Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45#include <linux/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <net/lwtunnel.h>
77#include <linux/bpf-cgroup.h>
78#include <linux/igmp.h>
79#include <linux/netfilter_ipv4.h>
80#include <linux/netfilter_bridge.h>
81#include <linux/netlink.h>
82#include <linux/tcp.h>
83
84static int
85ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
88
89/* Generate a checksum for an outgoing IP datagram. */
90void ip_send_check(struct iphdr *iph)
91{
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94}
95EXPORT_SYMBOL(ip_send_check);
96
97int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98{
99 struct iphdr *iph = ip_hdr(skb);
100
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
103
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
106 */
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
110
111 skb->protocol = htons(ETH_P_IP);
112
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
116}
117
118int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119{
120 int err;
121
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
125
126 return err;
127}
128EXPORT_SYMBOL_GPL(ip_local_out);
129
130static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131{
132 int ttl = inet->uc_ttl;
133
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
137}
138
139/*
140 * Add an ip header to a skbuff and send it out.
141 *
142 */
143int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145{
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
150
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
168 }
169
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 }
174
175 skb->priority = sk->sk_priority;
176 if (!skb->mark)
177 skb->mark = sk->sk_mark;
178
179 /* Send it out. */
180 return ip_local_out(net, skb->sk, skb);
181}
182EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183
184static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185{
186 struct dst_entry *dst = skb_dst(skb);
187 struct rtable *rt = (struct rtable *)dst;
188 struct net_device *dev = dst->dev;
189 unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 struct neighbour *neigh;
191 u32 nexthop;
192
193 if (rt->rt_type == RTN_MULTICAST) {
194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 } else if (rt->rt_type == RTN_BROADCAST)
196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197
198 /* Be paranoid, rather than too clever. */
199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 struct sk_buff *skb2;
201
202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 if (!skb2) {
204 kfree_skb(skb);
205 return -ENOMEM;
206 }
207 if (skb->sk)
208 skb_set_owner_w(skb2, skb->sk);
209 consume_skb(skb);
210 skb = skb2;
211 }
212
213 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 int res = lwtunnel_xmit(skb);
215
216 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 return res;
218 }
219
220 rcu_read_lock_bh();
221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 if (unlikely(!neigh))
224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 if (!IS_ERR(neigh)) {
226 int res;
227
228 sock_confirm_neigh(skb, neigh);
229 res = neigh_output(neigh, skb);
230
231 rcu_read_unlock_bh();
232 return res;
233 }
234 rcu_read_unlock_bh();
235
236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 __func__);
238 kfree_skb(skb);
239 return -EINVAL;
240}
241
242static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 struct sk_buff *skb, unsigned int mtu)
244{
245 netdev_features_t features;
246 struct sk_buff *segs;
247 int ret = 0;
248
249 /* common case: seglen is <= mtu
250 */
251 if (skb_gso_validate_network_len(skb, mtu))
252 return ip_finish_output2(net, sk, skb);
253
254 /* Slowpath - GSO segment length exceeds the egress MTU.
255 *
256 * This can happen in several cases:
257 * - Forwarding of a TCP GRO skb, when DF flag is not set.
258 * - Forwarding of an skb that arrived on a virtualization interface
259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 * stack.
261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 * interface with a smaller MTU.
263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 * insufficent MTU.
266 */
267 features = netif_skb_features(skb);
268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 if (IS_ERR_OR_NULL(segs)) {
271 kfree_skb(skb);
272 return -ENOMEM;
273 }
274
275 consume_skb(skb);
276
277 do {
278 struct sk_buff *nskb = segs->next;
279 int err;
280
281 segs->next = NULL;
282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283
284 if (err && ret == 0)
285 ret = err;
286 segs = nskb;
287 } while (segs);
288
289 return ret;
290}
291
292static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293{
294 unsigned int mtu;
295 int ret;
296
297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 if (ret) {
299 kfree_skb(skb);
300 return ret;
301 }
302
303#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 /* Policy lookup after SNAT yielded a new policy */
305 if (skb_dst(skb)->xfrm) {
306 IPCB(skb)->flags |= IPSKB_REROUTED;
307 return dst_output(net, sk, skb);
308 }
309#endif
310 mtu = ip_skb_dst_mtu(sk, skb);
311 if (skb_is_gso(skb))
312 return ip_finish_output_gso(net, sk, skb, mtu);
313
314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316
317 return ip_finish_output2(net, sk, skb);
318}
319
320static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 struct sk_buff *skb)
322{
323 int ret;
324
325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 if (ret) {
327 kfree_skb(skb);
328 return ret;
329 }
330
331 return dev_loopback_xmit(net, sk, skb);
332}
333
334int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335{
336 struct rtable *rt = skb_rtable(skb);
337 struct net_device *dev = rt->dst.dev;
338
339 /*
340 * If the indicated interface is up and running, send the packet.
341 */
342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343
344 skb->dev = dev;
345 skb->protocol = htons(ETH_P_IP);
346
347 /*
348 * Multicasts are looped back for other local users
349 */
350
351 if (rt->rt_flags&RTCF_MULTICAST) {
352 if (sk_mc_loop(sk)
353#ifdef CONFIG_IP_MROUTE
354 /* Small optimization: do not loopback not local frames,
355 which returned after forwarding; they will be dropped
356 by ip_mr_input in any case.
357 Note, that local frames are looped back to be delivered
358 to local recipients.
359
360 This check is duplicated in ip_mr_input at the moment.
361 */
362 &&
363 ((rt->rt_flags & RTCF_LOCAL) ||
364 !(IPCB(skb)->flags & IPSKB_FORWARDED))
365#endif
366 ) {
367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 if (newskb)
369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 net, sk, newskb, NULL, newskb->dev,
371 ip_mc_finish_output);
372 }
373
374 /* Multicasts with ttl 0 must not go beyond the host */
375
376 if (ip_hdr(skb)->ttl == 0) {
377 kfree_skb(skb);
378 return 0;
379 }
380 }
381
382 if (rt->rt_flags&RTCF_BROADCAST) {
383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 if (newskb)
385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 net, sk, newskb, NULL, newskb->dev,
387 ip_mc_finish_output);
388 }
389
390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 net, sk, skb, NULL, skb->dev,
392 ip_finish_output,
393 !(IPCB(skb)->flags & IPSKB_REROUTED));
394}
395
396int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397{
398 struct net_device *dev = skb_dst(skb)->dev;
399
400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401
402 skb->dev = dev;
403 skb->protocol = htons(ETH_P_IP);
404
405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 net, sk, skb, NULL, dev,
407 ip_finish_output,
408 !(IPCB(skb)->flags & IPSKB_REROUTED));
409}
410
411/*
412 * copy saddr and daddr, possibly using 64bit load/stores
413 * Equivalent to :
414 * iph->saddr = fl4->saddr;
415 * iph->daddr = fl4->daddr;
416 */
417static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418{
419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 memcpy(&iph->saddr, &fl4->saddr,
422 sizeof(fl4->saddr) + sizeof(fl4->daddr));
423}
424
425/* Note: skb->sk can be different from sk, in case of tunnels */
426int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427{
428 struct inet_sock *inet = inet_sk(sk);
429 struct net *net = sock_net(sk);
430 struct ip_options_rcu *inet_opt;
431 struct flowi4 *fl4;
432 struct rtable *rt;
433 struct iphdr *iph;
434 int res;
435
436 /* Skip all of this if the packet is already routed,
437 * f.e. by something like SCTP.
438 */
439 rcu_read_lock();
440 inet_opt = rcu_dereference(inet->inet_opt);
441 fl4 = &fl->u.ip4;
442 rt = skb_rtable(skb);
443 if (rt)
444 goto packet_routed;
445
446 /* Make sure we can route this packet. */
447 rt = (struct rtable *)__sk_dst_check(sk, 0);
448 if (!rt) {
449 __be32 daddr;
450
451 /* Use correct destination address if we have options. */
452 daddr = inet->inet_daddr;
453 if (inet_opt && inet_opt->opt.srr)
454 daddr = inet_opt->opt.faddr;
455
456 /* If this fails, retransmit mechanism of transport layer will
457 * keep trying until route appears or the connection times
458 * itself out.
459 */
460 rt = ip_route_output_ports(net, fl4, sk,
461 daddr, inet->inet_saddr,
462 inet->inet_dport,
463 inet->inet_sport,
464 sk->sk_protocol,
465 RT_CONN_FLAGS(sk),
466 sk->sk_bound_dev_if);
467 if (IS_ERR(rt))
468 goto no_route;
469 sk_setup_caps(sk, &rt->dst);
470 }
471 skb_dst_set_noref(skb, &rt->dst);
472
473packet_routed:
474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 goto no_route;
476
477 /* OK, we know where to send it, allocate and build IP header. */
478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 skb_reset_network_header(skb);
480 iph = ip_hdr(skb);
481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 iph->frag_off = htons(IP_DF);
484 else
485 iph->frag_off = 0;
486 iph->ttl = ip_select_ttl(inet, &rt->dst);
487 iph->protocol = sk->sk_protocol;
488 ip_copy_addrs(iph, fl4);
489
490 /* Transport layer set skb->h.foo itself. */
491
492 if (inet_opt && inet_opt->opt.optlen) {
493 iph->ihl += inet_opt->opt.optlen >> 2;
494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
495 }
496
497 ip_select_ident_segs(net, skb, sk,
498 skb_shinfo(skb)->gso_segs ?: 1);
499
500 /* TODO : should we use skb->sk here instead of sk ? */
501 skb->priority = sk->sk_priority;
502 skb->mark = sk->sk_mark;
503
504 res = ip_local_out(net, sk, skb);
505 rcu_read_unlock();
506 return res;
507
508no_route:
509 rcu_read_unlock();
510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 kfree_skb(skb);
512 return -EHOSTUNREACH;
513}
514EXPORT_SYMBOL(ip_queue_xmit);
515
516static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517{
518 to->pkt_type = from->pkt_type;
519 to->priority = from->priority;
520 to->protocol = from->protocol;
521 skb_dst_drop(to);
522 skb_dst_copy(to, from);
523 to->dev = from->dev;
524 to->mark = from->mark;
525
526 /* Copy the flags to each fragment. */
527 IPCB(to)->flags = IPCB(from)->flags;
528
529#ifdef CONFIG_NET_SCHED
530 to->tc_index = from->tc_index;
531#endif
532 nf_copy(to, from);
533#if IS_ENABLED(CONFIG_IP_VS)
534 to->ipvs_property = from->ipvs_property;
535#endif
536 skb_copy_secmark(to, from);
537}
538
539static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
540 unsigned int mtu,
541 int (*output)(struct net *, struct sock *, struct sk_buff *))
542{
543 struct iphdr *iph = ip_hdr(skb);
544
545 if ((iph->frag_off & htons(IP_DF)) == 0)
546 return ip_do_fragment(net, sk, skb, output);
547
548 if (unlikely(!skb->ignore_df ||
549 (IPCB(skb)->frag_max_size &&
550 IPCB(skb)->frag_max_size > mtu))) {
551 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
552 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
553 htonl(mtu));
554 kfree_skb(skb);
555 return -EMSGSIZE;
556 }
557
558 return ip_do_fragment(net, sk, skb, output);
559}
560
561/*
562 * This IP datagram is too large to be sent in one piece. Break it up into
563 * smaller pieces (each of size equal to IP header plus
564 * a block of the data of the original IP data part) that will yet fit in a
565 * single device frame, and queue such a frame for sending.
566 */
567
568int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 int (*output)(struct net *, struct sock *, struct sk_buff *))
570{
571 struct iphdr *iph;
572 int ptr;
573 struct sk_buff *skb2;
574 unsigned int mtu, hlen, left, len, ll_rs;
575 int offset;
576 __be16 not_last_frag;
577 struct rtable *rt = skb_rtable(skb);
578 int err = 0;
579
580 /* for offloaded checksums cleanup checksum before fragmentation */
581 if (skb->ip_summed == CHECKSUM_PARTIAL &&
582 (err = skb_checksum_help(skb)))
583 goto fail;
584
585 /*
586 * Point into the IP datagram header.
587 */
588
589 iph = ip_hdr(skb);
590
591 mtu = ip_skb_dst_mtu(sk, skb);
592 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
593 mtu = IPCB(skb)->frag_max_size;
594
595 /*
596 * Setup starting values.
597 */
598
599 hlen = iph->ihl * 4;
600 mtu = mtu - hlen; /* Size of data space */
601 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
602 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
603
604 /* When frag_list is given, use it. First, check its validity:
605 * some transformers could create wrong frag_list or break existing
606 * one, it is not prohibited. In this case fall back to copying.
607 *
608 * LATER: this step can be merged to real generation of fragments,
609 * we can switch to copy when see the first bad fragment.
610 */
611 if (skb_has_frag_list(skb)) {
612 struct sk_buff *frag, *frag2;
613 unsigned int first_len = skb_pagelen(skb);
614
615 if (first_len - hlen > mtu ||
616 ((first_len - hlen) & 7) ||
617 ip_is_fragment(iph) ||
618 skb_cloned(skb) ||
619 skb_headroom(skb) < ll_rs)
620 goto slow_path;
621
622 skb_walk_frags(skb, frag) {
623 /* Correct geometry. */
624 if (frag->len > mtu ||
625 ((frag->len & 7) && frag->next) ||
626 skb_headroom(frag) < hlen + ll_rs)
627 goto slow_path_clean;
628
629 /* Partially cloned skb? */
630 if (skb_shared(frag))
631 goto slow_path_clean;
632
633 BUG_ON(frag->sk);
634 if (skb->sk) {
635 frag->sk = skb->sk;
636 frag->destructor = sock_wfree;
637 }
638 skb->truesize -= frag->truesize;
639 }
640
641 /* Everything is OK. Generate! */
642
643 err = 0;
644 offset = 0;
645 frag = skb_shinfo(skb)->frag_list;
646 skb_frag_list_init(skb);
647 skb->data_len = first_len - skb_headlen(skb);
648 skb->len = first_len;
649 iph->tot_len = htons(first_len);
650 iph->frag_off = htons(IP_MF);
651 ip_send_check(iph);
652
653 for (;;) {
654 /* Prepare header of the next frame,
655 * before previous one went down. */
656 if (frag) {
657 frag->ip_summed = CHECKSUM_NONE;
658 skb_reset_transport_header(frag);
659 __skb_push(frag, hlen);
660 skb_reset_network_header(frag);
661 memcpy(skb_network_header(frag), iph, hlen);
662 iph = ip_hdr(frag);
663 iph->tot_len = htons(frag->len);
664 ip_copy_metadata(frag, skb);
665 if (offset == 0)
666 ip_options_fragment(frag);
667 offset += skb->len - hlen;
668 iph->frag_off = htons(offset>>3);
669 if (frag->next)
670 iph->frag_off |= htons(IP_MF);
671 /* Ready, complete checksum */
672 ip_send_check(iph);
673 }
674
675 err = output(net, sk, skb);
676
677 if (!err)
678 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
679 if (err || !frag)
680 break;
681
682 skb = frag;
683 frag = skb->next;
684 skb->next = NULL;
685 }
686
687 if (err == 0) {
688 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
689 return 0;
690 }
691
692 while (frag) {
693 skb = frag->next;
694 kfree_skb(frag);
695 frag = skb;
696 }
697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 return err;
699
700slow_path_clean:
701 skb_walk_frags(skb, frag2) {
702 if (frag2 == frag)
703 break;
704 frag2->sk = NULL;
705 frag2->destructor = NULL;
706 skb->truesize += frag2->truesize;
707 }
708 }
709
710slow_path:
711 iph = ip_hdr(skb);
712
713 left = skb->len - hlen; /* Space per frame */
714 ptr = hlen; /* Where to start from */
715
716 /*
717 * Fragment the datagram.
718 */
719
720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 not_last_frag = iph->frag_off & htons(IP_MF);
722
723 /*
724 * Keep copying data until we run out.
725 */
726
727 while (left > 0) {
728 len = left;
729 /* IF: it doesn't fit, use 'mtu' - the data space left */
730 if (len > mtu)
731 len = mtu;
732 /* IF: we are not sending up to and including the packet end
733 then align the next start on an eight byte boundary */
734 if (len < left) {
735 len &= ~7;
736 }
737
738 /* Allocate buffer */
739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 if (!skb2) {
741 err = -ENOMEM;
742 goto fail;
743 }
744
745 /*
746 * Set up data on packet
747 */
748
749 ip_copy_metadata(skb2, skb);
750 skb_reserve(skb2, ll_rs);
751 skb_put(skb2, len + hlen);
752 skb_reset_network_header(skb2);
753 skb2->transport_header = skb2->network_header + hlen;
754
755 /*
756 * Charge the memory for the fragment to any owner
757 * it might possess
758 */
759
760 if (skb->sk)
761 skb_set_owner_w(skb2, skb->sk);
762
763 /*
764 * Copy the packet header into the new buffer.
765 */
766
767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
768
769 /*
770 * Copy a block of the IP datagram.
771 */
772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 BUG();
774 left -= len;
775
776 /*
777 * Fill in the new header fields.
778 */
779 iph = ip_hdr(skb2);
780 iph->frag_off = htons((offset >> 3));
781
782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 iph->frag_off |= htons(IP_DF);
784
785 /* ANK: dirty, but effective trick. Upgrade options only if
786 * the segment to be fragmented was THE FIRST (otherwise,
787 * options are already fixed) and make it ONCE
788 * on the initial skb, so that all the following fragments
789 * will inherit fixed options.
790 */
791 if (offset == 0)
792 ip_options_fragment(skb);
793
794 /*
795 * Added AC : If we are fragmenting a fragment that's not the
796 * last fragment then keep MF on each bit
797 */
798 if (left > 0 || not_last_frag)
799 iph->frag_off |= htons(IP_MF);
800 ptr += len;
801 offset += len;
802
803 /*
804 * Put this fragment into the sending queue.
805 */
806 iph->tot_len = htons(len + hlen);
807
808 ip_send_check(iph);
809
810 err = output(net, sk, skb2);
811 if (err)
812 goto fail;
813
814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 }
816 consume_skb(skb);
817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 return err;
819
820fail:
821 kfree_skb(skb);
822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 return err;
824}
825EXPORT_SYMBOL(ip_do_fragment);
826
827int
828ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829{
830 struct msghdr *msg = from;
831
832 if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 return -EFAULT;
835 } else {
836 __wsum csum = 0;
837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 return -EFAULT;
839 skb->csum = csum_block_add(skb->csum, csum, odd);
840 }
841 return 0;
842}
843EXPORT_SYMBOL(ip_generic_getfrag);
844
845static inline __wsum
846csum_page(struct page *page, int offset, int copy)
847{
848 char *kaddr;
849 __wsum csum;
850 kaddr = kmap(page);
851 csum = csum_partial(kaddr + offset, copy, 0);
852 kunmap(page);
853 return csum;
854}
855
856static int __ip_append_data(struct sock *sk,
857 struct flowi4 *fl4,
858 struct sk_buff_head *queue,
859 struct inet_cork *cork,
860 struct page_frag *pfrag,
861 int getfrag(void *from, char *to, int offset,
862 int len, int odd, struct sk_buff *skb),
863 void *from, int length, int transhdrlen,
864 unsigned int flags)
865{
866 struct inet_sock *inet = inet_sk(sk);
867 struct sk_buff *skb;
868
869 struct ip_options *opt = cork->opt;
870 int hh_len;
871 int exthdrlen;
872 int mtu;
873 int copy;
874 int err;
875 int offset = 0;
876 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
877 int csummode = CHECKSUM_NONE;
878 struct rtable *rt = (struct rtable *)cork->dst;
879 unsigned int wmem_alloc_delta = 0;
880 u32 tskey = 0;
881
882 skb = skb_peek_tail(queue);
883
884 exthdrlen = !skb ? rt->dst.header_len : 0;
885 mtu = cork->fragsize;
886 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
887 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
888 tskey = sk->sk_tskey++;
889
890 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
891
892 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
893 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
894 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
895
896 if (cork->length + length > maxnonfragsize - fragheaderlen) {
897 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
898 mtu - (opt ? opt->optlen : 0));
899 return -EMSGSIZE;
900 }
901
902 /*
903 * transhdrlen > 0 means that this is the first fragment and we wish
904 * it won't be fragmented in the future.
905 */
906 if (transhdrlen &&
907 length + fragheaderlen <= mtu &&
908 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
909 !(flags & MSG_MORE) &&
910 !exthdrlen)
911 csummode = CHECKSUM_PARTIAL;
912
913 cork->length += length;
914
915 /* So, what's going on in the loop below?
916 *
917 * We use calculated fragment length to generate chained skb,
918 * each of segments is IP fragment ready for sending to network after
919 * adding appropriate IP header.
920 */
921
922 if (!skb)
923 goto alloc_new_skb;
924
925 while (length > 0) {
926 /* Check if the remaining data fits into current packet. */
927 copy = mtu - skb->len;
928 if (copy < length)
929 copy = maxfraglen - skb->len;
930 if (copy <= 0) {
931 char *data;
932 unsigned int datalen;
933 unsigned int fraglen;
934 unsigned int fraggap;
935 unsigned int alloclen;
936 struct sk_buff *skb_prev;
937alloc_new_skb:
938 skb_prev = skb;
939 if (skb_prev)
940 fraggap = skb_prev->len - maxfraglen;
941 else
942 fraggap = 0;
943
944 /*
945 * If remaining data exceeds the mtu,
946 * we know we need more fragment(s).
947 */
948 datalen = length + fraggap;
949 if (datalen > mtu - fragheaderlen)
950 datalen = maxfraglen - fragheaderlen;
951 fraglen = datalen + fragheaderlen;
952
953 if ((flags & MSG_MORE) &&
954 !(rt->dst.dev->features&NETIF_F_SG))
955 alloclen = mtu;
956 else
957 alloclen = fraglen;
958
959 alloclen += exthdrlen;
960
961 /* The last fragment gets additional space at tail.
962 * Note, with MSG_MORE we overallocate on fragments,
963 * because we have no idea what fragment will be
964 * the last.
965 */
966 if (datalen == length + fraggap)
967 alloclen += rt->dst.trailer_len;
968
969 if (transhdrlen) {
970 skb = sock_alloc_send_skb(sk,
971 alloclen + hh_len + 15,
972 (flags & MSG_DONTWAIT), &err);
973 } else {
974 skb = NULL;
975 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
976 2 * sk->sk_sndbuf)
977 skb = alloc_skb(alloclen + hh_len + 15,
978 sk->sk_allocation);
979 if (unlikely(!skb))
980 err = -ENOBUFS;
981 }
982 if (!skb)
983 goto error;
984
985 /*
986 * Fill in the control structures
987 */
988 skb->ip_summed = csummode;
989 skb->csum = 0;
990 skb_reserve(skb, hh_len);
991
992 /* only the initial fragment is time stamped */
993 skb_shinfo(skb)->tx_flags = cork->tx_flags;
994 cork->tx_flags = 0;
995 skb_shinfo(skb)->tskey = tskey;
996 tskey = 0;
997
998 /*
999 * Find where to start putting bytes.
1000 */
1001 data = skb_put(skb, fraglen + exthdrlen);
1002 skb_set_network_header(skb, exthdrlen);
1003 skb->transport_header = (skb->network_header +
1004 fragheaderlen);
1005 data += fragheaderlen + exthdrlen;
1006
1007 if (fraggap) {
1008 skb->csum = skb_copy_and_csum_bits(
1009 skb_prev, maxfraglen,
1010 data + transhdrlen, fraggap, 0);
1011 skb_prev->csum = csum_sub(skb_prev->csum,
1012 skb->csum);
1013 data += fraggap;
1014 pskb_trim_unique(skb_prev, maxfraglen);
1015 }
1016
1017 copy = datalen - transhdrlen - fraggap;
1018 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1019 err = -EFAULT;
1020 kfree_skb(skb);
1021 goto error;
1022 }
1023
1024 offset += copy;
1025 length -= datalen - fraggap;
1026 transhdrlen = 0;
1027 exthdrlen = 0;
1028 csummode = CHECKSUM_NONE;
1029
1030 if ((flags & MSG_CONFIRM) && !skb_prev)
1031 skb_set_dst_pending_confirm(skb, 1);
1032
1033 /*
1034 * Put the packet on the pending queue.
1035 */
1036 if (!skb->destructor) {
1037 skb->destructor = sock_wfree;
1038 skb->sk = sk;
1039 wmem_alloc_delta += skb->truesize;
1040 }
1041 __skb_queue_tail(queue, skb);
1042 continue;
1043 }
1044
1045 if (copy > length)
1046 copy = length;
1047
1048 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1049 skb_tailroom(skb) >= copy) {
1050 unsigned int off;
1051
1052 off = skb->len;
1053 if (getfrag(from, skb_put(skb, copy),
1054 offset, copy, off, skb) < 0) {
1055 __skb_trim(skb, off);
1056 err = -EFAULT;
1057 goto error;
1058 }
1059 } else {
1060 int i = skb_shinfo(skb)->nr_frags;
1061
1062 err = -ENOMEM;
1063 if (!sk_page_frag_refill(sk, pfrag))
1064 goto error;
1065
1066 if (!skb_can_coalesce(skb, i, pfrag->page,
1067 pfrag->offset)) {
1068 err = -EMSGSIZE;
1069 if (i == MAX_SKB_FRAGS)
1070 goto error;
1071
1072 __skb_fill_page_desc(skb, i, pfrag->page,
1073 pfrag->offset, 0);
1074 skb_shinfo(skb)->nr_frags = ++i;
1075 get_page(pfrag->page);
1076 }
1077 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1078 if (getfrag(from,
1079 page_address(pfrag->page) + pfrag->offset,
1080 offset, copy, skb->len, skb) < 0)
1081 goto error_efault;
1082
1083 pfrag->offset += copy;
1084 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1085 skb->len += copy;
1086 skb->data_len += copy;
1087 skb->truesize += copy;
1088 wmem_alloc_delta += copy;
1089 }
1090 offset += copy;
1091 length -= copy;
1092 }
1093
1094 if (wmem_alloc_delta)
1095 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1096 return 0;
1097
1098error_efault:
1099 err = -EFAULT;
1100error:
1101 cork->length -= length;
1102 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1103 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1104 return err;
1105}
1106
1107static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1108 struct ipcm_cookie *ipc, struct rtable **rtp)
1109{
1110 struct ip_options_rcu *opt;
1111 struct rtable *rt;
1112
1113 rt = *rtp;
1114 if (unlikely(!rt))
1115 return -EFAULT;
1116
1117 /*
1118 * setup for corking.
1119 */
1120 opt = ipc->opt;
1121 if (opt) {
1122 if (!cork->opt) {
1123 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1124 sk->sk_allocation);
1125 if (unlikely(!cork->opt))
1126 return -ENOBUFS;
1127 }
1128 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1129 cork->flags |= IPCORK_OPT;
1130 cork->addr = ipc->addr;
1131 }
1132
1133 /*
1134 * We steal reference to this route, caller should not release it
1135 */
1136 *rtp = NULL;
1137 cork->fragsize = ip_sk_use_pmtu(sk) ?
1138 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1139 cork->dst = &rt->dst;
1140 cork->length = 0;
1141 cork->ttl = ipc->ttl;
1142 cork->tos = ipc->tos;
1143 cork->priority = ipc->priority;
1144 cork->tx_flags = ipc->tx_flags;
1145
1146 return 0;
1147}
1148
1149/*
1150 * ip_append_data() and ip_append_page() can make one large IP datagram
1151 * from many pieces of data. Each pieces will be holded on the socket
1152 * until ip_push_pending_frames() is called. Each piece can be a page
1153 * or non-page data.
1154 *
1155 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1156 * this interface potentially.
1157 *
1158 * LATER: length must be adjusted by pad at tail, when it is required.
1159 */
1160int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1161 int getfrag(void *from, char *to, int offset, int len,
1162 int odd, struct sk_buff *skb),
1163 void *from, int length, int transhdrlen,
1164 struct ipcm_cookie *ipc, struct rtable **rtp,
1165 unsigned int flags)
1166{
1167 struct inet_sock *inet = inet_sk(sk);
1168 int err;
1169
1170 if (flags&MSG_PROBE)
1171 return 0;
1172
1173 if (skb_queue_empty(&sk->sk_write_queue)) {
1174 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1175 if (err)
1176 return err;
1177 } else {
1178 transhdrlen = 0;
1179 }
1180
1181 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1182 sk_page_frag(sk), getfrag,
1183 from, length, transhdrlen, flags);
1184}
1185
1186ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1187 int offset, size_t size, int flags)
1188{
1189 struct inet_sock *inet = inet_sk(sk);
1190 struct sk_buff *skb;
1191 struct rtable *rt;
1192 struct ip_options *opt = NULL;
1193 struct inet_cork *cork;
1194 int hh_len;
1195 int mtu;
1196 int len;
1197 int err;
1198 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1199
1200 if (inet->hdrincl)
1201 return -EPERM;
1202
1203 if (flags&MSG_PROBE)
1204 return 0;
1205
1206 if (skb_queue_empty(&sk->sk_write_queue))
1207 return -EINVAL;
1208
1209 cork = &inet->cork.base;
1210 rt = (struct rtable *)cork->dst;
1211 if (cork->flags & IPCORK_OPT)
1212 opt = cork->opt;
1213
1214 if (!(rt->dst.dev->features&NETIF_F_SG))
1215 return -EOPNOTSUPP;
1216
1217 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1218 mtu = cork->fragsize;
1219
1220 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1221 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1222 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1223
1224 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1225 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1226 mtu - (opt ? opt->optlen : 0));
1227 return -EMSGSIZE;
1228 }
1229
1230 skb = skb_peek_tail(&sk->sk_write_queue);
1231 if (!skb)
1232 return -EINVAL;
1233
1234 cork->length += size;
1235
1236 while (size > 0) {
1237 /* Check if the remaining data fits into current packet. */
1238 len = mtu - skb->len;
1239 if (len < size)
1240 len = maxfraglen - skb->len;
1241
1242 if (len <= 0) {
1243 struct sk_buff *skb_prev;
1244 int alloclen;
1245
1246 skb_prev = skb;
1247 fraggap = skb_prev->len - maxfraglen;
1248
1249 alloclen = fragheaderlen + hh_len + fraggap + 15;
1250 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1251 if (unlikely(!skb)) {
1252 err = -ENOBUFS;
1253 goto error;
1254 }
1255
1256 /*
1257 * Fill in the control structures
1258 */
1259 skb->ip_summed = CHECKSUM_NONE;
1260 skb->csum = 0;
1261 skb_reserve(skb, hh_len);
1262
1263 /*
1264 * Find where to start putting bytes.
1265 */
1266 skb_put(skb, fragheaderlen + fraggap);
1267 skb_reset_network_header(skb);
1268 skb->transport_header = (skb->network_header +
1269 fragheaderlen);
1270 if (fraggap) {
1271 skb->csum = skb_copy_and_csum_bits(skb_prev,
1272 maxfraglen,
1273 skb_transport_header(skb),
1274 fraggap, 0);
1275 skb_prev->csum = csum_sub(skb_prev->csum,
1276 skb->csum);
1277 pskb_trim_unique(skb_prev, maxfraglen);
1278 }
1279
1280 /*
1281 * Put the packet on the pending queue.
1282 */
1283 __skb_queue_tail(&sk->sk_write_queue, skb);
1284 continue;
1285 }
1286
1287 if (len > size)
1288 len = size;
1289
1290 if (skb_append_pagefrags(skb, page, offset, len)) {
1291 err = -EMSGSIZE;
1292 goto error;
1293 }
1294
1295 if (skb->ip_summed == CHECKSUM_NONE) {
1296 __wsum csum;
1297 csum = csum_page(page, offset, len);
1298 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1299 }
1300
1301 skb->len += len;
1302 skb->data_len += len;
1303 skb->truesize += len;
1304 refcount_add(len, &sk->sk_wmem_alloc);
1305 offset += len;
1306 size -= len;
1307 }
1308 return 0;
1309
1310error:
1311 cork->length -= size;
1312 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1313 return err;
1314}
1315
1316static void ip_cork_release(struct inet_cork *cork)
1317{
1318 cork->flags &= ~IPCORK_OPT;
1319 kfree(cork->opt);
1320 cork->opt = NULL;
1321 dst_release(cork->dst);
1322 cork->dst = NULL;
1323}
1324
1325/*
1326 * Combined all pending IP fragments on the socket as one IP datagram
1327 * and push them out.
1328 */
1329struct sk_buff *__ip_make_skb(struct sock *sk,
1330 struct flowi4 *fl4,
1331 struct sk_buff_head *queue,
1332 struct inet_cork *cork)
1333{
1334 struct sk_buff *skb, *tmp_skb;
1335 struct sk_buff **tail_skb;
1336 struct inet_sock *inet = inet_sk(sk);
1337 struct net *net = sock_net(sk);
1338 struct ip_options *opt = NULL;
1339 struct rtable *rt = (struct rtable *)cork->dst;
1340 struct iphdr *iph;
1341 __be16 df = 0;
1342 __u8 ttl;
1343
1344 skb = __skb_dequeue(queue);
1345 if (!skb)
1346 goto out;
1347 tail_skb = &(skb_shinfo(skb)->frag_list);
1348
1349 /* move skb->data to ip header from ext header */
1350 if (skb->data < skb_network_header(skb))
1351 __skb_pull(skb, skb_network_offset(skb));
1352 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1353 __skb_pull(tmp_skb, skb_network_header_len(skb));
1354 *tail_skb = tmp_skb;
1355 tail_skb = &(tmp_skb->next);
1356 skb->len += tmp_skb->len;
1357 skb->data_len += tmp_skb->len;
1358 skb->truesize += tmp_skb->truesize;
1359 tmp_skb->destructor = NULL;
1360 tmp_skb->sk = NULL;
1361 }
1362
1363 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1364 * to fragment the frame generated here. No matter, what transforms
1365 * how transforms change size of the packet, it will come out.
1366 */
1367 skb->ignore_df = ip_sk_ignore_df(sk);
1368
1369 /* DF bit is set when we want to see DF on outgoing frames.
1370 * If ignore_df is set too, we still allow to fragment this frame
1371 * locally. */
1372 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1373 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1374 (skb->len <= dst_mtu(&rt->dst) &&
1375 ip_dont_fragment(sk, &rt->dst)))
1376 df = htons(IP_DF);
1377
1378 if (cork->flags & IPCORK_OPT)
1379 opt = cork->opt;
1380
1381 if (cork->ttl != 0)
1382 ttl = cork->ttl;
1383 else if (rt->rt_type == RTN_MULTICAST)
1384 ttl = inet->mc_ttl;
1385 else
1386 ttl = ip_select_ttl(inet, &rt->dst);
1387
1388 iph = ip_hdr(skb);
1389 iph->version = 4;
1390 iph->ihl = 5;
1391 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1392 iph->frag_off = df;
1393 iph->ttl = ttl;
1394 iph->protocol = sk->sk_protocol;
1395 ip_copy_addrs(iph, fl4);
1396 ip_select_ident(net, skb, sk);
1397
1398 if (opt) {
1399 iph->ihl += opt->optlen>>2;
1400 ip_options_build(skb, opt, cork->addr, rt, 0);
1401 }
1402
1403 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1404 skb->mark = sk->sk_mark;
1405 /*
1406 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1407 * on dst refcount
1408 */
1409 cork->dst = NULL;
1410 skb_dst_set(skb, &rt->dst);
1411
1412 if (iph->protocol == IPPROTO_ICMP)
1413 icmp_out_count(net, ((struct icmphdr *)
1414 skb_transport_header(skb))->type);
1415
1416 ip_cork_release(cork);
1417out:
1418 return skb;
1419}
1420
1421int ip_send_skb(struct net *net, struct sk_buff *skb)
1422{
1423 int err;
1424
1425 err = ip_local_out(net, skb->sk, skb);
1426 if (err) {
1427 if (err > 0)
1428 err = net_xmit_errno(err);
1429 if (err)
1430 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1431 }
1432
1433 return err;
1434}
1435
1436int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1437{
1438 struct sk_buff *skb;
1439
1440 skb = ip_finish_skb(sk, fl4);
1441 if (!skb)
1442 return 0;
1443
1444 /* Netfilter gets whole the not fragmented skb. */
1445 return ip_send_skb(sock_net(sk), skb);
1446}
1447
1448/*
1449 * Throw away all pending data on the socket.
1450 */
1451static void __ip_flush_pending_frames(struct sock *sk,
1452 struct sk_buff_head *queue,
1453 struct inet_cork *cork)
1454{
1455 struct sk_buff *skb;
1456
1457 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1458 kfree_skb(skb);
1459
1460 ip_cork_release(cork);
1461}
1462
1463void ip_flush_pending_frames(struct sock *sk)
1464{
1465 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1466}
1467
1468struct sk_buff *ip_make_skb(struct sock *sk,
1469 struct flowi4 *fl4,
1470 int getfrag(void *from, char *to, int offset,
1471 int len, int odd, struct sk_buff *skb),
1472 void *from, int length, int transhdrlen,
1473 struct ipcm_cookie *ipc, struct rtable **rtp,
1474 unsigned int flags)
1475{
1476 struct inet_cork cork;
1477 struct sk_buff_head queue;
1478 int err;
1479
1480 if (flags & MSG_PROBE)
1481 return NULL;
1482
1483 __skb_queue_head_init(&queue);
1484
1485 cork.flags = 0;
1486 cork.addr = 0;
1487 cork.opt = NULL;
1488 err = ip_setup_cork(sk, &cork, ipc, rtp);
1489 if (err)
1490 return ERR_PTR(err);
1491
1492 err = __ip_append_data(sk, fl4, &queue, &cork,
1493 ¤t->task_frag, getfrag,
1494 from, length, transhdrlen, flags);
1495 if (err) {
1496 __ip_flush_pending_frames(sk, &queue, &cork);
1497 return ERR_PTR(err);
1498 }
1499
1500 return __ip_make_skb(sk, fl4, &queue, &cork);
1501}
1502
1503/*
1504 * Fetch data from kernel space and fill in checksum if needed.
1505 */
1506static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1507 int len, int odd, struct sk_buff *skb)
1508{
1509 __wsum csum;
1510
1511 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1512 skb->csum = csum_block_add(skb->csum, csum, odd);
1513 return 0;
1514}
1515
1516/*
1517 * Generic function to send a packet as reply to another packet.
1518 * Used to send some TCP resets/acks so far.
1519 */
1520void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1521 const struct ip_options *sopt,
1522 __be32 daddr, __be32 saddr,
1523 const struct ip_reply_arg *arg,
1524 unsigned int len)
1525{
1526 struct ip_options_data replyopts;
1527 struct ipcm_cookie ipc;
1528 struct flowi4 fl4;
1529 struct rtable *rt = skb_rtable(skb);
1530 struct net *net = sock_net(sk);
1531 struct sk_buff *nskb;
1532 int err;
1533 int oif;
1534
1535 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1536 return;
1537
1538 ipc.addr = daddr;
1539 ipc.opt = NULL;
1540 ipc.tx_flags = 0;
1541 ipc.ttl = 0;
1542 ipc.tos = -1;
1543
1544 if (replyopts.opt.opt.optlen) {
1545 ipc.opt = &replyopts.opt;
1546
1547 if (replyopts.opt.opt.srr)
1548 daddr = replyopts.opt.opt.faddr;
1549 }
1550
1551 oif = arg->bound_dev_if;
1552 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1553 oif = skb->skb_iif;
1554
1555 flowi4_init_output(&fl4, oif,
1556 IP4_REPLY_MARK(net, skb->mark),
1557 RT_TOS(arg->tos),
1558 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1559 ip_reply_arg_flowi_flags(arg),
1560 daddr, saddr,
1561 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1562 arg->uid);
1563 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1564 rt = ip_route_output_key(net, &fl4);
1565 if (IS_ERR(rt))
1566 return;
1567
1568 inet_sk(sk)->tos = arg->tos;
1569
1570 sk->sk_priority = skb->priority;
1571 sk->sk_protocol = ip_hdr(skb)->protocol;
1572 sk->sk_bound_dev_if = arg->bound_dev_if;
1573 sk->sk_sndbuf = sysctl_wmem_default;
1574 sk->sk_mark = fl4.flowi4_mark;
1575 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1576 len, 0, &ipc, &rt, MSG_DONTWAIT);
1577 if (unlikely(err)) {
1578 ip_flush_pending_frames(sk);
1579 goto out;
1580 }
1581
1582 nskb = skb_peek(&sk->sk_write_queue);
1583 if (nskb) {
1584 if (arg->csumoffset >= 0)
1585 *((__sum16 *)skb_transport_header(nskb) +
1586 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1587 arg->csum));
1588 nskb->ip_summed = CHECKSUM_NONE;
1589 ip_push_pending_frames(sk, &fl4);
1590 }
1591out:
1592 ip_rt_put(rt);
1593}
1594
1595void __init ip_init(void)
1596{
1597 ip_rt_init();
1598 inet_initpeers();
1599
1600#if defined(CONFIG_IP_MULTICAST)
1601 igmp_mc_init();
1602#endif
1603}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) output module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 *
19 * See ip_input.c for original log
20 *
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
44 */
45
46#include <linux/uaccess.h>
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/kernel.h>
50#include <linux/mm.h>
51#include <linux/string.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/slab.h>
55
56#include <linux/socket.h>
57#include <linux/sockios.h>
58#include <linux/in.h>
59#include <linux/inet.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/proc_fs.h>
63#include <linux/stat.h>
64#include <linux/init.h>
65
66#include <net/snmp.h>
67#include <net/ip.h>
68#include <net/protocol.h>
69#include <net/route.h>
70#include <net/xfrm.h>
71#include <linux/skbuff.h>
72#include <net/sock.h>
73#include <net/arp.h>
74#include <net/icmp.h>
75#include <net/checksum.h>
76#include <net/inetpeer.h>
77#include <net/lwtunnel.h>
78#include <linux/bpf-cgroup.h>
79#include <linux/igmp.h>
80#include <linux/netfilter_ipv4.h>
81#include <linux/netfilter_bridge.h>
82#include <linux/netlink.h>
83#include <linux/tcp.h>
84
85static int
86ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
89
90/* Generate a checksum for an outgoing IP datagram. */
91void ip_send_check(struct iphdr *iph)
92{
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95}
96EXPORT_SYMBOL(ip_send_check);
97
98int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99{
100 struct iphdr *iph = ip_hdr(skb);
101
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
104
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
107 */
108 skb = l3mdev_ip_out(sk, skb);
109 if (unlikely(!skb))
110 return 0;
111
112 skb->protocol = htons(ETH_P_IP);
113
114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 net, sk, skb, NULL, skb_dst(skb)->dev,
116 dst_output);
117}
118
119int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120{
121 int err;
122
123 err = __ip_local_out(net, sk, skb);
124 if (likely(err == 1))
125 err = dst_output(net, sk, skb);
126
127 return err;
128}
129EXPORT_SYMBOL_GPL(ip_local_out);
130
131static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132{
133 int ttl = inet->uc_ttl;
134
135 if (ttl < 0)
136 ttl = ip4_dst_hoplimit(dst);
137 return ttl;
138}
139
140/*
141 * Add an ip header to a skbuff and send it out.
142 *
143 */
144int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146{
147 struct inet_sock *inet = inet_sk(sk);
148 struct rtable *rt = skb_rtable(skb);
149 struct net *net = sock_net(sk);
150 struct iphdr *iph;
151
152 /* Build the IP header. */
153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 skb_reset_network_header(skb);
155 iph = ip_hdr(skb);
156 iph->version = 4;
157 iph->ihl = 5;
158 iph->tos = inet->tos;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 iph->saddr = saddr;
162 iph->protocol = sk->sk_protocol;
163 if (ip_dont_fragment(sk, &rt->dst)) {
164 iph->frag_off = htons(IP_DF);
165 iph->id = 0;
166 } else {
167 iph->frag_off = 0;
168 __ip_select_ident(net, iph, 1);
169 }
170
171 if (opt && opt->opt.optlen) {
172 iph->ihl += opt->opt.optlen>>2;
173 ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 }
175
176 skb->priority = sk->sk_priority;
177 if (!skb->mark)
178 skb->mark = sk->sk_mark;
179
180 /* Send it out. */
181 return ip_local_out(net, skb->sk, skb);
182}
183EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184
185static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186{
187 struct dst_entry *dst = skb_dst(skb);
188 struct rtable *rt = (struct rtable *)dst;
189 struct net_device *dev = dst->dev;
190 unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 struct neighbour *neigh;
192 bool is_v6gw = false;
193
194 if (rt->rt_type == RTN_MULTICAST) {
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 } else if (rt->rt_type == RTN_BROADCAST)
197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 struct sk_buff *skb2;
202
203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 if (!skb2) {
205 kfree_skb(skb);
206 return -ENOMEM;
207 }
208 if (skb->sk)
209 skb_set_owner_w(skb2, skb->sk);
210 consume_skb(skb);
211 skb = skb2;
212 }
213
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
216
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
219 }
220
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
225
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
231 }
232 rcu_read_unlock_bh();
233
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb(skb);
237 return -EINVAL;
238}
239
240static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
242{
243 netdev_features_t features;
244 struct sk_buff *segs;
245 int ret = 0;
246
247 /* common case: seglen is <= mtu
248 */
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
251
252 /* Slowpath - GSO segment length exceeds the egress MTU.
253 *
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficent MTU.
264 */
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
271 }
272
273 consume_skb(skb);
274
275 do {
276 struct sk_buff *nskb = segs->next;
277 int err;
278
279 skb_mark_not_on_list(segs);
280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281
282 if (err && ret == 0)
283 ret = err;
284 segs = nskb;
285 } while (segs);
286
287 return ret;
288}
289
290static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291{
292 unsigned int mtu;
293
294#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 /* Policy lookup after SNAT yielded a new policy */
296 if (skb_dst(skb)->xfrm) {
297 IPCB(skb)->flags |= IPSKB_REROUTED;
298 return dst_output(net, sk, skb);
299 }
300#endif
301 mtu = ip_skb_dst_mtu(sk, skb);
302 if (skb_is_gso(skb))
303 return ip_finish_output_gso(net, sk, skb, mtu);
304
305 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307
308 return ip_finish_output2(net, sk, skb);
309}
310
311static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
312{
313 int ret;
314
315 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 switch (ret) {
317 case NET_XMIT_SUCCESS:
318 return __ip_finish_output(net, sk, skb);
319 case NET_XMIT_CN:
320 return __ip_finish_output(net, sk, skb) ? : ret;
321 default:
322 kfree_skb(skb);
323 return ret;
324 }
325}
326
327static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 struct sk_buff *skb)
329{
330 struct rtable *new_rt;
331 bool do_cn = false;
332 int ret, err;
333
334 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
335 switch (ret) {
336 case NET_XMIT_CN:
337 do_cn = true;
338 /* fall through */
339 case NET_XMIT_SUCCESS:
340 break;
341 default:
342 kfree_skb(skb);
343 return ret;
344 }
345
346 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
347 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
348 * see ipv4_pktinfo_prepare().
349 */
350 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
351 if (new_rt) {
352 new_rt->rt_iif = 0;
353 skb_dst_drop(skb);
354 skb_dst_set(skb, &new_rt->dst);
355 }
356
357 err = dev_loopback_xmit(net, sk, skb);
358 return (do_cn && err) ? ret : err;
359}
360
361int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
362{
363 struct rtable *rt = skb_rtable(skb);
364 struct net_device *dev = rt->dst.dev;
365
366 /*
367 * If the indicated interface is up and running, send the packet.
368 */
369 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
370
371 skb->dev = dev;
372 skb->protocol = htons(ETH_P_IP);
373
374 /*
375 * Multicasts are looped back for other local users
376 */
377
378 if (rt->rt_flags&RTCF_MULTICAST) {
379 if (sk_mc_loop(sk)
380#ifdef CONFIG_IP_MROUTE
381 /* Small optimization: do not loopback not local frames,
382 which returned after forwarding; they will be dropped
383 by ip_mr_input in any case.
384 Note, that local frames are looped back to be delivered
385 to local recipients.
386
387 This check is duplicated in ip_mr_input at the moment.
388 */
389 &&
390 ((rt->rt_flags & RTCF_LOCAL) ||
391 !(IPCB(skb)->flags & IPSKB_FORWARDED))
392#endif
393 ) {
394 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 if (newskb)
396 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
397 net, sk, newskb, NULL, newskb->dev,
398 ip_mc_finish_output);
399 }
400
401 /* Multicasts with ttl 0 must not go beyond the host */
402
403 if (ip_hdr(skb)->ttl == 0) {
404 kfree_skb(skb);
405 return 0;
406 }
407 }
408
409 if (rt->rt_flags&RTCF_BROADCAST) {
410 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 if (newskb)
412 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
413 net, sk, newskb, NULL, newskb->dev,
414 ip_mc_finish_output);
415 }
416
417 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 net, sk, skb, NULL, skb->dev,
419 ip_finish_output,
420 !(IPCB(skb)->flags & IPSKB_REROUTED));
421}
422
423int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
424{
425 struct net_device *dev = skb_dst(skb)->dev;
426
427 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
428
429 skb->dev = dev;
430 skb->protocol = htons(ETH_P_IP);
431
432 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
433 net, sk, skb, NULL, dev,
434 ip_finish_output,
435 !(IPCB(skb)->flags & IPSKB_REROUTED));
436}
437
438/*
439 * copy saddr and daddr, possibly using 64bit load/stores
440 * Equivalent to :
441 * iph->saddr = fl4->saddr;
442 * iph->daddr = fl4->daddr;
443 */
444static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445{
446 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
447 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 memcpy(&iph->saddr, &fl4->saddr,
449 sizeof(fl4->saddr) + sizeof(fl4->daddr));
450}
451
452/* Note: skb->sk can be different from sk, in case of tunnels */
453int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 __u8 tos)
455{
456 struct inet_sock *inet = inet_sk(sk);
457 struct net *net = sock_net(sk);
458 struct ip_options_rcu *inet_opt;
459 struct flowi4 *fl4;
460 struct rtable *rt;
461 struct iphdr *iph;
462 int res;
463
464 /* Skip all of this if the packet is already routed,
465 * f.e. by something like SCTP.
466 */
467 rcu_read_lock();
468 inet_opt = rcu_dereference(inet->inet_opt);
469 fl4 = &fl->u.ip4;
470 rt = skb_rtable(skb);
471 if (rt)
472 goto packet_routed;
473
474 /* Make sure we can route this packet. */
475 rt = (struct rtable *)__sk_dst_check(sk, 0);
476 if (!rt) {
477 __be32 daddr;
478
479 /* Use correct destination address if we have options. */
480 daddr = inet->inet_daddr;
481 if (inet_opt && inet_opt->opt.srr)
482 daddr = inet_opt->opt.faddr;
483
484 /* If this fails, retransmit mechanism of transport layer will
485 * keep trying until route appears or the connection times
486 * itself out.
487 */
488 rt = ip_route_output_ports(net, fl4, sk,
489 daddr, inet->inet_saddr,
490 inet->inet_dport,
491 inet->inet_sport,
492 sk->sk_protocol,
493 RT_CONN_FLAGS_TOS(sk, tos),
494 sk->sk_bound_dev_if);
495 if (IS_ERR(rt))
496 goto no_route;
497 sk_setup_caps(sk, &rt->dst);
498 }
499 skb_dst_set_noref(skb, &rt->dst);
500
501packet_routed:
502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503 goto no_route;
504
505 /* OK, we know where to send it, allocate and build IP header. */
506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 skb_reset_network_header(skb);
508 iph = ip_hdr(skb);
509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 iph->frag_off = htons(IP_DF);
512 else
513 iph->frag_off = 0;
514 iph->ttl = ip_select_ttl(inet, &rt->dst);
515 iph->protocol = sk->sk_protocol;
516 ip_copy_addrs(iph, fl4);
517
518 /* Transport layer set skb->h.foo itself. */
519
520 if (inet_opt && inet_opt->opt.optlen) {
521 iph->ihl += inet_opt->opt.optlen >> 2;
522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
523 }
524
525 ip_select_ident_segs(net, skb, sk,
526 skb_shinfo(skb)->gso_segs ?: 1);
527
528 /* TODO : should we use skb->sk here instead of sk ? */
529 skb->priority = sk->sk_priority;
530 skb->mark = sk->sk_mark;
531
532 res = ip_local_out(net, sk, skb);
533 rcu_read_unlock();
534 return res;
535
536no_route:
537 rcu_read_unlock();
538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 kfree_skb(skb);
540 return -EHOSTUNREACH;
541}
542EXPORT_SYMBOL(__ip_queue_xmit);
543
544static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
545{
546 to->pkt_type = from->pkt_type;
547 to->priority = from->priority;
548 to->protocol = from->protocol;
549 to->skb_iif = from->skb_iif;
550 skb_dst_drop(to);
551 skb_dst_copy(to, from);
552 to->dev = from->dev;
553 to->mark = from->mark;
554
555 skb_copy_hash(to, from);
556
557#ifdef CONFIG_NET_SCHED
558 to->tc_index = from->tc_index;
559#endif
560 nf_copy(to, from);
561 skb_ext_copy(to, from);
562#if IS_ENABLED(CONFIG_IP_VS)
563 to->ipvs_property = from->ipvs_property;
564#endif
565 skb_copy_secmark(to, from);
566}
567
568static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 unsigned int mtu,
570 int (*output)(struct net *, struct sock *, struct sk_buff *))
571{
572 struct iphdr *iph = ip_hdr(skb);
573
574 if ((iph->frag_off & htons(IP_DF)) == 0)
575 return ip_do_fragment(net, sk, skb, output);
576
577 if (unlikely(!skb->ignore_df ||
578 (IPCB(skb)->frag_max_size &&
579 IPCB(skb)->frag_max_size > mtu))) {
580 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
581 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
582 htonl(mtu));
583 kfree_skb(skb);
584 return -EMSGSIZE;
585 }
586
587 return ip_do_fragment(net, sk, skb, output);
588}
589
590void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
591 unsigned int hlen, struct ip_fraglist_iter *iter)
592{
593 unsigned int first_len = skb_pagelen(skb);
594
595 iter->frag = skb_shinfo(skb)->frag_list;
596 skb_frag_list_init(skb);
597
598 iter->offset = 0;
599 iter->iph = iph;
600 iter->hlen = hlen;
601
602 skb->data_len = first_len - skb_headlen(skb);
603 skb->len = first_len;
604 iph->tot_len = htons(first_len);
605 iph->frag_off = htons(IP_MF);
606 ip_send_check(iph);
607}
608EXPORT_SYMBOL(ip_fraglist_init);
609
610static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
611 struct ip_fraglist_iter *iter)
612{
613 struct sk_buff *to = iter->frag;
614
615 /* Copy the flags to each fragment. */
616 IPCB(to)->flags = IPCB(skb)->flags;
617
618 if (iter->offset == 0)
619 ip_options_fragment(to);
620}
621
622void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
623{
624 unsigned int hlen = iter->hlen;
625 struct iphdr *iph = iter->iph;
626 struct sk_buff *frag;
627
628 frag = iter->frag;
629 frag->ip_summed = CHECKSUM_NONE;
630 skb_reset_transport_header(frag);
631 __skb_push(frag, hlen);
632 skb_reset_network_header(frag);
633 memcpy(skb_network_header(frag), iph, hlen);
634 iter->iph = ip_hdr(frag);
635 iph = iter->iph;
636 iph->tot_len = htons(frag->len);
637 ip_copy_metadata(frag, skb);
638 iter->offset += skb->len - hlen;
639 iph->frag_off = htons(iter->offset >> 3);
640 if (frag->next)
641 iph->frag_off |= htons(IP_MF);
642 /* Ready, complete checksum */
643 ip_send_check(iph);
644}
645EXPORT_SYMBOL(ip_fraglist_prepare);
646
647void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
648 unsigned int ll_rs, unsigned int mtu, bool DF,
649 struct ip_frag_state *state)
650{
651 struct iphdr *iph = ip_hdr(skb);
652
653 state->DF = DF;
654 state->hlen = hlen;
655 state->ll_rs = ll_rs;
656 state->mtu = mtu;
657
658 state->left = skb->len - hlen; /* Space per frame */
659 state->ptr = hlen; /* Where to start from */
660
661 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
662 state->not_last_frag = iph->frag_off & htons(IP_MF);
663}
664EXPORT_SYMBOL(ip_frag_init);
665
666static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
667 bool first_frag, struct ip_frag_state *state)
668{
669 /* Copy the flags to each fragment. */
670 IPCB(to)->flags = IPCB(from)->flags;
671
672 /* ANK: dirty, but effective trick. Upgrade options only if
673 * the segment to be fragmented was THE FIRST (otherwise,
674 * options are already fixed) and make it ONCE
675 * on the initial skb, so that all the following fragments
676 * will inherit fixed options.
677 */
678 if (first_frag)
679 ip_options_fragment(from);
680}
681
682struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
683{
684 unsigned int len = state->left;
685 struct sk_buff *skb2;
686 struct iphdr *iph;
687
688 len = state->left;
689 /* IF: it doesn't fit, use 'mtu' - the data space left */
690 if (len > state->mtu)
691 len = state->mtu;
692 /* IF: we are not sending up to and including the packet end
693 then align the next start on an eight byte boundary */
694 if (len < state->left) {
695 len &= ~7;
696 }
697
698 /* Allocate buffer */
699 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
700 if (!skb2)
701 return ERR_PTR(-ENOMEM);
702
703 /*
704 * Set up data on packet
705 */
706
707 ip_copy_metadata(skb2, skb);
708 skb_reserve(skb2, state->ll_rs);
709 skb_put(skb2, len + state->hlen);
710 skb_reset_network_header(skb2);
711 skb2->transport_header = skb2->network_header + state->hlen;
712
713 /*
714 * Charge the memory for the fragment to any owner
715 * it might possess
716 */
717
718 if (skb->sk)
719 skb_set_owner_w(skb2, skb->sk);
720
721 /*
722 * Copy the packet header into the new buffer.
723 */
724
725 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
726
727 /*
728 * Copy a block of the IP datagram.
729 */
730 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
731 BUG();
732 state->left -= len;
733
734 /*
735 * Fill in the new header fields.
736 */
737 iph = ip_hdr(skb2);
738 iph->frag_off = htons((state->offset >> 3));
739 if (state->DF)
740 iph->frag_off |= htons(IP_DF);
741
742 /*
743 * Added AC : If we are fragmenting a fragment that's not the
744 * last fragment then keep MF on each bit
745 */
746 if (state->left > 0 || state->not_last_frag)
747 iph->frag_off |= htons(IP_MF);
748 state->ptr += len;
749 state->offset += len;
750
751 iph->tot_len = htons(len + state->hlen);
752
753 ip_send_check(iph);
754
755 return skb2;
756}
757EXPORT_SYMBOL(ip_frag_next);
758
759/*
760 * This IP datagram is too large to be sent in one piece. Break it up into
761 * smaller pieces (each of size equal to IP header plus
762 * a block of the data of the original IP data part) that will yet fit in a
763 * single device frame, and queue such a frame for sending.
764 */
765
766int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
767 int (*output)(struct net *, struct sock *, struct sk_buff *))
768{
769 struct iphdr *iph;
770 struct sk_buff *skb2;
771 struct rtable *rt = skb_rtable(skb);
772 unsigned int mtu, hlen, ll_rs;
773 struct ip_fraglist_iter iter;
774 ktime_t tstamp = skb->tstamp;
775 struct ip_frag_state state;
776 int err = 0;
777
778 /* for offloaded checksums cleanup checksum before fragmentation */
779 if (skb->ip_summed == CHECKSUM_PARTIAL &&
780 (err = skb_checksum_help(skb)))
781 goto fail;
782
783 /*
784 * Point into the IP datagram header.
785 */
786
787 iph = ip_hdr(skb);
788
789 mtu = ip_skb_dst_mtu(sk, skb);
790 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
791 mtu = IPCB(skb)->frag_max_size;
792
793 /*
794 * Setup starting values.
795 */
796
797 hlen = iph->ihl * 4;
798 mtu = mtu - hlen; /* Size of data space */
799 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
800 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
801
802 /* When frag_list is given, use it. First, check its validity:
803 * some transformers could create wrong frag_list or break existing
804 * one, it is not prohibited. In this case fall back to copying.
805 *
806 * LATER: this step can be merged to real generation of fragments,
807 * we can switch to copy when see the first bad fragment.
808 */
809 if (skb_has_frag_list(skb)) {
810 struct sk_buff *frag, *frag2;
811 unsigned int first_len = skb_pagelen(skb);
812
813 if (first_len - hlen > mtu ||
814 ((first_len - hlen) & 7) ||
815 ip_is_fragment(iph) ||
816 skb_cloned(skb) ||
817 skb_headroom(skb) < ll_rs)
818 goto slow_path;
819
820 skb_walk_frags(skb, frag) {
821 /* Correct geometry. */
822 if (frag->len > mtu ||
823 ((frag->len & 7) && frag->next) ||
824 skb_headroom(frag) < hlen + ll_rs)
825 goto slow_path_clean;
826
827 /* Partially cloned skb? */
828 if (skb_shared(frag))
829 goto slow_path_clean;
830
831 BUG_ON(frag->sk);
832 if (skb->sk) {
833 frag->sk = skb->sk;
834 frag->destructor = sock_wfree;
835 }
836 skb->truesize -= frag->truesize;
837 }
838
839 /* Everything is OK. Generate! */
840 ip_fraglist_init(skb, iph, hlen, &iter);
841
842 for (;;) {
843 /* Prepare header of the next frame,
844 * before previous one went down. */
845 if (iter.frag) {
846 ip_fraglist_ipcb_prepare(skb, &iter);
847 ip_fraglist_prepare(skb, &iter);
848 }
849
850 skb->tstamp = tstamp;
851 err = output(net, sk, skb);
852
853 if (!err)
854 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
855 if (err || !iter.frag)
856 break;
857
858 skb = ip_fraglist_next(&iter);
859 }
860
861 if (err == 0) {
862 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
863 return 0;
864 }
865
866 kfree_skb_list(iter.frag);
867
868 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
869 return err;
870
871slow_path_clean:
872 skb_walk_frags(skb, frag2) {
873 if (frag2 == frag)
874 break;
875 frag2->sk = NULL;
876 frag2->destructor = NULL;
877 skb->truesize += frag2->truesize;
878 }
879 }
880
881slow_path:
882 /*
883 * Fragment the datagram.
884 */
885
886 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
887 &state);
888
889 /*
890 * Keep copying data until we run out.
891 */
892
893 while (state.left > 0) {
894 bool first_frag = (state.offset == 0);
895
896 skb2 = ip_frag_next(skb, &state);
897 if (IS_ERR(skb2)) {
898 err = PTR_ERR(skb2);
899 goto fail;
900 }
901 ip_frag_ipcb(skb, skb2, first_frag, &state);
902
903 /*
904 * Put this fragment into the sending queue.
905 */
906 skb2->tstamp = tstamp;
907 err = output(net, sk, skb2);
908 if (err)
909 goto fail;
910
911 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
912 }
913 consume_skb(skb);
914 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
915 return err;
916
917fail:
918 kfree_skb(skb);
919 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
920 return err;
921}
922EXPORT_SYMBOL(ip_do_fragment);
923
924int
925ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
926{
927 struct msghdr *msg = from;
928
929 if (skb->ip_summed == CHECKSUM_PARTIAL) {
930 if (!copy_from_iter_full(to, len, &msg->msg_iter))
931 return -EFAULT;
932 } else {
933 __wsum csum = 0;
934 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
935 return -EFAULT;
936 skb->csum = csum_block_add(skb->csum, csum, odd);
937 }
938 return 0;
939}
940EXPORT_SYMBOL(ip_generic_getfrag);
941
942static inline __wsum
943csum_page(struct page *page, int offset, int copy)
944{
945 char *kaddr;
946 __wsum csum;
947 kaddr = kmap(page);
948 csum = csum_partial(kaddr + offset, copy, 0);
949 kunmap(page);
950 return csum;
951}
952
953static int __ip_append_data(struct sock *sk,
954 struct flowi4 *fl4,
955 struct sk_buff_head *queue,
956 struct inet_cork *cork,
957 struct page_frag *pfrag,
958 int getfrag(void *from, char *to, int offset,
959 int len, int odd, struct sk_buff *skb),
960 void *from, int length, int transhdrlen,
961 unsigned int flags)
962{
963 struct inet_sock *inet = inet_sk(sk);
964 struct ubuf_info *uarg = NULL;
965 struct sk_buff *skb;
966
967 struct ip_options *opt = cork->opt;
968 int hh_len;
969 int exthdrlen;
970 int mtu;
971 int copy;
972 int err;
973 int offset = 0;
974 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
975 int csummode = CHECKSUM_NONE;
976 struct rtable *rt = (struct rtable *)cork->dst;
977 unsigned int wmem_alloc_delta = 0;
978 bool paged, extra_uref = false;
979 u32 tskey = 0;
980
981 skb = skb_peek_tail(queue);
982
983 exthdrlen = !skb ? rt->dst.header_len : 0;
984 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
985 paged = !!cork->gso_size;
986
987 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
988 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
989 tskey = sk->sk_tskey++;
990
991 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
992
993 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
994 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
995 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
996
997 if (cork->length + length > maxnonfragsize - fragheaderlen) {
998 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
999 mtu - (opt ? opt->optlen : 0));
1000 return -EMSGSIZE;
1001 }
1002
1003 /*
1004 * transhdrlen > 0 means that this is the first fragment and we wish
1005 * it won't be fragmented in the future.
1006 */
1007 if (transhdrlen &&
1008 length + fragheaderlen <= mtu &&
1009 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1010 (!(flags & MSG_MORE) || cork->gso_size) &&
1011 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1012 csummode = CHECKSUM_PARTIAL;
1013
1014 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1015 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1016 if (!uarg)
1017 return -ENOBUFS;
1018 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1019 if (rt->dst.dev->features & NETIF_F_SG &&
1020 csummode == CHECKSUM_PARTIAL) {
1021 paged = true;
1022 } else {
1023 uarg->zerocopy = 0;
1024 skb_zcopy_set(skb, uarg, &extra_uref);
1025 }
1026 }
1027
1028 cork->length += length;
1029
1030 /* So, what's going on in the loop below?
1031 *
1032 * We use calculated fragment length to generate chained skb,
1033 * each of segments is IP fragment ready for sending to network after
1034 * adding appropriate IP header.
1035 */
1036
1037 if (!skb)
1038 goto alloc_new_skb;
1039
1040 while (length > 0) {
1041 /* Check if the remaining data fits into current packet. */
1042 copy = mtu - skb->len;
1043 if (copy < length)
1044 copy = maxfraglen - skb->len;
1045 if (copy <= 0) {
1046 char *data;
1047 unsigned int datalen;
1048 unsigned int fraglen;
1049 unsigned int fraggap;
1050 unsigned int alloclen;
1051 unsigned int pagedlen;
1052 struct sk_buff *skb_prev;
1053alloc_new_skb:
1054 skb_prev = skb;
1055 if (skb_prev)
1056 fraggap = skb_prev->len - maxfraglen;
1057 else
1058 fraggap = 0;
1059
1060 /*
1061 * If remaining data exceeds the mtu,
1062 * we know we need more fragment(s).
1063 */
1064 datalen = length + fraggap;
1065 if (datalen > mtu - fragheaderlen)
1066 datalen = maxfraglen - fragheaderlen;
1067 fraglen = datalen + fragheaderlen;
1068 pagedlen = 0;
1069
1070 if ((flags & MSG_MORE) &&
1071 !(rt->dst.dev->features&NETIF_F_SG))
1072 alloclen = mtu;
1073 else if (!paged)
1074 alloclen = fraglen;
1075 else {
1076 alloclen = min_t(int, fraglen, MAX_HEADER);
1077 pagedlen = fraglen - alloclen;
1078 }
1079
1080 alloclen += exthdrlen;
1081
1082 /* The last fragment gets additional space at tail.
1083 * Note, with MSG_MORE we overallocate on fragments,
1084 * because we have no idea what fragment will be
1085 * the last.
1086 */
1087 if (datalen == length + fraggap)
1088 alloclen += rt->dst.trailer_len;
1089
1090 if (transhdrlen) {
1091 skb = sock_alloc_send_skb(sk,
1092 alloclen + hh_len + 15,
1093 (flags & MSG_DONTWAIT), &err);
1094 } else {
1095 skb = NULL;
1096 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1097 2 * sk->sk_sndbuf)
1098 skb = alloc_skb(alloclen + hh_len + 15,
1099 sk->sk_allocation);
1100 if (unlikely(!skb))
1101 err = -ENOBUFS;
1102 }
1103 if (!skb)
1104 goto error;
1105
1106 /*
1107 * Fill in the control structures
1108 */
1109 skb->ip_summed = csummode;
1110 skb->csum = 0;
1111 skb_reserve(skb, hh_len);
1112
1113 /*
1114 * Find where to start putting bytes.
1115 */
1116 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1117 skb_set_network_header(skb, exthdrlen);
1118 skb->transport_header = (skb->network_header +
1119 fragheaderlen);
1120 data += fragheaderlen + exthdrlen;
1121
1122 if (fraggap) {
1123 skb->csum = skb_copy_and_csum_bits(
1124 skb_prev, maxfraglen,
1125 data + transhdrlen, fraggap, 0);
1126 skb_prev->csum = csum_sub(skb_prev->csum,
1127 skb->csum);
1128 data += fraggap;
1129 pskb_trim_unique(skb_prev, maxfraglen);
1130 }
1131
1132 copy = datalen - transhdrlen - fraggap - pagedlen;
1133 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1134 err = -EFAULT;
1135 kfree_skb(skb);
1136 goto error;
1137 }
1138
1139 offset += copy;
1140 length -= copy + transhdrlen;
1141 transhdrlen = 0;
1142 exthdrlen = 0;
1143 csummode = CHECKSUM_NONE;
1144
1145 /* only the initial fragment is time stamped */
1146 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1147 cork->tx_flags = 0;
1148 skb_shinfo(skb)->tskey = tskey;
1149 tskey = 0;
1150 skb_zcopy_set(skb, uarg, &extra_uref);
1151
1152 if ((flags & MSG_CONFIRM) && !skb_prev)
1153 skb_set_dst_pending_confirm(skb, 1);
1154
1155 /*
1156 * Put the packet on the pending queue.
1157 */
1158 if (!skb->destructor) {
1159 skb->destructor = sock_wfree;
1160 skb->sk = sk;
1161 wmem_alloc_delta += skb->truesize;
1162 }
1163 __skb_queue_tail(queue, skb);
1164 continue;
1165 }
1166
1167 if (copy > length)
1168 copy = length;
1169
1170 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1171 skb_tailroom(skb) >= copy) {
1172 unsigned int off;
1173
1174 off = skb->len;
1175 if (getfrag(from, skb_put(skb, copy),
1176 offset, copy, off, skb) < 0) {
1177 __skb_trim(skb, off);
1178 err = -EFAULT;
1179 goto error;
1180 }
1181 } else if (!uarg || !uarg->zerocopy) {
1182 int i = skb_shinfo(skb)->nr_frags;
1183
1184 err = -ENOMEM;
1185 if (!sk_page_frag_refill(sk, pfrag))
1186 goto error;
1187
1188 if (!skb_can_coalesce(skb, i, pfrag->page,
1189 pfrag->offset)) {
1190 err = -EMSGSIZE;
1191 if (i == MAX_SKB_FRAGS)
1192 goto error;
1193
1194 __skb_fill_page_desc(skb, i, pfrag->page,
1195 pfrag->offset, 0);
1196 skb_shinfo(skb)->nr_frags = ++i;
1197 get_page(pfrag->page);
1198 }
1199 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 if (getfrag(from,
1201 page_address(pfrag->page) + pfrag->offset,
1202 offset, copy, skb->len, skb) < 0)
1203 goto error_efault;
1204
1205 pfrag->offset += copy;
1206 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1207 skb->len += copy;
1208 skb->data_len += copy;
1209 skb->truesize += copy;
1210 wmem_alloc_delta += copy;
1211 } else {
1212 err = skb_zerocopy_iter_dgram(skb, from, copy);
1213 if (err < 0)
1214 goto error;
1215 }
1216 offset += copy;
1217 length -= copy;
1218 }
1219
1220 if (wmem_alloc_delta)
1221 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1222 return 0;
1223
1224error_efault:
1225 err = -EFAULT;
1226error:
1227 if (uarg)
1228 sock_zerocopy_put_abort(uarg, extra_uref);
1229 cork->length -= length;
1230 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1231 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1232 return err;
1233}
1234
1235static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1236 struct ipcm_cookie *ipc, struct rtable **rtp)
1237{
1238 struct ip_options_rcu *opt;
1239 struct rtable *rt;
1240
1241 rt = *rtp;
1242 if (unlikely(!rt))
1243 return -EFAULT;
1244
1245 /*
1246 * setup for corking.
1247 */
1248 opt = ipc->opt;
1249 if (opt) {
1250 if (!cork->opt) {
1251 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1252 sk->sk_allocation);
1253 if (unlikely(!cork->opt))
1254 return -ENOBUFS;
1255 }
1256 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1257 cork->flags |= IPCORK_OPT;
1258 cork->addr = ipc->addr;
1259 }
1260
1261 /*
1262 * We steal reference to this route, caller should not release it
1263 */
1264 *rtp = NULL;
1265 cork->fragsize = ip_sk_use_pmtu(sk) ?
1266 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1267
1268 cork->gso_size = ipc->gso_size;
1269 cork->dst = &rt->dst;
1270 cork->length = 0;
1271 cork->ttl = ipc->ttl;
1272 cork->tos = ipc->tos;
1273 cork->mark = ipc->sockc.mark;
1274 cork->priority = ipc->priority;
1275 cork->transmit_time = ipc->sockc.transmit_time;
1276 cork->tx_flags = 0;
1277 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1278
1279 return 0;
1280}
1281
1282/*
1283 * ip_append_data() and ip_append_page() can make one large IP datagram
1284 * from many pieces of data. Each pieces will be holded on the socket
1285 * until ip_push_pending_frames() is called. Each piece can be a page
1286 * or non-page data.
1287 *
1288 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1289 * this interface potentially.
1290 *
1291 * LATER: length must be adjusted by pad at tail, when it is required.
1292 */
1293int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1294 int getfrag(void *from, char *to, int offset, int len,
1295 int odd, struct sk_buff *skb),
1296 void *from, int length, int transhdrlen,
1297 struct ipcm_cookie *ipc, struct rtable **rtp,
1298 unsigned int flags)
1299{
1300 struct inet_sock *inet = inet_sk(sk);
1301 int err;
1302
1303 if (flags&MSG_PROBE)
1304 return 0;
1305
1306 if (skb_queue_empty(&sk->sk_write_queue)) {
1307 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1308 if (err)
1309 return err;
1310 } else {
1311 transhdrlen = 0;
1312 }
1313
1314 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1315 sk_page_frag(sk), getfrag,
1316 from, length, transhdrlen, flags);
1317}
1318
1319ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1320 int offset, size_t size, int flags)
1321{
1322 struct inet_sock *inet = inet_sk(sk);
1323 struct sk_buff *skb;
1324 struct rtable *rt;
1325 struct ip_options *opt = NULL;
1326 struct inet_cork *cork;
1327 int hh_len;
1328 int mtu;
1329 int len;
1330 int err;
1331 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1332
1333 if (inet->hdrincl)
1334 return -EPERM;
1335
1336 if (flags&MSG_PROBE)
1337 return 0;
1338
1339 if (skb_queue_empty(&sk->sk_write_queue))
1340 return -EINVAL;
1341
1342 cork = &inet->cork.base;
1343 rt = (struct rtable *)cork->dst;
1344 if (cork->flags & IPCORK_OPT)
1345 opt = cork->opt;
1346
1347 if (!(rt->dst.dev->features&NETIF_F_SG))
1348 return -EOPNOTSUPP;
1349
1350 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1351 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1352
1353 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1354 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1355 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1356
1357 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1358 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1359 mtu - (opt ? opt->optlen : 0));
1360 return -EMSGSIZE;
1361 }
1362
1363 skb = skb_peek_tail(&sk->sk_write_queue);
1364 if (!skb)
1365 return -EINVAL;
1366
1367 cork->length += size;
1368
1369 while (size > 0) {
1370 /* Check if the remaining data fits into current packet. */
1371 len = mtu - skb->len;
1372 if (len < size)
1373 len = maxfraglen - skb->len;
1374
1375 if (len <= 0) {
1376 struct sk_buff *skb_prev;
1377 int alloclen;
1378
1379 skb_prev = skb;
1380 fraggap = skb_prev->len - maxfraglen;
1381
1382 alloclen = fragheaderlen + hh_len + fraggap + 15;
1383 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1384 if (unlikely(!skb)) {
1385 err = -ENOBUFS;
1386 goto error;
1387 }
1388
1389 /*
1390 * Fill in the control structures
1391 */
1392 skb->ip_summed = CHECKSUM_NONE;
1393 skb->csum = 0;
1394 skb_reserve(skb, hh_len);
1395
1396 /*
1397 * Find where to start putting bytes.
1398 */
1399 skb_put(skb, fragheaderlen + fraggap);
1400 skb_reset_network_header(skb);
1401 skb->transport_header = (skb->network_header +
1402 fragheaderlen);
1403 if (fraggap) {
1404 skb->csum = skb_copy_and_csum_bits(skb_prev,
1405 maxfraglen,
1406 skb_transport_header(skb),
1407 fraggap, 0);
1408 skb_prev->csum = csum_sub(skb_prev->csum,
1409 skb->csum);
1410 pskb_trim_unique(skb_prev, maxfraglen);
1411 }
1412
1413 /*
1414 * Put the packet on the pending queue.
1415 */
1416 __skb_queue_tail(&sk->sk_write_queue, skb);
1417 continue;
1418 }
1419
1420 if (len > size)
1421 len = size;
1422
1423 if (skb_append_pagefrags(skb, page, offset, len)) {
1424 err = -EMSGSIZE;
1425 goto error;
1426 }
1427
1428 if (skb->ip_summed == CHECKSUM_NONE) {
1429 __wsum csum;
1430 csum = csum_page(page, offset, len);
1431 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1432 }
1433
1434 skb->len += len;
1435 skb->data_len += len;
1436 skb->truesize += len;
1437 refcount_add(len, &sk->sk_wmem_alloc);
1438 offset += len;
1439 size -= len;
1440 }
1441 return 0;
1442
1443error:
1444 cork->length -= size;
1445 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1446 return err;
1447}
1448
1449static void ip_cork_release(struct inet_cork *cork)
1450{
1451 cork->flags &= ~IPCORK_OPT;
1452 kfree(cork->opt);
1453 cork->opt = NULL;
1454 dst_release(cork->dst);
1455 cork->dst = NULL;
1456}
1457
1458/*
1459 * Combined all pending IP fragments on the socket as one IP datagram
1460 * and push them out.
1461 */
1462struct sk_buff *__ip_make_skb(struct sock *sk,
1463 struct flowi4 *fl4,
1464 struct sk_buff_head *queue,
1465 struct inet_cork *cork)
1466{
1467 struct sk_buff *skb, *tmp_skb;
1468 struct sk_buff **tail_skb;
1469 struct inet_sock *inet = inet_sk(sk);
1470 struct net *net = sock_net(sk);
1471 struct ip_options *opt = NULL;
1472 struct rtable *rt = (struct rtable *)cork->dst;
1473 struct iphdr *iph;
1474 __be16 df = 0;
1475 __u8 ttl;
1476
1477 skb = __skb_dequeue(queue);
1478 if (!skb)
1479 goto out;
1480 tail_skb = &(skb_shinfo(skb)->frag_list);
1481
1482 /* move skb->data to ip header from ext header */
1483 if (skb->data < skb_network_header(skb))
1484 __skb_pull(skb, skb_network_offset(skb));
1485 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1486 __skb_pull(tmp_skb, skb_network_header_len(skb));
1487 *tail_skb = tmp_skb;
1488 tail_skb = &(tmp_skb->next);
1489 skb->len += tmp_skb->len;
1490 skb->data_len += tmp_skb->len;
1491 skb->truesize += tmp_skb->truesize;
1492 tmp_skb->destructor = NULL;
1493 tmp_skb->sk = NULL;
1494 }
1495
1496 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1497 * to fragment the frame generated here. No matter, what transforms
1498 * how transforms change size of the packet, it will come out.
1499 */
1500 skb->ignore_df = ip_sk_ignore_df(sk);
1501
1502 /* DF bit is set when we want to see DF on outgoing frames.
1503 * If ignore_df is set too, we still allow to fragment this frame
1504 * locally. */
1505 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1506 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1507 (skb->len <= dst_mtu(&rt->dst) &&
1508 ip_dont_fragment(sk, &rt->dst)))
1509 df = htons(IP_DF);
1510
1511 if (cork->flags & IPCORK_OPT)
1512 opt = cork->opt;
1513
1514 if (cork->ttl != 0)
1515 ttl = cork->ttl;
1516 else if (rt->rt_type == RTN_MULTICAST)
1517 ttl = inet->mc_ttl;
1518 else
1519 ttl = ip_select_ttl(inet, &rt->dst);
1520
1521 iph = ip_hdr(skb);
1522 iph->version = 4;
1523 iph->ihl = 5;
1524 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1525 iph->frag_off = df;
1526 iph->ttl = ttl;
1527 iph->protocol = sk->sk_protocol;
1528 ip_copy_addrs(iph, fl4);
1529 ip_select_ident(net, skb, sk);
1530
1531 if (opt) {
1532 iph->ihl += opt->optlen>>2;
1533 ip_options_build(skb, opt, cork->addr, rt, 0);
1534 }
1535
1536 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1537 skb->mark = cork->mark;
1538 skb->tstamp = cork->transmit_time;
1539 /*
1540 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1541 * on dst refcount
1542 */
1543 cork->dst = NULL;
1544 skb_dst_set(skb, &rt->dst);
1545
1546 if (iph->protocol == IPPROTO_ICMP)
1547 icmp_out_count(net, ((struct icmphdr *)
1548 skb_transport_header(skb))->type);
1549
1550 ip_cork_release(cork);
1551out:
1552 return skb;
1553}
1554
1555int ip_send_skb(struct net *net, struct sk_buff *skb)
1556{
1557 int err;
1558
1559 err = ip_local_out(net, skb->sk, skb);
1560 if (err) {
1561 if (err > 0)
1562 err = net_xmit_errno(err);
1563 if (err)
1564 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1565 }
1566
1567 return err;
1568}
1569
1570int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1571{
1572 struct sk_buff *skb;
1573
1574 skb = ip_finish_skb(sk, fl4);
1575 if (!skb)
1576 return 0;
1577
1578 /* Netfilter gets whole the not fragmented skb. */
1579 return ip_send_skb(sock_net(sk), skb);
1580}
1581
1582/*
1583 * Throw away all pending data on the socket.
1584 */
1585static void __ip_flush_pending_frames(struct sock *sk,
1586 struct sk_buff_head *queue,
1587 struct inet_cork *cork)
1588{
1589 struct sk_buff *skb;
1590
1591 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1592 kfree_skb(skb);
1593
1594 ip_cork_release(cork);
1595}
1596
1597void ip_flush_pending_frames(struct sock *sk)
1598{
1599 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1600}
1601
1602struct sk_buff *ip_make_skb(struct sock *sk,
1603 struct flowi4 *fl4,
1604 int getfrag(void *from, char *to, int offset,
1605 int len, int odd, struct sk_buff *skb),
1606 void *from, int length, int transhdrlen,
1607 struct ipcm_cookie *ipc, struct rtable **rtp,
1608 struct inet_cork *cork, unsigned int flags)
1609{
1610 struct sk_buff_head queue;
1611 int err;
1612
1613 if (flags & MSG_PROBE)
1614 return NULL;
1615
1616 __skb_queue_head_init(&queue);
1617
1618 cork->flags = 0;
1619 cork->addr = 0;
1620 cork->opt = NULL;
1621 err = ip_setup_cork(sk, cork, ipc, rtp);
1622 if (err)
1623 return ERR_PTR(err);
1624
1625 err = __ip_append_data(sk, fl4, &queue, cork,
1626 ¤t->task_frag, getfrag,
1627 from, length, transhdrlen, flags);
1628 if (err) {
1629 __ip_flush_pending_frames(sk, &queue, cork);
1630 return ERR_PTR(err);
1631 }
1632
1633 return __ip_make_skb(sk, fl4, &queue, cork);
1634}
1635
1636/*
1637 * Fetch data from kernel space and fill in checksum if needed.
1638 */
1639static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1640 int len, int odd, struct sk_buff *skb)
1641{
1642 __wsum csum;
1643
1644 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1645 skb->csum = csum_block_add(skb->csum, csum, odd);
1646 return 0;
1647}
1648
1649/*
1650 * Generic function to send a packet as reply to another packet.
1651 * Used to send some TCP resets/acks so far.
1652 */
1653void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1654 const struct ip_options *sopt,
1655 __be32 daddr, __be32 saddr,
1656 const struct ip_reply_arg *arg,
1657 unsigned int len, u64 transmit_time)
1658{
1659 struct ip_options_data replyopts;
1660 struct ipcm_cookie ipc;
1661 struct flowi4 fl4;
1662 struct rtable *rt = skb_rtable(skb);
1663 struct net *net = sock_net(sk);
1664 struct sk_buff *nskb;
1665 int err;
1666 int oif;
1667
1668 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1669 return;
1670
1671 ipcm_init(&ipc);
1672 ipc.addr = daddr;
1673 ipc.sockc.transmit_time = transmit_time;
1674
1675 if (replyopts.opt.opt.optlen) {
1676 ipc.opt = &replyopts.opt;
1677
1678 if (replyopts.opt.opt.srr)
1679 daddr = replyopts.opt.opt.faddr;
1680 }
1681
1682 oif = arg->bound_dev_if;
1683 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1684 oif = skb->skb_iif;
1685
1686 flowi4_init_output(&fl4, oif,
1687 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1688 RT_TOS(arg->tos),
1689 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1690 ip_reply_arg_flowi_flags(arg),
1691 daddr, saddr,
1692 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1693 arg->uid);
1694 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1695 rt = ip_route_output_key(net, &fl4);
1696 if (IS_ERR(rt))
1697 return;
1698
1699 inet_sk(sk)->tos = arg->tos;
1700
1701 sk->sk_protocol = ip_hdr(skb)->protocol;
1702 sk->sk_bound_dev_if = arg->bound_dev_if;
1703 sk->sk_sndbuf = sysctl_wmem_default;
1704 sk->sk_mark = fl4.flowi4_mark;
1705 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1706 len, 0, &ipc, &rt, MSG_DONTWAIT);
1707 if (unlikely(err)) {
1708 ip_flush_pending_frames(sk);
1709 goto out;
1710 }
1711
1712 nskb = skb_peek(&sk->sk_write_queue);
1713 if (nskb) {
1714 if (arg->csumoffset >= 0)
1715 *((__sum16 *)skb_transport_header(nskb) +
1716 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1717 arg->csum));
1718 nskb->ip_summed = CHECKSUM_NONE;
1719 ip_push_pending_frames(sk, &fl4);
1720 }
1721out:
1722 ip_rt_put(rt);
1723}
1724
1725void __init ip_init(void)
1726{
1727 ip_rt_init();
1728 inet_initpeers();
1729
1730#if defined(CONFIG_IP_MULTICAST)
1731 igmp_mc_init();
1732#endif
1733}