Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/crypto/hooks.c
  3 *
  4 * Encryption hooks for higher-level filesystem operations.
  5 */
  6
  7#include <linux/ratelimit.h>
  8#include "fscrypt_private.h"
  9
 10/**
 11 * fscrypt_file_open - prepare to open a possibly-encrypted regular file
 12 * @inode: the inode being opened
 13 * @filp: the struct file being set up
 14 *
 15 * Currently, an encrypted regular file can only be opened if its encryption key
 16 * is available; access to the raw encrypted contents is not supported.
 17 * Therefore, we first set up the inode's encryption key (if not already done)
 18 * and return an error if it's unavailable.
 19 *
 20 * We also verify that if the parent directory (from the path via which the file
 21 * is being opened) is encrypted, then the inode being opened uses the same
 22 * encryption policy.  This is needed as part of the enforcement that all files
 23 * in an encrypted directory tree use the same encryption policy, as a
 24 * protection against certain types of offline attacks.  Note that this check is
 25 * needed even when opening an *unencrypted* file, since it's forbidden to have
 26 * an unencrypted file in an encrypted directory.
 27 *
 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29 */
 30int fscrypt_file_open(struct inode *inode, struct file *filp)
 31{
 32	int err;
 33	struct dentry *dir;
 34
 35	err = fscrypt_require_key(inode);
 36	if (err)
 37		return err;
 38
 39	dir = dget_parent(file_dentry(filp));
 40	if (IS_ENCRYPTED(d_inode(dir)) &&
 41	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 42		pr_warn_ratelimited("fscrypt: inconsistent encryption contexts: %lu/%lu",
 43				    d_inode(dir)->i_ino, inode->i_ino);
 
 44		err = -EPERM;
 45	}
 46	dput(dir);
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(fscrypt_file_open);
 50
 51int __fscrypt_prepare_link(struct inode *inode, struct inode *dir)
 
 52{
 53	int err;
 54
 55	err = fscrypt_require_key(dir);
 56	if (err)
 57		return err;
 58
 
 
 
 
 59	if (!fscrypt_has_permitted_context(dir, inode))
 60		return -EPERM;
 61
 62	return 0;
 63}
 64EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 65
 66int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 67			     struct inode *new_dir, struct dentry *new_dentry,
 68			     unsigned int flags)
 69{
 70	int err;
 71
 72	err = fscrypt_require_key(old_dir);
 73	if (err)
 74		return err;
 75
 76	err = fscrypt_require_key(new_dir);
 77	if (err)
 78		return err;
 79
 
 
 
 
 
 80	if (old_dir != new_dir) {
 81		if (IS_ENCRYPTED(new_dir) &&
 82		    !fscrypt_has_permitted_context(new_dir,
 83						   d_inode(old_dentry)))
 84			return -EPERM;
 85
 86		if ((flags & RENAME_EXCHANGE) &&
 87		    IS_ENCRYPTED(old_dir) &&
 88		    !fscrypt_has_permitted_context(old_dir,
 89						   d_inode(new_dentry)))
 90			return -EPERM;
 91	}
 92	return 0;
 93}
 94EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 95
 96int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry)
 
 97{
 98	int err = fscrypt_get_encryption_info(dir);
 99
100	if (err)
101		return err;
102
103	if (fscrypt_has_encryption_key(dir)) {
104		spin_lock(&dentry->d_lock);
105		dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
106		spin_unlock(&dentry->d_lock);
 
107	}
108
109	d_set_d_op(dentry, &fscrypt_d_ops);
110	return 0;
111}
112EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
114int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
115			      unsigned int max_len,
116			      struct fscrypt_str *disk_link)
117{
118	int err;
119
120	/*
121	 * To calculate the size of the encrypted symlink target we need to know
122	 * the amount of NUL padding, which is determined by the flags set in
123	 * the encryption policy which will be inherited from the directory.
124	 * The easiest way to get access to this is to just load the directory's
125	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
126	 *
127	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
128	 */
129	err = fscrypt_get_encryption_info(dir);
130	if (err)
131		return err;
132	if (!fscrypt_has_encryption_key(dir))
133		return -ENOKEY;
134
135	/*
136	 * Calculate the size of the encrypted symlink and verify it won't
137	 * exceed max_len.  Note that for historical reasons, encrypted symlink
138	 * targets are prefixed with the ciphertext length, despite this
139	 * actually being redundant with i_size.  This decreases by 2 bytes the
140	 * longest symlink target we can accept.
141	 *
142	 * We could recover 1 byte by not counting a null terminator, but
143	 * counting it (even though it is meaningless for ciphertext) is simpler
144	 * for now since filesystems will assume it is there and subtract it.
145	 */
146	if (!fscrypt_fname_encrypted_size(dir, len,
147					  max_len - sizeof(struct fscrypt_symlink_data),
148					  &disk_link->len))
149		return -ENAMETOOLONG;
150	disk_link->len += sizeof(struct fscrypt_symlink_data);
151
152	disk_link->name = NULL;
153	return 0;
154}
155EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
156
157int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
158			      unsigned int len, struct fscrypt_str *disk_link)
159{
160	int err;
161	struct qstr iname = QSTR_INIT(target, len);
162	struct fscrypt_symlink_data *sd;
163	unsigned int ciphertext_len;
164
165	err = fscrypt_require_key(inode);
166	if (err)
167		return err;
168
169	if (disk_link->name) {
170		/* filesystem-provided buffer */
171		sd = (struct fscrypt_symlink_data *)disk_link->name;
172	} else {
173		sd = kmalloc(disk_link->len, GFP_NOFS);
174		if (!sd)
175			return -ENOMEM;
176	}
177	ciphertext_len = disk_link->len - sizeof(*sd);
178	sd->len = cpu_to_le16(ciphertext_len);
179
180	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
181	if (err) {
182		if (!disk_link->name)
183			kfree(sd);
184		return err;
185	}
186	/*
187	 * Null-terminating the ciphertext doesn't make sense, but we still
188	 * count the null terminator in the length, so we might as well
189	 * initialize it just in case the filesystem writes it out.
190	 */
191	sd->encrypted_path[ciphertext_len] = '\0';
192
 
 
 
 
 
 
193	if (!disk_link->name)
194		disk_link->name = (unsigned char *)sd;
195	return 0;
 
 
 
 
 
196}
197EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
198
199/**
200 * fscrypt_get_symlink - get the target of an encrypted symlink
201 * @inode: the symlink inode
202 * @caddr: the on-disk contents of the symlink
203 * @max_size: size of @caddr buffer
204 * @done: if successful, will be set up to free the returned target
205 *
206 * If the symlink's encryption key is available, we decrypt its target.
207 * Otherwise, we encode its target for presentation.
208 *
209 * This may sleep, so the filesystem must have dropped out of RCU mode already.
210 *
211 * Return: the presentable symlink target or an ERR_PTR()
212 */
213const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
214				unsigned int max_size,
215				struct delayed_call *done)
216{
217	const struct fscrypt_symlink_data *sd;
218	struct fscrypt_str cstr, pstr;
 
219	int err;
220
221	/* This is for encrypted symlinks only */
222	if (WARN_ON(!IS_ENCRYPTED(inode)))
223		return ERR_PTR(-EINVAL);
224
 
 
 
 
 
225	/*
226	 * Try to set up the symlink's encryption key, but we can continue
227	 * regardless of whether the key is available or not.
228	 */
229	err = fscrypt_get_encryption_info(inode);
230	if (err)
231		return ERR_PTR(err);
 
232
233	/*
234	 * For historical reasons, encrypted symlink targets are prefixed with
235	 * the ciphertext length, even though this is redundant with i_size.
236	 */
237
238	if (max_size < sizeof(*sd))
239		return ERR_PTR(-EUCLEAN);
240	sd = caddr;
241	cstr.name = (unsigned char *)sd->encrypted_path;
242	cstr.len = le16_to_cpu(sd->len);
243
244	if (cstr.len == 0)
245		return ERR_PTR(-EUCLEAN);
246
247	if (cstr.len + sizeof(*sd) - 1 > max_size)
248		return ERR_PTR(-EUCLEAN);
249
250	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
251	if (err)
252		return ERR_PTR(err);
253
254	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
255	if (err)
256		goto err_kfree;
257
258	err = -EUCLEAN;
259	if (pstr.name[0] == '\0')
260		goto err_kfree;
261
262	pstr.name[pstr.len] = '\0';
263	set_delayed_call(done, kfree_link, pstr.name);
 
 
 
 
 
 
 
 
 
 
264	return pstr.name;
265
266err_kfree:
267	kfree(pstr.name);
268	return ERR_PTR(err);
269}
270EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/crypto/hooks.c
  4 *
  5 * Encryption hooks for higher-level filesystem operations.
  6 */
  7
 
  8#include "fscrypt_private.h"
  9
 10/**
 11 * fscrypt_file_open - prepare to open a possibly-encrypted regular file
 12 * @inode: the inode being opened
 13 * @filp: the struct file being set up
 14 *
 15 * Currently, an encrypted regular file can only be opened if its encryption key
 16 * is available; access to the raw encrypted contents is not supported.
 17 * Therefore, we first set up the inode's encryption key (if not already done)
 18 * and return an error if it's unavailable.
 19 *
 20 * We also verify that if the parent directory (from the path via which the file
 21 * is being opened) is encrypted, then the inode being opened uses the same
 22 * encryption policy.  This is needed as part of the enforcement that all files
 23 * in an encrypted directory tree use the same encryption policy, as a
 24 * protection against certain types of offline attacks.  Note that this check is
 25 * needed even when opening an *unencrypted* file, since it's forbidden to have
 26 * an unencrypted file in an encrypted directory.
 27 *
 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29 */
 30int fscrypt_file_open(struct inode *inode, struct file *filp)
 31{
 32	int err;
 33	struct dentry *dir;
 34
 35	err = fscrypt_require_key(inode);
 36	if (err)
 37		return err;
 38
 39	dir = dget_parent(file_dentry(filp));
 40	if (IS_ENCRYPTED(d_inode(dir)) &&
 41	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 42		fscrypt_warn(inode,
 43			     "Inconsistent encryption context (parent directory: %lu)",
 44			     d_inode(dir)->i_ino);
 45		err = -EPERM;
 46	}
 47	dput(dir);
 48	return err;
 49}
 50EXPORT_SYMBOL_GPL(fscrypt_file_open);
 51
 52int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
 53			   struct dentry *dentry)
 54{
 55	int err;
 56
 57	err = fscrypt_require_key(dir);
 58	if (err)
 59		return err;
 60
 61	/* ... in case we looked up ciphertext name before key was added */
 62	if (dentry->d_flags & DCACHE_ENCRYPTED_NAME)
 63		return -ENOKEY;
 64
 65	if (!fscrypt_has_permitted_context(dir, inode))
 66		return -EXDEV;
 67
 68	return 0;
 69}
 70EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 71
 72int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 73			     struct inode *new_dir, struct dentry *new_dentry,
 74			     unsigned int flags)
 75{
 76	int err;
 77
 78	err = fscrypt_require_key(old_dir);
 79	if (err)
 80		return err;
 81
 82	err = fscrypt_require_key(new_dir);
 83	if (err)
 84		return err;
 85
 86	/* ... in case we looked up ciphertext name(s) before key was added */
 87	if ((old_dentry->d_flags | new_dentry->d_flags) &
 88	    DCACHE_ENCRYPTED_NAME)
 89		return -ENOKEY;
 90
 91	if (old_dir != new_dir) {
 92		if (IS_ENCRYPTED(new_dir) &&
 93		    !fscrypt_has_permitted_context(new_dir,
 94						   d_inode(old_dentry)))
 95			return -EXDEV;
 96
 97		if ((flags & RENAME_EXCHANGE) &&
 98		    IS_ENCRYPTED(old_dir) &&
 99		    !fscrypt_has_permitted_context(old_dir,
100						   d_inode(new_dentry)))
101			return -EXDEV;
102	}
103	return 0;
104}
105EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
106
107int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
108			     struct fscrypt_name *fname)
109{
110	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
111
112	if (err && err != -ENOENT)
113		return err;
114
115	if (fname->is_ciphertext_name) {
116		spin_lock(&dentry->d_lock);
117		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
118		spin_unlock(&dentry->d_lock);
119		d_set_d_op(dentry, &fscrypt_d_ops);
120	}
121	return err;
 
 
122}
123EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
124
125int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
126			      unsigned int max_len,
127			      struct fscrypt_str *disk_link)
128{
129	int err;
130
131	/*
132	 * To calculate the size of the encrypted symlink target we need to know
133	 * the amount of NUL padding, which is determined by the flags set in
134	 * the encryption policy which will be inherited from the directory.
135	 * The easiest way to get access to this is to just load the directory's
136	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
137	 *
138	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
139	 */
140	err = fscrypt_get_encryption_info(dir);
141	if (err)
142		return err;
143	if (!fscrypt_has_encryption_key(dir))
144		return -ENOKEY;
145
146	/*
147	 * Calculate the size of the encrypted symlink and verify it won't
148	 * exceed max_len.  Note that for historical reasons, encrypted symlink
149	 * targets are prefixed with the ciphertext length, despite this
150	 * actually being redundant with i_size.  This decreases by 2 bytes the
151	 * longest symlink target we can accept.
152	 *
153	 * We could recover 1 byte by not counting a null terminator, but
154	 * counting it (even though it is meaningless for ciphertext) is simpler
155	 * for now since filesystems will assume it is there and subtract it.
156	 */
157	if (!fscrypt_fname_encrypted_size(dir, len,
158					  max_len - sizeof(struct fscrypt_symlink_data),
159					  &disk_link->len))
160		return -ENAMETOOLONG;
161	disk_link->len += sizeof(struct fscrypt_symlink_data);
162
163	disk_link->name = NULL;
164	return 0;
165}
166EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
167
168int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
169			      unsigned int len, struct fscrypt_str *disk_link)
170{
171	int err;
172	struct qstr iname = QSTR_INIT(target, len);
173	struct fscrypt_symlink_data *sd;
174	unsigned int ciphertext_len;
175
176	err = fscrypt_require_key(inode);
177	if (err)
178		return err;
179
180	if (disk_link->name) {
181		/* filesystem-provided buffer */
182		sd = (struct fscrypt_symlink_data *)disk_link->name;
183	} else {
184		sd = kmalloc(disk_link->len, GFP_NOFS);
185		if (!sd)
186			return -ENOMEM;
187	}
188	ciphertext_len = disk_link->len - sizeof(*sd);
189	sd->len = cpu_to_le16(ciphertext_len);
190
191	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
192	if (err)
193		goto err_free_sd;
194
 
 
195	/*
196	 * Null-terminating the ciphertext doesn't make sense, but we still
197	 * count the null terminator in the length, so we might as well
198	 * initialize it just in case the filesystem writes it out.
199	 */
200	sd->encrypted_path[ciphertext_len] = '\0';
201
202	/* Cache the plaintext symlink target for later use by get_link() */
203	err = -ENOMEM;
204	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
205	if (!inode->i_link)
206		goto err_free_sd;
207
208	if (!disk_link->name)
209		disk_link->name = (unsigned char *)sd;
210	return 0;
211
212err_free_sd:
213	if (!disk_link->name)
214		kfree(sd);
215	return err;
216}
217EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
218
219/**
220 * fscrypt_get_symlink - get the target of an encrypted symlink
221 * @inode: the symlink inode
222 * @caddr: the on-disk contents of the symlink
223 * @max_size: size of @caddr buffer
224 * @done: if successful, will be set up to free the returned target if needed
225 *
226 * If the symlink's encryption key is available, we decrypt its target.
227 * Otherwise, we encode its target for presentation.
228 *
229 * This may sleep, so the filesystem must have dropped out of RCU mode already.
230 *
231 * Return: the presentable symlink target or an ERR_PTR()
232 */
233const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
234				unsigned int max_size,
235				struct delayed_call *done)
236{
237	const struct fscrypt_symlink_data *sd;
238	struct fscrypt_str cstr, pstr;
239	bool has_key;
240	int err;
241
242	/* This is for encrypted symlinks only */
243	if (WARN_ON(!IS_ENCRYPTED(inode)))
244		return ERR_PTR(-EINVAL);
245
246	/* If the decrypted target is already cached, just return it. */
247	pstr.name = READ_ONCE(inode->i_link);
248	if (pstr.name)
249		return pstr.name;
250
251	/*
252	 * Try to set up the symlink's encryption key, but we can continue
253	 * regardless of whether the key is available or not.
254	 */
255	err = fscrypt_get_encryption_info(inode);
256	if (err)
257		return ERR_PTR(err);
258	has_key = fscrypt_has_encryption_key(inode);
259
260	/*
261	 * For historical reasons, encrypted symlink targets are prefixed with
262	 * the ciphertext length, even though this is redundant with i_size.
263	 */
264
265	if (max_size < sizeof(*sd))
266		return ERR_PTR(-EUCLEAN);
267	sd = caddr;
268	cstr.name = (unsigned char *)sd->encrypted_path;
269	cstr.len = le16_to_cpu(sd->len);
270
271	if (cstr.len == 0)
272		return ERR_PTR(-EUCLEAN);
273
274	if (cstr.len + sizeof(*sd) - 1 > max_size)
275		return ERR_PTR(-EUCLEAN);
276
277	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
278	if (err)
279		return ERR_PTR(err);
280
281	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
282	if (err)
283		goto err_kfree;
284
285	err = -EUCLEAN;
286	if (pstr.name[0] == '\0')
287		goto err_kfree;
288
289	pstr.name[pstr.len] = '\0';
290
291	/*
292	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
293	 * symlink targets encoded without the key, since those become outdated
294	 * once the key is added.  This pairs with the READ_ONCE() above and in
295	 * the VFS path lookup code.
296	 */
297	if (!has_key ||
298	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
299		set_delayed_call(done, kfree_link, pstr.name);
300
301	return pstr.name;
302
303err_kfree:
304	kfree(pstr.name);
305	return ERR_PTR(err);
306}
307EXPORT_SYMBOL_GPL(fscrypt_get_symlink);