Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 
 11#include <linux/uaccess.h>
 12
 13/* Functions in vector.S */
 14extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 15extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 16extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 17extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 18extern void vrefp(vector128 *dst, vector128 *src);
 19extern void vrsqrtefp(vector128 *dst, vector128 *src);
 20extern void vexptep(vector128 *dst, vector128 *src);
 21
 22static unsigned int exp2s[8] = {
 23	0x800000,
 24	0x8b95c2,
 25	0x9837f0,
 26	0xa5fed7,
 27	0xb504f3,
 28	0xc5672a,
 29	0xd744fd,
 30	0xeac0c7
 31};
 32
 33/*
 34 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 35 * single-precision floating-point representation of x.
 36 */
 37static unsigned int eexp2(unsigned int s)
 38{
 39	int exp, pwr;
 40	unsigned int mant, frac;
 41
 42	/* extract exponent field from input */
 43	exp = ((s >> 23) & 0xff) - 127;
 44	if (exp > 7) {
 45		/* check for NaN input */
 46		if (exp == 128 && (s & 0x7fffff) != 0)
 47			return s | 0x400000;	/* return QNaN */
 48		/* 2^-big = 0, 2^+big = +Inf */
 49		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 50	}
 51	if (exp < -23)
 52		return 0x3f800000;	/* 1.0 */
 53
 54	/* convert to fixed point integer in 9.23 representation */
 55	pwr = (s & 0x7fffff) | 0x800000;
 56	if (exp > 0)
 57		pwr <<= exp;
 58	else
 59		pwr >>= -exp;
 60	if (s & 0x80000000)
 61		pwr = -pwr;
 62
 63	/* extract integer part, which becomes exponent part of result */
 64	exp = (pwr >> 23) + 126;
 65	if (exp >= 254)
 66		return 0x7f800000;
 67	if (exp < -23)
 68		return 0;
 69
 70	/* table lookup on top 3 bits of fraction to get mantissa */
 71	mant = exp2s[(pwr >> 20) & 7];
 72
 73	/* linear interpolation using remaining 20 bits of fraction */
 74	asm("mulhwu %0,%1,%2" : "=r" (frac)
 75	    : "r" (pwr << 12), "r" (0x172b83ff));
 76	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 77	mant += frac;
 78
 79	if (exp >= 0)
 80		return mant + (exp << 23);
 81
 82	/* denormalized result */
 83	exp = -exp;
 84	mant += 1 << (exp - 1);
 85	return mant >> exp;
 86}
 87
 88/*
 89 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 90 * single-precision floating-point representation of x.
 91 */
 92static unsigned int elog2(unsigned int s)
 93{
 94	int exp, mant, lz, frac;
 95
 96	exp = s & 0x7f800000;
 97	mant = s & 0x7fffff;
 98	if (exp == 0x7f800000) {	/* Inf or NaN */
 99		if (mant != 0)
100			s |= 0x400000;	/* turn NaN into QNaN */
101		return s;
102	}
103	if ((exp | mant) == 0)		/* +0 or -0 */
104		return 0xff800000;	/* return -Inf */
105
106	if (exp == 0) {
107		/* denormalized */
108		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
109		mant <<= lz - 8;
110		exp = (-118 - lz) << 23;
111	} else {
112		mant |= 0x800000;
113		exp -= 127 << 23;
114	}
115
116	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
117		exp |= 0x400000;			/* 0.5 * 2^23 */
118		asm("mulhwu %0,%1,%2" : "=r" (mant)
119		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
120	}
121	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
122		exp |= 0x200000;			/* 0.25 * 2^23 */
123		asm("mulhwu %0,%1,%2" : "=r" (mant)
124		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
125	}
126	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
127		exp |= 0x100000;			/* 0.125 * 2^23 */
128		asm("mulhwu %0,%1,%2" : "=r" (mant)
129		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
130	}
131	if (mant > 0x800000) {				/* 1.0 * 2^23 */
132		/* calculate (mant - 1) * 1.381097463 */
133		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
134		asm("mulhwu %0,%1,%2" : "=r" (frac)
135		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
136		exp += frac;
137	}
138	s = exp & 0x80000000;
139	if (exp != 0) {
140		if (s)
141			exp = -exp;
142		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
143		lz = 8 - lz;
144		if (lz > 0)
145			exp >>= lz;
146		else if (lz < 0)
147			exp <<= -lz;
148		s += ((lz + 126) << 23) + exp;
149	}
150	return s;
151}
152
153#define VSCR_SAT	1
154
155static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
156{
157	int exp, mant;
158
159	exp = (x >> 23) & 0xff;
160	mant = x & 0x7fffff;
161	if (exp == 255 && mant != 0)
162		return 0;		/* NaN -> 0 */
163	exp = exp - 127 + scale;
164	if (exp < 0)
165		return 0;		/* round towards zero */
166	if (exp >= 31) {
167		/* saturate, unless the result would be -2^31 */
168		if (x + (scale << 23) != 0xcf000000)
169			*vscrp |= VSCR_SAT;
170		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
171	}
172	mant |= 0x800000;
173	mant = (mant << 7) >> (30 - exp);
174	return (x & 0x80000000)? -mant: mant;
175}
176
177static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
178{
179	int exp;
180	unsigned int mant;
181
182	exp = (x >> 23) & 0xff;
183	mant = x & 0x7fffff;
184	if (exp == 255 && mant != 0)
185		return 0;		/* NaN -> 0 */
186	exp = exp - 127 + scale;
187	if (exp < 0)
188		return 0;		/* round towards zero */
189	if (x & 0x80000000) {
190		/* negative => saturate to 0 */
191		*vscrp |= VSCR_SAT;
192		return 0;
193	}
194	if (exp >= 32) {
195		/* saturate */
196		*vscrp |= VSCR_SAT;
197		return 0xffffffff;
198	}
199	mant |= 0x800000;
200	mant = (mant << 8) >> (31 - exp);
201	return mant;
202}
203
204/* Round to floating integer, towards 0 */
205static unsigned int rfiz(unsigned int x)
206{
207	int exp;
208
209	exp = ((x >> 23) & 0xff) - 127;
210	if (exp == 128 && (x & 0x7fffff) != 0)
211		return x | 0x400000;	/* NaN -> make it a QNaN */
212	if (exp >= 23)
213		return x;		/* it's an integer already (or Inf) */
214	if (exp < 0)
215		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
216	return x & ~(0x7fffff >> exp);
217}
218
219/* Round to floating integer, towards +/- Inf */
220static unsigned int rfii(unsigned int x)
221{
222	int exp, mask;
223
224	exp = ((x >> 23) & 0xff) - 127;
225	if (exp == 128 && (x & 0x7fffff) != 0)
226		return x | 0x400000;	/* NaN -> make it a QNaN */
227	if (exp >= 23)
228		return x;		/* it's an integer already (or Inf) */
229	if ((x & 0x7fffffff) == 0)
230		return x;		/* +/-0 -> +/-0 */
231	if (exp < 0)
232		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
233		return (x & 0x80000000) | 0x3f800000;
234	mask = 0x7fffff >> exp;
235	/* mantissa overflows into exponent - that's OK,
236	   it can't overflow into the sign bit */
237	return (x + mask) & ~mask;
238}
239
240/* Round to floating integer, to nearest */
241static unsigned int rfin(unsigned int x)
242{
243	int exp, half;
244
245	exp = ((x >> 23) & 0xff) - 127;
246	if (exp == 128 && (x & 0x7fffff) != 0)
247		return x | 0x400000;	/* NaN -> make it a QNaN */
248	if (exp >= 23)
249		return x;		/* it's an integer already (or Inf) */
250	if (exp < -1)
251		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
252	if (exp == -1)
253		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
254		return (x & 0x80000000) | 0x3f800000;
255	half = 0x400000 >> exp;
256	/* add 0.5 to the magnitude and chop off the fraction bits */
257	return (x + half) & ~(0x7fffff >> exp);
258}
259
260int emulate_altivec(struct pt_regs *regs)
261{
262	unsigned int instr, i;
263	unsigned int va, vb, vc, vd;
264	vector128 *vrs;
265
266	if (get_user(instr, (unsigned int __user *) regs->nip))
267		return -EFAULT;
268	if ((instr >> 26) != 4)
269		return -EINVAL;		/* not an altivec instruction */
270	vd = (instr >> 21) & 0x1f;
271	va = (instr >> 16) & 0x1f;
272	vb = (instr >> 11) & 0x1f;
273	vc = (instr >> 6) & 0x1f;
274
275	vrs = current->thread.vr_state.vr;
276	switch (instr & 0x3f) {
277	case 10:
278		switch (vc) {
279		case 0:	/* vaddfp */
280			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
281			break;
282		case 1:	/* vsubfp */
283			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
284			break;
285		case 4:	/* vrefp */
286			vrefp(&vrs[vd], &vrs[vb]);
287			break;
288		case 5:	/* vrsqrtefp */
289			vrsqrtefp(&vrs[vd], &vrs[vb]);
290			break;
291		case 6:	/* vexptefp */
292			for (i = 0; i < 4; ++i)
293				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
294			break;
295		case 7:	/* vlogefp */
296			for (i = 0; i < 4; ++i)
297				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
298			break;
299		case 8:		/* vrfin */
300			for (i = 0; i < 4; ++i)
301				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
302			break;
303		case 9:		/* vrfiz */
304			for (i = 0; i < 4; ++i)
305				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
306			break;
307		case 10:	/* vrfip */
308			for (i = 0; i < 4; ++i) {
309				u32 x = vrs[vb].u[i];
310				x = (x & 0x80000000)? rfiz(x): rfii(x);
311				vrs[vd].u[i] = x;
312			}
313			break;
314		case 11:	/* vrfim */
315			for (i = 0; i < 4; ++i) {
316				u32 x = vrs[vb].u[i];
317				x = (x & 0x80000000)? rfii(x): rfiz(x);
318				vrs[vd].u[i] = x;
319			}
320			break;
321		case 14:	/* vctuxs */
322			for (i = 0; i < 4; ++i)
323				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
324					&current->thread.vr_state.vscr.u[3]);
325			break;
326		case 15:	/* vctsxs */
327			for (i = 0; i < 4; ++i)
328				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
329					&current->thread.vr_state.vscr.u[3]);
330			break;
331		default:
332			return -EINVAL;
333		}
334		break;
335	case 46:	/* vmaddfp */
336		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
337		break;
338	case 47:	/* vnmsubfp */
339		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
340		break;
341	default:
342		return -EINVAL;
343	}
344
345	return 0;
346}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 11#include <asm/switch_to.h>
 12#include <linux/uaccess.h>
 13
 14/* Functions in vector.S */
 15extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 16extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 17extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 18extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 19extern void vrefp(vector128 *dst, vector128 *src);
 20extern void vrsqrtefp(vector128 *dst, vector128 *src);
 21extern void vexptep(vector128 *dst, vector128 *src);
 22
 23static unsigned int exp2s[8] = {
 24	0x800000,
 25	0x8b95c2,
 26	0x9837f0,
 27	0xa5fed7,
 28	0xb504f3,
 29	0xc5672a,
 30	0xd744fd,
 31	0xeac0c7
 32};
 33
 34/*
 35 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 36 * single-precision floating-point representation of x.
 37 */
 38static unsigned int eexp2(unsigned int s)
 39{
 40	int exp, pwr;
 41	unsigned int mant, frac;
 42
 43	/* extract exponent field from input */
 44	exp = ((s >> 23) & 0xff) - 127;
 45	if (exp > 7) {
 46		/* check for NaN input */
 47		if (exp == 128 && (s & 0x7fffff) != 0)
 48			return s | 0x400000;	/* return QNaN */
 49		/* 2^-big = 0, 2^+big = +Inf */
 50		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 51	}
 52	if (exp < -23)
 53		return 0x3f800000;	/* 1.0 */
 54
 55	/* convert to fixed point integer in 9.23 representation */
 56	pwr = (s & 0x7fffff) | 0x800000;
 57	if (exp > 0)
 58		pwr <<= exp;
 59	else
 60		pwr >>= -exp;
 61	if (s & 0x80000000)
 62		pwr = -pwr;
 63
 64	/* extract integer part, which becomes exponent part of result */
 65	exp = (pwr >> 23) + 126;
 66	if (exp >= 254)
 67		return 0x7f800000;
 68	if (exp < -23)
 69		return 0;
 70
 71	/* table lookup on top 3 bits of fraction to get mantissa */
 72	mant = exp2s[(pwr >> 20) & 7];
 73
 74	/* linear interpolation using remaining 20 bits of fraction */
 75	asm("mulhwu %0,%1,%2" : "=r" (frac)
 76	    : "r" (pwr << 12), "r" (0x172b83ff));
 77	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 78	mant += frac;
 79
 80	if (exp >= 0)
 81		return mant + (exp << 23);
 82
 83	/* denormalized result */
 84	exp = -exp;
 85	mant += 1 << (exp - 1);
 86	return mant >> exp;
 87}
 88
 89/*
 90 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 91 * single-precision floating-point representation of x.
 92 */
 93static unsigned int elog2(unsigned int s)
 94{
 95	int exp, mant, lz, frac;
 96
 97	exp = s & 0x7f800000;
 98	mant = s & 0x7fffff;
 99	if (exp == 0x7f800000) {	/* Inf or NaN */
100		if (mant != 0)
101			s |= 0x400000;	/* turn NaN into QNaN */
102		return s;
103	}
104	if ((exp | mant) == 0)		/* +0 or -0 */
105		return 0xff800000;	/* return -Inf */
106
107	if (exp == 0) {
108		/* denormalized */
109		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
110		mant <<= lz - 8;
111		exp = (-118 - lz) << 23;
112	} else {
113		mant |= 0x800000;
114		exp -= 127 << 23;
115	}
116
117	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
118		exp |= 0x400000;			/* 0.5 * 2^23 */
119		asm("mulhwu %0,%1,%2" : "=r" (mant)
120		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
121	}
122	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
123		exp |= 0x200000;			/* 0.25 * 2^23 */
124		asm("mulhwu %0,%1,%2" : "=r" (mant)
125		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
126	}
127	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
128		exp |= 0x100000;			/* 0.125 * 2^23 */
129		asm("mulhwu %0,%1,%2" : "=r" (mant)
130		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
131	}
132	if (mant > 0x800000) {				/* 1.0 * 2^23 */
133		/* calculate (mant - 1) * 1.381097463 */
134		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
135		asm("mulhwu %0,%1,%2" : "=r" (frac)
136		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
137		exp += frac;
138	}
139	s = exp & 0x80000000;
140	if (exp != 0) {
141		if (s)
142			exp = -exp;
143		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
144		lz = 8 - lz;
145		if (lz > 0)
146			exp >>= lz;
147		else if (lz < 0)
148			exp <<= -lz;
149		s += ((lz + 126) << 23) + exp;
150	}
151	return s;
152}
153
154#define VSCR_SAT	1
155
156static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
157{
158	int exp, mant;
159
160	exp = (x >> 23) & 0xff;
161	mant = x & 0x7fffff;
162	if (exp == 255 && mant != 0)
163		return 0;		/* NaN -> 0 */
164	exp = exp - 127 + scale;
165	if (exp < 0)
166		return 0;		/* round towards zero */
167	if (exp >= 31) {
168		/* saturate, unless the result would be -2^31 */
169		if (x + (scale << 23) != 0xcf000000)
170			*vscrp |= VSCR_SAT;
171		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
172	}
173	mant |= 0x800000;
174	mant = (mant << 7) >> (30 - exp);
175	return (x & 0x80000000)? -mant: mant;
176}
177
178static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
179{
180	int exp;
181	unsigned int mant;
182
183	exp = (x >> 23) & 0xff;
184	mant = x & 0x7fffff;
185	if (exp == 255 && mant != 0)
186		return 0;		/* NaN -> 0 */
187	exp = exp - 127 + scale;
188	if (exp < 0)
189		return 0;		/* round towards zero */
190	if (x & 0x80000000) {
191		/* negative => saturate to 0 */
192		*vscrp |= VSCR_SAT;
193		return 0;
194	}
195	if (exp >= 32) {
196		/* saturate */
197		*vscrp |= VSCR_SAT;
198		return 0xffffffff;
199	}
200	mant |= 0x800000;
201	mant = (mant << 8) >> (31 - exp);
202	return mant;
203}
204
205/* Round to floating integer, towards 0 */
206static unsigned int rfiz(unsigned int x)
207{
208	int exp;
209
210	exp = ((x >> 23) & 0xff) - 127;
211	if (exp == 128 && (x & 0x7fffff) != 0)
212		return x | 0x400000;	/* NaN -> make it a QNaN */
213	if (exp >= 23)
214		return x;		/* it's an integer already (or Inf) */
215	if (exp < 0)
216		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
217	return x & ~(0x7fffff >> exp);
218}
219
220/* Round to floating integer, towards +/- Inf */
221static unsigned int rfii(unsigned int x)
222{
223	int exp, mask;
224
225	exp = ((x >> 23) & 0xff) - 127;
226	if (exp == 128 && (x & 0x7fffff) != 0)
227		return x | 0x400000;	/* NaN -> make it a QNaN */
228	if (exp >= 23)
229		return x;		/* it's an integer already (or Inf) */
230	if ((x & 0x7fffffff) == 0)
231		return x;		/* +/-0 -> +/-0 */
232	if (exp < 0)
233		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
234		return (x & 0x80000000) | 0x3f800000;
235	mask = 0x7fffff >> exp;
236	/* mantissa overflows into exponent - that's OK,
237	   it can't overflow into the sign bit */
238	return (x + mask) & ~mask;
239}
240
241/* Round to floating integer, to nearest */
242static unsigned int rfin(unsigned int x)
243{
244	int exp, half;
245
246	exp = ((x >> 23) & 0xff) - 127;
247	if (exp == 128 && (x & 0x7fffff) != 0)
248		return x | 0x400000;	/* NaN -> make it a QNaN */
249	if (exp >= 23)
250		return x;		/* it's an integer already (or Inf) */
251	if (exp < -1)
252		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
253	if (exp == -1)
254		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
255		return (x & 0x80000000) | 0x3f800000;
256	half = 0x400000 >> exp;
257	/* add 0.5 to the magnitude and chop off the fraction bits */
258	return (x + half) & ~(0x7fffff >> exp);
259}
260
261int emulate_altivec(struct pt_regs *regs)
262{
263	unsigned int instr, i;
264	unsigned int va, vb, vc, vd;
265	vector128 *vrs;
266
267	if (get_user(instr, (unsigned int __user *) regs->nip))
268		return -EFAULT;
269	if ((instr >> 26) != 4)
270		return -EINVAL;		/* not an altivec instruction */
271	vd = (instr >> 21) & 0x1f;
272	va = (instr >> 16) & 0x1f;
273	vb = (instr >> 11) & 0x1f;
274	vc = (instr >> 6) & 0x1f;
275
276	vrs = current->thread.vr_state.vr;
277	switch (instr & 0x3f) {
278	case 10:
279		switch (vc) {
280		case 0:	/* vaddfp */
281			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
282			break;
283		case 1:	/* vsubfp */
284			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
285			break;
286		case 4:	/* vrefp */
287			vrefp(&vrs[vd], &vrs[vb]);
288			break;
289		case 5:	/* vrsqrtefp */
290			vrsqrtefp(&vrs[vd], &vrs[vb]);
291			break;
292		case 6:	/* vexptefp */
293			for (i = 0; i < 4; ++i)
294				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
295			break;
296		case 7:	/* vlogefp */
297			for (i = 0; i < 4; ++i)
298				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
299			break;
300		case 8:		/* vrfin */
301			for (i = 0; i < 4; ++i)
302				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
303			break;
304		case 9:		/* vrfiz */
305			for (i = 0; i < 4; ++i)
306				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
307			break;
308		case 10:	/* vrfip */
309			for (i = 0; i < 4; ++i) {
310				u32 x = vrs[vb].u[i];
311				x = (x & 0x80000000)? rfiz(x): rfii(x);
312				vrs[vd].u[i] = x;
313			}
314			break;
315		case 11:	/* vrfim */
316			for (i = 0; i < 4; ++i) {
317				u32 x = vrs[vb].u[i];
318				x = (x & 0x80000000)? rfii(x): rfiz(x);
319				vrs[vd].u[i] = x;
320			}
321			break;
322		case 14:	/* vctuxs */
323			for (i = 0; i < 4; ++i)
324				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
325					&current->thread.vr_state.vscr.u[3]);
326			break;
327		case 15:	/* vctsxs */
328			for (i = 0; i < 4; ++i)
329				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
330					&current->thread.vr_state.vscr.u[3]);
331			break;
332		default:
333			return -EINVAL;
334		}
335		break;
336	case 46:	/* vmaddfp */
337		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
338		break;
339	case 47:	/* vnmsubfp */
340		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
341		break;
342	default:
343		return -EINVAL;
344	}
345
346	return 0;
347}