Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63		   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75		 ...)
  76{
  77	struct va_format vaf;
  78	va_list args;
  79
  80	va_start(args, fmt);
  81	vaf.fmt = fmt;
  82	vaf.va = &args;
  83	if (sb)
  84		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  85	else
  86		printk("%sNILFS: %pV\n", level, &vaf);
  87	va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92	struct the_nilfs *nilfs = sb->s_fs_info;
  93	struct nilfs_super_block **sbp;
  94
  95	down_write(&nilfs->ns_sem);
  96	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98		sbp = nilfs_prepare_super(sb, 0);
  99		if (likely(sbp)) {
 100			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			if (sbp[1])
 102				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104		}
 105	}
 106	up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123		   const char *fmt, ...)
 124{
 125	struct the_nilfs *nilfs = sb->s_fs_info;
 126	struct va_format vaf;
 127	va_list args;
 128
 129	va_start(args, fmt);
 130
 131	vaf.fmt = fmt;
 132	vaf.va = &args;
 133
 134	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135	       sb->s_id, function, &vaf);
 136
 137	va_end(args);
 138
 139	if (!sb_rdonly(sb)) {
 140		nilfs_set_error(sb);
 141
 142		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143			printk(KERN_CRIT "Remounting filesystem read-only\n");
 144			sb->s_flags |= SB_RDONLY;
 145		}
 146	}
 147
 148	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149		panic("NILFS (device %s): panic forced after error\n",
 150		      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155	struct nilfs_inode_info *ii;
 156
 157	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158	if (!ii)
 159		return NULL;
 160	ii->i_bh = NULL;
 161	ii->i_state = 0;
 162	ii->i_cno = 0;
 163	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 164	return &ii->vfs_inode;
 165}
 166
 167static void nilfs_i_callback(struct rcu_head *head)
 168{
 169	struct inode *inode = container_of(head, struct inode, i_rcu);
 170
 171	if (nilfs_is_metadata_file_inode(inode))
 172		nilfs_mdt_destroy(inode);
 173
 174	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 175}
 176
 177void nilfs_destroy_inode(struct inode *inode)
 178{
 179	call_rcu(&inode->i_rcu, nilfs_i_callback);
 180}
 181
 182static int nilfs_sync_super(struct super_block *sb, int flag)
 183{
 184	struct the_nilfs *nilfs = sb->s_fs_info;
 185	int err;
 186
 187 retry:
 188	set_buffer_dirty(nilfs->ns_sbh[0]);
 189	if (nilfs_test_opt(nilfs, BARRIER)) {
 190		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 191					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 192	} else {
 193		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 194	}
 195
 196	if (unlikely(err)) {
 197		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 198			  err);
 199		if (err == -EIO && nilfs->ns_sbh[1]) {
 200			/*
 201			 * sbp[0] points to newer log than sbp[1],
 202			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 203			 */
 204			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 205			       nilfs->ns_sbsize);
 206			nilfs_fall_back_super_block(nilfs);
 207			goto retry;
 208		}
 209	} else {
 210		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 211
 212		nilfs->ns_sbwcount++;
 213
 214		/*
 215		 * The latest segment becomes trailable from the position
 216		 * written in superblock.
 217		 */
 218		clear_nilfs_discontinued(nilfs);
 219
 220		/* update GC protection for recent segments */
 221		if (nilfs->ns_sbh[1]) {
 222			if (flag == NILFS_SB_COMMIT_ALL) {
 223				set_buffer_dirty(nilfs->ns_sbh[1]);
 224				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 225					goto out;
 226			}
 227			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 228			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 229				sbp = nilfs->ns_sbp[1];
 230		}
 231
 232		spin_lock(&nilfs->ns_last_segment_lock);
 233		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 234		spin_unlock(&nilfs->ns_last_segment_lock);
 235	}
 236 out:
 237	return err;
 238}
 239
 240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 241			  struct the_nilfs *nilfs)
 242{
 243	sector_t nfreeblocks;
 244
 245	/* nilfs->ns_sem must be locked by the caller. */
 246	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 247	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 248
 249	spin_lock(&nilfs->ns_last_segment_lock);
 250	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 251	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 252	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 253	spin_unlock(&nilfs->ns_last_segment_lock);
 254}
 255
 256struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 257					       int flip)
 258{
 259	struct the_nilfs *nilfs = sb->s_fs_info;
 260	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 261
 262	/* nilfs->ns_sem must be locked by the caller. */
 263	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		if (sbp[1] &&
 265		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 266			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 267		} else {
 268			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 269			return NULL;
 270		}
 271	} else if (sbp[1] &&
 272		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 273		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 274	}
 275
 276	if (flip && sbp[1])
 277		nilfs_swap_super_block(nilfs);
 278
 279	return sbp;
 280}
 281
 282int nilfs_commit_super(struct super_block *sb, int flag)
 283{
 284	struct the_nilfs *nilfs = sb->s_fs_info;
 285	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 286	time64_t t;
 287
 288	/* nilfs->ns_sem must be locked by the caller. */
 289	t = ktime_get_real_seconds();
 290	nilfs->ns_sbwtime = t;
 291	sbp[0]->s_wtime = cpu_to_le64(t);
 292	sbp[0]->s_sum = 0;
 293	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 294					     (unsigned char *)sbp[0],
 295					     nilfs->ns_sbsize));
 296	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 297		sbp[1]->s_wtime = sbp[0]->s_wtime;
 298		sbp[1]->s_sum = 0;
 299		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 300					    (unsigned char *)sbp[1],
 301					    nilfs->ns_sbsize));
 302	}
 303	clear_nilfs_sb_dirty(nilfs);
 304	nilfs->ns_flushed_device = 1;
 305	/* make sure store to ns_flushed_device cannot be reordered */
 306	smp_wmb();
 307	return nilfs_sync_super(sb, flag);
 308}
 309
 310/**
 311 * nilfs_cleanup_super() - write filesystem state for cleanup
 312 * @sb: super block instance to be unmounted or degraded to read-only
 313 *
 314 * This function restores state flags in the on-disk super block.
 315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 316 * filesystem was not clean previously.
 317 */
 318int nilfs_cleanup_super(struct super_block *sb)
 319{
 320	struct the_nilfs *nilfs = sb->s_fs_info;
 321	struct nilfs_super_block **sbp;
 322	int flag = NILFS_SB_COMMIT;
 323	int ret = -EIO;
 324
 325	sbp = nilfs_prepare_super(sb, 0);
 326	if (sbp) {
 327		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 328		nilfs_set_log_cursor(sbp[0], nilfs);
 329		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 330			/*
 331			 * make the "clean" flag also to the opposite
 332			 * super block if both super blocks point to
 333			 * the same checkpoint.
 334			 */
 335			sbp[1]->s_state = sbp[0]->s_state;
 336			flag = NILFS_SB_COMMIT_ALL;
 337		}
 338		ret = nilfs_commit_super(sb, flag);
 339	}
 340	return ret;
 341}
 342
 343/**
 344 * nilfs_move_2nd_super - relocate secondary super block
 345 * @sb: super block instance
 346 * @sb2off: new offset of the secondary super block (in bytes)
 347 */
 348static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 349{
 350	struct the_nilfs *nilfs = sb->s_fs_info;
 351	struct buffer_head *nsbh;
 352	struct nilfs_super_block *nsbp;
 353	sector_t blocknr, newblocknr;
 354	unsigned long offset;
 355	int sb2i;  /* array index of the secondary superblock */
 356	int ret = 0;
 357
 358	/* nilfs->ns_sem must be locked by the caller. */
 359	if (nilfs->ns_sbh[1] &&
 360	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 361		sb2i = 1;
 362		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 363	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 364		sb2i = 0;
 365		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 366	} else {
 367		sb2i = -1;
 368		blocknr = 0;
 369	}
 370	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 371		goto out;  /* super block location is unchanged */
 372
 373	/* Get new super block buffer */
 374	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 375	offset = sb2off & (nilfs->ns_blocksize - 1);
 376	nsbh = sb_getblk(sb, newblocknr);
 377	if (!nsbh) {
 378		nilfs_msg(sb, KERN_WARNING,
 379			  "unable to move secondary superblock to block %llu",
 380			  (unsigned long long)newblocknr);
 381		ret = -EIO;
 382		goto out;
 383	}
 384	nsbp = (void *)nsbh->b_data + offset;
 385	memset(nsbp, 0, nilfs->ns_blocksize);
 386
 387	if (sb2i >= 0) {
 388		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 389		brelse(nilfs->ns_sbh[sb2i]);
 390		nilfs->ns_sbh[sb2i] = nsbh;
 391		nilfs->ns_sbp[sb2i] = nsbp;
 392	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 393		/* secondary super block will be restored to index 1 */
 394		nilfs->ns_sbh[1] = nsbh;
 395		nilfs->ns_sbp[1] = nsbp;
 396	} else {
 397		brelse(nsbh);
 398	}
 399out:
 400	return ret;
 401}
 402
 403/**
 404 * nilfs_resize_fs - resize the filesystem
 405 * @sb: super block instance
 406 * @newsize: new size of the filesystem (in bytes)
 407 */
 408int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 409{
 410	struct the_nilfs *nilfs = sb->s_fs_info;
 411	struct nilfs_super_block **sbp;
 412	__u64 devsize, newnsegs;
 413	loff_t sb2off;
 414	int ret;
 415
 416	ret = -ERANGE;
 417	devsize = i_size_read(sb->s_bdev->bd_inode);
 418	if (newsize > devsize)
 419		goto out;
 420
 421	/*
 422	 * Write lock is required to protect some functions depending
 423	 * on the number of segments, the number of reserved segments,
 424	 * and so forth.
 425	 */
 426	down_write(&nilfs->ns_segctor_sem);
 427
 428	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 429	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 430	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 431
 432	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 433	up_write(&nilfs->ns_segctor_sem);
 434	if (ret < 0)
 435		goto out;
 436
 437	ret = nilfs_construct_segment(sb);
 438	if (ret < 0)
 439		goto out;
 440
 441	down_write(&nilfs->ns_sem);
 442	nilfs_move_2nd_super(sb, sb2off);
 443	ret = -EIO;
 444	sbp = nilfs_prepare_super(sb, 0);
 445	if (likely(sbp)) {
 446		nilfs_set_log_cursor(sbp[0], nilfs);
 447		/*
 448		 * Drop NILFS_RESIZE_FS flag for compatibility with
 449		 * mount-time resize which may be implemented in a
 450		 * future release.
 451		 */
 452		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 453					      ~NILFS_RESIZE_FS);
 454		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 455		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 456		if (sbp[1])
 457			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 458		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 459	}
 460	up_write(&nilfs->ns_sem);
 461
 462	/*
 463	 * Reset the range of allocatable segments last.  This order
 464	 * is important in the case of expansion because the secondary
 465	 * superblock must be protected from log write until migration
 466	 * completes.
 467	 */
 468	if (!ret)
 469		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 470out:
 471	return ret;
 472}
 473
 474static void nilfs_put_super(struct super_block *sb)
 475{
 476	struct the_nilfs *nilfs = sb->s_fs_info;
 477
 478	nilfs_detach_log_writer(sb);
 479
 480	if (!sb_rdonly(sb)) {
 481		down_write(&nilfs->ns_sem);
 482		nilfs_cleanup_super(sb);
 483		up_write(&nilfs->ns_sem);
 484	}
 485
 486	iput(nilfs->ns_sufile);
 487	iput(nilfs->ns_cpfile);
 488	iput(nilfs->ns_dat);
 489
 490	destroy_nilfs(nilfs);
 491	sb->s_fs_info = NULL;
 492}
 493
 494static int nilfs_sync_fs(struct super_block *sb, int wait)
 495{
 496	struct the_nilfs *nilfs = sb->s_fs_info;
 497	struct nilfs_super_block **sbp;
 498	int err = 0;
 499
 500	/* This function is called when super block should be written back */
 501	if (wait)
 502		err = nilfs_construct_segment(sb);
 503
 504	down_write(&nilfs->ns_sem);
 505	if (nilfs_sb_dirty(nilfs)) {
 506		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 507		if (likely(sbp)) {
 508			nilfs_set_log_cursor(sbp[0], nilfs);
 509			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 510		}
 511	}
 512	up_write(&nilfs->ns_sem);
 513
 514	if (!err)
 515		err = nilfs_flush_device(nilfs);
 516
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			nilfs_msg(sb, KERN_ERR,
 544				  "Invalid checkpoint (checkpoint number=%llu)",
 545				  (unsigned long long)cno);
 546			err = -EINVAL;
 547		}
 548		goto failed;
 549	}
 550
 551	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 552			       &raw_cp->cp_ifile_inode, &root->ifile);
 553	if (err)
 554		goto failed_bh;
 555
 556	atomic64_set(&root->inodes_count,
 557			le64_to_cpu(raw_cp->cp_inodes_count));
 558	atomic64_set(&root->blocks_count,
 559			le64_to_cpu(raw_cp->cp_blocks_count));
 560
 561	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 562
 563 reuse:
 564	*rootp = root;
 565	return 0;
 566
 567 failed_bh:
 568	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 569 failed:
 570	nilfs_put_root(root);
 571
 572	return err;
 573}
 574
 575static int nilfs_freeze(struct super_block *sb)
 576{
 577	struct the_nilfs *nilfs = sb->s_fs_info;
 578	int err;
 579
 580	if (sb_rdonly(sb))
 581		return 0;
 582
 583	/* Mark super block clean */
 584	down_write(&nilfs->ns_sem);
 585	err = nilfs_cleanup_super(sb);
 586	up_write(&nilfs->ns_sem);
 587	return err;
 588}
 589
 590static int nilfs_unfreeze(struct super_block *sb)
 591{
 592	struct the_nilfs *nilfs = sb->s_fs_info;
 593
 594	if (sb_rdonly(sb))
 595		return 0;
 596
 597	down_write(&nilfs->ns_sem);
 598	nilfs_setup_super(sb, false);
 599	up_write(&nilfs->ns_sem);
 600	return 0;
 601}
 602
 603static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 604{
 605	struct super_block *sb = dentry->d_sb;
 606	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 607	struct the_nilfs *nilfs = root->nilfs;
 608	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 609	unsigned long long blocks;
 610	unsigned long overhead;
 611	unsigned long nrsvblocks;
 612	sector_t nfreeblocks;
 613	u64 nmaxinodes, nfreeinodes;
 614	int err;
 615
 616	/*
 617	 * Compute all of the segment blocks
 618	 *
 619	 * The blocks before first segment and after last segment
 620	 * are excluded.
 621	 */
 622	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 623		- nilfs->ns_first_data_block;
 624	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 625
 626	/*
 627	 * Compute the overhead
 628	 *
 629	 * When distributing meta data blocks outside segment structure,
 630	 * We must count them as the overhead.
 631	 */
 632	overhead = 0;
 633
 634	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 635	if (unlikely(err))
 636		return err;
 637
 638	err = nilfs_ifile_count_free_inodes(root->ifile,
 639					    &nmaxinodes, &nfreeinodes);
 640	if (unlikely(err)) {
 641		nilfs_msg(sb, KERN_WARNING,
 642			  "failed to count free inodes: err=%d", err);
 643		if (err == -ERANGE) {
 644			/*
 645			 * If nilfs_palloc_count_max_entries() returns
 646			 * -ERANGE error code then we simply treat
 647			 * curent inodes count as maximum possible and
 648			 * zero as free inodes value.
 649			 */
 650			nmaxinodes = atomic64_read(&root->inodes_count);
 651			nfreeinodes = 0;
 652			err = 0;
 653		} else
 654			return err;
 655	}
 656
 657	buf->f_type = NILFS_SUPER_MAGIC;
 658	buf->f_bsize = sb->s_blocksize;
 659	buf->f_blocks = blocks - overhead;
 660	buf->f_bfree = nfreeblocks;
 661	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 662		(buf->f_bfree - nrsvblocks) : 0;
 663	buf->f_files = nmaxinodes;
 664	buf->f_ffree = nfreeinodes;
 665	buf->f_namelen = NILFS_NAME_LEN;
 666	buf->f_fsid.val[0] = (u32)id;
 667	buf->f_fsid.val[1] = (u32)(id >> 32);
 668
 669	return 0;
 670}
 671
 672static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 673{
 674	struct super_block *sb = dentry->d_sb;
 675	struct the_nilfs *nilfs = sb->s_fs_info;
 676	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 677
 678	if (!nilfs_test_opt(nilfs, BARRIER))
 679		seq_puts(seq, ",nobarrier");
 680	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 681		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 682	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 683		seq_puts(seq, ",errors=panic");
 684	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 685		seq_puts(seq, ",errors=continue");
 686	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 687		seq_puts(seq, ",order=strict");
 688	if (nilfs_test_opt(nilfs, NORECOVERY))
 689		seq_puts(seq, ",norecovery");
 690	if (nilfs_test_opt(nilfs, DISCARD))
 691		seq_puts(seq, ",discard");
 692
 693	return 0;
 694}
 695
 696static const struct super_operations nilfs_sops = {
 697	.alloc_inode    = nilfs_alloc_inode,
 698	.destroy_inode  = nilfs_destroy_inode,
 699	.dirty_inode    = nilfs_dirty_inode,
 700	.evict_inode    = nilfs_evict_inode,
 701	.put_super      = nilfs_put_super,
 702	.sync_fs        = nilfs_sync_fs,
 703	.freeze_fs	= nilfs_freeze,
 704	.unfreeze_fs	= nilfs_unfreeze,
 705	.statfs         = nilfs_statfs,
 706	.remount_fs     = nilfs_remount,
 707	.show_options = nilfs_show_options
 708};
 709
 710enum {
 711	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 712	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 713	Opt_discard, Opt_nodiscard, Opt_err,
 714};
 715
 716static match_table_t tokens = {
 717	{Opt_err_cont, "errors=continue"},
 718	{Opt_err_panic, "errors=panic"},
 719	{Opt_err_ro, "errors=remount-ro"},
 720	{Opt_barrier, "barrier"},
 721	{Opt_nobarrier, "nobarrier"},
 722	{Opt_snapshot, "cp=%u"},
 723	{Opt_order, "order=%s"},
 724	{Opt_norecovery, "norecovery"},
 725	{Opt_discard, "discard"},
 726	{Opt_nodiscard, "nodiscard"},
 727	{Opt_err, NULL}
 728};
 729
 730static int parse_options(char *options, struct super_block *sb, int is_remount)
 731{
 732	struct the_nilfs *nilfs = sb->s_fs_info;
 733	char *p;
 734	substring_t args[MAX_OPT_ARGS];
 735
 736	if (!options)
 737		return 1;
 738
 739	while ((p = strsep(&options, ",")) != NULL) {
 740		int token;
 741
 742		if (!*p)
 743			continue;
 744
 745		token = match_token(p, tokens, args);
 746		switch (token) {
 747		case Opt_barrier:
 748			nilfs_set_opt(nilfs, BARRIER);
 749			break;
 750		case Opt_nobarrier:
 751			nilfs_clear_opt(nilfs, BARRIER);
 752			break;
 753		case Opt_order:
 754			if (strcmp(args[0].from, "relaxed") == 0)
 755				/* Ordered data semantics */
 756				nilfs_clear_opt(nilfs, STRICT_ORDER);
 757			else if (strcmp(args[0].from, "strict") == 0)
 758				/* Strict in-order semantics */
 759				nilfs_set_opt(nilfs, STRICT_ORDER);
 760			else
 761				return 0;
 762			break;
 763		case Opt_err_panic:
 764			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 765			break;
 766		case Opt_err_ro:
 767			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 768			break;
 769		case Opt_err_cont:
 770			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 771			break;
 772		case Opt_snapshot:
 773			if (is_remount) {
 774				nilfs_msg(sb, KERN_ERR,
 775					  "\"%s\" option is invalid for remount",
 776					  p);
 777				return 0;
 778			}
 779			break;
 780		case Opt_norecovery:
 781			nilfs_set_opt(nilfs, NORECOVERY);
 782			break;
 783		case Opt_discard:
 784			nilfs_set_opt(nilfs, DISCARD);
 785			break;
 786		case Opt_nodiscard:
 787			nilfs_clear_opt(nilfs, DISCARD);
 788			break;
 789		default:
 790			nilfs_msg(sb, KERN_ERR,
 791				  "unrecognized mount option \"%s\"", p);
 792			return 0;
 793		}
 794	}
 795	return 1;
 796}
 797
 798static inline void
 799nilfs_set_default_options(struct super_block *sb,
 800			  struct nilfs_super_block *sbp)
 801{
 802	struct the_nilfs *nilfs = sb->s_fs_info;
 803
 804	nilfs->ns_mount_opt =
 805		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 806}
 807
 808static int nilfs_setup_super(struct super_block *sb, int is_mount)
 809{
 810	struct the_nilfs *nilfs = sb->s_fs_info;
 811	struct nilfs_super_block **sbp;
 812	int max_mnt_count;
 813	int mnt_count;
 814
 815	/* nilfs->ns_sem must be locked by the caller. */
 816	sbp = nilfs_prepare_super(sb, 0);
 817	if (!sbp)
 818		return -EIO;
 819
 820	if (!is_mount)
 821		goto skip_mount_setup;
 822
 823	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 824	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 825
 826	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 827		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 828#if 0
 829	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 830		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 831#endif
 832	}
 833	if (!max_mnt_count)
 834		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 835
 836	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 837	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 838
 839skip_mount_setup:
 840	sbp[0]->s_state =
 841		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 842	/* synchronize sbp[1] with sbp[0] */
 843	if (sbp[1])
 844		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 845	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 846}
 847
 848struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 849						 u64 pos, int blocksize,
 850						 struct buffer_head **pbh)
 851{
 852	unsigned long long sb_index = pos;
 853	unsigned long offset;
 854
 855	offset = do_div(sb_index, blocksize);
 856	*pbh = sb_bread(sb, sb_index);
 857	if (!*pbh)
 858		return NULL;
 859	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 860}
 861
 862int nilfs_store_magic_and_option(struct super_block *sb,
 863				 struct nilfs_super_block *sbp,
 864				 char *data)
 865{
 866	struct the_nilfs *nilfs = sb->s_fs_info;
 867
 868	sb->s_magic = le16_to_cpu(sbp->s_magic);
 869
 870	/* FS independent flags */
 871#ifdef NILFS_ATIME_DISABLE
 872	sb->s_flags |= SB_NOATIME;
 873#endif
 874
 875	nilfs_set_default_options(sb, sbp);
 876
 877	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 878	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 879	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 880	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 881
 882	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 883}
 884
 885int nilfs_check_feature_compatibility(struct super_block *sb,
 886				      struct nilfs_super_block *sbp)
 887{
 888	__u64 features;
 889
 890	features = le64_to_cpu(sbp->s_feature_incompat) &
 891		~NILFS_FEATURE_INCOMPAT_SUPP;
 892	if (features) {
 893		nilfs_msg(sb, KERN_ERR,
 894			  "couldn't mount because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 899		~NILFS_FEATURE_COMPAT_RO_SUPP;
 900	if (!sb_rdonly(sb) && features) {
 901		nilfs_msg(sb, KERN_ERR,
 902			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 903			  (unsigned long long)features);
 904		return -EINVAL;
 905	}
 906	return 0;
 907}
 908
 909static int nilfs_get_root_dentry(struct super_block *sb,
 910				 struct nilfs_root *root,
 911				 struct dentry **root_dentry)
 912{
 913	struct inode *inode;
 914	struct dentry *dentry;
 915	int ret = 0;
 916
 917	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 918	if (IS_ERR(inode)) {
 919		ret = PTR_ERR(inode);
 920		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 921		goto out;
 922	}
 923	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 924		iput(inode);
 925		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 926		ret = -EINVAL;
 927		goto out;
 928	}
 929
 930	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 931		dentry = d_find_alias(inode);
 932		if (!dentry) {
 933			dentry = d_make_root(inode);
 934			if (!dentry) {
 935				ret = -ENOMEM;
 936				goto failed_dentry;
 937			}
 938		} else {
 939			iput(inode);
 940		}
 941	} else {
 942		dentry = d_obtain_root(inode);
 943		if (IS_ERR(dentry)) {
 944			ret = PTR_ERR(dentry);
 945			goto failed_dentry;
 946		}
 947	}
 948	*root_dentry = dentry;
 949 out:
 950	return ret;
 951
 952 failed_dentry:
 953	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 954	goto out;
 955}
 956
 957static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 958				 struct dentry **root_dentry)
 959{
 960	struct the_nilfs *nilfs = s->s_fs_info;
 961	struct nilfs_root *root;
 962	int ret;
 963
 964	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 965
 966	down_read(&nilfs->ns_segctor_sem);
 967	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 968	up_read(&nilfs->ns_segctor_sem);
 969	if (ret < 0) {
 970		ret = (ret == -ENOENT) ? -EINVAL : ret;
 971		goto out;
 972	} else if (!ret) {
 973		nilfs_msg(s, KERN_ERR,
 974			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 975			  (unsigned long long)cno);
 976		ret = -EINVAL;
 977		goto out;
 978	}
 979
 980	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 981	if (ret) {
 982		nilfs_msg(s, KERN_ERR,
 983			  "error %d while loading snapshot (checkpoint number=%llu)",
 984			  ret, (unsigned long long)cno);
 985		goto out;
 986	}
 987	ret = nilfs_get_root_dentry(s, root, root_dentry);
 988	nilfs_put_root(root);
 989 out:
 990	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 991	return ret;
 992}
 993
 994/**
 995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 996 * @root_dentry: root dentry of the tree to be shrunk
 997 *
 998 * This function returns true if the tree was in-use.
 999 */
1000static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001{
1002	shrink_dcache_parent(root_dentry);
1003	return d_count(root_dentry) > 1;
1004}
1005
1006int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007{
1008	struct the_nilfs *nilfs = sb->s_fs_info;
1009	struct nilfs_root *root;
1010	struct inode *inode;
1011	struct dentry *dentry;
1012	int ret;
1013
1014	if (cno > nilfs->ns_cno)
1015		return false;
1016
1017	if (cno >= nilfs_last_cno(nilfs))
1018		return true;	/* protect recent checkpoints */
1019
1020	ret = false;
1021	root = nilfs_lookup_root(nilfs, cno);
1022	if (root) {
1023		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024		if (inode) {
1025			dentry = d_find_alias(inode);
1026			if (dentry) {
1027				ret = nilfs_tree_is_busy(dentry);
1028				dput(dentry);
1029			}
1030			iput(inode);
1031		}
1032		nilfs_put_root(root);
1033	}
1034	return ret;
1035}
1036
1037/**
1038 * nilfs_fill_super() - initialize a super block instance
1039 * @sb: super_block
1040 * @data: mount options
1041 * @silent: silent mode flag
1042 *
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1045 */
1046static int
1047nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048{
1049	struct the_nilfs *nilfs;
1050	struct nilfs_root *fsroot;
1051	__u64 cno;
1052	int err;
1053
1054	nilfs = alloc_nilfs(sb);
1055	if (!nilfs)
1056		return -ENOMEM;
1057
1058	sb->s_fs_info = nilfs;
1059
1060	err = init_nilfs(nilfs, sb, (char *)data);
1061	if (err)
1062		goto failed_nilfs;
1063
1064	sb->s_op = &nilfs_sops;
1065	sb->s_export_op = &nilfs_export_ops;
1066	sb->s_root = NULL;
1067	sb->s_time_gran = 1;
1068	sb->s_max_links = NILFS_LINK_MAX;
1069
1070	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072	err = load_nilfs(nilfs, sb);
1073	if (err)
1074		goto failed_nilfs;
1075
1076	cno = nilfs_last_cno(nilfs);
1077	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078	if (err) {
1079		nilfs_msg(sb, KERN_ERR,
1080			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1081			  err, (unsigned long long)cno);
1082		goto failed_unload;
1083	}
1084
1085	if (!sb_rdonly(sb)) {
1086		err = nilfs_attach_log_writer(sb, fsroot);
1087		if (err)
1088			goto failed_checkpoint;
1089	}
1090
1091	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092	if (err)
1093		goto failed_segctor;
1094
1095	nilfs_put_root(fsroot);
1096
1097	if (!sb_rdonly(sb)) {
1098		down_write(&nilfs->ns_sem);
1099		nilfs_setup_super(sb, true);
1100		up_write(&nilfs->ns_sem);
1101	}
1102
1103	return 0;
1104
1105 failed_segctor:
1106	nilfs_detach_log_writer(sb);
1107
1108 failed_checkpoint:
1109	nilfs_put_root(fsroot);
1110
1111 failed_unload:
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122{
1123	struct the_nilfs *nilfs = sb->s_fs_info;
1124	unsigned long old_sb_flags;
1125	unsigned long old_mount_opt;
1126	int err;
1127
1128	sync_filesystem(sb);
1129	old_sb_flags = sb->s_flags;
1130	old_mount_opt = nilfs->ns_mount_opt;
1131
1132	if (!parse_options(data, sb, 1)) {
1133		err = -EINVAL;
1134		goto restore_opts;
1135	}
1136	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138	err = -EINVAL;
1139
1140	if (!nilfs_valid_fs(nilfs)) {
1141		nilfs_msg(sb, KERN_WARNING,
1142			  "couldn't remount because the filesystem is in an incomplete recovery state");
1143		goto restore_opts;
1144	}
1145
1146	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147		goto out;
1148	if (*flags & SB_RDONLY) {
1149		/* Shutting down log writer */
1150		nilfs_detach_log_writer(sb);
1151		sb->s_flags |= SB_RDONLY;
1152
1153		/*
1154		 * Remounting a valid RW partition RDONLY, so set
1155		 * the RDONLY flag and then mark the partition as valid again.
1156		 */
1157		down_write(&nilfs->ns_sem);
1158		nilfs_cleanup_super(sb);
1159		up_write(&nilfs->ns_sem);
1160	} else {
1161		__u64 features;
1162		struct nilfs_root *root;
1163
1164		/*
1165		 * Mounting a RDONLY partition read-write, so reread and
1166		 * store the current valid flag.  (It may have been changed
1167		 * by fsck since we originally mounted the partition.)
1168		 */
1169		down_read(&nilfs->ns_sem);
1170		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171			~NILFS_FEATURE_COMPAT_RO_SUPP;
1172		up_read(&nilfs->ns_sem);
1173		if (features) {
1174			nilfs_msg(sb, KERN_WARNING,
1175				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1176				  (unsigned long long)features);
1177			err = -EROFS;
1178			goto restore_opts;
1179		}
1180
1181		sb->s_flags &= ~SB_RDONLY;
1182
1183		root = NILFS_I(d_inode(sb->s_root))->i_root;
1184		err = nilfs_attach_log_writer(sb, root);
1185		if (err)
1186			goto restore_opts;
1187
1188		down_write(&nilfs->ns_sem);
1189		nilfs_setup_super(sb, true);
1190		up_write(&nilfs->ns_sem);
1191	}
1192 out:
1193	return 0;
1194
1195 restore_opts:
1196	sb->s_flags = old_sb_flags;
1197	nilfs->ns_mount_opt = old_mount_opt;
1198	return err;
1199}
1200
1201struct nilfs_super_data {
1202	struct block_device *bdev;
1203	__u64 cno;
1204	int flags;
1205};
1206
1207static int nilfs_parse_snapshot_option(const char *option,
1208				       const substring_t *arg,
1209				       struct nilfs_super_data *sd)
1210{
1211	unsigned long long val;
1212	const char *msg = NULL;
1213	int err;
1214
1215	if (!(sd->flags & SB_RDONLY)) {
1216		msg = "read-only option is not specified";
1217		goto parse_error;
1218	}
1219
1220	err = kstrtoull(arg->from, 0, &val);
1221	if (err) {
1222		if (err == -ERANGE)
1223			msg = "too large checkpoint number";
1224		else
1225			msg = "malformed argument";
1226		goto parse_error;
1227	} else if (val == 0) {
1228		msg = "invalid checkpoint number 0";
1229		goto parse_error;
1230	}
1231	sd->cno = val;
1232	return 0;
1233
1234parse_error:
1235	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236	return 1;
1237}
1238
1239/**
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1243 */
1244static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245{
1246	char *p, *options = data;
1247	substring_t args[MAX_OPT_ARGS];
1248	int token;
1249	int ret = 0;
1250
1251	do {
1252		p = strsep(&options, ",");
1253		if (p != NULL && *p) {
1254			token = match_token(p, tokens, args);
1255			if (token == Opt_snapshot)
1256				ret = nilfs_parse_snapshot_option(p, &args[0],
1257								  sd);
1258		}
1259		if (!options)
1260			break;
1261		BUG_ON(options == data);
1262		*(options - 1) = ',';
1263	} while (!ret);
1264	return ret;
1265}
1266
1267static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268{
1269	s->s_bdev = data;
1270	s->s_dev = s->s_bdev->bd_dev;
1271	return 0;
1272}
1273
1274static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275{
1276	return (void *)s->s_bdev == data;
1277}
1278
1279static struct dentry *
1280nilfs_mount(struct file_system_type *fs_type, int flags,
1281	     const char *dev_name, void *data)
1282{
1283	struct nilfs_super_data sd;
1284	struct super_block *s;
1285	fmode_t mode = FMODE_READ | FMODE_EXCL;
1286	struct dentry *root_dentry;
1287	int err, s_new = false;
1288
1289	if (!(flags & SB_RDONLY))
1290		mode |= FMODE_WRITE;
1291
1292	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293	if (IS_ERR(sd.bdev))
1294		return ERR_CAST(sd.bdev);
1295
1296	sd.cno = 0;
1297	sd.flags = flags;
1298	if (nilfs_identify((char *)data, &sd)) {
1299		err = -EINVAL;
1300		goto failed;
1301	}
1302
1303	/*
1304	 * once the super is inserted into the list by sget, s_umount
1305	 * will protect the lockfs code from trying to start a snapshot
1306	 * while we are mounting
1307	 */
1308	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309	if (sd.bdev->bd_fsfreeze_count > 0) {
1310		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311		err = -EBUSY;
1312		goto failed;
1313	}
1314	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315		 sd.bdev);
1316	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317	if (IS_ERR(s)) {
1318		err = PTR_ERR(s);
1319		goto failed;
1320	}
1321
1322	if (!s->s_root) {
1323		s_new = true;
1324
1325		/* New superblock instance created */
1326		s->s_mode = mode;
1327		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328		sb_set_blocksize(s, block_size(sd.bdev));
1329
1330		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331		if (err)
1332			goto failed_super;
1333
1334		s->s_flags |= SB_ACTIVE;
1335	} else if (!sd.cno) {
1336		if (nilfs_tree_is_busy(s->s_root)) {
1337			if ((flags ^ s->s_flags) & SB_RDONLY) {
1338				nilfs_msg(s, KERN_ERR,
1339					  "the device already has a %s mount.",
1340					  sb_rdonly(s) ? "read-only" : "read/write");
1341				err = -EBUSY;
1342				goto failed_super;
1343			}
1344		} else {
1345			/*
1346			 * Try remount to setup mount states if the current
1347			 * tree is not mounted and only snapshots use this sb.
1348			 */
1349			err = nilfs_remount(s, &flags, data);
1350			if (err)
1351				goto failed_super;
1352		}
1353	}
1354
1355	if (sd.cno) {
1356		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357		if (err)
1358			goto failed_super;
1359	} else {
1360		root_dentry = dget(s->s_root);
1361	}
1362
1363	if (!s_new)
1364		blkdev_put(sd.bdev, mode);
1365
1366	return root_dentry;
1367
1368 failed_super:
1369	deactivate_locked_super(s);
1370
1371 failed:
1372	if (!s_new)
1373		blkdev_put(sd.bdev, mode);
1374	return ERR_PTR(err);
1375}
1376
1377struct file_system_type nilfs_fs_type = {
1378	.owner    = THIS_MODULE,
1379	.name     = "nilfs2",
1380	.mount    = nilfs_mount,
1381	.kill_sb  = kill_block_super,
1382	.fs_flags = FS_REQUIRES_DEV,
1383};
1384MODULE_ALIAS_FS("nilfs2");
1385
1386static void nilfs_inode_init_once(void *obj)
1387{
1388	struct nilfs_inode_info *ii = obj;
1389
1390	INIT_LIST_HEAD(&ii->i_dirty);
1391#ifdef CONFIG_NILFS_XATTR
1392	init_rwsem(&ii->xattr_sem);
1393#endif
1394	address_space_init_once(&ii->i_btnode_cache);
1395	ii->i_bmap = &ii->i_bmap_data;
1396	inode_init_once(&ii->vfs_inode);
1397}
1398
1399static void nilfs_segbuf_init_once(void *obj)
1400{
1401	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402}
1403
1404static void nilfs_destroy_cachep(void)
1405{
1406	/*
1407	 * Make sure all delayed rcu free inodes are flushed before we
1408	 * destroy cache.
1409	 */
1410	rcu_barrier();
1411
1412	kmem_cache_destroy(nilfs_inode_cachep);
1413	kmem_cache_destroy(nilfs_transaction_cachep);
1414	kmem_cache_destroy(nilfs_segbuf_cachep);
1415	kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421			sizeof(struct nilfs_inode_info), 0,
1422			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423			nilfs_inode_init_once);
1424	if (!nilfs_inode_cachep)
1425		goto fail;
1426
1427	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428			sizeof(struct nilfs_transaction_info), 0,
1429			SLAB_RECLAIM_ACCOUNT, NULL);
1430	if (!nilfs_transaction_cachep)
1431		goto fail;
1432
1433	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434			sizeof(struct nilfs_segment_buffer), 0,
1435			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436	if (!nilfs_segbuf_cachep)
1437		goto fail;
1438
1439	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441			0, 0, NULL);
1442	if (!nilfs_btree_path_cache)
1443		goto fail;
1444
1445	return 0;
1446
1447fail:
1448	nilfs_destroy_cachep();
1449	return -ENOMEM;
1450}
1451
1452static int __init init_nilfs_fs(void)
1453{
1454	int err;
1455
1456	err = nilfs_init_cachep();
1457	if (err)
1458		goto fail;
1459
1460	err = nilfs_sysfs_init();
1461	if (err)
1462		goto free_cachep;
1463
1464	err = register_filesystem(&nilfs_fs_type);
1465	if (err)
1466		goto deinit_sysfs_entry;
1467
1468	printk(KERN_INFO "NILFS version 2 loaded\n");
1469	return 0;
1470
1471deinit_sysfs_entry:
1472	nilfs_sysfs_exit();
1473free_cachep:
1474	nilfs_destroy_cachep();
1475fail:
1476	return err;
1477}
1478
1479static void __exit exit_nilfs_fs(void)
1480{
1481	nilfs_destroy_cachep();
1482	nilfs_sysfs_exit();
1483	unregister_filesystem(&nilfs_fs_type);
1484}
1485
1486module_init(init_nilfs_fs)
1487module_exit(exit_nilfs_fs)
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * super.c - NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  66		 ...)
  67{
  68	struct va_format vaf;
  69	va_list args;
  70
  71	va_start(args, fmt);
  72	vaf.fmt = fmt;
  73	vaf.va = &args;
  74	if (sb)
  75		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  76	else
  77		printk("%sNILFS: %pV\n", level, &vaf);
  78	va_end(args);
  79}
  80
  81static void nilfs_set_error(struct super_block *sb)
  82{
  83	struct the_nilfs *nilfs = sb->s_fs_info;
  84	struct nilfs_super_block **sbp;
  85
  86	down_write(&nilfs->ns_sem);
  87	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  88		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  89		sbp = nilfs_prepare_super(sb, 0);
  90		if (likely(sbp)) {
  91			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  92			if (sbp[1])
  93				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  94			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  95		}
  96	}
  97	up_write(&nilfs->ns_sem);
  98}
  99
 100/**
 101 * __nilfs_error() - report failure condition on a filesystem
 102 *
 103 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 104 * reporting an error message.  This function should be called when
 105 * NILFS detects incoherences or defects of meta data on disk.
 106 *
 107 * This implements the body of nilfs_error() macro.  Normally,
 108 * nilfs_error() should be used.  As for sustainable errors such as a
 109 * single-shot I/O error, nilfs_msg() should be used instead.
 110 *
 111 * Callers should not add a trailing newline since this will do it.
 112 */
 113void __nilfs_error(struct super_block *sb, const char *function,
 114		   const char *fmt, ...)
 115{
 116	struct the_nilfs *nilfs = sb->s_fs_info;
 117	struct va_format vaf;
 118	va_list args;
 119
 120	va_start(args, fmt);
 121
 122	vaf.fmt = fmt;
 123	vaf.va = &args;
 124
 125	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 126	       sb->s_id, function, &vaf);
 127
 128	va_end(args);
 129
 130	if (!sb_rdonly(sb)) {
 131		nilfs_set_error(sb);
 132
 133		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 134			printk(KERN_CRIT "Remounting filesystem read-only\n");
 135			sb->s_flags |= SB_RDONLY;
 136		}
 137	}
 138
 139	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 140		panic("NILFS (device %s): panic forced after error\n",
 141		      sb->s_id);
 142}
 143
 144struct inode *nilfs_alloc_inode(struct super_block *sb)
 145{
 146	struct nilfs_inode_info *ii;
 147
 148	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 149	if (!ii)
 150		return NULL;
 151	ii->i_bh = NULL;
 152	ii->i_state = 0;
 153	ii->i_cno = 0;
 154	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 155	return &ii->vfs_inode;
 156}
 157
 158static void nilfs_free_inode(struct inode *inode)
 159{
 
 
 160	if (nilfs_is_metadata_file_inode(inode))
 161		nilfs_mdt_destroy(inode);
 162
 163	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 164}
 165
 
 
 
 
 
 166static int nilfs_sync_super(struct super_block *sb, int flag)
 167{
 168	struct the_nilfs *nilfs = sb->s_fs_info;
 169	int err;
 170
 171 retry:
 172	set_buffer_dirty(nilfs->ns_sbh[0]);
 173	if (nilfs_test_opt(nilfs, BARRIER)) {
 174		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 175					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 176	} else {
 177		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 178	}
 179
 180	if (unlikely(err)) {
 181		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 182			  err);
 183		if (err == -EIO && nilfs->ns_sbh[1]) {
 184			/*
 185			 * sbp[0] points to newer log than sbp[1],
 186			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 187			 */
 188			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 189			       nilfs->ns_sbsize);
 190			nilfs_fall_back_super_block(nilfs);
 191			goto retry;
 192		}
 193	} else {
 194		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 195
 196		nilfs->ns_sbwcount++;
 197
 198		/*
 199		 * The latest segment becomes trailable from the position
 200		 * written in superblock.
 201		 */
 202		clear_nilfs_discontinued(nilfs);
 203
 204		/* update GC protection for recent segments */
 205		if (nilfs->ns_sbh[1]) {
 206			if (flag == NILFS_SB_COMMIT_ALL) {
 207				set_buffer_dirty(nilfs->ns_sbh[1]);
 208				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 209					goto out;
 210			}
 211			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 212			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 213				sbp = nilfs->ns_sbp[1];
 214		}
 215
 216		spin_lock(&nilfs->ns_last_segment_lock);
 217		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 218		spin_unlock(&nilfs->ns_last_segment_lock);
 219	}
 220 out:
 221	return err;
 222}
 223
 224void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 225			  struct the_nilfs *nilfs)
 226{
 227	sector_t nfreeblocks;
 228
 229	/* nilfs->ns_sem must be locked by the caller. */
 230	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 231	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 232
 233	spin_lock(&nilfs->ns_last_segment_lock);
 234	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 235	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 236	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 237	spin_unlock(&nilfs->ns_last_segment_lock);
 238}
 239
 240struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 241					       int flip)
 242{
 243	struct the_nilfs *nilfs = sb->s_fs_info;
 244	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 245
 246	/* nilfs->ns_sem must be locked by the caller. */
 247	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 248		if (sbp[1] &&
 249		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 250			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 251		} else {
 252			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 253			return NULL;
 254		}
 255	} else if (sbp[1] &&
 256		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 257		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 258	}
 259
 260	if (flip && sbp[1])
 261		nilfs_swap_super_block(nilfs);
 262
 263	return sbp;
 264}
 265
 266int nilfs_commit_super(struct super_block *sb, int flag)
 267{
 268	struct the_nilfs *nilfs = sb->s_fs_info;
 269	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 270	time64_t t;
 271
 272	/* nilfs->ns_sem must be locked by the caller. */
 273	t = ktime_get_real_seconds();
 274	nilfs->ns_sbwtime = t;
 275	sbp[0]->s_wtime = cpu_to_le64(t);
 276	sbp[0]->s_sum = 0;
 277	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 278					     (unsigned char *)sbp[0],
 279					     nilfs->ns_sbsize));
 280	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 281		sbp[1]->s_wtime = sbp[0]->s_wtime;
 282		sbp[1]->s_sum = 0;
 283		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 284					    (unsigned char *)sbp[1],
 285					    nilfs->ns_sbsize));
 286	}
 287	clear_nilfs_sb_dirty(nilfs);
 288	nilfs->ns_flushed_device = 1;
 289	/* make sure store to ns_flushed_device cannot be reordered */
 290	smp_wmb();
 291	return nilfs_sync_super(sb, flag);
 292}
 293
 294/**
 295 * nilfs_cleanup_super() - write filesystem state for cleanup
 296 * @sb: super block instance to be unmounted or degraded to read-only
 297 *
 298 * This function restores state flags in the on-disk super block.
 299 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 300 * filesystem was not clean previously.
 301 */
 302int nilfs_cleanup_super(struct super_block *sb)
 303{
 304	struct the_nilfs *nilfs = sb->s_fs_info;
 305	struct nilfs_super_block **sbp;
 306	int flag = NILFS_SB_COMMIT;
 307	int ret = -EIO;
 308
 309	sbp = nilfs_prepare_super(sb, 0);
 310	if (sbp) {
 311		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 312		nilfs_set_log_cursor(sbp[0], nilfs);
 313		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 314			/*
 315			 * make the "clean" flag also to the opposite
 316			 * super block if both super blocks point to
 317			 * the same checkpoint.
 318			 */
 319			sbp[1]->s_state = sbp[0]->s_state;
 320			flag = NILFS_SB_COMMIT_ALL;
 321		}
 322		ret = nilfs_commit_super(sb, flag);
 323	}
 324	return ret;
 325}
 326
 327/**
 328 * nilfs_move_2nd_super - relocate secondary super block
 329 * @sb: super block instance
 330 * @sb2off: new offset of the secondary super block (in bytes)
 331 */
 332static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 333{
 334	struct the_nilfs *nilfs = sb->s_fs_info;
 335	struct buffer_head *nsbh;
 336	struct nilfs_super_block *nsbp;
 337	sector_t blocknr, newblocknr;
 338	unsigned long offset;
 339	int sb2i;  /* array index of the secondary superblock */
 340	int ret = 0;
 341
 342	/* nilfs->ns_sem must be locked by the caller. */
 343	if (nilfs->ns_sbh[1] &&
 344	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 345		sb2i = 1;
 346		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 347	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 348		sb2i = 0;
 349		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 350	} else {
 351		sb2i = -1;
 352		blocknr = 0;
 353	}
 354	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 355		goto out;  /* super block location is unchanged */
 356
 357	/* Get new super block buffer */
 358	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 359	offset = sb2off & (nilfs->ns_blocksize - 1);
 360	nsbh = sb_getblk(sb, newblocknr);
 361	if (!nsbh) {
 362		nilfs_msg(sb, KERN_WARNING,
 363			  "unable to move secondary superblock to block %llu",
 364			  (unsigned long long)newblocknr);
 365		ret = -EIO;
 366		goto out;
 367	}
 368	nsbp = (void *)nsbh->b_data + offset;
 369	memset(nsbp, 0, nilfs->ns_blocksize);
 370
 371	if (sb2i >= 0) {
 372		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 373		brelse(nilfs->ns_sbh[sb2i]);
 374		nilfs->ns_sbh[sb2i] = nsbh;
 375		nilfs->ns_sbp[sb2i] = nsbp;
 376	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 377		/* secondary super block will be restored to index 1 */
 378		nilfs->ns_sbh[1] = nsbh;
 379		nilfs->ns_sbp[1] = nsbp;
 380	} else {
 381		brelse(nsbh);
 382	}
 383out:
 384	return ret;
 385}
 386
 387/**
 388 * nilfs_resize_fs - resize the filesystem
 389 * @sb: super block instance
 390 * @newsize: new size of the filesystem (in bytes)
 391 */
 392int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 393{
 394	struct the_nilfs *nilfs = sb->s_fs_info;
 395	struct nilfs_super_block **sbp;
 396	__u64 devsize, newnsegs;
 397	loff_t sb2off;
 398	int ret;
 399
 400	ret = -ERANGE;
 401	devsize = i_size_read(sb->s_bdev->bd_inode);
 402	if (newsize > devsize)
 403		goto out;
 404
 405	/*
 406	 * Write lock is required to protect some functions depending
 407	 * on the number of segments, the number of reserved segments,
 408	 * and so forth.
 409	 */
 410	down_write(&nilfs->ns_segctor_sem);
 411
 412	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 413	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 414	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 415
 416	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 417	up_write(&nilfs->ns_segctor_sem);
 418	if (ret < 0)
 419		goto out;
 420
 421	ret = nilfs_construct_segment(sb);
 422	if (ret < 0)
 423		goto out;
 424
 425	down_write(&nilfs->ns_sem);
 426	nilfs_move_2nd_super(sb, sb2off);
 427	ret = -EIO;
 428	sbp = nilfs_prepare_super(sb, 0);
 429	if (likely(sbp)) {
 430		nilfs_set_log_cursor(sbp[0], nilfs);
 431		/*
 432		 * Drop NILFS_RESIZE_FS flag for compatibility with
 433		 * mount-time resize which may be implemented in a
 434		 * future release.
 435		 */
 436		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 437					      ~NILFS_RESIZE_FS);
 438		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 439		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 440		if (sbp[1])
 441			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 442		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 443	}
 444	up_write(&nilfs->ns_sem);
 445
 446	/*
 447	 * Reset the range of allocatable segments last.  This order
 448	 * is important in the case of expansion because the secondary
 449	 * superblock must be protected from log write until migration
 450	 * completes.
 451	 */
 452	if (!ret)
 453		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 454out:
 455	return ret;
 456}
 457
 458static void nilfs_put_super(struct super_block *sb)
 459{
 460	struct the_nilfs *nilfs = sb->s_fs_info;
 461
 462	nilfs_detach_log_writer(sb);
 463
 464	if (!sb_rdonly(sb)) {
 465		down_write(&nilfs->ns_sem);
 466		nilfs_cleanup_super(sb);
 467		up_write(&nilfs->ns_sem);
 468	}
 469
 470	iput(nilfs->ns_sufile);
 471	iput(nilfs->ns_cpfile);
 472	iput(nilfs->ns_dat);
 473
 474	destroy_nilfs(nilfs);
 475	sb->s_fs_info = NULL;
 476}
 477
 478static int nilfs_sync_fs(struct super_block *sb, int wait)
 479{
 480	struct the_nilfs *nilfs = sb->s_fs_info;
 481	struct nilfs_super_block **sbp;
 482	int err = 0;
 483
 484	/* This function is called when super block should be written back */
 485	if (wait)
 486		err = nilfs_construct_segment(sb);
 487
 488	down_write(&nilfs->ns_sem);
 489	if (nilfs_sb_dirty(nilfs)) {
 490		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 491		if (likely(sbp)) {
 492			nilfs_set_log_cursor(sbp[0], nilfs);
 493			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 494		}
 495	}
 496	up_write(&nilfs->ns_sem);
 497
 498	if (!err)
 499		err = nilfs_flush_device(nilfs);
 500
 501	return err;
 502}
 503
 504int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 505			    struct nilfs_root **rootp)
 506{
 507	struct the_nilfs *nilfs = sb->s_fs_info;
 508	struct nilfs_root *root;
 509	struct nilfs_checkpoint *raw_cp;
 510	struct buffer_head *bh_cp;
 511	int err = -ENOMEM;
 512
 513	root = nilfs_find_or_create_root(
 514		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 515	if (!root)
 516		return err;
 517
 518	if (root->ifile)
 519		goto reuse; /* already attached checkpoint */
 520
 521	down_read(&nilfs->ns_segctor_sem);
 522	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 523					  &bh_cp);
 524	up_read(&nilfs->ns_segctor_sem);
 525	if (unlikely(err)) {
 526		if (err == -ENOENT || err == -EINVAL) {
 527			nilfs_msg(sb, KERN_ERR,
 528				  "Invalid checkpoint (checkpoint number=%llu)",
 529				  (unsigned long long)cno);
 530			err = -EINVAL;
 531		}
 532		goto failed;
 533	}
 534
 535	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 536			       &raw_cp->cp_ifile_inode, &root->ifile);
 537	if (err)
 538		goto failed_bh;
 539
 540	atomic64_set(&root->inodes_count,
 541			le64_to_cpu(raw_cp->cp_inodes_count));
 542	atomic64_set(&root->blocks_count,
 543			le64_to_cpu(raw_cp->cp_blocks_count));
 544
 545	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 546
 547 reuse:
 548	*rootp = root;
 549	return 0;
 550
 551 failed_bh:
 552	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 553 failed:
 554	nilfs_put_root(root);
 555
 556	return err;
 557}
 558
 559static int nilfs_freeze(struct super_block *sb)
 560{
 561	struct the_nilfs *nilfs = sb->s_fs_info;
 562	int err;
 563
 564	if (sb_rdonly(sb))
 565		return 0;
 566
 567	/* Mark super block clean */
 568	down_write(&nilfs->ns_sem);
 569	err = nilfs_cleanup_super(sb);
 570	up_write(&nilfs->ns_sem);
 571	return err;
 572}
 573
 574static int nilfs_unfreeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577
 578	if (sb_rdonly(sb))
 579		return 0;
 580
 581	down_write(&nilfs->ns_sem);
 582	nilfs_setup_super(sb, false);
 583	up_write(&nilfs->ns_sem);
 584	return 0;
 585}
 586
 587static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 588{
 589	struct super_block *sb = dentry->d_sb;
 590	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 591	struct the_nilfs *nilfs = root->nilfs;
 592	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 593	unsigned long long blocks;
 594	unsigned long overhead;
 595	unsigned long nrsvblocks;
 596	sector_t nfreeblocks;
 597	u64 nmaxinodes, nfreeinodes;
 598	int err;
 599
 600	/*
 601	 * Compute all of the segment blocks
 602	 *
 603	 * The blocks before first segment and after last segment
 604	 * are excluded.
 605	 */
 606	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 607		- nilfs->ns_first_data_block;
 608	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 609
 610	/*
 611	 * Compute the overhead
 612	 *
 613	 * When distributing meta data blocks outside segment structure,
 614	 * We must count them as the overhead.
 615	 */
 616	overhead = 0;
 617
 618	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 619	if (unlikely(err))
 620		return err;
 621
 622	err = nilfs_ifile_count_free_inodes(root->ifile,
 623					    &nmaxinodes, &nfreeinodes);
 624	if (unlikely(err)) {
 625		nilfs_msg(sb, KERN_WARNING,
 626			  "failed to count free inodes: err=%d", err);
 627		if (err == -ERANGE) {
 628			/*
 629			 * If nilfs_palloc_count_max_entries() returns
 630			 * -ERANGE error code then we simply treat
 631			 * curent inodes count as maximum possible and
 632			 * zero as free inodes value.
 633			 */
 634			nmaxinodes = atomic64_read(&root->inodes_count);
 635			nfreeinodes = 0;
 636			err = 0;
 637		} else
 638			return err;
 639	}
 640
 641	buf->f_type = NILFS_SUPER_MAGIC;
 642	buf->f_bsize = sb->s_blocksize;
 643	buf->f_blocks = blocks - overhead;
 644	buf->f_bfree = nfreeblocks;
 645	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 646		(buf->f_bfree - nrsvblocks) : 0;
 647	buf->f_files = nmaxinodes;
 648	buf->f_ffree = nfreeinodes;
 649	buf->f_namelen = NILFS_NAME_LEN;
 650	buf->f_fsid.val[0] = (u32)id;
 651	buf->f_fsid.val[1] = (u32)(id >> 32);
 652
 653	return 0;
 654}
 655
 656static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 657{
 658	struct super_block *sb = dentry->d_sb;
 659	struct the_nilfs *nilfs = sb->s_fs_info;
 660	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 661
 662	if (!nilfs_test_opt(nilfs, BARRIER))
 663		seq_puts(seq, ",nobarrier");
 664	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 665		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 666	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 667		seq_puts(seq, ",errors=panic");
 668	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 669		seq_puts(seq, ",errors=continue");
 670	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 671		seq_puts(seq, ",order=strict");
 672	if (nilfs_test_opt(nilfs, NORECOVERY))
 673		seq_puts(seq, ",norecovery");
 674	if (nilfs_test_opt(nilfs, DISCARD))
 675		seq_puts(seq, ",discard");
 676
 677	return 0;
 678}
 679
 680static const struct super_operations nilfs_sops = {
 681	.alloc_inode    = nilfs_alloc_inode,
 682	.free_inode     = nilfs_free_inode,
 683	.dirty_inode    = nilfs_dirty_inode,
 684	.evict_inode    = nilfs_evict_inode,
 685	.put_super      = nilfs_put_super,
 686	.sync_fs        = nilfs_sync_fs,
 687	.freeze_fs	= nilfs_freeze,
 688	.unfreeze_fs	= nilfs_unfreeze,
 689	.statfs         = nilfs_statfs,
 690	.remount_fs     = nilfs_remount,
 691	.show_options = nilfs_show_options
 692};
 693
 694enum {
 695	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 696	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 697	Opt_discard, Opt_nodiscard, Opt_err,
 698};
 699
 700static match_table_t tokens = {
 701	{Opt_err_cont, "errors=continue"},
 702	{Opt_err_panic, "errors=panic"},
 703	{Opt_err_ro, "errors=remount-ro"},
 704	{Opt_barrier, "barrier"},
 705	{Opt_nobarrier, "nobarrier"},
 706	{Opt_snapshot, "cp=%u"},
 707	{Opt_order, "order=%s"},
 708	{Opt_norecovery, "norecovery"},
 709	{Opt_discard, "discard"},
 710	{Opt_nodiscard, "nodiscard"},
 711	{Opt_err, NULL}
 712};
 713
 714static int parse_options(char *options, struct super_block *sb, int is_remount)
 715{
 716	struct the_nilfs *nilfs = sb->s_fs_info;
 717	char *p;
 718	substring_t args[MAX_OPT_ARGS];
 719
 720	if (!options)
 721		return 1;
 722
 723	while ((p = strsep(&options, ",")) != NULL) {
 724		int token;
 725
 726		if (!*p)
 727			continue;
 728
 729		token = match_token(p, tokens, args);
 730		switch (token) {
 731		case Opt_barrier:
 732			nilfs_set_opt(nilfs, BARRIER);
 733			break;
 734		case Opt_nobarrier:
 735			nilfs_clear_opt(nilfs, BARRIER);
 736			break;
 737		case Opt_order:
 738			if (strcmp(args[0].from, "relaxed") == 0)
 739				/* Ordered data semantics */
 740				nilfs_clear_opt(nilfs, STRICT_ORDER);
 741			else if (strcmp(args[0].from, "strict") == 0)
 742				/* Strict in-order semantics */
 743				nilfs_set_opt(nilfs, STRICT_ORDER);
 744			else
 745				return 0;
 746			break;
 747		case Opt_err_panic:
 748			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 749			break;
 750		case Opt_err_ro:
 751			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 752			break;
 753		case Opt_err_cont:
 754			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 755			break;
 756		case Opt_snapshot:
 757			if (is_remount) {
 758				nilfs_msg(sb, KERN_ERR,
 759					  "\"%s\" option is invalid for remount",
 760					  p);
 761				return 0;
 762			}
 763			break;
 764		case Opt_norecovery:
 765			nilfs_set_opt(nilfs, NORECOVERY);
 766			break;
 767		case Opt_discard:
 768			nilfs_set_opt(nilfs, DISCARD);
 769			break;
 770		case Opt_nodiscard:
 771			nilfs_clear_opt(nilfs, DISCARD);
 772			break;
 773		default:
 774			nilfs_msg(sb, KERN_ERR,
 775				  "unrecognized mount option \"%s\"", p);
 776			return 0;
 777		}
 778	}
 779	return 1;
 780}
 781
 782static inline void
 783nilfs_set_default_options(struct super_block *sb,
 784			  struct nilfs_super_block *sbp)
 785{
 786	struct the_nilfs *nilfs = sb->s_fs_info;
 787
 788	nilfs->ns_mount_opt =
 789		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 790}
 791
 792static int nilfs_setup_super(struct super_block *sb, int is_mount)
 793{
 794	struct the_nilfs *nilfs = sb->s_fs_info;
 795	struct nilfs_super_block **sbp;
 796	int max_mnt_count;
 797	int mnt_count;
 798
 799	/* nilfs->ns_sem must be locked by the caller. */
 800	sbp = nilfs_prepare_super(sb, 0);
 801	if (!sbp)
 802		return -EIO;
 803
 804	if (!is_mount)
 805		goto skip_mount_setup;
 806
 807	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 808	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 809
 810	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 811		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 812#if 0
 813	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 814		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 815#endif
 816	}
 817	if (!max_mnt_count)
 818		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 819
 820	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 821	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 822
 823skip_mount_setup:
 824	sbp[0]->s_state =
 825		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 826	/* synchronize sbp[1] with sbp[0] */
 827	if (sbp[1])
 828		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 829	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 830}
 831
 832struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 833						 u64 pos, int blocksize,
 834						 struct buffer_head **pbh)
 835{
 836	unsigned long long sb_index = pos;
 837	unsigned long offset;
 838
 839	offset = do_div(sb_index, blocksize);
 840	*pbh = sb_bread(sb, sb_index);
 841	if (!*pbh)
 842		return NULL;
 843	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 844}
 845
 846int nilfs_store_magic_and_option(struct super_block *sb,
 847				 struct nilfs_super_block *sbp,
 848				 char *data)
 849{
 850	struct the_nilfs *nilfs = sb->s_fs_info;
 851
 852	sb->s_magic = le16_to_cpu(sbp->s_magic);
 853
 854	/* FS independent flags */
 855#ifdef NILFS_ATIME_DISABLE
 856	sb->s_flags |= SB_NOATIME;
 857#endif
 858
 859	nilfs_set_default_options(sb, sbp);
 860
 861	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 862	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 863	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 864	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 865
 866	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 867}
 868
 869int nilfs_check_feature_compatibility(struct super_block *sb,
 870				      struct nilfs_super_block *sbp)
 871{
 872	__u64 features;
 873
 874	features = le64_to_cpu(sbp->s_feature_incompat) &
 875		~NILFS_FEATURE_INCOMPAT_SUPP;
 876	if (features) {
 877		nilfs_msg(sb, KERN_ERR,
 878			  "couldn't mount because of unsupported optional features (%llx)",
 879			  (unsigned long long)features);
 880		return -EINVAL;
 881	}
 882	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 883		~NILFS_FEATURE_COMPAT_RO_SUPP;
 884	if (!sb_rdonly(sb) && features) {
 885		nilfs_msg(sb, KERN_ERR,
 886			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 887			  (unsigned long long)features);
 888		return -EINVAL;
 889	}
 890	return 0;
 891}
 892
 893static int nilfs_get_root_dentry(struct super_block *sb,
 894				 struct nilfs_root *root,
 895				 struct dentry **root_dentry)
 896{
 897	struct inode *inode;
 898	struct dentry *dentry;
 899	int ret = 0;
 900
 901	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 902	if (IS_ERR(inode)) {
 903		ret = PTR_ERR(inode);
 904		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 905		goto out;
 906	}
 907	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 908		iput(inode);
 909		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 910		ret = -EINVAL;
 911		goto out;
 912	}
 913
 914	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 915		dentry = d_find_alias(inode);
 916		if (!dentry) {
 917			dentry = d_make_root(inode);
 918			if (!dentry) {
 919				ret = -ENOMEM;
 920				goto failed_dentry;
 921			}
 922		} else {
 923			iput(inode);
 924		}
 925	} else {
 926		dentry = d_obtain_root(inode);
 927		if (IS_ERR(dentry)) {
 928			ret = PTR_ERR(dentry);
 929			goto failed_dentry;
 930		}
 931	}
 932	*root_dentry = dentry;
 933 out:
 934	return ret;
 935
 936 failed_dentry:
 937	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 938	goto out;
 939}
 940
 941static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 942				 struct dentry **root_dentry)
 943{
 944	struct the_nilfs *nilfs = s->s_fs_info;
 945	struct nilfs_root *root;
 946	int ret;
 947
 948	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 949
 950	down_read(&nilfs->ns_segctor_sem);
 951	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 952	up_read(&nilfs->ns_segctor_sem);
 953	if (ret < 0) {
 954		ret = (ret == -ENOENT) ? -EINVAL : ret;
 955		goto out;
 956	} else if (!ret) {
 957		nilfs_msg(s, KERN_ERR,
 958			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 959			  (unsigned long long)cno);
 960		ret = -EINVAL;
 961		goto out;
 962	}
 963
 964	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 965	if (ret) {
 966		nilfs_msg(s, KERN_ERR,
 967			  "error %d while loading snapshot (checkpoint number=%llu)",
 968			  ret, (unsigned long long)cno);
 969		goto out;
 970	}
 971	ret = nilfs_get_root_dentry(s, root, root_dentry);
 972	nilfs_put_root(root);
 973 out:
 974	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 975	return ret;
 976}
 977
 978/**
 979 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 980 * @root_dentry: root dentry of the tree to be shrunk
 981 *
 982 * This function returns true if the tree was in-use.
 983 */
 984static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 985{
 986	shrink_dcache_parent(root_dentry);
 987	return d_count(root_dentry) > 1;
 988}
 989
 990int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 991{
 992	struct the_nilfs *nilfs = sb->s_fs_info;
 993	struct nilfs_root *root;
 994	struct inode *inode;
 995	struct dentry *dentry;
 996	int ret;
 997
 998	if (cno > nilfs->ns_cno)
 999		return false;
1000
1001	if (cno >= nilfs_last_cno(nilfs))
1002		return true;	/* protect recent checkpoints */
1003
1004	ret = false;
1005	root = nilfs_lookup_root(nilfs, cno);
1006	if (root) {
1007		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1008		if (inode) {
1009			dentry = d_find_alias(inode);
1010			if (dentry) {
1011				ret = nilfs_tree_is_busy(dentry);
1012				dput(dentry);
1013			}
1014			iput(inode);
1015		}
1016		nilfs_put_root(root);
1017	}
1018	return ret;
1019}
1020
1021/**
1022 * nilfs_fill_super() - initialize a super block instance
1023 * @sb: super_block
1024 * @data: mount options
1025 * @silent: silent mode flag
1026 *
1027 * This function is called exclusively by nilfs->ns_mount_mutex.
1028 * So, the recovery process is protected from other simultaneous mounts.
1029 */
1030static int
1031nilfs_fill_super(struct super_block *sb, void *data, int silent)
1032{
1033	struct the_nilfs *nilfs;
1034	struct nilfs_root *fsroot;
1035	__u64 cno;
1036	int err;
1037
1038	nilfs = alloc_nilfs(sb);
1039	if (!nilfs)
1040		return -ENOMEM;
1041
1042	sb->s_fs_info = nilfs;
1043
1044	err = init_nilfs(nilfs, sb, (char *)data);
1045	if (err)
1046		goto failed_nilfs;
1047
1048	sb->s_op = &nilfs_sops;
1049	sb->s_export_op = &nilfs_export_ops;
1050	sb->s_root = NULL;
1051	sb->s_time_gran = 1;
1052	sb->s_max_links = NILFS_LINK_MAX;
1053
1054	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1055
1056	err = load_nilfs(nilfs, sb);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	cno = nilfs_last_cno(nilfs);
1061	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1062	if (err) {
1063		nilfs_msg(sb, KERN_ERR,
1064			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1065			  err, (unsigned long long)cno);
1066		goto failed_unload;
1067	}
1068
1069	if (!sb_rdonly(sb)) {
1070		err = nilfs_attach_log_writer(sb, fsroot);
1071		if (err)
1072			goto failed_checkpoint;
1073	}
1074
1075	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1076	if (err)
1077		goto failed_segctor;
1078
1079	nilfs_put_root(fsroot);
1080
1081	if (!sb_rdonly(sb)) {
1082		down_write(&nilfs->ns_sem);
1083		nilfs_setup_super(sb, true);
1084		up_write(&nilfs->ns_sem);
1085	}
1086
1087	return 0;
1088
1089 failed_segctor:
1090	nilfs_detach_log_writer(sb);
1091
1092 failed_checkpoint:
1093	nilfs_put_root(fsroot);
1094
1095 failed_unload:
1096	iput(nilfs->ns_sufile);
1097	iput(nilfs->ns_cpfile);
1098	iput(nilfs->ns_dat);
1099
1100 failed_nilfs:
1101	destroy_nilfs(nilfs);
1102	return err;
1103}
1104
1105static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1106{
1107	struct the_nilfs *nilfs = sb->s_fs_info;
1108	unsigned long old_sb_flags;
1109	unsigned long old_mount_opt;
1110	int err;
1111
1112	sync_filesystem(sb);
1113	old_sb_flags = sb->s_flags;
1114	old_mount_opt = nilfs->ns_mount_opt;
1115
1116	if (!parse_options(data, sb, 1)) {
1117		err = -EINVAL;
1118		goto restore_opts;
1119	}
1120	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1121
1122	err = -EINVAL;
1123
1124	if (!nilfs_valid_fs(nilfs)) {
1125		nilfs_msg(sb, KERN_WARNING,
1126			  "couldn't remount because the filesystem is in an incomplete recovery state");
1127		goto restore_opts;
1128	}
1129
1130	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1131		goto out;
1132	if (*flags & SB_RDONLY) {
1133		/* Shutting down log writer */
1134		nilfs_detach_log_writer(sb);
1135		sb->s_flags |= SB_RDONLY;
1136
1137		/*
1138		 * Remounting a valid RW partition RDONLY, so set
1139		 * the RDONLY flag and then mark the partition as valid again.
1140		 */
1141		down_write(&nilfs->ns_sem);
1142		nilfs_cleanup_super(sb);
1143		up_write(&nilfs->ns_sem);
1144	} else {
1145		__u64 features;
1146		struct nilfs_root *root;
1147
1148		/*
1149		 * Mounting a RDONLY partition read-write, so reread and
1150		 * store the current valid flag.  (It may have been changed
1151		 * by fsck since we originally mounted the partition.)
1152		 */
1153		down_read(&nilfs->ns_sem);
1154		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1155			~NILFS_FEATURE_COMPAT_RO_SUPP;
1156		up_read(&nilfs->ns_sem);
1157		if (features) {
1158			nilfs_msg(sb, KERN_WARNING,
1159				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1160				  (unsigned long long)features);
1161			err = -EROFS;
1162			goto restore_opts;
1163		}
1164
1165		sb->s_flags &= ~SB_RDONLY;
1166
1167		root = NILFS_I(d_inode(sb->s_root))->i_root;
1168		err = nilfs_attach_log_writer(sb, root);
1169		if (err)
1170			goto restore_opts;
1171
1172		down_write(&nilfs->ns_sem);
1173		nilfs_setup_super(sb, true);
1174		up_write(&nilfs->ns_sem);
1175	}
1176 out:
1177	return 0;
1178
1179 restore_opts:
1180	sb->s_flags = old_sb_flags;
1181	nilfs->ns_mount_opt = old_mount_opt;
1182	return err;
1183}
1184
1185struct nilfs_super_data {
1186	struct block_device *bdev;
1187	__u64 cno;
1188	int flags;
1189};
1190
1191static int nilfs_parse_snapshot_option(const char *option,
1192				       const substring_t *arg,
1193				       struct nilfs_super_data *sd)
1194{
1195	unsigned long long val;
1196	const char *msg = NULL;
1197	int err;
1198
1199	if (!(sd->flags & SB_RDONLY)) {
1200		msg = "read-only option is not specified";
1201		goto parse_error;
1202	}
1203
1204	err = kstrtoull(arg->from, 0, &val);
1205	if (err) {
1206		if (err == -ERANGE)
1207			msg = "too large checkpoint number";
1208		else
1209			msg = "malformed argument";
1210		goto parse_error;
1211	} else if (val == 0) {
1212		msg = "invalid checkpoint number 0";
1213		goto parse_error;
1214	}
1215	sd->cno = val;
1216	return 0;
1217
1218parse_error:
1219	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1220	return 1;
1221}
1222
1223/**
1224 * nilfs_identify - pre-read mount options needed to identify mount instance
1225 * @data: mount options
1226 * @sd: nilfs_super_data
1227 */
1228static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1229{
1230	char *p, *options = data;
1231	substring_t args[MAX_OPT_ARGS];
1232	int token;
1233	int ret = 0;
1234
1235	do {
1236		p = strsep(&options, ",");
1237		if (p != NULL && *p) {
1238			token = match_token(p, tokens, args);
1239			if (token == Opt_snapshot)
1240				ret = nilfs_parse_snapshot_option(p, &args[0],
1241								  sd);
1242		}
1243		if (!options)
1244			break;
1245		BUG_ON(options == data);
1246		*(options - 1) = ',';
1247	} while (!ret);
1248	return ret;
1249}
1250
1251static int nilfs_set_bdev_super(struct super_block *s, void *data)
1252{
1253	s->s_bdev = data;
1254	s->s_dev = s->s_bdev->bd_dev;
1255	return 0;
1256}
1257
1258static int nilfs_test_bdev_super(struct super_block *s, void *data)
1259{
1260	return (void *)s->s_bdev == data;
1261}
1262
1263static struct dentry *
1264nilfs_mount(struct file_system_type *fs_type, int flags,
1265	     const char *dev_name, void *data)
1266{
1267	struct nilfs_super_data sd;
1268	struct super_block *s;
1269	fmode_t mode = FMODE_READ | FMODE_EXCL;
1270	struct dentry *root_dentry;
1271	int err, s_new = false;
1272
1273	if (!(flags & SB_RDONLY))
1274		mode |= FMODE_WRITE;
1275
1276	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1277	if (IS_ERR(sd.bdev))
1278		return ERR_CAST(sd.bdev);
1279
1280	sd.cno = 0;
1281	sd.flags = flags;
1282	if (nilfs_identify((char *)data, &sd)) {
1283		err = -EINVAL;
1284		goto failed;
1285	}
1286
1287	/*
1288	 * once the super is inserted into the list by sget, s_umount
1289	 * will protect the lockfs code from trying to start a snapshot
1290	 * while we are mounting
1291	 */
1292	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1293	if (sd.bdev->bd_fsfreeze_count > 0) {
1294		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1295		err = -EBUSY;
1296		goto failed;
1297	}
1298	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1299		 sd.bdev);
1300	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301	if (IS_ERR(s)) {
1302		err = PTR_ERR(s);
1303		goto failed;
1304	}
1305
1306	if (!s->s_root) {
1307		s_new = true;
1308
1309		/* New superblock instance created */
1310		s->s_mode = mode;
1311		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1312		sb_set_blocksize(s, block_size(sd.bdev));
1313
1314		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1315		if (err)
1316			goto failed_super;
1317
1318		s->s_flags |= SB_ACTIVE;
1319	} else if (!sd.cno) {
1320		if (nilfs_tree_is_busy(s->s_root)) {
1321			if ((flags ^ s->s_flags) & SB_RDONLY) {
1322				nilfs_msg(s, KERN_ERR,
1323					  "the device already has a %s mount.",
1324					  sb_rdonly(s) ? "read-only" : "read/write");
1325				err = -EBUSY;
1326				goto failed_super;
1327			}
1328		} else {
1329			/*
1330			 * Try remount to setup mount states if the current
1331			 * tree is not mounted and only snapshots use this sb.
1332			 */
1333			err = nilfs_remount(s, &flags, data);
1334			if (err)
1335				goto failed_super;
1336		}
1337	}
1338
1339	if (sd.cno) {
1340		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1341		if (err)
1342			goto failed_super;
1343	} else {
1344		root_dentry = dget(s->s_root);
1345	}
1346
1347	if (!s_new)
1348		blkdev_put(sd.bdev, mode);
1349
1350	return root_dentry;
1351
1352 failed_super:
1353	deactivate_locked_super(s);
1354
1355 failed:
1356	if (!s_new)
1357		blkdev_put(sd.bdev, mode);
1358	return ERR_PTR(err);
1359}
1360
1361struct file_system_type nilfs_fs_type = {
1362	.owner    = THIS_MODULE,
1363	.name     = "nilfs2",
1364	.mount    = nilfs_mount,
1365	.kill_sb  = kill_block_super,
1366	.fs_flags = FS_REQUIRES_DEV,
1367};
1368MODULE_ALIAS_FS("nilfs2");
1369
1370static void nilfs_inode_init_once(void *obj)
1371{
1372	struct nilfs_inode_info *ii = obj;
1373
1374	INIT_LIST_HEAD(&ii->i_dirty);
1375#ifdef CONFIG_NILFS_XATTR
1376	init_rwsem(&ii->xattr_sem);
1377#endif
1378	address_space_init_once(&ii->i_btnode_cache);
1379	ii->i_bmap = &ii->i_bmap_data;
1380	inode_init_once(&ii->vfs_inode);
1381}
1382
1383static void nilfs_segbuf_init_once(void *obj)
1384{
1385	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1386}
1387
1388static void nilfs_destroy_cachep(void)
1389{
1390	/*
1391	 * Make sure all delayed rcu free inodes are flushed before we
1392	 * destroy cache.
1393	 */
1394	rcu_barrier();
1395
1396	kmem_cache_destroy(nilfs_inode_cachep);
1397	kmem_cache_destroy(nilfs_transaction_cachep);
1398	kmem_cache_destroy(nilfs_segbuf_cachep);
1399	kmem_cache_destroy(nilfs_btree_path_cache);
1400}
1401
1402static int __init nilfs_init_cachep(void)
1403{
1404	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405			sizeof(struct nilfs_inode_info), 0,
1406			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1407			nilfs_inode_init_once);
1408	if (!nilfs_inode_cachep)
1409		goto fail;
1410
1411	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1412			sizeof(struct nilfs_transaction_info), 0,
1413			SLAB_RECLAIM_ACCOUNT, NULL);
1414	if (!nilfs_transaction_cachep)
1415		goto fail;
1416
1417	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1418			sizeof(struct nilfs_segment_buffer), 0,
1419			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1420	if (!nilfs_segbuf_cachep)
1421		goto fail;
1422
1423	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1424			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1425			0, 0, NULL);
1426	if (!nilfs_btree_path_cache)
1427		goto fail;
1428
1429	return 0;
1430
1431fail:
1432	nilfs_destroy_cachep();
1433	return -ENOMEM;
1434}
1435
1436static int __init init_nilfs_fs(void)
1437{
1438	int err;
1439
1440	err = nilfs_init_cachep();
1441	if (err)
1442		goto fail;
1443
1444	err = nilfs_sysfs_init();
1445	if (err)
1446		goto free_cachep;
1447
1448	err = register_filesystem(&nilfs_fs_type);
1449	if (err)
1450		goto deinit_sysfs_entry;
1451
1452	printk(KERN_INFO "NILFS version 2 loaded\n");
1453	return 0;
1454
1455deinit_sysfs_entry:
1456	nilfs_sysfs_exit();
1457free_cachep:
1458	nilfs_destroy_cachep();
1459fail:
1460	return err;
1461}
1462
1463static void __exit exit_nilfs_fs(void)
1464{
1465	nilfs_destroy_cachep();
1466	nilfs_sysfs_exit();
1467	unregister_filesystem(&nilfs_fs_type);
1468}
1469
1470module_init(init_nilfs_fs)
1471module_exit(exit_nilfs_fs)