Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *      sd.c Copyright (C) 1992 Drew Eckhardt
   3 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   4 *
   5 *      Linux scsi disk driver
   6 *              Initial versions: Drew Eckhardt
   7 *              Subsequent revisions: Eric Youngdale
   8 *	Modification history:
   9 *       - Drew Eckhardt <drew@colorado.edu> original
  10 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  11 *         outstanding request, and other enhancements.
  12 *         Support loadable low-level scsi drivers.
  13 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  14 *         eight major numbers.
  15 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  16 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  17 *	   sd_init and cleanups.
  18 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  19 *	   not being read in sd_open. Fix problem where removable media 
  20 *	   could be ejected after sd_open.
  21 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  22 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  23 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  24 *	   Support 32k/1M disks.
  25 *
  26 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  27 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  28 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  29 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  30 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  31 *	Note: when the logging level is set by the user, it must be greater
  32 *	than the level indicated above to trigger output.	
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/fs.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/bio.h>
  40#include <linux/genhd.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/delay.h>
  49#include <linux/mutex.h>
  50#include <linux/string_helpers.h>
  51#include <linux/async.h>
  52#include <linux/slab.h>
  53#include <linux/sed-opal.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/pr.h>
  56#include <linux/t10-pi.h>
  57#include <linux/uaccess.h>
  58#include <asm/unaligned.h>
  59
  60#include <scsi/scsi.h>
  61#include <scsi/scsi_cmnd.h>
  62#include <scsi/scsi_dbg.h>
  63#include <scsi/scsi_device.h>
  64#include <scsi/scsi_driver.h>
  65#include <scsi/scsi_eh.h>
  66#include <scsi/scsi_host.h>
  67#include <scsi/scsi_ioctl.h>
  68#include <scsi/scsicam.h>
  69
  70#include "sd.h"
  71#include "scsi_priv.h"
  72#include "scsi_logging.h"
  73
  74MODULE_AUTHOR("Eric Youngdale");
  75MODULE_DESCRIPTION("SCSI disk (sd) driver");
  76MODULE_LICENSE("GPL");
  77
  78MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  94MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  95MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
  98
  99#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 100#define SD_MINORS	16
 101#else
 102#define SD_MINORS	0
 103#endif
 104
 105static void sd_config_discard(struct scsi_disk *, unsigned int);
 106static void sd_config_write_same(struct scsi_disk *);
 107static int  sd_revalidate_disk(struct gendisk *);
 108static void sd_unlock_native_capacity(struct gendisk *disk);
 109static int  sd_probe(struct device *);
 110static int  sd_remove(struct device *);
 111static void sd_shutdown(struct device *);
 112static int sd_suspend_system(struct device *);
 113static int sd_suspend_runtime(struct device *);
 114static int sd_resume(struct device *);
 115static void sd_rescan(struct device *);
 116static int sd_init_command(struct scsi_cmnd *SCpnt);
 117static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 118static int sd_done(struct scsi_cmnd *);
 119static void sd_eh_reset(struct scsi_cmnd *);
 120static int sd_eh_action(struct scsi_cmnd *, int);
 121static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 122static void scsi_disk_release(struct device *cdev);
 123static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 124static void sd_print_result(const struct scsi_disk *, const char *, int);
 125
 126static DEFINE_SPINLOCK(sd_index_lock);
 127static DEFINE_IDA(sd_index_ida);
 128
 129/* This semaphore is used to mediate the 0->1 reference get in the
 130 * face of object destruction (i.e. we can't allow a get on an
 131 * object after last put) */
 132static DEFINE_MUTEX(sd_ref_mutex);
 133
 134static struct kmem_cache *sd_cdb_cache;
 135static mempool_t *sd_cdb_pool;
 136
 137static const char *sd_cache_types[] = {
 138	"write through", "none", "write back",
 139	"write back, no read (daft)"
 140};
 141
 142static void sd_set_flush_flag(struct scsi_disk *sdkp)
 143{
 144	bool wc = false, fua = false;
 145
 146	if (sdkp->WCE) {
 147		wc = true;
 148		if (sdkp->DPOFUA)
 149			fua = true;
 150	}
 151
 152	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 153}
 154
 155static ssize_t
 156cache_type_store(struct device *dev, struct device_attribute *attr,
 157		 const char *buf, size_t count)
 158{
 159	int ct, rcd, wce, sp;
 160	struct scsi_disk *sdkp = to_scsi_disk(dev);
 161	struct scsi_device *sdp = sdkp->device;
 162	char buffer[64];
 163	char *buffer_data;
 164	struct scsi_mode_data data;
 165	struct scsi_sense_hdr sshdr;
 166	static const char temp[] = "temporary ";
 167	int len;
 168
 169	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 170		/* no cache control on RBC devices; theoretically they
 171		 * can do it, but there's probably so many exceptions
 172		 * it's not worth the risk */
 173		return -EINVAL;
 174
 175	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 176		buf += sizeof(temp) - 1;
 177		sdkp->cache_override = 1;
 178	} else {
 179		sdkp->cache_override = 0;
 180	}
 181
 182	ct = sysfs_match_string(sd_cache_types, buf);
 
 
 
 
 
 
 
 183	if (ct < 0)
 184		return -EINVAL;
 185
 186	rcd = ct & 0x01 ? 1 : 0;
 187	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 188
 189	if (sdkp->cache_override) {
 190		sdkp->WCE = wce;
 191		sdkp->RCD = rcd;
 192		sd_set_flush_flag(sdkp);
 193		return count;
 194	}
 195
 196	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 197			    SD_MAX_RETRIES, &data, NULL))
 198		return -EINVAL;
 199	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 200		  data.block_descriptor_length);
 201	buffer_data = buffer + data.header_length +
 202		data.block_descriptor_length;
 203	buffer_data[2] &= ~0x05;
 204	buffer_data[2] |= wce << 2 | rcd;
 205	sp = buffer_data[0] & 0x80 ? 1 : 0;
 206	buffer_data[0] &= ~0x80;
 207
 208	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 209			     SD_MAX_RETRIES, &data, &sshdr)) {
 210		if (scsi_sense_valid(&sshdr))
 211			sd_print_sense_hdr(sdkp, &sshdr);
 212		return -EINVAL;
 213	}
 214	revalidate_disk(sdkp->disk);
 215	return count;
 216}
 217
 218static ssize_t
 219manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 220		       char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 226}
 227
 228static ssize_t
 229manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 230			const char *buf, size_t count)
 231{
 232	struct scsi_disk *sdkp = to_scsi_disk(dev);
 233	struct scsi_device *sdp = sdkp->device;
 234	bool v;
 235
 236	if (!capable(CAP_SYS_ADMIN))
 237		return -EACCES;
 238
 239	if (kstrtobool(buf, &v))
 240		return -EINVAL;
 241
 242	sdp->manage_start_stop = v;
 243
 244	return count;
 245}
 246static DEVICE_ATTR_RW(manage_start_stop);
 247
 248static ssize_t
 249allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 250{
 251	struct scsi_disk *sdkp = to_scsi_disk(dev);
 252
 253	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 254}
 255
 256static ssize_t
 257allow_restart_store(struct device *dev, struct device_attribute *attr,
 258		    const char *buf, size_t count)
 259{
 260	bool v;
 261	struct scsi_disk *sdkp = to_scsi_disk(dev);
 262	struct scsi_device *sdp = sdkp->device;
 263
 264	if (!capable(CAP_SYS_ADMIN))
 265		return -EACCES;
 266
 267	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 268		return -EINVAL;
 269
 270	if (kstrtobool(buf, &v))
 271		return -EINVAL;
 272
 273	sdp->allow_restart = v;
 274
 275	return count;
 276}
 277static DEVICE_ATTR_RW(allow_restart);
 278
 279static ssize_t
 280cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 281{
 282	struct scsi_disk *sdkp = to_scsi_disk(dev);
 283	int ct = sdkp->RCD + 2*sdkp->WCE;
 284
 285	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 286}
 287static DEVICE_ATTR_RW(cache_type);
 288
 289static ssize_t
 290FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 291{
 292	struct scsi_disk *sdkp = to_scsi_disk(dev);
 293
 294	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 295}
 296static DEVICE_ATTR_RO(FUA);
 297
 298static ssize_t
 299protection_type_show(struct device *dev, struct device_attribute *attr,
 300		     char *buf)
 301{
 302	struct scsi_disk *sdkp = to_scsi_disk(dev);
 303
 304	return sprintf(buf, "%u\n", sdkp->protection_type);
 305}
 306
 307static ssize_t
 308protection_type_store(struct device *dev, struct device_attribute *attr,
 309		      const char *buf, size_t count)
 310{
 311	struct scsi_disk *sdkp = to_scsi_disk(dev);
 312	unsigned int val;
 313	int err;
 314
 315	if (!capable(CAP_SYS_ADMIN))
 316		return -EACCES;
 317
 318	err = kstrtouint(buf, 10, &val);
 319
 320	if (err)
 321		return err;
 322
 323	if (val <= T10_PI_TYPE3_PROTECTION)
 324		sdkp->protection_type = val;
 325
 326	return count;
 327}
 328static DEVICE_ATTR_RW(protection_type);
 329
 330static ssize_t
 331protection_mode_show(struct device *dev, struct device_attribute *attr,
 332		     char *buf)
 333{
 334	struct scsi_disk *sdkp = to_scsi_disk(dev);
 335	struct scsi_device *sdp = sdkp->device;
 336	unsigned int dif, dix;
 337
 338	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 339	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 340
 341	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 342		dif = 0;
 343		dix = 1;
 344	}
 345
 346	if (!dif && !dix)
 347		return sprintf(buf, "none\n");
 348
 349	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 350}
 351static DEVICE_ATTR_RO(protection_mode);
 352
 353static ssize_t
 354app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 355{
 356	struct scsi_disk *sdkp = to_scsi_disk(dev);
 357
 358	return sprintf(buf, "%u\n", sdkp->ATO);
 359}
 360static DEVICE_ATTR_RO(app_tag_own);
 361
 362static ssize_t
 363thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 364		       char *buf)
 365{
 366	struct scsi_disk *sdkp = to_scsi_disk(dev);
 367
 368	return sprintf(buf, "%u\n", sdkp->lbpme);
 369}
 370static DEVICE_ATTR_RO(thin_provisioning);
 371
 372/* sysfs_match_string() requires dense arrays */
 373static const char *lbp_mode[] = {
 374	[SD_LBP_FULL]		= "full",
 375	[SD_LBP_UNMAP]		= "unmap",
 376	[SD_LBP_WS16]		= "writesame_16",
 377	[SD_LBP_WS10]		= "writesame_10",
 378	[SD_LBP_ZERO]		= "writesame_zero",
 379	[SD_LBP_DISABLE]	= "disabled",
 380};
 381
 382static ssize_t
 383provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 384		       char *buf)
 385{
 386	struct scsi_disk *sdkp = to_scsi_disk(dev);
 387
 388	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 389}
 390
 391static ssize_t
 392provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 393			const char *buf, size_t count)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	int mode;
 398
 399	if (!capable(CAP_SYS_ADMIN))
 400		return -EACCES;
 401
 402	if (sd_is_zoned(sdkp)) {
 403		sd_config_discard(sdkp, SD_LBP_DISABLE);
 404		return count;
 405	}
 406
 407	if (sdp->type != TYPE_DISK)
 408		return -EINVAL;
 409
 410	mode = sysfs_match_string(lbp_mode, buf);
 411	if (mode < 0)
 
 
 
 
 
 
 
 
 
 412		return -EINVAL;
 413
 414	sd_config_discard(sdkp, mode);
 415
 416	return count;
 417}
 418static DEVICE_ATTR_RW(provisioning_mode);
 419
 420/* sysfs_match_string() requires dense arrays */
 421static const char *zeroing_mode[] = {
 422	[SD_ZERO_WRITE]		= "write",
 423	[SD_ZERO_WS]		= "writesame",
 424	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 425	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 426};
 427
 428static ssize_t
 429zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 430		  char *buf)
 431{
 432	struct scsi_disk *sdkp = to_scsi_disk(dev);
 433
 434	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 435}
 436
 437static ssize_t
 438zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 439		   const char *buf, size_t count)
 440{
 441	struct scsi_disk *sdkp = to_scsi_disk(dev);
 442	int mode;
 443
 444	if (!capable(CAP_SYS_ADMIN))
 445		return -EACCES;
 446
 447	mode = sysfs_match_string(zeroing_mode, buf);
 448	if (mode < 0)
 449		return -EINVAL;
 450
 451	sdkp->zeroing_mode = mode;
 452
 453	return count;
 454}
 455static DEVICE_ATTR_RW(zeroing_mode);
 456
 457static ssize_t
 458max_medium_access_timeouts_show(struct device *dev,
 459				struct device_attribute *attr, char *buf)
 460{
 461	struct scsi_disk *sdkp = to_scsi_disk(dev);
 462
 463	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 464}
 465
 466static ssize_t
 467max_medium_access_timeouts_store(struct device *dev,
 468				 struct device_attribute *attr, const char *buf,
 469				 size_t count)
 470{
 471	struct scsi_disk *sdkp = to_scsi_disk(dev);
 472	int err;
 473
 474	if (!capable(CAP_SYS_ADMIN))
 475		return -EACCES;
 476
 477	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 478
 479	return err ? err : count;
 480}
 481static DEVICE_ATTR_RW(max_medium_access_timeouts);
 482
 483static ssize_t
 484max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 485			   char *buf)
 486{
 487	struct scsi_disk *sdkp = to_scsi_disk(dev);
 488
 489	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 490}
 491
 492static ssize_t
 493max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 494			    const char *buf, size_t count)
 495{
 496	struct scsi_disk *sdkp = to_scsi_disk(dev);
 497	struct scsi_device *sdp = sdkp->device;
 498	unsigned long max;
 499	int err;
 500
 501	if (!capable(CAP_SYS_ADMIN))
 502		return -EACCES;
 503
 504	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 505		return -EINVAL;
 506
 507	err = kstrtoul(buf, 10, &max);
 508
 509	if (err)
 510		return err;
 511
 512	if (max == 0)
 513		sdp->no_write_same = 1;
 514	else if (max <= SD_MAX_WS16_BLOCKS) {
 515		sdp->no_write_same = 0;
 516		sdkp->max_ws_blocks = max;
 517	}
 518
 519	sd_config_write_same(sdkp);
 520
 521	return count;
 522}
 523static DEVICE_ATTR_RW(max_write_same_blocks);
 524
 525static struct attribute *sd_disk_attrs[] = {
 526	&dev_attr_cache_type.attr,
 527	&dev_attr_FUA.attr,
 528	&dev_attr_allow_restart.attr,
 529	&dev_attr_manage_start_stop.attr,
 530	&dev_attr_protection_type.attr,
 531	&dev_attr_protection_mode.attr,
 532	&dev_attr_app_tag_own.attr,
 533	&dev_attr_thin_provisioning.attr,
 534	&dev_attr_provisioning_mode.attr,
 535	&dev_attr_zeroing_mode.attr,
 536	&dev_attr_max_write_same_blocks.attr,
 537	&dev_attr_max_medium_access_timeouts.attr,
 538	NULL,
 539};
 540ATTRIBUTE_GROUPS(sd_disk);
 541
 542static struct class sd_disk_class = {
 543	.name		= "scsi_disk",
 544	.owner		= THIS_MODULE,
 545	.dev_release	= scsi_disk_release,
 546	.dev_groups	= sd_disk_groups,
 547};
 548
 549static const struct dev_pm_ops sd_pm_ops = {
 550	.suspend		= sd_suspend_system,
 551	.resume			= sd_resume,
 552	.poweroff		= sd_suspend_system,
 553	.restore		= sd_resume,
 554	.runtime_suspend	= sd_suspend_runtime,
 555	.runtime_resume		= sd_resume,
 556};
 557
 558static struct scsi_driver sd_template = {
 559	.gendrv = {
 560		.name		= "sd",
 561		.owner		= THIS_MODULE,
 562		.probe		= sd_probe,
 563		.remove		= sd_remove,
 564		.shutdown	= sd_shutdown,
 565		.pm		= &sd_pm_ops,
 566	},
 567	.rescan			= sd_rescan,
 568	.init_command		= sd_init_command,
 569	.uninit_command		= sd_uninit_command,
 570	.done			= sd_done,
 571	.eh_action		= sd_eh_action,
 572	.eh_reset		= sd_eh_reset,
 573};
 574
 575/*
 576 * Dummy kobj_map->probe function.
 577 * The default ->probe function will call modprobe, which is
 578 * pointless as this module is already loaded.
 579 */
 580static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 581{
 582	return NULL;
 583}
 584
 585/*
 586 * Device no to disk mapping:
 587 * 
 588 *       major         disc2     disc  p1
 589 *   |............|.............|....|....| <- dev_t
 590 *    31        20 19          8 7  4 3  0
 591 * 
 592 * Inside a major, we have 16k disks, however mapped non-
 593 * contiguously. The first 16 disks are for major0, the next
 594 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 595 * for major1, ... 
 596 * As we stay compatible with our numbering scheme, we can reuse 
 597 * the well-know SCSI majors 8, 65--71, 136--143.
 598 */
 599static int sd_major(int major_idx)
 600{
 601	switch (major_idx) {
 602	case 0:
 603		return SCSI_DISK0_MAJOR;
 604	case 1 ... 7:
 605		return SCSI_DISK1_MAJOR + major_idx - 1;
 606	case 8 ... 15:
 607		return SCSI_DISK8_MAJOR + major_idx - 8;
 608	default:
 609		BUG();
 610		return 0;	/* shut up gcc */
 611	}
 612}
 613
 614static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 615{
 616	struct scsi_disk *sdkp = NULL;
 617
 618	mutex_lock(&sd_ref_mutex);
 619
 620	if (disk->private_data) {
 621		sdkp = scsi_disk(disk);
 622		if (scsi_device_get(sdkp->device) == 0)
 623			get_device(&sdkp->dev);
 624		else
 625			sdkp = NULL;
 626	}
 627	mutex_unlock(&sd_ref_mutex);
 628	return sdkp;
 629}
 630
 631static void scsi_disk_put(struct scsi_disk *sdkp)
 632{
 633	struct scsi_device *sdev = sdkp->device;
 634
 635	mutex_lock(&sd_ref_mutex);
 636	put_device(&sdkp->dev);
 637	scsi_device_put(sdev);
 638	mutex_unlock(&sd_ref_mutex);
 639}
 640
 641#ifdef CONFIG_BLK_SED_OPAL
 642static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 643		size_t len, bool send)
 644{
 645	struct scsi_device *sdev = data;
 646	u8 cdb[12] = { 0, };
 647	int ret;
 648
 649	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 650	cdb[1] = secp;
 651	put_unaligned_be16(spsp, &cdb[2]);
 652	put_unaligned_be32(len, &cdb[6]);
 653
 654	ret = scsi_execute_req(sdev, cdb,
 655			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 656			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 657	return ret <= 0 ? ret : -EIO;
 658}
 659#endif /* CONFIG_BLK_SED_OPAL */
 660
 661static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 662					   unsigned int dix, unsigned int dif)
 663{
 664	struct bio *bio = scmd->request->bio;
 665	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 666	unsigned int protect = 0;
 667
 668	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 669		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 670			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 671
 672		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 673			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 674	}
 675
 676	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 677		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 678
 679		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 680			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 681	}
 682
 683	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 684		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 685
 686		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 687			protect = 3 << 5;	/* Disable target PI checking */
 688		else
 689			protect = 1 << 5;	/* Enable target PI checking */
 690	}
 691
 692	scsi_set_prot_op(scmd, prot_op);
 693	scsi_set_prot_type(scmd, dif);
 694	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 695
 696	return protect;
 697}
 698
 699static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 700{
 701	struct request_queue *q = sdkp->disk->queue;
 702	unsigned int logical_block_size = sdkp->device->sector_size;
 703	unsigned int max_blocks = 0;
 704
 705	q->limits.discard_alignment =
 706		sdkp->unmap_alignment * logical_block_size;
 707	q->limits.discard_granularity =
 708		max(sdkp->physical_block_size,
 709		    sdkp->unmap_granularity * logical_block_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	sdkp->provisioning_mode = mode;
 711
 712	switch (mode) {
 713
 714	case SD_LBP_FULL:
 715	case SD_LBP_DISABLE:
 716		blk_queue_max_discard_sectors(q, 0);
 717		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 718		return;
 719
 720	case SD_LBP_UNMAP:
 721		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 722					  (u32)SD_MAX_WS16_BLOCKS);
 723		break;
 724
 725	case SD_LBP_WS16:
 726		if (sdkp->device->unmap_limit_for_ws)
 727			max_blocks = sdkp->max_unmap_blocks;
 728		else
 729			max_blocks = sdkp->max_ws_blocks;
 730
 731		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 732		break;
 733
 734	case SD_LBP_WS10:
 735		if (sdkp->device->unmap_limit_for_ws)
 736			max_blocks = sdkp->max_unmap_blocks;
 737		else
 738			max_blocks = sdkp->max_ws_blocks;
 739
 740		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 741		break;
 742
 743	case SD_LBP_ZERO:
 744		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 745					  (u32)SD_MAX_WS10_BLOCKS);
 
 746		break;
 747	}
 748
 749	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 750	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 751}
 752
 753static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 754{
 755	struct scsi_device *sdp = cmd->device;
 756	struct request *rq = cmd->request;
 757	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 758	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 759	unsigned int data_len = 24;
 
 
 
 
 760	char *buf;
 
 761
 762	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 763	if (!rq->special_vec.bv_page)
 764		return BLKPREP_DEFER;
 765	rq->special_vec.bv_offset = 0;
 766	rq->special_vec.bv_len = data_len;
 767	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 768
 769	cmd->cmd_len = 10;
 770	cmd->cmnd[0] = UNMAP;
 771	cmd->cmnd[8] = 24;
 772
 773	buf = page_address(rq->special_vec.bv_page);
 774	put_unaligned_be16(6 + 16, &buf[0]);
 775	put_unaligned_be16(16, &buf[2]);
 776	put_unaligned_be64(sector, &buf[8]);
 777	put_unaligned_be32(nr_sectors, &buf[16]);
 778
 779	cmd->allowed = SD_MAX_RETRIES;
 780	cmd->transfersize = data_len;
 781	rq->timeout = SD_TIMEOUT;
 782	scsi_req(rq)->resid_len = data_len;
 783
 784	return scsi_init_io(cmd);
 785}
 786
 787static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
 788{
 789	struct scsi_device *sdp = cmd->device;
 790	struct request *rq = cmd->request;
 791	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 792	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 793	u32 data_len = sdp->sector_size;
 794
 795	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 796	if (!rq->special_vec.bv_page)
 797		return BLKPREP_DEFER;
 798	rq->special_vec.bv_offset = 0;
 799	rq->special_vec.bv_len = data_len;
 800	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 801
 802	cmd->cmd_len = 16;
 803	cmd->cmnd[0] = WRITE_SAME_16;
 804	if (unmap)
 805		cmd->cmnd[1] = 0x8; /* UNMAP */
 806	put_unaligned_be64(sector, &cmd->cmnd[2]);
 807	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 808
 809	cmd->allowed = SD_MAX_RETRIES;
 810	cmd->transfersize = data_len;
 811	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 812	scsi_req(rq)->resid_len = data_len;
 813
 814	return scsi_init_io(cmd);
 815}
 
 816
 817static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
 818{
 819	struct scsi_device *sdp = cmd->device;
 820	struct request *rq = cmd->request;
 821	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 822	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 823	u32 data_len = sdp->sector_size;
 824
 825	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 826	if (!rq->special_vec.bv_page)
 827		return BLKPREP_DEFER;
 828	rq->special_vec.bv_offset = 0;
 829	rq->special_vec.bv_len = data_len;
 830	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 831
 832	cmd->cmd_len = 10;
 833	cmd->cmnd[0] = WRITE_SAME;
 834	if (unmap)
 835		cmd->cmnd[1] = 0x8; /* UNMAP */
 836	put_unaligned_be32(sector, &cmd->cmnd[2]);
 837	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 838
 839	cmd->allowed = SD_MAX_RETRIES;
 840	cmd->transfersize = data_len;
 841	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 842	scsi_req(rq)->resid_len = data_len;
 843
 844	return scsi_init_io(cmd);
 845}
 
 
 
 
 
 
 846
 847static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 848{
 849	struct request *rq = cmd->request;
 850	struct scsi_device *sdp = cmd->device;
 851	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 852	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
 853	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
 854
 855	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 856		switch (sdkp->zeroing_mode) {
 857		case SD_ZERO_WS16_UNMAP:
 858			return sd_setup_write_same16_cmnd(cmd, true);
 859		case SD_ZERO_WS10_UNMAP:
 860			return sd_setup_write_same10_cmnd(cmd, true);
 861		}
 862	}
 863
 864	if (sdp->no_write_same)
 865		return BLKPREP_INVALID;
 866
 867	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
 868		return sd_setup_write_same16_cmnd(cmd, false);
 869
 870	return sd_setup_write_same10_cmnd(cmd, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871}
 872
 873static void sd_config_write_same(struct scsi_disk *sdkp)
 874{
 875	struct request_queue *q = sdkp->disk->queue;
 876	unsigned int logical_block_size = sdkp->device->sector_size;
 877
 878	if (sdkp->device->no_write_same) {
 879		sdkp->max_ws_blocks = 0;
 880		goto out;
 881	}
 882
 883	/* Some devices can not handle block counts above 0xffff despite
 884	 * supporting WRITE SAME(16). Consequently we default to 64k
 885	 * blocks per I/O unless the device explicitly advertises a
 886	 * bigger limit.
 887	 */
 888	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 889		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 890						   (u32)SD_MAX_WS16_BLOCKS);
 891	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 892		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 893						   (u32)SD_MAX_WS10_BLOCKS);
 894	else {
 895		sdkp->device->no_write_same = 1;
 896		sdkp->max_ws_blocks = 0;
 897	}
 898
 899	if (sdkp->lbprz && sdkp->lbpws)
 900		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 901	else if (sdkp->lbprz && sdkp->lbpws10)
 902		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 903	else if (sdkp->max_ws_blocks)
 904		sdkp->zeroing_mode = SD_ZERO_WS;
 905	else
 906		sdkp->zeroing_mode = SD_ZERO_WRITE;
 907
 908	if (sdkp->max_ws_blocks &&
 909	    sdkp->physical_block_size > logical_block_size) {
 910		/*
 911		 * Reporting a maximum number of blocks that is not aligned
 912		 * on the device physical size would cause a large write same
 913		 * request to be split into physically unaligned chunks by
 914		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
 915		 * even if the caller of these functions took care to align the
 916		 * large request. So make sure the maximum reported is aligned
 917		 * to the device physical block size. This is only an optional
 918		 * optimization for regular disks, but this is mandatory to
 919		 * avoid failure of large write same requests directed at
 920		 * sequential write required zones of host-managed ZBC disks.
 921		 */
 922		sdkp->max_ws_blocks =
 923			round_down(sdkp->max_ws_blocks,
 924				   bytes_to_logical(sdkp->device,
 925						    sdkp->physical_block_size));
 926	}
 927
 928out:
 929	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
 930					 (logical_block_size >> 9));
 931	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
 932					 (logical_block_size >> 9));
 933}
 934
 935/**
 936 * sd_setup_write_same_cmnd - write the same data to multiple blocks
 937 * @cmd: command to prepare
 938 *
 939 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
 940 * the preference indicated by the target device.
 941 **/
 942static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
 943{
 944	struct request *rq = cmd->request;
 945	struct scsi_device *sdp = cmd->device;
 946	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 947	struct bio *bio = rq->bio;
 948	sector_t sector = blk_rq_pos(rq);
 949	unsigned int nr_sectors = blk_rq_sectors(rq);
 950	unsigned int nr_bytes = blk_rq_bytes(rq);
 951	int ret;
 952
 953	if (sdkp->device->no_write_same)
 954		return BLKPREP_INVALID;
 955
 956	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
 957
 958	sector >>= ilog2(sdp->sector_size) - 9;
 959	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 960
 961	rq->timeout = SD_WRITE_SAME_TIMEOUT;
 962
 963	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
 964		cmd->cmd_len = 16;
 965		cmd->cmnd[0] = WRITE_SAME_16;
 966		put_unaligned_be64(sector, &cmd->cmnd[2]);
 967		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 968	} else {
 969		cmd->cmd_len = 10;
 970		cmd->cmnd[0] = WRITE_SAME;
 971		put_unaligned_be32(sector, &cmd->cmnd[2]);
 972		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 973	}
 974
 975	cmd->transfersize = sdp->sector_size;
 976	cmd->allowed = SD_MAX_RETRIES;
 977
 978	/*
 979	 * For WRITE SAME the data transferred via the DATA OUT buffer is
 980	 * different from the amount of data actually written to the target.
 981	 *
 982	 * We set up __data_len to the amount of data transferred via the
 983	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
 984	 * to transfer a single sector of data first, but then reset it to
 985	 * the amount of data to be written right after so that the I/O path
 986	 * knows how much to actually write.
 987	 */
 988	rq->__data_len = sdp->sector_size;
 989	ret = scsi_init_io(cmd);
 990	rq->__data_len = nr_bytes;
 991
 992	return ret;
 993}
 994
 995static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 996{
 997	struct request *rq = cmd->request;
 998
 999	/* flush requests don't perform I/O, zero the S/G table */
1000	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1001
1002	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1003	cmd->cmd_len = 10;
1004	cmd->transfersize = 0;
1005	cmd->allowed = SD_MAX_RETRIES;
1006
1007	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1008	return BLKPREP_OK;
1009}
1010
1011static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1012{
1013	struct request *rq = SCpnt->request;
1014	struct scsi_device *sdp = SCpnt->device;
1015	struct gendisk *disk = rq->rq_disk;
1016	struct scsi_disk *sdkp = scsi_disk(disk);
1017	sector_t block = blk_rq_pos(rq);
1018	sector_t threshold;
1019	unsigned int this_count = blk_rq_sectors(rq);
1020	unsigned int dif, dix;
1021	int ret;
1022	unsigned char protect;
1023
1024	ret = scsi_init_io(SCpnt);
1025	if (ret != BLKPREP_OK)
1026		return ret;
1027	WARN_ON_ONCE(SCpnt != rq->special);
 
1028
1029	/* from here on until we're complete, any goto out
1030	 * is used for a killable error condition */
1031	ret = BLKPREP_KILL;
1032
1033	SCSI_LOG_HLQUEUE(1,
1034		scmd_printk(KERN_INFO, SCpnt,
1035			"%s: block=%llu, count=%d\n",
1036			__func__, (unsigned long long)block, this_count));
1037
1038	if (!sdp || !scsi_device_online(sdp) ||
1039	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1040		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041						"Finishing %u sectors\n",
1042						blk_rq_sectors(rq)));
1043		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1044						"Retry with 0x%p\n", SCpnt));
1045		goto out;
1046	}
1047
1048	if (sdp->changed) {
1049		/*
1050		 * quietly refuse to do anything to a changed disc until 
1051		 * the changed bit has been reset
1052		 */
1053		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1054		goto out;
1055	}
1056
1057	/*
1058	 * Some SD card readers can't handle multi-sector accesses which touch
1059	 * the last one or two hardware sectors.  Split accesses as needed.
1060	 */
1061	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1062		(sdp->sector_size / 512);
1063
1064	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1065		if (block < threshold) {
1066			/* Access up to the threshold but not beyond */
1067			this_count = threshold - block;
1068		} else {
1069			/* Access only a single hardware sector */
1070			this_count = sdp->sector_size / 512;
1071		}
1072	}
1073
1074	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1075					(unsigned long long)block));
1076
1077	/*
1078	 * If we have a 1K hardware sectorsize, prevent access to single
1079	 * 512 byte sectors.  In theory we could handle this - in fact
1080	 * the scsi cdrom driver must be able to handle this because
1081	 * we typically use 1K blocksizes, and cdroms typically have
1082	 * 2K hardware sectorsizes.  Of course, things are simpler
1083	 * with the cdrom, since it is read-only.  For performance
1084	 * reasons, the filesystems should be able to handle this
1085	 * and not force the scsi disk driver to use bounce buffers
1086	 * for this.
1087	 */
1088	if (sdp->sector_size == 1024) {
1089		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1090			scmd_printk(KERN_ERR, SCpnt,
1091				    "Bad block number requested\n");
1092			goto out;
1093		} else {
1094			block = block >> 1;
1095			this_count = this_count >> 1;
1096		}
1097	}
1098	if (sdp->sector_size == 2048) {
1099		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1100			scmd_printk(KERN_ERR, SCpnt,
1101				    "Bad block number requested\n");
1102			goto out;
1103		} else {
1104			block = block >> 2;
1105			this_count = this_count >> 2;
1106		}
1107	}
1108	if (sdp->sector_size == 4096) {
1109		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1110			scmd_printk(KERN_ERR, SCpnt,
1111				    "Bad block number requested\n");
1112			goto out;
1113		} else {
1114			block = block >> 3;
1115			this_count = this_count >> 3;
1116		}
1117	}
1118	if (rq_data_dir(rq) == WRITE) {
1119		SCpnt->cmnd[0] = WRITE_6;
1120
1121		if (blk_integrity_rq(rq))
1122			sd_dif_prepare(SCpnt);
1123
1124	} else if (rq_data_dir(rq) == READ) {
1125		SCpnt->cmnd[0] = READ_6;
1126	} else {
1127		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1128		goto out;
1129	}
1130
1131	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1132					"%s %d/%u 512 byte blocks.\n",
1133					(rq_data_dir(rq) == WRITE) ?
1134					"writing" : "reading", this_count,
1135					blk_rq_sectors(rq)));
1136
1137	dix = scsi_prot_sg_count(SCpnt);
1138	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1139
1140	if (dif || dix)
1141		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1142	else
1143		protect = 0;
1144
1145	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1146		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1147
1148		if (unlikely(SCpnt->cmnd == NULL)) {
1149			ret = BLKPREP_DEFER;
1150			goto out;
1151		}
1152
1153		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1154		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1155		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1156		SCpnt->cmnd[7] = 0x18;
1157		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1158		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1159
1160		/* LBA */
1161		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1162		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1163		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1164		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1165		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1166		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1167		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1168		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1169
1170		/* Expected Indirect LBA */
1171		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1172		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1173		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1174		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1175
1176		/* Transfer length */
1177		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1178		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1179		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1180		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1181	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1182		SCpnt->cmnd[0] += READ_16 - READ_6;
1183		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1184		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1185		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1186		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1187		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1188		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1189		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1190		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1191		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1192		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1193		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1194		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1195		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1196		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1197	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1198		   scsi_device_protection(SCpnt->device) ||
1199		   SCpnt->device->use_10_for_rw) {
1200		SCpnt->cmnd[0] += READ_10 - READ_6;
1201		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1202		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1203		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1204		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1205		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1206		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1207		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1208		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1209	} else {
1210		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1211			/*
1212			 * This happens only if this drive failed
1213			 * 10byte rw command with ILLEGAL_REQUEST
1214			 * during operation and thus turned off
1215			 * use_10_for_rw.
1216			 */
1217			scmd_printk(KERN_ERR, SCpnt,
1218				    "FUA write on READ/WRITE(6) drive\n");
1219			goto out;
1220		}
1221
1222		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1223		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1224		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1225		SCpnt->cmnd[4] = (unsigned char) this_count;
1226		SCpnt->cmnd[5] = 0;
1227	}
1228	SCpnt->sdb.length = this_count * sdp->sector_size;
1229
1230	/*
1231	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1232	 * host adapter, it's safe to assume that we can at least transfer
1233	 * this many bytes between each connect / disconnect.
1234	 */
1235	SCpnt->transfersize = sdp->sector_size;
1236	SCpnt->underflow = this_count << 9;
1237	SCpnt->allowed = SD_MAX_RETRIES;
1238
1239	/*
1240	 * This indicates that the command is ready from our end to be
1241	 * queued.
1242	 */
1243	ret = BLKPREP_OK;
1244 out:
1245	return ret;
1246}
1247
1248static int sd_init_command(struct scsi_cmnd *cmd)
1249{
1250	struct request *rq = cmd->request;
1251
1252	switch (req_op(rq)) {
1253	case REQ_OP_DISCARD:
1254		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255		case SD_LBP_UNMAP:
1256			return sd_setup_unmap_cmnd(cmd);
1257		case SD_LBP_WS16:
1258			return sd_setup_write_same16_cmnd(cmd, true);
1259		case SD_LBP_WS10:
1260			return sd_setup_write_same10_cmnd(cmd, true);
1261		case SD_LBP_ZERO:
1262			return sd_setup_write_same10_cmnd(cmd, false);
1263		default:
1264			return BLKPREP_INVALID;
1265		}
1266	case REQ_OP_WRITE_ZEROES:
1267		return sd_setup_write_zeroes_cmnd(cmd);
1268	case REQ_OP_WRITE_SAME:
1269		return sd_setup_write_same_cmnd(cmd);
1270	case REQ_OP_FLUSH:
1271		return sd_setup_flush_cmnd(cmd);
1272	case REQ_OP_READ:
1273	case REQ_OP_WRITE:
1274		return sd_setup_read_write_cmnd(cmd);
1275	case REQ_OP_ZONE_REPORT:
1276		return sd_zbc_setup_report_cmnd(cmd);
1277	case REQ_OP_ZONE_RESET:
1278		return sd_zbc_setup_reset_cmnd(cmd);
1279	default:
1280		BUG();
1281	}
1282}
1283
1284static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285{
1286	struct request *rq = SCpnt->request;
1287	u8 *cmnd;
1288
1289	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1290		__free_page(rq->special_vec.bv_page);
1291
1292	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1293		cmnd = SCpnt->cmnd;
1294		SCpnt->cmnd = NULL;
1295		SCpnt->cmd_len = 0;
1296		mempool_free(cmnd, sd_cdb_pool);
1297	}
1298}
1299
1300/**
1301 *	sd_open - open a scsi disk device
1302 *	@bdev: Block device of the scsi disk to open
1303 *	@mode: FMODE_* mask
1304 *
1305 *	Returns 0 if successful. Returns a negated errno value in case 
1306 *	of error.
1307 *
1308 *	Note: This can be called from a user context (e.g. fsck(1) )
1309 *	or from within the kernel (e.g. as a result of a mount(1) ).
1310 *	In the latter case @inode and @filp carry an abridged amount
1311 *	of information as noted above.
1312 *
1313 *	Locking: called with bdev->bd_mutex held.
1314 **/
1315static int sd_open(struct block_device *bdev, fmode_t mode)
1316{
1317	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1318	struct scsi_device *sdev;
1319	int retval;
1320
1321	if (!sdkp)
1322		return -ENXIO;
1323
1324	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326	sdev = sdkp->device;
1327
1328	/*
1329	 * If the device is in error recovery, wait until it is done.
1330	 * If the device is offline, then disallow any access to it.
1331	 */
1332	retval = -ENXIO;
1333	if (!scsi_block_when_processing_errors(sdev))
1334		goto error_out;
1335
1336	if (sdev->removable || sdkp->write_prot)
1337		check_disk_change(bdev);
1338
1339	/*
1340	 * If the drive is empty, just let the open fail.
1341	 */
1342	retval = -ENOMEDIUM;
1343	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1344		goto error_out;
1345
1346	/*
1347	 * If the device has the write protect tab set, have the open fail
1348	 * if the user expects to be able to write to the thing.
1349	 */
1350	retval = -EROFS;
1351	if (sdkp->write_prot && (mode & FMODE_WRITE))
1352		goto error_out;
1353
1354	/*
1355	 * It is possible that the disk changing stuff resulted in
1356	 * the device being taken offline.  If this is the case,
1357	 * report this to the user, and don't pretend that the
1358	 * open actually succeeded.
1359	 */
1360	retval = -ENXIO;
1361	if (!scsi_device_online(sdev))
1362		goto error_out;
1363
1364	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1365		if (scsi_block_when_processing_errors(sdev))
1366			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1367	}
1368
1369	return 0;
1370
1371error_out:
1372	scsi_disk_put(sdkp);
1373	return retval;	
1374}
1375
1376/**
1377 *	sd_release - invoked when the (last) close(2) is called on this
1378 *	scsi disk.
1379 *	@disk: disk to release
1380 *	@mode: FMODE_* mask
1381 *
1382 *	Returns 0. 
1383 *
1384 *	Note: may block (uninterruptible) if error recovery is underway
1385 *	on this disk.
1386 *
1387 *	Locking: called with bdev->bd_mutex held.
1388 **/
1389static void sd_release(struct gendisk *disk, fmode_t mode)
1390{
1391	struct scsi_disk *sdkp = scsi_disk(disk);
1392	struct scsi_device *sdev = sdkp->device;
1393
1394	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1395
1396	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1397		if (scsi_block_when_processing_errors(sdev))
1398			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1399	}
1400
1401	/*
1402	 * XXX and what if there are packets in flight and this close()
1403	 * XXX is followed by a "rmmod sd_mod"?
1404	 */
1405
1406	scsi_disk_put(sdkp);
1407}
1408
1409static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1410{
1411	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1412	struct scsi_device *sdp = sdkp->device;
1413	struct Scsi_Host *host = sdp->host;
1414	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1415	int diskinfo[4];
1416
1417	/* default to most commonly used values */
1418	diskinfo[0] = 0x40;	/* 1 << 6 */
1419	diskinfo[1] = 0x20;	/* 1 << 5 */
1420	diskinfo[2] = capacity >> 11;
1421
1422	/* override with calculated, extended default, or driver values */
1423	if (host->hostt->bios_param)
1424		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1425	else
1426		scsicam_bios_param(bdev, capacity, diskinfo);
1427
1428	geo->heads = diskinfo[0];
1429	geo->sectors = diskinfo[1];
1430	geo->cylinders = diskinfo[2];
1431	return 0;
1432}
1433
1434/**
1435 *	sd_ioctl - process an ioctl
1436 *	@bdev: target block device
1437 *	@mode: FMODE_* mask
1438 *	@cmd: ioctl command number
1439 *	@arg: this is third argument given to ioctl(2) system call.
1440 *	Often contains a pointer.
1441 *
1442 *	Returns 0 if successful (some ioctls return positive numbers on
1443 *	success as well). Returns a negated errno value in case of error.
1444 *
1445 *	Note: most ioctls are forward onto the block subsystem or further
1446 *	down in the scsi subsystem.
1447 **/
1448static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1449		    unsigned int cmd, unsigned long arg)
1450{
1451	struct gendisk *disk = bdev->bd_disk;
1452	struct scsi_disk *sdkp = scsi_disk(disk);
1453	struct scsi_device *sdp = sdkp->device;
1454	void __user *p = (void __user *)arg;
1455	int error;
1456    
1457	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1458				    "cmd=0x%x\n", disk->disk_name, cmd));
1459
1460	error = scsi_verify_blk_ioctl(bdev, cmd);
1461	if (error < 0)
1462		return error;
1463
1464	/*
1465	 * If we are in the middle of error recovery, don't let anyone
1466	 * else try and use this device.  Also, if error recovery fails, it
1467	 * may try and take the device offline, in which case all further
1468	 * access to the device is prohibited.
1469	 */
1470	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1471			(mode & FMODE_NDELAY) != 0);
1472	if (error)
1473		goto out;
1474
1475	if (is_sed_ioctl(cmd))
1476		return sed_ioctl(sdkp->opal_dev, cmd, p);
1477
1478	/*
1479	 * Send SCSI addressing ioctls directly to mid level, send other
1480	 * ioctls to block level and then onto mid level if they can't be
1481	 * resolved.
1482	 */
1483	switch (cmd) {
1484		case SCSI_IOCTL_GET_IDLUN:
1485		case SCSI_IOCTL_GET_BUS_NUMBER:
1486			error = scsi_ioctl(sdp, cmd, p);
1487			break;
1488		default:
1489			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1490			if (error != -ENOTTY)
1491				break;
1492			error = scsi_ioctl(sdp, cmd, p);
1493			break;
1494	}
1495out:
1496	return error;
1497}
1498
1499static void set_media_not_present(struct scsi_disk *sdkp)
1500{
1501	if (sdkp->media_present)
1502		sdkp->device->changed = 1;
1503
1504	if (sdkp->device->removable) {
1505		sdkp->media_present = 0;
1506		sdkp->capacity = 0;
1507	}
1508}
1509
1510static int media_not_present(struct scsi_disk *sdkp,
1511			     struct scsi_sense_hdr *sshdr)
1512{
1513	if (!scsi_sense_valid(sshdr))
1514		return 0;
1515
1516	/* not invoked for commands that could return deferred errors */
1517	switch (sshdr->sense_key) {
1518	case UNIT_ATTENTION:
1519	case NOT_READY:
1520		/* medium not present */
1521		if (sshdr->asc == 0x3A) {
1522			set_media_not_present(sdkp);
1523			return 1;
1524		}
1525	}
1526	return 0;
1527}
1528
1529/**
1530 *	sd_check_events - check media events
1531 *	@disk: kernel device descriptor
1532 *	@clearing: disk events currently being cleared
1533 *
1534 *	Returns mask of DISK_EVENT_*.
1535 *
1536 *	Note: this function is invoked from the block subsystem.
1537 **/
1538static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539{
1540	struct scsi_disk *sdkp = scsi_disk_get(disk);
1541	struct scsi_device *sdp;
 
1542	int retval;
1543
1544	if (!sdkp)
1545		return 0;
1546
1547	sdp = sdkp->device;
1548	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1549
1550	/*
1551	 * If the device is offline, don't send any commands - just pretend as
1552	 * if the command failed.  If the device ever comes back online, we
1553	 * can deal with it then.  It is only because of unrecoverable errors
1554	 * that we would ever take a device offline in the first place.
1555	 */
1556	if (!scsi_device_online(sdp)) {
1557		set_media_not_present(sdkp);
1558		goto out;
1559	}
1560
1561	/*
1562	 * Using TEST_UNIT_READY enables differentiation between drive with
1563	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1564	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1565	 *
1566	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1567	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1568	 * sd_revalidate() is called.
1569	 */
1570	if (scsi_block_when_processing_errors(sdp)) {
1571		struct scsi_sense_hdr sshdr = { 0, };
1572
 
 
1573		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1574					      &sshdr);
1575
1576		/* failed to execute TUR, assume media not present */
1577		if (host_byte(retval)) {
1578			set_media_not_present(sdkp);
1579			goto out;
1580		}
1581
1582		if (media_not_present(sdkp, &sshdr))
1583			goto out;
 
 
1584	}
1585
 
 
 
1586	/*
1587	 * For removable scsi disk we have to recognise the presence
1588	 * of a disk in the drive.
1589	 */
1590	if (!sdkp->media_present)
1591		sdp->changed = 1;
1592	sdkp->media_present = 1;
1593out:
1594	/*
1595	 * sdp->changed is set under the following conditions:
1596	 *
1597	 *	Medium present state has changed in either direction.
1598	 *	Device has indicated UNIT_ATTENTION.
1599	 */
 
1600	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1601	sdp->changed = 0;
1602	scsi_disk_put(sdkp);
1603	return retval;
1604}
1605
1606static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607{
1608	int retries, res;
1609	struct scsi_device *sdp = sdkp->device;
1610	const int timeout = sdp->request_queue->rq_timeout
1611		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1612	struct scsi_sense_hdr my_sshdr;
1613
1614	if (!scsi_device_online(sdp))
1615		return -ENODEV;
1616
1617	/* caller might not be interested in sense, but we need it */
1618	if (!sshdr)
1619		sshdr = &my_sshdr;
1620
1621	for (retries = 3; retries > 0; --retries) {
1622		unsigned char cmd[10] = { 0 };
1623
1624		cmd[0] = SYNCHRONIZE_CACHE;
1625		/*
1626		 * Leave the rest of the command zero to indicate
1627		 * flush everything.
1628		 */
1629		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1630				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
 
1631		if (res == 0)
1632			break;
1633	}
1634
1635	if (res) {
1636		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1637
1638		if (driver_byte(res) & DRIVER_SENSE)
1639			sd_print_sense_hdr(sdkp, sshdr);
1640
1641		/* we need to evaluate the error return  */
1642		if (scsi_sense_valid(sshdr) &&
1643			(sshdr->asc == 0x3a ||	/* medium not present */
1644			 sshdr->asc == 0x20))	/* invalid command */
1645				/* this is no error here */
1646				return 0;
1647
1648		switch (host_byte(res)) {
1649		/* ignore errors due to racing a disconnection */
1650		case DID_BAD_TARGET:
1651		case DID_NO_CONNECT:
1652			return 0;
1653		/* signal the upper layer it might try again */
1654		case DID_BUS_BUSY:
1655		case DID_IMM_RETRY:
1656		case DID_REQUEUE:
1657		case DID_SOFT_ERROR:
1658			return -EBUSY;
1659		default:
1660			return -EIO;
1661		}
1662	}
1663	return 0;
1664}
1665
1666static void sd_rescan(struct device *dev)
1667{
1668	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1669
1670	revalidate_disk(sdkp->disk);
1671}
1672
1673
1674#ifdef CONFIG_COMPAT
1675/* 
1676 * This gets directly called from VFS. When the ioctl 
1677 * is not recognized we go back to the other translation paths. 
1678 */
1679static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1680			   unsigned int cmd, unsigned long arg)
1681{
1682	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1683	int error;
1684
1685	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1686			(mode & FMODE_NDELAY) != 0);
1687	if (error)
1688		return error;
1689	       
1690	/* 
1691	 * Let the static ioctl translation table take care of it.
1692	 */
1693	if (!sdev->host->hostt->compat_ioctl)
1694		return -ENOIOCTLCMD; 
1695	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1696}
1697#endif
1698
1699static char sd_pr_type(enum pr_type type)
1700{
1701	switch (type) {
1702	case PR_WRITE_EXCLUSIVE:
1703		return 0x01;
1704	case PR_EXCLUSIVE_ACCESS:
1705		return 0x03;
1706	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1707		return 0x05;
1708	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1709		return 0x06;
1710	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1711		return 0x07;
1712	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1713		return 0x08;
1714	default:
1715		return 0;
1716	}
1717};
1718
1719static int sd_pr_command(struct block_device *bdev, u8 sa,
1720		u64 key, u64 sa_key, u8 type, u8 flags)
1721{
1722	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1723	struct scsi_sense_hdr sshdr;
1724	int result;
1725	u8 cmd[16] = { 0, };
1726	u8 data[24] = { 0, };
1727
1728	cmd[0] = PERSISTENT_RESERVE_OUT;
1729	cmd[1] = sa;
1730	cmd[2] = type;
1731	put_unaligned_be32(sizeof(data), &cmd[5]);
1732
1733	put_unaligned_be64(key, &data[0]);
1734	put_unaligned_be64(sa_key, &data[8]);
1735	data[20] = flags;
1736
1737	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1738			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1739
1740	if ((driver_byte(result) & DRIVER_SENSE) &&
1741	    (scsi_sense_valid(&sshdr))) {
1742		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1743		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1744	}
1745
1746	return result;
1747}
1748
1749static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1750		u32 flags)
1751{
1752	if (flags & ~PR_FL_IGNORE_KEY)
1753		return -EOPNOTSUPP;
1754	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1755			old_key, new_key, 0,
1756			(1 << 0) /* APTPL */);
 
1757}
1758
1759static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1760		u32 flags)
1761{
1762	if (flags)
1763		return -EOPNOTSUPP;
1764	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1765}
1766
1767static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1768{
1769	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1770}
1771
1772static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1773		enum pr_type type, bool abort)
1774{
1775	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1776			     sd_pr_type(type), 0);
1777}
1778
1779static int sd_pr_clear(struct block_device *bdev, u64 key)
1780{
1781	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1782}
1783
1784static const struct pr_ops sd_pr_ops = {
1785	.pr_register	= sd_pr_register,
1786	.pr_reserve	= sd_pr_reserve,
1787	.pr_release	= sd_pr_release,
1788	.pr_preempt	= sd_pr_preempt,
1789	.pr_clear	= sd_pr_clear,
1790};
1791
1792static const struct block_device_operations sd_fops = {
1793	.owner			= THIS_MODULE,
1794	.open			= sd_open,
1795	.release		= sd_release,
1796	.ioctl			= sd_ioctl,
1797	.getgeo			= sd_getgeo,
1798#ifdef CONFIG_COMPAT
1799	.compat_ioctl		= sd_compat_ioctl,
1800#endif
1801	.check_events		= sd_check_events,
1802	.revalidate_disk	= sd_revalidate_disk,
1803	.unlock_native_capacity	= sd_unlock_native_capacity,
1804	.pr_ops			= &sd_pr_ops,
1805};
1806
1807/**
1808 *	sd_eh_reset - reset error handling callback
1809 *	@scmd:		sd-issued command that has failed
1810 *
1811 *	This function is called by the SCSI midlayer before starting
1812 *	SCSI EH. When counting medium access failures we have to be
1813 *	careful to register it only only once per device and SCSI EH run;
1814 *	there might be several timed out commands which will cause the
1815 *	'max_medium_access_timeouts' counter to trigger after the first
1816 *	SCSI EH run already and set the device to offline.
1817 *	So this function resets the internal counter before starting SCSI EH.
1818 **/
1819static void sd_eh_reset(struct scsi_cmnd *scmd)
1820{
1821	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1822
1823	/* New SCSI EH run, reset gate variable */
1824	sdkp->ignore_medium_access_errors = false;
1825}
1826
1827/**
1828 *	sd_eh_action - error handling callback
1829 *	@scmd:		sd-issued command that has failed
1830 *	@eh_disp:	The recovery disposition suggested by the midlayer
1831 *
1832 *	This function is called by the SCSI midlayer upon completion of an
1833 *	error test command (currently TEST UNIT READY). The result of sending
1834 *	the eh command is passed in eh_disp.  We're looking for devices that
1835 *	fail medium access commands but are OK with non access commands like
1836 *	test unit ready (so wrongly see the device as having a successful
1837 *	recovery)
1838 **/
1839static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1840{
1841	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1842	struct scsi_device *sdev = scmd->device;
1843
1844	if (!scsi_device_online(sdev) ||
1845	    !scsi_medium_access_command(scmd) ||
1846	    host_byte(scmd->result) != DID_TIME_OUT ||
1847	    eh_disp != SUCCESS)
1848		return eh_disp;
1849
1850	/*
1851	 * The device has timed out executing a medium access command.
1852	 * However, the TEST UNIT READY command sent during error
1853	 * handling completed successfully. Either the device is in the
1854	 * process of recovering or has it suffered an internal failure
1855	 * that prevents access to the storage medium.
1856	 */
1857	if (!sdkp->ignore_medium_access_errors) {
1858		sdkp->medium_access_timed_out++;
1859		sdkp->ignore_medium_access_errors = true;
1860	}
1861
1862	/*
1863	 * If the device keeps failing read/write commands but TEST UNIT
1864	 * READY always completes successfully we assume that medium
1865	 * access is no longer possible and take the device offline.
1866	 */
1867	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1868		scmd_printk(KERN_ERR, scmd,
1869			    "Medium access timeout failure. Offlining disk!\n");
1870		mutex_lock(&sdev->state_mutex);
1871		scsi_device_set_state(sdev, SDEV_OFFLINE);
1872		mutex_unlock(&sdev->state_mutex);
1873
1874		return SUCCESS;
1875	}
1876
1877	return eh_disp;
1878}
1879
1880static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1881{
1882	struct request *req = scmd->request;
1883	struct scsi_device *sdev = scmd->device;
1884	unsigned int transferred, good_bytes;
1885	u64 start_lba, end_lba, bad_lba;
1886
1887	/*
1888	 * Some commands have a payload smaller than the device logical
1889	 * block size (e.g. INQUIRY on a 4K disk).
1890	 */
1891	if (scsi_bufflen(scmd) <= sdev->sector_size)
 
 
 
1892		return 0;
1893
1894	/* Check if we have a 'bad_lba' information */
1895	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1896				     SCSI_SENSE_BUFFERSIZE,
1897				     &bad_lba))
1898		return 0;
1899
1900	/*
1901	 * If the bad lba was reported incorrectly, we have no idea where
1902	 * the error is.
1903	 */
1904	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1905	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1906	if (bad_lba < start_lba || bad_lba >= end_lba)
1907		return 0;
1908
1909	/*
1910	 * resid is optional but mostly filled in.  When it's unused,
1911	 * its value is zero, so we assume the whole buffer transferred
1912	 */
1913	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1914
1915	/* This computation should always be done in terms of the
1916	 * resolution of the device's medium.
1917	 */
1918	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
 
1919
 
 
 
 
1920	return min(good_bytes, transferred);
1921}
1922
1923/**
1924 *	sd_done - bottom half handler: called when the lower level
1925 *	driver has completed (successfully or otherwise) a scsi command.
1926 *	@SCpnt: mid-level's per command structure.
1927 *
1928 *	Note: potentially run from within an ISR. Must not block.
1929 **/
1930static int sd_done(struct scsi_cmnd *SCpnt)
1931{
1932	int result = SCpnt->result;
1933	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1934	unsigned int sector_size = SCpnt->device->sector_size;
1935	unsigned int resid;
1936	struct scsi_sense_hdr sshdr;
1937	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1938	struct request *req = SCpnt->request;
1939	int sense_valid = 0;
1940	int sense_deferred = 0;
 
 
1941
1942	switch (req_op(req)) {
1943	case REQ_OP_DISCARD:
1944	case REQ_OP_WRITE_ZEROES:
1945	case REQ_OP_WRITE_SAME:
1946	case REQ_OP_ZONE_RESET:
1947		if (!result) {
1948			good_bytes = blk_rq_bytes(req);
1949			scsi_set_resid(SCpnt, 0);
1950		} else {
1951			good_bytes = 0;
1952			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1953		}
1954		break;
1955	case REQ_OP_ZONE_REPORT:
1956		if (!result) {
1957			good_bytes = scsi_bufflen(SCpnt)
1958				- scsi_get_resid(SCpnt);
1959			scsi_set_resid(SCpnt, 0);
1960		} else {
1961			good_bytes = 0;
1962			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1963		}
1964		break;
1965	default:
1966		/*
1967		 * In case of bogus fw or device, we could end up having
1968		 * an unaligned partial completion. Check this here and force
1969		 * alignment.
1970		 */
1971		resid = scsi_get_resid(SCpnt);
1972		if (resid & (sector_size - 1)) {
1973			sd_printk(KERN_INFO, sdkp,
1974				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1975				resid, sector_size);
1976			resid = min(scsi_bufflen(SCpnt),
1977				    round_up(resid, sector_size));
1978			scsi_set_resid(SCpnt, resid);
1979		}
1980	}
1981
1982	if (result) {
1983		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1984		if (sense_valid)
1985			sense_deferred = scsi_sense_is_deferred(&sshdr);
1986	}
1987	sdkp->medium_access_timed_out = 0;
1988
1989	if (driver_byte(result) != DRIVER_SENSE &&
1990	    (!sense_valid || sense_deferred))
1991		goto out;
1992
1993	switch (sshdr.sense_key) {
1994	case HARDWARE_ERROR:
1995	case MEDIUM_ERROR:
1996		good_bytes = sd_completed_bytes(SCpnt);
1997		break;
1998	case RECOVERED_ERROR:
1999		good_bytes = scsi_bufflen(SCpnt);
2000		break;
2001	case NO_SENSE:
2002		/* This indicates a false check condition, so ignore it.  An
2003		 * unknown amount of data was transferred so treat it as an
2004		 * error.
2005		 */
2006		SCpnt->result = 0;
2007		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2008		break;
2009	case ABORTED_COMMAND:
2010		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2011			good_bytes = sd_completed_bytes(SCpnt);
2012		break;
2013	case ILLEGAL_REQUEST:
2014		switch (sshdr.asc) {
2015		case 0x10:	/* DIX: Host detected corruption */
2016			good_bytes = sd_completed_bytes(SCpnt);
2017			break;
2018		case 0x20:	/* INVALID COMMAND OPCODE */
2019		case 0x24:	/* INVALID FIELD IN CDB */
2020			switch (SCpnt->cmnd[0]) {
2021			case UNMAP:
2022				sd_config_discard(sdkp, SD_LBP_DISABLE);
2023				break;
2024			case WRITE_SAME_16:
2025			case WRITE_SAME:
2026				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2027					sd_config_discard(sdkp, SD_LBP_DISABLE);
2028				} else {
2029					sdkp->device->no_write_same = 1;
2030					sd_config_write_same(sdkp);
 
 
2031					req->__data_len = blk_rq_bytes(req);
2032					req->rq_flags |= RQF_QUIET;
2033				}
2034				break;
2035			}
2036		}
2037		break;
2038	default:
2039		break;
2040	}
2041
2042 out:
2043	if (sd_is_zoned(sdkp))
2044		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2045
2046	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2047					   "sd_done: completed %d of %d bytes\n",
2048					   good_bytes, scsi_bufflen(SCpnt)));
2049
2050	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2051		sd_dif_complete(SCpnt, good_bytes);
2052
2053	return good_bytes;
2054}
2055
2056/*
2057 * spinup disk - called only in sd_revalidate_disk()
2058 */
2059static void
2060sd_spinup_disk(struct scsi_disk *sdkp)
2061{
2062	unsigned char cmd[10];
2063	unsigned long spintime_expire = 0;
2064	int retries, spintime;
2065	unsigned int the_result;
2066	struct scsi_sense_hdr sshdr;
2067	int sense_valid = 0;
2068
2069	spintime = 0;
2070
2071	/* Spin up drives, as required.  Only do this at boot time */
2072	/* Spinup needs to be done for module loads too. */
2073	do {
2074		retries = 0;
2075
2076		do {
2077			cmd[0] = TEST_UNIT_READY;
2078			memset((void *) &cmd[1], 0, 9);
2079
2080			the_result = scsi_execute_req(sdkp->device, cmd,
2081						      DMA_NONE, NULL, 0,
2082						      &sshdr, SD_TIMEOUT,
2083						      SD_MAX_RETRIES, NULL);
2084
2085			/*
2086			 * If the drive has indicated to us that it
2087			 * doesn't have any media in it, don't bother
2088			 * with any more polling.
2089			 */
2090			if (media_not_present(sdkp, &sshdr))
2091				return;
2092
2093			if (the_result)
2094				sense_valid = scsi_sense_valid(&sshdr);
2095			retries++;
2096		} while (retries < 3 && 
2097			 (!scsi_status_is_good(the_result) ||
2098			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2099			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2100
2101		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2102			/* no sense, TUR either succeeded or failed
2103			 * with a status error */
2104			if(!spintime && !scsi_status_is_good(the_result)) {
2105				sd_print_result(sdkp, "Test Unit Ready failed",
2106						the_result);
2107			}
2108			break;
2109		}
2110
2111		/*
2112		 * The device does not want the automatic start to be issued.
2113		 */
2114		if (sdkp->device->no_start_on_add)
2115			break;
2116
2117		if (sense_valid && sshdr.sense_key == NOT_READY) {
2118			if (sshdr.asc == 4 && sshdr.ascq == 3)
2119				break;	/* manual intervention required */
2120			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2121				break;	/* standby */
2122			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2123				break;	/* unavailable */
2124			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2125				break;	/* sanitize in progress */
2126			/*
2127			 * Issue command to spin up drive when not ready
2128			 */
2129			if (!spintime) {
2130				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2131				cmd[0] = START_STOP;
2132				cmd[1] = 1;	/* Return immediately */
2133				memset((void *) &cmd[2], 0, 8);
2134				cmd[4] = 1;	/* Start spin cycle */
2135				if (sdkp->device->start_stop_pwr_cond)
2136					cmd[4] |= 1 << 4;
2137				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2138						 NULL, 0, &sshdr,
2139						 SD_TIMEOUT, SD_MAX_RETRIES,
2140						 NULL);
2141				spintime_expire = jiffies + 100 * HZ;
2142				spintime = 1;
2143			}
2144			/* Wait 1 second for next try */
2145			msleep(1000);
2146			printk(KERN_CONT ".");
2147
2148		/*
2149		 * Wait for USB flash devices with slow firmware.
2150		 * Yes, this sense key/ASC combination shouldn't
2151		 * occur here.  It's characteristic of these devices.
2152		 */
2153		} else if (sense_valid &&
2154				sshdr.sense_key == UNIT_ATTENTION &&
2155				sshdr.asc == 0x28) {
2156			if (!spintime) {
2157				spintime_expire = jiffies + 5 * HZ;
2158				spintime = 1;
2159			}
2160			/* Wait 1 second for next try */
2161			msleep(1000);
2162		} else {
2163			/* we don't understand the sense code, so it's
2164			 * probably pointless to loop */
2165			if(!spintime) {
2166				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2167				sd_print_sense_hdr(sdkp, &sshdr);
2168			}
2169			break;
2170		}
2171				
2172	} while (spintime && time_before_eq(jiffies, spintime_expire));
2173
2174	if (spintime) {
2175		if (scsi_status_is_good(the_result))
2176			printk(KERN_CONT "ready\n");
2177		else
2178			printk(KERN_CONT "not responding...\n");
2179	}
2180}
2181
 
2182/*
2183 * Determine whether disk supports Data Integrity Field.
2184 */
2185static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2186{
2187	struct scsi_device *sdp = sdkp->device;
2188	u8 type;
2189	int ret = 0;
2190
2191	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2192		return ret;
2193
2194	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2195
2196	if (type > T10_PI_TYPE3_PROTECTION)
2197		ret = -ENODEV;
2198	else if (scsi_host_dif_capable(sdp->host, type))
2199		ret = 1;
2200
2201	if (sdkp->first_scan || type != sdkp->protection_type)
2202		switch (ret) {
2203		case -ENODEV:
2204			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2205				  " protection type %u. Disabling disk!\n",
2206				  type);
2207			break;
2208		case 1:
2209			sd_printk(KERN_NOTICE, sdkp,
2210				  "Enabling DIF Type %u protection\n", type);
2211			break;
2212		case 0:
2213			sd_printk(KERN_NOTICE, sdkp,
2214				  "Disabling DIF Type %u protection\n", type);
2215			break;
2216		}
2217
2218	sdkp->protection_type = type;
2219
2220	return ret;
2221}
2222
2223static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2224			struct scsi_sense_hdr *sshdr, int sense_valid,
2225			int the_result)
2226{
2227	if (driver_byte(the_result) & DRIVER_SENSE)
2228		sd_print_sense_hdr(sdkp, sshdr);
2229	else
2230		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2231
2232	/*
2233	 * Set dirty bit for removable devices if not ready -
2234	 * sometimes drives will not report this properly.
2235	 */
2236	if (sdp->removable &&
2237	    sense_valid && sshdr->sense_key == NOT_READY)
2238		set_media_not_present(sdkp);
2239
2240	/*
2241	 * We used to set media_present to 0 here to indicate no media
2242	 * in the drive, but some drives fail read capacity even with
2243	 * media present, so we can't do that.
2244	 */
2245	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2246}
2247
2248#define RC16_LEN 32
2249#if RC16_LEN > SD_BUF_SIZE
2250#error RC16_LEN must not be more than SD_BUF_SIZE
2251#endif
2252
2253#define READ_CAPACITY_RETRIES_ON_RESET	10
2254
2255/*
2256 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2257 * and the reported logical block size is bigger than 512 bytes. Note
2258 * that last_sector is a u64 and therefore logical_to_sectors() is not
2259 * applicable.
2260 */
2261static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2262{
2263	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2264
2265	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2266		return false;
2267
2268	return true;
2269}
2270
2271static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2272						unsigned char *buffer)
2273{
2274	unsigned char cmd[16];
2275	struct scsi_sense_hdr sshdr;
2276	int sense_valid = 0;
2277	int the_result;
2278	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2279	unsigned int alignment;
2280	unsigned long long lba;
2281	unsigned sector_size;
2282
2283	if (sdp->no_read_capacity_16)
2284		return -EINVAL;
2285
2286	do {
2287		memset(cmd, 0, 16);
2288		cmd[0] = SERVICE_ACTION_IN_16;
2289		cmd[1] = SAI_READ_CAPACITY_16;
2290		cmd[13] = RC16_LEN;
2291		memset(buffer, 0, RC16_LEN);
2292
2293		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2294					buffer, RC16_LEN, &sshdr,
2295					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2296
2297		if (media_not_present(sdkp, &sshdr))
2298			return -ENODEV;
2299
2300		if (the_result) {
2301			sense_valid = scsi_sense_valid(&sshdr);
2302			if (sense_valid &&
2303			    sshdr.sense_key == ILLEGAL_REQUEST &&
2304			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2305			    sshdr.ascq == 0x00)
2306				/* Invalid Command Operation Code or
2307				 * Invalid Field in CDB, just retry
2308				 * silently with RC10 */
2309				return -EINVAL;
2310			if (sense_valid &&
2311			    sshdr.sense_key == UNIT_ATTENTION &&
2312			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2313				/* Device reset might occur several times,
2314				 * give it one more chance */
2315				if (--reset_retries > 0)
2316					continue;
2317		}
2318		retries--;
2319
2320	} while (the_result && retries);
2321
2322	if (the_result) {
2323		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2324		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2325		return -EINVAL;
2326	}
2327
2328	sector_size = get_unaligned_be32(&buffer[8]);
2329	lba = get_unaligned_be64(&buffer[0]);
2330
2331	if (sd_read_protection_type(sdkp, buffer) < 0) {
2332		sdkp->capacity = 0;
2333		return -ENODEV;
2334	}
2335
2336	if (!sd_addressable_capacity(lba, sector_size)) {
2337		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2338			"kernel compiled with support for large block "
2339			"devices.\n");
2340		sdkp->capacity = 0;
2341		return -EOVERFLOW;
2342	}
2343
2344	/* Logical blocks per physical block exponent */
2345	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2346
2347	/* RC basis */
2348	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2349
2350	/* Lowest aligned logical block */
2351	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2352	blk_queue_alignment_offset(sdp->request_queue, alignment);
2353	if (alignment && sdkp->first_scan)
2354		sd_printk(KERN_NOTICE, sdkp,
2355			  "physical block alignment offset: %u\n", alignment);
2356
2357	if (buffer[14] & 0x80) { /* LBPME */
2358		sdkp->lbpme = 1;
2359
2360		if (buffer[14] & 0x40) /* LBPRZ */
2361			sdkp->lbprz = 1;
2362
2363		sd_config_discard(sdkp, SD_LBP_WS16);
2364	}
2365
2366	sdkp->capacity = lba + 1;
2367	return sector_size;
2368}
2369
2370static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2371						unsigned char *buffer)
2372{
2373	unsigned char cmd[16];
2374	struct scsi_sense_hdr sshdr;
2375	int sense_valid = 0;
2376	int the_result;
2377	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2378	sector_t lba;
2379	unsigned sector_size;
2380
2381	do {
2382		cmd[0] = READ_CAPACITY;
2383		memset(&cmd[1], 0, 9);
2384		memset(buffer, 0, 8);
2385
2386		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2387					buffer, 8, &sshdr,
2388					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2389
2390		if (media_not_present(sdkp, &sshdr))
2391			return -ENODEV;
2392
2393		if (the_result) {
2394			sense_valid = scsi_sense_valid(&sshdr);
2395			if (sense_valid &&
2396			    sshdr.sense_key == UNIT_ATTENTION &&
2397			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2398				/* Device reset might occur several times,
2399				 * give it one more chance */
2400				if (--reset_retries > 0)
2401					continue;
2402		}
2403		retries--;
2404
2405	} while (the_result && retries);
2406
2407	if (the_result) {
2408		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2409		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2410		return -EINVAL;
2411	}
2412
2413	sector_size = get_unaligned_be32(&buffer[4]);
2414	lba = get_unaligned_be32(&buffer[0]);
2415
2416	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2417		/* Some buggy (usb cardreader) devices return an lba of
2418		   0xffffffff when the want to report a size of 0 (with
2419		   which they really mean no media is present) */
2420		sdkp->capacity = 0;
2421		sdkp->physical_block_size = sector_size;
2422		return sector_size;
2423	}
2424
2425	if (!sd_addressable_capacity(lba, sector_size)) {
2426		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2427			"kernel compiled with support for large block "
2428			"devices.\n");
2429		sdkp->capacity = 0;
2430		return -EOVERFLOW;
2431	}
2432
2433	sdkp->capacity = lba + 1;
2434	sdkp->physical_block_size = sector_size;
2435	return sector_size;
2436}
2437
2438static int sd_try_rc16_first(struct scsi_device *sdp)
2439{
2440	if (sdp->host->max_cmd_len < 16)
2441		return 0;
2442	if (sdp->try_rc_10_first)
2443		return 0;
2444	if (sdp->scsi_level > SCSI_SPC_2)
2445		return 1;
2446	if (scsi_device_protection(sdp))
2447		return 1;
2448	return 0;
2449}
2450
2451/*
2452 * read disk capacity
2453 */
2454static void
2455sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2456{
2457	int sector_size;
2458	struct scsi_device *sdp = sdkp->device;
 
2459
2460	if (sd_try_rc16_first(sdp)) {
2461		sector_size = read_capacity_16(sdkp, sdp, buffer);
2462		if (sector_size == -EOVERFLOW)
2463			goto got_data;
2464		if (sector_size == -ENODEV)
2465			return;
2466		if (sector_size < 0)
2467			sector_size = read_capacity_10(sdkp, sdp, buffer);
2468		if (sector_size < 0)
2469			return;
2470	} else {
2471		sector_size = read_capacity_10(sdkp, sdp, buffer);
2472		if (sector_size == -EOVERFLOW)
2473			goto got_data;
2474		if (sector_size < 0)
2475			return;
2476		if ((sizeof(sdkp->capacity) > 4) &&
2477		    (sdkp->capacity > 0xffffffffULL)) {
2478			int old_sector_size = sector_size;
2479			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2480					"Trying to use READ CAPACITY(16).\n");
2481			sector_size = read_capacity_16(sdkp, sdp, buffer);
2482			if (sector_size < 0) {
2483				sd_printk(KERN_NOTICE, sdkp,
2484					"Using 0xffffffff as device size\n");
2485				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2486				sector_size = old_sector_size;
2487				goto got_data;
2488			}
2489			/* Remember that READ CAPACITY(16) succeeded */
2490			sdp->try_rc_10_first = 0;
2491		}
2492	}
2493
2494	/* Some devices are known to return the total number of blocks,
2495	 * not the highest block number.  Some devices have versions
2496	 * which do this and others which do not.  Some devices we might
2497	 * suspect of doing this but we don't know for certain.
2498	 *
2499	 * If we know the reported capacity is wrong, decrement it.  If
2500	 * we can only guess, then assume the number of blocks is even
2501	 * (usually true but not always) and err on the side of lowering
2502	 * the capacity.
2503	 */
2504	if (sdp->fix_capacity ||
2505	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2506		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2507				"from its reported value: %llu\n",
2508				(unsigned long long) sdkp->capacity);
2509		--sdkp->capacity;
2510	}
2511
2512got_data:
2513	if (sector_size == 0) {
2514		sector_size = 512;
2515		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2516			  "assuming 512.\n");
2517	}
2518
2519	if (sector_size != 512 &&
2520	    sector_size != 1024 &&
2521	    sector_size != 2048 &&
2522	    sector_size != 4096) {
2523		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2524			  sector_size);
2525		/*
2526		 * The user might want to re-format the drive with
2527		 * a supported sectorsize.  Once this happens, it
2528		 * would be relatively trivial to set the thing up.
2529		 * For this reason, we leave the thing in the table.
2530		 */
2531		sdkp->capacity = 0;
2532		/*
2533		 * set a bogus sector size so the normal read/write
2534		 * logic in the block layer will eventually refuse any
2535		 * request on this device without tripping over power
2536		 * of two sector size assumptions
2537		 */
2538		sector_size = 512;
2539	}
2540	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2541	blk_queue_physical_block_size(sdp->request_queue,
2542				      sdkp->physical_block_size);
2543	sdkp->device->sector_size = sector_size;
2544
2545	if (sdkp->capacity > 0xffffffff)
2546		sdp->use_16_for_rw = 1;
2547
2548}
2549
2550/*
2551 * Print disk capacity
2552 */
2553static void
2554sd_print_capacity(struct scsi_disk *sdkp,
2555		  sector_t old_capacity)
2556{
2557	int sector_size = sdkp->device->sector_size;
2558	char cap_str_2[10], cap_str_10[10];
2559
2560	string_get_size(sdkp->capacity, sector_size,
2561			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2562	string_get_size(sdkp->capacity, sector_size,
2563			STRING_UNITS_10, cap_str_10,
2564			sizeof(cap_str_10));
2565
2566	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2567		sd_printk(KERN_NOTICE, sdkp,
2568			  "%llu %d-byte logical blocks: (%s/%s)\n",
2569			  (unsigned long long)sdkp->capacity,
2570			  sector_size, cap_str_10, cap_str_2);
2571
2572		if (sdkp->physical_block_size != sector_size)
2573			sd_printk(KERN_NOTICE, sdkp,
2574				  "%u-byte physical blocks\n",
2575				  sdkp->physical_block_size);
 
2576
2577		sd_zbc_print_zones(sdkp);
 
 
 
 
2578	}
 
 
 
 
 
 
 
2579}
2580
2581/* called with buffer of length 512 */
2582static inline int
2583sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2584		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2585		 struct scsi_sense_hdr *sshdr)
2586{
2587	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2588			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2589			       sshdr);
2590}
2591
2592/*
2593 * read write protect setting, if possible - called only in sd_revalidate_disk()
2594 * called with buffer of length SD_BUF_SIZE
2595 */
2596static void
2597sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2598{
2599	int res;
2600	struct scsi_device *sdp = sdkp->device;
2601	struct scsi_mode_data data;
2602	int disk_ro = get_disk_ro(sdkp->disk);
2603	int old_wp = sdkp->write_prot;
2604
2605	set_disk_ro(sdkp->disk, 0);
2606	if (sdp->skip_ms_page_3f) {
2607		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2608		return;
2609	}
2610
2611	if (sdp->use_192_bytes_for_3f) {
2612		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2613	} else {
2614		/*
2615		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2616		 * We have to start carefully: some devices hang if we ask
2617		 * for more than is available.
2618		 */
2619		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2620
2621		/*
2622		 * Second attempt: ask for page 0 When only page 0 is
2623		 * implemented, a request for page 3F may return Sense Key
2624		 * 5: Illegal Request, Sense Code 24: Invalid field in
2625		 * CDB.
2626		 */
2627		if (!scsi_status_is_good(res))
2628			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2629
2630		/*
2631		 * Third attempt: ask 255 bytes, as we did earlier.
2632		 */
2633		if (!scsi_status_is_good(res))
2634			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2635					       &data, NULL);
2636	}
2637
2638	if (!scsi_status_is_good(res)) {
2639		sd_first_printk(KERN_WARNING, sdkp,
2640			  "Test WP failed, assume Write Enabled\n");
2641	} else {
2642		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2643		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2644		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2645			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2646				  sdkp->write_prot ? "on" : "off");
2647			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
 
 
2648		}
2649	}
2650}
2651
2652/*
2653 * sd_read_cache_type - called only from sd_revalidate_disk()
2654 * called with buffer of length SD_BUF_SIZE
2655 */
2656static void
2657sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2658{
2659	int len = 0, res;
2660	struct scsi_device *sdp = sdkp->device;
2661
2662	int dbd;
2663	int modepage;
2664	int first_len;
2665	struct scsi_mode_data data;
2666	struct scsi_sense_hdr sshdr;
2667	int old_wce = sdkp->WCE;
2668	int old_rcd = sdkp->RCD;
2669	int old_dpofua = sdkp->DPOFUA;
2670
2671
2672	if (sdkp->cache_override)
2673		return;
2674
2675	first_len = 4;
2676	if (sdp->skip_ms_page_8) {
2677		if (sdp->type == TYPE_RBC)
2678			goto defaults;
2679		else {
2680			if (sdp->skip_ms_page_3f)
2681				goto defaults;
2682			modepage = 0x3F;
2683			if (sdp->use_192_bytes_for_3f)
2684				first_len = 192;
2685			dbd = 0;
2686		}
2687	} else if (sdp->type == TYPE_RBC) {
2688		modepage = 6;
2689		dbd = 8;
2690	} else {
2691		modepage = 8;
2692		dbd = 0;
2693	}
2694
2695	/* cautiously ask */
2696	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2697			&data, &sshdr);
2698
2699	if (!scsi_status_is_good(res))
2700		goto bad_sense;
2701
2702	if (!data.header_length) {
2703		modepage = 6;
2704		first_len = 0;
2705		sd_first_printk(KERN_ERR, sdkp,
2706				"Missing header in MODE_SENSE response\n");
2707	}
2708
2709	/* that went OK, now ask for the proper length */
2710	len = data.length;
2711
2712	/*
2713	 * We're only interested in the first three bytes, actually.
2714	 * But the data cache page is defined for the first 20.
2715	 */
2716	if (len < 3)
2717		goto bad_sense;
2718	else if (len > SD_BUF_SIZE) {
2719		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2720			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2721		len = SD_BUF_SIZE;
2722	}
2723	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2724		len = 192;
2725
2726	/* Get the data */
2727	if (len > first_len)
2728		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2729				&data, &sshdr);
2730
2731	if (scsi_status_is_good(res)) {
2732		int offset = data.header_length + data.block_descriptor_length;
2733
2734		while (offset < len) {
2735			u8 page_code = buffer[offset] & 0x3F;
2736			u8 spf       = buffer[offset] & 0x40;
2737
2738			if (page_code == 8 || page_code == 6) {
2739				/* We're interested only in the first 3 bytes.
2740				 */
2741				if (len - offset <= 2) {
2742					sd_first_printk(KERN_ERR, sdkp,
2743						"Incomplete mode parameter "
2744							"data\n");
2745					goto defaults;
2746				} else {
2747					modepage = page_code;
2748					goto Page_found;
2749				}
2750			} else {
2751				/* Go to the next page */
2752				if (spf && len - offset > 3)
2753					offset += 4 + (buffer[offset+2] << 8) +
2754						buffer[offset+3];
2755				else if (!spf && len - offset > 1)
2756					offset += 2 + buffer[offset+1];
2757				else {
2758					sd_first_printk(KERN_ERR, sdkp,
2759							"Incomplete mode "
2760							"parameter data\n");
2761					goto defaults;
2762				}
2763			}
2764		}
2765
2766		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2767		goto defaults;
2768
2769	Page_found:
2770		if (modepage == 8) {
2771			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2772			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2773		} else {
2774			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2775			sdkp->RCD = 0;
2776		}
2777
2778		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2779		if (sdp->broken_fua) {
2780			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2781			sdkp->DPOFUA = 0;
2782		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2783			   !sdkp->device->use_16_for_rw) {
2784			sd_first_printk(KERN_NOTICE, sdkp,
2785				  "Uses READ/WRITE(6), disabling FUA\n");
2786			sdkp->DPOFUA = 0;
2787		}
2788
2789		/* No cache flush allowed for write protected devices */
2790		if (sdkp->WCE && sdkp->write_prot)
2791			sdkp->WCE = 0;
2792
2793		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2794		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2795			sd_printk(KERN_NOTICE, sdkp,
2796				  "Write cache: %s, read cache: %s, %s\n",
2797				  sdkp->WCE ? "enabled" : "disabled",
2798				  sdkp->RCD ? "disabled" : "enabled",
2799				  sdkp->DPOFUA ? "supports DPO and FUA"
2800				  : "doesn't support DPO or FUA");
2801
2802		return;
2803	}
2804
2805bad_sense:
2806	if (scsi_sense_valid(&sshdr) &&
2807	    sshdr.sense_key == ILLEGAL_REQUEST &&
2808	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2809		/* Invalid field in CDB */
2810		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2811	else
2812		sd_first_printk(KERN_ERR, sdkp,
2813				"Asking for cache data failed\n");
2814
2815defaults:
2816	if (sdp->wce_default_on) {
2817		sd_first_printk(KERN_NOTICE, sdkp,
2818				"Assuming drive cache: write back\n");
2819		sdkp->WCE = 1;
2820	} else {
2821		sd_first_printk(KERN_ERR, sdkp,
2822				"Assuming drive cache: write through\n");
2823		sdkp->WCE = 0;
2824	}
2825	sdkp->RCD = 0;
2826	sdkp->DPOFUA = 0;
2827}
2828
2829/*
2830 * The ATO bit indicates whether the DIF application tag is available
2831 * for use by the operating system.
2832 */
2833static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2834{
2835	int res, offset;
2836	struct scsi_device *sdp = sdkp->device;
2837	struct scsi_mode_data data;
2838	struct scsi_sense_hdr sshdr;
2839
2840	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2841		return;
2842
2843	if (sdkp->protection_type == 0)
2844		return;
2845
2846	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2847			      SD_MAX_RETRIES, &data, &sshdr);
2848
2849	if (!scsi_status_is_good(res) || !data.header_length ||
2850	    data.length < 6) {
2851		sd_first_printk(KERN_WARNING, sdkp,
2852			  "getting Control mode page failed, assume no ATO\n");
2853
2854		if (scsi_sense_valid(&sshdr))
2855			sd_print_sense_hdr(sdkp, &sshdr);
2856
2857		return;
2858	}
2859
2860	offset = data.header_length + data.block_descriptor_length;
2861
2862	if ((buffer[offset] & 0x3f) != 0x0a) {
2863		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2864		return;
2865	}
2866
2867	if ((buffer[offset + 5] & 0x80) == 0)
2868		return;
2869
2870	sdkp->ATO = 1;
2871
2872	return;
2873}
2874
2875/**
2876 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2877 * @sdkp: disk to query
2878 */
2879static void sd_read_block_limits(struct scsi_disk *sdkp)
2880{
2881	unsigned int sector_sz = sdkp->device->sector_size;
2882	const int vpd_len = 64;
2883	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2884
2885	if (!buffer ||
2886	    /* Block Limits VPD */
2887	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2888		goto out;
2889
2890	blk_queue_io_min(sdkp->disk->queue,
2891			 get_unaligned_be16(&buffer[6]) * sector_sz);
2892
2893	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2894	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2895
2896	if (buffer[3] == 0x3c) {
2897		unsigned int lba_count, desc_count;
2898
2899		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2900
2901		if (!sdkp->lbpme)
2902			goto out;
2903
2904		lba_count = get_unaligned_be32(&buffer[20]);
2905		desc_count = get_unaligned_be32(&buffer[24]);
2906
2907		if (lba_count && desc_count)
2908			sdkp->max_unmap_blocks = lba_count;
2909
2910		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2911
2912		if (buffer[32] & 0x80)
2913			sdkp->unmap_alignment =
2914				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2915
2916		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2917
2918			if (sdkp->max_unmap_blocks)
2919				sd_config_discard(sdkp, SD_LBP_UNMAP);
2920			else
2921				sd_config_discard(sdkp, SD_LBP_WS16);
2922
2923		} else {	/* LBP VPD page tells us what to use */
2924			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2925				sd_config_discard(sdkp, SD_LBP_UNMAP);
2926			else if (sdkp->lbpws)
2927				sd_config_discard(sdkp, SD_LBP_WS16);
2928			else if (sdkp->lbpws10)
2929				sd_config_discard(sdkp, SD_LBP_WS10);
 
 
2930			else
2931				sd_config_discard(sdkp, SD_LBP_DISABLE);
2932		}
2933	}
2934
2935 out:
2936	kfree(buffer);
2937}
2938
2939/**
2940 * sd_read_block_characteristics - Query block dev. characteristics
2941 * @sdkp: disk to query
2942 */
2943static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2944{
2945	struct request_queue *q = sdkp->disk->queue;
2946	unsigned char *buffer;
2947	u16 rot;
2948	const int vpd_len = 64;
2949
2950	buffer = kmalloc(vpd_len, GFP_KERNEL);
2951
2952	if (!buffer ||
2953	    /* Block Device Characteristics VPD */
2954	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2955		goto out;
2956
2957	rot = get_unaligned_be16(&buffer[4]);
2958
2959	if (rot == 1) {
2960		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2961		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2962	}
2963
2964	if (sdkp->device->type == TYPE_ZBC) {
2965		/* Host-managed */
2966		q->limits.zoned = BLK_ZONED_HM;
2967	} else {
2968		sdkp->zoned = (buffer[8] >> 4) & 3;
2969		if (sdkp->zoned == 1)
2970			/* Host-aware */
2971			q->limits.zoned = BLK_ZONED_HA;
2972		else
2973			/*
2974			 * Treat drive-managed devices as
2975			 * regular block devices.
2976			 */
2977			q->limits.zoned = BLK_ZONED_NONE;
2978	}
2979	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2980		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2981		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2982
2983 out:
2984	kfree(buffer);
2985}
2986
2987/**
2988 * sd_read_block_provisioning - Query provisioning VPD page
2989 * @sdkp: disk to query
2990 */
2991static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2992{
2993	unsigned char *buffer;
2994	const int vpd_len = 8;
2995
2996	if (sdkp->lbpme == 0)
2997		return;
2998
2999	buffer = kmalloc(vpd_len, GFP_KERNEL);
3000
3001	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3002		goto out;
3003
3004	sdkp->lbpvpd	= 1;
3005	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3006	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3007	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3008
3009 out:
3010	kfree(buffer);
3011}
3012
3013static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3014{
3015	struct scsi_device *sdev = sdkp->device;
3016
3017	if (sdev->host->no_write_same) {
3018		sdev->no_write_same = 1;
3019
3020		return;
3021	}
3022
3023	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3024		/* too large values might cause issues with arcmsr */
3025		int vpd_buf_len = 64;
3026
3027		sdev->no_report_opcodes = 1;
3028
3029		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3030		 * CODES is unsupported and the device has an ATA
3031		 * Information VPD page (SAT).
3032		 */
3033		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3034			sdev->no_write_same = 1;
3035	}
3036
3037	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3038		sdkp->ws16 = 1;
3039
3040	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3041		sdkp->ws10 = 1;
3042}
3043
3044static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3045{
3046	struct scsi_device *sdev = sdkp->device;
3047
3048	if (!sdev->security_supported)
3049		return;
3050
3051	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3052			SECURITY_PROTOCOL_IN) == 1 &&
3053	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3054			SECURITY_PROTOCOL_OUT) == 1)
3055		sdkp->security = 1;
3056}
3057
3058/**
3059 *	sd_revalidate_disk - called the first time a new disk is seen,
3060 *	performs disk spin up, read_capacity, etc.
3061 *	@disk: struct gendisk we care about
3062 **/
3063static int sd_revalidate_disk(struct gendisk *disk)
3064{
3065	struct scsi_disk *sdkp = scsi_disk(disk);
3066	struct scsi_device *sdp = sdkp->device;
3067	struct request_queue *q = sdkp->disk->queue;
3068	sector_t old_capacity = sdkp->capacity;
3069	unsigned char *buffer;
3070	unsigned int dev_max, rw_max;
3071
3072	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3073				      "sd_revalidate_disk\n"));
3074
3075	/*
3076	 * If the device is offline, don't try and read capacity or any
3077	 * of the other niceties.
3078	 */
3079	if (!scsi_device_online(sdp))
3080		goto out;
3081
3082	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3083	if (!buffer) {
3084		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3085			  "allocation failure.\n");
3086		goto out;
3087	}
3088
3089	sd_spinup_disk(sdkp);
3090
3091	/*
3092	 * Without media there is no reason to ask; moreover, some devices
3093	 * react badly if we do.
3094	 */
3095	if (sdkp->media_present) {
3096		sd_read_capacity(sdkp, buffer);
3097
3098		if (scsi_device_supports_vpd(sdp)) {
3099			sd_read_block_provisioning(sdkp);
3100			sd_read_block_limits(sdkp);
3101			sd_read_block_characteristics(sdkp);
3102			sd_zbc_read_zones(sdkp, buffer);
3103		}
3104
3105		sd_print_capacity(sdkp, old_capacity);
3106
3107		sd_read_write_protect_flag(sdkp, buffer);
3108		sd_read_cache_type(sdkp, buffer);
3109		sd_read_app_tag_own(sdkp, buffer);
3110		sd_read_write_same(sdkp, buffer);
3111		sd_read_security(sdkp, buffer);
3112	}
3113
 
 
3114	/*
3115	 * We now have all cache related info, determine how we deal
3116	 * with flush requests.
3117	 */
3118	sd_set_flush_flag(sdkp);
3119
3120	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3121	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3122
3123	/* Some devices report a maximum block count for READ/WRITE requests. */
3124	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3125	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3126
3127	/*
3128	 * Determine the device's preferred I/O size for reads and writes
3129	 * unless the reported value is unreasonably small, large, or
3130	 * garbage.
3131	 */
3132	if (sdkp->opt_xfer_blocks &&
3133	    sdkp->opt_xfer_blocks <= dev_max &&
3134	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3135	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3136		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3137		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3138	} else
3139		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3140				      (sector_t)BLK_DEF_MAX_SECTORS);
3141
3142	/* Do not exceed controller limit */
3143	rw_max = min(rw_max, queue_max_hw_sectors(q));
3144
3145	/*
3146	 * Only update max_sectors if previously unset or if the current value
3147	 * exceeds the capabilities of the hardware.
3148	 */
3149	if (sdkp->first_scan ||
3150	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3151	    q->limits.max_sectors > q->limits.max_hw_sectors)
3152		q->limits.max_sectors = rw_max;
3153
3154	sdkp->first_scan = 0;
 
3155
3156	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3157	sd_config_write_same(sdkp);
3158	kfree(buffer);
3159
3160 out:
3161	return 0;
3162}
3163
3164/**
3165 *	sd_unlock_native_capacity - unlock native capacity
3166 *	@disk: struct gendisk to set capacity for
3167 *
3168 *	Block layer calls this function if it detects that partitions
3169 *	on @disk reach beyond the end of the device.  If the SCSI host
3170 *	implements ->unlock_native_capacity() method, it's invoked to
3171 *	give it a chance to adjust the device capacity.
3172 *
3173 *	CONTEXT:
3174 *	Defined by block layer.  Might sleep.
3175 */
3176static void sd_unlock_native_capacity(struct gendisk *disk)
3177{
3178	struct scsi_device *sdev = scsi_disk(disk)->device;
3179
3180	if (sdev->host->hostt->unlock_native_capacity)
3181		sdev->host->hostt->unlock_native_capacity(sdev);
3182}
3183
3184/**
3185 *	sd_format_disk_name - format disk name
3186 *	@prefix: name prefix - ie. "sd" for SCSI disks
3187 *	@index: index of the disk to format name for
3188 *	@buf: output buffer
3189 *	@buflen: length of the output buffer
3190 *
3191 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3192 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3193 *	which is followed by sdaaa.
3194 *
3195 *	This is basically 26 base counting with one extra 'nil' entry
3196 *	at the beginning from the second digit on and can be
3197 *	determined using similar method as 26 base conversion with the
3198 *	index shifted -1 after each digit is computed.
3199 *
3200 *	CONTEXT:
3201 *	Don't care.
3202 *
3203 *	RETURNS:
3204 *	0 on success, -errno on failure.
3205 */
3206static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3207{
3208	const int base = 'z' - 'a' + 1;
3209	char *begin = buf + strlen(prefix);
3210	char *end = buf + buflen;
3211	char *p;
3212	int unit;
3213
3214	p = end - 1;
3215	*p = '\0';
3216	unit = base;
3217	do {
3218		if (p == begin)
3219			return -EINVAL;
3220		*--p = 'a' + (index % unit);
3221		index = (index / unit) - 1;
3222	} while (index >= 0);
3223
3224	memmove(begin, p, end - p);
3225	memcpy(buf, prefix, strlen(prefix));
3226
3227	return 0;
3228}
3229
3230/*
3231 * The asynchronous part of sd_probe
3232 */
3233static void sd_probe_async(void *data, async_cookie_t cookie)
3234{
3235	struct scsi_disk *sdkp = data;
3236	struct scsi_device *sdp;
3237	struct gendisk *gd;
3238	u32 index;
3239	struct device *dev;
3240
3241	sdp = sdkp->device;
3242	gd = sdkp->disk;
3243	index = sdkp->index;
3244	dev = &sdp->sdev_gendev;
3245
3246	gd->major = sd_major((index & 0xf0) >> 4);
3247	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
 
3248
3249	gd->fops = &sd_fops;
3250	gd->private_data = &sdkp->driver;
3251	gd->queue = sdkp->device->request_queue;
3252
3253	/* defaults, until the device tells us otherwise */
3254	sdp->sector_size = 512;
3255	sdkp->capacity = 0;
3256	sdkp->media_present = 1;
3257	sdkp->write_prot = 0;
3258	sdkp->cache_override = 0;
3259	sdkp->WCE = 0;
3260	sdkp->RCD = 0;
3261	sdkp->ATO = 0;
3262	sdkp->first_scan = 1;
3263	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3264
3265	sd_revalidate_disk(gd);
3266
 
3267	gd->flags = GENHD_FL_EXT_DEVT;
3268	if (sdp->removable) {
3269		gd->flags |= GENHD_FL_REMOVABLE;
3270		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3271	}
3272
3273	blk_pm_runtime_init(sdp->request_queue, dev);
3274	device_add_disk(dev, gd);
3275	if (sdkp->capacity)
3276		sd_dif_config_host(sdkp);
3277
3278	sd_revalidate_disk(gd);
3279
3280	if (sdkp->security) {
3281		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3282		if (sdkp->opal_dev)
3283			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3284	}
3285
3286	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3287		  sdp->removable ? "removable " : "");
3288	scsi_autopm_put_device(sdp);
3289	put_device(&sdkp->dev);
3290}
3291
3292/**
3293 *	sd_probe - called during driver initialization and whenever a
3294 *	new scsi device is attached to the system. It is called once
3295 *	for each scsi device (not just disks) present.
3296 *	@dev: pointer to device object
3297 *
3298 *	Returns 0 if successful (or not interested in this scsi device 
3299 *	(e.g. scanner)); 1 when there is an error.
3300 *
3301 *	Note: this function is invoked from the scsi mid-level.
3302 *	This function sets up the mapping between a given 
3303 *	<host,channel,id,lun> (found in sdp) and new device name 
3304 *	(e.g. /dev/sda). More precisely it is the block device major 
3305 *	and minor number that is chosen here.
3306 *
3307 *	Assume sd_probe is not re-entrant (for time being)
3308 *	Also think about sd_probe() and sd_remove() running coincidentally.
3309 **/
3310static int sd_probe(struct device *dev)
3311{
3312	struct scsi_device *sdp = to_scsi_device(dev);
3313	struct scsi_disk *sdkp;
3314	struct gendisk *gd;
3315	int index;
3316	int error;
3317
3318	scsi_autopm_get_device(sdp);
3319	error = -ENODEV;
3320	if (sdp->type != TYPE_DISK &&
3321	    sdp->type != TYPE_ZBC &&
3322	    sdp->type != TYPE_MOD &&
3323	    sdp->type != TYPE_RBC)
3324		goto out;
3325
3326#ifndef CONFIG_BLK_DEV_ZONED
3327	if (sdp->type == TYPE_ZBC)
3328		goto out;
3329#endif
3330	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3331					"sd_probe\n"));
3332
3333	error = -ENOMEM;
3334	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3335	if (!sdkp)
3336		goto out;
3337
3338	gd = alloc_disk(SD_MINORS);
3339	if (!gd)
3340		goto out_free;
3341
3342	do {
3343		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3344			goto out_put;
3345
3346		spin_lock(&sd_index_lock);
3347		error = ida_get_new(&sd_index_ida, &index);
3348		spin_unlock(&sd_index_lock);
3349	} while (error == -EAGAIN);
3350
3351	if (error) {
3352		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3353		goto out_put;
3354	}
3355
3356	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3357	if (error) {
3358		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3359		goto out_free_index;
3360	}
3361
3362	sdkp->device = sdp;
3363	sdkp->driver = &sd_template;
3364	sdkp->disk = gd;
3365	sdkp->index = index;
3366	atomic_set(&sdkp->openers, 0);
3367	atomic_set(&sdkp->device->ioerr_cnt, 0);
3368
3369	if (!sdp->request_queue->rq_timeout) {
3370		if (sdp->type != TYPE_MOD)
3371			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3372		else
3373			blk_queue_rq_timeout(sdp->request_queue,
3374					     SD_MOD_TIMEOUT);
3375	}
3376
3377	device_initialize(&sdkp->dev);
3378	sdkp->dev.parent = dev;
3379	sdkp->dev.class = &sd_disk_class;
3380	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3381
3382	error = device_add(&sdkp->dev);
3383	if (error)
3384		goto out_free_index;
3385
3386	get_device(dev);
3387	dev_set_drvdata(dev, sdkp);
3388
3389	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3390	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3391
3392	return 0;
3393
3394 out_free_index:
3395	spin_lock(&sd_index_lock);
3396	ida_remove(&sd_index_ida, index);
3397	spin_unlock(&sd_index_lock);
3398 out_put:
3399	put_disk(gd);
3400 out_free:
3401	kfree(sdkp);
3402 out:
3403	scsi_autopm_put_device(sdp);
3404	return error;
3405}
3406
3407/**
3408 *	sd_remove - called whenever a scsi disk (previously recognized by
3409 *	sd_probe) is detached from the system. It is called (potentially
3410 *	multiple times) during sd module unload.
3411 *	@dev: pointer to device object
3412 *
3413 *	Note: this function is invoked from the scsi mid-level.
3414 *	This function potentially frees up a device name (e.g. /dev/sdc)
3415 *	that could be re-used by a subsequent sd_probe().
3416 *	This function is not called when the built-in sd driver is "exit-ed".
3417 **/
3418static int sd_remove(struct device *dev)
3419{
3420	struct scsi_disk *sdkp;
3421	dev_t devt;
3422
3423	sdkp = dev_get_drvdata(dev);
3424	devt = disk_devt(sdkp->disk);
3425	scsi_autopm_get_device(sdkp->device);
3426
3427	async_synchronize_full_domain(&scsi_sd_pm_domain);
3428	async_synchronize_full_domain(&scsi_sd_probe_domain);
3429	device_del(&sdkp->dev);
3430	del_gendisk(sdkp->disk);
3431	sd_shutdown(dev);
3432
3433	sd_zbc_remove(sdkp);
3434
3435	free_opal_dev(sdkp->opal_dev);
3436
3437	blk_register_region(devt, SD_MINORS, NULL,
3438			    sd_default_probe, NULL, NULL);
3439
3440	mutex_lock(&sd_ref_mutex);
3441	dev_set_drvdata(dev, NULL);
3442	put_device(&sdkp->dev);
3443	mutex_unlock(&sd_ref_mutex);
3444
3445	return 0;
3446}
3447
3448/**
3449 *	scsi_disk_release - Called to free the scsi_disk structure
3450 *	@dev: pointer to embedded class device
3451 *
3452 *	sd_ref_mutex must be held entering this routine.  Because it is
3453 *	called on last put, you should always use the scsi_disk_get()
3454 *	scsi_disk_put() helpers which manipulate the semaphore directly
3455 *	and never do a direct put_device.
3456 **/
3457static void scsi_disk_release(struct device *dev)
3458{
3459	struct scsi_disk *sdkp = to_scsi_disk(dev);
3460	struct gendisk *disk = sdkp->disk;
3461	
3462	spin_lock(&sd_index_lock);
3463	ida_remove(&sd_index_ida, sdkp->index);
3464	spin_unlock(&sd_index_lock);
3465
3466	disk->private_data = NULL;
3467	put_disk(disk);
3468	put_device(&sdkp->device->sdev_gendev);
3469
3470	kfree(sdkp);
3471}
3472
3473static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3474{
3475	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3476	struct scsi_sense_hdr sshdr;
3477	struct scsi_device *sdp = sdkp->device;
3478	int res;
3479
3480	if (start)
3481		cmd[4] |= 1;	/* START */
3482
3483	if (sdp->start_stop_pwr_cond)
3484		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3485
3486	if (!scsi_device_online(sdp))
3487		return -ENODEV;
3488
3489	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3490			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3491	if (res) {
3492		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3493		if (driver_byte(res) & DRIVER_SENSE)
3494			sd_print_sense_hdr(sdkp, &sshdr);
3495		if (scsi_sense_valid(&sshdr) &&
3496			/* 0x3a is medium not present */
3497			sshdr.asc == 0x3a)
3498			res = 0;
3499	}
3500
3501	/* SCSI error codes must not go to the generic layer */
3502	if (res)
3503		return -EIO;
3504
3505	return 0;
3506}
3507
3508/*
3509 * Send a SYNCHRONIZE CACHE instruction down to the device through
3510 * the normal SCSI command structure.  Wait for the command to
3511 * complete.
3512 */
3513static void sd_shutdown(struct device *dev)
3514{
3515	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3516
3517	if (!sdkp)
3518		return;         /* this can happen */
3519
3520	if (pm_runtime_suspended(dev))
3521		return;
3522
3523	if (sdkp->WCE && sdkp->media_present) {
3524		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3525		sd_sync_cache(sdkp, NULL);
3526	}
3527
3528	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3529		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3530		sd_start_stop_device(sdkp, 0);
3531	}
3532}
3533
3534static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3535{
3536	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3537	struct scsi_sense_hdr sshdr;
3538	int ret = 0;
3539
3540	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3541		return 0;
3542
3543	if (sdkp->WCE && sdkp->media_present) {
3544		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3545		ret = sd_sync_cache(sdkp, &sshdr);
3546
3547		if (ret) {
3548			/* ignore OFFLINE device */
3549			if (ret == -ENODEV)
3550				return 0;
3551
3552			if (!scsi_sense_valid(&sshdr) ||
3553			    sshdr.sense_key != ILLEGAL_REQUEST)
3554				return ret;
3555
3556			/*
3557			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3558			 * doesn't support sync. There's not much to do and
3559			 * suspend shouldn't fail.
3560			 */
3561			ret = 0;
3562		}
3563	}
3564
3565	if (sdkp->device->manage_start_stop) {
3566		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3567		/* an error is not worth aborting a system sleep */
3568		ret = sd_start_stop_device(sdkp, 0);
3569		if (ignore_stop_errors)
3570			ret = 0;
3571	}
3572
 
3573	return ret;
3574}
3575
3576static int sd_suspend_system(struct device *dev)
3577{
3578	return sd_suspend_common(dev, true);
3579}
3580
3581static int sd_suspend_runtime(struct device *dev)
3582{
3583	return sd_suspend_common(dev, false);
3584}
3585
3586static int sd_resume(struct device *dev)
3587{
3588	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3589	int ret;
3590
3591	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3592		return 0;
3593
3594	if (!sdkp->device->manage_start_stop)
3595		return 0;
3596
3597	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3598	ret = sd_start_stop_device(sdkp, 1);
3599	if (!ret)
3600		opal_unlock_from_suspend(sdkp->opal_dev);
3601	return ret;
3602}
3603
3604/**
3605 *	init_sd - entry point for this driver (both when built in or when
3606 *	a module).
3607 *
3608 *	Note: this function registers this driver with the scsi mid-level.
3609 **/
3610static int __init init_sd(void)
3611{
3612	int majors = 0, i, err;
3613
3614	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3615
3616	for (i = 0; i < SD_MAJORS; i++) {
3617		if (register_blkdev(sd_major(i), "sd") != 0)
3618			continue;
3619		majors++;
3620		blk_register_region(sd_major(i), SD_MINORS, NULL,
3621				    sd_default_probe, NULL, NULL);
3622	}
3623
3624	if (!majors)
3625		return -ENODEV;
3626
3627	err = class_register(&sd_disk_class);
3628	if (err)
3629		goto err_out;
3630
3631	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3632					 0, 0, NULL);
3633	if (!sd_cdb_cache) {
3634		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3635		err = -ENOMEM;
3636		goto err_out_class;
3637	}
3638
3639	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3640	if (!sd_cdb_pool) {
3641		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3642		err = -ENOMEM;
3643		goto err_out_cache;
3644	}
3645
3646	err = scsi_register_driver(&sd_template.gendrv);
3647	if (err)
3648		goto err_out_driver;
3649
3650	return 0;
3651
3652err_out_driver:
3653	mempool_destroy(sd_cdb_pool);
3654
3655err_out_cache:
3656	kmem_cache_destroy(sd_cdb_cache);
3657
3658err_out_class:
3659	class_unregister(&sd_disk_class);
3660err_out:
3661	for (i = 0; i < SD_MAJORS; i++)
3662		unregister_blkdev(sd_major(i), "sd");
3663	return err;
3664}
3665
3666/**
3667 *	exit_sd - exit point for this driver (when it is a module).
3668 *
3669 *	Note: this function unregisters this driver from the scsi mid-level.
3670 **/
3671static void __exit exit_sd(void)
3672{
3673	int i;
3674
3675	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3676
3677	scsi_unregister_driver(&sd_template.gendrv);
3678	mempool_destroy(sd_cdb_pool);
3679	kmem_cache_destroy(sd_cdb_cache);
3680
3681	class_unregister(&sd_disk_class);
3682
3683	for (i = 0; i < SD_MAJORS; i++) {
3684		blk_unregister_region(sd_major(i), SD_MINORS);
3685		unregister_blkdev(sd_major(i), "sd");
3686	}
3687}
3688
3689module_init(init_sd);
3690module_exit(exit_sd);
3691
3692static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3693			       struct scsi_sense_hdr *sshdr)
3694{
3695	scsi_print_sense_hdr(sdkp->device,
3696			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3697}
3698
3699static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3700			    int result)
3701{
3702	const char *hb_string = scsi_hostbyte_string(result);
3703	const char *db_string = scsi_driverbyte_string(result);
3704
3705	if (hb_string || db_string)
3706		sd_printk(KERN_INFO, sdkp,
3707			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3708			  hb_string ? hb_string : "invalid",
3709			  db_string ? db_string : "invalid");
3710	else
3711		sd_printk(KERN_INFO, sdkp,
3712			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3713			  msg, host_byte(result), driver_byte(result));
3714}
3715
v4.6
   1/*
   2 *      sd.c Copyright (C) 1992 Drew Eckhardt
   3 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   4 *
   5 *      Linux scsi disk driver
   6 *              Initial versions: Drew Eckhardt
   7 *              Subsequent revisions: Eric Youngdale
   8 *	Modification history:
   9 *       - Drew Eckhardt <drew@colorado.edu> original
  10 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  11 *         outstanding request, and other enhancements.
  12 *         Support loadable low-level scsi drivers.
  13 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  14 *         eight major numbers.
  15 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  16 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  17 *	   sd_init and cleanups.
  18 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  19 *	   not being read in sd_open. Fix problem where removable media 
  20 *	   could be ejected after sd_open.
  21 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  22 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  23 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  24 *	   Support 32k/1M disks.
  25 *
  26 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  27 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  28 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  29 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  30 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  31 *	Note: when the logging level is set by the user, it must be greater
  32 *	than the level indicated above to trigger output.	
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/fs.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/bio.h>
  40#include <linux/genhd.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/delay.h>
  49#include <linux/mutex.h>
  50#include <linux/string_helpers.h>
  51#include <linux/async.h>
  52#include <linux/slab.h>
 
  53#include <linux/pm_runtime.h>
  54#include <linux/pr.h>
  55#include <asm/uaccess.h>
 
  56#include <asm/unaligned.h>
  57
  58#include <scsi/scsi.h>
  59#include <scsi/scsi_cmnd.h>
  60#include <scsi/scsi_dbg.h>
  61#include <scsi/scsi_device.h>
  62#include <scsi/scsi_driver.h>
  63#include <scsi/scsi_eh.h>
  64#include <scsi/scsi_host.h>
  65#include <scsi/scsi_ioctl.h>
  66#include <scsi/scsicam.h>
  67
  68#include "sd.h"
  69#include "scsi_priv.h"
  70#include "scsi_logging.h"
  71
  72MODULE_AUTHOR("Eric Youngdale");
  73MODULE_DESCRIPTION("SCSI disk (sd) driver");
  74MODULE_LICENSE("GPL");
  75
  76MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  77MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  78MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  92MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  93MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  94MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
 
  95
  96#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
  97#define SD_MINORS	16
  98#else
  99#define SD_MINORS	0
 100#endif
 101
 102static void sd_config_discard(struct scsi_disk *, unsigned int);
 103static void sd_config_write_same(struct scsi_disk *);
 104static int  sd_revalidate_disk(struct gendisk *);
 105static void sd_unlock_native_capacity(struct gendisk *disk);
 106static int  sd_probe(struct device *);
 107static int  sd_remove(struct device *);
 108static void sd_shutdown(struct device *);
 109static int sd_suspend_system(struct device *);
 110static int sd_suspend_runtime(struct device *);
 111static int sd_resume(struct device *);
 112static void sd_rescan(struct device *);
 113static int sd_init_command(struct scsi_cmnd *SCpnt);
 114static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 115static int sd_done(struct scsi_cmnd *);
 
 116static int sd_eh_action(struct scsi_cmnd *, int);
 117static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 118static void scsi_disk_release(struct device *cdev);
 119static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 120static void sd_print_result(const struct scsi_disk *, const char *, int);
 121
 122static DEFINE_SPINLOCK(sd_index_lock);
 123static DEFINE_IDA(sd_index_ida);
 124
 125/* This semaphore is used to mediate the 0->1 reference get in the
 126 * face of object destruction (i.e. we can't allow a get on an
 127 * object after last put) */
 128static DEFINE_MUTEX(sd_ref_mutex);
 129
 130static struct kmem_cache *sd_cdb_cache;
 131static mempool_t *sd_cdb_pool;
 132
 133static const char *sd_cache_types[] = {
 134	"write through", "none", "write back",
 135	"write back, no read (daft)"
 136};
 137
 138static void sd_set_flush_flag(struct scsi_disk *sdkp)
 139{
 140	unsigned flush = 0;
 141
 142	if (sdkp->WCE) {
 143		flush |= REQ_FLUSH;
 144		if (sdkp->DPOFUA)
 145			flush |= REQ_FUA;
 146	}
 147
 148	blk_queue_flush(sdkp->disk->queue, flush);
 149}
 150
 151static ssize_t
 152cache_type_store(struct device *dev, struct device_attribute *attr,
 153		 const char *buf, size_t count)
 154{
 155	int i, ct = -1, rcd, wce, sp;
 156	struct scsi_disk *sdkp = to_scsi_disk(dev);
 157	struct scsi_device *sdp = sdkp->device;
 158	char buffer[64];
 159	char *buffer_data;
 160	struct scsi_mode_data data;
 161	struct scsi_sense_hdr sshdr;
 162	static const char temp[] = "temporary ";
 163	int len;
 164
 165	if (sdp->type != TYPE_DISK)
 166		/* no cache control on RBC devices; theoretically they
 167		 * can do it, but there's probably so many exceptions
 168		 * it's not worth the risk */
 169		return -EINVAL;
 170
 171	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 172		buf += sizeof(temp) - 1;
 173		sdkp->cache_override = 1;
 174	} else {
 175		sdkp->cache_override = 0;
 176	}
 177
 178	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
 179		len = strlen(sd_cache_types[i]);
 180		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
 181		    buf[len] == '\n') {
 182			ct = i;
 183			break;
 184		}
 185	}
 186	if (ct < 0)
 187		return -EINVAL;
 
 188	rcd = ct & 0x01 ? 1 : 0;
 189	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 190
 191	if (sdkp->cache_override) {
 192		sdkp->WCE = wce;
 193		sdkp->RCD = rcd;
 194		sd_set_flush_flag(sdkp);
 195		return count;
 196	}
 197
 198	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 199			    SD_MAX_RETRIES, &data, NULL))
 200		return -EINVAL;
 201	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 202		  data.block_descriptor_length);
 203	buffer_data = buffer + data.header_length +
 204		data.block_descriptor_length;
 205	buffer_data[2] &= ~0x05;
 206	buffer_data[2] |= wce << 2 | rcd;
 207	sp = buffer_data[0] & 0x80 ? 1 : 0;
 208	buffer_data[0] &= ~0x80;
 209
 210	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 211			     SD_MAX_RETRIES, &data, &sshdr)) {
 212		if (scsi_sense_valid(&sshdr))
 213			sd_print_sense_hdr(sdkp, &sshdr);
 214		return -EINVAL;
 215	}
 216	revalidate_disk(sdkp->disk);
 217	return count;
 218}
 219
 220static ssize_t
 221manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 222		       char *buf)
 223{
 224	struct scsi_disk *sdkp = to_scsi_disk(dev);
 225	struct scsi_device *sdp = sdkp->device;
 226
 227	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
 228}
 229
 230static ssize_t
 231manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 232			const char *buf, size_t count)
 233{
 234	struct scsi_disk *sdkp = to_scsi_disk(dev);
 235	struct scsi_device *sdp = sdkp->device;
 
 236
 237	if (!capable(CAP_SYS_ADMIN))
 238		return -EACCES;
 239
 240	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
 
 
 
 241
 242	return count;
 243}
 244static DEVICE_ATTR_RW(manage_start_stop);
 245
 246static ssize_t
 247allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 248{
 249	struct scsi_disk *sdkp = to_scsi_disk(dev);
 250
 251	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
 252}
 253
 254static ssize_t
 255allow_restart_store(struct device *dev, struct device_attribute *attr,
 256		    const char *buf, size_t count)
 257{
 
 258	struct scsi_disk *sdkp = to_scsi_disk(dev);
 259	struct scsi_device *sdp = sdkp->device;
 260
 261	if (!capable(CAP_SYS_ADMIN))
 262		return -EACCES;
 263
 264	if (sdp->type != TYPE_DISK)
 
 
 
 265		return -EINVAL;
 266
 267	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
 268
 269	return count;
 270}
 271static DEVICE_ATTR_RW(allow_restart);
 272
 273static ssize_t
 274cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 275{
 276	struct scsi_disk *sdkp = to_scsi_disk(dev);
 277	int ct = sdkp->RCD + 2*sdkp->WCE;
 278
 279	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
 280}
 281static DEVICE_ATTR_RW(cache_type);
 282
 283static ssize_t
 284FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 285{
 286	struct scsi_disk *sdkp = to_scsi_disk(dev);
 287
 288	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
 289}
 290static DEVICE_ATTR_RO(FUA);
 291
 292static ssize_t
 293protection_type_show(struct device *dev, struct device_attribute *attr,
 294		     char *buf)
 295{
 296	struct scsi_disk *sdkp = to_scsi_disk(dev);
 297
 298	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
 299}
 300
 301static ssize_t
 302protection_type_store(struct device *dev, struct device_attribute *attr,
 303		      const char *buf, size_t count)
 304{
 305	struct scsi_disk *sdkp = to_scsi_disk(dev);
 306	unsigned int val;
 307	int err;
 308
 309	if (!capable(CAP_SYS_ADMIN))
 310		return -EACCES;
 311
 312	err = kstrtouint(buf, 10, &val);
 313
 314	if (err)
 315		return err;
 316
 317	if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
 318		sdkp->protection_type = val;
 319
 320	return count;
 321}
 322static DEVICE_ATTR_RW(protection_type);
 323
 324static ssize_t
 325protection_mode_show(struct device *dev, struct device_attribute *attr,
 326		     char *buf)
 327{
 328	struct scsi_disk *sdkp = to_scsi_disk(dev);
 329	struct scsi_device *sdp = sdkp->device;
 330	unsigned int dif, dix;
 331
 332	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 333	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 334
 335	if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
 336		dif = 0;
 337		dix = 1;
 338	}
 339
 340	if (!dif && !dix)
 341		return snprintf(buf, 20, "none\n");
 342
 343	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
 344}
 345static DEVICE_ATTR_RO(protection_mode);
 346
 347static ssize_t
 348app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 349{
 350	struct scsi_disk *sdkp = to_scsi_disk(dev);
 351
 352	return snprintf(buf, 20, "%u\n", sdkp->ATO);
 353}
 354static DEVICE_ATTR_RO(app_tag_own);
 355
 356static ssize_t
 357thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 358		       char *buf)
 359{
 360	struct scsi_disk *sdkp = to_scsi_disk(dev);
 361
 362	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
 363}
 364static DEVICE_ATTR_RO(thin_provisioning);
 365
 
 366static const char *lbp_mode[] = {
 367	[SD_LBP_FULL]		= "full",
 368	[SD_LBP_UNMAP]		= "unmap",
 369	[SD_LBP_WS16]		= "writesame_16",
 370	[SD_LBP_WS10]		= "writesame_10",
 371	[SD_LBP_ZERO]		= "writesame_zero",
 372	[SD_LBP_DISABLE]	= "disabled",
 373};
 374
 375static ssize_t
 376provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 377		       char *buf)
 378{
 379	struct scsi_disk *sdkp = to_scsi_disk(dev);
 380
 381	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 382}
 383
 384static ssize_t
 385provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 386			const char *buf, size_t count)
 387{
 388	struct scsi_disk *sdkp = to_scsi_disk(dev);
 389	struct scsi_device *sdp = sdkp->device;
 
 390
 391	if (!capable(CAP_SYS_ADMIN))
 392		return -EACCES;
 393
 
 
 
 
 
 394	if (sdp->type != TYPE_DISK)
 395		return -EINVAL;
 396
 397	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
 398		sd_config_discard(sdkp, SD_LBP_UNMAP);
 399	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
 400		sd_config_discard(sdkp, SD_LBP_WS16);
 401	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
 402		sd_config_discard(sdkp, SD_LBP_WS10);
 403	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
 404		sd_config_discard(sdkp, SD_LBP_ZERO);
 405	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
 406		sd_config_discard(sdkp, SD_LBP_DISABLE);
 407	else
 408		return -EINVAL;
 409
 
 
 410	return count;
 411}
 412static DEVICE_ATTR_RW(provisioning_mode);
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414static ssize_t
 415max_medium_access_timeouts_show(struct device *dev,
 416				struct device_attribute *attr, char *buf)
 417{
 418	struct scsi_disk *sdkp = to_scsi_disk(dev);
 419
 420	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
 421}
 422
 423static ssize_t
 424max_medium_access_timeouts_store(struct device *dev,
 425				 struct device_attribute *attr, const char *buf,
 426				 size_t count)
 427{
 428	struct scsi_disk *sdkp = to_scsi_disk(dev);
 429	int err;
 430
 431	if (!capable(CAP_SYS_ADMIN))
 432		return -EACCES;
 433
 434	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 435
 436	return err ? err : count;
 437}
 438static DEVICE_ATTR_RW(max_medium_access_timeouts);
 439
 440static ssize_t
 441max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 442			   char *buf)
 443{
 444	struct scsi_disk *sdkp = to_scsi_disk(dev);
 445
 446	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
 447}
 448
 449static ssize_t
 450max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 451			    const char *buf, size_t count)
 452{
 453	struct scsi_disk *sdkp = to_scsi_disk(dev);
 454	struct scsi_device *sdp = sdkp->device;
 455	unsigned long max;
 456	int err;
 457
 458	if (!capable(CAP_SYS_ADMIN))
 459		return -EACCES;
 460
 461	if (sdp->type != TYPE_DISK)
 462		return -EINVAL;
 463
 464	err = kstrtoul(buf, 10, &max);
 465
 466	if (err)
 467		return err;
 468
 469	if (max == 0)
 470		sdp->no_write_same = 1;
 471	else if (max <= SD_MAX_WS16_BLOCKS) {
 472		sdp->no_write_same = 0;
 473		sdkp->max_ws_blocks = max;
 474	}
 475
 476	sd_config_write_same(sdkp);
 477
 478	return count;
 479}
 480static DEVICE_ATTR_RW(max_write_same_blocks);
 481
 482static struct attribute *sd_disk_attrs[] = {
 483	&dev_attr_cache_type.attr,
 484	&dev_attr_FUA.attr,
 485	&dev_attr_allow_restart.attr,
 486	&dev_attr_manage_start_stop.attr,
 487	&dev_attr_protection_type.attr,
 488	&dev_attr_protection_mode.attr,
 489	&dev_attr_app_tag_own.attr,
 490	&dev_attr_thin_provisioning.attr,
 491	&dev_attr_provisioning_mode.attr,
 
 492	&dev_attr_max_write_same_blocks.attr,
 493	&dev_attr_max_medium_access_timeouts.attr,
 494	NULL,
 495};
 496ATTRIBUTE_GROUPS(sd_disk);
 497
 498static struct class sd_disk_class = {
 499	.name		= "scsi_disk",
 500	.owner		= THIS_MODULE,
 501	.dev_release	= scsi_disk_release,
 502	.dev_groups	= sd_disk_groups,
 503};
 504
 505static const struct dev_pm_ops sd_pm_ops = {
 506	.suspend		= sd_suspend_system,
 507	.resume			= sd_resume,
 508	.poweroff		= sd_suspend_system,
 509	.restore		= sd_resume,
 510	.runtime_suspend	= sd_suspend_runtime,
 511	.runtime_resume		= sd_resume,
 512};
 513
 514static struct scsi_driver sd_template = {
 515	.gendrv = {
 516		.name		= "sd",
 517		.owner		= THIS_MODULE,
 518		.probe		= sd_probe,
 519		.remove		= sd_remove,
 520		.shutdown	= sd_shutdown,
 521		.pm		= &sd_pm_ops,
 522	},
 523	.rescan			= sd_rescan,
 524	.init_command		= sd_init_command,
 525	.uninit_command		= sd_uninit_command,
 526	.done			= sd_done,
 527	.eh_action		= sd_eh_action,
 
 528};
 529
 530/*
 531 * Dummy kobj_map->probe function.
 532 * The default ->probe function will call modprobe, which is
 533 * pointless as this module is already loaded.
 534 */
 535static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 536{
 537	return NULL;
 538}
 539
 540/*
 541 * Device no to disk mapping:
 542 * 
 543 *       major         disc2     disc  p1
 544 *   |............|.............|....|....| <- dev_t
 545 *    31        20 19          8 7  4 3  0
 546 * 
 547 * Inside a major, we have 16k disks, however mapped non-
 548 * contiguously. The first 16 disks are for major0, the next
 549 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 550 * for major1, ... 
 551 * As we stay compatible with our numbering scheme, we can reuse 
 552 * the well-know SCSI majors 8, 65--71, 136--143.
 553 */
 554static int sd_major(int major_idx)
 555{
 556	switch (major_idx) {
 557	case 0:
 558		return SCSI_DISK0_MAJOR;
 559	case 1 ... 7:
 560		return SCSI_DISK1_MAJOR + major_idx - 1;
 561	case 8 ... 15:
 562		return SCSI_DISK8_MAJOR + major_idx - 8;
 563	default:
 564		BUG();
 565		return 0;	/* shut up gcc */
 566	}
 567}
 568
 569static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 570{
 571	struct scsi_disk *sdkp = NULL;
 572
 573	mutex_lock(&sd_ref_mutex);
 574
 575	if (disk->private_data) {
 576		sdkp = scsi_disk(disk);
 577		if (scsi_device_get(sdkp->device) == 0)
 578			get_device(&sdkp->dev);
 579		else
 580			sdkp = NULL;
 581	}
 582	mutex_unlock(&sd_ref_mutex);
 583	return sdkp;
 584}
 585
 586static void scsi_disk_put(struct scsi_disk *sdkp)
 587{
 588	struct scsi_device *sdev = sdkp->device;
 589
 590	mutex_lock(&sd_ref_mutex);
 591	put_device(&sdkp->dev);
 592	scsi_device_put(sdev);
 593	mutex_unlock(&sd_ref_mutex);
 594}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 597					   unsigned int dix, unsigned int dif)
 598{
 599	struct bio *bio = scmd->request->bio;
 600	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 601	unsigned int protect = 0;
 602
 603	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 604		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 605			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 606
 607		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 608			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 609	}
 610
 611	if (dif != SD_DIF_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 612		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 613
 614		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 615			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 616	}
 617
 618	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 619		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 620
 621		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 622			protect = 3 << 5;	/* Disable target PI checking */
 623		else
 624			protect = 1 << 5;	/* Enable target PI checking */
 625	}
 626
 627	scsi_set_prot_op(scmd, prot_op);
 628	scsi_set_prot_type(scmd, dif);
 629	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 630
 631	return protect;
 632}
 633
 634static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 635{
 636	struct request_queue *q = sdkp->disk->queue;
 637	unsigned int logical_block_size = sdkp->device->sector_size;
 638	unsigned int max_blocks = 0;
 639
 640	q->limits.discard_zeroes_data = 0;
 641
 642	/*
 643	 * When LBPRZ is reported, discard alignment and granularity
 644	 * must be fixed to the logical block size. Otherwise the block
 645	 * layer will drop misaligned portions of the request which can
 646	 * lead to data corruption. If LBPRZ is not set, we honor the
 647	 * device preference.
 648	 */
 649	if (sdkp->lbprz) {
 650		q->limits.discard_alignment = 0;
 651		q->limits.discard_granularity = logical_block_size;
 652	} else {
 653		q->limits.discard_alignment = sdkp->unmap_alignment *
 654			logical_block_size;
 655		q->limits.discard_granularity =
 656			max(sdkp->physical_block_size,
 657			    sdkp->unmap_granularity * logical_block_size);
 658	}
 659
 660	sdkp->provisioning_mode = mode;
 661
 662	switch (mode) {
 663
 
 664	case SD_LBP_DISABLE:
 665		blk_queue_max_discard_sectors(q, 0);
 666		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 667		return;
 668
 669	case SD_LBP_UNMAP:
 670		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 671					  (u32)SD_MAX_WS16_BLOCKS);
 672		break;
 673
 674	case SD_LBP_WS16:
 675		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 676					  (u32)SD_MAX_WS16_BLOCKS);
 677		q->limits.discard_zeroes_data = sdkp->lbprz;
 
 
 
 678		break;
 679
 680	case SD_LBP_WS10:
 681		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 682					  (u32)SD_MAX_WS10_BLOCKS);
 683		q->limits.discard_zeroes_data = sdkp->lbprz;
 
 
 
 684		break;
 685
 686	case SD_LBP_ZERO:
 687		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 688					  (u32)SD_MAX_WS10_BLOCKS);
 689		q->limits.discard_zeroes_data = 1;
 690		break;
 691	}
 692
 693	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 694	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 695}
 696
 697/**
 698 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
 699 * @sdp: scsi device to operate one
 700 * @rq: Request to prepare
 701 *
 702 * Will issue either UNMAP or WRITE SAME(16) depending on preference
 703 * indicated by target device.
 704 **/
 705static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
 706{
 
 707	struct request *rq = cmd->request;
 708	struct scsi_device *sdp = cmd->device;
 709	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 710	sector_t sector = blk_rq_pos(rq);
 711	unsigned int nr_sectors = blk_rq_sectors(rq);
 712	unsigned int nr_bytes = blk_rq_bytes(rq);
 713	unsigned int len;
 714	int ret;
 715	char *buf;
 716	struct page *page;
 717
 718	sector >>= ilog2(sdp->sector_size) - 9;
 719	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720
 721	page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 722	if (!page)
 723		return BLKPREP_DEFER;
 
 
 
 
 
 
 
 
 
 
 724
 725	switch (sdkp->provisioning_mode) {
 726	case SD_LBP_UNMAP:
 727		buf = page_address(page);
 
 728
 729		cmd->cmd_len = 10;
 730		cmd->cmnd[0] = UNMAP;
 731		cmd->cmnd[8] = 24;
 732
 733		put_unaligned_be16(6 + 16, &buf[0]);
 734		put_unaligned_be16(16, &buf[2]);
 735		put_unaligned_be64(sector, &buf[8]);
 736		put_unaligned_be32(nr_sectors, &buf[16]);
 
 
 
 737
 738		len = 24;
 739		break;
 
 
 
 
 740
 741	case SD_LBP_WS16:
 742		cmd->cmd_len = 16;
 743		cmd->cmnd[0] = WRITE_SAME_16;
 744		cmd->cmnd[1] = 0x8; /* UNMAP */
 745		put_unaligned_be64(sector, &cmd->cmnd[2]);
 746		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 747
 748		len = sdkp->device->sector_size;
 749		break;
 
 
 750
 751	case SD_LBP_WS10:
 752	case SD_LBP_ZERO:
 753		cmd->cmd_len = 10;
 754		cmd->cmnd[0] = WRITE_SAME;
 755		if (sdkp->provisioning_mode == SD_LBP_WS10)
 756			cmd->cmnd[1] = 0x8; /* UNMAP */
 757		put_unaligned_be32(sector, &cmd->cmnd[2]);
 758		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 759
 760		len = sdkp->device->sector_size;
 761		break;
 
 
 
 
 
 762
 763	default:
 764		ret = BLKPREP_INVALID;
 765		goto out;
 
 
 
 
 766	}
 767
 768	rq->completion_data = page;
 769	rq->timeout = SD_TIMEOUT;
 770
 771	cmd->transfersize = len;
 772	cmd->allowed = SD_MAX_RETRIES;
 773
 774	/*
 775	 * Initially __data_len is set to the amount of data that needs to be
 776	 * transferred to the target. This amount depends on whether WRITE SAME
 777	 * or UNMAP is being used. After the scatterlist has been mapped by
 778	 * scsi_init_io() we set __data_len to the size of the area to be
 779	 * discarded on disk. This allows us to report completion on the full
 780	 * amount of blocks described by the request.
 781	 */
 782	blk_add_request_payload(rq, page, len);
 783	ret = scsi_init_io(cmd);
 784	rq->__data_len = nr_bytes;
 785
 786out:
 787	if (ret != BLKPREP_OK)
 788		__free_page(page);
 789	return ret;
 790}
 791
 792static void sd_config_write_same(struct scsi_disk *sdkp)
 793{
 794	struct request_queue *q = sdkp->disk->queue;
 795	unsigned int logical_block_size = sdkp->device->sector_size;
 796
 797	if (sdkp->device->no_write_same) {
 798		sdkp->max_ws_blocks = 0;
 799		goto out;
 800	}
 801
 802	/* Some devices can not handle block counts above 0xffff despite
 803	 * supporting WRITE SAME(16). Consequently we default to 64k
 804	 * blocks per I/O unless the device explicitly advertises a
 805	 * bigger limit.
 806	 */
 807	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 808		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 809						   (u32)SD_MAX_WS16_BLOCKS);
 810	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 811		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 812						   (u32)SD_MAX_WS10_BLOCKS);
 813	else {
 814		sdkp->device->no_write_same = 1;
 815		sdkp->max_ws_blocks = 0;
 816	}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818out:
 819	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
 820					 (logical_block_size >> 9));
 
 
 821}
 822
 823/**
 824 * sd_setup_write_same_cmnd - write the same data to multiple blocks
 825 * @cmd: command to prepare
 826 *
 827 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
 828 * preference indicated by target device.
 829 **/
 830static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
 831{
 832	struct request *rq = cmd->request;
 833	struct scsi_device *sdp = cmd->device;
 834	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 835	struct bio *bio = rq->bio;
 836	sector_t sector = blk_rq_pos(rq);
 837	unsigned int nr_sectors = blk_rq_sectors(rq);
 838	unsigned int nr_bytes = blk_rq_bytes(rq);
 839	int ret;
 840
 841	if (sdkp->device->no_write_same)
 842		return BLKPREP_INVALID;
 843
 844	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
 845
 846	sector >>= ilog2(sdp->sector_size) - 9;
 847	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 848
 849	rq->timeout = SD_WRITE_SAME_TIMEOUT;
 850
 851	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
 852		cmd->cmd_len = 16;
 853		cmd->cmnd[0] = WRITE_SAME_16;
 854		put_unaligned_be64(sector, &cmd->cmnd[2]);
 855		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 856	} else {
 857		cmd->cmd_len = 10;
 858		cmd->cmnd[0] = WRITE_SAME;
 859		put_unaligned_be32(sector, &cmd->cmnd[2]);
 860		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 861	}
 862
 863	cmd->transfersize = sdp->sector_size;
 864	cmd->allowed = SD_MAX_RETRIES;
 865
 866	/*
 867	 * For WRITE_SAME the data transferred in the DATA IN buffer is
 868	 * different from the amount of data actually written to the target.
 869	 *
 870	 * We set up __data_len to the amount of data transferred from the
 871	 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
 872	 * to transfer a single sector of data first, but then reset it to
 873	 * the amount of data to be written right after so that the I/O path
 874	 * knows how much to actually write.
 875	 */
 876	rq->__data_len = sdp->sector_size;
 877	ret = scsi_init_io(cmd);
 878	rq->__data_len = nr_bytes;
 
 879	return ret;
 880}
 881
 882static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 883{
 884	struct request *rq = cmd->request;
 885
 886	/* flush requests don't perform I/O, zero the S/G table */
 887	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 888
 889	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
 890	cmd->cmd_len = 10;
 891	cmd->transfersize = 0;
 892	cmd->allowed = SD_MAX_RETRIES;
 893
 894	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
 895	return BLKPREP_OK;
 896}
 897
 898static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
 899{
 900	struct request *rq = SCpnt->request;
 901	struct scsi_device *sdp = SCpnt->device;
 902	struct gendisk *disk = rq->rq_disk;
 903	struct scsi_disk *sdkp;
 904	sector_t block = blk_rq_pos(rq);
 905	sector_t threshold;
 906	unsigned int this_count = blk_rq_sectors(rq);
 907	unsigned int dif, dix;
 908	int ret;
 909	unsigned char protect;
 910
 911	ret = scsi_init_io(SCpnt);
 912	if (ret != BLKPREP_OK)
 913		goto out;
 914	SCpnt = rq->special;
 915	sdkp = scsi_disk(disk);
 916
 917	/* from here on until we're complete, any goto out
 918	 * is used for a killable error condition */
 919	ret = BLKPREP_KILL;
 920
 921	SCSI_LOG_HLQUEUE(1,
 922		scmd_printk(KERN_INFO, SCpnt,
 923			"%s: block=%llu, count=%d\n",
 924			__func__, (unsigned long long)block, this_count));
 925
 926	if (!sdp || !scsi_device_online(sdp) ||
 927	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
 928		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 929						"Finishing %u sectors\n",
 930						blk_rq_sectors(rq)));
 931		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 932						"Retry with 0x%p\n", SCpnt));
 933		goto out;
 934	}
 935
 936	if (sdp->changed) {
 937		/*
 938		 * quietly refuse to do anything to a changed disc until 
 939		 * the changed bit has been reset
 940		 */
 941		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
 942		goto out;
 943	}
 944
 945	/*
 946	 * Some SD card readers can't handle multi-sector accesses which touch
 947	 * the last one or two hardware sectors.  Split accesses as needed.
 948	 */
 949	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
 950		(sdp->sector_size / 512);
 951
 952	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
 953		if (block < threshold) {
 954			/* Access up to the threshold but not beyond */
 955			this_count = threshold - block;
 956		} else {
 957			/* Access only a single hardware sector */
 958			this_count = sdp->sector_size / 512;
 959		}
 960	}
 961
 962	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
 963					(unsigned long long)block));
 964
 965	/*
 966	 * If we have a 1K hardware sectorsize, prevent access to single
 967	 * 512 byte sectors.  In theory we could handle this - in fact
 968	 * the scsi cdrom driver must be able to handle this because
 969	 * we typically use 1K blocksizes, and cdroms typically have
 970	 * 2K hardware sectorsizes.  Of course, things are simpler
 971	 * with the cdrom, since it is read-only.  For performance
 972	 * reasons, the filesystems should be able to handle this
 973	 * and not force the scsi disk driver to use bounce buffers
 974	 * for this.
 975	 */
 976	if (sdp->sector_size == 1024) {
 977		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
 978			scmd_printk(KERN_ERR, SCpnt,
 979				    "Bad block number requested\n");
 980			goto out;
 981		} else {
 982			block = block >> 1;
 983			this_count = this_count >> 1;
 984		}
 985	}
 986	if (sdp->sector_size == 2048) {
 987		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
 988			scmd_printk(KERN_ERR, SCpnt,
 989				    "Bad block number requested\n");
 990			goto out;
 991		} else {
 992			block = block >> 2;
 993			this_count = this_count >> 2;
 994		}
 995	}
 996	if (sdp->sector_size == 4096) {
 997		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
 998			scmd_printk(KERN_ERR, SCpnt,
 999				    "Bad block number requested\n");
1000			goto out;
1001		} else {
1002			block = block >> 3;
1003			this_count = this_count >> 3;
1004		}
1005	}
1006	if (rq_data_dir(rq) == WRITE) {
1007		SCpnt->cmnd[0] = WRITE_6;
1008
1009		if (blk_integrity_rq(rq))
1010			sd_dif_prepare(SCpnt);
1011
1012	} else if (rq_data_dir(rq) == READ) {
1013		SCpnt->cmnd[0] = READ_6;
1014	} else {
1015		scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1016		goto out;
1017	}
1018
1019	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1020					"%s %d/%u 512 byte blocks.\n",
1021					(rq_data_dir(rq) == WRITE) ?
1022					"writing" : "reading", this_count,
1023					blk_rq_sectors(rq)));
1024
1025	dix = scsi_prot_sg_count(SCpnt);
1026	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1027
1028	if (dif || dix)
1029		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1030	else
1031		protect = 0;
1032
1033	if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1034		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1035
1036		if (unlikely(SCpnt->cmnd == NULL)) {
1037			ret = BLKPREP_DEFER;
1038			goto out;
1039		}
1040
1041		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1042		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1043		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1044		SCpnt->cmnd[7] = 0x18;
1045		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1046		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1047
1048		/* LBA */
1049		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1050		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1051		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1052		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1053		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1054		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1055		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1056		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1057
1058		/* Expected Indirect LBA */
1059		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1060		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1061		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1062		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1063
1064		/* Transfer length */
1065		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1066		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1067		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1068		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1069	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1070		SCpnt->cmnd[0] += READ_16 - READ_6;
1071		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1072		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1073		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1074		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1075		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1076		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1077		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1078		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1079		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1080		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1081		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1082		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1083		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1084		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1085	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1086		   scsi_device_protection(SCpnt->device) ||
1087		   SCpnt->device->use_10_for_rw) {
1088		SCpnt->cmnd[0] += READ_10 - READ_6;
1089		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1090		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1091		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1092		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1093		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1094		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1095		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1096		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1097	} else {
1098		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1099			/*
1100			 * This happens only if this drive failed
1101			 * 10byte rw command with ILLEGAL_REQUEST
1102			 * during operation and thus turned off
1103			 * use_10_for_rw.
1104			 */
1105			scmd_printk(KERN_ERR, SCpnt,
1106				    "FUA write on READ/WRITE(6) drive\n");
1107			goto out;
1108		}
1109
1110		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1111		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1112		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1113		SCpnt->cmnd[4] = (unsigned char) this_count;
1114		SCpnt->cmnd[5] = 0;
1115	}
1116	SCpnt->sdb.length = this_count * sdp->sector_size;
1117
1118	/*
1119	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1120	 * host adapter, it's safe to assume that we can at least transfer
1121	 * this many bytes between each connect / disconnect.
1122	 */
1123	SCpnt->transfersize = sdp->sector_size;
1124	SCpnt->underflow = this_count << 9;
1125	SCpnt->allowed = SD_MAX_RETRIES;
1126
1127	/*
1128	 * This indicates that the command is ready from our end to be
1129	 * queued.
1130	 */
1131	ret = BLKPREP_OK;
1132 out:
1133	return ret;
1134}
1135
1136static int sd_init_command(struct scsi_cmnd *cmd)
1137{
1138	struct request *rq = cmd->request;
1139
1140	if (rq->cmd_flags & REQ_DISCARD)
1141		return sd_setup_discard_cmnd(cmd);
1142	else if (rq->cmd_flags & REQ_WRITE_SAME)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143		return sd_setup_write_same_cmnd(cmd);
1144	else if (rq->cmd_flags & REQ_FLUSH)
1145		return sd_setup_flush_cmnd(cmd);
1146	else
 
1147		return sd_setup_read_write_cmnd(cmd);
 
 
 
 
 
 
 
1148}
1149
1150static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1151{
1152	struct request *rq = SCpnt->request;
 
1153
1154	if (rq->cmd_flags & REQ_DISCARD)
1155		__free_page(rq->completion_data);
1156
1157	if (SCpnt->cmnd != rq->cmd) {
1158		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1159		SCpnt->cmnd = NULL;
1160		SCpnt->cmd_len = 0;
 
1161	}
1162}
1163
1164/**
1165 *	sd_open - open a scsi disk device
1166 *	@inode: only i_rdev member may be used
1167 *	@filp: only f_mode and f_flags may be used
1168 *
1169 *	Returns 0 if successful. Returns a negated errno value in case 
1170 *	of error.
1171 *
1172 *	Note: This can be called from a user context (e.g. fsck(1) )
1173 *	or from within the kernel (e.g. as a result of a mount(1) ).
1174 *	In the latter case @inode and @filp carry an abridged amount
1175 *	of information as noted above.
1176 *
1177 *	Locking: called with bdev->bd_mutex held.
1178 **/
1179static int sd_open(struct block_device *bdev, fmode_t mode)
1180{
1181	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1182	struct scsi_device *sdev;
1183	int retval;
1184
1185	if (!sdkp)
1186		return -ENXIO;
1187
1188	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1189
1190	sdev = sdkp->device;
1191
1192	/*
1193	 * If the device is in error recovery, wait until it is done.
1194	 * If the device is offline, then disallow any access to it.
1195	 */
1196	retval = -ENXIO;
1197	if (!scsi_block_when_processing_errors(sdev))
1198		goto error_out;
1199
1200	if (sdev->removable || sdkp->write_prot)
1201		check_disk_change(bdev);
1202
1203	/*
1204	 * If the drive is empty, just let the open fail.
1205	 */
1206	retval = -ENOMEDIUM;
1207	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1208		goto error_out;
1209
1210	/*
1211	 * If the device has the write protect tab set, have the open fail
1212	 * if the user expects to be able to write to the thing.
1213	 */
1214	retval = -EROFS;
1215	if (sdkp->write_prot && (mode & FMODE_WRITE))
1216		goto error_out;
1217
1218	/*
1219	 * It is possible that the disk changing stuff resulted in
1220	 * the device being taken offline.  If this is the case,
1221	 * report this to the user, and don't pretend that the
1222	 * open actually succeeded.
1223	 */
1224	retval = -ENXIO;
1225	if (!scsi_device_online(sdev))
1226		goto error_out;
1227
1228	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1229		if (scsi_block_when_processing_errors(sdev))
1230			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1231	}
1232
1233	return 0;
1234
1235error_out:
1236	scsi_disk_put(sdkp);
1237	return retval;	
1238}
1239
1240/**
1241 *	sd_release - invoked when the (last) close(2) is called on this
1242 *	scsi disk.
1243 *	@inode: only i_rdev member may be used
1244 *	@filp: only f_mode and f_flags may be used
1245 *
1246 *	Returns 0. 
1247 *
1248 *	Note: may block (uninterruptible) if error recovery is underway
1249 *	on this disk.
1250 *
1251 *	Locking: called with bdev->bd_mutex held.
1252 **/
1253static void sd_release(struct gendisk *disk, fmode_t mode)
1254{
1255	struct scsi_disk *sdkp = scsi_disk(disk);
1256	struct scsi_device *sdev = sdkp->device;
1257
1258	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1259
1260	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1261		if (scsi_block_when_processing_errors(sdev))
1262			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1263	}
1264
1265	/*
1266	 * XXX and what if there are packets in flight and this close()
1267	 * XXX is followed by a "rmmod sd_mod"?
1268	 */
1269
1270	scsi_disk_put(sdkp);
1271}
1272
1273static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274{
1275	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1276	struct scsi_device *sdp = sdkp->device;
1277	struct Scsi_Host *host = sdp->host;
1278	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1279	int diskinfo[4];
1280
1281	/* default to most commonly used values */
1282	diskinfo[0] = 0x40;	/* 1 << 6 */
1283	diskinfo[1] = 0x20;	/* 1 << 5 */
1284	diskinfo[2] = capacity >> 11;
1285
1286	/* override with calculated, extended default, or driver values */
1287	if (host->hostt->bios_param)
1288		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1289	else
1290		scsicam_bios_param(bdev, capacity, diskinfo);
1291
1292	geo->heads = diskinfo[0];
1293	geo->sectors = diskinfo[1];
1294	geo->cylinders = diskinfo[2];
1295	return 0;
1296}
1297
1298/**
1299 *	sd_ioctl - process an ioctl
1300 *	@inode: only i_rdev/i_bdev members may be used
1301 *	@filp: only f_mode and f_flags may be used
1302 *	@cmd: ioctl command number
1303 *	@arg: this is third argument given to ioctl(2) system call.
1304 *	Often contains a pointer.
1305 *
1306 *	Returns 0 if successful (some ioctls return positive numbers on
1307 *	success as well). Returns a negated errno value in case of error.
1308 *
1309 *	Note: most ioctls are forward onto the block subsystem or further
1310 *	down in the scsi subsystem.
1311 **/
1312static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1313		    unsigned int cmd, unsigned long arg)
1314{
1315	struct gendisk *disk = bdev->bd_disk;
1316	struct scsi_disk *sdkp = scsi_disk(disk);
1317	struct scsi_device *sdp = sdkp->device;
1318	void __user *p = (void __user *)arg;
1319	int error;
1320    
1321	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1322				    "cmd=0x%x\n", disk->disk_name, cmd));
1323
1324	error = scsi_verify_blk_ioctl(bdev, cmd);
1325	if (error < 0)
1326		return error;
1327
1328	/*
1329	 * If we are in the middle of error recovery, don't let anyone
1330	 * else try and use this device.  Also, if error recovery fails, it
1331	 * may try and take the device offline, in which case all further
1332	 * access to the device is prohibited.
1333	 */
1334	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1335			(mode & FMODE_NDELAY) != 0);
1336	if (error)
1337		goto out;
1338
 
 
 
1339	/*
1340	 * Send SCSI addressing ioctls directly to mid level, send other
1341	 * ioctls to block level and then onto mid level if they can't be
1342	 * resolved.
1343	 */
1344	switch (cmd) {
1345		case SCSI_IOCTL_GET_IDLUN:
1346		case SCSI_IOCTL_GET_BUS_NUMBER:
1347			error = scsi_ioctl(sdp, cmd, p);
1348			break;
1349		default:
1350			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1351			if (error != -ENOTTY)
1352				break;
1353			error = scsi_ioctl(sdp, cmd, p);
1354			break;
1355	}
1356out:
1357	return error;
1358}
1359
1360static void set_media_not_present(struct scsi_disk *sdkp)
1361{
1362	if (sdkp->media_present)
1363		sdkp->device->changed = 1;
1364
1365	if (sdkp->device->removable) {
1366		sdkp->media_present = 0;
1367		sdkp->capacity = 0;
1368	}
1369}
1370
1371static int media_not_present(struct scsi_disk *sdkp,
1372			     struct scsi_sense_hdr *sshdr)
1373{
1374	if (!scsi_sense_valid(sshdr))
1375		return 0;
1376
1377	/* not invoked for commands that could return deferred errors */
1378	switch (sshdr->sense_key) {
1379	case UNIT_ATTENTION:
1380	case NOT_READY:
1381		/* medium not present */
1382		if (sshdr->asc == 0x3A) {
1383			set_media_not_present(sdkp);
1384			return 1;
1385		}
1386	}
1387	return 0;
1388}
1389
1390/**
1391 *	sd_check_events - check media events
1392 *	@disk: kernel device descriptor
1393 *	@clearing: disk events currently being cleared
1394 *
1395 *	Returns mask of DISK_EVENT_*.
1396 *
1397 *	Note: this function is invoked from the block subsystem.
1398 **/
1399static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1400{
1401	struct scsi_disk *sdkp = scsi_disk(disk);
1402	struct scsi_device *sdp = sdkp->device;
1403	struct scsi_sense_hdr *sshdr = NULL;
1404	int retval;
1405
 
 
 
 
1406	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1407
1408	/*
1409	 * If the device is offline, don't send any commands - just pretend as
1410	 * if the command failed.  If the device ever comes back online, we
1411	 * can deal with it then.  It is only because of unrecoverable errors
1412	 * that we would ever take a device offline in the first place.
1413	 */
1414	if (!scsi_device_online(sdp)) {
1415		set_media_not_present(sdkp);
1416		goto out;
1417	}
1418
1419	/*
1420	 * Using TEST_UNIT_READY enables differentiation between drive with
1421	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1422	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1423	 *
1424	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1425	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1426	 * sd_revalidate() is called.
1427	 */
1428	retval = -ENODEV;
 
1429
1430	if (scsi_block_when_processing_errors(sdp)) {
1431		sshdr  = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1432		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1433					      sshdr);
1434	}
 
 
 
 
 
1435
1436	/* failed to execute TUR, assume media not present */
1437	if (host_byte(retval)) {
1438		set_media_not_present(sdkp);
1439		goto out;
1440	}
1441
1442	if (media_not_present(sdkp, sshdr))
1443		goto out;
1444
1445	/*
1446	 * For removable scsi disk we have to recognise the presence
1447	 * of a disk in the drive.
1448	 */
1449	if (!sdkp->media_present)
1450		sdp->changed = 1;
1451	sdkp->media_present = 1;
1452out:
1453	/*
1454	 * sdp->changed is set under the following conditions:
1455	 *
1456	 *	Medium present state has changed in either direction.
1457	 *	Device has indicated UNIT_ATTENTION.
1458	 */
1459	kfree(sshdr);
1460	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1461	sdp->changed = 0;
 
1462	return retval;
1463}
1464
1465static int sd_sync_cache(struct scsi_disk *sdkp)
1466{
1467	int retries, res;
1468	struct scsi_device *sdp = sdkp->device;
1469	const int timeout = sdp->request_queue->rq_timeout
1470		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1471	struct scsi_sense_hdr sshdr;
1472
1473	if (!scsi_device_online(sdp))
1474		return -ENODEV;
1475
 
 
 
 
1476	for (retries = 3; retries > 0; --retries) {
1477		unsigned char cmd[10] = { 0 };
1478
1479		cmd[0] = SYNCHRONIZE_CACHE;
1480		/*
1481		 * Leave the rest of the command zero to indicate
1482		 * flush everything.
1483		 */
1484		res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1485					     &sshdr, timeout, SD_MAX_RETRIES,
1486					     NULL, REQ_PM);
1487		if (res == 0)
1488			break;
1489	}
1490
1491	if (res) {
1492		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1493
1494		if (driver_byte(res) & DRIVER_SENSE)
1495			sd_print_sense_hdr(sdkp, &sshdr);
 
1496		/* we need to evaluate the error return  */
1497		if (scsi_sense_valid(&sshdr) &&
1498			(sshdr.asc == 0x3a ||	/* medium not present */
1499			 sshdr.asc == 0x20))	/* invalid command */
1500				/* this is no error here */
1501				return 0;
1502
1503		switch (host_byte(res)) {
1504		/* ignore errors due to racing a disconnection */
1505		case DID_BAD_TARGET:
1506		case DID_NO_CONNECT:
1507			return 0;
1508		/* signal the upper layer it might try again */
1509		case DID_BUS_BUSY:
1510		case DID_IMM_RETRY:
1511		case DID_REQUEUE:
1512		case DID_SOFT_ERROR:
1513			return -EBUSY;
1514		default:
1515			return -EIO;
1516		}
1517	}
1518	return 0;
1519}
1520
1521static void sd_rescan(struct device *dev)
1522{
1523	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1524
1525	revalidate_disk(sdkp->disk);
1526}
1527
1528
1529#ifdef CONFIG_COMPAT
1530/* 
1531 * This gets directly called from VFS. When the ioctl 
1532 * is not recognized we go back to the other translation paths. 
1533 */
1534static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1535			   unsigned int cmd, unsigned long arg)
1536{
1537	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1538	int error;
1539
1540	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1541			(mode & FMODE_NDELAY) != 0);
1542	if (error)
1543		return error;
1544	       
1545	/* 
1546	 * Let the static ioctl translation table take care of it.
1547	 */
1548	if (!sdev->host->hostt->compat_ioctl)
1549		return -ENOIOCTLCMD; 
1550	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1551}
1552#endif
1553
1554static char sd_pr_type(enum pr_type type)
1555{
1556	switch (type) {
1557	case PR_WRITE_EXCLUSIVE:
1558		return 0x01;
1559	case PR_EXCLUSIVE_ACCESS:
1560		return 0x03;
1561	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1562		return 0x05;
1563	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1564		return 0x06;
1565	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1566		return 0x07;
1567	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1568		return 0x08;
1569	default:
1570		return 0;
1571	}
1572};
1573
1574static int sd_pr_command(struct block_device *bdev, u8 sa,
1575		u64 key, u64 sa_key, u8 type, u8 flags)
1576{
1577	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1578	struct scsi_sense_hdr sshdr;
1579	int result;
1580	u8 cmd[16] = { 0, };
1581	u8 data[24] = { 0, };
1582
1583	cmd[0] = PERSISTENT_RESERVE_OUT;
1584	cmd[1] = sa;
1585	cmd[2] = type;
1586	put_unaligned_be32(sizeof(data), &cmd[5]);
1587
1588	put_unaligned_be64(key, &data[0]);
1589	put_unaligned_be64(sa_key, &data[8]);
1590	data[20] = flags;
1591
1592	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1593			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1594
1595	if ((driver_byte(result) & DRIVER_SENSE) &&
1596	    (scsi_sense_valid(&sshdr))) {
1597		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1598		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1599	}
1600
1601	return result;
1602}
1603
1604static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1605		u32 flags)
1606{
1607	if (flags & ~PR_FL_IGNORE_KEY)
1608		return -EOPNOTSUPP;
1609	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1610			old_key, new_key, 0,
1611			(1 << 0) /* APTPL */ |
1612			(1 << 2) /* ALL_TG_PT */);
1613}
1614
1615static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1616		u32 flags)
1617{
1618	if (flags)
1619		return -EOPNOTSUPP;
1620	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1621}
1622
1623static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1624{
1625	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1626}
1627
1628static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1629		enum pr_type type, bool abort)
1630{
1631	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1632			     sd_pr_type(type), 0);
1633}
1634
1635static int sd_pr_clear(struct block_device *bdev, u64 key)
1636{
1637	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1638}
1639
1640static const struct pr_ops sd_pr_ops = {
1641	.pr_register	= sd_pr_register,
1642	.pr_reserve	= sd_pr_reserve,
1643	.pr_release	= sd_pr_release,
1644	.pr_preempt	= sd_pr_preempt,
1645	.pr_clear	= sd_pr_clear,
1646};
1647
1648static const struct block_device_operations sd_fops = {
1649	.owner			= THIS_MODULE,
1650	.open			= sd_open,
1651	.release		= sd_release,
1652	.ioctl			= sd_ioctl,
1653	.getgeo			= sd_getgeo,
1654#ifdef CONFIG_COMPAT
1655	.compat_ioctl		= sd_compat_ioctl,
1656#endif
1657	.check_events		= sd_check_events,
1658	.revalidate_disk	= sd_revalidate_disk,
1659	.unlock_native_capacity	= sd_unlock_native_capacity,
1660	.pr_ops			= &sd_pr_ops,
1661};
1662
1663/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664 *	sd_eh_action - error handling callback
1665 *	@scmd:		sd-issued command that has failed
1666 *	@eh_disp:	The recovery disposition suggested by the midlayer
1667 *
1668 *	This function is called by the SCSI midlayer upon completion of an
1669 *	error test command (currently TEST UNIT READY). The result of sending
1670 *	the eh command is passed in eh_disp.  We're looking for devices that
1671 *	fail medium access commands but are OK with non access commands like
1672 *	test unit ready (so wrongly see the device as having a successful
1673 *	recovery)
1674 **/
1675static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1676{
1677	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
 
1678
1679	if (!scsi_device_online(scmd->device) ||
1680	    !scsi_medium_access_command(scmd) ||
1681	    host_byte(scmd->result) != DID_TIME_OUT ||
1682	    eh_disp != SUCCESS)
1683		return eh_disp;
1684
1685	/*
1686	 * The device has timed out executing a medium access command.
1687	 * However, the TEST UNIT READY command sent during error
1688	 * handling completed successfully. Either the device is in the
1689	 * process of recovering or has it suffered an internal failure
1690	 * that prevents access to the storage medium.
1691	 */
1692	sdkp->medium_access_timed_out++;
 
 
 
1693
1694	/*
1695	 * If the device keeps failing read/write commands but TEST UNIT
1696	 * READY always completes successfully we assume that medium
1697	 * access is no longer possible and take the device offline.
1698	 */
1699	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1700		scmd_printk(KERN_ERR, scmd,
1701			    "Medium access timeout failure. Offlining disk!\n");
1702		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
 
 
1703
1704		return FAILED;
1705	}
1706
1707	return eh_disp;
1708}
1709
1710static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1711{
1712	u64 start_lba = blk_rq_pos(scmd->request);
1713	u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1714	u64 factor = scmd->device->sector_size / 512;
1715	u64 bad_lba;
1716	int info_valid;
1717	/*
1718	 * resid is optional but mostly filled in.  When it's unused,
1719	 * its value is zero, so we assume the whole buffer transferred
1720	 */
1721	unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1722	unsigned int good_bytes;
1723
1724	if (scmd->request->cmd_type != REQ_TYPE_FS)
1725		return 0;
1726
1727	info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1728					     SCSI_SENSE_BUFFERSIZE,
1729					     &bad_lba);
1730	if (!info_valid)
1731		return 0;
1732
1733	if (scsi_bufflen(scmd) <= scmd->device->sector_size)
 
 
 
 
 
 
1734		return 0;
1735
1736	/* be careful ... don't want any overflows */
1737	do_div(start_lba, factor);
1738	do_div(end_lba, factor);
 
 
1739
1740	/* The bad lba was reported incorrectly, we have no idea where
1741	 * the error is.
1742	 */
1743	if (bad_lba < start_lba  || bad_lba >= end_lba)
1744		return 0;
1745
1746	/* This computation should always be done in terms of
1747	 * the resolution of the device's medium.
1748	 */
1749	good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1750	return min(good_bytes, transferred);
1751}
1752
1753/**
1754 *	sd_done - bottom half handler: called when the lower level
1755 *	driver has completed (successfully or otherwise) a scsi command.
1756 *	@SCpnt: mid-level's per command structure.
1757 *
1758 *	Note: potentially run from within an ISR. Must not block.
1759 **/
1760static int sd_done(struct scsi_cmnd *SCpnt)
1761{
1762	int result = SCpnt->result;
1763	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
 
 
1764	struct scsi_sense_hdr sshdr;
1765	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1766	struct request *req = SCpnt->request;
1767	int sense_valid = 0;
1768	int sense_deferred = 0;
1769	unsigned char op = SCpnt->cmnd[0];
1770	unsigned char unmap = SCpnt->cmnd[1] & 8;
1771
1772	if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
 
 
 
 
1773		if (!result) {
1774			good_bytes = blk_rq_bytes(req);
1775			scsi_set_resid(SCpnt, 0);
1776		} else {
1777			good_bytes = 0;
1778			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1779		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780	}
1781
1782	if (result) {
1783		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1784		if (sense_valid)
1785			sense_deferred = scsi_sense_is_deferred(&sshdr);
1786	}
1787	sdkp->medium_access_timed_out = 0;
1788
1789	if (driver_byte(result) != DRIVER_SENSE &&
1790	    (!sense_valid || sense_deferred))
1791		goto out;
1792
1793	switch (sshdr.sense_key) {
1794	case HARDWARE_ERROR:
1795	case MEDIUM_ERROR:
1796		good_bytes = sd_completed_bytes(SCpnt);
1797		break;
1798	case RECOVERED_ERROR:
1799		good_bytes = scsi_bufflen(SCpnt);
1800		break;
1801	case NO_SENSE:
1802		/* This indicates a false check condition, so ignore it.  An
1803		 * unknown amount of data was transferred so treat it as an
1804		 * error.
1805		 */
1806		SCpnt->result = 0;
1807		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1808		break;
1809	case ABORTED_COMMAND:
1810		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1811			good_bytes = sd_completed_bytes(SCpnt);
1812		break;
1813	case ILLEGAL_REQUEST:
1814		if (sshdr.asc == 0x10)  /* DIX: Host detected corruption */
 
1815			good_bytes = sd_completed_bytes(SCpnt);
1816		/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1817		if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1818			switch (op) {
 
1819			case UNMAP:
1820				sd_config_discard(sdkp, SD_LBP_DISABLE);
1821				break;
1822			case WRITE_SAME_16:
1823			case WRITE_SAME:
1824				if (unmap)
1825					sd_config_discard(sdkp, SD_LBP_DISABLE);
1826				else {
1827					sdkp->device->no_write_same = 1;
1828					sd_config_write_same(sdkp);
1829
1830					good_bytes = 0;
1831					req->__data_len = blk_rq_bytes(req);
1832					req->cmd_flags |= REQ_QUIET;
1833				}
 
1834			}
1835		}
1836		break;
1837	default:
1838		break;
1839	}
 
1840 out:
 
 
 
1841	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1842					   "sd_done: completed %d of %d bytes\n",
1843					   good_bytes, scsi_bufflen(SCpnt)));
1844
1845	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1846		sd_dif_complete(SCpnt, good_bytes);
1847
1848	return good_bytes;
1849}
1850
1851/*
1852 * spinup disk - called only in sd_revalidate_disk()
1853 */
1854static void
1855sd_spinup_disk(struct scsi_disk *sdkp)
1856{
1857	unsigned char cmd[10];
1858	unsigned long spintime_expire = 0;
1859	int retries, spintime;
1860	unsigned int the_result;
1861	struct scsi_sense_hdr sshdr;
1862	int sense_valid = 0;
1863
1864	spintime = 0;
1865
1866	/* Spin up drives, as required.  Only do this at boot time */
1867	/* Spinup needs to be done for module loads too. */
1868	do {
1869		retries = 0;
1870
1871		do {
1872			cmd[0] = TEST_UNIT_READY;
1873			memset((void *) &cmd[1], 0, 9);
1874
1875			the_result = scsi_execute_req(sdkp->device, cmd,
1876						      DMA_NONE, NULL, 0,
1877						      &sshdr, SD_TIMEOUT,
1878						      SD_MAX_RETRIES, NULL);
1879
1880			/*
1881			 * If the drive has indicated to us that it
1882			 * doesn't have any media in it, don't bother
1883			 * with any more polling.
1884			 */
1885			if (media_not_present(sdkp, &sshdr))
1886				return;
1887
1888			if (the_result)
1889				sense_valid = scsi_sense_valid(&sshdr);
1890			retries++;
1891		} while (retries < 3 && 
1892			 (!scsi_status_is_good(the_result) ||
1893			  ((driver_byte(the_result) & DRIVER_SENSE) &&
1894			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1895
1896		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1897			/* no sense, TUR either succeeded or failed
1898			 * with a status error */
1899			if(!spintime && !scsi_status_is_good(the_result)) {
1900				sd_print_result(sdkp, "Test Unit Ready failed",
1901						the_result);
1902			}
1903			break;
1904		}
1905
1906		/*
1907		 * The device does not want the automatic start to be issued.
1908		 */
1909		if (sdkp->device->no_start_on_add)
1910			break;
1911
1912		if (sense_valid && sshdr.sense_key == NOT_READY) {
1913			if (sshdr.asc == 4 && sshdr.ascq == 3)
1914				break;	/* manual intervention required */
1915			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1916				break;	/* standby */
1917			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1918				break;	/* unavailable */
 
 
1919			/*
1920			 * Issue command to spin up drive when not ready
1921			 */
1922			if (!spintime) {
1923				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1924				cmd[0] = START_STOP;
1925				cmd[1] = 1;	/* Return immediately */
1926				memset((void *) &cmd[2], 0, 8);
1927				cmd[4] = 1;	/* Start spin cycle */
1928				if (sdkp->device->start_stop_pwr_cond)
1929					cmd[4] |= 1 << 4;
1930				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1931						 NULL, 0, &sshdr,
1932						 SD_TIMEOUT, SD_MAX_RETRIES,
1933						 NULL);
1934				spintime_expire = jiffies + 100 * HZ;
1935				spintime = 1;
1936			}
1937			/* Wait 1 second for next try */
1938			msleep(1000);
1939			printk(".");
1940
1941		/*
1942		 * Wait for USB flash devices with slow firmware.
1943		 * Yes, this sense key/ASC combination shouldn't
1944		 * occur here.  It's characteristic of these devices.
1945		 */
1946		} else if (sense_valid &&
1947				sshdr.sense_key == UNIT_ATTENTION &&
1948				sshdr.asc == 0x28) {
1949			if (!spintime) {
1950				spintime_expire = jiffies + 5 * HZ;
1951				spintime = 1;
1952			}
1953			/* Wait 1 second for next try */
1954			msleep(1000);
1955		} else {
1956			/* we don't understand the sense code, so it's
1957			 * probably pointless to loop */
1958			if(!spintime) {
1959				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1960				sd_print_sense_hdr(sdkp, &sshdr);
1961			}
1962			break;
1963		}
1964				
1965	} while (spintime && time_before_eq(jiffies, spintime_expire));
1966
1967	if (spintime) {
1968		if (scsi_status_is_good(the_result))
1969			printk("ready\n");
1970		else
1971			printk("not responding...\n");
1972	}
1973}
1974
1975
1976/*
1977 * Determine whether disk supports Data Integrity Field.
1978 */
1979static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1980{
1981	struct scsi_device *sdp = sdkp->device;
1982	u8 type;
1983	int ret = 0;
1984
1985	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1986		return ret;
1987
1988	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1989
1990	if (type > SD_DIF_TYPE3_PROTECTION)
1991		ret = -ENODEV;
1992	else if (scsi_host_dif_capable(sdp->host, type))
1993		ret = 1;
1994
1995	if (sdkp->first_scan || type != sdkp->protection_type)
1996		switch (ret) {
1997		case -ENODEV:
1998			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1999				  " protection type %u. Disabling disk!\n",
2000				  type);
2001			break;
2002		case 1:
2003			sd_printk(KERN_NOTICE, sdkp,
2004				  "Enabling DIF Type %u protection\n", type);
2005			break;
2006		case 0:
2007			sd_printk(KERN_NOTICE, sdkp,
2008				  "Disabling DIF Type %u protection\n", type);
2009			break;
2010		}
2011
2012	sdkp->protection_type = type;
2013
2014	return ret;
2015}
2016
2017static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2018			struct scsi_sense_hdr *sshdr, int sense_valid,
2019			int the_result)
2020{
2021	if (driver_byte(the_result) & DRIVER_SENSE)
2022		sd_print_sense_hdr(sdkp, sshdr);
2023	else
2024		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2025
2026	/*
2027	 * Set dirty bit for removable devices if not ready -
2028	 * sometimes drives will not report this properly.
2029	 */
2030	if (sdp->removable &&
2031	    sense_valid && sshdr->sense_key == NOT_READY)
2032		set_media_not_present(sdkp);
2033
2034	/*
2035	 * We used to set media_present to 0 here to indicate no media
2036	 * in the drive, but some drives fail read capacity even with
2037	 * media present, so we can't do that.
2038	 */
2039	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2040}
2041
2042#define RC16_LEN 32
2043#if RC16_LEN > SD_BUF_SIZE
2044#error RC16_LEN must not be more than SD_BUF_SIZE
2045#endif
2046
2047#define READ_CAPACITY_RETRIES_ON_RESET	10
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2050						unsigned char *buffer)
2051{
2052	unsigned char cmd[16];
2053	struct scsi_sense_hdr sshdr;
2054	int sense_valid = 0;
2055	int the_result;
2056	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2057	unsigned int alignment;
2058	unsigned long long lba;
2059	unsigned sector_size;
2060
2061	if (sdp->no_read_capacity_16)
2062		return -EINVAL;
2063
2064	do {
2065		memset(cmd, 0, 16);
2066		cmd[0] = SERVICE_ACTION_IN_16;
2067		cmd[1] = SAI_READ_CAPACITY_16;
2068		cmd[13] = RC16_LEN;
2069		memset(buffer, 0, RC16_LEN);
2070
2071		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2072					buffer, RC16_LEN, &sshdr,
2073					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2074
2075		if (media_not_present(sdkp, &sshdr))
2076			return -ENODEV;
2077
2078		if (the_result) {
2079			sense_valid = scsi_sense_valid(&sshdr);
2080			if (sense_valid &&
2081			    sshdr.sense_key == ILLEGAL_REQUEST &&
2082			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2083			    sshdr.ascq == 0x00)
2084				/* Invalid Command Operation Code or
2085				 * Invalid Field in CDB, just retry
2086				 * silently with RC10 */
2087				return -EINVAL;
2088			if (sense_valid &&
2089			    sshdr.sense_key == UNIT_ATTENTION &&
2090			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2091				/* Device reset might occur several times,
2092				 * give it one more chance */
2093				if (--reset_retries > 0)
2094					continue;
2095		}
2096		retries--;
2097
2098	} while (the_result && retries);
2099
2100	if (the_result) {
2101		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2102		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2103		return -EINVAL;
2104	}
2105
2106	sector_size = get_unaligned_be32(&buffer[8]);
2107	lba = get_unaligned_be64(&buffer[0]);
2108
2109	if (sd_read_protection_type(sdkp, buffer) < 0) {
2110		sdkp->capacity = 0;
2111		return -ENODEV;
2112	}
2113
2114	if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2115		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2116			"kernel compiled with support for large block "
2117			"devices.\n");
2118		sdkp->capacity = 0;
2119		return -EOVERFLOW;
2120	}
2121
2122	/* Logical blocks per physical block exponent */
2123	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2124
 
 
 
2125	/* Lowest aligned logical block */
2126	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2127	blk_queue_alignment_offset(sdp->request_queue, alignment);
2128	if (alignment && sdkp->first_scan)
2129		sd_printk(KERN_NOTICE, sdkp,
2130			  "physical block alignment offset: %u\n", alignment);
2131
2132	if (buffer[14] & 0x80) { /* LBPME */
2133		sdkp->lbpme = 1;
2134
2135		if (buffer[14] & 0x40) /* LBPRZ */
2136			sdkp->lbprz = 1;
2137
2138		sd_config_discard(sdkp, SD_LBP_WS16);
2139	}
2140
2141	sdkp->capacity = lba + 1;
2142	return sector_size;
2143}
2144
2145static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2146						unsigned char *buffer)
2147{
2148	unsigned char cmd[16];
2149	struct scsi_sense_hdr sshdr;
2150	int sense_valid = 0;
2151	int the_result;
2152	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2153	sector_t lba;
2154	unsigned sector_size;
2155
2156	do {
2157		cmd[0] = READ_CAPACITY;
2158		memset(&cmd[1], 0, 9);
2159		memset(buffer, 0, 8);
2160
2161		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2162					buffer, 8, &sshdr,
2163					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2164
2165		if (media_not_present(sdkp, &sshdr))
2166			return -ENODEV;
2167
2168		if (the_result) {
2169			sense_valid = scsi_sense_valid(&sshdr);
2170			if (sense_valid &&
2171			    sshdr.sense_key == UNIT_ATTENTION &&
2172			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2173				/* Device reset might occur several times,
2174				 * give it one more chance */
2175				if (--reset_retries > 0)
2176					continue;
2177		}
2178		retries--;
2179
2180	} while (the_result && retries);
2181
2182	if (the_result) {
2183		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2184		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2185		return -EINVAL;
2186	}
2187
2188	sector_size = get_unaligned_be32(&buffer[4]);
2189	lba = get_unaligned_be32(&buffer[0]);
2190
2191	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2192		/* Some buggy (usb cardreader) devices return an lba of
2193		   0xffffffff when the want to report a size of 0 (with
2194		   which they really mean no media is present) */
2195		sdkp->capacity = 0;
2196		sdkp->physical_block_size = sector_size;
2197		return sector_size;
2198	}
2199
2200	if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2201		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2202			"kernel compiled with support for large block "
2203			"devices.\n");
2204		sdkp->capacity = 0;
2205		return -EOVERFLOW;
2206	}
2207
2208	sdkp->capacity = lba + 1;
2209	sdkp->physical_block_size = sector_size;
2210	return sector_size;
2211}
2212
2213static int sd_try_rc16_first(struct scsi_device *sdp)
2214{
2215	if (sdp->host->max_cmd_len < 16)
2216		return 0;
2217	if (sdp->try_rc_10_first)
2218		return 0;
2219	if (sdp->scsi_level > SCSI_SPC_2)
2220		return 1;
2221	if (scsi_device_protection(sdp))
2222		return 1;
2223	return 0;
2224}
2225
2226/*
2227 * read disk capacity
2228 */
2229static void
2230sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2231{
2232	int sector_size;
2233	struct scsi_device *sdp = sdkp->device;
2234	sector_t old_capacity = sdkp->capacity;
2235
2236	if (sd_try_rc16_first(sdp)) {
2237		sector_size = read_capacity_16(sdkp, sdp, buffer);
2238		if (sector_size == -EOVERFLOW)
2239			goto got_data;
2240		if (sector_size == -ENODEV)
2241			return;
2242		if (sector_size < 0)
2243			sector_size = read_capacity_10(sdkp, sdp, buffer);
2244		if (sector_size < 0)
2245			return;
2246	} else {
2247		sector_size = read_capacity_10(sdkp, sdp, buffer);
2248		if (sector_size == -EOVERFLOW)
2249			goto got_data;
2250		if (sector_size < 0)
2251			return;
2252		if ((sizeof(sdkp->capacity) > 4) &&
2253		    (sdkp->capacity > 0xffffffffULL)) {
2254			int old_sector_size = sector_size;
2255			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2256					"Trying to use READ CAPACITY(16).\n");
2257			sector_size = read_capacity_16(sdkp, sdp, buffer);
2258			if (sector_size < 0) {
2259				sd_printk(KERN_NOTICE, sdkp,
2260					"Using 0xffffffff as device size\n");
2261				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2262				sector_size = old_sector_size;
2263				goto got_data;
2264			}
 
 
2265		}
2266	}
2267
2268	/* Some devices are known to return the total number of blocks,
2269	 * not the highest block number.  Some devices have versions
2270	 * which do this and others which do not.  Some devices we might
2271	 * suspect of doing this but we don't know for certain.
2272	 *
2273	 * If we know the reported capacity is wrong, decrement it.  If
2274	 * we can only guess, then assume the number of blocks is even
2275	 * (usually true but not always) and err on the side of lowering
2276	 * the capacity.
2277	 */
2278	if (sdp->fix_capacity ||
2279	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2280		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2281				"from its reported value: %llu\n",
2282				(unsigned long long) sdkp->capacity);
2283		--sdkp->capacity;
2284	}
2285
2286got_data:
2287	if (sector_size == 0) {
2288		sector_size = 512;
2289		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2290			  "assuming 512.\n");
2291	}
2292
2293	if (sector_size != 512 &&
2294	    sector_size != 1024 &&
2295	    sector_size != 2048 &&
2296	    sector_size != 4096) {
2297		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2298			  sector_size);
2299		/*
2300		 * The user might want to re-format the drive with
2301		 * a supported sectorsize.  Once this happens, it
2302		 * would be relatively trivial to set the thing up.
2303		 * For this reason, we leave the thing in the table.
2304		 */
2305		sdkp->capacity = 0;
2306		/*
2307		 * set a bogus sector size so the normal read/write
2308		 * logic in the block layer will eventually refuse any
2309		 * request on this device without tripping over power
2310		 * of two sector size assumptions
2311		 */
2312		sector_size = 512;
2313	}
2314	blk_queue_logical_block_size(sdp->request_queue, sector_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315
2316	{
2317		char cap_str_2[10], cap_str_10[10];
 
 
 
2318
2319		string_get_size(sdkp->capacity, sector_size,
2320				STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2321		string_get_size(sdkp->capacity, sector_size,
2322				STRING_UNITS_10, cap_str_10,
2323				sizeof(cap_str_10));
2324
2325		if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2326			sd_printk(KERN_NOTICE, sdkp,
2327				  "%llu %d-byte logical blocks: (%s/%s)\n",
2328				  (unsigned long long)sdkp->capacity,
2329				  sector_size, cap_str_10, cap_str_2);
2330
2331			if (sdkp->physical_block_size != sector_size)
2332				sd_printk(KERN_NOTICE, sdkp,
2333					  "%u-byte physical blocks\n",
2334					  sdkp->physical_block_size);
2335		}
2336	}
2337
2338	if (sdkp->capacity > 0xffffffff)
2339		sdp->use_16_for_rw = 1;
2340
2341	blk_queue_physical_block_size(sdp->request_queue,
2342				      sdkp->physical_block_size);
2343	sdkp->device->sector_size = sector_size;
2344}
2345
2346/* called with buffer of length 512 */
2347static inline int
2348sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2349		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2350		 struct scsi_sense_hdr *sshdr)
2351{
2352	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2353			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2354			       sshdr);
2355}
2356
2357/*
2358 * read write protect setting, if possible - called only in sd_revalidate_disk()
2359 * called with buffer of length SD_BUF_SIZE
2360 */
2361static void
2362sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2363{
2364	int res;
2365	struct scsi_device *sdp = sdkp->device;
2366	struct scsi_mode_data data;
 
2367	int old_wp = sdkp->write_prot;
2368
2369	set_disk_ro(sdkp->disk, 0);
2370	if (sdp->skip_ms_page_3f) {
2371		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2372		return;
2373	}
2374
2375	if (sdp->use_192_bytes_for_3f) {
2376		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2377	} else {
2378		/*
2379		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2380		 * We have to start carefully: some devices hang if we ask
2381		 * for more than is available.
2382		 */
2383		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2384
2385		/*
2386		 * Second attempt: ask for page 0 When only page 0 is
2387		 * implemented, a request for page 3F may return Sense Key
2388		 * 5: Illegal Request, Sense Code 24: Invalid field in
2389		 * CDB.
2390		 */
2391		if (!scsi_status_is_good(res))
2392			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2393
2394		/*
2395		 * Third attempt: ask 255 bytes, as we did earlier.
2396		 */
2397		if (!scsi_status_is_good(res))
2398			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2399					       &data, NULL);
2400	}
2401
2402	if (!scsi_status_is_good(res)) {
2403		sd_first_printk(KERN_WARNING, sdkp,
2404			  "Test WP failed, assume Write Enabled\n");
2405	} else {
2406		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2407		set_disk_ro(sdkp->disk, sdkp->write_prot);
2408		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2409			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2410				  sdkp->write_prot ? "on" : "off");
2411			sd_printk(KERN_DEBUG, sdkp,
2412				  "Mode Sense: %02x %02x %02x %02x\n",
2413				  buffer[0], buffer[1], buffer[2], buffer[3]);
2414		}
2415	}
2416}
2417
2418/*
2419 * sd_read_cache_type - called only from sd_revalidate_disk()
2420 * called with buffer of length SD_BUF_SIZE
2421 */
2422static void
2423sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2424{
2425	int len = 0, res;
2426	struct scsi_device *sdp = sdkp->device;
2427
2428	int dbd;
2429	int modepage;
2430	int first_len;
2431	struct scsi_mode_data data;
2432	struct scsi_sense_hdr sshdr;
2433	int old_wce = sdkp->WCE;
2434	int old_rcd = sdkp->RCD;
2435	int old_dpofua = sdkp->DPOFUA;
2436
2437
2438	if (sdkp->cache_override)
2439		return;
2440
2441	first_len = 4;
2442	if (sdp->skip_ms_page_8) {
2443		if (sdp->type == TYPE_RBC)
2444			goto defaults;
2445		else {
2446			if (sdp->skip_ms_page_3f)
2447				goto defaults;
2448			modepage = 0x3F;
2449			if (sdp->use_192_bytes_for_3f)
2450				first_len = 192;
2451			dbd = 0;
2452		}
2453	} else if (sdp->type == TYPE_RBC) {
2454		modepage = 6;
2455		dbd = 8;
2456	} else {
2457		modepage = 8;
2458		dbd = 0;
2459	}
2460
2461	/* cautiously ask */
2462	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2463			&data, &sshdr);
2464
2465	if (!scsi_status_is_good(res))
2466		goto bad_sense;
2467
2468	if (!data.header_length) {
2469		modepage = 6;
2470		first_len = 0;
2471		sd_first_printk(KERN_ERR, sdkp,
2472				"Missing header in MODE_SENSE response\n");
2473	}
2474
2475	/* that went OK, now ask for the proper length */
2476	len = data.length;
2477
2478	/*
2479	 * We're only interested in the first three bytes, actually.
2480	 * But the data cache page is defined for the first 20.
2481	 */
2482	if (len < 3)
2483		goto bad_sense;
2484	else if (len > SD_BUF_SIZE) {
2485		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2486			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2487		len = SD_BUF_SIZE;
2488	}
2489	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2490		len = 192;
2491
2492	/* Get the data */
2493	if (len > first_len)
2494		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2495				&data, &sshdr);
2496
2497	if (scsi_status_is_good(res)) {
2498		int offset = data.header_length + data.block_descriptor_length;
2499
2500		while (offset < len) {
2501			u8 page_code = buffer[offset] & 0x3F;
2502			u8 spf       = buffer[offset] & 0x40;
2503
2504			if (page_code == 8 || page_code == 6) {
2505				/* We're interested only in the first 3 bytes.
2506				 */
2507				if (len - offset <= 2) {
2508					sd_first_printk(KERN_ERR, sdkp,
2509						"Incomplete mode parameter "
2510							"data\n");
2511					goto defaults;
2512				} else {
2513					modepage = page_code;
2514					goto Page_found;
2515				}
2516			} else {
2517				/* Go to the next page */
2518				if (spf && len - offset > 3)
2519					offset += 4 + (buffer[offset+2] << 8) +
2520						buffer[offset+3];
2521				else if (!spf && len - offset > 1)
2522					offset += 2 + buffer[offset+1];
2523				else {
2524					sd_first_printk(KERN_ERR, sdkp,
2525							"Incomplete mode "
2526							"parameter data\n");
2527					goto defaults;
2528				}
2529			}
2530		}
2531
2532		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2533		goto defaults;
2534
2535	Page_found:
2536		if (modepage == 8) {
2537			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2538			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2539		} else {
2540			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2541			sdkp->RCD = 0;
2542		}
2543
2544		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2545		if (sdp->broken_fua) {
2546			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2547			sdkp->DPOFUA = 0;
2548		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
 
2549			sd_first_printk(KERN_NOTICE, sdkp,
2550				  "Uses READ/WRITE(6), disabling FUA\n");
2551			sdkp->DPOFUA = 0;
2552		}
2553
2554		/* No cache flush allowed for write protected devices */
2555		if (sdkp->WCE && sdkp->write_prot)
2556			sdkp->WCE = 0;
2557
2558		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2559		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2560			sd_printk(KERN_NOTICE, sdkp,
2561				  "Write cache: %s, read cache: %s, %s\n",
2562				  sdkp->WCE ? "enabled" : "disabled",
2563				  sdkp->RCD ? "disabled" : "enabled",
2564				  sdkp->DPOFUA ? "supports DPO and FUA"
2565				  : "doesn't support DPO or FUA");
2566
2567		return;
2568	}
2569
2570bad_sense:
2571	if (scsi_sense_valid(&sshdr) &&
2572	    sshdr.sense_key == ILLEGAL_REQUEST &&
2573	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2574		/* Invalid field in CDB */
2575		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2576	else
2577		sd_first_printk(KERN_ERR, sdkp,
2578				"Asking for cache data failed\n");
2579
2580defaults:
2581	if (sdp->wce_default_on) {
2582		sd_first_printk(KERN_NOTICE, sdkp,
2583				"Assuming drive cache: write back\n");
2584		sdkp->WCE = 1;
2585	} else {
2586		sd_first_printk(KERN_ERR, sdkp,
2587				"Assuming drive cache: write through\n");
2588		sdkp->WCE = 0;
2589	}
2590	sdkp->RCD = 0;
2591	sdkp->DPOFUA = 0;
2592}
2593
2594/*
2595 * The ATO bit indicates whether the DIF application tag is available
2596 * for use by the operating system.
2597 */
2598static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2599{
2600	int res, offset;
2601	struct scsi_device *sdp = sdkp->device;
2602	struct scsi_mode_data data;
2603	struct scsi_sense_hdr sshdr;
2604
2605	if (sdp->type != TYPE_DISK)
2606		return;
2607
2608	if (sdkp->protection_type == 0)
2609		return;
2610
2611	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2612			      SD_MAX_RETRIES, &data, &sshdr);
2613
2614	if (!scsi_status_is_good(res) || !data.header_length ||
2615	    data.length < 6) {
2616		sd_first_printk(KERN_WARNING, sdkp,
2617			  "getting Control mode page failed, assume no ATO\n");
2618
2619		if (scsi_sense_valid(&sshdr))
2620			sd_print_sense_hdr(sdkp, &sshdr);
2621
2622		return;
2623	}
2624
2625	offset = data.header_length + data.block_descriptor_length;
2626
2627	if ((buffer[offset] & 0x3f) != 0x0a) {
2628		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2629		return;
2630	}
2631
2632	if ((buffer[offset + 5] & 0x80) == 0)
2633		return;
2634
2635	sdkp->ATO = 1;
2636
2637	return;
2638}
2639
2640/**
2641 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2642 * @disk: disk to query
2643 */
2644static void sd_read_block_limits(struct scsi_disk *sdkp)
2645{
2646	unsigned int sector_sz = sdkp->device->sector_size;
2647	const int vpd_len = 64;
2648	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2649
2650	if (!buffer ||
2651	    /* Block Limits VPD */
2652	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2653		goto out;
2654
2655	blk_queue_io_min(sdkp->disk->queue,
2656			 get_unaligned_be16(&buffer[6]) * sector_sz);
2657
2658	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2659	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2660
2661	if (buffer[3] == 0x3c) {
2662		unsigned int lba_count, desc_count;
2663
2664		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2665
2666		if (!sdkp->lbpme)
2667			goto out;
2668
2669		lba_count = get_unaligned_be32(&buffer[20]);
2670		desc_count = get_unaligned_be32(&buffer[24]);
2671
2672		if (lba_count && desc_count)
2673			sdkp->max_unmap_blocks = lba_count;
2674
2675		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2676
2677		if (buffer[32] & 0x80)
2678			sdkp->unmap_alignment =
2679				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2680
2681		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2682
2683			if (sdkp->max_unmap_blocks)
2684				sd_config_discard(sdkp, SD_LBP_UNMAP);
2685			else
2686				sd_config_discard(sdkp, SD_LBP_WS16);
2687
2688		} else {	/* LBP VPD page tells us what to use */
2689			if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2690				sd_config_discard(sdkp, SD_LBP_UNMAP);
2691			else if (sdkp->lbpws)
2692				sd_config_discard(sdkp, SD_LBP_WS16);
2693			else if (sdkp->lbpws10)
2694				sd_config_discard(sdkp, SD_LBP_WS10);
2695			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2696				sd_config_discard(sdkp, SD_LBP_UNMAP);
2697			else
2698				sd_config_discard(sdkp, SD_LBP_DISABLE);
2699		}
2700	}
2701
2702 out:
2703	kfree(buffer);
2704}
2705
2706/**
2707 * sd_read_block_characteristics - Query block dev. characteristics
2708 * @disk: disk to query
2709 */
2710static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2711{
 
2712	unsigned char *buffer;
2713	u16 rot;
2714	const int vpd_len = 64;
2715
2716	buffer = kmalloc(vpd_len, GFP_KERNEL);
2717
2718	if (!buffer ||
2719	    /* Block Device Characteristics VPD */
2720	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2721		goto out;
2722
2723	rot = get_unaligned_be16(&buffer[4]);
2724
2725	if (rot == 1) {
2726		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2727		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2728	}
2729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730 out:
2731	kfree(buffer);
2732}
2733
2734/**
2735 * sd_read_block_provisioning - Query provisioning VPD page
2736 * @disk: disk to query
2737 */
2738static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2739{
2740	unsigned char *buffer;
2741	const int vpd_len = 8;
2742
2743	if (sdkp->lbpme == 0)
2744		return;
2745
2746	buffer = kmalloc(vpd_len, GFP_KERNEL);
2747
2748	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2749		goto out;
2750
2751	sdkp->lbpvpd	= 1;
2752	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2753	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2754	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2755
2756 out:
2757	kfree(buffer);
2758}
2759
2760static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2761{
2762	struct scsi_device *sdev = sdkp->device;
2763
2764	if (sdev->host->no_write_same) {
2765		sdev->no_write_same = 1;
2766
2767		return;
2768	}
2769
2770	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2771		/* too large values might cause issues with arcmsr */
2772		int vpd_buf_len = 64;
2773
2774		sdev->no_report_opcodes = 1;
2775
2776		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2777		 * CODES is unsupported and the device has an ATA
2778		 * Information VPD page (SAT).
2779		 */
2780		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2781			sdev->no_write_same = 1;
2782	}
2783
2784	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2785		sdkp->ws16 = 1;
2786
2787	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2788		sdkp->ws10 = 1;
2789}
2790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791/**
2792 *	sd_revalidate_disk - called the first time a new disk is seen,
2793 *	performs disk spin up, read_capacity, etc.
2794 *	@disk: struct gendisk we care about
2795 **/
2796static int sd_revalidate_disk(struct gendisk *disk)
2797{
2798	struct scsi_disk *sdkp = scsi_disk(disk);
2799	struct scsi_device *sdp = sdkp->device;
2800	struct request_queue *q = sdkp->disk->queue;
 
2801	unsigned char *buffer;
2802	unsigned int dev_max, rw_max;
2803
2804	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2805				      "sd_revalidate_disk\n"));
2806
2807	/*
2808	 * If the device is offline, don't try and read capacity or any
2809	 * of the other niceties.
2810	 */
2811	if (!scsi_device_online(sdp))
2812		goto out;
2813
2814	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2815	if (!buffer) {
2816		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2817			  "allocation failure.\n");
2818		goto out;
2819	}
2820
2821	sd_spinup_disk(sdkp);
2822
2823	/*
2824	 * Without media there is no reason to ask; moreover, some devices
2825	 * react badly if we do.
2826	 */
2827	if (sdkp->media_present) {
2828		sd_read_capacity(sdkp, buffer);
2829
2830		if (scsi_device_supports_vpd(sdp)) {
2831			sd_read_block_provisioning(sdkp);
2832			sd_read_block_limits(sdkp);
2833			sd_read_block_characteristics(sdkp);
 
2834		}
2835
 
 
2836		sd_read_write_protect_flag(sdkp, buffer);
2837		sd_read_cache_type(sdkp, buffer);
2838		sd_read_app_tag_own(sdkp, buffer);
2839		sd_read_write_same(sdkp, buffer);
 
2840	}
2841
2842	sdkp->first_scan = 0;
2843
2844	/*
2845	 * We now have all cache related info, determine how we deal
2846	 * with flush requests.
2847	 */
2848	sd_set_flush_flag(sdkp);
2849
2850	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
2851	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
2852
2853	/* Some devices report a maximum block count for READ/WRITE requests. */
2854	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
2855	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
2856
2857	/*
2858	 * Use the device's preferred I/O size for reads and writes
2859	 * unless the reported value is unreasonably small, large, or
2860	 * garbage.
2861	 */
2862	if (sdkp->opt_xfer_blocks &&
2863	    sdkp->opt_xfer_blocks <= dev_max &&
2864	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
2865	    sdkp->opt_xfer_blocks * sdp->sector_size >= PAGE_SIZE)
2866		rw_max = q->limits.io_opt =
2867			sdkp->opt_xfer_blocks * sdp->sector_size;
2868	else
2869		rw_max = BLK_DEF_MAX_SECTORS;
 
 
 
 
 
 
 
 
 
 
 
 
 
2870
2871	/* Combine with controller limits */
2872	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
2873
2874	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
2875	sd_config_write_same(sdkp);
2876	kfree(buffer);
2877
2878 out:
2879	return 0;
2880}
2881
2882/**
2883 *	sd_unlock_native_capacity - unlock native capacity
2884 *	@disk: struct gendisk to set capacity for
2885 *
2886 *	Block layer calls this function if it detects that partitions
2887 *	on @disk reach beyond the end of the device.  If the SCSI host
2888 *	implements ->unlock_native_capacity() method, it's invoked to
2889 *	give it a chance to adjust the device capacity.
2890 *
2891 *	CONTEXT:
2892 *	Defined by block layer.  Might sleep.
2893 */
2894static void sd_unlock_native_capacity(struct gendisk *disk)
2895{
2896	struct scsi_device *sdev = scsi_disk(disk)->device;
2897
2898	if (sdev->host->hostt->unlock_native_capacity)
2899		sdev->host->hostt->unlock_native_capacity(sdev);
2900}
2901
2902/**
2903 *	sd_format_disk_name - format disk name
2904 *	@prefix: name prefix - ie. "sd" for SCSI disks
2905 *	@index: index of the disk to format name for
2906 *	@buf: output buffer
2907 *	@buflen: length of the output buffer
2908 *
2909 *	SCSI disk names starts at sda.  The 26th device is sdz and the
2910 *	27th is sdaa.  The last one for two lettered suffix is sdzz
2911 *	which is followed by sdaaa.
2912 *
2913 *	This is basically 26 base counting with one extra 'nil' entry
2914 *	at the beginning from the second digit on and can be
2915 *	determined using similar method as 26 base conversion with the
2916 *	index shifted -1 after each digit is computed.
2917 *
2918 *	CONTEXT:
2919 *	Don't care.
2920 *
2921 *	RETURNS:
2922 *	0 on success, -errno on failure.
2923 */
2924static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2925{
2926	const int base = 'z' - 'a' + 1;
2927	char *begin = buf + strlen(prefix);
2928	char *end = buf + buflen;
2929	char *p;
2930	int unit;
2931
2932	p = end - 1;
2933	*p = '\0';
2934	unit = base;
2935	do {
2936		if (p == begin)
2937			return -EINVAL;
2938		*--p = 'a' + (index % unit);
2939		index = (index / unit) - 1;
2940	} while (index >= 0);
2941
2942	memmove(begin, p, end - p);
2943	memcpy(buf, prefix, strlen(prefix));
2944
2945	return 0;
2946}
2947
2948/*
2949 * The asynchronous part of sd_probe
2950 */
2951static void sd_probe_async(void *data, async_cookie_t cookie)
2952{
2953	struct scsi_disk *sdkp = data;
2954	struct scsi_device *sdp;
2955	struct gendisk *gd;
2956	u32 index;
2957	struct device *dev;
2958
2959	sdp = sdkp->device;
2960	gd = sdkp->disk;
2961	index = sdkp->index;
2962	dev = &sdp->sdev_gendev;
2963
2964	gd->major = sd_major((index & 0xf0) >> 4);
2965	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2966	gd->minors = SD_MINORS;
2967
2968	gd->fops = &sd_fops;
2969	gd->private_data = &sdkp->driver;
2970	gd->queue = sdkp->device->request_queue;
2971
2972	/* defaults, until the device tells us otherwise */
2973	sdp->sector_size = 512;
2974	sdkp->capacity = 0;
2975	sdkp->media_present = 1;
2976	sdkp->write_prot = 0;
2977	sdkp->cache_override = 0;
2978	sdkp->WCE = 0;
2979	sdkp->RCD = 0;
2980	sdkp->ATO = 0;
2981	sdkp->first_scan = 1;
2982	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2983
2984	sd_revalidate_disk(gd);
2985
2986	gd->driverfs_dev = &sdp->sdev_gendev;
2987	gd->flags = GENHD_FL_EXT_DEVT;
2988	if (sdp->removable) {
2989		gd->flags |= GENHD_FL_REMOVABLE;
2990		gd->events |= DISK_EVENT_MEDIA_CHANGE;
2991	}
2992
2993	blk_pm_runtime_init(sdp->request_queue, dev);
2994	add_disk(gd);
2995	if (sdkp->capacity)
2996		sd_dif_config_host(sdkp);
2997
2998	sd_revalidate_disk(gd);
2999
 
 
 
 
 
 
3000	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3001		  sdp->removable ? "removable " : "");
3002	scsi_autopm_put_device(sdp);
3003	put_device(&sdkp->dev);
3004}
3005
3006/**
3007 *	sd_probe - called during driver initialization and whenever a
3008 *	new scsi device is attached to the system. It is called once
3009 *	for each scsi device (not just disks) present.
3010 *	@dev: pointer to device object
3011 *
3012 *	Returns 0 if successful (or not interested in this scsi device 
3013 *	(e.g. scanner)); 1 when there is an error.
3014 *
3015 *	Note: this function is invoked from the scsi mid-level.
3016 *	This function sets up the mapping between a given 
3017 *	<host,channel,id,lun> (found in sdp) and new device name 
3018 *	(e.g. /dev/sda). More precisely it is the block device major 
3019 *	and minor number that is chosen here.
3020 *
3021 *	Assume sd_probe is not re-entrant (for time being)
3022 *	Also think about sd_probe() and sd_remove() running coincidentally.
3023 **/
3024static int sd_probe(struct device *dev)
3025{
3026	struct scsi_device *sdp = to_scsi_device(dev);
3027	struct scsi_disk *sdkp;
3028	struct gendisk *gd;
3029	int index;
3030	int error;
3031
3032	scsi_autopm_get_device(sdp);
3033	error = -ENODEV;
3034	if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
 
 
 
3035		goto out;
3036
 
 
 
 
3037	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3038					"sd_probe\n"));
3039
3040	error = -ENOMEM;
3041	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3042	if (!sdkp)
3043		goto out;
3044
3045	gd = alloc_disk(SD_MINORS);
3046	if (!gd)
3047		goto out_free;
3048
3049	do {
3050		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3051			goto out_put;
3052
3053		spin_lock(&sd_index_lock);
3054		error = ida_get_new(&sd_index_ida, &index);
3055		spin_unlock(&sd_index_lock);
3056	} while (error == -EAGAIN);
3057
3058	if (error) {
3059		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3060		goto out_put;
3061	}
3062
3063	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3064	if (error) {
3065		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3066		goto out_free_index;
3067	}
3068
3069	sdkp->device = sdp;
3070	sdkp->driver = &sd_template;
3071	sdkp->disk = gd;
3072	sdkp->index = index;
3073	atomic_set(&sdkp->openers, 0);
3074	atomic_set(&sdkp->device->ioerr_cnt, 0);
3075
3076	if (!sdp->request_queue->rq_timeout) {
3077		if (sdp->type != TYPE_MOD)
3078			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3079		else
3080			blk_queue_rq_timeout(sdp->request_queue,
3081					     SD_MOD_TIMEOUT);
3082	}
3083
3084	device_initialize(&sdkp->dev);
3085	sdkp->dev.parent = dev;
3086	sdkp->dev.class = &sd_disk_class;
3087	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3088
3089	error = device_add(&sdkp->dev);
3090	if (error)
3091		goto out_free_index;
3092
3093	get_device(dev);
3094	dev_set_drvdata(dev, sdkp);
3095
3096	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3097	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3098
3099	return 0;
3100
3101 out_free_index:
3102	spin_lock(&sd_index_lock);
3103	ida_remove(&sd_index_ida, index);
3104	spin_unlock(&sd_index_lock);
3105 out_put:
3106	put_disk(gd);
3107 out_free:
3108	kfree(sdkp);
3109 out:
3110	scsi_autopm_put_device(sdp);
3111	return error;
3112}
3113
3114/**
3115 *	sd_remove - called whenever a scsi disk (previously recognized by
3116 *	sd_probe) is detached from the system. It is called (potentially
3117 *	multiple times) during sd module unload.
3118 *	@sdp: pointer to mid level scsi device object
3119 *
3120 *	Note: this function is invoked from the scsi mid-level.
3121 *	This function potentially frees up a device name (e.g. /dev/sdc)
3122 *	that could be re-used by a subsequent sd_probe().
3123 *	This function is not called when the built-in sd driver is "exit-ed".
3124 **/
3125static int sd_remove(struct device *dev)
3126{
3127	struct scsi_disk *sdkp;
3128	dev_t devt;
3129
3130	sdkp = dev_get_drvdata(dev);
3131	devt = disk_devt(sdkp->disk);
3132	scsi_autopm_get_device(sdkp->device);
3133
3134	async_synchronize_full_domain(&scsi_sd_pm_domain);
3135	async_synchronize_full_domain(&scsi_sd_probe_domain);
3136	device_del(&sdkp->dev);
3137	del_gendisk(sdkp->disk);
3138	sd_shutdown(dev);
3139
 
 
 
 
3140	blk_register_region(devt, SD_MINORS, NULL,
3141			    sd_default_probe, NULL, NULL);
3142
3143	mutex_lock(&sd_ref_mutex);
3144	dev_set_drvdata(dev, NULL);
3145	put_device(&sdkp->dev);
3146	mutex_unlock(&sd_ref_mutex);
3147
3148	return 0;
3149}
3150
3151/**
3152 *	scsi_disk_release - Called to free the scsi_disk structure
3153 *	@dev: pointer to embedded class device
3154 *
3155 *	sd_ref_mutex must be held entering this routine.  Because it is
3156 *	called on last put, you should always use the scsi_disk_get()
3157 *	scsi_disk_put() helpers which manipulate the semaphore directly
3158 *	and never do a direct put_device.
3159 **/
3160static void scsi_disk_release(struct device *dev)
3161{
3162	struct scsi_disk *sdkp = to_scsi_disk(dev);
3163	struct gendisk *disk = sdkp->disk;
3164	
3165	spin_lock(&sd_index_lock);
3166	ida_remove(&sd_index_ida, sdkp->index);
3167	spin_unlock(&sd_index_lock);
3168
3169	disk->private_data = NULL;
3170	put_disk(disk);
3171	put_device(&sdkp->device->sdev_gendev);
3172
3173	kfree(sdkp);
3174}
3175
3176static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3177{
3178	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3179	struct scsi_sense_hdr sshdr;
3180	struct scsi_device *sdp = sdkp->device;
3181	int res;
3182
3183	if (start)
3184		cmd[4] |= 1;	/* START */
3185
3186	if (sdp->start_stop_pwr_cond)
3187		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3188
3189	if (!scsi_device_online(sdp))
3190		return -ENODEV;
3191
3192	res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3193			       SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3194	if (res) {
3195		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3196		if (driver_byte(res) & DRIVER_SENSE)
3197			sd_print_sense_hdr(sdkp, &sshdr);
3198		if (scsi_sense_valid(&sshdr) &&
3199			/* 0x3a is medium not present */
3200			sshdr.asc == 0x3a)
3201			res = 0;
3202	}
3203
3204	/* SCSI error codes must not go to the generic layer */
3205	if (res)
3206		return -EIO;
3207
3208	return 0;
3209}
3210
3211/*
3212 * Send a SYNCHRONIZE CACHE instruction down to the device through
3213 * the normal SCSI command structure.  Wait for the command to
3214 * complete.
3215 */
3216static void sd_shutdown(struct device *dev)
3217{
3218	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3219
3220	if (!sdkp)
3221		return;         /* this can happen */
3222
3223	if (pm_runtime_suspended(dev))
3224		return;
3225
3226	if (sdkp->WCE && sdkp->media_present) {
3227		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3228		sd_sync_cache(sdkp);
3229	}
3230
3231	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3232		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3233		sd_start_stop_device(sdkp, 0);
3234	}
3235}
3236
3237static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3238{
3239	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3240	int ret = 0;
3241
3242	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3243		return 0;
3244
3245	if (sdkp->WCE && sdkp->media_present) {
3246		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3247		ret = sd_sync_cache(sdkp);
 
3248		if (ret) {
3249			/* ignore OFFLINE device */
3250			if (ret == -ENODEV)
3251				ret = 0;
3252			goto done;
 
 
 
 
 
 
 
 
 
 
3253		}
3254	}
3255
3256	if (sdkp->device->manage_start_stop) {
3257		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3258		/* an error is not worth aborting a system sleep */
3259		ret = sd_start_stop_device(sdkp, 0);
3260		if (ignore_stop_errors)
3261			ret = 0;
3262	}
3263
3264done:
3265	return ret;
3266}
3267
3268static int sd_suspend_system(struct device *dev)
3269{
3270	return sd_suspend_common(dev, true);
3271}
3272
3273static int sd_suspend_runtime(struct device *dev)
3274{
3275	return sd_suspend_common(dev, false);
3276}
3277
3278static int sd_resume(struct device *dev)
3279{
3280	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3281
3282	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3283		return 0;
3284
3285	if (!sdkp->device->manage_start_stop)
3286		return 0;
3287
3288	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3289	return sd_start_stop_device(sdkp, 1);
 
 
 
3290}
3291
3292/**
3293 *	init_sd - entry point for this driver (both when built in or when
3294 *	a module).
3295 *
3296 *	Note: this function registers this driver with the scsi mid-level.
3297 **/
3298static int __init init_sd(void)
3299{
3300	int majors = 0, i, err;
3301
3302	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3303
3304	for (i = 0; i < SD_MAJORS; i++) {
3305		if (register_blkdev(sd_major(i), "sd") != 0)
3306			continue;
3307		majors++;
3308		blk_register_region(sd_major(i), SD_MINORS, NULL,
3309				    sd_default_probe, NULL, NULL);
3310	}
3311
3312	if (!majors)
3313		return -ENODEV;
3314
3315	err = class_register(&sd_disk_class);
3316	if (err)
3317		goto err_out;
3318
3319	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3320					 0, 0, NULL);
3321	if (!sd_cdb_cache) {
3322		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3323		err = -ENOMEM;
3324		goto err_out_class;
3325	}
3326
3327	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3328	if (!sd_cdb_pool) {
3329		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3330		err = -ENOMEM;
3331		goto err_out_cache;
3332	}
3333
3334	err = scsi_register_driver(&sd_template.gendrv);
3335	if (err)
3336		goto err_out_driver;
3337
3338	return 0;
3339
3340err_out_driver:
3341	mempool_destroy(sd_cdb_pool);
3342
3343err_out_cache:
3344	kmem_cache_destroy(sd_cdb_cache);
3345
3346err_out_class:
3347	class_unregister(&sd_disk_class);
3348err_out:
3349	for (i = 0; i < SD_MAJORS; i++)
3350		unregister_blkdev(sd_major(i), "sd");
3351	return err;
3352}
3353
3354/**
3355 *	exit_sd - exit point for this driver (when it is a module).
3356 *
3357 *	Note: this function unregisters this driver from the scsi mid-level.
3358 **/
3359static void __exit exit_sd(void)
3360{
3361	int i;
3362
3363	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3364
3365	scsi_unregister_driver(&sd_template.gendrv);
3366	mempool_destroy(sd_cdb_pool);
3367	kmem_cache_destroy(sd_cdb_cache);
3368
3369	class_unregister(&sd_disk_class);
3370
3371	for (i = 0; i < SD_MAJORS; i++) {
3372		blk_unregister_region(sd_major(i), SD_MINORS);
3373		unregister_blkdev(sd_major(i), "sd");
3374	}
3375}
3376
3377module_init(init_sd);
3378module_exit(exit_sd);
3379
3380static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3381			       struct scsi_sense_hdr *sshdr)
3382{
3383	scsi_print_sense_hdr(sdkp->device,
3384			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3385}
3386
3387static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3388			    int result)
3389{
3390	const char *hb_string = scsi_hostbyte_string(result);
3391	const char *db_string = scsi_driverbyte_string(result);
3392
3393	if (hb_string || db_string)
3394		sd_printk(KERN_INFO, sdkp,
3395			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3396			  hb_string ? hb_string : "invalid",
3397			  db_string ? db_string : "invalid");
3398	else
3399		sd_printk(KERN_INFO, sdkp,
3400			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3401			  msg, host_byte(result), driver_byte(result));
3402}
3403