_page);
565 kunmap(kmapped_page);
566 put_arg_page(kmapped_page);
567 }
568 kmapped_page = page;
569 kaddr = kmap(kmapped_page);
570 kpos = pos & PAGE_MASK;
571 flush_arg_page(bprm, kpos, kmapped_page);
572 }
573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
574 ret = -EFAULT;
575 goto out;
576 }
577 }
578 }
579 ret = 0;
580out:
581 if (kmapped_page) {
582 flush_kernel_dcache_page(kmapped_page);
583 kunmap(kmapped_page);
584 put_arg_page(kmapped_page);
585 }
586 return ret;
587}
588
589/*
590 * Like copy_strings, but get argv and its values from kernel memory.
591 */
592int copy_strings_kernel(int argc, const char *const *__argv,
593 struct linux_binprm *bprm)
594{
595 int r;
596 mm_segment_t oldfs = get_fs();
597 struct user_arg_ptr argv = {
598 .ptr.native = (const char __user *const __user *)__argv,
599 };
600
601 set_fs(KERNEL_DS);
602 r = copy_strings(argc, argv, bprm);
603 set_fs(oldfs);
604
605 return r;
606}
607EXPORT_SYMBOL(copy_strings_kernel);
608
609#ifdef CONFIG_MMU
610
611/*
612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
613 * the binfmt code determines where the new stack should reside, we shift it to
614 * its final location. The process proceeds as follows:
615 *
616 * 1) Use shift to calculate the new vma endpoints.
617 * 2) Extend vma to cover both the old and new ranges. This ensures the
618 * arguments passed to subsequent functions are consistent.
619 * 3) Move vma's page tables to the new range.
620 * 4) Free up any cleared pgd range.
621 * 5) Shrink the vma to cover only the new range.
622 */
623static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
624{
625 struct mm_struct *mm = vma->vm_mm;
626 unsigned long old_start = vma->vm_start;
627 unsigned long old_end = vma->vm_end;
628 unsigned long length = old_end - old_start;
629 unsigned long new_start = old_start - shift;
630 unsigned long new_end = old_end - shift;
631 struct mmu_gather tlb;
632
633 BUG_ON(new_start > new_end);
634
635 /*
636 * ensure there are no vmas between where we want to go
637 * and where we are
638 */
639 if (vma != find_vma(mm, new_start))
640 return -EFAULT;
641
642 /*
643 * cover the whole range: [new_start, old_end)
644 */
645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
646 return -ENOMEM;
647
648 /*
649 * move the page tables downwards, on failure we rely on
650 * process cleanup to remove whatever mess we made.
651 */
652 if (length != move_page_tables(vma, old_start,
653 vma, new_start, length, false))
654 return -ENOMEM;
655
656 lru_add_drain();
657 tlb_gather_mmu(&tlb, mm, old_start, old_end);
658 if (new_end > old_start) {
659 /*
660 * when the old and new regions overlap clear from new_end.
661 */
662 free_pgd_range(&tlb, new_end, old_end, new_end,
663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
664 } else {
665 /*
666 * otherwise, clean from old_start; this is done to not touch
667 * the address space in [new_end, old_start) some architectures
668 * have constraints on va-space that make this illegal (IA64) -
669 * for the others its just a little faster.
670 */
671 free_pgd_range(&tlb, old_start, old_end, new_end,
672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
673 }
674 tlb_finish_mmu(&tlb, old_start, old_end);
675
676 /*
677 * Shrink the vma to just the new range. Always succeeds.
678 */
679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680
681 return 0;
682}
683
684/*
685 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686 * the stack is optionally relocated, and some extra space is added.
687 */
688int setup_arg_pages(struct linux_binprm *bprm,
689 unsigned long stack_top,
690 int executable_stack)
691{
692 unsigned long ret;
693 unsigned long stack_shift;
694 struct mm_struct *mm = current->mm;
695 struct vm_area_struct *vma = bprm->vma;
696 struct vm_area_struct *prev = NULL;
697 unsigned long vm_flags;
698 unsigned long stack_base;
699 unsigned long stack_size;
700 unsigned long stack_expand;
701 unsigned long rlim_stack;
702
703#ifdef CONFIG_STACK_GROWSUP
704 /* Limit stack size */
705 stack_base = bprm->rlim_stack.rlim_max;
706 if (stack_base > STACK_SIZE_MAX)
707 stack_base = STACK_SIZE_MAX;
708
709 /* Add space for stack randomization. */
710 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
711
712 /* Make sure we didn't let the argument array grow too large. */
713 if (vma->vm_end - vma->vm_start > stack_base)
714 return -ENOMEM;
715
716 stack_base = PAGE_ALIGN(stack_top - stack_base);
717
718 stack_shift = vma->vm_start - stack_base;
719 mm->arg_start = bprm->p - stack_shift;
720 bprm->p = vma->vm_end - stack_shift;
721#else
722 stack_top = arch_align_stack(stack_top);
723 stack_top = PAGE_ALIGN(stack_top);
724
725 if (unlikely(stack_top < mmap_min_addr) ||
726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
727 return -ENOMEM;
728
729 stack_shift = vma->vm_end - stack_top;
730
731 bprm->p -= stack_shift;
732 mm->arg_start = bprm->p;
733#endif
734
735 if (bprm->loader)
736 bprm->loader -= stack_shift;
737 bprm->exec -= stack_shift;
738
739 if (down_write_killable(&mm->mmap_sem))
740 return -EINTR;
741
742 vm_flags = VM_STACK_FLAGS;
743
744 /*
745 * Adjust stack execute permissions; explicitly enable for
746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 * (arch default) otherwise.
748 */
749 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
750 vm_flags |= VM_EXEC;
751 else if (executable_stack == EXSTACK_DISABLE_X)
752 vm_flags &= ~VM_EXEC;
753 vm_flags |= mm->def_flags;
754 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
755
756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757 vm_flags);
758 if (ret)
759 goto out_unlock;
760 BUG_ON(prev != vma);
761
762 /* Move stack pages down in memory. */
763 if (stack_shift) {
764 ret = shift_arg_pages(vma, stack_shift);
765 if (ret)
766 goto out_unlock;
767 }
768
769 /* mprotect_fixup is overkill to remove the temporary stack flags */
770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
771
772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 stack_size = vma->vm_end - vma->vm_start;
774 /*
775 * Align this down to a page boundary as expand_stack
776 * will align it up.
777 */
778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779#ifdef CONFIG_STACK_GROWSUP
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_start + rlim_stack;
782 else
783 stack_base = vma->vm_end + stack_expand;
784#else
785 if (stack_size + stack_expand > rlim_stack)
786 stack_base = vma->vm_end - rlim_stack;
787 else
788 stack_base = vma->vm_start - stack_expand;
789#endif
790 current->mm->start_stack = bprm->p;
791 ret = expand_stack(vma, stack_base);
792 if (ret)
793 ret = -EFAULT;
794
795out_unlock:
796 up_write(&mm->mmap_sem);
797 return ret;
798}
799EXPORT_SYMBOL(setup_arg_pages);
800
801#else
802
803/*
804 * Transfer the program arguments and environment from the holding pages
805 * onto the stack. The provided stack pointer is adjusted accordingly.
806 */
807int transfer_args_to_stack(struct linux_binprm *bprm,
808 unsigned long *sp_location)
809{
810 unsigned long index, stop, sp;
811 int ret = 0;
812
813 stop = bprm->p >> PAGE_SHIFT;
814 sp = *sp_location;
815
816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818 char *src = kmap(bprm->page[index]) + offset;
819 sp -= PAGE_SIZE - offset;
820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
821 ret = -EFAULT;
822 kunmap(bprm->page[index]);
823 if (ret)
824 goto out;
825 }
826
827 *sp_location = sp;
828
829out:
830 return ret;
831}
832EXPORT_SYMBOL(transfer_args_to_stack);
833
834#endif /* CONFIG_MMU */
835
836static struct file *do_open_execat(int fd, struct filename *name, int flags)
837{
838 struct file *file;
839 int err;
840 struct open_flags open_exec_flags = {
841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842 .acc_mode = MAY_EXEC,
843 .intent = LOOKUP_OPEN,
844 .lookup_flags = LOOKUP_FOLLOW,
845 };
846
847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848 return ERR_PTR(-EINVAL);
849 if (flags & AT_SYMLINK_NOFOLLOW)
850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851 if (flags & AT_EMPTY_PATH)
852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853
854 file = do_filp_open(fd, name, &open_exec_flags);
855 if (IS_ERR(file))
856 goto out;
857
858 err = -EACCES;
859 if (!S_ISREG(file_inode(file)->i_mode))
860 goto exit;
861
862 if (path_noexec(&file->f_path))
863 goto exit;
864
865 err = deny_write_access(file);
866 if (err)
867 goto exit;
868
869 if (name->name[0] != '\0')
870 fsnotify_open(file);
871
872out:
873 return file;
874
875exit:
876 fput(file);
877 return ERR_PTR(err);
878}
879
880struct file *open_exec(const char *name)
881{
882 struct filename *filename = getname_kernel(name);
883 struct file *f = ERR_CAST(filename);
884
885 if (!IS_ERR(filename)) {
886 f = do_open_execat(AT_FDCWD, filename, 0);
887 putname(filename);
888 }
889 return f;
890}
891EXPORT_SYMBOL(open_exec);
892
893int kernel_read_file(struct file *file, void **buf, loff_t *size,
894 loff_t max_size, enum kernel_read_file_id id)
895{
896 loff_t i_size, pos;
897 ssize_t bytes = 0;
898 int ret;
899
900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901 return -EINVAL;
902
903 ret = deny_write_access(file);
904 if (ret)
905 return ret;
906
907 ret = security_kernel_read_file(file, id);
908 if (ret)
909 goto out;
910
911 i_size = i_size_read(file_inode(file));
912 if (max_size > 0 && i_size > max_size) {
913 ret = -EFBIG;
914 goto out;
915 }
916 if (i_size <= 0) {
917 ret = -EINVAL;
918 goto out;
919 }
920
921 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922 *buf = vmalloc(i_size);
923 if (!*buf) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 pos = 0;
929 while (pos < i_size) {
930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931 if (bytes < 0) {
932 ret = bytes;
933 goto out;
934 }
935
936 if (bytes == 0)
937 break;
938 }
939
940 if (pos != i_size) {
941 ret = -EIO;
942 goto out_free;
943 }
944
945 ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 if (!ret)
947 *size = pos;
948
949out_free:
950 if (ret < 0) {
951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952 vfree(*buf);
953 *buf = NULL;
954 }
955 }
956
957out:
958 allow_write_access(file);
959 return ret;
960}
961EXPORT_SYMBOL_GPL(kernel_read_file);
962
963int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964 loff_t max_size, enum kernel_read_file_id id)
965{
966 struct file *file;
967 int ret;
968
969 if (!path || !*path)
970 return -EINVAL;
971
972 file = filp_open(path, O_RDONLY, 0);
973 if (IS_ERR(file))
974 return PTR_ERR(file);
975
976 ret = kernel_read_file(file, buf, size, max_size, id);
977 fput(file);
978 return ret;
979}
980EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981
982int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 enum kernel_read_file_id id)
984{
985 struct fd f = fdget(fd);
986 int ret = -EBADF;
987
988 if (!f.file)
989 goto out;
990
991 ret = kernel_read_file(f.file, buf, size, max_size, id);
992out:
993 fdput(f);
994 return ret;
995}
996EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997
998ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999{
1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001 if (res > 0)
1002 flush_icache_range(addr, addr + len);
1003 return res;
1004}
1005EXPORT_SYMBOL(read_code);
1006
1007static int exec_mmap(struct mm_struct *mm)
1008{
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1011
1012 /* Notify parent that we're no longer interested in the old VM */
1013 tsk = current;
1014 old_mm = current->mm;
1015 mm_release(tsk, old_mm);
1016
1017 if (old_mm) {
1018 sync_mm_rss(old_mm);
1019 /*
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1024 */
1025 down_read(&old_mm->mmap_sem);
1026 if (unlikely(old_mm->core_state)) {
1027 up_read(&old_mm->mmap_sem);
1028 return -EINTR;
1029 }
1030 }
1031 task_lock(tsk);
1032 active_mm = tsk->active_mm;
1033 tsk->mm = mm;
1034 tsk->active_mm = mm;
1035 activate_mm(active_mm, mm);
1036 tsk->mm->vmacache_seqnum = 0;
1037 vmacache_flush(tsk);
1038 task_unlock(tsk);
1039 if (old_mm) {
1040 up_read(&old_mm->mmap_sem);
1041 BUG_ON(active_mm != old_mm);
1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 mm_update_next_owner(old_mm);
1044 mmput(old_mm);
1045 return 0;
1046 }
1047 mmdrop(active_mm);
1048 return 0;
1049}
1050
1051/*
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1056 */
1057static int de_thread(struct task_struct *tsk)
1058{
1059 struct signal_struct *sig = tsk->signal;
1060 struct sighand_struct *oldsighand = tsk->sighand;
1061 spinlock_t *lock = &oldsighand->siglock;
1062
1063 if (thread_group_empty(tsk))
1064 goto no_thread_group;
1065
1066 /*
1067 * Kill all other threads in the thread group.
1068 */
1069 spin_lock_irq(lock);
1070 if (signal_group_exit(sig)) {
1071 /*
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1074 */
1075 spin_unlock_irq(lock);
1076 return -EAGAIN;
1077 }
1078
1079 sig->group_exit_task = tsk;
1080 sig->notify_count = zap_other_threads(tsk);
1081 if (!thread_group_leader(tsk))
1082 sig->notify_count--;
1083
1084 while (sig->notify_count) {
1085 __set_current_state(TASK_KILLABLE);
1086 spin_unlock_irq(lock);
1087 schedule();
1088 if (unlikely(__fatal_signal_pending(tsk)))
1089 goto killed;
1090 spin_lock_irq(lock);
1091 }
1092 spin_unlock_irq(lock);
1093
1094 /*
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1098 */
1099 if (!thread_group_leader(tsk)) {
1100 struct task_struct *leader = tsk->group_leader;
1101
1102 for (;;) {
1103 cgroup_threadgroup_change_begin(tsk);
1104 write_lock_irq(&tasklist_lock);
1105 /*
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1108 */
1109 sig->notify_count = -1;
1110 if (likely(leader->exit_state))
1111 break;
1112 __set_current_state(TASK_KILLABLE);
1113 write_unlock_irq(&tasklist_lock);
1114 cgroup_threadgroup_change_end(tsk);
1115 schedule();
1116 if (unlikely(__fatal_signal_pending(tsk)))
1117 goto killed;
1118 }
1119
1120 /*
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1129 */
1130 tsk->start_time = leader->start_time;
1131 tsk->real_start_time = leader->real_start_time;
1132
1133 BUG_ON(!same_thread_group(leader, tsk));
1134 BUG_ON(has_group_leader_pid(tsk));
1135 /*
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1140 */
1141
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1146 */
1147 tsk->pid = leader->pid;
1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 transfer_pid(leader, tsk, PIDTYPE_PGID);
1150 transfer_pid(leader, tsk, PIDTYPE_SID);
1151
1152 list_replace_rcu(&leader->tasks, &tsk->tasks);
1153 list_replace_init(&leader->sibling, &tsk->sibling);
1154
1155 tsk->group_leader = tsk;
1156 leader->group_leader = tsk;
1157
1158 tsk->exit_signal = SIGCHLD;
1159 leader->exit_signal = -1;
1160
1161 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1162 leader->exit_state = EXIT_DEAD;
1163
1164 /*
1165 * We are going to release_task()->ptrace_unlink() silently,
1166 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167 * the tracer wont't block again waiting for this thread.
1168 */
1169 if (unlikely(leader->ptrace))
1170 __wake_up_parent(leader, leader->parent);
1171 write_unlock_irq(&tasklist_lock);
1172 cgroup_threadgroup_change_end(tsk);
1173
1174 release_task(leader);
1175 }
1176
1177 sig->group_exit_task = NULL;
1178 sig->notify_count = 0;
1179
1180no_thread_group:
1181 /* we have changed execution domain */
1182 tsk->exit_signal = SIGCHLD;
1183
1184#ifdef CONFIG_POSIX_TIMERS
1185 exit_itimers(sig);
1186 flush_itimer_signals();
1187#endif
1188
1189 if (atomic_read(&oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1191 /*
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1194 */
1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196 if (!newsighand)
1197 return -ENOMEM;
1198
1199 atomic_set(&newsighand->count, 1);
1200 memcpy(newsighand->action, oldsighand->action,
1201 sizeof(newsighand->action));
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 rcu_assign_pointer(tsk->sighand, newsighand);
1206 spin_unlock(&oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1208
1209 __cleanup_sighand(oldsighand);
1210 }
1211
1212 BUG_ON(!thread_group_leader(tsk));
1213 return 0;
1214
1215killed:
1216 /* protects against exit_notify() and __exit_signal() */
1217 read_lock(&tasklist_lock);
1218 sig->group_exit_task = NULL;
1219 sig->notify_count = 0;
1220 read_unlock(&tasklist_lock);
1221 return -EAGAIN;
1222}
1223
1224char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1225{
1226 task_lock(tsk);
1227 strncpy(buf, tsk->comm, buf_size);
1228 task_unlock(tsk);
1229 return buf;
1230}
1231EXPORT_SYMBOL_GPL(__get_task_comm);
1232
1233/*
1234 * These functions flushes out all traces of the currently running executable
1235 * so that a new one can be started
1236 */
1237
1238void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1239{
1240 task_lock(tsk);
1241 trace_task_rename(tsk, buf);
1242 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1243 task_unlock(tsk);
1244 perf_event_comm(tsk, exec);
1245}
1246
1247/*
1248 * Calling this is the point of no return. None of the failures will be
1249 * seen by userspace since either the process is already taking a fatal
1250 * signal (via de_thread() or coredump), or will have SEGV raised
1251 * (after exec_mmap()) by search_binary_handlers (see below).
1252 */
1253int flush_old_exec(struct linux_binprm * bprm)
1254{
1255 int retval;
1256
1257 /*
1258 * Make sure we have a private signal table and that
1259 * we are unassociated from the previous thread group.
1260 */
1261 retval = de_thread(current);
1262 if (retval)
1263 goto out;
1264
1265 /*
1266 * Must be called _before_ exec_mmap() as bprm->mm is
1267 * not visibile until then. This also enables the update
1268 * to be lockless.
1269 */
1270 set_mm_exe_file(bprm->mm, bprm->file);
1271
1272 /*
1273 * Release all of the old mmap stuff
1274 */
1275 acct_arg_size(bprm, 0);
1276 retval = exec_mmap(bprm->mm);
1277 if (retval)
1278 goto out;
1279
1280 /*
1281 * After clearing bprm->mm (to mark that current is using the
1282 * prepared mm now), we have nothing left of the original
1283 * process. If anything from here on returns an error, the check
1284 * in search_binary_handler() will SEGV current.
1285 */
1286 bprm->mm = NULL;
1287
1288 set_fs(USER_DS);
1289 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1290 PF_NOFREEZE | PF_NO_SETAFFINITY);
1291 flush_thread();
1292 current->personality &= ~bprm->per_clear;
1293
1294 /*
1295 * We have to apply CLOEXEC before we change whether the process is
1296 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1297 * trying to access the should-be-closed file descriptors of a process
1298 * undergoing exec(2).
1299 */
1300 do_close_on_exec(current->files);
1301 return 0;
1302
1303out:
1304 return retval;
1305}
1306EXPORT_SYMBOL(flush_old_exec);
1307
1308void would_dump(struct linux_binprm *bprm, struct file *file)
1309{
1310 struct inode *inode = file_inode(file);
1311 if (inode_permission(inode, MAY_READ) < 0) {
1312 struct user_namespace *old, *user_ns;
1313 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1314
1315 /* Ensure mm->user_ns contains the executable */
1316 user_ns = old = bprm->mm->user_ns;
1317 while ((user_ns != &init_user_ns) &&
1318 !privileged_wrt_inode_uidgid(user_ns, inode))
1319 user_ns = user_ns->parent;
1320
1321 if (old != user_ns) {
1322 bprm->mm->user_ns = get_user_ns(user_ns);
1323 put_user_ns(old);
1324 }
1325 }
1326}
1327EXPORT_SYMBOL(would_dump);
1328
1329void setup_new_exec(struct linux_binprm * bprm)
1330{
1331 /*
1332 * Once here, prepare_binrpm() will not be called any more, so
1333 * the final state of setuid/setgid/fscaps can be merged into the
1334 * secureexec flag.
1335 */
1336 bprm->secureexec |= bprm->cap_elevated;
1337
1338 if (bprm->secureexec) {
1339 /* Make sure parent cannot signal privileged process. */
1340 current->pdeath_signal = 0;
1341
1342 /*
1343 * For secureexec, reset the stack limit to sane default to
1344 * avoid bad behavior from the prior rlimits. This has to
1345 * happen before arch_pick_mmap_layout(), which examines
1346 * RLIMIT_STACK, but after the point of no return to avoid
1347 * needing to clean up the change on failure.
1348 */
1349 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350 bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 }
1352
1353 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1354
1355 current->sas_ss_sp = current->sas_ss_size = 0;
1356
1357 /*
1358 * Figure out dumpability. Note that this checking only of current
1359 * is wrong, but userspace depends on it. This should be testing
1360 * bprm->secureexec instead.
1361 */
1362 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1363 !(uid_eq(current_euid(), current_uid()) &&
1364 gid_eq(current_egid(), current_gid())))
1365 set_dumpable(current->mm, suid_dumpable);
1366 else
1367 set_dumpable(current->mm, SUID_DUMP_USER);
1368
1369 arch_setup_new_exec();
1370 perf_event_exec();
1371 __set_task_comm(current, kbasename(bprm->filename), true);
1372
1373 /* Set the new mm task size. We have to do that late because it may
1374 * depend on TIF_32BIT which is only updated in flush_thread() on
1375 * some architectures like powerpc
1376 */
1377 current->mm->task_size = TASK_SIZE;
1378
1379 /* An exec changes our domain. We are no longer part of the thread
1380 group */
1381 current->self_exec_id++;
1382 flush_signal_handlers(current, 0);
1383}
1384EXPORT_SYMBOL(setup_new_exec);
1385
1386/* Runs immediately before start_thread() takes over. */
1387void finalize_exec(struct linux_binprm *bprm)
1388{
1389 /* Store any stack rlimit changes before starting thread. */
1390 task_lock(current->group_leader);
1391 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1392 task_unlock(current->group_leader);
1393}
1394EXPORT_SYMBOL(finalize_exec);
1395
1396/*
1397 * Prepare credentials and lock ->cred_guard_mutex.
1398 * install_exec_creds() commits the new creds and drops the lock.
1399 * Or, if exec fails before, free_bprm() should release ->cred and
1400 * and unlock.
1401 */
1402int prepare_bprm_creds(struct linux_binprm *bprm)
1403{
1404 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1405 return -ERESTARTNOINTR;
1406
1407 bprm->cred = prepare_exec_creds();
1408 if (likely(bprm->cred))
1409 return 0;
1410
1411 mutex_unlock(¤t->signal->cred_guard_mutex);
1412 return -ENOMEM;
1413}
1414
1415static void free_bprm(struct linux_binprm *bprm)
1416{
1417 free_arg_pages(bprm);
1418 if (bprm->cred) {
1419 mutex_unlock(¤t->signal->cred_guard_mutex);
1420 abort_creds(bprm->cred);
1421 }
1422 if (bprm->file) {
1423 allow_write_access(bprm->file);
1424 fput(bprm->file);
1425 }
1426 /* If a binfmt changed the interp, free it. */
1427 if (bprm->interp != bprm->filename)
1428 kfree(bprm->interp);
1429 kfree(bprm);
1430}
1431
1432int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1433{
1434 /* If a binfmt changed the interp, free it first. */
1435 if (bprm->interp != bprm->filename)
1436 kfree(bprm->interp);
1437 bprm->interp = kstrdup(interp, GFP_KERNEL);
1438 if (!bprm->interp)
1439 return -ENOMEM;
1440 return 0;
1441}
1442EXPORT_SYMBOL(bprm_change_interp);
1443
1444/*
1445 * install the new credentials for this executable
1446 */
1447void install_exec_creds(struct linux_binprm *bprm)
1448{
1449 security_bprm_committing_creds(bprm);
1450
1451 commit_creds(bprm->cred);
1452 bprm->cred = NULL;
1453
1454 /*
1455 * Disable monitoring for regular users
1456 * when executing setuid binaries. Must
1457 * wait until new credentials are committed
1458 * by commit_creds() above
1459 */
1460 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1461 perf_event_exit_task(current);
1462 /*
1463 * cred_guard_mutex must be held at least to this point to prevent
1464 * ptrace_attach() from altering our determination of the task's
1465 * credentials; any time after this it may be unlocked.
1466 */
1467 security_bprm_committed_creds(bprm);
1468 mutex_unlock(¤t->signal->cred_guard_mutex);
1469}
1470EXPORT_SYMBOL(install_exec_creds);
1471
1472/*
1473 * determine how safe it is to execute the proposed program
1474 * - the caller must hold ->cred_guard_mutex to protect against
1475 * PTRACE_ATTACH or seccomp thread-sync
1476 */
1477static void check_unsafe_exec(struct linux_binprm *bprm)
1478{
1479 struct task_struct *p = current, *t;
1480 unsigned n_fs;
1481
1482 if (p->ptrace)
1483 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1484
1485 /*
1486 * This isn't strictly necessary, but it makes it harder for LSMs to
1487 * mess up.
1488 */
1489 if (task_no_new_privs(current))
1490 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1491
1492 t = p;
1493 n_fs = 1;
1494 spin_lock(&p->fs->lock);
1495 rcu_read_lock();
1496 while_each_thread(p, t) {
1497 if (t->fs == p->fs)
1498 n_fs++;
1499 }
1500 rcu_read_unlock();
1501
1502 if (p->fs->users > n_fs)
1503 bprm->unsafe |= LSM_UNSAFE_SHARE;
1504 else
1505 p->fs->in_exec = 1;
1506 spin_unlock(&p->fs->lock);
1507}
1508
1509static void bprm_fill_uid(struct linux_binprm *bprm)
1510{
1511 struct inode *inode;
1512 unsigned int mode;
1513 kuid_t uid;
1514 kgid_t gid;
1515
1516 /*
1517 * Since this can be called multiple times (via prepare_binprm),
1518 * we must clear any previous work done when setting set[ug]id
1519 * bits from any earlier bprm->file uses (for example when run
1520 * first for a setuid script then again for its interpreter).
1521 */
1522 bprm->cred->euid = current_euid();
1523 bprm->cred->egid = current_egid();
1524
1525 if (!mnt_may_suid(bprm->file->f_path.mnt))
1526 return;
1527
1528 if (task_no_new_privs(current))
1529 return;
1530
1531 inode = bprm->file->f_path.dentry->d_inode;
1532 mode = READ_ONCE(inode->i_mode);
1533 if (!(mode & (S_ISUID|S_ISGID)))
1534 return;
1535
1536 /* Be careful if suid/sgid is set */
1537 inode_lock(inode);
1538
1539 /* reload atomically mode/uid/gid now that lock held */
1540 mode = inode->i_mode;
1541 uid = inode->i_uid;
1542 gid = inode->i_gid;
1543 inode_unlock(inode);
1544
1545 /* We ignore suid/sgid if there are no mappings for them in the ns */
1546 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1547 !kgid_has_mapping(bprm->cred->user_ns, gid))
1548 return;
1549
1550 if (mode & S_ISUID) {
1551 bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 bprm->cred->euid = uid;
1553 }
1554
1555 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1556 bprm->per_clear |= PER_CLEAR_ON_SETID;
1557 bprm->cred->egid = gid;
1558 }
1559}
1560
1561/*
1562 * Fill the binprm structure from the inode.
1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564 *
1565 * This may be called multiple times for binary chains (scripts for example).
1566 */
1567int prepare_binprm(struct linux_binprm *bprm)
1568{
1569 int retval;
1570 loff_t pos = 0;
1571
1572 bprm_fill_uid(bprm);
1573
1574 /* fill in binprm security blob */
1575 retval = security_bprm_set_creds(bprm);
1576 if (retval)
1577 return retval;
1578 bprm->called_set_creds = 1;
1579
1580 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1581 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1582}
1583
1584EXPORT_SYMBOL(prepare_binprm);
1585
1586/*
1587 * Arguments are '\0' separated strings found at the location bprm->p
1588 * points to; chop off the first by relocating brpm->p to right after
1589 * the first '\0' encountered.
1590 */
1591int remove_arg_zero(struct linux_binprm *bprm)
1592{
1593 int ret = 0;
1594 unsigned long offset;
1595 char *kaddr;
1596 struct page *page;
1597
1598 if (!bprm->argc)
1599 return 0;
1600
1601 do {
1602 offset = bprm->p & ~PAGE_MASK;
1603 page = get_arg_page(bprm, bprm->p, 0);
1604 if (!page) {
1605 ret = -EFAULT;
1606 goto out;
1607 }
1608 kaddr = kmap_atomic(page);
1609
1610 for (; offset < PAGE_SIZE && kaddr[offset];
1611 offset++, bprm->p++)
1612 ;
1613
1614 kunmap_atomic(kaddr);
1615 put_arg_page(page);
1616 } while (offset == PAGE_SIZE);
1617
1618 bprm->p++;
1619 bprm->argc--;
1620 ret = 0;
1621
1622out:
1623 return ret;
1624}
1625EXPORT_SYMBOL(remove_arg_zero);
1626
1627#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628/*
1629 * cycle the list of binary formats handler, until one recognizes the image
1630 */
1631int search_binary_handler(struct linux_binprm *bprm)
1632{
1633 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1634 struct linux_binfmt *fmt;
1635 int retval;
1636
1637 /* This allows 4 levels of binfmt rewrites before failing hard. */
1638 if (bprm->recursion_depth > 5)
1639 return -ELOOP;
1640
1641 retval = security_bprm_check(bprm);
1642 if (retval)
1643 return retval;
1644
1645 retval = -ENOENT;
1646 retry:
1647 read_lock(&binfmt_lock);
1648 list_for_each_entry(fmt, &formats, lh) {
1649 if (!try_module_get(fmt->module))
1650 continue;
1651 read_unlock(&binfmt_lock);
1652 bprm->recursion_depth++;
1653 retval = fmt->load_binary(bprm);
1654 read_lock(&binfmt_lock);
1655 put_binfmt(fmt);
1656 bprm->recursion_depth--;
1657 if (retval < 0 && !bprm->mm) {
1658 /* we got to flush_old_exec() and failed after it */
1659 read_unlock(&binfmt_lock);
1660 force_sigsegv(SIGSEGV, current);
1661 return retval;
1662 }
1663 if (retval != -ENOEXEC || !bprm->file) {
1664 read_unlock(&binfmt_lock);
1665 return retval;
1666 }
1667 }
1668 read_unlock(&binfmt_lock);
1669
1670 if (need_retry) {
1671 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1672 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1673 return retval;
1674 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1675 return retval;
1676 need_retry = false;
1677 goto retry;
1678 }
1679
1680 return retval;
1681}
1682EXPORT_SYMBOL(search_binary_handler);
1683
1684static int exec_binprm(struct linux_binprm *bprm)
1685{
1686 pid_t old_pid, old_vpid;
1687 int ret;
1688
1689 /* Need to fetch pid before load_binary changes it */
1690 old_pid = current->pid;
1691 rcu_read_lock();
1692 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1693 rcu_read_unlock();
1694
1695 ret = search_binary_handler(bprm);
1696 if (ret >= 0) {
1697 audit_bprm(bprm);
1698 trace_sched_process_exec(current, old_pid, bprm);
1699 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1700 proc_exec_connector(current);
1701 }
1702
1703 return ret;
1704}
1705
1706/*
1707 * sys_execve() executes a new program.
1708 */
1709static int do_execveat_common(int fd, struct filename *filename,
1710 struct user_arg_ptr argv,
1711 struct user_arg_ptr envp,
1712 int flags)
1713{
1714 char *pathbuf = NULL;
1715 struct linux_binprm *bprm;
1716 struct file *file;
1717 struct files_struct *displaced;
1718 int retval;
1719
1720 if (IS_ERR(filename))
1721 return PTR_ERR(filename);
1722
1723 /*
1724 * We move the actual failure in case of RLIMIT_NPROC excess from
1725 * set*uid() to execve() because too many poorly written programs
1726 * don't check setuid() return code. Here we additionally recheck
1727 * whether NPROC limit is still exceeded.
1728 */
1729 if ((current->flags & PF_NPROC_EXCEEDED) &&
1730 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1731 retval = -EAGAIN;
1732 goto out_ret;
1733 }
1734
1735 /* We're below the limit (still or again), so we don't want to make
1736 * further execve() calls fail. */
1737 current->flags &= ~PF_NPROC_EXCEEDED;
1738
1739 retval = unshare_files(&displaced);
1740 if (retval)
1741 goto out_ret;
1742
1743 retval = -ENOMEM;
1744 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1745 if (!bprm)
1746 goto out_files;
1747
1748 retval = prepare_bprm_creds(bprm);
1749 if (retval)
1750 goto out_free;
1751
1752 check_unsafe_exec(bprm);
1753 current->in_execve = 1;
1754
1755 file = do_open_execat(fd, filename, flags);
1756 retval = PTR_ERR(file);
1757 if (IS_ERR(file))
1758 goto out_unmark;
1759
1760 sched_exec();
1761
1762 bprm->file = file;
1763 if (fd == AT_FDCWD || filename->name[0] == '/') {
1764 bprm->filename = filename->name;
1765 } else {
1766 if (filename->name[0] == '\0')
1767 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1768 else
1769 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1770 fd, filename->name);
1771 if (!pathbuf) {
1772 retval = -ENOMEM;
1773 goto out_unmark;
1774 }
1775 /*
1776 * Record that a name derived from an O_CLOEXEC fd will be
1777 * inaccessible after exec. Relies on having exclusive access to
1778 * current->files (due to unshare_files above).
1779 */
1780 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1781 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1782 bprm->filename = pathbuf;
1783 }
1784 bprm->interp = bprm->filename;
1785
1786 retval = bprm_mm_init(bprm);
1787 if (retval)
1788 goto out_unmark;
1789
1790 bprm->argc = count(argv, MAX_ARG_STRINGS);
1791 if ((retval = bprm->argc) < 0)
1792 goto out;
1793
1794 bprm->envc = count(envp, MAX_ARG_STRINGS);
1795 if ((retval = bprm->envc) < 0)
1796 goto out;
1797
1798 retval = prepare_binprm(bprm);
1799 if (retval < 0)
1800 goto out;
1801
1802 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1803 if (retval < 0)
1804 goto out;
1805
1806 bprm->exec = bprm->p;
1807 retval = copy_strings(bprm->envc, envp, bprm);
1808 if (retval < 0)
1809 goto out;
1810
1811 retval = copy_strings(bprm->argc, argv, bprm);
1812 if (retval < 0)
1813 goto out;
1814
1815 would_dump(bprm, bprm->file);
1816
1817 retval = exec_binprm(bprm);
1818 if (retval < 0)
1819 goto out;
1820
1821 /* execve succeeded */
1822 current->fs->in_exec = 0;
1823 current->in_execve = 0;
1824 membarrier_execve(current);
1825 acct_update_integrals(current);
1826 task_numa_free(current);
1827 free_bprm(bprm);
1828 kfree(pathbuf);
1829 putname(filename);
1830 if (displaced)
1831 put_files_struct(displaced);
1832 return retval;
1833
1834out:
1835 if (bprm->mm) {
1836 acct_arg_size(bprm, 0);
1837 mmput(bprm->mm);
1838 }
1839
1840out_unmark:
1841 current->fs->in_exec = 0;
1842 current->in_execve = 0;
1843
1844out_free:
1845 free_bprm(bprm);
1846 kfree(pathbuf);
1847
1848out_files:
1849 if (displaced)
1850 reset_files_struct(displaced);
1851out_ret:
1852 putname(filename);
1853 return retval;
1854}
1855
1856int do_execve(struct filename *filename,
1857 const char __user *const __user *__argv,
1858 const char __user *const __user *__envp)
1859{
1860 struct user_arg_ptr argv = { .ptr.native = __argv };
1861 struct user_arg_ptr envp = { .ptr.native = __envp };
1862 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1863}
1864
1865int do_execveat(int fd, struct filename *filename,
1866 const char __user *const __user *__argv,
1867 const char __user *const __user *__envp,
1868 int flags)
1869{
1870 struct user_arg_ptr argv = { .ptr.native = __argv };
1871 struct user_arg_ptr envp = { .ptr.native = __envp };
1872
1873 return do_execveat_common(fd, filename, argv, envp, flags);
1874}
1875
1876#ifdef CONFIG_COMPAT
1877static int compat_do_execve(struct filename *filename,
1878 const compat_uptr_t __user *__argv,
1879 const compat_uptr_t __user *__envp)
1880{
1881 struct user_arg_ptr argv = {
1882 .is_compat = true,
1883 .ptr.compat = __argv,
1884 };
1885 struct user_arg_ptr envp = {
1886 .is_compat = true,
1887 .ptr.compat = __envp,
1888 };
1889 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1890}
1891
1892static int compat_do_execveat(int fd, struct filename *filename,
1893 const compat_uptr_t __user *__argv,
1894 const compat_uptr_t __user *__envp,
1895 int flags)
1896{
1897 struct user_arg_ptr argv = {
1898 .is_compat = true,
1899 .ptr.compat = __argv,
1900 };
1901 struct user_arg_ptr envp = {
1902 .is_compat = true,
1903 .ptr.compat = __envp,
1904 };
1905 return do_execveat_common(fd, filename, argv, envp, flags);
1906}
1907#endif
1908
1909void set_binfmt(struct linux_binfmt *new)
1910{
1911 struct mm_struct *mm = current->mm;
1912
1913 if (mm->binfmt)
1914 module_put(mm->binfmt->module);
1915
1916 mm->binfmt = new;
1917 if (new)
1918 __module_get(new->module);
1919}
1920EXPORT_SYMBOL(set_binfmt);
1921
1922/*
1923 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1924 */
1925void set_dumpable(struct mm_struct *mm, int value)
1926{
1927 unsigned long old, new;
1928
1929 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1930 return;
1931
1932 do {
1933 old = READ_ONCE(mm->flags);
1934 new = (old & ~MMF_DUMPABLE_MASK) | value;
1935 } while (cmpxchg(&mm->flags, old, new) != old);
1936}
1937
1938SYSCALL_DEFINE3(execve,
1939 const char __user *, filename,
1940 const char __user *const __user *, argv,
1941 const char __user *const __user *, envp)
1942{
1943 return do_execve(getname(filename), argv, envp);
1944}
1945
1946SYSCALL_DEFINE5(execveat,
1947 int, fd, const char __user *, filename,
1948 const char __user *const __user *, argv,
1949 const char __user *const __user *, envp,
1950 int, flags)
1951{
1952 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1953
1954 return do_execveat(fd,
1955 getname_flags(filename, lookup_flags, NULL),
1956 argv, envp, flags);
1957}
1958
1959#ifdef CONFIG_COMPAT
1960COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1961 const compat_uptr_t __user *, argv,
1962 const compat_uptr_t __user *, envp)
1963{
1964 return compat_do_execve(getname(filename), argv, envp);
1965}
1966
1967COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1968 const char __user *, filename,
1969 const compat_uptr_t __user *, argv,
1970 const compat_uptr_t __user *, envp,
1971 int, flags)
1972{
1973 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1974
1975 return compat_do_execveat(fd,
1976 getname_flags(filename, lookup_flags, NULL),
1977 argv, envp, flags);
1978}
1979#endif
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59
60#include <asm/uaccess.h>
61#include <asm/mmu_context.h>
62#include <asm/tlb.h>
63
64#include <trace/events/task.h>
65#include "internal.h"
66
67#include <trace/events/sched.h>
68
69int suid_dumpable = 0;
70
71static LIST_HEAD(formats);
72static DEFINE_RWLOCK(binfmt_lock);
73
74void __register_binfmt(struct linux_binfmt * fmt, int insert)
75{
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83}
84
85EXPORT_SYMBOL(__register_binfmt);
86
87void unregister_binfmt(struct linux_binfmt * fmt)
88{
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92}
93
94EXPORT_SYMBOL(unregister_binfmt);
95
96static inline void put_binfmt(struct linux_binfmt * fmt)
97{
98 module_put(fmt->module);
99}
100
101#ifdef CONFIG_USELIB
102/*
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
105 *
106 * Also note that we take the address to load from from the file itself.
107 */
108SYSCALL_DEFINE1(uselib, const char __user *, library)
109{
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
119 };
120
121 if (IS_ERR(tmp))
122 goto out;
123
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
133
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
137
138 fsnotify_open(file);
139
140 error = -ENOEXEC;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156exit:
157 fput(file);
158out:
159 return error;
160}
161#endif /* #ifdef CONFIG_USELIB */
162
163#ifdef CONFIG_MMU
164/*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
170static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171{
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
174
175 if (!mm || !diff)
176 return;
177
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
180}
181
182static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
184{
185 struct page *page;
186 int ret;
187
188#ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
193 }
194#endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
199
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
203
204 acct_arg_size(bprm, size / PAGE_SIZE);
205
206 /*
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
209 */
210 if (size <= ARG_MAX)
211 return page;
212
213 /*
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
219 */
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
224 }
225 }
226
227 return page;
228}
229
230static void put_arg_page(struct page *page)
231{
232 put_page(page);
233}
234
235static void free_arg_page(struct linux_binprm *bprm, int i)
236{
237}
238
239static void free_arg_pages(struct linux_binprm *bprm)
240{
241}
242
243static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
245{
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247}
248
249static int __bprm_mm_init(struct linux_binprm *bprm)
250{
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
254
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
258
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
278
279 mm->stack_vm = mm->total_vm = 1;
280 up_write(&mm->mmap_sem);
281 bprm->p = vma->vm_end - sizeof(void *);
282 return 0;
283err:
284 up_write(&mm->mmap_sem);
285 bprm->vma = NULL;
286 kmem_cache_free(vm_area_cachep, vma);
287 return err;
288}
289
290static bool valid_arg_len(struct linux_binprm *bprm, long len)
291{
292 return len <= MAX_ARG_STRLEN;
293}
294
295#else
296
297static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298{
299}
300
301static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303{
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315}
316
317static void put_arg_page(struct page *page)
318{
319}
320
321static void free_arg_page(struct linux_binprm *bprm, int i)
322{
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327}
328
329static void free_arg_pages(struct linux_binprm *bprm)
330{
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335}
336
337static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339{
340}
341
342static int __bprm_mm_init(struct linux_binprm *bprm)
343{
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346}
347
348static bool valid_arg_len(struct linux_binprm *bprm, long len)
349{
350 return len <= bprm->p;
351}
352
353#endif /* CONFIG_MMU */
354
355/*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361static int bprm_mm_init(struct linux_binprm *bprm)
362{
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 err = init_new_context(current, mm);
372 if (err)
373 goto err;
374
375 err = __bprm_mm_init(bprm);
376 if (err)
377 goto err;
378
379 return 0;
380
381err:
382 if (mm) {
383 bprm->mm = NULL;
384 mmdrop(mm);
385 }
386
387 return err;
388}
389
390struct user_arg_ptr {
391#ifdef CONFIG_COMPAT
392 bool is_compat;
393#endif
394 union {
395 const char __user *const __user *native;
396#ifdef CONFIG_COMPAT
397 const compat_uptr_t __user *compat;
398#endif
399 } ptr;
400};
401
402static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403{
404 const char __user *native;
405
406#ifdef CONFIG_COMPAT
407 if (unlikely(argv.is_compat)) {
408 compat_uptr_t compat;
409
410 if (get_user(compat, argv.ptr.compat + nr))
411 return ERR_PTR(-EFAULT);
412
413 return compat_ptr(compat);
414 }
415#endif
416
417 if (get_user(native, argv.ptr.native + nr))
418 return ERR_PTR(-EFAULT);
419
420 return native;
421}
422
423/*
424 * count() counts the number of strings in array ARGV.
425 */
426static int count(struct user_arg_ptr argv, int max)
427{
428 int i = 0;
429
430 if (argv.ptr.native != NULL) {
431 for (;;) {
432 const char __user *p = get_user_arg_ptr(argv, i);
433
434 if (!p)
435 break;
436
437 if (IS_ERR(p))
438 return -EFAULT;
439
440 if (i >= max)
441 return -E2BIG;
442 ++i;
443
444 if (fatal_signal_pending(current))
445 return -ERESTARTNOHAND;
446 cond_resched();
447 }
448 }
449 return i;
450}
451
452/*
453 * 'copy_strings()' copies argument/environment strings from the old
454 * processes's memory to the new process's stack. The call to get_user_pages()
455 * ensures the destination page is created and not swapped out.
456 */
457static int copy_strings(int argc, struct user_arg_ptr argv,
458 struct linux_binprm *bprm)
459{
460 struct page *kmapped_page = NULL;
461 char *kaddr = NULL;
462 unsigned long kpos = 0;
463 int ret;
464
465 while (argc-- > 0) {
466 const char __user *str;
467 int len;
468 unsigned long pos;
469
470 ret = -EFAULT;
471 str = get_user_arg_ptr(argv, argc);
472 if (IS_ERR(str))
473 goto out;
474
475 len = strnlen_user(str, MAX_ARG_STRLEN);
476 if (!len)
477 goto out;
478
479 ret = -E2BIG;
480 if (!valid_arg_len(bprm, len))
481 goto out;
482
483 /* We're going to work our way backwords. */
484 pos = bprm->p;
485 str += len;
486 bprm->p -= len;
487
488 while (len > 0) {
489 int offset, bytes_to_copy;
490
491 if (fatal_signal_pending(current)) {
492 ret = -ERESTARTNOHAND;
493 goto out;
494 }
495 cond_resched();
496
497 offset = pos % PAGE_SIZE;
498 if (offset == 0)
499 offset = PAGE_SIZE;
500
501 bytes_to_copy = offset;
502 if (bytes_to_copy > len)
503 bytes_to_copy = len;
504
505 offset -= bytes_to_copy;
506 pos -= bytes_to_copy;
507 str -= bytes_to_copy;
508 len -= bytes_to_copy;
509
510 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511 struct page *page;
512
513 page = get_arg_page(bprm, pos, 1);
514 if (!page) {
515 ret = -E2BIG;
516 goto out;
517 }
518
519 if (kmapped_page) {
520 flush_kernel_dcache_page(kmapped_page);
521 kunmap(kmapped_page);
522 put_arg_page(kmapped_page);
523 }
524 kmapped_page = page;
525 kaddr = kmap(kmapped_page);
526 kpos = pos & PAGE_MASK;
527 flush_arg_page(bprm, kpos, kmapped_page);
528 }
529 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530 ret = -EFAULT;
531 goto out;
532 }
533 }
534 }
535 ret = 0;
536out:
537 if (kmapped_page) {
538 flush_kernel_dcache_page(kmapped_page);
539 kunmap(kmapped_page);
540 put_arg_page(kmapped_page);
541 }
542 return ret;
543}
544
545/*
546 * Like copy_strings, but get argv and its values from kernel memory.
547 */
548int copy_strings_kernel(int argc, const char *const *__argv,
549 struct linux_binprm *bprm)
550{
551 int r;
552 mm_segment_t oldfs = get_fs();
553 struct user_arg_ptr argv = {
554 .ptr.native = (const char __user *const __user *)__argv,
555 };
556
557 set_fs(KERNEL_DS);
558 r = copy_strings(argc, argv, bprm);
559 set_fs(oldfs);
560
561 return r;
562}
563EXPORT_SYMBOL(copy_strings_kernel);
564
565#ifdef CONFIG_MMU
566
567/*
568 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
569 * the binfmt code determines where the new stack should reside, we shift it to
570 * its final location. The process proceeds as follows:
571 *
572 * 1) Use shift to calculate the new vma endpoints.
573 * 2) Extend vma to cover both the old and new ranges. This ensures the
574 * arguments passed to subsequent functions are consistent.
575 * 3) Move vma's page tables to the new range.
576 * 4) Free up any cleared pgd range.
577 * 5) Shrink the vma to cover only the new range.
578 */
579static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580{
581 struct mm_struct *mm = vma->vm_mm;
582 unsigned long old_start = vma->vm_start;
583 unsigned long old_end = vma->vm_end;
584 unsigned long length = old_end - old_start;
585 unsigned long new_start = old_start - shift;
586 unsigned long new_end = old_end - shift;
587 struct mmu_gather tlb;
588
589 BUG_ON(new_start > new_end);
590
591 /*
592 * ensure there are no vmas between where we want to go
593 * and where we are
594 */
595 if (vma != find_vma(mm, new_start))
596 return -EFAULT;
597
598 /*
599 * cover the whole range: [new_start, old_end)
600 */
601 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 return -ENOMEM;
603
604 /*
605 * move the page tables downwards, on failure we rely on
606 * process cleanup to remove whatever mess we made.
607 */
608 if (length != move_page_tables(vma, old_start,
609 vma, new_start, length, false))
610 return -ENOMEM;
611
612 lru_add_drain();
613 tlb_gather_mmu(&tlb, mm, old_start, old_end);
614 if (new_end > old_start) {
615 /*
616 * when the old and new regions overlap clear from new_end.
617 */
618 free_pgd_range(&tlb, new_end, old_end, new_end,
619 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620 } else {
621 /*
622 * otherwise, clean from old_start; this is done to not touch
623 * the address space in [new_end, old_start) some architectures
624 * have constraints on va-space that make this illegal (IA64) -
625 * for the others its just a little faster.
626 */
627 free_pgd_range(&tlb, old_start, old_end, new_end,
628 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 }
630 tlb_finish_mmu(&tlb, old_start, old_end);
631
632 /*
633 * Shrink the vma to just the new range. Always succeeds.
634 */
635 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636
637 return 0;
638}
639
640/*
641 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642 * the stack is optionally relocated, and some extra space is added.
643 */
644int setup_arg_pages(struct linux_binprm *bprm,
645 unsigned long stack_top,
646 int executable_stack)
647{
648 unsigned long ret;
649 unsigned long stack_shift;
650 struct mm_struct *mm = current->mm;
651 struct vm_area_struct *vma = bprm->vma;
652 struct vm_area_struct *prev = NULL;
653 unsigned long vm_flags;
654 unsigned long stack_base;
655 unsigned long stack_size;
656 unsigned long stack_expand;
657 unsigned long rlim_stack;
658
659#ifdef CONFIG_STACK_GROWSUP
660 /* Limit stack size */
661 stack_base = rlimit_max(RLIMIT_STACK);
662 if (stack_base > STACK_SIZE_MAX)
663 stack_base = STACK_SIZE_MAX;
664
665 /* Make sure we didn't let the argument array grow too large. */
666 if (vma->vm_end - vma->vm_start > stack_base)
667 return -ENOMEM;
668
669 stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671 stack_shift = vma->vm_start - stack_base;
672 mm->arg_start = bprm->p - stack_shift;
673 bprm->p = vma->vm_end - stack_shift;
674#else
675 stack_top = arch_align_stack(stack_top);
676 stack_top = PAGE_ALIGN(stack_top);
677
678 if (unlikely(stack_top < mmap_min_addr) ||
679 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 return -ENOMEM;
681
682 stack_shift = vma->vm_end - stack_top;
683
684 bprm->p -= stack_shift;
685 mm->arg_start = bprm->p;
686#endif
687
688 if (bprm->loader)
689 bprm->loader -= stack_shift;
690 bprm->exec -= stack_shift;
691
692 down_write(&mm->mmap_sem);
693 vm_flags = VM_STACK_FLAGS;
694
695 /*
696 * Adjust stack execute permissions; explicitly enable for
697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 * (arch default) otherwise.
699 */
700 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 vm_flags |= VM_EXEC;
702 else if (executable_stack == EXSTACK_DISABLE_X)
703 vm_flags &= ~VM_EXEC;
704 vm_flags |= mm->def_flags;
705 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 vm_flags);
709 if (ret)
710 goto out_unlock;
711 BUG_ON(prev != vma);
712
713 /* Move stack pages down in memory. */
714 if (stack_shift) {
715 ret = shift_arg_pages(vma, stack_shift);
716 if (ret)
717 goto out_unlock;
718 }
719
720 /* mprotect_fixup is overkill to remove the temporary stack flags */
721 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 stack_size = vma->vm_end - vma->vm_start;
725 /*
726 * Align this down to a page boundary as expand_stack
727 * will align it up.
728 */
729 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730#ifdef CONFIG_STACK_GROWSUP
731 if (stack_size + stack_expand > rlim_stack)
732 stack_base = vma->vm_start + rlim_stack;
733 else
734 stack_base = vma->vm_end + stack_expand;
735#else
736 if (stack_size + stack_expand > rlim_stack)
737 stack_base = vma->vm_end - rlim_stack;
738 else
739 stack_base = vma->vm_start - stack_expand;
740#endif
741 current->mm->start_stack = bprm->p;
742 ret = expand_stack(vma, stack_base);
743 if (ret)
744 ret = -EFAULT;
745
746out_unlock:
747 up_write(&mm->mmap_sem);
748 return ret;
749}
750EXPORT_SYMBOL(setup_arg_pages);
751
752#endif /* CONFIG_MMU */
753
754static struct file *do_open_exec(struct filename *name)
755{
756 struct file *file;
757 int err;
758 static const struct open_flags open_exec_flags = {
759 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760 .acc_mode = MAY_EXEC | MAY_OPEN,
761 .intent = LOOKUP_OPEN,
762 .lookup_flags = LOOKUP_FOLLOW,
763 };
764
765 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
766 if (IS_ERR(file))
767 goto out;
768
769 err = -EACCES;
770 if (!S_ISREG(file_inode(file)->i_mode))
771 goto exit;
772
773 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
774 goto exit;
775
776 fsnotify_open(file);
777
778 err = deny_write_access(file);
779 if (err)
780 goto exit;
781
782out:
783 return file;
784
785exit:
786 fput(file);
787 return ERR_PTR(err);
788}
789
790struct file *open_exec(const char *name)
791{
792 struct filename tmp = { .name = name };
793 return do_open_exec(&tmp);
794}
795EXPORT_SYMBOL(open_exec);
796
797int kernel_read(struct file *file, loff_t offset,
798 char *addr, unsigned long count)
799{
800 mm_segment_t old_fs;
801 loff_t pos = offset;
802 int result;
803
804 old_fs = get_fs();
805 set_fs(get_ds());
806 /* The cast to a user pointer is valid due to the set_fs() */
807 result = vfs_read(file, (void __user *)addr, count, &pos);
808 set_fs(old_fs);
809 return result;
810}
811
812EXPORT_SYMBOL(kernel_read);
813
814ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
815{
816 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
817 if (res > 0)
818 flush_icache_range(addr, addr + len);
819 return res;
820}
821EXPORT_SYMBOL(read_code);
822
823static int exec_mmap(struct mm_struct *mm)
824{
825 struct task_struct *tsk;
826 struct mm_struct *old_mm, *active_mm;
827
828 /* Notify parent that we're no longer interested in the old VM */
829 tsk = current;
830 old_mm = current->mm;
831 mm_release(tsk, old_mm);
832
833 if (old_mm) {
834 sync_mm_rss(old_mm);
835 /*
836 * Make sure that if there is a core dump in progress
837 * for the old mm, we get out and die instead of going
838 * through with the exec. We must hold mmap_sem around
839 * checking core_state and changing tsk->mm.
840 */
841 down_read(&old_mm->mmap_sem);
842 if (unlikely(old_mm->core_state)) {
843 up_read(&old_mm->mmap_sem);
844 return -EINTR;
845 }
846 }
847 task_lock(tsk);
848 active_mm = tsk->active_mm;
849 tsk->mm = mm;
850 tsk->active_mm = mm;
851 activate_mm(active_mm, mm);
852 tsk->mm->vmacache_seqnum = 0;
853 vmacache_flush(tsk);
854 task_unlock(tsk);
855 if (old_mm) {
856 up_read(&old_mm->mmap_sem);
857 BUG_ON(active_mm != old_mm);
858 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
859 mm_update_next_owner(old_mm);
860 mmput(old_mm);
861 return 0;
862 }
863 mmdrop(active_mm);
864 return 0;
865}
866
867/*
868 * This function makes sure the current process has its own signal table,
869 * so that flush_signal_handlers can later reset the handlers without
870 * disturbing other processes. (Other processes might share the signal
871 * table via the CLONE_SIGHAND option to clone().)
872 */
873static int de_thread(struct task_struct *tsk)
874{
875 struct signal_struct *sig = tsk->signal;
876 struct sighand_struct *oldsighand = tsk->sighand;
877 spinlock_t *lock = &oldsighand->siglock;
878
879 if (thread_group_empty(tsk))
880 goto no_thread_group;
881
882 /*
883 * Kill all other threads in the thread group.
884 */
885 spin_lock_irq(lock);
886 if (signal_group_exit(sig)) {
887 /*
888 * Another group action in progress, just
889 * return so that the signal is processed.
890 */
891 spin_unlock_irq(lock);
892 return -EAGAIN;
893 }
894
895 sig->group_exit_task = tsk;
896 sig->notify_count = zap_other_threads(tsk);
897 if (!thread_group_leader(tsk))
898 sig->notify_count--;
899
900 while (sig->notify_count) {
901 __set_current_state(TASK_KILLABLE);
902 spin_unlock_irq(lock);
903 schedule();
904 if (unlikely(__fatal_signal_pending(tsk)))
905 goto killed;
906 spin_lock_irq(lock);
907 }
908 spin_unlock_irq(lock);
909
910 /*
911 * At this point all other threads have exited, all we have to
912 * do is to wait for the thread group leader to become inactive,
913 * and to assume its PID:
914 */
915 if (!thread_group_leader(tsk)) {
916 struct task_struct *leader = tsk->group_leader;
917
918 sig->notify_count = -1; /* for exit_notify() */
919 for (;;) {
920 threadgroup_change_begin(tsk);
921 write_lock_irq(&tasklist_lock);
922 if (likely(leader->exit_state))
923 break;
924 __set_current_state(TASK_KILLABLE);
925 write_unlock_irq(&tasklist_lock);
926 threadgroup_change_end(tsk);
927 schedule();
928 if (unlikely(__fatal_signal_pending(tsk)))
929 goto killed;
930 }
931
932 /*
933 * The only record we have of the real-time age of a
934 * process, regardless of execs it's done, is start_time.
935 * All the past CPU time is accumulated in signal_struct
936 * from sister threads now dead. But in this non-leader
937 * exec, nothing survives from the original leader thread,
938 * whose birth marks the true age of this process now.
939 * When we take on its identity by switching to its PID, we
940 * also take its birthdate (always earlier than our own).
941 */
942 tsk->start_time = leader->start_time;
943 tsk->real_start_time = leader->real_start_time;
944
945 BUG_ON(!same_thread_group(leader, tsk));
946 BUG_ON(has_group_leader_pid(tsk));
947 /*
948 * An exec() starts a new thread group with the
949 * TGID of the previous thread group. Rehash the
950 * two threads with a switched PID, and release
951 * the former thread group leader:
952 */
953
954 /* Become a process group leader with the old leader's pid.
955 * The old leader becomes a thread of the this thread group.
956 * Note: The old leader also uses this pid until release_task
957 * is called. Odd but simple and correct.
958 */
959 tsk->pid = leader->pid;
960 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
961 transfer_pid(leader, tsk, PIDTYPE_PGID);
962 transfer_pid(leader, tsk, PIDTYPE_SID);
963
964 list_replace_rcu(&leader->tasks, &tsk->tasks);
965 list_replace_init(&leader->sibling, &tsk->sibling);
966
967 tsk->group_leader = tsk;
968 leader->group_leader = tsk;
969
970 tsk->exit_signal = SIGCHLD;
971 leader->exit_signal = -1;
972
973 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
974 leader->exit_state = EXIT_DEAD;
975
976 /*
977 * We are going to release_task()->ptrace_unlink() silently,
978 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
979 * the tracer wont't block again waiting for this thread.
980 */
981 if (unlikely(leader->ptrace))
982 __wake_up_parent(leader, leader->parent);
983 write_unlock_irq(&tasklist_lock);
984 threadgroup_change_end(tsk);
985
986 release_task(leader);
987 }
988
989 sig->group_exit_task = NULL;
990 sig->notify_count = 0;
991
992no_thread_group:
993 /* we have changed execution domain */
994 tsk->exit_signal = SIGCHLD;
995
996 exit_itimers(sig);
997 flush_itimer_signals();
998
999 if (atomic_read(&oldsighand->count) != 1) {
1000 struct sighand_struct *newsighand;
1001 /*
1002 * This ->sighand is shared with the CLONE_SIGHAND
1003 * but not CLONE_THREAD task, switch to the new one.
1004 */
1005 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006 if (!newsighand)
1007 return -ENOMEM;
1008
1009 atomic_set(&newsighand->count, 1);
1010 memcpy(newsighand->action, oldsighand->action,
1011 sizeof(newsighand->action));
1012
1013 write_lock_irq(&tasklist_lock);
1014 spin_lock(&oldsighand->siglock);
1015 rcu_assign_pointer(tsk->sighand, newsighand);
1016 spin_unlock(&oldsighand->siglock);
1017 write_unlock_irq(&tasklist_lock);
1018
1019 __cleanup_sighand(oldsighand);
1020 }
1021
1022 BUG_ON(!thread_group_leader(tsk));
1023 return 0;
1024
1025killed:
1026 /* protects against exit_notify() and __exit_signal() */
1027 read_lock(&tasklist_lock);
1028 sig->group_exit_task = NULL;
1029 sig->notify_count = 0;
1030 read_unlock(&tasklist_lock);
1031 return -EAGAIN;
1032}
1033
1034char *get_task_comm(char *buf, struct task_struct *tsk)
1035{
1036 /* buf must be at least sizeof(tsk->comm) in size */
1037 task_lock(tsk);
1038 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1039 task_unlock(tsk);
1040 return buf;
1041}
1042EXPORT_SYMBOL_GPL(get_task_comm);
1043
1044/*
1045 * These functions flushes out all traces of the currently running executable
1046 * so that a new one can be started
1047 */
1048
1049void set_task_comm(struct task_struct *tsk, const char *buf)
1050{
1051 task_lock(tsk);
1052 trace_task_rename(tsk, buf);
1053 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1054 task_unlock(tsk);
1055 perf_event_comm(tsk);
1056}
1057
1058int flush_old_exec(struct linux_binprm * bprm)
1059{
1060 int retval;
1061
1062 /*
1063 * Make sure we have a private signal table and that
1064 * we are unassociated from the previous thread group.
1065 */
1066 retval = de_thread(current);
1067 if (retval)
1068 goto out;
1069
1070 set_mm_exe_file(bprm->mm, bprm->file);
1071 /*
1072 * Release all of the old mmap stuff
1073 */
1074 acct_arg_size(bprm, 0);
1075 retval = exec_mmap(bprm->mm);
1076 if (retval)
1077 goto out;
1078
1079 bprm->mm = NULL; /* We're using it now */
1080
1081 set_fs(USER_DS);
1082 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1083 PF_NOFREEZE | PF_NO_SETAFFINITY);
1084 flush_thread();
1085 current->personality &= ~bprm->per_clear;
1086
1087 return 0;
1088
1089out:
1090 return retval;
1091}
1092EXPORT_SYMBOL(flush_old_exec);
1093
1094void would_dump(struct linux_binprm *bprm, struct file *file)
1095{
1096 if (inode_permission(file_inode(file), MAY_READ) < 0)
1097 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1098}
1099EXPORT_SYMBOL(would_dump);
1100
1101void setup_new_exec(struct linux_binprm * bprm)
1102{
1103 arch_pick_mmap_layout(current->mm);
1104
1105 /* This is the point of no return */
1106 current->sas_ss_sp = current->sas_ss_size = 0;
1107
1108 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1109 set_dumpable(current->mm, SUID_DUMP_USER);
1110 else
1111 set_dumpable(current->mm, suid_dumpable);
1112
1113 set_task_comm(current, kbasename(bprm->filename));
1114
1115 /* Set the new mm task size. We have to do that late because it may
1116 * depend on TIF_32BIT which is only updated in flush_thread() on
1117 * some architectures like powerpc
1118 */
1119 current->mm->task_size = TASK_SIZE;
1120
1121 /* install the new credentials */
1122 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1123 !gid_eq(bprm->cred->gid, current_egid())) {
1124 current->pdeath_signal = 0;
1125 } else {
1126 would_dump(bprm, bprm->file);
1127 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1128 set_dumpable(current->mm, suid_dumpable);
1129 }
1130
1131 /* An exec changes our domain. We are no longer part of the thread
1132 group */
1133 current->self_exec_id++;
1134 flush_signal_handlers(current, 0);
1135 do_close_on_exec(current->files);
1136}
1137EXPORT_SYMBOL(setup_new_exec);
1138
1139/*
1140 * Prepare credentials and lock ->cred_guard_mutex.
1141 * install_exec_creds() commits the new creds and drops the lock.
1142 * Or, if exec fails before, free_bprm() should release ->cred and
1143 * and unlock.
1144 */
1145int prepare_bprm_creds(struct linux_binprm *bprm)
1146{
1147 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1148 return -ERESTARTNOINTR;
1149
1150 bprm->cred = prepare_exec_creds();
1151 if (likely(bprm->cred))
1152 return 0;
1153
1154 mutex_unlock(¤t->signal->cred_guard_mutex);
1155 return -ENOMEM;
1156}
1157
1158static void free_bprm(struct linux_binprm *bprm)
1159{
1160 free_arg_pages(bprm);
1161 if (bprm->cred) {
1162 mutex_unlock(¤t->signal->cred_guard_mutex);
1163 abort_creds(bprm->cred);
1164 }
1165 if (bprm->file) {
1166 allow_write_access(bprm->file);
1167 fput(bprm->file);
1168 }
1169 /* If a binfmt changed the interp, free it. */
1170 if (bprm->interp != bprm->filename)
1171 kfree(bprm->interp);
1172 kfree(bprm);
1173}
1174
1175int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1176{
1177 /* If a binfmt changed the interp, free it first. */
1178 if (bprm->interp != bprm->filename)
1179 kfree(bprm->interp);
1180 bprm->interp = kstrdup(interp, GFP_KERNEL);
1181 if (!bprm->interp)
1182 return -ENOMEM;
1183 return 0;
1184}
1185EXPORT_SYMBOL(bprm_change_interp);
1186
1187/*
1188 * install the new credentials for this executable
1189 */
1190void install_exec_creds(struct linux_binprm *bprm)
1191{
1192 security_bprm_committing_creds(bprm);
1193
1194 commit_creds(bprm->cred);
1195 bprm->cred = NULL;
1196
1197 /*
1198 * Disable monitoring for regular users
1199 * when executing setuid binaries. Must
1200 * wait until new credentials are committed
1201 * by commit_creds() above
1202 */
1203 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1204 perf_event_exit_task(current);
1205 /*
1206 * cred_guard_mutex must be held at least to this point to prevent
1207 * ptrace_attach() from altering our determination of the task's
1208 * credentials; any time after this it may be unlocked.
1209 */
1210 security_bprm_committed_creds(bprm);
1211 mutex_unlock(¤t->signal->cred_guard_mutex);
1212}
1213EXPORT_SYMBOL(install_exec_creds);
1214
1215/*
1216 * determine how safe it is to execute the proposed program
1217 * - the caller must hold ->cred_guard_mutex to protect against
1218 * PTRACE_ATTACH
1219 */
1220static void check_unsafe_exec(struct linux_binprm *bprm)
1221{
1222 struct task_struct *p = current, *t;
1223 unsigned n_fs;
1224
1225 if (p->ptrace) {
1226 if (p->ptrace & PT_PTRACE_CAP)
1227 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1228 else
1229 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1230 }
1231
1232 /*
1233 * This isn't strictly necessary, but it makes it harder for LSMs to
1234 * mess up.
1235 */
1236 if (current->no_new_privs)
1237 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1238
1239 t = p;
1240 n_fs = 1;
1241 spin_lock(&p->fs->lock);
1242 rcu_read_lock();
1243 while_each_thread(p, t) {
1244 if (t->fs == p->fs)
1245 n_fs++;
1246 }
1247 rcu_read_unlock();
1248
1249 if (p->fs->users > n_fs)
1250 bprm->unsafe |= LSM_UNSAFE_SHARE;
1251 else
1252 p->fs->in_exec = 1;
1253 spin_unlock(&p->fs->lock);
1254}
1255
1256/*
1257 * Fill the binprm structure from the inode.
1258 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1259 *
1260 * This may be called multiple times for binary chains (scripts for example).
1261 */
1262int prepare_binprm(struct linux_binprm *bprm)
1263{
1264 struct inode *inode = file_inode(bprm->file);
1265 umode_t mode = inode->i_mode;
1266 int retval;
1267
1268
1269 /* clear any previous set[ug]id data from a previous binary */
1270 bprm->cred->euid = current_euid();
1271 bprm->cred->egid = current_egid();
1272
1273 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1274 !current->no_new_privs &&
1275 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1276 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1277 /* Set-uid? */
1278 if (mode & S_ISUID) {
1279 bprm->per_clear |= PER_CLEAR_ON_SETID;
1280 bprm->cred->euid = inode->i_uid;
1281 }
1282
1283 /* Set-gid? */
1284 /*
1285 * If setgid is set but no group execute bit then this
1286 * is a candidate for mandatory locking, not a setgid
1287 * executable.
1288 */
1289 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1290 bprm->per_clear |= PER_CLEAR_ON_SETID;
1291 bprm->cred->egid = inode->i_gid;
1292 }
1293 }
1294
1295 /* fill in binprm security blob */
1296 retval = security_bprm_set_creds(bprm);
1297 if (retval)
1298 return retval;
1299 bprm->cred_prepared = 1;
1300
1301 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1302 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1303}
1304
1305EXPORT_SYMBOL(prepare_binprm);
1306
1307/*
1308 * Arguments are '\0' separated strings found at the location bprm->p
1309 * points to; chop off the first by relocating brpm->p to right after
1310 * the first '\0' encountered.
1311 */
1312int remove_arg_zero(struct linux_binprm *bprm)
1313{
1314 int ret = 0;
1315 unsigned long offset;
1316 char *kaddr;
1317 struct page *page;
1318
1319 if (!bprm->argc)
1320 return 0;
1321
1322 do {
1323 offset = bprm->p & ~PAGE_MASK;
1324 page = get_arg_page(bprm, bprm->p, 0);
1325 if (!page) {
1326 ret = -EFAULT;
1327 goto out;
1328 }
1329 kaddr = kmap_atomic(page);
1330
1331 for (; offset < PAGE_SIZE && kaddr[offset];
1332 offset++, bprm->p++)
1333 ;
1334
1335 kunmap_atomic(kaddr);
1336 put_arg_page(page);
1337
1338 if (offset == PAGE_SIZE)
1339 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1340 } while (offset == PAGE_SIZE);
1341
1342 bprm->p++;
1343 bprm->argc--;
1344 ret = 0;
1345
1346out:
1347 return ret;
1348}
1349EXPORT_SYMBOL(remove_arg_zero);
1350
1351#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1352/*
1353 * cycle the list of binary formats handler, until one recognizes the image
1354 */
1355int search_binary_handler(struct linux_binprm *bprm)
1356{
1357 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1358 struct linux_binfmt *fmt;
1359 int retval;
1360
1361 /* This allows 4 levels of binfmt rewrites before failing hard. */
1362 if (bprm->recursion_depth > 5)
1363 return -ELOOP;
1364
1365 retval = security_bprm_check(bprm);
1366 if (retval)
1367 return retval;
1368
1369 retval = -ENOENT;
1370 retry:
1371 read_lock(&binfmt_lock);
1372 list_for_each_entry(fmt, &formats, lh) {
1373 if (!try_module_get(fmt->module))
1374 continue;
1375 read_unlock(&binfmt_lock);
1376 bprm->recursion_depth++;
1377 retval = fmt->load_binary(bprm);
1378 bprm->recursion_depth--;
1379 if (retval >= 0 || retval != -ENOEXEC ||
1380 bprm->mm == NULL || bprm->file == NULL) {
1381 put_binfmt(fmt);
1382 return retval;
1383 }
1384 read_lock(&binfmt_lock);
1385 put_binfmt(fmt);
1386 }
1387 read_unlock(&binfmt_lock);
1388
1389 if (need_retry && retval == -ENOEXEC) {
1390 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1391 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1392 return retval;
1393 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1394 return retval;
1395 need_retry = false;
1396 goto retry;
1397 }
1398
1399 return retval;
1400}
1401EXPORT_SYMBOL(search_binary_handler);
1402
1403static int exec_binprm(struct linux_binprm *bprm)
1404{
1405 pid_t old_pid, old_vpid;
1406 int ret;
1407
1408 /* Need to fetch pid before load_binary changes it */
1409 old_pid = current->pid;
1410 rcu_read_lock();
1411 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1412 rcu_read_unlock();
1413
1414 ret = search_binary_handler(bprm);
1415 if (ret >= 0) {
1416 audit_bprm(bprm);
1417 trace_sched_process_exec(current, old_pid, bprm);
1418 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1419 proc_exec_connector(current);
1420 }
1421
1422 return ret;
1423}
1424
1425/*
1426 * sys_execve() executes a new program.
1427 */
1428static int do_execve_common(struct filename *filename,
1429 struct user_arg_ptr argv,
1430 struct user_arg_ptr envp)
1431{
1432 struct linux_binprm *bprm;
1433 struct file *file;
1434 struct files_struct *displaced;
1435 int retval;
1436
1437 if (IS_ERR(filename))
1438 return PTR_ERR(filename);
1439
1440 /*
1441 * We move the actual failure in case of RLIMIT_NPROC excess from
1442 * set*uid() to execve() because too many poorly written programs
1443 * don't check setuid() return code. Here we additionally recheck
1444 * whether NPROC limit is still exceeded.
1445 */
1446 if ((current->flags & PF_NPROC_EXCEEDED) &&
1447 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1448 retval = -EAGAIN;
1449 goto out_ret;
1450 }
1451
1452 /* We're below the limit (still or again), so we don't want to make
1453 * further execve() calls fail. */
1454 current->flags &= ~PF_NPROC_EXCEEDED;
1455
1456 retval = unshare_files(&displaced);
1457 if (retval)
1458 goto out_ret;
1459
1460 retval = -ENOMEM;
1461 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1462 if (!bprm)
1463 goto out_files;
1464
1465 retval = prepare_bprm_creds(bprm);
1466 if (retval)
1467 goto out_free;
1468
1469 check_unsafe_exec(bprm);
1470 current->in_execve = 1;
1471
1472 file = do_open_exec(filename);
1473 retval = PTR_ERR(file);
1474 if (IS_ERR(file))
1475 goto out_unmark;
1476
1477 sched_exec();
1478
1479 bprm->file = file;
1480 bprm->filename = bprm->interp = filename->name;
1481
1482 retval = bprm_mm_init(bprm);
1483 if (retval)
1484 goto out_unmark;
1485
1486 bprm->argc = count(argv, MAX_ARG_STRINGS);
1487 if ((retval = bprm->argc) < 0)
1488 goto out;
1489
1490 bprm->envc = count(envp, MAX_ARG_STRINGS);
1491 if ((retval = bprm->envc) < 0)
1492 goto out;
1493
1494 retval = prepare_binprm(bprm);
1495 if (retval < 0)
1496 goto out;
1497
1498 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1499 if (retval < 0)
1500 goto out;
1501
1502 bprm->exec = bprm->p;
1503 retval = copy_strings(bprm->envc, envp, bprm);
1504 if (retval < 0)
1505 goto out;
1506
1507 retval = copy_strings(bprm->argc, argv, bprm);
1508 if (retval < 0)
1509 goto out;
1510
1511 retval = exec_binprm(bprm);
1512 if (retval < 0)
1513 goto out;
1514
1515 /* execve succeeded */
1516 current->fs->in_exec = 0;
1517 current->in_execve = 0;
1518 acct_update_integrals(current);
1519 task_numa_free(current);
1520 free_bprm(bprm);
1521 putname(filename);
1522 if (displaced)
1523 put_files_struct(displaced);
1524 return retval;
1525
1526out:
1527 if (bprm->mm) {
1528 acct_arg_size(bprm, 0);
1529 mmput(bprm->mm);
1530 }
1531
1532out_unmark:
1533 current->fs->in_exec = 0;
1534 current->in_execve = 0;
1535
1536out_free:
1537 free_bprm(bprm);
1538
1539out_files:
1540 if (displaced)
1541 reset_files_struct(displaced);
1542out_ret:
1543 putname(filename);
1544 return retval;
1545}
1546
1547int do_execve(struct filename *filename,
1548 const char __user *const __user *__argv,
1549 const char __user *const __user *__envp)
1550{
1551 struct user_arg_ptr argv = { .ptr.native = __argv };
1552 struct user_arg_ptr envp = { .ptr.native = __envp };
1553 return do_execve_common(filename, argv, envp);
1554}
1555
1556#ifdef CONFIG_COMPAT
1557static int compat_do_execve(struct filename *filename,
1558 const compat_uptr_t __user *__argv,
1559 const compat_uptr_t __user *__envp)
1560{
1561 struct user_arg_ptr argv = {
1562 .is_compat = true,
1563 .ptr.compat = __argv,
1564 };
1565 struct user_arg_ptr envp = {
1566 .is_compat = true,
1567 .ptr.compat = __envp,
1568 };
1569 return do_execve_common(filename, argv, envp);
1570}
1571#endif
1572
1573void set_binfmt(struct linux_binfmt *new)
1574{
1575 struct mm_struct *mm = current->mm;
1576
1577 if (mm->binfmt)
1578 module_put(mm->binfmt->module);
1579
1580 mm->binfmt = new;
1581 if (new)
1582 __module_get(new->module);
1583}
1584EXPORT_SYMBOL(set_binfmt);
1585
1586/*
1587 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1588 */
1589void set_dumpable(struct mm_struct *mm, int value)
1590{
1591 unsigned long old, new;
1592
1593 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1594 return;
1595
1596 do {
1597 old = ACCESS_ONCE(mm->flags);
1598 new = (old & ~MMF_DUMPABLE_MASK) | value;
1599 } while (cmpxchg(&mm->flags, old, new) != old);
1600}
1601
1602SYSCALL_DEFINE3(execve,
1603 const char __user *, filename,
1604 const char __user *const __user *, argv,
1605 const char __user *const __user *, envp)
1606{
1607 return do_execve(getname(filename), argv, envp);
1608}
1609#ifdef CONFIG_COMPAT
1610COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1611 const compat_uptr_t __user *, argv,
1612 const compat_uptr_t __user *, envp)
1613{
1614 return compat_do_execve(getname(filename), argv, envp);
1615}
1616#endif