Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Intel Low Power Subsystem PWM controller driver
  3 *
  4 * Copyright (C) 2014, Intel Corporation
  5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  6 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
  7 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
  8 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
  9 * Author: Alan Cox <alan@linux.intel.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 */
 15
 16#include <linux/delay.h>
 17#include <linux/io.h>
 18#include <linux/iopoll.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/pm_runtime.h>
 22#include <linux/time.h>
 23
 24#include "pwm-lpss.h"
 25
 26#define PWM				0x00000000
 27#define PWM_ENABLE			BIT(31)
 28#define PWM_SW_UPDATE			BIT(30)
 29#define PWM_BASE_UNIT_SHIFT		8
 30#define PWM_ON_TIME_DIV_MASK		0x000000ff
 31
 32/* Size of each PWM register space if multiple */
 33#define PWM_SIZE			0x400
 34
 35struct pwm_lpss_chip {
 36	struct pwm_chip chip;
 37	void __iomem *regs;
 38	const struct pwm_lpss_boardinfo *info;
 39};
 40
 41static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
 42{
 43	return container_of(chip, struct pwm_lpss_chip, chip);
 44}
 45
 46static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
 47{
 48	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 49
 50	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 51}
 52
 53static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
 54{
 55	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 56
 57	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 58}
 59
 60static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
 61{
 62	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 63	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
 64	const unsigned int ms = 500 * USEC_PER_MSEC;
 65	u32 val;
 66	int err;
 67
 68	/*
 69	 * PWM Configuration register has SW_UPDATE bit that is set when a new
 70	 * configuration is written to the register. The bit is automatically
 71	 * cleared at the start of the next output cycle by the IP block.
 72	 *
 73	 * If one writes a new configuration to the register while it still has
 74	 * the bit enabled, PWM may freeze. That is, while one can still write
 75	 * to the register, it won't have an effect. Thus, we try to sleep long
 76	 * enough that the bit gets cleared and make sure the bit is not
 77	 * enabled while we update the configuration.
 78	 */
 79	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
 80	if (err)
 81		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
 82
 83	return err;
 84}
 85
 86static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
 87{
 88	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
 89}
 90
 91static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
 92			     int duty_ns, int period_ns)
 93{
 94	unsigned long long on_time_div;
 95	unsigned long c = lpwm->info->clk_rate, base_unit_range;
 96	unsigned long long base_unit, freq = NSEC_PER_SEC;
 97	u32 ctrl;
 98
 99	do_div(freq, period_ns);
100
101	/*
102	 * The equation is:
103	 * base_unit = round(base_unit_range * freq / c)
104	 */
105	base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
106	freq *= base_unit_range;
107
108	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
109
110	on_time_div = 255ULL * duty_ns;
111	do_div(on_time_div, period_ns);
112	on_time_div = 255ULL - on_time_div;
113
114	ctrl = pwm_lpss_read(pwm);
115	ctrl &= ~PWM_ON_TIME_DIV_MASK;
116	ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
117	base_unit &= base_unit_range;
118	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
119	ctrl |= on_time_div;
120	pwm_lpss_write(pwm, ctrl);
 
 
 
 
121}
122
123static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
124{
125	if (cond)
126		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
127}
128
129static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
130			  struct pwm_state *state)
131{
132	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
133	int ret;
134
135	if (state->enabled) {
136		if (!pwm_is_enabled(pwm)) {
137			pm_runtime_get_sync(chip->dev);
138			ret = pwm_lpss_is_updating(pwm);
139			if (ret) {
140				pm_runtime_put(chip->dev);
141				return ret;
142			}
143			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
144			pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
145			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
146			ret = pwm_lpss_wait_for_update(pwm);
147			if (ret) {
148				pm_runtime_put(chip->dev);
149				return ret;
150			}
151			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
152		} else {
153			ret = pwm_lpss_is_updating(pwm);
154			if (ret)
155				return ret;
156			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
157			pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
158			return pwm_lpss_wait_for_update(pwm);
159		}
160	} else if (pwm_is_enabled(pwm)) {
161		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
162		pm_runtime_put(chip->dev);
163	}
164
165	return 0;
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168static const struct pwm_ops pwm_lpss_ops = {
169	.apply = pwm_lpss_apply,
 
170	.owner = THIS_MODULE,
171};
172
173struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
174				     const struct pwm_lpss_boardinfo *info)
175{
176	struct pwm_lpss_chip *lpwm;
177	unsigned long c;
178	int ret;
 
 
 
 
179
180	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
181	if (!lpwm)
182		return ERR_PTR(-ENOMEM);
183
184	lpwm->regs = devm_ioremap_resource(dev, r);
185	if (IS_ERR(lpwm->regs))
186		return ERR_CAST(lpwm->regs);
187
188	lpwm->info = info;
189
190	c = lpwm->info->clk_rate;
191	if (!c)
192		return ERR_PTR(-EINVAL);
193
194	lpwm->chip.dev = dev;
195	lpwm->chip.ops = &pwm_lpss_ops;
196	lpwm->chip.base = -1;
197	lpwm->chip.npwm = info->npwm;
198
199	ret = pwmchip_add(&lpwm->chip);
200	if (ret) {
201		dev_err(dev, "failed to add PWM chip: %d\n", ret);
202		return ERR_PTR(ret);
203	}
204
 
 
 
 
 
 
205	return lpwm;
206}
207EXPORT_SYMBOL_GPL(pwm_lpss_probe);
208
209int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
210{
 
 
 
 
 
 
211	return pwmchip_remove(&lpwm->chip);
212}
213EXPORT_SYMBOL_GPL(pwm_lpss_remove);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
215MODULE_DESCRIPTION("PWM driver for Intel LPSS");
216MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
217MODULE_LICENSE("GPL v2");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Intel Low Power Subsystem PWM controller driver
  4 *
  5 * Copyright (C) 2014, Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  7 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
  8 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
  9 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
 10 * Author: Alan Cox <alan@linux.intel.com>
 
 
 
 
 11 */
 12
 13#include <linux/delay.h>
 14#include <linux/io.h>
 15#include <linux/iopoll.h>
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/time.h>
 20
 21#include "pwm-lpss.h"
 22
 23#define PWM				0x00000000
 24#define PWM_ENABLE			BIT(31)
 25#define PWM_SW_UPDATE			BIT(30)
 26#define PWM_BASE_UNIT_SHIFT		8
 27#define PWM_ON_TIME_DIV_MASK		0x000000ff
 28
 29/* Size of each PWM register space if multiple */
 30#define PWM_SIZE			0x400
 31
 
 
 
 
 
 
 32static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
 33{
 34	return container_of(chip, struct pwm_lpss_chip, chip);
 35}
 36
 37static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
 38{
 39	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 40
 41	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 42}
 43
 44static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
 45{
 46	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 47
 48	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 49}
 50
 51static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
 52{
 53	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 54	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
 55	const unsigned int ms = 500 * USEC_PER_MSEC;
 56	u32 val;
 57	int err;
 58
 59	/*
 60	 * PWM Configuration register has SW_UPDATE bit that is set when a new
 61	 * configuration is written to the register. The bit is automatically
 62	 * cleared at the start of the next output cycle by the IP block.
 63	 *
 64	 * If one writes a new configuration to the register while it still has
 65	 * the bit enabled, PWM may freeze. That is, while one can still write
 66	 * to the register, it won't have an effect. Thus, we try to sleep long
 67	 * enough that the bit gets cleared and make sure the bit is not
 68	 * enabled while we update the configuration.
 69	 */
 70	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
 71	if (err)
 72		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
 73
 74	return err;
 75}
 76
 77static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
 78{
 79	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
 80}
 81
 82static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
 83			     int duty_ns, int period_ns)
 84{
 85	unsigned long long on_time_div;
 86	unsigned long c = lpwm->info->clk_rate, base_unit_range;
 87	unsigned long long base_unit, freq = NSEC_PER_SEC;
 88	u32 orig_ctrl, ctrl;
 89
 90	do_div(freq, period_ns);
 91
 92	/*
 93	 * The equation is:
 94	 * base_unit = round(base_unit_range * freq / c)
 95	 */
 96	base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
 97	freq *= base_unit_range;
 98
 99	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
100
101	on_time_div = 255ULL * duty_ns;
102	do_div(on_time_div, period_ns);
103	on_time_div = 255ULL - on_time_div;
104
105	orig_ctrl = ctrl = pwm_lpss_read(pwm);
106	ctrl &= ~PWM_ON_TIME_DIV_MASK;
107	ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
108	base_unit &= base_unit_range;
109	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
110	ctrl |= on_time_div;
111
112	if (orig_ctrl != ctrl) {
113		pwm_lpss_write(pwm, ctrl);
114		pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
115	}
116}
117
118static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
119{
120	if (cond)
121		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
122}
123
124static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
125			  const struct pwm_state *state)
126{
127	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
128	int ret;
129
130	if (state->enabled) {
131		if (!pwm_is_enabled(pwm)) {
132			pm_runtime_get_sync(chip->dev);
133			ret = pwm_lpss_is_updating(pwm);
134			if (ret) {
135				pm_runtime_put(chip->dev);
136				return ret;
137			}
138			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
 
139			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
140			ret = pwm_lpss_wait_for_update(pwm);
141			if (ret) {
142				pm_runtime_put(chip->dev);
143				return ret;
144			}
145			pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
146		} else {
147			ret = pwm_lpss_is_updating(pwm);
148			if (ret)
149				return ret;
150			pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
 
151			return pwm_lpss_wait_for_update(pwm);
152		}
153	} else if (pwm_is_enabled(pwm)) {
154		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
155		pm_runtime_put(chip->dev);
156	}
157
158	return 0;
159}
160
161static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
162			       struct pwm_state *state)
163{
164	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
165	unsigned long base_unit_range;
166	unsigned long long base_unit, freq, on_time_div;
167	u32 ctrl;
168
169	pm_runtime_get_sync(chip->dev);
170
171	base_unit_range = BIT(lpwm->info->base_unit_bits);
172
173	ctrl = pwm_lpss_read(pwm);
174	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
175	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
176
177	freq = base_unit * lpwm->info->clk_rate;
178	do_div(freq, base_unit_range);
179	if (freq == 0)
180		state->period = NSEC_PER_SEC;
181	else
182		state->period = NSEC_PER_SEC / (unsigned long)freq;
183
184	on_time_div *= state->period;
185	do_div(on_time_div, 255);
186	state->duty_cycle = on_time_div;
187
188	state->polarity = PWM_POLARITY_NORMAL;
189	state->enabled = !!(ctrl & PWM_ENABLE);
190
191	pm_runtime_put(chip->dev);
192}
193
194static const struct pwm_ops pwm_lpss_ops = {
195	.apply = pwm_lpss_apply,
196	.get_state = pwm_lpss_get_state,
197	.owner = THIS_MODULE,
198};
199
200struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
201				     const struct pwm_lpss_boardinfo *info)
202{
203	struct pwm_lpss_chip *lpwm;
204	unsigned long c;
205	int i, ret;
206	u32 ctrl;
207
208	if (WARN_ON(info->npwm > MAX_PWMS))
209		return ERR_PTR(-ENODEV);
210
211	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
212	if (!lpwm)
213		return ERR_PTR(-ENOMEM);
214
215	lpwm->regs = devm_ioremap_resource(dev, r);
216	if (IS_ERR(lpwm->regs))
217		return ERR_CAST(lpwm->regs);
218
219	lpwm->info = info;
220
221	c = lpwm->info->clk_rate;
222	if (!c)
223		return ERR_PTR(-EINVAL);
224
225	lpwm->chip.dev = dev;
226	lpwm->chip.ops = &pwm_lpss_ops;
227	lpwm->chip.base = -1;
228	lpwm->chip.npwm = info->npwm;
229
230	ret = pwmchip_add(&lpwm->chip);
231	if (ret) {
232		dev_err(dev, "failed to add PWM chip: %d\n", ret);
233		return ERR_PTR(ret);
234	}
235
236	for (i = 0; i < lpwm->info->npwm; i++) {
237		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
238		if (ctrl & PWM_ENABLE)
239			pm_runtime_get(dev);
240	}
241
242	return lpwm;
243}
244EXPORT_SYMBOL_GPL(pwm_lpss_probe);
245
246int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
247{
248	int i;
249
250	for (i = 0; i < lpwm->info->npwm; i++) {
251		if (pwm_is_enabled(&lpwm->chip.pwms[i]))
252			pm_runtime_put(lpwm->chip.dev);
253	}
254	return pwmchip_remove(&lpwm->chip);
255}
256EXPORT_SYMBOL_GPL(pwm_lpss_remove);
257
258int pwm_lpss_suspend(struct device *dev)
259{
260	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
261	int i;
262
263	for (i = 0; i < lpwm->info->npwm; i++)
264		lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
265
266	return 0;
267}
268EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
269
270int pwm_lpss_resume(struct device *dev)
271{
272	struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
273	int i;
274
275	for (i = 0; i < lpwm->info->npwm; i++)
276		writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
277
278	return 0;
279}
280EXPORT_SYMBOL_GPL(pwm_lpss_resume);
281
282MODULE_DESCRIPTION("PWM driver for Intel LPSS");
283MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
284MODULE_LICENSE("GPL v2");