Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 11#include <linux/uaccess.h>
 12
 13/* Functions in vector.S */
 14extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 15extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 16extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 17extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 18extern void vrefp(vector128 *dst, vector128 *src);
 19extern void vrsqrtefp(vector128 *dst, vector128 *src);
 20extern void vexptep(vector128 *dst, vector128 *src);
 21
 22static unsigned int exp2s[8] = {
 23	0x800000,
 24	0x8b95c2,
 25	0x9837f0,
 26	0xa5fed7,
 27	0xb504f3,
 28	0xc5672a,
 29	0xd744fd,
 30	0xeac0c7
 31};
 32
 33/*
 34 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 35 * single-precision floating-point representation of x.
 36 */
 37static unsigned int eexp2(unsigned int s)
 38{
 39	int exp, pwr;
 40	unsigned int mant, frac;
 41
 42	/* extract exponent field from input */
 43	exp = ((s >> 23) & 0xff) - 127;
 44	if (exp > 7) {
 45		/* check for NaN input */
 46		if (exp == 128 && (s & 0x7fffff) != 0)
 47			return s | 0x400000;	/* return QNaN */
 48		/* 2^-big = 0, 2^+big = +Inf */
 49		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 50	}
 51	if (exp < -23)
 52		return 0x3f800000;	/* 1.0 */
 53
 54	/* convert to fixed point integer in 9.23 representation */
 55	pwr = (s & 0x7fffff) | 0x800000;
 56	if (exp > 0)
 57		pwr <<= exp;
 58	else
 59		pwr >>= -exp;
 60	if (s & 0x80000000)
 61		pwr = -pwr;
 62
 63	/* extract integer part, which becomes exponent part of result */
 64	exp = (pwr >> 23) + 126;
 65	if (exp >= 254)
 66		return 0x7f800000;
 67	if (exp < -23)
 68		return 0;
 69
 70	/* table lookup on top 3 bits of fraction to get mantissa */
 71	mant = exp2s[(pwr >> 20) & 7];
 72
 73	/* linear interpolation using remaining 20 bits of fraction */
 74	asm("mulhwu %0,%1,%2" : "=r" (frac)
 75	    : "r" (pwr << 12), "r" (0x172b83ff));
 76	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 77	mant += frac;
 78
 79	if (exp >= 0)
 80		return mant + (exp << 23);
 81
 82	/* denormalized result */
 83	exp = -exp;
 84	mant += 1 << (exp - 1);
 85	return mant >> exp;
 86}
 87
 88/*
 89 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 90 * single-precision floating-point representation of x.
 91 */
 92static unsigned int elog2(unsigned int s)
 93{
 94	int exp, mant, lz, frac;
 95
 96	exp = s & 0x7f800000;
 97	mant = s & 0x7fffff;
 98	if (exp == 0x7f800000) {	/* Inf or NaN */
 99		if (mant != 0)
100			s |= 0x400000;	/* turn NaN into QNaN */
101		return s;
102	}
103	if ((exp | mant) == 0)		/* +0 or -0 */
104		return 0xff800000;	/* return -Inf */
105
106	if (exp == 0) {
107		/* denormalized */
108		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
109		mant <<= lz - 8;
110		exp = (-118 - lz) << 23;
111	} else {
112		mant |= 0x800000;
113		exp -= 127 << 23;
114	}
115
116	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
117		exp |= 0x400000;			/* 0.5 * 2^23 */
118		asm("mulhwu %0,%1,%2" : "=r" (mant)
119		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
120	}
121	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
122		exp |= 0x200000;			/* 0.25 * 2^23 */
123		asm("mulhwu %0,%1,%2" : "=r" (mant)
124		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
125	}
126	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
127		exp |= 0x100000;			/* 0.125 * 2^23 */
128		asm("mulhwu %0,%1,%2" : "=r" (mant)
129		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
130	}
131	if (mant > 0x800000) {				/* 1.0 * 2^23 */
132		/* calculate (mant - 1) * 1.381097463 */
133		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
134		asm("mulhwu %0,%1,%2" : "=r" (frac)
135		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
136		exp += frac;
137	}
138	s = exp & 0x80000000;
139	if (exp != 0) {
140		if (s)
141			exp = -exp;
142		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
143		lz = 8 - lz;
144		if (lz > 0)
145			exp >>= lz;
146		else if (lz < 0)
147			exp <<= -lz;
148		s += ((lz + 126) << 23) + exp;
149	}
150	return s;
151}
152
153#define VSCR_SAT	1
154
155static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
156{
157	int exp, mant;
158
159	exp = (x >> 23) & 0xff;
160	mant = x & 0x7fffff;
161	if (exp == 255 && mant != 0)
162		return 0;		/* NaN -> 0 */
163	exp = exp - 127 + scale;
164	if (exp < 0)
165		return 0;		/* round towards zero */
166	if (exp >= 31) {
167		/* saturate, unless the result would be -2^31 */
168		if (x + (scale << 23) != 0xcf000000)
169			*vscrp |= VSCR_SAT;
170		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
171	}
172	mant |= 0x800000;
173	mant = (mant << 7) >> (30 - exp);
174	return (x & 0x80000000)? -mant: mant;
175}
176
177static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
178{
179	int exp;
180	unsigned int mant;
181
182	exp = (x >> 23) & 0xff;
183	mant = x & 0x7fffff;
184	if (exp == 255 && mant != 0)
185		return 0;		/* NaN -> 0 */
186	exp = exp - 127 + scale;
187	if (exp < 0)
188		return 0;		/* round towards zero */
189	if (x & 0x80000000) {
190		/* negative => saturate to 0 */
191		*vscrp |= VSCR_SAT;
192		return 0;
193	}
194	if (exp >= 32) {
195		/* saturate */
196		*vscrp |= VSCR_SAT;
197		return 0xffffffff;
198	}
199	mant |= 0x800000;
200	mant = (mant << 8) >> (31 - exp);
201	return mant;
202}
203
204/* Round to floating integer, towards 0 */
205static unsigned int rfiz(unsigned int x)
206{
207	int exp;
208
209	exp = ((x >> 23) & 0xff) - 127;
210	if (exp == 128 && (x & 0x7fffff) != 0)
211		return x | 0x400000;	/* NaN -> make it a QNaN */
212	if (exp >= 23)
213		return x;		/* it's an integer already (or Inf) */
214	if (exp < 0)
215		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
216	return x & ~(0x7fffff >> exp);
217}
218
219/* Round to floating integer, towards +/- Inf */
220static unsigned int rfii(unsigned int x)
221{
222	int exp, mask;
223
224	exp = ((x >> 23) & 0xff) - 127;
225	if (exp == 128 && (x & 0x7fffff) != 0)
226		return x | 0x400000;	/* NaN -> make it a QNaN */
227	if (exp >= 23)
228		return x;		/* it's an integer already (or Inf) */
229	if ((x & 0x7fffffff) == 0)
230		return x;		/* +/-0 -> +/-0 */
231	if (exp < 0)
232		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
233		return (x & 0x80000000) | 0x3f800000;
234	mask = 0x7fffff >> exp;
235	/* mantissa overflows into exponent - that's OK,
236	   it can't overflow into the sign bit */
237	return (x + mask) & ~mask;
238}
239
240/* Round to floating integer, to nearest */
241static unsigned int rfin(unsigned int x)
242{
243	int exp, half;
244
245	exp = ((x >> 23) & 0xff) - 127;
246	if (exp == 128 && (x & 0x7fffff) != 0)
247		return x | 0x400000;	/* NaN -> make it a QNaN */
248	if (exp >= 23)
249		return x;		/* it's an integer already (or Inf) */
250	if (exp < -1)
251		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
252	if (exp == -1)
253		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
254		return (x & 0x80000000) | 0x3f800000;
255	half = 0x400000 >> exp;
256	/* add 0.5 to the magnitude and chop off the fraction bits */
257	return (x + half) & ~(0x7fffff >> exp);
258}
259
260int emulate_altivec(struct pt_regs *regs)
261{
262	unsigned int instr, i;
263	unsigned int va, vb, vc, vd;
264	vector128 *vrs;
265
266	if (get_user(instr, (unsigned int __user *) regs->nip))
267		return -EFAULT;
268	if ((instr >> 26) != 4)
269		return -EINVAL;		/* not an altivec instruction */
270	vd = (instr >> 21) & 0x1f;
271	va = (instr >> 16) & 0x1f;
272	vb = (instr >> 11) & 0x1f;
273	vc = (instr >> 6) & 0x1f;
274
275	vrs = current->thread.vr_state.vr;
276	switch (instr & 0x3f) {
277	case 10:
278		switch (vc) {
279		case 0:	/* vaddfp */
280			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
281			break;
282		case 1:	/* vsubfp */
283			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
284			break;
285		case 4:	/* vrefp */
286			vrefp(&vrs[vd], &vrs[vb]);
287			break;
288		case 5:	/* vrsqrtefp */
289			vrsqrtefp(&vrs[vd], &vrs[vb]);
290			break;
291		case 6:	/* vexptefp */
292			for (i = 0; i < 4; ++i)
293				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
294			break;
295		case 7:	/* vlogefp */
296			for (i = 0; i < 4; ++i)
297				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
298			break;
299		case 8:		/* vrfin */
300			for (i = 0; i < 4; ++i)
301				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
302			break;
303		case 9:		/* vrfiz */
304			for (i = 0; i < 4; ++i)
305				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
306			break;
307		case 10:	/* vrfip */
308			for (i = 0; i < 4; ++i) {
309				u32 x = vrs[vb].u[i];
310				x = (x & 0x80000000)? rfiz(x): rfii(x);
311				vrs[vd].u[i] = x;
312			}
313			break;
314		case 11:	/* vrfim */
315			for (i = 0; i < 4; ++i) {
316				u32 x = vrs[vb].u[i];
317				x = (x & 0x80000000)? rfii(x): rfiz(x);
318				vrs[vd].u[i] = x;
319			}
320			break;
321		case 14:	/* vctuxs */
322			for (i = 0; i < 4; ++i)
323				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
324					&current->thread.vr_state.vscr.u[3]);
325			break;
326		case 15:	/* vctsxs */
327			for (i = 0; i < 4; ++i)
328				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
329					&current->thread.vr_state.vscr.u[3]);
330			break;
331		default:
332			return -EINVAL;
333		}
334		break;
335	case 46:	/* vmaddfp */
336		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
337		break;
338	case 47:	/* vnmsubfp */
339		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
340		break;
341	default:
342		return -EINVAL;
343	}
344
345	return 0;
346}
v3.15
 
  1/*
  2 * Routines to emulate some Altivec/VMX instructions, specifically
  3 * those that can trap when given denormalized operands in Java mode.
  4 */
  5#include <linux/kernel.h>
  6#include <linux/errno.h>
  7#include <linux/sched.h>
  8#include <asm/ptrace.h>
  9#include <asm/processor.h>
 10#include <asm/uaccess.h>
 11
 12/* Functions in vector.S */
 13extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 14extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 15extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 16extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 17extern void vrefp(vector128 *dst, vector128 *src);
 18extern void vrsqrtefp(vector128 *dst, vector128 *src);
 19extern void vexptep(vector128 *dst, vector128 *src);
 20
 21static unsigned int exp2s[8] = {
 22	0x800000,
 23	0x8b95c2,
 24	0x9837f0,
 25	0xa5fed7,
 26	0xb504f3,
 27	0xc5672a,
 28	0xd744fd,
 29	0xeac0c7
 30};
 31
 32/*
 33 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 34 * single-precision floating-point representation of x.
 35 */
 36static unsigned int eexp2(unsigned int s)
 37{
 38	int exp, pwr;
 39	unsigned int mant, frac;
 40
 41	/* extract exponent field from input */
 42	exp = ((s >> 23) & 0xff) - 127;
 43	if (exp > 7) {
 44		/* check for NaN input */
 45		if (exp == 128 && (s & 0x7fffff) != 0)
 46			return s | 0x400000;	/* return QNaN */
 47		/* 2^-big = 0, 2^+big = +Inf */
 48		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 49	}
 50	if (exp < -23)
 51		return 0x3f800000;	/* 1.0 */
 52
 53	/* convert to fixed point integer in 9.23 representation */
 54	pwr = (s & 0x7fffff) | 0x800000;
 55	if (exp > 0)
 56		pwr <<= exp;
 57	else
 58		pwr >>= -exp;
 59	if (s & 0x80000000)
 60		pwr = -pwr;
 61
 62	/* extract integer part, which becomes exponent part of result */
 63	exp = (pwr >> 23) + 126;
 64	if (exp >= 254)
 65		return 0x7f800000;
 66	if (exp < -23)
 67		return 0;
 68
 69	/* table lookup on top 3 bits of fraction to get mantissa */
 70	mant = exp2s[(pwr >> 20) & 7];
 71
 72	/* linear interpolation using remaining 20 bits of fraction */
 73	asm("mulhwu %0,%1,%2" : "=r" (frac)
 74	    : "r" (pwr << 12), "r" (0x172b83ff));
 75	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 76	mant += frac;
 77
 78	if (exp >= 0)
 79		return mant + (exp << 23);
 80
 81	/* denormalized result */
 82	exp = -exp;
 83	mant += 1 << (exp - 1);
 84	return mant >> exp;
 85}
 86
 87/*
 88 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 89 * single-precision floating-point representation of x.
 90 */
 91static unsigned int elog2(unsigned int s)
 92{
 93	int exp, mant, lz, frac;
 94
 95	exp = s & 0x7f800000;
 96	mant = s & 0x7fffff;
 97	if (exp == 0x7f800000) {	/* Inf or NaN */
 98		if (mant != 0)
 99			s |= 0x400000;	/* turn NaN into QNaN */
100		return s;
101	}
102	if ((exp | mant) == 0)		/* +0 or -0 */
103		return 0xff800000;	/* return -Inf */
104
105	if (exp == 0) {
106		/* denormalized */
107		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
108		mant <<= lz - 8;
109		exp = (-118 - lz) << 23;
110	} else {
111		mant |= 0x800000;
112		exp -= 127 << 23;
113	}
114
115	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
116		exp |= 0x400000;			/* 0.5 * 2^23 */
117		asm("mulhwu %0,%1,%2" : "=r" (mant)
118		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
119	}
120	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
121		exp |= 0x200000;			/* 0.25 * 2^23 */
122		asm("mulhwu %0,%1,%2" : "=r" (mant)
123		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
124	}
125	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
126		exp |= 0x100000;			/* 0.125 * 2^23 */
127		asm("mulhwu %0,%1,%2" : "=r" (mant)
128		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
129	}
130	if (mant > 0x800000) {				/* 1.0 * 2^23 */
131		/* calculate (mant - 1) * 1.381097463 */
132		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
133		asm("mulhwu %0,%1,%2" : "=r" (frac)
134		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
135		exp += frac;
136	}
137	s = exp & 0x80000000;
138	if (exp != 0) {
139		if (s)
140			exp = -exp;
141		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
142		lz = 8 - lz;
143		if (lz > 0)
144			exp >>= lz;
145		else if (lz < 0)
146			exp <<= -lz;
147		s += ((lz + 126) << 23) + exp;
148	}
149	return s;
150}
151
152#define VSCR_SAT	1
153
154static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
155{
156	int exp, mant;
157
158	exp = (x >> 23) & 0xff;
159	mant = x & 0x7fffff;
160	if (exp == 255 && mant != 0)
161		return 0;		/* NaN -> 0 */
162	exp = exp - 127 + scale;
163	if (exp < 0)
164		return 0;		/* round towards zero */
165	if (exp >= 31) {
166		/* saturate, unless the result would be -2^31 */
167		if (x + (scale << 23) != 0xcf000000)
168			*vscrp |= VSCR_SAT;
169		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
170	}
171	mant |= 0x800000;
172	mant = (mant << 7) >> (30 - exp);
173	return (x & 0x80000000)? -mant: mant;
174}
175
176static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
177{
178	int exp;
179	unsigned int mant;
180
181	exp = (x >> 23) & 0xff;
182	mant = x & 0x7fffff;
183	if (exp == 255 && mant != 0)
184		return 0;		/* NaN -> 0 */
185	exp = exp - 127 + scale;
186	if (exp < 0)
187		return 0;		/* round towards zero */
188	if (x & 0x80000000) {
189		/* negative => saturate to 0 */
190		*vscrp |= VSCR_SAT;
191		return 0;
192	}
193	if (exp >= 32) {
194		/* saturate */
195		*vscrp |= VSCR_SAT;
196		return 0xffffffff;
197	}
198	mant |= 0x800000;
199	mant = (mant << 8) >> (31 - exp);
200	return mant;
201}
202
203/* Round to floating integer, towards 0 */
204static unsigned int rfiz(unsigned int x)
205{
206	int exp;
207
208	exp = ((x >> 23) & 0xff) - 127;
209	if (exp == 128 && (x & 0x7fffff) != 0)
210		return x | 0x400000;	/* NaN -> make it a QNaN */
211	if (exp >= 23)
212		return x;		/* it's an integer already (or Inf) */
213	if (exp < 0)
214		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
215	return x & ~(0x7fffff >> exp);
216}
217
218/* Round to floating integer, towards +/- Inf */
219static unsigned int rfii(unsigned int x)
220{
221	int exp, mask;
222
223	exp = ((x >> 23) & 0xff) - 127;
224	if (exp == 128 && (x & 0x7fffff) != 0)
225		return x | 0x400000;	/* NaN -> make it a QNaN */
226	if (exp >= 23)
227		return x;		/* it's an integer already (or Inf) */
228	if ((x & 0x7fffffff) == 0)
229		return x;		/* +/-0 -> +/-0 */
230	if (exp < 0)
231		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
232		return (x & 0x80000000) | 0x3f800000;
233	mask = 0x7fffff >> exp;
234	/* mantissa overflows into exponent - that's OK,
235	   it can't overflow into the sign bit */
236	return (x + mask) & ~mask;
237}
238
239/* Round to floating integer, to nearest */
240static unsigned int rfin(unsigned int x)
241{
242	int exp, half;
243
244	exp = ((x >> 23) & 0xff) - 127;
245	if (exp == 128 && (x & 0x7fffff) != 0)
246		return x | 0x400000;	/* NaN -> make it a QNaN */
247	if (exp >= 23)
248		return x;		/* it's an integer already (or Inf) */
249	if (exp < -1)
250		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
251	if (exp == -1)
252		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
253		return (x & 0x80000000) | 0x3f800000;
254	half = 0x400000 >> exp;
255	/* add 0.5 to the magnitude and chop off the fraction bits */
256	return (x + half) & ~(0x7fffff >> exp);
257}
258
259int emulate_altivec(struct pt_regs *regs)
260{
261	unsigned int instr, i;
262	unsigned int va, vb, vc, vd;
263	vector128 *vrs;
264
265	if (get_user(instr, (unsigned int __user *) regs->nip))
266		return -EFAULT;
267	if ((instr >> 26) != 4)
268		return -EINVAL;		/* not an altivec instruction */
269	vd = (instr >> 21) & 0x1f;
270	va = (instr >> 16) & 0x1f;
271	vb = (instr >> 11) & 0x1f;
272	vc = (instr >> 6) & 0x1f;
273
274	vrs = current->thread.vr_state.vr;
275	switch (instr & 0x3f) {
276	case 10:
277		switch (vc) {
278		case 0:	/* vaddfp */
279			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
280			break;
281		case 1:	/* vsubfp */
282			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
283			break;
284		case 4:	/* vrefp */
285			vrefp(&vrs[vd], &vrs[vb]);
286			break;
287		case 5:	/* vrsqrtefp */
288			vrsqrtefp(&vrs[vd], &vrs[vb]);
289			break;
290		case 6:	/* vexptefp */
291			for (i = 0; i < 4; ++i)
292				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
293			break;
294		case 7:	/* vlogefp */
295			for (i = 0; i < 4; ++i)
296				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
297			break;
298		case 8:		/* vrfin */
299			for (i = 0; i < 4; ++i)
300				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
301			break;
302		case 9:		/* vrfiz */
303			for (i = 0; i < 4; ++i)
304				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
305			break;
306		case 10:	/* vrfip */
307			for (i = 0; i < 4; ++i) {
308				u32 x = vrs[vb].u[i];
309				x = (x & 0x80000000)? rfiz(x): rfii(x);
310				vrs[vd].u[i] = x;
311			}
312			break;
313		case 11:	/* vrfim */
314			for (i = 0; i < 4; ++i) {
315				u32 x = vrs[vb].u[i];
316				x = (x & 0x80000000)? rfii(x): rfiz(x);
317				vrs[vd].u[i] = x;
318			}
319			break;
320		case 14:	/* vctuxs */
321			for (i = 0; i < 4; ++i)
322				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
323					&current->thread.vr_state.vscr.u[3]);
324			break;
325		case 15:	/* vctsxs */
326			for (i = 0; i < 4; ++i)
327				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
328					&current->thread.vr_state.vscr.u[3]);
329			break;
330		default:
331			return -EINVAL;
332		}
333		break;
334	case 46:	/* vmaddfp */
335		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
336		break;
337	case 47:	/* vnmsubfp */
338		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
339		break;
340	default:
341		return -EINVAL;
342	}
343
344	return 0;
345}