Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.17
 
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42static struct kmem_cache *scsi_sdb_cache;
 
 
 
 
 
 
 
 
 
 
 
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56				   unsigned char *sense_buffer)
  57{
  58	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59			sense_buffer);
  60}
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63	gfp_t gfp_mask, int numa_node)
  64{
  65	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66				     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71	struct kmem_cache *cache;
  72	int ret = 0;
  73
  74	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75	if (cache)
  76		return 0;
  77
  78	mutex_lock(&scsi_sense_cache_mutex);
  79	if (shost->unchecked_isa_dma) {
  80		scsi_sense_isadma_cache =
  81			kmem_cache_create("scsi_sense_cache(DMA)",
  82				SCSI_SENSE_BUFFERSIZE, 0,
  83				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84		if (!scsi_sense_isadma_cache)
  85			ret = -ENOMEM;
  86	} else {
  87		scsi_sense_cache =
  88			kmem_cache_create_usercopy("scsi_sense_cache",
  89				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  90				0, SCSI_SENSE_BUFFERSIZE, NULL);
  91		if (!scsi_sense_cache)
  92			ret = -ENOMEM;
  93	}
  94
  95	mutex_unlock(&scsi_sense_cache_mutex);
  96	return ret;
  97}
  98
  99/*
 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 101 * not change behaviour from the previous unplug mechanism, experimentation
 102 * may prove this needs changing.
 103 */
 104#define SCSI_QUEUE_DELAY	3
 105
 106static void
 107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 108{
 109	struct Scsi_Host *host = cmd->device->host;
 110	struct scsi_device *device = cmd->device;
 111	struct scsi_target *starget = scsi_target(device);
 112
 113	/*
 114	 * Set the appropriate busy bit for the device/host.
 115	 *
 116	 * If the host/device isn't busy, assume that something actually
 117	 * completed, and that we should be able to queue a command now.
 118	 *
 119	 * Note that the prior mid-layer assumption that any host could
 120	 * always queue at least one command is now broken.  The mid-layer
 121	 * will implement a user specifiable stall (see
 122	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 123	 * if a command is requeued with no other commands outstanding
 124	 * either for the device or for the host.
 125	 */
 126	switch (reason) {
 127	case SCSI_MLQUEUE_HOST_BUSY:
 128		atomic_set(&host->host_blocked, host->max_host_blocked);
 129		break;
 130	case SCSI_MLQUEUE_DEVICE_BUSY:
 131	case SCSI_MLQUEUE_EH_RETRY:
 132		atomic_set(&device->device_blocked,
 133			   device->max_device_blocked);
 134		break;
 135	case SCSI_MLQUEUE_TARGET_BUSY:
 136		atomic_set(&starget->target_blocked,
 137			   starget->max_target_blocked);
 138		break;
 139	}
 140}
 141
 142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 143{
 144	struct scsi_device *sdev = cmd->device;
 145
 146	if (cmd->request->rq_flags & RQF_DONTPREP) {
 147		cmd->request->rq_flags &= ~RQF_DONTPREP;
 148		scsi_mq_uninit_cmd(cmd);
 149	} else {
 150		WARN_ON_ONCE(true);
 151	}
 152	blk_mq_requeue_request(cmd->request, true);
 153	put_device(&sdev->sdev_gendev);
 154}
 155
 156/**
 157 * __scsi_queue_insert - private queue insertion
 158 * @cmd: The SCSI command being requeued
 159 * @reason:  The reason for the requeue
 160 * @unbusy: Whether the queue should be unbusied
 161 *
 162 * This is a private queue insertion.  The public interface
 163 * scsi_queue_insert() always assumes the queue should be unbusied
 164 * because it's always called before the completion.  This function is
 165 * for a requeue after completion, which should only occur in this
 166 * file.
 167 */
 168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 169{
 170	struct scsi_device *device = cmd->device;
 171	struct request_queue *q = device->request_queue;
 172	unsigned long flags;
 173
 174	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 175		"Inserting command %p into mlqueue\n", cmd));
 176
 177	scsi_set_blocked(cmd, reason);
 178
 179	/*
 180	 * Decrement the counters, since these commands are no longer
 181	 * active on the host/device.
 182	 */
 183	if (unbusy)
 184		scsi_device_unbusy(device);
 185
 186	/*
 187	 * Requeue this command.  It will go before all other commands
 188	 * that are already in the queue. Schedule requeue work under
 189	 * lock such that the kblockd_schedule_work() call happens
 190	 * before blk_cleanup_queue() finishes.
 191	 */
 192	cmd->result = 0;
 193	if (q->mq_ops) {
 194		/*
 195		 * Before a SCSI command is dispatched,
 196		 * get_device(&sdev->sdev_gendev) is called and the host,
 197		 * target and device busy counters are increased. Since
 198		 * requeuing a request causes these actions to be repeated and
 199		 * since scsi_device_unbusy() has already been called,
 200		 * put_device(&device->sdev_gendev) must still be called. Call
 201		 * put_device() after blk_mq_requeue_request() to avoid that
 202		 * removal of the SCSI device can start before requeueing has
 203		 * happened.
 204		 */
 205		blk_mq_requeue_request(cmd->request, true);
 206		put_device(&device->sdev_gendev);
 207		return;
 208	}
 209	spin_lock_irqsave(q->queue_lock, flags);
 210	blk_requeue_request(q, cmd->request);
 211	kblockd_schedule_work(&device->requeue_work);
 212	spin_unlock_irqrestore(q->queue_lock, flags);
 213}
 214
 215/*
 216 * Function:    scsi_queue_insert()
 217 *
 218 * Purpose:     Insert a command in the midlevel queue.
 219 *
 220 * Arguments:   cmd    - command that we are adding to queue.
 221 *              reason - why we are inserting command to queue.
 222 *
 223 * Lock status: Assumed that lock is not held upon entry.
 224 *
 225 * Returns:     Nothing.
 226 *
 227 * Notes:       We do this for one of two cases.  Either the host is busy
 228 *              and it cannot accept any more commands for the time being,
 229 *              or the device returned QUEUE_FULL and can accept no more
 230 *              commands.
 231 * Notes:       This could be called either from an interrupt context or a
 232 *              normal process context.
 233 */
 234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 235{
 236	__scsi_queue_insert(cmd, reason, true);
 237}
 238
 239
 240/**
 241 * scsi_execute - insert request and wait for the result
 242 * @sdev:	scsi device
 243 * @cmd:	scsi command
 244 * @data_direction: data direction
 245 * @buffer:	data buffer
 246 * @bufflen:	len of buffer
 247 * @sense:	optional sense buffer
 248 * @sshdr:	optional decoded sense header
 249 * @timeout:	request timeout in seconds
 250 * @retries:	number of times to retry request
 251 * @flags:	flags for ->cmd_flags
 252 * @rq_flags:	flags for ->rq_flags
 253 * @resid:	optional residual length
 254 *
 255 * Returns the scsi_cmnd result field if a command was executed, or a negative
 256 * Linux error code if we didn't get that far.
 257 */
 258int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 259		 int data_direction, void *buffer, unsigned bufflen,
 260		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 261		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 262		 int *resid)
 263{
 264	struct request *req;
 265	struct scsi_request *rq;
 266	int ret = DRIVER_ERROR << 24;
 267
 268	req = blk_get_request_flags(sdev->request_queue,
 269			data_direction == DMA_TO_DEVICE ?
 270			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 
 271	if (IS_ERR(req))
 272		return ret;
 273	rq = scsi_req(req);
 274
 275	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 276					buffer, bufflen, __GFP_RECLAIM))
 277		goto out;
 278
 
 
 
 
 
 
 279	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 280	memcpy(rq->cmd, cmd, rq->cmd_len);
 281	rq->retries = retries;
 282	req->timeout = timeout;
 283	req->cmd_flags |= flags;
 284	req->rq_flags |= rq_flags | RQF_QUIET;
 285
 286	/*
 287	 * head injection *required* here otherwise quiesce won't work
 288	 */
 289	blk_execute_rq(req->q, NULL, req, 1);
 290
 291	/*
 292	 * Some devices (USB mass-storage in particular) may transfer
 293	 * garbage data together with a residue indicating that the data
 294	 * is invalid.  Prevent the garbage from being misinterpreted
 295	 * and prevent security leaks by zeroing out the excess data.
 296	 */
 297	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 298		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 299
 300	if (resid)
 301		*resid = rq->resid_len;
 302	if (sense && rq->sense_len)
 303		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 304	if (sshdr)
 305		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 306	ret = rq->result;
 307 out:
 308	blk_put_request(req);
 309
 310	return ret;
 311}
 312EXPORT_SYMBOL(scsi_execute);
 313
 314/*
 315 * Function:    scsi_init_cmd_errh()
 316 *
 317 * Purpose:     Initialize cmd fields related to error handling.
 318 *
 319 * Arguments:   cmd	- command that is ready to be queued.
 320 *
 321 * Notes:       This function has the job of initializing a number of
 322 *              fields related to error handling.   Typically this will
 323 *              be called once for each command, as required.
 324 */
 325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 326{
 327	cmd->serial_number = 0;
 328	scsi_set_resid(cmd, 0);
 329	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 330	if (cmd->cmd_len == 0)
 331		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 332}
 333
 334/*
 335 * Decrement the host_busy counter and wake up the error handler if necessary.
 336 * Avoid as follows that the error handler is not woken up if shost->host_busy
 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 338 * with an RCU read lock in this function to ensure that this function in its
 339 * entirety either finishes before scsi_eh_scmd_add() increases the
 340 * host_failed counter or that it notices the shost state change made by
 341 * scsi_eh_scmd_add().
 342 */
 343static void scsi_dec_host_busy(struct Scsi_Host *shost)
 344{
 345	unsigned long flags;
 346
 347	rcu_read_lock();
 348	atomic_dec(&shost->host_busy);
 349	if (unlikely(scsi_host_in_recovery(shost))) {
 350		spin_lock_irqsave(shost->host_lock, flags);
 351		if (shost->host_failed || shost->host_eh_scheduled)
 352			scsi_eh_wakeup(shost);
 353		spin_unlock_irqrestore(shost->host_lock, flags);
 354	}
 355	rcu_read_unlock();
 356}
 357
 358void scsi_device_unbusy(struct scsi_device *sdev)
 359{
 360	struct Scsi_Host *shost = sdev->host;
 361	struct scsi_target *starget = scsi_target(sdev);
 362
 363	scsi_dec_host_busy(shost);
 364
 365	if (starget->can_queue > 0)
 366		atomic_dec(&starget->target_busy);
 367
 368	atomic_dec(&sdev->device_busy);
 
 369}
 370
 371static void scsi_kick_queue(struct request_queue *q)
 372{
 373	if (q->mq_ops)
 374		blk_mq_start_hw_queues(q);
 375	else
 376		blk_run_queue(q);
 377}
 378
 379/*
 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 381 * and call blk_run_queue for all the scsi_devices on the target -
 382 * including current_sdev first.
 383 *
 384 * Called with *no* scsi locks held.
 385 */
 386static void scsi_single_lun_run(struct scsi_device *current_sdev)
 387{
 388	struct Scsi_Host *shost = current_sdev->host;
 389	struct scsi_device *sdev, *tmp;
 390	struct scsi_target *starget = scsi_target(current_sdev);
 391	unsigned long flags;
 392
 393	spin_lock_irqsave(shost->host_lock, flags);
 394	starget->starget_sdev_user = NULL;
 395	spin_unlock_irqrestore(shost->host_lock, flags);
 396
 397	/*
 398	 * Call blk_run_queue for all LUNs on the target, starting with
 399	 * current_sdev. We race with others (to set starget_sdev_user),
 400	 * but in most cases, we will be first. Ideally, each LU on the
 401	 * target would get some limited time or requests on the target.
 402	 */
 403	scsi_kick_queue(current_sdev->request_queue);
 404
 405	spin_lock_irqsave(shost->host_lock, flags);
 406	if (starget->starget_sdev_user)
 407		goto out;
 408	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 409			same_target_siblings) {
 410		if (sdev == current_sdev)
 411			continue;
 412		if (scsi_device_get(sdev))
 413			continue;
 414
 415		spin_unlock_irqrestore(shost->host_lock, flags);
 416		scsi_kick_queue(sdev->request_queue);
 417		spin_lock_irqsave(shost->host_lock, flags);
 418	
 419		scsi_device_put(sdev);
 420	}
 421 out:
 422	spin_unlock_irqrestore(shost->host_lock, flags);
 423}
 424
 425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 426{
 427	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 428		return true;
 429	if (atomic_read(&sdev->device_blocked) > 0)
 430		return true;
 431	return false;
 432}
 433
 434static inline bool scsi_target_is_busy(struct scsi_target *starget)
 435{
 436	if (starget->can_queue > 0) {
 437		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 438			return true;
 439		if (atomic_read(&starget->target_blocked) > 0)
 440			return true;
 441	}
 442	return false;
 443}
 444
 445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 446{
 447	if (shost->can_queue > 0 &&
 448	    atomic_read(&shost->host_busy) >= shost->can_queue)
 449		return true;
 450	if (atomic_read(&shost->host_blocked) > 0)
 451		return true;
 452	if (shost->host_self_blocked)
 453		return true;
 454	return false;
 455}
 456
 457static void scsi_starved_list_run(struct Scsi_Host *shost)
 458{
 459	LIST_HEAD(starved_list);
 460	struct scsi_device *sdev;
 461	unsigned long flags;
 462
 463	spin_lock_irqsave(shost->host_lock, flags);
 464	list_splice_init(&shost->starved_list, &starved_list);
 465
 466	while (!list_empty(&starved_list)) {
 467		struct request_queue *slq;
 468
 469		/*
 470		 * As long as shost is accepting commands and we have
 471		 * starved queues, call blk_run_queue. scsi_request_fn
 472		 * drops the queue_lock and can add us back to the
 473		 * starved_list.
 474		 *
 475		 * host_lock protects the starved_list and starved_entry.
 476		 * scsi_request_fn must get the host_lock before checking
 477		 * or modifying starved_list or starved_entry.
 478		 */
 479		if (scsi_host_is_busy(shost))
 480			break;
 481
 482		sdev = list_entry(starved_list.next,
 483				  struct scsi_device, starved_entry);
 484		list_del_init(&sdev->starved_entry);
 485		if (scsi_target_is_busy(scsi_target(sdev))) {
 486			list_move_tail(&sdev->starved_entry,
 487				       &shost->starved_list);
 488			continue;
 489		}
 490
 491		/*
 492		 * Once we drop the host lock, a racing scsi_remove_device()
 493		 * call may remove the sdev from the starved list and destroy
 494		 * it and the queue.  Mitigate by taking a reference to the
 495		 * queue and never touching the sdev again after we drop the
 496		 * host lock.  Note: if __scsi_remove_device() invokes
 497		 * blk_cleanup_queue() before the queue is run from this
 498		 * function then blk_run_queue() will return immediately since
 499		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 500		 */
 501		slq = sdev->request_queue;
 502		if (!blk_get_queue(slq))
 503			continue;
 504		spin_unlock_irqrestore(shost->host_lock, flags);
 505
 506		scsi_kick_queue(slq);
 507		blk_put_queue(slq);
 508
 509		spin_lock_irqsave(shost->host_lock, flags);
 510	}
 511	/* put any unprocessed entries back */
 512	list_splice(&starved_list, &shost->starved_list);
 513	spin_unlock_irqrestore(shost->host_lock, flags);
 514}
 515
 516/*
 517 * Function:   scsi_run_queue()
 518 *
 519 * Purpose:    Select a proper request queue to serve next
 520 *
 521 * Arguments:  q       - last request's queue
 522 *
 523 * Returns:     Nothing
 524 *
 525 * Notes:      The previous command was completely finished, start
 526 *             a new one if possible.
 527 */
 528static void scsi_run_queue(struct request_queue *q)
 529{
 530	struct scsi_device *sdev = q->queuedata;
 531
 532	if (scsi_target(sdev)->single_lun)
 533		scsi_single_lun_run(sdev);
 534	if (!list_empty(&sdev->host->starved_list))
 535		scsi_starved_list_run(sdev->host);
 536
 537	if (q->mq_ops)
 538		blk_mq_run_hw_queues(q, false);
 539	else
 540		blk_run_queue(q);
 541}
 542
 543void scsi_requeue_run_queue(struct work_struct *work)
 544{
 545	struct scsi_device *sdev;
 546	struct request_queue *q;
 547
 548	sdev = container_of(work, struct scsi_device, requeue_work);
 549	q = sdev->request_queue;
 550	scsi_run_queue(q);
 551}
 552
 553/*
 554 * Function:	scsi_requeue_command()
 555 *
 556 * Purpose:	Handle post-processing of completed commands.
 557 *
 558 * Arguments:	q	- queue to operate on
 559 *		cmd	- command that may need to be requeued.
 560 *
 561 * Returns:	Nothing
 562 *
 563 * Notes:	After command completion, there may be blocks left
 564 *		over which weren't finished by the previous command
 565 *		this can be for a number of reasons - the main one is
 566 *		I/O errors in the middle of the request, in which case
 567 *		we need to request the blocks that come after the bad
 568 *		sector.
 569 * Notes:	Upon return, cmd is a stale pointer.
 570 */
 571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 572{
 573	struct scsi_device *sdev = cmd->device;
 574	struct request *req = cmd->request;
 575	unsigned long flags;
 576
 577	spin_lock_irqsave(q->queue_lock, flags);
 578	blk_unprep_request(req);
 579	req->special = NULL;
 580	scsi_put_command(cmd);
 581	blk_requeue_request(q, req);
 582	spin_unlock_irqrestore(q->queue_lock, flags);
 583
 584	scsi_run_queue(q);
 585
 586	put_device(&sdev->sdev_gendev);
 587}
 588
 589void scsi_run_host_queues(struct Scsi_Host *shost)
 590{
 591	struct scsi_device *sdev;
 592
 593	shost_for_each_device(sdev, shost)
 594		scsi_run_queue(sdev->request_queue);
 595}
 596
 597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 598{
 599	if (!blk_rq_is_passthrough(cmd->request)) {
 600		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 601
 602		if (drv->uninit_command)
 603			drv->uninit_command(cmd);
 604	}
 605}
 606
 607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 608{
 609	struct scsi_data_buffer *sdb;
 610
 611	if (cmd->sdb.table.nents)
 612		sg_free_table_chained(&cmd->sdb.table, true);
 613	if (cmd->request->next_rq) {
 614		sdb = cmd->request->next_rq->special;
 615		if (sdb)
 616			sg_free_table_chained(&sdb->table, true);
 617	}
 618	if (scsi_prot_sg_count(cmd))
 619		sg_free_table_chained(&cmd->prot_sdb->table, true);
 
 620}
 
 621
 622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 623{
 624	scsi_mq_free_sgtables(cmd);
 625	scsi_uninit_cmd(cmd);
 626	scsi_del_cmd_from_list(cmd);
 627}
 628
 629/*
 630 * Function:    scsi_release_buffers()
 631 *
 632 * Purpose:     Free resources allocate for a scsi_command.
 633 *
 634 * Arguments:   cmd	- command that we are bailing.
 635 *
 636 * Lock status: Assumed that no lock is held upon entry.
 637 *
 638 * Returns:     Nothing
 639 *
 640 * Notes:       In the event that an upper level driver rejects a
 641 *		command, we must release resources allocated during
 642 *		the __init_io() function.  Primarily this would involve
 643 *		the scatter-gather table.
 644 */
 645static void scsi_release_buffers(struct scsi_cmnd *cmd)
 646{
 647	if (cmd->sdb.table.nents)
 648		sg_free_table_chained(&cmd->sdb.table, false);
 649
 650	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 651
 652	if (scsi_prot_sg_count(cmd))
 653		sg_free_table_chained(&cmd->prot_sdb->table, false);
 654}
 655
 656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 657{
 658	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 659
 660	sg_free_table_chained(&bidi_sdb->table, false);
 661	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 662	cmd->request->next_rq->special = NULL;
 
 
 
 
 
 
 
 
 663}
 664
 
 665static bool scsi_end_request(struct request *req, blk_status_t error,
 666		unsigned int bytes, unsigned int bidi_bytes)
 667{
 668	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 669	struct scsi_device *sdev = cmd->device;
 670	struct request_queue *q = sdev->request_queue;
 671
 672	if (blk_update_request(req, error, bytes))
 673		return true;
 674
 675	/* Bidi request must be completed as a whole */
 676	if (unlikely(bidi_bytes) &&
 677	    blk_update_request(req->next_rq, error, bidi_bytes))
 678		return true;
 679
 680	if (blk_queue_add_random(q))
 681		add_disk_randomness(req->rq_disk);
 682
 683	if (!blk_rq_is_scsi(req)) {
 684		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 685		cmd->flags &= ~SCMD_INITIALIZED;
 686		destroy_rcu_head(&cmd->rcu);
 687	}
 688
 689	if (req->mq_ctx) {
 690		/*
 691		 * In the MQ case the command gets freed by __blk_mq_end_request,
 692		 * so we have to do all cleanup that depends on it earlier.
 693		 *
 694		 * We also can't kick the queues from irq context, so we
 695		 * will have to defer it to a workqueue.
 696		 */
 697		scsi_mq_uninit_cmd(cmd);
 698
 699		__blk_mq_end_request(req, error);
 700
 701		if (scsi_target(sdev)->single_lun ||
 702		    !list_empty(&sdev->host->starved_list))
 703			kblockd_schedule_work(&sdev->requeue_work);
 704		else
 705			blk_mq_run_hw_queues(q, true);
 706	} else {
 707		unsigned long flags;
 
 708
 709		if (bidi_bytes)
 710			scsi_release_bidi_buffers(cmd);
 711		scsi_release_buffers(cmd);
 712		scsi_put_command(cmd);
 
 713
 714		spin_lock_irqsave(q->queue_lock, flags);
 715		blk_finish_request(req, error);
 716		spin_unlock_irqrestore(q->queue_lock, flags);
 717
 718		scsi_run_queue(q);
 719	}
 720
 721	put_device(&sdev->sdev_gendev);
 722	return false;
 723}
 724
 725/**
 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 727 * @cmd:	SCSI command
 728 * @result:	scsi error code
 729 *
 730 * Translate a SCSI result code into a blk_status_t value. May reset the host
 731 * byte of @cmd->result.
 732 */
 733static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 734{
 735	switch (host_byte(result)) {
 736	case DID_OK:
 737		/*
 738		 * Also check the other bytes than the status byte in result
 739		 * to handle the case when a SCSI LLD sets result to
 740		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 741		 */
 742		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 743			return BLK_STS_OK;
 744		return BLK_STS_IOERR;
 745	case DID_TRANSPORT_FAILFAST:
 
 746		return BLK_STS_TRANSPORT;
 747	case DID_TARGET_FAILURE:
 748		set_host_byte(cmd, DID_OK);
 749		return BLK_STS_TARGET;
 750	case DID_NEXUS_FAILURE:
 
 751		return BLK_STS_NEXUS;
 752	case DID_ALLOC_FAILURE:
 753		set_host_byte(cmd, DID_OK);
 754		return BLK_STS_NOSPC;
 755	case DID_MEDIUM_ERROR:
 756		set_host_byte(cmd, DID_OK);
 757		return BLK_STS_MEDIUM;
 758	default:
 759		return BLK_STS_IOERR;
 760	}
 761}
 762
 763/*
 764 * Function:    scsi_io_completion()
 765 *
 766 * Purpose:     Completion processing for block device I/O requests.
 767 *
 768 * Arguments:   cmd   - command that is finished.
 769 *
 770 * Lock status: Assumed that no lock is held upon entry.
 771 *
 772 * Returns:     Nothing
 773 *
 774 * Notes:       We will finish off the specified number of sectors.  If we
 775 *		are done, the command block will be released and the queue
 776 *		function will be goosed.  If we are not done then we have to
 777 *		figure out what to do next:
 778 *
 779 *		a) We can call scsi_requeue_command().  The request
 780 *		   will be unprepared and put back on the queue.  Then
 781 *		   a new command will be created for it.  This should
 782 *		   be used if we made forward progress, or if we want
 783 *		   to switch from READ(10) to READ(6) for example.
 784 *
 785 *		b) We can call __scsi_queue_insert().  The request will
 786 *		   be put back on the queue and retried using the same
 787 *		   command as before, possibly after a delay.
 788 *
 789 *		c) We can call scsi_end_request() with -EIO to fail
 790 *		   the remainder of the request.
 791 */
 792void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 793{
 794	int result = cmd->result;
 795	struct request_queue *q = cmd->device->request_queue;
 796	struct request *req = cmd->request;
 797	blk_status_t error = BLK_STS_OK;
 798	struct scsi_sense_hdr sshdr;
 799	bool sense_valid = false;
 800	int sense_deferred = 0, level = 0;
 801	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 802	      ACTION_DELAYED_RETRY} action;
 803	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 804
 805	if (result) {
 806		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 807		if (sense_valid)
 808			sense_deferred = scsi_sense_is_deferred(&sshdr);
 809	}
 810
 811	if (blk_rq_is_passthrough(req)) {
 812		if (result) {
 813			if (sense_valid) {
 814				/*
 815				 * SG_IO wants current and deferred errors
 816				 */
 817				scsi_req(req)->sense_len =
 818					min(8 + cmd->sense_buffer[7],
 819					    SCSI_SENSE_BUFFERSIZE);
 820			}
 821			if (!sense_deferred)
 822				error = scsi_result_to_blk_status(cmd, result);
 823		}
 824		/*
 825		 * scsi_result_to_blk_status may have reset the host_byte
 826		 */
 827		scsi_req(req)->result = cmd->result;
 828		scsi_req(req)->resid_len = scsi_get_resid(cmd);
 829
 830		if (scsi_bidi_cmnd(cmd)) {
 831			/*
 832			 * Bidi commands Must be complete as a whole,
 833			 * both sides at once.
 834			 */
 835			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
 836			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
 837					blk_rq_bytes(req->next_rq)))
 838				BUG();
 839			return;
 840		}
 841	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets the error explicitly for the problem case.
 846		 */
 847		error = scsi_result_to_blk_status(cmd, result);
 848	}
 849
 850	/* no bidi support for !blk_rq_is_passthrough yet */
 851	BUG_ON(blk_bidi_rq(req));
 852
 853	/*
 854	 * Next deal with any sectors which we were able to correctly
 855	 * handle.
 856	 */
 857	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 858		"%u sectors total, %d bytes done.\n",
 859		blk_rq_sectors(req), good_bytes));
 860
 861	/*
 862	 * Recovered errors need reporting, but they're always treated as
 863	 * success, so fiddle the result code here.  For passthrough requests
 864	 * we already took a copy of the original into sreq->result which
 865	 * is what gets returned to the user
 866	 */
 867	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 868		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 869		 * print since caller wants ATA registers. Only occurs on
 870		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 871		 */
 872		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 873			;
 874		else if (!(req->rq_flags & RQF_QUIET))
 875			scsi_print_sense(cmd);
 876		result = 0;
 877		/* for passthrough error may be set */
 878		error = BLK_STS_OK;
 879	}
 880	/*
 881	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 882	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 883	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 884	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 885	 * intermediate statuses (both obsolete in SAM-4) as good.
 886	 */
 887	if (status_byte(result) && scsi_status_is_good(result)) {
 888		result = 0;
 889		error = BLK_STS_OK;
 890	}
 891
 892	/*
 893	 * special case: failed zero length commands always need to
 894	 * drop down into the retry code. Otherwise, if we finished
 895	 * all bytes in the request we are done now.
 896	 */
 897	if (!(blk_rq_bytes(req) == 0 && error) &&
 898	    !scsi_end_request(req, error, good_bytes, 0))
 899		return;
 900
 901	/*
 902	 * Kill remainder if no retrys.
 903	 */
 904	if (error && scsi_noretry_cmd(cmd)) {
 905		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 906			BUG();
 907		return;
 908	}
 
 
 909
 910	/*
 911	 * If there had been no error, but we have leftover bytes in the
 912	 * requeues just queue the command up again.
 913	 */
 914	if (result == 0)
 915		goto requeue;
 
 
 
 
 
 
 
 
 
 
 916
 917	error = scsi_result_to_blk_status(cmd, result);
 918
 919	if (host_byte(result) == DID_RESET) {
 920		/* Third party bus reset or reset for error recovery
 921		 * reasons.  Just retry the command and see what
 922		 * happens.
 923		 */
 924		action = ACTION_RETRY;
 925	} else if (sense_valid && !sense_deferred) {
 926		switch (sshdr.sense_key) {
 927		case UNIT_ATTENTION:
 928			if (cmd->device->removable) {
 929				/* Detected disc change.  Set a bit
 930				 * and quietly refuse further access.
 931				 */
 932				cmd->device->changed = 1;
 933				action = ACTION_FAIL;
 934			} else {
 935				/* Must have been a power glitch, or a
 936				 * bus reset.  Could not have been a
 937				 * media change, so we just retry the
 938				 * command and see what happens.
 939				 */
 940				action = ACTION_RETRY;
 941			}
 942			break;
 943		case ILLEGAL_REQUEST:
 944			/* If we had an ILLEGAL REQUEST returned, then
 945			 * we may have performed an unsupported
 946			 * command.  The only thing this should be
 947			 * would be a ten byte read where only a six
 948			 * byte read was supported.  Also, on a system
 949			 * where READ CAPACITY failed, we may have
 950			 * read past the end of the disk.
 951			 */
 952			if ((cmd->device->use_10_for_rw &&
 953			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 954			    (cmd->cmnd[0] == READ_10 ||
 955			     cmd->cmnd[0] == WRITE_10)) {
 956				/* This will issue a new 6-byte command. */
 957				cmd->device->use_10_for_rw = 0;
 958				action = ACTION_REPREP;
 959			} else if (sshdr.asc == 0x10) /* DIX */ {
 960				action = ACTION_FAIL;
 961				error = BLK_STS_PROTECTION;
 962			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 963			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 964				action = ACTION_FAIL;
 965				error = BLK_STS_TARGET;
 966			} else
 967				action = ACTION_FAIL;
 968			break;
 969		case ABORTED_COMMAND:
 970			action = ACTION_FAIL;
 971			if (sshdr.asc == 0x10) /* DIF */
 972				error = BLK_STS_PROTECTION;
 973			break;
 974		case NOT_READY:
 975			/* If the device is in the process of becoming
 976			 * ready, or has a temporary blockage, retry.
 977			 */
 978			if (sshdr.asc == 0x04) {
 979				switch (sshdr.ascq) {
 980				case 0x01: /* becoming ready */
 981				case 0x04: /* format in progress */
 982				case 0x05: /* rebuild in progress */
 983				case 0x06: /* recalculation in progress */
 984				case 0x07: /* operation in progress */
 985				case 0x08: /* Long write in progress */
 986				case 0x09: /* self test in progress */
 
 987				case 0x14: /* space allocation in progress */
 
 
 
 
 988					action = ACTION_DELAYED_RETRY;
 989					break;
 
 
 
 990				default:
 991					action = ACTION_FAIL;
 992					break;
 993				}
 994			} else
 995				action = ACTION_FAIL;
 996			break;
 997		case VOLUME_OVERFLOW:
 998			/* See SSC3rXX or current. */
 999			action = ACTION_FAIL;
1000			break;
 
 
 
 
 
 
 
 
 
1001		default:
1002			action = ACTION_FAIL;
1003			break;
1004		}
1005	} else
1006		action = ACTION_FAIL;
1007
1008	if (action != ACTION_FAIL &&
1009	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010		action = ACTION_FAIL;
1011
1012	switch (action) {
1013	case ACTION_FAIL:
1014		/* Give up and fail the remainder of the request */
1015		if (!(req->rq_flags & RQF_QUIET)) {
1016			static DEFINE_RATELIMIT_STATE(_rs,
1017					DEFAULT_RATELIMIT_INTERVAL,
1018					DEFAULT_RATELIMIT_BURST);
1019
1020			if (unlikely(scsi_logging_level))
1021				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022						       SCSI_LOG_MLCOMPLETE_BITS);
 
1023
1024			/*
1025			 * if logging is enabled the failure will be printed
1026			 * in scsi_log_completion(), so avoid duplicate messages
1027			 */
1028			if (!level && __ratelimit(&_rs)) {
1029				scsi_print_result(cmd, NULL, FAILED);
1030				if (driver_byte(result) & DRIVER_SENSE)
1031					scsi_print_sense(cmd);
1032				scsi_print_command(cmd);
1033			}
1034		}
1035		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036			return;
1037		/*FALLTHRU*/
1038	case ACTION_REPREP:
1039	requeue:
1040		/* Unprep the request and put it back at the head of the queue.
1041		 * A new command will be prepared and issued.
1042		 */
1043		if (q->mq_ops) {
1044			scsi_mq_requeue_cmd(cmd);
1045		} else {
1046			scsi_release_buffers(cmd);
1047			scsi_requeue_command(q, cmd);
1048		}
1049		break;
1050	case ACTION_RETRY:
1051		/* Retry the same command immediately */
1052		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053		break;
1054	case ACTION_DELAYED_RETRY:
1055		/* Retry the same command after a delay */
1056		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057		break;
1058	}
1059}
1060
1061static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
 
 
 
 
 
1062{
1063	int count;
 
 
 
 
 
 
 
1064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065	/*
1066	 * If sg table allocation fails, requeue request later.
 
 
 
1067	 */
1068	if (unlikely(sg_alloc_table_chained(&sdb->table,
1069			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070		return BLKPREP_DEFER;
1071
1072	/* 
1073	 * Next, walk the list, and fill in the addresses and sizes of
1074	 * each segment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	 */
1076	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077	BUG_ON(count > sdb->table.nents);
1078	sdb->table.nents = count;
1079	sdb->length = blk_rq_payload_bytes(req);
1080	return BLKPREP_OK;
1081}
1082
1083/*
1084 * Function:    scsi_init_io()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085 *
1086 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087 *
1088 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1089 *
1090 * Returns:     0 on success
1091 *		BLKPREP_DEFER if the failure is retryable
1092 *		BLKPREP_KILL if the failure is fatal
 
1093 */
1094int scsi_init_io(struct scsi_cmnd *cmd)
1095{
1096	struct scsi_device *sdev = cmd->device;
1097	struct request *rq = cmd->request;
1098	bool is_mq = (rq->mq_ctx != NULL);
1099	int error = BLKPREP_KILL;
 
 
 
1100
1101	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102		goto err_exit;
1103
1104	error = scsi_init_sgtable(rq, &cmd->sdb);
1105	if (error)
1106		goto err_exit;
1107
1108	if (blk_bidi_rq(rq)) {
1109		if (!rq->q->mq_ops) {
1110			struct scsi_data_buffer *bidi_sdb =
1111				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112			if (!bidi_sdb) {
1113				error = BLKPREP_DEFER;
1114				goto err_exit;
1115			}
1116
1117			rq->next_rq->special = bidi_sdb;
1118		}
 
 
 
 
1119
1120		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1121		if (error)
1122			goto err_exit;
 
 
 
 
 
 
 
 
 
1123	}
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125	if (blk_integrity_rq(rq)) {
1126		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127		int ivecs, count;
1128
1129		if (prot_sdb == NULL) {
1130			/*
1131			 * This can happen if someone (e.g. multipath)
1132			 * queues a command to a device on an adapter
1133			 * that does not support DIX.
1134			 */
1135			WARN_ON_ONCE(1);
1136			error = BLKPREP_KILL;
1137			goto err_exit;
1138		}
1139
1140		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141
1142		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143				prot_sdb->table.sgl)) {
1144			error = BLKPREP_DEFER;
1145			goto err_exit;
 
1146		}
1147
1148		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149						prot_sdb->table.sgl);
1150		BUG_ON(unlikely(count > ivecs));
1151		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152
1153		cmd->prot_sdb = prot_sdb;
1154		cmd->prot_sdb->table.nents = count;
1155	}
1156
1157	return BLKPREP_OK;
1158err_exit:
1159	if (is_mq) {
1160		scsi_mq_free_sgtables(cmd);
1161	} else {
1162		scsi_release_buffers(cmd);
1163		cmd->request->special = NULL;
1164		scsi_put_command(cmd);
1165		put_device(&sdev->sdev_gendev);
1166	}
1167	return error;
1168}
1169EXPORT_SYMBOL(scsi_init_io);
1170
1171/**
1172 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173 * @rq: Request associated with the SCSI command to be initialized.
1174 *
1175 * This function initializes the members of struct scsi_cmnd that must be
1176 * initialized before request processing starts and that won't be
1177 * reinitialized if a SCSI command is requeued.
1178 *
1179 * Called from inside blk_get_request() for pass-through requests and from
1180 * inside scsi_init_command() for filesystem requests.
1181 */
1182static void scsi_initialize_rq(struct request *rq)
1183{
1184	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185
1186	scsi_req_init(&cmd->req);
1187	init_rcu_head(&cmd->rcu);
1188	cmd->jiffies_at_alloc = jiffies;
1189	cmd->retries = 0;
1190}
1191
1192/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
 
 
 
1194{
1195	struct scsi_device *sdev = cmd->device;
1196	struct Scsi_Host *shost = sdev->host;
1197	unsigned long flags;
1198
1199	if (shost->use_cmd_list) {
1200		spin_lock_irqsave(&sdev->list_lock, flags);
1201		list_add_tail(&cmd->list, &sdev->cmd_list);
1202		spin_unlock_irqrestore(&sdev->list_lock, flags);
1203	}
1204}
1205
1206/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1208{
1209	struct scsi_device *sdev = cmd->device;
1210	struct Scsi_Host *shost = sdev->host;
1211	unsigned long flags;
1212
1213	if (shost->use_cmd_list) {
1214		spin_lock_irqsave(&sdev->list_lock, flags);
1215		BUG_ON(list_empty(&cmd->list));
1216		list_del_init(&cmd->list);
1217		spin_unlock_irqrestore(&sdev->list_lock, flags);
1218	}
1219}
1220
1221/* Called after a request has been started. */
1222void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223{
1224	void *buf = cmd->sense_buffer;
1225	void *prot = cmd->prot_sdb;
1226	struct request *rq = blk_mq_rq_from_pdu(cmd);
1227	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228	unsigned long jiffies_at_alloc;
1229	int retries;
 
 
1230
1231	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232		flags |= SCMD_INITIALIZED;
1233		scsi_initialize_rq(rq);
1234	}
1235
1236	jiffies_at_alloc = cmd->jiffies_at_alloc;
1237	retries = cmd->retries;
1238	/* zero out the cmd, except for the embedded scsi_request */
1239	memset((char *)cmd + sizeof(cmd->req), 0,
1240		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
 
 
 
 
 
 
 
1241
1242	cmd->device = dev;
1243	cmd->sense_buffer = buf;
1244	cmd->prot_sdb = prot;
1245	cmd->flags = flags;
1246	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247	cmd->jiffies_at_alloc = jiffies_at_alloc;
1248	cmd->retries = retries;
 
 
 
1249
1250	scsi_add_cmd_to_list(cmd);
1251}
1252
1253static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
 
1254{
1255	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256
1257	/*
1258	 * Passthrough requests may transfer data, in which case they must
1259	 * a bio attached to them.  Or they might contain a SCSI command
1260	 * that does not transfer data, in which case they may optionally
1261	 * submit a request without an attached bio.
1262	 */
1263	if (req->bio) {
1264		int ret = scsi_init_io(cmd);
1265		if (unlikely(ret))
1266			return ret;
1267	} else {
1268		BUG_ON(blk_rq_bytes(req));
1269
1270		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1271	}
1272
1273	cmd->cmd_len = scsi_req(req)->cmd_len;
 
 
1274	cmd->cmnd = scsi_req(req)->cmd;
1275	cmd->transfersize = blk_rq_bytes(req);
1276	cmd->allowed = scsi_req(req)->retries;
1277	return BLKPREP_OK;
1278}
1279
1280/*
1281 * Setup a normal block command.  These are simple request from filesystems
1282 * that still need to be translated to SCSI CDBs from the ULD.
1283 */
1284static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1285{
1286	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1287
1288	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289		int ret = sdev->handler->prep_fn(sdev, req);
1290		if (ret != BLKPREP_OK)
1291			return ret;
1292	}
1293
1294	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297}
1298
1299static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1300{
1301	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302
1303	if (!blk_rq_bytes(req))
1304		cmd->sc_data_direction = DMA_NONE;
1305	else if (rq_data_dir(req) == WRITE)
1306		cmd->sc_data_direction = DMA_TO_DEVICE;
1307	else
1308		cmd->sc_data_direction = DMA_FROM_DEVICE;
1309
1310	if (blk_rq_is_scsi(req))
1311		return scsi_setup_scsi_cmnd(sdev, req);
1312	else
1313		return scsi_setup_fs_cmnd(sdev, req);
1314}
1315
1316static int
1317scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318{
1319	int ret = BLKPREP_OK;
1320
1321	/*
1322	 * If the device is not in running state we will reject some
1323	 * or all commands.
1324	 */
1325	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326		switch (sdev->sdev_state) {
1327		case SDEV_OFFLINE:
1328		case SDEV_TRANSPORT_OFFLINE:
1329			/*
1330			 * If the device is offline we refuse to process any
1331			 * commands.  The device must be brought online
1332			 * before trying any recovery commands.
1333			 */
1334			sdev_printk(KERN_ERR, sdev,
1335				    "rejecting I/O to offline device\n");
1336			ret = BLKPREP_KILL;
1337			break;
1338		case SDEV_DEL:
1339			/*
1340			 * If the device is fully deleted, we refuse to
1341			 * process any commands as well.
1342			 */
1343			sdev_printk(KERN_ERR, sdev,
1344				    "rejecting I/O to dead device\n");
1345			ret = BLKPREP_KILL;
1346			break;
1347		case SDEV_BLOCK:
1348		case SDEV_CREATED_BLOCK:
1349			ret = BLKPREP_DEFER;
1350			break;
1351		case SDEV_QUIESCE:
1352			/*
1353			 * If the devices is blocked we defer normal commands.
1354			 */
1355			if (req && !(req->rq_flags & RQF_PREEMPT))
1356				ret = BLKPREP_DEFER;
1357			break;
1358		default:
1359			/*
1360			 * For any other not fully online state we only allow
1361			 * special commands.  In particular any user initiated
1362			 * command is not allowed.
1363			 */
1364			if (req && !(req->rq_flags & RQF_PREEMPT))
1365				ret = BLKPREP_KILL;
1366			break;
1367		}
1368	}
1369	return ret;
1370}
1371
1372static int
1373scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374{
1375	struct scsi_device *sdev = q->queuedata;
1376
1377	switch (ret) {
1378	case BLKPREP_KILL:
1379	case BLKPREP_INVALID:
1380		scsi_req(req)->result = DID_NO_CONNECT << 16;
1381		/* release the command and kill it */
1382		if (req->special) {
1383			struct scsi_cmnd *cmd = req->special;
1384			scsi_release_buffers(cmd);
1385			scsi_put_command(cmd);
1386			put_device(&sdev->sdev_gendev);
1387			req->special = NULL;
1388		}
1389		break;
1390	case BLKPREP_DEFER:
1391		/*
1392		 * If we defer, the blk_peek_request() returns NULL, but the
1393		 * queue must be restarted, so we schedule a callback to happen
1394		 * shortly.
1395		 */
1396		if (atomic_read(&sdev->device_busy) == 0)
1397			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398		break;
 
 
 
 
 
 
 
 
 
 
 
1399	default:
1400		req->rq_flags |= RQF_DONTPREP;
1401	}
1402
1403	return ret;
1404}
1405
1406static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407{
1408	struct scsi_device *sdev = q->queuedata;
1409	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410	int ret;
1411
1412	ret = scsi_prep_state_check(sdev, req);
1413	if (ret != BLKPREP_OK)
1414		goto out;
1415
1416	if (!req->special) {
1417		/* Bail if we can't get a reference to the device */
1418		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419			ret = BLKPREP_DEFER;
1420			goto out;
1421		}
1422
1423		scsi_init_command(sdev, cmd);
1424		req->special = cmd;
1425	}
1426
1427	cmd->tag = req->tag;
1428	cmd->request = req;
1429	cmd->prot_op = SCSI_PROT_NORMAL;
1430
1431	ret = scsi_setup_cmnd(sdev, req);
1432out:
1433	return scsi_prep_return(q, req, ret);
1434}
1435
1436static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437{
1438	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439}
1440
1441/*
1442 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443 * return 0.
1444 *
1445 * Called with the queue_lock held.
1446 */
1447static inline int scsi_dev_queue_ready(struct request_queue *q,
1448				  struct scsi_device *sdev)
1449{
1450	unsigned int busy;
1451
1452	busy = atomic_inc_return(&sdev->device_busy) - 1;
1453	if (atomic_read(&sdev->device_blocked)) {
1454		if (busy)
 
 
 
1455			goto out_dec;
1456
1457		/*
1458		 * unblock after device_blocked iterates to zero
1459		 */
1460		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461			/*
1462			 * For the MQ case we take care of this in the caller.
1463			 */
1464			if (!q->mq_ops)
1465				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466			goto out_dec;
1467		}
1468		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469				   "unblocking device at zero depth\n"));
1470	}
1471
1472	if (busy >= sdev->queue_depth)
1473		goto out_dec;
1474
1475	return 1;
1476out_dec:
1477	atomic_dec(&sdev->device_busy);
1478	return 0;
 
 
1479}
1480
1481/*
1482 * scsi_target_queue_ready: checks if there we can send commands to target
1483 * @sdev: scsi device on starget to check.
1484 */
1485static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486					   struct scsi_device *sdev)
1487{
1488	struct scsi_target *starget = scsi_target(sdev);
1489	unsigned int busy;
1490
1491	if (starget->single_lun) {
1492		spin_lock_irq(shost->host_lock);
1493		if (starget->starget_sdev_user &&
1494		    starget->starget_sdev_user != sdev) {
1495			spin_unlock_irq(shost->host_lock);
1496			return 0;
1497		}
1498		starget->starget_sdev_user = sdev;
1499		spin_unlock_irq(shost->host_lock);
1500	}
1501
1502	if (starget->can_queue <= 0)
1503		return 1;
1504
1505	busy = atomic_inc_return(&starget->target_busy) - 1;
1506	if (atomic_read(&starget->target_blocked) > 0) {
1507		if (busy)
1508			goto starved;
1509
1510		/*
1511		 * unblock after target_blocked iterates to zero
1512		 */
1513		if (atomic_dec_return(&starget->target_blocked) > 0)
1514			goto out_dec;
1515
1516		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517				 "unblocking target at zero depth\n"));
1518	}
1519
1520	if (busy >= starget->can_queue)
1521		goto starved;
1522
1523	return 1;
1524
1525starved:
1526	spin_lock_irq(shost->host_lock);
1527	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528	spin_unlock_irq(shost->host_lock);
1529out_dec:
1530	if (starget->can_queue > 0)
1531		atomic_dec(&starget->target_busy);
1532	return 0;
1533}
1534
1535/*
1536 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537 * return 0. We must end up running the queue again whenever 0 is
1538 * returned, else IO can hang.
1539 */
1540static inline int scsi_host_queue_ready(struct request_queue *q,
1541				   struct Scsi_Host *shost,
1542				   struct scsi_device *sdev)
 
1543{
1544	unsigned int busy;
1545
1546	if (scsi_host_in_recovery(shost))
1547		return 0;
1548
1549	busy = atomic_inc_return(&shost->host_busy) - 1;
1550	if (atomic_read(&shost->host_blocked) > 0) {
1551		if (busy)
1552			goto starved;
1553
1554		/*
1555		 * unblock after host_blocked iterates to zero
1556		 */
1557		if (atomic_dec_return(&shost->host_blocked) > 0)
1558			goto out_dec;
1559
1560		SCSI_LOG_MLQUEUE(3,
1561			shost_printk(KERN_INFO, shost,
1562				     "unblocking host at zero depth\n"));
1563	}
1564
1565	if (shost->can_queue > 0 && busy >= shost->can_queue)
1566		goto starved;
1567	if (shost->host_self_blocked)
1568		goto starved;
1569
1570	/* We're OK to process the command, so we can't be starved */
1571	if (!list_empty(&sdev->starved_entry)) {
1572		spin_lock_irq(shost->host_lock);
1573		if (!list_empty(&sdev->starved_entry))
1574			list_del_init(&sdev->starved_entry);
1575		spin_unlock_irq(shost->host_lock);
1576	}
1577
 
 
1578	return 1;
1579
1580starved:
1581	spin_lock_irq(shost->host_lock);
1582	if (list_empty(&sdev->starved_entry))
1583		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584	spin_unlock_irq(shost->host_lock);
1585out_dec:
1586	scsi_dec_host_busy(shost);
1587	return 0;
1588}
1589
1590/*
1591 * Busy state exporting function for request stacking drivers.
1592 *
1593 * For efficiency, no lock is taken to check the busy state of
1594 * shost/starget/sdev, since the returned value is not guaranteed and
1595 * may be changed after request stacking drivers call the function,
1596 * regardless of taking lock or not.
1597 *
1598 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599 * needs to return 'not busy'. Otherwise, request stacking drivers
1600 * may hold requests forever.
1601 */
1602static int scsi_lld_busy(struct request_queue *q)
1603{
1604	struct scsi_device *sdev = q->queuedata;
1605	struct Scsi_Host *shost;
1606
1607	if (blk_queue_dying(q))
1608		return 0;
1609
1610	shost = sdev->host;
1611
1612	/*
1613	 * Ignore host/starget busy state.
1614	 * Since block layer does not have a concept of fairness across
1615	 * multiple queues, congestion of host/starget needs to be handled
1616	 * in SCSI layer.
1617	 */
1618	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619		return 1;
1620
1621	return 0;
1622}
1623
1624/*
1625 * Kill a request for a dead device
 
1626 */
1627static void scsi_kill_request(struct request *req, struct request_queue *q)
1628{
1629	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630	struct scsi_device *sdev;
1631	struct scsi_target *starget;
1632	struct Scsi_Host *shost;
1633
1634	blk_start_request(req);
1635
1636	scmd_printk(KERN_INFO, cmd, "killing request\n");
1637
1638	sdev = cmd->device;
1639	starget = scsi_target(sdev);
1640	shost = sdev->host;
1641	scsi_init_cmd_errh(cmd);
1642	cmd->result = DID_NO_CONNECT << 16;
1643	atomic_inc(&cmd->device->iorequest_cnt);
1644
1645	/*
1646	 * SCSI request completion path will do scsi_device_unbusy(),
1647	 * bump busy counts.  To bump the counters, we need to dance
1648	 * with the locks as normal issue path does.
1649	 */
1650	atomic_inc(&sdev->device_busy);
1651	atomic_inc(&shost->host_busy);
1652	if (starget->can_queue > 0)
1653		atomic_inc(&starget->target_busy);
1654
1655	blk_complete_request(req);
1656}
1657
1658static void scsi_softirq_done(struct request *rq)
1659{
1660	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662	int disposition;
1663
1664	INIT_LIST_HEAD(&cmd->eh_entry);
1665
1666	atomic_inc(&cmd->device->iodone_cnt);
1667	if (cmd->result)
1668		atomic_inc(&cmd->device->ioerr_cnt);
1669
1670	disposition = scsi_decide_disposition(cmd);
1671	if (disposition != SUCCESS &&
1672	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673		sdev_printk(KERN_ERR, cmd->device,
1674			    "timing out command, waited %lus\n",
1675			    wait_for/HZ);
1676		disposition = SUCCESS;
1677	}
1678
1679	scsi_log_completion(cmd, disposition);
1680
1681	switch (disposition) {
1682		case SUCCESS:
1683			scsi_finish_command(cmd);
1684			break;
1685		case NEEDS_RETRY:
1686			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687			break;
1688		case ADD_TO_MLQUEUE:
1689			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690			break;
1691		default:
1692			scsi_eh_scmd_add(cmd);
1693			break;
1694	}
1695}
1696
1697/**
1698 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699 * @cmd: command block we are dispatching.
1700 *
1701 * Return: nonzero return request was rejected and device's queue needs to be
1702 * plugged.
1703 */
1704static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705{
1706	struct Scsi_Host *host = cmd->device->host;
1707	int rtn = 0;
1708
1709	atomic_inc(&cmd->device->iorequest_cnt);
1710
1711	/* check if the device is still usable */
1712	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714		 * returns an immediate error upwards, and signals
1715		 * that the device is no longer present */
1716		cmd->result = DID_NO_CONNECT << 16;
1717		goto done;
1718	}
1719
1720	/* Check to see if the scsi lld made this device blocked. */
1721	if (unlikely(scsi_device_blocked(cmd->device))) {
1722		/*
1723		 * in blocked state, the command is just put back on
1724		 * the device queue.  The suspend state has already
1725		 * blocked the queue so future requests should not
1726		 * occur until the device transitions out of the
1727		 * suspend state.
1728		 */
1729		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730			"queuecommand : device blocked\n"));
1731		return SCSI_MLQUEUE_DEVICE_BUSY;
1732	}
1733
1734	/* Store the LUN value in cmnd, if needed. */
1735	if (cmd->device->lun_in_cdb)
1736		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737			       (cmd->device->lun << 5 & 0xe0);
1738
1739	scsi_log_send(cmd);
1740
1741	/*
1742	 * Before we queue this command, check if the command
1743	 * length exceeds what the host adapter can handle.
1744	 */
1745	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747			       "queuecommand : command too long. "
1748			       "cdb_size=%d host->max_cmd_len=%d\n",
1749			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1750		cmd->result = (DID_ABORT << 16);
1751		goto done;
1752	}
1753
1754	if (unlikely(host->shost_state == SHOST_DEL)) {
1755		cmd->result = (DID_NO_CONNECT << 16);
1756		goto done;
1757
1758	}
1759
1760	trace_scsi_dispatch_cmd_start(cmd);
1761	rtn = host->hostt->queuecommand(host, cmd);
1762	if (rtn) {
1763		trace_scsi_dispatch_cmd_error(cmd, rtn);
1764		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766			rtn = SCSI_MLQUEUE_HOST_BUSY;
1767
1768		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769			"queuecommand : request rejected\n"));
1770	}
1771
1772	return rtn;
1773 done:
1774	cmd->scsi_done(cmd);
1775	return 0;
1776}
1777
1778/**
1779 * scsi_done - Invoke completion on finished SCSI command.
1780 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782 *
1783 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785 * calls blk_complete_request() for further processing.
1786 *
1787 * This function is interrupt context safe.
1788 */
1789static void scsi_done(struct scsi_cmnd *cmd)
1790{
1791	trace_scsi_dispatch_cmd_done(cmd);
1792	blk_complete_request(cmd->request);
1793}
1794
1795/*
1796 * Function:    scsi_request_fn()
1797 *
1798 * Purpose:     Main strategy routine for SCSI.
1799 *
1800 * Arguments:   q       - Pointer to actual queue.
1801 *
1802 * Returns:     Nothing
1803 *
1804 * Lock status: request queue lock assumed to be held when called.
1805 *
1806 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807 * protection for ZBC disks.
1808 */
1809static void scsi_request_fn(struct request_queue *q)
1810	__releases(q->queue_lock)
1811	__acquires(q->queue_lock)
1812{
1813	struct scsi_device *sdev = q->queuedata;
1814	struct Scsi_Host *shost;
1815	struct scsi_cmnd *cmd;
1816	struct request *req;
1817
1818	/*
1819	 * To start with, we keep looping until the queue is empty, or until
1820	 * the host is no longer able to accept any more requests.
1821	 */
1822	shost = sdev->host;
1823	for (;;) {
1824		int rtn;
1825		/*
1826		 * get next queueable request.  We do this early to make sure
1827		 * that the request is fully prepared even if we cannot
1828		 * accept it.
1829		 */
1830		req = blk_peek_request(q);
1831		if (!req)
1832			break;
1833
1834		if (unlikely(!scsi_device_online(sdev))) {
1835			sdev_printk(KERN_ERR, sdev,
1836				    "rejecting I/O to offline device\n");
1837			scsi_kill_request(req, q);
1838			continue;
1839		}
1840
1841		if (!scsi_dev_queue_ready(q, sdev))
1842			break;
1843
1844		/*
1845		 * Remove the request from the request list.
1846		 */
1847		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848			blk_start_request(req);
1849
1850		spin_unlock_irq(q->queue_lock);
1851		cmd = blk_mq_rq_to_pdu(req);
1852		if (cmd != req->special) {
1853			printk(KERN_CRIT "impossible request in %s.\n"
1854					 "please mail a stack trace to "
1855					 "linux-scsi@vger.kernel.org\n",
1856					 __func__);
1857			blk_dump_rq_flags(req, "foo");
1858			BUG();
1859		}
1860
1861		/*
1862		 * We hit this when the driver is using a host wide
1863		 * tag map. For device level tag maps the queue_depth check
1864		 * in the device ready fn would prevent us from trying
1865		 * to allocate a tag. Since the map is a shared host resource
1866		 * we add the dev to the starved list so it eventually gets
1867		 * a run when a tag is freed.
1868		 */
1869		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870			spin_lock_irq(shost->host_lock);
1871			if (list_empty(&sdev->starved_entry))
1872				list_add_tail(&sdev->starved_entry,
1873					      &shost->starved_list);
1874			spin_unlock_irq(shost->host_lock);
1875			goto not_ready;
1876		}
1877
1878		if (!scsi_target_queue_ready(shost, sdev))
1879			goto not_ready;
1880
1881		if (!scsi_host_queue_ready(q, shost, sdev))
1882			goto host_not_ready;
1883	
1884		if (sdev->simple_tags)
1885			cmd->flags |= SCMD_TAGGED;
1886		else
1887			cmd->flags &= ~SCMD_TAGGED;
1888
1889		/*
1890		 * Finally, initialize any error handling parameters, and set up
1891		 * the timers for timeouts.
1892		 */
1893		scsi_init_cmd_errh(cmd);
1894
1895		/*
1896		 * Dispatch the command to the low-level driver.
1897		 */
1898		cmd->scsi_done = scsi_done;
1899		rtn = scsi_dispatch_cmd(cmd);
1900		if (rtn) {
1901			scsi_queue_insert(cmd, rtn);
1902			spin_lock_irq(q->queue_lock);
1903			goto out_delay;
1904		}
1905		spin_lock_irq(q->queue_lock);
1906	}
1907
1908	return;
1909
1910 host_not_ready:
1911	if (scsi_target(sdev)->can_queue > 0)
1912		atomic_dec(&scsi_target(sdev)->target_busy);
1913 not_ready:
1914	/*
1915	 * lock q, handle tag, requeue req, and decrement device_busy. We
1916	 * must return with queue_lock held.
1917	 *
1918	 * Decrementing device_busy without checking it is OK, as all such
1919	 * cases (host limits or settings) should run the queue at some
1920	 * later time.
1921	 */
1922	spin_lock_irq(q->queue_lock);
1923	blk_requeue_request(q, req);
1924	atomic_dec(&sdev->device_busy);
1925out_delay:
1926	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928}
1929
1930static inline blk_status_t prep_to_mq(int ret)
1931{
1932	switch (ret) {
1933	case BLKPREP_OK:
1934		return BLK_STS_OK;
1935	case BLKPREP_DEFER:
1936		return BLK_STS_RESOURCE;
1937	default:
1938		return BLK_STS_IOERR;
1939	}
1940}
1941
1942/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944{
1945	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946		sizeof(struct scatterlist);
1947}
1948
1949static int scsi_mq_prep_fn(struct request *req)
1950{
1951	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952	struct scsi_device *sdev = req->q->queuedata;
1953	struct Scsi_Host *shost = sdev->host;
1954	struct scatterlist *sg;
1955
1956	scsi_init_command(sdev, cmd);
1957
1958	req->special = cmd;
1959
1960	cmd->request = req;
1961
1962	cmd->tag = req->tag;
1963	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1964
1965	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966	cmd->sdb.table.sgl = sg;
1967
1968	if (scsi_host_get_prot(shost)) {
1969		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970
1971		cmd->prot_sdb->table.sgl =
1972			(struct scatterlist *)(cmd->prot_sdb + 1);
1973	}
1974
1975	if (blk_bidi_rq(req)) {
1976		struct request *next_rq = req->next_rq;
1977		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978
1979		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980		bidi_sdb->table.sgl =
1981			(struct scatterlist *)(bidi_sdb + 1);
1982
1983		next_rq->special = bidi_sdb;
1984	}
1985
1986	blk_mq_start_request(req);
 
 
1987
1988	return scsi_setup_cmnd(sdev, req);
 
 
1989}
1990
1991static void scsi_mq_done(struct scsi_cmnd *cmd)
1992{
 
 
 
 
1993	trace_scsi_dispatch_cmd_done(cmd);
1994	blk_mq_complete_request(cmd->request);
1995}
1996
1997static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998{
1999	struct request_queue *q = hctx->queue;
2000	struct scsi_device *sdev = q->queuedata;
2001
2002	atomic_dec(&sdev->device_busy);
2003	put_device(&sdev->sdev_gendev);
2004}
2005
2006static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2007{
2008	struct request_queue *q = hctx->queue;
2009	struct scsi_device *sdev = q->queuedata;
 
2010
2011	if (!get_device(&sdev->sdev_gendev))
2012		goto out;
2013	if (!scsi_dev_queue_ready(q, sdev))
2014		goto out_put_device;
2015
2016	return true;
2017
2018out_put_device:
2019	put_device(&sdev->sdev_gendev);
2020out:
2021	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024}
2025
2026static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027			 const struct blk_mq_queue_data *bd)
2028{
2029	struct request *req = bd->rq;
2030	struct request_queue *q = req->q;
2031	struct scsi_device *sdev = q->queuedata;
2032	struct Scsi_Host *shost = sdev->host;
2033	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034	blk_status_t ret;
2035	int reason;
2036
2037	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038	if (ret != BLK_STS_OK)
2039		goto out_put_budget;
 
 
 
 
 
 
 
 
2040
2041	ret = BLK_STS_RESOURCE;
2042	if (!scsi_target_queue_ready(shost, sdev))
2043		goto out_put_budget;
2044	if (!scsi_host_queue_ready(q, shost, sdev))
2045		goto out_dec_target_busy;
2046
2047	if (!(req->rq_flags & RQF_DONTPREP)) {
2048		ret = prep_to_mq(scsi_mq_prep_fn(req));
2049		if (ret != BLK_STS_OK)
2050			goto out_dec_host_busy;
2051		req->rq_flags |= RQF_DONTPREP;
2052	} else {
2053		blk_mq_start_request(req);
2054	}
2055
 
2056	if (sdev->simple_tags)
2057		cmd->flags |= SCMD_TAGGED;
2058	else
2059		cmd->flags &= ~SCMD_TAGGED;
2060
2061	scsi_init_cmd_errh(cmd);
 
2062	cmd->scsi_done = scsi_mq_done;
2063
 
2064	reason = scsi_dispatch_cmd(cmd);
2065	if (reason) {
2066		scsi_set_blocked(cmd, reason);
2067		ret = BLK_STS_RESOURCE;
2068		goto out_dec_host_busy;
2069	}
2070
2071	return BLK_STS_OK;
2072
2073out_dec_host_busy:
2074	scsi_dec_host_busy(shost);
2075out_dec_target_busy:
2076	if (scsi_target(sdev)->can_queue > 0)
2077		atomic_dec(&scsi_target(sdev)->target_busy);
2078out_put_budget:
2079	scsi_mq_put_budget(hctx);
 
2080	switch (ret) {
2081	case BLK_STS_OK:
2082		break;
2083	case BLK_STS_RESOURCE:
2084		if (atomic_read(&sdev->device_busy) ||
2085		    scsi_device_blocked(sdev))
2086			ret = BLK_STS_DEV_RESOURCE;
2087		break;
 
 
 
 
 
2088	default:
 
 
 
 
2089		/*
2090		 * Make sure to release all allocated ressources when
2091		 * we hit an error, as we will never see this command
2092		 * again.
2093		 */
2094		if (req->rq_flags & RQF_DONTPREP)
2095			scsi_mq_uninit_cmd(cmd);
 
2096		break;
2097	}
2098	return ret;
2099}
2100
2101static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102		bool reserved)
2103{
2104	if (reserved)
2105		return BLK_EH_RESET_TIMER;
2106	return scsi_times_out(req);
2107}
2108
2109static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110				unsigned int hctx_idx, unsigned int numa_node)
2111{
2112	struct Scsi_Host *shost = set->driver_data;
2113	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115	struct scatterlist *sg;
 
2116
2117	if (unchecked_isa_dma)
2118		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120						    GFP_KERNEL, numa_node);
2121	if (!cmd->sense_buffer)
2122		return -ENOMEM;
2123	cmd->req.sense = cmd->sense_buffer;
2124
2125	if (scsi_host_get_prot(shost)) {
2126		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127			shost->hostt->cmd_size;
2128		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129	}
2130
2131	return 0;
 
 
 
 
 
 
2132}
2133
2134static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135				 unsigned int hctx_idx)
2136{
 
2137	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138
2139	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140			       cmd->sense_buffer);
 
2141}
2142
2143static int scsi_map_queues(struct blk_mq_tag_set *set)
 
2144{
2145	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2146
2147	if (shost->hostt->map_queues)
2148		return shost->hostt->map_queues(shost);
2149	return blk_mq_map_queues(set);
 
2150}
2151
2152static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
2153{
2154	struct device *host_dev;
2155	u64 bounce_limit = 0xffffffff;
2156
2157	if (shost->unchecked_isa_dma)
2158		return BLK_BOUNCE_ISA;
2159	/*
2160	 * Platforms with virtual-DMA translation
2161	 * hardware have no practical limit.
2162	 */
2163	if (!PCI_DMA_BUS_IS_PHYS)
2164		return BLK_BOUNCE_ANY;
2165
2166	host_dev = scsi_get_device(shost);
2167	if (host_dev && host_dev->dma_mask)
2168		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2169
2170	return bounce_limit;
 
 
2171}
2172
2173void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2174{
2175	struct device *dev = shost->dma_dev;
2176
2177	/*
2178	 * this limit is imposed by hardware restrictions
2179	 */
2180	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2181					SG_MAX_SEGMENTS));
2182
2183	if (scsi_host_prot_dma(shost)) {
2184		shost->sg_prot_tablesize =
2185			min_not_zero(shost->sg_prot_tablesize,
2186				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2187		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2188		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2189	}
2190
 
 
 
 
2191	blk_queue_max_hw_sectors(q, shost->max_sectors);
2192	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2193	blk_queue_segment_boundary(q, shost->dma_boundary);
2194	dma_set_seg_boundary(dev, shost->dma_boundary);
2195
2196	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2197
2198	if (!shost->use_clustering)
2199		q->limits.cluster = 0;
2200
2201	/*
2202	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2203	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2204	 * which is set by the platform.
2205	 *
2206	 * Devices that require a bigger alignment can increase it later.
2207	 */
2208	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2209}
2210EXPORT_SYMBOL_GPL(__scsi_init_queue);
2211
2212static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2213			    gfp_t gfp)
2214{
2215	struct Scsi_Host *shost = q->rq_alloc_data;
2216	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2217	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218
2219	memset(cmd, 0, sizeof(*cmd));
2220
2221	if (unchecked_isa_dma)
2222		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2223	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2224						    NUMA_NO_NODE);
2225	if (!cmd->sense_buffer)
2226		goto fail;
2227	cmd->req.sense = cmd->sense_buffer;
2228
2229	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2230		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2231		if (!cmd->prot_sdb)
2232			goto fail_free_sense;
2233	}
2234
2235	return 0;
2236
2237fail_free_sense:
2238	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2239fail:
2240	return -ENOMEM;
2241}
2242
2243static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2244{
2245	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2246
2247	if (cmd->prot_sdb)
2248		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2249	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2250			       cmd->sense_buffer);
2251}
2252
2253struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2254{
2255	struct Scsi_Host *shost = sdev->host;
2256	struct request_queue *q;
2257
2258	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2259	if (!q)
2260		return NULL;
2261	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2262	q->rq_alloc_data = shost;
2263	q->request_fn = scsi_request_fn;
2264	q->init_rq_fn = scsi_old_init_rq;
2265	q->exit_rq_fn = scsi_old_exit_rq;
2266	q->initialize_rq_fn = scsi_initialize_rq;
2267
2268	if (blk_init_allocated_queue(q) < 0) {
2269		blk_cleanup_queue(q);
2270		return NULL;
2271	}
2272
2273	__scsi_init_queue(shost, q);
2274	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2275	blk_queue_prep_rq(q, scsi_prep_fn);
2276	blk_queue_unprep_rq(q, scsi_unprep_fn);
2277	blk_queue_softirq_done(q, scsi_softirq_done);
2278	blk_queue_rq_timed_out(q, scsi_times_out);
2279	blk_queue_lld_busy(q, scsi_lld_busy);
2280	return q;
2281}
2282
2283static const struct blk_mq_ops scsi_mq_ops = {
2284	.get_budget	= scsi_mq_get_budget,
2285	.put_budget	= scsi_mq_put_budget,
2286	.queue_rq	= scsi_queue_rq,
2287	.complete	= scsi_softirq_done,
 
2288	.timeout	= scsi_timeout,
2289#ifdef CONFIG_BLK_DEBUG_FS
2290	.show_rq	= scsi_show_rq,
2291#endif
2292	.init_request	= scsi_mq_init_request,
2293	.exit_request	= scsi_mq_exit_request,
2294	.initialize_rq_fn = scsi_initialize_rq,
 
 
2295	.map_queues	= scsi_map_queues,
 
 
 
 
2296};
2297
2298struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2299{
2300	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2301	if (IS_ERR(sdev->request_queue))
2302		return NULL;
2303
2304	sdev->request_queue->queuedata = sdev;
2305	__scsi_init_queue(sdev->host, sdev->request_queue);
2306	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2307	return sdev->request_queue;
2308}
2309
2310int scsi_mq_setup_tags(struct Scsi_Host *shost)
2311{
2312	unsigned int cmd_size, sgl_size;
 
2313
2314	sgl_size = scsi_mq_sgl_size(shost);
 
2315	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2316	if (scsi_host_get_prot(shost))
2317		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
 
2318
2319	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2320	shost->tag_set.ops = &scsi_mq_ops;
2321	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2322	shost->tag_set.queue_depth = shost->can_queue;
2323	shost->tag_set.cmd_size = cmd_size;
2324	shost->tag_set.numa_node = NUMA_NO_NODE;
2325	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2326	shost->tag_set.flags |=
 
 
 
 
2327		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2328	shost->tag_set.driver_data = shost;
 
 
2329
2330	return blk_mq_alloc_tag_set(&shost->tag_set);
2331}
2332
2333void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2334{
2335	blk_mq_free_tag_set(&shost->tag_set);
2336}
2337
2338/**
2339 * scsi_device_from_queue - return sdev associated with a request_queue
2340 * @q: The request queue to return the sdev from
2341 *
2342 * Return the sdev associated with a request queue or NULL if the
2343 * request_queue does not reference a SCSI device.
2344 */
2345struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2346{
2347	struct scsi_device *sdev = NULL;
2348
2349	if (q->mq_ops) {
2350		if (q->mq_ops == &scsi_mq_ops)
2351			sdev = q->queuedata;
2352	} else if (q->request_fn == scsi_request_fn)
2353		sdev = q->queuedata;
2354	if (!sdev || !get_device(&sdev->sdev_gendev))
2355		sdev = NULL;
2356
2357	return sdev;
2358}
2359EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2360
2361/*
2362 * Function:    scsi_block_requests()
2363 *
2364 * Purpose:     Utility function used by low-level drivers to prevent further
2365 *		commands from being queued to the device.
2366 *
2367 * Arguments:   shost       - Host in question
2368 *
2369 * Returns:     Nothing
2370 *
2371 * Lock status: No locks are assumed held.
2372 *
2373 * Notes:       There is no timer nor any other means by which the requests
2374 *		get unblocked other than the low-level driver calling
2375 *		scsi_unblock_requests().
2376 */
2377void scsi_block_requests(struct Scsi_Host *shost)
2378{
2379	shost->host_self_blocked = 1;
2380}
2381EXPORT_SYMBOL(scsi_block_requests);
2382
2383/*
2384 * Function:    scsi_unblock_requests()
2385 *
2386 * Purpose:     Utility function used by low-level drivers to allow further
2387 *		commands from being queued to the device.
2388 *
2389 * Arguments:   shost       - Host in question
2390 *
2391 * Returns:     Nothing
2392 *
2393 * Lock status: No locks are assumed held.
2394 *
2395 * Notes:       There is no timer nor any other means by which the requests
2396 *		get unblocked other than the low-level driver calling
2397 *		scsi_unblock_requests().
2398 *
2399 *		This is done as an API function so that changes to the
2400 *		internals of the scsi mid-layer won't require wholesale
2401 *		changes to drivers that use this feature.
2402 */
2403void scsi_unblock_requests(struct Scsi_Host *shost)
2404{
2405	shost->host_self_blocked = 0;
2406	scsi_run_host_queues(shost);
2407}
2408EXPORT_SYMBOL(scsi_unblock_requests);
2409
2410int __init scsi_init_queue(void)
2411{
2412	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2413					   sizeof(struct scsi_data_buffer),
2414					   0, 0, NULL);
2415	if (!scsi_sdb_cache) {
2416		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2417		return -ENOMEM;
2418	}
2419
2420	return 0;
2421}
2422
2423void scsi_exit_queue(void)
2424{
2425	kmem_cache_destroy(scsi_sense_cache);
2426	kmem_cache_destroy(scsi_sense_isadma_cache);
2427	kmem_cache_destroy(scsi_sdb_cache);
2428}
2429
2430/**
2431 *	scsi_mode_select - issue a mode select
2432 *	@sdev:	SCSI device to be queried
2433 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2434 *	@sp:	Save page bit (0 == don't save, 1 == save)
2435 *	@modepage: mode page being requested
2436 *	@buffer: request buffer (may not be smaller than eight bytes)
2437 *	@len:	length of request buffer.
2438 *	@timeout: command timeout
2439 *	@retries: number of retries before failing
2440 *	@data: returns a structure abstracting the mode header data
2441 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2442 *		must be SCSI_SENSE_BUFFERSIZE big.
2443 *
2444 *	Returns zero if successful; negative error number or scsi
2445 *	status on error
2446 *
2447 */
2448int
2449scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2450		 unsigned char *buffer, int len, int timeout, int retries,
2451		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2452{
2453	unsigned char cmd[10];
2454	unsigned char *real_buffer;
2455	int ret;
2456
2457	memset(cmd, 0, sizeof(cmd));
2458	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2459
2460	if (sdev->use_10_for_ms) {
2461		if (len > 65535)
2462			return -EINVAL;
2463		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2464		if (!real_buffer)
2465			return -ENOMEM;
2466		memcpy(real_buffer + 8, buffer, len);
2467		len += 8;
2468		real_buffer[0] = 0;
2469		real_buffer[1] = 0;
2470		real_buffer[2] = data->medium_type;
2471		real_buffer[3] = data->device_specific;
2472		real_buffer[4] = data->longlba ? 0x01 : 0;
2473		real_buffer[5] = 0;
2474		real_buffer[6] = data->block_descriptor_length >> 8;
2475		real_buffer[7] = data->block_descriptor_length;
2476
2477		cmd[0] = MODE_SELECT_10;
2478		cmd[7] = len >> 8;
2479		cmd[8] = len;
2480	} else {
2481		if (len > 255 || data->block_descriptor_length > 255 ||
2482		    data->longlba)
2483			return -EINVAL;
2484
2485		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2486		if (!real_buffer)
2487			return -ENOMEM;
2488		memcpy(real_buffer + 4, buffer, len);
2489		len += 4;
2490		real_buffer[0] = 0;
2491		real_buffer[1] = data->medium_type;
2492		real_buffer[2] = data->device_specific;
2493		real_buffer[3] = data->block_descriptor_length;
2494		
2495
2496		cmd[0] = MODE_SELECT;
2497		cmd[4] = len;
2498	}
2499
2500	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2501			       sshdr, timeout, retries, NULL);
2502	kfree(real_buffer);
2503	return ret;
2504}
2505EXPORT_SYMBOL_GPL(scsi_mode_select);
2506
2507/**
2508 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2509 *	@sdev:	SCSI device to be queried
2510 *	@dbd:	set if mode sense will allow block descriptors to be returned
2511 *	@modepage: mode page being requested
2512 *	@buffer: request buffer (may not be smaller than eight bytes)
2513 *	@len:	length of request buffer.
2514 *	@timeout: command timeout
2515 *	@retries: number of retries before failing
2516 *	@data: returns a structure abstracting the mode header data
2517 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2518 *		must be SCSI_SENSE_BUFFERSIZE big.
2519 *
2520 *	Returns zero if unsuccessful, or the header offset (either 4
2521 *	or 8 depending on whether a six or ten byte command was
2522 *	issued) if successful.
2523 */
2524int
2525scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2526		  unsigned char *buffer, int len, int timeout, int retries,
2527		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2528{
2529	unsigned char cmd[12];
2530	int use_10_for_ms;
2531	int header_length;
2532	int result, retry_count = retries;
2533	struct scsi_sense_hdr my_sshdr;
2534
2535	memset(data, 0, sizeof(*data));
2536	memset(&cmd[0], 0, 12);
 
 
2537	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2538	cmd[2] = modepage;
2539
2540	/* caller might not be interested in sense, but we need it */
2541	if (!sshdr)
2542		sshdr = &my_sshdr;
2543
2544 retry:
2545	use_10_for_ms = sdev->use_10_for_ms;
2546
2547	if (use_10_for_ms) {
2548		if (len < 8)
2549			len = 8;
2550
2551		cmd[0] = MODE_SENSE_10;
2552		cmd[8] = len;
2553		header_length = 8;
2554	} else {
2555		if (len < 4)
2556			len = 4;
2557
2558		cmd[0] = MODE_SENSE;
2559		cmd[4] = len;
2560		header_length = 4;
2561	}
2562
2563	memset(buffer, 0, len);
2564
2565	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2566				  sshdr, timeout, retries, NULL);
 
 
2567
2568	/* This code looks awful: what it's doing is making sure an
2569	 * ILLEGAL REQUEST sense return identifies the actual command
2570	 * byte as the problem.  MODE_SENSE commands can return
2571	 * ILLEGAL REQUEST if the code page isn't supported */
2572
2573	if (use_10_for_ms && !scsi_status_is_good(result) &&
2574	    (driver_byte(result) & DRIVER_SENSE)) {
2575		if (scsi_sense_valid(sshdr)) {
2576			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2577			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2578				/* 
2579				 * Invalid command operation code
2580				 */
2581				sdev->use_10_for_ms = 0;
 
 
 
 
 
 
 
 
2582				goto retry;
2583			}
2584		}
 
2585	}
2586
2587	if(scsi_status_is_good(result)) {
2588		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2589			     (modepage == 6 || modepage == 8))) {
2590			/* Initio breakage? */
2591			header_length = 0;
2592			data->length = 13;
2593			data->medium_type = 0;
2594			data->device_specific = 0;
2595			data->longlba = 0;
2596			data->block_descriptor_length = 0;
2597		} else if(use_10_for_ms) {
2598			data->length = buffer[0]*256 + buffer[1] + 2;
2599			data->medium_type = buffer[2];
2600			data->device_specific = buffer[3];
2601			data->longlba = buffer[4] & 0x01;
2602			data->block_descriptor_length = buffer[6]*256
2603				+ buffer[7];
2604		} else {
2605			data->length = buffer[0] + 1;
2606			data->medium_type = buffer[1];
2607			data->device_specific = buffer[2];
2608			data->block_descriptor_length = buffer[3];
2609		}
2610		data->header_length = header_length;
2611	} else if ((status_byte(result) == CHECK_CONDITION) &&
2612		   scsi_sense_valid(sshdr) &&
2613		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2614		retry_count--;
2615		goto retry;
2616	}
 
2617
2618	return result;
2619}
2620EXPORT_SYMBOL(scsi_mode_sense);
2621
2622/**
2623 *	scsi_test_unit_ready - test if unit is ready
2624 *	@sdev:	scsi device to change the state of.
2625 *	@timeout: command timeout
2626 *	@retries: number of retries before failing
2627 *	@sshdr: outpout pointer for decoded sense information.
2628 *
2629 *	Returns zero if unsuccessful or an error if TUR failed.  For
2630 *	removable media, UNIT_ATTENTION sets ->changed flag.
2631 **/
2632int
2633scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2634		     struct scsi_sense_hdr *sshdr)
2635{
2636	char cmd[] = {
2637		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2638	};
2639	int result;
2640
2641	/* try to eat the UNIT_ATTENTION if there are enough retries */
2642	do {
2643		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2644					  timeout, 1, NULL);
2645		if (sdev->removable && scsi_sense_valid(sshdr) &&
2646		    sshdr->sense_key == UNIT_ATTENTION)
2647			sdev->changed = 1;
2648	} while (scsi_sense_valid(sshdr) &&
2649		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2650
2651	return result;
2652}
2653EXPORT_SYMBOL(scsi_test_unit_ready);
2654
2655/**
2656 *	scsi_device_set_state - Take the given device through the device state model.
2657 *	@sdev:	scsi device to change the state of.
2658 *	@state:	state to change to.
2659 *
2660 *	Returns zero if successful or an error if the requested
2661 *	transition is illegal.
2662 */
2663int
2664scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2665{
2666	enum scsi_device_state oldstate = sdev->sdev_state;
2667
2668	if (state == oldstate)
2669		return 0;
2670
2671	switch (state) {
2672	case SDEV_CREATED:
2673		switch (oldstate) {
2674		case SDEV_CREATED_BLOCK:
2675			break;
2676		default:
2677			goto illegal;
2678		}
2679		break;
2680			
2681	case SDEV_RUNNING:
2682		switch (oldstate) {
2683		case SDEV_CREATED:
2684		case SDEV_OFFLINE:
2685		case SDEV_TRANSPORT_OFFLINE:
2686		case SDEV_QUIESCE:
2687		case SDEV_BLOCK:
2688			break;
2689		default:
2690			goto illegal;
2691		}
2692		break;
2693
2694	case SDEV_QUIESCE:
2695		switch (oldstate) {
2696		case SDEV_RUNNING:
2697		case SDEV_OFFLINE:
2698		case SDEV_TRANSPORT_OFFLINE:
2699			break;
2700		default:
2701			goto illegal;
2702		}
2703		break;
2704
2705	case SDEV_OFFLINE:
2706	case SDEV_TRANSPORT_OFFLINE:
2707		switch (oldstate) {
2708		case SDEV_CREATED:
2709		case SDEV_RUNNING:
2710		case SDEV_QUIESCE:
2711		case SDEV_BLOCK:
2712			break;
2713		default:
2714			goto illegal;
2715		}
2716		break;
2717
2718	case SDEV_BLOCK:
2719		switch (oldstate) {
2720		case SDEV_RUNNING:
2721		case SDEV_CREATED_BLOCK:
 
 
2722			break;
2723		default:
2724			goto illegal;
2725		}
2726		break;
2727
2728	case SDEV_CREATED_BLOCK:
2729		switch (oldstate) {
2730		case SDEV_CREATED:
2731			break;
2732		default:
2733			goto illegal;
2734		}
2735		break;
2736
2737	case SDEV_CANCEL:
2738		switch (oldstate) {
2739		case SDEV_CREATED:
2740		case SDEV_RUNNING:
2741		case SDEV_QUIESCE:
2742		case SDEV_OFFLINE:
2743		case SDEV_TRANSPORT_OFFLINE:
2744			break;
2745		default:
2746			goto illegal;
2747		}
2748		break;
2749
2750	case SDEV_DEL:
2751		switch (oldstate) {
2752		case SDEV_CREATED:
2753		case SDEV_RUNNING:
2754		case SDEV_OFFLINE:
2755		case SDEV_TRANSPORT_OFFLINE:
2756		case SDEV_CANCEL:
2757		case SDEV_BLOCK:
2758		case SDEV_CREATED_BLOCK:
2759			break;
2760		default:
2761			goto illegal;
2762		}
2763		break;
2764
2765	}
 
2766	sdev->sdev_state = state;
2767	return 0;
2768
2769 illegal:
2770	SCSI_LOG_ERROR_RECOVERY(1,
2771				sdev_printk(KERN_ERR, sdev,
2772					    "Illegal state transition %s->%s",
2773					    scsi_device_state_name(oldstate),
2774					    scsi_device_state_name(state))
2775				);
2776	return -EINVAL;
2777}
2778EXPORT_SYMBOL(scsi_device_set_state);
2779
2780/**
2781 * 	sdev_evt_emit - emit a single SCSI device uevent
2782 *	@sdev: associated SCSI device
2783 *	@evt: event to emit
2784 *
2785 *	Send a single uevent (scsi_event) to the associated scsi_device.
2786 */
2787static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2788{
2789	int idx = 0;
2790	char *envp[3];
2791
2792	switch (evt->evt_type) {
2793	case SDEV_EVT_MEDIA_CHANGE:
2794		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2795		break;
2796	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797		scsi_rescan_device(&sdev->sdev_gendev);
2798		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2799		break;
2800	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2801		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2802		break;
2803	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2804	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2805		break;
2806	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2808		break;
2809	case SDEV_EVT_LUN_CHANGE_REPORTED:
2810		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2811		break;
2812	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2813		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2814		break;
2815	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2816		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2817		break;
2818	default:
2819		/* do nothing */
2820		break;
2821	}
2822
2823	envp[idx++] = NULL;
2824
2825	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2826}
2827
2828/**
2829 * 	sdev_evt_thread - send a uevent for each scsi event
2830 *	@work: work struct for scsi_device
2831 *
2832 *	Dispatch queued events to their associated scsi_device kobjects
2833 *	as uevents.
2834 */
2835void scsi_evt_thread(struct work_struct *work)
2836{
2837	struct scsi_device *sdev;
2838	enum scsi_device_event evt_type;
2839	LIST_HEAD(event_list);
2840
2841	sdev = container_of(work, struct scsi_device, event_work);
2842
2843	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2844		if (test_and_clear_bit(evt_type, sdev->pending_events))
2845			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2846
2847	while (1) {
2848		struct scsi_event *evt;
2849		struct list_head *this, *tmp;
2850		unsigned long flags;
2851
2852		spin_lock_irqsave(&sdev->list_lock, flags);
2853		list_splice_init(&sdev->event_list, &event_list);
2854		spin_unlock_irqrestore(&sdev->list_lock, flags);
2855
2856		if (list_empty(&event_list))
2857			break;
2858
2859		list_for_each_safe(this, tmp, &event_list) {
2860			evt = list_entry(this, struct scsi_event, node);
2861			list_del(&evt->node);
2862			scsi_evt_emit(sdev, evt);
2863			kfree(evt);
2864		}
2865	}
2866}
2867
2868/**
2869 * 	sdev_evt_send - send asserted event to uevent thread
2870 *	@sdev: scsi_device event occurred on
2871 *	@evt: event to send
2872 *
2873 *	Assert scsi device event asynchronously.
2874 */
2875void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2876{
2877	unsigned long flags;
2878
2879#if 0
2880	/* FIXME: currently this check eliminates all media change events
2881	 * for polled devices.  Need to update to discriminate between AN
2882	 * and polled events */
2883	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2884		kfree(evt);
2885		return;
2886	}
2887#endif
2888
2889	spin_lock_irqsave(&sdev->list_lock, flags);
2890	list_add_tail(&evt->node, &sdev->event_list);
2891	schedule_work(&sdev->event_work);
2892	spin_unlock_irqrestore(&sdev->list_lock, flags);
2893}
2894EXPORT_SYMBOL_GPL(sdev_evt_send);
2895
2896/**
2897 * 	sdev_evt_alloc - allocate a new scsi event
2898 *	@evt_type: type of event to allocate
2899 *	@gfpflags: GFP flags for allocation
2900 *
2901 *	Allocates and returns a new scsi_event.
2902 */
2903struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2904				  gfp_t gfpflags)
2905{
2906	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2907	if (!evt)
2908		return NULL;
2909
2910	evt->evt_type = evt_type;
2911	INIT_LIST_HEAD(&evt->node);
2912
2913	/* evt_type-specific initialization, if any */
2914	switch (evt_type) {
2915	case SDEV_EVT_MEDIA_CHANGE:
2916	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2917	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2918	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2919	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2920	case SDEV_EVT_LUN_CHANGE_REPORTED:
2921	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2922	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2923	default:
2924		/* do nothing */
2925		break;
2926	}
2927
2928	return evt;
2929}
2930EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2931
2932/**
2933 * 	sdev_evt_send_simple - send asserted event to uevent thread
2934 *	@sdev: scsi_device event occurred on
2935 *	@evt_type: type of event to send
2936 *	@gfpflags: GFP flags for allocation
2937 *
2938 *	Assert scsi device event asynchronously, given an event type.
2939 */
2940void sdev_evt_send_simple(struct scsi_device *sdev,
2941			  enum scsi_device_event evt_type, gfp_t gfpflags)
2942{
2943	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2944	if (!evt) {
2945		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2946			    evt_type);
2947		return;
2948	}
2949
2950	sdev_evt_send(sdev, evt);
2951}
2952EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2953
2954/**
2955 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2956 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2957 */
2958static int scsi_request_fn_active(struct scsi_device *sdev)
2959{
2960	struct request_queue *q = sdev->request_queue;
2961	int request_fn_active;
2962
2963	WARN_ON_ONCE(sdev->host->use_blk_mq);
2964
2965	spin_lock_irq(q->queue_lock);
2966	request_fn_active = q->request_fn_active;
2967	spin_unlock_irq(q->queue_lock);
2968
2969	return request_fn_active;
2970}
2971
2972/**
2973 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2974 * @sdev: SCSI device pointer.
2975 *
2976 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2977 * invoked from scsi_request_fn() have finished.
2978 */
2979static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2980{
2981	WARN_ON_ONCE(sdev->host->use_blk_mq);
2982
2983	while (scsi_request_fn_active(sdev))
2984		msleep(20);
2985}
2986
2987/**
2988 *	scsi_device_quiesce - Block user issued commands.
2989 *	@sdev:	scsi device to quiesce.
2990 *
2991 *	This works by trying to transition to the SDEV_QUIESCE state
2992 *	(which must be a legal transition).  When the device is in this
2993 *	state, only special requests will be accepted, all others will
2994 *	be deferred.  Since special requests may also be requeued requests,
2995 *	a successful return doesn't guarantee the device will be 
2996 *	totally quiescent.
2997 *
2998 *	Must be called with user context, may sleep.
2999 *
3000 *	Returns zero if unsuccessful or an error if not.
3001 */
3002int
3003scsi_device_quiesce(struct scsi_device *sdev)
3004{
3005	struct request_queue *q = sdev->request_queue;
3006	int err;
3007
3008	/*
3009	 * It is allowed to call scsi_device_quiesce() multiple times from
3010	 * the same context but concurrent scsi_device_quiesce() calls are
3011	 * not allowed.
3012	 */
3013	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3014
3015	blk_set_preempt_only(q);
 
 
 
3016
3017	blk_mq_freeze_queue(q);
3018	/*
3019	 * Ensure that the effect of blk_set_preempt_only() will be visible
3020	 * for percpu_ref_tryget() callers that occur after the queue
3021	 * unfreeze even if the queue was already frozen before this function
3022	 * was called. See also https://lwn.net/Articles/573497/.
3023	 */
3024	synchronize_rcu();
3025	blk_mq_unfreeze_queue(q);
3026
3027	mutex_lock(&sdev->state_mutex);
3028	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3029	if (err == 0)
3030		sdev->quiesced_by = current;
3031	else
3032		blk_clear_preempt_only(q);
3033	mutex_unlock(&sdev->state_mutex);
3034
3035	return err;
3036}
3037EXPORT_SYMBOL(scsi_device_quiesce);
3038
3039/**
3040 *	scsi_device_resume - Restart user issued commands to a quiesced device.
3041 *	@sdev:	scsi device to resume.
3042 *
3043 *	Moves the device from quiesced back to running and restarts the
3044 *	queues.
3045 *
3046 *	Must be called with user context, may sleep.
3047 */
3048void scsi_device_resume(struct scsi_device *sdev)
3049{
3050	/* check if the device state was mutated prior to resume, and if
3051	 * so assume the state is being managed elsewhere (for example
3052	 * device deleted during suspend)
3053	 */
3054	mutex_lock(&sdev->state_mutex);
3055	WARN_ON_ONCE(!sdev->quiesced_by);
3056	sdev->quiesced_by = NULL;
3057	blk_clear_preempt_only(sdev->request_queue);
3058	if (sdev->sdev_state == SDEV_QUIESCE)
3059		scsi_device_set_state(sdev, SDEV_RUNNING);
 
 
 
 
3060	mutex_unlock(&sdev->state_mutex);
3061}
3062EXPORT_SYMBOL(scsi_device_resume);
3063
3064static void
3065device_quiesce_fn(struct scsi_device *sdev, void *data)
3066{
3067	scsi_device_quiesce(sdev);
3068}
3069
3070void
3071scsi_target_quiesce(struct scsi_target *starget)
3072{
3073	starget_for_each_device(starget, NULL, device_quiesce_fn);
3074}
3075EXPORT_SYMBOL(scsi_target_quiesce);
3076
3077static void
3078device_resume_fn(struct scsi_device *sdev, void *data)
3079{
3080	scsi_device_resume(sdev);
3081}
3082
3083void
3084scsi_target_resume(struct scsi_target *starget)
3085{
3086	starget_for_each_device(starget, NULL, device_resume_fn);
3087}
3088EXPORT_SYMBOL(scsi_target_resume);
3089
3090/**
3091 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3092 * @sdev: device to block
3093 *
3094 * Pause SCSI command processing on the specified device. Does not sleep.
3095 *
3096 * Returns zero if successful or a negative error code upon failure.
3097 *
3098 * Notes:
3099 * This routine transitions the device to the SDEV_BLOCK state (which must be
3100 * a legal transition). When the device is in this state, command processing
3101 * is paused until the device leaves the SDEV_BLOCK state. See also
3102 * scsi_internal_device_unblock_nowait().
3103 */
3104int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3105{
3106	struct request_queue *q = sdev->request_queue;
3107	unsigned long flags;
3108	int err = 0;
3109
3110	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3111	if (err) {
3112		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3113
3114		if (err)
3115			return err;
3116	}
3117
3118	/* 
3119	 * The device has transitioned to SDEV_BLOCK.  Stop the
3120	 * block layer from calling the midlayer with this device's
3121	 * request queue. 
3122	 */
3123	if (q->mq_ops) {
3124		blk_mq_quiesce_queue_nowait(q);
3125	} else {
3126		spin_lock_irqsave(q->queue_lock, flags);
3127		blk_stop_queue(q);
3128		spin_unlock_irqrestore(q->queue_lock, flags);
3129	}
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3134
3135/**
3136 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3137 * @sdev: device to block
3138 *
3139 * Pause SCSI command processing on the specified device and wait until all
3140 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3141 *
3142 * Returns zero if successful or a negative error code upon failure.
3143 *
3144 * Note:
3145 * This routine transitions the device to the SDEV_BLOCK state (which must be
3146 * a legal transition). When the device is in this state, command processing
3147 * is paused until the device leaves the SDEV_BLOCK state. See also
3148 * scsi_internal_device_unblock().
3149 *
3150 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3151 * scsi_internal_device_block() has blocked a SCSI device and also
3152 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3153 */
3154static int scsi_internal_device_block(struct scsi_device *sdev)
3155{
3156	struct request_queue *q = sdev->request_queue;
3157	int err;
3158
3159	mutex_lock(&sdev->state_mutex);
3160	err = scsi_internal_device_block_nowait(sdev);
3161	if (err == 0) {
3162		if (q->mq_ops)
3163			blk_mq_quiesce_queue(q);
3164		else
3165			scsi_wait_for_queuecommand(sdev);
3166	}
3167	mutex_unlock(&sdev->state_mutex);
3168
3169	return err;
3170}
3171 
3172void scsi_start_queue(struct scsi_device *sdev)
3173{
3174	struct request_queue *q = sdev->request_queue;
3175	unsigned long flags;
3176
3177	if (q->mq_ops) {
3178		blk_mq_unquiesce_queue(q);
3179	} else {
3180		spin_lock_irqsave(q->queue_lock, flags);
3181		blk_start_queue(q);
3182		spin_unlock_irqrestore(q->queue_lock, flags);
3183	}
3184}
3185
3186/**
3187 * scsi_internal_device_unblock_nowait - resume a device after a block request
3188 * @sdev:	device to resume
3189 * @new_state:	state to set the device to after unblocking
3190 *
3191 * Restart the device queue for a previously suspended SCSI device. Does not
3192 * sleep.
3193 *
3194 * Returns zero if successful or a negative error code upon failure.
3195 *
3196 * Notes:
3197 * This routine transitions the device to the SDEV_RUNNING state or to one of
3198 * the offline states (which must be a legal transition) allowing the midlayer
3199 * to goose the queue for this device.
3200 */
3201int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3202					enum scsi_device_state new_state)
3203{
 
 
 
 
 
 
 
 
3204	/*
3205	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3206	 * offlined states and goose the device queue if successful.
3207	 */
3208	switch (sdev->sdev_state) {
3209	case SDEV_BLOCK:
3210	case SDEV_TRANSPORT_OFFLINE:
3211		sdev->sdev_state = new_state;
3212		break;
3213	case SDEV_CREATED_BLOCK:
3214		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3215		    new_state == SDEV_OFFLINE)
3216			sdev->sdev_state = new_state;
3217		else
3218			sdev->sdev_state = SDEV_CREATED;
3219		break;
3220	case SDEV_CANCEL:
3221	case SDEV_OFFLINE:
3222		break;
3223	default:
3224		return -EINVAL;
3225	}
3226	scsi_start_queue(sdev);
3227
3228	return 0;
3229}
3230EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3231
3232/**
3233 * scsi_internal_device_unblock - resume a device after a block request
3234 * @sdev:	device to resume
3235 * @new_state:	state to set the device to after unblocking
3236 *
3237 * Restart the device queue for a previously suspended SCSI device. May sleep.
3238 *
3239 * Returns zero if successful or a negative error code upon failure.
3240 *
3241 * Notes:
3242 * This routine transitions the device to the SDEV_RUNNING state or to one of
3243 * the offline states (which must be a legal transition) allowing the midlayer
3244 * to goose the queue for this device.
3245 */
3246static int scsi_internal_device_unblock(struct scsi_device *sdev,
3247					enum scsi_device_state new_state)
3248{
3249	int ret;
3250
3251	mutex_lock(&sdev->state_mutex);
3252	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3253	mutex_unlock(&sdev->state_mutex);
3254
3255	return ret;
3256}
3257
3258static void
3259device_block(struct scsi_device *sdev, void *data)
3260{
3261	scsi_internal_device_block(sdev);
 
 
 
 
 
3262}
3263
3264static int
3265target_block(struct device *dev, void *data)
3266{
3267	if (scsi_is_target_device(dev))
3268		starget_for_each_device(to_scsi_target(dev), NULL,
3269					device_block);
3270	return 0;
3271}
3272
3273void
3274scsi_target_block(struct device *dev)
3275{
3276	if (scsi_is_target_device(dev))
3277		starget_for_each_device(to_scsi_target(dev), NULL,
3278					device_block);
3279	else
3280		device_for_each_child(dev, NULL, target_block);
3281}
3282EXPORT_SYMBOL_GPL(scsi_target_block);
3283
3284static void
3285device_unblock(struct scsi_device *sdev, void *data)
3286{
3287	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3288}
3289
3290static int
3291target_unblock(struct device *dev, void *data)
3292{
3293	if (scsi_is_target_device(dev))
3294		starget_for_each_device(to_scsi_target(dev), data,
3295					device_unblock);
3296	return 0;
3297}
3298
3299void
3300scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3301{
3302	if (scsi_is_target_device(dev))
3303		starget_for_each_device(to_scsi_target(dev), &new_state,
3304					device_unblock);
3305	else
3306		device_for_each_child(dev, &new_state, target_unblock);
3307}
3308EXPORT_SYMBOL_GPL(scsi_target_unblock);
3309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310/**
3311 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3312 * @sgl:	scatter-gather list
3313 * @sg_count:	number of segments in sg
3314 * @offset:	offset in bytes into sg, on return offset into the mapped area
3315 * @len:	bytes to map, on return number of bytes mapped
3316 *
3317 * Returns virtual address of the start of the mapped page
3318 */
3319void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3320			  size_t *offset, size_t *len)
3321{
3322	int i;
3323	size_t sg_len = 0, len_complete = 0;
3324	struct scatterlist *sg;
3325	struct page *page;
3326
3327	WARN_ON(!irqs_disabled());
3328
3329	for_each_sg(sgl, sg, sg_count, i) {
3330		len_complete = sg_len; /* Complete sg-entries */
3331		sg_len += sg->length;
3332		if (sg_len > *offset)
3333			break;
3334	}
3335
3336	if (unlikely(i == sg_count)) {
3337		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3338			"elements %d\n",
3339		       __func__, sg_len, *offset, sg_count);
3340		WARN_ON(1);
3341		return NULL;
3342	}
3343
3344	/* Offset starting from the beginning of first page in this sg-entry */
3345	*offset = *offset - len_complete + sg->offset;
3346
3347	/* Assumption: contiguous pages can be accessed as "page + i" */
3348	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3349	*offset &= ~PAGE_MASK;
3350
3351	/* Bytes in this sg-entry from *offset to the end of the page */
3352	sg_len = PAGE_SIZE - *offset;
3353	if (*len > sg_len)
3354		*len = sg_len;
3355
3356	return kmap_atomic(page);
3357}
3358EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3359
3360/**
3361 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3362 * @virt:	virtual address to be unmapped
3363 */
3364void scsi_kunmap_atomic_sg(void *virt)
3365{
3366	kunmap_atomic(virt);
3367}
3368EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3369
3370void sdev_disable_disk_events(struct scsi_device *sdev)
3371{
3372	atomic_inc(&sdev->disk_events_disable_depth);
3373}
3374EXPORT_SYMBOL(sdev_disable_disk_events);
3375
3376void sdev_enable_disk_events(struct scsi_device *sdev)
3377{
3378	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3379		return;
3380	atomic_dec(&sdev->disk_events_disable_depth);
3381}
3382EXPORT_SYMBOL(sdev_enable_disk_events);
3383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384/**
3385 * scsi_vpd_lun_id - return a unique device identification
3386 * @sdev: SCSI device
3387 * @id:   buffer for the identification
3388 * @id_len:  length of the buffer
3389 *
3390 * Copies a unique device identification into @id based
3391 * on the information in the VPD page 0x83 of the device.
3392 * The string will be formatted as a SCSI name string.
3393 *
3394 * Returns the length of the identification or error on failure.
3395 * If the identifier is longer than the supplied buffer the actual
3396 * identifier length is returned and the buffer is not zero-padded.
3397 */
3398int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3399{
3400	u8 cur_id_type = 0xff;
3401	u8 cur_id_size = 0;
3402	const unsigned char *d, *cur_id_str;
3403	const struct scsi_vpd *vpd_pg83;
3404	int id_size = -EINVAL;
3405
3406	rcu_read_lock();
3407	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408	if (!vpd_pg83) {
3409		rcu_read_unlock();
3410		return -ENXIO;
3411	}
3412
3413	/*
3414	 * Look for the correct descriptor.
3415	 * Order of preference for lun descriptor:
3416	 * - SCSI name string
3417	 * - NAA IEEE Registered Extended
3418	 * - EUI-64 based 16-byte
3419	 * - EUI-64 based 12-byte
3420	 * - NAA IEEE Registered
3421	 * - NAA IEEE Extended
3422	 * - T10 Vendor ID
3423	 * as longer descriptors reduce the likelyhood
3424	 * of identification clashes.
3425	 */
3426
3427	/* The id string must be at least 20 bytes + terminating NULL byte */
3428	if (id_len < 21) {
3429		rcu_read_unlock();
3430		return -EINVAL;
3431	}
3432
3433	memset(id, 0, id_len);
3434	d = vpd_pg83->data + 4;
3435	while (d < vpd_pg83->data + vpd_pg83->len) {
3436		/* Skip designators not referring to the LUN */
3437		if ((d[1] & 0x30) != 0x00)
3438			goto next_desig;
 
 
3439
3440		switch (d[1] & 0xf) {
3441		case 0x1:
3442			/* T10 Vendor ID */
3443			if (cur_id_size > d[3])
3444				break;
3445			/* Prefer anything */
3446			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3447				break;
3448			cur_id_size = d[3];
3449			if (cur_id_size + 4 > id_len)
3450				cur_id_size = id_len - 4;
3451			cur_id_str = d + 4;
3452			cur_id_type = d[1] & 0xf;
3453			id_size = snprintf(id, id_len, "t10.%*pE",
3454					   cur_id_size, cur_id_str);
3455			break;
3456		case 0x2:
3457			/* EUI-64 */
3458			if (cur_id_size > d[3])
3459				break;
3460			/* Prefer NAA IEEE Registered Extended */
3461			if (cur_id_type == 0x3 &&
3462			    cur_id_size == d[3])
3463				break;
3464			cur_id_size = d[3];
3465			cur_id_str = d + 4;
3466			cur_id_type = d[1] & 0xf;
3467			switch (cur_id_size) {
3468			case 8:
3469				id_size = snprintf(id, id_len,
3470						   "eui.%8phN",
3471						   cur_id_str);
3472				break;
3473			case 12:
3474				id_size = snprintf(id, id_len,
3475						   "eui.%12phN",
3476						   cur_id_str);
3477				break;
3478			case 16:
3479				id_size = snprintf(id, id_len,
3480						   "eui.%16phN",
3481						   cur_id_str);
3482				break;
3483			default:
3484				cur_id_size = 0;
3485				break;
3486			}
3487			break;
3488		case 0x3:
3489			/* NAA */
3490			if (cur_id_size > d[3])
3491				break;
3492			cur_id_size = d[3];
3493			cur_id_str = d + 4;
3494			cur_id_type = d[1] & 0xf;
3495			switch (cur_id_size) {
3496			case 8:
3497				id_size = snprintf(id, id_len,
3498						   "naa.%8phN",
3499						   cur_id_str);
3500				break;
3501			case 16:
3502				id_size = snprintf(id, id_len,
3503						   "naa.%16phN",
3504						   cur_id_str);
3505				break;
3506			default:
3507				cur_id_size = 0;
3508				break;
3509			}
3510			break;
3511		case 0x8:
3512			/* SCSI name string */
3513			if (cur_id_size + 4 > d[3])
3514				break;
3515			/* Prefer others for truncated descriptor */
3516			if (cur_id_size && d[3] > id_len)
3517				break;
 
 
 
 
3518			cur_id_size = id_size = d[3];
3519			cur_id_str = d + 4;
3520			cur_id_type = d[1] & 0xf;
3521			if (cur_id_size >= id_len)
3522				cur_id_size = id_len - 1;
3523			memcpy(id, cur_id_str, cur_id_size);
3524			/* Decrease priority for truncated descriptor */
3525			if (cur_id_size != id_size)
3526				cur_id_size = 6;
3527			break;
3528		default:
3529			break;
3530		}
3531next_desig:
3532		d += d[3] + 4;
3533	}
3534	rcu_read_unlock();
3535
3536	return id_size;
3537}
3538EXPORT_SYMBOL(scsi_vpd_lun_id);
3539
3540/*
3541 * scsi_vpd_tpg_id - return a target port group identifier
3542 * @sdev: SCSI device
3543 *
3544 * Returns the Target Port Group identifier from the information
3545 * froom VPD page 0x83 of the device.
3546 *
3547 * Returns the identifier or error on failure.
3548 */
3549int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3550{
3551	const unsigned char *d;
3552	const struct scsi_vpd *vpd_pg83;
3553	int group_id = -EAGAIN, rel_port = -1;
3554
3555	rcu_read_lock();
3556	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3557	if (!vpd_pg83) {
3558		rcu_read_unlock();
3559		return -ENXIO;
3560	}
3561
3562	d = vpd_pg83->data + 4;
3563	while (d < vpd_pg83->data + vpd_pg83->len) {
3564		switch (d[1] & 0xf) {
3565		case 0x4:
3566			/* Relative target port */
3567			rel_port = get_unaligned_be16(&d[6]);
3568			break;
3569		case 0x5:
3570			/* Target port group */
3571			group_id = get_unaligned_be16(&d[6]);
3572			break;
3573		default:
3574			break;
3575		}
3576		d += d[3] + 4;
3577	}
3578	rcu_read_unlock();
3579
3580	if (group_id >= 0 && rel_id && rel_port != -1)
3581		*rel_id = rel_port;
3582
3583	return group_id;
3584}
3585EXPORT_SYMBOL(scsi_vpd_tpg_id);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sense_cache;
 
  56static DEFINE_MUTEX(scsi_sense_cache_mutex);
  57
  58static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60int scsi_init_sense_cache(struct Scsi_Host *shost)
  61{
 
  62	int ret = 0;
  63
 
 
 
 
  64	mutex_lock(&scsi_sense_cache_mutex);
  65	if (!scsi_sense_cache) {
 
 
 
 
 
 
 
  66		scsi_sense_cache =
  67			kmem_cache_create_usercopy("scsi_sense_cache",
  68				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  69				0, SCSI_SENSE_BUFFERSIZE, NULL);
  70		if (!scsi_sense_cache)
  71			ret = -ENOMEM;
  72	}
 
  73	mutex_unlock(&scsi_sense_cache_mutex);
  74	return ret;
  75}
  76
  77/*
  78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  79 * not change behaviour from the previous unplug mechanism, experimentation
  80 * may prove this needs changing.
  81 */
  82#define SCSI_QUEUE_DELAY	3
  83
  84static void
  85scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  86{
  87	struct Scsi_Host *host = cmd->device->host;
  88	struct scsi_device *device = cmd->device;
  89	struct scsi_target *starget = scsi_target(device);
  90
  91	/*
  92	 * Set the appropriate busy bit for the device/host.
  93	 *
  94	 * If the host/device isn't busy, assume that something actually
  95	 * completed, and that we should be able to queue a command now.
  96	 *
  97	 * Note that the prior mid-layer assumption that any host could
  98	 * always queue at least one command is now broken.  The mid-layer
  99	 * will implement a user specifiable stall (see
 100	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 101	 * if a command is requeued with no other commands outstanding
 102	 * either for the device or for the host.
 103	 */
 104	switch (reason) {
 105	case SCSI_MLQUEUE_HOST_BUSY:
 106		atomic_set(&host->host_blocked, host->max_host_blocked);
 107		break;
 108	case SCSI_MLQUEUE_DEVICE_BUSY:
 109	case SCSI_MLQUEUE_EH_RETRY:
 110		atomic_set(&device->device_blocked,
 111			   device->max_device_blocked);
 112		break;
 113	case SCSI_MLQUEUE_TARGET_BUSY:
 114		atomic_set(&starget->target_blocked,
 115			   starget->max_target_blocked);
 116		break;
 117	}
 118}
 119
 120static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 121{
 
 
 122	if (cmd->request->rq_flags & RQF_DONTPREP) {
 123		cmd->request->rq_flags &= ~RQF_DONTPREP;
 124		scsi_mq_uninit_cmd(cmd);
 125	} else {
 126		WARN_ON_ONCE(true);
 127	}
 128	blk_mq_requeue_request(cmd->request, true);
 
 129}
 130
 131/**
 132 * __scsi_queue_insert - private queue insertion
 133 * @cmd: The SCSI command being requeued
 134 * @reason:  The reason for the requeue
 135 * @unbusy: Whether the queue should be unbusied
 136 *
 137 * This is a private queue insertion.  The public interface
 138 * scsi_queue_insert() always assumes the queue should be unbusied
 139 * because it's always called before the completion.  This function is
 140 * for a requeue after completion, which should only occur in this
 141 * file.
 142 */
 143static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 144{
 145	struct scsi_device *device = cmd->device;
 
 
 146
 147	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 148		"Inserting command %p into mlqueue\n", cmd));
 149
 150	scsi_set_blocked(cmd, reason);
 151
 152	/*
 153	 * Decrement the counters, since these commands are no longer
 154	 * active on the host/device.
 155	 */
 156	if (unbusy)
 157		scsi_device_unbusy(device, cmd);
 158
 159	/*
 160	 * Requeue this command.  It will go before all other commands
 161	 * that are already in the queue. Schedule requeue work under
 162	 * lock such that the kblockd_schedule_work() call happens
 163	 * before blk_cleanup_queue() finishes.
 164	 */
 165	cmd->result = 0;
 166
 167	blk_mq_requeue_request(cmd->request, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 
 
 
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187
 188/**
 189 * __scsi_execute - insert request and wait for the result
 190 * @sdev:	scsi device
 191 * @cmd:	scsi command
 192 * @data_direction: data direction
 193 * @buffer:	data buffer
 194 * @bufflen:	len of buffer
 195 * @sense:	optional sense buffer
 196 * @sshdr:	optional decoded sense header
 197 * @timeout:	request timeout in HZ
 198 * @retries:	number of times to retry request
 199 * @flags:	flags for ->cmd_flags
 200 * @rq_flags:	flags for ->rq_flags
 201 * @resid:	optional residual length
 202 *
 203 * Returns the scsi_cmnd result field if a command was executed, or a negative
 204 * Linux error code if we didn't get that far.
 205 */
 206int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 207		 int data_direction, void *buffer, unsigned bufflen,
 208		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 209		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 210		 int *resid)
 211{
 212	struct request *req;
 213	struct scsi_request *rq;
 214	int ret;
 215
 216	req = blk_get_request(sdev->request_queue,
 217			data_direction == DMA_TO_DEVICE ?
 218			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 219			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
 220	if (IS_ERR(req))
 221		return PTR_ERR(req);
 
 222
 223	rq = scsi_req(req);
 
 
 224
 225	if (bufflen) {
 226		ret = blk_rq_map_kern(sdev->request_queue, req,
 227				      buffer, bufflen, GFP_NOIO);
 228		if (ret)
 229			goto out;
 230	}
 231	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 232	memcpy(rq->cmd, cmd, rq->cmd_len);
 233	rq->retries = retries;
 234	req->timeout = timeout;
 235	req->cmd_flags |= flags;
 236	req->rq_flags |= rq_flags | RQF_QUIET;
 237
 238	/*
 239	 * head injection *required* here otherwise quiesce won't work
 240	 */
 241	blk_execute_rq(NULL, req, 1);
 242
 243	/*
 244	 * Some devices (USB mass-storage in particular) may transfer
 245	 * garbage data together with a residue indicating that the data
 246	 * is invalid.  Prevent the garbage from being misinterpreted
 247	 * and prevent security leaks by zeroing out the excess data.
 248	 */
 249	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 250		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 251
 252	if (resid)
 253		*resid = rq->resid_len;
 254	if (sense && rq->sense_len)
 255		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 256	if (sshdr)
 257		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 258	ret = rq->result;
 259 out:
 260	blk_put_request(req);
 261
 262	return ret;
 263}
 264EXPORT_SYMBOL(__scsi_execute);
 265
 266/*
 267 * Wake up the error handler if necessary. Avoid as follows that the error
 268 * handler is not woken up if host in-flight requests number ==
 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 270 * with an RCU read lock in this function to ensure that this function in
 271 * its entirety either finishes before scsi_eh_scmd_add() increases the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272 * host_failed counter or that it notices the shost state change made by
 273 * scsi_eh_scmd_add().
 274 */
 275static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 276{
 277	unsigned long flags;
 278
 279	rcu_read_lock();
 280	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 281	if (unlikely(scsi_host_in_recovery(shost))) {
 282		spin_lock_irqsave(shost->host_lock, flags);
 283		if (shost->host_failed || shost->host_eh_scheduled)
 284			scsi_eh_wakeup(shost);
 285		spin_unlock_irqrestore(shost->host_lock, flags);
 286	}
 287	rcu_read_unlock();
 288}
 289
 290void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 291{
 292	struct Scsi_Host *shost = sdev->host;
 293	struct scsi_target *starget = scsi_target(sdev);
 294
 295	scsi_dec_host_busy(shost, cmd);
 296
 297	if (starget->can_queue > 0)
 298		atomic_dec(&starget->target_busy);
 299
 300	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 301	cmd->budget_token = -1;
 302}
 303
 304static void scsi_kick_queue(struct request_queue *q)
 305{
 306	blk_mq_run_hw_queues(q, false);
 
 
 
 307}
 308
 309/*
 310 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 311 * and call blk_run_queue for all the scsi_devices on the target -
 312 * including current_sdev first.
 313 *
 314 * Called with *no* scsi locks held.
 315 */
 316static void scsi_single_lun_run(struct scsi_device *current_sdev)
 317{
 318	struct Scsi_Host *shost = current_sdev->host;
 319	struct scsi_device *sdev, *tmp;
 320	struct scsi_target *starget = scsi_target(current_sdev);
 321	unsigned long flags;
 322
 323	spin_lock_irqsave(shost->host_lock, flags);
 324	starget->starget_sdev_user = NULL;
 325	spin_unlock_irqrestore(shost->host_lock, flags);
 326
 327	/*
 328	 * Call blk_run_queue for all LUNs on the target, starting with
 329	 * current_sdev. We race with others (to set starget_sdev_user),
 330	 * but in most cases, we will be first. Ideally, each LU on the
 331	 * target would get some limited time or requests on the target.
 332	 */
 333	scsi_kick_queue(current_sdev->request_queue);
 334
 335	spin_lock_irqsave(shost->host_lock, flags);
 336	if (starget->starget_sdev_user)
 337		goto out;
 338	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 339			same_target_siblings) {
 340		if (sdev == current_sdev)
 341			continue;
 342		if (scsi_device_get(sdev))
 343			continue;
 344
 345		spin_unlock_irqrestore(shost->host_lock, flags);
 346		scsi_kick_queue(sdev->request_queue);
 347		spin_lock_irqsave(shost->host_lock, flags);
 348
 349		scsi_device_put(sdev);
 350	}
 351 out:
 352	spin_unlock_irqrestore(shost->host_lock, flags);
 353}
 354
 355static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 356{
 357	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 358		return true;
 359	if (atomic_read(&sdev->device_blocked) > 0)
 360		return true;
 361	return false;
 362}
 363
 364static inline bool scsi_target_is_busy(struct scsi_target *starget)
 365{
 366	if (starget->can_queue > 0) {
 367		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 368			return true;
 369		if (atomic_read(&starget->target_blocked) > 0)
 370			return true;
 371	}
 372	return false;
 373}
 374
 375static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 376{
 
 
 
 377	if (atomic_read(&shost->host_blocked) > 0)
 378		return true;
 379	if (shost->host_self_blocked)
 380		return true;
 381	return false;
 382}
 383
 384static void scsi_starved_list_run(struct Scsi_Host *shost)
 385{
 386	LIST_HEAD(starved_list);
 387	struct scsi_device *sdev;
 388	unsigned long flags;
 389
 390	spin_lock_irqsave(shost->host_lock, flags);
 391	list_splice_init(&shost->starved_list, &starved_list);
 392
 393	while (!list_empty(&starved_list)) {
 394		struct request_queue *slq;
 395
 396		/*
 397		 * As long as shost is accepting commands and we have
 398		 * starved queues, call blk_run_queue. scsi_request_fn
 399		 * drops the queue_lock and can add us back to the
 400		 * starved_list.
 401		 *
 402		 * host_lock protects the starved_list and starved_entry.
 403		 * scsi_request_fn must get the host_lock before checking
 404		 * or modifying starved_list or starved_entry.
 405		 */
 406		if (scsi_host_is_busy(shost))
 407			break;
 408
 409		sdev = list_entry(starved_list.next,
 410				  struct scsi_device, starved_entry);
 411		list_del_init(&sdev->starved_entry);
 412		if (scsi_target_is_busy(scsi_target(sdev))) {
 413			list_move_tail(&sdev->starved_entry,
 414				       &shost->starved_list);
 415			continue;
 416		}
 417
 418		/*
 419		 * Once we drop the host lock, a racing scsi_remove_device()
 420		 * call may remove the sdev from the starved list and destroy
 421		 * it and the queue.  Mitigate by taking a reference to the
 422		 * queue and never touching the sdev again after we drop the
 423		 * host lock.  Note: if __scsi_remove_device() invokes
 424		 * blk_cleanup_queue() before the queue is run from this
 425		 * function then blk_run_queue() will return immediately since
 426		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 427		 */
 428		slq = sdev->request_queue;
 429		if (!blk_get_queue(slq))
 430			continue;
 431		spin_unlock_irqrestore(shost->host_lock, flags);
 432
 433		scsi_kick_queue(slq);
 434		blk_put_queue(slq);
 435
 436		spin_lock_irqsave(shost->host_lock, flags);
 437	}
 438	/* put any unprocessed entries back */
 439	list_splice(&starved_list, &shost->starved_list);
 440	spin_unlock_irqrestore(shost->host_lock, flags);
 441}
 442
 443/**
 444 * scsi_run_queue - Select a proper request queue to serve next.
 445 * @q:  last request's queue
 
 
 
 
 
 446 *
 447 * The previous command was completely finished, start a new one if possible.
 
 448 */
 449static void scsi_run_queue(struct request_queue *q)
 450{
 451	struct scsi_device *sdev = q->queuedata;
 452
 453	if (scsi_target(sdev)->single_lun)
 454		scsi_single_lun_run(sdev);
 455	if (!list_empty(&sdev->host->starved_list))
 456		scsi_starved_list_run(sdev->host);
 457
 458	blk_mq_run_hw_queues(q, false);
 
 
 
 459}
 460
 461void scsi_requeue_run_queue(struct work_struct *work)
 462{
 463	struct scsi_device *sdev;
 464	struct request_queue *q;
 465
 466	sdev = container_of(work, struct scsi_device, requeue_work);
 467	q = sdev->request_queue;
 468	scsi_run_queue(q);
 469}
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471void scsi_run_host_queues(struct Scsi_Host *shost)
 472{
 473	struct scsi_device *sdev;
 474
 475	shost_for_each_device(sdev, shost)
 476		scsi_run_queue(sdev->request_queue);
 477}
 478
 479static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 480{
 481	if (!blk_rq_is_passthrough(cmd->request)) {
 482		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 483
 484		if (drv->uninit_command)
 485			drv->uninit_command(cmd);
 486	}
 487}
 488
 489void scsi_free_sgtables(struct scsi_cmnd *cmd)
 490{
 
 
 491	if (cmd->sdb.table.nents)
 492		sg_free_table_chained(&cmd->sdb.table,
 493				SCSI_INLINE_SG_CNT);
 
 
 
 
 494	if (scsi_prot_sg_count(cmd))
 495		sg_free_table_chained(&cmd->prot_sdb->table,
 496				SCSI_INLINE_PROT_SG_CNT);
 497}
 498EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 499
 500static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 501{
 502	scsi_free_sgtables(cmd);
 503	scsi_uninit_cmd(cmd);
 
 504}
 505
 506static void scsi_run_queue_async(struct scsi_device *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507{
 508	if (scsi_target(sdev)->single_lun ||
 509	    !list_empty(&sdev->host->starved_list)) {
 510		kblockd_schedule_work(&sdev->requeue_work);
 511	} else {
 512		/*
 513		 * smp_mb() present in sbitmap_queue_clear() or implied in
 514		 * .end_io is for ordering writing .device_busy in
 515		 * scsi_device_unbusy() and reading sdev->restarts.
 516		 */
 517		int old = atomic_read(&sdev->restarts);
 
 
 518
 519		/*
 520		 * ->restarts has to be kept as non-zero if new budget
 521		 *  contention occurs.
 522		 *
 523		 *  No need to run queue when either another re-run
 524		 *  queue wins in updating ->restarts or a new budget
 525		 *  contention occurs.
 526		 */
 527		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 528			blk_mq_run_hw_queues(sdev->request_queue, true);
 529	}
 530}
 531
 532/* Returns false when no more bytes to process, true if there are more */
 533static bool scsi_end_request(struct request *req, blk_status_t error,
 534		unsigned int bytes)
 535{
 536	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 537	struct scsi_device *sdev = cmd->device;
 538	struct request_queue *q = sdev->request_queue;
 539
 540	if (blk_update_request(req, error, bytes))
 541		return true;
 542
 
 
 
 
 
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->rq_disk);
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 
 549	}
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 
 
 
 
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 
 
 575
 576	scsi_run_queue_async(sdev);
 
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 580}
 581
 582/**
 583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 584 * @cmd:	SCSI command
 585 * @result:	scsi error code
 586 *
 587 * Translate a SCSI result code into a blk_status_t value. May reset the host
 588 * byte of @cmd->result.
 589 */
 590static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 591{
 592	switch (host_byte(result)) {
 593	case DID_OK:
 594		if (scsi_status_is_good(result))
 
 
 
 
 
 595			return BLK_STS_OK;
 596		return BLK_STS_IOERR;
 597	case DID_TRANSPORT_FAILFAST:
 598	case DID_TRANSPORT_MARGINAL:
 599		return BLK_STS_TRANSPORT;
 600	case DID_TARGET_FAILURE:
 601		set_host_byte(cmd, DID_OK);
 602		return BLK_STS_TARGET;
 603	case DID_NEXUS_FAILURE:
 604		set_host_byte(cmd, DID_OK);
 605		return BLK_STS_NEXUS;
 606	case DID_ALLOC_FAILURE:
 607		set_host_byte(cmd, DID_OK);
 608		return BLK_STS_NOSPC;
 609	case DID_MEDIUM_ERROR:
 610		set_host_byte(cmd, DID_OK);
 611		return BLK_STS_MEDIUM;
 612	default:
 613		return BLK_STS_IOERR;
 614	}
 615}
 616
 617/* Helper for scsi_io_completion() when "reprep" action required. */
 618static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 619				      struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620{
 621	/* A new command will be prepared and issued. */
 622	scsi_mq_requeue_cmd(cmd);
 623}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 626{
 627	struct request *req = cmd->request;
 628	unsigned long wait_for;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 631		return false;
 
 
 
 
 
 
 632
 633	wait_for = (cmd->allowed + 1) * req->timeout;
 634	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 635		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 636			    wait_for/HZ);
 637		return true;
 
 
 638	}
 639	return false;
 640}
 641
 642/* Helper for scsi_io_completion() when special action required. */
 643static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 644{
 645	struct request_queue *q = cmd->device->request_queue;
 646	struct request *req = cmd->request;
 647	int level = 0;
 648	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 649	      ACTION_DELAYED_RETRY} action;
 650	struct scsi_sense_hdr sshdr;
 651	bool sense_valid;
 652	bool sense_current = true;      /* false implies "deferred sense" */
 653	blk_status_t blk_stat;
 654
 655	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 656	if (sense_valid)
 657		sense_current = !scsi_sense_is_deferred(&sshdr);
 658
 659	blk_stat = scsi_result_to_blk_status(cmd, result);
 660
 661	if (host_byte(result) == DID_RESET) {
 662		/* Third party bus reset or reset for error recovery
 663		 * reasons.  Just retry the command and see what
 664		 * happens.
 665		 */
 666		action = ACTION_RETRY;
 667	} else if (sense_valid && sense_current) {
 668		switch (sshdr.sense_key) {
 669		case UNIT_ATTENTION:
 670			if (cmd->device->removable) {
 671				/* Detected disc change.  Set a bit
 672				 * and quietly refuse further access.
 673				 */
 674				cmd->device->changed = 1;
 675				action = ACTION_FAIL;
 676			} else {
 677				/* Must have been a power glitch, or a
 678				 * bus reset.  Could not have been a
 679				 * media change, so we just retry the
 680				 * command and see what happens.
 681				 */
 682				action = ACTION_RETRY;
 683			}
 684			break;
 685		case ILLEGAL_REQUEST:
 686			/* If we had an ILLEGAL REQUEST returned, then
 687			 * we may have performed an unsupported
 688			 * command.  The only thing this should be
 689			 * would be a ten byte read where only a six
 690			 * byte read was supported.  Also, on a system
 691			 * where READ CAPACITY failed, we may have
 692			 * read past the end of the disk.
 693			 */
 694			if ((cmd->device->use_10_for_rw &&
 695			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 696			    (cmd->cmnd[0] == READ_10 ||
 697			     cmd->cmnd[0] == WRITE_10)) {
 698				/* This will issue a new 6-byte command. */
 699				cmd->device->use_10_for_rw = 0;
 700				action = ACTION_REPREP;
 701			} else if (sshdr.asc == 0x10) /* DIX */ {
 702				action = ACTION_FAIL;
 703				blk_stat = BLK_STS_PROTECTION;
 704			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 705			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 706				action = ACTION_FAIL;
 707				blk_stat = BLK_STS_TARGET;
 708			} else
 709				action = ACTION_FAIL;
 710			break;
 711		case ABORTED_COMMAND:
 712			action = ACTION_FAIL;
 713			if (sshdr.asc == 0x10) /* DIF */
 714				blk_stat = BLK_STS_PROTECTION;
 715			break;
 716		case NOT_READY:
 717			/* If the device is in the process of becoming
 718			 * ready, or has a temporary blockage, retry.
 719			 */
 720			if (sshdr.asc == 0x04) {
 721				switch (sshdr.ascq) {
 722				case 0x01: /* becoming ready */
 723				case 0x04: /* format in progress */
 724				case 0x05: /* rebuild in progress */
 725				case 0x06: /* recalculation in progress */
 726				case 0x07: /* operation in progress */
 727				case 0x08: /* Long write in progress */
 728				case 0x09: /* self test in progress */
 729				case 0x11: /* notify (enable spinup) required */
 730				case 0x14: /* space allocation in progress */
 731				case 0x1a: /* start stop unit in progress */
 732				case 0x1b: /* sanitize in progress */
 733				case 0x1d: /* configuration in progress */
 734				case 0x24: /* depopulation in progress */
 735					action = ACTION_DELAYED_RETRY;
 736					break;
 737				case 0x0a: /* ALUA state transition */
 738					blk_stat = BLK_STS_AGAIN;
 739					fallthrough;
 740				default:
 741					action = ACTION_FAIL;
 742					break;
 743				}
 744			} else
 745				action = ACTION_FAIL;
 746			break;
 747		case VOLUME_OVERFLOW:
 748			/* See SSC3rXX or current. */
 749			action = ACTION_FAIL;
 750			break;
 751		case DATA_PROTECT:
 752			action = ACTION_FAIL;
 753			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 754			    (sshdr.asc == 0x55 &&
 755			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 756				/* Insufficient zone resources */
 757				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 758			}
 759			break;
 760		default:
 761			action = ACTION_FAIL;
 762			break;
 763		}
 764	} else
 765		action = ACTION_FAIL;
 766
 767	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 768		action = ACTION_FAIL;
 769
 770	switch (action) {
 771	case ACTION_FAIL:
 772		/* Give up and fail the remainder of the request */
 773		if (!(req->rq_flags & RQF_QUIET)) {
 774			static DEFINE_RATELIMIT_STATE(_rs,
 775					DEFAULT_RATELIMIT_INTERVAL,
 776					DEFAULT_RATELIMIT_BURST);
 777
 778			if (unlikely(scsi_logging_level))
 779				level =
 780				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 781						    SCSI_LOG_MLCOMPLETE_BITS);
 782
 783			/*
 784			 * if logging is enabled the failure will be printed
 785			 * in scsi_log_completion(), so avoid duplicate messages
 786			 */
 787			if (!level && __ratelimit(&_rs)) {
 788				scsi_print_result(cmd, NULL, FAILED);
 789				if (sense_valid)
 790					scsi_print_sense(cmd);
 791				scsi_print_command(cmd);
 792			}
 793		}
 794		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 795			return;
 796		fallthrough;
 797	case ACTION_REPREP:
 798		scsi_io_completion_reprep(cmd, q);
 
 
 
 
 
 
 
 
 
 799		break;
 800	case ACTION_RETRY:
 801		/* Retry the same command immediately */
 802		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 803		break;
 804	case ACTION_DELAYED_RETRY:
 805		/* Retry the same command after a delay */
 806		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 807		break;
 808	}
 809}
 810
 811/*
 812 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 813 * new result that may suppress further error checking. Also modifies
 814 * *blk_statp in some cases.
 815 */
 816static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 817					blk_status_t *blk_statp)
 818{
 819	bool sense_valid;
 820	bool sense_current = true;	/* false implies "deferred sense" */
 821	struct request *req = cmd->request;
 822	struct scsi_sense_hdr sshdr;
 823
 824	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 825	if (sense_valid)
 826		sense_current = !scsi_sense_is_deferred(&sshdr);
 827
 828	if (blk_rq_is_passthrough(req)) {
 829		if (sense_valid) {
 830			/*
 831			 * SG_IO wants current and deferred errors
 832			 */
 833			scsi_req(req)->sense_len =
 834				min(8 + cmd->sense_buffer[7],
 835				    SCSI_SENSE_BUFFERSIZE);
 836		}
 837		if (sense_current)
 838			*blk_statp = scsi_result_to_blk_status(cmd, result);
 839	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 840		/*
 841		 * Flush commands do not transfers any data, and thus cannot use
 842		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 843		 * This sets *blk_statp explicitly for the problem case.
 844		 */
 845		*blk_statp = scsi_result_to_blk_status(cmd, result);
 846	}
 847	/*
 848	 * Recovered errors need reporting, but they're always treated as
 849	 * success, so fiddle the result code here.  For passthrough requests
 850	 * we already took a copy of the original into sreq->result which
 851	 * is what gets returned to the user
 852	 */
 853	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 854		bool do_print = true;
 855		/*
 856		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 857		 * skip print since caller wants ATA registers. Only occurs
 858		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 859		 */
 860		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 861			do_print = false;
 862		else if (req->rq_flags & RQF_QUIET)
 863			do_print = false;
 864		if (do_print)
 865			scsi_print_sense(cmd);
 866		result = 0;
 867		/* for passthrough, *blk_statp may be set */
 868		*blk_statp = BLK_STS_OK;
 869	}
 870	/*
 871	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 872	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 873	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 874	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 875	 * intermediate statuses (both obsolete in SAM-4) as good.
 876	 */
 877	if ((result & 0xff) && scsi_status_is_good(result)) {
 878		result = 0;
 879		*blk_statp = BLK_STS_OK;
 880	}
 881	return result;
 882}
 883
 884/**
 885 * scsi_io_completion - Completion processing for SCSI commands.
 886 * @cmd:	command that is finished.
 887 * @good_bytes:	number of processed bytes.
 888 *
 889 * We will finish off the specified number of sectors. If we are done, the
 890 * command block will be released and the queue function will be goosed. If we
 891 * are not done then we have to figure out what to do next:
 892 *
 893 *   a) We can call scsi_io_completion_reprep().  The request will be
 894 *	unprepared and put back on the queue.  Then a new command will
 895 *	be created for it.  This should be used if we made forward
 896 *	progress, or if we want to switch from READ(10) to READ(6) for
 897 *	example.
 898 *
 899 *   b) We can call scsi_io_completion_action().  The request will be
 900 *	put back on the queue and retried using the same command as
 901 *	before, possibly after a delay.
 902 *
 903 *   c) We can call scsi_end_request() with blk_stat other than
 904 *	BLK_STS_OK, to fail the remainder of the request.
 905 */
 906void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 907{
 908	int result = cmd->result;
 909	struct request_queue *q = cmd->device->request_queue;
 910	struct request *req = cmd->request;
 911	blk_status_t blk_stat = BLK_STS_OK;
 912
 913	if (unlikely(result))	/* a nz result may or may not be an error */
 914		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 915
 916	if (unlikely(blk_rq_is_passthrough(req))) {
 917		/*
 918		 * scsi_result_to_blk_status may have reset the host_byte
 919		 */
 920		scsi_req(req)->result = cmd->result;
 921	}
 922
 923	/*
 924	 * Next deal with any sectors which we were able to correctly
 925	 * handle.
 926	 */
 927	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 928		"%u sectors total, %d bytes done.\n",
 929		blk_rq_sectors(req), good_bytes));
 930
 931	/*
 932	 * Failed, zero length commands always need to drop down
 933	 * to retry code. Fast path should return in this block.
 934	 */
 935	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 936		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 937			return; /* no bytes remaining */
 938	}
 939
 940	/* Kill remainder if no retries. */
 941	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 942		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 943			WARN_ONCE(true,
 944			    "Bytes remaining after failed, no-retry command");
 945		return;
 946	}
 947
 948	/*
 949	 * If there had been no error, but we have leftover bytes in the
 950	 * requeues just queue the command up again.
 951	 */
 952	if (likely(result == 0))
 953		scsi_io_completion_reprep(cmd, q);
 954	else
 955		scsi_io_completion_action(cmd, result);
 956}
 957
 958static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
 959		struct request *rq)
 960{
 961	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
 962	       !op_is_write(req_op(rq)) &&
 963	       sdev->host->hostt->dma_need_drain(rq);
 964}
 965
 966/**
 967 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
 968 * @cmd: SCSI command data structure to initialize.
 969 *
 970 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
 971 * for @cmd.
 972 *
 973 * Returns:
 974 * * BLK_STS_OK       - on success
 975 * * BLK_STS_RESOURCE - if the failure is retryable
 976 * * BLK_STS_IOERR    - if the failure is fatal
 977 */
 978blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
 979{
 980	struct scsi_device *sdev = cmd->device;
 981	struct request *rq = cmd->request;
 982	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
 983	struct scatterlist *last_sg = NULL;
 984	blk_status_t ret;
 985	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
 986	int count;
 987
 988	if (WARN_ON_ONCE(!nr_segs))
 989		return BLK_STS_IOERR;
 990
 991	/*
 992	 * Make sure there is space for the drain.  The driver must adjust
 993	 * max_hw_segments to be prepared for this.
 994	 */
 995	if (need_drain)
 996		nr_segs++;
 
 
 
 
 
 
 997
 998	/*
 999	 * If sg table allocation fails, requeue request later.
1000	 */
1001	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1002			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1003		return BLK_STS_RESOURCE;
1004
1005	/*
1006	 * Next, walk the list, and fill in the addresses and sizes of
1007	 * each segment.
1008	 */
1009	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1010
1011	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1012		unsigned int pad_len =
1013			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1014
1015		last_sg->length += pad_len;
1016		cmd->extra_len += pad_len;
1017	}
1018
1019	if (need_drain) {
1020		sg_unmark_end(last_sg);
1021		last_sg = sg_next(last_sg);
1022		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1023		sg_mark_end(last_sg);
1024
1025		cmd->extra_len += sdev->dma_drain_len;
1026		count++;
1027	}
1028
1029	BUG_ON(count > cmd->sdb.table.nents);
1030	cmd->sdb.table.nents = count;
1031	cmd->sdb.length = blk_rq_payload_bytes(rq);
1032
1033	if (blk_integrity_rq(rq)) {
1034		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1035		int ivecs;
1036
1037		if (WARN_ON_ONCE(!prot_sdb)) {
1038			/*
1039			 * This can happen if someone (e.g. multipath)
1040			 * queues a command to a device on an adapter
1041			 * that does not support DIX.
1042			 */
1043			ret = BLK_STS_IOERR;
1044			goto out_free_sgtables;
 
1045		}
1046
1047		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1048
1049		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1050				prot_sdb->table.sgl,
1051				SCSI_INLINE_PROT_SG_CNT)) {
1052			ret = BLK_STS_RESOURCE;
1053			goto out_free_sgtables;
1054		}
1055
1056		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1057						prot_sdb->table.sgl);
1058		BUG_ON(count > ivecs);
1059		BUG_ON(count > queue_max_integrity_segments(rq->q));
1060
1061		cmd->prot_sdb = prot_sdb;
1062		cmd->prot_sdb->table.nents = count;
1063	}
1064
1065	return BLK_STS_OK;
1066out_free_sgtables:
1067	scsi_free_sgtables(cmd);
1068	return ret;
 
 
 
 
 
 
 
1069}
1070EXPORT_SYMBOL(scsi_alloc_sgtables);
1071
1072/**
1073 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1074 * @rq: Request associated with the SCSI command to be initialized.
1075 *
1076 * This function initializes the members of struct scsi_cmnd that must be
1077 * initialized before request processing starts and that won't be
1078 * reinitialized if a SCSI command is requeued.
1079 *
1080 * Called from inside blk_get_request() for pass-through requests and from
1081 * inside scsi_init_command() for filesystem requests.
1082 */
1083static void scsi_initialize_rq(struct request *rq)
1084{
1085	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1086
1087	scsi_req_init(&cmd->req);
1088	init_rcu_head(&cmd->rcu);
1089	cmd->jiffies_at_alloc = jiffies;
1090	cmd->retries = 0;
1091}
1092
1093/*
1094 * Only called when the request isn't completed by SCSI, and not freed by
1095 * SCSI
1096 */
1097static void scsi_cleanup_rq(struct request *rq)
1098{
1099	if (rq->rq_flags & RQF_DONTPREP) {
1100		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1101		rq->rq_flags &= ~RQF_DONTPREP;
 
 
 
 
 
1102	}
1103}
1104
1105/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1107{
1108	void *buf = cmd->sense_buffer;
1109	void *prot = cmd->prot_sdb;
1110	struct request *rq = blk_mq_rq_from_pdu(cmd);
1111	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1112	unsigned long jiffies_at_alloc;
1113	int retries, to_clear;
1114	bool in_flight;
1115	int budget_token = cmd->budget_token;
1116
1117	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1118		flags |= SCMD_INITIALIZED;
1119		scsi_initialize_rq(rq);
1120	}
1121
1122	jiffies_at_alloc = cmd->jiffies_at_alloc;
1123	retries = cmd->retries;
1124	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1125	/*
1126	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1127	 * the driver-private command data if the LLD does not supply a
1128	 * function to initialize that data.
1129	 */
1130	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1131	if (!dev->host->hostt->init_cmd_priv)
1132		to_clear += dev->host->hostt->cmd_size;
1133	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1134
1135	cmd->device = dev;
1136	cmd->sense_buffer = buf;
1137	cmd->prot_sdb = prot;
1138	cmd->flags = flags;
1139	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1140	cmd->jiffies_at_alloc = jiffies_at_alloc;
1141	cmd->retries = retries;
1142	if (in_flight)
1143		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1144	cmd->budget_token = budget_token;
1145
 
1146}
1147
1148static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1149		struct request *req)
1150{
1151	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1152
1153	/*
1154	 * Passthrough requests may transfer data, in which case they must
1155	 * a bio attached to them.  Or they might contain a SCSI command
1156	 * that does not transfer data, in which case they may optionally
1157	 * submit a request without an attached bio.
1158	 */
1159	if (req->bio) {
1160		blk_status_t ret = scsi_alloc_sgtables(cmd);
1161		if (unlikely(ret != BLK_STS_OK))
1162			return ret;
1163	} else {
1164		BUG_ON(blk_rq_bytes(req));
1165
1166		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1167	}
1168
1169	cmd->cmd_len = scsi_req(req)->cmd_len;
1170	if (cmd->cmd_len == 0)
1171		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1172	cmd->cmnd = scsi_req(req)->cmd;
1173	cmd->transfersize = blk_rq_bytes(req);
1174	cmd->allowed = scsi_req(req)->retries;
1175	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177
1178static blk_status_t
1179scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1180{
1181	switch (sdev->sdev_state) {
1182	case SDEV_CREATED:
1183		return BLK_STS_OK;
1184	case SDEV_OFFLINE:
1185	case SDEV_TRANSPORT_OFFLINE:
1186		/*
1187		 * If the device is offline we refuse to process any
1188		 * commands.  The device must be brought online
1189		 * before trying any recovery commands.
1190		 */
1191		if (!sdev->offline_already) {
1192			sdev->offline_already = true;
 
 
 
1193			sdev_printk(KERN_ERR, sdev,
1194				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195		}
1196		return BLK_STS_IOERR;
1197	case SDEV_DEL:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198		/*
1199		 * If the device is fully deleted, we refuse to
1200		 * process any commands as well.
 
1201		 */
1202		sdev_printk(KERN_ERR, sdev,
1203			    "rejecting I/O to dead device\n");
1204		return BLK_STS_IOERR;
1205	case SDEV_BLOCK:
1206	case SDEV_CREATED_BLOCK:
1207		return BLK_STS_RESOURCE;
1208	case SDEV_QUIESCE:
1209		/*
1210		 * If the device is blocked we only accept power management
1211		 * commands.
1212		 */
1213		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1214			return BLK_STS_RESOURCE;
1215		return BLK_STS_OK;
1216	default:
1217		/*
1218		 * For any other not fully online state we only allow
1219		 * power management commands.
1220		 */
1221		if (req && !(req->rq_flags & RQF_PM))
1222			return BLK_STS_IOERR;
1223		return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1225}
1226
1227/*
1228 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1229 * and return the token else return -1.
 
 
1230 */
1231static inline int scsi_dev_queue_ready(struct request_queue *q,
1232				  struct scsi_device *sdev)
1233{
1234	int token;
1235
1236	token = sbitmap_get(&sdev->budget_map);
1237	if (atomic_read(&sdev->device_blocked)) {
1238		if (token < 0)
1239			goto out;
1240
1241		if (scsi_device_busy(sdev) > 1)
1242			goto out_dec;
1243
1244		/*
1245		 * unblock after device_blocked iterates to zero
1246		 */
1247		if (atomic_dec_return(&sdev->device_blocked) > 0)
 
 
 
 
 
1248			goto out_dec;
 
1249		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1250				   "unblocking device at zero depth\n"));
1251	}
1252
1253	return token;
 
 
 
1254out_dec:
1255	if (token >= 0)
1256		sbitmap_put(&sdev->budget_map, token);
1257out:
1258	return -1;
1259}
1260
1261/*
1262 * scsi_target_queue_ready: checks if there we can send commands to target
1263 * @sdev: scsi device on starget to check.
1264 */
1265static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1266					   struct scsi_device *sdev)
1267{
1268	struct scsi_target *starget = scsi_target(sdev);
1269	unsigned int busy;
1270
1271	if (starget->single_lun) {
1272		spin_lock_irq(shost->host_lock);
1273		if (starget->starget_sdev_user &&
1274		    starget->starget_sdev_user != sdev) {
1275			spin_unlock_irq(shost->host_lock);
1276			return 0;
1277		}
1278		starget->starget_sdev_user = sdev;
1279		spin_unlock_irq(shost->host_lock);
1280	}
1281
1282	if (starget->can_queue <= 0)
1283		return 1;
1284
1285	busy = atomic_inc_return(&starget->target_busy) - 1;
1286	if (atomic_read(&starget->target_blocked) > 0) {
1287		if (busy)
1288			goto starved;
1289
1290		/*
1291		 * unblock after target_blocked iterates to zero
1292		 */
1293		if (atomic_dec_return(&starget->target_blocked) > 0)
1294			goto out_dec;
1295
1296		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1297				 "unblocking target at zero depth\n"));
1298	}
1299
1300	if (busy >= starget->can_queue)
1301		goto starved;
1302
1303	return 1;
1304
1305starved:
1306	spin_lock_irq(shost->host_lock);
1307	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1308	spin_unlock_irq(shost->host_lock);
1309out_dec:
1310	if (starget->can_queue > 0)
1311		atomic_dec(&starget->target_busy);
1312	return 0;
1313}
1314
1315/*
1316 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317 * return 0. We must end up running the queue again whenever 0 is
1318 * returned, else IO can hang.
1319 */
1320static inline int scsi_host_queue_ready(struct request_queue *q,
1321				   struct Scsi_Host *shost,
1322				   struct scsi_device *sdev,
1323				   struct scsi_cmnd *cmd)
1324{
 
 
1325	if (scsi_host_in_recovery(shost))
1326		return 0;
1327
 
1328	if (atomic_read(&shost->host_blocked) > 0) {
1329		if (scsi_host_busy(shost) > 0)
1330			goto starved;
1331
1332		/*
1333		 * unblock after host_blocked iterates to zero
1334		 */
1335		if (atomic_dec_return(&shost->host_blocked) > 0)
1336			goto out_dec;
1337
1338		SCSI_LOG_MLQUEUE(3,
1339			shost_printk(KERN_INFO, shost,
1340				     "unblocking host at zero depth\n"));
1341	}
1342
 
 
1343	if (shost->host_self_blocked)
1344		goto starved;
1345
1346	/* We're OK to process the command, so we can't be starved */
1347	if (!list_empty(&sdev->starved_entry)) {
1348		spin_lock_irq(shost->host_lock);
1349		if (!list_empty(&sdev->starved_entry))
1350			list_del_init(&sdev->starved_entry);
1351		spin_unlock_irq(shost->host_lock);
1352	}
1353
1354	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1355
1356	return 1;
1357
1358starved:
1359	spin_lock_irq(shost->host_lock);
1360	if (list_empty(&sdev->starved_entry))
1361		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1362	spin_unlock_irq(shost->host_lock);
1363out_dec:
1364	scsi_dec_host_busy(shost, cmd);
1365	return 0;
1366}
1367
1368/*
1369 * Busy state exporting function for request stacking drivers.
1370 *
1371 * For efficiency, no lock is taken to check the busy state of
1372 * shost/starget/sdev, since the returned value is not guaranteed and
1373 * may be changed after request stacking drivers call the function,
1374 * regardless of taking lock or not.
1375 *
1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1377 * needs to return 'not busy'. Otherwise, request stacking drivers
1378 * may hold requests forever.
1379 */
1380static bool scsi_mq_lld_busy(struct request_queue *q)
1381{
1382	struct scsi_device *sdev = q->queuedata;
1383	struct Scsi_Host *shost;
1384
1385	if (blk_queue_dying(q))
1386		return false;
1387
1388	shost = sdev->host;
1389
1390	/*
1391	 * Ignore host/starget busy state.
1392	 * Since block layer does not have a concept of fairness across
1393	 * multiple queues, congestion of host/starget needs to be handled
1394	 * in SCSI layer.
1395	 */
1396	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1397		return true;
1398
1399	return false;
1400}
1401
1402/*
1403 * Block layer request completion callback. May be called from interrupt
1404 * context.
1405 */
1406static void scsi_complete(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407{
1408	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1409	enum scsi_disposition disposition;
 
1410
1411	INIT_LIST_HEAD(&cmd->eh_entry);
1412
1413	atomic_inc(&cmd->device->iodone_cnt);
1414	if (cmd->result)
1415		atomic_inc(&cmd->device->ioerr_cnt);
1416
1417	disposition = scsi_decide_disposition(cmd);
1418	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1419		disposition = SUCCESS;
 
1420
1421	scsi_log_completion(cmd, disposition);
1422
1423	switch (disposition) {
1424	case SUCCESS:
1425		scsi_finish_command(cmd);
1426		break;
1427	case NEEDS_RETRY:
1428		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1429		break;
1430	case ADD_TO_MLQUEUE:
1431		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1432		break;
1433	default:
1434		scsi_eh_scmd_add(cmd);
1435		break;
1436	}
1437}
1438
1439/**
1440 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1441 * @cmd: command block we are dispatching.
1442 *
1443 * Return: nonzero return request was rejected and device's queue needs to be
1444 * plugged.
1445 */
1446static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1447{
1448	struct Scsi_Host *host = cmd->device->host;
1449	int rtn = 0;
1450
1451	atomic_inc(&cmd->device->iorequest_cnt);
1452
1453	/* check if the device is still usable */
1454	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1455		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1456		 * returns an immediate error upwards, and signals
1457		 * that the device is no longer present */
1458		cmd->result = DID_NO_CONNECT << 16;
1459		goto done;
1460	}
1461
1462	/* Check to see if the scsi lld made this device blocked. */
1463	if (unlikely(scsi_device_blocked(cmd->device))) {
1464		/*
1465		 * in blocked state, the command is just put back on
1466		 * the device queue.  The suspend state has already
1467		 * blocked the queue so future requests should not
1468		 * occur until the device transitions out of the
1469		 * suspend state.
1470		 */
1471		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1472			"queuecommand : device blocked\n"));
1473		return SCSI_MLQUEUE_DEVICE_BUSY;
1474	}
1475
1476	/* Store the LUN value in cmnd, if needed. */
1477	if (cmd->device->lun_in_cdb)
1478		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1479			       (cmd->device->lun << 5 & 0xe0);
1480
1481	scsi_log_send(cmd);
1482
1483	/*
1484	 * Before we queue this command, check if the command
1485	 * length exceeds what the host adapter can handle.
1486	 */
1487	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1488		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1489			       "queuecommand : command too long. "
1490			       "cdb_size=%d host->max_cmd_len=%d\n",
1491			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1492		cmd->result = (DID_ABORT << 16);
1493		goto done;
1494	}
1495
1496	if (unlikely(host->shost_state == SHOST_DEL)) {
1497		cmd->result = (DID_NO_CONNECT << 16);
1498		goto done;
1499
1500	}
1501
1502	trace_scsi_dispatch_cmd_start(cmd);
1503	rtn = host->hostt->queuecommand(host, cmd);
1504	if (rtn) {
1505		trace_scsi_dispatch_cmd_error(cmd, rtn);
1506		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1507		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1508			rtn = SCSI_MLQUEUE_HOST_BUSY;
1509
1510		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511			"queuecommand : request rejected\n"));
1512	}
1513
1514	return rtn;
1515 done:
1516	cmd->scsi_done(cmd);
1517	return 0;
1518}
1519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1521static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1522{
1523	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1524		sizeof(struct scatterlist);
1525}
1526
1527static blk_status_t scsi_prepare_cmd(struct request *req)
1528{
1529	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1530	struct scsi_device *sdev = req->q->queuedata;
1531	struct Scsi_Host *shost = sdev->host;
1532	struct scatterlist *sg;
1533
1534	scsi_init_command(sdev, cmd);
1535
 
 
1536	cmd->request = req;
 
1537	cmd->tag = req->tag;
1538	cmd->prot_op = SCSI_PROT_NORMAL;
1539	if (blk_rq_bytes(req))
1540		cmd->sc_data_direction = rq_dma_dir(req);
1541	else
1542		cmd->sc_data_direction = DMA_NONE;
1543
1544	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1545	cmd->sdb.table.sgl = sg;
1546
1547	if (scsi_host_get_prot(shost)) {
1548		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1549
1550		cmd->prot_sdb->table.sgl =
1551			(struct scatterlist *)(cmd->prot_sdb + 1);
1552	}
1553
1554	/*
1555	 * Special handling for passthrough commands, which don't go to the ULP
1556	 * at all:
1557	 */
1558	if (blk_rq_is_passthrough(req))
1559		return scsi_setup_scsi_cmnd(sdev, req);
 
1560
1561	if (sdev->handler && sdev->handler->prep_fn) {
1562		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1563
1564		if (ret != BLK_STS_OK)
1565			return ret;
1566	}
1567
1568	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1569	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1570	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1571}
1572
1573static void scsi_mq_done(struct scsi_cmnd *cmd)
1574{
1575	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1576		return;
1577	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1578		return;
1579	trace_scsi_dispatch_cmd_done(cmd);
1580	blk_mq_complete_request(cmd->request);
1581}
1582
1583static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1584{
 
1585	struct scsi_device *sdev = q->queuedata;
1586
1587	sbitmap_put(&sdev->budget_map, budget_token);
 
1588}
1589
1590static int scsi_mq_get_budget(struct request_queue *q)
1591{
 
1592	struct scsi_device *sdev = q->queuedata;
1593	int token = scsi_dev_queue_ready(q, sdev);
1594
1595	if (token >= 0)
1596		return token;
 
 
1597
1598	atomic_inc(&sdev->restarts);
1599
1600	/*
1601	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1602	 * .restarts must be incremented before .device_busy is read because the
1603	 * code in scsi_run_queue_async() depends on the order of these operations.
1604	 */
1605	smp_mb__after_atomic();
1606
1607	/*
1608	 * If all in-flight requests originated from this LUN are completed
1609	 * before reading .device_busy, sdev->device_busy will be observed as
1610	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1611	 * soon. Otherwise, completion of one of these requests will observe
1612	 * the .restarts flag, and the request queue will be run for handling
1613	 * this request, see scsi_end_request().
1614	 */
1615	if (unlikely(scsi_device_busy(sdev) == 0 &&
1616				!scsi_device_blocked(sdev)))
1617		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1618	return -1;
1619}
1620
1621static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1622{
1623	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1624
1625	cmd->budget_token = token;
1626}
1627
1628static int scsi_mq_get_rq_budget_token(struct request *req)
1629{
1630	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1631
1632	return cmd->budget_token;
1633}
1634
1635static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1636			 const struct blk_mq_queue_data *bd)
1637{
1638	struct request *req = bd->rq;
1639	struct request_queue *q = req->q;
1640	struct scsi_device *sdev = q->queuedata;
1641	struct Scsi_Host *shost = sdev->host;
1642	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1643	blk_status_t ret;
1644	int reason;
1645
1646	WARN_ON_ONCE(cmd->budget_token < 0);
1647
1648	/*
1649	 * If the device is not in running state we will reject some or all
1650	 * commands.
1651	 */
1652	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1653		ret = scsi_device_state_check(sdev, req);
1654		if (ret != BLK_STS_OK)
1655			goto out_put_budget;
1656	}
1657
1658	ret = BLK_STS_RESOURCE;
1659	if (!scsi_target_queue_ready(shost, sdev))
1660		goto out_put_budget;
1661	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1662		goto out_dec_target_busy;
1663
1664	if (!(req->rq_flags & RQF_DONTPREP)) {
1665		ret = scsi_prepare_cmd(req);
1666		if (ret != BLK_STS_OK)
1667			goto out_dec_host_busy;
1668		req->rq_flags |= RQF_DONTPREP;
1669	} else {
1670		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1671	}
1672
1673	cmd->flags &= SCMD_PRESERVED_FLAGS;
1674	if (sdev->simple_tags)
1675		cmd->flags |= SCMD_TAGGED;
1676	if (bd->last)
1677		cmd->flags |= SCMD_LAST;
1678
1679	scsi_set_resid(cmd, 0);
1680	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1681	cmd->scsi_done = scsi_mq_done;
1682
1683	blk_mq_start_request(req);
1684	reason = scsi_dispatch_cmd(cmd);
1685	if (reason) {
1686		scsi_set_blocked(cmd, reason);
1687		ret = BLK_STS_RESOURCE;
1688		goto out_dec_host_busy;
1689	}
1690
1691	return BLK_STS_OK;
1692
1693out_dec_host_busy:
1694	scsi_dec_host_busy(shost, cmd);
1695out_dec_target_busy:
1696	if (scsi_target(sdev)->can_queue > 0)
1697		atomic_dec(&scsi_target(sdev)->target_busy);
1698out_put_budget:
1699	scsi_mq_put_budget(q, cmd->budget_token);
1700	cmd->budget_token = -1;
1701	switch (ret) {
1702	case BLK_STS_OK:
1703		break;
1704	case BLK_STS_RESOURCE:
1705	case BLK_STS_ZONE_RESOURCE:
1706		if (scsi_device_blocked(sdev))
1707			ret = BLK_STS_DEV_RESOURCE;
1708		break;
1709	case BLK_STS_AGAIN:
1710		scsi_req(req)->result = DID_BUS_BUSY << 16;
1711		if (req->rq_flags & RQF_DONTPREP)
1712			scsi_mq_uninit_cmd(cmd);
1713		break;
1714	default:
1715		if (unlikely(!scsi_device_online(sdev)))
1716			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717		else
1718			scsi_req(req)->result = DID_ERROR << 16;
1719		/*
1720		 * Make sure to release all allocated resources when
1721		 * we hit an error, as we will never see this command
1722		 * again.
1723		 */
1724		if (req->rq_flags & RQF_DONTPREP)
1725			scsi_mq_uninit_cmd(cmd);
1726		scsi_run_queue_async(sdev);
1727		break;
1728	}
1729	return ret;
1730}
1731
1732static enum blk_eh_timer_return scsi_timeout(struct request *req,
1733		bool reserved)
1734{
1735	if (reserved)
1736		return BLK_EH_RESET_TIMER;
1737	return scsi_times_out(req);
1738}
1739
1740static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1741				unsigned int hctx_idx, unsigned int numa_node)
1742{
1743	struct Scsi_Host *shost = set->driver_data;
 
1744	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745	struct scatterlist *sg;
1746	int ret = 0;
1747
1748	cmd->sense_buffer =
1749		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
 
 
1750	if (!cmd->sense_buffer)
1751		return -ENOMEM;
1752	cmd->req.sense = cmd->sense_buffer;
1753
1754	if (scsi_host_get_prot(shost)) {
1755		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1756			shost->hostt->cmd_size;
1757		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1758	}
1759
1760	if (shost->hostt->init_cmd_priv) {
1761		ret = shost->hostt->init_cmd_priv(shost, cmd);
1762		if (ret < 0)
1763			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1764	}
1765
1766	return ret;
1767}
1768
1769static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1770				 unsigned int hctx_idx)
1771{
1772	struct Scsi_Host *shost = set->driver_data;
1773	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1774
1775	if (shost->hostt->exit_cmd_priv)
1776		shost->hostt->exit_cmd_priv(shost, cmd);
1777	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1778}
1779
1780
1781static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1782{
1783	struct Scsi_Host *shost = hctx->driver_data;
1784
1785	if (shost->hostt->mq_poll)
1786		return shost->hostt->mq_poll(shost, hctx->queue_num);
1787
1788	return 0;
1789}
1790
1791static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1792			  unsigned int hctx_idx)
1793{
1794	struct Scsi_Host *shost = data;
 
1795
1796	hctx->driver_data = shost;
1797	return 0;
1798}
 
 
 
 
 
1799
1800static int scsi_map_queues(struct blk_mq_tag_set *set)
1801{
1802	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1803
1804	if (shost->hostt->map_queues)
1805		return shost->hostt->map_queues(shost);
1806	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1807}
1808
1809void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1810{
1811	struct device *dev = shost->dma_dev;
1812
1813	/*
1814	 * this limit is imposed by hardware restrictions
1815	 */
1816	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1817					SG_MAX_SEGMENTS));
1818
1819	if (scsi_host_prot_dma(shost)) {
1820		shost->sg_prot_tablesize =
1821			min_not_zero(shost->sg_prot_tablesize,
1822				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1823		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1824		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1825	}
1826
1827	if (dev->dma_mask) {
1828		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1829				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1830	}
1831	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
1832	blk_queue_segment_boundary(q, shost->dma_boundary);
1833	dma_set_seg_boundary(dev, shost->dma_boundary);
1834
1835	blk_queue_max_segment_size(q, shost->max_segment_size);
1836	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1837	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1838
1839	/*
1840	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1841	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1842	 * which is set by the platform.
1843	 *
1844	 * Devices that require a bigger alignment can increase it later.
1845	 */
1846	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1847}
1848EXPORT_SYMBOL_GPL(__scsi_init_queue);
1849
1850static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1851	.get_budget	= scsi_mq_get_budget,
1852	.put_budget	= scsi_mq_put_budget,
1853	.queue_rq	= scsi_queue_rq,
1854	.complete	= scsi_complete,
1855	.timeout	= scsi_timeout,
1856#ifdef CONFIG_BLK_DEBUG_FS
1857	.show_rq	= scsi_show_rq,
1858#endif
1859	.init_request	= scsi_mq_init_request,
1860	.exit_request	= scsi_mq_exit_request,
1861	.initialize_rq_fn = scsi_initialize_rq,
1862	.cleanup_rq	= scsi_cleanup_rq,
1863	.busy		= scsi_mq_lld_busy,
1864	.map_queues	= scsi_map_queues,
1865	.init_hctx	= scsi_init_hctx,
1866	.poll		= scsi_mq_poll,
1867	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1868	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1869};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
 
 
 
 
 
1871
1872static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1873{
1874	struct Scsi_Host *shost = hctx->driver_data;
 
 
 
 
 
 
 
 
 
 
 
1875
1876	shost->hostt->commit_rqs(shost, hctx->queue_num);
 
 
 
 
 
 
 
 
 
 
 
 
1877}
1878
1879static const struct blk_mq_ops scsi_mq_ops = {
1880	.get_budget	= scsi_mq_get_budget,
1881	.put_budget	= scsi_mq_put_budget,
1882	.queue_rq	= scsi_queue_rq,
1883	.commit_rqs	= scsi_commit_rqs,
1884	.complete	= scsi_complete,
1885	.timeout	= scsi_timeout,
1886#ifdef CONFIG_BLK_DEBUG_FS
1887	.show_rq	= scsi_show_rq,
1888#endif
1889	.init_request	= scsi_mq_init_request,
1890	.exit_request	= scsi_mq_exit_request,
1891	.initialize_rq_fn = scsi_initialize_rq,
1892	.cleanup_rq	= scsi_cleanup_rq,
1893	.busy		= scsi_mq_lld_busy,
1894	.map_queues	= scsi_map_queues,
1895	.init_hctx	= scsi_init_hctx,
1896	.poll		= scsi_mq_poll,
1897	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1898	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1899};
1900
 
 
 
 
 
 
 
 
 
 
 
 
1901int scsi_mq_setup_tags(struct Scsi_Host *shost)
1902{
1903	unsigned int cmd_size, sgl_size;
1904	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1905
1906	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1907				scsi_mq_inline_sgl_size(shost));
1908	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1909	if (scsi_host_get_prot(shost))
1910		cmd_size += sizeof(struct scsi_data_buffer) +
1911			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1912
1913	memset(tag_set, 0, sizeof(*tag_set));
1914	if (shost->hostt->commit_rqs)
1915		tag_set->ops = &scsi_mq_ops;
1916	else
1917		tag_set->ops = &scsi_mq_ops_no_commit;
1918	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1919	tag_set->nr_maps = shost->nr_maps ? : 1;
1920	tag_set->queue_depth = shost->can_queue;
1921	tag_set->cmd_size = cmd_size;
1922	tag_set->numa_node = NUMA_NO_NODE;
1923	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1924	tag_set->flags |=
1925		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1926	tag_set->driver_data = shost;
1927	if (shost->host_tagset)
1928		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1929
1930	return blk_mq_alloc_tag_set(tag_set);
1931}
1932
1933void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1934{
1935	blk_mq_free_tag_set(&shost->tag_set);
1936}
1937
1938/**
1939 * scsi_device_from_queue - return sdev associated with a request_queue
1940 * @q: The request queue to return the sdev from
1941 *
1942 * Return the sdev associated with a request queue or NULL if the
1943 * request_queue does not reference a SCSI device.
1944 */
1945struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1946{
1947	struct scsi_device *sdev = NULL;
1948
1949	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1950	    q->mq_ops == &scsi_mq_ops)
 
 
1951		sdev = q->queuedata;
1952	if (!sdev || !get_device(&sdev->sdev_gendev))
1953		sdev = NULL;
1954
1955	return sdev;
1956}
 
1957
1958/**
1959 * scsi_block_requests - Utility function used by low-level drivers to prevent
1960 * further commands from being queued to the device.
1961 * @shost:  host in question
 
 
 
 
 
 
 
1962 *
1963 * There is no timer nor any other means by which the requests get unblocked
1964 * other than the low-level driver calling scsi_unblock_requests().
 
1965 */
1966void scsi_block_requests(struct Scsi_Host *shost)
1967{
1968	shost->host_self_blocked = 1;
1969}
1970EXPORT_SYMBOL(scsi_block_requests);
1971
1972/**
1973 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1974 * further commands to be queued to the device.
1975 * @shost:  host in question
1976 *
1977 * There is no timer nor any other means by which the requests get unblocked
1978 * other than the low-level driver calling scsi_unblock_requests(). This is done
1979 * as an API function so that changes to the internals of the scsi mid-layer
1980 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
1981 */
1982void scsi_unblock_requests(struct Scsi_Host *shost)
1983{
1984	shost->host_self_blocked = 0;
1985	scsi_run_host_queues(shost);
1986}
1987EXPORT_SYMBOL(scsi_unblock_requests);
1988
 
 
 
 
 
 
 
 
 
 
 
 
 
1989void scsi_exit_queue(void)
1990{
1991	kmem_cache_destroy(scsi_sense_cache);
 
 
1992}
1993
1994/**
1995 *	scsi_mode_select - issue a mode select
1996 *	@sdev:	SCSI device to be queried
1997 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1998 *	@sp:	Save page bit (0 == don't save, 1 == save)
1999 *	@modepage: mode page being requested
2000 *	@buffer: request buffer (may not be smaller than eight bytes)
2001 *	@len:	length of request buffer.
2002 *	@timeout: command timeout
2003 *	@retries: number of retries before failing
2004 *	@data: returns a structure abstracting the mode header data
2005 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2006 *		must be SCSI_SENSE_BUFFERSIZE big.
2007 *
2008 *	Returns zero if successful; negative error number or scsi
2009 *	status on error
2010 *
2011 */
2012int
2013scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2014		 unsigned char *buffer, int len, int timeout, int retries,
2015		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2016{
2017	unsigned char cmd[10];
2018	unsigned char *real_buffer;
2019	int ret;
2020
2021	memset(cmd, 0, sizeof(cmd));
2022	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2023
2024	if (sdev->use_10_for_ms) {
2025		if (len > 65535)
2026			return -EINVAL;
2027		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2028		if (!real_buffer)
2029			return -ENOMEM;
2030		memcpy(real_buffer + 8, buffer, len);
2031		len += 8;
2032		real_buffer[0] = 0;
2033		real_buffer[1] = 0;
2034		real_buffer[2] = data->medium_type;
2035		real_buffer[3] = data->device_specific;
2036		real_buffer[4] = data->longlba ? 0x01 : 0;
2037		real_buffer[5] = 0;
2038		real_buffer[6] = data->block_descriptor_length >> 8;
2039		real_buffer[7] = data->block_descriptor_length;
2040
2041		cmd[0] = MODE_SELECT_10;
2042		cmd[7] = len >> 8;
2043		cmd[8] = len;
2044	} else {
2045		if (len > 255 || data->block_descriptor_length > 255 ||
2046		    data->longlba)
2047			return -EINVAL;
2048
2049		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2050		if (!real_buffer)
2051			return -ENOMEM;
2052		memcpy(real_buffer + 4, buffer, len);
2053		len += 4;
2054		real_buffer[0] = 0;
2055		real_buffer[1] = data->medium_type;
2056		real_buffer[2] = data->device_specific;
2057		real_buffer[3] = data->block_descriptor_length;
 
2058
2059		cmd[0] = MODE_SELECT;
2060		cmd[4] = len;
2061	}
2062
2063	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064			       sshdr, timeout, retries, NULL);
2065	kfree(real_buffer);
2066	return ret;
2067}
2068EXPORT_SYMBOL_GPL(scsi_mode_select);
2069
2070/**
2071 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072 *	@sdev:	SCSI device to be queried
2073 *	@dbd:	set if mode sense will allow block descriptors to be returned
2074 *	@modepage: mode page being requested
2075 *	@buffer: request buffer (may not be smaller than eight bytes)
2076 *	@len:	length of request buffer.
2077 *	@timeout: command timeout
2078 *	@retries: number of retries before failing
2079 *	@data: returns a structure abstracting the mode header data
2080 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2081 *		must be SCSI_SENSE_BUFFERSIZE big.
2082 *
2083 *	Returns zero if successful, or a negative error number on failure
 
 
2084 */
2085int
2086scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2087		  unsigned char *buffer, int len, int timeout, int retries,
2088		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2089{
2090	unsigned char cmd[12];
2091	int use_10_for_ms;
2092	int header_length;
2093	int result, retry_count = retries;
2094	struct scsi_sense_hdr my_sshdr;
2095
2096	memset(data, 0, sizeof(*data));
2097	memset(&cmd[0], 0, 12);
2098
2099	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2100	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2101	cmd[2] = modepage;
2102
2103	/* caller might not be interested in sense, but we need it */
2104	if (!sshdr)
2105		sshdr = &my_sshdr;
2106
2107 retry:
2108	use_10_for_ms = sdev->use_10_for_ms;
2109
2110	if (use_10_for_ms) {
2111		if (len < 8)
2112			len = 8;
2113
2114		cmd[0] = MODE_SENSE_10;
2115		cmd[8] = len;
2116		header_length = 8;
2117	} else {
2118		if (len < 4)
2119			len = 4;
2120
2121		cmd[0] = MODE_SENSE;
2122		cmd[4] = len;
2123		header_length = 4;
2124	}
2125
2126	memset(buffer, 0, len);
2127
2128	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2129				  sshdr, timeout, retries, NULL);
2130	if (result < 0)
2131		return result;
2132
2133	/* This code looks awful: what it's doing is making sure an
2134	 * ILLEGAL REQUEST sense return identifies the actual command
2135	 * byte as the problem.  MODE_SENSE commands can return
2136	 * ILLEGAL REQUEST if the code page isn't supported */
2137
2138	if (!scsi_status_is_good(result)) {
 
2139		if (scsi_sense_valid(sshdr)) {
2140			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2141			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2142				/*
2143				 * Invalid command operation code
2144				 */
2145				if (use_10_for_ms) {
2146					sdev->use_10_for_ms = 0;
2147					goto retry;
2148				}
2149			}
2150			if (scsi_status_is_check_condition(result) &&
2151			    sshdr->sense_key == UNIT_ATTENTION &&
2152			    retry_count) {
2153				retry_count--;
2154				goto retry;
2155			}
2156		}
2157		return -EIO;
2158	}
2159	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2160		     (modepage == 6 || modepage == 8))) {
2161		/* Initio breakage? */
2162		header_length = 0;
2163		data->length = 13;
2164		data->medium_type = 0;
2165		data->device_specific = 0;
2166		data->longlba = 0;
2167		data->block_descriptor_length = 0;
2168	} else if (use_10_for_ms) {
2169		data->length = buffer[0]*256 + buffer[1] + 2;
2170		data->medium_type = buffer[2];
2171		data->device_specific = buffer[3];
2172		data->longlba = buffer[4] & 0x01;
2173		data->block_descriptor_length = buffer[6]*256
2174			+ buffer[7];
2175	} else {
2176		data->length = buffer[0] + 1;
2177		data->medium_type = buffer[1];
2178		data->device_specific = buffer[2];
2179		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
2180	}
2181	data->header_length = header_length;
2182
2183	return 0;
2184}
2185EXPORT_SYMBOL(scsi_mode_sense);
2186
2187/**
2188 *	scsi_test_unit_ready - test if unit is ready
2189 *	@sdev:	scsi device to change the state of.
2190 *	@timeout: command timeout
2191 *	@retries: number of retries before failing
2192 *	@sshdr: outpout pointer for decoded sense information.
2193 *
2194 *	Returns zero if unsuccessful or an error if TUR failed.  For
2195 *	removable media, UNIT_ATTENTION sets ->changed flag.
2196 **/
2197int
2198scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199		     struct scsi_sense_hdr *sshdr)
2200{
2201	char cmd[] = {
2202		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203	};
2204	int result;
2205
2206	/* try to eat the UNIT_ATTENTION if there are enough retries */
2207	do {
2208		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209					  timeout, 1, NULL);
2210		if (sdev->removable && scsi_sense_valid(sshdr) &&
2211		    sshdr->sense_key == UNIT_ATTENTION)
2212			sdev->changed = 1;
2213	} while (scsi_sense_valid(sshdr) &&
2214		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2215
2216	return result;
2217}
2218EXPORT_SYMBOL(scsi_test_unit_ready);
2219
2220/**
2221 *	scsi_device_set_state - Take the given device through the device state model.
2222 *	@sdev:	scsi device to change the state of.
2223 *	@state:	state to change to.
2224 *
2225 *	Returns zero if successful or an error if the requested
2226 *	transition is illegal.
2227 */
2228int
2229scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230{
2231	enum scsi_device_state oldstate = sdev->sdev_state;
2232
2233	if (state == oldstate)
2234		return 0;
2235
2236	switch (state) {
2237	case SDEV_CREATED:
2238		switch (oldstate) {
2239		case SDEV_CREATED_BLOCK:
2240			break;
2241		default:
2242			goto illegal;
2243		}
2244		break;
2245
2246	case SDEV_RUNNING:
2247		switch (oldstate) {
2248		case SDEV_CREATED:
2249		case SDEV_OFFLINE:
2250		case SDEV_TRANSPORT_OFFLINE:
2251		case SDEV_QUIESCE:
2252		case SDEV_BLOCK:
2253			break;
2254		default:
2255			goto illegal;
2256		}
2257		break;
2258
2259	case SDEV_QUIESCE:
2260		switch (oldstate) {
2261		case SDEV_RUNNING:
2262		case SDEV_OFFLINE:
2263		case SDEV_TRANSPORT_OFFLINE:
2264			break;
2265		default:
2266			goto illegal;
2267		}
2268		break;
2269
2270	case SDEV_OFFLINE:
2271	case SDEV_TRANSPORT_OFFLINE:
2272		switch (oldstate) {
2273		case SDEV_CREATED:
2274		case SDEV_RUNNING:
2275		case SDEV_QUIESCE:
2276		case SDEV_BLOCK:
2277			break;
2278		default:
2279			goto illegal;
2280		}
2281		break;
2282
2283	case SDEV_BLOCK:
2284		switch (oldstate) {
2285		case SDEV_RUNNING:
2286		case SDEV_CREATED_BLOCK:
2287		case SDEV_QUIESCE:
2288		case SDEV_OFFLINE:
2289			break;
2290		default:
2291			goto illegal;
2292		}
2293		break;
2294
2295	case SDEV_CREATED_BLOCK:
2296		switch (oldstate) {
2297		case SDEV_CREATED:
2298			break;
2299		default:
2300			goto illegal;
2301		}
2302		break;
2303
2304	case SDEV_CANCEL:
2305		switch (oldstate) {
2306		case SDEV_CREATED:
2307		case SDEV_RUNNING:
2308		case SDEV_QUIESCE:
2309		case SDEV_OFFLINE:
2310		case SDEV_TRANSPORT_OFFLINE:
2311			break;
2312		default:
2313			goto illegal;
2314		}
2315		break;
2316
2317	case SDEV_DEL:
2318		switch (oldstate) {
2319		case SDEV_CREATED:
2320		case SDEV_RUNNING:
2321		case SDEV_OFFLINE:
2322		case SDEV_TRANSPORT_OFFLINE:
2323		case SDEV_CANCEL:
2324		case SDEV_BLOCK:
2325		case SDEV_CREATED_BLOCK:
2326			break;
2327		default:
2328			goto illegal;
2329		}
2330		break;
2331
2332	}
2333	sdev->offline_already = false;
2334	sdev->sdev_state = state;
2335	return 0;
2336
2337 illegal:
2338	SCSI_LOG_ERROR_RECOVERY(1,
2339				sdev_printk(KERN_ERR, sdev,
2340					    "Illegal state transition %s->%s",
2341					    scsi_device_state_name(oldstate),
2342					    scsi_device_state_name(state))
2343				);
2344	return -EINVAL;
2345}
2346EXPORT_SYMBOL(scsi_device_set_state);
2347
2348/**
2349 *	scsi_evt_emit - emit a single SCSI device uevent
2350 *	@sdev: associated SCSI device
2351 *	@evt: event to emit
2352 *
2353 *	Send a single uevent (scsi_event) to the associated scsi_device.
2354 */
2355static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2356{
2357	int idx = 0;
2358	char *envp[3];
2359
2360	switch (evt->evt_type) {
2361	case SDEV_EVT_MEDIA_CHANGE:
2362		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2363		break;
2364	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2365		scsi_rescan_device(&sdev->sdev_gendev);
2366		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2367		break;
2368	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2369		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2370		break;
2371	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2372	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2373		break;
2374	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2375		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2376		break;
2377	case SDEV_EVT_LUN_CHANGE_REPORTED:
2378		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2379		break;
2380	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2381		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2382		break;
2383	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2384		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2385		break;
2386	default:
2387		/* do nothing */
2388		break;
2389	}
2390
2391	envp[idx++] = NULL;
2392
2393	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2394}
2395
2396/**
2397 *	scsi_evt_thread - send a uevent for each scsi event
2398 *	@work: work struct for scsi_device
2399 *
2400 *	Dispatch queued events to their associated scsi_device kobjects
2401 *	as uevents.
2402 */
2403void scsi_evt_thread(struct work_struct *work)
2404{
2405	struct scsi_device *sdev;
2406	enum scsi_device_event evt_type;
2407	LIST_HEAD(event_list);
2408
2409	sdev = container_of(work, struct scsi_device, event_work);
2410
2411	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2412		if (test_and_clear_bit(evt_type, sdev->pending_events))
2413			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2414
2415	while (1) {
2416		struct scsi_event *evt;
2417		struct list_head *this, *tmp;
2418		unsigned long flags;
2419
2420		spin_lock_irqsave(&sdev->list_lock, flags);
2421		list_splice_init(&sdev->event_list, &event_list);
2422		spin_unlock_irqrestore(&sdev->list_lock, flags);
2423
2424		if (list_empty(&event_list))
2425			break;
2426
2427		list_for_each_safe(this, tmp, &event_list) {
2428			evt = list_entry(this, struct scsi_event, node);
2429			list_del(&evt->node);
2430			scsi_evt_emit(sdev, evt);
2431			kfree(evt);
2432		}
2433	}
2434}
2435
2436/**
2437 * 	sdev_evt_send - send asserted event to uevent thread
2438 *	@sdev: scsi_device event occurred on
2439 *	@evt: event to send
2440 *
2441 *	Assert scsi device event asynchronously.
2442 */
2443void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2444{
2445	unsigned long flags;
2446
2447#if 0
2448	/* FIXME: currently this check eliminates all media change events
2449	 * for polled devices.  Need to update to discriminate between AN
2450	 * and polled events */
2451	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2452		kfree(evt);
2453		return;
2454	}
2455#endif
2456
2457	spin_lock_irqsave(&sdev->list_lock, flags);
2458	list_add_tail(&evt->node, &sdev->event_list);
2459	schedule_work(&sdev->event_work);
2460	spin_unlock_irqrestore(&sdev->list_lock, flags);
2461}
2462EXPORT_SYMBOL_GPL(sdev_evt_send);
2463
2464/**
2465 * 	sdev_evt_alloc - allocate a new scsi event
2466 *	@evt_type: type of event to allocate
2467 *	@gfpflags: GFP flags for allocation
2468 *
2469 *	Allocates and returns a new scsi_event.
2470 */
2471struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2472				  gfp_t gfpflags)
2473{
2474	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2475	if (!evt)
2476		return NULL;
2477
2478	evt->evt_type = evt_type;
2479	INIT_LIST_HEAD(&evt->node);
2480
2481	/* evt_type-specific initialization, if any */
2482	switch (evt_type) {
2483	case SDEV_EVT_MEDIA_CHANGE:
2484	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2485	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2486	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2487	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2488	case SDEV_EVT_LUN_CHANGE_REPORTED:
2489	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2490	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2491	default:
2492		/* do nothing */
2493		break;
2494	}
2495
2496	return evt;
2497}
2498EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2499
2500/**
2501 * 	sdev_evt_send_simple - send asserted event to uevent thread
2502 *	@sdev: scsi_device event occurred on
2503 *	@evt_type: type of event to send
2504 *	@gfpflags: GFP flags for allocation
2505 *
2506 *	Assert scsi device event asynchronously, given an event type.
2507 */
2508void sdev_evt_send_simple(struct scsi_device *sdev,
2509			  enum scsi_device_event evt_type, gfp_t gfpflags)
2510{
2511	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2512	if (!evt) {
2513		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2514			    evt_type);
2515		return;
2516	}
2517
2518	sdev_evt_send(sdev, evt);
2519}
2520EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2521
2522/**
2523 *	scsi_device_quiesce - Block all commands except power management.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2524 *	@sdev:	scsi device to quiesce.
2525 *
2526 *	This works by trying to transition to the SDEV_QUIESCE state
2527 *	(which must be a legal transition).  When the device is in this
2528 *	state, only power management requests will be accepted, all others will
2529 *	be deferred.
 
 
2530 *
2531 *	Must be called with user context, may sleep.
2532 *
2533 *	Returns zero if unsuccessful or an error if not.
2534 */
2535int
2536scsi_device_quiesce(struct scsi_device *sdev)
2537{
2538	struct request_queue *q = sdev->request_queue;
2539	int err;
2540
2541	/*
2542	 * It is allowed to call scsi_device_quiesce() multiple times from
2543	 * the same context but concurrent scsi_device_quiesce() calls are
2544	 * not allowed.
2545	 */
2546	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2547
2548	if (sdev->quiesced_by == current)
2549		return 0;
2550
2551	blk_set_pm_only(q);
2552
2553	blk_mq_freeze_queue(q);
2554	/*
2555	 * Ensure that the effect of blk_set_pm_only() will be visible
2556	 * for percpu_ref_tryget() callers that occur after the queue
2557	 * unfreeze even if the queue was already frozen before this function
2558	 * was called. See also https://lwn.net/Articles/573497/.
2559	 */
2560	synchronize_rcu();
2561	blk_mq_unfreeze_queue(q);
2562
2563	mutex_lock(&sdev->state_mutex);
2564	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2565	if (err == 0)
2566		sdev->quiesced_by = current;
2567	else
2568		blk_clear_pm_only(q);
2569	mutex_unlock(&sdev->state_mutex);
2570
2571	return err;
2572}
2573EXPORT_SYMBOL(scsi_device_quiesce);
2574
2575/**
2576 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2577 *	@sdev:	scsi device to resume.
2578 *
2579 *	Moves the device from quiesced back to running and restarts the
2580 *	queues.
2581 *
2582 *	Must be called with user context, may sleep.
2583 */
2584void scsi_device_resume(struct scsi_device *sdev)
2585{
2586	/* check if the device state was mutated prior to resume, and if
2587	 * so assume the state is being managed elsewhere (for example
2588	 * device deleted during suspend)
2589	 */
2590	mutex_lock(&sdev->state_mutex);
 
 
 
2591	if (sdev->sdev_state == SDEV_QUIESCE)
2592		scsi_device_set_state(sdev, SDEV_RUNNING);
2593	if (sdev->quiesced_by) {
2594		sdev->quiesced_by = NULL;
2595		blk_clear_pm_only(sdev->request_queue);
2596	}
2597	mutex_unlock(&sdev->state_mutex);
2598}
2599EXPORT_SYMBOL(scsi_device_resume);
2600
2601static void
2602device_quiesce_fn(struct scsi_device *sdev, void *data)
2603{
2604	scsi_device_quiesce(sdev);
2605}
2606
2607void
2608scsi_target_quiesce(struct scsi_target *starget)
2609{
2610	starget_for_each_device(starget, NULL, device_quiesce_fn);
2611}
2612EXPORT_SYMBOL(scsi_target_quiesce);
2613
2614static void
2615device_resume_fn(struct scsi_device *sdev, void *data)
2616{
2617	scsi_device_resume(sdev);
2618}
2619
2620void
2621scsi_target_resume(struct scsi_target *starget)
2622{
2623	starget_for_each_device(starget, NULL, device_resume_fn);
2624}
2625EXPORT_SYMBOL(scsi_target_resume);
2626
2627/**
2628 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2629 * @sdev: device to block
2630 *
2631 * Pause SCSI command processing on the specified device. Does not sleep.
2632 *
2633 * Returns zero if successful or a negative error code upon failure.
2634 *
2635 * Notes:
2636 * This routine transitions the device to the SDEV_BLOCK state (which must be
2637 * a legal transition). When the device is in this state, command processing
2638 * is paused until the device leaves the SDEV_BLOCK state. See also
2639 * scsi_internal_device_unblock_nowait().
2640 */
2641int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2642{
2643	struct request_queue *q = sdev->request_queue;
 
2644	int err = 0;
2645
2646	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2647	if (err) {
2648		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2649
2650		if (err)
2651			return err;
2652	}
2653
2654	/*
2655	 * The device has transitioned to SDEV_BLOCK.  Stop the
2656	 * block layer from calling the midlayer with this device's
2657	 * request queue.
2658	 */
2659	blk_mq_quiesce_queue_nowait(q);
 
 
 
 
 
 
 
2660	return 0;
2661}
2662EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2663
2664/**
2665 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2666 * @sdev: device to block
2667 *
2668 * Pause SCSI command processing on the specified device and wait until all
2669 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2670 *
2671 * Returns zero if successful or a negative error code upon failure.
2672 *
2673 * Note:
2674 * This routine transitions the device to the SDEV_BLOCK state (which must be
2675 * a legal transition). When the device is in this state, command processing
2676 * is paused until the device leaves the SDEV_BLOCK state. See also
2677 * scsi_internal_device_unblock().
 
 
 
 
2678 */
2679static int scsi_internal_device_block(struct scsi_device *sdev)
2680{
2681	struct request_queue *q = sdev->request_queue;
2682	int err;
2683
2684	mutex_lock(&sdev->state_mutex);
2685	err = scsi_internal_device_block_nowait(sdev);
2686	if (err == 0)
2687		blk_mq_quiesce_queue(q);
 
 
 
 
2688	mutex_unlock(&sdev->state_mutex);
2689
2690	return err;
2691}
2692
2693void scsi_start_queue(struct scsi_device *sdev)
2694{
2695	struct request_queue *q = sdev->request_queue;
 
2696
2697	blk_mq_unquiesce_queue(q);
 
 
 
 
 
 
2698}
2699
2700/**
2701 * scsi_internal_device_unblock_nowait - resume a device after a block request
2702 * @sdev:	device to resume
2703 * @new_state:	state to set the device to after unblocking
2704 *
2705 * Restart the device queue for a previously suspended SCSI device. Does not
2706 * sleep.
2707 *
2708 * Returns zero if successful or a negative error code upon failure.
2709 *
2710 * Notes:
2711 * This routine transitions the device to the SDEV_RUNNING state or to one of
2712 * the offline states (which must be a legal transition) allowing the midlayer
2713 * to goose the queue for this device.
2714 */
2715int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2716					enum scsi_device_state new_state)
2717{
2718	switch (new_state) {
2719	case SDEV_RUNNING:
2720	case SDEV_TRANSPORT_OFFLINE:
2721		break;
2722	default:
2723		return -EINVAL;
2724	}
2725
2726	/*
2727	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2728	 * offlined states and goose the device queue if successful.
2729	 */
2730	switch (sdev->sdev_state) {
2731	case SDEV_BLOCK:
2732	case SDEV_TRANSPORT_OFFLINE:
2733		sdev->sdev_state = new_state;
2734		break;
2735	case SDEV_CREATED_BLOCK:
2736		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2737		    new_state == SDEV_OFFLINE)
2738			sdev->sdev_state = new_state;
2739		else
2740			sdev->sdev_state = SDEV_CREATED;
2741		break;
2742	case SDEV_CANCEL:
2743	case SDEV_OFFLINE:
2744		break;
2745	default:
2746		return -EINVAL;
2747	}
2748	scsi_start_queue(sdev);
2749
2750	return 0;
2751}
2752EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2753
2754/**
2755 * scsi_internal_device_unblock - resume a device after a block request
2756 * @sdev:	device to resume
2757 * @new_state:	state to set the device to after unblocking
2758 *
2759 * Restart the device queue for a previously suspended SCSI device. May sleep.
2760 *
2761 * Returns zero if successful or a negative error code upon failure.
2762 *
2763 * Notes:
2764 * This routine transitions the device to the SDEV_RUNNING state or to one of
2765 * the offline states (which must be a legal transition) allowing the midlayer
2766 * to goose the queue for this device.
2767 */
2768static int scsi_internal_device_unblock(struct scsi_device *sdev,
2769					enum scsi_device_state new_state)
2770{
2771	int ret;
2772
2773	mutex_lock(&sdev->state_mutex);
2774	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2775	mutex_unlock(&sdev->state_mutex);
2776
2777	return ret;
2778}
2779
2780static void
2781device_block(struct scsi_device *sdev, void *data)
2782{
2783	int ret;
2784
2785	ret = scsi_internal_device_block(sdev);
2786
2787	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2788		  dev_name(&sdev->sdev_gendev), ret);
2789}
2790
2791static int
2792target_block(struct device *dev, void *data)
2793{
2794	if (scsi_is_target_device(dev))
2795		starget_for_each_device(to_scsi_target(dev), NULL,
2796					device_block);
2797	return 0;
2798}
2799
2800void
2801scsi_target_block(struct device *dev)
2802{
2803	if (scsi_is_target_device(dev))
2804		starget_for_each_device(to_scsi_target(dev), NULL,
2805					device_block);
2806	else
2807		device_for_each_child(dev, NULL, target_block);
2808}
2809EXPORT_SYMBOL_GPL(scsi_target_block);
2810
2811static void
2812device_unblock(struct scsi_device *sdev, void *data)
2813{
2814	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2815}
2816
2817static int
2818target_unblock(struct device *dev, void *data)
2819{
2820	if (scsi_is_target_device(dev))
2821		starget_for_each_device(to_scsi_target(dev), data,
2822					device_unblock);
2823	return 0;
2824}
2825
2826void
2827scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2828{
2829	if (scsi_is_target_device(dev))
2830		starget_for_each_device(to_scsi_target(dev), &new_state,
2831					device_unblock);
2832	else
2833		device_for_each_child(dev, &new_state, target_unblock);
2834}
2835EXPORT_SYMBOL_GPL(scsi_target_unblock);
2836
2837int
2838scsi_host_block(struct Scsi_Host *shost)
2839{
2840	struct scsi_device *sdev;
2841	int ret = 0;
2842
2843	/*
2844	 * Call scsi_internal_device_block_nowait so we can avoid
2845	 * calling synchronize_rcu() for each LUN.
2846	 */
2847	shost_for_each_device(sdev, shost) {
2848		mutex_lock(&sdev->state_mutex);
2849		ret = scsi_internal_device_block_nowait(sdev);
2850		mutex_unlock(&sdev->state_mutex);
2851		if (ret) {
2852			scsi_device_put(sdev);
2853			break;
2854		}
2855	}
2856
2857	/*
2858	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2859	 * calling synchronize_rcu() once is enough.
2860	 */
2861	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2862
2863	if (!ret)
2864		synchronize_rcu();
2865
2866	return ret;
2867}
2868EXPORT_SYMBOL_GPL(scsi_host_block);
2869
2870int
2871scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2872{
2873	struct scsi_device *sdev;
2874	int ret = 0;
2875
2876	shost_for_each_device(sdev, shost) {
2877		ret = scsi_internal_device_unblock(sdev, new_state);
2878		if (ret) {
2879			scsi_device_put(sdev);
2880			break;
2881		}
2882	}
2883	return ret;
2884}
2885EXPORT_SYMBOL_GPL(scsi_host_unblock);
2886
2887/**
2888 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2889 * @sgl:	scatter-gather list
2890 * @sg_count:	number of segments in sg
2891 * @offset:	offset in bytes into sg, on return offset into the mapped area
2892 * @len:	bytes to map, on return number of bytes mapped
2893 *
2894 * Returns virtual address of the start of the mapped page
2895 */
2896void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2897			  size_t *offset, size_t *len)
2898{
2899	int i;
2900	size_t sg_len = 0, len_complete = 0;
2901	struct scatterlist *sg;
2902	struct page *page;
2903
2904	WARN_ON(!irqs_disabled());
2905
2906	for_each_sg(sgl, sg, sg_count, i) {
2907		len_complete = sg_len; /* Complete sg-entries */
2908		sg_len += sg->length;
2909		if (sg_len > *offset)
2910			break;
2911	}
2912
2913	if (unlikely(i == sg_count)) {
2914		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2915			"elements %d\n",
2916		       __func__, sg_len, *offset, sg_count);
2917		WARN_ON(1);
2918		return NULL;
2919	}
2920
2921	/* Offset starting from the beginning of first page in this sg-entry */
2922	*offset = *offset - len_complete + sg->offset;
2923
2924	/* Assumption: contiguous pages can be accessed as "page + i" */
2925	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2926	*offset &= ~PAGE_MASK;
2927
2928	/* Bytes in this sg-entry from *offset to the end of the page */
2929	sg_len = PAGE_SIZE - *offset;
2930	if (*len > sg_len)
2931		*len = sg_len;
2932
2933	return kmap_atomic(page);
2934}
2935EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2936
2937/**
2938 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2939 * @virt:	virtual address to be unmapped
2940 */
2941void scsi_kunmap_atomic_sg(void *virt)
2942{
2943	kunmap_atomic(virt);
2944}
2945EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2946
2947void sdev_disable_disk_events(struct scsi_device *sdev)
2948{
2949	atomic_inc(&sdev->disk_events_disable_depth);
2950}
2951EXPORT_SYMBOL(sdev_disable_disk_events);
2952
2953void sdev_enable_disk_events(struct scsi_device *sdev)
2954{
2955	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2956		return;
2957	atomic_dec(&sdev->disk_events_disable_depth);
2958}
2959EXPORT_SYMBOL(sdev_enable_disk_events);
2960
2961static unsigned char designator_prio(const unsigned char *d)
2962{
2963	if (d[1] & 0x30)
2964		/* not associated with LUN */
2965		return 0;
2966
2967	if (d[3] == 0)
2968		/* invalid length */
2969		return 0;
2970
2971	/*
2972	 * Order of preference for lun descriptor:
2973	 * - SCSI name string
2974	 * - NAA IEEE Registered Extended
2975	 * - EUI-64 based 16-byte
2976	 * - EUI-64 based 12-byte
2977	 * - NAA IEEE Registered
2978	 * - NAA IEEE Extended
2979	 * - EUI-64 based 8-byte
2980	 * - SCSI name string (truncated)
2981	 * - T10 Vendor ID
2982	 * as longer descriptors reduce the likelyhood
2983	 * of identification clashes.
2984	 */
2985
2986	switch (d[1] & 0xf) {
2987	case 8:
2988		/* SCSI name string, variable-length UTF-8 */
2989		return 9;
2990	case 3:
2991		switch (d[4] >> 4) {
2992		case 6:
2993			/* NAA registered extended */
2994			return 8;
2995		case 5:
2996			/* NAA registered */
2997			return 5;
2998		case 4:
2999			/* NAA extended */
3000			return 4;
3001		case 3:
3002			/* NAA locally assigned */
3003			return 1;
3004		default:
3005			break;
3006		}
3007		break;
3008	case 2:
3009		switch (d[3]) {
3010		case 16:
3011			/* EUI64-based, 16 byte */
3012			return 7;
3013		case 12:
3014			/* EUI64-based, 12 byte */
3015			return 6;
3016		case 8:
3017			/* EUI64-based, 8 byte */
3018			return 3;
3019		default:
3020			break;
3021		}
3022		break;
3023	case 1:
3024		/* T10 vendor ID */
3025		return 1;
3026	default:
3027		break;
3028	}
3029
3030	return 0;
3031}
3032
3033/**
3034 * scsi_vpd_lun_id - return a unique device identification
3035 * @sdev: SCSI device
3036 * @id:   buffer for the identification
3037 * @id_len:  length of the buffer
3038 *
3039 * Copies a unique device identification into @id based
3040 * on the information in the VPD page 0x83 of the device.
3041 * The string will be formatted as a SCSI name string.
3042 *
3043 * Returns the length of the identification or error on failure.
3044 * If the identifier is longer than the supplied buffer the actual
3045 * identifier length is returned and the buffer is not zero-padded.
3046 */
3047int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3048{
3049	u8 cur_id_prio = 0;
3050	u8 cur_id_size = 0;
3051	const unsigned char *d, *cur_id_str;
3052	const struct scsi_vpd *vpd_pg83;
3053	int id_size = -EINVAL;
3054
3055	rcu_read_lock();
3056	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3057	if (!vpd_pg83) {
3058		rcu_read_unlock();
3059		return -ENXIO;
3060	}
3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062	/* The id string must be at least 20 bytes + terminating NULL byte */
3063	if (id_len < 21) {
3064		rcu_read_unlock();
3065		return -EINVAL;
3066	}
3067
3068	memset(id, 0, id_len);
3069	for (d = vpd_pg83->data + 4;
3070	     d < vpd_pg83->data + vpd_pg83->len;
3071	     d += d[3] + 4) {
3072		u8 prio = designator_prio(d);
3073
3074		if (prio == 0 || cur_id_prio > prio)
3075			continue;
3076
3077		switch (d[1] & 0xf) {
3078		case 0x1:
3079			/* T10 Vendor ID */
3080			if (cur_id_size > d[3])
3081				break;
3082			cur_id_prio = prio;
 
 
3083			cur_id_size = d[3];
3084			if (cur_id_size + 4 > id_len)
3085				cur_id_size = id_len - 4;
3086			cur_id_str = d + 4;
 
3087			id_size = snprintf(id, id_len, "t10.%*pE",
3088					   cur_id_size, cur_id_str);
3089			break;
3090		case 0x2:
3091			/* EUI-64 */
3092			cur_id_prio = prio;
 
 
 
 
 
3093			cur_id_size = d[3];
3094			cur_id_str = d + 4;
 
3095			switch (cur_id_size) {
3096			case 8:
3097				id_size = snprintf(id, id_len,
3098						   "eui.%8phN",
3099						   cur_id_str);
3100				break;
3101			case 12:
3102				id_size = snprintf(id, id_len,
3103						   "eui.%12phN",
3104						   cur_id_str);
3105				break;
3106			case 16:
3107				id_size = snprintf(id, id_len,
3108						   "eui.%16phN",
3109						   cur_id_str);
3110				break;
3111			default:
 
3112				break;
3113			}
3114			break;
3115		case 0x3:
3116			/* NAA */
3117			cur_id_prio = prio;
 
3118			cur_id_size = d[3];
3119			cur_id_str = d + 4;
 
3120			switch (cur_id_size) {
3121			case 8:
3122				id_size = snprintf(id, id_len,
3123						   "naa.%8phN",
3124						   cur_id_str);
3125				break;
3126			case 16:
3127				id_size = snprintf(id, id_len,
3128						   "naa.%16phN",
3129						   cur_id_str);
3130				break;
3131			default:
 
3132				break;
3133			}
3134			break;
3135		case 0x8:
3136			/* SCSI name string */
3137			if (cur_id_size > d[3])
3138				break;
3139			/* Prefer others for truncated descriptor */
3140			if (d[3] > id_len) {
3141				prio = 2;
3142				if (cur_id_prio > prio)
3143					break;
3144			}
3145			cur_id_prio = prio;
3146			cur_id_size = id_size = d[3];
3147			cur_id_str = d + 4;
 
3148			if (cur_id_size >= id_len)
3149				cur_id_size = id_len - 1;
3150			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3151			break;
3152		default:
3153			break;
3154		}
 
 
3155	}
3156	rcu_read_unlock();
3157
3158	return id_size;
3159}
3160EXPORT_SYMBOL(scsi_vpd_lun_id);
3161
3162/*
3163 * scsi_vpd_tpg_id - return a target port group identifier
3164 * @sdev: SCSI device
3165 *
3166 * Returns the Target Port Group identifier from the information
3167 * froom VPD page 0x83 of the device.
3168 *
3169 * Returns the identifier or error on failure.
3170 */
3171int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3172{
3173	const unsigned char *d;
3174	const struct scsi_vpd *vpd_pg83;
3175	int group_id = -EAGAIN, rel_port = -1;
3176
3177	rcu_read_lock();
3178	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3179	if (!vpd_pg83) {
3180		rcu_read_unlock();
3181		return -ENXIO;
3182	}
3183
3184	d = vpd_pg83->data + 4;
3185	while (d < vpd_pg83->data + vpd_pg83->len) {
3186		switch (d[1] & 0xf) {
3187		case 0x4:
3188			/* Relative target port */
3189			rel_port = get_unaligned_be16(&d[6]);
3190			break;
3191		case 0x5:
3192			/* Target port group */
3193			group_id = get_unaligned_be16(&d[6]);
3194			break;
3195		default:
3196			break;
3197		}
3198		d += d[3] + 4;
3199	}
3200	rcu_read_unlock();
3201
3202	if (group_id >= 0 && rel_id && rel_port != -1)
3203		*rel_id = rel_port;
3204
3205	return group_id;
3206}
3207EXPORT_SYMBOL(scsi_vpd_tpg_id);
3208
3209/**
3210 * scsi_build_sense - build sense data for a command
3211 * @scmd:	scsi command for which the sense should be formatted
3212 * @desc:	Sense format (non-zero == descriptor format,
3213 *              0 == fixed format)
3214 * @key:	Sense key
3215 * @asc:	Additional sense code
3216 * @ascq:	Additional sense code qualifier
3217 *
3218 **/
3219void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3220{
3221	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3222	scmd->result = SAM_STAT_CHECK_CONDITION;
3223}
3224EXPORT_SYMBOL_GPL(scsi_build_sense);