Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
 
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
 
 
 
 
 
 
 
 
 
 
 
 
  42static struct kmem_cache *scsi_sdb_cache;
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56				   unsigned char *sense_buffer)
  57{
  58	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59			sense_buffer);
  60}
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63	gfp_t gfp_mask, int numa_node)
  64{
  65	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66				     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71	struct kmem_cache *cache;
  72	int ret = 0;
  73
 
  74	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75	if (cache)
  76		return 0;
  77
  78	mutex_lock(&scsi_sense_cache_mutex);
  79	if (shost->unchecked_isa_dma) {
  80		scsi_sense_isadma_cache =
  81			kmem_cache_create("scsi_sense_cache(DMA)",
  82				SCSI_SENSE_BUFFERSIZE, 0,
  83				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84		if (!scsi_sense_isadma_cache)
  85			ret = -ENOMEM;
  86	} else {
  87		scsi_sense_cache =
  88			kmem_cache_create_usercopy("scsi_sense_cache",
  89				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  90				0, SCSI_SENSE_BUFFERSIZE, NULL);
  91		if (!scsi_sense_cache)
  92			ret = -ENOMEM;
  93	}
  94
  95	mutex_unlock(&scsi_sense_cache_mutex);
  96	return ret;
  97}
  98
  99/*
 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 101 * not change behaviour from the previous unplug mechanism, experimentation
 102 * may prove this needs changing.
 103 */
 104#define SCSI_QUEUE_DELAY	3
 105
 106static void
 107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 108{
 109	struct Scsi_Host *host = cmd->device->host;
 110	struct scsi_device *device = cmd->device;
 111	struct scsi_target *starget = scsi_target(device);
 112
 113	/*
 114	 * Set the appropriate busy bit for the device/host.
 115	 *
 116	 * If the host/device isn't busy, assume that something actually
 117	 * completed, and that we should be able to queue a command now.
 118	 *
 119	 * Note that the prior mid-layer assumption that any host could
 120	 * always queue at least one command is now broken.  The mid-layer
 121	 * will implement a user specifiable stall (see
 122	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 123	 * if a command is requeued with no other commands outstanding
 124	 * either for the device or for the host.
 125	 */
 126	switch (reason) {
 127	case SCSI_MLQUEUE_HOST_BUSY:
 128		atomic_set(&host->host_blocked, host->max_host_blocked);
 129		break;
 130	case SCSI_MLQUEUE_DEVICE_BUSY:
 131	case SCSI_MLQUEUE_EH_RETRY:
 132		atomic_set(&device->device_blocked,
 133			   device->max_device_blocked);
 134		break;
 135	case SCSI_MLQUEUE_TARGET_BUSY:
 136		atomic_set(&starget->target_blocked,
 137			   starget->max_target_blocked);
 138		break;
 139	}
 140}
 141
 142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 143{
 144	struct scsi_device *sdev = cmd->device;
 145
 146	if (cmd->request->rq_flags & RQF_DONTPREP) {
 147		cmd->request->rq_flags &= ~RQF_DONTPREP;
 148		scsi_mq_uninit_cmd(cmd);
 149	} else {
 150		WARN_ON_ONCE(true);
 151	}
 152	blk_mq_requeue_request(cmd->request, true);
 153	put_device(&sdev->sdev_gendev);
 154}
 155
 156/**
 157 * __scsi_queue_insert - private queue insertion
 158 * @cmd: The SCSI command being requeued
 159 * @reason:  The reason for the requeue
 160 * @unbusy: Whether the queue should be unbusied
 161 *
 162 * This is a private queue insertion.  The public interface
 163 * scsi_queue_insert() always assumes the queue should be unbusied
 164 * because it's always called before the completion.  This function is
 165 * for a requeue after completion, which should only occur in this
 166 * file.
 167 */
 168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 169{
 170	struct scsi_device *device = cmd->device;
 171	struct request_queue *q = device->request_queue;
 172	unsigned long flags;
 173
 174	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 175		"Inserting command %p into mlqueue\n", cmd));
 176
 177	scsi_set_blocked(cmd, reason);
 178
 179	/*
 180	 * Decrement the counters, since these commands are no longer
 181	 * active on the host/device.
 182	 */
 183	if (unbusy)
 184		scsi_device_unbusy(device);
 185
 186	/*
 187	 * Requeue this command.  It will go before all other commands
 188	 * that are already in the queue. Schedule requeue work under
 189	 * lock such that the kblockd_schedule_work() call happens
 190	 * before blk_cleanup_queue() finishes.
 191	 */
 192	cmd->result = 0;
 193	if (q->mq_ops) {
 194		/*
 195		 * Before a SCSI command is dispatched,
 196		 * get_device(&sdev->sdev_gendev) is called and the host,
 197		 * target and device busy counters are increased. Since
 198		 * requeuing a request causes these actions to be repeated and
 199		 * since scsi_device_unbusy() has already been called,
 200		 * put_device(&device->sdev_gendev) must still be called. Call
 201		 * put_device() after blk_mq_requeue_request() to avoid that
 202		 * removal of the SCSI device can start before requeueing has
 203		 * happened.
 204		 */
 205		blk_mq_requeue_request(cmd->request, true);
 206		put_device(&device->sdev_gendev);
 207		return;
 208	}
 209	spin_lock_irqsave(q->queue_lock, flags);
 210	blk_requeue_request(q, cmd->request);
 211	kblockd_schedule_work(&device->requeue_work);
 212	spin_unlock_irqrestore(q->queue_lock, flags);
 213}
 214
 215/*
 216 * Function:    scsi_queue_insert()
 217 *
 218 * Purpose:     Insert a command in the midlevel queue.
 219 *
 220 * Arguments:   cmd    - command that we are adding to queue.
 221 *              reason - why we are inserting command to queue.
 222 *
 223 * Lock status: Assumed that lock is not held upon entry.
 224 *
 225 * Returns:     Nothing.
 226 *
 227 * Notes:       We do this for one of two cases.  Either the host is busy
 228 *              and it cannot accept any more commands for the time being,
 229 *              or the device returned QUEUE_FULL and can accept no more
 230 *              commands.
 231 * Notes:       This could be called either from an interrupt context or a
 232 *              normal process context.
 233 */
 234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 235{
 236	__scsi_queue_insert(cmd, reason, true);
 237}
 238
 239
 240/**
 241 * scsi_execute - insert request and wait for the result
 242 * @sdev:	scsi device
 243 * @cmd:	scsi command
 244 * @data_direction: data direction
 245 * @buffer:	data buffer
 246 * @bufflen:	len of buffer
 247 * @sense:	optional sense buffer
 248 * @sshdr:	optional decoded sense header
 249 * @timeout:	request timeout in seconds
 250 * @retries:	number of times to retry request
 251 * @flags:	flags for ->cmd_flags
 252 * @rq_flags:	flags for ->rq_flags
 253 * @resid:	optional residual length
 254 *
 255 * Returns the scsi_cmnd result field if a command was executed, or a negative
 256 * Linux error code if we didn't get that far.
 257 */
 258int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 259		 int data_direction, void *buffer, unsigned bufflen,
 260		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 261		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 262		 int *resid)
 263{
 264	struct request *req;
 265	struct scsi_request *rq;
 266	int ret = DRIVER_ERROR << 24;
 267
 268	req = blk_get_request_flags(sdev->request_queue,
 269			data_direction == DMA_TO_DEVICE ?
 270			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 271	if (IS_ERR(req))
 272		return ret;
 273	rq = scsi_req(req);
 274
 275	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 276					buffer, bufflen, __GFP_RECLAIM))
 277		goto out;
 278
 279	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 280	memcpy(rq->cmd, cmd, rq->cmd_len);
 281	rq->retries = retries;
 282	req->timeout = timeout;
 283	req->cmd_flags |= flags;
 284	req->rq_flags |= rq_flags | RQF_QUIET;
 285
 286	/*
 287	 * head injection *required* here otherwise quiesce won't work
 288	 */
 289	blk_execute_rq(req->q, NULL, req, 1);
 290
 291	/*
 292	 * Some devices (USB mass-storage in particular) may transfer
 293	 * garbage data together with a residue indicating that the data
 294	 * is invalid.  Prevent the garbage from being misinterpreted
 295	 * and prevent security leaks by zeroing out the excess data.
 296	 */
 297	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 298		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 299
 300	if (resid)
 301		*resid = rq->resid_len;
 302	if (sense && rq->sense_len)
 303		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 304	if (sshdr)
 305		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 306	ret = rq->result;
 307 out:
 308	blk_put_request(req);
 309
 310	return ret;
 311}
 312EXPORT_SYMBOL(scsi_execute);
 313
 314/*
 315 * Function:    scsi_init_cmd_errh()
 316 *
 317 * Purpose:     Initialize cmd fields related to error handling.
 318 *
 319 * Arguments:   cmd	- command that is ready to be queued.
 320 *
 321 * Notes:       This function has the job of initializing a number of
 322 *              fields related to error handling.   Typically this will
 323 *              be called once for each command, as required.
 324 */
 325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 326{
 327	cmd->serial_number = 0;
 328	scsi_set_resid(cmd, 0);
 329	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 330	if (cmd->cmd_len == 0)
 331		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 332}
 333
 334/*
 335 * Decrement the host_busy counter and wake up the error handler if necessary.
 336 * Avoid as follows that the error handler is not woken up if shost->host_busy
 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 338 * with an RCU read lock in this function to ensure that this function in its
 339 * entirety either finishes before scsi_eh_scmd_add() increases the
 340 * host_failed counter or that it notices the shost state change made by
 341 * scsi_eh_scmd_add().
 342 */
 343static void scsi_dec_host_busy(struct Scsi_Host *shost)
 344{
 345	unsigned long flags;
 346
 347	rcu_read_lock();
 348	atomic_dec(&shost->host_busy);
 349	if (unlikely(scsi_host_in_recovery(shost))) {
 350		spin_lock_irqsave(shost->host_lock, flags);
 351		if (shost->host_failed || shost->host_eh_scheduled)
 352			scsi_eh_wakeup(shost);
 353		spin_unlock_irqrestore(shost->host_lock, flags);
 354	}
 355	rcu_read_unlock();
 356}
 357
 358void scsi_device_unbusy(struct scsi_device *sdev)
 359{
 360	struct Scsi_Host *shost = sdev->host;
 361	struct scsi_target *starget = scsi_target(sdev);
 362
 363	scsi_dec_host_busy(shost);
 364
 365	if (starget->can_queue > 0)
 366		atomic_dec(&starget->target_busy);
 367
 368	atomic_dec(&sdev->device_busy);
 369}
 370
 371static void scsi_kick_queue(struct request_queue *q)
 372{
 373	if (q->mq_ops)
 374		blk_mq_start_hw_queues(q);
 375	else
 376		blk_run_queue(q);
 377}
 378
 379/*
 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 381 * and call blk_run_queue for all the scsi_devices on the target -
 382 * including current_sdev first.
 383 *
 384 * Called with *no* scsi locks held.
 385 */
 386static void scsi_single_lun_run(struct scsi_device *current_sdev)
 387{
 388	struct Scsi_Host *shost = current_sdev->host;
 389	struct scsi_device *sdev, *tmp;
 390	struct scsi_target *starget = scsi_target(current_sdev);
 391	unsigned long flags;
 392
 393	spin_lock_irqsave(shost->host_lock, flags);
 394	starget->starget_sdev_user = NULL;
 395	spin_unlock_irqrestore(shost->host_lock, flags);
 396
 397	/*
 398	 * Call blk_run_queue for all LUNs on the target, starting with
 399	 * current_sdev. We race with others (to set starget_sdev_user),
 400	 * but in most cases, we will be first. Ideally, each LU on the
 401	 * target would get some limited time or requests on the target.
 402	 */
 403	scsi_kick_queue(current_sdev->request_queue);
 404
 405	spin_lock_irqsave(shost->host_lock, flags);
 406	if (starget->starget_sdev_user)
 407		goto out;
 408	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 409			same_target_siblings) {
 410		if (sdev == current_sdev)
 411			continue;
 412		if (scsi_device_get(sdev))
 413			continue;
 414
 415		spin_unlock_irqrestore(shost->host_lock, flags);
 416		scsi_kick_queue(sdev->request_queue);
 417		spin_lock_irqsave(shost->host_lock, flags);
 418	
 419		scsi_device_put(sdev);
 420	}
 421 out:
 422	spin_unlock_irqrestore(shost->host_lock, flags);
 423}
 424
 425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 426{
 427	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 428		return true;
 429	if (atomic_read(&sdev->device_blocked) > 0)
 430		return true;
 431	return false;
 432}
 433
 434static inline bool scsi_target_is_busy(struct scsi_target *starget)
 435{
 436	if (starget->can_queue > 0) {
 437		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 438			return true;
 439		if (atomic_read(&starget->target_blocked) > 0)
 440			return true;
 441	}
 442	return false;
 443}
 444
 445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 446{
 447	if (shost->can_queue > 0 &&
 448	    atomic_read(&shost->host_busy) >= shost->can_queue)
 449		return true;
 450	if (atomic_read(&shost->host_blocked) > 0)
 451		return true;
 452	if (shost->host_self_blocked)
 453		return true;
 454	return false;
 455}
 456
 457static void scsi_starved_list_run(struct Scsi_Host *shost)
 458{
 459	LIST_HEAD(starved_list);
 460	struct scsi_device *sdev;
 461	unsigned long flags;
 462
 463	spin_lock_irqsave(shost->host_lock, flags);
 464	list_splice_init(&shost->starved_list, &starved_list);
 465
 466	while (!list_empty(&starved_list)) {
 467		struct request_queue *slq;
 468
 469		/*
 470		 * As long as shost is accepting commands and we have
 471		 * starved queues, call blk_run_queue. scsi_request_fn
 472		 * drops the queue_lock and can add us back to the
 473		 * starved_list.
 474		 *
 475		 * host_lock protects the starved_list and starved_entry.
 476		 * scsi_request_fn must get the host_lock before checking
 477		 * or modifying starved_list or starved_entry.
 478		 */
 479		if (scsi_host_is_busy(shost))
 480			break;
 481
 482		sdev = list_entry(starved_list.next,
 483				  struct scsi_device, starved_entry);
 484		list_del_init(&sdev->starved_entry);
 485		if (scsi_target_is_busy(scsi_target(sdev))) {
 486			list_move_tail(&sdev->starved_entry,
 487				       &shost->starved_list);
 488			continue;
 489		}
 490
 491		/*
 492		 * Once we drop the host lock, a racing scsi_remove_device()
 493		 * call may remove the sdev from the starved list and destroy
 494		 * it and the queue.  Mitigate by taking a reference to the
 495		 * queue and never touching the sdev again after we drop the
 496		 * host lock.  Note: if __scsi_remove_device() invokes
 497		 * blk_cleanup_queue() before the queue is run from this
 498		 * function then blk_run_queue() will return immediately since
 499		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 500		 */
 501		slq = sdev->request_queue;
 502		if (!blk_get_queue(slq))
 503			continue;
 504		spin_unlock_irqrestore(shost->host_lock, flags);
 505
 506		scsi_kick_queue(slq);
 507		blk_put_queue(slq);
 508
 509		spin_lock_irqsave(shost->host_lock, flags);
 510	}
 511	/* put any unprocessed entries back */
 512	list_splice(&starved_list, &shost->starved_list);
 513	spin_unlock_irqrestore(shost->host_lock, flags);
 514}
 515
 516/*
 517 * Function:   scsi_run_queue()
 518 *
 519 * Purpose:    Select a proper request queue to serve next
 520 *
 521 * Arguments:  q       - last request's queue
 522 *
 523 * Returns:     Nothing
 524 *
 525 * Notes:      The previous command was completely finished, start
 526 *             a new one if possible.
 527 */
 528static void scsi_run_queue(struct request_queue *q)
 529{
 530	struct scsi_device *sdev = q->queuedata;
 531
 532	if (scsi_target(sdev)->single_lun)
 533		scsi_single_lun_run(sdev);
 534	if (!list_empty(&sdev->host->starved_list))
 535		scsi_starved_list_run(sdev->host);
 536
 537	if (q->mq_ops)
 538		blk_mq_run_hw_queues(q, false);
 539	else
 540		blk_run_queue(q);
 541}
 542
 543void scsi_requeue_run_queue(struct work_struct *work)
 544{
 545	struct scsi_device *sdev;
 546	struct request_queue *q;
 547
 548	sdev = container_of(work, struct scsi_device, requeue_work);
 549	q = sdev->request_queue;
 550	scsi_run_queue(q);
 551}
 552
 553/*
 554 * Function:	scsi_requeue_command()
 555 *
 556 * Purpose:	Handle post-processing of completed commands.
 557 *
 558 * Arguments:	q	- queue to operate on
 559 *		cmd	- command that may need to be requeued.
 560 *
 561 * Returns:	Nothing
 562 *
 563 * Notes:	After command completion, there may be blocks left
 564 *		over which weren't finished by the previous command
 565 *		this can be for a number of reasons - the main one is
 566 *		I/O errors in the middle of the request, in which case
 567 *		we need to request the blocks that come after the bad
 568 *		sector.
 569 * Notes:	Upon return, cmd is a stale pointer.
 570 */
 571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 572{
 573	struct scsi_device *sdev = cmd->device;
 574	struct request *req = cmd->request;
 575	unsigned long flags;
 576
 577	spin_lock_irqsave(q->queue_lock, flags);
 578	blk_unprep_request(req);
 579	req->special = NULL;
 580	scsi_put_command(cmd);
 581	blk_requeue_request(q, req);
 582	spin_unlock_irqrestore(q->queue_lock, flags);
 583
 584	scsi_run_queue(q);
 585
 586	put_device(&sdev->sdev_gendev);
 587}
 588
 589void scsi_run_host_queues(struct Scsi_Host *shost)
 590{
 591	struct scsi_device *sdev;
 592
 593	shost_for_each_device(sdev, shost)
 594		scsi_run_queue(sdev->request_queue);
 595}
 596
 597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 598{
 599	if (!blk_rq_is_passthrough(cmd->request)) {
 600		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 601
 602		if (drv->uninit_command)
 603			drv->uninit_command(cmd);
 604	}
 605}
 606
 607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 608{
 609	struct scsi_data_buffer *sdb;
 610
 611	if (cmd->sdb.table.nents)
 612		sg_free_table_chained(&cmd->sdb.table, true);
 613	if (cmd->request->next_rq) {
 614		sdb = cmd->request->next_rq->special;
 615		if (sdb)
 616			sg_free_table_chained(&sdb->table, true);
 617	}
 618	if (scsi_prot_sg_count(cmd))
 619		sg_free_table_chained(&cmd->prot_sdb->table, true);
 
 620}
 621
 622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 623{
 624	scsi_mq_free_sgtables(cmd);
 625	scsi_uninit_cmd(cmd);
 626	scsi_del_cmd_from_list(cmd);
 627}
 628
 629/*
 630 * Function:    scsi_release_buffers()
 631 *
 632 * Purpose:     Free resources allocate for a scsi_command.
 633 *
 634 * Arguments:   cmd	- command that we are bailing.
 635 *
 636 * Lock status: Assumed that no lock is held upon entry.
 637 *
 638 * Returns:     Nothing
 639 *
 640 * Notes:       In the event that an upper level driver rejects a
 641 *		command, we must release resources allocated during
 642 *		the __init_io() function.  Primarily this would involve
 643 *		the scatter-gather table.
 644 */
 645static void scsi_release_buffers(struct scsi_cmnd *cmd)
 646{
 647	if (cmd->sdb.table.nents)
 648		sg_free_table_chained(&cmd->sdb.table, false);
 649
 650	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 651
 652	if (scsi_prot_sg_count(cmd))
 653		sg_free_table_chained(&cmd->prot_sdb->table, false);
 654}
 655
 656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 657{
 658	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 659
 660	sg_free_table_chained(&bidi_sdb->table, false);
 661	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 662	cmd->request->next_rq->special = NULL;
 663}
 664
 665static bool scsi_end_request(struct request *req, blk_status_t error,
 666		unsigned int bytes, unsigned int bidi_bytes)
 667{
 668	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 669	struct scsi_device *sdev = cmd->device;
 670	struct request_queue *q = sdev->request_queue;
 671
 672	if (blk_update_request(req, error, bytes))
 673		return true;
 674
 675	/* Bidi request must be completed as a whole */
 676	if (unlikely(bidi_bytes) &&
 677	    blk_update_request(req->next_rq, error, bidi_bytes))
 678		return true;
 679
 680	if (blk_queue_add_random(q))
 681		add_disk_randomness(req->rq_disk);
 682
 683	if (!blk_rq_is_scsi(req)) {
 684		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 685		cmd->flags &= ~SCMD_INITIALIZED;
 686		destroy_rcu_head(&cmd->rcu);
 687	}
 688
 689	if (req->mq_ctx) {
 690		/*
 691		 * In the MQ case the command gets freed by __blk_mq_end_request,
 692		 * so we have to do all cleanup that depends on it earlier.
 693		 *
 694		 * We also can't kick the queues from irq context, so we
 695		 * will have to defer it to a workqueue.
 696		 */
 697		scsi_mq_uninit_cmd(cmd);
 698
 699		__blk_mq_end_request(req, error);
 700
 701		if (scsi_target(sdev)->single_lun ||
 702		    !list_empty(&sdev->host->starved_list))
 703			kblockd_schedule_work(&sdev->requeue_work);
 704		else
 705			blk_mq_run_hw_queues(q, true);
 706	} else {
 707		unsigned long flags;
 
 708
 709		if (bidi_bytes)
 710			scsi_release_bidi_buffers(cmd);
 711		scsi_release_buffers(cmd);
 712		scsi_put_command(cmd);
 
 713
 714		spin_lock_irqsave(q->queue_lock, flags);
 715		blk_finish_request(req, error);
 716		spin_unlock_irqrestore(q->queue_lock, flags);
 717
 718		scsi_run_queue(q);
 719	}
 
 
 
 720
 721	put_device(&sdev->sdev_gendev);
 722	return false;
 723}
 724
 725/**
 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 727 * @cmd:	SCSI command
 728 * @result:	scsi error code
 729 *
 730 * Translate a SCSI result code into a blk_status_t value. May reset the host
 731 * byte of @cmd->result.
 732 */
 733static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 734{
 735	switch (host_byte(result)) {
 736	case DID_OK:
 737		/*
 738		 * Also check the other bytes than the status byte in result
 739		 * to handle the case when a SCSI LLD sets result to
 740		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 741		 */
 742		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 743			return BLK_STS_OK;
 744		return BLK_STS_IOERR;
 745	case DID_TRANSPORT_FAILFAST:
 746		return BLK_STS_TRANSPORT;
 747	case DID_TARGET_FAILURE:
 748		set_host_byte(cmd, DID_OK);
 749		return BLK_STS_TARGET;
 750	case DID_NEXUS_FAILURE:
 
 751		return BLK_STS_NEXUS;
 752	case DID_ALLOC_FAILURE:
 753		set_host_byte(cmd, DID_OK);
 754		return BLK_STS_NOSPC;
 755	case DID_MEDIUM_ERROR:
 756		set_host_byte(cmd, DID_OK);
 757		return BLK_STS_MEDIUM;
 758	default:
 759		return BLK_STS_IOERR;
 760	}
 761}
 762
 763/*
 764 * Function:    scsi_io_completion()
 765 *
 766 * Purpose:     Completion processing for block device I/O requests.
 767 *
 768 * Arguments:   cmd   - command that is finished.
 769 *
 770 * Lock status: Assumed that no lock is held upon entry.
 771 *
 772 * Returns:     Nothing
 773 *
 774 * Notes:       We will finish off the specified number of sectors.  If we
 775 *		are done, the command block will be released and the queue
 776 *		function will be goosed.  If we are not done then we have to
 777 *		figure out what to do next:
 778 *
 779 *		a) We can call scsi_requeue_command().  The request
 780 *		   will be unprepared and put back on the queue.  Then
 781 *		   a new command will be created for it.  This should
 782 *		   be used if we made forward progress, or if we want
 783 *		   to switch from READ(10) to READ(6) for example.
 784 *
 785 *		b) We can call __scsi_queue_insert().  The request will
 786 *		   be put back on the queue and retried using the same
 787 *		   command as before, possibly after a delay.
 788 *
 789 *		c) We can call scsi_end_request() with -EIO to fail
 790 *		   the remainder of the request.
 791 */
 792void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 793{
 794	int result = cmd->result;
 795	struct request_queue *q = cmd->device->request_queue;
 796	struct request *req = cmd->request;
 797	blk_status_t error = BLK_STS_OK;
 798	struct scsi_sense_hdr sshdr;
 799	bool sense_valid = false;
 800	int sense_deferred = 0, level = 0;
 801	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 802	      ACTION_DELAYED_RETRY} action;
 803	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 
 
 
 
 
 
 
 
 804
 805	if (result) {
 806		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 807		if (sense_valid)
 808			sense_deferred = scsi_sense_is_deferred(&sshdr);
 809	}
 810
 811	if (blk_rq_is_passthrough(req)) {
 812		if (result) {
 813			if (sense_valid) {
 814				/*
 815				 * SG_IO wants current and deferred errors
 816				 */
 817				scsi_req(req)->sense_len =
 818					min(8 + cmd->sense_buffer[7],
 819					    SCSI_SENSE_BUFFERSIZE);
 820			}
 821			if (!sense_deferred)
 822				error = scsi_result_to_blk_status(cmd, result);
 823		}
 824		/*
 825		 * scsi_result_to_blk_status may have reset the host_byte
 826		 */
 827		scsi_req(req)->result = cmd->result;
 828		scsi_req(req)->resid_len = scsi_get_resid(cmd);
 829
 830		if (scsi_bidi_cmnd(cmd)) {
 831			/*
 832			 * Bidi commands Must be complete as a whole,
 833			 * both sides at once.
 834			 */
 835			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
 836			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
 837					blk_rq_bytes(req->next_rq)))
 838				BUG();
 839			return;
 840		}
 841	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets the error explicitly for the problem case.
 846		 */
 847		error = scsi_result_to_blk_status(cmd, result);
 848	}
 849
 850	/* no bidi support for !blk_rq_is_passthrough yet */
 851	BUG_ON(blk_bidi_rq(req));
 852
 853	/*
 854	 * Next deal with any sectors which we were able to correctly
 855	 * handle.
 856	 */
 857	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 858		"%u sectors total, %d bytes done.\n",
 859		blk_rq_sectors(req), good_bytes));
 860
 861	/*
 862	 * Recovered errors need reporting, but they're always treated as
 863	 * success, so fiddle the result code here.  For passthrough requests
 864	 * we already took a copy of the original into sreq->result which
 865	 * is what gets returned to the user
 866	 */
 867	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 868		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 869		 * print since caller wants ATA registers. Only occurs on
 870		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 871		 */
 872		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 873			;
 874		else if (!(req->rq_flags & RQF_QUIET))
 875			scsi_print_sense(cmd);
 876		result = 0;
 877		/* for passthrough error may be set */
 878		error = BLK_STS_OK;
 879	}
 880	/*
 881	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 882	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 883	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 884	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 885	 * intermediate statuses (both obsolete in SAM-4) as good.
 886	 */
 887	if (status_byte(result) && scsi_status_is_good(result)) {
 888		result = 0;
 889		error = BLK_STS_OK;
 890	}
 891
 892	/*
 893	 * special case: failed zero length commands always need to
 894	 * drop down into the retry code. Otherwise, if we finished
 895	 * all bytes in the request we are done now.
 896	 */
 897	if (!(blk_rq_bytes(req) == 0 && error) &&
 898	    !scsi_end_request(req, error, good_bytes, 0))
 899		return;
 900
 901	/*
 902	 * Kill remainder if no retrys.
 903	 */
 904	if (error && scsi_noretry_cmd(cmd)) {
 905		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 906			BUG();
 907		return;
 908	}
 909
 910	/*
 911	 * If there had been no error, but we have leftover bytes in the
 912	 * requeues just queue the command up again.
 913	 */
 914	if (result == 0)
 915		goto requeue;
 916
 917	error = scsi_result_to_blk_status(cmd, result);
 918
 919	if (host_byte(result) == DID_RESET) {
 920		/* Third party bus reset or reset for error recovery
 921		 * reasons.  Just retry the command and see what
 922		 * happens.
 923		 */
 924		action = ACTION_RETRY;
 925	} else if (sense_valid && !sense_deferred) {
 926		switch (sshdr.sense_key) {
 927		case UNIT_ATTENTION:
 928			if (cmd->device->removable) {
 929				/* Detected disc change.  Set a bit
 930				 * and quietly refuse further access.
 931				 */
 932				cmd->device->changed = 1;
 933				action = ACTION_FAIL;
 934			} else {
 935				/* Must have been a power glitch, or a
 936				 * bus reset.  Could not have been a
 937				 * media change, so we just retry the
 938				 * command and see what happens.
 939				 */
 940				action = ACTION_RETRY;
 941			}
 942			break;
 943		case ILLEGAL_REQUEST:
 944			/* If we had an ILLEGAL REQUEST returned, then
 945			 * we may have performed an unsupported
 946			 * command.  The only thing this should be
 947			 * would be a ten byte read where only a six
 948			 * byte read was supported.  Also, on a system
 949			 * where READ CAPACITY failed, we may have
 950			 * read past the end of the disk.
 951			 */
 952			if ((cmd->device->use_10_for_rw &&
 953			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 954			    (cmd->cmnd[0] == READ_10 ||
 955			     cmd->cmnd[0] == WRITE_10)) {
 956				/* This will issue a new 6-byte command. */
 957				cmd->device->use_10_for_rw = 0;
 958				action = ACTION_REPREP;
 959			} else if (sshdr.asc == 0x10) /* DIX */ {
 960				action = ACTION_FAIL;
 961				error = BLK_STS_PROTECTION;
 962			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 963			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 964				action = ACTION_FAIL;
 965				error = BLK_STS_TARGET;
 966			} else
 967				action = ACTION_FAIL;
 968			break;
 969		case ABORTED_COMMAND:
 970			action = ACTION_FAIL;
 971			if (sshdr.asc == 0x10) /* DIF */
 972				error = BLK_STS_PROTECTION;
 973			break;
 974		case NOT_READY:
 975			/* If the device is in the process of becoming
 976			 * ready, or has a temporary blockage, retry.
 977			 */
 978			if (sshdr.asc == 0x04) {
 979				switch (sshdr.ascq) {
 980				case 0x01: /* becoming ready */
 981				case 0x04: /* format in progress */
 982				case 0x05: /* rebuild in progress */
 983				case 0x06: /* recalculation in progress */
 984				case 0x07: /* operation in progress */
 985				case 0x08: /* Long write in progress */
 986				case 0x09: /* self test in progress */
 987				case 0x14: /* space allocation in progress */
 
 
 
 
 988					action = ACTION_DELAYED_RETRY;
 989					break;
 990				default:
 991					action = ACTION_FAIL;
 992					break;
 993				}
 994			} else
 995				action = ACTION_FAIL;
 996			break;
 997		case VOLUME_OVERFLOW:
 998			/* See SSC3rXX or current. */
 999			action = ACTION_FAIL;
1000			break;
1001		default:
1002			action = ACTION_FAIL;
1003			break;
1004		}
1005	} else
1006		action = ACTION_FAIL;
1007
1008	if (action != ACTION_FAIL &&
1009	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010		action = ACTION_FAIL;
1011
1012	switch (action) {
1013	case ACTION_FAIL:
1014		/* Give up and fail the remainder of the request */
1015		if (!(req->rq_flags & RQF_QUIET)) {
1016			static DEFINE_RATELIMIT_STATE(_rs,
1017					DEFAULT_RATELIMIT_INTERVAL,
1018					DEFAULT_RATELIMIT_BURST);
1019
1020			if (unlikely(scsi_logging_level))
1021				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022						       SCSI_LOG_MLCOMPLETE_BITS);
 
1023
1024			/*
1025			 * if logging is enabled the failure will be printed
1026			 * in scsi_log_completion(), so avoid duplicate messages
1027			 */
1028			if (!level && __ratelimit(&_rs)) {
1029				scsi_print_result(cmd, NULL, FAILED);
1030				if (driver_byte(result) & DRIVER_SENSE)
1031					scsi_print_sense(cmd);
1032				scsi_print_command(cmd);
1033			}
1034		}
1035		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036			return;
1037		/*FALLTHRU*/
1038	case ACTION_REPREP:
1039	requeue:
1040		/* Unprep the request and put it back at the head of the queue.
1041		 * A new command will be prepared and issued.
1042		 */
1043		if (q->mq_ops) {
1044			scsi_mq_requeue_cmd(cmd);
1045		} else {
1046			scsi_release_buffers(cmd);
1047			scsi_requeue_command(q, cmd);
1048		}
1049		break;
1050	case ACTION_RETRY:
1051		/* Retry the same command immediately */
1052		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053		break;
1054	case ACTION_DELAYED_RETRY:
1055		/* Retry the same command after a delay */
1056		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057		break;
1058	}
1059}
1060
1061static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062{
1063	int count;
1064
1065	/*
1066	 * If sg table allocation fails, requeue request later.
1067	 */
1068	if (unlikely(sg_alloc_table_chained(&sdb->table,
1069			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070		return BLKPREP_DEFER;
 
1071
1072	/* 
1073	 * Next, walk the list, and fill in the addresses and sizes of
1074	 * each segment.
1075	 */
1076	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077	BUG_ON(count > sdb->table.nents);
1078	sdb->table.nents = count;
1079	sdb->length = blk_rq_payload_bytes(req);
1080	return BLKPREP_OK;
1081}
1082
1083/*
1084 * Function:    scsi_init_io()
1085 *
1086 * Purpose:     SCSI I/O initialize function.
1087 *
1088 * Arguments:   cmd   - Command descriptor we wish to initialize
1089 *
1090 * Returns:     0 on success
1091 *		BLKPREP_DEFER if the failure is retryable
1092 *		BLKPREP_KILL if the failure is fatal
1093 */
1094int scsi_init_io(struct scsi_cmnd *cmd)
1095{
1096	struct scsi_device *sdev = cmd->device;
1097	struct request *rq = cmd->request;
1098	bool is_mq = (rq->mq_ctx != NULL);
1099	int error = BLKPREP_KILL;
1100
1101	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102		goto err_exit;
1103
1104	error = scsi_init_sgtable(rq, &cmd->sdb);
1105	if (error)
1106		goto err_exit;
1107
1108	if (blk_bidi_rq(rq)) {
1109		if (!rq->q->mq_ops) {
1110			struct scsi_data_buffer *bidi_sdb =
1111				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112			if (!bidi_sdb) {
1113				error = BLKPREP_DEFER;
1114				goto err_exit;
1115			}
1116
1117			rq->next_rq->special = bidi_sdb;
1118		}
1119
1120		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1121		if (error)
1122			goto err_exit;
1123	}
1124
1125	if (blk_integrity_rq(rq)) {
1126		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127		int ivecs, count;
1128
1129		if (prot_sdb == NULL) {
1130			/*
1131			 * This can happen if someone (e.g. multipath)
1132			 * queues a command to a device on an adapter
1133			 * that does not support DIX.
1134			 */
1135			WARN_ON_ONCE(1);
1136			error = BLKPREP_KILL;
1137			goto err_exit;
1138		}
1139
1140		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141
1142		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143				prot_sdb->table.sgl)) {
1144			error = BLKPREP_DEFER;
1145			goto err_exit;
 
1146		}
1147
1148		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149						prot_sdb->table.sgl);
1150		BUG_ON(unlikely(count > ivecs));
1151		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152
1153		cmd->prot_sdb = prot_sdb;
1154		cmd->prot_sdb->table.nents = count;
1155	}
1156
1157	return BLKPREP_OK;
1158err_exit:
1159	if (is_mq) {
1160		scsi_mq_free_sgtables(cmd);
1161	} else {
1162		scsi_release_buffers(cmd);
1163		cmd->request->special = NULL;
1164		scsi_put_command(cmd);
1165		put_device(&sdev->sdev_gendev);
1166	}
1167	return error;
1168}
1169EXPORT_SYMBOL(scsi_init_io);
1170
1171/**
1172 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173 * @rq: Request associated with the SCSI command to be initialized.
1174 *
1175 * This function initializes the members of struct scsi_cmnd that must be
1176 * initialized before request processing starts and that won't be
1177 * reinitialized if a SCSI command is requeued.
1178 *
1179 * Called from inside blk_get_request() for pass-through requests and from
1180 * inside scsi_init_command() for filesystem requests.
1181 */
1182static void scsi_initialize_rq(struct request *rq)
1183{
1184	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185
1186	scsi_req_init(&cmd->req);
1187	init_rcu_head(&cmd->rcu);
1188	cmd->jiffies_at_alloc = jiffies;
1189	cmd->retries = 0;
1190}
1191
 
 
 
 
 
 
 
 
 
 
 
 
1192/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1194{
1195	struct scsi_device *sdev = cmd->device;
1196	struct Scsi_Host *shost = sdev->host;
1197	unsigned long flags;
1198
1199	if (shost->use_cmd_list) {
1200		spin_lock_irqsave(&sdev->list_lock, flags);
1201		list_add_tail(&cmd->list, &sdev->cmd_list);
1202		spin_unlock_irqrestore(&sdev->list_lock, flags);
1203	}
1204}
1205
1206/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1208{
1209	struct scsi_device *sdev = cmd->device;
1210	struct Scsi_Host *shost = sdev->host;
1211	unsigned long flags;
1212
1213	if (shost->use_cmd_list) {
1214		spin_lock_irqsave(&sdev->list_lock, flags);
1215		BUG_ON(list_empty(&cmd->list));
1216		list_del_init(&cmd->list);
1217		spin_unlock_irqrestore(&sdev->list_lock, flags);
1218	}
1219}
1220
1221/* Called after a request has been started. */
1222void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223{
1224	void *buf = cmd->sense_buffer;
1225	void *prot = cmd->prot_sdb;
1226	struct request *rq = blk_mq_rq_from_pdu(cmd);
1227	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228	unsigned long jiffies_at_alloc;
1229	int retries;
1230
1231	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232		flags |= SCMD_INITIALIZED;
1233		scsi_initialize_rq(rq);
1234	}
1235
1236	jiffies_at_alloc = cmd->jiffies_at_alloc;
1237	retries = cmd->retries;
1238	/* zero out the cmd, except for the embedded scsi_request */
1239	memset((char *)cmd + sizeof(cmd->req), 0,
1240		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1241
1242	cmd->device = dev;
1243	cmd->sense_buffer = buf;
1244	cmd->prot_sdb = prot;
1245	cmd->flags = flags;
1246	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247	cmd->jiffies_at_alloc = jiffies_at_alloc;
1248	cmd->retries = retries;
1249
1250	scsi_add_cmd_to_list(cmd);
1251}
1252
1253static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
 
1254{
1255	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256
1257	/*
1258	 * Passthrough requests may transfer data, in which case they must
1259	 * a bio attached to them.  Or they might contain a SCSI command
1260	 * that does not transfer data, in which case they may optionally
1261	 * submit a request without an attached bio.
1262	 */
1263	if (req->bio) {
1264		int ret = scsi_init_io(cmd);
1265		if (unlikely(ret))
1266			return ret;
1267	} else {
1268		BUG_ON(blk_rq_bytes(req));
1269
1270		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1271	}
1272
1273	cmd->cmd_len = scsi_req(req)->cmd_len;
1274	cmd->cmnd = scsi_req(req)->cmd;
1275	cmd->transfersize = blk_rq_bytes(req);
1276	cmd->allowed = scsi_req(req)->retries;
1277	return BLKPREP_OK;
1278}
1279
1280/*
1281 * Setup a normal block command.  These are simple request from filesystems
1282 * that still need to be translated to SCSI CDBs from the ULD.
1283 */
1284static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
 
1285{
1286	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1287
1288	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289		int ret = sdev->handler->prep_fn(sdev, req);
1290		if (ret != BLKPREP_OK)
1291			return ret;
1292	}
1293
1294	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297}
1298
1299static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
 
1300{
1301	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302
1303	if (!blk_rq_bytes(req))
1304		cmd->sc_data_direction = DMA_NONE;
1305	else if (rq_data_dir(req) == WRITE)
1306		cmd->sc_data_direction = DMA_TO_DEVICE;
1307	else
1308		cmd->sc_data_direction = DMA_FROM_DEVICE;
1309
1310	if (blk_rq_is_scsi(req))
1311		return scsi_setup_scsi_cmnd(sdev, req);
1312	else
1313		return scsi_setup_fs_cmnd(sdev, req);
1314}
1315
1316static int
1317scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318{
1319	int ret = BLKPREP_OK;
1320
1321	/*
1322	 * If the device is not in running state we will reject some
1323	 * or all commands.
1324	 */
1325	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326		switch (sdev->sdev_state) {
1327		case SDEV_OFFLINE:
1328		case SDEV_TRANSPORT_OFFLINE:
1329			/*
1330			 * If the device is offline we refuse to process any
1331			 * commands.  The device must be brought online
1332			 * before trying any recovery commands.
1333			 */
1334			sdev_printk(KERN_ERR, sdev,
1335				    "rejecting I/O to offline device\n");
1336			ret = BLKPREP_KILL;
1337			break;
1338		case SDEV_DEL:
1339			/*
1340			 * If the device is fully deleted, we refuse to
1341			 * process any commands as well.
1342			 */
1343			sdev_printk(KERN_ERR, sdev,
1344				    "rejecting I/O to dead device\n");
1345			ret = BLKPREP_KILL;
1346			break;
1347		case SDEV_BLOCK:
1348		case SDEV_CREATED_BLOCK:
1349			ret = BLKPREP_DEFER;
1350			break;
1351		case SDEV_QUIESCE:
1352			/*
1353			 * If the devices is blocked we defer normal commands.
1354			 */
1355			if (req && !(req->rq_flags & RQF_PREEMPT))
1356				ret = BLKPREP_DEFER;
1357			break;
1358		default:
1359			/*
1360			 * For any other not fully online state we only allow
1361			 * special commands.  In particular any user initiated
1362			 * command is not allowed.
1363			 */
1364			if (req && !(req->rq_flags & RQF_PREEMPT))
1365				ret = BLKPREP_KILL;
1366			break;
1367		}
1368	}
1369	return ret;
1370}
1371
1372static int
1373scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374{
1375	struct scsi_device *sdev = q->queuedata;
1376
1377	switch (ret) {
1378	case BLKPREP_KILL:
1379	case BLKPREP_INVALID:
1380		scsi_req(req)->result = DID_NO_CONNECT << 16;
1381		/* release the command and kill it */
1382		if (req->special) {
1383			struct scsi_cmnd *cmd = req->special;
1384			scsi_release_buffers(cmd);
1385			scsi_put_command(cmd);
1386			put_device(&sdev->sdev_gendev);
1387			req->special = NULL;
1388		}
1389		break;
1390	case BLKPREP_DEFER:
1391		/*
1392		 * If we defer, the blk_peek_request() returns NULL, but the
1393		 * queue must be restarted, so we schedule a callback to happen
1394		 * shortly.
1395		 */
1396		if (atomic_read(&sdev->device_busy) == 0)
1397			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399	default:
1400		req->rq_flags |= RQF_DONTPREP;
1401	}
1402
1403	return ret;
1404}
1405
1406static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407{
1408	struct scsi_device *sdev = q->queuedata;
1409	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410	int ret;
1411
1412	ret = scsi_prep_state_check(sdev, req);
1413	if (ret != BLKPREP_OK)
1414		goto out;
1415
1416	if (!req->special) {
1417		/* Bail if we can't get a reference to the device */
1418		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419			ret = BLKPREP_DEFER;
1420			goto out;
1421		}
1422
1423		scsi_init_command(sdev, cmd);
1424		req->special = cmd;
1425	}
1426
1427	cmd->tag = req->tag;
1428	cmd->request = req;
1429	cmd->prot_op = SCSI_PROT_NORMAL;
1430
1431	ret = scsi_setup_cmnd(sdev, req);
1432out:
1433	return scsi_prep_return(q, req, ret);
1434}
1435
1436static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437{
1438	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439}
1440
1441/*
1442 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443 * return 0.
1444 *
1445 * Called with the queue_lock held.
1446 */
1447static inline int scsi_dev_queue_ready(struct request_queue *q,
1448				  struct scsi_device *sdev)
1449{
1450	unsigned int busy;
1451
1452	busy = atomic_inc_return(&sdev->device_busy) - 1;
1453	if (atomic_read(&sdev->device_blocked)) {
1454		if (busy)
1455			goto out_dec;
1456
1457		/*
1458		 * unblock after device_blocked iterates to zero
1459		 */
1460		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461			/*
1462			 * For the MQ case we take care of this in the caller.
1463			 */
1464			if (!q->mq_ops)
1465				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466			goto out_dec;
1467		}
1468		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469				   "unblocking device at zero depth\n"));
1470	}
1471
1472	if (busy >= sdev->queue_depth)
1473		goto out_dec;
1474
1475	return 1;
1476out_dec:
1477	atomic_dec(&sdev->device_busy);
1478	return 0;
1479}
1480
1481/*
1482 * scsi_target_queue_ready: checks if there we can send commands to target
1483 * @sdev: scsi device on starget to check.
1484 */
1485static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486					   struct scsi_device *sdev)
1487{
1488	struct scsi_target *starget = scsi_target(sdev);
1489	unsigned int busy;
1490
1491	if (starget->single_lun) {
1492		spin_lock_irq(shost->host_lock);
1493		if (starget->starget_sdev_user &&
1494		    starget->starget_sdev_user != sdev) {
1495			spin_unlock_irq(shost->host_lock);
1496			return 0;
1497		}
1498		starget->starget_sdev_user = sdev;
1499		spin_unlock_irq(shost->host_lock);
1500	}
1501
1502	if (starget->can_queue <= 0)
1503		return 1;
1504
1505	busy = atomic_inc_return(&starget->target_busy) - 1;
1506	if (atomic_read(&starget->target_blocked) > 0) {
1507		if (busy)
1508			goto starved;
1509
1510		/*
1511		 * unblock after target_blocked iterates to zero
1512		 */
1513		if (atomic_dec_return(&starget->target_blocked) > 0)
1514			goto out_dec;
1515
1516		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517				 "unblocking target at zero depth\n"));
1518	}
1519
1520	if (busy >= starget->can_queue)
1521		goto starved;
1522
1523	return 1;
1524
1525starved:
1526	spin_lock_irq(shost->host_lock);
1527	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528	spin_unlock_irq(shost->host_lock);
1529out_dec:
1530	if (starget->can_queue > 0)
1531		atomic_dec(&starget->target_busy);
1532	return 0;
1533}
1534
1535/*
1536 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537 * return 0. We must end up running the queue again whenever 0 is
1538 * returned, else IO can hang.
1539 */
1540static inline int scsi_host_queue_ready(struct request_queue *q,
1541				   struct Scsi_Host *shost,
1542				   struct scsi_device *sdev)
1543{
1544	unsigned int busy;
1545
1546	if (scsi_host_in_recovery(shost))
1547		return 0;
1548
1549	busy = atomic_inc_return(&shost->host_busy) - 1;
1550	if (atomic_read(&shost->host_blocked) > 0) {
1551		if (busy)
1552			goto starved;
1553
1554		/*
1555		 * unblock after host_blocked iterates to zero
1556		 */
1557		if (atomic_dec_return(&shost->host_blocked) > 0)
1558			goto out_dec;
1559
1560		SCSI_LOG_MLQUEUE(3,
1561			shost_printk(KERN_INFO, shost,
1562				     "unblocking host at zero depth\n"));
1563	}
1564
1565	if (shost->can_queue > 0 && busy >= shost->can_queue)
1566		goto starved;
1567	if (shost->host_self_blocked)
1568		goto starved;
1569
1570	/* We're OK to process the command, so we can't be starved */
1571	if (!list_empty(&sdev->starved_entry)) {
1572		spin_lock_irq(shost->host_lock);
1573		if (!list_empty(&sdev->starved_entry))
1574			list_del_init(&sdev->starved_entry);
1575		spin_unlock_irq(shost->host_lock);
1576	}
1577
1578	return 1;
1579
1580starved:
1581	spin_lock_irq(shost->host_lock);
1582	if (list_empty(&sdev->starved_entry))
1583		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584	spin_unlock_irq(shost->host_lock);
1585out_dec:
1586	scsi_dec_host_busy(shost);
1587	return 0;
1588}
1589
1590/*
1591 * Busy state exporting function for request stacking drivers.
1592 *
1593 * For efficiency, no lock is taken to check the busy state of
1594 * shost/starget/sdev, since the returned value is not guaranteed and
1595 * may be changed after request stacking drivers call the function,
1596 * regardless of taking lock or not.
1597 *
1598 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599 * needs to return 'not busy'. Otherwise, request stacking drivers
1600 * may hold requests forever.
1601 */
1602static int scsi_lld_busy(struct request_queue *q)
1603{
1604	struct scsi_device *sdev = q->queuedata;
1605	struct Scsi_Host *shost;
1606
1607	if (blk_queue_dying(q))
1608		return 0;
1609
1610	shost = sdev->host;
1611
1612	/*
1613	 * Ignore host/starget busy state.
1614	 * Since block layer does not have a concept of fairness across
1615	 * multiple queues, congestion of host/starget needs to be handled
1616	 * in SCSI layer.
1617	 */
1618	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619		return 1;
1620
1621	return 0;
1622}
1623
1624/*
1625 * Kill a request for a dead device
1626 */
1627static void scsi_kill_request(struct request *req, struct request_queue *q)
1628{
1629	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630	struct scsi_device *sdev;
1631	struct scsi_target *starget;
1632	struct Scsi_Host *shost;
1633
1634	blk_start_request(req);
1635
1636	scmd_printk(KERN_INFO, cmd, "killing request\n");
1637
1638	sdev = cmd->device;
1639	starget = scsi_target(sdev);
1640	shost = sdev->host;
1641	scsi_init_cmd_errh(cmd);
1642	cmd->result = DID_NO_CONNECT << 16;
1643	atomic_inc(&cmd->device->iorequest_cnt);
1644
1645	/*
1646	 * SCSI request completion path will do scsi_device_unbusy(),
1647	 * bump busy counts.  To bump the counters, we need to dance
1648	 * with the locks as normal issue path does.
1649	 */
1650	atomic_inc(&sdev->device_busy);
1651	atomic_inc(&shost->host_busy);
1652	if (starget->can_queue > 0)
1653		atomic_inc(&starget->target_busy);
1654
1655	blk_complete_request(req);
1656}
1657
1658static void scsi_softirq_done(struct request *rq)
1659{
1660	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662	int disposition;
1663
1664	INIT_LIST_HEAD(&cmd->eh_entry);
1665
1666	atomic_inc(&cmd->device->iodone_cnt);
1667	if (cmd->result)
1668		atomic_inc(&cmd->device->ioerr_cnt);
1669
1670	disposition = scsi_decide_disposition(cmd);
1671	if (disposition != SUCCESS &&
1672	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673		sdev_printk(KERN_ERR, cmd->device,
1674			    "timing out command, waited %lus\n",
1675			    wait_for/HZ);
1676		disposition = SUCCESS;
1677	}
1678
1679	scsi_log_completion(cmd, disposition);
1680
1681	switch (disposition) {
1682		case SUCCESS:
1683			scsi_finish_command(cmd);
1684			break;
1685		case NEEDS_RETRY:
1686			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687			break;
1688		case ADD_TO_MLQUEUE:
1689			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690			break;
1691		default:
1692			scsi_eh_scmd_add(cmd);
1693			break;
1694	}
1695}
1696
1697/**
1698 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699 * @cmd: command block we are dispatching.
1700 *
1701 * Return: nonzero return request was rejected and device's queue needs to be
1702 * plugged.
1703 */
1704static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705{
1706	struct Scsi_Host *host = cmd->device->host;
1707	int rtn = 0;
1708
1709	atomic_inc(&cmd->device->iorequest_cnt);
1710
1711	/* check if the device is still usable */
1712	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714		 * returns an immediate error upwards, and signals
1715		 * that the device is no longer present */
1716		cmd->result = DID_NO_CONNECT << 16;
1717		goto done;
1718	}
1719
1720	/* Check to see if the scsi lld made this device blocked. */
1721	if (unlikely(scsi_device_blocked(cmd->device))) {
1722		/*
1723		 * in blocked state, the command is just put back on
1724		 * the device queue.  The suspend state has already
1725		 * blocked the queue so future requests should not
1726		 * occur until the device transitions out of the
1727		 * suspend state.
1728		 */
1729		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730			"queuecommand : device blocked\n"));
1731		return SCSI_MLQUEUE_DEVICE_BUSY;
1732	}
1733
1734	/* Store the LUN value in cmnd, if needed. */
1735	if (cmd->device->lun_in_cdb)
1736		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737			       (cmd->device->lun << 5 & 0xe0);
1738
1739	scsi_log_send(cmd);
1740
1741	/*
1742	 * Before we queue this command, check if the command
1743	 * length exceeds what the host adapter can handle.
1744	 */
1745	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747			       "queuecommand : command too long. "
1748			       "cdb_size=%d host->max_cmd_len=%d\n",
1749			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1750		cmd->result = (DID_ABORT << 16);
1751		goto done;
1752	}
1753
1754	if (unlikely(host->shost_state == SHOST_DEL)) {
1755		cmd->result = (DID_NO_CONNECT << 16);
1756		goto done;
1757
1758	}
1759
1760	trace_scsi_dispatch_cmd_start(cmd);
1761	rtn = host->hostt->queuecommand(host, cmd);
1762	if (rtn) {
1763		trace_scsi_dispatch_cmd_error(cmd, rtn);
1764		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766			rtn = SCSI_MLQUEUE_HOST_BUSY;
1767
1768		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769			"queuecommand : request rejected\n"));
1770	}
1771
1772	return rtn;
1773 done:
1774	cmd->scsi_done(cmd);
1775	return 0;
1776}
1777
1778/**
1779 * scsi_done - Invoke completion on finished SCSI command.
1780 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782 *
1783 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785 * calls blk_complete_request() for further processing.
1786 *
1787 * This function is interrupt context safe.
1788 */
1789static void scsi_done(struct scsi_cmnd *cmd)
1790{
1791	trace_scsi_dispatch_cmd_done(cmd);
1792	blk_complete_request(cmd->request);
1793}
1794
1795/*
1796 * Function:    scsi_request_fn()
1797 *
1798 * Purpose:     Main strategy routine for SCSI.
1799 *
1800 * Arguments:   q       - Pointer to actual queue.
1801 *
1802 * Returns:     Nothing
1803 *
1804 * Lock status: request queue lock assumed to be held when called.
1805 *
1806 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807 * protection for ZBC disks.
1808 */
1809static void scsi_request_fn(struct request_queue *q)
1810	__releases(q->queue_lock)
1811	__acquires(q->queue_lock)
1812{
1813	struct scsi_device *sdev = q->queuedata;
1814	struct Scsi_Host *shost;
1815	struct scsi_cmnd *cmd;
1816	struct request *req;
1817
1818	/*
1819	 * To start with, we keep looping until the queue is empty, or until
1820	 * the host is no longer able to accept any more requests.
1821	 */
1822	shost = sdev->host;
1823	for (;;) {
1824		int rtn;
1825		/*
1826		 * get next queueable request.  We do this early to make sure
1827		 * that the request is fully prepared even if we cannot
1828		 * accept it.
1829		 */
1830		req = blk_peek_request(q);
1831		if (!req)
1832			break;
1833
1834		if (unlikely(!scsi_device_online(sdev))) {
1835			sdev_printk(KERN_ERR, sdev,
1836				    "rejecting I/O to offline device\n");
1837			scsi_kill_request(req, q);
1838			continue;
1839		}
1840
1841		if (!scsi_dev_queue_ready(q, sdev))
1842			break;
1843
1844		/*
1845		 * Remove the request from the request list.
1846		 */
1847		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848			blk_start_request(req);
1849
1850		spin_unlock_irq(q->queue_lock);
1851		cmd = blk_mq_rq_to_pdu(req);
1852		if (cmd != req->special) {
1853			printk(KERN_CRIT "impossible request in %s.\n"
1854					 "please mail a stack trace to "
1855					 "linux-scsi@vger.kernel.org\n",
1856					 __func__);
1857			blk_dump_rq_flags(req, "foo");
1858			BUG();
1859		}
1860
1861		/*
1862		 * We hit this when the driver is using a host wide
1863		 * tag map. For device level tag maps the queue_depth check
1864		 * in the device ready fn would prevent us from trying
1865		 * to allocate a tag. Since the map is a shared host resource
1866		 * we add the dev to the starved list so it eventually gets
1867		 * a run when a tag is freed.
1868		 */
1869		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870			spin_lock_irq(shost->host_lock);
1871			if (list_empty(&sdev->starved_entry))
1872				list_add_tail(&sdev->starved_entry,
1873					      &shost->starved_list);
1874			spin_unlock_irq(shost->host_lock);
1875			goto not_ready;
1876		}
1877
1878		if (!scsi_target_queue_ready(shost, sdev))
1879			goto not_ready;
1880
1881		if (!scsi_host_queue_ready(q, shost, sdev))
1882			goto host_not_ready;
1883	
1884		if (sdev->simple_tags)
1885			cmd->flags |= SCMD_TAGGED;
1886		else
1887			cmd->flags &= ~SCMD_TAGGED;
1888
1889		/*
1890		 * Finally, initialize any error handling parameters, and set up
1891		 * the timers for timeouts.
1892		 */
1893		scsi_init_cmd_errh(cmd);
1894
1895		/*
1896		 * Dispatch the command to the low-level driver.
1897		 */
1898		cmd->scsi_done = scsi_done;
1899		rtn = scsi_dispatch_cmd(cmd);
1900		if (rtn) {
1901			scsi_queue_insert(cmd, rtn);
1902			spin_lock_irq(q->queue_lock);
1903			goto out_delay;
1904		}
1905		spin_lock_irq(q->queue_lock);
1906	}
1907
1908	return;
1909
1910 host_not_ready:
1911	if (scsi_target(sdev)->can_queue > 0)
1912		atomic_dec(&scsi_target(sdev)->target_busy);
1913 not_ready:
1914	/*
1915	 * lock q, handle tag, requeue req, and decrement device_busy. We
1916	 * must return with queue_lock held.
1917	 *
1918	 * Decrementing device_busy without checking it is OK, as all such
1919	 * cases (host limits or settings) should run the queue at some
1920	 * later time.
1921	 */
1922	spin_lock_irq(q->queue_lock);
1923	blk_requeue_request(q, req);
1924	atomic_dec(&sdev->device_busy);
1925out_delay:
1926	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928}
1929
1930static inline blk_status_t prep_to_mq(int ret)
1931{
1932	switch (ret) {
1933	case BLKPREP_OK:
1934		return BLK_STS_OK;
1935	case BLKPREP_DEFER:
1936		return BLK_STS_RESOURCE;
1937	default:
1938		return BLK_STS_IOERR;
1939	}
1940}
1941
1942/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944{
1945	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946		sizeof(struct scatterlist);
1947}
1948
1949static int scsi_mq_prep_fn(struct request *req)
1950{
1951	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952	struct scsi_device *sdev = req->q->queuedata;
1953	struct Scsi_Host *shost = sdev->host;
1954	struct scatterlist *sg;
1955
1956	scsi_init_command(sdev, cmd);
1957
1958	req->special = cmd;
1959
1960	cmd->request = req;
1961
1962	cmd->tag = req->tag;
1963	cmd->prot_op = SCSI_PROT_NORMAL;
1964
1965	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966	cmd->sdb.table.sgl = sg;
1967
1968	if (scsi_host_get_prot(shost)) {
1969		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970
1971		cmd->prot_sdb->table.sgl =
1972			(struct scatterlist *)(cmd->prot_sdb + 1);
1973	}
1974
1975	if (blk_bidi_rq(req)) {
1976		struct request *next_rq = req->next_rq;
1977		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978
1979		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980		bidi_sdb->table.sgl =
1981			(struct scatterlist *)(bidi_sdb + 1);
1982
1983		next_rq->special = bidi_sdb;
1984	}
1985
1986	blk_mq_start_request(req);
1987
1988	return scsi_setup_cmnd(sdev, req);
1989}
1990
1991static void scsi_mq_done(struct scsi_cmnd *cmd)
1992{
 
 
1993	trace_scsi_dispatch_cmd_done(cmd);
1994	blk_mq_complete_request(cmd->request);
 
 
 
 
 
 
 
 
1995}
1996
1997static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998{
1999	struct request_queue *q = hctx->queue;
2000	struct scsi_device *sdev = q->queuedata;
2001
2002	atomic_dec(&sdev->device_busy);
2003	put_device(&sdev->sdev_gendev);
2004}
2005
2006static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2007{
2008	struct request_queue *q = hctx->queue;
2009	struct scsi_device *sdev = q->queuedata;
2010
2011	if (!get_device(&sdev->sdev_gendev))
2012		goto out;
2013	if (!scsi_dev_queue_ready(q, sdev))
2014		goto out_put_device;
2015
2016	return true;
2017
2018out_put_device:
2019	put_device(&sdev->sdev_gendev);
2020out:
2021	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023	return false;
2024}
2025
2026static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027			 const struct blk_mq_queue_data *bd)
2028{
2029	struct request *req = bd->rq;
2030	struct request_queue *q = req->q;
2031	struct scsi_device *sdev = q->queuedata;
2032	struct Scsi_Host *shost = sdev->host;
2033	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034	blk_status_t ret;
2035	int reason;
2036
2037	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038	if (ret != BLK_STS_OK)
2039		goto out_put_budget;
 
 
 
 
 
 
2040
2041	ret = BLK_STS_RESOURCE;
2042	if (!scsi_target_queue_ready(shost, sdev))
2043		goto out_put_budget;
2044	if (!scsi_host_queue_ready(q, shost, sdev))
2045		goto out_dec_target_busy;
2046
2047	if (!(req->rq_flags & RQF_DONTPREP)) {
2048		ret = prep_to_mq(scsi_mq_prep_fn(req));
2049		if (ret != BLK_STS_OK)
2050			goto out_dec_host_busy;
2051		req->rq_flags |= RQF_DONTPREP;
2052	} else {
 
2053		blk_mq_start_request(req);
2054	}
2055
 
2056	if (sdev->simple_tags)
2057		cmd->flags |= SCMD_TAGGED;
2058	else
2059		cmd->flags &= ~SCMD_TAGGED;
2060
2061	scsi_init_cmd_errh(cmd);
2062	cmd->scsi_done = scsi_mq_done;
2063
2064	reason = scsi_dispatch_cmd(cmd);
2065	if (reason) {
2066		scsi_set_blocked(cmd, reason);
2067		ret = BLK_STS_RESOURCE;
2068		goto out_dec_host_busy;
2069	}
2070
2071	return BLK_STS_OK;
2072
2073out_dec_host_busy:
2074	scsi_dec_host_busy(shost);
2075out_dec_target_busy:
2076	if (scsi_target(sdev)->can_queue > 0)
2077		atomic_dec(&scsi_target(sdev)->target_busy);
2078out_put_budget:
2079	scsi_mq_put_budget(hctx);
2080	switch (ret) {
2081	case BLK_STS_OK:
2082		break;
2083	case BLK_STS_RESOURCE:
2084		if (atomic_read(&sdev->device_busy) ||
2085		    scsi_device_blocked(sdev))
2086			ret = BLK_STS_DEV_RESOURCE;
2087		break;
2088	default:
 
 
 
 
2089		/*
2090		 * Make sure to release all allocated ressources when
2091		 * we hit an error, as we will never see this command
2092		 * again.
2093		 */
2094		if (req->rq_flags & RQF_DONTPREP)
2095			scsi_mq_uninit_cmd(cmd);
2096		break;
2097	}
2098	return ret;
2099}
2100
2101static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102		bool reserved)
2103{
2104	if (reserved)
2105		return BLK_EH_RESET_TIMER;
2106	return scsi_times_out(req);
2107}
2108
2109static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110				unsigned int hctx_idx, unsigned int numa_node)
2111{
2112	struct Scsi_Host *shost = set->driver_data;
2113	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115	struct scatterlist *sg;
2116
2117	if (unchecked_isa_dma)
2118		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120						    GFP_KERNEL, numa_node);
2121	if (!cmd->sense_buffer)
2122		return -ENOMEM;
2123	cmd->req.sense = cmd->sense_buffer;
2124
2125	if (scsi_host_get_prot(shost)) {
2126		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127			shost->hostt->cmd_size;
2128		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129	}
2130
2131	return 0;
2132}
2133
2134static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135				 unsigned int hctx_idx)
2136{
2137	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138
2139	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140			       cmd->sense_buffer);
2141}
2142
2143static int scsi_map_queues(struct blk_mq_tag_set *set)
2144{
2145	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2146
2147	if (shost->hostt->map_queues)
2148		return shost->hostt->map_queues(shost);
2149	return blk_mq_map_queues(set);
2150}
2151
2152static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2153{
2154	struct device *host_dev;
2155	u64 bounce_limit = 0xffffffff;
2156
2157	if (shost->unchecked_isa_dma)
2158		return BLK_BOUNCE_ISA;
2159	/*
2160	 * Platforms with virtual-DMA translation
2161	 * hardware have no practical limit.
2162	 */
2163	if (!PCI_DMA_BUS_IS_PHYS)
2164		return BLK_BOUNCE_ANY;
2165
2166	host_dev = scsi_get_device(shost);
2167	if (host_dev && host_dev->dma_mask)
2168		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2169
2170	return bounce_limit;
2171}
2172
2173void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2174{
2175	struct device *dev = shost->dma_dev;
2176
2177	/*
2178	 * this limit is imposed by hardware restrictions
2179	 */
2180	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2181					SG_MAX_SEGMENTS));
2182
2183	if (scsi_host_prot_dma(shost)) {
2184		shost->sg_prot_tablesize =
2185			min_not_zero(shost->sg_prot_tablesize,
2186				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2187		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2188		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2189	}
2190
 
 
 
 
2191	blk_queue_max_hw_sectors(q, shost->max_sectors);
2192	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
 
2193	blk_queue_segment_boundary(q, shost->dma_boundary);
2194	dma_set_seg_boundary(dev, shost->dma_boundary);
2195
2196	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2197
2198	if (!shost->use_clustering)
2199		q->limits.cluster = 0;
2200
2201	/*
2202	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2203	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2204	 * which is set by the platform.
2205	 *
2206	 * Devices that require a bigger alignment can increase it later.
2207	 */
2208	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2209}
2210EXPORT_SYMBOL_GPL(__scsi_init_queue);
2211
2212static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2213			    gfp_t gfp)
2214{
2215	struct Scsi_Host *shost = q->rq_alloc_data;
2216	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2217	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218
2219	memset(cmd, 0, sizeof(*cmd));
2220
2221	if (unchecked_isa_dma)
2222		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2223	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2224						    NUMA_NO_NODE);
2225	if (!cmd->sense_buffer)
2226		goto fail;
2227	cmd->req.sense = cmd->sense_buffer;
2228
2229	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2230		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2231		if (!cmd->prot_sdb)
2232			goto fail_free_sense;
2233	}
2234
2235	return 0;
2236
2237fail_free_sense:
2238	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2239fail:
2240	return -ENOMEM;
2241}
2242
2243static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2244{
2245	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2246
2247	if (cmd->prot_sdb)
2248		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2249	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2250			       cmd->sense_buffer);
2251}
2252
2253struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2254{
 
 
2255	struct Scsi_Host *shost = sdev->host;
2256	struct request_queue *q;
2257
2258	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2259	if (!q)
2260		return NULL;
2261	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2262	q->rq_alloc_data = shost;
2263	q->request_fn = scsi_request_fn;
2264	q->init_rq_fn = scsi_old_init_rq;
2265	q->exit_rq_fn = scsi_old_exit_rq;
2266	q->initialize_rq_fn = scsi_initialize_rq;
2267
2268	if (blk_init_allocated_queue(q) < 0) {
2269		blk_cleanup_queue(q);
2270		return NULL;
2271	}
2272
2273	__scsi_init_queue(shost, q);
2274	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2275	blk_queue_prep_rq(q, scsi_prep_fn);
2276	blk_queue_unprep_rq(q, scsi_unprep_fn);
2277	blk_queue_softirq_done(q, scsi_softirq_done);
2278	blk_queue_rq_timed_out(q, scsi_times_out);
2279	blk_queue_lld_busy(q, scsi_lld_busy);
2280	return q;
2281}
2282
2283static const struct blk_mq_ops scsi_mq_ops = {
2284	.get_budget	= scsi_mq_get_budget,
2285	.put_budget	= scsi_mq_put_budget,
2286	.queue_rq	= scsi_queue_rq,
 
2287	.complete	= scsi_softirq_done,
2288	.timeout	= scsi_timeout,
2289#ifdef CONFIG_BLK_DEBUG_FS
2290	.show_rq	= scsi_show_rq,
2291#endif
2292	.init_request	= scsi_mq_init_request,
2293	.exit_request	= scsi_mq_exit_request,
2294	.initialize_rq_fn = scsi_initialize_rq,
 
 
2295	.map_queues	= scsi_map_queues,
2296};
2297
2298struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2299{
2300	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2301	if (IS_ERR(sdev->request_queue))
2302		return NULL;
2303
2304	sdev->request_queue->queuedata = sdev;
2305	__scsi_init_queue(sdev->host, sdev->request_queue);
2306	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2307	return sdev->request_queue;
2308}
2309
2310int scsi_mq_setup_tags(struct Scsi_Host *shost)
2311{
2312	unsigned int cmd_size, sgl_size;
2313
2314	sgl_size = scsi_mq_sgl_size(shost);
 
2315	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2316	if (scsi_host_get_prot(shost))
2317		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
 
2318
2319	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2320	shost->tag_set.ops = &scsi_mq_ops;
 
 
 
2321	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2322	shost->tag_set.queue_depth = shost->can_queue;
2323	shost->tag_set.cmd_size = cmd_size;
2324	shost->tag_set.numa_node = NUMA_NO_NODE;
2325	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2326	shost->tag_set.flags |=
2327		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2328	shost->tag_set.driver_data = shost;
2329
2330	return blk_mq_alloc_tag_set(&shost->tag_set);
2331}
2332
2333void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2334{
2335	blk_mq_free_tag_set(&shost->tag_set);
2336}
2337
2338/**
2339 * scsi_device_from_queue - return sdev associated with a request_queue
2340 * @q: The request queue to return the sdev from
2341 *
2342 * Return the sdev associated with a request queue or NULL if the
2343 * request_queue does not reference a SCSI device.
2344 */
2345struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2346{
2347	struct scsi_device *sdev = NULL;
2348
2349	if (q->mq_ops) {
2350		if (q->mq_ops == &scsi_mq_ops)
2351			sdev = q->queuedata;
2352	} else if (q->request_fn == scsi_request_fn)
2353		sdev = q->queuedata;
2354	if (!sdev || !get_device(&sdev->sdev_gendev))
2355		sdev = NULL;
2356
2357	return sdev;
2358}
2359EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2360
2361/*
2362 * Function:    scsi_block_requests()
2363 *
2364 * Purpose:     Utility function used by low-level drivers to prevent further
2365 *		commands from being queued to the device.
2366 *
2367 * Arguments:   shost       - Host in question
2368 *
2369 * Returns:     Nothing
2370 *
2371 * Lock status: No locks are assumed held.
2372 *
2373 * Notes:       There is no timer nor any other means by which the requests
2374 *		get unblocked other than the low-level driver calling
2375 *		scsi_unblock_requests().
2376 */
2377void scsi_block_requests(struct Scsi_Host *shost)
2378{
2379	shost->host_self_blocked = 1;
2380}
2381EXPORT_SYMBOL(scsi_block_requests);
2382
2383/*
2384 * Function:    scsi_unblock_requests()
2385 *
2386 * Purpose:     Utility function used by low-level drivers to allow further
2387 *		commands from being queued to the device.
2388 *
2389 * Arguments:   shost       - Host in question
2390 *
2391 * Returns:     Nothing
2392 *
2393 * Lock status: No locks are assumed held.
2394 *
2395 * Notes:       There is no timer nor any other means by which the requests
2396 *		get unblocked other than the low-level driver calling
2397 *		scsi_unblock_requests().
2398 *
2399 *		This is done as an API function so that changes to the
2400 *		internals of the scsi mid-layer won't require wholesale
2401 *		changes to drivers that use this feature.
2402 */
2403void scsi_unblock_requests(struct Scsi_Host *shost)
2404{
2405	shost->host_self_blocked = 0;
2406	scsi_run_host_queues(shost);
2407}
2408EXPORT_SYMBOL(scsi_unblock_requests);
2409
2410int __init scsi_init_queue(void)
2411{
2412	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2413					   sizeof(struct scsi_data_buffer),
2414					   0, 0, NULL);
2415	if (!scsi_sdb_cache) {
2416		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2417		return -ENOMEM;
2418	}
2419
2420	return 0;
2421}
2422
2423void scsi_exit_queue(void)
2424{
2425	kmem_cache_destroy(scsi_sense_cache);
2426	kmem_cache_destroy(scsi_sense_isadma_cache);
2427	kmem_cache_destroy(scsi_sdb_cache);
2428}
2429
2430/**
2431 *	scsi_mode_select - issue a mode select
2432 *	@sdev:	SCSI device to be queried
2433 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2434 *	@sp:	Save page bit (0 == don't save, 1 == save)
2435 *	@modepage: mode page being requested
2436 *	@buffer: request buffer (may not be smaller than eight bytes)
2437 *	@len:	length of request buffer.
2438 *	@timeout: command timeout
2439 *	@retries: number of retries before failing
2440 *	@data: returns a structure abstracting the mode header data
2441 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2442 *		must be SCSI_SENSE_BUFFERSIZE big.
2443 *
2444 *	Returns zero if successful; negative error number or scsi
2445 *	status on error
2446 *
2447 */
2448int
2449scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2450		 unsigned char *buffer, int len, int timeout, int retries,
2451		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2452{
2453	unsigned char cmd[10];
2454	unsigned char *real_buffer;
2455	int ret;
2456
2457	memset(cmd, 0, sizeof(cmd));
2458	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2459
2460	if (sdev->use_10_for_ms) {
2461		if (len > 65535)
2462			return -EINVAL;
2463		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2464		if (!real_buffer)
2465			return -ENOMEM;
2466		memcpy(real_buffer + 8, buffer, len);
2467		len += 8;
2468		real_buffer[0] = 0;
2469		real_buffer[1] = 0;
2470		real_buffer[2] = data->medium_type;
2471		real_buffer[3] = data->device_specific;
2472		real_buffer[4] = data->longlba ? 0x01 : 0;
2473		real_buffer[5] = 0;
2474		real_buffer[6] = data->block_descriptor_length >> 8;
2475		real_buffer[7] = data->block_descriptor_length;
2476
2477		cmd[0] = MODE_SELECT_10;
2478		cmd[7] = len >> 8;
2479		cmd[8] = len;
2480	} else {
2481		if (len > 255 || data->block_descriptor_length > 255 ||
2482		    data->longlba)
2483			return -EINVAL;
2484
2485		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2486		if (!real_buffer)
2487			return -ENOMEM;
2488		memcpy(real_buffer + 4, buffer, len);
2489		len += 4;
2490		real_buffer[0] = 0;
2491		real_buffer[1] = data->medium_type;
2492		real_buffer[2] = data->device_specific;
2493		real_buffer[3] = data->block_descriptor_length;
2494		
2495
2496		cmd[0] = MODE_SELECT;
2497		cmd[4] = len;
2498	}
2499
2500	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2501			       sshdr, timeout, retries, NULL);
2502	kfree(real_buffer);
2503	return ret;
2504}
2505EXPORT_SYMBOL_GPL(scsi_mode_select);
2506
2507/**
2508 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2509 *	@sdev:	SCSI device to be queried
2510 *	@dbd:	set if mode sense will allow block descriptors to be returned
2511 *	@modepage: mode page being requested
2512 *	@buffer: request buffer (may not be smaller than eight bytes)
2513 *	@len:	length of request buffer.
2514 *	@timeout: command timeout
2515 *	@retries: number of retries before failing
2516 *	@data: returns a structure abstracting the mode header data
2517 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2518 *		must be SCSI_SENSE_BUFFERSIZE big.
2519 *
2520 *	Returns zero if unsuccessful, or the header offset (either 4
2521 *	or 8 depending on whether a six or ten byte command was
2522 *	issued) if successful.
2523 */
2524int
2525scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2526		  unsigned char *buffer, int len, int timeout, int retries,
2527		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2528{
2529	unsigned char cmd[12];
2530	int use_10_for_ms;
2531	int header_length;
2532	int result, retry_count = retries;
2533	struct scsi_sense_hdr my_sshdr;
2534
2535	memset(data, 0, sizeof(*data));
2536	memset(&cmd[0], 0, 12);
2537	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2538	cmd[2] = modepage;
2539
2540	/* caller might not be interested in sense, but we need it */
2541	if (!sshdr)
2542		sshdr = &my_sshdr;
2543
2544 retry:
2545	use_10_for_ms = sdev->use_10_for_ms;
2546
2547	if (use_10_for_ms) {
2548		if (len < 8)
2549			len = 8;
2550
2551		cmd[0] = MODE_SENSE_10;
2552		cmd[8] = len;
2553		header_length = 8;
2554	} else {
2555		if (len < 4)
2556			len = 4;
2557
2558		cmd[0] = MODE_SENSE;
2559		cmd[4] = len;
2560		header_length = 4;
2561	}
2562
2563	memset(buffer, 0, len);
2564
2565	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2566				  sshdr, timeout, retries, NULL);
2567
2568	/* This code looks awful: what it's doing is making sure an
2569	 * ILLEGAL REQUEST sense return identifies the actual command
2570	 * byte as the problem.  MODE_SENSE commands can return
2571	 * ILLEGAL REQUEST if the code page isn't supported */
2572
2573	if (use_10_for_ms && !scsi_status_is_good(result) &&
2574	    (driver_byte(result) & DRIVER_SENSE)) {
2575		if (scsi_sense_valid(sshdr)) {
2576			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2577			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2578				/* 
2579				 * Invalid command operation code
2580				 */
2581				sdev->use_10_for_ms = 0;
2582				goto retry;
2583			}
2584		}
2585	}
2586
2587	if(scsi_status_is_good(result)) {
2588		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2589			     (modepage == 6 || modepage == 8))) {
2590			/* Initio breakage? */
2591			header_length = 0;
2592			data->length = 13;
2593			data->medium_type = 0;
2594			data->device_specific = 0;
2595			data->longlba = 0;
2596			data->block_descriptor_length = 0;
2597		} else if(use_10_for_ms) {
2598			data->length = buffer[0]*256 + buffer[1] + 2;
2599			data->medium_type = buffer[2];
2600			data->device_specific = buffer[3];
2601			data->longlba = buffer[4] & 0x01;
2602			data->block_descriptor_length = buffer[6]*256
2603				+ buffer[7];
2604		} else {
2605			data->length = buffer[0] + 1;
2606			data->medium_type = buffer[1];
2607			data->device_specific = buffer[2];
2608			data->block_descriptor_length = buffer[3];
2609		}
2610		data->header_length = header_length;
2611	} else if ((status_byte(result) == CHECK_CONDITION) &&
2612		   scsi_sense_valid(sshdr) &&
2613		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2614		retry_count--;
2615		goto retry;
2616	}
2617
2618	return result;
2619}
2620EXPORT_SYMBOL(scsi_mode_sense);
2621
2622/**
2623 *	scsi_test_unit_ready - test if unit is ready
2624 *	@sdev:	scsi device to change the state of.
2625 *	@timeout: command timeout
2626 *	@retries: number of retries before failing
2627 *	@sshdr: outpout pointer for decoded sense information.
2628 *
2629 *	Returns zero if unsuccessful or an error if TUR failed.  For
2630 *	removable media, UNIT_ATTENTION sets ->changed flag.
2631 **/
2632int
2633scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2634		     struct scsi_sense_hdr *sshdr)
2635{
2636	char cmd[] = {
2637		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2638	};
2639	int result;
2640
2641	/* try to eat the UNIT_ATTENTION if there are enough retries */
2642	do {
2643		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2644					  timeout, 1, NULL);
2645		if (sdev->removable && scsi_sense_valid(sshdr) &&
2646		    sshdr->sense_key == UNIT_ATTENTION)
2647			sdev->changed = 1;
2648	} while (scsi_sense_valid(sshdr) &&
2649		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2650
2651	return result;
2652}
2653EXPORT_SYMBOL(scsi_test_unit_ready);
2654
2655/**
2656 *	scsi_device_set_state - Take the given device through the device state model.
2657 *	@sdev:	scsi device to change the state of.
2658 *	@state:	state to change to.
2659 *
2660 *	Returns zero if successful or an error if the requested
2661 *	transition is illegal.
2662 */
2663int
2664scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2665{
2666	enum scsi_device_state oldstate = sdev->sdev_state;
2667
2668	if (state == oldstate)
2669		return 0;
2670
2671	switch (state) {
2672	case SDEV_CREATED:
2673		switch (oldstate) {
2674		case SDEV_CREATED_BLOCK:
2675			break;
2676		default:
2677			goto illegal;
2678		}
2679		break;
2680			
2681	case SDEV_RUNNING:
2682		switch (oldstate) {
2683		case SDEV_CREATED:
2684		case SDEV_OFFLINE:
2685		case SDEV_TRANSPORT_OFFLINE:
2686		case SDEV_QUIESCE:
2687		case SDEV_BLOCK:
2688			break;
2689		default:
2690			goto illegal;
2691		}
2692		break;
2693
2694	case SDEV_QUIESCE:
2695		switch (oldstate) {
2696		case SDEV_RUNNING:
2697		case SDEV_OFFLINE:
2698		case SDEV_TRANSPORT_OFFLINE:
2699			break;
2700		default:
2701			goto illegal;
2702		}
2703		break;
2704
2705	case SDEV_OFFLINE:
2706	case SDEV_TRANSPORT_OFFLINE:
2707		switch (oldstate) {
2708		case SDEV_CREATED:
2709		case SDEV_RUNNING:
2710		case SDEV_QUIESCE:
2711		case SDEV_BLOCK:
2712			break;
2713		default:
2714			goto illegal;
2715		}
2716		break;
2717
2718	case SDEV_BLOCK:
2719		switch (oldstate) {
2720		case SDEV_RUNNING:
2721		case SDEV_CREATED_BLOCK:
 
2722			break;
2723		default:
2724			goto illegal;
2725		}
2726		break;
2727
2728	case SDEV_CREATED_BLOCK:
2729		switch (oldstate) {
2730		case SDEV_CREATED:
2731			break;
2732		default:
2733			goto illegal;
2734		}
2735		break;
2736
2737	case SDEV_CANCEL:
2738		switch (oldstate) {
2739		case SDEV_CREATED:
2740		case SDEV_RUNNING:
2741		case SDEV_QUIESCE:
2742		case SDEV_OFFLINE:
2743		case SDEV_TRANSPORT_OFFLINE:
2744			break;
2745		default:
2746			goto illegal;
2747		}
2748		break;
2749
2750	case SDEV_DEL:
2751		switch (oldstate) {
2752		case SDEV_CREATED:
2753		case SDEV_RUNNING:
2754		case SDEV_OFFLINE:
2755		case SDEV_TRANSPORT_OFFLINE:
2756		case SDEV_CANCEL:
2757		case SDEV_BLOCK:
2758		case SDEV_CREATED_BLOCK:
2759			break;
2760		default:
2761			goto illegal;
2762		}
2763		break;
2764
2765	}
2766	sdev->sdev_state = state;
2767	return 0;
2768
2769 illegal:
2770	SCSI_LOG_ERROR_RECOVERY(1,
2771				sdev_printk(KERN_ERR, sdev,
2772					    "Illegal state transition %s->%s",
2773					    scsi_device_state_name(oldstate),
2774					    scsi_device_state_name(state))
2775				);
2776	return -EINVAL;
2777}
2778EXPORT_SYMBOL(scsi_device_set_state);
2779
2780/**
2781 * 	sdev_evt_emit - emit a single SCSI device uevent
2782 *	@sdev: associated SCSI device
2783 *	@evt: event to emit
2784 *
2785 *	Send a single uevent (scsi_event) to the associated scsi_device.
2786 */
2787static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2788{
2789	int idx = 0;
2790	char *envp[3];
2791
2792	switch (evt->evt_type) {
2793	case SDEV_EVT_MEDIA_CHANGE:
2794		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2795		break;
2796	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797		scsi_rescan_device(&sdev->sdev_gendev);
2798		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2799		break;
2800	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2801		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2802		break;
2803	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2804	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2805		break;
2806	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2808		break;
2809	case SDEV_EVT_LUN_CHANGE_REPORTED:
2810		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2811		break;
2812	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2813		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2814		break;
2815	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2816		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2817		break;
2818	default:
2819		/* do nothing */
2820		break;
2821	}
2822
2823	envp[idx++] = NULL;
2824
2825	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2826}
2827
2828/**
2829 * 	sdev_evt_thread - send a uevent for each scsi event
2830 *	@work: work struct for scsi_device
2831 *
2832 *	Dispatch queued events to their associated scsi_device kobjects
2833 *	as uevents.
2834 */
2835void scsi_evt_thread(struct work_struct *work)
2836{
2837	struct scsi_device *sdev;
2838	enum scsi_device_event evt_type;
2839	LIST_HEAD(event_list);
2840
2841	sdev = container_of(work, struct scsi_device, event_work);
2842
2843	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2844		if (test_and_clear_bit(evt_type, sdev->pending_events))
2845			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2846
2847	while (1) {
2848		struct scsi_event *evt;
2849		struct list_head *this, *tmp;
2850		unsigned long flags;
2851
2852		spin_lock_irqsave(&sdev->list_lock, flags);
2853		list_splice_init(&sdev->event_list, &event_list);
2854		spin_unlock_irqrestore(&sdev->list_lock, flags);
2855
2856		if (list_empty(&event_list))
2857			break;
2858
2859		list_for_each_safe(this, tmp, &event_list) {
2860			evt = list_entry(this, struct scsi_event, node);
2861			list_del(&evt->node);
2862			scsi_evt_emit(sdev, evt);
2863			kfree(evt);
2864		}
2865	}
2866}
2867
2868/**
2869 * 	sdev_evt_send - send asserted event to uevent thread
2870 *	@sdev: scsi_device event occurred on
2871 *	@evt: event to send
2872 *
2873 *	Assert scsi device event asynchronously.
2874 */
2875void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2876{
2877	unsigned long flags;
2878
2879#if 0
2880	/* FIXME: currently this check eliminates all media change events
2881	 * for polled devices.  Need to update to discriminate between AN
2882	 * and polled events */
2883	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2884		kfree(evt);
2885		return;
2886	}
2887#endif
2888
2889	spin_lock_irqsave(&sdev->list_lock, flags);
2890	list_add_tail(&evt->node, &sdev->event_list);
2891	schedule_work(&sdev->event_work);
2892	spin_unlock_irqrestore(&sdev->list_lock, flags);
2893}
2894EXPORT_SYMBOL_GPL(sdev_evt_send);
2895
2896/**
2897 * 	sdev_evt_alloc - allocate a new scsi event
2898 *	@evt_type: type of event to allocate
2899 *	@gfpflags: GFP flags for allocation
2900 *
2901 *	Allocates and returns a new scsi_event.
2902 */
2903struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2904				  gfp_t gfpflags)
2905{
2906	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2907	if (!evt)
2908		return NULL;
2909
2910	evt->evt_type = evt_type;
2911	INIT_LIST_HEAD(&evt->node);
2912
2913	/* evt_type-specific initialization, if any */
2914	switch (evt_type) {
2915	case SDEV_EVT_MEDIA_CHANGE:
2916	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2917	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2918	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2919	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2920	case SDEV_EVT_LUN_CHANGE_REPORTED:
2921	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2922	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2923	default:
2924		/* do nothing */
2925		break;
2926	}
2927
2928	return evt;
2929}
2930EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2931
2932/**
2933 * 	sdev_evt_send_simple - send asserted event to uevent thread
2934 *	@sdev: scsi_device event occurred on
2935 *	@evt_type: type of event to send
2936 *	@gfpflags: GFP flags for allocation
2937 *
2938 *	Assert scsi device event asynchronously, given an event type.
2939 */
2940void sdev_evt_send_simple(struct scsi_device *sdev,
2941			  enum scsi_device_event evt_type, gfp_t gfpflags)
2942{
2943	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2944	if (!evt) {
2945		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2946			    evt_type);
2947		return;
2948	}
2949
2950	sdev_evt_send(sdev, evt);
2951}
2952EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2953
2954/**
2955 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2956 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2957 */
2958static int scsi_request_fn_active(struct scsi_device *sdev)
2959{
2960	struct request_queue *q = sdev->request_queue;
2961	int request_fn_active;
2962
2963	WARN_ON_ONCE(sdev->host->use_blk_mq);
2964
2965	spin_lock_irq(q->queue_lock);
2966	request_fn_active = q->request_fn_active;
2967	spin_unlock_irq(q->queue_lock);
2968
2969	return request_fn_active;
2970}
2971
2972/**
2973 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2974 * @sdev: SCSI device pointer.
2975 *
2976 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2977 * invoked from scsi_request_fn() have finished.
2978 */
2979static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2980{
2981	WARN_ON_ONCE(sdev->host->use_blk_mq);
2982
2983	while (scsi_request_fn_active(sdev))
2984		msleep(20);
2985}
2986
2987/**
2988 *	scsi_device_quiesce - Block user issued commands.
2989 *	@sdev:	scsi device to quiesce.
2990 *
2991 *	This works by trying to transition to the SDEV_QUIESCE state
2992 *	(which must be a legal transition).  When the device is in this
2993 *	state, only special requests will be accepted, all others will
2994 *	be deferred.  Since special requests may also be requeued requests,
2995 *	a successful return doesn't guarantee the device will be 
2996 *	totally quiescent.
2997 *
2998 *	Must be called with user context, may sleep.
2999 *
3000 *	Returns zero if unsuccessful or an error if not.
3001 */
3002int
3003scsi_device_quiesce(struct scsi_device *sdev)
3004{
3005	struct request_queue *q = sdev->request_queue;
3006	int err;
3007
3008	/*
3009	 * It is allowed to call scsi_device_quiesce() multiple times from
3010	 * the same context but concurrent scsi_device_quiesce() calls are
3011	 * not allowed.
3012	 */
3013	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3014
3015	blk_set_preempt_only(q);
 
 
 
3016
3017	blk_mq_freeze_queue(q);
3018	/*
3019	 * Ensure that the effect of blk_set_preempt_only() will be visible
3020	 * for percpu_ref_tryget() callers that occur after the queue
3021	 * unfreeze even if the queue was already frozen before this function
3022	 * was called. See also https://lwn.net/Articles/573497/.
3023	 */
3024	synchronize_rcu();
3025	blk_mq_unfreeze_queue(q);
3026
3027	mutex_lock(&sdev->state_mutex);
3028	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3029	if (err == 0)
3030		sdev->quiesced_by = current;
3031	else
3032		blk_clear_preempt_only(q);
3033	mutex_unlock(&sdev->state_mutex);
3034
3035	return err;
3036}
3037EXPORT_SYMBOL(scsi_device_quiesce);
3038
3039/**
3040 *	scsi_device_resume - Restart user issued commands to a quiesced device.
3041 *	@sdev:	scsi device to resume.
3042 *
3043 *	Moves the device from quiesced back to running and restarts the
3044 *	queues.
3045 *
3046 *	Must be called with user context, may sleep.
3047 */
3048void scsi_device_resume(struct scsi_device *sdev)
3049{
3050	/* check if the device state was mutated prior to resume, and if
3051	 * so assume the state is being managed elsewhere (for example
3052	 * device deleted during suspend)
3053	 */
3054	mutex_lock(&sdev->state_mutex);
3055	WARN_ON_ONCE(!sdev->quiesced_by);
3056	sdev->quiesced_by = NULL;
3057	blk_clear_preempt_only(sdev->request_queue);
 
3058	if (sdev->sdev_state == SDEV_QUIESCE)
3059		scsi_device_set_state(sdev, SDEV_RUNNING);
3060	mutex_unlock(&sdev->state_mutex);
3061}
3062EXPORT_SYMBOL(scsi_device_resume);
3063
3064static void
3065device_quiesce_fn(struct scsi_device *sdev, void *data)
3066{
3067	scsi_device_quiesce(sdev);
3068}
3069
3070void
3071scsi_target_quiesce(struct scsi_target *starget)
3072{
3073	starget_for_each_device(starget, NULL, device_quiesce_fn);
3074}
3075EXPORT_SYMBOL(scsi_target_quiesce);
3076
3077static void
3078device_resume_fn(struct scsi_device *sdev, void *data)
3079{
3080	scsi_device_resume(sdev);
3081}
3082
3083void
3084scsi_target_resume(struct scsi_target *starget)
3085{
3086	starget_for_each_device(starget, NULL, device_resume_fn);
3087}
3088EXPORT_SYMBOL(scsi_target_resume);
3089
3090/**
3091 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3092 * @sdev: device to block
3093 *
3094 * Pause SCSI command processing on the specified device. Does not sleep.
3095 *
3096 * Returns zero if successful or a negative error code upon failure.
3097 *
3098 * Notes:
3099 * This routine transitions the device to the SDEV_BLOCK state (which must be
3100 * a legal transition). When the device is in this state, command processing
3101 * is paused until the device leaves the SDEV_BLOCK state. See also
3102 * scsi_internal_device_unblock_nowait().
3103 */
3104int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3105{
3106	struct request_queue *q = sdev->request_queue;
3107	unsigned long flags;
3108	int err = 0;
3109
3110	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3111	if (err) {
3112		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3113
3114		if (err)
3115			return err;
3116	}
3117
3118	/* 
3119	 * The device has transitioned to SDEV_BLOCK.  Stop the
3120	 * block layer from calling the midlayer with this device's
3121	 * request queue. 
3122	 */
3123	if (q->mq_ops) {
3124		blk_mq_quiesce_queue_nowait(q);
3125	} else {
3126		spin_lock_irqsave(q->queue_lock, flags);
3127		blk_stop_queue(q);
3128		spin_unlock_irqrestore(q->queue_lock, flags);
3129	}
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3134
3135/**
3136 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3137 * @sdev: device to block
3138 *
3139 * Pause SCSI command processing on the specified device and wait until all
3140 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3141 *
3142 * Returns zero if successful or a negative error code upon failure.
3143 *
3144 * Note:
3145 * This routine transitions the device to the SDEV_BLOCK state (which must be
3146 * a legal transition). When the device is in this state, command processing
3147 * is paused until the device leaves the SDEV_BLOCK state. See also
3148 * scsi_internal_device_unblock().
3149 *
3150 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3151 * scsi_internal_device_block() has blocked a SCSI device and also
3152 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3153 */
3154static int scsi_internal_device_block(struct scsi_device *sdev)
3155{
3156	struct request_queue *q = sdev->request_queue;
3157	int err;
3158
3159	mutex_lock(&sdev->state_mutex);
3160	err = scsi_internal_device_block_nowait(sdev);
3161	if (err == 0) {
3162		if (q->mq_ops)
3163			blk_mq_quiesce_queue(q);
3164		else
3165			scsi_wait_for_queuecommand(sdev);
3166	}
3167	mutex_unlock(&sdev->state_mutex);
3168
3169	return err;
3170}
3171 
3172void scsi_start_queue(struct scsi_device *sdev)
3173{
3174	struct request_queue *q = sdev->request_queue;
3175	unsigned long flags;
3176
3177	if (q->mq_ops) {
3178		blk_mq_unquiesce_queue(q);
3179	} else {
3180		spin_lock_irqsave(q->queue_lock, flags);
3181		blk_start_queue(q);
3182		spin_unlock_irqrestore(q->queue_lock, flags);
3183	}
3184}
3185
3186/**
3187 * scsi_internal_device_unblock_nowait - resume a device after a block request
3188 * @sdev:	device to resume
3189 * @new_state:	state to set the device to after unblocking
3190 *
3191 * Restart the device queue for a previously suspended SCSI device. Does not
3192 * sleep.
3193 *
3194 * Returns zero if successful or a negative error code upon failure.
3195 *
3196 * Notes:
3197 * This routine transitions the device to the SDEV_RUNNING state or to one of
3198 * the offline states (which must be a legal transition) allowing the midlayer
3199 * to goose the queue for this device.
3200 */
3201int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3202					enum scsi_device_state new_state)
3203{
 
 
 
 
 
 
 
 
3204	/*
3205	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3206	 * offlined states and goose the device queue if successful.
3207	 */
3208	switch (sdev->sdev_state) {
3209	case SDEV_BLOCK:
3210	case SDEV_TRANSPORT_OFFLINE:
3211		sdev->sdev_state = new_state;
3212		break;
3213	case SDEV_CREATED_BLOCK:
3214		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3215		    new_state == SDEV_OFFLINE)
3216			sdev->sdev_state = new_state;
3217		else
3218			sdev->sdev_state = SDEV_CREATED;
3219		break;
3220	case SDEV_CANCEL:
3221	case SDEV_OFFLINE:
3222		break;
3223	default:
3224		return -EINVAL;
3225	}
3226	scsi_start_queue(sdev);
3227
3228	return 0;
3229}
3230EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3231
3232/**
3233 * scsi_internal_device_unblock - resume a device after a block request
3234 * @sdev:	device to resume
3235 * @new_state:	state to set the device to after unblocking
3236 *
3237 * Restart the device queue for a previously suspended SCSI device. May sleep.
3238 *
3239 * Returns zero if successful or a negative error code upon failure.
3240 *
3241 * Notes:
3242 * This routine transitions the device to the SDEV_RUNNING state or to one of
3243 * the offline states (which must be a legal transition) allowing the midlayer
3244 * to goose the queue for this device.
3245 */
3246static int scsi_internal_device_unblock(struct scsi_device *sdev,
3247					enum scsi_device_state new_state)
3248{
3249	int ret;
3250
3251	mutex_lock(&sdev->state_mutex);
3252	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3253	mutex_unlock(&sdev->state_mutex);
3254
3255	return ret;
3256}
3257
3258static void
3259device_block(struct scsi_device *sdev, void *data)
3260{
3261	scsi_internal_device_block(sdev);
 
 
 
 
 
3262}
3263
3264static int
3265target_block(struct device *dev, void *data)
3266{
3267	if (scsi_is_target_device(dev))
3268		starget_for_each_device(to_scsi_target(dev), NULL,
3269					device_block);
3270	return 0;
3271}
3272
3273void
3274scsi_target_block(struct device *dev)
3275{
3276	if (scsi_is_target_device(dev))
3277		starget_for_each_device(to_scsi_target(dev), NULL,
3278					device_block);
3279	else
3280		device_for_each_child(dev, NULL, target_block);
3281}
3282EXPORT_SYMBOL_GPL(scsi_target_block);
3283
3284static void
3285device_unblock(struct scsi_device *sdev, void *data)
3286{
3287	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3288}
3289
3290static int
3291target_unblock(struct device *dev, void *data)
3292{
3293	if (scsi_is_target_device(dev))
3294		starget_for_each_device(to_scsi_target(dev), data,
3295					device_unblock);
3296	return 0;
3297}
3298
3299void
3300scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3301{
3302	if (scsi_is_target_device(dev))
3303		starget_for_each_device(to_scsi_target(dev), &new_state,
3304					device_unblock);
3305	else
3306		device_for_each_child(dev, &new_state, target_unblock);
3307}
3308EXPORT_SYMBOL_GPL(scsi_target_unblock);
3309
3310/**
3311 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3312 * @sgl:	scatter-gather list
3313 * @sg_count:	number of segments in sg
3314 * @offset:	offset in bytes into sg, on return offset into the mapped area
3315 * @len:	bytes to map, on return number of bytes mapped
3316 *
3317 * Returns virtual address of the start of the mapped page
3318 */
3319void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3320			  size_t *offset, size_t *len)
3321{
3322	int i;
3323	size_t sg_len = 0, len_complete = 0;
3324	struct scatterlist *sg;
3325	struct page *page;
3326
3327	WARN_ON(!irqs_disabled());
3328
3329	for_each_sg(sgl, sg, sg_count, i) {
3330		len_complete = sg_len; /* Complete sg-entries */
3331		sg_len += sg->length;
3332		if (sg_len > *offset)
3333			break;
3334	}
3335
3336	if (unlikely(i == sg_count)) {
3337		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3338			"elements %d\n",
3339		       __func__, sg_len, *offset, sg_count);
3340		WARN_ON(1);
3341		return NULL;
3342	}
3343
3344	/* Offset starting from the beginning of first page in this sg-entry */
3345	*offset = *offset - len_complete + sg->offset;
3346
3347	/* Assumption: contiguous pages can be accessed as "page + i" */
3348	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3349	*offset &= ~PAGE_MASK;
3350
3351	/* Bytes in this sg-entry from *offset to the end of the page */
3352	sg_len = PAGE_SIZE - *offset;
3353	if (*len > sg_len)
3354		*len = sg_len;
3355
3356	return kmap_atomic(page);
3357}
3358EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3359
3360/**
3361 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3362 * @virt:	virtual address to be unmapped
3363 */
3364void scsi_kunmap_atomic_sg(void *virt)
3365{
3366	kunmap_atomic(virt);
3367}
3368EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3369
3370void sdev_disable_disk_events(struct scsi_device *sdev)
3371{
3372	atomic_inc(&sdev->disk_events_disable_depth);
3373}
3374EXPORT_SYMBOL(sdev_disable_disk_events);
3375
3376void sdev_enable_disk_events(struct scsi_device *sdev)
3377{
3378	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3379		return;
3380	atomic_dec(&sdev->disk_events_disable_depth);
3381}
3382EXPORT_SYMBOL(sdev_enable_disk_events);
3383
3384/**
3385 * scsi_vpd_lun_id - return a unique device identification
3386 * @sdev: SCSI device
3387 * @id:   buffer for the identification
3388 * @id_len:  length of the buffer
3389 *
3390 * Copies a unique device identification into @id based
3391 * on the information in the VPD page 0x83 of the device.
3392 * The string will be formatted as a SCSI name string.
3393 *
3394 * Returns the length of the identification or error on failure.
3395 * If the identifier is longer than the supplied buffer the actual
3396 * identifier length is returned and the buffer is not zero-padded.
3397 */
3398int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3399{
3400	u8 cur_id_type = 0xff;
3401	u8 cur_id_size = 0;
3402	const unsigned char *d, *cur_id_str;
3403	const struct scsi_vpd *vpd_pg83;
3404	int id_size = -EINVAL;
3405
3406	rcu_read_lock();
3407	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408	if (!vpd_pg83) {
3409		rcu_read_unlock();
3410		return -ENXIO;
3411	}
3412
3413	/*
3414	 * Look for the correct descriptor.
3415	 * Order of preference for lun descriptor:
3416	 * - SCSI name string
3417	 * - NAA IEEE Registered Extended
3418	 * - EUI-64 based 16-byte
3419	 * - EUI-64 based 12-byte
3420	 * - NAA IEEE Registered
3421	 * - NAA IEEE Extended
3422	 * - T10 Vendor ID
3423	 * as longer descriptors reduce the likelyhood
3424	 * of identification clashes.
3425	 */
3426
3427	/* The id string must be at least 20 bytes + terminating NULL byte */
3428	if (id_len < 21) {
3429		rcu_read_unlock();
3430		return -EINVAL;
3431	}
3432
3433	memset(id, 0, id_len);
3434	d = vpd_pg83->data + 4;
3435	while (d < vpd_pg83->data + vpd_pg83->len) {
3436		/* Skip designators not referring to the LUN */
3437		if ((d[1] & 0x30) != 0x00)
3438			goto next_desig;
3439
3440		switch (d[1] & 0xf) {
3441		case 0x1:
3442			/* T10 Vendor ID */
3443			if (cur_id_size > d[3])
3444				break;
3445			/* Prefer anything */
3446			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3447				break;
3448			cur_id_size = d[3];
3449			if (cur_id_size + 4 > id_len)
3450				cur_id_size = id_len - 4;
3451			cur_id_str = d + 4;
3452			cur_id_type = d[1] & 0xf;
3453			id_size = snprintf(id, id_len, "t10.%*pE",
3454					   cur_id_size, cur_id_str);
3455			break;
3456		case 0x2:
3457			/* EUI-64 */
3458			if (cur_id_size > d[3])
3459				break;
3460			/* Prefer NAA IEEE Registered Extended */
3461			if (cur_id_type == 0x3 &&
3462			    cur_id_size == d[3])
3463				break;
3464			cur_id_size = d[3];
3465			cur_id_str = d + 4;
3466			cur_id_type = d[1] & 0xf;
3467			switch (cur_id_size) {
3468			case 8:
3469				id_size = snprintf(id, id_len,
3470						   "eui.%8phN",
3471						   cur_id_str);
3472				break;
3473			case 12:
3474				id_size = snprintf(id, id_len,
3475						   "eui.%12phN",
3476						   cur_id_str);
3477				break;
3478			case 16:
3479				id_size = snprintf(id, id_len,
3480						   "eui.%16phN",
3481						   cur_id_str);
3482				break;
3483			default:
3484				cur_id_size = 0;
3485				break;
3486			}
3487			break;
3488		case 0x3:
3489			/* NAA */
3490			if (cur_id_size > d[3])
3491				break;
3492			cur_id_size = d[3];
3493			cur_id_str = d + 4;
3494			cur_id_type = d[1] & 0xf;
3495			switch (cur_id_size) {
3496			case 8:
3497				id_size = snprintf(id, id_len,
3498						   "naa.%8phN",
3499						   cur_id_str);
3500				break;
3501			case 16:
3502				id_size = snprintf(id, id_len,
3503						   "naa.%16phN",
3504						   cur_id_str);
3505				break;
3506			default:
3507				cur_id_size = 0;
3508				break;
3509			}
3510			break;
3511		case 0x8:
3512			/* SCSI name string */
3513			if (cur_id_size + 4 > d[3])
3514				break;
3515			/* Prefer others for truncated descriptor */
3516			if (cur_id_size && d[3] > id_len)
3517				break;
3518			cur_id_size = id_size = d[3];
3519			cur_id_str = d + 4;
3520			cur_id_type = d[1] & 0xf;
3521			if (cur_id_size >= id_len)
3522				cur_id_size = id_len - 1;
3523			memcpy(id, cur_id_str, cur_id_size);
3524			/* Decrease priority for truncated descriptor */
3525			if (cur_id_size != id_size)
3526				cur_id_size = 6;
3527			break;
3528		default:
3529			break;
3530		}
3531next_desig:
3532		d += d[3] + 4;
3533	}
3534	rcu_read_unlock();
3535
3536	return id_size;
3537}
3538EXPORT_SYMBOL(scsi_vpd_lun_id);
3539
3540/*
3541 * scsi_vpd_tpg_id - return a target port group identifier
3542 * @sdev: SCSI device
3543 *
3544 * Returns the Target Port Group identifier from the information
3545 * froom VPD page 0x83 of the device.
3546 *
3547 * Returns the identifier or error on failure.
3548 */
3549int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3550{
3551	const unsigned char *d;
3552	const struct scsi_vpd *vpd_pg83;
3553	int group_id = -EAGAIN, rel_port = -1;
3554
3555	rcu_read_lock();
3556	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3557	if (!vpd_pg83) {
3558		rcu_read_unlock();
3559		return -ENXIO;
3560	}
3561
3562	d = vpd_pg83->data + 4;
3563	while (d < vpd_pg83->data + vpd_pg83->len) {
3564		switch (d[1] & 0xf) {
3565		case 0x4:
3566			/* Relative target port */
3567			rel_port = get_unaligned_be16(&d[6]);
3568			break;
3569		case 0x5:
3570			/* Target port group */
3571			group_id = get_unaligned_be16(&d[6]);
3572			break;
3573		default:
3574			break;
3575		}
3576		d += d[3] + 4;
3577	}
3578	rcu_read_unlock();
3579
3580	if (group_id >= 0 && rel_id && rel_port != -1)
3581		*rel_id = rel_port;
3582
3583	return group_id;
3584}
3585EXPORT_SYMBOL(scsi_vpd_tpg_id);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sdb_cache;
  56static struct kmem_cache *scsi_sense_cache;
  57static struct kmem_cache *scsi_sense_isadma_cache;
  58static DEFINE_MUTEX(scsi_sense_cache_mutex);
  59
  60static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  61
  62static inline struct kmem_cache *
  63scsi_select_sense_cache(bool unchecked_isa_dma)
  64{
  65	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  66}
  67
  68static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  69				   unsigned char *sense_buffer)
  70{
  71	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  72			sense_buffer);
  73}
  74
  75static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  76	gfp_t gfp_mask, int numa_node)
  77{
  78	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  79				     gfp_mask, numa_node);
  80}
  81
  82int scsi_init_sense_cache(struct Scsi_Host *shost)
  83{
  84	struct kmem_cache *cache;
  85	int ret = 0;
  86
  87	mutex_lock(&scsi_sense_cache_mutex);
  88	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  89	if (cache)
  90		goto exit;
  91
 
  92	if (shost->unchecked_isa_dma) {
  93		scsi_sense_isadma_cache =
  94			kmem_cache_create("scsi_sense_cache(DMA)",
  95				SCSI_SENSE_BUFFERSIZE, 0,
  96				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  97		if (!scsi_sense_isadma_cache)
  98			ret = -ENOMEM;
  99	} else {
 100		scsi_sense_cache =
 101			kmem_cache_create_usercopy("scsi_sense_cache",
 102				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 103				0, SCSI_SENSE_BUFFERSIZE, NULL);
 104		if (!scsi_sense_cache)
 105			ret = -ENOMEM;
 106	}
 107 exit:
 108	mutex_unlock(&scsi_sense_cache_mutex);
 109	return ret;
 110}
 111
 112/*
 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 114 * not change behaviour from the previous unplug mechanism, experimentation
 115 * may prove this needs changing.
 116 */
 117#define SCSI_QUEUE_DELAY	3
 118
 119static void
 120scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 121{
 122	struct Scsi_Host *host = cmd->device->host;
 123	struct scsi_device *device = cmd->device;
 124	struct scsi_target *starget = scsi_target(device);
 125
 126	/*
 127	 * Set the appropriate busy bit for the device/host.
 128	 *
 129	 * If the host/device isn't busy, assume that something actually
 130	 * completed, and that we should be able to queue a command now.
 131	 *
 132	 * Note that the prior mid-layer assumption that any host could
 133	 * always queue at least one command is now broken.  The mid-layer
 134	 * will implement a user specifiable stall (see
 135	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 136	 * if a command is requeued with no other commands outstanding
 137	 * either for the device or for the host.
 138	 */
 139	switch (reason) {
 140	case SCSI_MLQUEUE_HOST_BUSY:
 141		atomic_set(&host->host_blocked, host->max_host_blocked);
 142		break;
 143	case SCSI_MLQUEUE_DEVICE_BUSY:
 144	case SCSI_MLQUEUE_EH_RETRY:
 145		atomic_set(&device->device_blocked,
 146			   device->max_device_blocked);
 147		break;
 148	case SCSI_MLQUEUE_TARGET_BUSY:
 149		atomic_set(&starget->target_blocked,
 150			   starget->max_target_blocked);
 151		break;
 152	}
 153}
 154
 155static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 156{
 
 
 157	if (cmd->request->rq_flags & RQF_DONTPREP) {
 158		cmd->request->rq_flags &= ~RQF_DONTPREP;
 159		scsi_mq_uninit_cmd(cmd);
 160	} else {
 161		WARN_ON_ONCE(true);
 162	}
 163	blk_mq_requeue_request(cmd->request, true);
 
 164}
 165
 166/**
 167 * __scsi_queue_insert - private queue insertion
 168 * @cmd: The SCSI command being requeued
 169 * @reason:  The reason for the requeue
 170 * @unbusy: Whether the queue should be unbusied
 171 *
 172 * This is a private queue insertion.  The public interface
 173 * scsi_queue_insert() always assumes the queue should be unbusied
 174 * because it's always called before the completion.  This function is
 175 * for a requeue after completion, which should only occur in this
 176 * file.
 177 */
 178static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 179{
 180	struct scsi_device *device = cmd->device;
 
 
 181
 182	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 183		"Inserting command %p into mlqueue\n", cmd));
 184
 185	scsi_set_blocked(cmd, reason);
 186
 187	/*
 188	 * Decrement the counters, since these commands are no longer
 189	 * active on the host/device.
 190	 */
 191	if (unbusy)
 192		scsi_device_unbusy(device);
 193
 194	/*
 195	 * Requeue this command.  It will go before all other commands
 196	 * that are already in the queue. Schedule requeue work under
 197	 * lock such that the kblockd_schedule_work() call happens
 198	 * before blk_cleanup_queue() finishes.
 199	 */
 200	cmd->result = 0;
 201
 202	blk_mq_requeue_request(cmd->request, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203}
 204
 205/*
 206 * Function:    scsi_queue_insert()
 207 *
 208 * Purpose:     Insert a command in the midlevel queue.
 209 *
 210 * Arguments:   cmd    - command that we are adding to queue.
 211 *              reason - why we are inserting command to queue.
 212 *
 213 * Lock status: Assumed that lock is not held upon entry.
 214 *
 215 * Returns:     Nothing.
 216 *
 217 * Notes:       We do this for one of two cases.  Either the host is busy
 218 *              and it cannot accept any more commands for the time being,
 219 *              or the device returned QUEUE_FULL and can accept no more
 220 *              commands.
 221 * Notes:       This could be called either from an interrupt context or a
 222 *              normal process context.
 223 */
 224void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 225{
 226	__scsi_queue_insert(cmd, reason, true);
 227}
 228
 229
 230/**
 231 * __scsi_execute - insert request and wait for the result
 232 * @sdev:	scsi device
 233 * @cmd:	scsi command
 234 * @data_direction: data direction
 235 * @buffer:	data buffer
 236 * @bufflen:	len of buffer
 237 * @sense:	optional sense buffer
 238 * @sshdr:	optional decoded sense header
 239 * @timeout:	request timeout in seconds
 240 * @retries:	number of times to retry request
 241 * @flags:	flags for ->cmd_flags
 242 * @rq_flags:	flags for ->rq_flags
 243 * @resid:	optional residual length
 244 *
 245 * Returns the scsi_cmnd result field if a command was executed, or a negative
 246 * Linux error code if we didn't get that far.
 247 */
 248int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 249		 int data_direction, void *buffer, unsigned bufflen,
 250		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 251		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 252		 int *resid)
 253{
 254	struct request *req;
 255	struct scsi_request *rq;
 256	int ret = DRIVER_ERROR << 24;
 257
 258	req = blk_get_request(sdev->request_queue,
 259			data_direction == DMA_TO_DEVICE ?
 260			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 261	if (IS_ERR(req))
 262		return ret;
 263	rq = scsi_req(req);
 264
 265	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 266					buffer, bufflen, GFP_NOIO))
 267		goto out;
 268
 269	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 270	memcpy(rq->cmd, cmd, rq->cmd_len);
 271	rq->retries = retries;
 272	req->timeout = timeout;
 273	req->cmd_flags |= flags;
 274	req->rq_flags |= rq_flags | RQF_QUIET;
 275
 276	/*
 277	 * head injection *required* here otherwise quiesce won't work
 278	 */
 279	blk_execute_rq(req->q, NULL, req, 1);
 280
 281	/*
 282	 * Some devices (USB mass-storage in particular) may transfer
 283	 * garbage data together with a residue indicating that the data
 284	 * is invalid.  Prevent the garbage from being misinterpreted
 285	 * and prevent security leaks by zeroing out the excess data.
 286	 */
 287	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 288		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 289
 290	if (resid)
 291		*resid = rq->resid_len;
 292	if (sense && rq->sense_len)
 293		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 294	if (sshdr)
 295		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 296	ret = rq->result;
 297 out:
 298	blk_put_request(req);
 299
 300	return ret;
 301}
 302EXPORT_SYMBOL(__scsi_execute);
 303
 304/*
 305 * Function:    scsi_init_cmd_errh()
 306 *
 307 * Purpose:     Initialize cmd fields related to error handling.
 308 *
 309 * Arguments:   cmd	- command that is ready to be queued.
 310 *
 311 * Notes:       This function has the job of initializing a number of
 312 *              fields related to error handling.   Typically this will
 313 *              be called once for each command, as required.
 314 */
 315static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 316{
 
 317	scsi_set_resid(cmd, 0);
 318	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 319	if (cmd->cmd_len == 0)
 320		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 321}
 322
 323/*
 324 * Decrement the host_busy counter and wake up the error handler if necessary.
 325 * Avoid as follows that the error handler is not woken up if shost->host_busy
 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 327 * with an RCU read lock in this function to ensure that this function in its
 328 * entirety either finishes before scsi_eh_scmd_add() increases the
 329 * host_failed counter or that it notices the shost state change made by
 330 * scsi_eh_scmd_add().
 331 */
 332static void scsi_dec_host_busy(struct Scsi_Host *shost)
 333{
 334	unsigned long flags;
 335
 336	rcu_read_lock();
 337	atomic_dec(&shost->host_busy);
 338	if (unlikely(scsi_host_in_recovery(shost))) {
 339		spin_lock_irqsave(shost->host_lock, flags);
 340		if (shost->host_failed || shost->host_eh_scheduled)
 341			scsi_eh_wakeup(shost);
 342		spin_unlock_irqrestore(shost->host_lock, flags);
 343	}
 344	rcu_read_unlock();
 345}
 346
 347void scsi_device_unbusy(struct scsi_device *sdev)
 348{
 349	struct Scsi_Host *shost = sdev->host;
 350	struct scsi_target *starget = scsi_target(sdev);
 351
 352	scsi_dec_host_busy(shost);
 353
 354	if (starget->can_queue > 0)
 355		atomic_dec(&starget->target_busy);
 356
 357	atomic_dec(&sdev->device_busy);
 358}
 359
 360static void scsi_kick_queue(struct request_queue *q)
 361{
 362	blk_mq_run_hw_queues(q, false);
 
 
 
 363}
 364
 365/*
 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 367 * and call blk_run_queue for all the scsi_devices on the target -
 368 * including current_sdev first.
 369 *
 370 * Called with *no* scsi locks held.
 371 */
 372static void scsi_single_lun_run(struct scsi_device *current_sdev)
 373{
 374	struct Scsi_Host *shost = current_sdev->host;
 375	struct scsi_device *sdev, *tmp;
 376	struct scsi_target *starget = scsi_target(current_sdev);
 377	unsigned long flags;
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	starget->starget_sdev_user = NULL;
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382
 383	/*
 384	 * Call blk_run_queue for all LUNs on the target, starting with
 385	 * current_sdev. We race with others (to set starget_sdev_user),
 386	 * but in most cases, we will be first. Ideally, each LU on the
 387	 * target would get some limited time or requests on the target.
 388	 */
 389	scsi_kick_queue(current_sdev->request_queue);
 390
 391	spin_lock_irqsave(shost->host_lock, flags);
 392	if (starget->starget_sdev_user)
 393		goto out;
 394	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 395			same_target_siblings) {
 396		if (sdev == current_sdev)
 397			continue;
 398		if (scsi_device_get(sdev))
 399			continue;
 400
 401		spin_unlock_irqrestore(shost->host_lock, flags);
 402		scsi_kick_queue(sdev->request_queue);
 403		spin_lock_irqsave(shost->host_lock, flags);
 404	
 405		scsi_device_put(sdev);
 406	}
 407 out:
 408	spin_unlock_irqrestore(shost->host_lock, flags);
 409}
 410
 411static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 412{
 413	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 414		return true;
 415	if (atomic_read(&sdev->device_blocked) > 0)
 416		return true;
 417	return false;
 418}
 419
 420static inline bool scsi_target_is_busy(struct scsi_target *starget)
 421{
 422	if (starget->can_queue > 0) {
 423		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 424			return true;
 425		if (atomic_read(&starget->target_blocked) > 0)
 426			return true;
 427	}
 428	return false;
 429}
 430
 431static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 432{
 433	if (shost->can_queue > 0 &&
 434	    atomic_read(&shost->host_busy) >= shost->can_queue)
 435		return true;
 436	if (atomic_read(&shost->host_blocked) > 0)
 437		return true;
 438	if (shost->host_self_blocked)
 439		return true;
 440	return false;
 441}
 442
 443static void scsi_starved_list_run(struct Scsi_Host *shost)
 444{
 445	LIST_HEAD(starved_list);
 446	struct scsi_device *sdev;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(shost->host_lock, flags);
 450	list_splice_init(&shost->starved_list, &starved_list);
 451
 452	while (!list_empty(&starved_list)) {
 453		struct request_queue *slq;
 454
 455		/*
 456		 * As long as shost is accepting commands and we have
 457		 * starved queues, call blk_run_queue. scsi_request_fn
 458		 * drops the queue_lock and can add us back to the
 459		 * starved_list.
 460		 *
 461		 * host_lock protects the starved_list and starved_entry.
 462		 * scsi_request_fn must get the host_lock before checking
 463		 * or modifying starved_list or starved_entry.
 464		 */
 465		if (scsi_host_is_busy(shost))
 466			break;
 467
 468		sdev = list_entry(starved_list.next,
 469				  struct scsi_device, starved_entry);
 470		list_del_init(&sdev->starved_entry);
 471		if (scsi_target_is_busy(scsi_target(sdev))) {
 472			list_move_tail(&sdev->starved_entry,
 473				       &shost->starved_list);
 474			continue;
 475		}
 476
 477		/*
 478		 * Once we drop the host lock, a racing scsi_remove_device()
 479		 * call may remove the sdev from the starved list and destroy
 480		 * it and the queue.  Mitigate by taking a reference to the
 481		 * queue and never touching the sdev again after we drop the
 482		 * host lock.  Note: if __scsi_remove_device() invokes
 483		 * blk_cleanup_queue() before the queue is run from this
 484		 * function then blk_run_queue() will return immediately since
 485		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 486		 */
 487		slq = sdev->request_queue;
 488		if (!blk_get_queue(slq))
 489			continue;
 490		spin_unlock_irqrestore(shost->host_lock, flags);
 491
 492		scsi_kick_queue(slq);
 493		blk_put_queue(slq);
 494
 495		spin_lock_irqsave(shost->host_lock, flags);
 496	}
 497	/* put any unprocessed entries back */
 498	list_splice(&starved_list, &shost->starved_list);
 499	spin_unlock_irqrestore(shost->host_lock, flags);
 500}
 501
 502/*
 503 * Function:   scsi_run_queue()
 504 *
 505 * Purpose:    Select a proper request queue to serve next
 506 *
 507 * Arguments:  q       - last request's queue
 508 *
 509 * Returns:     Nothing
 510 *
 511 * Notes:      The previous command was completely finished, start
 512 *             a new one if possible.
 513 */
 514static void scsi_run_queue(struct request_queue *q)
 515{
 516	struct scsi_device *sdev = q->queuedata;
 517
 518	if (scsi_target(sdev)->single_lun)
 519		scsi_single_lun_run(sdev);
 520	if (!list_empty(&sdev->host->starved_list))
 521		scsi_starved_list_run(sdev->host);
 522
 523	blk_mq_run_hw_queues(q, false);
 
 
 
 524}
 525
 526void scsi_requeue_run_queue(struct work_struct *work)
 527{
 528	struct scsi_device *sdev;
 529	struct request_queue *q;
 530
 531	sdev = container_of(work, struct scsi_device, requeue_work);
 532	q = sdev->request_queue;
 533	scsi_run_queue(q);
 534}
 535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536void scsi_run_host_queues(struct Scsi_Host *shost)
 537{
 538	struct scsi_device *sdev;
 539
 540	shost_for_each_device(sdev, shost)
 541		scsi_run_queue(sdev->request_queue);
 542}
 543
 544static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 545{
 546	if (!blk_rq_is_passthrough(cmd->request)) {
 547		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 548
 549		if (drv->uninit_command)
 550			drv->uninit_command(cmd);
 551	}
 552}
 553
 554static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 555{
 
 
 556	if (cmd->sdb.table.nents)
 557		sg_free_table_chained(&cmd->sdb.table,
 558				SCSI_INLINE_SG_CNT);
 
 
 
 
 559	if (scsi_prot_sg_count(cmd))
 560		sg_free_table_chained(&cmd->prot_sdb->table,
 561				SCSI_INLINE_PROT_SG_CNT);
 562}
 563
 564static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 565{
 566	scsi_mq_free_sgtables(cmd);
 567	scsi_uninit_cmd(cmd);
 568	scsi_del_cmd_from_list(cmd);
 569}
 570
 571/* Returns false when no more bytes to process, true if there are more */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572static bool scsi_end_request(struct request *req, blk_status_t error,
 573		unsigned int bytes)
 574{
 575	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 576	struct scsi_device *sdev = cmd->device;
 577	struct request_queue *q = sdev->request_queue;
 578
 579	if (blk_update_request(req, error, bytes))
 580		return true;
 581
 
 
 
 
 
 582	if (blk_queue_add_random(q))
 583		add_disk_randomness(req->rq_disk);
 584
 585	if (!blk_rq_is_scsi(req)) {
 586		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 587		cmd->flags &= ~SCMD_INITIALIZED;
 
 588	}
 589
 590	/*
 591	 * Calling rcu_barrier() is not necessary here because the
 592	 * SCSI error handler guarantees that the function called by
 593	 * call_rcu() has been called before scsi_end_request() is
 594	 * called.
 595	 */
 596	destroy_rcu_head(&cmd->rcu);
 
 
 
 
 597
 598	/*
 599	 * In the MQ case the command gets freed by __blk_mq_end_request,
 600	 * so we have to do all cleanup that depends on it earlier.
 601	 *
 602	 * We also can't kick the queues from irq context, so we
 603	 * will have to defer it to a workqueue.
 604	 */
 605	scsi_mq_uninit_cmd(cmd);
 606
 607	/*
 608	 * queue is still alive, so grab the ref for preventing it
 609	 * from being cleaned up during running queue.
 610	 */
 611	percpu_ref_get(&q->q_usage_counter);
 612
 613	__blk_mq_end_request(req, error);
 
 
 614
 615	if (scsi_target(sdev)->single_lun ||
 616	    !list_empty(&sdev->host->starved_list))
 617		kblockd_schedule_work(&sdev->requeue_work);
 618	else
 619		blk_mq_run_hw_queues(q, true);
 620
 621	percpu_ref_put(&q->q_usage_counter);
 622	return false;
 623}
 624
 625/**
 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 627 * @cmd:	SCSI command
 628 * @result:	scsi error code
 629 *
 630 * Translate a SCSI result code into a blk_status_t value. May reset the host
 631 * byte of @cmd->result.
 632 */
 633static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 634{
 635	switch (host_byte(result)) {
 636	case DID_OK:
 637		/*
 638		 * Also check the other bytes than the status byte in result
 639		 * to handle the case when a SCSI LLD sets result to
 640		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 641		 */
 642		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 643			return BLK_STS_OK;
 644		return BLK_STS_IOERR;
 645	case DID_TRANSPORT_FAILFAST:
 646		return BLK_STS_TRANSPORT;
 647	case DID_TARGET_FAILURE:
 648		set_host_byte(cmd, DID_OK);
 649		return BLK_STS_TARGET;
 650	case DID_NEXUS_FAILURE:
 651		set_host_byte(cmd, DID_OK);
 652		return BLK_STS_NEXUS;
 653	case DID_ALLOC_FAILURE:
 654		set_host_byte(cmd, DID_OK);
 655		return BLK_STS_NOSPC;
 656	case DID_MEDIUM_ERROR:
 657		set_host_byte(cmd, DID_OK);
 658		return BLK_STS_MEDIUM;
 659	default:
 660		return BLK_STS_IOERR;
 661	}
 662}
 663
 664/* Helper for scsi_io_completion() when "reprep" action required. */
 665static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 666				      struct request_queue *q)
 667{
 668	/* A new command will be prepared and issued. */
 669	scsi_mq_requeue_cmd(cmd);
 670}
 671
 672/* Helper for scsi_io_completion() when special action required. */
 673static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674{
 
 675	struct request_queue *q = cmd->device->request_queue;
 676	struct request *req = cmd->request;
 677	int level = 0;
 
 
 
 678	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 679	      ACTION_DELAYED_RETRY} action;
 680	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 681	struct scsi_sense_hdr sshdr;
 682	bool sense_valid;
 683	bool sense_current = true;      /* false implies "deferred sense" */
 684	blk_status_t blk_stat;
 685
 686	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 687	if (sense_valid)
 688		sense_current = !scsi_sense_is_deferred(&sshdr);
 689
 690	blk_stat = scsi_result_to_blk_status(cmd, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691
 692	if (host_byte(result) == DID_RESET) {
 693		/* Third party bus reset or reset for error recovery
 694		 * reasons.  Just retry the command and see what
 695		 * happens.
 696		 */
 697		action = ACTION_RETRY;
 698	} else if (sense_valid && sense_current) {
 699		switch (sshdr.sense_key) {
 700		case UNIT_ATTENTION:
 701			if (cmd->device->removable) {
 702				/* Detected disc change.  Set a bit
 703				 * and quietly refuse further access.
 704				 */
 705				cmd->device->changed = 1;
 706				action = ACTION_FAIL;
 707			} else {
 708				/* Must have been a power glitch, or a
 709				 * bus reset.  Could not have been a
 710				 * media change, so we just retry the
 711				 * command and see what happens.
 712				 */
 713				action = ACTION_RETRY;
 714			}
 715			break;
 716		case ILLEGAL_REQUEST:
 717			/* If we had an ILLEGAL REQUEST returned, then
 718			 * we may have performed an unsupported
 719			 * command.  The only thing this should be
 720			 * would be a ten byte read where only a six
 721			 * byte read was supported.  Also, on a system
 722			 * where READ CAPACITY failed, we may have
 723			 * read past the end of the disk.
 724			 */
 725			if ((cmd->device->use_10_for_rw &&
 726			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 727			    (cmd->cmnd[0] == READ_10 ||
 728			     cmd->cmnd[0] == WRITE_10)) {
 729				/* This will issue a new 6-byte command. */
 730				cmd->device->use_10_for_rw = 0;
 731				action = ACTION_REPREP;
 732			} else if (sshdr.asc == 0x10) /* DIX */ {
 733				action = ACTION_FAIL;
 734				blk_stat = BLK_STS_PROTECTION;
 735			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 736			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 737				action = ACTION_FAIL;
 738				blk_stat = BLK_STS_TARGET;
 739			} else
 740				action = ACTION_FAIL;
 741			break;
 742		case ABORTED_COMMAND:
 743			action = ACTION_FAIL;
 744			if (sshdr.asc == 0x10) /* DIF */
 745				blk_stat = BLK_STS_PROTECTION;
 746			break;
 747		case NOT_READY:
 748			/* If the device is in the process of becoming
 749			 * ready, or has a temporary blockage, retry.
 750			 */
 751			if (sshdr.asc == 0x04) {
 752				switch (sshdr.ascq) {
 753				case 0x01: /* becoming ready */
 754				case 0x04: /* format in progress */
 755				case 0x05: /* rebuild in progress */
 756				case 0x06: /* recalculation in progress */
 757				case 0x07: /* operation in progress */
 758				case 0x08: /* Long write in progress */
 759				case 0x09: /* self test in progress */
 760				case 0x14: /* space allocation in progress */
 761				case 0x1a: /* start stop unit in progress */
 762				case 0x1b: /* sanitize in progress */
 763				case 0x1d: /* configuration in progress */
 764				case 0x24: /* depopulation in progress */
 765					action = ACTION_DELAYED_RETRY;
 766					break;
 767				default:
 768					action = ACTION_FAIL;
 769					break;
 770				}
 771			} else
 772				action = ACTION_FAIL;
 773			break;
 774		case VOLUME_OVERFLOW:
 775			/* See SSC3rXX or current. */
 776			action = ACTION_FAIL;
 777			break;
 778		default:
 779			action = ACTION_FAIL;
 780			break;
 781		}
 782	} else
 783		action = ACTION_FAIL;
 784
 785	if (action != ACTION_FAIL &&
 786	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 787		action = ACTION_FAIL;
 788
 789	switch (action) {
 790	case ACTION_FAIL:
 791		/* Give up and fail the remainder of the request */
 792		if (!(req->rq_flags & RQF_QUIET)) {
 793			static DEFINE_RATELIMIT_STATE(_rs,
 794					DEFAULT_RATELIMIT_INTERVAL,
 795					DEFAULT_RATELIMIT_BURST);
 796
 797			if (unlikely(scsi_logging_level))
 798				level =
 799				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 800						    SCSI_LOG_MLCOMPLETE_BITS);
 801
 802			/*
 803			 * if logging is enabled the failure will be printed
 804			 * in scsi_log_completion(), so avoid duplicate messages
 805			 */
 806			if (!level && __ratelimit(&_rs)) {
 807				scsi_print_result(cmd, NULL, FAILED);
 808				if (driver_byte(result) == DRIVER_SENSE)
 809					scsi_print_sense(cmd);
 810				scsi_print_command(cmd);
 811			}
 812		}
 813		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 814			return;
 815		/*FALLTHRU*/
 816	case ACTION_REPREP:
 817		scsi_io_completion_reprep(cmd, q);
 
 
 
 
 
 
 
 
 
 818		break;
 819	case ACTION_RETRY:
 820		/* Retry the same command immediately */
 821		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 822		break;
 823	case ACTION_DELAYED_RETRY:
 824		/* Retry the same command after a delay */
 825		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 826		break;
 827	}
 828}
 829
 830/*
 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 832 * new result that may suppress further error checking. Also modifies
 833 * *blk_statp in some cases.
 834 */
 835static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 836					blk_status_t *blk_statp)
 837{
 838	bool sense_valid;
 839	bool sense_current = true;	/* false implies "deferred sense" */
 840	struct request *req = cmd->request;
 841	struct scsi_sense_hdr sshdr;
 842
 843	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 844	if (sense_valid)
 845		sense_current = !scsi_sense_is_deferred(&sshdr);
 846
 847	if (blk_rq_is_passthrough(req)) {
 848		if (sense_valid) {
 849			/*
 850			 * SG_IO wants current and deferred errors
 851			 */
 852			scsi_req(req)->sense_len =
 853				min(8 + cmd->sense_buffer[7],
 854				    SCSI_SENSE_BUFFERSIZE);
 855		}
 856		if (sense_current)
 857			*blk_statp = scsi_result_to_blk_status(cmd, result);
 858	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 859		/*
 860		 * Flush commands do not transfers any data, and thus cannot use
 861		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 862		 * This sets *blk_statp explicitly for the problem case.
 863		 */
 864		*blk_statp = scsi_result_to_blk_status(cmd, result);
 865	}
 866	/*
 867	 * Recovered errors need reporting, but they're always treated as
 868	 * success, so fiddle the result code here.  For passthrough requests
 869	 * we already took a copy of the original into sreq->result which
 870	 * is what gets returned to the user
 871	 */
 872	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 873		bool do_print = true;
 874		/*
 875		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 876		 * skip print since caller wants ATA registers. Only occurs
 877		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 878		 */
 879		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 880			do_print = false;
 881		else if (req->rq_flags & RQF_QUIET)
 882			do_print = false;
 883		if (do_print)
 884			scsi_print_sense(cmd);
 885		result = 0;
 886		/* for passthrough, *blk_statp may be set */
 887		*blk_statp = BLK_STS_OK;
 888	}
 889	/*
 890	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 891	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 892	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 893	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 894	 * intermediate statuses (both obsolete in SAM-4) as good.
 895	 */
 896	if (status_byte(result) && scsi_status_is_good(result)) {
 897		result = 0;
 898		*blk_statp = BLK_STS_OK;
 899	}
 900	return result;
 901}
 902
 903/*
 904 * Function:    scsi_io_completion()
 905 *
 906 * Purpose:     Completion processing for block device I/O requests.
 907 *
 908 * Arguments:   cmd   - command that is finished.
 909 *
 910 * Lock status: Assumed that no lock is held upon entry.
 911 *
 912 * Returns:     Nothing
 913 *
 914 * Notes:       We will finish off the specified number of sectors.  If we
 915 *		are done, the command block will be released and the queue
 916 *		function will be goosed.  If we are not done then we have to
 917 *		figure out what to do next:
 918 *
 919 *		a) We can call scsi_requeue_command().  The request
 920 *		   will be unprepared and put back on the queue.  Then
 921 *		   a new command will be created for it.  This should
 922 *		   be used if we made forward progress, or if we want
 923 *		   to switch from READ(10) to READ(6) for example.
 924 *
 925 *		b) We can call __scsi_queue_insert().  The request will
 926 *		   be put back on the queue and retried using the same
 927 *		   command as before, possibly after a delay.
 928 *
 929 *		c) We can call scsi_end_request() with blk_stat other than
 930 *		   BLK_STS_OK, to fail the remainder of the request.
 931 */
 932void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 933{
 934	int result = cmd->result;
 935	struct request_queue *q = cmd->device->request_queue;
 936	struct request *req = cmd->request;
 937	blk_status_t blk_stat = BLK_STS_OK;
 938
 939	if (unlikely(result))	/* a nz result may or may not be an error */
 940		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 941
 942	if (unlikely(blk_rq_is_passthrough(req))) {
 943		/*
 944		 * scsi_result_to_blk_status may have reset the host_byte
 945		 */
 946		scsi_req(req)->result = cmd->result;
 947	}
 948
 949	/*
 950	 * Next deal with any sectors which we were able to correctly
 951	 * handle.
 952	 */
 953	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 954		"%u sectors total, %d bytes done.\n",
 955		blk_rq_sectors(req), good_bytes));
 956
 957	/*
 958	 * Next deal with any sectors which we were able to correctly
 959	 * handle. Failed, zero length commands always need to drop down
 960	 * to retry code. Fast path should return in this block.
 961	 */
 962	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 963		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 964			return; /* no bytes remaining */
 965	}
 966
 967	/* Kill remainder if no retries. */
 968	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 969		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 970			WARN_ONCE(true,
 971			    "Bytes remaining after failed, no-retry command");
 972		return;
 973	}
 974
 975	/*
 976	 * If there had been no error, but we have leftover bytes in the
 977	 * requeues just queue the command up again.
 978	 */
 979	if (likely(result == 0))
 980		scsi_io_completion_reprep(cmd, q);
 981	else
 982		scsi_io_completion_action(cmd, result);
 983}
 984
 985static blk_status_t scsi_init_sgtable(struct request *req,
 986		struct scsi_data_buffer *sdb)
 987{
 988	int count;
 989
 990	/*
 991	 * If sg table allocation fails, requeue request later.
 992	 */
 993	if (unlikely(sg_alloc_table_chained(&sdb->table,
 994			blk_rq_nr_phys_segments(req), sdb->table.sgl,
 995			SCSI_INLINE_SG_CNT)))
 996		return BLK_STS_RESOURCE;
 997
 998	/* 
 999	 * Next, walk the list, and fill in the addresses and sizes of
1000	 * each segment.
1001	 */
1002	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003	BUG_ON(count > sdb->table.nents);
1004	sdb->table.nents = count;
1005	sdb->length = blk_rq_payload_bytes(req);
1006	return BLK_STS_OK;
1007}
1008
1009/*
1010 * Function:    scsi_init_io()
1011 *
1012 * Purpose:     SCSI I/O initialize function.
1013 *
1014 * Arguments:   cmd   - Command descriptor we wish to initialize
1015 *
1016 * Returns:     BLK_STS_OK on success
1017 *		BLK_STS_RESOURCE if the failure is retryable
1018 *		BLK_STS_IOERR if the failure is fatal
1019 */
1020blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021{
 
1022	struct request *rq = cmd->request;
1023	blk_status_t ret;
 
1024
1025	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026		return BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027
1028	ret = scsi_init_sgtable(rq, &cmd->sdb);
1029	if (ret)
1030		return ret;
 
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs, count;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
 
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_mq_free_sgtables(cmd);
1067	return ret;
 
 
 
 
 
 
 
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1105void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1106{
1107	struct scsi_device *sdev = cmd->device;
1108	struct Scsi_Host *shost = sdev->host;
1109	unsigned long flags;
1110
1111	if (shost->use_cmd_list) {
1112		spin_lock_irqsave(&sdev->list_lock, flags);
1113		list_add_tail(&cmd->list, &sdev->cmd_list);
1114		spin_unlock_irqrestore(&sdev->list_lock, flags);
1115	}
1116}
1117
1118/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1119void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1120{
1121	struct scsi_device *sdev = cmd->device;
1122	struct Scsi_Host *shost = sdev->host;
1123	unsigned long flags;
1124
1125	if (shost->use_cmd_list) {
1126		spin_lock_irqsave(&sdev->list_lock, flags);
1127		BUG_ON(list_empty(&cmd->list));
1128		list_del_init(&cmd->list);
1129		spin_unlock_irqrestore(&sdev->list_lock, flags);
1130	}
1131}
1132
1133/* Called after a request has been started. */
1134void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135{
1136	void *buf = cmd->sense_buffer;
1137	void *prot = cmd->prot_sdb;
1138	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140	unsigned long jiffies_at_alloc;
1141	int retries;
1142
1143	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1144		flags |= SCMD_INITIALIZED;
1145		scsi_initialize_rq(rq);
1146	}
1147
1148	jiffies_at_alloc = cmd->jiffies_at_alloc;
1149	retries = cmd->retries;
1150	/* zero out the cmd, except for the embedded scsi_request */
1151	memset((char *)cmd + sizeof(cmd->req), 0,
1152		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1153
1154	cmd->device = dev;
1155	cmd->sense_buffer = buf;
1156	cmd->prot_sdb = prot;
1157	cmd->flags = flags;
1158	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1159	cmd->jiffies_at_alloc = jiffies_at_alloc;
1160	cmd->retries = retries;
1161
1162	scsi_add_cmd_to_list(cmd);
1163}
1164
1165static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1166		struct request *req)
1167{
1168	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1169
1170	/*
1171	 * Passthrough requests may transfer data, in which case they must
1172	 * a bio attached to them.  Or they might contain a SCSI command
1173	 * that does not transfer data, in which case they may optionally
1174	 * submit a request without an attached bio.
1175	 */
1176	if (req->bio) {
1177		blk_status_t ret = scsi_init_io(cmd);
1178		if (unlikely(ret != BLK_STS_OK))
1179			return ret;
1180	} else {
1181		BUG_ON(blk_rq_bytes(req));
1182
1183		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1184	}
1185
1186	cmd->cmd_len = scsi_req(req)->cmd_len;
1187	cmd->cmnd = scsi_req(req)->cmd;
1188	cmd->transfersize = blk_rq_bytes(req);
1189	cmd->allowed = scsi_req(req)->retries;
1190	return BLK_STS_OK;
1191}
1192
1193/*
1194 * Setup a normal block command.  These are simple request from filesystems
1195 * that still need to be translated to SCSI CDBs from the ULD.
1196 */
1197static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1198		struct request *req)
1199{
1200	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1201
1202	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1203		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1204		if (ret != BLK_STS_OK)
1205			return ret;
1206	}
1207
1208	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1209	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1210	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1211}
1212
1213static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1214		struct request *req)
1215{
1216	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1217
1218	if (!blk_rq_bytes(req))
1219		cmd->sc_data_direction = DMA_NONE;
1220	else if (rq_data_dir(req) == WRITE)
1221		cmd->sc_data_direction = DMA_TO_DEVICE;
1222	else
1223		cmd->sc_data_direction = DMA_FROM_DEVICE;
1224
1225	if (blk_rq_is_scsi(req))
1226		return scsi_setup_scsi_cmnd(sdev, req);
1227	else
1228		return scsi_setup_fs_cmnd(sdev, req);
1229}
1230
1231static blk_status_t
1232scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233{
1234	switch (sdev->sdev_state) {
1235	case SDEV_OFFLINE:
1236	case SDEV_TRANSPORT_OFFLINE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237		/*
1238		 * If the device is offline we refuse to process any
1239		 * commands.  The device must be brought online
1240		 * before trying any recovery commands.
1241		 */
1242		sdev_printk(KERN_ERR, sdev,
1243			    "rejecting I/O to offline device\n");
1244		return BLK_STS_IOERR;
1245	case SDEV_DEL:
1246		/*
1247		 * If the device is fully deleted, we refuse to
1248		 * process any commands as well.
1249		 */
1250		sdev_printk(KERN_ERR, sdev,
1251			    "rejecting I/O to dead device\n");
1252		return BLK_STS_IOERR;
1253	case SDEV_BLOCK:
1254	case SDEV_CREATED_BLOCK:
1255		return BLK_STS_RESOURCE;
1256	case SDEV_QUIESCE:
1257		/*
1258		 * If the devices is blocked we defer normal commands.
1259		 */
1260		if (req && !(req->rq_flags & RQF_PREEMPT))
1261			return BLK_STS_RESOURCE;
1262		return BLK_STS_OK;
1263	default:
1264		/*
1265		 * For any other not fully online state we only allow
1266		 * special commands.  In particular any user initiated
1267		 * command is not allowed.
1268		 */
1269		if (req && !(req->rq_flags & RQF_PREEMPT))
1270			return BLK_STS_IOERR;
1271		return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1273}
1274
1275/*
1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277 * return 0.
1278 *
1279 * Called with the queue_lock held.
1280 */
1281static inline int scsi_dev_queue_ready(struct request_queue *q,
1282				  struct scsi_device *sdev)
1283{
1284	unsigned int busy;
1285
1286	busy = atomic_inc_return(&sdev->device_busy) - 1;
1287	if (atomic_read(&sdev->device_blocked)) {
1288		if (busy)
1289			goto out_dec;
1290
1291		/*
1292		 * unblock after device_blocked iterates to zero
1293		 */
1294		if (atomic_dec_return(&sdev->device_blocked) > 0)
 
 
 
 
 
1295			goto out_dec;
 
1296		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1297				   "unblocking device at zero depth\n"));
1298	}
1299
1300	if (busy >= sdev->queue_depth)
1301		goto out_dec;
1302
1303	return 1;
1304out_dec:
1305	atomic_dec(&sdev->device_busy);
1306	return 0;
1307}
1308
1309/*
1310 * scsi_target_queue_ready: checks if there we can send commands to target
1311 * @sdev: scsi device on starget to check.
1312 */
1313static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1314					   struct scsi_device *sdev)
1315{
1316	struct scsi_target *starget = scsi_target(sdev);
1317	unsigned int busy;
1318
1319	if (starget->single_lun) {
1320		spin_lock_irq(shost->host_lock);
1321		if (starget->starget_sdev_user &&
1322		    starget->starget_sdev_user != sdev) {
1323			spin_unlock_irq(shost->host_lock);
1324			return 0;
1325		}
1326		starget->starget_sdev_user = sdev;
1327		spin_unlock_irq(shost->host_lock);
1328	}
1329
1330	if (starget->can_queue <= 0)
1331		return 1;
1332
1333	busy = atomic_inc_return(&starget->target_busy) - 1;
1334	if (atomic_read(&starget->target_blocked) > 0) {
1335		if (busy)
1336			goto starved;
1337
1338		/*
1339		 * unblock after target_blocked iterates to zero
1340		 */
1341		if (atomic_dec_return(&starget->target_blocked) > 0)
1342			goto out_dec;
1343
1344		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345				 "unblocking target at zero depth\n"));
1346	}
1347
1348	if (busy >= starget->can_queue)
1349		goto starved;
1350
1351	return 1;
1352
1353starved:
1354	spin_lock_irq(shost->host_lock);
1355	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1356	spin_unlock_irq(shost->host_lock);
1357out_dec:
1358	if (starget->can_queue > 0)
1359		atomic_dec(&starget->target_busy);
1360	return 0;
1361}
1362
1363/*
1364 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1365 * return 0. We must end up running the queue again whenever 0 is
1366 * returned, else IO can hang.
1367 */
1368static inline int scsi_host_queue_ready(struct request_queue *q,
1369				   struct Scsi_Host *shost,
1370				   struct scsi_device *sdev)
1371{
1372	unsigned int busy;
1373
1374	if (scsi_host_in_recovery(shost))
1375		return 0;
1376
1377	busy = atomic_inc_return(&shost->host_busy) - 1;
1378	if (atomic_read(&shost->host_blocked) > 0) {
1379		if (busy)
1380			goto starved;
1381
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (atomic_dec_return(&shost->host_blocked) > 0)
1386			goto out_dec;
1387
1388		SCSI_LOG_MLQUEUE(3,
1389			shost_printk(KERN_INFO, shost,
1390				     "unblocking host at zero depth\n"));
1391	}
1392
1393	if (shost->can_queue > 0 && busy >= shost->can_queue)
1394		goto starved;
1395	if (shost->host_self_blocked)
1396		goto starved;
1397
1398	/* We're OK to process the command, so we can't be starved */
1399	if (!list_empty(&sdev->starved_entry)) {
1400		spin_lock_irq(shost->host_lock);
1401		if (!list_empty(&sdev->starved_entry))
1402			list_del_init(&sdev->starved_entry);
1403		spin_unlock_irq(shost->host_lock);
1404	}
1405
1406	return 1;
1407
1408starved:
1409	spin_lock_irq(shost->host_lock);
1410	if (list_empty(&sdev->starved_entry))
1411		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1412	spin_unlock_irq(shost->host_lock);
1413out_dec:
1414	scsi_dec_host_busy(shost);
1415	return 0;
1416}
1417
1418/*
1419 * Busy state exporting function for request stacking drivers.
1420 *
1421 * For efficiency, no lock is taken to check the busy state of
1422 * shost/starget/sdev, since the returned value is not guaranteed and
1423 * may be changed after request stacking drivers call the function,
1424 * regardless of taking lock or not.
1425 *
1426 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427 * needs to return 'not busy'. Otherwise, request stacking drivers
1428 * may hold requests forever.
1429 */
1430static bool scsi_mq_lld_busy(struct request_queue *q)
1431{
1432	struct scsi_device *sdev = q->queuedata;
1433	struct Scsi_Host *shost;
1434
1435	if (blk_queue_dying(q))
1436		return false;
1437
1438	shost = sdev->host;
1439
1440	/*
1441	 * Ignore host/starget busy state.
1442	 * Since block layer does not have a concept of fairness across
1443	 * multiple queues, congestion of host/starget needs to be handled
1444	 * in SCSI layer.
1445	 */
1446	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	return false;
1450}
1451
1452static void scsi_softirq_done(struct request *rq)
1453{
1454	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1455	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1456	int disposition;
1457
1458	INIT_LIST_HEAD(&cmd->eh_entry);
1459
1460	atomic_inc(&cmd->device->iodone_cnt);
1461	if (cmd->result)
1462		atomic_inc(&cmd->device->ioerr_cnt);
1463
1464	disposition = scsi_decide_disposition(cmd);
1465	if (disposition != SUCCESS &&
1466	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1467		scmd_printk(KERN_ERR, cmd,
1468			    "timing out command, waited %lus\n",
1469			    wait_for/HZ);
1470		disposition = SUCCESS;
1471	}
1472
1473	scsi_log_completion(cmd, disposition);
1474
1475	switch (disposition) {
1476		case SUCCESS:
1477			scsi_finish_command(cmd);
1478			break;
1479		case NEEDS_RETRY:
1480			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1481			break;
1482		case ADD_TO_MLQUEUE:
1483			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1484			break;
1485		default:
1486			scsi_eh_scmd_add(cmd);
1487			break;
1488	}
1489}
1490
1491/**
1492 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1493 * @cmd: command block we are dispatching.
1494 *
1495 * Return: nonzero return request was rejected and device's queue needs to be
1496 * plugged.
1497 */
1498static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1499{
1500	struct Scsi_Host *host = cmd->device->host;
1501	int rtn = 0;
1502
1503	atomic_inc(&cmd->device->iorequest_cnt);
1504
1505	/* check if the device is still usable */
1506	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1507		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1508		 * returns an immediate error upwards, and signals
1509		 * that the device is no longer present */
1510		cmd->result = DID_NO_CONNECT << 16;
1511		goto done;
1512	}
1513
1514	/* Check to see if the scsi lld made this device blocked. */
1515	if (unlikely(scsi_device_blocked(cmd->device))) {
1516		/*
1517		 * in blocked state, the command is just put back on
1518		 * the device queue.  The suspend state has already
1519		 * blocked the queue so future requests should not
1520		 * occur until the device transitions out of the
1521		 * suspend state.
1522		 */
1523		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524			"queuecommand : device blocked\n"));
1525		return SCSI_MLQUEUE_DEVICE_BUSY;
1526	}
1527
1528	/* Store the LUN value in cmnd, if needed. */
1529	if (cmd->device->lun_in_cdb)
1530		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1531			       (cmd->device->lun << 5 & 0xe0);
1532
1533	scsi_log_send(cmd);
1534
1535	/*
1536	 * Before we queue this command, check if the command
1537	 * length exceeds what the host adapter can handle.
1538	 */
1539	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1540		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1541			       "queuecommand : command too long. "
1542			       "cdb_size=%d host->max_cmd_len=%d\n",
1543			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1544		cmd->result = (DID_ABORT << 16);
1545		goto done;
1546	}
1547
1548	if (unlikely(host->shost_state == SHOST_DEL)) {
1549		cmd->result = (DID_NO_CONNECT << 16);
1550		goto done;
1551
1552	}
1553
1554	trace_scsi_dispatch_cmd_start(cmd);
1555	rtn = host->hostt->queuecommand(host, cmd);
1556	if (rtn) {
1557		trace_scsi_dispatch_cmd_error(cmd, rtn);
1558		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1559		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1560			rtn = SCSI_MLQUEUE_HOST_BUSY;
1561
1562		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1563			"queuecommand : request rejected\n"));
1564	}
1565
1566	return rtn;
1567 done:
1568	cmd->scsi_done(cmd);
1569	return 0;
1570}
1571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1573static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1574{
1575	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1576		sizeof(struct scatterlist);
1577}
1578
1579static blk_status_t scsi_mq_prep_fn(struct request *req)
1580{
1581	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1582	struct scsi_device *sdev = req->q->queuedata;
1583	struct Scsi_Host *shost = sdev->host;
1584	struct scatterlist *sg;
1585
1586	scsi_init_command(sdev, cmd);
1587
 
 
1588	cmd->request = req;
 
1589	cmd->tag = req->tag;
1590	cmd->prot_op = SCSI_PROT_NORMAL;
1591
1592	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1593	cmd->sdb.table.sgl = sg;
1594
1595	if (scsi_host_get_prot(shost)) {
1596		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1597
1598		cmd->prot_sdb->table.sgl =
1599			(struct scatterlist *)(cmd->prot_sdb + 1);
1600	}
1601
 
 
 
 
 
 
 
 
 
 
 
1602	blk_mq_start_request(req);
1603
1604	return scsi_setup_cmnd(sdev, req);
1605}
1606
1607static void scsi_mq_done(struct scsi_cmnd *cmd)
1608{
1609	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1610		return;
1611	trace_scsi_dispatch_cmd_done(cmd);
1612
1613	/*
1614	 * If the block layer didn't complete the request due to a timeout
1615	 * injection, scsi must clear its internal completed state so that the
1616	 * timeout handler will see it needs to escalate its own error
1617	 * recovery.
1618	 */
1619	if (unlikely(!blk_mq_complete_request(cmd->request)))
1620		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1621}
1622
1623static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1624{
1625	struct request_queue *q = hctx->queue;
1626	struct scsi_device *sdev = q->queuedata;
1627
1628	atomic_dec(&sdev->device_busy);
 
1629}
1630
1631static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1632{
1633	struct request_queue *q = hctx->queue;
1634	struct scsi_device *sdev = q->queuedata;
1635
1636	if (scsi_dev_queue_ready(q, sdev))
1637		return true;
 
 
 
 
1638
 
 
 
1639	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1640		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1641	return false;
1642}
1643
1644static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645			 const struct blk_mq_queue_data *bd)
1646{
1647	struct request *req = bd->rq;
1648	struct request_queue *q = req->q;
1649	struct scsi_device *sdev = q->queuedata;
1650	struct Scsi_Host *shost = sdev->host;
1651	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652	blk_status_t ret;
1653	int reason;
1654
1655	/*
1656	 * If the device is not in running state we will reject some or all
1657	 * commands.
1658	 */
1659	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660		ret = scsi_prep_state_check(sdev, req);
1661		if (ret != BLK_STS_OK)
1662			goto out_put_budget;
1663	}
1664
1665	ret = BLK_STS_RESOURCE;
1666	if (!scsi_target_queue_ready(shost, sdev))
1667		goto out_put_budget;
1668	if (!scsi_host_queue_ready(q, shost, sdev))
1669		goto out_dec_target_busy;
1670
1671	if (!(req->rq_flags & RQF_DONTPREP)) {
1672		ret = scsi_mq_prep_fn(req);
1673		if (ret != BLK_STS_OK)
1674			goto out_dec_host_busy;
1675		req->rq_flags |= RQF_DONTPREP;
1676	} else {
1677		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678		blk_mq_start_request(req);
1679	}
1680
1681	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682	if (sdev->simple_tags)
1683		cmd->flags |= SCMD_TAGGED;
1684	if (bd->last)
1685		cmd->flags |= SCMD_LAST;
1686
1687	scsi_init_cmd_errh(cmd);
1688	cmd->scsi_done = scsi_mq_done;
1689
1690	reason = scsi_dispatch_cmd(cmd);
1691	if (reason) {
1692		scsi_set_blocked(cmd, reason);
1693		ret = BLK_STS_RESOURCE;
1694		goto out_dec_host_busy;
1695	}
1696
1697	return BLK_STS_OK;
1698
1699out_dec_host_busy:
1700	scsi_dec_host_busy(shost);
1701out_dec_target_busy:
1702	if (scsi_target(sdev)->can_queue > 0)
1703		atomic_dec(&scsi_target(sdev)->target_busy);
1704out_put_budget:
1705	scsi_mq_put_budget(hctx);
1706	switch (ret) {
1707	case BLK_STS_OK:
1708		break;
1709	case BLK_STS_RESOURCE:
1710		if (atomic_read(&sdev->device_busy) ||
1711		    scsi_device_blocked(sdev))
1712			ret = BLK_STS_DEV_RESOURCE;
1713		break;
1714	default:
1715		if (unlikely(!scsi_device_online(sdev)))
1716			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717		else
1718			scsi_req(req)->result = DID_ERROR << 16;
1719		/*
1720		 * Make sure to release all allocated resources when
1721		 * we hit an error, as we will never see this command
1722		 * again.
1723		 */
1724		if (req->rq_flags & RQF_DONTPREP)
1725			scsi_mq_uninit_cmd(cmd);
1726		break;
1727	}
1728	return ret;
1729}
1730
1731static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732		bool reserved)
1733{
1734	if (reserved)
1735		return BLK_EH_RESET_TIMER;
1736	return scsi_times_out(req);
1737}
1738
1739static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740				unsigned int hctx_idx, unsigned int numa_node)
1741{
1742	struct Scsi_Host *shost = set->driver_data;
1743	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745	struct scatterlist *sg;
1746
1747	if (unchecked_isa_dma)
1748		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1749	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1750						    GFP_KERNEL, numa_node);
1751	if (!cmd->sense_buffer)
1752		return -ENOMEM;
1753	cmd->req.sense = cmd->sense_buffer;
1754
1755	if (scsi_host_get_prot(shost)) {
1756		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757			shost->hostt->cmd_size;
1758		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759	}
1760
1761	return 0;
1762}
1763
1764static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1765				 unsigned int hctx_idx)
1766{
1767	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1768
1769	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1770			       cmd->sense_buffer);
1771}
1772
1773static int scsi_map_queues(struct blk_mq_tag_set *set)
1774{
1775	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1776
1777	if (shost->hostt->map_queues)
1778		return shost->hostt->map_queues(shost);
1779	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780}
1781
1782void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1783{
1784	struct device *dev = shost->dma_dev;
1785
1786	/*
1787	 * this limit is imposed by hardware restrictions
1788	 */
1789	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1790					SG_MAX_SEGMENTS));
1791
1792	if (scsi_host_prot_dma(shost)) {
1793		shost->sg_prot_tablesize =
1794			min_not_zero(shost->sg_prot_tablesize,
1795				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1796		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1797		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1798	}
1799
1800	if (dev->dma_mask) {
1801		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1802				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1803	}
1804	blk_queue_max_hw_sectors(q, shost->max_sectors);
1805	if (shost->unchecked_isa_dma)
1806		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1807	blk_queue_segment_boundary(q, shost->dma_boundary);
1808	dma_set_seg_boundary(dev, shost->dma_boundary);
1809
1810	blk_queue_max_segment_size(q, shost->max_segment_size);
1811	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1812	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1813
1814	/*
1815	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1816	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1817	 * which is set by the platform.
1818	 *
1819	 * Devices that require a bigger alignment can increase it later.
1820	 */
1821	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1822}
1823EXPORT_SYMBOL_GPL(__scsi_init_queue);
1824
1825static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1826	.get_budget	= scsi_mq_get_budget,
1827	.put_budget	= scsi_mq_put_budget,
1828	.queue_rq	= scsi_queue_rq,
1829	.complete	= scsi_softirq_done,
1830	.timeout	= scsi_timeout,
1831#ifdef CONFIG_BLK_DEBUG_FS
1832	.show_rq	= scsi_show_rq,
1833#endif
1834	.init_request	= scsi_mq_init_request,
1835	.exit_request	= scsi_mq_exit_request,
1836	.initialize_rq_fn = scsi_initialize_rq,
1837	.cleanup_rq	= scsi_cleanup_rq,
1838	.busy		= scsi_mq_lld_busy,
1839	.map_queues	= scsi_map_queues,
1840};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841
 
 
 
 
 
1842
1843static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1844{
1845	struct request_queue *q = hctx->queue;
1846	struct scsi_device *sdev = q->queuedata;
1847	struct Scsi_Host *shost = sdev->host;
 
1848
1849	shost->hostt->commit_rqs(shost, hctx->queue_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850}
1851
1852static const struct blk_mq_ops scsi_mq_ops = {
1853	.get_budget	= scsi_mq_get_budget,
1854	.put_budget	= scsi_mq_put_budget,
1855	.queue_rq	= scsi_queue_rq,
1856	.commit_rqs	= scsi_commit_rqs,
1857	.complete	= scsi_softirq_done,
1858	.timeout	= scsi_timeout,
1859#ifdef CONFIG_BLK_DEBUG_FS
1860	.show_rq	= scsi_show_rq,
1861#endif
1862	.init_request	= scsi_mq_init_request,
1863	.exit_request	= scsi_mq_exit_request,
1864	.initialize_rq_fn = scsi_initialize_rq,
1865	.cleanup_rq	= scsi_cleanup_rq,
1866	.busy		= scsi_mq_lld_busy,
1867	.map_queues	= scsi_map_queues,
1868};
1869
1870struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1871{
1872	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1873	if (IS_ERR(sdev->request_queue))
1874		return NULL;
1875
1876	sdev->request_queue->queuedata = sdev;
1877	__scsi_init_queue(sdev->host, sdev->request_queue);
1878	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1879	return sdev->request_queue;
1880}
1881
1882int scsi_mq_setup_tags(struct Scsi_Host *shost)
1883{
1884	unsigned int cmd_size, sgl_size;
1885
1886	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1887				scsi_mq_inline_sgl_size(shost));
1888	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1889	if (scsi_host_get_prot(shost))
1890		cmd_size += sizeof(struct scsi_data_buffer) +
1891			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1892
1893	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1894	if (shost->hostt->commit_rqs)
1895		shost->tag_set.ops = &scsi_mq_ops;
1896	else
1897		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1898	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1899	shost->tag_set.queue_depth = shost->can_queue;
1900	shost->tag_set.cmd_size = cmd_size;
1901	shost->tag_set.numa_node = NUMA_NO_NODE;
1902	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1903	shost->tag_set.flags |=
1904		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1905	shost->tag_set.driver_data = shost;
1906
1907	return blk_mq_alloc_tag_set(&shost->tag_set);
1908}
1909
1910void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1911{
1912	blk_mq_free_tag_set(&shost->tag_set);
1913}
1914
1915/**
1916 * scsi_device_from_queue - return sdev associated with a request_queue
1917 * @q: The request queue to return the sdev from
1918 *
1919 * Return the sdev associated with a request queue or NULL if the
1920 * request_queue does not reference a SCSI device.
1921 */
1922struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1923{
1924	struct scsi_device *sdev = NULL;
1925
1926	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1927	    q->mq_ops == &scsi_mq_ops)
 
 
1928		sdev = q->queuedata;
1929	if (!sdev || !get_device(&sdev->sdev_gendev))
1930		sdev = NULL;
1931
1932	return sdev;
1933}
1934EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1935
1936/*
1937 * Function:    scsi_block_requests()
1938 *
1939 * Purpose:     Utility function used by low-level drivers to prevent further
1940 *		commands from being queued to the device.
1941 *
1942 * Arguments:   shost       - Host in question
1943 *
1944 * Returns:     Nothing
1945 *
1946 * Lock status: No locks are assumed held.
1947 *
1948 * Notes:       There is no timer nor any other means by which the requests
1949 *		get unblocked other than the low-level driver calling
1950 *		scsi_unblock_requests().
1951 */
1952void scsi_block_requests(struct Scsi_Host *shost)
1953{
1954	shost->host_self_blocked = 1;
1955}
1956EXPORT_SYMBOL(scsi_block_requests);
1957
1958/*
1959 * Function:    scsi_unblock_requests()
1960 *
1961 * Purpose:     Utility function used by low-level drivers to allow further
1962 *		commands from being queued to the device.
1963 *
1964 * Arguments:   shost       - Host in question
1965 *
1966 * Returns:     Nothing
1967 *
1968 * Lock status: No locks are assumed held.
1969 *
1970 * Notes:       There is no timer nor any other means by which the requests
1971 *		get unblocked other than the low-level driver calling
1972 *		scsi_unblock_requests().
1973 *
1974 *		This is done as an API function so that changes to the
1975 *		internals of the scsi mid-layer won't require wholesale
1976 *		changes to drivers that use this feature.
1977 */
1978void scsi_unblock_requests(struct Scsi_Host *shost)
1979{
1980	shost->host_self_blocked = 0;
1981	scsi_run_host_queues(shost);
1982}
1983EXPORT_SYMBOL(scsi_unblock_requests);
1984
1985int __init scsi_init_queue(void)
1986{
1987	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1988					   sizeof(struct scsi_data_buffer),
1989					   0, 0, NULL);
1990	if (!scsi_sdb_cache) {
1991		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1992		return -ENOMEM;
1993	}
1994
1995	return 0;
1996}
1997
1998void scsi_exit_queue(void)
1999{
2000	kmem_cache_destroy(scsi_sense_cache);
2001	kmem_cache_destroy(scsi_sense_isadma_cache);
2002	kmem_cache_destroy(scsi_sdb_cache);
2003}
2004
2005/**
2006 *	scsi_mode_select - issue a mode select
2007 *	@sdev:	SCSI device to be queried
2008 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2009 *	@sp:	Save page bit (0 == don't save, 1 == save)
2010 *	@modepage: mode page being requested
2011 *	@buffer: request buffer (may not be smaller than eight bytes)
2012 *	@len:	length of request buffer.
2013 *	@timeout: command timeout
2014 *	@retries: number of retries before failing
2015 *	@data: returns a structure abstracting the mode header data
2016 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2017 *		must be SCSI_SENSE_BUFFERSIZE big.
2018 *
2019 *	Returns zero if successful; negative error number or scsi
2020 *	status on error
2021 *
2022 */
2023int
2024scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2025		 unsigned char *buffer, int len, int timeout, int retries,
2026		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2027{
2028	unsigned char cmd[10];
2029	unsigned char *real_buffer;
2030	int ret;
2031
2032	memset(cmd, 0, sizeof(cmd));
2033	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2034
2035	if (sdev->use_10_for_ms) {
2036		if (len > 65535)
2037			return -EINVAL;
2038		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2039		if (!real_buffer)
2040			return -ENOMEM;
2041		memcpy(real_buffer + 8, buffer, len);
2042		len += 8;
2043		real_buffer[0] = 0;
2044		real_buffer[1] = 0;
2045		real_buffer[2] = data->medium_type;
2046		real_buffer[3] = data->device_specific;
2047		real_buffer[4] = data->longlba ? 0x01 : 0;
2048		real_buffer[5] = 0;
2049		real_buffer[6] = data->block_descriptor_length >> 8;
2050		real_buffer[7] = data->block_descriptor_length;
2051
2052		cmd[0] = MODE_SELECT_10;
2053		cmd[7] = len >> 8;
2054		cmd[8] = len;
2055	} else {
2056		if (len > 255 || data->block_descriptor_length > 255 ||
2057		    data->longlba)
2058			return -EINVAL;
2059
2060		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2061		if (!real_buffer)
2062			return -ENOMEM;
2063		memcpy(real_buffer + 4, buffer, len);
2064		len += 4;
2065		real_buffer[0] = 0;
2066		real_buffer[1] = data->medium_type;
2067		real_buffer[2] = data->device_specific;
2068		real_buffer[3] = data->block_descriptor_length;
2069		
2070
2071		cmd[0] = MODE_SELECT;
2072		cmd[4] = len;
2073	}
2074
2075	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2076			       sshdr, timeout, retries, NULL);
2077	kfree(real_buffer);
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(scsi_mode_select);
2081
2082/**
2083 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2084 *	@sdev:	SCSI device to be queried
2085 *	@dbd:	set if mode sense will allow block descriptors to be returned
2086 *	@modepage: mode page being requested
2087 *	@buffer: request buffer (may not be smaller than eight bytes)
2088 *	@len:	length of request buffer.
2089 *	@timeout: command timeout
2090 *	@retries: number of retries before failing
2091 *	@data: returns a structure abstracting the mode header data
2092 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2093 *		must be SCSI_SENSE_BUFFERSIZE big.
2094 *
2095 *	Returns zero if unsuccessful, or the header offset (either 4
2096 *	or 8 depending on whether a six or ten byte command was
2097 *	issued) if successful.
2098 */
2099int
2100scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101		  unsigned char *buffer, int len, int timeout, int retries,
2102		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103{
2104	unsigned char cmd[12];
2105	int use_10_for_ms;
2106	int header_length;
2107	int result, retry_count = retries;
2108	struct scsi_sense_hdr my_sshdr;
2109
2110	memset(data, 0, sizeof(*data));
2111	memset(&cmd[0], 0, 12);
2112	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2113	cmd[2] = modepage;
2114
2115	/* caller might not be interested in sense, but we need it */
2116	if (!sshdr)
2117		sshdr = &my_sshdr;
2118
2119 retry:
2120	use_10_for_ms = sdev->use_10_for_ms;
2121
2122	if (use_10_for_ms) {
2123		if (len < 8)
2124			len = 8;
2125
2126		cmd[0] = MODE_SENSE_10;
2127		cmd[8] = len;
2128		header_length = 8;
2129	} else {
2130		if (len < 4)
2131			len = 4;
2132
2133		cmd[0] = MODE_SENSE;
2134		cmd[4] = len;
2135		header_length = 4;
2136	}
2137
2138	memset(buffer, 0, len);
2139
2140	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2141				  sshdr, timeout, retries, NULL);
2142
2143	/* This code looks awful: what it's doing is making sure an
2144	 * ILLEGAL REQUEST sense return identifies the actual command
2145	 * byte as the problem.  MODE_SENSE commands can return
2146	 * ILLEGAL REQUEST if the code page isn't supported */
2147
2148	if (use_10_for_ms && !scsi_status_is_good(result) &&
2149	    driver_byte(result) == DRIVER_SENSE) {
2150		if (scsi_sense_valid(sshdr)) {
2151			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2152			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2153				/* 
2154				 * Invalid command operation code
2155				 */
2156				sdev->use_10_for_ms = 0;
2157				goto retry;
2158			}
2159		}
2160	}
2161
2162	if(scsi_status_is_good(result)) {
2163		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2164			     (modepage == 6 || modepage == 8))) {
2165			/* Initio breakage? */
2166			header_length = 0;
2167			data->length = 13;
2168			data->medium_type = 0;
2169			data->device_specific = 0;
2170			data->longlba = 0;
2171			data->block_descriptor_length = 0;
2172		} else if(use_10_for_ms) {
2173			data->length = buffer[0]*256 + buffer[1] + 2;
2174			data->medium_type = buffer[2];
2175			data->device_specific = buffer[3];
2176			data->longlba = buffer[4] & 0x01;
2177			data->block_descriptor_length = buffer[6]*256
2178				+ buffer[7];
2179		} else {
2180			data->length = buffer[0] + 1;
2181			data->medium_type = buffer[1];
2182			data->device_specific = buffer[2];
2183			data->block_descriptor_length = buffer[3];
2184		}
2185		data->header_length = header_length;
2186	} else if ((status_byte(result) == CHECK_CONDITION) &&
2187		   scsi_sense_valid(sshdr) &&
2188		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2189		retry_count--;
2190		goto retry;
2191	}
2192
2193	return result;
2194}
2195EXPORT_SYMBOL(scsi_mode_sense);
2196
2197/**
2198 *	scsi_test_unit_ready - test if unit is ready
2199 *	@sdev:	scsi device to change the state of.
2200 *	@timeout: command timeout
2201 *	@retries: number of retries before failing
2202 *	@sshdr: outpout pointer for decoded sense information.
2203 *
2204 *	Returns zero if unsuccessful or an error if TUR failed.  For
2205 *	removable media, UNIT_ATTENTION sets ->changed flag.
2206 **/
2207int
2208scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2209		     struct scsi_sense_hdr *sshdr)
2210{
2211	char cmd[] = {
2212		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2213	};
2214	int result;
2215
2216	/* try to eat the UNIT_ATTENTION if there are enough retries */
2217	do {
2218		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2219					  timeout, 1, NULL);
2220		if (sdev->removable && scsi_sense_valid(sshdr) &&
2221		    sshdr->sense_key == UNIT_ATTENTION)
2222			sdev->changed = 1;
2223	} while (scsi_sense_valid(sshdr) &&
2224		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2225
2226	return result;
2227}
2228EXPORT_SYMBOL(scsi_test_unit_ready);
2229
2230/**
2231 *	scsi_device_set_state - Take the given device through the device state model.
2232 *	@sdev:	scsi device to change the state of.
2233 *	@state:	state to change to.
2234 *
2235 *	Returns zero if successful or an error if the requested
2236 *	transition is illegal.
2237 */
2238int
2239scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2240{
2241	enum scsi_device_state oldstate = sdev->sdev_state;
2242
2243	if (state == oldstate)
2244		return 0;
2245
2246	switch (state) {
2247	case SDEV_CREATED:
2248		switch (oldstate) {
2249		case SDEV_CREATED_BLOCK:
2250			break;
2251		default:
2252			goto illegal;
2253		}
2254		break;
2255			
2256	case SDEV_RUNNING:
2257		switch (oldstate) {
2258		case SDEV_CREATED:
2259		case SDEV_OFFLINE:
2260		case SDEV_TRANSPORT_OFFLINE:
2261		case SDEV_QUIESCE:
2262		case SDEV_BLOCK:
2263			break;
2264		default:
2265			goto illegal;
2266		}
2267		break;
2268
2269	case SDEV_QUIESCE:
2270		switch (oldstate) {
2271		case SDEV_RUNNING:
2272		case SDEV_OFFLINE:
2273		case SDEV_TRANSPORT_OFFLINE:
2274			break;
2275		default:
2276			goto illegal;
2277		}
2278		break;
2279
2280	case SDEV_OFFLINE:
2281	case SDEV_TRANSPORT_OFFLINE:
2282		switch (oldstate) {
2283		case SDEV_CREATED:
2284		case SDEV_RUNNING:
2285		case SDEV_QUIESCE:
2286		case SDEV_BLOCK:
2287			break;
2288		default:
2289			goto illegal;
2290		}
2291		break;
2292
2293	case SDEV_BLOCK:
2294		switch (oldstate) {
2295		case SDEV_RUNNING:
2296		case SDEV_CREATED_BLOCK:
2297		case SDEV_OFFLINE:
2298			break;
2299		default:
2300			goto illegal;
2301		}
2302		break;
2303
2304	case SDEV_CREATED_BLOCK:
2305		switch (oldstate) {
2306		case SDEV_CREATED:
2307			break;
2308		default:
2309			goto illegal;
2310		}
2311		break;
2312
2313	case SDEV_CANCEL:
2314		switch (oldstate) {
2315		case SDEV_CREATED:
2316		case SDEV_RUNNING:
2317		case SDEV_QUIESCE:
2318		case SDEV_OFFLINE:
2319		case SDEV_TRANSPORT_OFFLINE:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_DEL:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_RUNNING:
2330		case SDEV_OFFLINE:
2331		case SDEV_TRANSPORT_OFFLINE:
2332		case SDEV_CANCEL:
2333		case SDEV_BLOCK:
2334		case SDEV_CREATED_BLOCK:
2335			break;
2336		default:
2337			goto illegal;
2338		}
2339		break;
2340
2341	}
2342	sdev->sdev_state = state;
2343	return 0;
2344
2345 illegal:
2346	SCSI_LOG_ERROR_RECOVERY(1,
2347				sdev_printk(KERN_ERR, sdev,
2348					    "Illegal state transition %s->%s",
2349					    scsi_device_state_name(oldstate),
2350					    scsi_device_state_name(state))
2351				);
2352	return -EINVAL;
2353}
2354EXPORT_SYMBOL(scsi_device_set_state);
2355
2356/**
2357 * 	sdev_evt_emit - emit a single SCSI device uevent
2358 *	@sdev: associated SCSI device
2359 *	@evt: event to emit
2360 *
2361 *	Send a single uevent (scsi_event) to the associated scsi_device.
2362 */
2363static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2364{
2365	int idx = 0;
2366	char *envp[3];
2367
2368	switch (evt->evt_type) {
2369	case SDEV_EVT_MEDIA_CHANGE:
2370		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2371		break;
2372	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2373		scsi_rescan_device(&sdev->sdev_gendev);
2374		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2375		break;
2376	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2377		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2378		break;
2379	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2380	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2381		break;
2382	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2383		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2384		break;
2385	case SDEV_EVT_LUN_CHANGE_REPORTED:
2386		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2387		break;
2388	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2389		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2390		break;
2391	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2392		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2393		break;
2394	default:
2395		/* do nothing */
2396		break;
2397	}
2398
2399	envp[idx++] = NULL;
2400
2401	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2402}
2403
2404/**
2405 * 	sdev_evt_thread - send a uevent for each scsi event
2406 *	@work: work struct for scsi_device
2407 *
2408 *	Dispatch queued events to their associated scsi_device kobjects
2409 *	as uevents.
2410 */
2411void scsi_evt_thread(struct work_struct *work)
2412{
2413	struct scsi_device *sdev;
2414	enum scsi_device_event evt_type;
2415	LIST_HEAD(event_list);
2416
2417	sdev = container_of(work, struct scsi_device, event_work);
2418
2419	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2420		if (test_and_clear_bit(evt_type, sdev->pending_events))
2421			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2422
2423	while (1) {
2424		struct scsi_event *evt;
2425		struct list_head *this, *tmp;
2426		unsigned long flags;
2427
2428		spin_lock_irqsave(&sdev->list_lock, flags);
2429		list_splice_init(&sdev->event_list, &event_list);
2430		spin_unlock_irqrestore(&sdev->list_lock, flags);
2431
2432		if (list_empty(&event_list))
2433			break;
2434
2435		list_for_each_safe(this, tmp, &event_list) {
2436			evt = list_entry(this, struct scsi_event, node);
2437			list_del(&evt->node);
2438			scsi_evt_emit(sdev, evt);
2439			kfree(evt);
2440		}
2441	}
2442}
2443
2444/**
2445 * 	sdev_evt_send - send asserted event to uevent thread
2446 *	@sdev: scsi_device event occurred on
2447 *	@evt: event to send
2448 *
2449 *	Assert scsi device event asynchronously.
2450 */
2451void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2452{
2453	unsigned long flags;
2454
2455#if 0
2456	/* FIXME: currently this check eliminates all media change events
2457	 * for polled devices.  Need to update to discriminate between AN
2458	 * and polled events */
2459	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2460		kfree(evt);
2461		return;
2462	}
2463#endif
2464
2465	spin_lock_irqsave(&sdev->list_lock, flags);
2466	list_add_tail(&evt->node, &sdev->event_list);
2467	schedule_work(&sdev->event_work);
2468	spin_unlock_irqrestore(&sdev->list_lock, flags);
2469}
2470EXPORT_SYMBOL_GPL(sdev_evt_send);
2471
2472/**
2473 * 	sdev_evt_alloc - allocate a new scsi event
2474 *	@evt_type: type of event to allocate
2475 *	@gfpflags: GFP flags for allocation
2476 *
2477 *	Allocates and returns a new scsi_event.
2478 */
2479struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2480				  gfp_t gfpflags)
2481{
2482	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2483	if (!evt)
2484		return NULL;
2485
2486	evt->evt_type = evt_type;
2487	INIT_LIST_HEAD(&evt->node);
2488
2489	/* evt_type-specific initialization, if any */
2490	switch (evt_type) {
2491	case SDEV_EVT_MEDIA_CHANGE:
2492	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2493	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2494	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2495	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2496	case SDEV_EVT_LUN_CHANGE_REPORTED:
2497	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2498	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2499	default:
2500		/* do nothing */
2501		break;
2502	}
2503
2504	return evt;
2505}
2506EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2507
2508/**
2509 * 	sdev_evt_send_simple - send asserted event to uevent thread
2510 *	@sdev: scsi_device event occurred on
2511 *	@evt_type: type of event to send
2512 *	@gfpflags: GFP flags for allocation
2513 *
2514 *	Assert scsi device event asynchronously, given an event type.
2515 */
2516void sdev_evt_send_simple(struct scsi_device *sdev,
2517			  enum scsi_device_event evt_type, gfp_t gfpflags)
2518{
2519	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2520	if (!evt) {
2521		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2522			    evt_type);
2523		return;
2524	}
2525
2526	sdev_evt_send(sdev, evt);
2527}
2528EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2529
2530/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531 *	scsi_device_quiesce - Block user issued commands.
2532 *	@sdev:	scsi device to quiesce.
2533 *
2534 *	This works by trying to transition to the SDEV_QUIESCE state
2535 *	(which must be a legal transition).  When the device is in this
2536 *	state, only special requests will be accepted, all others will
2537 *	be deferred.  Since special requests may also be requeued requests,
2538 *	a successful return doesn't guarantee the device will be 
2539 *	totally quiescent.
2540 *
2541 *	Must be called with user context, may sleep.
2542 *
2543 *	Returns zero if unsuccessful or an error if not.
2544 */
2545int
2546scsi_device_quiesce(struct scsi_device *sdev)
2547{
2548	struct request_queue *q = sdev->request_queue;
2549	int err;
2550
2551	/*
2552	 * It is allowed to call scsi_device_quiesce() multiple times from
2553	 * the same context but concurrent scsi_device_quiesce() calls are
2554	 * not allowed.
2555	 */
2556	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2557
2558	if (sdev->quiesced_by == current)
2559		return 0;
2560
2561	blk_set_pm_only(q);
2562
2563	blk_mq_freeze_queue(q);
2564	/*
2565	 * Ensure that the effect of blk_set_pm_only() will be visible
2566	 * for percpu_ref_tryget() callers that occur after the queue
2567	 * unfreeze even if the queue was already frozen before this function
2568	 * was called. See also https://lwn.net/Articles/573497/.
2569	 */
2570	synchronize_rcu();
2571	blk_mq_unfreeze_queue(q);
2572
2573	mutex_lock(&sdev->state_mutex);
2574	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2575	if (err == 0)
2576		sdev->quiesced_by = current;
2577	else
2578		blk_clear_pm_only(q);
2579	mutex_unlock(&sdev->state_mutex);
2580
2581	return err;
2582}
2583EXPORT_SYMBOL(scsi_device_quiesce);
2584
2585/**
2586 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2587 *	@sdev:	scsi device to resume.
2588 *
2589 *	Moves the device from quiesced back to running and restarts the
2590 *	queues.
2591 *
2592 *	Must be called with user context, may sleep.
2593 */
2594void scsi_device_resume(struct scsi_device *sdev)
2595{
2596	/* check if the device state was mutated prior to resume, and if
2597	 * so assume the state is being managed elsewhere (for example
2598	 * device deleted during suspend)
2599	 */
2600	mutex_lock(&sdev->state_mutex);
2601	if (sdev->quiesced_by) {
2602		sdev->quiesced_by = NULL;
2603		blk_clear_pm_only(sdev->request_queue);
2604	}
2605	if (sdev->sdev_state == SDEV_QUIESCE)
2606		scsi_device_set_state(sdev, SDEV_RUNNING);
2607	mutex_unlock(&sdev->state_mutex);
2608}
2609EXPORT_SYMBOL(scsi_device_resume);
2610
2611static void
2612device_quiesce_fn(struct scsi_device *sdev, void *data)
2613{
2614	scsi_device_quiesce(sdev);
2615}
2616
2617void
2618scsi_target_quiesce(struct scsi_target *starget)
2619{
2620	starget_for_each_device(starget, NULL, device_quiesce_fn);
2621}
2622EXPORT_SYMBOL(scsi_target_quiesce);
2623
2624static void
2625device_resume_fn(struct scsi_device *sdev, void *data)
2626{
2627	scsi_device_resume(sdev);
2628}
2629
2630void
2631scsi_target_resume(struct scsi_target *starget)
2632{
2633	starget_for_each_device(starget, NULL, device_resume_fn);
2634}
2635EXPORT_SYMBOL(scsi_target_resume);
2636
2637/**
2638 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2639 * @sdev: device to block
2640 *
2641 * Pause SCSI command processing on the specified device. Does not sleep.
2642 *
2643 * Returns zero if successful or a negative error code upon failure.
2644 *
2645 * Notes:
2646 * This routine transitions the device to the SDEV_BLOCK state (which must be
2647 * a legal transition). When the device is in this state, command processing
2648 * is paused until the device leaves the SDEV_BLOCK state. See also
2649 * scsi_internal_device_unblock_nowait().
2650 */
2651int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2652{
2653	struct request_queue *q = sdev->request_queue;
 
2654	int err = 0;
2655
2656	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2657	if (err) {
2658		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2659
2660		if (err)
2661			return err;
2662	}
2663
2664	/* 
2665	 * The device has transitioned to SDEV_BLOCK.  Stop the
2666	 * block layer from calling the midlayer with this device's
2667	 * request queue. 
2668	 */
2669	blk_mq_quiesce_queue_nowait(q);
 
 
 
 
 
 
 
2670	return 0;
2671}
2672EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2673
2674/**
2675 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2676 * @sdev: device to block
2677 *
2678 * Pause SCSI command processing on the specified device and wait until all
2679 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2680 *
2681 * Returns zero if successful or a negative error code upon failure.
2682 *
2683 * Note:
2684 * This routine transitions the device to the SDEV_BLOCK state (which must be
2685 * a legal transition). When the device is in this state, command processing
2686 * is paused until the device leaves the SDEV_BLOCK state. See also
2687 * scsi_internal_device_unblock().
 
 
 
 
2688 */
2689static int scsi_internal_device_block(struct scsi_device *sdev)
2690{
2691	struct request_queue *q = sdev->request_queue;
2692	int err;
2693
2694	mutex_lock(&sdev->state_mutex);
2695	err = scsi_internal_device_block_nowait(sdev);
2696	if (err == 0)
2697		blk_mq_quiesce_queue(q);
 
 
 
 
2698	mutex_unlock(&sdev->state_mutex);
2699
2700	return err;
2701}
2702 
2703void scsi_start_queue(struct scsi_device *sdev)
2704{
2705	struct request_queue *q = sdev->request_queue;
 
2706
2707	blk_mq_unquiesce_queue(q);
 
 
 
 
 
 
2708}
2709
2710/**
2711 * scsi_internal_device_unblock_nowait - resume a device after a block request
2712 * @sdev:	device to resume
2713 * @new_state:	state to set the device to after unblocking
2714 *
2715 * Restart the device queue for a previously suspended SCSI device. Does not
2716 * sleep.
2717 *
2718 * Returns zero if successful or a negative error code upon failure.
2719 *
2720 * Notes:
2721 * This routine transitions the device to the SDEV_RUNNING state or to one of
2722 * the offline states (which must be a legal transition) allowing the midlayer
2723 * to goose the queue for this device.
2724 */
2725int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2726					enum scsi_device_state new_state)
2727{
2728	switch (new_state) {
2729	case SDEV_RUNNING:
2730	case SDEV_TRANSPORT_OFFLINE:
2731		break;
2732	default:
2733		return -EINVAL;
2734	}
2735
2736	/*
2737	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2738	 * offlined states and goose the device queue if successful.
2739	 */
2740	switch (sdev->sdev_state) {
2741	case SDEV_BLOCK:
2742	case SDEV_TRANSPORT_OFFLINE:
2743		sdev->sdev_state = new_state;
2744		break;
2745	case SDEV_CREATED_BLOCK:
2746		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2747		    new_state == SDEV_OFFLINE)
2748			sdev->sdev_state = new_state;
2749		else
2750			sdev->sdev_state = SDEV_CREATED;
2751		break;
2752	case SDEV_CANCEL:
2753	case SDEV_OFFLINE:
2754		break;
2755	default:
2756		return -EINVAL;
2757	}
2758	scsi_start_queue(sdev);
2759
2760	return 0;
2761}
2762EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2763
2764/**
2765 * scsi_internal_device_unblock - resume a device after a block request
2766 * @sdev:	device to resume
2767 * @new_state:	state to set the device to after unblocking
2768 *
2769 * Restart the device queue for a previously suspended SCSI device. May sleep.
2770 *
2771 * Returns zero if successful or a negative error code upon failure.
2772 *
2773 * Notes:
2774 * This routine transitions the device to the SDEV_RUNNING state or to one of
2775 * the offline states (which must be a legal transition) allowing the midlayer
2776 * to goose the queue for this device.
2777 */
2778static int scsi_internal_device_unblock(struct scsi_device *sdev,
2779					enum scsi_device_state new_state)
2780{
2781	int ret;
2782
2783	mutex_lock(&sdev->state_mutex);
2784	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2785	mutex_unlock(&sdev->state_mutex);
2786
2787	return ret;
2788}
2789
2790static void
2791device_block(struct scsi_device *sdev, void *data)
2792{
2793	int ret;
2794
2795	ret = scsi_internal_device_block(sdev);
2796
2797	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2798		  dev_name(&sdev->sdev_gendev), ret);
2799}
2800
2801static int
2802target_block(struct device *dev, void *data)
2803{
2804	if (scsi_is_target_device(dev))
2805		starget_for_each_device(to_scsi_target(dev), NULL,
2806					device_block);
2807	return 0;
2808}
2809
2810void
2811scsi_target_block(struct device *dev)
2812{
2813	if (scsi_is_target_device(dev))
2814		starget_for_each_device(to_scsi_target(dev), NULL,
2815					device_block);
2816	else
2817		device_for_each_child(dev, NULL, target_block);
2818}
2819EXPORT_SYMBOL_GPL(scsi_target_block);
2820
2821static void
2822device_unblock(struct scsi_device *sdev, void *data)
2823{
2824	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2825}
2826
2827static int
2828target_unblock(struct device *dev, void *data)
2829{
2830	if (scsi_is_target_device(dev))
2831		starget_for_each_device(to_scsi_target(dev), data,
2832					device_unblock);
2833	return 0;
2834}
2835
2836void
2837scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2838{
2839	if (scsi_is_target_device(dev))
2840		starget_for_each_device(to_scsi_target(dev), &new_state,
2841					device_unblock);
2842	else
2843		device_for_each_child(dev, &new_state, target_unblock);
2844}
2845EXPORT_SYMBOL_GPL(scsi_target_unblock);
2846
2847/**
2848 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2849 * @sgl:	scatter-gather list
2850 * @sg_count:	number of segments in sg
2851 * @offset:	offset in bytes into sg, on return offset into the mapped area
2852 * @len:	bytes to map, on return number of bytes mapped
2853 *
2854 * Returns virtual address of the start of the mapped page
2855 */
2856void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2857			  size_t *offset, size_t *len)
2858{
2859	int i;
2860	size_t sg_len = 0, len_complete = 0;
2861	struct scatterlist *sg;
2862	struct page *page;
2863
2864	WARN_ON(!irqs_disabled());
2865
2866	for_each_sg(sgl, sg, sg_count, i) {
2867		len_complete = sg_len; /* Complete sg-entries */
2868		sg_len += sg->length;
2869		if (sg_len > *offset)
2870			break;
2871	}
2872
2873	if (unlikely(i == sg_count)) {
2874		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2875			"elements %d\n",
2876		       __func__, sg_len, *offset, sg_count);
2877		WARN_ON(1);
2878		return NULL;
2879	}
2880
2881	/* Offset starting from the beginning of first page in this sg-entry */
2882	*offset = *offset - len_complete + sg->offset;
2883
2884	/* Assumption: contiguous pages can be accessed as "page + i" */
2885	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2886	*offset &= ~PAGE_MASK;
2887
2888	/* Bytes in this sg-entry from *offset to the end of the page */
2889	sg_len = PAGE_SIZE - *offset;
2890	if (*len > sg_len)
2891		*len = sg_len;
2892
2893	return kmap_atomic(page);
2894}
2895EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2896
2897/**
2898 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2899 * @virt:	virtual address to be unmapped
2900 */
2901void scsi_kunmap_atomic_sg(void *virt)
2902{
2903	kunmap_atomic(virt);
2904}
2905EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2906
2907void sdev_disable_disk_events(struct scsi_device *sdev)
2908{
2909	atomic_inc(&sdev->disk_events_disable_depth);
2910}
2911EXPORT_SYMBOL(sdev_disable_disk_events);
2912
2913void sdev_enable_disk_events(struct scsi_device *sdev)
2914{
2915	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2916		return;
2917	atomic_dec(&sdev->disk_events_disable_depth);
2918}
2919EXPORT_SYMBOL(sdev_enable_disk_events);
2920
2921/**
2922 * scsi_vpd_lun_id - return a unique device identification
2923 * @sdev: SCSI device
2924 * @id:   buffer for the identification
2925 * @id_len:  length of the buffer
2926 *
2927 * Copies a unique device identification into @id based
2928 * on the information in the VPD page 0x83 of the device.
2929 * The string will be formatted as a SCSI name string.
2930 *
2931 * Returns the length of the identification or error on failure.
2932 * If the identifier is longer than the supplied buffer the actual
2933 * identifier length is returned and the buffer is not zero-padded.
2934 */
2935int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2936{
2937	u8 cur_id_type = 0xff;
2938	u8 cur_id_size = 0;
2939	const unsigned char *d, *cur_id_str;
2940	const struct scsi_vpd *vpd_pg83;
2941	int id_size = -EINVAL;
2942
2943	rcu_read_lock();
2944	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2945	if (!vpd_pg83) {
2946		rcu_read_unlock();
2947		return -ENXIO;
2948	}
2949
2950	/*
2951	 * Look for the correct descriptor.
2952	 * Order of preference for lun descriptor:
2953	 * - SCSI name string
2954	 * - NAA IEEE Registered Extended
2955	 * - EUI-64 based 16-byte
2956	 * - EUI-64 based 12-byte
2957	 * - NAA IEEE Registered
2958	 * - NAA IEEE Extended
2959	 * - T10 Vendor ID
2960	 * as longer descriptors reduce the likelyhood
2961	 * of identification clashes.
2962	 */
2963
2964	/* The id string must be at least 20 bytes + terminating NULL byte */
2965	if (id_len < 21) {
2966		rcu_read_unlock();
2967		return -EINVAL;
2968	}
2969
2970	memset(id, 0, id_len);
2971	d = vpd_pg83->data + 4;
2972	while (d < vpd_pg83->data + vpd_pg83->len) {
2973		/* Skip designators not referring to the LUN */
2974		if ((d[1] & 0x30) != 0x00)
2975			goto next_desig;
2976
2977		switch (d[1] & 0xf) {
2978		case 0x1:
2979			/* T10 Vendor ID */
2980			if (cur_id_size > d[3])
2981				break;
2982			/* Prefer anything */
2983			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2984				break;
2985			cur_id_size = d[3];
2986			if (cur_id_size + 4 > id_len)
2987				cur_id_size = id_len - 4;
2988			cur_id_str = d + 4;
2989			cur_id_type = d[1] & 0xf;
2990			id_size = snprintf(id, id_len, "t10.%*pE",
2991					   cur_id_size, cur_id_str);
2992			break;
2993		case 0x2:
2994			/* EUI-64 */
2995			if (cur_id_size > d[3])
2996				break;
2997			/* Prefer NAA IEEE Registered Extended */
2998			if (cur_id_type == 0x3 &&
2999			    cur_id_size == d[3])
3000				break;
3001			cur_id_size = d[3];
3002			cur_id_str = d + 4;
3003			cur_id_type = d[1] & 0xf;
3004			switch (cur_id_size) {
3005			case 8:
3006				id_size = snprintf(id, id_len,
3007						   "eui.%8phN",
3008						   cur_id_str);
3009				break;
3010			case 12:
3011				id_size = snprintf(id, id_len,
3012						   "eui.%12phN",
3013						   cur_id_str);
3014				break;
3015			case 16:
3016				id_size = snprintf(id, id_len,
3017						   "eui.%16phN",
3018						   cur_id_str);
3019				break;
3020			default:
3021				cur_id_size = 0;
3022				break;
3023			}
3024			break;
3025		case 0x3:
3026			/* NAA */
3027			if (cur_id_size > d[3])
3028				break;
3029			cur_id_size = d[3];
3030			cur_id_str = d + 4;
3031			cur_id_type = d[1] & 0xf;
3032			switch (cur_id_size) {
3033			case 8:
3034				id_size = snprintf(id, id_len,
3035						   "naa.%8phN",
3036						   cur_id_str);
3037				break;
3038			case 16:
3039				id_size = snprintf(id, id_len,
3040						   "naa.%16phN",
3041						   cur_id_str);
3042				break;
3043			default:
3044				cur_id_size = 0;
3045				break;
3046			}
3047			break;
3048		case 0x8:
3049			/* SCSI name string */
3050			if (cur_id_size + 4 > d[3])
3051				break;
3052			/* Prefer others for truncated descriptor */
3053			if (cur_id_size && d[3] > id_len)
3054				break;
3055			cur_id_size = id_size = d[3];
3056			cur_id_str = d + 4;
3057			cur_id_type = d[1] & 0xf;
3058			if (cur_id_size >= id_len)
3059				cur_id_size = id_len - 1;
3060			memcpy(id, cur_id_str, cur_id_size);
3061			/* Decrease priority for truncated descriptor */
3062			if (cur_id_size != id_size)
3063				cur_id_size = 6;
3064			break;
3065		default:
3066			break;
3067		}
3068next_desig:
3069		d += d[3] + 4;
3070	}
3071	rcu_read_unlock();
3072
3073	return id_size;
3074}
3075EXPORT_SYMBOL(scsi_vpd_lun_id);
3076
3077/*
3078 * scsi_vpd_tpg_id - return a target port group identifier
3079 * @sdev: SCSI device
3080 *
3081 * Returns the Target Port Group identifier from the information
3082 * froom VPD page 0x83 of the device.
3083 *
3084 * Returns the identifier or error on failure.
3085 */
3086int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3087{
3088	const unsigned char *d;
3089	const struct scsi_vpd *vpd_pg83;
3090	int group_id = -EAGAIN, rel_port = -1;
3091
3092	rcu_read_lock();
3093	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3094	if (!vpd_pg83) {
3095		rcu_read_unlock();
3096		return -ENXIO;
3097	}
3098
3099	d = vpd_pg83->data + 4;
3100	while (d < vpd_pg83->data + vpd_pg83->len) {
3101		switch (d[1] & 0xf) {
3102		case 0x4:
3103			/* Relative target port */
3104			rel_port = get_unaligned_be16(&d[6]);
3105			break;
3106		case 0x5:
3107			/* Target port group */
3108			group_id = get_unaligned_be16(&d[6]);
3109			break;
3110		default:
3111			break;
3112		}
3113		d += d[3] + 4;
3114	}
3115	rcu_read_unlock();
3116
3117	if (group_id >= 0 && rel_id && rel_port != -1)
3118		*rel_id = rel_port;
3119
3120	return group_id;
3121}
3122EXPORT_SYMBOL(scsi_vpd_tpg_id);