Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		The Internet Protocol (IP) output module.
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Donald Becker, <becker@super.org>
  11 *		Alan Cox, <Alan.Cox@linux.org>
  12 *		Richard Underwood
  13 *		Stefan Becker, <stefanb@yello.ping.de>
  14 *		Jorge Cwik, <jorge@laser.satlink.net>
  15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  17 *
  18 *	See ip_input.c for original log
  19 *
  20 *	Fixes:
  21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
  22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
  23 *		Bradford Johnson:	Fix faulty handling of some frames when
  24 *					no route is found.
  25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
  26 *					(in case if packet not accepted by
  27 *					output firewall rules)
  28 *		Mike McLagan	:	Routing by source
  29 *		Alexey Kuznetsov:	use new route cache
  30 *		Andi Kleen:		Fix broken PMTU recovery and remove
  31 *					some redundant tests.
  32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
  34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
  35 *					for decreased register pressure on x86
  36 *					and more readibility.
  37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
  38 *					silently drop skb instead of failing with -EPERM.
  39 *		Detlev Wengorz	:	Copy protocol for fragments.
  40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
  41 *					datagrams.
  42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
  43 */
  44
  45#include <linux/uaccess.h>
  46#include <linux/module.h>
  47#include <linux/types.h>
  48#include <linux/kernel.h>
  49#include <linux/mm.h>
  50#include <linux/string.h>
  51#include <linux/errno.h>
  52#include <linux/highmem.h>
  53#include <linux/slab.h>
  54
  55#include <linux/socket.h>
  56#include <linux/sockios.h>
  57#include <linux/in.h>
  58#include <linux/inet.h>
  59#include <linux/netdevice.h>
  60#include <linux/etherdevice.h>
  61#include <linux/proc_fs.h>
  62#include <linux/stat.h>
  63#include <linux/init.h>
  64
  65#include <net/snmp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/xfrm.h>
  70#include <linux/skbuff.h>
  71#include <net/sock.h>
  72#include <net/arp.h>
  73#include <net/icmp.h>
  74#include <net/checksum.h>
  75#include <net/inetpeer.h>
  76#include <net/lwtunnel.h>
  77#include <linux/bpf-cgroup.h>
  78#include <linux/igmp.h>
  79#include <linux/netfilter_ipv4.h>
  80#include <linux/netfilter_bridge.h>
 
  81#include <linux/netlink.h>
  82#include <linux/tcp.h>
  83
  84static int
  85ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
  86	    unsigned int mtu,
  87	    int (*output)(struct net *, struct sock *, struct sk_buff *));
  88
  89/* Generate a checksum for an outgoing IP datagram. */
  90void ip_send_check(struct iphdr *iph)
  91{
  92	iph->check = 0;
  93	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  94}
  95EXPORT_SYMBOL(ip_send_check);
  96
  97int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
  98{
  99	struct iphdr *iph = ip_hdr(skb);
 100
 101	iph->tot_len = htons(skb->len);
 102	ip_send_check(iph);
 103
 104	/* if egress device is enslaved to an L3 master device pass the
 105	 * skb to its handler for processing
 106	 */
 107	skb = l3mdev_ip_out(sk, skb);
 108	if (unlikely(!skb))
 109		return 0;
 110
 111	skb->protocol = htons(ETH_P_IP);
 112
 113	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
 114		       net, sk, skb, NULL, skb_dst(skb)->dev,
 115		       dst_output);
 116}
 117
 118int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
 119{
 120	int err;
 121
 122	err = __ip_local_out(net, sk, skb);
 123	if (likely(err == 1))
 124		err = dst_output(net, sk, skb);
 125
 126	return err;
 127}
 128EXPORT_SYMBOL_GPL(ip_local_out);
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 130static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
 131{
 132	int ttl = inet->uc_ttl;
 133
 134	if (ttl < 0)
 135		ttl = ip4_dst_hoplimit(dst);
 136	return ttl;
 137}
 138
 139/*
 140 *		Add an ip header to a skbuff and send it out.
 141 *
 142 */
 143int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
 144			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
 145{
 146	struct inet_sock *inet = inet_sk(sk);
 147	struct rtable *rt = skb_rtable(skb);
 148	struct net *net = sock_net(sk);
 149	struct iphdr *iph;
 150
 151	/* Build the IP header. */
 152	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
 153	skb_reset_network_header(skb);
 154	iph = ip_hdr(skb);
 155	iph->version  = 4;
 156	iph->ihl      = 5;
 157	iph->tos      = inet->tos;
 
 
 
 
 158	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 159	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
 160	iph->saddr    = saddr;
 161	iph->protocol = sk->sk_protocol;
 162	if (ip_dont_fragment(sk, &rt->dst)) {
 163		iph->frag_off = htons(IP_DF);
 164		iph->id = 0;
 165	} else {
 166		iph->frag_off = 0;
 167		__ip_select_ident(net, iph, 1);
 168	}
 169
 170	if (opt && opt->opt.optlen) {
 171		iph->ihl += opt->opt.optlen>>2;
 172		ip_options_build(skb, &opt->opt, daddr, rt, 0);
 173	}
 174
 175	skb->priority = sk->sk_priority;
 176	if (!skb->mark)
 177		skb->mark = sk->sk_mark;
 178
 179	/* Send it out. */
 180	return ip_local_out(net, skb->sk, skb);
 181}
 182EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
 183
 184static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
 185{
 186	struct dst_entry *dst = skb_dst(skb);
 187	struct rtable *rt = (struct rtable *)dst;
 188	struct net_device *dev = dst->dev;
 189	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 190	struct neighbour *neigh;
 191	u32 nexthop;
 192
 193	if (rt->rt_type == RTN_MULTICAST) {
 194		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
 195	} else if (rt->rt_type == RTN_BROADCAST)
 196		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
 197
 198	/* Be paranoid, rather than too clever. */
 199	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 200		struct sk_buff *skb2;
 201
 202		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 203		if (!skb2) {
 204			kfree_skb(skb);
 205			return -ENOMEM;
 206		}
 207		if (skb->sk)
 208			skb_set_owner_w(skb2, skb->sk);
 209		consume_skb(skb);
 210		skb = skb2;
 211	}
 212
 213	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
 214		int res = lwtunnel_xmit(skb);
 215
 216		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
 217			return res;
 218	}
 219
 220	rcu_read_lock_bh();
 221	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
 222	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
 223	if (unlikely(!neigh))
 224		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
 225	if (!IS_ERR(neigh)) {
 226		int res;
 227
 228		sock_confirm_neigh(skb, neigh);
 229		res = neigh_output(neigh, skb);
 230
 231		rcu_read_unlock_bh();
 232		return res;
 233	}
 234	rcu_read_unlock_bh();
 235
 236	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
 237			    __func__);
 238	kfree_skb(skb);
 239	return -EINVAL;
 240}
 241
 242static int ip_finish_output_gso(struct net *net, struct sock *sk,
 243				struct sk_buff *skb, unsigned int mtu)
 244{
 245	netdev_features_t features;
 246	struct sk_buff *segs;
 247	int ret = 0;
 248
 249	/* common case: seglen is <= mtu
 250	 */
 251	if (skb_gso_validate_network_len(skb, mtu))
 252		return ip_finish_output2(net, sk, skb);
 253
 254	/* Slowpath -  GSO segment length exceeds the egress MTU.
 255	 *
 256	 * This can happen in several cases:
 257	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
 258	 *  - Forwarding of an skb that arrived on a virtualization interface
 259	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
 260	 *    stack.
 261	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
 262	 *    interface with a smaller MTU.
 263	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
 264	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
 265	 *    insufficent MTU.
 266	 */
 267	features = netif_skb_features(skb);
 268	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
 269	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 270	if (IS_ERR_OR_NULL(segs)) {
 271		kfree_skb(skb);
 272		return -ENOMEM;
 273	}
 274
 275	consume_skb(skb);
 276
 277	do {
 278		struct sk_buff *nskb = segs->next;
 279		int err;
 280
 281		segs->next = NULL;
 282		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
 283
 284		if (err && ret == 0)
 285			ret = err;
 286		segs = nskb;
 287	} while (segs);
 288
 289	return ret;
 290}
 291
 292static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 293{
 294	unsigned int mtu;
 295	int ret;
 296
 297	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
 298	if (ret) {
 299		kfree_skb(skb);
 300		return ret;
 301	}
 302
 303#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
 304	/* Policy lookup after SNAT yielded a new policy */
 305	if (skb_dst(skb)->xfrm) {
 306		IPCB(skb)->flags |= IPSKB_REROUTED;
 307		return dst_output(net, sk, skb);
 308	}
 309#endif
 310	mtu = ip_skb_dst_mtu(sk, skb);
 311	if (skb_is_gso(skb))
 312		return ip_finish_output_gso(net, sk, skb, mtu);
 313
 314	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
 315		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
 316
 317	return ip_finish_output2(net, sk, skb);
 318}
 319
 320static int ip_mc_finish_output(struct net *net, struct sock *sk,
 321			       struct sk_buff *skb)
 322{
 323	int ret;
 324
 325	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
 326	if (ret) {
 327		kfree_skb(skb);
 328		return ret;
 329	}
 330
 331	return dev_loopback_xmit(net, sk, skb);
 332}
 333
 334int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 335{
 
 336	struct rtable *rt = skb_rtable(skb);
 337	struct net_device *dev = rt->dst.dev;
 338
 339	/*
 340	 *	If the indicated interface is up and running, send the packet.
 341	 */
 342	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 343
 344	skb->dev = dev;
 345	skb->protocol = htons(ETH_P_IP);
 346
 347	/*
 348	 *	Multicasts are looped back for other local users
 349	 */
 350
 351	if (rt->rt_flags&RTCF_MULTICAST) {
 352		if (sk_mc_loop(sk)
 353#ifdef CONFIG_IP_MROUTE
 354		/* Small optimization: do not loopback not local frames,
 355		   which returned after forwarding; they will be  dropped
 356		   by ip_mr_input in any case.
 357		   Note, that local frames are looped back to be delivered
 358		   to local recipients.
 359
 360		   This check is duplicated in ip_mr_input at the moment.
 361		 */
 362		    &&
 363		    ((rt->rt_flags & RTCF_LOCAL) ||
 364		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
 365#endif
 366		   ) {
 367			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 368			if (newskb)
 369				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 370					net, sk, newskb, NULL, newskb->dev,
 371					ip_mc_finish_output);
 372		}
 373
 374		/* Multicasts with ttl 0 must not go beyond the host */
 375
 376		if (ip_hdr(skb)->ttl == 0) {
 377			kfree_skb(skb);
 378			return 0;
 379		}
 380	}
 381
 382	if (rt->rt_flags&RTCF_BROADCAST) {
 383		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 384		if (newskb)
 385			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 386				net, sk, newskb, NULL, newskb->dev,
 387				ip_mc_finish_output);
 388	}
 389
 390	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 391			    net, sk, skb, NULL, skb->dev,
 392			    ip_finish_output,
 393			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 394}
 395
 396int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 397{
 398	struct net_device *dev = skb_dst(skb)->dev;
 399
 400	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 401
 402	skb->dev = dev;
 403	skb->protocol = htons(ETH_P_IP);
 404
 405	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 406			    net, sk, skb, NULL, dev,
 407			    ip_finish_output,
 408			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 409}
 410
 411/*
 412 * copy saddr and daddr, possibly using 64bit load/stores
 413 * Equivalent to :
 414 *   iph->saddr = fl4->saddr;
 415 *   iph->daddr = fl4->daddr;
 416 */
 417static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
 418{
 419	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
 420		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
 421	memcpy(&iph->saddr, &fl4->saddr,
 422	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
 423}
 424
 425/* Note: skb->sk can be different from sk, in case of tunnels */
 426int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
 427{
 
 428	struct inet_sock *inet = inet_sk(sk);
 429	struct net *net = sock_net(sk);
 430	struct ip_options_rcu *inet_opt;
 431	struct flowi4 *fl4;
 432	struct rtable *rt;
 433	struct iphdr *iph;
 434	int res;
 435
 436	/* Skip all of this if the packet is already routed,
 437	 * f.e. by something like SCTP.
 438	 */
 439	rcu_read_lock();
 440	inet_opt = rcu_dereference(inet->inet_opt);
 441	fl4 = &fl->u.ip4;
 442	rt = skb_rtable(skb);
 443	if (rt)
 444		goto packet_routed;
 445
 446	/* Make sure we can route this packet. */
 447	rt = (struct rtable *)__sk_dst_check(sk, 0);
 448	if (!rt) {
 449		__be32 daddr;
 450
 451		/* Use correct destination address if we have options. */
 452		daddr = inet->inet_daddr;
 453		if (inet_opt && inet_opt->opt.srr)
 454			daddr = inet_opt->opt.faddr;
 455
 456		/* If this fails, retransmit mechanism of transport layer will
 457		 * keep trying until route appears or the connection times
 458		 * itself out.
 459		 */
 460		rt = ip_route_output_ports(net, fl4, sk,
 461					   daddr, inet->inet_saddr,
 462					   inet->inet_dport,
 463					   inet->inet_sport,
 464					   sk->sk_protocol,
 465					   RT_CONN_FLAGS(sk),
 466					   sk->sk_bound_dev_if);
 467		if (IS_ERR(rt))
 468			goto no_route;
 469		sk_setup_caps(sk, &rt->dst);
 470	}
 471	skb_dst_set_noref(skb, &rt->dst);
 472
 473packet_routed:
 474	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
 475		goto no_route;
 476
 477	/* OK, we know where to send it, allocate and build IP header. */
 478	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
 479	skb_reset_network_header(skb);
 480	iph = ip_hdr(skb);
 481	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
 482	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
 483		iph->frag_off = htons(IP_DF);
 484	else
 485		iph->frag_off = 0;
 486	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 487	iph->protocol = sk->sk_protocol;
 488	ip_copy_addrs(iph, fl4);
 489
 490	/* Transport layer set skb->h.foo itself. */
 491
 492	if (inet_opt && inet_opt->opt.optlen) {
 493		iph->ihl += inet_opt->opt.optlen >> 2;
 494		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
 495	}
 496
 497	ip_select_ident_segs(net, skb, sk,
 498			     skb_shinfo(skb)->gso_segs ?: 1);
 499
 500	/* TODO : should we use skb->sk here instead of sk ? */
 501	skb->priority = sk->sk_priority;
 502	skb->mark = sk->sk_mark;
 503
 504	res = ip_local_out(net, sk, skb);
 505	rcu_read_unlock();
 506	return res;
 507
 508no_route:
 509	rcu_read_unlock();
 510	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 511	kfree_skb(skb);
 512	return -EHOSTUNREACH;
 513}
 514EXPORT_SYMBOL(ip_queue_xmit);
 515
 
 516static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
 517{
 518	to->pkt_type = from->pkt_type;
 519	to->priority = from->priority;
 520	to->protocol = from->protocol;
 521	skb_dst_drop(to);
 522	skb_dst_copy(to, from);
 523	to->dev = from->dev;
 524	to->mark = from->mark;
 525
 526	/* Copy the flags to each fragment. */
 527	IPCB(to)->flags = IPCB(from)->flags;
 528
 529#ifdef CONFIG_NET_SCHED
 530	to->tc_index = from->tc_index;
 531#endif
 532	nf_copy(to, from);
 533#if IS_ENABLED(CONFIG_IP_VS)
 
 
 
 
 534	to->ipvs_property = from->ipvs_property;
 535#endif
 536	skb_copy_secmark(to, from);
 537}
 538
 539static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
 540		       unsigned int mtu,
 541		       int (*output)(struct net *, struct sock *, struct sk_buff *))
 542{
 543	struct iphdr *iph = ip_hdr(skb);
 544
 545	if ((iph->frag_off & htons(IP_DF)) == 0)
 546		return ip_do_fragment(net, sk, skb, output);
 547
 548	if (unlikely(!skb->ignore_df ||
 549		     (IPCB(skb)->frag_max_size &&
 550		      IPCB(skb)->frag_max_size > mtu))) {
 551		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 552		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 553			  htonl(mtu));
 554		kfree_skb(skb);
 555		return -EMSGSIZE;
 556	}
 557
 558	return ip_do_fragment(net, sk, skb, output);
 559}
 560
 561/*
 562 *	This IP datagram is too large to be sent in one piece.  Break it up into
 563 *	smaller pieces (each of size equal to IP header plus
 564 *	a block of the data of the original IP data part) that will yet fit in a
 565 *	single device frame, and queue such a frame for sending.
 566 */
 567
 568int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
 569		   int (*output)(struct net *, struct sock *, struct sk_buff *))
 570{
 571	struct iphdr *iph;
 572	int ptr;
 
 573	struct sk_buff *skb2;
 574	unsigned int mtu, hlen, left, len, ll_rs;
 575	int offset;
 576	__be16 not_last_frag;
 577	struct rtable *rt = skb_rtable(skb);
 578	int err = 0;
 579
 580	/* for offloaded checksums cleanup checksum before fragmentation */
 581	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 582	    (err = skb_checksum_help(skb)))
 583		goto fail;
 584
 585	/*
 586	 *	Point into the IP datagram header.
 587	 */
 588
 589	iph = ip_hdr(skb);
 590
 591	mtu = ip_skb_dst_mtu(sk, skb);
 592	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
 593		mtu = IPCB(skb)->frag_max_size;
 
 
 
 
 594
 595	/*
 596	 *	Setup starting values.
 597	 */
 598
 599	hlen = iph->ihl * 4;
 600	mtu = mtu - hlen;	/* Size of data space */
 
 
 
 
 601	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
 602	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
 603
 604	/* When frag_list is given, use it. First, check its validity:
 605	 * some transformers could create wrong frag_list or break existing
 606	 * one, it is not prohibited. In this case fall back to copying.
 607	 *
 608	 * LATER: this step can be merged to real generation of fragments,
 609	 * we can switch to copy when see the first bad fragment.
 610	 */
 611	if (skb_has_frag_list(skb)) {
 612		struct sk_buff *frag, *frag2;
 613		unsigned int first_len = skb_pagelen(skb);
 614
 615		if (first_len - hlen > mtu ||
 616		    ((first_len - hlen) & 7) ||
 617		    ip_is_fragment(iph) ||
 618		    skb_cloned(skb) ||
 619		    skb_headroom(skb) < ll_rs)
 620			goto slow_path;
 621
 622		skb_walk_frags(skb, frag) {
 623			/* Correct geometry. */
 624			if (frag->len > mtu ||
 625			    ((frag->len & 7) && frag->next) ||
 626			    skb_headroom(frag) < hlen + ll_rs)
 627				goto slow_path_clean;
 628
 629			/* Partially cloned skb? */
 630			if (skb_shared(frag))
 631				goto slow_path_clean;
 632
 633			BUG_ON(frag->sk);
 634			if (skb->sk) {
 635				frag->sk = skb->sk;
 636				frag->destructor = sock_wfree;
 637			}
 638			skb->truesize -= frag->truesize;
 639		}
 640
 641		/* Everything is OK. Generate! */
 642
 643		err = 0;
 644		offset = 0;
 645		frag = skb_shinfo(skb)->frag_list;
 646		skb_frag_list_init(skb);
 647		skb->data_len = first_len - skb_headlen(skb);
 648		skb->len = first_len;
 649		iph->tot_len = htons(first_len);
 650		iph->frag_off = htons(IP_MF);
 651		ip_send_check(iph);
 652
 653		for (;;) {
 654			/* Prepare header of the next frame,
 655			 * before previous one went down. */
 656			if (frag) {
 657				frag->ip_summed = CHECKSUM_NONE;
 658				skb_reset_transport_header(frag);
 659				__skb_push(frag, hlen);
 660				skb_reset_network_header(frag);
 661				memcpy(skb_network_header(frag), iph, hlen);
 662				iph = ip_hdr(frag);
 663				iph->tot_len = htons(frag->len);
 664				ip_copy_metadata(frag, skb);
 665				if (offset == 0)
 666					ip_options_fragment(frag);
 667				offset += skb->len - hlen;
 668				iph->frag_off = htons(offset>>3);
 669				if (frag->next)
 670					iph->frag_off |= htons(IP_MF);
 671				/* Ready, complete checksum */
 672				ip_send_check(iph);
 673			}
 674
 675			err = output(net, sk, skb);
 676
 677			if (!err)
 678				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
 679			if (err || !frag)
 680				break;
 681
 682			skb = frag;
 683			frag = skb->next;
 684			skb->next = NULL;
 685		}
 686
 687		if (err == 0) {
 688			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
 689			return 0;
 690		}
 691
 692		while (frag) {
 693			skb = frag->next;
 694			kfree_skb(frag);
 695			frag = skb;
 696		}
 697		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 698		return err;
 699
 700slow_path_clean:
 701		skb_walk_frags(skb, frag2) {
 702			if (frag2 == frag)
 703				break;
 704			frag2->sk = NULL;
 705			frag2->destructor = NULL;
 706			skb->truesize += frag2->truesize;
 707		}
 708	}
 709
 710slow_path:
 711	iph = ip_hdr(skb);
 712
 713	left = skb->len - hlen;		/* Space per frame */
 714	ptr = hlen;		/* Where to start from */
 715
 
 
 
 
 
 716	/*
 717	 *	Fragment the datagram.
 718	 */
 719
 720	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
 721	not_last_frag = iph->frag_off & htons(IP_MF);
 722
 723	/*
 724	 *	Keep copying data until we run out.
 725	 */
 726
 727	while (left > 0) {
 728		len = left;
 729		/* IF: it doesn't fit, use 'mtu' - the data space left */
 730		if (len > mtu)
 731			len = mtu;
 732		/* IF: we are not sending up to and including the packet end
 733		   then align the next start on an eight byte boundary */
 734		if (len < left)	{
 735			len &= ~7;
 736		}
 
 
 
 737
 738		/* Allocate buffer */
 739		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
 740		if (!skb2) {
 741			err = -ENOMEM;
 742			goto fail;
 743		}
 744
 745		/*
 746		 *	Set up data on packet
 747		 */
 748
 749		ip_copy_metadata(skb2, skb);
 750		skb_reserve(skb2, ll_rs);
 751		skb_put(skb2, len + hlen);
 752		skb_reset_network_header(skb2);
 753		skb2->transport_header = skb2->network_header + hlen;
 754
 755		/*
 756		 *	Charge the memory for the fragment to any owner
 757		 *	it might possess
 758		 */
 759
 760		if (skb->sk)
 761			skb_set_owner_w(skb2, skb->sk);
 762
 763		/*
 764		 *	Copy the packet header into the new buffer.
 765		 */
 766
 767		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
 768
 769		/*
 770		 *	Copy a block of the IP datagram.
 771		 */
 772		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
 773			BUG();
 774		left -= len;
 775
 776		/*
 777		 *	Fill in the new header fields.
 778		 */
 779		iph = ip_hdr(skb2);
 780		iph->frag_off = htons((offset >> 3));
 781
 782		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
 783			iph->frag_off |= htons(IP_DF);
 784
 785		/* ANK: dirty, but effective trick. Upgrade options only if
 786		 * the segment to be fragmented was THE FIRST (otherwise,
 787		 * options are already fixed) and make it ONCE
 788		 * on the initial skb, so that all the following fragments
 789		 * will inherit fixed options.
 790		 */
 791		if (offset == 0)
 792			ip_options_fragment(skb);
 793
 794		/*
 795		 *	Added AC : If we are fragmenting a fragment that's not the
 796		 *		   last fragment then keep MF on each bit
 797		 */
 798		if (left > 0 || not_last_frag)
 799			iph->frag_off |= htons(IP_MF);
 800		ptr += len;
 801		offset += len;
 802
 803		/*
 804		 *	Put this fragment into the sending queue.
 805		 */
 806		iph->tot_len = htons(len + hlen);
 807
 808		ip_send_check(iph);
 809
 810		err = output(net, sk, skb2);
 811		if (err)
 812			goto fail;
 813
 814		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
 815	}
 816	consume_skb(skb);
 817	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
 818	return err;
 819
 820fail:
 821	kfree_skb(skb);
 822	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 823	return err;
 824}
 825EXPORT_SYMBOL(ip_do_fragment);
 826
 827int
 828ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
 829{
 830	struct msghdr *msg = from;
 831
 832	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 833		if (!copy_from_iter_full(to, len, &msg->msg_iter))
 834			return -EFAULT;
 835	} else {
 836		__wsum csum = 0;
 837		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
 838			return -EFAULT;
 839		skb->csum = csum_block_add(skb->csum, csum, odd);
 840	}
 841	return 0;
 842}
 843EXPORT_SYMBOL(ip_generic_getfrag);
 844
 845static inline __wsum
 846csum_page(struct page *page, int offset, int copy)
 847{
 848	char *kaddr;
 849	__wsum csum;
 850	kaddr = kmap(page);
 851	csum = csum_partial(kaddr + offset, copy, 0);
 852	kunmap(page);
 853	return csum;
 854}
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856static int __ip_append_data(struct sock *sk,
 857			    struct flowi4 *fl4,
 858			    struct sk_buff_head *queue,
 859			    struct inet_cork *cork,
 860			    struct page_frag *pfrag,
 861			    int getfrag(void *from, char *to, int offset,
 862					int len, int odd, struct sk_buff *skb),
 863			    void *from, int length, int transhdrlen,
 864			    unsigned int flags)
 865{
 866	struct inet_sock *inet = inet_sk(sk);
 867	struct sk_buff *skb;
 868
 869	struct ip_options *opt = cork->opt;
 870	int hh_len;
 871	int exthdrlen;
 872	int mtu;
 873	int copy;
 874	int err;
 875	int offset = 0;
 876	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
 877	int csummode = CHECKSUM_NONE;
 878	struct rtable *rt = (struct rtable *)cork->dst;
 879	unsigned int wmem_alloc_delta = 0;
 880	u32 tskey = 0;
 881
 882	skb = skb_peek_tail(queue);
 883
 884	exthdrlen = !skb ? rt->dst.header_len : 0;
 885	mtu = cork->fragsize;
 886	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
 887	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
 888		tskey = sk->sk_tskey++;
 889
 890	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
 891
 892	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
 893	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 894	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
 895
 896	if (cork->length + length > maxnonfragsize - fragheaderlen) {
 897		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
 898			       mtu - (opt ? opt->optlen : 0));
 899		return -EMSGSIZE;
 900	}
 901
 902	/*
 903	 * transhdrlen > 0 means that this is the first fragment and we wish
 904	 * it won't be fragmented in the future.
 905	 */
 906	if (transhdrlen &&
 907	    length + fragheaderlen <= mtu &&
 908	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
 909	    !(flags & MSG_MORE) &&
 910	    !exthdrlen)
 911		csummode = CHECKSUM_PARTIAL;
 912
 913	cork->length += length;
 
 
 
 
 
 
 
 
 
 
 914
 915	/* So, what's going on in the loop below?
 916	 *
 917	 * We use calculated fragment length to generate chained skb,
 918	 * each of segments is IP fragment ready for sending to network after
 919	 * adding appropriate IP header.
 920	 */
 921
 922	if (!skb)
 923		goto alloc_new_skb;
 924
 925	while (length > 0) {
 926		/* Check if the remaining data fits into current packet. */
 927		copy = mtu - skb->len;
 928		if (copy < length)
 929			copy = maxfraglen - skb->len;
 930		if (copy <= 0) {
 931			char *data;
 932			unsigned int datalen;
 933			unsigned int fraglen;
 934			unsigned int fraggap;
 935			unsigned int alloclen;
 936			struct sk_buff *skb_prev;
 937alloc_new_skb:
 938			skb_prev = skb;
 939			if (skb_prev)
 940				fraggap = skb_prev->len - maxfraglen;
 941			else
 942				fraggap = 0;
 943
 944			/*
 945			 * If remaining data exceeds the mtu,
 946			 * we know we need more fragment(s).
 947			 */
 948			datalen = length + fraggap;
 949			if (datalen > mtu - fragheaderlen)
 950				datalen = maxfraglen - fragheaderlen;
 951			fraglen = datalen + fragheaderlen;
 952
 953			if ((flags & MSG_MORE) &&
 954			    !(rt->dst.dev->features&NETIF_F_SG))
 955				alloclen = mtu;
 956			else
 957				alloclen = fraglen;
 958
 959			alloclen += exthdrlen;
 960
 961			/* The last fragment gets additional space at tail.
 962			 * Note, with MSG_MORE we overallocate on fragments,
 963			 * because we have no idea what fragment will be
 964			 * the last.
 965			 */
 966			if (datalen == length + fraggap)
 967				alloclen += rt->dst.trailer_len;
 968
 969			if (transhdrlen) {
 970				skb = sock_alloc_send_skb(sk,
 971						alloclen + hh_len + 15,
 972						(flags & MSG_DONTWAIT), &err);
 973			} else {
 974				skb = NULL;
 975				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
 976				    2 * sk->sk_sndbuf)
 977					skb = alloc_skb(alloclen + hh_len + 15,
 978							sk->sk_allocation);
 979				if (unlikely(!skb))
 
 980					err = -ENOBUFS;
 
 
 
 
 981			}
 982			if (!skb)
 983				goto error;
 984
 985			/*
 986			 *	Fill in the control structures
 987			 */
 988			skb->ip_summed = csummode;
 989			skb->csum = 0;
 990			skb_reserve(skb, hh_len);
 991
 992			/* only the initial fragment is time stamped */
 993			skb_shinfo(skb)->tx_flags = cork->tx_flags;
 994			cork->tx_flags = 0;
 995			skb_shinfo(skb)->tskey = tskey;
 996			tskey = 0;
 997
 998			/*
 999			 *	Find where to start putting bytes.
1000			 */
1001			data = skb_put(skb, fraglen + exthdrlen);
1002			skb_set_network_header(skb, exthdrlen);
1003			skb->transport_header = (skb->network_header +
1004						 fragheaderlen);
1005			data += fragheaderlen + exthdrlen;
1006
1007			if (fraggap) {
1008				skb->csum = skb_copy_and_csum_bits(
1009					skb_prev, maxfraglen,
1010					data + transhdrlen, fraggap, 0);
1011				skb_prev->csum = csum_sub(skb_prev->csum,
1012							  skb->csum);
1013				data += fraggap;
1014				pskb_trim_unique(skb_prev, maxfraglen);
1015			}
1016
1017			copy = datalen - transhdrlen - fraggap;
1018			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1019				err = -EFAULT;
1020				kfree_skb(skb);
1021				goto error;
1022			}
1023
1024			offset += copy;
1025			length -= datalen - fraggap;
1026			transhdrlen = 0;
1027			exthdrlen = 0;
1028			csummode = CHECKSUM_NONE;
1029
1030			if ((flags & MSG_CONFIRM) && !skb_prev)
1031				skb_set_dst_pending_confirm(skb, 1);
1032
1033			/*
1034			 * Put the packet on the pending queue.
1035			 */
1036			if (!skb->destructor) {
1037				skb->destructor = sock_wfree;
1038				skb->sk = sk;
1039				wmem_alloc_delta += skb->truesize;
1040			}
1041			__skb_queue_tail(queue, skb);
1042			continue;
1043		}
1044
1045		if (copy > length)
1046			copy = length;
1047
1048		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1049		    skb_tailroom(skb) >= copy) {
1050			unsigned int off;
1051
1052			off = skb->len;
1053			if (getfrag(from, skb_put(skb, copy),
1054					offset, copy, off, skb) < 0) {
1055				__skb_trim(skb, off);
1056				err = -EFAULT;
1057				goto error;
1058			}
1059		} else {
1060			int i = skb_shinfo(skb)->nr_frags;
1061
1062			err = -ENOMEM;
1063			if (!sk_page_frag_refill(sk, pfrag))
1064				goto error;
1065
1066			if (!skb_can_coalesce(skb, i, pfrag->page,
1067					      pfrag->offset)) {
1068				err = -EMSGSIZE;
1069				if (i == MAX_SKB_FRAGS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070					goto error;
 
 
 
1071
1072				__skb_fill_page_desc(skb, i, pfrag->page,
1073						     pfrag->offset, 0);
1074				skb_shinfo(skb)->nr_frags = ++i;
1075				get_page(pfrag->page);
 
1076			}
1077			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1078			if (getfrag(from,
1079				    page_address(pfrag->page) + pfrag->offset,
1080				    offset, copy, skb->len, skb) < 0)
1081				goto error_efault;
1082
1083			pfrag->offset += copy;
1084			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1085			skb->len += copy;
1086			skb->data_len += copy;
1087			skb->truesize += copy;
1088			wmem_alloc_delta += copy;
1089		}
1090		offset += copy;
1091		length -= copy;
1092	}
1093
1094	if (wmem_alloc_delta)
1095		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1096	return 0;
1097
1098error_efault:
1099	err = -EFAULT;
1100error:
1101	cork->length -= length;
1102	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1103	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1104	return err;
1105}
1106
1107static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1108			 struct ipcm_cookie *ipc, struct rtable **rtp)
1109{
 
1110	struct ip_options_rcu *opt;
1111	struct rtable *rt;
1112
1113	rt = *rtp;
1114	if (unlikely(!rt))
1115		return -EFAULT;
1116
1117	/*
1118	 * setup for corking.
1119	 */
1120	opt = ipc->opt;
1121	if (opt) {
1122		if (!cork->opt) {
1123			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1124					    sk->sk_allocation);
1125			if (unlikely(!cork->opt))
1126				return -ENOBUFS;
1127		}
1128		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1129		cork->flags |= IPCORK_OPT;
1130		cork->addr = ipc->addr;
1131	}
1132
 
 
1133	/*
1134	 * We steal reference to this route, caller should not release it
1135	 */
1136	*rtp = NULL;
1137	cork->fragsize = ip_sk_use_pmtu(sk) ?
1138			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1139	cork->dst = &rt->dst;
1140	cork->length = 0;
1141	cork->ttl = ipc->ttl;
1142	cork->tos = ipc->tos;
1143	cork->priority = ipc->priority;
1144	cork->tx_flags = ipc->tx_flags;
 
 
1145
1146	return 0;
1147}
1148
1149/*
1150 *	ip_append_data() and ip_append_page() can make one large IP datagram
1151 *	from many pieces of data. Each pieces will be holded on the socket
1152 *	until ip_push_pending_frames() is called. Each piece can be a page
1153 *	or non-page data.
1154 *
1155 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1156 *	this interface potentially.
1157 *
1158 *	LATER: length must be adjusted by pad at tail, when it is required.
1159 */
1160int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1161		   int getfrag(void *from, char *to, int offset, int len,
1162			       int odd, struct sk_buff *skb),
1163		   void *from, int length, int transhdrlen,
1164		   struct ipcm_cookie *ipc, struct rtable **rtp,
1165		   unsigned int flags)
1166{
1167	struct inet_sock *inet = inet_sk(sk);
1168	int err;
1169
1170	if (flags&MSG_PROBE)
1171		return 0;
1172
1173	if (skb_queue_empty(&sk->sk_write_queue)) {
1174		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1175		if (err)
1176			return err;
1177	} else {
1178		transhdrlen = 0;
1179	}
1180
1181	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1182				sk_page_frag(sk), getfrag,
1183				from, length, transhdrlen, flags);
1184}
1185
1186ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1187		       int offset, size_t size, int flags)
1188{
1189	struct inet_sock *inet = inet_sk(sk);
1190	struct sk_buff *skb;
1191	struct rtable *rt;
1192	struct ip_options *opt = NULL;
1193	struct inet_cork *cork;
1194	int hh_len;
1195	int mtu;
1196	int len;
1197	int err;
1198	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1199
1200	if (inet->hdrincl)
1201		return -EPERM;
1202
1203	if (flags&MSG_PROBE)
1204		return 0;
1205
1206	if (skb_queue_empty(&sk->sk_write_queue))
1207		return -EINVAL;
1208
1209	cork = &inet->cork.base;
1210	rt = (struct rtable *)cork->dst;
1211	if (cork->flags & IPCORK_OPT)
1212		opt = cork->opt;
1213
1214	if (!(rt->dst.dev->features&NETIF_F_SG))
1215		return -EOPNOTSUPP;
1216
1217	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1218	mtu = cork->fragsize;
1219
1220	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1221	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1222	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1223
1224	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1225		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1226			       mtu - (opt ? opt->optlen : 0));
1227		return -EMSGSIZE;
1228	}
1229
1230	skb = skb_peek_tail(&sk->sk_write_queue);
1231	if (!skb)
1232		return -EINVAL;
1233
1234	cork->length += size;
 
 
 
 
 
 
 
1235
1236	while (size > 0) {
1237		/* Check if the remaining data fits into current packet. */
1238		len = mtu - skb->len;
1239		if (len < size)
1240			len = maxfraglen - skb->len;
 
1241
 
 
 
 
 
1242		if (len <= 0) {
1243			struct sk_buff *skb_prev;
1244			int alloclen;
1245
1246			skb_prev = skb;
1247			fraggap = skb_prev->len - maxfraglen;
1248
1249			alloclen = fragheaderlen + hh_len + fraggap + 15;
1250			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1251			if (unlikely(!skb)) {
1252				err = -ENOBUFS;
1253				goto error;
1254			}
1255
1256			/*
1257			 *	Fill in the control structures
1258			 */
1259			skb->ip_summed = CHECKSUM_NONE;
1260			skb->csum = 0;
1261			skb_reserve(skb, hh_len);
1262
1263			/*
1264			 *	Find where to start putting bytes.
1265			 */
1266			skb_put(skb, fragheaderlen + fraggap);
1267			skb_reset_network_header(skb);
1268			skb->transport_header = (skb->network_header +
1269						 fragheaderlen);
1270			if (fraggap) {
1271				skb->csum = skb_copy_and_csum_bits(skb_prev,
1272								   maxfraglen,
1273						    skb_transport_header(skb),
1274								   fraggap, 0);
1275				skb_prev->csum = csum_sub(skb_prev->csum,
1276							  skb->csum);
1277				pskb_trim_unique(skb_prev, maxfraglen);
1278			}
1279
1280			/*
1281			 * Put the packet on the pending queue.
1282			 */
1283			__skb_queue_tail(&sk->sk_write_queue, skb);
1284			continue;
1285		}
1286
 
1287		if (len > size)
1288			len = size;
1289
1290		if (skb_append_pagefrags(skb, page, offset, len)) {
 
 
 
 
1291			err = -EMSGSIZE;
1292			goto error;
1293		}
1294
1295		if (skb->ip_summed == CHECKSUM_NONE) {
1296			__wsum csum;
1297			csum = csum_page(page, offset, len);
1298			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1299		}
1300
1301		skb->len += len;
1302		skb->data_len += len;
1303		skb->truesize += len;
1304		refcount_add(len, &sk->sk_wmem_alloc);
1305		offset += len;
1306		size -= len;
1307	}
1308	return 0;
1309
1310error:
1311	cork->length -= size;
1312	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1313	return err;
1314}
1315
1316static void ip_cork_release(struct inet_cork *cork)
1317{
1318	cork->flags &= ~IPCORK_OPT;
1319	kfree(cork->opt);
1320	cork->opt = NULL;
1321	dst_release(cork->dst);
1322	cork->dst = NULL;
1323}
1324
1325/*
1326 *	Combined all pending IP fragments on the socket as one IP datagram
1327 *	and push them out.
1328 */
1329struct sk_buff *__ip_make_skb(struct sock *sk,
1330			      struct flowi4 *fl4,
1331			      struct sk_buff_head *queue,
1332			      struct inet_cork *cork)
1333{
1334	struct sk_buff *skb, *tmp_skb;
1335	struct sk_buff **tail_skb;
1336	struct inet_sock *inet = inet_sk(sk);
1337	struct net *net = sock_net(sk);
1338	struct ip_options *opt = NULL;
1339	struct rtable *rt = (struct rtable *)cork->dst;
1340	struct iphdr *iph;
1341	__be16 df = 0;
1342	__u8 ttl;
1343
1344	skb = __skb_dequeue(queue);
1345	if (!skb)
1346		goto out;
1347	tail_skb = &(skb_shinfo(skb)->frag_list);
1348
1349	/* move skb->data to ip header from ext header */
1350	if (skb->data < skb_network_header(skb))
1351		__skb_pull(skb, skb_network_offset(skb));
1352	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1353		__skb_pull(tmp_skb, skb_network_header_len(skb));
1354		*tail_skb = tmp_skb;
1355		tail_skb = &(tmp_skb->next);
1356		skb->len += tmp_skb->len;
1357		skb->data_len += tmp_skb->len;
1358		skb->truesize += tmp_skb->truesize;
1359		tmp_skb->destructor = NULL;
1360		tmp_skb->sk = NULL;
1361	}
1362
1363	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1364	 * to fragment the frame generated here. No matter, what transforms
1365	 * how transforms change size of the packet, it will come out.
1366	 */
1367	skb->ignore_df = ip_sk_ignore_df(sk);
 
1368
1369	/* DF bit is set when we want to see DF on outgoing frames.
1370	 * If ignore_df is set too, we still allow to fragment this frame
1371	 * locally. */
1372	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1373	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1374	    (skb->len <= dst_mtu(&rt->dst) &&
1375	     ip_dont_fragment(sk, &rt->dst)))
1376		df = htons(IP_DF);
1377
1378	if (cork->flags & IPCORK_OPT)
1379		opt = cork->opt;
1380
1381	if (cork->ttl != 0)
1382		ttl = cork->ttl;
1383	else if (rt->rt_type == RTN_MULTICAST)
1384		ttl = inet->mc_ttl;
1385	else
1386		ttl = ip_select_ttl(inet, &rt->dst);
1387
1388	iph = ip_hdr(skb);
1389	iph->version = 4;
1390	iph->ihl = 5;
1391	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1392	iph->frag_off = df;
 
1393	iph->ttl = ttl;
1394	iph->protocol = sk->sk_protocol;
1395	ip_copy_addrs(iph, fl4);
1396	ip_select_ident(net, skb, sk);
1397
1398	if (opt) {
1399		iph->ihl += opt->optlen>>2;
1400		ip_options_build(skb, opt, cork->addr, rt, 0);
1401	}
1402
1403	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1404	skb->mark = sk->sk_mark;
1405	/*
1406	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1407	 * on dst refcount
1408	 */
1409	cork->dst = NULL;
1410	skb_dst_set(skb, &rt->dst);
1411
1412	if (iph->protocol == IPPROTO_ICMP)
1413		icmp_out_count(net, ((struct icmphdr *)
1414			skb_transport_header(skb))->type);
1415
1416	ip_cork_release(cork);
1417out:
1418	return skb;
1419}
1420
1421int ip_send_skb(struct net *net, struct sk_buff *skb)
1422{
 
1423	int err;
1424
1425	err = ip_local_out(net, skb->sk, skb);
1426	if (err) {
1427		if (err > 0)
1428			err = net_xmit_errno(err);
1429		if (err)
1430			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1431	}
1432
1433	return err;
1434}
1435
1436int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1437{
1438	struct sk_buff *skb;
1439
1440	skb = ip_finish_skb(sk, fl4);
1441	if (!skb)
1442		return 0;
1443
1444	/* Netfilter gets whole the not fragmented skb. */
1445	return ip_send_skb(sock_net(sk), skb);
1446}
1447
1448/*
1449 *	Throw away all pending data on the socket.
1450 */
1451static void __ip_flush_pending_frames(struct sock *sk,
1452				      struct sk_buff_head *queue,
1453				      struct inet_cork *cork)
1454{
1455	struct sk_buff *skb;
1456
1457	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1458		kfree_skb(skb);
1459
1460	ip_cork_release(cork);
1461}
1462
1463void ip_flush_pending_frames(struct sock *sk)
1464{
1465	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1466}
1467
1468struct sk_buff *ip_make_skb(struct sock *sk,
1469			    struct flowi4 *fl4,
1470			    int getfrag(void *from, char *to, int offset,
1471					int len, int odd, struct sk_buff *skb),
1472			    void *from, int length, int transhdrlen,
1473			    struct ipcm_cookie *ipc, struct rtable **rtp,
1474			    unsigned int flags)
1475{
1476	struct inet_cork cork;
1477	struct sk_buff_head queue;
1478	int err;
1479
1480	if (flags & MSG_PROBE)
1481		return NULL;
1482
1483	__skb_queue_head_init(&queue);
1484
1485	cork.flags = 0;
1486	cork.addr = 0;
1487	cork.opt = NULL;
1488	err = ip_setup_cork(sk, &cork, ipc, rtp);
1489	if (err)
1490		return ERR_PTR(err);
1491
1492	err = __ip_append_data(sk, fl4, &queue, &cork,
1493			       &current->task_frag, getfrag,
1494			       from, length, transhdrlen, flags);
1495	if (err) {
1496		__ip_flush_pending_frames(sk, &queue, &cork);
1497		return ERR_PTR(err);
1498	}
1499
1500	return __ip_make_skb(sk, fl4, &queue, &cork);
1501}
1502
1503/*
1504 *	Fetch data from kernel space and fill in checksum if needed.
1505 */
1506static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1507			      int len, int odd, struct sk_buff *skb)
1508{
1509	__wsum csum;
1510
1511	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1512	skb->csum = csum_block_add(skb->csum, csum, odd);
1513	return 0;
1514}
1515
1516/*
1517 *	Generic function to send a packet as reply to another packet.
1518 *	Used to send some TCP resets/acks so far.
 
 
 
1519 */
1520void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1521			   const struct ip_options *sopt,
1522			   __be32 daddr, __be32 saddr,
1523			   const struct ip_reply_arg *arg,
1524			   unsigned int len)
1525{
 
1526	struct ip_options_data replyopts;
1527	struct ipcm_cookie ipc;
1528	struct flowi4 fl4;
1529	struct rtable *rt = skb_rtable(skb);
1530	struct net *net = sock_net(sk);
1531	struct sk_buff *nskb;
1532	int err;
1533	int oif;
1534
1535	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1536		return;
1537
1538	ipc.addr = daddr;
1539	ipc.opt = NULL;
1540	ipc.tx_flags = 0;
1541	ipc.ttl = 0;
1542	ipc.tos = -1;
1543
1544	if (replyopts.opt.opt.optlen) {
1545		ipc.opt = &replyopts.opt;
1546
1547		if (replyopts.opt.opt.srr)
1548			daddr = replyopts.opt.opt.faddr;
1549	}
1550
1551	oif = arg->bound_dev_if;
1552	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1553		oif = skb->skb_iif;
1554
1555	flowi4_init_output(&fl4, oif,
1556			   IP4_REPLY_MARK(net, skb->mark),
1557			   RT_TOS(arg->tos),
1558			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1559			   ip_reply_arg_flowi_flags(arg),
1560			   daddr, saddr,
1561			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1562			   arg->uid);
1563	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1564	rt = ip_route_output_key(net, &fl4);
1565	if (IS_ERR(rt))
1566		return;
1567
1568	inet_sk(sk)->tos = arg->tos;
1569
 
 
 
 
 
 
1570	sk->sk_priority = skb->priority;
1571	sk->sk_protocol = ip_hdr(skb)->protocol;
1572	sk->sk_bound_dev_if = arg->bound_dev_if;
1573	sk->sk_sndbuf = sysctl_wmem_default;
1574	sk->sk_mark = fl4.flowi4_mark;
1575	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1576			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1577	if (unlikely(err)) {
1578		ip_flush_pending_frames(sk);
1579		goto out;
1580	}
1581
1582	nskb = skb_peek(&sk->sk_write_queue);
1583	if (nskb) {
1584		if (arg->csumoffset >= 0)
1585			*((__sum16 *)skb_transport_header(nskb) +
1586			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1587								arg->csum));
1588		nskb->ip_summed = CHECKSUM_NONE;
1589		ip_push_pending_frames(sk, &fl4);
1590	}
1591out:
 
 
1592	ip_rt_put(rt);
1593}
1594
1595void __init ip_init(void)
1596{
1597	ip_rt_init();
1598	inet_initpeers();
1599
1600#if defined(CONFIG_IP_MULTICAST)
1601	igmp_mc_init();
1602#endif
1603}
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		The Internet Protocol (IP) output module.
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Donald Becker, <becker@super.org>
  11 *		Alan Cox, <Alan.Cox@linux.org>
  12 *		Richard Underwood
  13 *		Stefan Becker, <stefanb@yello.ping.de>
  14 *		Jorge Cwik, <jorge@laser.satlink.net>
  15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  17 *
  18 *	See ip_input.c for original log
  19 *
  20 *	Fixes:
  21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
  22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
  23 *		Bradford Johnson:	Fix faulty handling of some frames when
  24 *					no route is found.
  25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
  26 *					(in case if packet not accepted by
  27 *					output firewall rules)
  28 *		Mike McLagan	:	Routing by source
  29 *		Alexey Kuznetsov:	use new route cache
  30 *		Andi Kleen:		Fix broken PMTU recovery and remove
  31 *					some redundant tests.
  32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
  34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
  35 *					for decreased register pressure on x86
  36 *					and more readibility.
  37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
  38 *					silently drop skb instead of failing with -EPERM.
  39 *		Detlev Wengorz	:	Copy protocol for fragments.
  40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
  41 *					datagrams.
  42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
  43 */
  44
  45#include <asm/uaccess.h>
  46#include <linux/module.h>
  47#include <linux/types.h>
  48#include <linux/kernel.h>
  49#include <linux/mm.h>
  50#include <linux/string.h>
  51#include <linux/errno.h>
  52#include <linux/highmem.h>
  53#include <linux/slab.h>
  54
  55#include <linux/socket.h>
  56#include <linux/sockios.h>
  57#include <linux/in.h>
  58#include <linux/inet.h>
  59#include <linux/netdevice.h>
  60#include <linux/etherdevice.h>
  61#include <linux/proc_fs.h>
  62#include <linux/stat.h>
  63#include <linux/init.h>
  64
  65#include <net/snmp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/xfrm.h>
  70#include <linux/skbuff.h>
  71#include <net/sock.h>
  72#include <net/arp.h>
  73#include <net/icmp.h>
  74#include <net/checksum.h>
  75#include <net/inetpeer.h>
 
 
  76#include <linux/igmp.h>
  77#include <linux/netfilter_ipv4.h>
  78#include <linux/netfilter_bridge.h>
  79#include <linux/mroute.h>
  80#include <linux/netlink.h>
  81#include <linux/tcp.h>
  82
  83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
  84EXPORT_SYMBOL(sysctl_ip_default_ttl);
 
 
  85
  86/* Generate a checksum for an outgoing IP datagram. */
  87__inline__ void ip_send_check(struct iphdr *iph)
  88{
  89	iph->check = 0;
  90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  91}
  92EXPORT_SYMBOL(ip_send_check);
  93
  94int __ip_local_out(struct sk_buff *skb)
  95{
  96	struct iphdr *iph = ip_hdr(skb);
  97
  98	iph->tot_len = htons(skb->len);
  99	ip_send_check(iph);
 100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
 101		       skb_dst(skb)->dev, dst_output);
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104int ip_local_out(struct sk_buff *skb)
 105{
 106	int err;
 107
 108	err = __ip_local_out(skb);
 109	if (likely(err == 1))
 110		err = dst_output(skb);
 111
 112	return err;
 113}
 114EXPORT_SYMBOL_GPL(ip_local_out);
 115
 116/* dev_loopback_xmit for use with netfilter. */
 117static int ip_dev_loopback_xmit(struct sk_buff *newskb)
 118{
 119	skb_reset_mac_header(newskb);
 120	__skb_pull(newskb, skb_network_offset(newskb));
 121	newskb->pkt_type = PACKET_LOOPBACK;
 122	newskb->ip_summed = CHECKSUM_UNNECESSARY;
 123	WARN_ON(!skb_dst(newskb));
 124	skb_dst_force(newskb);
 125	netif_rx_ni(newskb);
 126	return 0;
 127}
 128
 129static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
 130{
 131	int ttl = inet->uc_ttl;
 132
 133	if (ttl < 0)
 134		ttl = ip4_dst_hoplimit(dst);
 135	return ttl;
 136}
 137
 138/*
 139 *		Add an ip header to a skbuff and send it out.
 140 *
 141 */
 142int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
 143			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
 144{
 145	struct inet_sock *inet = inet_sk(sk);
 146	struct rtable *rt = skb_rtable(skb);
 
 147	struct iphdr *iph;
 148
 149	/* Build the IP header. */
 150	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
 151	skb_reset_network_header(skb);
 152	iph = ip_hdr(skb);
 153	iph->version  = 4;
 154	iph->ihl      = 5;
 155	iph->tos      = inet->tos;
 156	if (ip_dont_fragment(sk, &rt->dst))
 157		iph->frag_off = htons(IP_DF);
 158	else
 159		iph->frag_off = 0;
 160	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 161	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
 162	iph->saddr    = saddr;
 163	iph->protocol = sk->sk_protocol;
 164	ip_select_ident(iph, &rt->dst, sk);
 
 
 
 
 
 
 165
 166	if (opt && opt->opt.optlen) {
 167		iph->ihl += opt->opt.optlen>>2;
 168		ip_options_build(skb, &opt->opt, daddr, rt, 0);
 169	}
 170
 171	skb->priority = sk->sk_priority;
 172	skb->mark = sk->sk_mark;
 
 173
 174	/* Send it out. */
 175	return ip_local_out(skb);
 176}
 177EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
 178
 179static inline int ip_finish_output2(struct sk_buff *skb)
 180{
 181	struct dst_entry *dst = skb_dst(skb);
 182	struct rtable *rt = (struct rtable *)dst;
 183	struct net_device *dev = dst->dev;
 184	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 185	struct neighbour *neigh;
 
 186
 187	if (rt->rt_type == RTN_MULTICAST) {
 188		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
 189	} else if (rt->rt_type == RTN_BROADCAST)
 190		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
 191
 192	/* Be paranoid, rather than too clever. */
 193	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 194		struct sk_buff *skb2;
 195
 196		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 197		if (skb2 == NULL) {
 198			kfree_skb(skb);
 199			return -ENOMEM;
 200		}
 201		if (skb->sk)
 202			skb_set_owner_w(skb2, skb->sk);
 203		kfree_skb(skb);
 204		skb = skb2;
 205	}
 206
 207	rcu_read_lock();
 208	neigh = dst_get_neighbour_noref(dst);
 209	if (neigh) {
 210		int res = neigh_output(neigh, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212		rcu_read_unlock();
 213		return res;
 214	}
 215	rcu_read_unlock();
 216
 217	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
 218			    __func__);
 219	kfree_skb(skb);
 220	return -EINVAL;
 221}
 222
 223static inline int ip_skb_dst_mtu(struct sk_buff *skb)
 
 224{
 225	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
 
 
 226
 227	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
 228	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229}
 230
 231static int ip_finish_output(struct sk_buff *skb)
 232{
 
 
 
 
 
 
 
 
 
 233#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
 234	/* Policy lookup after SNAT yielded a new policy */
 235	if (skb_dst(skb)->xfrm != NULL) {
 236		IPCB(skb)->flags |= IPSKB_REROUTED;
 237		return dst_output(skb);
 238	}
 239#endif
 240	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
 241		return ip_fragment(skb, ip_finish_output2);
 242	else
 243		return ip_finish_output2(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244}
 245
 246int ip_mc_output(struct sk_buff *skb)
 247{
 248	struct sock *sk = skb->sk;
 249	struct rtable *rt = skb_rtable(skb);
 250	struct net_device *dev = rt->dst.dev;
 251
 252	/*
 253	 *	If the indicated interface is up and running, send the packet.
 254	 */
 255	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
 256
 257	skb->dev = dev;
 258	skb->protocol = htons(ETH_P_IP);
 259
 260	/*
 261	 *	Multicasts are looped back for other local users
 262	 */
 263
 264	if (rt->rt_flags&RTCF_MULTICAST) {
 265		if (sk_mc_loop(sk)
 266#ifdef CONFIG_IP_MROUTE
 267		/* Small optimization: do not loopback not local frames,
 268		   which returned after forwarding; they will be  dropped
 269		   by ip_mr_input in any case.
 270		   Note, that local frames are looped back to be delivered
 271		   to local recipients.
 272
 273		   This check is duplicated in ip_mr_input at the moment.
 274		 */
 275		    &&
 276		    ((rt->rt_flags & RTCF_LOCAL) ||
 277		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
 278#endif
 279		   ) {
 280			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 281			if (newskb)
 282				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 283					newskb, NULL, newskb->dev,
 284					ip_dev_loopback_xmit);
 285		}
 286
 287		/* Multicasts with ttl 0 must not go beyond the host */
 288
 289		if (ip_hdr(skb)->ttl == 0) {
 290			kfree_skb(skb);
 291			return 0;
 292		}
 293	}
 294
 295	if (rt->rt_flags&RTCF_BROADCAST) {
 296		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 297		if (newskb)
 298			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
 299				NULL, newskb->dev, ip_dev_loopback_xmit);
 
 300	}
 301
 302	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
 303			    skb->dev, ip_finish_output,
 
 304			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 305}
 306
 307int ip_output(struct sk_buff *skb)
 308{
 309	struct net_device *dev = skb_dst(skb)->dev;
 310
 311	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
 312
 313	skb->dev = dev;
 314	skb->protocol = htons(ETH_P_IP);
 315
 316	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
 
 317			    ip_finish_output,
 318			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 319}
 320
 321/*
 322 * copy saddr and daddr, possibly using 64bit load/stores
 323 * Equivalent to :
 324 *   iph->saddr = fl4->saddr;
 325 *   iph->daddr = fl4->daddr;
 326 */
 327static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
 328{
 329	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
 330		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
 331	memcpy(&iph->saddr, &fl4->saddr,
 332	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
 333}
 334
 335int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
 
 336{
 337	struct sock *sk = skb->sk;
 338	struct inet_sock *inet = inet_sk(sk);
 
 339	struct ip_options_rcu *inet_opt;
 340	struct flowi4 *fl4;
 341	struct rtable *rt;
 342	struct iphdr *iph;
 343	int res;
 344
 345	/* Skip all of this if the packet is already routed,
 346	 * f.e. by something like SCTP.
 347	 */
 348	rcu_read_lock();
 349	inet_opt = rcu_dereference(inet->inet_opt);
 350	fl4 = &fl->u.ip4;
 351	rt = skb_rtable(skb);
 352	if (rt != NULL)
 353		goto packet_routed;
 354
 355	/* Make sure we can route this packet. */
 356	rt = (struct rtable *)__sk_dst_check(sk, 0);
 357	if (rt == NULL) {
 358		__be32 daddr;
 359
 360		/* Use correct destination address if we have options. */
 361		daddr = inet->inet_daddr;
 362		if (inet_opt && inet_opt->opt.srr)
 363			daddr = inet_opt->opt.faddr;
 364
 365		/* If this fails, retransmit mechanism of transport layer will
 366		 * keep trying until route appears or the connection times
 367		 * itself out.
 368		 */
 369		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
 370					   daddr, inet->inet_saddr,
 371					   inet->inet_dport,
 372					   inet->inet_sport,
 373					   sk->sk_protocol,
 374					   RT_CONN_FLAGS(sk),
 375					   sk->sk_bound_dev_if);
 376		if (IS_ERR(rt))
 377			goto no_route;
 378		sk_setup_caps(sk, &rt->dst);
 379	}
 380	skb_dst_set_noref(skb, &rt->dst);
 381
 382packet_routed:
 383	if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
 384		goto no_route;
 385
 386	/* OK, we know where to send it, allocate and build IP header. */
 387	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
 388	skb_reset_network_header(skb);
 389	iph = ip_hdr(skb);
 390	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
 391	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
 392		iph->frag_off = htons(IP_DF);
 393	else
 394		iph->frag_off = 0;
 395	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 396	iph->protocol = sk->sk_protocol;
 397	ip_copy_addrs(iph, fl4);
 398
 399	/* Transport layer set skb->h.foo itself. */
 400
 401	if (inet_opt && inet_opt->opt.optlen) {
 402		iph->ihl += inet_opt->opt.optlen >> 2;
 403		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
 404	}
 405
 406	ip_select_ident_more(iph, &rt->dst, sk,
 407			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
 408
 
 409	skb->priority = sk->sk_priority;
 410	skb->mark = sk->sk_mark;
 411
 412	res = ip_local_out(skb);
 413	rcu_read_unlock();
 414	return res;
 415
 416no_route:
 417	rcu_read_unlock();
 418	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 419	kfree_skb(skb);
 420	return -EHOSTUNREACH;
 421}
 422EXPORT_SYMBOL(ip_queue_xmit);
 423
 424
 425static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
 426{
 427	to->pkt_type = from->pkt_type;
 428	to->priority = from->priority;
 429	to->protocol = from->protocol;
 430	skb_dst_drop(to);
 431	skb_dst_copy(to, from);
 432	to->dev = from->dev;
 433	to->mark = from->mark;
 434
 435	/* Copy the flags to each fragment. */
 436	IPCB(to)->flags = IPCB(from)->flags;
 437
 438#ifdef CONFIG_NET_SCHED
 439	to->tc_index = from->tc_index;
 440#endif
 441	nf_copy(to, from);
 442#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
 443    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
 444	to->nf_trace = from->nf_trace;
 445#endif
 446#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
 447	to->ipvs_property = from->ipvs_property;
 448#endif
 449	skb_copy_secmark(to, from);
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452/*
 453 *	This IP datagram is too large to be sent in one piece.  Break it up into
 454 *	smaller pieces (each of size equal to IP header plus
 455 *	a block of the data of the original IP data part) that will yet fit in a
 456 *	single device frame, and queue such a frame for sending.
 457 */
 458
 459int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
 
 460{
 461	struct iphdr *iph;
 462	int ptr;
 463	struct net_device *dev;
 464	struct sk_buff *skb2;
 465	unsigned int mtu, hlen, left, len, ll_rs;
 466	int offset;
 467	__be16 not_last_frag;
 468	struct rtable *rt = skb_rtable(skb);
 469	int err = 0;
 470
 471	dev = rt->dst.dev;
 
 
 
 472
 473	/*
 474	 *	Point into the IP datagram header.
 475	 */
 476
 477	iph = ip_hdr(skb);
 478
 479	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
 480		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 481		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 482			  htonl(ip_skb_dst_mtu(skb)));
 483		kfree_skb(skb);
 484		return -EMSGSIZE;
 485	}
 486
 487	/*
 488	 *	Setup starting values.
 489	 */
 490
 491	hlen = iph->ihl * 4;
 492	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
 493#ifdef CONFIG_BRIDGE_NETFILTER
 494	if (skb->nf_bridge)
 495		mtu -= nf_bridge_mtu_reduction(skb);
 496#endif
 497	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
 
 498
 499	/* When frag_list is given, use it. First, check its validity:
 500	 * some transformers could create wrong frag_list or break existing
 501	 * one, it is not prohibited. In this case fall back to copying.
 502	 *
 503	 * LATER: this step can be merged to real generation of fragments,
 504	 * we can switch to copy when see the first bad fragment.
 505	 */
 506	if (skb_has_frag_list(skb)) {
 507		struct sk_buff *frag, *frag2;
 508		int first_len = skb_pagelen(skb);
 509
 510		if (first_len - hlen > mtu ||
 511		    ((first_len - hlen) & 7) ||
 512		    ip_is_fragment(iph) ||
 513		    skb_cloned(skb))
 
 514			goto slow_path;
 515
 516		skb_walk_frags(skb, frag) {
 517			/* Correct geometry. */
 518			if (frag->len > mtu ||
 519			    ((frag->len & 7) && frag->next) ||
 520			    skb_headroom(frag) < hlen)
 521				goto slow_path_clean;
 522
 523			/* Partially cloned skb? */
 524			if (skb_shared(frag))
 525				goto slow_path_clean;
 526
 527			BUG_ON(frag->sk);
 528			if (skb->sk) {
 529				frag->sk = skb->sk;
 530				frag->destructor = sock_wfree;
 531			}
 532			skb->truesize -= frag->truesize;
 533		}
 534
 535		/* Everything is OK. Generate! */
 536
 537		err = 0;
 538		offset = 0;
 539		frag = skb_shinfo(skb)->frag_list;
 540		skb_frag_list_init(skb);
 541		skb->data_len = first_len - skb_headlen(skb);
 542		skb->len = first_len;
 543		iph->tot_len = htons(first_len);
 544		iph->frag_off = htons(IP_MF);
 545		ip_send_check(iph);
 546
 547		for (;;) {
 548			/* Prepare header of the next frame,
 549			 * before previous one went down. */
 550			if (frag) {
 551				frag->ip_summed = CHECKSUM_NONE;
 552				skb_reset_transport_header(frag);
 553				__skb_push(frag, hlen);
 554				skb_reset_network_header(frag);
 555				memcpy(skb_network_header(frag), iph, hlen);
 556				iph = ip_hdr(frag);
 557				iph->tot_len = htons(frag->len);
 558				ip_copy_metadata(frag, skb);
 559				if (offset == 0)
 560					ip_options_fragment(frag);
 561				offset += skb->len - hlen;
 562				iph->frag_off = htons(offset>>3);
 563				if (frag->next != NULL)
 564					iph->frag_off |= htons(IP_MF);
 565				/* Ready, complete checksum */
 566				ip_send_check(iph);
 567			}
 568
 569			err = output(skb);
 570
 571			if (!err)
 572				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
 573			if (err || !frag)
 574				break;
 575
 576			skb = frag;
 577			frag = skb->next;
 578			skb->next = NULL;
 579		}
 580
 581		if (err == 0) {
 582			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
 583			return 0;
 584		}
 585
 586		while (frag) {
 587			skb = frag->next;
 588			kfree_skb(frag);
 589			frag = skb;
 590		}
 591		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 592		return err;
 593
 594slow_path_clean:
 595		skb_walk_frags(skb, frag2) {
 596			if (frag2 == frag)
 597				break;
 598			frag2->sk = NULL;
 599			frag2->destructor = NULL;
 600			skb->truesize += frag2->truesize;
 601		}
 602	}
 603
 604slow_path:
 
 
 605	left = skb->len - hlen;		/* Space per frame */
 606	ptr = hlen;		/* Where to start from */
 607
 608	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
 609	 * we need to make room for the encapsulating header
 610	 */
 611	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
 612
 613	/*
 614	 *	Fragment the datagram.
 615	 */
 616
 617	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
 618	not_last_frag = iph->frag_off & htons(IP_MF);
 619
 620	/*
 621	 *	Keep copying data until we run out.
 622	 */
 623
 624	while (left > 0) {
 625		len = left;
 626		/* IF: it doesn't fit, use 'mtu' - the data space left */
 627		if (len > mtu)
 628			len = mtu;
 629		/* IF: we are not sending up to and including the packet end
 630		   then align the next start on an eight byte boundary */
 631		if (len < left)	{
 632			len &= ~7;
 633		}
 634		/*
 635		 *	Allocate buffer.
 636		 */
 637
 638		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
 639			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
 
 640			err = -ENOMEM;
 641			goto fail;
 642		}
 643
 644		/*
 645		 *	Set up data on packet
 646		 */
 647
 648		ip_copy_metadata(skb2, skb);
 649		skb_reserve(skb2, ll_rs);
 650		skb_put(skb2, len + hlen);
 651		skb_reset_network_header(skb2);
 652		skb2->transport_header = skb2->network_header + hlen;
 653
 654		/*
 655		 *	Charge the memory for the fragment to any owner
 656		 *	it might possess
 657		 */
 658
 659		if (skb->sk)
 660			skb_set_owner_w(skb2, skb->sk);
 661
 662		/*
 663		 *	Copy the packet header into the new buffer.
 664		 */
 665
 666		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
 667
 668		/*
 669		 *	Copy a block of the IP datagram.
 670		 */
 671		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
 672			BUG();
 673		left -= len;
 674
 675		/*
 676		 *	Fill in the new header fields.
 677		 */
 678		iph = ip_hdr(skb2);
 679		iph->frag_off = htons((offset >> 3));
 680
 
 
 
 681		/* ANK: dirty, but effective trick. Upgrade options only if
 682		 * the segment to be fragmented was THE FIRST (otherwise,
 683		 * options are already fixed) and make it ONCE
 684		 * on the initial skb, so that all the following fragments
 685		 * will inherit fixed options.
 686		 */
 687		if (offset == 0)
 688			ip_options_fragment(skb);
 689
 690		/*
 691		 *	Added AC : If we are fragmenting a fragment that's not the
 692		 *		   last fragment then keep MF on each bit
 693		 */
 694		if (left > 0 || not_last_frag)
 695			iph->frag_off |= htons(IP_MF);
 696		ptr += len;
 697		offset += len;
 698
 699		/*
 700		 *	Put this fragment into the sending queue.
 701		 */
 702		iph->tot_len = htons(len + hlen);
 703
 704		ip_send_check(iph);
 705
 706		err = output(skb2);
 707		if (err)
 708			goto fail;
 709
 710		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
 711	}
 712	kfree_skb(skb);
 713	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
 714	return err;
 715
 716fail:
 717	kfree_skb(skb);
 718	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 719	return err;
 720}
 721EXPORT_SYMBOL(ip_fragment);
 722
 723int
 724ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
 725{
 726	struct iovec *iov = from;
 727
 728	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 729		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
 730			return -EFAULT;
 731	} else {
 732		__wsum csum = 0;
 733		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
 734			return -EFAULT;
 735		skb->csum = csum_block_add(skb->csum, csum, odd);
 736	}
 737	return 0;
 738}
 739EXPORT_SYMBOL(ip_generic_getfrag);
 740
 741static inline __wsum
 742csum_page(struct page *page, int offset, int copy)
 743{
 744	char *kaddr;
 745	__wsum csum;
 746	kaddr = kmap(page);
 747	csum = csum_partial(kaddr + offset, copy, 0);
 748	kunmap(page);
 749	return csum;
 750}
 751
 752static inline int ip_ufo_append_data(struct sock *sk,
 753			struct sk_buff_head *queue,
 754			int getfrag(void *from, char *to, int offset, int len,
 755			       int odd, struct sk_buff *skb),
 756			void *from, int length, int hh_len, int fragheaderlen,
 757			int transhdrlen, int maxfraglen, unsigned int flags)
 758{
 759	struct sk_buff *skb;
 760	int err;
 761
 762	/* There is support for UDP fragmentation offload by network
 763	 * device, so create one single skb packet containing complete
 764	 * udp datagram
 765	 */
 766	if ((skb = skb_peek_tail(queue)) == NULL) {
 767		skb = sock_alloc_send_skb(sk,
 768			hh_len + fragheaderlen + transhdrlen + 20,
 769			(flags & MSG_DONTWAIT), &err);
 770
 771		if (skb == NULL)
 772			return err;
 773
 774		/* reserve space for Hardware header */
 775		skb_reserve(skb, hh_len);
 776
 777		/* create space for UDP/IP header */
 778		skb_put(skb, fragheaderlen + transhdrlen);
 779
 780		/* initialize network header pointer */
 781		skb_reset_network_header(skb);
 782
 783		/* initialize protocol header pointer */
 784		skb->transport_header = skb->network_header + fragheaderlen;
 785
 786		skb->ip_summed = CHECKSUM_PARTIAL;
 787		skb->csum = 0;
 788
 789		/* specify the length of each IP datagram fragment */
 790		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
 791		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
 792		__skb_queue_tail(queue, skb);
 793	}
 794
 795	return skb_append_datato_frags(sk, skb, getfrag, from,
 796				       (length - transhdrlen));
 797}
 798
 799static int __ip_append_data(struct sock *sk,
 800			    struct flowi4 *fl4,
 801			    struct sk_buff_head *queue,
 802			    struct inet_cork *cork,
 
 803			    int getfrag(void *from, char *to, int offset,
 804					int len, int odd, struct sk_buff *skb),
 805			    void *from, int length, int transhdrlen,
 806			    unsigned int flags)
 807{
 808	struct inet_sock *inet = inet_sk(sk);
 809	struct sk_buff *skb;
 810
 811	struct ip_options *opt = cork->opt;
 812	int hh_len;
 813	int exthdrlen;
 814	int mtu;
 815	int copy;
 816	int err;
 817	int offset = 0;
 818	unsigned int maxfraglen, fragheaderlen;
 819	int csummode = CHECKSUM_NONE;
 820	struct rtable *rt = (struct rtable *)cork->dst;
 
 
 821
 822	skb = skb_peek_tail(queue);
 823
 824	exthdrlen = !skb ? rt->dst.header_len : 0;
 825	mtu = cork->fragsize;
 
 
 
 826
 827	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
 828
 829	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
 830	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 
 831
 832	if (cork->length + length > 0xFFFF - fragheaderlen) {
 833		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
 834			       mtu-exthdrlen);
 835		return -EMSGSIZE;
 836	}
 837
 838	/*
 839	 * transhdrlen > 0 means that this is the first fragment and we wish
 840	 * it won't be fragmented in the future.
 841	 */
 842	if (transhdrlen &&
 843	    length + fragheaderlen <= mtu &&
 844	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
 
 845	    !exthdrlen)
 846		csummode = CHECKSUM_PARTIAL;
 847
 848	cork->length += length;
 849	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
 850	    (sk->sk_protocol == IPPROTO_UDP) &&
 851	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
 852		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
 853					 hh_len, fragheaderlen, transhdrlen,
 854					 maxfraglen, flags);
 855		if (err)
 856			goto error;
 857		return 0;
 858	}
 859
 860	/* So, what's going on in the loop below?
 861	 *
 862	 * We use calculated fragment length to generate chained skb,
 863	 * each of segments is IP fragment ready for sending to network after
 864	 * adding appropriate IP header.
 865	 */
 866
 867	if (!skb)
 868		goto alloc_new_skb;
 869
 870	while (length > 0) {
 871		/* Check if the remaining data fits into current packet. */
 872		copy = mtu - skb->len;
 873		if (copy < length)
 874			copy = maxfraglen - skb->len;
 875		if (copy <= 0) {
 876			char *data;
 877			unsigned int datalen;
 878			unsigned int fraglen;
 879			unsigned int fraggap;
 880			unsigned int alloclen;
 881			struct sk_buff *skb_prev;
 882alloc_new_skb:
 883			skb_prev = skb;
 884			if (skb_prev)
 885				fraggap = skb_prev->len - maxfraglen;
 886			else
 887				fraggap = 0;
 888
 889			/*
 890			 * If remaining data exceeds the mtu,
 891			 * we know we need more fragment(s).
 892			 */
 893			datalen = length + fraggap;
 894			if (datalen > mtu - fragheaderlen)
 895				datalen = maxfraglen - fragheaderlen;
 896			fraglen = datalen + fragheaderlen;
 897
 898			if ((flags & MSG_MORE) &&
 899			    !(rt->dst.dev->features&NETIF_F_SG))
 900				alloclen = mtu;
 901			else
 902				alloclen = fraglen;
 903
 904			alloclen += exthdrlen;
 905
 906			/* The last fragment gets additional space at tail.
 907			 * Note, with MSG_MORE we overallocate on fragments,
 908			 * because we have no idea what fragment will be
 909			 * the last.
 910			 */
 911			if (datalen == length + fraggap)
 912				alloclen += rt->dst.trailer_len;
 913
 914			if (transhdrlen) {
 915				skb = sock_alloc_send_skb(sk,
 916						alloclen + hh_len + 15,
 917						(flags & MSG_DONTWAIT), &err);
 918			} else {
 919				skb = NULL;
 920				if (atomic_read(&sk->sk_wmem_alloc) <=
 921				    2 * sk->sk_sndbuf)
 922					skb = sock_wmalloc(sk,
 923							   alloclen + hh_len + 15, 1,
 924							   sk->sk_allocation);
 925				if (unlikely(skb == NULL))
 926					err = -ENOBUFS;
 927				else
 928					/* only the initial fragment is
 929					   time stamped */
 930					cork->tx_flags = 0;
 931			}
 932			if (skb == NULL)
 933				goto error;
 934
 935			/*
 936			 *	Fill in the control structures
 937			 */
 938			skb->ip_summed = csummode;
 939			skb->csum = 0;
 940			skb_reserve(skb, hh_len);
 
 
 941			skb_shinfo(skb)->tx_flags = cork->tx_flags;
 
 
 
 942
 943			/*
 944			 *	Find where to start putting bytes.
 945			 */
 946			data = skb_put(skb, fraglen + exthdrlen);
 947			skb_set_network_header(skb, exthdrlen);
 948			skb->transport_header = (skb->network_header +
 949						 fragheaderlen);
 950			data += fragheaderlen + exthdrlen;
 951
 952			if (fraggap) {
 953				skb->csum = skb_copy_and_csum_bits(
 954					skb_prev, maxfraglen,
 955					data + transhdrlen, fraggap, 0);
 956				skb_prev->csum = csum_sub(skb_prev->csum,
 957							  skb->csum);
 958				data += fraggap;
 959				pskb_trim_unique(skb_prev, maxfraglen);
 960			}
 961
 962			copy = datalen - transhdrlen - fraggap;
 963			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
 964				err = -EFAULT;
 965				kfree_skb(skb);
 966				goto error;
 967			}
 968
 969			offset += copy;
 970			length -= datalen - fraggap;
 971			transhdrlen = 0;
 972			exthdrlen = 0;
 973			csummode = CHECKSUM_NONE;
 974
 
 
 
 975			/*
 976			 * Put the packet on the pending queue.
 977			 */
 
 
 
 
 
 978			__skb_queue_tail(queue, skb);
 979			continue;
 980		}
 981
 982		if (copy > length)
 983			copy = length;
 984
 985		if (!(rt->dst.dev->features&NETIF_F_SG)) {
 
 986			unsigned int off;
 987
 988			off = skb->len;
 989			if (getfrag(from, skb_put(skb, copy),
 990					offset, copy, off, skb) < 0) {
 991				__skb_trim(skb, off);
 992				err = -EFAULT;
 993				goto error;
 994			}
 995		} else {
 996			int i = skb_shinfo(skb)->nr_frags;
 997			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
 998			struct page *page = cork->page;
 999			int off = cork->off;
1000			unsigned int left;
1001
1002			if (page && (left = PAGE_SIZE - off) > 0) {
1003				if (copy >= left)
1004					copy = left;
1005				if (page != skb_frag_page(frag)) {
1006					if (i == MAX_SKB_FRAGS) {
1007						err = -EMSGSIZE;
1008						goto error;
1009					}
1010					skb_fill_page_desc(skb, i, page, off, 0);
1011					skb_frag_ref(skb, i);
1012					frag = &skb_shinfo(skb)->frags[i];
1013				}
1014			} else if (i < MAX_SKB_FRAGS) {
1015				if (copy > PAGE_SIZE)
1016					copy = PAGE_SIZE;
1017				page = alloc_pages(sk->sk_allocation, 0);
1018				if (page == NULL)  {
1019					err = -ENOMEM;
1020					goto error;
1021				}
1022				cork->page = page;
1023				cork->off = 0;
1024
1025				skb_fill_page_desc(skb, i, page, 0, 0);
1026				frag = &skb_shinfo(skb)->frags[i];
1027			} else {
1028				err = -EMSGSIZE;
1029				goto error;
1030			}
1031			if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1032				    offset, copy, skb->len, skb) < 0) {
1033				err = -EFAULT;
1034				goto error;
1035			}
1036			cork->off += copy;
1037			skb_frag_size_add(frag, copy);
 
1038			skb->len += copy;
1039			skb->data_len += copy;
1040			skb->truesize += copy;
1041			atomic_add(copy, &sk->sk_wmem_alloc);
1042		}
1043		offset += copy;
1044		length -= copy;
1045	}
1046
 
 
1047	return 0;
1048
 
 
1049error:
1050	cork->length -= length;
1051	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
 
1052	return err;
1053}
1054
1055static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1056			 struct ipcm_cookie *ipc, struct rtable **rtp)
1057{
1058	struct inet_sock *inet = inet_sk(sk);
1059	struct ip_options_rcu *opt;
1060	struct rtable *rt;
1061
 
 
 
 
1062	/*
1063	 * setup for corking.
1064	 */
1065	opt = ipc->opt;
1066	if (opt) {
1067		if (cork->opt == NULL) {
1068			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1069					    sk->sk_allocation);
1070			if (unlikely(cork->opt == NULL))
1071				return -ENOBUFS;
1072		}
1073		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1074		cork->flags |= IPCORK_OPT;
1075		cork->addr = ipc->addr;
1076	}
1077	rt = *rtp;
1078	if (unlikely(!rt))
1079		return -EFAULT;
1080	/*
1081	 * We steal reference to this route, caller should not release it
1082	 */
1083	*rtp = NULL;
1084	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1085			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1086	cork->dst = &rt->dst;
1087	cork->length = 0;
 
 
 
1088	cork->tx_flags = ipc->tx_flags;
1089	cork->page = NULL;
1090	cork->off = 0;
1091
1092	return 0;
1093}
1094
1095/*
1096 *	ip_append_data() and ip_append_page() can make one large IP datagram
1097 *	from many pieces of data. Each pieces will be holded on the socket
1098 *	until ip_push_pending_frames() is called. Each piece can be a page
1099 *	or non-page data.
1100 *
1101 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1102 *	this interface potentially.
1103 *
1104 *	LATER: length must be adjusted by pad at tail, when it is required.
1105 */
1106int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1107		   int getfrag(void *from, char *to, int offset, int len,
1108			       int odd, struct sk_buff *skb),
1109		   void *from, int length, int transhdrlen,
1110		   struct ipcm_cookie *ipc, struct rtable **rtp,
1111		   unsigned int flags)
1112{
1113	struct inet_sock *inet = inet_sk(sk);
1114	int err;
1115
1116	if (flags&MSG_PROBE)
1117		return 0;
1118
1119	if (skb_queue_empty(&sk->sk_write_queue)) {
1120		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1121		if (err)
1122			return err;
1123	} else {
1124		transhdrlen = 0;
1125	}
1126
1127	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
 
1128				from, length, transhdrlen, flags);
1129}
1130
1131ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1132		       int offset, size_t size, int flags)
1133{
1134	struct inet_sock *inet = inet_sk(sk);
1135	struct sk_buff *skb;
1136	struct rtable *rt;
1137	struct ip_options *opt = NULL;
1138	struct inet_cork *cork;
1139	int hh_len;
1140	int mtu;
1141	int len;
1142	int err;
1143	unsigned int maxfraglen, fragheaderlen, fraggap;
1144
1145	if (inet->hdrincl)
1146		return -EPERM;
1147
1148	if (flags&MSG_PROBE)
1149		return 0;
1150
1151	if (skb_queue_empty(&sk->sk_write_queue))
1152		return -EINVAL;
1153
1154	cork = &inet->cork.base;
1155	rt = (struct rtable *)cork->dst;
1156	if (cork->flags & IPCORK_OPT)
1157		opt = cork->opt;
1158
1159	if (!(rt->dst.dev->features&NETIF_F_SG))
1160		return -EOPNOTSUPP;
1161
1162	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1163	mtu = cork->fragsize;
1164
1165	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1166	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 
1167
1168	if (cork->length + size > 0xFFFF - fragheaderlen) {
1169		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
 
1170		return -EMSGSIZE;
1171	}
1172
1173	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
 
1174		return -EINVAL;
1175
1176	cork->length += size;
1177	if ((size + skb->len > mtu) &&
1178	    (sk->sk_protocol == IPPROTO_UDP) &&
1179	    (rt->dst.dev->features & NETIF_F_UFO)) {
1180		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1181		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1182	}
1183
1184
1185	while (size > 0) {
1186		int i;
1187
1188		if (skb_is_gso(skb))
1189			len = size;
1190		else {
1191
1192			/* Check if the remaining data fits into current packet. */
1193			len = mtu - skb->len;
1194			if (len < size)
1195				len = maxfraglen - skb->len;
1196		}
1197		if (len <= 0) {
1198			struct sk_buff *skb_prev;
1199			int alloclen;
1200
1201			skb_prev = skb;
1202			fraggap = skb_prev->len - maxfraglen;
1203
1204			alloclen = fragheaderlen + hh_len + fraggap + 15;
1205			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1206			if (unlikely(!skb)) {
1207				err = -ENOBUFS;
1208				goto error;
1209			}
1210
1211			/*
1212			 *	Fill in the control structures
1213			 */
1214			skb->ip_summed = CHECKSUM_NONE;
1215			skb->csum = 0;
1216			skb_reserve(skb, hh_len);
1217
1218			/*
1219			 *	Find where to start putting bytes.
1220			 */
1221			skb_put(skb, fragheaderlen + fraggap);
1222			skb_reset_network_header(skb);
1223			skb->transport_header = (skb->network_header +
1224						 fragheaderlen);
1225			if (fraggap) {
1226				skb->csum = skb_copy_and_csum_bits(skb_prev,
1227								   maxfraglen,
1228						    skb_transport_header(skb),
1229								   fraggap, 0);
1230				skb_prev->csum = csum_sub(skb_prev->csum,
1231							  skb->csum);
1232				pskb_trim_unique(skb_prev, maxfraglen);
1233			}
1234
1235			/*
1236			 * Put the packet on the pending queue.
1237			 */
1238			__skb_queue_tail(&sk->sk_write_queue, skb);
1239			continue;
1240		}
1241
1242		i = skb_shinfo(skb)->nr_frags;
1243		if (len > size)
1244			len = size;
1245		if (skb_can_coalesce(skb, i, page, offset)) {
1246			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1247		} else if (i < MAX_SKB_FRAGS) {
1248			get_page(page);
1249			skb_fill_page_desc(skb, i, page, offset, len);
1250		} else {
1251			err = -EMSGSIZE;
1252			goto error;
1253		}
1254
1255		if (skb->ip_summed == CHECKSUM_NONE) {
1256			__wsum csum;
1257			csum = csum_page(page, offset, len);
1258			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1259		}
1260
1261		skb->len += len;
1262		skb->data_len += len;
1263		skb->truesize += len;
1264		atomic_add(len, &sk->sk_wmem_alloc);
1265		offset += len;
1266		size -= len;
1267	}
1268	return 0;
1269
1270error:
1271	cork->length -= size;
1272	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1273	return err;
1274}
1275
1276static void ip_cork_release(struct inet_cork *cork)
1277{
1278	cork->flags &= ~IPCORK_OPT;
1279	kfree(cork->opt);
1280	cork->opt = NULL;
1281	dst_release(cork->dst);
1282	cork->dst = NULL;
1283}
1284
1285/*
1286 *	Combined all pending IP fragments on the socket as one IP datagram
1287 *	and push them out.
1288 */
1289struct sk_buff *__ip_make_skb(struct sock *sk,
1290			      struct flowi4 *fl4,
1291			      struct sk_buff_head *queue,
1292			      struct inet_cork *cork)
1293{
1294	struct sk_buff *skb, *tmp_skb;
1295	struct sk_buff **tail_skb;
1296	struct inet_sock *inet = inet_sk(sk);
1297	struct net *net = sock_net(sk);
1298	struct ip_options *opt = NULL;
1299	struct rtable *rt = (struct rtable *)cork->dst;
1300	struct iphdr *iph;
1301	__be16 df = 0;
1302	__u8 ttl;
1303
1304	if ((skb = __skb_dequeue(queue)) == NULL)
 
1305		goto out;
1306	tail_skb = &(skb_shinfo(skb)->frag_list);
1307
1308	/* move skb->data to ip header from ext header */
1309	if (skb->data < skb_network_header(skb))
1310		__skb_pull(skb, skb_network_offset(skb));
1311	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1312		__skb_pull(tmp_skb, skb_network_header_len(skb));
1313		*tail_skb = tmp_skb;
1314		tail_skb = &(tmp_skb->next);
1315		skb->len += tmp_skb->len;
1316		skb->data_len += tmp_skb->len;
1317		skb->truesize += tmp_skb->truesize;
1318		tmp_skb->destructor = NULL;
1319		tmp_skb->sk = NULL;
1320	}
1321
1322	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1323	 * to fragment the frame generated here. No matter, what transforms
1324	 * how transforms change size of the packet, it will come out.
1325	 */
1326	if (inet->pmtudisc < IP_PMTUDISC_DO)
1327		skb->local_df = 1;
1328
1329	/* DF bit is set when we want to see DF on outgoing frames.
1330	 * If local_df is set too, we still allow to fragment this frame
1331	 * locally. */
1332	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
 
1333	    (skb->len <= dst_mtu(&rt->dst) &&
1334	     ip_dont_fragment(sk, &rt->dst)))
1335		df = htons(IP_DF);
1336
1337	if (cork->flags & IPCORK_OPT)
1338		opt = cork->opt;
1339
1340	if (rt->rt_type == RTN_MULTICAST)
 
 
1341		ttl = inet->mc_ttl;
1342	else
1343		ttl = ip_select_ttl(inet, &rt->dst);
1344
1345	iph = (struct iphdr *)skb->data;
1346	iph->version = 4;
1347	iph->ihl = 5;
1348	iph->tos = inet->tos;
1349	iph->frag_off = df;
1350	ip_select_ident(iph, &rt->dst, sk);
1351	iph->ttl = ttl;
1352	iph->protocol = sk->sk_protocol;
1353	ip_copy_addrs(iph, fl4);
 
1354
1355	if (opt) {
1356		iph->ihl += opt->optlen>>2;
1357		ip_options_build(skb, opt, cork->addr, rt, 0);
1358	}
1359
1360	skb->priority = sk->sk_priority;
1361	skb->mark = sk->sk_mark;
1362	/*
1363	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1364	 * on dst refcount
1365	 */
1366	cork->dst = NULL;
1367	skb_dst_set(skb, &rt->dst);
1368
1369	if (iph->protocol == IPPROTO_ICMP)
1370		icmp_out_count(net, ((struct icmphdr *)
1371			skb_transport_header(skb))->type);
1372
1373	ip_cork_release(cork);
1374out:
1375	return skb;
1376}
1377
1378int ip_send_skb(struct sk_buff *skb)
1379{
1380	struct net *net = sock_net(skb->sk);
1381	int err;
1382
1383	err = ip_local_out(skb);
1384	if (err) {
1385		if (err > 0)
1386			err = net_xmit_errno(err);
1387		if (err)
1388			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1389	}
1390
1391	return err;
1392}
1393
1394int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1395{
1396	struct sk_buff *skb;
1397
1398	skb = ip_finish_skb(sk, fl4);
1399	if (!skb)
1400		return 0;
1401
1402	/* Netfilter gets whole the not fragmented skb. */
1403	return ip_send_skb(skb);
1404}
1405
1406/*
1407 *	Throw away all pending data on the socket.
1408 */
1409static void __ip_flush_pending_frames(struct sock *sk,
1410				      struct sk_buff_head *queue,
1411				      struct inet_cork *cork)
1412{
1413	struct sk_buff *skb;
1414
1415	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1416		kfree_skb(skb);
1417
1418	ip_cork_release(cork);
1419}
1420
1421void ip_flush_pending_frames(struct sock *sk)
1422{
1423	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1424}
1425
1426struct sk_buff *ip_make_skb(struct sock *sk,
1427			    struct flowi4 *fl4,
1428			    int getfrag(void *from, char *to, int offset,
1429					int len, int odd, struct sk_buff *skb),
1430			    void *from, int length, int transhdrlen,
1431			    struct ipcm_cookie *ipc, struct rtable **rtp,
1432			    unsigned int flags)
1433{
1434	struct inet_cork cork;
1435	struct sk_buff_head queue;
1436	int err;
1437
1438	if (flags & MSG_PROBE)
1439		return NULL;
1440
1441	__skb_queue_head_init(&queue);
1442
1443	cork.flags = 0;
1444	cork.addr = 0;
1445	cork.opt = NULL;
1446	err = ip_setup_cork(sk, &cork, ipc, rtp);
1447	if (err)
1448		return ERR_PTR(err);
1449
1450	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
 
1451			       from, length, transhdrlen, flags);
1452	if (err) {
1453		__ip_flush_pending_frames(sk, &queue, &cork);
1454		return ERR_PTR(err);
1455	}
1456
1457	return __ip_make_skb(sk, fl4, &queue, &cork);
1458}
1459
1460/*
1461 *	Fetch data from kernel space and fill in checksum if needed.
1462 */
1463static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1464			      int len, int odd, struct sk_buff *skb)
1465{
1466	__wsum csum;
1467
1468	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1469	skb->csum = csum_block_add(skb->csum, csum, odd);
1470	return 0;
1471}
1472
1473/*
1474 *	Generic function to send a packet as reply to another packet.
1475 *	Used to send TCP resets so far. ICMP should use this function too.
1476 *
1477 *	Should run single threaded per socket because it uses the sock
1478 *     	structure to pass arguments.
1479 */
1480void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1481		   const struct ip_reply_arg *arg, unsigned int len)
 
 
 
1482{
1483	struct inet_sock *inet = inet_sk(sk);
1484	struct ip_options_data replyopts;
1485	struct ipcm_cookie ipc;
1486	struct flowi4 fl4;
1487	struct rtable *rt = skb_rtable(skb);
 
 
 
 
1488
1489	if (ip_options_echo(&replyopts.opt.opt, skb))
1490		return;
1491
1492	ipc.addr = daddr;
1493	ipc.opt = NULL;
1494	ipc.tx_flags = 0;
 
 
1495
1496	if (replyopts.opt.opt.optlen) {
1497		ipc.opt = &replyopts.opt;
1498
1499		if (replyopts.opt.opt.srr)
1500			daddr = replyopts.opt.opt.faddr;
1501	}
1502
1503	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
 
 
 
 
 
1504			   RT_TOS(arg->tos),
1505			   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1506			   ip_reply_arg_flowi_flags(arg),
1507			   daddr, rt->rt_spec_dst,
1508			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
 
1509	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1510	rt = ip_route_output_key(sock_net(sk), &fl4);
1511	if (IS_ERR(rt))
1512		return;
1513
1514	/* And let IP do all the hard work.
1515
1516	   This chunk is not reenterable, hence spinlock.
1517	   Note that it uses the fact, that this function is called
1518	   with locally disabled BH and that sk cannot be already spinlocked.
1519	 */
1520	bh_lock_sock(sk);
1521	inet->tos = arg->tos;
1522	sk->sk_priority = skb->priority;
1523	sk->sk_protocol = ip_hdr(skb)->protocol;
1524	sk->sk_bound_dev_if = arg->bound_dev_if;
1525	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1526		       &ipc, &rt, MSG_DONTWAIT);
1527	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
 
 
 
 
 
 
 
 
1528		if (arg->csumoffset >= 0)
1529			*((__sum16 *)skb_transport_header(skb) +
1530			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1531								arg->csum));
1532		skb->ip_summed = CHECKSUM_NONE;
1533		ip_push_pending_frames(sk, &fl4);
1534	}
1535
1536	bh_unlock_sock(sk);
1537
1538	ip_rt_put(rt);
1539}
1540
1541void __init ip_init(void)
1542{
1543	ip_rt_init();
1544	inet_initpeers();
1545
1546#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1547	igmp_mc_proc_init();
1548#endif
1549}