Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.17
 
   1/*
   2 *      sd.c Copyright (C) 1992 Drew Eckhardt
   3 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   4 *
   5 *      Linux scsi disk driver
   6 *              Initial versions: Drew Eckhardt
   7 *              Subsequent revisions: Eric Youngdale
   8 *	Modification history:
   9 *       - Drew Eckhardt <drew@colorado.edu> original
  10 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  11 *         outstanding request, and other enhancements.
  12 *         Support loadable low-level scsi drivers.
  13 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  14 *         eight major numbers.
  15 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  16 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  17 *	   sd_init and cleanups.
  18 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  19 *	   not being read in sd_open. Fix problem where removable media 
  20 *	   could be ejected after sd_open.
  21 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  22 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  23 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  24 *	   Support 32k/1M disks.
  25 *
  26 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  27 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  28 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  29 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  30 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  31 *	Note: when the logging level is set by the user, it must be greater
  32 *	than the level indicated above to trigger output.	
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/fs.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/bio.h>
  40#include <linux/genhd.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
 
  48#include <linux/delay.h>
  49#include <linux/mutex.h>
  50#include <linux/string_helpers.h>
  51#include <linux/async.h>
  52#include <linux/slab.h>
  53#include <linux/sed-opal.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/pr.h>
  56#include <linux/t10-pi.h>
  57#include <linux/uaccess.h>
  58#include <asm/unaligned.h>
  59
  60#include <scsi/scsi.h>
  61#include <scsi/scsi_cmnd.h>
  62#include <scsi/scsi_dbg.h>
  63#include <scsi/scsi_device.h>
  64#include <scsi/scsi_driver.h>
  65#include <scsi/scsi_eh.h>
  66#include <scsi/scsi_host.h>
  67#include <scsi/scsi_ioctl.h>
  68#include <scsi/scsicam.h>
  69
  70#include "sd.h"
  71#include "scsi_priv.h"
  72#include "scsi_logging.h"
  73
  74MODULE_AUTHOR("Eric Youngdale");
  75MODULE_DESCRIPTION("SCSI disk (sd) driver");
  76MODULE_LICENSE("GPL");
  77
  78MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  94MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  95MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
  98
  99#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 100#define SD_MINORS	16
 101#else
 102#define SD_MINORS	0
 103#endif
 104
 105static void sd_config_discard(struct scsi_disk *, unsigned int);
 106static void sd_config_write_same(struct scsi_disk *);
 107static int  sd_revalidate_disk(struct gendisk *);
 108static void sd_unlock_native_capacity(struct gendisk *disk);
 109static int  sd_probe(struct device *);
 110static int  sd_remove(struct device *);
 111static void sd_shutdown(struct device *);
 112static int sd_suspend_system(struct device *);
 113static int sd_suspend_runtime(struct device *);
 114static int sd_resume(struct device *);
 115static void sd_rescan(struct device *);
 116static int sd_init_command(struct scsi_cmnd *SCpnt);
 117static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 118static int sd_done(struct scsi_cmnd *);
 119static void sd_eh_reset(struct scsi_cmnd *);
 120static int sd_eh_action(struct scsi_cmnd *, int);
 121static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 122static void scsi_disk_release(struct device *cdev);
 123static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 124static void sd_print_result(const struct scsi_disk *, const char *, int);
 125
 126static DEFINE_SPINLOCK(sd_index_lock);
 127static DEFINE_IDA(sd_index_ida);
 128
 129/* This semaphore is used to mediate the 0->1 reference get in the
 130 * face of object destruction (i.e. we can't allow a get on an
 131 * object after last put) */
 132static DEFINE_MUTEX(sd_ref_mutex);
 133
 134static struct kmem_cache *sd_cdb_cache;
 135static mempool_t *sd_cdb_pool;
 
 136
 137static const char *sd_cache_types[] = {
 138	"write through", "none", "write back",
 139	"write back, no read (daft)"
 140};
 141
 142static void sd_set_flush_flag(struct scsi_disk *sdkp)
 143{
 144	bool wc = false, fua = false;
 145
 146	if (sdkp->WCE) {
 147		wc = true;
 148		if (sdkp->DPOFUA)
 149			fua = true;
 150	}
 151
 152	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 153}
 154
 155static ssize_t
 156cache_type_store(struct device *dev, struct device_attribute *attr,
 157		 const char *buf, size_t count)
 158{
 159	int ct, rcd, wce, sp;
 160	struct scsi_disk *sdkp = to_scsi_disk(dev);
 161	struct scsi_device *sdp = sdkp->device;
 162	char buffer[64];
 163	char *buffer_data;
 164	struct scsi_mode_data data;
 165	struct scsi_sense_hdr sshdr;
 166	static const char temp[] = "temporary ";
 167	int len;
 168
 169	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 170		/* no cache control on RBC devices; theoretically they
 171		 * can do it, but there's probably so many exceptions
 172		 * it's not worth the risk */
 173		return -EINVAL;
 174
 175	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 176		buf += sizeof(temp) - 1;
 177		sdkp->cache_override = 1;
 178	} else {
 179		sdkp->cache_override = 0;
 180	}
 181
 182	ct = sysfs_match_string(sd_cache_types, buf);
 183	if (ct < 0)
 184		return -EINVAL;
 185
 186	rcd = ct & 0x01 ? 1 : 0;
 187	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 188
 189	if (sdkp->cache_override) {
 190		sdkp->WCE = wce;
 191		sdkp->RCD = rcd;
 192		sd_set_flush_flag(sdkp);
 193		return count;
 194	}
 195
 196	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 197			    SD_MAX_RETRIES, &data, NULL))
 198		return -EINVAL;
 199	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 200		  data.block_descriptor_length);
 201	buffer_data = buffer + data.header_length +
 202		data.block_descriptor_length;
 203	buffer_data[2] &= ~0x05;
 204	buffer_data[2] |= wce << 2 | rcd;
 205	sp = buffer_data[0] & 0x80 ? 1 : 0;
 206	buffer_data[0] &= ~0x80;
 207
 
 
 
 
 
 
 208	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 209			     SD_MAX_RETRIES, &data, &sshdr)) {
 210		if (scsi_sense_valid(&sshdr))
 211			sd_print_sense_hdr(sdkp, &sshdr);
 212		return -EINVAL;
 213	}
 214	revalidate_disk(sdkp->disk);
 215	return count;
 216}
 217
 218static ssize_t
 219manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 220		       char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 226}
 227
 228static ssize_t
 229manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 230			const char *buf, size_t count)
 231{
 232	struct scsi_disk *sdkp = to_scsi_disk(dev);
 233	struct scsi_device *sdp = sdkp->device;
 234	bool v;
 235
 236	if (!capable(CAP_SYS_ADMIN))
 237		return -EACCES;
 238
 239	if (kstrtobool(buf, &v))
 240		return -EINVAL;
 241
 242	sdp->manage_start_stop = v;
 243
 244	return count;
 245}
 246static DEVICE_ATTR_RW(manage_start_stop);
 247
 248static ssize_t
 249allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 250{
 251	struct scsi_disk *sdkp = to_scsi_disk(dev);
 252
 253	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 254}
 255
 256static ssize_t
 257allow_restart_store(struct device *dev, struct device_attribute *attr,
 258		    const char *buf, size_t count)
 259{
 260	bool v;
 261	struct scsi_disk *sdkp = to_scsi_disk(dev);
 262	struct scsi_device *sdp = sdkp->device;
 263
 264	if (!capable(CAP_SYS_ADMIN))
 265		return -EACCES;
 266
 267	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 268		return -EINVAL;
 269
 270	if (kstrtobool(buf, &v))
 271		return -EINVAL;
 272
 273	sdp->allow_restart = v;
 274
 275	return count;
 276}
 277static DEVICE_ATTR_RW(allow_restart);
 278
 279static ssize_t
 280cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 281{
 282	struct scsi_disk *sdkp = to_scsi_disk(dev);
 283	int ct = sdkp->RCD + 2*sdkp->WCE;
 284
 285	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 286}
 287static DEVICE_ATTR_RW(cache_type);
 288
 289static ssize_t
 290FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 291{
 292	struct scsi_disk *sdkp = to_scsi_disk(dev);
 293
 294	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 295}
 296static DEVICE_ATTR_RO(FUA);
 297
 298static ssize_t
 299protection_type_show(struct device *dev, struct device_attribute *attr,
 300		     char *buf)
 301{
 302	struct scsi_disk *sdkp = to_scsi_disk(dev);
 303
 304	return sprintf(buf, "%u\n", sdkp->protection_type);
 305}
 306
 307static ssize_t
 308protection_type_store(struct device *dev, struct device_attribute *attr,
 309		      const char *buf, size_t count)
 310{
 311	struct scsi_disk *sdkp = to_scsi_disk(dev);
 312	unsigned int val;
 313	int err;
 314
 315	if (!capable(CAP_SYS_ADMIN))
 316		return -EACCES;
 317
 318	err = kstrtouint(buf, 10, &val);
 319
 320	if (err)
 321		return err;
 322
 323	if (val <= T10_PI_TYPE3_PROTECTION)
 324		sdkp->protection_type = val;
 325
 326	return count;
 327}
 328static DEVICE_ATTR_RW(protection_type);
 329
 330static ssize_t
 331protection_mode_show(struct device *dev, struct device_attribute *attr,
 332		     char *buf)
 333{
 334	struct scsi_disk *sdkp = to_scsi_disk(dev);
 335	struct scsi_device *sdp = sdkp->device;
 336	unsigned int dif, dix;
 337
 338	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 339	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 340
 341	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 342		dif = 0;
 343		dix = 1;
 344	}
 345
 346	if (!dif && !dix)
 347		return sprintf(buf, "none\n");
 348
 349	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 350}
 351static DEVICE_ATTR_RO(protection_mode);
 352
 353static ssize_t
 354app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 355{
 356	struct scsi_disk *sdkp = to_scsi_disk(dev);
 357
 358	return sprintf(buf, "%u\n", sdkp->ATO);
 359}
 360static DEVICE_ATTR_RO(app_tag_own);
 361
 362static ssize_t
 363thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 364		       char *buf)
 365{
 366	struct scsi_disk *sdkp = to_scsi_disk(dev);
 367
 368	return sprintf(buf, "%u\n", sdkp->lbpme);
 369}
 370static DEVICE_ATTR_RO(thin_provisioning);
 371
 372/* sysfs_match_string() requires dense arrays */
 373static const char *lbp_mode[] = {
 374	[SD_LBP_FULL]		= "full",
 375	[SD_LBP_UNMAP]		= "unmap",
 376	[SD_LBP_WS16]		= "writesame_16",
 377	[SD_LBP_WS10]		= "writesame_10",
 378	[SD_LBP_ZERO]		= "writesame_zero",
 379	[SD_LBP_DISABLE]	= "disabled",
 380};
 381
 382static ssize_t
 383provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 384		       char *buf)
 385{
 386	struct scsi_disk *sdkp = to_scsi_disk(dev);
 387
 388	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 389}
 390
 391static ssize_t
 392provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 393			const char *buf, size_t count)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	int mode;
 398
 399	if (!capable(CAP_SYS_ADMIN))
 400		return -EACCES;
 401
 402	if (sd_is_zoned(sdkp)) {
 403		sd_config_discard(sdkp, SD_LBP_DISABLE);
 404		return count;
 405	}
 406
 407	if (sdp->type != TYPE_DISK)
 408		return -EINVAL;
 409
 410	mode = sysfs_match_string(lbp_mode, buf);
 411	if (mode < 0)
 412		return -EINVAL;
 413
 414	sd_config_discard(sdkp, mode);
 415
 416	return count;
 417}
 418static DEVICE_ATTR_RW(provisioning_mode);
 419
 420/* sysfs_match_string() requires dense arrays */
 421static const char *zeroing_mode[] = {
 422	[SD_ZERO_WRITE]		= "write",
 423	[SD_ZERO_WS]		= "writesame",
 424	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 425	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 426};
 427
 428static ssize_t
 429zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 430		  char *buf)
 431{
 432	struct scsi_disk *sdkp = to_scsi_disk(dev);
 433
 434	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 435}
 436
 437static ssize_t
 438zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 439		   const char *buf, size_t count)
 440{
 441	struct scsi_disk *sdkp = to_scsi_disk(dev);
 442	int mode;
 443
 444	if (!capable(CAP_SYS_ADMIN))
 445		return -EACCES;
 446
 447	mode = sysfs_match_string(zeroing_mode, buf);
 448	if (mode < 0)
 449		return -EINVAL;
 450
 451	sdkp->zeroing_mode = mode;
 452
 453	return count;
 454}
 455static DEVICE_ATTR_RW(zeroing_mode);
 456
 457static ssize_t
 458max_medium_access_timeouts_show(struct device *dev,
 459				struct device_attribute *attr, char *buf)
 460{
 461	struct scsi_disk *sdkp = to_scsi_disk(dev);
 462
 463	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 464}
 465
 466static ssize_t
 467max_medium_access_timeouts_store(struct device *dev,
 468				 struct device_attribute *attr, const char *buf,
 469				 size_t count)
 470{
 471	struct scsi_disk *sdkp = to_scsi_disk(dev);
 472	int err;
 473
 474	if (!capable(CAP_SYS_ADMIN))
 475		return -EACCES;
 476
 477	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 478
 479	return err ? err : count;
 480}
 481static DEVICE_ATTR_RW(max_medium_access_timeouts);
 482
 483static ssize_t
 484max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 485			   char *buf)
 486{
 487	struct scsi_disk *sdkp = to_scsi_disk(dev);
 488
 489	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 490}
 491
 492static ssize_t
 493max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 494			    const char *buf, size_t count)
 495{
 496	struct scsi_disk *sdkp = to_scsi_disk(dev);
 497	struct scsi_device *sdp = sdkp->device;
 498	unsigned long max;
 499	int err;
 500
 501	if (!capable(CAP_SYS_ADMIN))
 502		return -EACCES;
 503
 504	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 505		return -EINVAL;
 506
 507	err = kstrtoul(buf, 10, &max);
 508
 509	if (err)
 510		return err;
 511
 512	if (max == 0)
 513		sdp->no_write_same = 1;
 514	else if (max <= SD_MAX_WS16_BLOCKS) {
 515		sdp->no_write_same = 0;
 516		sdkp->max_ws_blocks = max;
 517	}
 518
 519	sd_config_write_same(sdkp);
 520
 521	return count;
 522}
 523static DEVICE_ATTR_RW(max_write_same_blocks);
 524
 525static struct attribute *sd_disk_attrs[] = {
 526	&dev_attr_cache_type.attr,
 527	&dev_attr_FUA.attr,
 528	&dev_attr_allow_restart.attr,
 529	&dev_attr_manage_start_stop.attr,
 530	&dev_attr_protection_type.attr,
 531	&dev_attr_protection_mode.attr,
 532	&dev_attr_app_tag_own.attr,
 533	&dev_attr_thin_provisioning.attr,
 534	&dev_attr_provisioning_mode.attr,
 535	&dev_attr_zeroing_mode.attr,
 536	&dev_attr_max_write_same_blocks.attr,
 537	&dev_attr_max_medium_access_timeouts.attr,
 538	NULL,
 539};
 540ATTRIBUTE_GROUPS(sd_disk);
 541
 542static struct class sd_disk_class = {
 543	.name		= "scsi_disk",
 544	.owner		= THIS_MODULE,
 545	.dev_release	= scsi_disk_release,
 546	.dev_groups	= sd_disk_groups,
 547};
 548
 549static const struct dev_pm_ops sd_pm_ops = {
 550	.suspend		= sd_suspend_system,
 551	.resume			= sd_resume,
 552	.poweroff		= sd_suspend_system,
 553	.restore		= sd_resume,
 554	.runtime_suspend	= sd_suspend_runtime,
 555	.runtime_resume		= sd_resume,
 556};
 557
 558static struct scsi_driver sd_template = {
 559	.gendrv = {
 560		.name		= "sd",
 561		.owner		= THIS_MODULE,
 562		.probe		= sd_probe,
 
 563		.remove		= sd_remove,
 564		.shutdown	= sd_shutdown,
 565		.pm		= &sd_pm_ops,
 566	},
 567	.rescan			= sd_rescan,
 568	.init_command		= sd_init_command,
 569	.uninit_command		= sd_uninit_command,
 570	.done			= sd_done,
 571	.eh_action		= sd_eh_action,
 572	.eh_reset		= sd_eh_reset,
 573};
 574
 575/*
 576 * Dummy kobj_map->probe function.
 577 * The default ->probe function will call modprobe, which is
 578 * pointless as this module is already loaded.
 579 */
 580static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 581{
 582	return NULL;
 583}
 584
 585/*
 586 * Device no to disk mapping:
 587 * 
 588 *       major         disc2     disc  p1
 589 *   |............|.............|....|....| <- dev_t
 590 *    31        20 19          8 7  4 3  0
 591 * 
 592 * Inside a major, we have 16k disks, however mapped non-
 593 * contiguously. The first 16 disks are for major0, the next
 594 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 595 * for major1, ... 
 596 * As we stay compatible with our numbering scheme, we can reuse 
 597 * the well-know SCSI majors 8, 65--71, 136--143.
 598 */
 599static int sd_major(int major_idx)
 600{
 601	switch (major_idx) {
 602	case 0:
 603		return SCSI_DISK0_MAJOR;
 604	case 1 ... 7:
 605		return SCSI_DISK1_MAJOR + major_idx - 1;
 606	case 8 ... 15:
 607		return SCSI_DISK8_MAJOR + major_idx - 8;
 608	default:
 609		BUG();
 610		return 0;	/* shut up gcc */
 611	}
 612}
 613
 614static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 615{
 616	struct scsi_disk *sdkp = NULL;
 617
 618	mutex_lock(&sd_ref_mutex);
 619
 620	if (disk->private_data) {
 621		sdkp = scsi_disk(disk);
 622		if (scsi_device_get(sdkp->device) == 0)
 623			get_device(&sdkp->dev);
 624		else
 625			sdkp = NULL;
 626	}
 627	mutex_unlock(&sd_ref_mutex);
 628	return sdkp;
 629}
 630
 631static void scsi_disk_put(struct scsi_disk *sdkp)
 632{
 633	struct scsi_device *sdev = sdkp->device;
 634
 635	mutex_lock(&sd_ref_mutex);
 636	put_device(&sdkp->dev);
 637	scsi_device_put(sdev);
 638	mutex_unlock(&sd_ref_mutex);
 639}
 640
 641#ifdef CONFIG_BLK_SED_OPAL
 642static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 643		size_t len, bool send)
 644{
 645	struct scsi_device *sdev = data;
 646	u8 cdb[12] = { 0, };
 647	int ret;
 648
 649	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 650	cdb[1] = secp;
 651	put_unaligned_be16(spsp, &cdb[2]);
 652	put_unaligned_be32(len, &cdb[6]);
 653
 654	ret = scsi_execute_req(sdev, cdb,
 655			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 656			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 657	return ret <= 0 ? ret : -EIO;
 658}
 659#endif /* CONFIG_BLK_SED_OPAL */
 660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 662					   unsigned int dix, unsigned int dif)
 663{
 664	struct bio *bio = scmd->request->bio;
 665	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 666	unsigned int protect = 0;
 667
 668	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 669		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 670			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 671
 672		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 673			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 674	}
 675
 676	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 677		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 678
 679		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 680			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 681	}
 682
 683	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 684		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 685
 686		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 687			protect = 3 << 5;	/* Disable target PI checking */
 688		else
 689			protect = 1 << 5;	/* Enable target PI checking */
 690	}
 691
 692	scsi_set_prot_op(scmd, prot_op);
 693	scsi_set_prot_type(scmd, dif);
 694	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 695
 696	return protect;
 697}
 698
 699static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 700{
 701	struct request_queue *q = sdkp->disk->queue;
 702	unsigned int logical_block_size = sdkp->device->sector_size;
 703	unsigned int max_blocks = 0;
 704
 705	q->limits.discard_alignment =
 706		sdkp->unmap_alignment * logical_block_size;
 707	q->limits.discard_granularity =
 708		max(sdkp->physical_block_size,
 709		    sdkp->unmap_granularity * logical_block_size);
 710	sdkp->provisioning_mode = mode;
 711
 712	switch (mode) {
 713
 714	case SD_LBP_FULL:
 715	case SD_LBP_DISABLE:
 716		blk_queue_max_discard_sectors(q, 0);
 717		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 718		return;
 719
 720	case SD_LBP_UNMAP:
 721		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 722					  (u32)SD_MAX_WS16_BLOCKS);
 723		break;
 724
 725	case SD_LBP_WS16:
 726		if (sdkp->device->unmap_limit_for_ws)
 727			max_blocks = sdkp->max_unmap_blocks;
 728		else
 729			max_blocks = sdkp->max_ws_blocks;
 730
 731		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 732		break;
 733
 734	case SD_LBP_WS10:
 735		if (sdkp->device->unmap_limit_for_ws)
 736			max_blocks = sdkp->max_unmap_blocks;
 737		else
 738			max_blocks = sdkp->max_ws_blocks;
 739
 740		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 741		break;
 742
 743	case SD_LBP_ZERO:
 744		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 745					  (u32)SD_MAX_WS10_BLOCKS);
 746		break;
 747	}
 748
 749	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 750	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 751}
 752
 753static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 754{
 755	struct scsi_device *sdp = cmd->device;
 756	struct request *rq = cmd->request;
 757	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 758	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 759	unsigned int data_len = 24;
 760	char *buf;
 761
 762	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 763	if (!rq->special_vec.bv_page)
 764		return BLKPREP_DEFER;
 
 765	rq->special_vec.bv_offset = 0;
 766	rq->special_vec.bv_len = data_len;
 767	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 768
 769	cmd->cmd_len = 10;
 770	cmd->cmnd[0] = UNMAP;
 771	cmd->cmnd[8] = 24;
 772
 773	buf = page_address(rq->special_vec.bv_page);
 774	put_unaligned_be16(6 + 16, &buf[0]);
 775	put_unaligned_be16(16, &buf[2]);
 776	put_unaligned_be64(sector, &buf[8]);
 777	put_unaligned_be32(nr_sectors, &buf[16]);
 778
 779	cmd->allowed = SD_MAX_RETRIES;
 780	cmd->transfersize = data_len;
 781	rq->timeout = SD_TIMEOUT;
 782	scsi_req(rq)->resid_len = data_len;
 783
 784	return scsi_init_io(cmd);
 785}
 786
 787static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
 
 788{
 789	struct scsi_device *sdp = cmd->device;
 790	struct request *rq = cmd->request;
 791	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 792	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 793	u32 data_len = sdp->sector_size;
 794
 795	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 796	if (!rq->special_vec.bv_page)
 797		return BLKPREP_DEFER;
 
 798	rq->special_vec.bv_offset = 0;
 799	rq->special_vec.bv_len = data_len;
 800	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 801
 802	cmd->cmd_len = 16;
 803	cmd->cmnd[0] = WRITE_SAME_16;
 804	if (unmap)
 805		cmd->cmnd[1] = 0x8; /* UNMAP */
 806	put_unaligned_be64(sector, &cmd->cmnd[2]);
 807	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 808
 809	cmd->allowed = SD_MAX_RETRIES;
 810	cmd->transfersize = data_len;
 811	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 812	scsi_req(rq)->resid_len = data_len;
 813
 814	return scsi_init_io(cmd);
 815}
 816
 817static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
 
 818{
 819	struct scsi_device *sdp = cmd->device;
 820	struct request *rq = cmd->request;
 821	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 822	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 823	u32 data_len = sdp->sector_size;
 824
 825	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 826	if (!rq->special_vec.bv_page)
 827		return BLKPREP_DEFER;
 
 828	rq->special_vec.bv_offset = 0;
 829	rq->special_vec.bv_len = data_len;
 830	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 831
 832	cmd->cmd_len = 10;
 833	cmd->cmnd[0] = WRITE_SAME;
 834	if (unmap)
 835		cmd->cmnd[1] = 0x8; /* UNMAP */
 836	put_unaligned_be32(sector, &cmd->cmnd[2]);
 837	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 838
 839	cmd->allowed = SD_MAX_RETRIES;
 840	cmd->transfersize = data_len;
 841	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 842	scsi_req(rq)->resid_len = data_len;
 843
 844	return scsi_init_io(cmd);
 845}
 846
 847static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 848{
 849	struct request *rq = cmd->request;
 850	struct scsi_device *sdp = cmd->device;
 851	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 852	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 853	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 854
 855	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 856		switch (sdkp->zeroing_mode) {
 857		case SD_ZERO_WS16_UNMAP:
 858			return sd_setup_write_same16_cmnd(cmd, true);
 859		case SD_ZERO_WS10_UNMAP:
 860			return sd_setup_write_same10_cmnd(cmd, true);
 861		}
 862	}
 863
 864	if (sdp->no_write_same)
 865		return BLKPREP_INVALID;
 866
 867	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
 868		return sd_setup_write_same16_cmnd(cmd, false);
 869
 870	return sd_setup_write_same10_cmnd(cmd, false);
 871}
 872
 873static void sd_config_write_same(struct scsi_disk *sdkp)
 874{
 875	struct request_queue *q = sdkp->disk->queue;
 876	unsigned int logical_block_size = sdkp->device->sector_size;
 877
 878	if (sdkp->device->no_write_same) {
 879		sdkp->max_ws_blocks = 0;
 880		goto out;
 881	}
 882
 883	/* Some devices can not handle block counts above 0xffff despite
 884	 * supporting WRITE SAME(16). Consequently we default to 64k
 885	 * blocks per I/O unless the device explicitly advertises a
 886	 * bigger limit.
 887	 */
 888	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 889		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 890						   (u32)SD_MAX_WS16_BLOCKS);
 891	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 892		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 893						   (u32)SD_MAX_WS10_BLOCKS);
 894	else {
 895		sdkp->device->no_write_same = 1;
 896		sdkp->max_ws_blocks = 0;
 897	}
 898
 899	if (sdkp->lbprz && sdkp->lbpws)
 900		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 901	else if (sdkp->lbprz && sdkp->lbpws10)
 902		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 903	else if (sdkp->max_ws_blocks)
 904		sdkp->zeroing_mode = SD_ZERO_WS;
 905	else
 906		sdkp->zeroing_mode = SD_ZERO_WRITE;
 907
 908	if (sdkp->max_ws_blocks &&
 909	    sdkp->physical_block_size > logical_block_size) {
 910		/*
 911		 * Reporting a maximum number of blocks that is not aligned
 912		 * on the device physical size would cause a large write same
 913		 * request to be split into physically unaligned chunks by
 914		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
 915		 * even if the caller of these functions took care to align the
 916		 * large request. So make sure the maximum reported is aligned
 917		 * to the device physical block size. This is only an optional
 918		 * optimization for regular disks, but this is mandatory to
 919		 * avoid failure of large write same requests directed at
 920		 * sequential write required zones of host-managed ZBC disks.
 921		 */
 922		sdkp->max_ws_blocks =
 923			round_down(sdkp->max_ws_blocks,
 924				   bytes_to_logical(sdkp->device,
 925						    sdkp->physical_block_size));
 926	}
 927
 928out:
 929	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
 930					 (logical_block_size >> 9));
 931	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
 932					 (logical_block_size >> 9));
 933}
 934
 935/**
 936 * sd_setup_write_same_cmnd - write the same data to multiple blocks
 937 * @cmd: command to prepare
 938 *
 939 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
 940 * the preference indicated by the target device.
 941 **/
 942static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
 943{
 944	struct request *rq = cmd->request;
 945	struct scsi_device *sdp = cmd->device;
 946	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 947	struct bio *bio = rq->bio;
 948	sector_t sector = blk_rq_pos(rq);
 949	unsigned int nr_sectors = blk_rq_sectors(rq);
 950	unsigned int nr_bytes = blk_rq_bytes(rq);
 951	int ret;
 952
 953	if (sdkp->device->no_write_same)
 954		return BLKPREP_INVALID;
 955
 956	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
 957
 958	sector >>= ilog2(sdp->sector_size) - 9;
 959	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 960
 961	rq->timeout = SD_WRITE_SAME_TIMEOUT;
 962
 963	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
 964		cmd->cmd_len = 16;
 965		cmd->cmnd[0] = WRITE_SAME_16;
 966		put_unaligned_be64(sector, &cmd->cmnd[2]);
 967		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 968	} else {
 969		cmd->cmd_len = 10;
 970		cmd->cmnd[0] = WRITE_SAME;
 971		put_unaligned_be32(sector, &cmd->cmnd[2]);
 972		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 973	}
 974
 975	cmd->transfersize = sdp->sector_size;
 976	cmd->allowed = SD_MAX_RETRIES;
 977
 978	/*
 979	 * For WRITE SAME the data transferred via the DATA OUT buffer is
 980	 * different from the amount of data actually written to the target.
 981	 *
 982	 * We set up __data_len to the amount of data transferred via the
 983	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
 984	 * to transfer a single sector of data first, but then reset it to
 985	 * the amount of data to be written right after so that the I/O path
 986	 * knows how much to actually write.
 987	 */
 988	rq->__data_len = sdp->sector_size;
 989	ret = scsi_init_io(cmd);
 990	rq->__data_len = nr_bytes;
 991
 992	return ret;
 993}
 994
 995static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 996{
 997	struct request *rq = cmd->request;
 998
 999	/* flush requests don't perform I/O, zero the S/G table */
1000	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1001
1002	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1003	cmd->cmd_len = 10;
1004	cmd->transfersize = 0;
1005	cmd->allowed = SD_MAX_RETRIES;
1006
1007	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1008	return BLKPREP_OK;
1009}
1010
1011static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
 
 
1012{
1013	struct request *rq = SCpnt->request;
1014	struct scsi_device *sdp = SCpnt->device;
1015	struct gendisk *disk = rq->rq_disk;
1016	struct scsi_disk *sdkp = scsi_disk(disk);
1017	sector_t block = blk_rq_pos(rq);
1018	sector_t threshold;
1019	unsigned int this_count = blk_rq_sectors(rq);
1020	unsigned int dif, dix;
1021	int ret;
1022	unsigned char protect;
1023
1024	ret = scsi_init_io(SCpnt);
1025	if (ret != BLKPREP_OK)
1026		return ret;
1027	WARN_ON_ONCE(SCpnt != rq->special);
1028
1029	/* from here on until we're complete, any goto out
1030	 * is used for a killable error condition */
1031	ret = BLKPREP_KILL;
 
 
 
 
1032
1033	SCSI_LOG_HLQUEUE(1,
1034		scmd_printk(KERN_INFO, SCpnt,
1035			"%s: block=%llu, count=%d\n",
1036			__func__, (unsigned long long)block, this_count));
1037
1038	if (!sdp || !scsi_device_online(sdp) ||
1039	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1040		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041						"Finishing %u sectors\n",
1042						blk_rq_sectors(rq)));
1043		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1044						"Retry with 0x%p\n", SCpnt));
1045		goto out;
1046	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048	if (sdp->changed) {
 
 
 
 
 
 
 
 
 
 
 
1049		/*
1050		 * quietly refuse to do anything to a changed disc until 
1051		 * the changed bit has been reset
 
1052		 */
1053		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1054		goto out;
1055	}
1056
1057	/*
1058	 * Some SD card readers can't handle multi-sector accesses which touch
1059	 * the last one or two hardware sectors.  Split accesses as needed.
1060	 */
1061	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1062		(sdp->sector_size / 512);
 
1063
1064	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1065		if (block < threshold) {
1066			/* Access up to the threshold but not beyond */
1067			this_count = threshold - block;
1068		} else {
1069			/* Access only a single hardware sector */
1070			this_count = sdp->sector_size / 512;
1071		}
1072	}
1073
1074	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1075					(unsigned long long)block));
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	/*
1078	 * If we have a 1K hardware sectorsize, prevent access to single
1079	 * 512 byte sectors.  In theory we could handle this - in fact
1080	 * the scsi cdrom driver must be able to handle this because
1081	 * we typically use 1K blocksizes, and cdroms typically have
1082	 * 2K hardware sectorsizes.  Of course, things are simpler
1083	 * with the cdrom, since it is read-only.  For performance
1084	 * reasons, the filesystems should be able to handle this
1085	 * and not force the scsi disk driver to use bounce buffers
1086	 * for this.
1087	 */
1088	if (sdp->sector_size == 1024) {
1089		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1090			scmd_printk(KERN_ERR, SCpnt,
1091				    "Bad block number requested\n");
1092			goto out;
1093		} else {
1094			block = block >> 1;
1095			this_count = this_count >> 1;
1096		}
1097	}
1098	if (sdp->sector_size == 2048) {
1099		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1100			scmd_printk(KERN_ERR, SCpnt,
1101				    "Bad block number requested\n");
1102			goto out;
1103		} else {
1104			block = block >> 2;
1105			this_count = this_count >> 2;
1106		}
1107	}
1108	if (sdp->sector_size == 4096) {
1109		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110			scmd_printk(KERN_ERR, SCpnt,
1111				    "Bad block number requested\n");
1112			goto out;
1113		} else {
1114			block = block >> 3;
1115			this_count = this_count >> 3;
1116		}
1117	}
1118	if (rq_data_dir(rq) == WRITE) {
1119		SCpnt->cmnd[0] = WRITE_6;
1120
1121		if (blk_integrity_rq(rq))
1122			sd_dif_prepare(SCpnt);
 
 
 
1123
1124	} else if (rq_data_dir(rq) == READ) {
1125		SCpnt->cmnd[0] = READ_6;
1126	} else {
1127		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1128		goto out;
 
 
 
1129	}
1130
1131	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1132					"%s %d/%u 512 byte blocks.\n",
1133					(rq_data_dir(rq) == WRITE) ?
1134					"writing" : "reading", this_count,
1135					blk_rq_sectors(rq)));
1136
1137	dix = scsi_prot_sg_count(SCpnt);
1138	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1139
1140	if (dif || dix)
1141		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1142	else
1143		protect = 0;
1144
1145	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1146		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1147
1148		if (unlikely(SCpnt->cmnd == NULL)) {
1149			ret = BLKPREP_DEFER;
1150			goto out;
1151		}
1152
1153		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1154		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1155		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1156		SCpnt->cmnd[7] = 0x18;
1157		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1158		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1159
1160		/* LBA */
1161		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1162		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1163		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1164		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1165		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1166		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1167		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1168		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1169
1170		/* Expected Indirect LBA */
1171		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1172		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1173		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1174		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1175
1176		/* Transfer length */
1177		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1178		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1179		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1180		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1181	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1182		SCpnt->cmnd[0] += READ_16 - READ_6;
1183		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1185		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1186		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1187		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1188		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1189		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1190		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1191		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1192		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1193		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1194		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1195		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1196		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1197	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1198		   scsi_device_protection(SCpnt->device) ||
1199		   SCpnt->device->use_10_for_rw) {
1200		SCpnt->cmnd[0] += READ_10 - READ_6;
1201		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1202		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1203		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1204		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1205		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1206		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1207		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1208		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1209	} else {
1210		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1211			/*
1212			 * This happens only if this drive failed
1213			 * 10byte rw command with ILLEGAL_REQUEST
1214			 * during operation and thus turned off
1215			 * use_10_for_rw.
1216			 */
1217			scmd_printk(KERN_ERR, SCpnt,
1218				    "FUA write on READ/WRITE(6) drive\n");
1219			goto out;
1220		}
1221
1222		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1223		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1224		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1225		SCpnt->cmnd[4] = (unsigned char) this_count;
1226		SCpnt->cmnd[5] = 0;
1227	}
1228	SCpnt->sdb.length = this_count * sdp->sector_size;
 
 
1229
1230	/*
1231	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1232	 * host adapter, it's safe to assume that we can at least transfer
1233	 * this many bytes between each connect / disconnect.
1234	 */
1235	SCpnt->transfersize = sdp->sector_size;
1236	SCpnt->underflow = this_count << 9;
1237	SCpnt->allowed = SD_MAX_RETRIES;
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239	/*
1240	 * This indicates that the command is ready from our end to be
1241	 * queued.
1242	 */
1243	ret = BLKPREP_OK;
1244 out:
1245	return ret;
1246}
1247
1248static int sd_init_command(struct scsi_cmnd *cmd)
1249{
1250	struct request *rq = cmd->request;
1251
1252	switch (req_op(rq)) {
1253	case REQ_OP_DISCARD:
1254		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255		case SD_LBP_UNMAP:
1256			return sd_setup_unmap_cmnd(cmd);
1257		case SD_LBP_WS16:
1258			return sd_setup_write_same16_cmnd(cmd, true);
1259		case SD_LBP_WS10:
1260			return sd_setup_write_same10_cmnd(cmd, true);
1261		case SD_LBP_ZERO:
1262			return sd_setup_write_same10_cmnd(cmd, false);
1263		default:
1264			return BLKPREP_INVALID;
1265		}
1266	case REQ_OP_WRITE_ZEROES:
1267		return sd_setup_write_zeroes_cmnd(cmd);
1268	case REQ_OP_WRITE_SAME:
1269		return sd_setup_write_same_cmnd(cmd);
1270	case REQ_OP_FLUSH:
1271		return sd_setup_flush_cmnd(cmd);
1272	case REQ_OP_READ:
1273	case REQ_OP_WRITE:
1274		return sd_setup_read_write_cmnd(cmd);
1275	case REQ_OP_ZONE_REPORT:
1276		return sd_zbc_setup_report_cmnd(cmd);
1277	case REQ_OP_ZONE_RESET:
1278		return sd_zbc_setup_reset_cmnd(cmd);
 
 
1279	default:
1280		BUG();
 
1281	}
1282}
1283
1284static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285{
1286	struct request *rq = SCpnt->request;
1287	u8 *cmnd;
1288
1289	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1290		__free_page(rq->special_vec.bv_page);
1291
1292	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1293		cmnd = SCpnt->cmnd;
1294		SCpnt->cmnd = NULL;
1295		SCpnt->cmd_len = 0;
1296		mempool_free(cmnd, sd_cdb_pool);
1297	}
1298}
1299
1300/**
1301 *	sd_open - open a scsi disk device
1302 *	@bdev: Block device of the scsi disk to open
1303 *	@mode: FMODE_* mask
1304 *
1305 *	Returns 0 if successful. Returns a negated errno value in case 
1306 *	of error.
1307 *
1308 *	Note: This can be called from a user context (e.g. fsck(1) )
1309 *	or from within the kernel (e.g. as a result of a mount(1) ).
1310 *	In the latter case @inode and @filp carry an abridged amount
1311 *	of information as noted above.
1312 *
1313 *	Locking: called with bdev->bd_mutex held.
1314 **/
1315static int sd_open(struct block_device *bdev, fmode_t mode)
1316{
1317	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1318	struct scsi_device *sdev;
1319	int retval;
1320
1321	if (!sdkp)
1322		return -ENXIO;
1323
1324	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326	sdev = sdkp->device;
1327
1328	/*
1329	 * If the device is in error recovery, wait until it is done.
1330	 * If the device is offline, then disallow any access to it.
1331	 */
1332	retval = -ENXIO;
1333	if (!scsi_block_when_processing_errors(sdev))
1334		goto error_out;
1335
1336	if (sdev->removable || sdkp->write_prot)
1337		check_disk_change(bdev);
1338
1339	/*
1340	 * If the drive is empty, just let the open fail.
1341	 */
1342	retval = -ENOMEDIUM;
1343	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1344		goto error_out;
1345
1346	/*
1347	 * If the device has the write protect tab set, have the open fail
1348	 * if the user expects to be able to write to the thing.
1349	 */
1350	retval = -EROFS;
1351	if (sdkp->write_prot && (mode & FMODE_WRITE))
1352		goto error_out;
1353
1354	/*
1355	 * It is possible that the disk changing stuff resulted in
1356	 * the device being taken offline.  If this is the case,
1357	 * report this to the user, and don't pretend that the
1358	 * open actually succeeded.
1359	 */
1360	retval = -ENXIO;
1361	if (!scsi_device_online(sdev))
1362		goto error_out;
1363
1364	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1365		if (scsi_block_when_processing_errors(sdev))
1366			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1367	}
1368
1369	return 0;
1370
1371error_out:
1372	scsi_disk_put(sdkp);
1373	return retval;	
1374}
1375
1376/**
1377 *	sd_release - invoked when the (last) close(2) is called on this
1378 *	scsi disk.
1379 *	@disk: disk to release
1380 *	@mode: FMODE_* mask
1381 *
1382 *	Returns 0. 
1383 *
1384 *	Note: may block (uninterruptible) if error recovery is underway
1385 *	on this disk.
1386 *
1387 *	Locking: called with bdev->bd_mutex held.
1388 **/
1389static void sd_release(struct gendisk *disk, fmode_t mode)
1390{
1391	struct scsi_disk *sdkp = scsi_disk(disk);
1392	struct scsi_device *sdev = sdkp->device;
1393
1394	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1395
1396	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1397		if (scsi_block_when_processing_errors(sdev))
1398			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1399	}
1400
1401	/*
1402	 * XXX and what if there are packets in flight and this close()
1403	 * XXX is followed by a "rmmod sd_mod"?
1404	 */
1405
1406	scsi_disk_put(sdkp);
1407}
1408
1409static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1410{
1411	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1412	struct scsi_device *sdp = sdkp->device;
1413	struct Scsi_Host *host = sdp->host;
1414	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1415	int diskinfo[4];
1416
1417	/* default to most commonly used values */
1418	diskinfo[0] = 0x40;	/* 1 << 6 */
1419	diskinfo[1] = 0x20;	/* 1 << 5 */
1420	diskinfo[2] = capacity >> 11;
1421
1422	/* override with calculated, extended default, or driver values */
1423	if (host->hostt->bios_param)
1424		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1425	else
1426		scsicam_bios_param(bdev, capacity, diskinfo);
1427
1428	geo->heads = diskinfo[0];
1429	geo->sectors = diskinfo[1];
1430	geo->cylinders = diskinfo[2];
1431	return 0;
1432}
1433
1434/**
1435 *	sd_ioctl - process an ioctl
1436 *	@bdev: target block device
1437 *	@mode: FMODE_* mask
1438 *	@cmd: ioctl command number
1439 *	@arg: this is third argument given to ioctl(2) system call.
1440 *	Often contains a pointer.
1441 *
1442 *	Returns 0 if successful (some ioctls return positive numbers on
1443 *	success as well). Returns a negated errno value in case of error.
1444 *
1445 *	Note: most ioctls are forward onto the block subsystem or further
1446 *	down in the scsi subsystem.
1447 **/
1448static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1449		    unsigned int cmd, unsigned long arg)
1450{
1451	struct gendisk *disk = bdev->bd_disk;
1452	struct scsi_disk *sdkp = scsi_disk(disk);
1453	struct scsi_device *sdp = sdkp->device;
1454	void __user *p = (void __user *)arg;
1455	int error;
1456    
1457	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1458				    "cmd=0x%x\n", disk->disk_name, cmd));
1459
1460	error = scsi_verify_blk_ioctl(bdev, cmd);
1461	if (error < 0)
1462		return error;
1463
1464	/*
1465	 * If we are in the middle of error recovery, don't let anyone
1466	 * else try and use this device.  Also, if error recovery fails, it
1467	 * may try and take the device offline, in which case all further
1468	 * access to the device is prohibited.
1469	 */
1470	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1471			(mode & FMODE_NDELAY) != 0);
1472	if (error)
1473		goto out;
1474
1475	if (is_sed_ioctl(cmd))
1476		return sed_ioctl(sdkp->opal_dev, cmd, p);
1477
1478	/*
1479	 * Send SCSI addressing ioctls directly to mid level, send other
1480	 * ioctls to block level and then onto mid level if they can't be
1481	 * resolved.
1482	 */
1483	switch (cmd) {
1484		case SCSI_IOCTL_GET_IDLUN:
1485		case SCSI_IOCTL_GET_BUS_NUMBER:
1486			error = scsi_ioctl(sdp, cmd, p);
1487			break;
1488		default:
1489			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1490			if (error != -ENOTTY)
1491				break;
1492			error = scsi_ioctl(sdp, cmd, p);
1493			break;
1494	}
1495out:
1496	return error;
1497}
1498
1499static void set_media_not_present(struct scsi_disk *sdkp)
1500{
1501	if (sdkp->media_present)
1502		sdkp->device->changed = 1;
1503
1504	if (sdkp->device->removable) {
1505		sdkp->media_present = 0;
1506		sdkp->capacity = 0;
1507	}
1508}
1509
1510static int media_not_present(struct scsi_disk *sdkp,
1511			     struct scsi_sense_hdr *sshdr)
1512{
1513	if (!scsi_sense_valid(sshdr))
1514		return 0;
1515
1516	/* not invoked for commands that could return deferred errors */
1517	switch (sshdr->sense_key) {
1518	case UNIT_ATTENTION:
1519	case NOT_READY:
1520		/* medium not present */
1521		if (sshdr->asc == 0x3A) {
1522			set_media_not_present(sdkp);
1523			return 1;
1524		}
1525	}
1526	return 0;
1527}
1528
1529/**
1530 *	sd_check_events - check media events
1531 *	@disk: kernel device descriptor
1532 *	@clearing: disk events currently being cleared
1533 *
1534 *	Returns mask of DISK_EVENT_*.
1535 *
1536 *	Note: this function is invoked from the block subsystem.
1537 **/
1538static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539{
1540	struct scsi_disk *sdkp = scsi_disk_get(disk);
1541	struct scsi_device *sdp;
1542	int retval;
1543
1544	if (!sdkp)
1545		return 0;
1546
1547	sdp = sdkp->device;
1548	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1549
1550	/*
1551	 * If the device is offline, don't send any commands - just pretend as
1552	 * if the command failed.  If the device ever comes back online, we
1553	 * can deal with it then.  It is only because of unrecoverable errors
1554	 * that we would ever take a device offline in the first place.
1555	 */
1556	if (!scsi_device_online(sdp)) {
1557		set_media_not_present(sdkp);
1558		goto out;
1559	}
1560
1561	/*
1562	 * Using TEST_UNIT_READY enables differentiation between drive with
1563	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1564	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1565	 *
1566	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1567	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1568	 * sd_revalidate() is called.
1569	 */
1570	if (scsi_block_when_processing_errors(sdp)) {
1571		struct scsi_sense_hdr sshdr = { 0, };
1572
1573		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1574					      &sshdr);
1575
1576		/* failed to execute TUR, assume media not present */
1577		if (host_byte(retval)) {
1578			set_media_not_present(sdkp);
1579			goto out;
1580		}
1581
1582		if (media_not_present(sdkp, &sshdr))
1583			goto out;
1584	}
1585
1586	/*
1587	 * For removable scsi disk we have to recognise the presence
1588	 * of a disk in the drive.
1589	 */
1590	if (!sdkp->media_present)
1591		sdp->changed = 1;
1592	sdkp->media_present = 1;
1593out:
1594	/*
1595	 * sdp->changed is set under the following conditions:
1596	 *
1597	 *	Medium present state has changed in either direction.
1598	 *	Device has indicated UNIT_ATTENTION.
1599	 */
1600	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1601	sdp->changed = 0;
1602	scsi_disk_put(sdkp);
1603	return retval;
1604}
1605
1606static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607{
1608	int retries, res;
1609	struct scsi_device *sdp = sdkp->device;
1610	const int timeout = sdp->request_queue->rq_timeout
1611		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1612	struct scsi_sense_hdr my_sshdr;
1613
1614	if (!scsi_device_online(sdp))
1615		return -ENODEV;
1616
1617	/* caller might not be interested in sense, but we need it */
1618	if (!sshdr)
1619		sshdr = &my_sshdr;
1620
1621	for (retries = 3; retries > 0; --retries) {
1622		unsigned char cmd[10] = { 0 };
1623
1624		cmd[0] = SYNCHRONIZE_CACHE;
1625		/*
1626		 * Leave the rest of the command zero to indicate
1627		 * flush everything.
1628		 */
1629		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1630				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1631		if (res == 0)
1632			break;
1633	}
1634
1635	if (res) {
1636		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1637
1638		if (driver_byte(res) & DRIVER_SENSE)
1639			sd_print_sense_hdr(sdkp, sshdr);
1640
1641		/* we need to evaluate the error return  */
1642		if (scsi_sense_valid(sshdr) &&
1643			(sshdr->asc == 0x3a ||	/* medium not present */
1644			 sshdr->asc == 0x20))	/* invalid command */
 
1645				/* this is no error here */
1646				return 0;
1647
1648		switch (host_byte(res)) {
1649		/* ignore errors due to racing a disconnection */
1650		case DID_BAD_TARGET:
1651		case DID_NO_CONNECT:
1652			return 0;
1653		/* signal the upper layer it might try again */
1654		case DID_BUS_BUSY:
1655		case DID_IMM_RETRY:
1656		case DID_REQUEUE:
1657		case DID_SOFT_ERROR:
1658			return -EBUSY;
1659		default:
1660			return -EIO;
1661		}
1662	}
1663	return 0;
1664}
1665
1666static void sd_rescan(struct device *dev)
1667{
1668	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1669
1670	revalidate_disk(sdkp->disk);
1671}
1672
1673
1674#ifdef CONFIG_COMPAT
1675/* 
1676 * This gets directly called from VFS. When the ioctl 
1677 * is not recognized we go back to the other translation paths. 
1678 */
1679static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1680			   unsigned int cmd, unsigned long arg)
1681{
1682	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1683	int error;
1684
1685	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1686			(mode & FMODE_NDELAY) != 0);
1687	if (error)
1688		return error;
1689	       
1690	/* 
1691	 * Let the static ioctl translation table take care of it.
1692	 */
1693	if (!sdev->host->hostt->compat_ioctl)
1694		return -ENOIOCTLCMD; 
1695	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1696}
1697#endif
1698
1699static char sd_pr_type(enum pr_type type)
1700{
1701	switch (type) {
1702	case PR_WRITE_EXCLUSIVE:
1703		return 0x01;
1704	case PR_EXCLUSIVE_ACCESS:
1705		return 0x03;
1706	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1707		return 0x05;
1708	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1709		return 0x06;
1710	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1711		return 0x07;
1712	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1713		return 0x08;
1714	default:
1715		return 0;
1716	}
1717};
1718
1719static int sd_pr_command(struct block_device *bdev, u8 sa,
1720		u64 key, u64 sa_key, u8 type, u8 flags)
1721{
1722	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1723	struct scsi_sense_hdr sshdr;
1724	int result;
1725	u8 cmd[16] = { 0, };
1726	u8 data[24] = { 0, };
1727
1728	cmd[0] = PERSISTENT_RESERVE_OUT;
1729	cmd[1] = sa;
1730	cmd[2] = type;
1731	put_unaligned_be32(sizeof(data), &cmd[5]);
1732
1733	put_unaligned_be64(key, &data[0]);
1734	put_unaligned_be64(sa_key, &data[8]);
1735	data[20] = flags;
1736
1737	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1738			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1739
1740	if ((driver_byte(result) & DRIVER_SENSE) &&
1741	    (scsi_sense_valid(&sshdr))) {
1742		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1743		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1744	}
1745
1746	return result;
1747}
1748
1749static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1750		u32 flags)
1751{
1752	if (flags & ~PR_FL_IGNORE_KEY)
1753		return -EOPNOTSUPP;
1754	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1755			old_key, new_key, 0,
1756			(1 << 0) /* APTPL */);
1757}
1758
1759static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1760		u32 flags)
1761{
1762	if (flags)
1763		return -EOPNOTSUPP;
1764	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1765}
1766
1767static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1768{
1769	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1770}
1771
1772static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1773		enum pr_type type, bool abort)
1774{
1775	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1776			     sd_pr_type(type), 0);
1777}
1778
1779static int sd_pr_clear(struct block_device *bdev, u64 key)
1780{
1781	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1782}
1783
1784static const struct pr_ops sd_pr_ops = {
1785	.pr_register	= sd_pr_register,
1786	.pr_reserve	= sd_pr_reserve,
1787	.pr_release	= sd_pr_release,
1788	.pr_preempt	= sd_pr_preempt,
1789	.pr_clear	= sd_pr_clear,
1790};
1791
1792static const struct block_device_operations sd_fops = {
1793	.owner			= THIS_MODULE,
1794	.open			= sd_open,
1795	.release		= sd_release,
1796	.ioctl			= sd_ioctl,
1797	.getgeo			= sd_getgeo,
1798#ifdef CONFIG_COMPAT
1799	.compat_ioctl		= sd_compat_ioctl,
1800#endif
1801	.check_events		= sd_check_events,
1802	.revalidate_disk	= sd_revalidate_disk,
1803	.unlock_native_capacity	= sd_unlock_native_capacity,
 
1804	.pr_ops			= &sd_pr_ops,
1805};
1806
1807/**
1808 *	sd_eh_reset - reset error handling callback
1809 *	@scmd:		sd-issued command that has failed
1810 *
1811 *	This function is called by the SCSI midlayer before starting
1812 *	SCSI EH. When counting medium access failures we have to be
1813 *	careful to register it only only once per device and SCSI EH run;
1814 *	there might be several timed out commands which will cause the
1815 *	'max_medium_access_timeouts' counter to trigger after the first
1816 *	SCSI EH run already and set the device to offline.
1817 *	So this function resets the internal counter before starting SCSI EH.
1818 **/
1819static void sd_eh_reset(struct scsi_cmnd *scmd)
1820{
1821	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1822
1823	/* New SCSI EH run, reset gate variable */
1824	sdkp->ignore_medium_access_errors = false;
1825}
1826
1827/**
1828 *	sd_eh_action - error handling callback
1829 *	@scmd:		sd-issued command that has failed
1830 *	@eh_disp:	The recovery disposition suggested by the midlayer
1831 *
1832 *	This function is called by the SCSI midlayer upon completion of an
1833 *	error test command (currently TEST UNIT READY). The result of sending
1834 *	the eh command is passed in eh_disp.  We're looking for devices that
1835 *	fail medium access commands but are OK with non access commands like
1836 *	test unit ready (so wrongly see the device as having a successful
1837 *	recovery)
1838 **/
1839static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1840{
1841	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1842	struct scsi_device *sdev = scmd->device;
1843
1844	if (!scsi_device_online(sdev) ||
1845	    !scsi_medium_access_command(scmd) ||
1846	    host_byte(scmd->result) != DID_TIME_OUT ||
1847	    eh_disp != SUCCESS)
1848		return eh_disp;
1849
1850	/*
1851	 * The device has timed out executing a medium access command.
1852	 * However, the TEST UNIT READY command sent during error
1853	 * handling completed successfully. Either the device is in the
1854	 * process of recovering or has it suffered an internal failure
1855	 * that prevents access to the storage medium.
1856	 */
1857	if (!sdkp->ignore_medium_access_errors) {
1858		sdkp->medium_access_timed_out++;
1859		sdkp->ignore_medium_access_errors = true;
1860	}
1861
1862	/*
1863	 * If the device keeps failing read/write commands but TEST UNIT
1864	 * READY always completes successfully we assume that medium
1865	 * access is no longer possible and take the device offline.
1866	 */
1867	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1868		scmd_printk(KERN_ERR, scmd,
1869			    "Medium access timeout failure. Offlining disk!\n");
1870		mutex_lock(&sdev->state_mutex);
1871		scsi_device_set_state(sdev, SDEV_OFFLINE);
1872		mutex_unlock(&sdev->state_mutex);
1873
1874		return SUCCESS;
1875	}
1876
1877	return eh_disp;
1878}
1879
1880static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1881{
1882	struct request *req = scmd->request;
1883	struct scsi_device *sdev = scmd->device;
1884	unsigned int transferred, good_bytes;
1885	u64 start_lba, end_lba, bad_lba;
1886
1887	/*
1888	 * Some commands have a payload smaller than the device logical
1889	 * block size (e.g. INQUIRY on a 4K disk).
1890	 */
1891	if (scsi_bufflen(scmd) <= sdev->sector_size)
1892		return 0;
1893
1894	/* Check if we have a 'bad_lba' information */
1895	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1896				     SCSI_SENSE_BUFFERSIZE,
1897				     &bad_lba))
1898		return 0;
1899
1900	/*
1901	 * If the bad lba was reported incorrectly, we have no idea where
1902	 * the error is.
1903	 */
1904	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1905	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1906	if (bad_lba < start_lba || bad_lba >= end_lba)
1907		return 0;
1908
1909	/*
1910	 * resid is optional but mostly filled in.  When it's unused,
1911	 * its value is zero, so we assume the whole buffer transferred
1912	 */
1913	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1914
1915	/* This computation should always be done in terms of the
1916	 * resolution of the device's medium.
1917	 */
1918	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1919
1920	return min(good_bytes, transferred);
1921}
1922
1923/**
1924 *	sd_done - bottom half handler: called when the lower level
1925 *	driver has completed (successfully or otherwise) a scsi command.
1926 *	@SCpnt: mid-level's per command structure.
1927 *
1928 *	Note: potentially run from within an ISR. Must not block.
1929 **/
1930static int sd_done(struct scsi_cmnd *SCpnt)
1931{
1932	int result = SCpnt->result;
1933	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1934	unsigned int sector_size = SCpnt->device->sector_size;
1935	unsigned int resid;
1936	struct scsi_sense_hdr sshdr;
1937	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1938	struct request *req = SCpnt->request;
1939	int sense_valid = 0;
1940	int sense_deferred = 0;
1941
1942	switch (req_op(req)) {
1943	case REQ_OP_DISCARD:
1944	case REQ_OP_WRITE_ZEROES:
1945	case REQ_OP_WRITE_SAME:
1946	case REQ_OP_ZONE_RESET:
 
1947		if (!result) {
1948			good_bytes = blk_rq_bytes(req);
1949			scsi_set_resid(SCpnt, 0);
1950		} else {
1951			good_bytes = 0;
1952			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953		}
1954		break;
1955	case REQ_OP_ZONE_REPORT:
1956		if (!result) {
1957			good_bytes = scsi_bufflen(SCpnt)
1958				- scsi_get_resid(SCpnt);
1959			scsi_set_resid(SCpnt, 0);
1960		} else {
1961			good_bytes = 0;
1962			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1963		}
1964		break;
1965	default:
1966		/*
1967		 * In case of bogus fw or device, we could end up having
1968		 * an unaligned partial completion. Check this here and force
1969		 * alignment.
1970		 */
1971		resid = scsi_get_resid(SCpnt);
1972		if (resid & (sector_size - 1)) {
1973			sd_printk(KERN_INFO, sdkp,
1974				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1975				resid, sector_size);
 
1976			resid = min(scsi_bufflen(SCpnt),
1977				    round_up(resid, sector_size));
1978			scsi_set_resid(SCpnt, resid);
1979		}
1980	}
1981
1982	if (result) {
1983		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1984		if (sense_valid)
1985			sense_deferred = scsi_sense_is_deferred(&sshdr);
1986	}
1987	sdkp->medium_access_timed_out = 0;
1988
1989	if (driver_byte(result) != DRIVER_SENSE &&
1990	    (!sense_valid || sense_deferred))
1991		goto out;
1992
1993	switch (sshdr.sense_key) {
1994	case HARDWARE_ERROR:
1995	case MEDIUM_ERROR:
1996		good_bytes = sd_completed_bytes(SCpnt);
1997		break;
1998	case RECOVERED_ERROR:
1999		good_bytes = scsi_bufflen(SCpnt);
2000		break;
2001	case NO_SENSE:
2002		/* This indicates a false check condition, so ignore it.  An
2003		 * unknown amount of data was transferred so treat it as an
2004		 * error.
2005		 */
2006		SCpnt->result = 0;
2007		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2008		break;
2009	case ABORTED_COMMAND:
2010		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2011			good_bytes = sd_completed_bytes(SCpnt);
2012		break;
2013	case ILLEGAL_REQUEST:
2014		switch (sshdr.asc) {
2015		case 0x10:	/* DIX: Host detected corruption */
2016			good_bytes = sd_completed_bytes(SCpnt);
2017			break;
2018		case 0x20:	/* INVALID COMMAND OPCODE */
2019		case 0x24:	/* INVALID FIELD IN CDB */
2020			switch (SCpnt->cmnd[0]) {
2021			case UNMAP:
2022				sd_config_discard(sdkp, SD_LBP_DISABLE);
2023				break;
2024			case WRITE_SAME_16:
2025			case WRITE_SAME:
2026				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2027					sd_config_discard(sdkp, SD_LBP_DISABLE);
2028				} else {
2029					sdkp->device->no_write_same = 1;
2030					sd_config_write_same(sdkp);
2031					req->__data_len = blk_rq_bytes(req);
2032					req->rq_flags |= RQF_QUIET;
2033				}
2034				break;
2035			}
2036		}
2037		break;
2038	default:
2039		break;
2040	}
2041
2042 out:
2043	if (sd_is_zoned(sdkp))
2044		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2045
2046	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2047					   "sd_done: completed %d of %d bytes\n",
2048					   good_bytes, scsi_bufflen(SCpnt)));
2049
2050	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2051		sd_dif_complete(SCpnt, good_bytes);
2052
2053	return good_bytes;
2054}
2055
2056/*
2057 * spinup disk - called only in sd_revalidate_disk()
2058 */
2059static void
2060sd_spinup_disk(struct scsi_disk *sdkp)
2061{
2062	unsigned char cmd[10];
2063	unsigned long spintime_expire = 0;
2064	int retries, spintime;
2065	unsigned int the_result;
2066	struct scsi_sense_hdr sshdr;
2067	int sense_valid = 0;
2068
2069	spintime = 0;
2070
2071	/* Spin up drives, as required.  Only do this at boot time */
2072	/* Spinup needs to be done for module loads too. */
2073	do {
2074		retries = 0;
2075
2076		do {
2077			cmd[0] = TEST_UNIT_READY;
2078			memset((void *) &cmd[1], 0, 9);
2079
2080			the_result = scsi_execute_req(sdkp->device, cmd,
2081						      DMA_NONE, NULL, 0,
2082						      &sshdr, SD_TIMEOUT,
2083						      SD_MAX_RETRIES, NULL);
2084
2085			/*
2086			 * If the drive has indicated to us that it
2087			 * doesn't have any media in it, don't bother
2088			 * with any more polling.
2089			 */
2090			if (media_not_present(sdkp, &sshdr))
2091				return;
2092
2093			if (the_result)
2094				sense_valid = scsi_sense_valid(&sshdr);
2095			retries++;
2096		} while (retries < 3 && 
2097			 (!scsi_status_is_good(the_result) ||
2098			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2099			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2100
2101		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2102			/* no sense, TUR either succeeded or failed
2103			 * with a status error */
2104			if(!spintime && !scsi_status_is_good(the_result)) {
2105				sd_print_result(sdkp, "Test Unit Ready failed",
2106						the_result);
2107			}
2108			break;
2109		}
2110
2111		/*
2112		 * The device does not want the automatic start to be issued.
2113		 */
2114		if (sdkp->device->no_start_on_add)
2115			break;
2116
2117		if (sense_valid && sshdr.sense_key == NOT_READY) {
2118			if (sshdr.asc == 4 && sshdr.ascq == 3)
2119				break;	/* manual intervention required */
2120			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2121				break;	/* standby */
2122			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2123				break;	/* unavailable */
2124			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2125				break;	/* sanitize in progress */
2126			/*
2127			 * Issue command to spin up drive when not ready
2128			 */
2129			if (!spintime) {
2130				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2131				cmd[0] = START_STOP;
2132				cmd[1] = 1;	/* Return immediately */
2133				memset((void *) &cmd[2], 0, 8);
2134				cmd[4] = 1;	/* Start spin cycle */
2135				if (sdkp->device->start_stop_pwr_cond)
2136					cmd[4] |= 1 << 4;
2137				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2138						 NULL, 0, &sshdr,
2139						 SD_TIMEOUT, SD_MAX_RETRIES,
2140						 NULL);
2141				spintime_expire = jiffies + 100 * HZ;
2142				spintime = 1;
2143			}
2144			/* Wait 1 second for next try */
2145			msleep(1000);
2146			printk(KERN_CONT ".");
2147
2148		/*
2149		 * Wait for USB flash devices with slow firmware.
2150		 * Yes, this sense key/ASC combination shouldn't
2151		 * occur here.  It's characteristic of these devices.
2152		 */
2153		} else if (sense_valid &&
2154				sshdr.sense_key == UNIT_ATTENTION &&
2155				sshdr.asc == 0x28) {
2156			if (!spintime) {
2157				spintime_expire = jiffies + 5 * HZ;
2158				spintime = 1;
2159			}
2160			/* Wait 1 second for next try */
2161			msleep(1000);
2162		} else {
2163			/* we don't understand the sense code, so it's
2164			 * probably pointless to loop */
2165			if(!spintime) {
2166				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2167				sd_print_sense_hdr(sdkp, &sshdr);
2168			}
2169			break;
2170		}
2171				
2172	} while (spintime && time_before_eq(jiffies, spintime_expire));
2173
2174	if (spintime) {
2175		if (scsi_status_is_good(the_result))
2176			printk(KERN_CONT "ready\n");
2177		else
2178			printk(KERN_CONT "not responding...\n");
2179	}
2180}
2181
2182/*
2183 * Determine whether disk supports Data Integrity Field.
2184 */
2185static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2186{
2187	struct scsi_device *sdp = sdkp->device;
2188	u8 type;
2189	int ret = 0;
2190
2191	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2192		return ret;
2193
2194	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2195
2196	if (type > T10_PI_TYPE3_PROTECTION)
2197		ret = -ENODEV;
2198	else if (scsi_host_dif_capable(sdp->host, type))
2199		ret = 1;
2200
2201	if (sdkp->first_scan || type != sdkp->protection_type)
2202		switch (ret) {
2203		case -ENODEV:
2204			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2205				  " protection type %u. Disabling disk!\n",
2206				  type);
2207			break;
2208		case 1:
2209			sd_printk(KERN_NOTICE, sdkp,
2210				  "Enabling DIF Type %u protection\n", type);
2211			break;
2212		case 0:
2213			sd_printk(KERN_NOTICE, sdkp,
2214				  "Disabling DIF Type %u protection\n", type);
2215			break;
2216		}
2217
2218	sdkp->protection_type = type;
2219
2220	return ret;
2221}
2222
2223static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2224			struct scsi_sense_hdr *sshdr, int sense_valid,
2225			int the_result)
2226{
2227	if (driver_byte(the_result) & DRIVER_SENSE)
2228		sd_print_sense_hdr(sdkp, sshdr);
2229	else
2230		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2231
2232	/*
2233	 * Set dirty bit for removable devices if not ready -
2234	 * sometimes drives will not report this properly.
2235	 */
2236	if (sdp->removable &&
2237	    sense_valid && sshdr->sense_key == NOT_READY)
2238		set_media_not_present(sdkp);
2239
2240	/*
2241	 * We used to set media_present to 0 here to indicate no media
2242	 * in the drive, but some drives fail read capacity even with
2243	 * media present, so we can't do that.
2244	 */
2245	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2246}
2247
2248#define RC16_LEN 32
2249#if RC16_LEN > SD_BUF_SIZE
2250#error RC16_LEN must not be more than SD_BUF_SIZE
2251#endif
2252
2253#define READ_CAPACITY_RETRIES_ON_RESET	10
2254
2255/*
2256 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2257 * and the reported logical block size is bigger than 512 bytes. Note
2258 * that last_sector is a u64 and therefore logical_to_sectors() is not
2259 * applicable.
2260 */
2261static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2262{
2263	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2264
2265	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2266		return false;
2267
2268	return true;
2269}
2270
2271static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2272						unsigned char *buffer)
2273{
2274	unsigned char cmd[16];
2275	struct scsi_sense_hdr sshdr;
2276	int sense_valid = 0;
2277	int the_result;
2278	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2279	unsigned int alignment;
2280	unsigned long long lba;
2281	unsigned sector_size;
2282
2283	if (sdp->no_read_capacity_16)
2284		return -EINVAL;
2285
2286	do {
2287		memset(cmd, 0, 16);
2288		cmd[0] = SERVICE_ACTION_IN_16;
2289		cmd[1] = SAI_READ_CAPACITY_16;
2290		cmd[13] = RC16_LEN;
2291		memset(buffer, 0, RC16_LEN);
2292
2293		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2294					buffer, RC16_LEN, &sshdr,
2295					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2296
2297		if (media_not_present(sdkp, &sshdr))
2298			return -ENODEV;
2299
2300		if (the_result) {
2301			sense_valid = scsi_sense_valid(&sshdr);
2302			if (sense_valid &&
2303			    sshdr.sense_key == ILLEGAL_REQUEST &&
2304			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2305			    sshdr.ascq == 0x00)
2306				/* Invalid Command Operation Code or
2307				 * Invalid Field in CDB, just retry
2308				 * silently with RC10 */
2309				return -EINVAL;
2310			if (sense_valid &&
2311			    sshdr.sense_key == UNIT_ATTENTION &&
2312			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2313				/* Device reset might occur several times,
2314				 * give it one more chance */
2315				if (--reset_retries > 0)
2316					continue;
2317		}
2318		retries--;
2319
2320	} while (the_result && retries);
2321
2322	if (the_result) {
2323		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2324		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2325		return -EINVAL;
2326	}
2327
2328	sector_size = get_unaligned_be32(&buffer[8]);
2329	lba = get_unaligned_be64(&buffer[0]);
2330
2331	if (sd_read_protection_type(sdkp, buffer) < 0) {
2332		sdkp->capacity = 0;
2333		return -ENODEV;
2334	}
2335
2336	if (!sd_addressable_capacity(lba, sector_size)) {
2337		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2338			"kernel compiled with support for large block "
2339			"devices.\n");
2340		sdkp->capacity = 0;
2341		return -EOVERFLOW;
2342	}
2343
2344	/* Logical blocks per physical block exponent */
2345	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2346
2347	/* RC basis */
2348	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2349
2350	/* Lowest aligned logical block */
2351	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2352	blk_queue_alignment_offset(sdp->request_queue, alignment);
2353	if (alignment && sdkp->first_scan)
2354		sd_printk(KERN_NOTICE, sdkp,
2355			  "physical block alignment offset: %u\n", alignment);
2356
2357	if (buffer[14] & 0x80) { /* LBPME */
2358		sdkp->lbpme = 1;
2359
2360		if (buffer[14] & 0x40) /* LBPRZ */
2361			sdkp->lbprz = 1;
2362
2363		sd_config_discard(sdkp, SD_LBP_WS16);
2364	}
2365
2366	sdkp->capacity = lba + 1;
2367	return sector_size;
2368}
2369
2370static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2371						unsigned char *buffer)
2372{
2373	unsigned char cmd[16];
2374	struct scsi_sense_hdr sshdr;
2375	int sense_valid = 0;
2376	int the_result;
2377	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2378	sector_t lba;
2379	unsigned sector_size;
2380
2381	do {
2382		cmd[0] = READ_CAPACITY;
2383		memset(&cmd[1], 0, 9);
2384		memset(buffer, 0, 8);
2385
2386		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2387					buffer, 8, &sshdr,
2388					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2389
2390		if (media_not_present(sdkp, &sshdr))
2391			return -ENODEV;
2392
2393		if (the_result) {
2394			sense_valid = scsi_sense_valid(&sshdr);
2395			if (sense_valid &&
2396			    sshdr.sense_key == UNIT_ATTENTION &&
2397			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2398				/* Device reset might occur several times,
2399				 * give it one more chance */
2400				if (--reset_retries > 0)
2401					continue;
2402		}
2403		retries--;
2404
2405	} while (the_result && retries);
2406
2407	if (the_result) {
2408		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2409		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2410		return -EINVAL;
2411	}
2412
2413	sector_size = get_unaligned_be32(&buffer[4]);
2414	lba = get_unaligned_be32(&buffer[0]);
2415
2416	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2417		/* Some buggy (usb cardreader) devices return an lba of
2418		   0xffffffff when the want to report a size of 0 (with
2419		   which they really mean no media is present) */
2420		sdkp->capacity = 0;
2421		sdkp->physical_block_size = sector_size;
2422		return sector_size;
2423	}
2424
2425	if (!sd_addressable_capacity(lba, sector_size)) {
2426		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2427			"kernel compiled with support for large block "
2428			"devices.\n");
2429		sdkp->capacity = 0;
2430		return -EOVERFLOW;
2431	}
2432
2433	sdkp->capacity = lba + 1;
2434	sdkp->physical_block_size = sector_size;
2435	return sector_size;
2436}
2437
2438static int sd_try_rc16_first(struct scsi_device *sdp)
2439{
2440	if (sdp->host->max_cmd_len < 16)
2441		return 0;
2442	if (sdp->try_rc_10_first)
2443		return 0;
2444	if (sdp->scsi_level > SCSI_SPC_2)
2445		return 1;
2446	if (scsi_device_protection(sdp))
2447		return 1;
2448	return 0;
2449}
2450
2451/*
2452 * read disk capacity
2453 */
2454static void
2455sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2456{
2457	int sector_size;
2458	struct scsi_device *sdp = sdkp->device;
2459
2460	if (sd_try_rc16_first(sdp)) {
2461		sector_size = read_capacity_16(sdkp, sdp, buffer);
2462		if (sector_size == -EOVERFLOW)
2463			goto got_data;
2464		if (sector_size == -ENODEV)
2465			return;
2466		if (sector_size < 0)
2467			sector_size = read_capacity_10(sdkp, sdp, buffer);
2468		if (sector_size < 0)
2469			return;
2470	} else {
2471		sector_size = read_capacity_10(sdkp, sdp, buffer);
2472		if (sector_size == -EOVERFLOW)
2473			goto got_data;
2474		if (sector_size < 0)
2475			return;
2476		if ((sizeof(sdkp->capacity) > 4) &&
2477		    (sdkp->capacity > 0xffffffffULL)) {
2478			int old_sector_size = sector_size;
2479			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2480					"Trying to use READ CAPACITY(16).\n");
2481			sector_size = read_capacity_16(sdkp, sdp, buffer);
2482			if (sector_size < 0) {
2483				sd_printk(KERN_NOTICE, sdkp,
2484					"Using 0xffffffff as device size\n");
2485				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2486				sector_size = old_sector_size;
2487				goto got_data;
2488			}
2489			/* Remember that READ CAPACITY(16) succeeded */
2490			sdp->try_rc_10_first = 0;
2491		}
2492	}
2493
2494	/* Some devices are known to return the total number of blocks,
2495	 * not the highest block number.  Some devices have versions
2496	 * which do this and others which do not.  Some devices we might
2497	 * suspect of doing this but we don't know for certain.
2498	 *
2499	 * If we know the reported capacity is wrong, decrement it.  If
2500	 * we can only guess, then assume the number of blocks is even
2501	 * (usually true but not always) and err on the side of lowering
2502	 * the capacity.
2503	 */
2504	if (sdp->fix_capacity ||
2505	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2506		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2507				"from its reported value: %llu\n",
2508				(unsigned long long) sdkp->capacity);
2509		--sdkp->capacity;
2510	}
2511
2512got_data:
2513	if (sector_size == 0) {
2514		sector_size = 512;
2515		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2516			  "assuming 512.\n");
2517	}
2518
2519	if (sector_size != 512 &&
2520	    sector_size != 1024 &&
2521	    sector_size != 2048 &&
2522	    sector_size != 4096) {
2523		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2524			  sector_size);
2525		/*
2526		 * The user might want to re-format the drive with
2527		 * a supported sectorsize.  Once this happens, it
2528		 * would be relatively trivial to set the thing up.
2529		 * For this reason, we leave the thing in the table.
2530		 */
2531		sdkp->capacity = 0;
2532		/*
2533		 * set a bogus sector size so the normal read/write
2534		 * logic in the block layer will eventually refuse any
2535		 * request on this device without tripping over power
2536		 * of two sector size assumptions
2537		 */
2538		sector_size = 512;
2539	}
2540	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2541	blk_queue_physical_block_size(sdp->request_queue,
2542				      sdkp->physical_block_size);
2543	sdkp->device->sector_size = sector_size;
2544
2545	if (sdkp->capacity > 0xffffffff)
2546		sdp->use_16_for_rw = 1;
2547
2548}
2549
2550/*
2551 * Print disk capacity
2552 */
2553static void
2554sd_print_capacity(struct scsi_disk *sdkp,
2555		  sector_t old_capacity)
2556{
2557	int sector_size = sdkp->device->sector_size;
2558	char cap_str_2[10], cap_str_10[10];
2559
 
 
 
2560	string_get_size(sdkp->capacity, sector_size,
2561			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2562	string_get_size(sdkp->capacity, sector_size,
2563			STRING_UNITS_10, cap_str_10,
2564			sizeof(cap_str_10));
2565
2566	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2567		sd_printk(KERN_NOTICE, sdkp,
2568			  "%llu %d-byte logical blocks: (%s/%s)\n",
2569			  (unsigned long long)sdkp->capacity,
2570			  sector_size, cap_str_10, cap_str_2);
2571
2572		if (sdkp->physical_block_size != sector_size)
2573			sd_printk(KERN_NOTICE, sdkp,
2574				  "%u-byte physical blocks\n",
2575				  sdkp->physical_block_size);
2576
2577		sd_zbc_print_zones(sdkp);
2578	}
2579}
2580
2581/* called with buffer of length 512 */
2582static inline int
2583sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2584		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2585		 struct scsi_sense_hdr *sshdr)
2586{
2587	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2588			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2589			       sshdr);
2590}
2591
2592/*
2593 * read write protect setting, if possible - called only in sd_revalidate_disk()
2594 * called with buffer of length SD_BUF_SIZE
2595 */
2596static void
2597sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2598{
2599	int res;
2600	struct scsi_device *sdp = sdkp->device;
2601	struct scsi_mode_data data;
2602	int disk_ro = get_disk_ro(sdkp->disk);
2603	int old_wp = sdkp->write_prot;
2604
2605	set_disk_ro(sdkp->disk, 0);
2606	if (sdp->skip_ms_page_3f) {
2607		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2608		return;
2609	}
2610
2611	if (sdp->use_192_bytes_for_3f) {
2612		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2613	} else {
2614		/*
2615		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2616		 * We have to start carefully: some devices hang if we ask
2617		 * for more than is available.
2618		 */
2619		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2620
2621		/*
2622		 * Second attempt: ask for page 0 When only page 0 is
2623		 * implemented, a request for page 3F may return Sense Key
2624		 * 5: Illegal Request, Sense Code 24: Invalid field in
2625		 * CDB.
2626		 */
2627		if (!scsi_status_is_good(res))
2628			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2629
2630		/*
2631		 * Third attempt: ask 255 bytes, as we did earlier.
2632		 */
2633		if (!scsi_status_is_good(res))
2634			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2635					       &data, NULL);
2636	}
2637
2638	if (!scsi_status_is_good(res)) {
2639		sd_first_printk(KERN_WARNING, sdkp,
2640			  "Test WP failed, assume Write Enabled\n");
2641	} else {
2642		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2643		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2644		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2645			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2646				  sdkp->write_prot ? "on" : "off");
2647			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2648		}
2649	}
2650}
2651
2652/*
2653 * sd_read_cache_type - called only from sd_revalidate_disk()
2654 * called with buffer of length SD_BUF_SIZE
2655 */
2656static void
2657sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2658{
2659	int len = 0, res;
2660	struct scsi_device *sdp = sdkp->device;
2661
2662	int dbd;
2663	int modepage;
2664	int first_len;
2665	struct scsi_mode_data data;
2666	struct scsi_sense_hdr sshdr;
2667	int old_wce = sdkp->WCE;
2668	int old_rcd = sdkp->RCD;
2669	int old_dpofua = sdkp->DPOFUA;
2670
2671
2672	if (sdkp->cache_override)
2673		return;
2674
2675	first_len = 4;
2676	if (sdp->skip_ms_page_8) {
2677		if (sdp->type == TYPE_RBC)
2678			goto defaults;
2679		else {
2680			if (sdp->skip_ms_page_3f)
2681				goto defaults;
2682			modepage = 0x3F;
2683			if (sdp->use_192_bytes_for_3f)
2684				first_len = 192;
2685			dbd = 0;
2686		}
2687	} else if (sdp->type == TYPE_RBC) {
2688		modepage = 6;
2689		dbd = 8;
2690	} else {
2691		modepage = 8;
2692		dbd = 0;
2693	}
2694
2695	/* cautiously ask */
2696	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2697			&data, &sshdr);
2698
2699	if (!scsi_status_is_good(res))
2700		goto bad_sense;
2701
2702	if (!data.header_length) {
2703		modepage = 6;
2704		first_len = 0;
2705		sd_first_printk(KERN_ERR, sdkp,
2706				"Missing header in MODE_SENSE response\n");
2707	}
2708
2709	/* that went OK, now ask for the proper length */
2710	len = data.length;
2711
2712	/*
2713	 * We're only interested in the first three bytes, actually.
2714	 * But the data cache page is defined for the first 20.
2715	 */
2716	if (len < 3)
2717		goto bad_sense;
2718	else if (len > SD_BUF_SIZE) {
2719		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2720			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2721		len = SD_BUF_SIZE;
2722	}
2723	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2724		len = 192;
2725
2726	/* Get the data */
2727	if (len > first_len)
2728		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2729				&data, &sshdr);
2730
2731	if (scsi_status_is_good(res)) {
2732		int offset = data.header_length + data.block_descriptor_length;
2733
2734		while (offset < len) {
2735			u8 page_code = buffer[offset] & 0x3F;
2736			u8 spf       = buffer[offset] & 0x40;
2737
2738			if (page_code == 8 || page_code == 6) {
2739				/* We're interested only in the first 3 bytes.
2740				 */
2741				if (len - offset <= 2) {
2742					sd_first_printk(KERN_ERR, sdkp,
2743						"Incomplete mode parameter "
2744							"data\n");
2745					goto defaults;
2746				} else {
2747					modepage = page_code;
2748					goto Page_found;
2749				}
2750			} else {
2751				/* Go to the next page */
2752				if (spf && len - offset > 3)
2753					offset += 4 + (buffer[offset+2] << 8) +
2754						buffer[offset+3];
2755				else if (!spf && len - offset > 1)
2756					offset += 2 + buffer[offset+1];
2757				else {
2758					sd_first_printk(KERN_ERR, sdkp,
2759							"Incomplete mode "
2760							"parameter data\n");
2761					goto defaults;
2762				}
2763			}
2764		}
2765
2766		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2767		goto defaults;
2768
2769	Page_found:
2770		if (modepage == 8) {
2771			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2772			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2773		} else {
2774			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2775			sdkp->RCD = 0;
2776		}
2777
2778		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2779		if (sdp->broken_fua) {
2780			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2781			sdkp->DPOFUA = 0;
2782		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2783			   !sdkp->device->use_16_for_rw) {
2784			sd_first_printk(KERN_NOTICE, sdkp,
2785				  "Uses READ/WRITE(6), disabling FUA\n");
2786			sdkp->DPOFUA = 0;
2787		}
2788
2789		/* No cache flush allowed for write protected devices */
2790		if (sdkp->WCE && sdkp->write_prot)
2791			sdkp->WCE = 0;
2792
2793		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2794		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2795			sd_printk(KERN_NOTICE, sdkp,
2796				  "Write cache: %s, read cache: %s, %s\n",
2797				  sdkp->WCE ? "enabled" : "disabled",
2798				  sdkp->RCD ? "disabled" : "enabled",
2799				  sdkp->DPOFUA ? "supports DPO and FUA"
2800				  : "doesn't support DPO or FUA");
2801
2802		return;
2803	}
2804
2805bad_sense:
2806	if (scsi_sense_valid(&sshdr) &&
2807	    sshdr.sense_key == ILLEGAL_REQUEST &&
2808	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2809		/* Invalid field in CDB */
2810		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2811	else
2812		sd_first_printk(KERN_ERR, sdkp,
2813				"Asking for cache data failed\n");
2814
2815defaults:
2816	if (sdp->wce_default_on) {
2817		sd_first_printk(KERN_NOTICE, sdkp,
2818				"Assuming drive cache: write back\n");
2819		sdkp->WCE = 1;
2820	} else {
2821		sd_first_printk(KERN_ERR, sdkp,
2822				"Assuming drive cache: write through\n");
2823		sdkp->WCE = 0;
2824	}
2825	sdkp->RCD = 0;
2826	sdkp->DPOFUA = 0;
2827}
2828
2829/*
2830 * The ATO bit indicates whether the DIF application tag is available
2831 * for use by the operating system.
2832 */
2833static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2834{
2835	int res, offset;
2836	struct scsi_device *sdp = sdkp->device;
2837	struct scsi_mode_data data;
2838	struct scsi_sense_hdr sshdr;
2839
2840	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2841		return;
2842
2843	if (sdkp->protection_type == 0)
2844		return;
2845
2846	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2847			      SD_MAX_RETRIES, &data, &sshdr);
2848
2849	if (!scsi_status_is_good(res) || !data.header_length ||
2850	    data.length < 6) {
2851		sd_first_printk(KERN_WARNING, sdkp,
2852			  "getting Control mode page failed, assume no ATO\n");
2853
2854		if (scsi_sense_valid(&sshdr))
2855			sd_print_sense_hdr(sdkp, &sshdr);
2856
2857		return;
2858	}
2859
2860	offset = data.header_length + data.block_descriptor_length;
2861
2862	if ((buffer[offset] & 0x3f) != 0x0a) {
2863		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2864		return;
2865	}
2866
2867	if ((buffer[offset + 5] & 0x80) == 0)
2868		return;
2869
2870	sdkp->ATO = 1;
2871
2872	return;
2873}
2874
2875/**
2876 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2877 * @sdkp: disk to query
2878 */
2879static void sd_read_block_limits(struct scsi_disk *sdkp)
2880{
2881	unsigned int sector_sz = sdkp->device->sector_size;
2882	const int vpd_len = 64;
2883	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2884
2885	if (!buffer ||
2886	    /* Block Limits VPD */
2887	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2888		goto out;
2889
2890	blk_queue_io_min(sdkp->disk->queue,
2891			 get_unaligned_be16(&buffer[6]) * sector_sz);
2892
2893	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2894	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2895
2896	if (buffer[3] == 0x3c) {
2897		unsigned int lba_count, desc_count;
2898
2899		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2900
2901		if (!sdkp->lbpme)
2902			goto out;
2903
2904		lba_count = get_unaligned_be32(&buffer[20]);
2905		desc_count = get_unaligned_be32(&buffer[24]);
2906
2907		if (lba_count && desc_count)
2908			sdkp->max_unmap_blocks = lba_count;
2909
2910		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2911
2912		if (buffer[32] & 0x80)
2913			sdkp->unmap_alignment =
2914				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2915
2916		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2917
2918			if (sdkp->max_unmap_blocks)
2919				sd_config_discard(sdkp, SD_LBP_UNMAP);
2920			else
2921				sd_config_discard(sdkp, SD_LBP_WS16);
2922
2923		} else {	/* LBP VPD page tells us what to use */
2924			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2925				sd_config_discard(sdkp, SD_LBP_UNMAP);
2926			else if (sdkp->lbpws)
2927				sd_config_discard(sdkp, SD_LBP_WS16);
2928			else if (sdkp->lbpws10)
2929				sd_config_discard(sdkp, SD_LBP_WS10);
2930			else
2931				sd_config_discard(sdkp, SD_LBP_DISABLE);
2932		}
2933	}
2934
2935 out:
2936	kfree(buffer);
2937}
2938
2939/**
2940 * sd_read_block_characteristics - Query block dev. characteristics
2941 * @sdkp: disk to query
2942 */
2943static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2944{
2945	struct request_queue *q = sdkp->disk->queue;
2946	unsigned char *buffer;
2947	u16 rot;
2948	const int vpd_len = 64;
2949
2950	buffer = kmalloc(vpd_len, GFP_KERNEL);
2951
2952	if (!buffer ||
2953	    /* Block Device Characteristics VPD */
2954	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2955		goto out;
2956
2957	rot = get_unaligned_be16(&buffer[4]);
2958
2959	if (rot == 1) {
2960		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2961		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2962	}
2963
2964	if (sdkp->device->type == TYPE_ZBC) {
2965		/* Host-managed */
2966		q->limits.zoned = BLK_ZONED_HM;
2967	} else {
2968		sdkp->zoned = (buffer[8] >> 4) & 3;
2969		if (sdkp->zoned == 1)
2970			/* Host-aware */
2971			q->limits.zoned = BLK_ZONED_HA;
2972		else
2973			/*
2974			 * Treat drive-managed devices as
2975			 * regular block devices.
2976			 */
2977			q->limits.zoned = BLK_ZONED_NONE;
2978	}
2979	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2980		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2981		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2982
2983 out:
2984	kfree(buffer);
2985}
2986
2987/**
2988 * sd_read_block_provisioning - Query provisioning VPD page
2989 * @sdkp: disk to query
2990 */
2991static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2992{
2993	unsigned char *buffer;
2994	const int vpd_len = 8;
2995
2996	if (sdkp->lbpme == 0)
2997		return;
2998
2999	buffer = kmalloc(vpd_len, GFP_KERNEL);
3000
3001	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3002		goto out;
3003
3004	sdkp->lbpvpd	= 1;
3005	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3006	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3007	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3008
3009 out:
3010	kfree(buffer);
3011}
3012
3013static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3014{
3015	struct scsi_device *sdev = sdkp->device;
3016
3017	if (sdev->host->no_write_same) {
3018		sdev->no_write_same = 1;
3019
3020		return;
3021	}
3022
3023	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3024		/* too large values might cause issues with arcmsr */
3025		int vpd_buf_len = 64;
3026
3027		sdev->no_report_opcodes = 1;
3028
3029		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3030		 * CODES is unsupported and the device has an ATA
3031		 * Information VPD page (SAT).
3032		 */
3033		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3034			sdev->no_write_same = 1;
3035	}
3036
3037	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3038		sdkp->ws16 = 1;
3039
3040	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3041		sdkp->ws10 = 1;
3042}
3043
3044static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3045{
3046	struct scsi_device *sdev = sdkp->device;
3047
3048	if (!sdev->security_supported)
3049		return;
3050
3051	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3052			SECURITY_PROTOCOL_IN) == 1 &&
3053	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3054			SECURITY_PROTOCOL_OUT) == 1)
3055		sdkp->security = 1;
3056}
3057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058/**
3059 *	sd_revalidate_disk - called the first time a new disk is seen,
3060 *	performs disk spin up, read_capacity, etc.
3061 *	@disk: struct gendisk we care about
3062 **/
3063static int sd_revalidate_disk(struct gendisk *disk)
3064{
3065	struct scsi_disk *sdkp = scsi_disk(disk);
3066	struct scsi_device *sdp = sdkp->device;
3067	struct request_queue *q = sdkp->disk->queue;
3068	sector_t old_capacity = sdkp->capacity;
3069	unsigned char *buffer;
3070	unsigned int dev_max, rw_max;
3071
3072	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3073				      "sd_revalidate_disk\n"));
3074
3075	/*
3076	 * If the device is offline, don't try and read capacity or any
3077	 * of the other niceties.
3078	 */
3079	if (!scsi_device_online(sdp))
3080		goto out;
3081
3082	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3083	if (!buffer) {
3084		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3085			  "allocation failure.\n");
3086		goto out;
3087	}
3088
3089	sd_spinup_disk(sdkp);
3090
3091	/*
3092	 * Without media there is no reason to ask; moreover, some devices
3093	 * react badly if we do.
3094	 */
3095	if (sdkp->media_present) {
3096		sd_read_capacity(sdkp, buffer);
3097
 
 
 
 
 
 
 
 
 
3098		if (scsi_device_supports_vpd(sdp)) {
3099			sd_read_block_provisioning(sdkp);
3100			sd_read_block_limits(sdkp);
3101			sd_read_block_characteristics(sdkp);
3102			sd_zbc_read_zones(sdkp, buffer);
3103		}
3104
3105		sd_print_capacity(sdkp, old_capacity);
3106
3107		sd_read_write_protect_flag(sdkp, buffer);
3108		sd_read_cache_type(sdkp, buffer);
3109		sd_read_app_tag_own(sdkp, buffer);
3110		sd_read_write_same(sdkp, buffer);
3111		sd_read_security(sdkp, buffer);
3112	}
3113
3114	/*
3115	 * We now have all cache related info, determine how we deal
3116	 * with flush requests.
3117	 */
3118	sd_set_flush_flag(sdkp);
3119
3120	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3121	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3122
3123	/* Some devices report a maximum block count for READ/WRITE requests. */
3124	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3125	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3126
3127	/*
3128	 * Determine the device's preferred I/O size for reads and writes
3129	 * unless the reported value is unreasonably small, large, or
3130	 * garbage.
3131	 */
3132	if (sdkp->opt_xfer_blocks &&
3133	    sdkp->opt_xfer_blocks <= dev_max &&
3134	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3135	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3136		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3137		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3138	} else
3139		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3140				      (sector_t)BLK_DEF_MAX_SECTORS);
3141
3142	/* Do not exceed controller limit */
3143	rw_max = min(rw_max, queue_max_hw_sectors(q));
3144
3145	/*
3146	 * Only update max_sectors if previously unset or if the current value
3147	 * exceeds the capabilities of the hardware.
3148	 */
3149	if (sdkp->first_scan ||
3150	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3151	    q->limits.max_sectors > q->limits.max_hw_sectors)
3152		q->limits.max_sectors = rw_max;
3153
3154	sdkp->first_scan = 0;
3155
3156	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3157	sd_config_write_same(sdkp);
3158	kfree(buffer);
3159
3160 out:
3161	return 0;
3162}
3163
3164/**
3165 *	sd_unlock_native_capacity - unlock native capacity
3166 *	@disk: struct gendisk to set capacity for
3167 *
3168 *	Block layer calls this function if it detects that partitions
3169 *	on @disk reach beyond the end of the device.  If the SCSI host
3170 *	implements ->unlock_native_capacity() method, it's invoked to
3171 *	give it a chance to adjust the device capacity.
3172 *
3173 *	CONTEXT:
3174 *	Defined by block layer.  Might sleep.
3175 */
3176static void sd_unlock_native_capacity(struct gendisk *disk)
3177{
3178	struct scsi_device *sdev = scsi_disk(disk)->device;
3179
3180	if (sdev->host->hostt->unlock_native_capacity)
3181		sdev->host->hostt->unlock_native_capacity(sdev);
3182}
3183
3184/**
3185 *	sd_format_disk_name - format disk name
3186 *	@prefix: name prefix - ie. "sd" for SCSI disks
3187 *	@index: index of the disk to format name for
3188 *	@buf: output buffer
3189 *	@buflen: length of the output buffer
3190 *
3191 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3192 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3193 *	which is followed by sdaaa.
3194 *
3195 *	This is basically 26 base counting with one extra 'nil' entry
3196 *	at the beginning from the second digit on and can be
3197 *	determined using similar method as 26 base conversion with the
3198 *	index shifted -1 after each digit is computed.
3199 *
3200 *	CONTEXT:
3201 *	Don't care.
3202 *
3203 *	RETURNS:
3204 *	0 on success, -errno on failure.
3205 */
3206static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3207{
3208	const int base = 'z' - 'a' + 1;
3209	char *begin = buf + strlen(prefix);
3210	char *end = buf + buflen;
3211	char *p;
3212	int unit;
3213
3214	p = end - 1;
3215	*p = '\0';
3216	unit = base;
3217	do {
3218		if (p == begin)
3219			return -EINVAL;
3220		*--p = 'a' + (index % unit);
3221		index = (index / unit) - 1;
3222	} while (index >= 0);
3223
3224	memmove(begin, p, end - p);
3225	memcpy(buf, prefix, strlen(prefix));
3226
3227	return 0;
3228}
3229
3230/*
3231 * The asynchronous part of sd_probe
3232 */
3233static void sd_probe_async(void *data, async_cookie_t cookie)
3234{
3235	struct scsi_disk *sdkp = data;
3236	struct scsi_device *sdp;
3237	struct gendisk *gd;
3238	u32 index;
3239	struct device *dev;
3240
3241	sdp = sdkp->device;
3242	gd = sdkp->disk;
3243	index = sdkp->index;
3244	dev = &sdp->sdev_gendev;
3245
3246	gd->major = sd_major((index & 0xf0) >> 4);
3247	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3248
3249	gd->fops = &sd_fops;
3250	gd->private_data = &sdkp->driver;
3251	gd->queue = sdkp->device->request_queue;
3252
3253	/* defaults, until the device tells us otherwise */
3254	sdp->sector_size = 512;
3255	sdkp->capacity = 0;
3256	sdkp->media_present = 1;
3257	sdkp->write_prot = 0;
3258	sdkp->cache_override = 0;
3259	sdkp->WCE = 0;
3260	sdkp->RCD = 0;
3261	sdkp->ATO = 0;
3262	sdkp->first_scan = 1;
3263	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3264
3265	sd_revalidate_disk(gd);
3266
3267	gd->flags = GENHD_FL_EXT_DEVT;
3268	if (sdp->removable) {
3269		gd->flags |= GENHD_FL_REMOVABLE;
3270		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3271	}
3272
3273	blk_pm_runtime_init(sdp->request_queue, dev);
3274	device_add_disk(dev, gd);
3275	if (sdkp->capacity)
3276		sd_dif_config_host(sdkp);
3277
3278	sd_revalidate_disk(gd);
3279
3280	if (sdkp->security) {
3281		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3282		if (sdkp->opal_dev)
3283			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3284	}
3285
3286	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3287		  sdp->removable ? "removable " : "");
3288	scsi_autopm_put_device(sdp);
3289	put_device(&sdkp->dev);
3290}
3291
3292/**
3293 *	sd_probe - called during driver initialization and whenever a
3294 *	new scsi device is attached to the system. It is called once
3295 *	for each scsi device (not just disks) present.
3296 *	@dev: pointer to device object
3297 *
3298 *	Returns 0 if successful (or not interested in this scsi device 
3299 *	(e.g. scanner)); 1 when there is an error.
3300 *
3301 *	Note: this function is invoked from the scsi mid-level.
3302 *	This function sets up the mapping between a given 
3303 *	<host,channel,id,lun> (found in sdp) and new device name 
3304 *	(e.g. /dev/sda). More precisely it is the block device major 
3305 *	and minor number that is chosen here.
3306 *
3307 *	Assume sd_probe is not re-entrant (for time being)
3308 *	Also think about sd_probe() and sd_remove() running coincidentally.
3309 **/
3310static int sd_probe(struct device *dev)
3311{
3312	struct scsi_device *sdp = to_scsi_device(dev);
3313	struct scsi_disk *sdkp;
3314	struct gendisk *gd;
3315	int index;
3316	int error;
3317
3318	scsi_autopm_get_device(sdp);
3319	error = -ENODEV;
3320	if (sdp->type != TYPE_DISK &&
3321	    sdp->type != TYPE_ZBC &&
3322	    sdp->type != TYPE_MOD &&
3323	    sdp->type != TYPE_RBC)
3324		goto out;
3325
3326#ifndef CONFIG_BLK_DEV_ZONED
3327	if (sdp->type == TYPE_ZBC)
3328		goto out;
3329#endif
3330	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3331					"sd_probe\n"));
3332
3333	error = -ENOMEM;
3334	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3335	if (!sdkp)
3336		goto out;
3337
3338	gd = alloc_disk(SD_MINORS);
3339	if (!gd)
3340		goto out_free;
3341
3342	do {
3343		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3344			goto out_put;
3345
3346		spin_lock(&sd_index_lock);
3347		error = ida_get_new(&sd_index_ida, &index);
3348		spin_unlock(&sd_index_lock);
3349	} while (error == -EAGAIN);
3350
3351	if (error) {
3352		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3353		goto out_put;
3354	}
3355
3356	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3357	if (error) {
3358		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3359		goto out_free_index;
3360	}
3361
3362	sdkp->device = sdp;
3363	sdkp->driver = &sd_template;
3364	sdkp->disk = gd;
3365	sdkp->index = index;
3366	atomic_set(&sdkp->openers, 0);
3367	atomic_set(&sdkp->device->ioerr_cnt, 0);
3368
3369	if (!sdp->request_queue->rq_timeout) {
3370		if (sdp->type != TYPE_MOD)
3371			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3372		else
3373			blk_queue_rq_timeout(sdp->request_queue,
3374					     SD_MOD_TIMEOUT);
3375	}
3376
3377	device_initialize(&sdkp->dev);
3378	sdkp->dev.parent = dev;
3379	sdkp->dev.class = &sd_disk_class;
3380	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3381
3382	error = device_add(&sdkp->dev);
3383	if (error)
3384		goto out_free_index;
3385
3386	get_device(dev);
3387	dev_set_drvdata(dev, sdkp);
3388
3389	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3390	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391
3392	return 0;
3393
3394 out_free_index:
3395	spin_lock(&sd_index_lock);
3396	ida_remove(&sd_index_ida, index);
3397	spin_unlock(&sd_index_lock);
3398 out_put:
3399	put_disk(gd);
3400 out_free:
3401	kfree(sdkp);
3402 out:
3403	scsi_autopm_put_device(sdp);
3404	return error;
3405}
3406
3407/**
3408 *	sd_remove - called whenever a scsi disk (previously recognized by
3409 *	sd_probe) is detached from the system. It is called (potentially
3410 *	multiple times) during sd module unload.
3411 *	@dev: pointer to device object
3412 *
3413 *	Note: this function is invoked from the scsi mid-level.
3414 *	This function potentially frees up a device name (e.g. /dev/sdc)
3415 *	that could be re-used by a subsequent sd_probe().
3416 *	This function is not called when the built-in sd driver is "exit-ed".
3417 **/
3418static int sd_remove(struct device *dev)
3419{
3420	struct scsi_disk *sdkp;
3421	dev_t devt;
3422
3423	sdkp = dev_get_drvdata(dev);
3424	devt = disk_devt(sdkp->disk);
3425	scsi_autopm_get_device(sdkp->device);
3426
3427	async_synchronize_full_domain(&scsi_sd_pm_domain);
3428	async_synchronize_full_domain(&scsi_sd_probe_domain);
3429	device_del(&sdkp->dev);
3430	del_gendisk(sdkp->disk);
3431	sd_shutdown(dev);
3432
3433	sd_zbc_remove(sdkp);
3434
3435	free_opal_dev(sdkp->opal_dev);
3436
3437	blk_register_region(devt, SD_MINORS, NULL,
3438			    sd_default_probe, NULL, NULL);
3439
3440	mutex_lock(&sd_ref_mutex);
3441	dev_set_drvdata(dev, NULL);
3442	put_device(&sdkp->dev);
3443	mutex_unlock(&sd_ref_mutex);
3444
3445	return 0;
3446}
3447
3448/**
3449 *	scsi_disk_release - Called to free the scsi_disk structure
3450 *	@dev: pointer to embedded class device
3451 *
3452 *	sd_ref_mutex must be held entering this routine.  Because it is
3453 *	called on last put, you should always use the scsi_disk_get()
3454 *	scsi_disk_put() helpers which manipulate the semaphore directly
3455 *	and never do a direct put_device.
3456 **/
3457static void scsi_disk_release(struct device *dev)
3458{
3459	struct scsi_disk *sdkp = to_scsi_disk(dev);
3460	struct gendisk *disk = sdkp->disk;
3461	
3462	spin_lock(&sd_index_lock);
3463	ida_remove(&sd_index_ida, sdkp->index);
3464	spin_unlock(&sd_index_lock);
 
 
 
 
 
 
 
 
 
 
3465
3466	disk->private_data = NULL;
3467	put_disk(disk);
3468	put_device(&sdkp->device->sdev_gendev);
3469
3470	kfree(sdkp);
3471}
3472
3473static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3474{
3475	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3476	struct scsi_sense_hdr sshdr;
3477	struct scsi_device *sdp = sdkp->device;
3478	int res;
3479
3480	if (start)
3481		cmd[4] |= 1;	/* START */
3482
3483	if (sdp->start_stop_pwr_cond)
3484		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3485
3486	if (!scsi_device_online(sdp))
3487		return -ENODEV;
3488
3489	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3490			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3491	if (res) {
3492		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3493		if (driver_byte(res) & DRIVER_SENSE)
3494			sd_print_sense_hdr(sdkp, &sshdr);
3495		if (scsi_sense_valid(&sshdr) &&
3496			/* 0x3a is medium not present */
3497			sshdr.asc == 0x3a)
3498			res = 0;
3499	}
3500
3501	/* SCSI error codes must not go to the generic layer */
3502	if (res)
3503		return -EIO;
3504
3505	return 0;
3506}
3507
3508/*
3509 * Send a SYNCHRONIZE CACHE instruction down to the device through
3510 * the normal SCSI command structure.  Wait for the command to
3511 * complete.
3512 */
3513static void sd_shutdown(struct device *dev)
3514{
3515	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3516
3517	if (!sdkp)
3518		return;         /* this can happen */
3519
3520	if (pm_runtime_suspended(dev))
3521		return;
3522
3523	if (sdkp->WCE && sdkp->media_present) {
3524		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3525		sd_sync_cache(sdkp, NULL);
3526	}
3527
3528	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3529		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3530		sd_start_stop_device(sdkp, 0);
3531	}
3532}
3533
3534static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3535{
3536	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3537	struct scsi_sense_hdr sshdr;
3538	int ret = 0;
3539
3540	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3541		return 0;
3542
3543	if (sdkp->WCE && sdkp->media_present) {
3544		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3545		ret = sd_sync_cache(sdkp, &sshdr);
3546
3547		if (ret) {
3548			/* ignore OFFLINE device */
3549			if (ret == -ENODEV)
3550				return 0;
3551
3552			if (!scsi_sense_valid(&sshdr) ||
3553			    sshdr.sense_key != ILLEGAL_REQUEST)
3554				return ret;
3555
3556			/*
3557			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3558			 * doesn't support sync. There's not much to do and
3559			 * suspend shouldn't fail.
3560			 */
3561			ret = 0;
3562		}
3563	}
3564
3565	if (sdkp->device->manage_start_stop) {
3566		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3567		/* an error is not worth aborting a system sleep */
3568		ret = sd_start_stop_device(sdkp, 0);
3569		if (ignore_stop_errors)
3570			ret = 0;
3571	}
3572
3573	return ret;
3574}
3575
3576static int sd_suspend_system(struct device *dev)
3577{
3578	return sd_suspend_common(dev, true);
3579}
3580
3581static int sd_suspend_runtime(struct device *dev)
3582{
3583	return sd_suspend_common(dev, false);
3584}
3585
3586static int sd_resume(struct device *dev)
3587{
3588	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3589	int ret;
3590
3591	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3592		return 0;
3593
3594	if (!sdkp->device->manage_start_stop)
3595		return 0;
3596
3597	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3598	ret = sd_start_stop_device(sdkp, 1);
3599	if (!ret)
3600		opal_unlock_from_suspend(sdkp->opal_dev);
3601	return ret;
3602}
3603
3604/**
3605 *	init_sd - entry point for this driver (both when built in or when
3606 *	a module).
3607 *
3608 *	Note: this function registers this driver with the scsi mid-level.
3609 **/
3610static int __init init_sd(void)
3611{
3612	int majors = 0, i, err;
3613
3614	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3615
3616	for (i = 0; i < SD_MAJORS; i++) {
3617		if (register_blkdev(sd_major(i), "sd") != 0)
3618			continue;
3619		majors++;
3620		blk_register_region(sd_major(i), SD_MINORS, NULL,
3621				    sd_default_probe, NULL, NULL);
3622	}
3623
3624	if (!majors)
3625		return -ENODEV;
3626
3627	err = class_register(&sd_disk_class);
3628	if (err)
3629		goto err_out;
3630
3631	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3632					 0, 0, NULL);
3633	if (!sd_cdb_cache) {
3634		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3635		err = -ENOMEM;
3636		goto err_out_class;
3637	}
3638
3639	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3640	if (!sd_cdb_pool) {
3641		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3642		err = -ENOMEM;
3643		goto err_out_cache;
3644	}
3645
 
 
 
 
 
 
 
3646	err = scsi_register_driver(&sd_template.gendrv);
3647	if (err)
3648		goto err_out_driver;
3649
3650	return 0;
3651
3652err_out_driver:
 
 
 
3653	mempool_destroy(sd_cdb_pool);
3654
3655err_out_cache:
3656	kmem_cache_destroy(sd_cdb_cache);
3657
3658err_out_class:
3659	class_unregister(&sd_disk_class);
3660err_out:
3661	for (i = 0; i < SD_MAJORS; i++)
3662		unregister_blkdev(sd_major(i), "sd");
3663	return err;
3664}
3665
3666/**
3667 *	exit_sd - exit point for this driver (when it is a module).
3668 *
3669 *	Note: this function unregisters this driver from the scsi mid-level.
3670 **/
3671static void __exit exit_sd(void)
3672{
3673	int i;
3674
3675	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3676
3677	scsi_unregister_driver(&sd_template.gendrv);
3678	mempool_destroy(sd_cdb_pool);
 
3679	kmem_cache_destroy(sd_cdb_cache);
3680
3681	class_unregister(&sd_disk_class);
3682
3683	for (i = 0; i < SD_MAJORS; i++) {
3684		blk_unregister_region(sd_major(i), SD_MINORS);
3685		unregister_blkdev(sd_major(i), "sd");
3686	}
3687}
3688
3689module_init(init_sd);
3690module_exit(exit_sd);
3691
3692static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3693			       struct scsi_sense_hdr *sshdr)
3694{
3695	scsi_print_sense_hdr(sdkp->device,
3696			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3697}
3698
3699static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3700			    int result)
3701{
3702	const char *hb_string = scsi_hostbyte_string(result);
3703	const char *db_string = scsi_driverbyte_string(result);
3704
3705	if (hb_string || db_string)
3706		sd_printk(KERN_INFO, sdkp,
3707			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3708			  hb_string ? hb_string : "invalid",
3709			  db_string ? db_string : "invalid");
3710	else
3711		sd_printk(KERN_INFO, sdkp,
3712			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3713			  msg, host_byte(result), driver_byte(result));
3714}
3715
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/genhd.h>
  42#include <linux/hdreg.h>
  43#include <linux/errno.h>
  44#include <linux/idr.h>
  45#include <linux/interrupt.h>
  46#include <linux/init.h>
  47#include <linux/blkdev.h>
  48#include <linux/blkpg.h>
  49#include <linux/blk-pm.h>
  50#include <linux/delay.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/async.h>
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <asm/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_driver.h>
  67#include <scsi/scsi_eh.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_ioctl.h>
  70#include <scsi/scsicam.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 102#define SD_MINORS	16
 103#else
 104#define SD_MINORS	0
 105#endif
 106
 107static void sd_config_discard(struct scsi_disk *, unsigned int);
 108static void sd_config_write_same(struct scsi_disk *);
 109static int  sd_revalidate_disk(struct gendisk *);
 110static void sd_unlock_native_capacity(struct gendisk *disk);
 111static int  sd_probe(struct device *);
 112static int  sd_remove(struct device *);
 113static void sd_shutdown(struct device *);
 114static int sd_suspend_system(struct device *);
 115static int sd_suspend_runtime(struct device *);
 116static int sd_resume(struct device *);
 117static void sd_rescan(struct device *);
 118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
 119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 120static int sd_done(struct scsi_cmnd *);
 121static void sd_eh_reset(struct scsi_cmnd *);
 122static int sd_eh_action(struct scsi_cmnd *, int);
 123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 124static void scsi_disk_release(struct device *cdev);
 125static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 126static void sd_print_result(const struct scsi_disk *, const char *, int);
 127
 
 128static DEFINE_IDA(sd_index_ida);
 129
 130/* This semaphore is used to mediate the 0->1 reference get in the
 131 * face of object destruction (i.e. we can't allow a get on an
 132 * object after last put) */
 133static DEFINE_MUTEX(sd_ref_mutex);
 134
 135static struct kmem_cache *sd_cdb_cache;
 136static mempool_t *sd_cdb_pool;
 137static mempool_t *sd_page_pool;
 138
 139static const char *sd_cache_types[] = {
 140	"write through", "none", "write back",
 141	"write back, no read (daft)"
 142};
 143
 144static void sd_set_flush_flag(struct scsi_disk *sdkp)
 145{
 146	bool wc = false, fua = false;
 147
 148	if (sdkp->WCE) {
 149		wc = true;
 150		if (sdkp->DPOFUA)
 151			fua = true;
 152	}
 153
 154	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 155}
 156
 157static ssize_t
 158cache_type_store(struct device *dev, struct device_attribute *attr,
 159		 const char *buf, size_t count)
 160{
 161	int ct, rcd, wce, sp;
 162	struct scsi_disk *sdkp = to_scsi_disk(dev);
 163	struct scsi_device *sdp = sdkp->device;
 164	char buffer[64];
 165	char *buffer_data;
 166	struct scsi_mode_data data;
 167	struct scsi_sense_hdr sshdr;
 168	static const char temp[] = "temporary ";
 169	int len;
 170
 171	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 172		/* no cache control on RBC devices; theoretically they
 173		 * can do it, but there's probably so many exceptions
 174		 * it's not worth the risk */
 175		return -EINVAL;
 176
 177	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 178		buf += sizeof(temp) - 1;
 179		sdkp->cache_override = 1;
 180	} else {
 181		sdkp->cache_override = 0;
 182	}
 183
 184	ct = sysfs_match_string(sd_cache_types, buf);
 185	if (ct < 0)
 186		return -EINVAL;
 187
 188	rcd = ct & 0x01 ? 1 : 0;
 189	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 190
 191	if (sdkp->cache_override) {
 192		sdkp->WCE = wce;
 193		sdkp->RCD = rcd;
 194		sd_set_flush_flag(sdkp);
 195		return count;
 196	}
 197
 198	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 199			    SD_MAX_RETRIES, &data, NULL))
 200		return -EINVAL;
 201	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 202		  data.block_descriptor_length);
 203	buffer_data = buffer + data.header_length +
 204		data.block_descriptor_length;
 205	buffer_data[2] &= ~0x05;
 206	buffer_data[2] |= wce << 2 | rcd;
 207	sp = buffer_data[0] & 0x80 ? 1 : 0;
 208	buffer_data[0] &= ~0x80;
 209
 210	/*
 211	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 212	 * received mode parameter buffer before doing MODE SELECT.
 213	 */
 214	data.device_specific = 0;
 215
 216	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 217			     SD_MAX_RETRIES, &data, &sshdr)) {
 218		if (scsi_sense_valid(&sshdr))
 219			sd_print_sense_hdr(sdkp, &sshdr);
 220		return -EINVAL;
 221	}
 222	revalidate_disk(sdkp->disk);
 223	return count;
 224}
 225
 226static ssize_t
 227manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 228		       char *buf)
 229{
 230	struct scsi_disk *sdkp = to_scsi_disk(dev);
 231	struct scsi_device *sdp = sdkp->device;
 232
 233	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 234}
 235
 236static ssize_t
 237manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 238			const char *buf, size_t count)
 239{
 240	struct scsi_disk *sdkp = to_scsi_disk(dev);
 241	struct scsi_device *sdp = sdkp->device;
 242	bool v;
 243
 244	if (!capable(CAP_SYS_ADMIN))
 245		return -EACCES;
 246
 247	if (kstrtobool(buf, &v))
 248		return -EINVAL;
 249
 250	sdp->manage_start_stop = v;
 251
 252	return count;
 253}
 254static DEVICE_ATTR_RW(manage_start_stop);
 255
 256static ssize_t
 257allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 258{
 259	struct scsi_disk *sdkp = to_scsi_disk(dev);
 260
 261	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 262}
 263
 264static ssize_t
 265allow_restart_store(struct device *dev, struct device_attribute *attr,
 266		    const char *buf, size_t count)
 267{
 268	bool v;
 269	struct scsi_disk *sdkp = to_scsi_disk(dev);
 270	struct scsi_device *sdp = sdkp->device;
 271
 272	if (!capable(CAP_SYS_ADMIN))
 273		return -EACCES;
 274
 275	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 276		return -EINVAL;
 277
 278	if (kstrtobool(buf, &v))
 279		return -EINVAL;
 280
 281	sdp->allow_restart = v;
 282
 283	return count;
 284}
 285static DEVICE_ATTR_RW(allow_restart);
 286
 287static ssize_t
 288cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 289{
 290	struct scsi_disk *sdkp = to_scsi_disk(dev);
 291	int ct = sdkp->RCD + 2*sdkp->WCE;
 292
 293	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 294}
 295static DEVICE_ATTR_RW(cache_type);
 296
 297static ssize_t
 298FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 299{
 300	struct scsi_disk *sdkp = to_scsi_disk(dev);
 301
 302	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 303}
 304static DEVICE_ATTR_RO(FUA);
 305
 306static ssize_t
 307protection_type_show(struct device *dev, struct device_attribute *attr,
 308		     char *buf)
 309{
 310	struct scsi_disk *sdkp = to_scsi_disk(dev);
 311
 312	return sprintf(buf, "%u\n", sdkp->protection_type);
 313}
 314
 315static ssize_t
 316protection_type_store(struct device *dev, struct device_attribute *attr,
 317		      const char *buf, size_t count)
 318{
 319	struct scsi_disk *sdkp = to_scsi_disk(dev);
 320	unsigned int val;
 321	int err;
 322
 323	if (!capable(CAP_SYS_ADMIN))
 324		return -EACCES;
 325
 326	err = kstrtouint(buf, 10, &val);
 327
 328	if (err)
 329		return err;
 330
 331	if (val <= T10_PI_TYPE3_PROTECTION)
 332		sdkp->protection_type = val;
 333
 334	return count;
 335}
 336static DEVICE_ATTR_RW(protection_type);
 337
 338static ssize_t
 339protection_mode_show(struct device *dev, struct device_attribute *attr,
 340		     char *buf)
 341{
 342	struct scsi_disk *sdkp = to_scsi_disk(dev);
 343	struct scsi_device *sdp = sdkp->device;
 344	unsigned int dif, dix;
 345
 346	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 347	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 348
 349	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 350		dif = 0;
 351		dix = 1;
 352	}
 353
 354	if (!dif && !dix)
 355		return sprintf(buf, "none\n");
 356
 357	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 358}
 359static DEVICE_ATTR_RO(protection_mode);
 360
 361static ssize_t
 362app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 363{
 364	struct scsi_disk *sdkp = to_scsi_disk(dev);
 365
 366	return sprintf(buf, "%u\n", sdkp->ATO);
 367}
 368static DEVICE_ATTR_RO(app_tag_own);
 369
 370static ssize_t
 371thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 372		       char *buf)
 373{
 374	struct scsi_disk *sdkp = to_scsi_disk(dev);
 375
 376	return sprintf(buf, "%u\n", sdkp->lbpme);
 377}
 378static DEVICE_ATTR_RO(thin_provisioning);
 379
 380/* sysfs_match_string() requires dense arrays */
 381static const char *lbp_mode[] = {
 382	[SD_LBP_FULL]		= "full",
 383	[SD_LBP_UNMAP]		= "unmap",
 384	[SD_LBP_WS16]		= "writesame_16",
 385	[SD_LBP_WS10]		= "writesame_10",
 386	[SD_LBP_ZERO]		= "writesame_zero",
 387	[SD_LBP_DISABLE]	= "disabled",
 388};
 389
 390static ssize_t
 391provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 392		       char *buf)
 393{
 394	struct scsi_disk *sdkp = to_scsi_disk(dev);
 395
 396	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 397}
 398
 399static ssize_t
 400provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 401			const char *buf, size_t count)
 402{
 403	struct scsi_disk *sdkp = to_scsi_disk(dev);
 404	struct scsi_device *sdp = sdkp->device;
 405	int mode;
 406
 407	if (!capable(CAP_SYS_ADMIN))
 408		return -EACCES;
 409
 410	if (sd_is_zoned(sdkp)) {
 411		sd_config_discard(sdkp, SD_LBP_DISABLE);
 412		return count;
 413	}
 414
 415	if (sdp->type != TYPE_DISK)
 416		return -EINVAL;
 417
 418	mode = sysfs_match_string(lbp_mode, buf);
 419	if (mode < 0)
 420		return -EINVAL;
 421
 422	sd_config_discard(sdkp, mode);
 423
 424	return count;
 425}
 426static DEVICE_ATTR_RW(provisioning_mode);
 427
 428/* sysfs_match_string() requires dense arrays */
 429static const char *zeroing_mode[] = {
 430	[SD_ZERO_WRITE]		= "write",
 431	[SD_ZERO_WS]		= "writesame",
 432	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 433	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 434};
 435
 436static ssize_t
 437zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 438		  char *buf)
 439{
 440	struct scsi_disk *sdkp = to_scsi_disk(dev);
 441
 442	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 443}
 444
 445static ssize_t
 446zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 447		   const char *buf, size_t count)
 448{
 449	struct scsi_disk *sdkp = to_scsi_disk(dev);
 450	int mode;
 451
 452	if (!capable(CAP_SYS_ADMIN))
 453		return -EACCES;
 454
 455	mode = sysfs_match_string(zeroing_mode, buf);
 456	if (mode < 0)
 457		return -EINVAL;
 458
 459	sdkp->zeroing_mode = mode;
 460
 461	return count;
 462}
 463static DEVICE_ATTR_RW(zeroing_mode);
 464
 465static ssize_t
 466max_medium_access_timeouts_show(struct device *dev,
 467				struct device_attribute *attr, char *buf)
 468{
 469	struct scsi_disk *sdkp = to_scsi_disk(dev);
 470
 471	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 472}
 473
 474static ssize_t
 475max_medium_access_timeouts_store(struct device *dev,
 476				 struct device_attribute *attr, const char *buf,
 477				 size_t count)
 478{
 479	struct scsi_disk *sdkp = to_scsi_disk(dev);
 480	int err;
 481
 482	if (!capable(CAP_SYS_ADMIN))
 483		return -EACCES;
 484
 485	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 486
 487	return err ? err : count;
 488}
 489static DEVICE_ATTR_RW(max_medium_access_timeouts);
 490
 491static ssize_t
 492max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 493			   char *buf)
 494{
 495	struct scsi_disk *sdkp = to_scsi_disk(dev);
 496
 497	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 498}
 499
 500static ssize_t
 501max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 502			    const char *buf, size_t count)
 503{
 504	struct scsi_disk *sdkp = to_scsi_disk(dev);
 505	struct scsi_device *sdp = sdkp->device;
 506	unsigned long max;
 507	int err;
 508
 509	if (!capable(CAP_SYS_ADMIN))
 510		return -EACCES;
 511
 512	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 513		return -EINVAL;
 514
 515	err = kstrtoul(buf, 10, &max);
 516
 517	if (err)
 518		return err;
 519
 520	if (max == 0)
 521		sdp->no_write_same = 1;
 522	else if (max <= SD_MAX_WS16_BLOCKS) {
 523		sdp->no_write_same = 0;
 524		sdkp->max_ws_blocks = max;
 525	}
 526
 527	sd_config_write_same(sdkp);
 528
 529	return count;
 530}
 531static DEVICE_ATTR_RW(max_write_same_blocks);
 532
 533static struct attribute *sd_disk_attrs[] = {
 534	&dev_attr_cache_type.attr,
 535	&dev_attr_FUA.attr,
 536	&dev_attr_allow_restart.attr,
 537	&dev_attr_manage_start_stop.attr,
 538	&dev_attr_protection_type.attr,
 539	&dev_attr_protection_mode.attr,
 540	&dev_attr_app_tag_own.attr,
 541	&dev_attr_thin_provisioning.attr,
 542	&dev_attr_provisioning_mode.attr,
 543	&dev_attr_zeroing_mode.attr,
 544	&dev_attr_max_write_same_blocks.attr,
 545	&dev_attr_max_medium_access_timeouts.attr,
 546	NULL,
 547};
 548ATTRIBUTE_GROUPS(sd_disk);
 549
 550static struct class sd_disk_class = {
 551	.name		= "scsi_disk",
 552	.owner		= THIS_MODULE,
 553	.dev_release	= scsi_disk_release,
 554	.dev_groups	= sd_disk_groups,
 555};
 556
 557static const struct dev_pm_ops sd_pm_ops = {
 558	.suspend		= sd_suspend_system,
 559	.resume			= sd_resume,
 560	.poweroff		= sd_suspend_system,
 561	.restore		= sd_resume,
 562	.runtime_suspend	= sd_suspend_runtime,
 563	.runtime_resume		= sd_resume,
 564};
 565
 566static struct scsi_driver sd_template = {
 567	.gendrv = {
 568		.name		= "sd",
 569		.owner		= THIS_MODULE,
 570		.probe		= sd_probe,
 571		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
 572		.remove		= sd_remove,
 573		.shutdown	= sd_shutdown,
 574		.pm		= &sd_pm_ops,
 575	},
 576	.rescan			= sd_rescan,
 577	.init_command		= sd_init_command,
 578	.uninit_command		= sd_uninit_command,
 579	.done			= sd_done,
 580	.eh_action		= sd_eh_action,
 581	.eh_reset		= sd_eh_reset,
 582};
 583
 584/*
 585 * Dummy kobj_map->probe function.
 586 * The default ->probe function will call modprobe, which is
 587 * pointless as this module is already loaded.
 588 */
 589static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 590{
 591	return NULL;
 592}
 593
 594/*
 595 * Device no to disk mapping:
 596 * 
 597 *       major         disc2     disc  p1
 598 *   |............|.............|....|....| <- dev_t
 599 *    31        20 19          8 7  4 3  0
 600 * 
 601 * Inside a major, we have 16k disks, however mapped non-
 602 * contiguously. The first 16 disks are for major0, the next
 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 604 * for major1, ... 
 605 * As we stay compatible with our numbering scheme, we can reuse 
 606 * the well-know SCSI majors 8, 65--71, 136--143.
 607 */
 608static int sd_major(int major_idx)
 609{
 610	switch (major_idx) {
 611	case 0:
 612		return SCSI_DISK0_MAJOR;
 613	case 1 ... 7:
 614		return SCSI_DISK1_MAJOR + major_idx - 1;
 615	case 8 ... 15:
 616		return SCSI_DISK8_MAJOR + major_idx - 8;
 617	default:
 618		BUG();
 619		return 0;	/* shut up gcc */
 620	}
 621}
 622
 623static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 624{
 625	struct scsi_disk *sdkp = NULL;
 626
 627	mutex_lock(&sd_ref_mutex);
 628
 629	if (disk->private_data) {
 630		sdkp = scsi_disk(disk);
 631		if (scsi_device_get(sdkp->device) == 0)
 632			get_device(&sdkp->dev);
 633		else
 634			sdkp = NULL;
 635	}
 636	mutex_unlock(&sd_ref_mutex);
 637	return sdkp;
 638}
 639
 640static void scsi_disk_put(struct scsi_disk *sdkp)
 641{
 642	struct scsi_device *sdev = sdkp->device;
 643
 644	mutex_lock(&sd_ref_mutex);
 645	put_device(&sdkp->dev);
 646	scsi_device_put(sdev);
 647	mutex_unlock(&sd_ref_mutex);
 648}
 649
 650#ifdef CONFIG_BLK_SED_OPAL
 651static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 652		size_t len, bool send)
 653{
 654	struct scsi_device *sdev = data;
 655	u8 cdb[12] = { 0, };
 656	int ret;
 657
 658	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 659	cdb[1] = secp;
 660	put_unaligned_be16(spsp, &cdb[2]);
 661	put_unaligned_be32(len, &cdb[6]);
 662
 663	ret = scsi_execute_req(sdev, cdb,
 664			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 665			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 666	return ret <= 0 ? ret : -EIO;
 667}
 668#endif /* CONFIG_BLK_SED_OPAL */
 669
 670/*
 671 * Look up the DIX operation based on whether the command is read or
 672 * write and whether dix and dif are enabled.
 673 */
 674static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 675{
 676	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 677	static const unsigned int ops[] = {	/* wrt dix dif */
 678		SCSI_PROT_NORMAL,		/*  0	0   0  */
 679		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 680		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 681		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 682		SCSI_PROT_NORMAL,		/*  1	0   0  */
 683		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 684		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 685		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 686	};
 687
 688	return ops[write << 2 | dix << 1 | dif];
 689}
 690
 691/*
 692 * Returns a mask of the protection flags that are valid for a given DIX
 693 * operation.
 694 */
 695static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 696{
 697	static const unsigned int flag_mask[] = {
 698		[SCSI_PROT_NORMAL]		= 0,
 699
 700		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 701						  SCSI_PROT_GUARD_CHECK |
 702						  SCSI_PROT_REF_CHECK |
 703						  SCSI_PROT_REF_INCREMENT,
 704
 705		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 706						  SCSI_PROT_IP_CHECKSUM,
 707
 708		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 709						  SCSI_PROT_GUARD_CHECK |
 710						  SCSI_PROT_REF_CHECK |
 711						  SCSI_PROT_REF_INCREMENT |
 712						  SCSI_PROT_IP_CHECKSUM,
 713
 714		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 715						  SCSI_PROT_REF_INCREMENT,
 716
 717		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 718						  SCSI_PROT_REF_CHECK |
 719						  SCSI_PROT_REF_INCREMENT |
 720						  SCSI_PROT_IP_CHECKSUM,
 721
 722		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 723						  SCSI_PROT_GUARD_CHECK |
 724						  SCSI_PROT_REF_CHECK |
 725						  SCSI_PROT_REF_INCREMENT |
 726						  SCSI_PROT_IP_CHECKSUM,
 727	};
 728
 729	return flag_mask[prot_op];
 730}
 731
 732static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 733					   unsigned int dix, unsigned int dif)
 734{
 735	struct bio *bio = scmd->request->bio;
 736	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 737	unsigned int protect = 0;
 738
 739	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 740		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 741			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 742
 743		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 744			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 745	}
 746
 747	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 748		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 749
 750		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 751			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 752	}
 753
 754	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 755		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 756
 757		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 758			protect = 3 << 5;	/* Disable target PI checking */
 759		else
 760			protect = 1 << 5;	/* Enable target PI checking */
 761	}
 762
 763	scsi_set_prot_op(scmd, prot_op);
 764	scsi_set_prot_type(scmd, dif);
 765	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 766
 767	return protect;
 768}
 769
 770static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 771{
 772	struct request_queue *q = sdkp->disk->queue;
 773	unsigned int logical_block_size = sdkp->device->sector_size;
 774	unsigned int max_blocks = 0;
 775
 776	q->limits.discard_alignment =
 777		sdkp->unmap_alignment * logical_block_size;
 778	q->limits.discard_granularity =
 779		max(sdkp->physical_block_size,
 780		    sdkp->unmap_granularity * logical_block_size);
 781	sdkp->provisioning_mode = mode;
 782
 783	switch (mode) {
 784
 785	case SD_LBP_FULL:
 786	case SD_LBP_DISABLE:
 787		blk_queue_max_discard_sectors(q, 0);
 788		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 789		return;
 790
 791	case SD_LBP_UNMAP:
 792		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 793					  (u32)SD_MAX_WS16_BLOCKS);
 794		break;
 795
 796	case SD_LBP_WS16:
 797		if (sdkp->device->unmap_limit_for_ws)
 798			max_blocks = sdkp->max_unmap_blocks;
 799		else
 800			max_blocks = sdkp->max_ws_blocks;
 801
 802		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 803		break;
 804
 805	case SD_LBP_WS10:
 806		if (sdkp->device->unmap_limit_for_ws)
 807			max_blocks = sdkp->max_unmap_blocks;
 808		else
 809			max_blocks = sdkp->max_ws_blocks;
 810
 811		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 812		break;
 813
 814	case SD_LBP_ZERO:
 815		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 816					  (u32)SD_MAX_WS10_BLOCKS);
 817		break;
 818	}
 819
 820	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 821	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 822}
 823
 824static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 825{
 826	struct scsi_device *sdp = cmd->device;
 827	struct request *rq = cmd->request;
 828	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 829	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 830	unsigned int data_len = 24;
 831	char *buf;
 832
 833	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 834	if (!rq->special_vec.bv_page)
 835		return BLK_STS_RESOURCE;
 836	clear_highpage(rq->special_vec.bv_page);
 837	rq->special_vec.bv_offset = 0;
 838	rq->special_vec.bv_len = data_len;
 839	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 840
 841	cmd->cmd_len = 10;
 842	cmd->cmnd[0] = UNMAP;
 843	cmd->cmnd[8] = 24;
 844
 845	buf = page_address(rq->special_vec.bv_page);
 846	put_unaligned_be16(6 + 16, &buf[0]);
 847	put_unaligned_be16(16, &buf[2]);
 848	put_unaligned_be64(lba, &buf[8]);
 849	put_unaligned_be32(nr_blocks, &buf[16]);
 850
 851	cmd->allowed = SD_MAX_RETRIES;
 852	cmd->transfersize = data_len;
 853	rq->timeout = SD_TIMEOUT;
 
 854
 855	return scsi_init_io(cmd);
 856}
 857
 858static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 859		bool unmap)
 860{
 861	struct scsi_device *sdp = cmd->device;
 862	struct request *rq = cmd->request;
 863	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 864	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 865	u32 data_len = sdp->sector_size;
 866
 867	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 868	if (!rq->special_vec.bv_page)
 869		return BLK_STS_RESOURCE;
 870	clear_highpage(rq->special_vec.bv_page);
 871	rq->special_vec.bv_offset = 0;
 872	rq->special_vec.bv_len = data_len;
 873	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 874
 875	cmd->cmd_len = 16;
 876	cmd->cmnd[0] = WRITE_SAME_16;
 877	if (unmap)
 878		cmd->cmnd[1] = 0x8; /* UNMAP */
 879	put_unaligned_be64(lba, &cmd->cmnd[2]);
 880	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 881
 882	cmd->allowed = SD_MAX_RETRIES;
 883	cmd->transfersize = data_len;
 884	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 
 885
 886	return scsi_init_io(cmd);
 887}
 888
 889static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 890		bool unmap)
 891{
 892	struct scsi_device *sdp = cmd->device;
 893	struct request *rq = cmd->request;
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	u32 data_len = sdp->sector_size;
 897
 898	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 899	if (!rq->special_vec.bv_page)
 900		return BLK_STS_RESOURCE;
 901	clear_highpage(rq->special_vec.bv_page);
 902	rq->special_vec.bv_offset = 0;
 903	rq->special_vec.bv_len = data_len;
 904	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 905
 906	cmd->cmd_len = 10;
 907	cmd->cmnd[0] = WRITE_SAME;
 908	if (unmap)
 909		cmd->cmnd[1] = 0x8; /* UNMAP */
 910	put_unaligned_be32(lba, &cmd->cmnd[2]);
 911	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 912
 913	cmd->allowed = SD_MAX_RETRIES;
 914	cmd->transfersize = data_len;
 915	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 
 916
 917	return scsi_init_io(cmd);
 918}
 919
 920static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 921{
 922	struct request *rq = cmd->request;
 923	struct scsi_device *sdp = cmd->device;
 924	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927
 928	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 929		switch (sdkp->zeroing_mode) {
 930		case SD_ZERO_WS16_UNMAP:
 931			return sd_setup_write_same16_cmnd(cmd, true);
 932		case SD_ZERO_WS10_UNMAP:
 933			return sd_setup_write_same10_cmnd(cmd, true);
 934		}
 935	}
 936
 937	if (sdp->no_write_same)
 938		return BLK_STS_TARGET;
 939
 940	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 941		return sd_setup_write_same16_cmnd(cmd, false);
 942
 943	return sd_setup_write_same10_cmnd(cmd, false);
 944}
 945
 946static void sd_config_write_same(struct scsi_disk *sdkp)
 947{
 948	struct request_queue *q = sdkp->disk->queue;
 949	unsigned int logical_block_size = sdkp->device->sector_size;
 950
 951	if (sdkp->device->no_write_same) {
 952		sdkp->max_ws_blocks = 0;
 953		goto out;
 954	}
 955
 956	/* Some devices can not handle block counts above 0xffff despite
 957	 * supporting WRITE SAME(16). Consequently we default to 64k
 958	 * blocks per I/O unless the device explicitly advertises a
 959	 * bigger limit.
 960	 */
 961	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 962		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 963						   (u32)SD_MAX_WS16_BLOCKS);
 964	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 965		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 966						   (u32)SD_MAX_WS10_BLOCKS);
 967	else {
 968		sdkp->device->no_write_same = 1;
 969		sdkp->max_ws_blocks = 0;
 970	}
 971
 972	if (sdkp->lbprz && sdkp->lbpws)
 973		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 974	else if (sdkp->lbprz && sdkp->lbpws10)
 975		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 976	else if (sdkp->max_ws_blocks)
 977		sdkp->zeroing_mode = SD_ZERO_WS;
 978	else
 979		sdkp->zeroing_mode = SD_ZERO_WRITE;
 980
 981	if (sdkp->max_ws_blocks &&
 982	    sdkp->physical_block_size > logical_block_size) {
 983		/*
 984		 * Reporting a maximum number of blocks that is not aligned
 985		 * on the device physical size would cause a large write same
 986		 * request to be split into physically unaligned chunks by
 987		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
 988		 * even if the caller of these functions took care to align the
 989		 * large request. So make sure the maximum reported is aligned
 990		 * to the device physical block size. This is only an optional
 991		 * optimization for regular disks, but this is mandatory to
 992		 * avoid failure of large write same requests directed at
 993		 * sequential write required zones of host-managed ZBC disks.
 994		 */
 995		sdkp->max_ws_blocks =
 996			round_down(sdkp->max_ws_blocks,
 997				   bytes_to_logical(sdkp->device,
 998						    sdkp->physical_block_size));
 999	}
1000
1001out:
1002	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003					 (logical_block_size >> 9));
1004	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005					 (logical_block_size >> 9));
1006}
1007
1008/**
1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010 * @cmd: command to prepare
1011 *
1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013 * the preference indicated by the target device.
1014 **/
1015static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016{
1017	struct request *rq = cmd->request;
1018	struct scsi_device *sdp = cmd->device;
1019	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020	struct bio *bio = rq->bio;
1021	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023	blk_status_t ret;
 
1024
1025	if (sdkp->device->no_write_same)
1026		return BLK_STS_TARGET;
1027
1028	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
 
 
 
1030	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033		cmd->cmd_len = 16;
1034		cmd->cmnd[0] = WRITE_SAME_16;
1035		put_unaligned_be64(lba, &cmd->cmnd[2]);
1036		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037	} else {
1038		cmd->cmd_len = 10;
1039		cmd->cmnd[0] = WRITE_SAME;
1040		put_unaligned_be32(lba, &cmd->cmnd[2]);
1041		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042	}
1043
1044	cmd->transfersize = sdp->sector_size;
1045	cmd->allowed = SD_MAX_RETRIES;
1046
1047	/*
1048	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049	 * different from the amount of data actually written to the target.
1050	 *
1051	 * We set up __data_len to the amount of data transferred via the
1052	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053	 * to transfer a single sector of data first, but then reset it to
1054	 * the amount of data to be written right after so that the I/O path
1055	 * knows how much to actually write.
1056	 */
1057	rq->__data_len = sdp->sector_size;
1058	ret = scsi_init_io(cmd);
1059	rq->__data_len = blk_rq_bytes(rq);
1060
1061	return ret;
1062}
1063
1064static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065{
1066	struct request *rq = cmd->request;
1067
1068	/* flush requests don't perform I/O, zero the S/G table */
1069	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072	cmd->cmd_len = 10;
1073	cmd->transfersize = 0;
1074	cmd->allowed = SD_MAX_RETRIES;
1075
1076	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077	return BLK_STS_OK;
1078}
1079
1080static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081				       sector_t lba, unsigned int nr_blocks,
1082				       unsigned char flags)
1083{
1084	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085	if (unlikely(cmd->cmnd == NULL))
1086		return BLK_STS_RESOURCE;
 
 
 
 
 
 
 
1087
1088	cmd->cmd_len = SD_EXT_CDB_SIZE;
1089	memset(cmd->cmnd, 0, cmd->cmd_len);
 
 
1090
1091	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094	cmd->cmnd[10] = flags;
1095	put_unaligned_be64(lba, &cmd->cmnd[12]);
1096	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099	return BLK_STS_OK;
1100}
1101
1102static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103				       sector_t lba, unsigned int nr_blocks,
1104				       unsigned char flags)
1105{
1106	cmd->cmd_len  = 16;
1107	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108	cmd->cmnd[1]  = flags;
1109	cmd->cmnd[14] = 0;
1110	cmd->cmnd[15] = 0;
1111	put_unaligned_be64(lba, &cmd->cmnd[2]);
1112	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114	return BLK_STS_OK;
1115}
1116
1117static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118				       sector_t lba, unsigned int nr_blocks,
1119				       unsigned char flags)
1120{
1121	cmd->cmd_len = 10;
1122	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123	cmd->cmnd[1] = flags;
1124	cmd->cmnd[6] = 0;
1125	cmd->cmnd[9] = 0;
1126	put_unaligned_be32(lba, &cmd->cmnd[2]);
1127	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129	return BLK_STS_OK;
1130}
1131
1132static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133				      sector_t lba, unsigned int nr_blocks,
1134				      unsigned char flags)
1135{
1136	/* Avoid that 0 blocks gets translated into 256 blocks. */
1137	if (WARN_ON_ONCE(nr_blocks == 0))
1138		return BLK_STS_IOERR;
1139
1140	if (unlikely(flags & 0x8)) {
1141		/*
1142		 * This happens only if this drive failed 10byte rw
1143		 * command with ILLEGAL_REQUEST during operation and
1144		 * thus turned off use_10_for_rw.
1145		 */
1146		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147		return BLK_STS_IOERR;
1148	}
1149
1150	cmd->cmd_len = 6;
1151	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153	cmd->cmnd[2] = (lba >> 8) & 0xff;
1154	cmd->cmnd[3] = lba & 0xff;
1155	cmd->cmnd[4] = nr_blocks;
1156	cmd->cmnd[5] = 0;
1157
1158	return BLK_STS_OK;
1159}
 
 
 
 
 
 
 
1160
1161static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162{
1163	struct request *rq = cmd->request;
1164	struct scsi_device *sdp = cmd->device;
1165	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167	sector_t threshold;
1168	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170	bool write = rq_data_dir(rq) == WRITE;
1171	unsigned char protect, fua;
1172	blk_status_t ret;
1173	unsigned int dif;
1174	bool dix;
1175
1176	ret = scsi_init_io(cmd);
1177	if (ret != BLK_STS_OK)
1178		return ret;
1179
1180	if (!scsi_device_online(sdp) || sdp->changed) {
1181		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1182		return BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
 
 
 
 
1183	}
1184
1185	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1186		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1187		return BLK_STS_IOERR;
 
 
 
 
 
1188	}
1189
1190	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1191		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1192		return BLK_STS_IOERR;
 
 
 
 
 
1193	}
 
 
1194
1195	/*
1196	 * Some SD card readers can't handle accesses which touch the
1197	 * last one or two logical blocks. Split accesses as needed.
1198	 */
1199	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1200
1201	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1202		if (lba < threshold) {
1203			/* Access up to the threshold but not beyond */
1204			nr_blocks = threshold - lba;
1205		} else {
1206			/* Access only a single logical block */
1207			nr_blocks = 1;
1208		}
1209	}
1210
1211	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1212	dix = scsi_prot_sg_count(cmd);
1213	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
 
 
 
 
 
1214
1215	if (dif || dix)
1216		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217	else
1218		protect = 0;
1219
1220	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222					 protect | fua);
1223	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225					 protect | fua);
1226	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227		   sdp->use_10_for_rw || protect) {
1228		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229					 protect | fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230	} else {
1231		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232					protect | fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233	}
1234
1235	if (unlikely(ret != BLK_STS_OK))
1236		return ret;
1237
1238	/*
1239	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1240	 * host adapter, it's safe to assume that we can at least transfer
1241	 * this many bytes between each connect / disconnect.
1242	 */
1243	cmd->transfersize = sdp->sector_size;
1244	cmd->underflow = nr_blocks << 9;
1245	cmd->allowed = SD_MAX_RETRIES;
1246	cmd->sdb.length = nr_blocks * sdp->sector_size;
1247
1248	SCSI_LOG_HLQUEUE(1,
1249			 scmd_printk(KERN_INFO, cmd,
1250				     "%s: block=%llu, count=%d\n", __func__,
1251				     (unsigned long long)blk_rq_pos(rq),
1252				     blk_rq_sectors(rq)));
1253	SCSI_LOG_HLQUEUE(2,
1254			 scmd_printk(KERN_INFO, cmd,
1255				     "%s %d/%u 512 byte blocks.\n",
1256				     write ? "writing" : "reading", nr_blocks,
1257				     blk_rq_sectors(rq)));
1258
1259	/*
1260	 * This indicates that the command is ready from our end to be
1261	 * queued.
1262	 */
1263	return BLK_STS_OK;
 
 
1264}
1265
1266static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1267{
1268	struct request *rq = cmd->request;
1269
1270	switch (req_op(rq)) {
1271	case REQ_OP_DISCARD:
1272		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273		case SD_LBP_UNMAP:
1274			return sd_setup_unmap_cmnd(cmd);
1275		case SD_LBP_WS16:
1276			return sd_setup_write_same16_cmnd(cmd, true);
1277		case SD_LBP_WS10:
1278			return sd_setup_write_same10_cmnd(cmd, true);
1279		case SD_LBP_ZERO:
1280			return sd_setup_write_same10_cmnd(cmd, false);
1281		default:
1282			return BLK_STS_TARGET;
1283		}
1284	case REQ_OP_WRITE_ZEROES:
1285		return sd_setup_write_zeroes_cmnd(cmd);
1286	case REQ_OP_WRITE_SAME:
1287		return sd_setup_write_same_cmnd(cmd);
1288	case REQ_OP_FLUSH:
1289		return sd_setup_flush_cmnd(cmd);
1290	case REQ_OP_READ:
1291	case REQ_OP_WRITE:
1292		return sd_setup_read_write_cmnd(cmd);
 
 
1293	case REQ_OP_ZONE_RESET:
1294		return sd_zbc_setup_reset_cmnd(cmd, false);
1295	case REQ_OP_ZONE_RESET_ALL:
1296		return sd_zbc_setup_reset_cmnd(cmd, true);
1297	default:
1298		WARN_ON_ONCE(1);
1299		return BLK_STS_NOTSUPP;
1300	}
1301}
1302
1303static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1304{
1305	struct request *rq = SCpnt->request;
1306	u8 *cmnd;
1307
1308	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1309		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1310
1311	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1312		cmnd = SCpnt->cmnd;
1313		SCpnt->cmnd = NULL;
1314		SCpnt->cmd_len = 0;
1315		mempool_free(cmnd, sd_cdb_pool);
1316	}
1317}
1318
1319/**
1320 *	sd_open - open a scsi disk device
1321 *	@bdev: Block device of the scsi disk to open
1322 *	@mode: FMODE_* mask
1323 *
1324 *	Returns 0 if successful. Returns a negated errno value in case 
1325 *	of error.
1326 *
1327 *	Note: This can be called from a user context (e.g. fsck(1) )
1328 *	or from within the kernel (e.g. as a result of a mount(1) ).
1329 *	In the latter case @inode and @filp carry an abridged amount
1330 *	of information as noted above.
1331 *
1332 *	Locking: called with bdev->bd_mutex held.
1333 **/
1334static int sd_open(struct block_device *bdev, fmode_t mode)
1335{
1336	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1337	struct scsi_device *sdev;
1338	int retval;
1339
1340	if (!sdkp)
1341		return -ENXIO;
1342
1343	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1344
1345	sdev = sdkp->device;
1346
1347	/*
1348	 * If the device is in error recovery, wait until it is done.
1349	 * If the device is offline, then disallow any access to it.
1350	 */
1351	retval = -ENXIO;
1352	if (!scsi_block_when_processing_errors(sdev))
1353		goto error_out;
1354
1355	if (sdev->removable || sdkp->write_prot)
1356		check_disk_change(bdev);
1357
1358	/*
1359	 * If the drive is empty, just let the open fail.
1360	 */
1361	retval = -ENOMEDIUM;
1362	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1363		goto error_out;
1364
1365	/*
1366	 * If the device has the write protect tab set, have the open fail
1367	 * if the user expects to be able to write to the thing.
1368	 */
1369	retval = -EROFS;
1370	if (sdkp->write_prot && (mode & FMODE_WRITE))
1371		goto error_out;
1372
1373	/*
1374	 * It is possible that the disk changing stuff resulted in
1375	 * the device being taken offline.  If this is the case,
1376	 * report this to the user, and don't pretend that the
1377	 * open actually succeeded.
1378	 */
1379	retval = -ENXIO;
1380	if (!scsi_device_online(sdev))
1381		goto error_out;
1382
1383	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1384		if (scsi_block_when_processing_errors(sdev))
1385			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1386	}
1387
1388	return 0;
1389
1390error_out:
1391	scsi_disk_put(sdkp);
1392	return retval;	
1393}
1394
1395/**
1396 *	sd_release - invoked when the (last) close(2) is called on this
1397 *	scsi disk.
1398 *	@disk: disk to release
1399 *	@mode: FMODE_* mask
1400 *
1401 *	Returns 0. 
1402 *
1403 *	Note: may block (uninterruptible) if error recovery is underway
1404 *	on this disk.
1405 *
1406 *	Locking: called with bdev->bd_mutex held.
1407 **/
1408static void sd_release(struct gendisk *disk, fmode_t mode)
1409{
1410	struct scsi_disk *sdkp = scsi_disk(disk);
1411	struct scsi_device *sdev = sdkp->device;
1412
1413	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1414
1415	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1416		if (scsi_block_when_processing_errors(sdev))
1417			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1418	}
1419
 
 
 
 
 
1420	scsi_disk_put(sdkp);
1421}
1422
1423static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1424{
1425	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1426	struct scsi_device *sdp = sdkp->device;
1427	struct Scsi_Host *host = sdp->host;
1428	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1429	int diskinfo[4];
1430
1431	/* default to most commonly used values */
1432	diskinfo[0] = 0x40;	/* 1 << 6 */
1433	diskinfo[1] = 0x20;	/* 1 << 5 */
1434	diskinfo[2] = capacity >> 11;
1435
1436	/* override with calculated, extended default, or driver values */
1437	if (host->hostt->bios_param)
1438		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1439	else
1440		scsicam_bios_param(bdev, capacity, diskinfo);
1441
1442	geo->heads = diskinfo[0];
1443	geo->sectors = diskinfo[1];
1444	geo->cylinders = diskinfo[2];
1445	return 0;
1446}
1447
1448/**
1449 *	sd_ioctl - process an ioctl
1450 *	@bdev: target block device
1451 *	@mode: FMODE_* mask
1452 *	@cmd: ioctl command number
1453 *	@arg: this is third argument given to ioctl(2) system call.
1454 *	Often contains a pointer.
1455 *
1456 *	Returns 0 if successful (some ioctls return positive numbers on
1457 *	success as well). Returns a negated errno value in case of error.
1458 *
1459 *	Note: most ioctls are forward onto the block subsystem or further
1460 *	down in the scsi subsystem.
1461 **/
1462static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1463		    unsigned int cmd, unsigned long arg)
1464{
1465	struct gendisk *disk = bdev->bd_disk;
1466	struct scsi_disk *sdkp = scsi_disk(disk);
1467	struct scsi_device *sdp = sdkp->device;
1468	void __user *p = (void __user *)arg;
1469	int error;
1470    
1471	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1472				    "cmd=0x%x\n", disk->disk_name, cmd));
1473
1474	error = scsi_verify_blk_ioctl(bdev, cmd);
1475	if (error < 0)
1476		return error;
1477
1478	/*
1479	 * If we are in the middle of error recovery, don't let anyone
1480	 * else try and use this device.  Also, if error recovery fails, it
1481	 * may try and take the device offline, in which case all further
1482	 * access to the device is prohibited.
1483	 */
1484	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1485			(mode & FMODE_NDELAY) != 0);
1486	if (error)
1487		goto out;
1488
1489	if (is_sed_ioctl(cmd))
1490		return sed_ioctl(sdkp->opal_dev, cmd, p);
1491
1492	/*
1493	 * Send SCSI addressing ioctls directly to mid level, send other
1494	 * ioctls to block level and then onto mid level if they can't be
1495	 * resolved.
1496	 */
1497	switch (cmd) {
1498		case SCSI_IOCTL_GET_IDLUN:
1499		case SCSI_IOCTL_GET_BUS_NUMBER:
1500			error = scsi_ioctl(sdp, cmd, p);
1501			break;
1502		default:
1503			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1504			if (error != -ENOTTY)
1505				break;
1506			error = scsi_ioctl(sdp, cmd, p);
1507			break;
1508	}
1509out:
1510	return error;
1511}
1512
1513static void set_media_not_present(struct scsi_disk *sdkp)
1514{
1515	if (sdkp->media_present)
1516		sdkp->device->changed = 1;
1517
1518	if (sdkp->device->removable) {
1519		sdkp->media_present = 0;
1520		sdkp->capacity = 0;
1521	}
1522}
1523
1524static int media_not_present(struct scsi_disk *sdkp,
1525			     struct scsi_sense_hdr *sshdr)
1526{
1527	if (!scsi_sense_valid(sshdr))
1528		return 0;
1529
1530	/* not invoked for commands that could return deferred errors */
1531	switch (sshdr->sense_key) {
1532	case UNIT_ATTENTION:
1533	case NOT_READY:
1534		/* medium not present */
1535		if (sshdr->asc == 0x3A) {
1536			set_media_not_present(sdkp);
1537			return 1;
1538		}
1539	}
1540	return 0;
1541}
1542
1543/**
1544 *	sd_check_events - check media events
1545 *	@disk: kernel device descriptor
1546 *	@clearing: disk events currently being cleared
1547 *
1548 *	Returns mask of DISK_EVENT_*.
1549 *
1550 *	Note: this function is invoked from the block subsystem.
1551 **/
1552static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1553{
1554	struct scsi_disk *sdkp = scsi_disk_get(disk);
1555	struct scsi_device *sdp;
1556	int retval;
1557
1558	if (!sdkp)
1559		return 0;
1560
1561	sdp = sdkp->device;
1562	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1563
1564	/*
1565	 * If the device is offline, don't send any commands - just pretend as
1566	 * if the command failed.  If the device ever comes back online, we
1567	 * can deal with it then.  It is only because of unrecoverable errors
1568	 * that we would ever take a device offline in the first place.
1569	 */
1570	if (!scsi_device_online(sdp)) {
1571		set_media_not_present(sdkp);
1572		goto out;
1573	}
1574
1575	/*
1576	 * Using TEST_UNIT_READY enables differentiation between drive with
1577	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1578	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1579	 *
1580	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1581	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1582	 * sd_revalidate() is called.
1583	 */
1584	if (scsi_block_when_processing_errors(sdp)) {
1585		struct scsi_sense_hdr sshdr = { 0, };
1586
1587		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1588					      &sshdr);
1589
1590		/* failed to execute TUR, assume media not present */
1591		if (host_byte(retval)) {
1592			set_media_not_present(sdkp);
1593			goto out;
1594		}
1595
1596		if (media_not_present(sdkp, &sshdr))
1597			goto out;
1598	}
1599
1600	/*
1601	 * For removable scsi disk we have to recognise the presence
1602	 * of a disk in the drive.
1603	 */
1604	if (!sdkp->media_present)
1605		sdp->changed = 1;
1606	sdkp->media_present = 1;
1607out:
1608	/*
1609	 * sdp->changed is set under the following conditions:
1610	 *
1611	 *	Medium present state has changed in either direction.
1612	 *	Device has indicated UNIT_ATTENTION.
1613	 */
1614	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1615	sdp->changed = 0;
1616	scsi_disk_put(sdkp);
1617	return retval;
1618}
1619
1620static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1621{
1622	int retries, res;
1623	struct scsi_device *sdp = sdkp->device;
1624	const int timeout = sdp->request_queue->rq_timeout
1625		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1626	struct scsi_sense_hdr my_sshdr;
1627
1628	if (!scsi_device_online(sdp))
1629		return -ENODEV;
1630
1631	/* caller might not be interested in sense, but we need it */
1632	if (!sshdr)
1633		sshdr = &my_sshdr;
1634
1635	for (retries = 3; retries > 0; --retries) {
1636		unsigned char cmd[10] = { 0 };
1637
1638		cmd[0] = SYNCHRONIZE_CACHE;
1639		/*
1640		 * Leave the rest of the command zero to indicate
1641		 * flush everything.
1642		 */
1643		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1644				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1645		if (res == 0)
1646			break;
1647	}
1648
1649	if (res) {
1650		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1651
1652		if (driver_byte(res) == DRIVER_SENSE)
1653			sd_print_sense_hdr(sdkp, sshdr);
1654
1655		/* we need to evaluate the error return  */
1656		if (scsi_sense_valid(sshdr) &&
1657			(sshdr->asc == 0x3a ||	/* medium not present */
1658			 sshdr->asc == 0x20 ||	/* invalid command */
1659			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1660				/* this is no error here */
1661				return 0;
1662
1663		switch (host_byte(res)) {
1664		/* ignore errors due to racing a disconnection */
1665		case DID_BAD_TARGET:
1666		case DID_NO_CONNECT:
1667			return 0;
1668		/* signal the upper layer it might try again */
1669		case DID_BUS_BUSY:
1670		case DID_IMM_RETRY:
1671		case DID_REQUEUE:
1672		case DID_SOFT_ERROR:
1673			return -EBUSY;
1674		default:
1675			return -EIO;
1676		}
1677	}
1678	return 0;
1679}
1680
1681static void sd_rescan(struct device *dev)
1682{
1683	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1684
1685	revalidate_disk(sdkp->disk);
1686}
1687
1688
1689#ifdef CONFIG_COMPAT
1690/* 
1691 * This gets directly called from VFS. When the ioctl 
1692 * is not recognized we go back to the other translation paths. 
1693 */
1694static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1695			   unsigned int cmd, unsigned long arg)
1696{
1697	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1698	int error;
1699
1700	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1701			(mode & FMODE_NDELAY) != 0);
1702	if (error)
1703		return error;
1704	       
1705	/* 
1706	 * Let the static ioctl translation table take care of it.
1707	 */
1708	if (!sdev->host->hostt->compat_ioctl)
1709		return -ENOIOCTLCMD; 
1710	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1711}
1712#endif
1713
1714static char sd_pr_type(enum pr_type type)
1715{
1716	switch (type) {
1717	case PR_WRITE_EXCLUSIVE:
1718		return 0x01;
1719	case PR_EXCLUSIVE_ACCESS:
1720		return 0x03;
1721	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1722		return 0x05;
1723	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1724		return 0x06;
1725	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1726		return 0x07;
1727	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1728		return 0x08;
1729	default:
1730		return 0;
1731	}
1732};
1733
1734static int sd_pr_command(struct block_device *bdev, u8 sa,
1735		u64 key, u64 sa_key, u8 type, u8 flags)
1736{
1737	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1738	struct scsi_sense_hdr sshdr;
1739	int result;
1740	u8 cmd[16] = { 0, };
1741	u8 data[24] = { 0, };
1742
1743	cmd[0] = PERSISTENT_RESERVE_OUT;
1744	cmd[1] = sa;
1745	cmd[2] = type;
1746	put_unaligned_be32(sizeof(data), &cmd[5]);
1747
1748	put_unaligned_be64(key, &data[0]);
1749	put_unaligned_be64(sa_key, &data[8]);
1750	data[20] = flags;
1751
1752	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1753			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1754
1755	if (driver_byte(result) == DRIVER_SENSE &&
1756	    scsi_sense_valid(&sshdr)) {
1757		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1758		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1759	}
1760
1761	return result;
1762}
1763
1764static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1765		u32 flags)
1766{
1767	if (flags & ~PR_FL_IGNORE_KEY)
1768		return -EOPNOTSUPP;
1769	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1770			old_key, new_key, 0,
1771			(1 << 0) /* APTPL */);
1772}
1773
1774static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1775		u32 flags)
1776{
1777	if (flags)
1778		return -EOPNOTSUPP;
1779	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1780}
1781
1782static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1783{
1784	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1785}
1786
1787static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1788		enum pr_type type, bool abort)
1789{
1790	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1791			     sd_pr_type(type), 0);
1792}
1793
1794static int sd_pr_clear(struct block_device *bdev, u64 key)
1795{
1796	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1797}
1798
1799static const struct pr_ops sd_pr_ops = {
1800	.pr_register	= sd_pr_register,
1801	.pr_reserve	= sd_pr_reserve,
1802	.pr_release	= sd_pr_release,
1803	.pr_preempt	= sd_pr_preempt,
1804	.pr_clear	= sd_pr_clear,
1805};
1806
1807static const struct block_device_operations sd_fops = {
1808	.owner			= THIS_MODULE,
1809	.open			= sd_open,
1810	.release		= sd_release,
1811	.ioctl			= sd_ioctl,
1812	.getgeo			= sd_getgeo,
1813#ifdef CONFIG_COMPAT
1814	.compat_ioctl		= sd_compat_ioctl,
1815#endif
1816	.check_events		= sd_check_events,
1817	.revalidate_disk	= sd_revalidate_disk,
1818	.unlock_native_capacity	= sd_unlock_native_capacity,
1819	.report_zones		= sd_zbc_report_zones,
1820	.pr_ops			= &sd_pr_ops,
1821};
1822
1823/**
1824 *	sd_eh_reset - reset error handling callback
1825 *	@scmd:		sd-issued command that has failed
1826 *
1827 *	This function is called by the SCSI midlayer before starting
1828 *	SCSI EH. When counting medium access failures we have to be
1829 *	careful to register it only only once per device and SCSI EH run;
1830 *	there might be several timed out commands which will cause the
1831 *	'max_medium_access_timeouts' counter to trigger after the first
1832 *	SCSI EH run already and set the device to offline.
1833 *	So this function resets the internal counter before starting SCSI EH.
1834 **/
1835static void sd_eh_reset(struct scsi_cmnd *scmd)
1836{
1837	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1838
1839	/* New SCSI EH run, reset gate variable */
1840	sdkp->ignore_medium_access_errors = false;
1841}
1842
1843/**
1844 *	sd_eh_action - error handling callback
1845 *	@scmd:		sd-issued command that has failed
1846 *	@eh_disp:	The recovery disposition suggested by the midlayer
1847 *
1848 *	This function is called by the SCSI midlayer upon completion of an
1849 *	error test command (currently TEST UNIT READY). The result of sending
1850 *	the eh command is passed in eh_disp.  We're looking for devices that
1851 *	fail medium access commands but are OK with non access commands like
1852 *	test unit ready (so wrongly see the device as having a successful
1853 *	recovery)
1854 **/
1855static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1856{
1857	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1858	struct scsi_device *sdev = scmd->device;
1859
1860	if (!scsi_device_online(sdev) ||
1861	    !scsi_medium_access_command(scmd) ||
1862	    host_byte(scmd->result) != DID_TIME_OUT ||
1863	    eh_disp != SUCCESS)
1864		return eh_disp;
1865
1866	/*
1867	 * The device has timed out executing a medium access command.
1868	 * However, the TEST UNIT READY command sent during error
1869	 * handling completed successfully. Either the device is in the
1870	 * process of recovering or has it suffered an internal failure
1871	 * that prevents access to the storage medium.
1872	 */
1873	if (!sdkp->ignore_medium_access_errors) {
1874		sdkp->medium_access_timed_out++;
1875		sdkp->ignore_medium_access_errors = true;
1876	}
1877
1878	/*
1879	 * If the device keeps failing read/write commands but TEST UNIT
1880	 * READY always completes successfully we assume that medium
1881	 * access is no longer possible and take the device offline.
1882	 */
1883	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1884		scmd_printk(KERN_ERR, scmd,
1885			    "Medium access timeout failure. Offlining disk!\n");
1886		mutex_lock(&sdev->state_mutex);
1887		scsi_device_set_state(sdev, SDEV_OFFLINE);
1888		mutex_unlock(&sdev->state_mutex);
1889
1890		return SUCCESS;
1891	}
1892
1893	return eh_disp;
1894}
1895
1896static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1897{
1898	struct request *req = scmd->request;
1899	struct scsi_device *sdev = scmd->device;
1900	unsigned int transferred, good_bytes;
1901	u64 start_lba, end_lba, bad_lba;
1902
1903	/*
1904	 * Some commands have a payload smaller than the device logical
1905	 * block size (e.g. INQUIRY on a 4K disk).
1906	 */
1907	if (scsi_bufflen(scmd) <= sdev->sector_size)
1908		return 0;
1909
1910	/* Check if we have a 'bad_lba' information */
1911	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1912				     SCSI_SENSE_BUFFERSIZE,
1913				     &bad_lba))
1914		return 0;
1915
1916	/*
1917	 * If the bad lba was reported incorrectly, we have no idea where
1918	 * the error is.
1919	 */
1920	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1921	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1922	if (bad_lba < start_lba || bad_lba >= end_lba)
1923		return 0;
1924
1925	/*
1926	 * resid is optional but mostly filled in.  When it's unused,
1927	 * its value is zero, so we assume the whole buffer transferred
1928	 */
1929	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1930
1931	/* This computation should always be done in terms of the
1932	 * resolution of the device's medium.
1933	 */
1934	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1935
1936	return min(good_bytes, transferred);
1937}
1938
1939/**
1940 *	sd_done - bottom half handler: called when the lower level
1941 *	driver has completed (successfully or otherwise) a scsi command.
1942 *	@SCpnt: mid-level's per command structure.
1943 *
1944 *	Note: potentially run from within an ISR. Must not block.
1945 **/
1946static int sd_done(struct scsi_cmnd *SCpnt)
1947{
1948	int result = SCpnt->result;
1949	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1950	unsigned int sector_size = SCpnt->device->sector_size;
1951	unsigned int resid;
1952	struct scsi_sense_hdr sshdr;
1953	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1954	struct request *req = SCpnt->request;
1955	int sense_valid = 0;
1956	int sense_deferred = 0;
1957
1958	switch (req_op(req)) {
1959	case REQ_OP_DISCARD:
1960	case REQ_OP_WRITE_ZEROES:
1961	case REQ_OP_WRITE_SAME:
1962	case REQ_OP_ZONE_RESET:
1963	case REQ_OP_ZONE_RESET_ALL:
1964		if (!result) {
1965			good_bytes = blk_rq_bytes(req);
1966			scsi_set_resid(SCpnt, 0);
1967		} else {
1968			good_bytes = 0;
1969			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1970		}
1971		break;
 
 
 
 
 
 
 
 
 
 
1972	default:
1973		/*
1974		 * In case of bogus fw or device, we could end up having
1975		 * an unaligned partial completion. Check this here and force
1976		 * alignment.
1977		 */
1978		resid = scsi_get_resid(SCpnt);
1979		if (resid & (sector_size - 1)) {
1980			sd_printk(KERN_INFO, sdkp,
1981				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1982				resid, sector_size);
1983			scsi_print_command(SCpnt);
1984			resid = min(scsi_bufflen(SCpnt),
1985				    round_up(resid, sector_size));
1986			scsi_set_resid(SCpnt, resid);
1987		}
1988	}
1989
1990	if (result) {
1991		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1992		if (sense_valid)
1993			sense_deferred = scsi_sense_is_deferred(&sshdr);
1994	}
1995	sdkp->medium_access_timed_out = 0;
1996
1997	if (driver_byte(result) != DRIVER_SENSE &&
1998	    (!sense_valid || sense_deferred))
1999		goto out;
2000
2001	switch (sshdr.sense_key) {
2002	case HARDWARE_ERROR:
2003	case MEDIUM_ERROR:
2004		good_bytes = sd_completed_bytes(SCpnt);
2005		break;
2006	case RECOVERED_ERROR:
2007		good_bytes = scsi_bufflen(SCpnt);
2008		break;
2009	case NO_SENSE:
2010		/* This indicates a false check condition, so ignore it.  An
2011		 * unknown amount of data was transferred so treat it as an
2012		 * error.
2013		 */
2014		SCpnt->result = 0;
2015		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2016		break;
2017	case ABORTED_COMMAND:
2018		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2019			good_bytes = sd_completed_bytes(SCpnt);
2020		break;
2021	case ILLEGAL_REQUEST:
2022		switch (sshdr.asc) {
2023		case 0x10:	/* DIX: Host detected corruption */
2024			good_bytes = sd_completed_bytes(SCpnt);
2025			break;
2026		case 0x20:	/* INVALID COMMAND OPCODE */
2027		case 0x24:	/* INVALID FIELD IN CDB */
2028			switch (SCpnt->cmnd[0]) {
2029			case UNMAP:
2030				sd_config_discard(sdkp, SD_LBP_DISABLE);
2031				break;
2032			case WRITE_SAME_16:
2033			case WRITE_SAME:
2034				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2035					sd_config_discard(sdkp, SD_LBP_DISABLE);
2036				} else {
2037					sdkp->device->no_write_same = 1;
2038					sd_config_write_same(sdkp);
 
2039					req->rq_flags |= RQF_QUIET;
2040				}
2041				break;
2042			}
2043		}
2044		break;
2045	default:
2046		break;
2047	}
2048
2049 out:
2050	if (sd_is_zoned(sdkp))
2051		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2052
2053	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2054					   "sd_done: completed %d of %d bytes\n",
2055					   good_bytes, scsi_bufflen(SCpnt)));
2056
 
 
 
2057	return good_bytes;
2058}
2059
2060/*
2061 * spinup disk - called only in sd_revalidate_disk()
2062 */
2063static void
2064sd_spinup_disk(struct scsi_disk *sdkp)
2065{
2066	unsigned char cmd[10];
2067	unsigned long spintime_expire = 0;
2068	int retries, spintime;
2069	unsigned int the_result;
2070	struct scsi_sense_hdr sshdr;
2071	int sense_valid = 0;
2072
2073	spintime = 0;
2074
2075	/* Spin up drives, as required.  Only do this at boot time */
2076	/* Spinup needs to be done for module loads too. */
2077	do {
2078		retries = 0;
2079
2080		do {
2081			cmd[0] = TEST_UNIT_READY;
2082			memset((void *) &cmd[1], 0, 9);
2083
2084			the_result = scsi_execute_req(sdkp->device, cmd,
2085						      DMA_NONE, NULL, 0,
2086						      &sshdr, SD_TIMEOUT,
2087						      SD_MAX_RETRIES, NULL);
2088
2089			/*
2090			 * If the drive has indicated to us that it
2091			 * doesn't have any media in it, don't bother
2092			 * with any more polling.
2093			 */
2094			if (media_not_present(sdkp, &sshdr))
2095				return;
2096
2097			if (the_result)
2098				sense_valid = scsi_sense_valid(&sshdr);
2099			retries++;
2100		} while (retries < 3 && 
2101			 (!scsi_status_is_good(the_result) ||
2102			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2103			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2104
2105		if (driver_byte(the_result) != DRIVER_SENSE) {
2106			/* no sense, TUR either succeeded or failed
2107			 * with a status error */
2108			if(!spintime && !scsi_status_is_good(the_result)) {
2109				sd_print_result(sdkp, "Test Unit Ready failed",
2110						the_result);
2111			}
2112			break;
2113		}
2114
2115		/*
2116		 * The device does not want the automatic start to be issued.
2117		 */
2118		if (sdkp->device->no_start_on_add)
2119			break;
2120
2121		if (sense_valid && sshdr.sense_key == NOT_READY) {
2122			if (sshdr.asc == 4 && sshdr.ascq == 3)
2123				break;	/* manual intervention required */
2124			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2125				break;	/* standby */
2126			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2127				break;	/* unavailable */
2128			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2129				break;	/* sanitize in progress */
2130			/*
2131			 * Issue command to spin up drive when not ready
2132			 */
2133			if (!spintime) {
2134				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2135				cmd[0] = START_STOP;
2136				cmd[1] = 1;	/* Return immediately */
2137				memset((void *) &cmd[2], 0, 8);
2138				cmd[4] = 1;	/* Start spin cycle */
2139				if (sdkp->device->start_stop_pwr_cond)
2140					cmd[4] |= 1 << 4;
2141				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2142						 NULL, 0, &sshdr,
2143						 SD_TIMEOUT, SD_MAX_RETRIES,
2144						 NULL);
2145				spintime_expire = jiffies + 100 * HZ;
2146				spintime = 1;
2147			}
2148			/* Wait 1 second for next try */
2149			msleep(1000);
2150			printk(KERN_CONT ".");
2151
2152		/*
2153		 * Wait for USB flash devices with slow firmware.
2154		 * Yes, this sense key/ASC combination shouldn't
2155		 * occur here.  It's characteristic of these devices.
2156		 */
2157		} else if (sense_valid &&
2158				sshdr.sense_key == UNIT_ATTENTION &&
2159				sshdr.asc == 0x28) {
2160			if (!spintime) {
2161				spintime_expire = jiffies + 5 * HZ;
2162				spintime = 1;
2163			}
2164			/* Wait 1 second for next try */
2165			msleep(1000);
2166		} else {
2167			/* we don't understand the sense code, so it's
2168			 * probably pointless to loop */
2169			if(!spintime) {
2170				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2171				sd_print_sense_hdr(sdkp, &sshdr);
2172			}
2173			break;
2174		}
2175				
2176	} while (spintime && time_before_eq(jiffies, spintime_expire));
2177
2178	if (spintime) {
2179		if (scsi_status_is_good(the_result))
2180			printk(KERN_CONT "ready\n");
2181		else
2182			printk(KERN_CONT "not responding...\n");
2183	}
2184}
2185
2186/*
2187 * Determine whether disk supports Data Integrity Field.
2188 */
2189static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2190{
2191	struct scsi_device *sdp = sdkp->device;
2192	u8 type;
2193	int ret = 0;
2194
2195	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2196		return ret;
2197
2198	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2199
2200	if (type > T10_PI_TYPE3_PROTECTION)
2201		ret = -ENODEV;
2202	else if (scsi_host_dif_capable(sdp->host, type))
2203		ret = 1;
2204
2205	if (sdkp->first_scan || type != sdkp->protection_type)
2206		switch (ret) {
2207		case -ENODEV:
2208			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2209				  " protection type %u. Disabling disk!\n",
2210				  type);
2211			break;
2212		case 1:
2213			sd_printk(KERN_NOTICE, sdkp,
2214				  "Enabling DIF Type %u protection\n", type);
2215			break;
2216		case 0:
2217			sd_printk(KERN_NOTICE, sdkp,
2218				  "Disabling DIF Type %u protection\n", type);
2219			break;
2220		}
2221
2222	sdkp->protection_type = type;
2223
2224	return ret;
2225}
2226
2227static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2228			struct scsi_sense_hdr *sshdr, int sense_valid,
2229			int the_result)
2230{
2231	if (driver_byte(the_result) == DRIVER_SENSE)
2232		sd_print_sense_hdr(sdkp, sshdr);
2233	else
2234		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2235
2236	/*
2237	 * Set dirty bit for removable devices if not ready -
2238	 * sometimes drives will not report this properly.
2239	 */
2240	if (sdp->removable &&
2241	    sense_valid && sshdr->sense_key == NOT_READY)
2242		set_media_not_present(sdkp);
2243
2244	/*
2245	 * We used to set media_present to 0 here to indicate no media
2246	 * in the drive, but some drives fail read capacity even with
2247	 * media present, so we can't do that.
2248	 */
2249	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2250}
2251
2252#define RC16_LEN 32
2253#if RC16_LEN > SD_BUF_SIZE
2254#error RC16_LEN must not be more than SD_BUF_SIZE
2255#endif
2256
2257#define READ_CAPACITY_RETRIES_ON_RESET	10
2258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260						unsigned char *buffer)
2261{
2262	unsigned char cmd[16];
2263	struct scsi_sense_hdr sshdr;
2264	int sense_valid = 0;
2265	int the_result;
2266	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2267	unsigned int alignment;
2268	unsigned long long lba;
2269	unsigned sector_size;
2270
2271	if (sdp->no_read_capacity_16)
2272		return -EINVAL;
2273
2274	do {
2275		memset(cmd, 0, 16);
2276		cmd[0] = SERVICE_ACTION_IN_16;
2277		cmd[1] = SAI_READ_CAPACITY_16;
2278		cmd[13] = RC16_LEN;
2279		memset(buffer, 0, RC16_LEN);
2280
2281		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2282					buffer, RC16_LEN, &sshdr,
2283					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2284
2285		if (media_not_present(sdkp, &sshdr))
2286			return -ENODEV;
2287
2288		if (the_result) {
2289			sense_valid = scsi_sense_valid(&sshdr);
2290			if (sense_valid &&
2291			    sshdr.sense_key == ILLEGAL_REQUEST &&
2292			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2293			    sshdr.ascq == 0x00)
2294				/* Invalid Command Operation Code or
2295				 * Invalid Field in CDB, just retry
2296				 * silently with RC10 */
2297				return -EINVAL;
2298			if (sense_valid &&
2299			    sshdr.sense_key == UNIT_ATTENTION &&
2300			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2301				/* Device reset might occur several times,
2302				 * give it one more chance */
2303				if (--reset_retries > 0)
2304					continue;
2305		}
2306		retries--;
2307
2308	} while (the_result && retries);
2309
2310	if (the_result) {
2311		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2312		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2313		return -EINVAL;
2314	}
2315
2316	sector_size = get_unaligned_be32(&buffer[8]);
2317	lba = get_unaligned_be64(&buffer[0]);
2318
2319	if (sd_read_protection_type(sdkp, buffer) < 0) {
2320		sdkp->capacity = 0;
2321		return -ENODEV;
2322	}
2323
 
 
 
 
 
 
 
 
2324	/* Logical blocks per physical block exponent */
2325	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2326
2327	/* RC basis */
2328	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2329
2330	/* Lowest aligned logical block */
2331	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2332	blk_queue_alignment_offset(sdp->request_queue, alignment);
2333	if (alignment && sdkp->first_scan)
2334		sd_printk(KERN_NOTICE, sdkp,
2335			  "physical block alignment offset: %u\n", alignment);
2336
2337	if (buffer[14] & 0x80) { /* LBPME */
2338		sdkp->lbpme = 1;
2339
2340		if (buffer[14] & 0x40) /* LBPRZ */
2341			sdkp->lbprz = 1;
2342
2343		sd_config_discard(sdkp, SD_LBP_WS16);
2344	}
2345
2346	sdkp->capacity = lba + 1;
2347	return sector_size;
2348}
2349
2350static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2351						unsigned char *buffer)
2352{
2353	unsigned char cmd[16];
2354	struct scsi_sense_hdr sshdr;
2355	int sense_valid = 0;
2356	int the_result;
2357	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2358	sector_t lba;
2359	unsigned sector_size;
2360
2361	do {
2362		cmd[0] = READ_CAPACITY;
2363		memset(&cmd[1], 0, 9);
2364		memset(buffer, 0, 8);
2365
2366		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2367					buffer, 8, &sshdr,
2368					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2369
2370		if (media_not_present(sdkp, &sshdr))
2371			return -ENODEV;
2372
2373		if (the_result) {
2374			sense_valid = scsi_sense_valid(&sshdr);
2375			if (sense_valid &&
2376			    sshdr.sense_key == UNIT_ATTENTION &&
2377			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2378				/* Device reset might occur several times,
2379				 * give it one more chance */
2380				if (--reset_retries > 0)
2381					continue;
2382		}
2383		retries--;
2384
2385	} while (the_result && retries);
2386
2387	if (the_result) {
2388		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2389		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2390		return -EINVAL;
2391	}
2392
2393	sector_size = get_unaligned_be32(&buffer[4]);
2394	lba = get_unaligned_be32(&buffer[0]);
2395
2396	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2397		/* Some buggy (usb cardreader) devices return an lba of
2398		   0xffffffff when the want to report a size of 0 (with
2399		   which they really mean no media is present) */
2400		sdkp->capacity = 0;
2401		sdkp->physical_block_size = sector_size;
2402		return sector_size;
2403	}
2404
 
 
 
 
 
 
 
 
2405	sdkp->capacity = lba + 1;
2406	sdkp->physical_block_size = sector_size;
2407	return sector_size;
2408}
2409
2410static int sd_try_rc16_first(struct scsi_device *sdp)
2411{
2412	if (sdp->host->max_cmd_len < 16)
2413		return 0;
2414	if (sdp->try_rc_10_first)
2415		return 0;
2416	if (sdp->scsi_level > SCSI_SPC_2)
2417		return 1;
2418	if (scsi_device_protection(sdp))
2419		return 1;
2420	return 0;
2421}
2422
2423/*
2424 * read disk capacity
2425 */
2426static void
2427sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2428{
2429	int sector_size;
2430	struct scsi_device *sdp = sdkp->device;
2431
2432	if (sd_try_rc16_first(sdp)) {
2433		sector_size = read_capacity_16(sdkp, sdp, buffer);
2434		if (sector_size == -EOVERFLOW)
2435			goto got_data;
2436		if (sector_size == -ENODEV)
2437			return;
2438		if (sector_size < 0)
2439			sector_size = read_capacity_10(sdkp, sdp, buffer);
2440		if (sector_size < 0)
2441			return;
2442	} else {
2443		sector_size = read_capacity_10(sdkp, sdp, buffer);
2444		if (sector_size == -EOVERFLOW)
2445			goto got_data;
2446		if (sector_size < 0)
2447			return;
2448		if ((sizeof(sdkp->capacity) > 4) &&
2449		    (sdkp->capacity > 0xffffffffULL)) {
2450			int old_sector_size = sector_size;
2451			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2452					"Trying to use READ CAPACITY(16).\n");
2453			sector_size = read_capacity_16(sdkp, sdp, buffer);
2454			if (sector_size < 0) {
2455				sd_printk(KERN_NOTICE, sdkp,
2456					"Using 0xffffffff as device size\n");
2457				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2458				sector_size = old_sector_size;
2459				goto got_data;
2460			}
2461			/* Remember that READ CAPACITY(16) succeeded */
2462			sdp->try_rc_10_first = 0;
2463		}
2464	}
2465
2466	/* Some devices are known to return the total number of blocks,
2467	 * not the highest block number.  Some devices have versions
2468	 * which do this and others which do not.  Some devices we might
2469	 * suspect of doing this but we don't know for certain.
2470	 *
2471	 * If we know the reported capacity is wrong, decrement it.  If
2472	 * we can only guess, then assume the number of blocks is even
2473	 * (usually true but not always) and err on the side of lowering
2474	 * the capacity.
2475	 */
2476	if (sdp->fix_capacity ||
2477	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2478		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2479				"from its reported value: %llu\n",
2480				(unsigned long long) sdkp->capacity);
2481		--sdkp->capacity;
2482	}
2483
2484got_data:
2485	if (sector_size == 0) {
2486		sector_size = 512;
2487		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2488			  "assuming 512.\n");
2489	}
2490
2491	if (sector_size != 512 &&
2492	    sector_size != 1024 &&
2493	    sector_size != 2048 &&
2494	    sector_size != 4096) {
2495		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2496			  sector_size);
2497		/*
2498		 * The user might want to re-format the drive with
2499		 * a supported sectorsize.  Once this happens, it
2500		 * would be relatively trivial to set the thing up.
2501		 * For this reason, we leave the thing in the table.
2502		 */
2503		sdkp->capacity = 0;
2504		/*
2505		 * set a bogus sector size so the normal read/write
2506		 * logic in the block layer will eventually refuse any
2507		 * request on this device without tripping over power
2508		 * of two sector size assumptions
2509		 */
2510		sector_size = 512;
2511	}
2512	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2513	blk_queue_physical_block_size(sdp->request_queue,
2514				      sdkp->physical_block_size);
2515	sdkp->device->sector_size = sector_size;
2516
2517	if (sdkp->capacity > 0xffffffff)
2518		sdp->use_16_for_rw = 1;
2519
2520}
2521
2522/*
2523 * Print disk capacity
2524 */
2525static void
2526sd_print_capacity(struct scsi_disk *sdkp,
2527		  sector_t old_capacity)
2528{
2529	int sector_size = sdkp->device->sector_size;
2530	char cap_str_2[10], cap_str_10[10];
2531
2532	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2533		return;
2534
2535	string_get_size(sdkp->capacity, sector_size,
2536			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2537	string_get_size(sdkp->capacity, sector_size,
2538			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
 
2539
2540	sd_printk(KERN_NOTICE, sdkp,
2541		  "%llu %d-byte logical blocks: (%s/%s)\n",
2542		  (unsigned long long)sdkp->capacity,
2543		  sector_size, cap_str_10, cap_str_2);
 
2544
2545	if (sdkp->physical_block_size != sector_size)
2546		sd_printk(KERN_NOTICE, sdkp,
2547			  "%u-byte physical blocks\n",
2548			  sdkp->physical_block_size);
2549
2550	sd_zbc_print_zones(sdkp);
 
2551}
2552
2553/* called with buffer of length 512 */
2554static inline int
2555sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2556		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2557		 struct scsi_sense_hdr *sshdr)
2558{
2559	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2560			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2561			       sshdr);
2562}
2563
2564/*
2565 * read write protect setting, if possible - called only in sd_revalidate_disk()
2566 * called with buffer of length SD_BUF_SIZE
2567 */
2568static void
2569sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2570{
2571	int res;
2572	struct scsi_device *sdp = sdkp->device;
2573	struct scsi_mode_data data;
 
2574	int old_wp = sdkp->write_prot;
2575
2576	set_disk_ro(sdkp->disk, 0);
2577	if (sdp->skip_ms_page_3f) {
2578		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2579		return;
2580	}
2581
2582	if (sdp->use_192_bytes_for_3f) {
2583		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2584	} else {
2585		/*
2586		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2587		 * We have to start carefully: some devices hang if we ask
2588		 * for more than is available.
2589		 */
2590		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2591
2592		/*
2593		 * Second attempt: ask for page 0 When only page 0 is
2594		 * implemented, a request for page 3F may return Sense Key
2595		 * 5: Illegal Request, Sense Code 24: Invalid field in
2596		 * CDB.
2597		 */
2598		if (!scsi_status_is_good(res))
2599			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2600
2601		/*
2602		 * Third attempt: ask 255 bytes, as we did earlier.
2603		 */
2604		if (!scsi_status_is_good(res))
2605			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2606					       &data, NULL);
2607	}
2608
2609	if (!scsi_status_is_good(res)) {
2610		sd_first_printk(KERN_WARNING, sdkp,
2611			  "Test WP failed, assume Write Enabled\n");
2612	} else {
2613		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2614		set_disk_ro(sdkp->disk, sdkp->write_prot);
2615		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2616			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2617				  sdkp->write_prot ? "on" : "off");
2618			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2619		}
2620	}
2621}
2622
2623/*
2624 * sd_read_cache_type - called only from sd_revalidate_disk()
2625 * called with buffer of length SD_BUF_SIZE
2626 */
2627static void
2628sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2629{
2630	int len = 0, res;
2631	struct scsi_device *sdp = sdkp->device;
2632
2633	int dbd;
2634	int modepage;
2635	int first_len;
2636	struct scsi_mode_data data;
2637	struct scsi_sense_hdr sshdr;
2638	int old_wce = sdkp->WCE;
2639	int old_rcd = sdkp->RCD;
2640	int old_dpofua = sdkp->DPOFUA;
2641
2642
2643	if (sdkp->cache_override)
2644		return;
2645
2646	first_len = 4;
2647	if (sdp->skip_ms_page_8) {
2648		if (sdp->type == TYPE_RBC)
2649			goto defaults;
2650		else {
2651			if (sdp->skip_ms_page_3f)
2652				goto defaults;
2653			modepage = 0x3F;
2654			if (sdp->use_192_bytes_for_3f)
2655				first_len = 192;
2656			dbd = 0;
2657		}
2658	} else if (sdp->type == TYPE_RBC) {
2659		modepage = 6;
2660		dbd = 8;
2661	} else {
2662		modepage = 8;
2663		dbd = 0;
2664	}
2665
2666	/* cautiously ask */
2667	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2668			&data, &sshdr);
2669
2670	if (!scsi_status_is_good(res))
2671		goto bad_sense;
2672
2673	if (!data.header_length) {
2674		modepage = 6;
2675		first_len = 0;
2676		sd_first_printk(KERN_ERR, sdkp,
2677				"Missing header in MODE_SENSE response\n");
2678	}
2679
2680	/* that went OK, now ask for the proper length */
2681	len = data.length;
2682
2683	/*
2684	 * We're only interested in the first three bytes, actually.
2685	 * But the data cache page is defined for the first 20.
2686	 */
2687	if (len < 3)
2688		goto bad_sense;
2689	else if (len > SD_BUF_SIZE) {
2690		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2691			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2692		len = SD_BUF_SIZE;
2693	}
2694	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2695		len = 192;
2696
2697	/* Get the data */
2698	if (len > first_len)
2699		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2700				&data, &sshdr);
2701
2702	if (scsi_status_is_good(res)) {
2703		int offset = data.header_length + data.block_descriptor_length;
2704
2705		while (offset < len) {
2706			u8 page_code = buffer[offset] & 0x3F;
2707			u8 spf       = buffer[offset] & 0x40;
2708
2709			if (page_code == 8 || page_code == 6) {
2710				/* We're interested only in the first 3 bytes.
2711				 */
2712				if (len - offset <= 2) {
2713					sd_first_printk(KERN_ERR, sdkp,
2714						"Incomplete mode parameter "
2715							"data\n");
2716					goto defaults;
2717				} else {
2718					modepage = page_code;
2719					goto Page_found;
2720				}
2721			} else {
2722				/* Go to the next page */
2723				if (spf && len - offset > 3)
2724					offset += 4 + (buffer[offset+2] << 8) +
2725						buffer[offset+3];
2726				else if (!spf && len - offset > 1)
2727					offset += 2 + buffer[offset+1];
2728				else {
2729					sd_first_printk(KERN_ERR, sdkp,
2730							"Incomplete mode "
2731							"parameter data\n");
2732					goto defaults;
2733				}
2734			}
2735		}
2736
2737		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2738		goto defaults;
2739
2740	Page_found:
2741		if (modepage == 8) {
2742			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744		} else {
2745			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746			sdkp->RCD = 0;
2747		}
2748
2749		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750		if (sdp->broken_fua) {
2751			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752			sdkp->DPOFUA = 0;
2753		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754			   !sdkp->device->use_16_for_rw) {
2755			sd_first_printk(KERN_NOTICE, sdkp,
2756				  "Uses READ/WRITE(6), disabling FUA\n");
2757			sdkp->DPOFUA = 0;
2758		}
2759
2760		/* No cache flush allowed for write protected devices */
2761		if (sdkp->WCE && sdkp->write_prot)
2762			sdkp->WCE = 0;
2763
2764		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766			sd_printk(KERN_NOTICE, sdkp,
2767				  "Write cache: %s, read cache: %s, %s\n",
2768				  sdkp->WCE ? "enabled" : "disabled",
2769				  sdkp->RCD ? "disabled" : "enabled",
2770				  sdkp->DPOFUA ? "supports DPO and FUA"
2771				  : "doesn't support DPO or FUA");
2772
2773		return;
2774	}
2775
2776bad_sense:
2777	if (scsi_sense_valid(&sshdr) &&
2778	    sshdr.sense_key == ILLEGAL_REQUEST &&
2779	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780		/* Invalid field in CDB */
2781		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782	else
2783		sd_first_printk(KERN_ERR, sdkp,
2784				"Asking for cache data failed\n");
2785
2786defaults:
2787	if (sdp->wce_default_on) {
2788		sd_first_printk(KERN_NOTICE, sdkp,
2789				"Assuming drive cache: write back\n");
2790		sdkp->WCE = 1;
2791	} else {
2792		sd_first_printk(KERN_ERR, sdkp,
2793				"Assuming drive cache: write through\n");
2794		sdkp->WCE = 0;
2795	}
2796	sdkp->RCD = 0;
2797	sdkp->DPOFUA = 0;
2798}
2799
2800/*
2801 * The ATO bit indicates whether the DIF application tag is available
2802 * for use by the operating system.
2803 */
2804static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805{
2806	int res, offset;
2807	struct scsi_device *sdp = sdkp->device;
2808	struct scsi_mode_data data;
2809	struct scsi_sense_hdr sshdr;
2810
2811	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812		return;
2813
2814	if (sdkp->protection_type == 0)
2815		return;
2816
2817	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818			      SD_MAX_RETRIES, &data, &sshdr);
2819
2820	if (!scsi_status_is_good(res) || !data.header_length ||
2821	    data.length < 6) {
2822		sd_first_printk(KERN_WARNING, sdkp,
2823			  "getting Control mode page failed, assume no ATO\n");
2824
2825		if (scsi_sense_valid(&sshdr))
2826			sd_print_sense_hdr(sdkp, &sshdr);
2827
2828		return;
2829	}
2830
2831	offset = data.header_length + data.block_descriptor_length;
2832
2833	if ((buffer[offset] & 0x3f) != 0x0a) {
2834		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835		return;
2836	}
2837
2838	if ((buffer[offset + 5] & 0x80) == 0)
2839		return;
2840
2841	sdkp->ATO = 1;
2842
2843	return;
2844}
2845
2846/**
2847 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848 * @sdkp: disk to query
2849 */
2850static void sd_read_block_limits(struct scsi_disk *sdkp)
2851{
2852	unsigned int sector_sz = sdkp->device->sector_size;
2853	const int vpd_len = 64;
2854	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2855
2856	if (!buffer ||
2857	    /* Block Limits VPD */
2858	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2859		goto out;
2860
2861	blk_queue_io_min(sdkp->disk->queue,
2862			 get_unaligned_be16(&buffer[6]) * sector_sz);
2863
2864	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2865	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2866
2867	if (buffer[3] == 0x3c) {
2868		unsigned int lba_count, desc_count;
2869
2870		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2871
2872		if (!sdkp->lbpme)
2873			goto out;
2874
2875		lba_count = get_unaligned_be32(&buffer[20]);
2876		desc_count = get_unaligned_be32(&buffer[24]);
2877
2878		if (lba_count && desc_count)
2879			sdkp->max_unmap_blocks = lba_count;
2880
2881		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2882
2883		if (buffer[32] & 0x80)
2884			sdkp->unmap_alignment =
2885				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2886
2887		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2888
2889			if (sdkp->max_unmap_blocks)
2890				sd_config_discard(sdkp, SD_LBP_UNMAP);
2891			else
2892				sd_config_discard(sdkp, SD_LBP_WS16);
2893
2894		} else {	/* LBP VPD page tells us what to use */
2895			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2896				sd_config_discard(sdkp, SD_LBP_UNMAP);
2897			else if (sdkp->lbpws)
2898				sd_config_discard(sdkp, SD_LBP_WS16);
2899			else if (sdkp->lbpws10)
2900				sd_config_discard(sdkp, SD_LBP_WS10);
2901			else
2902				sd_config_discard(sdkp, SD_LBP_DISABLE);
2903		}
2904	}
2905
2906 out:
2907	kfree(buffer);
2908}
2909
2910/**
2911 * sd_read_block_characteristics - Query block dev. characteristics
2912 * @sdkp: disk to query
2913 */
2914static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2915{
2916	struct request_queue *q = sdkp->disk->queue;
2917	unsigned char *buffer;
2918	u16 rot;
2919	const int vpd_len = 64;
2920
2921	buffer = kmalloc(vpd_len, GFP_KERNEL);
2922
2923	if (!buffer ||
2924	    /* Block Device Characteristics VPD */
2925	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2926		goto out;
2927
2928	rot = get_unaligned_be16(&buffer[4]);
2929
2930	if (rot == 1) {
2931		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933	}
2934
2935	if (sdkp->device->type == TYPE_ZBC) {
2936		/* Host-managed */
2937		q->limits.zoned = BLK_ZONED_HM;
2938	} else {
2939		sdkp->zoned = (buffer[8] >> 4) & 3;
2940		if (sdkp->zoned == 1)
2941			/* Host-aware */
2942			q->limits.zoned = BLK_ZONED_HA;
2943		else
2944			/*
2945			 * Treat drive-managed devices as
2946			 * regular block devices.
2947			 */
2948			q->limits.zoned = BLK_ZONED_NONE;
2949	}
2950	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2951		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2952		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2953
2954 out:
2955	kfree(buffer);
2956}
2957
2958/**
2959 * sd_read_block_provisioning - Query provisioning VPD page
2960 * @sdkp: disk to query
2961 */
2962static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2963{
2964	unsigned char *buffer;
2965	const int vpd_len = 8;
2966
2967	if (sdkp->lbpme == 0)
2968		return;
2969
2970	buffer = kmalloc(vpd_len, GFP_KERNEL);
2971
2972	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2973		goto out;
2974
2975	sdkp->lbpvpd	= 1;
2976	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2977	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2978	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2979
2980 out:
2981	kfree(buffer);
2982}
2983
2984static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2985{
2986	struct scsi_device *sdev = sdkp->device;
2987
2988	if (sdev->host->no_write_same) {
2989		sdev->no_write_same = 1;
2990
2991		return;
2992	}
2993
2994	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2995		/* too large values might cause issues with arcmsr */
2996		int vpd_buf_len = 64;
2997
2998		sdev->no_report_opcodes = 1;
2999
3000		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3001		 * CODES is unsupported and the device has an ATA
3002		 * Information VPD page (SAT).
3003		 */
3004		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3005			sdev->no_write_same = 1;
3006	}
3007
3008	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3009		sdkp->ws16 = 1;
3010
3011	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3012		sdkp->ws10 = 1;
3013}
3014
3015static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3016{
3017	struct scsi_device *sdev = sdkp->device;
3018
3019	if (!sdev->security_supported)
3020		return;
3021
3022	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3023			SECURITY_PROTOCOL_IN) == 1 &&
3024	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3025			SECURITY_PROTOCOL_OUT) == 1)
3026		sdkp->security = 1;
3027}
3028
3029/*
3030 * Determine the device's preferred I/O size for reads and writes
3031 * unless the reported value is unreasonably small, large, not a
3032 * multiple of the physical block size, or simply garbage.
3033 */
3034static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3035				      unsigned int dev_max)
3036{
3037	struct scsi_device *sdp = sdkp->device;
3038	unsigned int opt_xfer_bytes =
3039		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3040
3041	if (sdkp->opt_xfer_blocks == 0)
3042		return false;
3043
3044	if (sdkp->opt_xfer_blocks > dev_max) {
3045		sd_first_printk(KERN_WARNING, sdkp,
3046				"Optimal transfer size %u logical blocks " \
3047				"> dev_max (%u logical blocks)\n",
3048				sdkp->opt_xfer_blocks, dev_max);
3049		return false;
3050	}
3051
3052	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3053		sd_first_printk(KERN_WARNING, sdkp,
3054				"Optimal transfer size %u logical blocks " \
3055				"> sd driver limit (%u logical blocks)\n",
3056				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3057		return false;
3058	}
3059
3060	if (opt_xfer_bytes < PAGE_SIZE) {
3061		sd_first_printk(KERN_WARNING, sdkp,
3062				"Optimal transfer size %u bytes < " \
3063				"PAGE_SIZE (%u bytes)\n",
3064				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3065		return false;
3066	}
3067
3068	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3069		sd_first_printk(KERN_WARNING, sdkp,
3070				"Optimal transfer size %u bytes not a " \
3071				"multiple of physical block size (%u bytes)\n",
3072				opt_xfer_bytes, sdkp->physical_block_size);
3073		return false;
3074	}
3075
3076	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3077			opt_xfer_bytes);
3078	return true;
3079}
3080
3081/**
3082 *	sd_revalidate_disk - called the first time a new disk is seen,
3083 *	performs disk spin up, read_capacity, etc.
3084 *	@disk: struct gendisk we care about
3085 **/
3086static int sd_revalidate_disk(struct gendisk *disk)
3087{
3088	struct scsi_disk *sdkp = scsi_disk(disk);
3089	struct scsi_device *sdp = sdkp->device;
3090	struct request_queue *q = sdkp->disk->queue;
3091	sector_t old_capacity = sdkp->capacity;
3092	unsigned char *buffer;
3093	unsigned int dev_max, rw_max;
3094
3095	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3096				      "sd_revalidate_disk\n"));
3097
3098	/*
3099	 * If the device is offline, don't try and read capacity or any
3100	 * of the other niceties.
3101	 */
3102	if (!scsi_device_online(sdp))
3103		goto out;
3104
3105	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3106	if (!buffer) {
3107		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3108			  "allocation failure.\n");
3109		goto out;
3110	}
3111
3112	sd_spinup_disk(sdkp);
3113
3114	/*
3115	 * Without media there is no reason to ask; moreover, some devices
3116	 * react badly if we do.
3117	 */
3118	if (sdkp->media_present) {
3119		sd_read_capacity(sdkp, buffer);
3120
3121		/*
3122		 * set the default to rotational.  All non-rotational devices
3123		 * support the block characteristics VPD page, which will
3124		 * cause this to be updated correctly and any device which
3125		 * doesn't support it should be treated as rotational.
3126		 */
3127		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3128		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3129
3130		if (scsi_device_supports_vpd(sdp)) {
3131			sd_read_block_provisioning(sdkp);
3132			sd_read_block_limits(sdkp);
3133			sd_read_block_characteristics(sdkp);
3134			sd_zbc_read_zones(sdkp, buffer);
3135		}
3136
3137		sd_print_capacity(sdkp, old_capacity);
3138
3139		sd_read_write_protect_flag(sdkp, buffer);
3140		sd_read_cache_type(sdkp, buffer);
3141		sd_read_app_tag_own(sdkp, buffer);
3142		sd_read_write_same(sdkp, buffer);
3143		sd_read_security(sdkp, buffer);
3144	}
3145
3146	/*
3147	 * We now have all cache related info, determine how we deal
3148	 * with flush requests.
3149	 */
3150	sd_set_flush_flag(sdkp);
3151
3152	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3153	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3154
3155	/* Some devices report a maximum block count for READ/WRITE requests. */
3156	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3157	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3158
3159	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
 
 
 
 
 
 
 
 
3160		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3161		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3162	} else
3163		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3164				      (sector_t)BLK_DEF_MAX_SECTORS);
3165
3166	/* Do not exceed controller limit */
3167	rw_max = min(rw_max, queue_max_hw_sectors(q));
3168
3169	/*
3170	 * Only update max_sectors if previously unset or if the current value
3171	 * exceeds the capabilities of the hardware.
3172	 */
3173	if (sdkp->first_scan ||
3174	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3175	    q->limits.max_sectors > q->limits.max_hw_sectors)
3176		q->limits.max_sectors = rw_max;
3177
3178	sdkp->first_scan = 0;
3179
3180	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3181	sd_config_write_same(sdkp);
3182	kfree(buffer);
3183
3184 out:
3185	return 0;
3186}
3187
3188/**
3189 *	sd_unlock_native_capacity - unlock native capacity
3190 *	@disk: struct gendisk to set capacity for
3191 *
3192 *	Block layer calls this function if it detects that partitions
3193 *	on @disk reach beyond the end of the device.  If the SCSI host
3194 *	implements ->unlock_native_capacity() method, it's invoked to
3195 *	give it a chance to adjust the device capacity.
3196 *
3197 *	CONTEXT:
3198 *	Defined by block layer.  Might sleep.
3199 */
3200static void sd_unlock_native_capacity(struct gendisk *disk)
3201{
3202	struct scsi_device *sdev = scsi_disk(disk)->device;
3203
3204	if (sdev->host->hostt->unlock_native_capacity)
3205		sdev->host->hostt->unlock_native_capacity(sdev);
3206}
3207
3208/**
3209 *	sd_format_disk_name - format disk name
3210 *	@prefix: name prefix - ie. "sd" for SCSI disks
3211 *	@index: index of the disk to format name for
3212 *	@buf: output buffer
3213 *	@buflen: length of the output buffer
3214 *
3215 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3216 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3217 *	which is followed by sdaaa.
3218 *
3219 *	This is basically 26 base counting with one extra 'nil' entry
3220 *	at the beginning from the second digit on and can be
3221 *	determined using similar method as 26 base conversion with the
3222 *	index shifted -1 after each digit is computed.
3223 *
3224 *	CONTEXT:
3225 *	Don't care.
3226 *
3227 *	RETURNS:
3228 *	0 on success, -errno on failure.
3229 */
3230static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3231{
3232	const int base = 'z' - 'a' + 1;
3233	char *begin = buf + strlen(prefix);
3234	char *end = buf + buflen;
3235	char *p;
3236	int unit;
3237
3238	p = end - 1;
3239	*p = '\0';
3240	unit = base;
3241	do {
3242		if (p == begin)
3243			return -EINVAL;
3244		*--p = 'a' + (index % unit);
3245		index = (index / unit) - 1;
3246	} while (index >= 0);
3247
3248	memmove(begin, p, end - p);
3249	memcpy(buf, prefix, strlen(prefix));
3250
3251	return 0;
3252}
3253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254/**
3255 *	sd_probe - called during driver initialization and whenever a
3256 *	new scsi device is attached to the system. It is called once
3257 *	for each scsi device (not just disks) present.
3258 *	@dev: pointer to device object
3259 *
3260 *	Returns 0 if successful (or not interested in this scsi device 
3261 *	(e.g. scanner)); 1 when there is an error.
3262 *
3263 *	Note: this function is invoked from the scsi mid-level.
3264 *	This function sets up the mapping between a given 
3265 *	<host,channel,id,lun> (found in sdp) and new device name 
3266 *	(e.g. /dev/sda). More precisely it is the block device major 
3267 *	and minor number that is chosen here.
3268 *
3269 *	Assume sd_probe is not re-entrant (for time being)
3270 *	Also think about sd_probe() and sd_remove() running coincidentally.
3271 **/
3272static int sd_probe(struct device *dev)
3273{
3274	struct scsi_device *sdp = to_scsi_device(dev);
3275	struct scsi_disk *sdkp;
3276	struct gendisk *gd;
3277	int index;
3278	int error;
3279
3280	scsi_autopm_get_device(sdp);
3281	error = -ENODEV;
3282	if (sdp->type != TYPE_DISK &&
3283	    sdp->type != TYPE_ZBC &&
3284	    sdp->type != TYPE_MOD &&
3285	    sdp->type != TYPE_RBC)
3286		goto out;
3287
3288#ifndef CONFIG_BLK_DEV_ZONED
3289	if (sdp->type == TYPE_ZBC)
3290		goto out;
3291#endif
3292	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3293					"sd_probe\n"));
3294
3295	error = -ENOMEM;
3296	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3297	if (!sdkp)
3298		goto out;
3299
3300	gd = alloc_disk(SD_MINORS);
3301	if (!gd)
3302		goto out_free;
3303
3304	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3305	if (index < 0) {
 
 
 
 
 
 
 
 
3306		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3307		goto out_put;
3308	}
3309
3310	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3311	if (error) {
3312		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3313		goto out_free_index;
3314	}
3315
3316	sdkp->device = sdp;
3317	sdkp->driver = &sd_template;
3318	sdkp->disk = gd;
3319	sdkp->index = index;
3320	atomic_set(&sdkp->openers, 0);
3321	atomic_set(&sdkp->device->ioerr_cnt, 0);
3322
3323	if (!sdp->request_queue->rq_timeout) {
3324		if (sdp->type != TYPE_MOD)
3325			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3326		else
3327			blk_queue_rq_timeout(sdp->request_queue,
3328					     SD_MOD_TIMEOUT);
3329	}
3330
3331	device_initialize(&sdkp->dev);
3332	sdkp->dev.parent = dev;
3333	sdkp->dev.class = &sd_disk_class;
3334	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3335
3336	error = device_add(&sdkp->dev);
3337	if (error)
3338		goto out_free_index;
3339
3340	get_device(dev);
3341	dev_set_drvdata(dev, sdkp);
3342
3343	gd->major = sd_major((index & 0xf0) >> 4);
3344	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3345
3346	gd->fops = &sd_fops;
3347	gd->private_data = &sdkp->driver;
3348	gd->queue = sdkp->device->request_queue;
3349
3350	/* defaults, until the device tells us otherwise */
3351	sdp->sector_size = 512;
3352	sdkp->capacity = 0;
3353	sdkp->media_present = 1;
3354	sdkp->write_prot = 0;
3355	sdkp->cache_override = 0;
3356	sdkp->WCE = 0;
3357	sdkp->RCD = 0;
3358	sdkp->ATO = 0;
3359	sdkp->first_scan = 1;
3360	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3361
3362	sd_revalidate_disk(gd);
3363
3364	gd->flags = GENHD_FL_EXT_DEVT;
3365	if (sdp->removable) {
3366		gd->flags |= GENHD_FL_REMOVABLE;
3367		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3368		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3369	}
3370
3371	blk_pm_runtime_init(sdp->request_queue, dev);
3372	device_add_disk(dev, gd, NULL);
3373	if (sdkp->capacity)
3374		sd_dif_config_host(sdkp);
3375
3376	sd_revalidate_disk(gd);
3377
3378	if (sdkp->security) {
3379		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3380		if (sdkp->opal_dev)
3381			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3382	}
3383
3384	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3385		  sdp->removable ? "removable " : "");
3386	scsi_autopm_put_device(sdp);
3387
3388	return 0;
3389
3390 out_free_index:
3391	ida_free(&sd_index_ida, index);
 
 
3392 out_put:
3393	put_disk(gd);
3394 out_free:
3395	kfree(sdkp);
3396 out:
3397	scsi_autopm_put_device(sdp);
3398	return error;
3399}
3400
3401/**
3402 *	sd_remove - called whenever a scsi disk (previously recognized by
3403 *	sd_probe) is detached from the system. It is called (potentially
3404 *	multiple times) during sd module unload.
3405 *	@dev: pointer to device object
3406 *
3407 *	Note: this function is invoked from the scsi mid-level.
3408 *	This function potentially frees up a device name (e.g. /dev/sdc)
3409 *	that could be re-used by a subsequent sd_probe().
3410 *	This function is not called when the built-in sd driver is "exit-ed".
3411 **/
3412static int sd_remove(struct device *dev)
3413{
3414	struct scsi_disk *sdkp;
3415	dev_t devt;
3416
3417	sdkp = dev_get_drvdata(dev);
3418	devt = disk_devt(sdkp->disk);
3419	scsi_autopm_get_device(sdkp->device);
3420
3421	async_synchronize_full_domain(&scsi_sd_pm_domain);
 
3422	device_del(&sdkp->dev);
3423	del_gendisk(sdkp->disk);
3424	sd_shutdown(dev);
3425
 
 
3426	free_opal_dev(sdkp->opal_dev);
3427
3428	blk_register_region(devt, SD_MINORS, NULL,
3429			    sd_default_probe, NULL, NULL);
3430
3431	mutex_lock(&sd_ref_mutex);
3432	dev_set_drvdata(dev, NULL);
3433	put_device(&sdkp->dev);
3434	mutex_unlock(&sd_ref_mutex);
3435
3436	return 0;
3437}
3438
3439/**
3440 *	scsi_disk_release - Called to free the scsi_disk structure
3441 *	@dev: pointer to embedded class device
3442 *
3443 *	sd_ref_mutex must be held entering this routine.  Because it is
3444 *	called on last put, you should always use the scsi_disk_get()
3445 *	scsi_disk_put() helpers which manipulate the semaphore directly
3446 *	and never do a direct put_device.
3447 **/
3448static void scsi_disk_release(struct device *dev)
3449{
3450	struct scsi_disk *sdkp = to_scsi_disk(dev);
3451	struct gendisk *disk = sdkp->disk;
3452	struct request_queue *q = disk->queue;
3453
3454	ida_free(&sd_index_ida, sdkp->index);
3455
3456	/*
3457	 * Wait until all requests that are in progress have completed.
3458	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3459	 * due to clearing the disk->private_data pointer. Wait from inside
3460	 * scsi_disk_release() instead of from sd_release() to avoid that
3461	 * freezing and unfreezing the request queue affects user space I/O
3462	 * in case multiple processes open a /dev/sd... node concurrently.
3463	 */
3464	blk_mq_freeze_queue(q);
3465	blk_mq_unfreeze_queue(q);
3466
3467	disk->private_data = NULL;
3468	put_disk(disk);
3469	put_device(&sdkp->device->sdev_gendev);
3470
3471	kfree(sdkp);
3472}
3473
3474static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3475{
3476	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3477	struct scsi_sense_hdr sshdr;
3478	struct scsi_device *sdp = sdkp->device;
3479	int res;
3480
3481	if (start)
3482		cmd[4] |= 1;	/* START */
3483
3484	if (sdp->start_stop_pwr_cond)
3485		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3486
3487	if (!scsi_device_online(sdp))
3488		return -ENODEV;
3489
3490	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3491			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3492	if (res) {
3493		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3494		if (driver_byte(res) == DRIVER_SENSE)
3495			sd_print_sense_hdr(sdkp, &sshdr);
3496		if (scsi_sense_valid(&sshdr) &&
3497			/* 0x3a is medium not present */
3498			sshdr.asc == 0x3a)
3499			res = 0;
3500	}
3501
3502	/* SCSI error codes must not go to the generic layer */
3503	if (res)
3504		return -EIO;
3505
3506	return 0;
3507}
3508
3509/*
3510 * Send a SYNCHRONIZE CACHE instruction down to the device through
3511 * the normal SCSI command structure.  Wait for the command to
3512 * complete.
3513 */
3514static void sd_shutdown(struct device *dev)
3515{
3516	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3517
3518	if (!sdkp)
3519		return;         /* this can happen */
3520
3521	if (pm_runtime_suspended(dev))
3522		return;
3523
3524	if (sdkp->WCE && sdkp->media_present) {
3525		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526		sd_sync_cache(sdkp, NULL);
3527	}
3528
3529	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3530		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3531		sd_start_stop_device(sdkp, 0);
3532	}
3533}
3534
3535static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3536{
3537	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3538	struct scsi_sense_hdr sshdr;
3539	int ret = 0;
3540
3541	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3542		return 0;
3543
3544	if (sdkp->WCE && sdkp->media_present) {
3545		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3546		ret = sd_sync_cache(sdkp, &sshdr);
3547
3548		if (ret) {
3549			/* ignore OFFLINE device */
3550			if (ret == -ENODEV)
3551				return 0;
3552
3553			if (!scsi_sense_valid(&sshdr) ||
3554			    sshdr.sense_key != ILLEGAL_REQUEST)
3555				return ret;
3556
3557			/*
3558			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3559			 * doesn't support sync. There's not much to do and
3560			 * suspend shouldn't fail.
3561			 */
3562			ret = 0;
3563		}
3564	}
3565
3566	if (sdkp->device->manage_start_stop) {
3567		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3568		/* an error is not worth aborting a system sleep */
3569		ret = sd_start_stop_device(sdkp, 0);
3570		if (ignore_stop_errors)
3571			ret = 0;
3572	}
3573
3574	return ret;
3575}
3576
3577static int sd_suspend_system(struct device *dev)
3578{
3579	return sd_suspend_common(dev, true);
3580}
3581
3582static int sd_suspend_runtime(struct device *dev)
3583{
3584	return sd_suspend_common(dev, false);
3585}
3586
3587static int sd_resume(struct device *dev)
3588{
3589	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3590	int ret;
3591
3592	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3593		return 0;
3594
3595	if (!sdkp->device->manage_start_stop)
3596		return 0;
3597
3598	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3599	ret = sd_start_stop_device(sdkp, 1);
3600	if (!ret)
3601		opal_unlock_from_suspend(sdkp->opal_dev);
3602	return ret;
3603}
3604
3605/**
3606 *	init_sd - entry point for this driver (both when built in or when
3607 *	a module).
3608 *
3609 *	Note: this function registers this driver with the scsi mid-level.
3610 **/
3611static int __init init_sd(void)
3612{
3613	int majors = 0, i, err;
3614
3615	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3616
3617	for (i = 0; i < SD_MAJORS; i++) {
3618		if (register_blkdev(sd_major(i), "sd") != 0)
3619			continue;
3620		majors++;
3621		blk_register_region(sd_major(i), SD_MINORS, NULL,
3622				    sd_default_probe, NULL, NULL);
3623	}
3624
3625	if (!majors)
3626		return -ENODEV;
3627
3628	err = class_register(&sd_disk_class);
3629	if (err)
3630		goto err_out;
3631
3632	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3633					 0, 0, NULL);
3634	if (!sd_cdb_cache) {
3635		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3636		err = -ENOMEM;
3637		goto err_out_class;
3638	}
3639
3640	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3641	if (!sd_cdb_pool) {
3642		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3643		err = -ENOMEM;
3644		goto err_out_cache;
3645	}
3646
3647	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3648	if (!sd_page_pool) {
3649		printk(KERN_ERR "sd: can't init discard page pool\n");
3650		err = -ENOMEM;
3651		goto err_out_ppool;
3652	}
3653
3654	err = scsi_register_driver(&sd_template.gendrv);
3655	if (err)
3656		goto err_out_driver;
3657
3658	return 0;
3659
3660err_out_driver:
3661	mempool_destroy(sd_page_pool);
3662
3663err_out_ppool:
3664	mempool_destroy(sd_cdb_pool);
3665
3666err_out_cache:
3667	kmem_cache_destroy(sd_cdb_cache);
3668
3669err_out_class:
3670	class_unregister(&sd_disk_class);
3671err_out:
3672	for (i = 0; i < SD_MAJORS; i++)
3673		unregister_blkdev(sd_major(i), "sd");
3674	return err;
3675}
3676
3677/**
3678 *	exit_sd - exit point for this driver (when it is a module).
3679 *
3680 *	Note: this function unregisters this driver from the scsi mid-level.
3681 **/
3682static void __exit exit_sd(void)
3683{
3684	int i;
3685
3686	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3687
3688	scsi_unregister_driver(&sd_template.gendrv);
3689	mempool_destroy(sd_cdb_pool);
3690	mempool_destroy(sd_page_pool);
3691	kmem_cache_destroy(sd_cdb_cache);
3692
3693	class_unregister(&sd_disk_class);
3694
3695	for (i = 0; i < SD_MAJORS; i++) {
3696		blk_unregister_region(sd_major(i), SD_MINORS);
3697		unregister_blkdev(sd_major(i), "sd");
3698	}
3699}
3700
3701module_init(init_sd);
3702module_exit(exit_sd);
3703
3704static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3705			       struct scsi_sense_hdr *sshdr)
3706{
3707	scsi_print_sense_hdr(sdkp->device,
3708			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3709}
3710
3711static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3712			    int result)
3713{
3714	const char *hb_string = scsi_hostbyte_string(result);
3715	const char *db_string = scsi_driverbyte_string(result);
3716
3717	if (hb_string || db_string)
3718		sd_printk(KERN_INFO, sdkp,
3719			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3720			  hb_string ? hb_string : "invalid",
3721			  db_string ? db_string : "invalid");
3722	else
3723		sd_printk(KERN_INFO, sdkp,
3724			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3725			  msg, host_byte(result), driver_byte(result));
3726}
3727