Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/crypto/hooks.c
  3 *
  4 * Encryption hooks for higher-level filesystem operations.
  5 */
  6
  7#include <linux/ratelimit.h>
 
  8#include "fscrypt_private.h"
  9
 10/**
 11 * fscrypt_file_open - prepare to open a possibly-encrypted regular file
 12 * @inode: the inode being opened
 13 * @filp: the struct file being set up
 14 *
 15 * Currently, an encrypted regular file can only be opened if its encryption key
 16 * is available; access to the raw encrypted contents is not supported.
 17 * Therefore, we first set up the inode's encryption key (if not already done)
 18 * and return an error if it's unavailable.
 19 *
 20 * We also verify that if the parent directory (from the path via which the file
 21 * is being opened) is encrypted, then the inode being opened uses the same
 22 * encryption policy.  This is needed as part of the enforcement that all files
 23 * in an encrypted directory tree use the same encryption policy, as a
 24 * protection against certain types of offline attacks.  Note that this check is
 25 * needed even when opening an *unencrypted* file, since it's forbidden to have
 26 * an unencrypted file in an encrypted directory.
 27 *
 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29 */
 30int fscrypt_file_open(struct inode *inode, struct file *filp)
 31{
 32	int err;
 33	struct dentry *dir;
 34
 35	err = fscrypt_require_key(inode);
 36	if (err)
 37		return err;
 38
 39	dir = dget_parent(file_dentry(filp));
 40	if (IS_ENCRYPTED(d_inode(dir)) &&
 41	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 42		pr_warn_ratelimited("fscrypt: inconsistent encryption contexts: %lu/%lu",
 43				    d_inode(dir)->i_ino, inode->i_ino);
 
 44		err = -EPERM;
 45	}
 46	dput(dir);
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(fscrypt_file_open);
 50
 51int __fscrypt_prepare_link(struct inode *inode, struct inode *dir)
 
 52{
 53	int err;
 54
 55	err = fscrypt_require_key(dir);
 56	if (err)
 57		return err;
 
 58
 59	if (!fscrypt_has_permitted_context(dir, inode))
 60		return -EPERM;
 61
 62	return 0;
 63}
 64EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 65
 66int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 67			     struct inode *new_dir, struct dentry *new_dentry,
 68			     unsigned int flags)
 69{
 70	int err;
 71
 72	err = fscrypt_require_key(old_dir);
 73	if (err)
 74		return err;
 75
 76	err = fscrypt_require_key(new_dir);
 77	if (err)
 78		return err;
 79
 80	if (old_dir != new_dir) {
 81		if (IS_ENCRYPTED(new_dir) &&
 82		    !fscrypt_has_permitted_context(new_dir,
 83						   d_inode(old_dentry)))
 84			return -EPERM;
 85
 86		if ((flags & RENAME_EXCHANGE) &&
 87		    IS_ENCRYPTED(old_dir) &&
 88		    !fscrypt_has_permitted_context(old_dir,
 89						   d_inode(new_dentry)))
 90			return -EPERM;
 91	}
 92	return 0;
 93}
 94EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 95
 96int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry)
 
 97{
 98	int err = fscrypt_get_encryption_info(dir);
 99
100	if (err)
101		return err;
102
103	if (fscrypt_has_encryption_key(dir)) {
104		spin_lock(&dentry->d_lock);
105		dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
106		spin_unlock(&dentry->d_lock);
107	}
 
 
 
108
109	d_set_d_op(dentry, &fscrypt_d_ops);
 
 
 
 
 
 
 
 
 
110	return 0;
111}
112EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
114int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
115			      unsigned int max_len,
116			      struct fscrypt_str *disk_link)
 
 
 
 
 
 
 
 
 
 
117{
 
 
 
118	int err;
119
120	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121	 * To calculate the size of the encrypted symlink target we need to know
122	 * the amount of NUL padding, which is determined by the flags set in
123	 * the encryption policy which will be inherited from the directory.
124	 * The easiest way to get access to this is to just load the directory's
125	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
126	 *
127	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
128	 */
129	err = fscrypt_get_encryption_info(dir);
130	if (err)
131		return err;
132	if (!fscrypt_has_encryption_key(dir))
133		return -ENOKEY;
 
 
 
 
 
 
134
135	/*
136	 * Calculate the size of the encrypted symlink and verify it won't
137	 * exceed max_len.  Note that for historical reasons, encrypted symlink
138	 * targets are prefixed with the ciphertext length, despite this
139	 * actually being redundant with i_size.  This decreases by 2 bytes the
140	 * longest symlink target we can accept.
141	 *
142	 * We could recover 1 byte by not counting a null terminator, but
143	 * counting it (even though it is meaningless for ciphertext) is simpler
144	 * for now since filesystems will assume it is there and subtract it.
145	 */
146	if (!fscrypt_fname_encrypted_size(dir, len,
147					  max_len - sizeof(struct fscrypt_symlink_data),
148					  &disk_link->len))
149		return -ENAMETOOLONG;
150	disk_link->len += sizeof(struct fscrypt_symlink_data);
151
152	disk_link->name = NULL;
153	return 0;
154}
155EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
156
157int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
158			      unsigned int len, struct fscrypt_str *disk_link)
159{
160	int err;
161	struct qstr iname = QSTR_INIT(target, len);
162	struct fscrypt_symlink_data *sd;
163	unsigned int ciphertext_len;
164
165	err = fscrypt_require_key(inode);
166	if (err)
167		return err;
 
 
 
 
168
169	if (disk_link->name) {
170		/* filesystem-provided buffer */
171		sd = (struct fscrypt_symlink_data *)disk_link->name;
172	} else {
173		sd = kmalloc(disk_link->len, GFP_NOFS);
174		if (!sd)
175			return -ENOMEM;
176	}
177	ciphertext_len = disk_link->len - sizeof(*sd);
178	sd->len = cpu_to_le16(ciphertext_len);
179
180	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
181	if (err) {
182		if (!disk_link->name)
183			kfree(sd);
184		return err;
185	}
186	/*
187	 * Null-terminating the ciphertext doesn't make sense, but we still
188	 * count the null terminator in the length, so we might as well
189	 * initialize it just in case the filesystem writes it out.
190	 */
191	sd->encrypted_path[ciphertext_len] = '\0';
192
 
 
 
 
 
 
193	if (!disk_link->name)
194		disk_link->name = (unsigned char *)sd;
195	return 0;
 
 
 
 
 
196}
197EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
198
199/**
200 * fscrypt_get_symlink - get the target of an encrypted symlink
201 * @inode: the symlink inode
202 * @caddr: the on-disk contents of the symlink
203 * @max_size: size of @caddr buffer
204 * @done: if successful, will be set up to free the returned target
205 *
206 * If the symlink's encryption key is available, we decrypt its target.
207 * Otherwise, we encode its target for presentation.
208 *
209 * This may sleep, so the filesystem must have dropped out of RCU mode already.
210 *
211 * Return: the presentable symlink target or an ERR_PTR()
212 */
213const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
214				unsigned int max_size,
215				struct delayed_call *done)
216{
217	const struct fscrypt_symlink_data *sd;
218	struct fscrypt_str cstr, pstr;
 
219	int err;
220
221	/* This is for encrypted symlinks only */
222	if (WARN_ON(!IS_ENCRYPTED(inode)))
223		return ERR_PTR(-EINVAL);
224
 
 
 
 
 
225	/*
226	 * Try to set up the symlink's encryption key, but we can continue
227	 * regardless of whether the key is available or not.
228	 */
229	err = fscrypt_get_encryption_info(inode);
230	if (err)
231		return ERR_PTR(err);
 
232
233	/*
234	 * For historical reasons, encrypted symlink targets are prefixed with
235	 * the ciphertext length, even though this is redundant with i_size.
236	 */
237
238	if (max_size < sizeof(*sd))
239		return ERR_PTR(-EUCLEAN);
240	sd = caddr;
241	cstr.name = (unsigned char *)sd->encrypted_path;
242	cstr.len = le16_to_cpu(sd->len);
243
244	if (cstr.len == 0)
245		return ERR_PTR(-EUCLEAN);
246
247	if (cstr.len + sizeof(*sd) - 1 > max_size)
248		return ERR_PTR(-EUCLEAN);
249
250	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
251	if (err)
252		return ERR_PTR(err);
253
254	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
255	if (err)
256		goto err_kfree;
257
258	err = -EUCLEAN;
259	if (pstr.name[0] == '\0')
260		goto err_kfree;
261
262	pstr.name[pstr.len] = '\0';
263	set_delayed_call(done, kfree_link, pstr.name);
 
 
 
 
 
 
 
 
 
 
264	return pstr.name;
265
266err_kfree:
267	kfree(pstr.name);
268	return ERR_PTR(err);
269}
270EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/crypto/hooks.c
  4 *
  5 * Encryption hooks for higher-level filesystem operations.
  6 */
  7
  8#include <linux/key.h>
  9
 10#include "fscrypt_private.h"
 11
 12/**
 13 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
 14 * @inode: the inode being opened
 15 * @filp: the struct file being set up
 16 *
 17 * Currently, an encrypted regular file can only be opened if its encryption key
 18 * is available; access to the raw encrypted contents is not supported.
 19 * Therefore, we first set up the inode's encryption key (if not already done)
 20 * and return an error if it's unavailable.
 21 *
 22 * We also verify that if the parent directory (from the path via which the file
 23 * is being opened) is encrypted, then the inode being opened uses the same
 24 * encryption policy.  This is needed as part of the enforcement that all files
 25 * in an encrypted directory tree use the same encryption policy, as a
 26 * protection against certain types of offline attacks.  Note that this check is
 27 * needed even when opening an *unencrypted* file, since it's forbidden to have
 28 * an unencrypted file in an encrypted directory.
 29 *
 30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 31 */
 32int fscrypt_file_open(struct inode *inode, struct file *filp)
 33{
 34	int err;
 35	struct dentry *dir;
 36
 37	err = fscrypt_require_key(inode);
 38	if (err)
 39		return err;
 40
 41	dir = dget_parent(file_dentry(filp));
 42	if (IS_ENCRYPTED(d_inode(dir)) &&
 43	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
 44		fscrypt_warn(inode,
 45			     "Inconsistent encryption context (parent directory: %lu)",
 46			     d_inode(dir)->i_ino);
 47		err = -EPERM;
 48	}
 49	dput(dir);
 50	return err;
 51}
 52EXPORT_SYMBOL_GPL(fscrypt_file_open);
 53
 54int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
 55			   struct dentry *dentry)
 56{
 57	if (fscrypt_is_nokey_name(dentry))
 58		return -ENOKEY;
 59	/*
 60	 * We don't need to separately check that the directory inode's key is
 61	 * available, as it's implied by the dentry not being a no-key name.
 62	 */
 63
 64	if (!fscrypt_has_permitted_context(dir, inode))
 65		return -EXDEV;
 66
 67	return 0;
 68}
 69EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 70
 71int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 72			     struct inode *new_dir, struct dentry *new_dentry,
 73			     unsigned int flags)
 74{
 75	if (fscrypt_is_nokey_name(old_dentry) ||
 76	    fscrypt_is_nokey_name(new_dentry))
 77		return -ENOKEY;
 78	/*
 79	 * We don't need to separately check that the directory inodes' keys are
 80	 * available, as it's implied by the dentries not being no-key names.
 81	 */
 
 
 82
 83	if (old_dir != new_dir) {
 84		if (IS_ENCRYPTED(new_dir) &&
 85		    !fscrypt_has_permitted_context(new_dir,
 86						   d_inode(old_dentry)))
 87			return -EXDEV;
 88
 89		if ((flags & RENAME_EXCHANGE) &&
 90		    IS_ENCRYPTED(old_dir) &&
 91		    !fscrypt_has_permitted_context(old_dir,
 92						   d_inode(new_dentry)))
 93			return -EXDEV;
 94	}
 95	return 0;
 96}
 97EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 98
 99int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
100			     struct fscrypt_name *fname)
101{
102	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
103
104	if (err && err != -ENOENT)
105		return err;
106
107	if (fname->is_nokey_name) {
108		spin_lock(&dentry->d_lock);
109		dentry->d_flags |= DCACHE_NOKEY_NAME;
110		spin_unlock(&dentry->d_lock);
111	}
112	return err;
113}
114EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
115
116int __fscrypt_prepare_readdir(struct inode *dir)
117{
118	return fscrypt_get_encryption_info(dir, true);
119}
120EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
121
122int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
123{
124	if (attr->ia_valid & ATTR_SIZE)
125		return fscrypt_require_key(d_inode(dentry));
126	return 0;
127}
128EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
129
130/**
131 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
132 * @inode: the inode on which flags are being changed
133 * @oldflags: the old flags
134 * @flags: the new flags
135 *
136 * The caller should be holding i_rwsem for write.
137 *
138 * Return: 0 on success; -errno if the flags change isn't allowed or if
139 *	   another error occurs.
140 */
141int fscrypt_prepare_setflags(struct inode *inode,
142			     unsigned int oldflags, unsigned int flags)
143{
144	struct fscrypt_info *ci;
145	struct key *key;
146	struct fscrypt_master_key *mk;
147	int err;
148
149	/*
150	 * When the CASEFOLD flag is set on an encrypted directory, we must
151	 * derive the secret key needed for the dirhash.  This is only possible
152	 * if the directory uses a v2 encryption policy.
153	 */
154	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
155		err = fscrypt_require_key(inode);
156		if (err)
157			return err;
158		ci = inode->i_crypt_info;
159		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
160			return -EINVAL;
161		key = ci->ci_master_key;
162		mk = key->payload.data[0];
163		down_read(&key->sem);
164		if (is_master_key_secret_present(&mk->mk_secret))
165			err = fscrypt_derive_dirhash_key(ci, mk);
166		else
167			err = -ENOKEY;
168		up_read(&key->sem);
169		return err;
170	}
171	return 0;
172}
173
174/**
175 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
176 * @dir: directory in which the symlink is being created
177 * @target: plaintext symlink target
178 * @len: length of @target excluding null terminator
179 * @max_len: space the filesystem has available to store the symlink target
180 * @disk_link: (out) the on-disk symlink target being prepared
181 *
182 * This function computes the size the symlink target will require on-disk,
183 * stores it in @disk_link->len, and validates it against @max_len.  An
184 * encrypted symlink may be longer than the original.
185 *
186 * Additionally, @disk_link->name is set to @target if the symlink will be
187 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
188 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
189 * on-disk target later.  (The reason for the two-step process is that some
190 * filesystems need to know the size of the symlink target before creating the
191 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
192 *
193 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
194 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
195 * occurred while setting up the encryption key.
196 */
197int fscrypt_prepare_symlink(struct inode *dir, const char *target,
198			    unsigned int len, unsigned int max_len,
199			    struct fscrypt_str *disk_link)
200{
201	const union fscrypt_policy *policy;
202
203	/*
204	 * To calculate the size of the encrypted symlink target we need to know
205	 * the amount of NUL padding, which is determined by the flags set in
206	 * the encryption policy which will be inherited from the directory.
 
 
 
 
207	 */
208	policy = fscrypt_policy_to_inherit(dir);
209	if (policy == NULL) {
210		/* Not encrypted */
211		disk_link->name = (unsigned char *)target;
212		disk_link->len = len + 1;
213		if (disk_link->len > max_len)
214			return -ENAMETOOLONG;
215		return 0;
216	}
217	if (IS_ERR(policy))
218		return PTR_ERR(policy);
219
220	/*
221	 * Calculate the size of the encrypted symlink and verify it won't
222	 * exceed max_len.  Note that for historical reasons, encrypted symlink
223	 * targets are prefixed with the ciphertext length, despite this
224	 * actually being redundant with i_size.  This decreases by 2 bytes the
225	 * longest symlink target we can accept.
226	 *
227	 * We could recover 1 byte by not counting a null terminator, but
228	 * counting it (even though it is meaningless for ciphertext) is simpler
229	 * for now since filesystems will assume it is there and subtract it.
230	 */
231	if (!fscrypt_fname_encrypted_size(policy, len,
232					  max_len - sizeof(struct fscrypt_symlink_data),
233					  &disk_link->len))
234		return -ENAMETOOLONG;
235	disk_link->len += sizeof(struct fscrypt_symlink_data);
236
237	disk_link->name = NULL;
238	return 0;
239}
240EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
241
242int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
243			      unsigned int len, struct fscrypt_str *disk_link)
244{
245	int err;
246	struct qstr iname = QSTR_INIT(target, len);
247	struct fscrypt_symlink_data *sd;
248	unsigned int ciphertext_len;
249
250	/*
251	 * fscrypt_prepare_new_inode() should have already set up the new
252	 * symlink inode's encryption key.  We don't wait until now to do it,
253	 * since we may be in a filesystem transaction now.
254	 */
255	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
256		return -ENOKEY;
257
258	if (disk_link->name) {
259		/* filesystem-provided buffer */
260		sd = (struct fscrypt_symlink_data *)disk_link->name;
261	} else {
262		sd = kmalloc(disk_link->len, GFP_NOFS);
263		if (!sd)
264			return -ENOMEM;
265	}
266	ciphertext_len = disk_link->len - sizeof(*sd);
267	sd->len = cpu_to_le16(ciphertext_len);
268
269	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
270				    ciphertext_len);
271	if (err)
272		goto err_free_sd;
273
 
274	/*
275	 * Null-terminating the ciphertext doesn't make sense, but we still
276	 * count the null terminator in the length, so we might as well
277	 * initialize it just in case the filesystem writes it out.
278	 */
279	sd->encrypted_path[ciphertext_len] = '\0';
280
281	/* Cache the plaintext symlink target for later use by get_link() */
282	err = -ENOMEM;
283	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
284	if (!inode->i_link)
285		goto err_free_sd;
286
287	if (!disk_link->name)
288		disk_link->name = (unsigned char *)sd;
289	return 0;
290
291err_free_sd:
292	if (!disk_link->name)
293		kfree(sd);
294	return err;
295}
296EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
297
298/**
299 * fscrypt_get_symlink() - get the target of an encrypted symlink
300 * @inode: the symlink inode
301 * @caddr: the on-disk contents of the symlink
302 * @max_size: size of @caddr buffer
303 * @done: if successful, will be set up to free the returned target if needed
304 *
305 * If the symlink's encryption key is available, we decrypt its target.
306 * Otherwise, we encode its target for presentation.
307 *
308 * This may sleep, so the filesystem must have dropped out of RCU mode already.
309 *
310 * Return: the presentable symlink target or an ERR_PTR()
311 */
312const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
313				unsigned int max_size,
314				struct delayed_call *done)
315{
316	const struct fscrypt_symlink_data *sd;
317	struct fscrypt_str cstr, pstr;
318	bool has_key;
319	int err;
320
321	/* This is for encrypted symlinks only */
322	if (WARN_ON(!IS_ENCRYPTED(inode)))
323		return ERR_PTR(-EINVAL);
324
325	/* If the decrypted target is already cached, just return it. */
326	pstr.name = READ_ONCE(inode->i_link);
327	if (pstr.name)
328		return pstr.name;
329
330	/*
331	 * Try to set up the symlink's encryption key, but we can continue
332	 * regardless of whether the key is available or not.
333	 */
334	err = fscrypt_get_encryption_info(inode, false);
335	if (err)
336		return ERR_PTR(err);
337	has_key = fscrypt_has_encryption_key(inode);
338
339	/*
340	 * For historical reasons, encrypted symlink targets are prefixed with
341	 * the ciphertext length, even though this is redundant with i_size.
342	 */
343
344	if (max_size < sizeof(*sd))
345		return ERR_PTR(-EUCLEAN);
346	sd = caddr;
347	cstr.name = (unsigned char *)sd->encrypted_path;
348	cstr.len = le16_to_cpu(sd->len);
349
350	if (cstr.len == 0)
351		return ERR_PTR(-EUCLEAN);
352
353	if (cstr.len + sizeof(*sd) - 1 > max_size)
354		return ERR_PTR(-EUCLEAN);
355
356	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
357	if (err)
358		return ERR_PTR(err);
359
360	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
361	if (err)
362		goto err_kfree;
363
364	err = -EUCLEAN;
365	if (pstr.name[0] == '\0')
366		goto err_kfree;
367
368	pstr.name[pstr.len] = '\0';
369
370	/*
371	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
372	 * symlink targets encoded without the key, since those become outdated
373	 * once the key is added.  This pairs with the READ_ONCE() above and in
374	 * the VFS path lookup code.
375	 */
376	if (!has_key ||
377	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
378		set_delayed_call(done, kfree_link, pstr.name);
379
380	return pstr.name;
381
382err_kfree:
383	kfree(pstr.name);
384	return ERR_PTR(err);
385}
386EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
387
388/**
389 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
390 * @path: the path for the encrypted symlink being queried
391 * @stat: the struct being filled with the symlink's attributes
392 *
393 * Override st_size of encrypted symlinks to be the length of the decrypted
394 * symlink target (or the no-key encoded symlink target, if the key is
395 * unavailable) rather than the length of the encrypted symlink target.  This is
396 * necessary for st_size to match the symlink target that userspace actually
397 * sees.  POSIX requires this, and some userspace programs depend on it.
398 *
399 * This requires reading the symlink target from disk if needed, setting up the
400 * inode's encryption key if possible, and then decrypting or encoding the
401 * symlink target.  This makes lstat() more heavyweight than is normally the
402 * case.  However, decrypted symlink targets will be cached in ->i_link, so
403 * usually the symlink won't have to be read and decrypted again later if/when
404 * it is actually followed, readlink() is called, or lstat() is called again.
405 *
406 * Return: 0 on success, -errno on failure
407 */
408int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
409{
410	struct dentry *dentry = path->dentry;
411	struct inode *inode = d_inode(dentry);
412	const char *link;
413	DEFINE_DELAYED_CALL(done);
414
415	/*
416	 * To get the symlink target that userspace will see (whether it's the
417	 * decrypted target or the no-key encoded target), we can just get it in
418	 * the same way the VFS does during path resolution and readlink().
419	 */
420	link = READ_ONCE(inode->i_link);
421	if (!link) {
422		link = inode->i_op->get_link(dentry, inode, &done);
423		if (IS_ERR(link))
424			return PTR_ERR(link);
425	}
426	stat->size = strlen(link);
427	do_delayed_call(&done);
428	return 0;
429}
430EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);