Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
 
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
 
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
 
 
 
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 
 
 
 
 
 
 
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 
 
 
 
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119	[N_MEMORY] = { { [0] = 1UL } },
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303		return true;
 304
 305	return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 
 
 
 
 
 
 
 
 
 
 
 316	/* Always populate low zones for address-constrained allocations */
 317	if (zone_end < pgdat_end_pfn(pgdat))
 
 
 
 318		return true;
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 
 
 
 
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 327}
 328#else
 
 
 
 
 
 
 
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 
 
 
 
 
 
 
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566	__free_pages_ok(page, compound_order(page));
 
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 
 
 
 583	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 
 
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 609
 610	return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 670{
 671	struct page_ext *page_ext;
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 
 
 
 
 
 
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 723{
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 729
 730		return 1;
 731	}
 
 
 
 
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 743
 744		return 1;
 745	}
 746	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 
 
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 781	struct page *buddy;
 782	unsigned int max_order;
 
 
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 
 
 
 
 
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 872out:
 873	zone->free_area[order].nr_free++;
 
 
 
 
 
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 
 
 
 
 
 
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 991
 
 
 
 
 
 
 
 
 
 
 
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	arch_free_page(page, order);
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
 
 
 
 
 
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049	return false;
 
 
 
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
 
 
 
 
 
 
1053{
1054	return free_pages_prepare(page, 0, false);
 
 
 
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
 
 
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
1092
1093	while (count) {
 
 
 
 
 
1094		struct list_head *list;
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
 
 
1114		do {
1115			page = list_last_entry(list, struct page, lru);
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
 
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
 
 
 
 
1123			list_add_tail(&page->lru, &head);
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
 
 
1137	}
 
1138
 
 
 
 
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
 
 
 
 
 
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
1165	spin_lock(&zone->lock);
 
 
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
 
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
 
 
 
 
 
1238		}
1239	}
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
 
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
 
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
 
 
 
 
 
 
 
 
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
 
 
 
 
 
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
 
 
 
 
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 
 
 
 
 
 
 
 
 
 
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
 
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
 
1513	unsigned long nr_pages = 0;
 
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
 
 
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
 
 
 
 
 
 
 
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
 
 
 
 
 
 
 
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
 
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
 
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
 
1665	}
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
 
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
 
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
 
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 
 
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
 
 
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
 
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
1809			continue;
1810
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1867{
1868	return false;
 
 
 
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
 
 
 
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
1894	}
1895
1896	return false;
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	set_page_owner(page, order, gfp_flags);
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
 
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
 
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
 
 
 
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
 
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
 
 
 
 
 
 
 
 
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
2371{
2372	struct free_area *area;
2373	int current_order;
 
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
 
 
 
 
 
 
 
 
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
2405
2406	return false;
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
 
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
 
2443{
2444	struct page *page;
2445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
 
2453			goto retry;
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
2470
 
 
 
 
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
 
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
2527	local_irq_restore(flags);
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
2550	local_irq_restore(flags);
 
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
 
 
 
 
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
 
 
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
 
 
 
 
 
 
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
 
 
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
 
 
 
 
 
 
 
 
 
 
 
 
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
 
2732{
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744{
2745	struct zone *zone = page_zone(page);
2746	struct per_cpu_pages *pcp;
2747	int migratetype;
 
2748
2749	migratetype = get_pcppage_migratetype(page);
2750	__count_vm_event(PGFREE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
 
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
2782	unsigned long pfn = page_to_pfn(page);
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
2799	int batch_count = 0;
 
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806		set_page_private(page, pfn);
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
 
 
 
 
 
 
 
 
 
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
2823			batch_count = 0;
2824			local_irq_save(flags);
2825		}
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845	for (i = 1; i < (1 << order); i++)
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
 
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
 
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
 
 
 
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
2932	struct page *page;
2933
2934	do {
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
 
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
 
 
 
 
 
 
 
 
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2975 */
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
 
 
 
 
 
 
 
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
 
 
 
 
 
 
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004		}
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
 
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
 
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
 
 
 
 
 
 
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
3217		return true;
 
 
 
 
 
 
 
 
 
 
 
 
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
3240}
3241#else	/* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
3248/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
3259
 
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
 
 
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
 
3305			int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
3369	return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
3428
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
 
 
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3526		*did_some_progress = 1;
3527
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534					ALLOC_NO_WATERMARKS, ac);
3535	}
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
3553{
3554	struct page *page;
 
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
 
3560	noreclaim_flag = memalloc_noreclaim_save();
 
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
 
3563	memalloc_noreclaim_restore(noreclaim_flag);
 
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
3566		return NULL;
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
 
 
 
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
 
 
 
 
 
 
 
 
 
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
 
 
 
 
 
 
 
 
 
 
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
 
 
 
 
 
 
 
 
 
 
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
 
 
 
 
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
 
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
 
 
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
3779{
3780	struct page *page = NULL;
3781	bool drained = false;
3782
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 
 
 
 
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
3851
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
 
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
 
 
 
 
 
 
 
 
 
 
 
 
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
4124
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
 
 
 
 
 
 
 
 
 
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
 
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
4147		}
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
4248
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
4292got_pg:
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
 
 
 
 
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
 
 
4342}
4343
4344/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
4355
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
 
 
 
4359		return NULL;
 
4360
4361	finalise_ac(gfp_mask, order, &ac);
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
 
 
 
 
 
 
 
 
 
 
 
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
 
 
 
 
 
 
 
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
4391	}
4392
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4394
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
4398
4399/*
4400 * Common helper functions.
 
 
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
 
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
 
 
 
 
 
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
4539	}
4540
4541	nc->pagecnt_bias--;
 
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
 
 
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
 
 
 
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
 
 
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
 
 
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
 
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
4887		global_zone_page_state(NR_BOUNCE),
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
 
 
 
 
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
 
 
 
 
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
 
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
 
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989			K(zone_page_state(zone, NR_PAGETABLE)),
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
5067	return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
 
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
 
 
 
 
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343
5344static void __build_all_zonelists(void *data)
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
5424	} else {
5425		__build_all_zonelists(pgdat);
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
 
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
 
 
 
 
 
5458{
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
5470
 
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
 
 
 
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
 
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 
 
 
 
 
 
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
5510				continue;
5511			}
 
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5520
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
5539		}
5540	}
 
 
 
5541}
5542
 
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555#endif
 
 
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
 
 
 
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
 
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 
 
 
 
 
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
 
 
 
 
 
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
 
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
5711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
5723	 */
5724	zone->pageset = &boot_pageset;
 
 
 
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
 
5737
5738	pgdat->nr_zones = zone_idx(zone) + 1;
 
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
 
 
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
 
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
 
 
 
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
 
 
 
 
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
 
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
6282		zone_seqlock_init(zone);
6283		zone_pcp_init(zone);
6284
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
6291		memmap_init(size, nid, j, zone_start_pfn);
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
6303		return;
6304
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 
 
 
 
6321		pgdat->node_mem_map = map + offset;
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
 
 
 
 
 
 
 
 
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
 
 
6352
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
 
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432	nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
6498		return 0;
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
6767}
6768
 
 
 
 
 
 
 
 
 
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
 
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
 
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
 
 
 
 
 
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
 
 
 
 
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
 
 
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
 
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
 
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
7037{
 
7038
7039	lru_add_drain_cpu(cpu);
7040	drain_pages(cpu);
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
 
 
 
 
7058	return 0;
7059}
7060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
 
 
 
 
 
 
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
 
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
7104		}
7105	}
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
7203
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
 
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
 
 
 
 
 
 
 
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
 
 
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
 
 
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
 
 
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
 
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 
 
 
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
 
 
 
 
 
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
7615		return false;
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
 
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
 
 
 
 
 
 
7626		if (PageReserved(page))
7627			goto unmovable;
 
 
 
 
 
 
 
 
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
 
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 
 
 
 
 
 
 
 
 
 
 
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
7656			continue;
7657
7658		if (__PageMovable(page))
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
7721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
 
 
 
 
7731
7732	migrate_prep();
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
 
 
 
 
 
 
 
7759	}
 
 
7760	if (ret < 0) {
 
 
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
7763	}
7764	return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
 
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
7835
 
 
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
7922{
7923	unsigned int count = 0;
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
 
 
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
 
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
8027bool is_free_buddy_page(struct page *page)
8028{
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
8039			break;
8040	}
8041	spin_unlock_irqrestore(&zone->lock, flags);
8042
8043	return order < MAX_ORDER;
8044}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
 
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
 
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
 
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/migrate.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72#include <linux/padata.h>
  73#include <linux/khugepaged.h>
  74#include <linux/buffer_head.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/div64.h>
  78#include "internal.h"
  79#include "shuffle.h"
  80#include "page_reporting.h"
  81
  82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  83typedef int __bitwise fpi_t;
  84
  85/* No special request */
  86#define FPI_NONE		((__force fpi_t)0)
  87
  88/*
  89 * Skip free page reporting notification for the (possibly merged) page.
  90 * This does not hinder free page reporting from grabbing the page,
  91 * reporting it and marking it "reported" -  it only skips notifying
  92 * the free page reporting infrastructure about a newly freed page. For
  93 * example, used when temporarily pulling a page from a freelist and
  94 * putting it back unmodified.
  95 */
  96#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  97
  98/*
  99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 100 * page shuffling (relevant code - e.g., memory onlining - is expected to
 101 * shuffle the whole zone).
 102 *
 103 * Note: No code should rely on this flag for correctness - it's purely
 104 *       to allow for optimizations when handing back either fresh pages
 105 *       (memory onlining) or untouched pages (page isolation, free page
 106 *       reporting).
 107 */
 108#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
 109
 110/*
 111 * Don't poison memory with KASAN (only for the tag-based modes).
 112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 113 * Poisoning all that memory lengthens boot time, especially on systems with
 114 * large amount of RAM. This flag is used to skip that poisoning.
 115 * This is only done for the tag-based KASAN modes, as those are able to
 116 * detect memory corruptions with the memory tags assigned by default.
 117 * All memory allocated normally after boot gets poisoned as usual.
 118 */
 119#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
 120
 121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 122static DEFINE_MUTEX(pcp_batch_high_lock);
 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 124
 125struct pagesets {
 126	local_lock_t lock;
 127};
 128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
 129	.lock = INIT_LOCAL_LOCK(lock),
 130};
 131
 132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 133DEFINE_PER_CPU(int, numa_node);
 134EXPORT_PER_CPU_SYMBOL(numa_node);
 135#endif
 136
 137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 138
 139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 140/*
 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 144 * defined in <linux/topology.h>.
 145 */
 146DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 148#endif
 149
 150/* work_structs for global per-cpu drains */
 151struct pcpu_drain {
 152	struct zone *zone;
 153	struct work_struct work;
 154};
 155static DEFINE_MUTEX(pcpu_drain_mutex);
 156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 157
 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 159volatile unsigned long latent_entropy __latent_entropy;
 160EXPORT_SYMBOL(latent_entropy);
 161#endif
 162
 163/*
 164 * Array of node states.
 165 */
 166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 167	[N_POSSIBLE] = NODE_MASK_ALL,
 168	[N_ONLINE] = { { [0] = 1UL } },
 169#ifndef CONFIG_NUMA
 170	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 171#ifdef CONFIG_HIGHMEM
 172	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 173#endif
 174	[N_MEMORY] = { { [0] = 1UL } },
 175	[N_CPU] = { { [0] = 1UL } },
 176#endif	/* NUMA */
 177};
 178EXPORT_SYMBOL(node_states);
 179
 180atomic_long_t _totalram_pages __read_mostly;
 181EXPORT_SYMBOL(_totalram_pages);
 
 
 182unsigned long totalreserve_pages __read_mostly;
 183unsigned long totalcma_pages __read_mostly;
 184
 185int percpu_pagelist_high_fraction;
 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 188EXPORT_SYMBOL(init_on_alloc);
 189
 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 191EXPORT_SYMBOL(init_on_free);
 192
 193static bool _init_on_alloc_enabled_early __read_mostly
 194				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 195static int __init early_init_on_alloc(char *buf)
 196{
 197
 198	return kstrtobool(buf, &_init_on_alloc_enabled_early);
 199}
 200early_param("init_on_alloc", early_init_on_alloc);
 201
 202static bool _init_on_free_enabled_early __read_mostly
 203				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 204static int __init early_init_on_free(char *buf)
 205{
 206	return kstrtobool(buf, &_init_on_free_enabled_early);
 207}
 208early_param("init_on_free", early_init_on_free);
 209
 210/*
 211 * A cached value of the page's pageblock's migratetype, used when the page is
 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 214 * Also the migratetype set in the page does not necessarily match the pcplist
 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 216 * other index - this ensures that it will be put on the correct CMA freelist.
 217 */
 218static inline int get_pcppage_migratetype(struct page *page)
 219{
 220	return page->index;
 221}
 222
 223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 224{
 225	page->index = migratetype;
 226}
 227
 228#ifdef CONFIG_PM_SLEEP
 229/*
 230 * The following functions are used by the suspend/hibernate code to temporarily
 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 232 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 233 * they should always be called with system_transition_mutex held
 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 236 * with that modification).
 237 */
 238
 239static gfp_t saved_gfp_mask;
 240
 241void pm_restore_gfp_mask(void)
 242{
 243	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 244	if (saved_gfp_mask) {
 245		gfp_allowed_mask = saved_gfp_mask;
 246		saved_gfp_mask = 0;
 247	}
 248}
 249
 250void pm_restrict_gfp_mask(void)
 251{
 252	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 253	WARN_ON(saved_gfp_mask);
 254	saved_gfp_mask = gfp_allowed_mask;
 255	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 256}
 257
 258bool pm_suspended_storage(void)
 259{
 260	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 261		return false;
 262	return true;
 263}
 264#endif /* CONFIG_PM_SLEEP */
 265
 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 267unsigned int pageblock_order __read_mostly;
 268#endif
 269
 270static void __free_pages_ok(struct page *page, unsigned int order,
 271			    fpi_t fpi_flags);
 272
 273/*
 274 * results with 256, 32 in the lowmem_reserve sysctl:
 275 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 276 *	1G machine -> (16M dma, 784M normal, 224M high)
 277 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 278 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 279 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 280 *
 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 282 * don't need any ZONE_NORMAL reservation
 283 */
 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 285#ifdef CONFIG_ZONE_DMA
 286	[ZONE_DMA] = 256,
 287#endif
 288#ifdef CONFIG_ZONE_DMA32
 289	[ZONE_DMA32] = 256,
 290#endif
 291	[ZONE_NORMAL] = 32,
 292#ifdef CONFIG_HIGHMEM
 293	[ZONE_HIGHMEM] = 0,
 294#endif
 295	[ZONE_MOVABLE] = 0,
 296};
 297
 
 
 298static char * const zone_names[MAX_NR_ZONES] = {
 299#ifdef CONFIG_ZONE_DMA
 300	 "DMA",
 301#endif
 302#ifdef CONFIG_ZONE_DMA32
 303	 "DMA32",
 304#endif
 305	 "Normal",
 306#ifdef CONFIG_HIGHMEM
 307	 "HighMem",
 308#endif
 309	 "Movable",
 310#ifdef CONFIG_ZONE_DEVICE
 311	 "Device",
 312#endif
 313};
 314
 315const char * const migratetype_names[MIGRATE_TYPES] = {
 316	"Unmovable",
 317	"Movable",
 318	"Reclaimable",
 319	"HighAtomic",
 320#ifdef CONFIG_CMA
 321	"CMA",
 322#endif
 323#ifdef CONFIG_MEMORY_ISOLATION
 324	"Isolate",
 325#endif
 326};
 327
 328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 329	[NULL_COMPOUND_DTOR] = NULL,
 330	[COMPOUND_PAGE_DTOR] = free_compound_page,
 331#ifdef CONFIG_HUGETLB_PAGE
 332	[HUGETLB_PAGE_DTOR] = free_huge_page,
 333#endif
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 336#endif
 337};
 338
 339int min_free_kbytes = 1024;
 340int user_min_free_kbytes = -1;
 341int watermark_boost_factor __read_mostly = 15000;
 342int watermark_scale_factor = 10;
 343
 344static unsigned long nr_kernel_pages __initdata;
 345static unsigned long nr_all_pages __initdata;
 346static unsigned long dma_reserve __initdata;
 347
 348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 
 350static unsigned long required_kernelcore __initdata;
 351static unsigned long required_kernelcore_percent __initdata;
 352static unsigned long required_movablecore __initdata;
 353static unsigned long required_movablecore_percent __initdata;
 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 355static bool mirrored_kernelcore __meminitdata;
 356
 357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 358int movable_zone;
 359EXPORT_SYMBOL(movable_zone);
 
 360
 361#if MAX_NUMNODES > 1
 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 363unsigned int nr_online_nodes __read_mostly = 1;
 364EXPORT_SYMBOL(nr_node_ids);
 365EXPORT_SYMBOL(nr_online_nodes);
 366#endif
 367
 368int page_group_by_mobility_disabled __read_mostly;
 369
 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 371/*
 372 * During boot we initialize deferred pages on-demand, as needed, but once
 373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 374 * and we can permanently disable that path.
 375 */
 376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 377
 378/*
 379 * Calling kasan_poison_pages() only after deferred memory initialization
 380 * has completed. Poisoning pages during deferred memory init will greatly
 381 * lengthen the process and cause problem in large memory systems as the
 382 * deferred pages initialization is done with interrupt disabled.
 383 *
 384 * Assuming that there will be no reference to those newly initialized
 385 * pages before they are ever allocated, this should have no effect on
 386 * KASAN memory tracking as the poison will be properly inserted at page
 387 * allocation time. The only corner case is when pages are allocated by
 388 * on-demand allocation and then freed again before the deferred pages
 389 * initialization is done, but this is not likely to happen.
 390 */
 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 392{
 393	return static_branch_unlikely(&deferred_pages) ||
 394	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 395		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 396	       PageSkipKASanPoison(page);
 397}
 398
 399/* Returns true if the struct page for the pfn is uninitialised */
 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 401{
 402	int nid = early_pfn_to_nid(pfn);
 403
 404	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 405		return true;
 406
 407	return false;
 408}
 409
 410/*
 411 * Returns true when the remaining initialisation should be deferred until
 412 * later in the boot cycle when it can be parallelised.
 413 */
 414static bool __meminit
 415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 416{
 417	static unsigned long prev_end_pfn, nr_initialised;
 418
 419	/*
 420	 * prev_end_pfn static that contains the end of previous zone
 421	 * No need to protect because called very early in boot before smp_init.
 422	 */
 423	if (prev_end_pfn != end_pfn) {
 424		prev_end_pfn = end_pfn;
 425		nr_initialised = 0;
 426	}
 427
 428	/* Always populate low zones for address-constrained allocations */
 429	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 430		return false;
 431
 432	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 433		return true;
 434	/*
 435	 * We start only with one section of pages, more pages are added as
 436	 * needed until the rest of deferred pages are initialized.
 437	 */
 438	nr_initialised++;
 439	if ((nr_initialised > PAGES_PER_SECTION) &&
 440	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 441		NODE_DATA(nid)->first_deferred_pfn = pfn;
 442		return true;
 443	}
 444	return false;
 
 445}
 446#else
 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 448{
 449	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 450		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 451	       PageSkipKASanPoison(page);
 452}
 453
 454static inline bool early_page_uninitialised(unsigned long pfn)
 455{
 456	return false;
 457}
 458
 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 
 460{
 461	return false;
 462}
 463#endif
 464
 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 467							unsigned long pfn)
 468{
 469#ifdef CONFIG_SPARSEMEM
 470	return section_to_usemap(__pfn_to_section(pfn));
 471#else
 472	return page_zone(page)->pageblock_flags;
 473#endif /* CONFIG_SPARSEMEM */
 474}
 475
 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 477{
 478#ifdef CONFIG_SPARSEMEM
 479	pfn &= (PAGES_PER_SECTION-1);
 
 480#else
 481	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 
 482#endif /* CONFIG_SPARSEMEM */
 483	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 484}
 485
 486static __always_inline
 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
 
 
 
 
 
 
 
 
 488					unsigned long pfn,
 
 489					unsigned long mask)
 490{
 491	unsigned long *bitmap;
 492	unsigned long bitidx, word_bitidx;
 493	unsigned long word;
 494
 495	bitmap = get_pageblock_bitmap(page, pfn);
 496	bitidx = pfn_to_bitidx(page, pfn);
 497	word_bitidx = bitidx / BITS_PER_LONG;
 498	bitidx &= (BITS_PER_LONG-1);
 499
 500	word = bitmap[word_bitidx];
 501	return (word >> bitidx) & mask;
 
 502}
 503
 504/**
 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 506 * @page: The page within the block of interest
 507 * @pfn: The target page frame number
 508 * @mask: mask of bits that the caller is interested in
 509 *
 510 * Return: pageblock_bits flags
 511 */
 512unsigned long get_pfnblock_flags_mask(const struct page *page,
 513					unsigned long pfn, unsigned long mask)
 514{
 515	return __get_pfnblock_flags_mask(page, pfn, mask);
 516}
 517
 518static __always_inline int get_pfnblock_migratetype(const struct page *page,
 519					unsigned long pfn)
 520{
 521	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 522}
 523
 524/**
 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 526 * @page: The page within the block of interest
 527 * @flags: The flags to set
 528 * @pfn: The target page frame number
 
 529 * @mask: mask of bits that the caller is interested in
 530 */
 531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 532					unsigned long pfn,
 
 533					unsigned long mask)
 534{
 535	unsigned long *bitmap;
 536	unsigned long bitidx, word_bitidx;
 537	unsigned long old_word, word;
 538
 539	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 540	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 541
 542	bitmap = get_pageblock_bitmap(page, pfn);
 543	bitidx = pfn_to_bitidx(page, pfn);
 544	word_bitidx = bitidx / BITS_PER_LONG;
 545	bitidx &= (BITS_PER_LONG-1);
 546
 547	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 548
 549	mask <<= bitidx;
 550	flags <<= bitidx;
 
 551
 552	word = READ_ONCE(bitmap[word_bitidx]);
 553	for (;;) {
 554		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 555		if (word == old_word)
 556			break;
 557		word = old_word;
 558	}
 559}
 560
 561void set_pageblock_migratetype(struct page *page, int migratetype)
 562{
 563	if (unlikely(page_group_by_mobility_disabled &&
 564		     migratetype < MIGRATE_PCPTYPES))
 565		migratetype = MIGRATE_UNMOVABLE;
 566
 567	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 568				page_to_pfn(page), MIGRATETYPE_MASK);
 569}
 570
 571#ifdef CONFIG_DEBUG_VM
 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 573{
 574	int ret = 0;
 575	unsigned seq;
 576	unsigned long pfn = page_to_pfn(page);
 577	unsigned long sp, start_pfn;
 578
 579	do {
 580		seq = zone_span_seqbegin(zone);
 581		start_pfn = zone->zone_start_pfn;
 582		sp = zone->spanned_pages;
 583		if (!zone_spans_pfn(zone, pfn))
 584			ret = 1;
 585	} while (zone_span_seqretry(zone, seq));
 586
 587	if (ret)
 588		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 589			pfn, zone_to_nid(zone), zone->name,
 590			start_pfn, start_pfn + sp);
 591
 592	return ret;
 593}
 594
 595static int page_is_consistent(struct zone *zone, struct page *page)
 596{
 597	if (!pfn_valid_within(page_to_pfn(page)))
 598		return 0;
 599	if (zone != page_zone(page))
 600		return 0;
 601
 602	return 1;
 603}
 604/*
 605 * Temporary debugging check for pages not lying within a given zone.
 606 */
 607static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 608{
 609	if (page_outside_zone_boundaries(zone, page))
 610		return 1;
 611	if (!page_is_consistent(zone, page))
 612		return 1;
 613
 614	return 0;
 615}
 616#else
 617static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 618{
 619	return 0;
 620}
 621#endif
 622
 623static void bad_page(struct page *page, const char *reason)
 
 624{
 625	static unsigned long resume;
 626	static unsigned long nr_shown;
 627	static unsigned long nr_unshown;
 628
 629	/*
 630	 * Allow a burst of 60 reports, then keep quiet for that minute;
 631	 * or allow a steady drip of one report per second.
 632	 */
 633	if (nr_shown == 60) {
 634		if (time_before(jiffies, resume)) {
 635			nr_unshown++;
 636			goto out;
 637		}
 638		if (nr_unshown) {
 639			pr_alert(
 640			      "BUG: Bad page state: %lu messages suppressed\n",
 641				nr_unshown);
 642			nr_unshown = 0;
 643		}
 644		nr_shown = 0;
 645	}
 646	if (nr_shown++ == 0)
 647		resume = jiffies + 60 * HZ;
 648
 649	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 650		current->comm, page_to_pfn(page));
 651	dump_page(page, reason);
 
 
 
 
 
 652
 653	print_modules();
 654	dump_stack();
 655out:
 656	/* Leave bad fields for debug, except PageBuddy could make trouble */
 657	page_mapcount_reset(page); /* remove PageBuddy */
 658	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 659}
 660
 661static inline unsigned int order_to_pindex(int migratetype, int order)
 662{
 663	int base = order;
 664
 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 666	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 667		VM_BUG_ON(order != pageblock_order);
 668		base = PAGE_ALLOC_COSTLY_ORDER + 1;
 669	}
 670#else
 671	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 672#endif
 673
 674	return (MIGRATE_PCPTYPES * base) + migratetype;
 675}
 676
 677static inline int pindex_to_order(unsigned int pindex)
 678{
 679	int order = pindex / MIGRATE_PCPTYPES;
 680
 681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 682	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 683		order = pageblock_order;
 684		VM_BUG_ON(order != pageblock_order);
 685	}
 686#else
 687	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 688#endif
 689
 690	return order;
 691}
 692
 693static inline bool pcp_allowed_order(unsigned int order)
 694{
 695	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 696		return true;
 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 698	if (order == pageblock_order)
 699		return true;
 700#endif
 701	return false;
 702}
 703
 704static inline void free_the_page(struct page *page, unsigned int order)
 705{
 706	if (pcp_allowed_order(order))		/* Via pcp? */
 707		free_unref_page(page, order);
 708	else
 709		__free_pages_ok(page, order, FPI_NONE);
 710}
 711
 712/*
 713 * Higher-order pages are called "compound pages".  They are structured thusly:
 714 *
 715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 716 *
 717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 719 *
 720 * The first tail page's ->compound_dtor holds the offset in array of compound
 721 * page destructors. See compound_page_dtors.
 722 *
 723 * The first tail page's ->compound_order holds the order of allocation.
 724 * This usage means that zero-order pages may not be compound.
 725 */
 726
 727void free_compound_page(struct page *page)
 728{
 729	mem_cgroup_uncharge(page);
 730	free_the_page(page, compound_order(page));
 731}
 732
 733void prep_compound_page(struct page *page, unsigned int order)
 734{
 735	int i;
 736	int nr_pages = 1 << order;
 737
 
 
 738	__SetPageHead(page);
 739	for (i = 1; i < nr_pages; i++) {
 740		struct page *p = page + i;
 
 741		p->mapping = TAIL_MAPPING;
 742		set_compound_head(p, page);
 743	}
 744
 745	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 746	set_compound_order(page, order);
 747	atomic_set(compound_mapcount_ptr(page), -1);
 748	if (hpage_pincount_available(page))
 749		atomic_set(compound_pincount_ptr(page), 0);
 750}
 751
 752#ifdef CONFIG_DEBUG_PAGEALLOC
 753unsigned int _debug_guardpage_minorder;
 754
 755bool _debug_pagealloc_enabled_early __read_mostly
 756			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 757EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 758DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 759EXPORT_SYMBOL(_debug_pagealloc_enabled);
 760
 761DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 762
 763static int __init early_debug_pagealloc(char *buf)
 764{
 765	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 
 
 766}
 767early_param("debug_pagealloc", early_debug_pagealloc);
 768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769static int __init debug_guardpage_minorder_setup(char *buf)
 770{
 771	unsigned long res;
 772
 773	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 774		pr_err("Bad debug_guardpage_minorder value\n");
 775		return 0;
 776	}
 777	_debug_guardpage_minorder = res;
 778	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 779	return 0;
 780}
 781early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 782
 783static inline bool set_page_guard(struct zone *zone, struct page *page,
 784				unsigned int order, int migratetype)
 785{
 
 
 786	if (!debug_guardpage_enabled())
 787		return false;
 788
 789	if (order >= debug_guardpage_minorder())
 790		return false;
 791
 792	__SetPageGuard(page);
 
 
 
 
 
 793	INIT_LIST_HEAD(&page->lru);
 794	set_page_private(page, order);
 795	/* Guard pages are not available for any usage */
 796	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 797
 798	return true;
 799}
 800
 801static inline void clear_page_guard(struct zone *zone, struct page *page,
 802				unsigned int order, int migratetype)
 803{
 
 
 804	if (!debug_guardpage_enabled())
 805		return;
 806
 807	__ClearPageGuard(page);
 
 
 
 
 808
 809	set_page_private(page, 0);
 810	if (!is_migrate_isolate(migratetype))
 811		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 812}
 813#else
 
 814static inline bool set_page_guard(struct zone *zone, struct page *page,
 815			unsigned int order, int migratetype) { return false; }
 816static inline void clear_page_guard(struct zone *zone, struct page *page,
 817				unsigned int order, int migratetype) {}
 818#endif
 819
 820/*
 821 * Enable static keys related to various memory debugging and hardening options.
 822 * Some override others, and depend on early params that are evaluated in the
 823 * order of appearance. So we need to first gather the full picture of what was
 824 * enabled, and then make decisions.
 825 */
 826void init_mem_debugging_and_hardening(void)
 827{
 828	bool page_poisoning_requested = false;
 829
 830#ifdef CONFIG_PAGE_POISONING
 831	/*
 832	 * Page poisoning is debug page alloc for some arches. If
 833	 * either of those options are enabled, enable poisoning.
 834	 */
 835	if (page_poisoning_enabled() ||
 836	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 837	      debug_pagealloc_enabled())) {
 838		static_branch_enable(&_page_poisoning_enabled);
 839		page_poisoning_requested = true;
 840	}
 841#endif
 842
 843	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 844	    page_poisoning_requested) {
 845		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 846			"will take precedence over init_on_alloc and init_on_free\n");
 847		_init_on_alloc_enabled_early = false;
 848		_init_on_free_enabled_early = false;
 849	}
 850
 851	if (_init_on_alloc_enabled_early)
 852		static_branch_enable(&init_on_alloc);
 853	else
 854		static_branch_disable(&init_on_alloc);
 855
 856	if (_init_on_free_enabled_early)
 857		static_branch_enable(&init_on_free);
 858	else
 859		static_branch_disable(&init_on_free);
 860
 861#ifdef CONFIG_DEBUG_PAGEALLOC
 862	if (!debug_pagealloc_enabled())
 863		return;
 864
 865	static_branch_enable(&_debug_pagealloc_enabled);
 866
 867	if (!debug_guardpage_minorder())
 868		return;
 869
 870	static_branch_enable(&_debug_guardpage_enabled);
 871#endif
 872}
 873
 874static inline void set_buddy_order(struct page *page, unsigned int order)
 875{
 876	set_page_private(page, order);
 877	__SetPageBuddy(page);
 878}
 879
 880/*
 881 * This function checks whether a page is free && is the buddy
 882 * we can coalesce a page and its buddy if
 883 * (a) the buddy is not in a hole (check before calling!) &&
 884 * (b) the buddy is in the buddy system &&
 885 * (c) a page and its buddy have the same order &&
 886 * (d) a page and its buddy are in the same zone.
 887 *
 888 * For recording whether a page is in the buddy system, we set PageBuddy.
 889 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 
 
 890 *
 891 * For recording page's order, we use page_private(page).
 892 */
 893static inline bool page_is_buddy(struct page *page, struct page *buddy,
 894							unsigned int order)
 895{
 896	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 897		return false;
 
 898
 899	if (buddy_order(buddy) != order)
 900		return false;
 901
 902	/*
 903	 * zone check is done late to avoid uselessly calculating
 904	 * zone/node ids for pages that could never merge.
 905	 */
 906	if (page_zone_id(page) != page_zone_id(buddy))
 907		return false;
 908
 909	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 
 
 
 
 
 
 910
 911	return true;
 912}
 913
 914#ifdef CONFIG_COMPACTION
 915static inline struct capture_control *task_capc(struct zone *zone)
 916{
 917	struct capture_control *capc = current->capture_control;
 918
 919	return unlikely(capc) &&
 920		!(current->flags & PF_KTHREAD) &&
 921		!capc->page &&
 922		capc->cc->zone == zone ? capc : NULL;
 923}
 924
 925static inline bool
 926compaction_capture(struct capture_control *capc, struct page *page,
 927		   int order, int migratetype)
 928{
 929	if (!capc || order != capc->cc->order)
 930		return false;
 931
 932	/* Do not accidentally pollute CMA or isolated regions*/
 933	if (is_migrate_cma(migratetype) ||
 934	    is_migrate_isolate(migratetype))
 935		return false;
 936
 937	/*
 938	 * Do not let lower order allocations pollute a movable pageblock.
 939	 * This might let an unmovable request use a reclaimable pageblock
 940	 * and vice-versa but no more than normal fallback logic which can
 941	 * have trouble finding a high-order free page.
 942	 */
 943	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 944		return false;
 945
 946	capc->page = page;
 947	return true;
 948}
 949
 950#else
 951static inline struct capture_control *task_capc(struct zone *zone)
 952{
 953	return NULL;
 954}
 955
 956static inline bool
 957compaction_capture(struct capture_control *capc, struct page *page,
 958		   int order, int migratetype)
 959{
 960	return false;
 961}
 962#endif /* CONFIG_COMPACTION */
 963
 964/* Used for pages not on another list */
 965static inline void add_to_free_list(struct page *page, struct zone *zone,
 966				    unsigned int order, int migratetype)
 967{
 968	struct free_area *area = &zone->free_area[order];
 969
 970	list_add(&page->lru, &area->free_list[migratetype]);
 971	area->nr_free++;
 972}
 973
 974/* Used for pages not on another list */
 975static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 976					 unsigned int order, int migratetype)
 977{
 978	struct free_area *area = &zone->free_area[order];
 979
 980	list_add_tail(&page->lru, &area->free_list[migratetype]);
 981	area->nr_free++;
 982}
 983
 984/*
 985 * Used for pages which are on another list. Move the pages to the tail
 986 * of the list - so the moved pages won't immediately be considered for
 987 * allocation again (e.g., optimization for memory onlining).
 988 */
 989static inline void move_to_free_list(struct page *page, struct zone *zone,
 990				     unsigned int order, int migratetype)
 991{
 992	struct free_area *area = &zone->free_area[order];
 993
 994	list_move_tail(&page->lru, &area->free_list[migratetype]);
 995}
 996
 997static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 998					   unsigned int order)
 999{
1000	/* clear reported state and update reported page count */
1001	if (page_reported(page))
1002		__ClearPageReported(page);
1003
1004	list_del(&page->lru);
1005	__ClearPageBuddy(page);
1006	set_page_private(page, 0);
1007	zone->free_area[order].nr_free--;
1008}
1009
1010/*
1011 * If this is not the largest possible page, check if the buddy
1012 * of the next-highest order is free. If it is, it's possible
1013 * that pages are being freed that will coalesce soon. In case,
1014 * that is happening, add the free page to the tail of the list
1015 * so it's less likely to be used soon and more likely to be merged
1016 * as a higher order page
1017 */
1018static inline bool
1019buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1020		   struct page *page, unsigned int order)
1021{
1022	struct page *higher_page, *higher_buddy;
1023	unsigned long combined_pfn;
1024
1025	if (order >= MAX_ORDER - 2)
1026		return false;
1027
1028	if (!pfn_valid_within(buddy_pfn))
1029		return false;
1030
1031	combined_pfn = buddy_pfn & pfn;
1032	higher_page = page + (combined_pfn - pfn);
1033	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1034	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1035
1036	return pfn_valid_within(buddy_pfn) &&
1037	       page_is_buddy(higher_page, higher_buddy, order + 1);
1038}
1039
1040/*
1041 * Freeing function for a buddy system allocator.
1042 *
1043 * The concept of a buddy system is to maintain direct-mapped table
1044 * (containing bit values) for memory blocks of various "orders".
1045 * The bottom level table contains the map for the smallest allocatable
1046 * units of memory (here, pages), and each level above it describes
1047 * pairs of units from the levels below, hence, "buddies".
1048 * At a high level, all that happens here is marking the table entry
1049 * at the bottom level available, and propagating the changes upward
1050 * as necessary, plus some accounting needed to play nicely with other
1051 * parts of the VM system.
1052 * At each level, we keep a list of pages, which are heads of continuous
1053 * free pages of length of (1 << order) and marked with PageBuddy.
1054 * Page's order is recorded in page_private(page) field.
 
1055 * So when we are allocating or freeing one, we can derive the state of the
1056 * other.  That is, if we allocate a small block, and both were
1057 * free, the remainder of the region must be split into blocks.
1058 * If a block is freed, and its buddy is also free, then this
1059 * triggers coalescing into a block of larger size.
1060 *
1061 * -- nyc
1062 */
1063
1064static inline void __free_one_page(struct page *page,
1065		unsigned long pfn,
1066		struct zone *zone, unsigned int order,
1067		int migratetype, fpi_t fpi_flags)
1068{
1069	struct capture_control *capc = task_capc(zone);
1070	unsigned long buddy_pfn;
1071	unsigned long combined_pfn;
 
 
1072	unsigned int max_order;
1073	struct page *buddy;
1074	bool to_tail;
1075
1076	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1077
1078	VM_BUG_ON(!zone_is_initialized(zone));
1079	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1080
1081	VM_BUG_ON(migratetype == -1);
1082	if (likely(!is_migrate_isolate(migratetype)))
1083		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1084
1085	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1086	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1087
1088continue_merging:
1089	while (order < max_order) {
1090		if (compaction_capture(capc, page, order, migratetype)) {
1091			__mod_zone_freepage_state(zone, -(1 << order),
1092								migratetype);
1093			return;
1094		}
1095		buddy_pfn = __find_buddy_pfn(pfn, order);
1096		buddy = page + (buddy_pfn - pfn);
1097
1098		if (!pfn_valid_within(buddy_pfn))
1099			goto done_merging;
1100		if (!page_is_buddy(page, buddy, order))
1101			goto done_merging;
1102		/*
1103		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104		 * merge with it and move up one order.
1105		 */
1106		if (page_is_guard(buddy))
1107			clear_page_guard(zone, buddy, order, migratetype);
1108		else
1109			del_page_from_free_list(buddy, zone, order);
 
 
 
1110		combined_pfn = buddy_pfn & pfn;
1111		page = page + (combined_pfn - pfn);
1112		pfn = combined_pfn;
1113		order++;
1114	}
1115	if (order < MAX_ORDER - 1) {
1116		/* If we are here, it means order is >= pageblock_order.
1117		 * We want to prevent merge between freepages on isolate
1118		 * pageblock and normal pageblock. Without this, pageblock
1119		 * isolation could cause incorrect freepage or CMA accounting.
1120		 *
1121		 * We don't want to hit this code for the more frequent
1122		 * low-order merging.
1123		 */
1124		if (unlikely(has_isolate_pageblock(zone))) {
1125			int buddy_mt;
1126
1127			buddy_pfn = __find_buddy_pfn(pfn, order);
1128			buddy = page + (buddy_pfn - pfn);
1129			buddy_mt = get_pageblock_migratetype(buddy);
1130
1131			if (migratetype != buddy_mt
1132					&& (is_migrate_isolate(migratetype) ||
1133						is_migrate_isolate(buddy_mt)))
1134				goto done_merging;
1135		}
1136		max_order = order + 1;
1137		goto continue_merging;
1138	}
1139
1140done_merging:
1141	set_buddy_order(page, order);
1142
1143	if (fpi_flags & FPI_TO_TAIL)
1144		to_tail = true;
1145	else if (is_shuffle_order(order))
1146		to_tail = shuffle_pick_tail();
1147	else
1148		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150	if (to_tail)
1151		add_to_free_list_tail(page, zone, order, migratetype);
1152	else
1153		add_to_free_list(page, zone, order, migratetype);
1154
1155	/* Notify page reporting subsystem of freed page */
1156	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157		page_reporting_notify_free(order);
1158}
1159
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166					unsigned long check_flags)
1167{
1168	if (unlikely(atomic_read(&page->_mapcount) != -1))
1169		return false;
1170
1171	if (unlikely((unsigned long)page->mapping |
1172			page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
1174			page->memcg_data |
1175#endif
1176			(page->flags & check_flags)))
1177		return false;
1178
1179	return true;
1180}
1181
1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1183{
1184	const char *bad_reason = NULL;
 
 
 
 
1185
1186	if (unlikely(atomic_read(&page->_mapcount) != -1))
1187		bad_reason = "nonzero mapcount";
1188	if (unlikely(page->mapping != NULL))
1189		bad_reason = "non-NULL mapping";
1190	if (unlikely(page_ref_count(page) != 0))
1191		bad_reason = "nonzero _refcount";
1192	if (unlikely(page->flags & flags)) {
1193		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195		else
1196			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1197	}
1198#ifdef CONFIG_MEMCG
1199	if (unlikely(page->memcg_data))
1200		bad_reason = "page still charged to cgroup";
1201#endif
1202	return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207	bad_page(page,
1208		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1209}
1210
1211static inline int check_free_page(struct page *page)
1212{
1213	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1214		return 0;
1215
1216	/* Something has gone sideways, find it */
1217	check_free_page_bad(page);
1218	return 1;
1219}
1220
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223	int ret = 1;
1224
1225	/*
1226	 * We rely page->lru.next never has bit 0 set, unless the page
1227	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228	 */
1229	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232		ret = 0;
1233		goto out;
1234	}
1235	switch (page - head_page) {
1236	case 1:
1237		/* the first tail page: ->mapping may be compound_mapcount() */
1238		if (unlikely(compound_mapcount(page))) {
1239			bad_page(page, "nonzero compound_mapcount");
1240			goto out;
1241		}
1242		break;
1243	case 2:
1244		/*
1245		 * the second tail page: ->mapping is
1246		 * deferred_list.next -- ignore value.
1247		 */
1248		break;
1249	default:
1250		if (page->mapping != TAIL_MAPPING) {
1251			bad_page(page, "corrupted mapping in tail page");
1252			goto out;
1253		}
1254		break;
1255	}
1256	if (unlikely(!PageTail(page))) {
1257		bad_page(page, "PageTail not set");
1258		goto out;
1259	}
1260	if (unlikely(compound_head(page) != head_page)) {
1261		bad_page(page, "compound_head not consistent");
1262		goto out;
1263	}
1264	ret = 0;
1265out:
1266	page->mapping = NULL;
1267	clear_compound_head(page);
1268	return ret;
1269}
1270
1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1272{
1273	int i;
1274
1275	if (zero_tags) {
1276		for (i = 0; i < numpages; i++)
1277			tag_clear_highpage(page + i);
1278		return;
1279	}
1280
1281	/* s390's use of memset() could override KASAN redzones. */
1282	kasan_disable_current();
1283	for (i = 0; i < numpages; i++) {
1284		u8 tag = page_kasan_tag(page + i);
1285		page_kasan_tag_reset(page + i);
1286		clear_highpage(page + i);
1287		page_kasan_tag_set(page + i, tag);
1288	}
1289	kasan_enable_current();
1290}
1291
1292static __always_inline bool free_pages_prepare(struct page *page,
1293			unsigned int order, bool check_free, fpi_t fpi_flags)
1294{
1295	int bad = 0;
1296	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1297
1298	VM_BUG_ON_PAGE(PageTail(page), page);
1299
1300	trace_mm_page_free(page, order);
1301
1302	if (unlikely(PageHWPoison(page)) && !order) {
1303		/*
1304		 * Do not let hwpoison pages hit pcplists/buddy
1305		 * Untie memcg state and reset page's owner
1306		 */
1307		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308			__memcg_kmem_uncharge_page(page, order);
1309		reset_page_owner(page, order);
1310		return false;
1311	}
1312
1313	/*
1314	 * Check tail pages before head page information is cleared to
1315	 * avoid checking PageCompound for order-0 pages.
1316	 */
1317	if (unlikely(order)) {
1318		bool compound = PageCompound(page);
1319		int i;
1320
1321		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322
1323		if (compound)
1324			ClearPageDoubleMap(page);
1325		for (i = 1; i < (1 << order); i++) {
1326			if (compound)
1327				bad += free_tail_pages_check(page, page + i);
1328			if (unlikely(check_free_page(page + i))) {
1329				bad++;
1330				continue;
1331			}
1332			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333		}
1334	}
1335	if (PageMappingFlags(page))
1336		page->mapping = NULL;
1337	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1338		__memcg_kmem_uncharge_page(page, order);
1339	if (check_free)
1340		bad += check_free_page(page);
1341	if (bad)
1342		return false;
1343
1344	page_cpupid_reset_last(page);
1345	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346	reset_page_owner(page, order);
1347
1348	if (!PageHighMem(page)) {
1349		debug_check_no_locks_freed(page_address(page),
1350					   PAGE_SIZE << order);
1351		debug_check_no_obj_freed(page_address(page),
1352					   PAGE_SIZE << order);
1353	}
1354
1355	kernel_poison_pages(page, 1 << order);
1356
1357	/*
1358	 * As memory initialization might be integrated into KASAN,
1359	 * kasan_free_pages and kernel_init_free_pages must be
1360	 * kept together to avoid discrepancies in behavior.
1361	 *
1362	 * With hardware tag-based KASAN, memory tags must be set before the
1363	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1364	 */
1365	if (kasan_has_integrated_init()) {
1366		if (!skip_kasan_poison)
1367			kasan_free_pages(page, order);
1368	} else {
1369		bool init = want_init_on_free();
1370
1371		if (init)
1372			kernel_init_free_pages(page, 1 << order, false);
1373		if (!skip_kasan_poison)
1374			kasan_poison_pages(page, order, init);
1375	}
1376
1377	/*
1378	 * arch_free_page() can make the page's contents inaccessible.  s390
1379	 * does this.  So nothing which can access the page's contents should
1380	 * happen after this.
1381	 */
1382	arch_free_page(page, order);
1383
1384	debug_pagealloc_unmap_pages(page, 1 << order);
 
1385
1386	return true;
1387}
1388
1389#ifdef CONFIG_DEBUG_VM
1390/*
1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1393 * moved from pcp lists to free lists.
1394 */
1395static bool free_pcp_prepare(struct page *page, unsigned int order)
1396{
1397	return free_pages_prepare(page, order, true, FPI_NONE);
1398}
1399
1400static bool bulkfree_pcp_prepare(struct page *page)
1401{
1402	if (debug_pagealloc_enabled_static())
1403		return check_free_page(page);
1404	else
1405		return false;
1406}
1407#else
1408/*
1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1410 * moving from pcp lists to free list in order to reduce overhead. With
1411 * debug_pagealloc enabled, they are checked also immediately when being freed
1412 * to the pcp lists.
1413 */
1414static bool free_pcp_prepare(struct page *page, unsigned int order)
1415{
1416	if (debug_pagealloc_enabled_static())
1417		return free_pages_prepare(page, order, true, FPI_NONE);
1418	else
1419		return free_pages_prepare(page, order, false, FPI_NONE);
1420}
1421
1422static bool bulkfree_pcp_prepare(struct page *page)
1423{
1424	return check_free_page(page);
1425}
1426#endif /* CONFIG_DEBUG_VM */
1427
1428static inline void prefetch_buddy(struct page *page)
1429{
1430	unsigned long pfn = page_to_pfn(page);
1431	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1432	struct page *buddy = page + (buddy_pfn - pfn);
1433
1434	prefetch(buddy);
1435}
1436
1437/*
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone, and of same order.
1440 * count is the number of pages to free.
1441 *
1442 * If the zone was previously in an "all pages pinned" state then look to
1443 * see if this freeing clears that state.
1444 *
1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1446 * pinned" detection logic.
1447 */
1448static void free_pcppages_bulk(struct zone *zone, int count,
1449					struct per_cpu_pages *pcp)
1450{
1451	int pindex = 0;
1452	int batch_free = 0;
1453	int nr_freed = 0;
1454	unsigned int order;
1455	int prefetch_nr = READ_ONCE(pcp->batch);
1456	bool isolated_pageblocks;
1457	struct page *page, *tmp;
1458	LIST_HEAD(head);
1459
1460	/*
1461	 * Ensure proper count is passed which otherwise would stuck in the
1462	 * below while (list_empty(list)) loop.
1463	 */
1464	count = min(pcp->count, count);
1465	while (count > 0) {
1466		struct list_head *list;
1467
1468		/*
1469		 * Remove pages from lists in a round-robin fashion. A
1470		 * batch_free count is maintained that is incremented when an
1471		 * empty list is encountered.  This is so more pages are freed
1472		 * off fuller lists instead of spinning excessively around empty
1473		 * lists
1474		 */
1475		do {
1476			batch_free++;
1477			if (++pindex == NR_PCP_LISTS)
1478				pindex = 0;
1479			list = &pcp->lists[pindex];
1480		} while (list_empty(list));
1481
1482		/* This is the only non-empty list. Free them all. */
1483		if (batch_free == NR_PCP_LISTS)
1484			batch_free = count;
1485
1486		order = pindex_to_order(pindex);
1487		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488		do {
1489			page = list_last_entry(list, struct page, lru);
1490			/* must delete to avoid corrupting pcp list */
1491			list_del(&page->lru);
1492			nr_freed += 1 << order;
1493			count -= 1 << order;
1494
1495			if (bulkfree_pcp_prepare(page))
1496				continue;
1497
1498			/* Encode order with the migratetype */
1499			page->index <<= NR_PCP_ORDER_WIDTH;
1500			page->index |= order;
1501
1502			list_add_tail(&page->lru, &head);
1503
1504			/*
1505			 * We are going to put the page back to the global
1506			 * pool, prefetch its buddy to speed up later access
1507			 * under zone->lock. It is believed the overhead of
1508			 * an additional test and calculating buddy_pfn here
1509			 * can be offset by reduced memory latency later. To
1510			 * avoid excessive prefetching due to large count, only
1511			 * prefetch buddy for the first pcp->batch nr of pages.
1512			 */
1513			if (prefetch_nr) {
1514				prefetch_buddy(page);
1515				prefetch_nr--;
1516			}
1517		} while (count > 0 && --batch_free && !list_empty(list));
1518	}
1519	pcp->count -= nr_freed;
1520
1521	/*
1522	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1523	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524	 */
1525	spin_lock(&zone->lock);
1526	isolated_pageblocks = has_isolate_pageblock(zone);
1527
1528	/*
1529	 * Use safe version since after __free_one_page(),
1530	 * page->lru.next will not point to original list.
1531	 */
1532	list_for_each_entry_safe(page, tmp, &head, lru) {
1533		int mt = get_pcppage_migratetype(page);
1534
1535		/* mt has been encoded with the order (see above) */
1536		order = mt & NR_PCP_ORDER_MASK;
1537		mt >>= NR_PCP_ORDER_WIDTH;
1538
1539		/* MIGRATE_ISOLATE page should not go to pcplists */
1540		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541		/* Pageblock could have been isolated meanwhile */
1542		if (unlikely(isolated_pageblocks))
1543			mt = get_pageblock_migratetype(page);
1544
1545		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546		trace_mm_page_pcpu_drain(page, order, mt);
1547	}
1548	spin_unlock(&zone->lock);
1549}
1550
1551static void free_one_page(struct zone *zone,
1552				struct page *page, unsigned long pfn,
1553				unsigned int order,
1554				int migratetype, fpi_t fpi_flags)
1555{
1556	unsigned long flags;
1557
1558	spin_lock_irqsave(&zone->lock, flags);
1559	if (unlikely(has_isolate_pageblock(zone) ||
1560		is_migrate_isolate(migratetype))) {
1561		migratetype = get_pfnblock_migratetype(page, pfn);
1562	}
1563	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564	spin_unlock_irqrestore(&zone->lock, flags);
1565}
1566
1567static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568				unsigned long zone, int nid)
1569{
1570	mm_zero_struct_page(page);
1571	set_page_links(page, zone, nid, pfn);
1572	init_page_count(page);
1573	page_mapcount_reset(page);
1574	page_cpupid_reset_last(page);
1575	page_kasan_tag_reset(page);
1576
1577	INIT_LIST_HEAD(&page->lru);
1578#ifdef WANT_PAGE_VIRTUAL
1579	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580	if (!is_highmem_idx(zone))
1581		set_page_address(page, __va(pfn << PAGE_SHIFT));
1582#endif
1583}
1584
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586static void __meminit init_reserved_page(unsigned long pfn)
1587{
1588	pg_data_t *pgdat;
1589	int nid, zid;
1590
1591	if (!early_page_uninitialised(pfn))
1592		return;
1593
1594	nid = early_pfn_to_nid(pfn);
1595	pgdat = NODE_DATA(nid);
1596
1597	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598		struct zone *zone = &pgdat->node_zones[zid];
1599
1600		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1601			break;
1602	}
1603	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604}
1605#else
1606static inline void init_reserved_page(unsigned long pfn)
1607{
1608}
1609#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610
1611/*
1612 * Initialised pages do not have PageReserved set. This function is
1613 * called for each range allocated by the bootmem allocator and
1614 * marks the pages PageReserved. The remaining valid pages are later
1615 * sent to the buddy page allocator.
1616 */
1617void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618{
1619	unsigned long start_pfn = PFN_DOWN(start);
1620	unsigned long end_pfn = PFN_UP(end);
1621
1622	for (; start_pfn < end_pfn; start_pfn++) {
1623		if (pfn_valid(start_pfn)) {
1624			struct page *page = pfn_to_page(start_pfn);
1625
1626			init_reserved_page(start_pfn);
1627
1628			/* Avoid false-positive PageTail() */
1629			INIT_LIST_HEAD(&page->lru);
1630
1631			/*
1632			 * no need for atomic set_bit because the struct
1633			 * page is not visible yet so nobody should
1634			 * access it yet.
1635			 */
1636			__SetPageReserved(page);
1637		}
1638	}
1639}
1640
1641static void __free_pages_ok(struct page *page, unsigned int order,
1642			    fpi_t fpi_flags)
1643{
1644	unsigned long flags;
1645	int migratetype;
1646	unsigned long pfn = page_to_pfn(page);
1647	struct zone *zone = page_zone(page);
1648
1649	if (!free_pages_prepare(page, order, true, fpi_flags))
1650		return;
1651
1652	migratetype = get_pfnblock_migratetype(page, pfn);
1653
1654	spin_lock_irqsave(&zone->lock, flags);
1655	if (unlikely(has_isolate_pageblock(zone) ||
1656		is_migrate_isolate(migratetype))) {
1657		migratetype = get_pfnblock_migratetype(page, pfn);
1658	}
1659	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660	spin_unlock_irqrestore(&zone->lock, flags);
1661
1662	__count_vm_events(PGFREE, 1 << order);
 
 
1663}
1664
1665void __free_pages_core(struct page *page, unsigned int order)
1666{
1667	unsigned int nr_pages = 1 << order;
1668	struct page *p = page;
1669	unsigned int loop;
1670
1671	/*
1672	 * When initializing the memmap, __init_single_page() sets the refcount
1673	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1674	 * refcount of all involved pages to 0.
1675	 */
1676	prefetchw(p);
1677	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678		prefetchw(p + 1);
1679		__ClearPageReserved(p);
1680		set_page_count(p, 0);
1681	}
1682	__ClearPageReserved(p);
1683	set_page_count(p, 0);
1684
1685	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686
1687	/*
1688	 * Bypass PCP and place fresh pages right to the tail, primarily
1689	 * relevant for memory onlining.
1690	 */
1691	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692}
1693
1694#ifdef CONFIG_NUMA
1695
1696/*
1697 * During memory init memblocks map pfns to nids. The search is expensive and
1698 * this caches recent lookups. The implementation of __early_pfn_to_nid
1699 * treats start/end as pfns.
1700 */
1701struct mminit_pfnnid_cache {
1702	unsigned long last_start;
1703	unsigned long last_end;
1704	int last_nid;
1705};
1706
1707static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708
1709/*
1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711 */
1712static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713					struct mminit_pfnnid_cache *state)
1714{
1715	unsigned long start_pfn, end_pfn;
1716	int nid;
1717
1718	if (state->last_start <= pfn && pfn < state->last_end)
1719		return state->last_nid;
1720
1721	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722	if (nid != NUMA_NO_NODE) {
1723		state->last_start = start_pfn;
1724		state->last_end = end_pfn;
1725		state->last_nid = nid;
1726	}
1727
1728	return nid;
1729}
1730
1731int __meminit early_pfn_to_nid(unsigned long pfn)
1732{
1733	static DEFINE_SPINLOCK(early_pfn_lock);
1734	int nid;
1735
1736	spin_lock(&early_pfn_lock);
1737	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738	if (nid < 0)
1739		nid = first_online_node;
1740	spin_unlock(&early_pfn_lock);
1741
1742	return nid;
1743}
1744#endif /* CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746void __init memblock_free_pages(struct page *page, unsigned long pfn,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747							unsigned int order)
1748{
1749	if (early_page_uninitialised(pfn))
1750		return;
1751	__free_pages_core(page, order);
1752}
1753
1754/*
1755 * Check that the whole (or subset of) a pageblock given by the interval of
1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757 * with the migration of free compaction scanner. The scanners then need to
1758 * use only pfn_valid_within() check for arches that allow holes within
1759 * pageblocks.
1760 *
1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1762 *
1763 * It's possible on some configurations to have a setup like node0 node1 node0
1764 * i.e. it's possible that all pages within a zones range of pages do not
1765 * belong to a single zone. We assume that a border between node0 and node1
1766 * can occur within a single pageblock, but not a node0 node1 node0
1767 * interleaving within a single pageblock. It is therefore sufficient to check
1768 * the first and last page of a pageblock and avoid checking each individual
1769 * page in a pageblock.
1770 */
1771struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1772				     unsigned long end_pfn, struct zone *zone)
1773{
1774	struct page *start_page;
1775	struct page *end_page;
1776
1777	/* end_pfn is one past the range we are checking */
1778	end_pfn--;
1779
1780	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1781		return NULL;
1782
1783	start_page = pfn_to_online_page(start_pfn);
1784	if (!start_page)
1785		return NULL;
1786
1787	if (page_zone(start_page) != zone)
1788		return NULL;
1789
1790	end_page = pfn_to_page(end_pfn);
1791
1792	/* This gives a shorter code than deriving page_zone(end_page) */
1793	if (page_zone_id(start_page) != page_zone_id(end_page))
1794		return NULL;
1795
1796	return start_page;
1797}
1798
1799void set_zone_contiguous(struct zone *zone)
1800{
1801	unsigned long block_start_pfn = zone->zone_start_pfn;
1802	unsigned long block_end_pfn;
1803
1804	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1805	for (; block_start_pfn < zone_end_pfn(zone);
1806			block_start_pfn = block_end_pfn,
1807			 block_end_pfn += pageblock_nr_pages) {
1808
1809		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1810
1811		if (!__pageblock_pfn_to_page(block_start_pfn,
1812					     block_end_pfn, zone))
1813			return;
1814		cond_resched();
1815	}
1816
1817	/* We confirm that there is no hole */
1818	zone->contiguous = true;
1819}
1820
1821void clear_zone_contiguous(struct zone *zone)
1822{
1823	zone->contiguous = false;
1824}
1825
1826#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827static void __init deferred_free_range(unsigned long pfn,
1828				       unsigned long nr_pages)
1829{
1830	struct page *page;
1831	unsigned long i;
1832
1833	if (!nr_pages)
1834		return;
1835
1836	page = pfn_to_page(pfn);
1837
1838	/* Free a large naturally-aligned chunk if possible */
1839	if (nr_pages == pageblock_nr_pages &&
1840	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1841		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842		__free_pages_core(page, pageblock_order);
1843		return;
1844	}
1845
1846	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1847		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1848			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849		__free_pages_core(page, 0);
1850	}
1851}
1852
1853/* Completion tracking for deferred_init_memmap() threads */
1854static atomic_t pgdat_init_n_undone __initdata;
1855static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1856
1857static inline void __init pgdat_init_report_one_done(void)
1858{
1859	if (atomic_dec_and_test(&pgdat_init_n_undone))
1860		complete(&pgdat_init_all_done_comp);
1861}
1862
1863/*
1864 * Returns true if page needs to be initialized or freed to buddy allocator.
1865 *
1866 * First we check if pfn is valid on architectures where it is possible to have
1867 * holes within pageblock_nr_pages. On systems where it is not possible, this
1868 * function is optimized out.
1869 *
1870 * Then, we check if a current large page is valid by only checking the validity
1871 * of the head pfn.
1872 */
1873static inline bool __init deferred_pfn_valid(unsigned long pfn)
 
 
 
 
 
 
1874{
1875	if (!pfn_valid_within(pfn))
1876		return false;
1877	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1878		return false;
 
 
1879	return true;
1880}
1881
1882/*
1883 * Free pages to buddy allocator. Try to free aligned pages in
1884 * pageblock_nr_pages sizes.
1885 */
1886static void __init deferred_free_pages(unsigned long pfn,
1887				       unsigned long end_pfn)
1888{
 
1889	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890	unsigned long nr_free = 0;
1891
1892	for (; pfn < end_pfn; pfn++) {
1893		if (!deferred_pfn_valid(pfn)) {
1894			deferred_free_range(pfn - nr_free, nr_free);
1895			nr_free = 0;
1896		} else if (!(pfn & nr_pgmask)) {
1897			deferred_free_range(pfn - nr_free, nr_free);
1898			nr_free = 1;
 
1899		} else {
1900			nr_free++;
1901		}
1902	}
1903	/* Free the last block of pages to allocator */
1904	deferred_free_range(pfn - nr_free, nr_free);
1905}
1906
1907/*
1908 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1909 * by performing it only once every pageblock_nr_pages.
1910 * Return number of pages initialized.
1911 */
1912static unsigned long  __init deferred_init_pages(struct zone *zone,
1913						 unsigned long pfn,
1914						 unsigned long end_pfn)
1915{
 
1916	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917	int nid = zone_to_nid(zone);
1918	unsigned long nr_pages = 0;
1919	int zid = zone_idx(zone);
1920	struct page *page = NULL;
1921
1922	for (; pfn < end_pfn; pfn++) {
1923		if (!deferred_pfn_valid(pfn)) {
1924			page = NULL;
1925			continue;
1926		} else if (!page || !(pfn & nr_pgmask)) {
1927			page = pfn_to_page(pfn);
 
1928		} else {
1929			page++;
1930		}
1931		__init_single_page(page, pfn, zid, nid);
1932		nr_pages++;
1933	}
1934	return (nr_pages);
1935}
1936
1937/*
1938 * This function is meant to pre-load the iterator for the zone init.
1939 * Specifically it walks through the ranges until we are caught up to the
1940 * first_init_pfn value and exits there. If we never encounter the value we
1941 * return false indicating there are no valid ranges left.
1942 */
1943static bool __init
1944deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1945				    unsigned long *spfn, unsigned long *epfn,
1946				    unsigned long first_init_pfn)
1947{
1948	u64 j;
1949
1950	/*
1951	 * Start out by walking through the ranges in this zone that have
1952	 * already been initialized. We don't need to do anything with them
1953	 * so we just need to flush them out of the system.
1954	 */
1955	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1956		if (*epfn <= first_init_pfn)
1957			continue;
1958		if (*spfn < first_init_pfn)
1959			*spfn = first_init_pfn;
1960		*i = j;
1961		return true;
1962	}
1963
1964	return false;
1965}
1966
1967/*
1968 * Initialize and free pages. We do it in two loops: first we initialize
1969 * struct page, then free to buddy allocator, because while we are
1970 * freeing pages we can access pages that are ahead (computing buddy
1971 * page in __free_one_page()).
1972 *
1973 * In order to try and keep some memory in the cache we have the loop
1974 * broken along max page order boundaries. This way we will not cause
1975 * any issues with the buddy page computation.
1976 */
1977static unsigned long __init
1978deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1979		       unsigned long *end_pfn)
1980{
1981	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1982	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1983	unsigned long nr_pages = 0;
1984	u64 j = *i;
1985
1986	/* First we loop through and initialize the page values */
1987	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1988		unsigned long t;
1989
1990		if (mo_pfn <= *start_pfn)
1991			break;
1992
1993		t = min(mo_pfn, *end_pfn);
1994		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1995
1996		if (mo_pfn < *end_pfn) {
1997			*start_pfn = mo_pfn;
1998			break;
1999		}
2000	}
2001
2002	/* Reset values and now loop through freeing pages as needed */
2003	swap(j, *i);
2004
2005	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2006		unsigned long t;
2007
2008		if (mo_pfn <= spfn)
2009			break;
2010
2011		t = min(mo_pfn, epfn);
2012		deferred_free_pages(spfn, t);
2013
2014		if (mo_pfn <= epfn)
2015			break;
2016	}
2017
2018	return nr_pages;
2019}
2020
2021static void __init
2022deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2023			   void *arg)
2024{
2025	unsigned long spfn, epfn;
2026	struct zone *zone = arg;
2027	u64 i;
2028
2029	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2030
2031	/*
2032	 * Initialize and free pages in MAX_ORDER sized increments so that we
2033	 * can avoid introducing any issues with the buddy allocator.
2034	 */
2035	while (spfn < end_pfn) {
2036		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2037		cond_resched();
2038	}
2039}
2040
2041/* An arch may override for more concurrency. */
2042__weak int __init
2043deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2044{
2045	return 1;
2046}
2047
2048/* Initialise remaining memory on a node */
2049static int __init deferred_init_memmap(void *data)
2050{
2051	pg_data_t *pgdat = data;
2052	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053	unsigned long spfn = 0, epfn = 0;
2054	unsigned long first_init_pfn, flags;
2055	unsigned long start = jiffies;
 
 
 
 
2056	struct zone *zone;
2057	int zid, max_threads;
2058	u64 i;
2059
2060	/* Bind memory initialisation thread to a local node if possible */
2061	if (!cpumask_empty(cpumask))
2062		set_cpus_allowed_ptr(current, cpumask);
2063
2064	pgdat_resize_lock(pgdat, &flags);
2065	first_init_pfn = pgdat->first_deferred_pfn;
2066	if (first_init_pfn == ULONG_MAX) {
2067		pgdat_resize_unlock(pgdat, &flags);
2068		pgdat_init_report_one_done();
2069		return 0;
2070	}
2071
2072	/* Sanity check boundaries */
2073	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2074	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2075	pgdat->first_deferred_pfn = ULONG_MAX;
2076
2077	/*
2078	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2079	 * interrupt thread must allocate this early in boot, zone must be
2080	 * pre-grown prior to start of deferred page initialization.
2081	 */
2082	pgdat_resize_unlock(pgdat, &flags);
2083
2084	/* Only the highest zone is deferred so find it */
2085	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2086		zone = pgdat->node_zones + zid;
2087		if (first_init_pfn < zone_end_pfn(zone))
2088			break;
2089	}
 
2090
2091	/* If the zone is empty somebody else may have cleared out the zone */
2092	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093						 first_init_pfn))
2094		goto zone_empty;
2095
2096	max_threads = deferred_page_init_max_threads(cpumask);
2097
2098	while (spfn < epfn) {
2099		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2100		struct padata_mt_job job = {
2101			.thread_fn   = deferred_init_memmap_chunk,
2102			.fn_arg      = zone,
2103			.start       = spfn,
2104			.size        = epfn_align - spfn,
2105			.align       = PAGES_PER_SECTION,
2106			.min_chunk   = PAGES_PER_SECTION,
2107			.max_threads = max_threads,
2108		};
2109
2110		padata_do_multithreaded(&job);
2111		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112						    epfn_align);
2113	}
2114zone_empty:
 
2115	/* Sanity check that the next zone really is unpopulated */
2116	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2117
2118	pr_info("node %d deferred pages initialised in %ums\n",
2119		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2120
2121	pgdat_init_report_one_done();
2122	return 0;
2123}
2124
2125/*
 
 
 
 
 
 
 
2126 * If this zone has deferred pages, try to grow it by initializing enough
2127 * deferred pages to satisfy the allocation specified by order, rounded up to
2128 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2129 * of SECTION_SIZE bytes by initializing struct pages in increments of
2130 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2131 *
2132 * Return true when zone was grown, otherwise return false. We return true even
2133 * when we grow less than requested, to let the caller decide if there are
2134 * enough pages to satisfy the allocation.
2135 *
2136 * Note: We use noinline because this function is needed only during boot, and
2137 * it is called from a __ref function _deferred_grow_zone. This way we are
2138 * making sure that it is not inlined into permanent text section.
2139 */
2140static noinline bool __init
2141deferred_grow_zone(struct zone *zone, unsigned int order)
2142{
 
 
 
2143	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144	pg_data_t *pgdat = zone->zone_pgdat;
 
2145	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146	unsigned long spfn, epfn, flags;
2147	unsigned long nr_pages = 0;
2148	u64 i;
2149
2150	/* Only the last zone may have deferred pages */
2151	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2152		return false;
2153
2154	pgdat_resize_lock(pgdat, &flags);
2155
2156	/*
 
 
 
 
 
 
 
 
 
 
 
2157	 * If someone grew this zone while we were waiting for spinlock, return
2158	 * true, as there might be enough pages already.
2159	 */
2160	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2161		pgdat_resize_unlock(pgdat, &flags);
2162		return true;
2163	}
2164
2165	/* If the zone is empty somebody else may have cleared out the zone */
2166	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167						 first_deferred_pfn)) {
2168		pgdat->first_deferred_pfn = ULONG_MAX;
2169		pgdat_resize_unlock(pgdat, &flags);
2170		/* Retry only once. */
2171		return first_deferred_pfn != ULONG_MAX;
2172	}
2173
2174	/*
2175	 * Initialize and free pages in MAX_ORDER sized increments so
2176	 * that we can avoid introducing any issues with the buddy
2177	 * allocator.
2178	 */
2179	while (spfn < epfn) {
2180		/* update our first deferred PFN for this section */
2181		first_deferred_pfn = spfn;
 
 
 
2182
2183		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184		touch_nmi_watchdog();
 
2185
2186		/* We should only stop along section boundaries */
2187		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2188			continue;
 
2189
2190		/* If our quota has been met we can stop here */
2191		if (nr_pages >= nr_pages_needed)
2192			break;
2193	}
2194
2195	pgdat->first_deferred_pfn = spfn;
2196	pgdat_resize_unlock(pgdat, &flags);
2197
2198	return nr_pages > 0;
2199}
2200
2201/*
2202 * deferred_grow_zone() is __init, but it is called from
2203 * get_page_from_freelist() during early boot until deferred_pages permanently
2204 * disables this call. This is why we have refdata wrapper to avoid warning,
2205 * and to ensure that the function body gets unloaded.
2206 */
2207static bool __ref
2208_deferred_grow_zone(struct zone *zone, unsigned int order)
2209{
2210	return deferred_grow_zone(zone, order);
2211}
2212
2213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214
2215void __init page_alloc_init_late(void)
2216{
2217	struct zone *zone;
2218	int nid;
2219
2220#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
2221
2222	/* There will be num_node_state(N_MEMORY) threads */
2223	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224	for_each_node_state(nid, N_MEMORY) {
2225		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2226	}
2227
2228	/* Block until all are initialised */
2229	wait_for_completion(&pgdat_init_all_done_comp);
2230
2231	/*
2232	 * We initialized the rest of the deferred pages.  Permanently disable
2233	 * on-demand struct page initialization.
2234	 */
2235	static_branch_disable(&deferred_pages);
2236
2237	/* Reinit limits that are based on free pages after the kernel is up */
2238	files_maxfiles_init();
2239#endif
2240
2241	buffer_init();
2242
2243	/* Discard memblock private memory */
2244	memblock_discard();
2245
2246	for_each_node_state(nid, N_MEMORY)
2247		shuffle_free_memory(NODE_DATA(nid));
2248
2249	for_each_populated_zone(zone)
2250		set_zone_contiguous(zone);
2251}
2252
2253#ifdef CONFIG_CMA
2254/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255void __init init_cma_reserved_pageblock(struct page *page)
2256{
2257	unsigned i = pageblock_nr_pages;
2258	struct page *p = page;
2259
2260	do {
2261		__ClearPageReserved(p);
2262		set_page_count(p, 0);
2263	} while (++p, --i);
2264
2265	set_pageblock_migratetype(page, MIGRATE_CMA);
2266
2267	if (pageblock_order >= MAX_ORDER) {
2268		i = pageblock_nr_pages;
2269		p = page;
2270		do {
2271			set_page_refcounted(p);
2272			__free_pages(p, MAX_ORDER - 1);
2273			p += MAX_ORDER_NR_PAGES;
2274		} while (i -= MAX_ORDER_NR_PAGES);
2275	} else {
2276		set_page_refcounted(page);
2277		__free_pages(page, pageblock_order);
2278	}
2279
2280	adjust_managed_page_count(page, pageblock_nr_pages);
2281	page_zone(page)->cma_pages += pageblock_nr_pages;
2282}
2283#endif
2284
2285/*
2286 * The order of subdivision here is critical for the IO subsystem.
2287 * Please do not alter this order without good reasons and regression
2288 * testing. Specifically, as large blocks of memory are subdivided,
2289 * the order in which smaller blocks are delivered depends on the order
2290 * they're subdivided in this function. This is the primary factor
2291 * influencing the order in which pages are delivered to the IO
2292 * subsystem according to empirical testing, and this is also justified
2293 * by considering the behavior of a buddy system containing a single
2294 * large block of memory acted on by a series of small allocations.
2295 * This behavior is a critical factor in sglist merging's success.
2296 *
2297 * -- nyc
2298 */
2299static inline void expand(struct zone *zone, struct page *page,
2300	int low, int high, int migratetype)
 
2301{
2302	unsigned long size = 1 << high;
2303
2304	while (high > low) {
 
2305		high--;
2306		size >>= 1;
2307		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308
2309		/*
2310		 * Mark as guard pages (or page), that will allow to
2311		 * merge back to allocator when buddy will be freed.
2312		 * Corresponding page table entries will not be touched,
2313		 * pages will stay not present in virtual address space
2314		 */
2315		if (set_page_guard(zone, &page[size], high, migratetype))
2316			continue;
2317
2318		add_to_free_list(&page[size], zone, high, migratetype);
2319		set_buddy_order(&page[size], high);
 
2320	}
2321}
2322
2323static void check_new_page_bad(struct page *page)
2324{
 
 
 
 
 
 
 
 
 
2325	if (unlikely(page->flags & __PG_HWPOISON)) {
 
 
2326		/* Don't complain about hwpoisoned pages */
2327		page_mapcount_reset(page); /* remove PageBuddy */
2328		return;
2329	}
2330
2331	bad_page(page,
2332		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
 
 
 
 
 
 
2333}
2334
2335/*
2336 * This page is about to be returned from the page allocator
2337 */
2338static inline int check_new_page(struct page *page)
2339{
2340	if (likely(page_expected_state(page,
2341				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2342		return 0;
2343
2344	check_new_page_bad(page);
2345	return 1;
2346}
2347
 
 
 
 
 
 
2348#ifdef CONFIG_DEBUG_VM
2349/*
2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2352 * also checked when pcp lists are refilled from the free lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356	if (debug_pagealloc_enabled_static())
2357		return check_new_page(page);
2358	else
2359		return false;
2360}
2361
2362static inline bool check_new_pcp(struct page *page)
2363{
2364	return check_new_page(page);
2365}
2366#else
2367/*
2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2370 * enabled, they are also checked when being allocated from the pcp lists.
2371 */
2372static inline bool check_pcp_refill(struct page *page)
2373{
2374	return check_new_page(page);
2375}
2376static inline bool check_new_pcp(struct page *page)
2377{
2378	if (debug_pagealloc_enabled_static())
2379		return check_new_page(page);
2380	else
2381		return false;
2382}
2383#endif /* CONFIG_DEBUG_VM */
2384
2385static bool check_new_pages(struct page *page, unsigned int order)
2386{
2387	int i;
2388	for (i = 0; i < (1 << order); i++) {
2389		struct page *p = page + i;
2390
2391		if (unlikely(check_new_page(p)))
2392			return true;
2393	}
2394
2395	return false;
2396}
2397
2398inline void post_alloc_hook(struct page *page, unsigned int order,
2399				gfp_t gfp_flags)
2400{
2401	set_page_private(page, 0);
2402	set_page_refcounted(page);
2403
2404	arch_alloc_page(page, order);
2405	debug_pagealloc_map_pages(page, 1 << order);
2406
2407	/*
2408	 * Page unpoisoning must happen before memory initialization.
2409	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410	 * allocations and the page unpoisoning code will complain.
2411	 */
2412	kernel_unpoison_pages(page, 1 << order);
2413
2414	/*
2415	 * As memory initialization might be integrated into KASAN,
2416	 * kasan_alloc_pages and kernel_init_free_pages must be
2417	 * kept together to avoid discrepancies in behavior.
2418	 */
2419	if (kasan_has_integrated_init()) {
2420		kasan_alloc_pages(page, order, gfp_flags);
2421	} else {
2422		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2423
2424		kasan_unpoison_pages(page, order, init);
2425		if (init)
2426			kernel_init_free_pages(page, 1 << order,
2427					       gfp_flags & __GFP_ZEROTAGS);
2428	}
2429
2430	set_page_owner(page, order, gfp_flags);
2431}
2432
2433static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434							unsigned int alloc_flags)
2435{
 
 
2436	post_alloc_hook(page, order, gfp_flags);
2437
 
 
 
 
2438	if (order && (gfp_flags & __GFP_COMP))
2439		prep_compound_page(page, order);
2440
2441	/*
2442	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443	 * allocate the page. The expectation is that the caller is taking
2444	 * steps that will free more memory. The caller should avoid the page
2445	 * being used for !PFMEMALLOC purposes.
2446	 */
2447	if (alloc_flags & ALLOC_NO_WATERMARKS)
2448		set_page_pfmemalloc(page);
2449	else
2450		clear_page_pfmemalloc(page);
2451}
2452
2453/*
2454 * Go through the free lists for the given migratetype and remove
2455 * the smallest available page from the freelists
2456 */
2457static __always_inline
2458struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459						int migratetype)
2460{
2461	unsigned int current_order;
2462	struct free_area *area;
2463	struct page *page;
2464
2465	/* Find a page of the appropriate size in the preferred list */
2466	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467		area = &(zone->free_area[current_order]);
2468		page = get_page_from_free_area(area, migratetype);
 
2469		if (!page)
2470			continue;
2471		del_page_from_free_list(page, zone, current_order);
2472		expand(zone, page, order, current_order, migratetype);
 
 
2473		set_pcppage_migratetype(page, migratetype);
2474		return page;
2475	}
2476
2477	return NULL;
2478}
2479
2480
2481/*
2482 * This array describes the order lists are fallen back to when
2483 * the free lists for the desirable migrate type are depleted
2484 */
2485static int fallbacks[MIGRATE_TYPES][3] = {
2486	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 
2487	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2488	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2489#ifdef CONFIG_CMA
2490	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2491#endif
2492#ifdef CONFIG_MEMORY_ISOLATION
2493	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2494#endif
2495};
2496
2497#ifdef CONFIG_CMA
2498static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499					unsigned int order)
2500{
2501	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2502}
2503#else
2504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2505					unsigned int order) { return NULL; }
2506#endif
2507
2508/*
2509 * Move the free pages in a range to the freelist tail of the requested type.
2510 * Note that start_page and end_pages are not aligned on a pageblock
2511 * boundary. If alignment is required, use move_freepages_block()
2512 */
2513static int move_freepages(struct zone *zone,
2514			  unsigned long start_pfn, unsigned long end_pfn,
2515			  int migratetype, int *num_movable)
2516{
2517	struct page *page;
2518	unsigned long pfn;
2519	unsigned int order;
2520	int pages_moved = 0;
2521
2522	for (pfn = start_pfn; pfn <= end_pfn;) {
2523		if (!pfn_valid_within(pfn)) {
2524			pfn++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525			continue;
2526		}
2527
2528		page = pfn_to_page(pfn);
 
 
2529		if (!PageBuddy(page)) {
2530			/*
2531			 * We assume that pages that could be isolated for
2532			 * migration are movable. But we don't actually try
2533			 * isolating, as that would be expensive.
2534			 */
2535			if (num_movable &&
2536					(PageLRU(page) || __PageMovable(page)))
2537				(*num_movable)++;
2538			pfn++;
 
2539			continue;
2540		}
2541
2542		/* Make sure we are not inadvertently changing nodes */
2543		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2544		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2545
2546		order = buddy_order(page);
2547		move_to_free_list(page, zone, order, migratetype);
2548		pfn += 1 << order;
2549		pages_moved += 1 << order;
2550	}
2551
2552	return pages_moved;
2553}
2554
2555int move_freepages_block(struct zone *zone, struct page *page,
2556				int migratetype, int *num_movable)
2557{
2558	unsigned long start_pfn, end_pfn, pfn;
 
2559
2560	if (num_movable)
2561		*num_movable = 0;
2562
2563	pfn = page_to_pfn(page);
2564	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2565	end_pfn = start_pfn + pageblock_nr_pages - 1;
2566
2567	/* Do not cross zone boundaries */
2568	if (!zone_spans_pfn(zone, start_pfn))
2569		start_pfn = pfn;
2570	if (!zone_spans_pfn(zone, end_pfn))
2571		return 0;
2572
2573	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574								num_movable);
2575}
2576
2577static void change_pageblock_range(struct page *pageblock_page,
2578					int start_order, int migratetype)
2579{
2580	int nr_pageblocks = 1 << (start_order - pageblock_order);
2581
2582	while (nr_pageblocks--) {
2583		set_pageblock_migratetype(pageblock_page, migratetype);
2584		pageblock_page += pageblock_nr_pages;
2585	}
2586}
2587
2588/*
2589 * When we are falling back to another migratetype during allocation, try to
2590 * steal extra free pages from the same pageblocks to satisfy further
2591 * allocations, instead of polluting multiple pageblocks.
2592 *
2593 * If we are stealing a relatively large buddy page, it is likely there will
2594 * be more free pages in the pageblock, so try to steal them all. For
2595 * reclaimable and unmovable allocations, we steal regardless of page size,
2596 * as fragmentation caused by those allocations polluting movable pageblocks
2597 * is worse than movable allocations stealing from unmovable and reclaimable
2598 * pageblocks.
2599 */
2600static bool can_steal_fallback(unsigned int order, int start_mt)
2601{
2602	/*
2603	 * Leaving this order check is intended, although there is
2604	 * relaxed order check in next check. The reason is that
2605	 * we can actually steal whole pageblock if this condition met,
2606	 * but, below check doesn't guarantee it and that is just heuristic
2607	 * so could be changed anytime.
2608	 */
2609	if (order >= pageblock_order)
2610		return true;
2611
2612	if (order >= pageblock_order / 2 ||
2613		start_mt == MIGRATE_RECLAIMABLE ||
2614		start_mt == MIGRATE_UNMOVABLE ||
2615		page_group_by_mobility_disabled)
2616		return true;
2617
2618	return false;
2619}
2620
2621static inline bool boost_watermark(struct zone *zone)
2622{
2623	unsigned long max_boost;
2624
2625	if (!watermark_boost_factor)
2626		return false;
2627	/*
2628	 * Don't bother in zones that are unlikely to produce results.
2629	 * On small machines, including kdump capture kernels running
2630	 * in a small area, boosting the watermark can cause an out of
2631	 * memory situation immediately.
2632	 */
2633	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2634		return false;
2635
2636	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2637			watermark_boost_factor, 10000);
2638
2639	/*
2640	 * high watermark may be uninitialised if fragmentation occurs
2641	 * very early in boot so do not boost. We do not fall
2642	 * through and boost by pageblock_nr_pages as failing
2643	 * allocations that early means that reclaim is not going
2644	 * to help and it may even be impossible to reclaim the
2645	 * boosted watermark resulting in a hang.
2646	 */
2647	if (!max_boost)
2648		return false;
2649
2650	max_boost = max(pageblock_nr_pages, max_boost);
2651
2652	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2653		max_boost);
2654
2655	return true;
2656}
2657
2658/*
2659 * This function implements actual steal behaviour. If order is large enough,
2660 * we can steal whole pageblock. If not, we first move freepages in this
2661 * pageblock to our migratetype and determine how many already-allocated pages
2662 * are there in the pageblock with a compatible migratetype. If at least half
2663 * of pages are free or compatible, we can change migratetype of the pageblock
2664 * itself, so pages freed in the future will be put on the correct free list.
2665 */
2666static void steal_suitable_fallback(struct zone *zone, struct page *page,
2667		unsigned int alloc_flags, int start_type, bool whole_block)
2668{
2669	unsigned int current_order = buddy_order(page);
 
2670	int free_pages, movable_pages, alike_pages;
2671	int old_block_type;
2672
2673	old_block_type = get_pageblock_migratetype(page);
2674
2675	/*
2676	 * This can happen due to races and we want to prevent broken
2677	 * highatomic accounting.
2678	 */
2679	if (is_migrate_highatomic(old_block_type))
2680		goto single_page;
2681
2682	/* Take ownership for orders >= pageblock_order */
2683	if (current_order >= pageblock_order) {
2684		change_pageblock_range(page, current_order, start_type);
2685		goto single_page;
2686	}
2687
2688	/*
2689	 * Boost watermarks to increase reclaim pressure to reduce the
2690	 * likelihood of future fallbacks. Wake kswapd now as the node
2691	 * may be balanced overall and kswapd will not wake naturally.
2692	 */
2693	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2694		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2695
2696	/* We are not allowed to try stealing from the whole block */
2697	if (!whole_block)
2698		goto single_page;
2699
2700	free_pages = move_freepages_block(zone, page, start_type,
2701						&movable_pages);
2702	/*
2703	 * Determine how many pages are compatible with our allocation.
2704	 * For movable allocation, it's the number of movable pages which
2705	 * we just obtained. For other types it's a bit more tricky.
2706	 */
2707	if (start_type == MIGRATE_MOVABLE) {
2708		alike_pages = movable_pages;
2709	} else {
2710		/*
2711		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2712		 * to MOVABLE pageblock, consider all non-movable pages as
2713		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2714		 * vice versa, be conservative since we can't distinguish the
2715		 * exact migratetype of non-movable pages.
2716		 */
2717		if (old_block_type == MIGRATE_MOVABLE)
2718			alike_pages = pageblock_nr_pages
2719						- (free_pages + movable_pages);
2720		else
2721			alike_pages = 0;
2722	}
2723
2724	/* moving whole block can fail due to zone boundary conditions */
2725	if (!free_pages)
2726		goto single_page;
2727
2728	/*
2729	 * If a sufficient number of pages in the block are either free or of
2730	 * comparable migratability as our allocation, claim the whole block.
2731	 */
2732	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2733			page_group_by_mobility_disabled)
2734		set_pageblock_migratetype(page, start_type);
2735
2736	return;
2737
2738single_page:
2739	move_to_free_list(page, zone, current_order, start_type);
 
2740}
2741
2742/*
2743 * Check whether there is a suitable fallback freepage with requested order.
2744 * If only_stealable is true, this function returns fallback_mt only if
2745 * we can steal other freepages all together. This would help to reduce
2746 * fragmentation due to mixed migratetype pages in one pageblock.
2747 */
2748int find_suitable_fallback(struct free_area *area, unsigned int order,
2749			int migratetype, bool only_stealable, bool *can_steal)
2750{
2751	int i;
2752	int fallback_mt;
2753
2754	if (area->nr_free == 0)
2755		return -1;
2756
2757	*can_steal = false;
2758	for (i = 0;; i++) {
2759		fallback_mt = fallbacks[migratetype][i];
2760		if (fallback_mt == MIGRATE_TYPES)
2761			break;
2762
2763		if (free_area_empty(area, fallback_mt))
2764			continue;
2765
2766		if (can_steal_fallback(order, migratetype))
2767			*can_steal = true;
2768
2769		if (!only_stealable)
2770			return fallback_mt;
2771
2772		if (*can_steal)
2773			return fallback_mt;
2774	}
2775
2776	return -1;
2777}
2778
2779/*
2780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2781 * there are no empty page blocks that contain a page with a suitable order
2782 */
2783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2784				unsigned int alloc_order)
2785{
2786	int mt;
2787	unsigned long max_managed, flags;
2788
2789	/*
2790	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2791	 * Check is race-prone but harmless.
2792	 */
2793	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2794	if (zone->nr_reserved_highatomic >= max_managed)
2795		return;
2796
2797	spin_lock_irqsave(&zone->lock, flags);
2798
2799	/* Recheck the nr_reserved_highatomic limit under the lock */
2800	if (zone->nr_reserved_highatomic >= max_managed)
2801		goto out_unlock;
2802
2803	/* Yoink! */
2804	mt = get_pageblock_migratetype(page);
2805	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2806	    && !is_migrate_cma(mt)) {
2807		zone->nr_reserved_highatomic += pageblock_nr_pages;
2808		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2809		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810	}
2811
2812out_unlock:
2813	spin_unlock_irqrestore(&zone->lock, flags);
2814}
2815
2816/*
2817 * Used when an allocation is about to fail under memory pressure. This
2818 * potentially hurts the reliability of high-order allocations when under
2819 * intense memory pressure but failed atomic allocations should be easier
2820 * to recover from than an OOM.
2821 *
2822 * If @force is true, try to unreserve a pageblock even though highatomic
2823 * pageblock is exhausted.
2824 */
2825static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2826						bool force)
2827{
2828	struct zonelist *zonelist = ac->zonelist;
2829	unsigned long flags;
2830	struct zoneref *z;
2831	struct zone *zone;
2832	struct page *page;
2833	int order;
2834	bool ret;
2835
2836	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2837								ac->nodemask) {
2838		/*
2839		 * Preserve at least one pageblock unless memory pressure
2840		 * is really high.
2841		 */
2842		if (!force && zone->nr_reserved_highatomic <=
2843					pageblock_nr_pages)
2844			continue;
2845
2846		spin_lock_irqsave(&zone->lock, flags);
2847		for (order = 0; order < MAX_ORDER; order++) {
2848			struct free_area *area = &(zone->free_area[order]);
2849
2850			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
 
 
2851			if (!page)
2852				continue;
2853
2854			/*
2855			 * In page freeing path, migratetype change is racy so
2856			 * we can counter several free pages in a pageblock
2857			 * in this loop although we changed the pageblock type
2858			 * from highatomic to ac->migratetype. So we should
2859			 * adjust the count once.
2860			 */
2861			if (is_migrate_highatomic_page(page)) {
2862				/*
2863				 * It should never happen but changes to
2864				 * locking could inadvertently allow a per-cpu
2865				 * drain to add pages to MIGRATE_HIGHATOMIC
2866				 * while unreserving so be safe and watch for
2867				 * underflows.
2868				 */
2869				zone->nr_reserved_highatomic -= min(
2870						pageblock_nr_pages,
2871						zone->nr_reserved_highatomic);
2872			}
2873
2874			/*
2875			 * Convert to ac->migratetype and avoid the normal
2876			 * pageblock stealing heuristics. Minimally, the caller
2877			 * is doing the work and needs the pages. More
2878			 * importantly, if the block was always converted to
2879			 * MIGRATE_UNMOVABLE or another type then the number
2880			 * of pageblocks that cannot be completely freed
2881			 * may increase.
2882			 */
2883			set_pageblock_migratetype(page, ac->migratetype);
2884			ret = move_freepages_block(zone, page, ac->migratetype,
2885									NULL);
2886			if (ret) {
2887				spin_unlock_irqrestore(&zone->lock, flags);
2888				return ret;
2889			}
2890		}
2891		spin_unlock_irqrestore(&zone->lock, flags);
2892	}
2893
2894	return false;
2895}
2896
2897/*
2898 * Try finding a free buddy page on the fallback list and put it on the free
2899 * list of requested migratetype, possibly along with other pages from the same
2900 * block, depending on fragmentation avoidance heuristics. Returns true if
2901 * fallback was found so that __rmqueue_smallest() can grab it.
2902 *
2903 * The use of signed ints for order and current_order is a deliberate
2904 * deviation from the rest of this file, to make the for loop
2905 * condition simpler.
2906 */
2907static __always_inline bool
2908__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2909						unsigned int alloc_flags)
2910{
2911	struct free_area *area;
2912	int current_order;
2913	int min_order = order;
2914	struct page *page;
2915	int fallback_mt;
2916	bool can_steal;
2917
2918	/*
2919	 * Do not steal pages from freelists belonging to other pageblocks
2920	 * i.e. orders < pageblock_order. If there are no local zones free,
2921	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2922	 */
2923	if (alloc_flags & ALLOC_NOFRAGMENT)
2924		min_order = pageblock_order;
2925
2926	/*
2927	 * Find the largest available free page in the other list. This roughly
2928	 * approximates finding the pageblock with the most free pages, which
2929	 * would be too costly to do exactly.
2930	 */
2931	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2932				--current_order) {
2933		area = &(zone->free_area[current_order]);
2934		fallback_mt = find_suitable_fallback(area, current_order,
2935				start_migratetype, false, &can_steal);
2936		if (fallback_mt == -1)
2937			continue;
2938
2939		/*
2940		 * We cannot steal all free pages from the pageblock and the
2941		 * requested migratetype is movable. In that case it's better to
2942		 * steal and split the smallest available page instead of the
2943		 * largest available page, because even if the next movable
2944		 * allocation falls back into a different pageblock than this
2945		 * one, it won't cause permanent fragmentation.
2946		 */
2947		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2948					&& current_order > order)
2949			goto find_smallest;
2950
2951		goto do_steal;
2952	}
2953
2954	return false;
2955
2956find_smallest:
2957	for (current_order = order; current_order < MAX_ORDER;
2958							current_order++) {
2959		area = &(zone->free_area[current_order]);
2960		fallback_mt = find_suitable_fallback(area, current_order,
2961				start_migratetype, false, &can_steal);
2962		if (fallback_mt != -1)
2963			break;
2964	}
2965
2966	/*
2967	 * This should not happen - we already found a suitable fallback
2968	 * when looking for the largest page.
2969	 */
2970	VM_BUG_ON(current_order == MAX_ORDER);
2971
2972do_steal:
2973	page = get_page_from_free_area(area, fallback_mt);
 
2974
2975	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2976								can_steal);
2977
2978	trace_mm_page_alloc_extfrag(page, order, current_order,
2979		start_migratetype, fallback_mt);
2980
2981	return true;
2982
2983}
2984
2985/*
2986 * Do the hard work of removing an element from the buddy allocator.
2987 * Call me with the zone->lock already held.
2988 */
2989static __always_inline struct page *
2990__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2991						unsigned int alloc_flags)
2992{
2993	struct page *page;
2994
2995	if (IS_ENABLED(CONFIG_CMA)) {
2996		/*
2997		 * Balance movable allocations between regular and CMA areas by
2998		 * allocating from CMA when over half of the zone's free memory
2999		 * is in the CMA area.
3000		 */
3001		if (alloc_flags & ALLOC_CMA &&
3002		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3003		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3004			page = __rmqueue_cma_fallback(zone, order);
3005			if (page)
3006				goto out;
3007		}
3008	}
3009retry:
3010	page = __rmqueue_smallest(zone, order, migratetype);
3011	if (unlikely(!page)) {
3012		if (alloc_flags & ALLOC_CMA)
3013			page = __rmqueue_cma_fallback(zone, order);
3014
3015		if (!page && __rmqueue_fallback(zone, order, migratetype,
3016								alloc_flags))
3017			goto retry;
3018	}
3019out:
3020	if (page)
3021		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022	return page;
3023}
3024
3025/*
3026 * Obtain a specified number of elements from the buddy allocator, all under
3027 * a single hold of the lock, for efficiency.  Add them to the supplied list.
3028 * Returns the number of new pages which were placed at *list.
3029 */
3030static int rmqueue_bulk(struct zone *zone, unsigned int order,
3031			unsigned long count, struct list_head *list,
3032			int migratetype, unsigned int alloc_flags)
3033{
3034	int i, allocated = 0;
3035
3036	/*
3037	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3038	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3039	 */
3040	spin_lock(&zone->lock);
3041	for (i = 0; i < count; ++i) {
3042		struct page *page = __rmqueue(zone, order, migratetype,
3043								alloc_flags);
3044		if (unlikely(page == NULL))
3045			break;
3046
3047		if (unlikely(check_pcp_refill(page)))
3048			continue;
3049
3050		/*
3051		 * Split buddy pages returned by expand() are received here in
3052		 * physical page order. The page is added to the tail of
3053		 * caller's list. From the callers perspective, the linked list
3054		 * is ordered by page number under some conditions. This is
3055		 * useful for IO devices that can forward direction from the
3056		 * head, thus also in the physical page order. This is useful
3057		 * for IO devices that can merge IO requests if the physical
3058		 * pages are ordered properly.
3059		 */
3060		list_add_tail(&page->lru, list);
3061		allocated++;
3062		if (is_migrate_cma(get_pcppage_migratetype(page)))
3063			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064					      -(1 << order));
3065	}
3066
3067	/*
3068	 * i pages were removed from the buddy list even if some leak due
3069	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3070	 * on i. Do not confuse with 'allocated' which is the number of
3071	 * pages added to the pcp list.
3072	 */
3073	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3074	spin_unlock(&zone->lock);
3075	return allocated;
3076}
3077
3078#ifdef CONFIG_NUMA
3079/*
3080 * Called from the vmstat counter updater to drain pagesets of this
3081 * currently executing processor on remote nodes after they have
3082 * expired.
3083 *
3084 * Note that this function must be called with the thread pinned to
3085 * a single processor.
3086 */
3087void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3088{
3089	unsigned long flags;
3090	int to_drain, batch;
3091
3092	local_lock_irqsave(&pagesets.lock, flags);
3093	batch = READ_ONCE(pcp->batch);
3094	to_drain = min(pcp->count, batch);
3095	if (to_drain > 0)
3096		free_pcppages_bulk(zone, to_drain, pcp);
3097	local_unlock_irqrestore(&pagesets.lock, flags);
3098}
3099#endif
3100
3101/*
3102 * Drain pcplists of the indicated processor and zone.
3103 *
3104 * The processor must either be the current processor and the
3105 * thread pinned to the current processor or a processor that
3106 * is not online.
3107 */
3108static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3109{
3110	unsigned long flags;
 
3111	struct per_cpu_pages *pcp;
3112
3113	local_lock_irqsave(&pagesets.lock, flags);
 
3114
3115	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3116	if (pcp->count)
3117		free_pcppages_bulk(zone, pcp->count, pcp);
3118
3119	local_unlock_irqrestore(&pagesets.lock, flags);
3120}
3121
3122/*
3123 * Drain pcplists of all zones on the indicated processor.
3124 *
3125 * The processor must either be the current processor and the
3126 * thread pinned to the current processor or a processor that
3127 * is not online.
3128 */
3129static void drain_pages(unsigned int cpu)
3130{
3131	struct zone *zone;
3132
3133	for_each_populated_zone(zone) {
3134		drain_pages_zone(cpu, zone);
3135	}
3136}
3137
3138/*
3139 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 *
3141 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3142 * the single zone's pages.
3143 */
3144void drain_local_pages(struct zone *zone)
3145{
3146	int cpu = smp_processor_id();
3147
3148	if (zone)
3149		drain_pages_zone(cpu, zone);
3150	else
3151		drain_pages(cpu);
3152}
3153
3154static void drain_local_pages_wq(struct work_struct *work)
3155{
3156	struct pcpu_drain *drain;
3157
3158	drain = container_of(work, struct pcpu_drain, work);
3159
3160	/*
3161	 * drain_all_pages doesn't use proper cpu hotplug protection so
3162	 * we can race with cpu offline when the WQ can move this from
3163	 * a cpu pinned worker to an unbound one. We can operate on a different
3164	 * cpu which is alright but we also have to make sure to not move to
3165	 * a different one.
3166	 */
3167	preempt_disable();
3168	drain_local_pages(drain->zone);
3169	preempt_enable();
3170}
3171
3172/*
3173 * The implementation of drain_all_pages(), exposing an extra parameter to
3174 * drain on all cpus.
 
3175 *
3176 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3177 * not empty. The check for non-emptiness can however race with a free to
3178 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3179 * that need the guarantee that every CPU has drained can disable the
3180 * optimizing racy check.
3181 */
3182static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183{
3184	int cpu;
3185
3186	/*
3187	 * Allocate in the BSS so we won't require allocation in
3188	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3189	 */
3190	static cpumask_t cpus_with_pcps;
3191
3192	/*
3193	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3194	 * initialized.
3195	 */
3196	if (WARN_ON_ONCE(!mm_percpu_wq))
3197		return;
3198
3199	/*
3200	 * Do not drain if one is already in progress unless it's specific to
3201	 * a zone. Such callers are primarily CMA and memory hotplug and need
3202	 * the drain to be complete when the call returns.
3203	 */
3204	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3205		if (!zone)
3206			return;
3207		mutex_lock(&pcpu_drain_mutex);
3208	}
3209
3210	/*
3211	 * We don't care about racing with CPU hotplug event
3212	 * as offline notification will cause the notified
3213	 * cpu to drain that CPU pcps and on_each_cpu_mask
3214	 * disables preemption as part of its processing
3215	 */
3216	for_each_online_cpu(cpu) {
3217		struct per_cpu_pages *pcp;
3218		struct zone *z;
3219		bool has_pcps = false;
3220
3221		if (force_all_cpus) {
3222			/*
3223			 * The pcp.count check is racy, some callers need a
3224			 * guarantee that no cpu is missed.
3225			 */
3226			has_pcps = true;
3227		} else if (zone) {
3228			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229			if (pcp->count)
3230				has_pcps = true;
3231		} else {
3232			for_each_populated_zone(z) {
3233				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3234				if (pcp->count) {
3235					has_pcps = true;
3236					break;
3237				}
3238			}
3239		}
3240
3241		if (has_pcps)
3242			cpumask_set_cpu(cpu, &cpus_with_pcps);
3243		else
3244			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3245	}
3246
3247	for_each_cpu(cpu, &cpus_with_pcps) {
3248		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3249
3250		drain->zone = zone;
3251		INIT_WORK(&drain->work, drain_local_pages_wq);
3252		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3253	}
3254	for_each_cpu(cpu, &cpus_with_pcps)
3255		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3256
3257	mutex_unlock(&pcpu_drain_mutex);
3258}
3259
3260/*
3261 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3262 *
3263 * When zone parameter is non-NULL, spill just the single zone's pages.
3264 *
3265 * Note that this can be extremely slow as the draining happens in a workqueue.
3266 */
3267void drain_all_pages(struct zone *zone)
3268{
3269	__drain_all_pages(zone, false);
3270}
3271
3272#ifdef CONFIG_HIBERNATION
3273
3274/*
3275 * Touch the watchdog for every WD_PAGE_COUNT pages.
3276 */
3277#define WD_PAGE_COUNT	(128*1024)
3278
3279void mark_free_pages(struct zone *zone)
3280{
3281	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3282	unsigned long flags;
3283	unsigned int order, t;
3284	struct page *page;
3285
3286	if (zone_is_empty(zone))
3287		return;
3288
3289	spin_lock_irqsave(&zone->lock, flags);
3290
3291	max_zone_pfn = zone_end_pfn(zone);
3292	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3293		if (pfn_valid(pfn)) {
3294			page = pfn_to_page(pfn);
3295
3296			if (!--page_count) {
3297				touch_nmi_watchdog();
3298				page_count = WD_PAGE_COUNT;
3299			}
3300
3301			if (page_zone(page) != zone)
3302				continue;
3303
3304			if (!swsusp_page_is_forbidden(page))
3305				swsusp_unset_page_free(page);
3306		}
3307
3308	for_each_migratetype_order(order, t) {
3309		list_for_each_entry(page,
3310				&zone->free_area[order].free_list[t], lru) {
3311			unsigned long i;
3312
3313			pfn = page_to_pfn(page);
3314			for (i = 0; i < (1UL << order); i++) {
3315				if (!--page_count) {
3316					touch_nmi_watchdog();
3317					page_count = WD_PAGE_COUNT;
3318				}
3319				swsusp_set_page_free(pfn_to_page(pfn + i));
3320			}
3321		}
3322	}
3323	spin_unlock_irqrestore(&zone->lock, flags);
3324}
3325#endif /* CONFIG_PM */
3326
3327static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328							unsigned int order)
3329{
3330	int migratetype;
3331
3332	if (!free_pcp_prepare(page, order))
3333		return false;
3334
3335	migratetype = get_pfnblock_migratetype(page, pfn);
3336	set_pcppage_migratetype(page, migratetype);
3337	return true;
3338}
3339
3340static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3341{
3342	int min_nr_free, max_nr_free;
3343
3344	/* Check for PCP disabled or boot pageset */
3345	if (unlikely(high < batch))
3346		return 1;
3347
3348	/* Leave at least pcp->batch pages on the list */
3349	min_nr_free = batch;
3350	max_nr_free = high - batch;
3351
3352	/*
3353	 * Double the number of pages freed each time there is subsequent
3354	 * freeing of pages without any allocation.
3355	 */
3356	batch <<= pcp->free_factor;
3357	if (batch < max_nr_free)
3358		pcp->free_factor++;
3359	batch = clamp(batch, min_nr_free, max_nr_free);
3360
3361	return batch;
3362}
3363
3364static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3365{
3366	int high = READ_ONCE(pcp->high);
3367
3368	if (unlikely(!high))
3369		return 0;
3370
3371	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372		return high;
3373
3374	/*
3375	 * If reclaim is active, limit the number of pages that can be
3376	 * stored on pcp lists
3377	 */
3378	return min(READ_ONCE(pcp->batch) << 2, high);
3379}
3380
3381static void free_unref_page_commit(struct page *page, unsigned long pfn,
3382				   int migratetype, unsigned int order)
3383{
3384	struct zone *zone = page_zone(page);
3385	struct per_cpu_pages *pcp;
3386	int high;
3387	int pindex;
3388
 
3389	__count_vm_event(PGFREE);
3390	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391	pindex = order_to_pindex(migratetype, order);
3392	list_add(&page->lru, &pcp->lists[pindex]);
3393	pcp->count += 1 << order;
3394	high = nr_pcp_high(pcp, zone);
3395	if (pcp->count >= high) {
3396		int batch = READ_ONCE(pcp->batch);
3397
3398		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3399	}
3400}
3401
3402/*
3403 * Free a pcp page
3404 */
3405void free_unref_page(struct page *page, unsigned int order)
3406{
3407	unsigned long flags;
3408	unsigned long pfn = page_to_pfn(page);
3409	int migratetype;
3410
3411	if (!free_unref_page_prepare(page, pfn, order))
3412		return;
3413
3414	/*
3415	 * We only track unmovable, reclaimable and movable on pcp lists.
3416	 * Place ISOLATE pages on the isolated list because they are being
3417	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3418	 * areas back if necessary. Otherwise, we may have to free
3419	 * excessively into the page allocator
3420	 */
3421	migratetype = get_pcppage_migratetype(page);
3422	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3423		if (unlikely(is_migrate_isolate(migratetype))) {
3424			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3425			return;
3426		}
3427		migratetype = MIGRATE_MOVABLE;
3428	}
3429
3430	local_lock_irqsave(&pagesets.lock, flags);
3431	free_unref_page_commit(page, pfn, migratetype, order);
3432	local_unlock_irqrestore(&pagesets.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3433}
3434
3435/*
3436 * Free a list of 0-order pages
3437 */
3438void free_unref_page_list(struct list_head *list)
3439{
3440	struct page *page, *next;
3441	unsigned long flags, pfn;
3442	int batch_count = 0;
3443	int migratetype;
3444
3445	/* Prepare pages for freeing */
3446	list_for_each_entry_safe(page, next, list, lru) {
3447		pfn = page_to_pfn(page);
3448		if (!free_unref_page_prepare(page, pfn, 0)) {
3449			list_del(&page->lru);
3450			continue;
3451		}
3452
3453		/*
3454		 * Free isolated pages directly to the allocator, see
3455		 * comment in free_unref_page.
3456		 */
3457		migratetype = get_pcppage_migratetype(page);
3458		if (unlikely(is_migrate_isolate(migratetype))) {
3459			list_del(&page->lru);
3460			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3461			continue;
3462		}
3463
3464		set_page_private(page, pfn);
3465	}
3466
3467	local_lock_irqsave(&pagesets.lock, flags);
3468	list_for_each_entry_safe(page, next, list, lru) {
3469		pfn = page_private(page);
 
3470		set_page_private(page, 0);
3471
3472		/*
3473		 * Non-isolated types over MIGRATE_PCPTYPES get added
3474		 * to the MIGRATE_MOVABLE pcp list.
3475		 */
3476		migratetype = get_pcppage_migratetype(page);
3477		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3478			migratetype = MIGRATE_MOVABLE;
3479
3480		trace_mm_page_free_batched(page);
3481		free_unref_page_commit(page, pfn, migratetype, 0);
3482
3483		/*
3484		 * Guard against excessive IRQ disabled times when we get
3485		 * a large list of pages to free.
3486		 */
3487		if (++batch_count == SWAP_CLUSTER_MAX) {
3488			local_unlock_irqrestore(&pagesets.lock, flags);
3489			batch_count = 0;
3490			local_lock_irqsave(&pagesets.lock, flags);
3491		}
3492	}
3493	local_unlock_irqrestore(&pagesets.lock, flags);
3494}
3495
3496/*
3497 * split_page takes a non-compound higher-order page, and splits it into
3498 * n (1<<order) sub-pages: page[0..n]
3499 * Each sub-page must be freed individually.
3500 *
3501 * Note: this is probably too low level an operation for use in drivers.
3502 * Please consult with lkml before using this in your driver.
3503 */
3504void split_page(struct page *page, unsigned int order)
3505{
3506	int i;
3507
3508	VM_BUG_ON_PAGE(PageCompound(page), page);
3509	VM_BUG_ON_PAGE(!page_count(page), page);
3510
3511	for (i = 1; i < (1 << order); i++)
3512		set_page_refcounted(page + i);
3513	split_page_owner(page, 1 << order);
3514	split_page_memcg(page, 1 << order);
3515}
3516EXPORT_SYMBOL_GPL(split_page);
3517
3518int __isolate_free_page(struct page *page, unsigned int order)
3519{
3520	unsigned long watermark;
3521	struct zone *zone;
3522	int mt;
3523
3524	BUG_ON(!PageBuddy(page));
3525
3526	zone = page_zone(page);
3527	mt = get_pageblock_migratetype(page);
3528
3529	if (!is_migrate_isolate(mt)) {
3530		/*
3531		 * Obey watermarks as if the page was being allocated. We can
3532		 * emulate a high-order watermark check with a raised order-0
3533		 * watermark, because we already know our high-order page
3534		 * exists.
3535		 */
3536		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3537		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3538			return 0;
3539
3540		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3541	}
3542
3543	/* Remove page from free list */
3544
3545	del_page_from_free_list(page, zone, order);
 
3546
3547	/*
3548	 * Set the pageblock if the isolated page is at least half of a
3549	 * pageblock
3550	 */
3551	if (order >= pageblock_order - 1) {
3552		struct page *endpage = page + (1 << order) - 1;
3553		for (; page < endpage; page += pageblock_nr_pages) {
3554			int mt = get_pageblock_migratetype(page);
3555			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3556			    && !is_migrate_highatomic(mt))
3557				set_pageblock_migratetype(page,
3558							  MIGRATE_MOVABLE);
3559		}
3560	}
3561
3562
3563	return 1UL << order;
3564}
3565
3566/**
3567 * __putback_isolated_page - Return a now-isolated page back where we got it
3568 * @page: Page that was isolated
3569 * @order: Order of the isolated page
3570 * @mt: The page's pageblock's migratetype
3571 *
3572 * This function is meant to return a page pulled from the free lists via
3573 * __isolate_free_page back to the free lists they were pulled from.
3574 */
3575void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3576{
3577	struct zone *zone = page_zone(page);
3578
3579	/* zone lock should be held when this function is called */
3580	lockdep_assert_held(&zone->lock);
3581
3582	/* Return isolated page to tail of freelist. */
3583	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3584			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3585}
3586
3587/*
3588 * Update NUMA hit/miss statistics
3589 *
3590 * Must be called with interrupts disabled.
3591 */
3592static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3593				   long nr_account)
3594{
3595#ifdef CONFIG_NUMA
3596	enum numa_stat_item local_stat = NUMA_LOCAL;
3597
3598	/* skip numa counters update if numa stats is disabled */
3599	if (!static_branch_likely(&vm_numa_stat_key))
3600		return;
3601
3602	if (zone_to_nid(z) != numa_node_id())
3603		local_stat = NUMA_OTHER;
3604
3605	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3606		__count_numa_events(z, NUMA_HIT, nr_account);
3607	else {
3608		__count_numa_events(z, NUMA_MISS, nr_account);
3609		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3610	}
3611	__count_numa_events(z, local_stat, nr_account);
3612#endif
3613}
3614
3615/* Remove page from the per-cpu list, caller must protect the list */
3616static inline
3617struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3618			int migratetype,
3619			unsigned int alloc_flags,
3620			struct per_cpu_pages *pcp,
3621			struct list_head *list)
3622{
3623	struct page *page;
3624
3625	do {
3626		if (list_empty(list)) {
3627			int batch = READ_ONCE(pcp->batch);
3628			int alloced;
3629
3630			/*
3631			 * Scale batch relative to order if batch implies
3632			 * free pages can be stored on the PCP. Batch can
3633			 * be 1 for small zones or for boot pagesets which
3634			 * should never store free pages as the pages may
3635			 * belong to arbitrary zones.
3636			 */
3637			if (batch > 1)
3638				batch = max(batch >> order, 2);
3639			alloced = rmqueue_bulk(zone, order,
3640					batch, list,
3641					migratetype, alloc_flags);
3642
3643			pcp->count += alloced << order;
3644			if (unlikely(list_empty(list)))
3645				return NULL;
3646		}
3647
3648		page = list_first_entry(list, struct page, lru);
3649		list_del(&page->lru);
3650		pcp->count -= 1 << order;
3651	} while (check_new_pcp(page));
3652
3653	return page;
3654}
3655
3656/* Lock and remove page from the per-cpu list */
3657static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3658			struct zone *zone, unsigned int order,
3659			gfp_t gfp_flags, int migratetype,
3660			unsigned int alloc_flags)
3661{
3662	struct per_cpu_pages *pcp;
3663	struct list_head *list;
3664	struct page *page;
3665	unsigned long flags;
3666
3667	local_lock_irqsave(&pagesets.lock, flags);
3668
3669	/*
3670	 * On allocation, reduce the number of pages that are batch freed.
3671	 * See nr_pcp_free() where free_factor is increased for subsequent
3672	 * frees.
3673	 */
3674	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3675	pcp->free_factor >>= 1;
3676	list = &pcp->lists[order_to_pindex(migratetype, order)];
3677	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3678	local_unlock_irqrestore(&pagesets.lock, flags);
3679	if (page) {
3680		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3681		zone_statistics(preferred_zone, zone, 1);
3682	}
 
3683	return page;
3684}
3685
3686/*
3687 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3688 */
3689static inline
3690struct page *rmqueue(struct zone *preferred_zone,
3691			struct zone *zone, unsigned int order,
3692			gfp_t gfp_flags, unsigned int alloc_flags,
3693			int migratetype)
3694{
3695	unsigned long flags;
3696	struct page *page;
3697
3698	if (likely(pcp_allowed_order(order))) {
3699		/*
3700		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3701		 * we need to skip it when CMA area isn't allowed.
3702		 */
3703		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3704				migratetype != MIGRATE_MOVABLE) {
3705			page = rmqueue_pcplist(preferred_zone, zone, order,
3706					gfp_flags, migratetype, alloc_flags);
3707			goto out;
3708		}
3709	}
3710
3711	/*
3712	 * We most definitely don't want callers attempting to
3713	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3714	 */
3715	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3716	spin_lock_irqsave(&zone->lock, flags);
3717
3718	do {
3719		page = NULL;
3720		/*
3721		 * order-0 request can reach here when the pcplist is skipped
3722		 * due to non-CMA allocation context. HIGHATOMIC area is
3723		 * reserved for high-order atomic allocation, so order-0
3724		 * request should skip it.
3725		 */
3726		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3727			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3728			if (page)
3729				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3730		}
3731		if (!page)
3732			page = __rmqueue(zone, order, migratetype, alloc_flags);
3733	} while (page && check_new_pages(page, order));
 
3734	if (!page)
3735		goto failed;
3736
3737	__mod_zone_freepage_state(zone, -(1 << order),
3738				  get_pcppage_migratetype(page));
3739	spin_unlock_irqrestore(&zone->lock, flags);
3740
3741	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3742	zone_statistics(preferred_zone, zone, 1);
 
3743
3744out:
3745	/* Separate test+clear to avoid unnecessary atomics */
3746	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3747		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3748		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3749	}
3750
3751	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3752	return page;
3753
3754failed:
3755	spin_unlock_irqrestore(&zone->lock, flags);
3756	return NULL;
3757}
3758
3759#ifdef CONFIG_FAIL_PAGE_ALLOC
3760
3761static struct {
3762	struct fault_attr attr;
3763
3764	bool ignore_gfp_highmem;
3765	bool ignore_gfp_reclaim;
3766	u32 min_order;
3767} fail_page_alloc = {
3768	.attr = FAULT_ATTR_INITIALIZER,
3769	.ignore_gfp_reclaim = true,
3770	.ignore_gfp_highmem = true,
3771	.min_order = 1,
3772};
3773
3774static int __init setup_fail_page_alloc(char *str)
3775{
3776	return setup_fault_attr(&fail_page_alloc.attr, str);
3777}
3778__setup("fail_page_alloc=", setup_fail_page_alloc);
3779
3780static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3781{
3782	if (order < fail_page_alloc.min_order)
3783		return false;
3784	if (gfp_mask & __GFP_NOFAIL)
3785		return false;
3786	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3787		return false;
3788	if (fail_page_alloc.ignore_gfp_reclaim &&
3789			(gfp_mask & __GFP_DIRECT_RECLAIM))
3790		return false;
3791
3792	return should_fail(&fail_page_alloc.attr, 1 << order);
3793}
3794
3795#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3796
3797static int __init fail_page_alloc_debugfs(void)
3798{
3799	umode_t mode = S_IFREG | 0600;
3800	struct dentry *dir;
3801
3802	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3803					&fail_page_alloc.attr);
 
 
3804
3805	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3806			    &fail_page_alloc.ignore_gfp_reclaim);
3807	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3808			    &fail_page_alloc.ignore_gfp_highmem);
3809	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
 
 
 
 
3810
3811	return 0;
 
 
 
 
3812}
3813
3814late_initcall(fail_page_alloc_debugfs);
3815
3816#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3817
3818#else /* CONFIG_FAIL_PAGE_ALLOC */
3819
3820static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821{
3822	return false;
3823}
3824
3825#endif /* CONFIG_FAIL_PAGE_ALLOC */
3826
3827noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828{
3829	return __should_fail_alloc_page(gfp_mask, order);
3830}
3831ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3832
3833static inline long __zone_watermark_unusable_free(struct zone *z,
3834				unsigned int order, unsigned int alloc_flags)
3835{
3836	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3837	long unusable_free = (1 << order) - 1;
3838
3839	/*
3840	 * If the caller does not have rights to ALLOC_HARDER then subtract
3841	 * the high-atomic reserves. This will over-estimate the size of the
3842	 * atomic reserve but it avoids a search.
3843	 */
3844	if (likely(!alloc_harder))
3845		unusable_free += z->nr_reserved_highatomic;
3846
3847#ifdef CONFIG_CMA
3848	/* If allocation can't use CMA areas don't use free CMA pages */
3849	if (!(alloc_flags & ALLOC_CMA))
3850		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3851#endif
3852
3853	return unusable_free;
3854}
3855
3856/*
3857 * Return true if free base pages are above 'mark'. For high-order checks it
3858 * will return true of the order-0 watermark is reached and there is at least
3859 * one free page of a suitable size. Checking now avoids taking the zone lock
3860 * to check in the allocation paths if no pages are free.
3861 */
3862bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3863			 int highest_zoneidx, unsigned int alloc_flags,
3864			 long free_pages)
3865{
3866	long min = mark;
3867	int o;
3868	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3869
3870	/* free_pages may go negative - that's OK */
3871	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3872
3873	if (alloc_flags & ALLOC_HIGH)
3874		min -= min / 2;
3875
3876	if (unlikely(alloc_harder)) {
 
 
 
 
 
 
 
3877		/*
3878		 * OOM victims can try even harder than normal ALLOC_HARDER
3879		 * users on the grounds that it's definitely going to be in
3880		 * the exit path shortly and free memory. Any allocation it
3881		 * makes during the free path will be small and short-lived.
3882		 */
3883		if (alloc_flags & ALLOC_OOM)
3884			min -= min / 2;
3885		else
3886			min -= min / 4;
3887	}
3888
 
 
 
 
 
 
 
3889	/*
3890	 * Check watermarks for an order-0 allocation request. If these
3891	 * are not met, then a high-order request also cannot go ahead
3892	 * even if a suitable page happened to be free.
3893	 */
3894	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3895		return false;
3896
3897	/* If this is an order-0 request then the watermark is fine */
3898	if (!order)
3899		return true;
3900
3901	/* For a high-order request, check at least one suitable page is free */
3902	for (o = order; o < MAX_ORDER; o++) {
3903		struct free_area *area = &z->free_area[o];
3904		int mt;
3905
3906		if (!area->nr_free)
3907			continue;
3908
3909		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3910			if (!free_area_empty(area, mt))
3911				return true;
3912		}
3913
3914#ifdef CONFIG_CMA
3915		if ((alloc_flags & ALLOC_CMA) &&
3916		    !free_area_empty(area, MIGRATE_CMA)) {
3917			return true;
3918		}
3919#endif
3920		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
 
3921			return true;
3922	}
3923	return false;
3924}
3925
3926bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3927		      int highest_zoneidx, unsigned int alloc_flags)
3928{
3929	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3930					zone_page_state(z, NR_FREE_PAGES));
3931}
3932
3933static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3934				unsigned long mark, int highest_zoneidx,
3935				unsigned int alloc_flags, gfp_t gfp_mask)
3936{
3937	long free_pages;
 
3938
3939	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
3940
3941	/*
3942	 * Fast check for order-0 only. If this fails then the reserves
3943	 * need to be calculated.
 
 
 
3944	 */
3945	if (!order) {
3946		long fast_free;
3947
3948		fast_free = free_pages;
3949		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3950		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3951			return true;
3952	}
3953
3954	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955					free_pages))
3956		return true;
3957	/*
3958	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3959	 * when checking the min watermark. The min watermark is the
3960	 * point where boosting is ignored so that kswapd is woken up
3961	 * when below the low watermark.
3962	 */
3963	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3964		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3965		mark = z->_watermark[WMARK_MIN];
3966		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3967					alloc_flags, free_pages);
3968	}
3969
3970	return false;
 
3971}
3972
3973bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3974			unsigned long mark, int highest_zoneidx)
3975{
3976	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3977
3978	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3979		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3980
3981	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3982								free_pages);
3983}
3984
3985#ifdef CONFIG_NUMA
3986static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3987{
3988	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3989				node_reclaim_distance;
3990}
3991#else	/* CONFIG_NUMA */
3992static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3993{
3994	return true;
3995}
3996#endif	/* CONFIG_NUMA */
3997
3998/*
3999 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4000 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4001 * premature use of a lower zone may cause lowmem pressure problems that
4002 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4003 * probably too small. It only makes sense to spread allocations to avoid
4004 * fragmentation between the Normal and DMA32 zones.
4005 */
4006static inline unsigned int
4007alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4008{
4009	unsigned int alloc_flags;
4010
4011	/*
4012	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4013	 * to save a branch.
4014	 */
4015	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4016
4017#ifdef CONFIG_ZONE_DMA32
4018	if (!zone)
4019		return alloc_flags;
4020
4021	if (zone_idx(zone) != ZONE_NORMAL)
4022		return alloc_flags;
4023
4024	/*
4025	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4026	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4027	 * on UMA that if Normal is populated then so is DMA32.
4028	 */
4029	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4030	if (nr_online_nodes > 1 && !populated_zone(--zone))
4031		return alloc_flags;
4032
4033	alloc_flags |= ALLOC_NOFRAGMENT;
4034#endif /* CONFIG_ZONE_DMA32 */
4035	return alloc_flags;
4036}
4037
4038/* Must be called after current_gfp_context() which can change gfp_mask */
4039static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4040						  unsigned int alloc_flags)
4041{
4042#ifdef CONFIG_CMA
4043	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4044		alloc_flags |= ALLOC_CMA;
4045#endif
4046	return alloc_flags;
4047}
4048
4049/*
4050 * get_page_from_freelist goes through the zonelist trying to allocate
4051 * a page.
4052 */
4053static struct page *
4054get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4055						const struct alloc_context *ac)
4056{
4057	struct zoneref *z;
4058	struct zone *zone;
4059	struct pglist_data *last_pgdat_dirty_limit = NULL;
4060	bool no_fallback;
4061
4062retry:
4063	/*
4064	 * Scan zonelist, looking for a zone with enough free.
4065	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4066	 */
4067	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4068	z = ac->preferred_zoneref;
4069	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4070					ac->nodemask) {
4071		struct page *page;
4072		unsigned long mark;
4073
4074		if (cpusets_enabled() &&
4075			(alloc_flags & ALLOC_CPUSET) &&
4076			!__cpuset_zone_allowed(zone, gfp_mask))
4077				continue;
4078		/*
4079		 * When allocating a page cache page for writing, we
4080		 * want to get it from a node that is within its dirty
4081		 * limit, such that no single node holds more than its
4082		 * proportional share of globally allowed dirty pages.
4083		 * The dirty limits take into account the node's
4084		 * lowmem reserves and high watermark so that kswapd
4085		 * should be able to balance it without having to
4086		 * write pages from its LRU list.
4087		 *
4088		 * XXX: For now, allow allocations to potentially
4089		 * exceed the per-node dirty limit in the slowpath
4090		 * (spread_dirty_pages unset) before going into reclaim,
4091		 * which is important when on a NUMA setup the allowed
4092		 * nodes are together not big enough to reach the
4093		 * global limit.  The proper fix for these situations
4094		 * will require awareness of nodes in the
4095		 * dirty-throttling and the flusher threads.
4096		 */
4097		if (ac->spread_dirty_pages) {
4098			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4099				continue;
4100
4101			if (!node_dirty_ok(zone->zone_pgdat)) {
4102				last_pgdat_dirty_limit = zone->zone_pgdat;
4103				continue;
4104			}
4105		}
4106
4107		if (no_fallback && nr_online_nodes > 1 &&
4108		    zone != ac->preferred_zoneref->zone) {
4109			int local_nid;
4110
4111			/*
4112			 * If moving to a remote node, retry but allow
4113			 * fragmenting fallbacks. Locality is more important
4114			 * than fragmentation avoidance.
4115			 */
4116			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4117			if (zone_to_nid(zone) != local_nid) {
4118				alloc_flags &= ~ALLOC_NOFRAGMENT;
4119				goto retry;
4120			}
4121		}
4122
4123		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4124		if (!zone_watermark_fast(zone, order, mark,
4125				       ac->highest_zoneidx, alloc_flags,
4126				       gfp_mask)) {
4127			int ret;
4128
4129#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4130			/*
4131			 * Watermark failed for this zone, but see if we can
4132			 * grow this zone if it contains deferred pages.
4133			 */
4134			if (static_branch_unlikely(&deferred_pages)) {
4135				if (_deferred_grow_zone(zone, order))
4136					goto try_this_zone;
4137			}
4138#endif
4139			/* Checked here to keep the fast path fast */
4140			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4141			if (alloc_flags & ALLOC_NO_WATERMARKS)
4142				goto try_this_zone;
4143
4144			if (!node_reclaim_enabled() ||
4145			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4146				continue;
4147
4148			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4149			switch (ret) {
4150			case NODE_RECLAIM_NOSCAN:
4151				/* did not scan */
4152				continue;
4153			case NODE_RECLAIM_FULL:
4154				/* scanned but unreclaimable */
4155				continue;
4156			default:
4157				/* did we reclaim enough */
4158				if (zone_watermark_ok(zone, order, mark,
4159					ac->highest_zoneidx, alloc_flags))
4160					goto try_this_zone;
4161
4162				continue;
4163			}
4164		}
4165
4166try_this_zone:
4167		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4168				gfp_mask, alloc_flags, ac->migratetype);
4169		if (page) {
4170			prep_new_page(page, order, gfp_mask, alloc_flags);
4171
4172			/*
4173			 * If this is a high-order atomic allocation then check
4174			 * if the pageblock should be reserved for the future
4175			 */
4176			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4177				reserve_highatomic_pageblock(page, zone, order);
4178
4179			return page;
4180		} else {
4181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4182			/* Try again if zone has deferred pages */
4183			if (static_branch_unlikely(&deferred_pages)) {
4184				if (_deferred_grow_zone(zone, order))
4185					goto try_this_zone;
4186			}
4187#endif
4188		}
4189	}
4190
4191	/*
4192	 * It's possible on a UMA machine to get through all zones that are
4193	 * fragmented. If avoiding fragmentation, reset and try again.
4194	 */
4195	if (no_fallback) {
4196		alloc_flags &= ~ALLOC_NOFRAGMENT;
4197		goto retry;
4198	}
 
 
4199
4200	return NULL;
 
 
 
4201}
4202
4203static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4204{
4205	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
 
 
 
4206
4207	/*
4208	 * This documents exceptions given to allocations in certain
4209	 * contexts that are allowed to allocate outside current's set
4210	 * of allowed nodes.
4211	 */
4212	if (!(gfp_mask & __GFP_NOMEMALLOC))
4213		if (tsk_is_oom_victim(current) ||
4214		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4215			filter &= ~SHOW_MEM_FILTER_NODES;
4216	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4217		filter &= ~SHOW_MEM_FILTER_NODES;
4218
4219	show_mem(filter, nodemask);
4220}
4221
4222void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4223{
4224	struct va_format vaf;
4225	va_list args;
4226	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
 
4227
4228	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4229		return;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4235			current->comm, &vaf, gfp_mask, &gfp_mask,
4236			nodemask_pr_args(nodemask));
4237	va_end(args);
4238
4239	cpuset_print_current_mems_allowed();
4240	pr_cont("\n");
4241	dump_stack();
4242	warn_alloc_show_mem(gfp_mask, nodemask);
4243}
4244
4245static inline struct page *
4246__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4247			      unsigned int alloc_flags,
4248			      const struct alloc_context *ac)
4249{
4250	struct page *page;
4251
4252	page = get_page_from_freelist(gfp_mask, order,
4253			alloc_flags|ALLOC_CPUSET, ac);
4254	/*
4255	 * fallback to ignore cpuset restriction if our nodes
4256	 * are depleted
4257	 */
4258	if (!page)
4259		page = get_page_from_freelist(gfp_mask, order,
4260				alloc_flags, ac);
4261
4262	return page;
4263}
4264
4265static inline struct page *
4266__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4267	const struct alloc_context *ac, unsigned long *did_some_progress)
4268{
4269	struct oom_control oc = {
4270		.zonelist = ac->zonelist,
4271		.nodemask = ac->nodemask,
4272		.memcg = NULL,
4273		.gfp_mask = gfp_mask,
4274		.order = order,
4275	};
4276	struct page *page;
4277
4278	*did_some_progress = 0;
4279
4280	/*
4281	 * Acquire the oom lock.  If that fails, somebody else is
4282	 * making progress for us.
4283	 */
4284	if (!mutex_trylock(&oom_lock)) {
4285		*did_some_progress = 1;
4286		schedule_timeout_uninterruptible(1);
4287		return NULL;
4288	}
4289
4290	/*
4291	 * Go through the zonelist yet one more time, keep very high watermark
4292	 * here, this is only to catch a parallel oom killing, we must fail if
4293	 * we're still under heavy pressure. But make sure that this reclaim
4294	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4295	 * allocation which will never fail due to oom_lock already held.
4296	 */
4297	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4298				      ~__GFP_DIRECT_RECLAIM, order,
4299				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4300	if (page)
4301		goto out;
4302
4303	/* Coredumps can quickly deplete all memory reserves */
4304	if (current->flags & PF_DUMPCORE)
4305		goto out;
4306	/* The OOM killer will not help higher order allocs */
4307	if (order > PAGE_ALLOC_COSTLY_ORDER)
4308		goto out;
4309	/*
4310	 * We have already exhausted all our reclaim opportunities without any
4311	 * success so it is time to admit defeat. We will skip the OOM killer
4312	 * because it is very likely that the caller has a more reasonable
4313	 * fallback than shooting a random task.
4314	 *
4315	 * The OOM killer may not free memory on a specific node.
4316	 */
4317	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4318		goto out;
4319	/* The OOM killer does not needlessly kill tasks for lowmem */
4320	if (ac->highest_zoneidx < ZONE_NORMAL)
4321		goto out;
4322	if (pm_suspended_storage())
4323		goto out;
4324	/*
4325	 * XXX: GFP_NOFS allocations should rather fail than rely on
4326	 * other request to make a forward progress.
4327	 * We are in an unfortunate situation where out_of_memory cannot
4328	 * do much for this context but let's try it to at least get
4329	 * access to memory reserved if the current task is killed (see
4330	 * out_of_memory). Once filesystems are ready to handle allocation
4331	 * failures more gracefully we should just bail out here.
4332	 */
4333
 
 
 
 
4334	/* Exhausted what can be done so it's blame time */
4335	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4336		*did_some_progress = 1;
4337
4338		/*
4339		 * Help non-failing allocations by giving them access to memory
4340		 * reserves
4341		 */
4342		if (gfp_mask & __GFP_NOFAIL)
4343			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4344					ALLOC_NO_WATERMARKS, ac);
4345	}
4346out:
4347	mutex_unlock(&oom_lock);
4348	return page;
4349}
4350
4351/*
4352 * Maximum number of compaction retries with a progress before OOM
4353 * killer is consider as the only way to move forward.
4354 */
4355#define MAX_COMPACT_RETRIES 16
4356
4357#ifdef CONFIG_COMPACTION
4358/* Try memory compaction for high-order allocations before reclaim */
4359static struct page *
4360__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4361		unsigned int alloc_flags, const struct alloc_context *ac,
4362		enum compact_priority prio, enum compact_result *compact_result)
4363{
4364	struct page *page = NULL;
4365	unsigned long pflags;
4366	unsigned int noreclaim_flag;
4367
4368	if (!order)
4369		return NULL;
4370
4371	psi_memstall_enter(&pflags);
4372	noreclaim_flag = memalloc_noreclaim_save();
4373
4374	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4375								prio, &page);
4376
4377	memalloc_noreclaim_restore(noreclaim_flag);
4378	psi_memstall_leave(&pflags);
4379
4380	if (*compact_result == COMPACT_SKIPPED)
4381		return NULL;
 
4382	/*
4383	 * At least in one zone compaction wasn't deferred or skipped, so let's
4384	 * count a compaction stall
4385	 */
4386	count_vm_event(COMPACTSTALL);
4387
4388	/* Prep a captured page if available */
4389	if (page)
4390		prep_new_page(page, order, gfp_mask, alloc_flags);
4391
4392	/* Try get a page from the freelist if available */
4393	if (!page)
4394		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4395
4396	if (page) {
4397		struct zone *zone = page_zone(page);
4398
4399		zone->compact_blockskip_flush = false;
4400		compaction_defer_reset(zone, order, true);
4401		count_vm_event(COMPACTSUCCESS);
4402		return page;
4403	}
4404
4405	/*
4406	 * It's bad if compaction run occurs and fails. The most likely reason
4407	 * is that pages exist, but not enough to satisfy watermarks.
4408	 */
4409	count_vm_event(COMPACTFAIL);
4410
4411	cond_resched();
4412
4413	return NULL;
4414}
4415
4416static inline bool
4417should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4418		     enum compact_result compact_result,
4419		     enum compact_priority *compact_priority,
4420		     int *compaction_retries)
4421{
4422	int max_retries = MAX_COMPACT_RETRIES;
4423	int min_priority;
4424	bool ret = false;
4425	int retries = *compaction_retries;
4426	enum compact_priority priority = *compact_priority;
4427
4428	if (!order)
4429		return false;
4430
4431	if (fatal_signal_pending(current))
4432		return false;
4433
4434	if (compaction_made_progress(compact_result))
4435		(*compaction_retries)++;
4436
4437	/*
4438	 * compaction considers all the zone as desperately out of memory
4439	 * so it doesn't really make much sense to retry except when the
4440	 * failure could be caused by insufficient priority
4441	 */
4442	if (compaction_failed(compact_result))
4443		goto check_priority;
4444
4445	/*
4446	 * compaction was skipped because there are not enough order-0 pages
4447	 * to work with, so we retry only if it looks like reclaim can help.
4448	 */
4449	if (compaction_needs_reclaim(compact_result)) {
4450		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4451		goto out;
4452	}
4453
4454	/*
4455	 * make sure the compaction wasn't deferred or didn't bail out early
4456	 * due to locks contention before we declare that we should give up.
4457	 * But the next retry should use a higher priority if allowed, so
4458	 * we don't just keep bailing out endlessly.
4459	 */
4460	if (compaction_withdrawn(compact_result)) {
4461		goto check_priority;
 
4462	}
4463
4464	/*
4465	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4466	 * costly ones because they are de facto nofail and invoke OOM
4467	 * killer to move on while costly can fail and users are ready
4468	 * to cope with that. 1/4 retries is rather arbitrary but we
4469	 * would need much more detailed feedback from compaction to
4470	 * make a better decision.
4471	 */
4472	if (order > PAGE_ALLOC_COSTLY_ORDER)
4473		max_retries /= 4;
4474	if (*compaction_retries <= max_retries) {
4475		ret = true;
4476		goto out;
4477	}
4478
4479	/*
4480	 * Make sure there are attempts at the highest priority if we exhausted
4481	 * all retries or failed at the lower priorities.
4482	 */
4483check_priority:
4484	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4485			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4486
4487	if (*compact_priority > min_priority) {
4488		(*compact_priority)--;
4489		*compaction_retries = 0;
4490		ret = true;
4491	}
4492out:
4493	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4494	return ret;
4495}
4496#else
4497static inline struct page *
4498__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4499		unsigned int alloc_flags, const struct alloc_context *ac,
4500		enum compact_priority prio, enum compact_result *compact_result)
4501{
4502	*compact_result = COMPACT_SKIPPED;
4503	return NULL;
4504}
4505
4506static inline bool
4507should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4508		     enum compact_result compact_result,
4509		     enum compact_priority *compact_priority,
4510		     int *compaction_retries)
4511{
4512	struct zone *zone;
4513	struct zoneref *z;
4514
4515	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4516		return false;
4517
4518	/*
4519	 * There are setups with compaction disabled which would prefer to loop
4520	 * inside the allocator rather than hit the oom killer prematurely.
4521	 * Let's give them a good hope and keep retrying while the order-0
4522	 * watermarks are OK.
4523	 */
4524	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4525				ac->highest_zoneidx, ac->nodemask) {
4526		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4527					ac->highest_zoneidx, alloc_flags))
4528			return true;
4529	}
4530	return false;
4531}
4532#endif /* CONFIG_COMPACTION */
4533
4534#ifdef CONFIG_LOCKDEP
4535static struct lockdep_map __fs_reclaim_map =
4536	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4537
4538static bool __need_reclaim(gfp_t gfp_mask)
4539{
 
 
4540	/* no reclaim without waiting on it */
4541	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4542		return false;
4543
4544	/* this guy won't enter reclaim */
4545	if (current->flags & PF_MEMALLOC)
4546		return false;
4547
 
 
 
 
4548	if (gfp_mask & __GFP_NOLOCKDEP)
4549		return false;
4550
4551	return true;
4552}
4553
4554void __fs_reclaim_acquire(void)
4555{
4556	lock_map_acquire(&__fs_reclaim_map);
4557}
4558
4559void __fs_reclaim_release(void)
4560{
4561	lock_map_release(&__fs_reclaim_map);
4562}
4563
4564void fs_reclaim_acquire(gfp_t gfp_mask)
4565{
4566	gfp_mask = current_gfp_context(gfp_mask);
4567
4568	if (__need_reclaim(gfp_mask)) {
4569		if (gfp_mask & __GFP_FS)
4570			__fs_reclaim_acquire();
4571
4572#ifdef CONFIG_MMU_NOTIFIER
4573		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4574		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4575#endif
4576
4577	}
4578}
4579EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4580
4581void fs_reclaim_release(gfp_t gfp_mask)
4582{
4583	gfp_mask = current_gfp_context(gfp_mask);
4584
4585	if (__need_reclaim(gfp_mask)) {
4586		if (gfp_mask & __GFP_FS)
4587			__fs_reclaim_release();
4588	}
4589}
4590EXPORT_SYMBOL_GPL(fs_reclaim_release);
4591#endif
4592
4593/* Perform direct synchronous page reclaim */
4594static unsigned long
4595__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4596					const struct alloc_context *ac)
4597{
 
 
4598	unsigned int noreclaim_flag;
4599	unsigned long pflags, progress;
4600
4601	cond_resched();
4602
4603	/* We now go into synchronous reclaim */
4604	cpuset_memory_pressure_bump();
4605	psi_memstall_enter(&pflags);
4606	fs_reclaim_acquire(gfp_mask);
4607	noreclaim_flag = memalloc_noreclaim_save();
 
4608
4609	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4610								ac->nodemask);
4611
 
 
4612	memalloc_noreclaim_restore(noreclaim_flag);
4613	fs_reclaim_release(gfp_mask);
4614	psi_memstall_leave(&pflags);
4615
4616	cond_resched();
4617
4618	return progress;
4619}
4620
4621/* The really slow allocator path where we enter direct reclaim */
4622static inline struct page *
4623__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4624		unsigned int alloc_flags, const struct alloc_context *ac,
4625		unsigned long *did_some_progress)
4626{
4627	struct page *page = NULL;
4628	bool drained = false;
4629
4630	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4631	if (unlikely(!(*did_some_progress)))
4632		return NULL;
4633
4634retry:
4635	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4636
4637	/*
4638	 * If an allocation failed after direct reclaim, it could be because
4639	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4640	 * Shrink them and try again
4641	 */
4642	if (!page && !drained) {
4643		unreserve_highatomic_pageblock(ac, false);
4644		drain_all_pages(NULL);
4645		drained = true;
4646		goto retry;
4647	}
4648
4649	return page;
4650}
4651
4652static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4653			     const struct alloc_context *ac)
4654{
4655	struct zoneref *z;
4656	struct zone *zone;
4657	pg_data_t *last_pgdat = NULL;
4658	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4659
4660	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4661					ac->nodemask) {
4662		if (last_pgdat != zone->zone_pgdat)
4663			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4664		last_pgdat = zone->zone_pgdat;
4665	}
4666}
4667
4668static inline unsigned int
4669gfp_to_alloc_flags(gfp_t gfp_mask)
4670{
4671	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4672
4673	/*
4674	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4675	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4676	 * to save two branches.
4677	 */
4678	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4679	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4680
4681	/*
4682	 * The caller may dip into page reserves a bit more if the caller
4683	 * cannot run direct reclaim, or if the caller has realtime scheduling
4684	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4685	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4686	 */
4687	alloc_flags |= (__force int)
4688		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4689
4690	if (gfp_mask & __GFP_ATOMIC) {
4691		/*
4692		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4693		 * if it can't schedule.
4694		 */
4695		if (!(gfp_mask & __GFP_NOMEMALLOC))
4696			alloc_flags |= ALLOC_HARDER;
4697		/*
4698		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4699		 * comment for __cpuset_node_allowed().
4700		 */
4701		alloc_flags &= ~ALLOC_CPUSET;
4702	} else if (unlikely(rt_task(current)) && !in_interrupt())
4703		alloc_flags |= ALLOC_HARDER;
4704
4705	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4706
 
 
4707	return alloc_flags;
4708}
4709
4710static bool oom_reserves_allowed(struct task_struct *tsk)
4711{
4712	if (!tsk_is_oom_victim(tsk))
4713		return false;
4714
4715	/*
4716	 * !MMU doesn't have oom reaper so give access to memory reserves
4717	 * only to the thread with TIF_MEMDIE set
4718	 */
4719	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4720		return false;
4721
4722	return true;
4723}
4724
4725/*
4726 * Distinguish requests which really need access to full memory
4727 * reserves from oom victims which can live with a portion of it
4728 */
4729static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4730{
4731	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4732		return 0;
4733	if (gfp_mask & __GFP_MEMALLOC)
4734		return ALLOC_NO_WATERMARKS;
4735	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4736		return ALLOC_NO_WATERMARKS;
4737	if (!in_interrupt()) {
4738		if (current->flags & PF_MEMALLOC)
4739			return ALLOC_NO_WATERMARKS;
4740		else if (oom_reserves_allowed(current))
4741			return ALLOC_OOM;
4742	}
4743
4744	return 0;
4745}
4746
4747bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4748{
4749	return !!__gfp_pfmemalloc_flags(gfp_mask);
4750}
4751
4752/*
4753 * Checks whether it makes sense to retry the reclaim to make a forward progress
4754 * for the given allocation request.
4755 *
4756 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4757 * without success, or when we couldn't even meet the watermark if we
4758 * reclaimed all remaining pages on the LRU lists.
4759 *
4760 * Returns true if a retry is viable or false to enter the oom path.
4761 */
4762static inline bool
4763should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4764		     struct alloc_context *ac, int alloc_flags,
4765		     bool did_some_progress, int *no_progress_loops)
4766{
4767	struct zone *zone;
4768	struct zoneref *z;
4769	bool ret = false;
4770
4771	/*
4772	 * Costly allocations might have made a progress but this doesn't mean
4773	 * their order will become available due to high fragmentation so
4774	 * always increment the no progress counter for them
4775	 */
4776	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4777		*no_progress_loops = 0;
4778	else
4779		(*no_progress_loops)++;
4780
4781	/*
4782	 * Make sure we converge to OOM if we cannot make any progress
4783	 * several times in the row.
4784	 */
4785	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4786		/* Before OOM, exhaust highatomic_reserve */
4787		return unreserve_highatomic_pageblock(ac, true);
4788	}
4789
4790	/*
4791	 * Keep reclaiming pages while there is a chance this will lead
4792	 * somewhere.  If none of the target zones can satisfy our allocation
4793	 * request even if all reclaimable pages are considered then we are
4794	 * screwed and have to go OOM.
4795	 */
4796	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4797				ac->highest_zoneidx, ac->nodemask) {
4798		unsigned long available;
4799		unsigned long reclaimable;
4800		unsigned long min_wmark = min_wmark_pages(zone);
4801		bool wmark;
4802
4803		available = reclaimable = zone_reclaimable_pages(zone);
4804		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4805
4806		/*
4807		 * Would the allocation succeed if we reclaimed all
4808		 * reclaimable pages?
4809		 */
4810		wmark = __zone_watermark_ok(zone, order, min_wmark,
4811				ac->highest_zoneidx, alloc_flags, available);
4812		trace_reclaim_retry_zone(z, order, reclaimable,
4813				available, min_wmark, *no_progress_loops, wmark);
4814		if (wmark) {
4815			/*
4816			 * If we didn't make any progress and have a lot of
4817			 * dirty + writeback pages then we should wait for
4818			 * an IO to complete to slow down the reclaim and
4819			 * prevent from pre mature OOM
4820			 */
4821			if (!did_some_progress) {
4822				unsigned long write_pending;
4823
4824				write_pending = zone_page_state_snapshot(zone,
4825							NR_ZONE_WRITE_PENDING);
4826
4827				if (2 * write_pending > reclaimable) {
4828					congestion_wait(BLK_RW_ASYNC, HZ/10);
4829					return true;
4830				}
4831			}
4832
4833			ret = true;
4834			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
4835		}
4836	}
4837
4838out:
4839	/*
4840	 * Memory allocation/reclaim might be called from a WQ context and the
4841	 * current implementation of the WQ concurrency control doesn't
4842	 * recognize that a particular WQ is congested if the worker thread is
4843	 * looping without ever sleeping. Therefore we have to do a short sleep
4844	 * here rather than calling cond_resched().
4845	 */
4846	if (current->flags & PF_WQ_WORKER)
4847		schedule_timeout_uninterruptible(1);
4848	else
4849		cond_resched();
4850	return ret;
4851}
4852
4853static inline bool
4854check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4855{
4856	/*
4857	 * It's possible that cpuset's mems_allowed and the nodemask from
4858	 * mempolicy don't intersect. This should be normally dealt with by
4859	 * policy_nodemask(), but it's possible to race with cpuset update in
4860	 * such a way the check therein was true, and then it became false
4861	 * before we got our cpuset_mems_cookie here.
4862	 * This assumes that for all allocations, ac->nodemask can come only
4863	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4864	 * when it does not intersect with the cpuset restrictions) or the
4865	 * caller can deal with a violated nodemask.
4866	 */
4867	if (cpusets_enabled() && ac->nodemask &&
4868			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4869		ac->nodemask = NULL;
4870		return true;
4871	}
4872
4873	/*
4874	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4875	 * possible to race with parallel threads in such a way that our
4876	 * allocation can fail while the mask is being updated. If we are about
4877	 * to fail, check if the cpuset changed during allocation and if so,
4878	 * retry.
4879	 */
4880	if (read_mems_allowed_retry(cpuset_mems_cookie))
4881		return true;
4882
4883	return false;
4884}
4885
4886static inline struct page *
4887__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4888						struct alloc_context *ac)
4889{
4890	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4891	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4892	struct page *page = NULL;
4893	unsigned int alloc_flags;
4894	unsigned long did_some_progress;
4895	enum compact_priority compact_priority;
4896	enum compact_result compact_result;
4897	int compaction_retries;
4898	int no_progress_loops;
4899	unsigned int cpuset_mems_cookie;
4900	int reserve_flags;
4901
4902	/*
 
 
 
 
 
 
 
 
 
 
 
4903	 * We also sanity check to catch abuse of atomic reserves being used by
4904	 * callers that are not in atomic context.
4905	 */
4906	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4907				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4908		gfp_mask &= ~__GFP_ATOMIC;
4909
4910retry_cpuset:
4911	compaction_retries = 0;
4912	no_progress_loops = 0;
4913	compact_priority = DEF_COMPACT_PRIORITY;
4914	cpuset_mems_cookie = read_mems_allowed_begin();
4915
4916	/*
4917	 * The fast path uses conservative alloc_flags to succeed only until
4918	 * kswapd needs to be woken up, and to avoid the cost of setting up
4919	 * alloc_flags precisely. So we do that now.
4920	 */
4921	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4922
4923	/*
4924	 * We need to recalculate the starting point for the zonelist iterator
4925	 * because we might have used different nodemask in the fast path, or
4926	 * there was a cpuset modification and we are retrying - otherwise we
4927	 * could end up iterating over non-eligible zones endlessly.
4928	 */
4929	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4930					ac->highest_zoneidx, ac->nodemask);
4931	if (!ac->preferred_zoneref->zone)
4932		goto nopage;
4933
4934	if (alloc_flags & ALLOC_KSWAPD)
4935		wake_all_kswapds(order, gfp_mask, ac);
4936
4937	/*
4938	 * The adjusted alloc_flags might result in immediate success, so try
4939	 * that first
4940	 */
4941	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4942	if (page)
4943		goto got_pg;
4944
4945	/*
4946	 * For costly allocations, try direct compaction first, as it's likely
4947	 * that we have enough base pages and don't need to reclaim. For non-
4948	 * movable high-order allocations, do that as well, as compaction will
4949	 * try prevent permanent fragmentation by migrating from blocks of the
4950	 * same migratetype.
4951	 * Don't try this for allocations that are allowed to ignore
4952	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4953	 */
4954	if (can_direct_reclaim &&
4955			(costly_order ||
4956			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4957			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4958		page = __alloc_pages_direct_compact(gfp_mask, order,
4959						alloc_flags, ac,
4960						INIT_COMPACT_PRIORITY,
4961						&compact_result);
4962		if (page)
4963			goto got_pg;
4964
4965		/*
4966		 * Checks for costly allocations with __GFP_NORETRY, which
4967		 * includes some THP page fault allocations
4968		 */
4969		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4970			/*
4971			 * If allocating entire pageblock(s) and compaction
4972			 * failed because all zones are below low watermarks
4973			 * or is prohibited because it recently failed at this
4974			 * order, fail immediately unless the allocator has
4975			 * requested compaction and reclaim retry.
4976			 *
4977			 * Reclaim is
4978			 *  - potentially very expensive because zones are far
4979			 *    below their low watermarks or this is part of very
4980			 *    bursty high order allocations,
4981			 *  - not guaranteed to help because isolate_freepages()
4982			 *    may not iterate over freed pages as part of its
4983			 *    linear scan, and
4984			 *  - unlikely to make entire pageblocks free on its
4985			 *    own.
4986			 */
4987			if (compact_result == COMPACT_SKIPPED ||
4988			    compact_result == COMPACT_DEFERRED)
4989				goto nopage;
4990
4991			/*
4992			 * Looks like reclaim/compaction is worth trying, but
4993			 * sync compaction could be very expensive, so keep
4994			 * using async compaction.
4995			 */
4996			compact_priority = INIT_COMPACT_PRIORITY;
4997		}
4998	}
4999
5000retry:
5001	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5002	if (alloc_flags & ALLOC_KSWAPD)
5003		wake_all_kswapds(order, gfp_mask, ac);
5004
5005	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5006	if (reserve_flags)
5007		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5008
5009	/*
5010	 * Reset the nodemask and zonelist iterators if memory policies can be
5011	 * ignored. These allocations are high priority and system rather than
5012	 * user oriented.
5013	 */
5014	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5015		ac->nodemask = NULL;
5016		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5017					ac->highest_zoneidx, ac->nodemask);
5018	}
5019
5020	/* Attempt with potentially adjusted zonelist and alloc_flags */
5021	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5022	if (page)
5023		goto got_pg;
5024
5025	/* Caller is not willing to reclaim, we can't balance anything */
5026	if (!can_direct_reclaim)
5027		goto nopage;
5028
5029	/* Avoid recursion of direct reclaim */
5030	if (current->flags & PF_MEMALLOC)
5031		goto nopage;
5032
5033	/* Try direct reclaim and then allocating */
5034	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5035							&did_some_progress);
5036	if (page)
5037		goto got_pg;
5038
5039	/* Try direct compaction and then allocating */
5040	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5041					compact_priority, &compact_result);
5042	if (page)
5043		goto got_pg;
5044
5045	/* Do not loop if specifically requested */
5046	if (gfp_mask & __GFP_NORETRY)
5047		goto nopage;
5048
5049	/*
5050	 * Do not retry costly high order allocations unless they are
5051	 * __GFP_RETRY_MAYFAIL
5052	 */
5053	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5054		goto nopage;
5055
5056	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5057				 did_some_progress > 0, &no_progress_loops))
5058		goto retry;
5059
5060	/*
5061	 * It doesn't make any sense to retry for the compaction if the order-0
5062	 * reclaim is not able to make any progress because the current
5063	 * implementation of the compaction depends on the sufficient amount
5064	 * of free memory (see __compaction_suitable)
5065	 */
5066	if (did_some_progress > 0 &&
5067			should_compact_retry(ac, order, alloc_flags,
5068				compact_result, &compact_priority,
5069				&compaction_retries))
5070		goto retry;
5071
5072
5073	/* Deal with possible cpuset update races before we start OOM killing */
5074	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5075		goto retry_cpuset;
5076
5077	/* Reclaim has failed us, start killing things */
5078	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5079	if (page)
5080		goto got_pg;
5081
5082	/* Avoid allocations with no watermarks from looping endlessly */
5083	if (tsk_is_oom_victim(current) &&
5084	    (alloc_flags & ALLOC_OOM ||
5085	     (gfp_mask & __GFP_NOMEMALLOC)))
5086		goto nopage;
5087
5088	/* Retry as long as the OOM killer is making progress */
5089	if (did_some_progress) {
5090		no_progress_loops = 0;
5091		goto retry;
5092	}
5093
5094nopage:
5095	/* Deal with possible cpuset update races before we fail */
5096	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5097		goto retry_cpuset;
5098
5099	/*
5100	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5101	 * we always retry
5102	 */
5103	if (gfp_mask & __GFP_NOFAIL) {
5104		/*
5105		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5106		 * of any new users that actually require GFP_NOWAIT
5107		 */
5108		if (WARN_ON_ONCE(!can_direct_reclaim))
5109			goto fail;
5110
5111		/*
5112		 * PF_MEMALLOC request from this context is rather bizarre
5113		 * because we cannot reclaim anything and only can loop waiting
5114		 * for somebody to do a work for us
5115		 */
5116		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5117
5118		/*
5119		 * non failing costly orders are a hard requirement which we
5120		 * are not prepared for much so let's warn about these users
5121		 * so that we can identify them and convert them to something
5122		 * else.
5123		 */
5124		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5125
5126		/*
5127		 * Help non-failing allocations by giving them access to memory
5128		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5129		 * could deplete whole memory reserves which would just make
5130		 * the situation worse
5131		 */
5132		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5133		if (page)
5134			goto got_pg;
5135
5136		cond_resched();
5137		goto retry;
5138	}
5139fail:
5140	warn_alloc(gfp_mask, ac->nodemask,
5141			"page allocation failure: order:%u", order);
5142got_pg:
5143	return page;
5144}
5145
5146static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5147		int preferred_nid, nodemask_t *nodemask,
5148		struct alloc_context *ac, gfp_t *alloc_gfp,
5149		unsigned int *alloc_flags)
5150{
5151	ac->highest_zoneidx = gfp_zone(gfp_mask);
5152	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5153	ac->nodemask = nodemask;
5154	ac->migratetype = gfp_migratetype(gfp_mask);
5155
5156	if (cpusets_enabled()) {
5157		*alloc_gfp |= __GFP_HARDWALL;
5158		/*
5159		 * When we are in the interrupt context, it is irrelevant
5160		 * to the current task context. It means that any node ok.
5161		 */
5162		if (!in_interrupt() && !ac->nodemask)
5163			ac->nodemask = &cpuset_current_mems_allowed;
5164		else
5165			*alloc_flags |= ALLOC_CPUSET;
5166	}
5167
5168	fs_reclaim_acquire(gfp_mask);
5169	fs_reclaim_release(gfp_mask);
5170
5171	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5172
5173	if (should_fail_alloc_page(gfp_mask, order))
5174		return false;
5175
5176	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
 
5177
 
 
 
 
 
 
 
5178	/* Dirty zone balancing only done in the fast path */
5179	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5180
5181	/*
5182	 * The preferred zone is used for statistics but crucially it is
5183	 * also used as the starting point for the zonelist iterator. It
5184	 * may get reset for allocations that ignore memory policies.
5185	 */
5186	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5187					ac->highest_zoneidx, ac->nodemask);
5188
5189	return true;
5190}
5191
5192/*
5193 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5194 * @gfp: GFP flags for the allocation
5195 * @preferred_nid: The preferred NUMA node ID to allocate from
5196 * @nodemask: Set of nodes to allocate from, may be NULL
5197 * @nr_pages: The number of pages desired on the list or array
5198 * @page_list: Optional list to store the allocated pages
5199 * @page_array: Optional array to store the pages
5200 *
5201 * This is a batched version of the page allocator that attempts to
5202 * allocate nr_pages quickly. Pages are added to page_list if page_list
5203 * is not NULL, otherwise it is assumed that the page_array is valid.
5204 *
5205 * For lists, nr_pages is the number of pages that should be allocated.
5206 *
5207 * For arrays, only NULL elements are populated with pages and nr_pages
5208 * is the maximum number of pages that will be stored in the array.
5209 *
5210 * Returns the number of pages on the list or array.
5211 */
5212unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5213			nodemask_t *nodemask, int nr_pages,
5214			struct list_head *page_list,
5215			struct page **page_array)
5216{
5217	struct page *page;
5218	unsigned long flags;
5219	struct zone *zone;
5220	struct zoneref *z;
5221	struct per_cpu_pages *pcp;
5222	struct list_head *pcp_list;
5223	struct alloc_context ac;
5224	gfp_t alloc_gfp;
5225	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5226	int nr_populated = 0, nr_account = 0;
5227
5228	/*
5229	 * Skip populated array elements to determine if any pages need
5230	 * to be allocated before disabling IRQs.
5231	 */
5232	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5233		nr_populated++;
5234
5235	/* No pages requested? */
5236	if (unlikely(nr_pages <= 0))
5237		goto out;
5238
5239	/* Already populated array? */
5240	if (unlikely(page_array && nr_pages - nr_populated == 0))
5241		goto out;
5242
5243	/* Use the single page allocator for one page. */
5244	if (nr_pages - nr_populated == 1)
5245		goto failed;
5246
5247#ifdef CONFIG_PAGE_OWNER
5248	/*
5249	 * PAGE_OWNER may recurse into the allocator to allocate space to
5250	 * save the stack with pagesets.lock held. Releasing/reacquiring
5251	 * removes much of the performance benefit of bulk allocation so
5252	 * force the caller to allocate one page at a time as it'll have
5253	 * similar performance to added complexity to the bulk allocator.
5254	 */
5255	if (static_branch_unlikely(&page_owner_inited))
5256		goto failed;
5257#endif
5258
5259	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5260	gfp &= gfp_allowed_mask;
5261	alloc_gfp = gfp;
5262	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5263		goto out;
5264	gfp = alloc_gfp;
5265
5266	/* Find an allowed local zone that meets the low watermark. */
5267	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5268		unsigned long mark;
5269
5270		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5271		    !__cpuset_zone_allowed(zone, gfp)) {
5272			continue;
5273		}
5274
5275		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5276		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5277			goto failed;
5278		}
5279
5280		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5281		if (zone_watermark_fast(zone, 0,  mark,
5282				zonelist_zone_idx(ac.preferred_zoneref),
5283				alloc_flags, gfp)) {
5284			break;
5285		}
5286	}
5287
5288	/*
5289	 * If there are no allowed local zones that meets the watermarks then
5290	 * try to allocate a single page and reclaim if necessary.
5291	 */
5292	if (unlikely(!zone))
5293		goto failed;
5294
5295	/* Attempt the batch allocation */
5296	local_lock_irqsave(&pagesets.lock, flags);
5297	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5298	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5299
5300	while (nr_populated < nr_pages) {
5301
5302		/* Skip existing pages */
5303		if (page_array && page_array[nr_populated]) {
5304			nr_populated++;
5305			continue;
5306		}
5307
5308		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5309								pcp, pcp_list);
5310		if (unlikely(!page)) {
5311			/* Try and get at least one page */
5312			if (!nr_populated)
5313				goto failed_irq;
5314			break;
5315		}
5316		nr_account++;
5317
5318		prep_new_page(page, 0, gfp, 0);
5319		if (page_list)
5320			list_add(&page->lru, page_list);
5321		else
5322			page_array[nr_populated] = page;
5323		nr_populated++;
5324	}
5325
5326	local_unlock_irqrestore(&pagesets.lock, flags);
5327
5328	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5329	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5330
5331out:
5332	return nr_populated;
5333
5334failed_irq:
5335	local_unlock_irqrestore(&pagesets.lock, flags);
5336
5337failed:
5338	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5339	if (page) {
5340		if (page_list)
5341			list_add(&page->lru, page_list);
5342		else
5343			page_array[nr_populated] = page;
5344		nr_populated++;
5345	}
5346
5347	goto out;
5348}
5349EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5350
5351/*
5352 * This is the 'heart' of the zoned buddy allocator.
5353 */
5354struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
 
5355							nodemask_t *nodemask)
5356{
5357	struct page *page;
5358	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5359	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5360	struct alloc_context ac = { };
5361
5362	/*
5363	 * There are several places where we assume that the order value is sane
5364	 * so bail out early if the request is out of bound.
5365	 */
5366	if (unlikely(order >= MAX_ORDER)) {
5367		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5368		return NULL;
5369	}
5370
5371	gfp &= gfp_allowed_mask;
 
 
 
 
 
 
5372	/*
5373	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5374	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5375	 * from a particular context which has been marked by
5376	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5377	 * movable zones are not used during allocation.
5378	 */
5379	gfp = current_gfp_context(gfp);
5380	alloc_gfp = gfp;
5381	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5382			&alloc_gfp, &alloc_flags))
5383		return NULL;
5384
5385	/*
5386	 * Forbid the first pass from falling back to types that fragment
5387	 * memory until all local zones are considered.
5388	 */
5389	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5390
5391	/* First allocation attempt */
5392	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5393	if (likely(page))
5394		goto out;
5395
5396	alloc_gfp = gfp;
5397	ac.spread_dirty_pages = false;
5398
5399	/*
5400	 * Restore the original nodemask if it was potentially replaced with
5401	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5402	 */
5403	ac.nodemask = nodemask;
 
5404
5405	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5406
5407out:
5408	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5409	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5410		__free_pages(page, order);
5411		page = NULL;
5412	}
5413
5414	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5415
5416	return page;
5417}
5418EXPORT_SYMBOL(__alloc_pages);
5419
5420/*
5421 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5422 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5423 * you need to access high mem.
5424 */
5425unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5426{
5427	struct page *page;
5428
5429	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
5430	if (!page)
5431		return 0;
5432	return (unsigned long) page_address(page);
5433}
5434EXPORT_SYMBOL(__get_free_pages);
5435
5436unsigned long get_zeroed_page(gfp_t gfp_mask)
5437{
5438	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5439}
5440EXPORT_SYMBOL(get_zeroed_page);
5441
5442/**
5443 * __free_pages - Free pages allocated with alloc_pages().
5444 * @page: The page pointer returned from alloc_pages().
5445 * @order: The order of the allocation.
5446 *
5447 * This function can free multi-page allocations that are not compound
5448 * pages.  It does not check that the @order passed in matches that of
5449 * the allocation, so it is easy to leak memory.  Freeing more memory
5450 * than was allocated will probably emit a warning.
5451 *
5452 * If the last reference to this page is speculative, it will be released
5453 * by put_page() which only frees the first page of a non-compound
5454 * allocation.  To prevent the remaining pages from being leaked, we free
5455 * the subsequent pages here.  If you want to use the page's reference
5456 * count to decide when to free the allocation, you should allocate a
5457 * compound page, and use put_page() instead of __free_pages().
5458 *
5459 * Context: May be called in interrupt context or while holding a normal
5460 * spinlock, but not in NMI context or while holding a raw spinlock.
5461 */
5462void __free_pages(struct page *page, unsigned int order)
5463{
5464	if (put_page_testzero(page))
5465		free_the_page(page, order);
5466	else if (!PageHead(page))
5467		while (order-- > 0)
5468			free_the_page(page + (1 << order), order);
 
5469}
 
5470EXPORT_SYMBOL(__free_pages);
5471
5472void free_pages(unsigned long addr, unsigned int order)
5473{
5474	if (addr != 0) {
5475		VM_BUG_ON(!virt_addr_valid((void *)addr));
5476		__free_pages(virt_to_page((void *)addr), order);
5477	}
5478}
5479
5480EXPORT_SYMBOL(free_pages);
5481
5482/*
5483 * Page Fragment:
5484 *  An arbitrary-length arbitrary-offset area of memory which resides
5485 *  within a 0 or higher order page.  Multiple fragments within that page
5486 *  are individually refcounted, in the page's reference counter.
5487 *
5488 * The page_frag functions below provide a simple allocation framework for
5489 * page fragments.  This is used by the network stack and network device
5490 * drivers to provide a backing region of memory for use as either an
5491 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5492 */
5493static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5494					     gfp_t gfp_mask)
5495{
5496	struct page *page = NULL;
5497	gfp_t gfp = gfp_mask;
5498
5499#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5500	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5501		    __GFP_NOMEMALLOC;
5502	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5503				PAGE_FRAG_CACHE_MAX_ORDER);
5504	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5505#endif
5506	if (unlikely(!page))
5507		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5508
5509	nc->va = page ? page_address(page) : NULL;
5510
5511	return page;
5512}
5513
5514void __page_frag_cache_drain(struct page *page, unsigned int count)
5515{
5516	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5517
5518	if (page_ref_sub_and_test(page, count))
5519		free_the_page(page, compound_order(page));
 
 
 
 
 
 
5520}
5521EXPORT_SYMBOL(__page_frag_cache_drain);
5522
5523void *page_frag_alloc_align(struct page_frag_cache *nc,
5524		      unsigned int fragsz, gfp_t gfp_mask,
5525		      unsigned int align_mask)
5526{
5527	unsigned int size = PAGE_SIZE;
5528	struct page *page;
5529	int offset;
5530
5531	if (unlikely(!nc->va)) {
5532refill:
5533		page = __page_frag_cache_refill(nc, gfp_mask);
5534		if (!page)
5535			return NULL;
5536
5537#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5538		/* if size can vary use size else just use PAGE_SIZE */
5539		size = nc->size;
5540#endif
5541		/* Even if we own the page, we do not use atomic_set().
5542		 * This would break get_page_unless_zero() users.
5543		 */
5544		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5545
5546		/* reset page count bias and offset to start of new frag */
5547		nc->pfmemalloc = page_is_pfmemalloc(page);
5548		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5549		nc->offset = size;
5550	}
5551
5552	offset = nc->offset - fragsz;
5553	if (unlikely(offset < 0)) {
5554		page = virt_to_page(nc->va);
5555
5556		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5557			goto refill;
5558
5559		if (unlikely(nc->pfmemalloc)) {
5560			free_the_page(page, compound_order(page));
5561			goto refill;
5562		}
5563
5564#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5565		/* if size can vary use size else just use PAGE_SIZE */
5566		size = nc->size;
5567#endif
5568		/* OK, page count is 0, we can safely set it */
5569		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5570
5571		/* reset page count bias and offset to start of new frag */
5572		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5573		offset = size - fragsz;
5574	}
5575
5576	nc->pagecnt_bias--;
5577	offset &= align_mask;
5578	nc->offset = offset;
5579
5580	return nc->va + offset;
5581}
5582EXPORT_SYMBOL(page_frag_alloc_align);
5583
5584/*
5585 * Frees a page fragment allocated out of either a compound or order 0 page.
5586 */
5587void page_frag_free(void *addr)
5588{
5589	struct page *page = virt_to_head_page(addr);
5590
5591	if (unlikely(put_page_testzero(page)))
5592		free_the_page(page, compound_order(page));
5593}
5594EXPORT_SYMBOL(page_frag_free);
5595
5596static void *make_alloc_exact(unsigned long addr, unsigned int order,
5597		size_t size)
5598{
5599	if (addr) {
5600		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5601		unsigned long used = addr + PAGE_ALIGN(size);
5602
5603		split_page(virt_to_page((void *)addr), order);
5604		while (used < alloc_end) {
5605			free_page(used);
5606			used += PAGE_SIZE;
5607		}
5608	}
5609	return (void *)addr;
5610}
5611
5612/**
5613 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5614 * @size: the number of bytes to allocate
5615 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5616 *
5617 * This function is similar to alloc_pages(), except that it allocates the
5618 * minimum number of pages to satisfy the request.  alloc_pages() can only
5619 * allocate memory in power-of-two pages.
5620 *
5621 * This function is also limited by MAX_ORDER.
5622 *
5623 * Memory allocated by this function must be released by free_pages_exact().
5624 *
5625 * Return: pointer to the allocated area or %NULL in case of error.
5626 */
5627void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5628{
5629	unsigned int order = get_order(size);
5630	unsigned long addr;
5631
5632	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5633		gfp_mask &= ~__GFP_COMP;
5634
5635	addr = __get_free_pages(gfp_mask, order);
5636	return make_alloc_exact(addr, order, size);
5637}
5638EXPORT_SYMBOL(alloc_pages_exact);
5639
5640/**
5641 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5642 *			   pages on a node.
5643 * @nid: the preferred node ID where memory should be allocated
5644 * @size: the number of bytes to allocate
5645 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5646 *
5647 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5648 * back.
5649 *
5650 * Return: pointer to the allocated area or %NULL in case of error.
5651 */
5652void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5653{
5654	unsigned int order = get_order(size);
5655	struct page *p;
5656
5657	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5658		gfp_mask &= ~__GFP_COMP;
5659
5660	p = alloc_pages_node(nid, gfp_mask, order);
5661	if (!p)
5662		return NULL;
5663	return make_alloc_exact((unsigned long)page_address(p), order, size);
5664}
5665
5666/**
5667 * free_pages_exact - release memory allocated via alloc_pages_exact()
5668 * @virt: the value returned by alloc_pages_exact.
5669 * @size: size of allocation, same value as passed to alloc_pages_exact().
5670 *
5671 * Release the memory allocated by a previous call to alloc_pages_exact.
5672 */
5673void free_pages_exact(void *virt, size_t size)
5674{
5675	unsigned long addr = (unsigned long)virt;
5676	unsigned long end = addr + PAGE_ALIGN(size);
5677
5678	while (addr < end) {
5679		free_page(addr);
5680		addr += PAGE_SIZE;
5681	}
5682}
5683EXPORT_SYMBOL(free_pages_exact);
5684
5685/**
5686 * nr_free_zone_pages - count number of pages beyond high watermark
5687 * @offset: The zone index of the highest zone
5688 *
5689 * nr_free_zone_pages() counts the number of pages which are beyond the
5690 * high watermark within all zones at or below a given zone index.  For each
5691 * zone, the number of pages is calculated as:
5692 *
5693 *     nr_free_zone_pages = managed_pages - high_pages
5694 *
5695 * Return: number of pages beyond high watermark.
5696 */
5697static unsigned long nr_free_zone_pages(int offset)
5698{
5699	struct zoneref *z;
5700	struct zone *zone;
5701
5702	/* Just pick one node, since fallback list is circular */
5703	unsigned long sum = 0;
5704
5705	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5706
5707	for_each_zone_zonelist(zone, z, zonelist, offset) {
5708		unsigned long size = zone_managed_pages(zone);
5709		unsigned long high = high_wmark_pages(zone);
5710		if (size > high)
5711			sum += size - high;
5712	}
5713
5714	return sum;
5715}
5716
5717/**
5718 * nr_free_buffer_pages - count number of pages beyond high watermark
5719 *
5720 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5721 * watermark within ZONE_DMA and ZONE_NORMAL.
5722 *
5723 * Return: number of pages beyond high watermark within ZONE_DMA and
5724 * ZONE_NORMAL.
5725 */
5726unsigned long nr_free_buffer_pages(void)
5727{
5728	return nr_free_zone_pages(gfp_zone(GFP_USER));
5729}
5730EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5731
 
 
 
 
 
 
 
 
 
 
 
5732static inline void show_node(struct zone *zone)
5733{
5734	if (IS_ENABLED(CONFIG_NUMA))
5735		printk("Node %d ", zone_to_nid(zone));
5736}
5737
5738long si_mem_available(void)
5739{
5740	long available;
5741	unsigned long pagecache;
5742	unsigned long wmark_low = 0;
5743	unsigned long pages[NR_LRU_LISTS];
5744	unsigned long reclaimable;
5745	struct zone *zone;
5746	int lru;
5747
5748	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5749		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5750
5751	for_each_zone(zone)
5752		wmark_low += low_wmark_pages(zone);
5753
5754	/*
5755	 * Estimate the amount of memory available for userspace allocations,
5756	 * without causing swapping.
5757	 */
5758	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5759
5760	/*
5761	 * Not all the page cache can be freed, otherwise the system will
5762	 * start swapping. Assume at least half of the page cache, or the
5763	 * low watermark worth of cache, needs to stay.
5764	 */
5765	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5766	pagecache -= min(pagecache / 2, wmark_low);
5767	available += pagecache;
5768
5769	/*
5770	 * Part of the reclaimable slab and other kernel memory consists of
5771	 * items that are in use, and cannot be freed. Cap this estimate at the
5772	 * low watermark.
5773	 */
5774	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5775		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5776	available += reclaimable - min(reclaimable / 2, wmark_low);
 
 
 
 
 
 
5777
5778	if (available < 0)
5779		available = 0;
5780	return available;
5781}
5782EXPORT_SYMBOL_GPL(si_mem_available);
5783
5784void si_meminfo(struct sysinfo *val)
5785{
5786	val->totalram = totalram_pages();
5787	val->sharedram = global_node_page_state(NR_SHMEM);
5788	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5789	val->bufferram = nr_blockdev_pages();
5790	val->totalhigh = totalhigh_pages();
5791	val->freehigh = nr_free_highpages();
5792	val->mem_unit = PAGE_SIZE;
5793}
5794
5795EXPORT_SYMBOL(si_meminfo);
5796
5797#ifdef CONFIG_NUMA
5798void si_meminfo_node(struct sysinfo *val, int nid)
5799{
5800	int zone_type;		/* needs to be signed */
5801	unsigned long managed_pages = 0;
5802	unsigned long managed_highpages = 0;
5803	unsigned long free_highpages = 0;
5804	pg_data_t *pgdat = NODE_DATA(nid);
5805
5806	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5807		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5808	val->totalram = managed_pages;
5809	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5810	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5811#ifdef CONFIG_HIGHMEM
5812	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5813		struct zone *zone = &pgdat->node_zones[zone_type];
5814
5815		if (is_highmem(zone)) {
5816			managed_highpages += zone_managed_pages(zone);
5817			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5818		}
5819	}
5820	val->totalhigh = managed_highpages;
5821	val->freehigh = free_highpages;
5822#else
5823	val->totalhigh = managed_highpages;
5824	val->freehigh = free_highpages;
5825#endif
5826	val->mem_unit = PAGE_SIZE;
5827}
5828#endif
5829
5830/*
5831 * Determine whether the node should be displayed or not, depending on whether
5832 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5833 */
5834static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5835{
5836	if (!(flags & SHOW_MEM_FILTER_NODES))
5837		return false;
5838
5839	/*
5840	 * no node mask - aka implicit memory numa policy. Do not bother with
5841	 * the synchronization - read_mems_allowed_begin - because we do not
5842	 * have to be precise here.
5843	 */
5844	if (!nodemask)
5845		nodemask = &cpuset_current_mems_allowed;
5846
5847	return !node_isset(nid, *nodemask);
5848}
5849
5850#define K(x) ((x) << (PAGE_SHIFT-10))
5851
5852static void show_migration_types(unsigned char type)
5853{
5854	static const char types[MIGRATE_TYPES] = {
5855		[MIGRATE_UNMOVABLE]	= 'U',
5856		[MIGRATE_MOVABLE]	= 'M',
5857		[MIGRATE_RECLAIMABLE]	= 'E',
5858		[MIGRATE_HIGHATOMIC]	= 'H',
5859#ifdef CONFIG_CMA
5860		[MIGRATE_CMA]		= 'C',
5861#endif
5862#ifdef CONFIG_MEMORY_ISOLATION
5863		[MIGRATE_ISOLATE]	= 'I',
5864#endif
5865	};
5866	char tmp[MIGRATE_TYPES + 1];
5867	char *p = tmp;
5868	int i;
5869
5870	for (i = 0; i < MIGRATE_TYPES; i++) {
5871		if (type & (1 << i))
5872			*p++ = types[i];
5873	}
5874
5875	*p = '\0';
5876	printk(KERN_CONT "(%s) ", tmp);
5877}
5878
5879/*
5880 * Show free area list (used inside shift_scroll-lock stuff)
5881 * We also calculate the percentage fragmentation. We do this by counting the
5882 * memory on each free list with the exception of the first item on the list.
5883 *
5884 * Bits in @filter:
5885 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5886 *   cpuset.
5887 */
5888void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5889{
5890	unsigned long free_pcp = 0;
5891	int cpu;
5892	struct zone *zone;
5893	pg_data_t *pgdat;
5894
5895	for_each_populated_zone(zone) {
5896		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5897			continue;
5898
5899		for_each_online_cpu(cpu)
5900			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5901	}
5902
5903	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5904		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5905		" unevictable:%lu dirty:%lu writeback:%lu\n"
5906		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5907		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5908		" free:%lu free_pcp:%lu free_cma:%lu\n",
5909		global_node_page_state(NR_ACTIVE_ANON),
5910		global_node_page_state(NR_INACTIVE_ANON),
5911		global_node_page_state(NR_ISOLATED_ANON),
5912		global_node_page_state(NR_ACTIVE_FILE),
5913		global_node_page_state(NR_INACTIVE_FILE),
5914		global_node_page_state(NR_ISOLATED_FILE),
5915		global_node_page_state(NR_UNEVICTABLE),
5916		global_node_page_state(NR_FILE_DIRTY),
5917		global_node_page_state(NR_WRITEBACK),
5918		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5919		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
 
5920		global_node_page_state(NR_FILE_MAPPED),
5921		global_node_page_state(NR_SHMEM),
5922		global_node_page_state(NR_PAGETABLE),
5923		global_zone_page_state(NR_BOUNCE),
5924		global_zone_page_state(NR_FREE_PAGES),
5925		free_pcp,
5926		global_zone_page_state(NR_FREE_CMA_PAGES));
5927
5928	for_each_online_pgdat(pgdat) {
5929		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5930			continue;
5931
5932		printk("Node %d"
5933			" active_anon:%lukB"
5934			" inactive_anon:%lukB"
5935			" active_file:%lukB"
5936			" inactive_file:%lukB"
5937			" unevictable:%lukB"
5938			" isolated(anon):%lukB"
5939			" isolated(file):%lukB"
5940			" mapped:%lukB"
5941			" dirty:%lukB"
5942			" writeback:%lukB"
5943			" shmem:%lukB"
5944#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945			" shmem_thp: %lukB"
5946			" shmem_pmdmapped: %lukB"
5947			" anon_thp: %lukB"
5948#endif
5949			" writeback_tmp:%lukB"
5950			" kernel_stack:%lukB"
5951#ifdef CONFIG_SHADOW_CALL_STACK
5952			" shadow_call_stack:%lukB"
5953#endif
5954			" pagetables:%lukB"
5955			" all_unreclaimable? %s"
5956			"\n",
5957			pgdat->node_id,
5958			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5959			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5960			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5961			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5962			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5963			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5964			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5965			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5966			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5967			K(node_page_state(pgdat, NR_WRITEBACK)),
5968			K(node_page_state(pgdat, NR_SHMEM)),
5969#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5970			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5971			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5972			K(node_page_state(pgdat, NR_ANON_THPS)),
 
5973#endif
5974			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5975			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5976#ifdef CONFIG_SHADOW_CALL_STACK
5977			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5978#endif
5979			K(node_page_state(pgdat, NR_PAGETABLE)),
5980			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5981				"yes" : "no");
5982	}
5983
5984	for_each_populated_zone(zone) {
5985		int i;
5986
5987		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5988			continue;
5989
5990		free_pcp = 0;
5991		for_each_online_cpu(cpu)
5992			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5993
5994		show_node(zone);
5995		printk(KERN_CONT
5996			"%s"
5997			" free:%lukB"
5998			" min:%lukB"
5999			" low:%lukB"
6000			" high:%lukB"
6001			" reserved_highatomic:%luKB"
6002			" active_anon:%lukB"
6003			" inactive_anon:%lukB"
6004			" active_file:%lukB"
6005			" inactive_file:%lukB"
6006			" unevictable:%lukB"
6007			" writepending:%lukB"
6008			" present:%lukB"
6009			" managed:%lukB"
6010			" mlocked:%lukB"
 
 
6011			" bounce:%lukB"
6012			" free_pcp:%lukB"
6013			" local_pcp:%ukB"
6014			" free_cma:%lukB"
6015			"\n",
6016			zone->name,
6017			K(zone_page_state(zone, NR_FREE_PAGES)),
6018			K(min_wmark_pages(zone)),
6019			K(low_wmark_pages(zone)),
6020			K(high_wmark_pages(zone)),
6021			K(zone->nr_reserved_highatomic),
6022			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6023			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6024			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6025			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6026			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6027			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6028			K(zone->present_pages),
6029			K(zone_managed_pages(zone)),
6030			K(zone_page_state(zone, NR_MLOCK)),
 
 
6031			K(zone_page_state(zone, NR_BOUNCE)),
6032			K(free_pcp),
6033			K(this_cpu_read(zone->per_cpu_pageset->count)),
6034			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6035		printk("lowmem_reserve[]:");
6036		for (i = 0; i < MAX_NR_ZONES; i++)
6037			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6038		printk(KERN_CONT "\n");
6039	}
6040
6041	for_each_populated_zone(zone) {
6042		unsigned int order;
6043		unsigned long nr[MAX_ORDER], flags, total = 0;
6044		unsigned char types[MAX_ORDER];
6045
6046		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6047			continue;
6048		show_node(zone);
6049		printk(KERN_CONT "%s: ", zone->name);
6050
6051		spin_lock_irqsave(&zone->lock, flags);
6052		for (order = 0; order < MAX_ORDER; order++) {
6053			struct free_area *area = &zone->free_area[order];
6054			int type;
6055
6056			nr[order] = area->nr_free;
6057			total += nr[order] << order;
6058
6059			types[order] = 0;
6060			for (type = 0; type < MIGRATE_TYPES; type++) {
6061				if (!free_area_empty(area, type))
6062					types[order] |= 1 << type;
6063			}
6064		}
6065		spin_unlock_irqrestore(&zone->lock, flags);
6066		for (order = 0; order < MAX_ORDER; order++) {
6067			printk(KERN_CONT "%lu*%lukB ",
6068			       nr[order], K(1UL) << order);
6069			if (nr[order])
6070				show_migration_types(types[order]);
6071		}
6072		printk(KERN_CONT "= %lukB\n", K(total));
6073	}
6074
6075	hugetlb_show_meminfo();
6076
6077	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6078
6079	show_swap_cache_info();
6080}
6081
6082static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6083{
6084	zoneref->zone = zone;
6085	zoneref->zone_idx = zone_idx(zone);
6086}
6087
6088/*
6089 * Builds allocation fallback zone lists.
6090 *
6091 * Add all populated zones of a node to the zonelist.
6092 */
6093static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6094{
6095	struct zone *zone;
6096	enum zone_type zone_type = MAX_NR_ZONES;
6097	int nr_zones = 0;
6098
6099	do {
6100		zone_type--;
6101		zone = pgdat->node_zones + zone_type;
6102		if (managed_zone(zone)) {
6103			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6104			check_highest_zone(zone_type);
6105		}
6106	} while (zone_type);
6107
6108	return nr_zones;
6109}
6110
6111#ifdef CONFIG_NUMA
6112
6113static int __parse_numa_zonelist_order(char *s)
6114{
6115	/*
6116	 * We used to support different zonelists modes but they turned
6117	 * out to be just not useful. Let's keep the warning in place
6118	 * if somebody still use the cmd line parameter so that we do
6119	 * not fail it silently
6120	 */
6121	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6122		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6123		return -EINVAL;
6124	}
6125	return 0;
6126}
6127
 
 
 
 
 
 
 
 
 
6128char numa_zonelist_order[] = "Node";
6129
6130/*
6131 * sysctl handler for numa_zonelist_order
6132 */
6133int numa_zonelist_order_handler(struct ctl_table *table, int write,
6134		void *buffer, size_t *length, loff_t *ppos)
 
6135{
6136	if (write)
6137		return __parse_numa_zonelist_order(buffer);
6138	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
6139}
6140
6141
6142#define MAX_NODE_LOAD (nr_online_nodes)
6143static int node_load[MAX_NUMNODES];
6144
6145/**
6146 * find_next_best_node - find the next node that should appear in a given node's fallback list
6147 * @node: node whose fallback list we're appending
6148 * @used_node_mask: nodemask_t of already used nodes
6149 *
6150 * We use a number of factors to determine which is the next node that should
6151 * appear on a given node's fallback list.  The node should not have appeared
6152 * already in @node's fallback list, and it should be the next closest node
6153 * according to the distance array (which contains arbitrary distance values
6154 * from each node to each node in the system), and should also prefer nodes
6155 * with no CPUs, since presumably they'll have very little allocation pressure
6156 * on them otherwise.
6157 *
6158 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6159 */
6160static int find_next_best_node(int node, nodemask_t *used_node_mask)
6161{
6162	int n, val;
6163	int min_val = INT_MAX;
6164	int best_node = NUMA_NO_NODE;
 
6165
6166	/* Use the local node if we haven't already */
6167	if (!node_isset(node, *used_node_mask)) {
6168		node_set(node, *used_node_mask);
6169		return node;
6170	}
6171
6172	for_each_node_state(n, N_MEMORY) {
6173
6174		/* Don't want a node to appear more than once */
6175		if (node_isset(n, *used_node_mask))
6176			continue;
6177
6178		/* Use the distance array to find the distance */
6179		val = node_distance(node, n);
6180
6181		/* Penalize nodes under us ("prefer the next node") */
6182		val += (n < node);
6183
6184		/* Give preference to headless and unused nodes */
6185		if (!cpumask_empty(cpumask_of_node(n)))
 
6186			val += PENALTY_FOR_NODE_WITH_CPUS;
6187
6188		/* Slight preference for less loaded node */
6189		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6190		val += node_load[n];
6191
6192		if (val < min_val) {
6193			min_val = val;
6194			best_node = n;
6195		}
6196	}
6197
6198	if (best_node >= 0)
6199		node_set(best_node, *used_node_mask);
6200
6201	return best_node;
6202}
6203
6204
6205/*
6206 * Build zonelists ordered by node and zones within node.
6207 * This results in maximum locality--normal zone overflows into local
6208 * DMA zone, if any--but risks exhausting DMA zone.
6209 */
6210static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6211		unsigned nr_nodes)
6212{
6213	struct zoneref *zonerefs;
6214	int i;
6215
6216	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6217
6218	for (i = 0; i < nr_nodes; i++) {
6219		int nr_zones;
6220
6221		pg_data_t *node = NODE_DATA(node_order[i]);
6222
6223		nr_zones = build_zonerefs_node(node, zonerefs);
6224		zonerefs += nr_zones;
6225	}
6226	zonerefs->zone = NULL;
6227	zonerefs->zone_idx = 0;
6228}
6229
6230/*
6231 * Build gfp_thisnode zonelists
6232 */
6233static void build_thisnode_zonelists(pg_data_t *pgdat)
6234{
6235	struct zoneref *zonerefs;
6236	int nr_zones;
6237
6238	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6239	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6240	zonerefs += nr_zones;
6241	zonerefs->zone = NULL;
6242	zonerefs->zone_idx = 0;
6243}
6244
6245/*
6246 * Build zonelists ordered by zone and nodes within zones.
6247 * This results in conserving DMA zone[s] until all Normal memory is
6248 * exhausted, but results in overflowing to remote node while memory
6249 * may still exist in local DMA zone.
6250 */
6251
6252static void build_zonelists(pg_data_t *pgdat)
6253{
6254	static int node_order[MAX_NUMNODES];
6255	int node, load, nr_nodes = 0;
6256	nodemask_t used_mask = NODE_MASK_NONE;
6257	int local_node, prev_node;
6258
6259	/* NUMA-aware ordering of nodes */
6260	local_node = pgdat->node_id;
6261	load = nr_online_nodes;
6262	prev_node = local_node;
 
6263
6264	memset(node_order, 0, sizeof(node_order));
6265	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6266		/*
6267		 * We don't want to pressure a particular node.
6268		 * So adding penalty to the first node in same
6269		 * distance group to make it round-robin.
6270		 */
6271		if (node_distance(local_node, node) !=
6272		    node_distance(local_node, prev_node))
6273			node_load[node] = load;
6274
6275		node_order[nr_nodes++] = node;
6276		prev_node = node;
6277		load--;
6278	}
6279
6280	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6281	build_thisnode_zonelists(pgdat);
6282}
6283
6284#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6285/*
6286 * Return node id of node used for "local" allocations.
6287 * I.e., first node id of first zone in arg node's generic zonelist.
6288 * Used for initializing percpu 'numa_mem', which is used primarily
6289 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6290 */
6291int local_memory_node(int node)
6292{
6293	struct zoneref *z;
6294
6295	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6296				   gfp_zone(GFP_KERNEL),
6297				   NULL);
6298	return zone_to_nid(z->zone);
6299}
6300#endif
6301
6302static void setup_min_unmapped_ratio(void);
6303static void setup_min_slab_ratio(void);
6304#else	/* CONFIG_NUMA */
6305
6306static void build_zonelists(pg_data_t *pgdat)
6307{
6308	int node, local_node;
6309	struct zoneref *zonerefs;
6310	int nr_zones;
6311
6312	local_node = pgdat->node_id;
6313
6314	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6315	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6316	zonerefs += nr_zones;
6317
6318	/*
6319	 * Now we build the zonelist so that it contains the zones
6320	 * of all the other nodes.
6321	 * We don't want to pressure a particular node, so when
6322	 * building the zones for node N, we make sure that the
6323	 * zones coming right after the local ones are those from
6324	 * node N+1 (modulo N)
6325	 */
6326	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6327		if (!node_online(node))
6328			continue;
6329		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6330		zonerefs += nr_zones;
6331	}
6332	for (node = 0; node < local_node; node++) {
6333		if (!node_online(node))
6334			continue;
6335		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6336		zonerefs += nr_zones;
6337	}
6338
6339	zonerefs->zone = NULL;
6340	zonerefs->zone_idx = 0;
6341}
6342
6343#endif	/* CONFIG_NUMA */
6344
6345/*
6346 * Boot pageset table. One per cpu which is going to be used for all
6347 * zones and all nodes. The parameters will be set in such a way
6348 * that an item put on a list will immediately be handed over to
6349 * the buddy list. This is safe since pageset manipulation is done
6350 * with interrupts disabled.
6351 *
6352 * The boot_pagesets must be kept even after bootup is complete for
6353 * unused processors and/or zones. They do play a role for bootstrapping
6354 * hotplugged processors.
6355 *
6356 * zoneinfo_show() and maybe other functions do
6357 * not check if the processor is online before following the pageset pointer.
6358 * Other parts of the kernel may not check if the zone is available.
6359 */
6360static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6361/* These effectively disable the pcplists in the boot pageset completely */
6362#define BOOT_PAGESET_HIGH	0
6363#define BOOT_PAGESET_BATCH	1
6364static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6365static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6366static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6367
6368static void __build_all_zonelists(void *data)
6369{
6370	int nid;
6371	int __maybe_unused cpu;
6372	pg_data_t *self = data;
6373	static DEFINE_SPINLOCK(lock);
6374
6375	spin_lock(&lock);
6376
6377#ifdef CONFIG_NUMA
6378	memset(node_load, 0, sizeof(node_load));
6379#endif
6380
6381	/*
6382	 * This node is hotadded and no memory is yet present.   So just
6383	 * building zonelists is fine - no need to touch other nodes.
6384	 */
6385	if (self && !node_online(self->node_id)) {
6386		build_zonelists(self);
6387	} else {
6388		for_each_online_node(nid) {
6389			pg_data_t *pgdat = NODE_DATA(nid);
6390
6391			build_zonelists(pgdat);
6392		}
6393
6394#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6395		/*
6396		 * We now know the "local memory node" for each node--
6397		 * i.e., the node of the first zone in the generic zonelist.
6398		 * Set up numa_mem percpu variable for on-line cpus.  During
6399		 * boot, only the boot cpu should be on-line;  we'll init the
6400		 * secondary cpus' numa_mem as they come on-line.  During
6401		 * node/memory hotplug, we'll fixup all on-line cpus.
6402		 */
6403		for_each_online_cpu(cpu)
6404			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6405#endif
6406	}
6407
6408	spin_unlock(&lock);
6409}
6410
6411static noinline void __init
6412build_all_zonelists_init(void)
6413{
6414	int cpu;
6415
6416	__build_all_zonelists(NULL);
6417
6418	/*
6419	 * Initialize the boot_pagesets that are going to be used
6420	 * for bootstrapping processors. The real pagesets for
6421	 * each zone will be allocated later when the per cpu
6422	 * allocator is available.
6423	 *
6424	 * boot_pagesets are used also for bootstrapping offline
6425	 * cpus if the system is already booted because the pagesets
6426	 * are needed to initialize allocators on a specific cpu too.
6427	 * F.e. the percpu allocator needs the page allocator which
6428	 * needs the percpu allocator in order to allocate its pagesets
6429	 * (a chicken-egg dilemma).
6430	 */
6431	for_each_possible_cpu(cpu)
6432		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6433
6434	mminit_verify_zonelist();
6435	cpuset_init_current_mems_allowed();
6436}
6437
6438/*
6439 * unless system_state == SYSTEM_BOOTING.
6440 *
6441 * __ref due to call of __init annotated helper build_all_zonelists_init
6442 * [protected by SYSTEM_BOOTING].
6443 */
6444void __ref build_all_zonelists(pg_data_t *pgdat)
6445{
6446	unsigned long vm_total_pages;
6447
6448	if (system_state == SYSTEM_BOOTING) {
6449		build_all_zonelists_init();
6450	} else {
6451		__build_all_zonelists(pgdat);
6452		/* cpuset refresh routine should be here */
6453	}
6454	/* Get the number of free pages beyond high watermark in all zones. */
6455	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6456	/*
6457	 * Disable grouping by mobility if the number of pages in the
6458	 * system is too low to allow the mechanism to work. It would be
6459	 * more accurate, but expensive to check per-zone. This check is
6460	 * made on memory-hotadd so a system can start with mobility
6461	 * disabled and enable it later
6462	 */
6463	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6464		page_group_by_mobility_disabled = 1;
6465	else
6466		page_group_by_mobility_disabled = 0;
6467
6468	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6469		nr_online_nodes,
6470		page_group_by_mobility_disabled ? "off" : "on",
6471		vm_total_pages);
6472#ifdef CONFIG_NUMA
6473	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6474#endif
6475}
6476
6477/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6478static bool __meminit
6479overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6480{
6481	static struct memblock_region *r;
6482
6483	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6484		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6485			for_each_mem_region(r) {
6486				if (*pfn < memblock_region_memory_end_pfn(r))
6487					break;
6488			}
6489		}
6490		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6491		    memblock_is_mirror(r)) {
6492			*pfn = memblock_region_memory_end_pfn(r);
6493			return true;
6494		}
6495	}
6496	return false;
6497}
6498
6499/*
6500 * Initially all pages are reserved - free ones are freed
6501 * up by memblock_free_all() once the early boot process is
6502 * done. Non-atomic initialization, single-pass.
6503 *
6504 * All aligned pageblocks are initialized to the specified migratetype
6505 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6506 * zone stats (e.g., nr_isolate_pageblock) are touched.
6507 */
6508void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6509		unsigned long start_pfn, unsigned long zone_end_pfn,
6510		enum meminit_context context,
6511		struct vmem_altmap *altmap, int migratetype)
6512{
6513	unsigned long pfn, end_pfn = start_pfn + size;
 
 
 
6514	struct page *page;
 
 
 
6515
6516	if (highest_memmap_pfn < end_pfn - 1)
6517		highest_memmap_pfn = end_pfn - 1;
6518
6519#ifdef CONFIG_ZONE_DEVICE
6520	/*
6521	 * Honor reservation requested by the driver for this ZONE_DEVICE
6522	 * memory. We limit the total number of pages to initialize to just
6523	 * those that might contain the memory mapping. We will defer the
6524	 * ZONE_DEVICE page initialization until after we have released
6525	 * the hotplug lock.
6526	 */
6527	if (zone == ZONE_DEVICE) {
6528		if (!altmap)
6529			return;
6530
6531		if (start_pfn == altmap->base_pfn)
6532			start_pfn += altmap->reserve;
6533		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6534	}
6535#endif
6536
6537	for (pfn = start_pfn; pfn < end_pfn; ) {
6538		/*
6539		 * There can be holes in boot-time mem_map[]s handed to this
6540		 * function.  They do not exist on hotplugged memory.
6541		 */
6542		if (context == MEMINIT_EARLY) {
6543			if (overlap_memmap_init(zone, &pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6544				continue;
6545			if (defer_init(nid, pfn, zone_end_pfn))
6546				break;
6547		}
 
6548
 
6549		page = pfn_to_page(pfn);
6550		__init_single_page(page, pfn, zone, nid);
6551		if (context == MEMINIT_HOTPLUG)
6552			__SetPageReserved(page);
6553
6554		/*
6555		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6556		 * such that unmovable allocations won't be scattered all
6557		 * over the place during system boot.
6558		 */
6559		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6560			set_pageblock_migratetype(page, migratetype);
6561			cond_resched();
6562		}
6563		pfn++;
6564	}
6565}
6566
6567#ifdef CONFIG_ZONE_DEVICE
6568void __ref memmap_init_zone_device(struct zone *zone,
6569				   unsigned long start_pfn,
6570				   unsigned long nr_pages,
6571				   struct dev_pagemap *pgmap)
6572{
6573	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6574	struct pglist_data *pgdat = zone->zone_pgdat;
6575	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6576	unsigned long zone_idx = zone_idx(zone);
6577	unsigned long start = jiffies;
6578	int nid = pgdat->node_id;
6579
6580	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6581		return;
6582
6583	/*
6584	 * The call to memmap_init should have already taken care
6585	 * of the pages reserved for the memmap, so we can just jump to
6586	 * the end of that region and start processing the device pages.
6587	 */
6588	if (altmap) {
6589		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6590		nr_pages = end_pfn - start_pfn;
6591	}
6592
6593	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6594		struct page *page = pfn_to_page(pfn);
6595
6596		__init_single_page(page, pfn, zone_idx, nid);
6597
6598		/*
6599		 * Mark page reserved as it will need to wait for onlining
6600		 * phase for it to be fully associated with a zone.
6601		 *
6602		 * We can use the non-atomic __set_bit operation for setting
6603		 * the flag as we are still initializing the pages.
6604		 */
6605		__SetPageReserved(page);
6606
6607		/*
6608		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6609		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6610		 * ever freed or placed on a driver-private list.
6611		 */
6612		page->pgmap = pgmap;
6613		page->zone_device_data = NULL;
6614
6615		/*
6616		 * Mark the block movable so that blocks are reserved for
6617		 * movable at startup. This will force kernel allocations
6618		 * to reserve their blocks rather than leaking throughout
6619		 * the address space during boot when many long-lived
6620		 * kernel allocations are made.
6621		 *
6622		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6623		 * because this is done early in section_activate()
 
 
 
 
 
6624		 */
6625		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6626			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6627			cond_resched();
6628		}
6629	}
6630
6631	pr_info("%s initialised %lu pages in %ums\n", __func__,
6632		nr_pages, jiffies_to_msecs(jiffies - start));
6633}
6634
6635#endif
6636static void __meminit zone_init_free_lists(struct zone *zone)
6637{
6638	unsigned int order, t;
6639	for_each_migratetype_order(order, t) {
6640		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6641		zone->free_area[order].nr_free = 0;
6642	}
6643}
6644
6645#if !defined(CONFIG_FLATMEM)
6646/*
6647 * Only struct pages that correspond to ranges defined by memblock.memory
6648 * are zeroed and initialized by going through __init_single_page() during
6649 * memmap_init_zone_range().
6650 *
6651 * But, there could be struct pages that correspond to holes in
6652 * memblock.memory. This can happen because of the following reasons:
6653 * - physical memory bank size is not necessarily the exact multiple of the
6654 *   arbitrary section size
6655 * - early reserved memory may not be listed in memblock.memory
6656 * - memory layouts defined with memmap= kernel parameter may not align
6657 *   nicely with memmap sections
6658 *
6659 * Explicitly initialize those struct pages so that:
6660 * - PG_Reserved is set
6661 * - zone and node links point to zone and node that span the page if the
6662 *   hole is in the middle of a zone
6663 * - zone and node links point to adjacent zone/node if the hole falls on
6664 *   the zone boundary; the pages in such holes will be prepended to the
6665 *   zone/node above the hole except for the trailing pages in the last
6666 *   section that will be appended to the zone/node below.
6667 */
6668static void __init init_unavailable_range(unsigned long spfn,
6669					  unsigned long epfn,
6670					  int zone, int node)
6671{
6672	unsigned long pfn;
6673	u64 pgcnt = 0;
6674
6675	for (pfn = spfn; pfn < epfn; pfn++) {
6676		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6677			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6678				+ pageblock_nr_pages - 1;
6679			continue;
6680		}
6681		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6682		__SetPageReserved(pfn_to_page(pfn));
6683		pgcnt++;
6684	}
6685
6686	if (pgcnt)
6687		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6688			node, zone_names[zone], pgcnt);
6689}
6690#else
6691static inline void init_unavailable_range(unsigned long spfn,
6692					  unsigned long epfn,
6693					  int zone, int node)
6694{
6695}
6696#endif
6697
6698static void __init memmap_init_zone_range(struct zone *zone,
6699					  unsigned long start_pfn,
6700					  unsigned long end_pfn,
6701					  unsigned long *hole_pfn)
6702{
6703	unsigned long zone_start_pfn = zone->zone_start_pfn;
6704	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6705	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6706
6707	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6708	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6709
6710	if (start_pfn >= end_pfn)
6711		return;
6712
6713	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6714			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6715
6716	if (*hole_pfn < start_pfn)
6717		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6718
6719	*hole_pfn = end_pfn;
6720}
6721
6722static void __init memmap_init(void)
6723{
6724	unsigned long start_pfn, end_pfn;
6725	unsigned long hole_pfn = 0;
6726	int i, j, zone_id, nid;
6727
6728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6729		struct pglist_data *node = NODE_DATA(nid);
6730
6731		for (j = 0; j < MAX_NR_ZONES; j++) {
6732			struct zone *zone = node->node_zones + j;
6733
6734			if (!populated_zone(zone))
6735				continue;
6736
6737			memmap_init_zone_range(zone, start_pfn, end_pfn,
6738					       &hole_pfn);
6739			zone_id = j;
6740		}
6741	}
6742
6743#ifdef CONFIG_SPARSEMEM
6744	/*
6745	 * Initialize the memory map for hole in the range [memory_end,
6746	 * section_end].
6747	 * Append the pages in this hole to the highest zone in the last
6748	 * node.
6749	 * The call to init_unavailable_range() is outside the ifdef to
6750	 * silence the compiler warining about zone_id set but not used;
6751	 * for FLATMEM it is a nop anyway
6752	 */
6753	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6754	if (hole_pfn < end_pfn)
6755#endif
6756		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6757}
6758
6759static int zone_batchsize(struct zone *zone)
6760{
6761#ifdef CONFIG_MMU
6762	int batch;
6763
6764	/*
6765	 * The number of pages to batch allocate is either ~0.1%
6766	 * of the zone or 1MB, whichever is smaller. The batch
6767	 * size is striking a balance between allocation latency
6768	 * and zone lock contention.
6769	 */
6770	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
 
 
6771	batch /= 4;		/* We effectively *= 4 below */
6772	if (batch < 1)
6773		batch = 1;
6774
6775	/*
6776	 * Clamp the batch to a 2^n - 1 value. Having a power
6777	 * of 2 value was found to be more likely to have
6778	 * suboptimal cache aliasing properties in some cases.
6779	 *
6780	 * For example if 2 tasks are alternately allocating
6781	 * batches of pages, one task can end up with a lot
6782	 * of pages of one half of the possible page colors
6783	 * and the other with pages of the other colors.
6784	 */
6785	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6786
6787	return batch;
6788
6789#else
6790	/* The deferral and batching of frees should be suppressed under NOMMU
6791	 * conditions.
6792	 *
6793	 * The problem is that NOMMU needs to be able to allocate large chunks
6794	 * of contiguous memory as there's no hardware page translation to
6795	 * assemble apparent contiguous memory from discontiguous pages.
6796	 *
6797	 * Queueing large contiguous runs of pages for batching, however,
6798	 * causes the pages to actually be freed in smaller chunks.  As there
6799	 * can be a significant delay between the individual batches being
6800	 * recycled, this leads to the once large chunks of space being
6801	 * fragmented and becoming unavailable for high-order allocations.
6802	 */
6803	return 0;
6804#endif
6805}
6806
6807static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6808{
6809#ifdef CONFIG_MMU
6810	int high;
6811	int nr_split_cpus;
6812	unsigned long total_pages;
6813
6814	if (!percpu_pagelist_high_fraction) {
6815		/*
6816		 * By default, the high value of the pcp is based on the zone
6817		 * low watermark so that if they are full then background
6818		 * reclaim will not be started prematurely.
6819		 */
6820		total_pages = low_wmark_pages(zone);
6821	} else {
6822		/*
6823		 * If percpu_pagelist_high_fraction is configured, the high
6824		 * value is based on a fraction of the managed pages in the
6825		 * zone.
6826		 */
6827		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6828	}
6829
6830	/*
6831	 * Split the high value across all online CPUs local to the zone. Note
6832	 * that early in boot that CPUs may not be online yet and that during
6833	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6834	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6835	 * all online CPUs to mitigate the risk that reclaim is triggered
6836	 * prematurely due to pages stored on pcp lists.
6837	 */
6838	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6839	if (!nr_split_cpus)
6840		nr_split_cpus = num_online_cpus();
6841	high = total_pages / nr_split_cpus;
6842
6843	/*
6844	 * Ensure high is at least batch*4. The multiple is based on the
6845	 * historical relationship between high and batch.
6846	 */
6847	high = max(high, batch << 2);
6848
6849	return high;
6850#else
6851	return 0;
6852#endif
6853}
6854
6855/*
6856 * pcp->high and pcp->batch values are related and generally batch is lower
6857 * than high. They are also related to pcp->count such that count is lower
6858 * than high, and as soon as it reaches high, the pcplist is flushed.
6859 *
6860 * However, guaranteeing these relations at all times would require e.g. write
6861 * barriers here but also careful usage of read barriers at the read side, and
6862 * thus be prone to error and bad for performance. Thus the update only prevents
6863 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6864 * can cope with those fields changing asynchronously, and fully trust only the
6865 * pcp->count field on the local CPU with interrupts disabled.
6866 *
6867 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6868 * outside of boot time (or some other assurance that no concurrent updaters
6869 * exist).
6870 */
6871static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6872		unsigned long batch)
6873{
6874	WRITE_ONCE(pcp->batch, batch);
6875	WRITE_ONCE(pcp->high, high);
 
 
 
 
 
 
 
6876}
6877
6878static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
6879{
6880	int pindex;
 
6881
6882	memset(pcp, 0, sizeof(*pcp));
6883	memset(pzstats, 0, sizeof(*pzstats));
 
 
6884
6885	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6886		INIT_LIST_HEAD(&pcp->lists[pindex]);
6887
6888	/*
6889	 * Set batch and high values safe for a boot pageset. A true percpu
6890	 * pageset's initialization will update them subsequently. Here we don't
6891	 * need to be as careful as pageset_update() as nobody can access the
6892	 * pageset yet.
6893	 */
6894	pcp->high = BOOT_PAGESET_HIGH;
6895	pcp->batch = BOOT_PAGESET_BATCH;
6896	pcp->free_factor = 0;
6897}
6898
6899static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6900		unsigned long batch)
6901{
6902	struct per_cpu_pages *pcp;
6903	int cpu;
6904
6905	for_each_possible_cpu(cpu) {
6906		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6907		pageset_update(pcp, high, batch);
6908	}
6909}
6910
6911/*
6912 * Calculate and set new high and batch values for all per-cpu pagesets of a
6913 * zone based on the zone's size.
6914 */
6915static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
 
6916{
6917	int new_high, new_batch;
 
 
6918
6919	new_batch = max(1, zone_batchsize(zone));
6920	new_high = zone_highsize(zone, new_batch, cpu_online);
6921
6922	if (zone->pageset_high == new_high &&
6923	    zone->pageset_batch == new_batch)
6924		return;
 
 
 
 
 
 
 
6925
6926	zone->pageset_high = new_high;
6927	zone->pageset_batch = new_batch;
 
6928
6929	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
 
6930}
6931
6932void __meminit setup_zone_pageset(struct zone *zone)
6933{
6934	int cpu;
6935
6936	/* Size may be 0 on !SMP && !NUMA */
6937	if (sizeof(struct per_cpu_zonestat) > 0)
6938		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6939
6940	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6941	for_each_possible_cpu(cpu) {
6942		struct per_cpu_pages *pcp;
6943		struct per_cpu_zonestat *pzstats;
6944
6945		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6946		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6947		per_cpu_pages_init(pcp, pzstats);
6948	}
6949
6950	zone_set_pageset_high_and_batch(zone, 0);
6951}
6952
6953/*
6954 * Allocate per cpu pagesets and initialize them.
6955 * Before this call only boot pagesets were available.
6956 */
6957void __init setup_per_cpu_pageset(void)
6958{
6959	struct pglist_data *pgdat;
6960	struct zone *zone;
6961	int __maybe_unused cpu;
6962
6963	for_each_populated_zone(zone)
6964		setup_zone_pageset(zone);
6965
6966#ifdef CONFIG_NUMA
6967	/*
6968	 * Unpopulated zones continue using the boot pagesets.
6969	 * The numa stats for these pagesets need to be reset.
6970	 * Otherwise, they will end up skewing the stats of
6971	 * the nodes these zones are associated with.
6972	 */
6973	for_each_possible_cpu(cpu) {
6974		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6975		memset(pzstats->vm_numa_event, 0,
6976		       sizeof(pzstats->vm_numa_event));
6977	}
6978#endif
6979
6980	for_each_online_pgdat(pgdat)
6981		pgdat->per_cpu_nodestats =
6982			alloc_percpu(struct per_cpu_nodestat);
6983}
6984
6985static __meminit void zone_pcp_init(struct zone *zone)
6986{
6987	/*
6988	 * per cpu subsystem is not up at this point. The following code
6989	 * relies on the ability of the linker to provide the
6990	 * offset of a (static) per cpu variable into the per cpu area.
6991	 */
6992	zone->per_cpu_pageset = &boot_pageset;
6993	zone->per_cpu_zonestats = &boot_zonestats;
6994	zone->pageset_high = BOOT_PAGESET_HIGH;
6995	zone->pageset_batch = BOOT_PAGESET_BATCH;
6996
6997	if (populated_zone(zone))
6998		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6999			 zone->present_pages, zone_batchsize(zone));
 
7000}
7001
7002void __meminit init_currently_empty_zone(struct zone *zone,
7003					unsigned long zone_start_pfn,
7004					unsigned long size)
7005{
7006	struct pglist_data *pgdat = zone->zone_pgdat;
7007	int zone_idx = zone_idx(zone) + 1;
7008
7009	if (zone_idx > pgdat->nr_zones)
7010		pgdat->nr_zones = zone_idx;
7011
7012	zone->zone_start_pfn = zone_start_pfn;
7013
7014	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7015			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7016			pgdat->node_id,
7017			(unsigned long)zone_idx(zone),
7018			zone_start_pfn, (zone_start_pfn + size));
7019
7020	zone_init_free_lists(zone);
7021	zone->initialized = 1;
7022}
7023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7024/**
7025 * get_pfn_range_for_nid - Return the start and end page frames for a node
7026 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7027 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7028 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7029 *
7030 * It returns the start and end page frame of a node based on information
7031 * provided by memblock_set_node(). If called for a node
7032 * with no available memory, a warning is printed and the start and end
7033 * PFNs will be 0.
7034 */
7035void __init get_pfn_range_for_nid(unsigned int nid,
7036			unsigned long *start_pfn, unsigned long *end_pfn)
7037{
7038	unsigned long this_start_pfn, this_end_pfn;
7039	int i;
7040
7041	*start_pfn = -1UL;
7042	*end_pfn = 0;
7043
7044	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7045		*start_pfn = min(*start_pfn, this_start_pfn);
7046		*end_pfn = max(*end_pfn, this_end_pfn);
7047	}
7048
7049	if (*start_pfn == -1UL)
7050		*start_pfn = 0;
7051}
7052
7053/*
7054 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7055 * assumption is made that zones within a node are ordered in monotonic
7056 * increasing memory addresses so that the "highest" populated zone is used
7057 */
7058static void __init find_usable_zone_for_movable(void)
7059{
7060	int zone_index;
7061	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7062		if (zone_index == ZONE_MOVABLE)
7063			continue;
7064
7065		if (arch_zone_highest_possible_pfn[zone_index] >
7066				arch_zone_lowest_possible_pfn[zone_index])
7067			break;
7068	}
7069
7070	VM_BUG_ON(zone_index == -1);
7071	movable_zone = zone_index;
7072}
7073
7074/*
7075 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7076 * because it is sized independent of architecture. Unlike the other zones,
7077 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7078 * in each node depending on the size of each node and how evenly kernelcore
7079 * is distributed. This helper function adjusts the zone ranges
7080 * provided by the architecture for a given node by using the end of the
7081 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7082 * zones within a node are in order of monotonic increases memory addresses
7083 */
7084static void __init adjust_zone_range_for_zone_movable(int nid,
7085					unsigned long zone_type,
7086					unsigned long node_start_pfn,
7087					unsigned long node_end_pfn,
7088					unsigned long *zone_start_pfn,
7089					unsigned long *zone_end_pfn)
7090{
7091	/* Only adjust if ZONE_MOVABLE is on this node */
7092	if (zone_movable_pfn[nid]) {
7093		/* Size ZONE_MOVABLE */
7094		if (zone_type == ZONE_MOVABLE) {
7095			*zone_start_pfn = zone_movable_pfn[nid];
7096			*zone_end_pfn = min(node_end_pfn,
7097				arch_zone_highest_possible_pfn[movable_zone]);
7098
7099		/* Adjust for ZONE_MOVABLE starting within this range */
7100		} else if (!mirrored_kernelcore &&
7101			*zone_start_pfn < zone_movable_pfn[nid] &&
7102			*zone_end_pfn > zone_movable_pfn[nid]) {
7103			*zone_end_pfn = zone_movable_pfn[nid];
7104
7105		/* Check if this whole range is within ZONE_MOVABLE */
7106		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7107			*zone_start_pfn = *zone_end_pfn;
7108	}
7109}
7110
7111/*
7112 * Return the number of pages a zone spans in a node, including holes
7113 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7114 */
7115static unsigned long __init zone_spanned_pages_in_node(int nid,
7116					unsigned long zone_type,
7117					unsigned long node_start_pfn,
7118					unsigned long node_end_pfn,
7119					unsigned long *zone_start_pfn,
7120					unsigned long *zone_end_pfn)
 
7121{
7122	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7123	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7124	/* When hotadd a new node from cpu_up(), the node should be empty */
7125	if (!node_start_pfn && !node_end_pfn)
7126		return 0;
7127
7128	/* Get the start and end of the zone */
7129	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7130	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7131	adjust_zone_range_for_zone_movable(nid, zone_type,
7132				node_start_pfn, node_end_pfn,
7133				zone_start_pfn, zone_end_pfn);
7134
7135	/* Check that this node has pages within the zone's required range */
7136	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7137		return 0;
7138
7139	/* Move the zone boundaries inside the node if necessary */
7140	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7141	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7142
7143	/* Return the spanned pages */
7144	return *zone_end_pfn - *zone_start_pfn;
7145}
7146
7147/*
7148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7149 * then all holes in the requested range will be accounted for.
7150 */
7151unsigned long __init __absent_pages_in_range(int nid,
7152				unsigned long range_start_pfn,
7153				unsigned long range_end_pfn)
7154{
7155	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7156	unsigned long start_pfn, end_pfn;
7157	int i;
7158
7159	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7160		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7161		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7162		nr_absent -= end_pfn - start_pfn;
7163	}
7164	return nr_absent;
7165}
7166
7167/**
7168 * absent_pages_in_range - Return number of page frames in holes within a range
7169 * @start_pfn: The start PFN to start searching for holes
7170 * @end_pfn: The end PFN to stop searching for holes
7171 *
7172 * Return: the number of pages frames in memory holes within a range.
7173 */
7174unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7175							unsigned long end_pfn)
7176{
7177	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7178}
7179
7180/* Return the number of page frames in holes in a zone on a node */
7181static unsigned long __init zone_absent_pages_in_node(int nid,
7182					unsigned long zone_type,
7183					unsigned long node_start_pfn,
7184					unsigned long node_end_pfn)
 
7185{
7186	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7187	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7188	unsigned long zone_start_pfn, zone_end_pfn;
7189	unsigned long nr_absent;
7190
7191	/* When hotadd a new node from cpu_up(), the node should be empty */
7192	if (!node_start_pfn && !node_end_pfn)
7193		return 0;
7194
7195	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7196	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7197
7198	adjust_zone_range_for_zone_movable(nid, zone_type,
7199			node_start_pfn, node_end_pfn,
7200			&zone_start_pfn, &zone_end_pfn);
7201	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7202
7203	/*
7204	 * ZONE_MOVABLE handling.
7205	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7206	 * and vice versa.
7207	 */
7208	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7209		unsigned long start_pfn, end_pfn;
7210		struct memblock_region *r;
7211
7212		for_each_mem_region(r) {
7213			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7214					  zone_start_pfn, zone_end_pfn);
7215			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7216					zone_start_pfn, zone_end_pfn);
7217
7218			if (zone_type == ZONE_MOVABLE &&
7219			    memblock_is_mirror(r))
7220				nr_absent += end_pfn - start_pfn;
7221
7222			if (zone_type == ZONE_NORMAL &&
7223			    !memblock_is_mirror(r))
7224				nr_absent += end_pfn - start_pfn;
7225		}
7226	}
7227
7228	return nr_absent;
7229}
7230
7231static void __init calculate_node_totalpages(struct pglist_data *pgdat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7232						unsigned long node_start_pfn,
7233						unsigned long node_end_pfn)
 
 
7234{
7235	unsigned long realtotalpages = 0, totalpages = 0;
7236	enum zone_type i;
7237
7238	for (i = 0; i < MAX_NR_ZONES; i++) {
7239		struct zone *zone = pgdat->node_zones + i;
7240		unsigned long zone_start_pfn, zone_end_pfn;
7241		unsigned long spanned, absent;
7242		unsigned long size, real_size;
7243
7244		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7245						     node_start_pfn,
7246						     node_end_pfn,
7247						     &zone_start_pfn,
7248						     &zone_end_pfn);
7249		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7250						   node_start_pfn,
7251						   node_end_pfn);
7252
7253		size = spanned;
7254		real_size = size - absent;
7255
7256		if (size)
7257			zone->zone_start_pfn = zone_start_pfn;
7258		else
7259			zone->zone_start_pfn = 0;
7260		zone->spanned_pages = size;
7261		zone->present_pages = real_size;
7262
7263		totalpages += size;
7264		realtotalpages += real_size;
7265	}
7266
7267	pgdat->node_spanned_pages = totalpages;
7268	pgdat->node_present_pages = realtotalpages;
7269	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 
7270}
7271
7272#ifndef CONFIG_SPARSEMEM
7273/*
7274 * Calculate the size of the zone->blockflags rounded to an unsigned long
7275 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7276 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7277 * round what is now in bits to nearest long in bits, then return it in
7278 * bytes.
7279 */
7280static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7281{
7282	unsigned long usemapsize;
7283
7284	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7285	usemapsize = roundup(zonesize, pageblock_nr_pages);
7286	usemapsize = usemapsize >> pageblock_order;
7287	usemapsize *= NR_PAGEBLOCK_BITS;
7288	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7289
7290	return usemapsize / 8;
7291}
7292
7293static void __ref setup_usemap(struct zone *zone)
 
 
 
7294{
7295	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7296					       zone->spanned_pages);
7297	zone->pageblock_flags = NULL;
7298	if (usemapsize) {
7299		zone->pageblock_flags =
7300			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7301					    zone_to_nid(zone));
7302		if (!zone->pageblock_flags)
7303			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7304			      usemapsize, zone->name, zone_to_nid(zone));
7305	}
7306}
7307#else
7308static inline void setup_usemap(struct zone *zone) {}
 
7309#endif /* CONFIG_SPARSEMEM */
7310
7311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7312
7313/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7314void __init set_pageblock_order(void)
7315{
7316	unsigned int order;
7317
7318	/* Check that pageblock_nr_pages has not already been setup */
7319	if (pageblock_order)
7320		return;
7321
7322	if (HPAGE_SHIFT > PAGE_SHIFT)
7323		order = HUGETLB_PAGE_ORDER;
7324	else
7325		order = MAX_ORDER - 1;
7326
7327	/*
7328	 * Assume the largest contiguous order of interest is a huge page.
7329	 * This value may be variable depending on boot parameters on IA64 and
7330	 * powerpc.
7331	 */
7332	pageblock_order = order;
7333}
7334#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7335
7336/*
7337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7338 * is unused as pageblock_order is set at compile-time. See
7339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7340 * the kernel config
7341 */
7342void __init set_pageblock_order(void)
7343{
7344}
7345
7346#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7349						unsigned long present_pages)
7350{
7351	unsigned long pages = spanned_pages;
7352
7353	/*
7354	 * Provide a more accurate estimation if there are holes within
7355	 * the zone and SPARSEMEM is in use. If there are holes within the
7356	 * zone, each populated memory region may cost us one or two extra
7357	 * memmap pages due to alignment because memmap pages for each
7358	 * populated regions may not be naturally aligned on page boundary.
7359	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7360	 */
7361	if (spanned_pages > present_pages + (present_pages >> 4) &&
7362	    IS_ENABLED(CONFIG_SPARSEMEM))
7363		pages = present_pages;
7364
7365	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7366}
7367
7368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7369static void pgdat_init_split_queue(struct pglist_data *pgdat)
7370{
7371	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7372
7373	spin_lock_init(&ds_queue->split_queue_lock);
7374	INIT_LIST_HEAD(&ds_queue->split_queue);
7375	ds_queue->split_queue_len = 0;
7376}
7377#else
7378static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7379#endif
7380
7381#ifdef CONFIG_COMPACTION
7382static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7383{
7384	init_waitqueue_head(&pgdat->kcompactd_wait);
7385}
7386#else
7387static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7388#endif
7389
7390static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7391{
7392	pgdat_resize_init(pgdat);
7393
7394	pgdat_init_split_queue(pgdat);
7395	pgdat_init_kcompactd(pgdat);
7396
7397	init_waitqueue_head(&pgdat->kswapd_wait);
7398	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7399
7400	pgdat_page_ext_init(pgdat);
7401	lruvec_init(&pgdat->__lruvec);
7402}
7403
7404static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7405							unsigned long remaining_pages)
7406{
7407	atomic_long_set(&zone->managed_pages, remaining_pages);
7408	zone_set_nid(zone, nid);
7409	zone->name = zone_names[idx];
7410	zone->zone_pgdat = NODE_DATA(nid);
7411	spin_lock_init(&zone->lock);
7412	zone_seqlock_init(zone);
7413	zone_pcp_init(zone);
7414}
7415
7416/*
7417 * Set up the zone data structures
7418 * - init pgdat internals
7419 * - init all zones belonging to this node
7420 *
7421 * NOTE: this function is only called during memory hotplug
7422 */
7423#ifdef CONFIG_MEMORY_HOTPLUG
7424void __ref free_area_init_core_hotplug(int nid)
7425{
7426	enum zone_type z;
7427	pg_data_t *pgdat = NODE_DATA(nid);
7428
7429	pgdat_init_internals(pgdat);
7430	for (z = 0; z < MAX_NR_ZONES; z++)
7431		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7432}
7433#endif
7434
7435/*
7436 * Set up the zone data structures:
7437 *   - mark all pages reserved
7438 *   - mark all memory queues empty
7439 *   - clear the memory bitmaps
7440 *
7441 * NOTE: pgdat should get zeroed by caller.
7442 * NOTE: this function is only called during early init.
7443 */
7444static void __init free_area_init_core(struct pglist_data *pgdat)
7445{
7446	enum zone_type j;
7447	int nid = pgdat->node_id;
7448
7449	pgdat_init_internals(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7450	pgdat->per_cpu_nodestats = &boot_nodestats;
7451
7452	for (j = 0; j < MAX_NR_ZONES; j++) {
7453		struct zone *zone = pgdat->node_zones + j;
7454		unsigned long size, freesize, memmap_pages;
 
7455
7456		size = zone->spanned_pages;
7457		freesize = zone->present_pages;
7458
7459		/*
7460		 * Adjust freesize so that it accounts for how much memory
7461		 * is used by this zone for memmap. This affects the watermark
7462		 * and per-cpu initialisations
7463		 */
7464		memmap_pages = calc_memmap_size(size, freesize);
7465		if (!is_highmem_idx(j)) {
7466			if (freesize >= memmap_pages) {
7467				freesize -= memmap_pages;
7468				if (memmap_pages)
7469					pr_debug("  %s zone: %lu pages used for memmap\n",
7470						 zone_names[j], memmap_pages);
 
7471			} else
7472				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7473					zone_names[j], memmap_pages, freesize);
7474		}
7475
7476		/* Account for reserved pages */
7477		if (j == 0 && freesize > dma_reserve) {
7478			freesize -= dma_reserve;
7479			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
 
7480		}
7481
7482		if (!is_highmem_idx(j))
7483			nr_kernel_pages += freesize;
7484		/* Charge for highmem memmap if there are enough kernel pages */
7485		else if (nr_kernel_pages > memmap_pages * 2)
7486			nr_kernel_pages -= memmap_pages;
7487		nr_all_pages += freesize;
7488
7489		/*
7490		 * Set an approximate value for lowmem here, it will be adjusted
7491		 * when the bootmem allocator frees pages into the buddy system.
7492		 * And all highmem pages will be managed by the buddy system.
7493		 */
7494		zone_init_internals(zone, j, nid, freesize);
 
 
 
 
 
 
 
 
7495
7496		if (!size)
7497			continue;
7498
7499		set_pageblock_order();
7500		setup_usemap(zone);
7501		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
 
7502	}
7503}
7504
7505#ifdef CONFIG_FLATMEM
7506static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7507{
7508	unsigned long __maybe_unused start = 0;
7509	unsigned long __maybe_unused offset = 0;
7510
7511	/* Skip empty nodes */
7512	if (!pgdat->node_spanned_pages)
7513		return;
7514
7515	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7516	offset = pgdat->node_start_pfn - start;
7517	/* ia64 gets its own node_mem_map, before this, without bootmem */
7518	if (!pgdat->node_mem_map) {
7519		unsigned long size, end;
7520		struct page *map;
7521
7522		/*
7523		 * The zone's endpoints aren't required to be MAX_ORDER
7524		 * aligned but the node_mem_map endpoints must be in order
7525		 * for the buddy allocator to function correctly.
7526		 */
7527		end = pgdat_end_pfn(pgdat);
7528		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7529		size =  (end - start) * sizeof(struct page);
7530		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7531					  pgdat->node_id);
7532		if (!map)
7533			panic("Failed to allocate %ld bytes for node %d memory map\n",
7534			      size, pgdat->node_id);
7535		pgdat->node_mem_map = map + offset;
7536	}
7537	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7538				__func__, pgdat->node_id, (unsigned long)pgdat,
7539				(unsigned long)pgdat->node_mem_map);
7540#ifndef CONFIG_NUMA
7541	/*
7542	 * With no DISCONTIG, the global mem_map is just set as node 0's
7543	 */
7544	if (pgdat == NODE_DATA(0)) {
7545		mem_map = NODE_DATA(0)->node_mem_map;
 
7546		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7547			mem_map -= offset;
 
7548	}
7549#endif
7550}
7551#else
7552static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7553#endif /* CONFIG_FLATMEM */
7554
7555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7556static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7557{
7558	pgdat->first_deferred_pfn = ULONG_MAX;
7559}
7560#else
7561static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7562#endif
7563
7564static void __init free_area_init_node(int nid)
7565{
7566	pg_data_t *pgdat = NODE_DATA(nid);
7567	unsigned long start_pfn = 0;
7568	unsigned long end_pfn = 0;
7569
7570	/* pg_data_t should be reset to zero when it's allocated */
7571	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7572
7573	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7574
7575	pgdat->node_id = nid;
7576	pgdat->node_start_pfn = start_pfn;
7577	pgdat->per_cpu_nodestats = NULL;
7578
 
7579	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7580		(u64)start_pfn << PAGE_SHIFT,
7581		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7582	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
 
 
 
 
7583
7584	alloc_node_mem_map(pgdat);
7585	pgdat_set_deferred_range(pgdat);
7586
 
 
 
 
 
 
 
 
 
7587	free_area_init_core(pgdat);
7588}
7589
7590void __init free_area_init_memoryless_node(int nid)
 
 
 
 
 
 
 
 
7591{
7592	free_area_init_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7593}
 
 
 
7594
7595#if MAX_NUMNODES > 1
7596/*
7597 * Figure out the number of possible node ids.
7598 */
7599void __init setup_nr_node_ids(void)
7600{
7601	unsigned int highest;
7602
7603	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7604	nr_node_ids = highest + 1;
7605}
7606#endif
7607
7608/**
7609 * node_map_pfn_alignment - determine the maximum internode alignment
7610 *
7611 * This function should be called after node map is populated and sorted.
7612 * It calculates the maximum power of two alignment which can distinguish
7613 * all the nodes.
7614 *
7615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7617 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7618 * shifted, 1GiB is enough and this function will indicate so.
7619 *
7620 * This is used to test whether pfn -> nid mapping of the chosen memory
7621 * model has fine enough granularity to avoid incorrect mapping for the
7622 * populated node map.
7623 *
7624 * Return: the determined alignment in pfn's.  0 if there is no alignment
7625 * requirement (single node).
7626 */
7627unsigned long __init node_map_pfn_alignment(void)
7628{
7629	unsigned long accl_mask = 0, last_end = 0;
7630	unsigned long start, end, mask;
7631	int last_nid = NUMA_NO_NODE;
7632	int i, nid;
7633
7634	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7635		if (!start || last_nid < 0 || last_nid == nid) {
7636			last_nid = nid;
7637			last_end = end;
7638			continue;
7639		}
7640
7641		/*
7642		 * Start with a mask granular enough to pin-point to the
7643		 * start pfn and tick off bits one-by-one until it becomes
7644		 * too coarse to separate the current node from the last.
7645		 */
7646		mask = ~((1 << __ffs(start)) - 1);
7647		while (mask && last_end <= (start & (mask << 1)))
7648			mask <<= 1;
7649
7650		/* accumulate all internode masks */
7651		accl_mask |= mask;
7652	}
7653
7654	/* convert mask to number of pages */
7655	return ~accl_mask + 1;
7656}
7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7658/**
7659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7660 *
7661 * Return: the minimum PFN based on information provided via
7662 * memblock_set_node().
7663 */
7664unsigned long __init find_min_pfn_with_active_regions(void)
7665{
7666	return PHYS_PFN(memblock_start_of_DRAM());
7667}
7668
7669/*
7670 * early_calculate_totalpages()
7671 * Sum pages in active regions for movable zone.
7672 * Populate N_MEMORY for calculating usable_nodes.
7673 */
7674static unsigned long __init early_calculate_totalpages(void)
7675{
7676	unsigned long totalpages = 0;
7677	unsigned long start_pfn, end_pfn;
7678	int i, nid;
7679
7680	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7681		unsigned long pages = end_pfn - start_pfn;
7682
7683		totalpages += pages;
7684		if (pages)
7685			node_set_state(nid, N_MEMORY);
7686	}
7687	return totalpages;
7688}
7689
7690/*
7691 * Find the PFN the Movable zone begins in each node. Kernel memory
7692 * is spread evenly between nodes as long as the nodes have enough
7693 * memory. When they don't, some nodes will have more kernelcore than
7694 * others
7695 */
7696static void __init find_zone_movable_pfns_for_nodes(void)
7697{
7698	int i, nid;
7699	unsigned long usable_startpfn;
7700	unsigned long kernelcore_node, kernelcore_remaining;
7701	/* save the state before borrow the nodemask */
7702	nodemask_t saved_node_state = node_states[N_MEMORY];
7703	unsigned long totalpages = early_calculate_totalpages();
7704	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7705	struct memblock_region *r;
7706
7707	/* Need to find movable_zone earlier when movable_node is specified. */
7708	find_usable_zone_for_movable();
7709
7710	/*
7711	 * If movable_node is specified, ignore kernelcore and movablecore
7712	 * options.
7713	 */
7714	if (movable_node_is_enabled()) {
7715		for_each_mem_region(r) {
7716			if (!memblock_is_hotpluggable(r))
7717				continue;
7718
7719			nid = memblock_get_region_node(r);
7720
7721			usable_startpfn = PFN_DOWN(r->base);
7722			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7723				min(usable_startpfn, zone_movable_pfn[nid]) :
7724				usable_startpfn;
7725		}
7726
7727		goto out2;
7728	}
7729
7730	/*
7731	 * If kernelcore=mirror is specified, ignore movablecore option
7732	 */
7733	if (mirrored_kernelcore) {
7734		bool mem_below_4gb_not_mirrored = false;
7735
7736		for_each_mem_region(r) {
7737			if (memblock_is_mirror(r))
7738				continue;
7739
7740			nid = memblock_get_region_node(r);
7741
7742			usable_startpfn = memblock_region_memory_base_pfn(r);
7743
7744			if (usable_startpfn < 0x100000) {
7745				mem_below_4gb_not_mirrored = true;
7746				continue;
7747			}
7748
7749			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7750				min(usable_startpfn, zone_movable_pfn[nid]) :
7751				usable_startpfn;
7752		}
7753
7754		if (mem_below_4gb_not_mirrored)
7755			pr_warn("This configuration results in unmirrored kernel memory.\n");
7756
7757		goto out2;
7758	}
7759
7760	/*
7761	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7762	 * amount of necessary memory.
7763	 */
7764	if (required_kernelcore_percent)
7765		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7766				       10000UL;
7767	if (required_movablecore_percent)
7768		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7769					10000UL;
7770
7771	/*
7772	 * If movablecore= was specified, calculate what size of
7773	 * kernelcore that corresponds so that memory usable for
7774	 * any allocation type is evenly spread. If both kernelcore
7775	 * and movablecore are specified, then the value of kernelcore
7776	 * will be used for required_kernelcore if it's greater than
7777	 * what movablecore would have allowed.
7778	 */
7779	if (required_movablecore) {
7780		unsigned long corepages;
7781
7782		/*
7783		 * Round-up so that ZONE_MOVABLE is at least as large as what
7784		 * was requested by the user
7785		 */
7786		required_movablecore =
7787			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7788		required_movablecore = min(totalpages, required_movablecore);
7789		corepages = totalpages - required_movablecore;
7790
7791		required_kernelcore = max(required_kernelcore, corepages);
7792	}
7793
7794	/*
7795	 * If kernelcore was not specified or kernelcore size is larger
7796	 * than totalpages, there is no ZONE_MOVABLE.
7797	 */
7798	if (!required_kernelcore || required_kernelcore >= totalpages)
7799		goto out;
7800
7801	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7802	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7803
7804restart:
7805	/* Spread kernelcore memory as evenly as possible throughout nodes */
7806	kernelcore_node = required_kernelcore / usable_nodes;
7807	for_each_node_state(nid, N_MEMORY) {
7808		unsigned long start_pfn, end_pfn;
7809
7810		/*
7811		 * Recalculate kernelcore_node if the division per node
7812		 * now exceeds what is necessary to satisfy the requested
7813		 * amount of memory for the kernel
7814		 */
7815		if (required_kernelcore < kernelcore_node)
7816			kernelcore_node = required_kernelcore / usable_nodes;
7817
7818		/*
7819		 * As the map is walked, we track how much memory is usable
7820		 * by the kernel using kernelcore_remaining. When it is
7821		 * 0, the rest of the node is usable by ZONE_MOVABLE
7822		 */
7823		kernelcore_remaining = kernelcore_node;
7824
7825		/* Go through each range of PFNs within this node */
7826		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7827			unsigned long size_pages;
7828
7829			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7830			if (start_pfn >= end_pfn)
7831				continue;
7832
7833			/* Account for what is only usable for kernelcore */
7834			if (start_pfn < usable_startpfn) {
7835				unsigned long kernel_pages;
7836				kernel_pages = min(end_pfn, usable_startpfn)
7837								- start_pfn;
7838
7839				kernelcore_remaining -= min(kernel_pages,
7840							kernelcore_remaining);
7841				required_kernelcore -= min(kernel_pages,
7842							required_kernelcore);
7843
7844				/* Continue if range is now fully accounted */
7845				if (end_pfn <= usable_startpfn) {
7846
7847					/*
7848					 * Push zone_movable_pfn to the end so
7849					 * that if we have to rebalance
7850					 * kernelcore across nodes, we will
7851					 * not double account here
7852					 */
7853					zone_movable_pfn[nid] = end_pfn;
7854					continue;
7855				}
7856				start_pfn = usable_startpfn;
7857			}
7858
7859			/*
7860			 * The usable PFN range for ZONE_MOVABLE is from
7861			 * start_pfn->end_pfn. Calculate size_pages as the
7862			 * number of pages used as kernelcore
7863			 */
7864			size_pages = end_pfn - start_pfn;
7865			if (size_pages > kernelcore_remaining)
7866				size_pages = kernelcore_remaining;
7867			zone_movable_pfn[nid] = start_pfn + size_pages;
7868
7869			/*
7870			 * Some kernelcore has been met, update counts and
7871			 * break if the kernelcore for this node has been
7872			 * satisfied
7873			 */
7874			required_kernelcore -= min(required_kernelcore,
7875								size_pages);
7876			kernelcore_remaining -= size_pages;
7877			if (!kernelcore_remaining)
7878				break;
7879		}
7880	}
7881
7882	/*
7883	 * If there is still required_kernelcore, we do another pass with one
7884	 * less node in the count. This will push zone_movable_pfn[nid] further
7885	 * along on the nodes that still have memory until kernelcore is
7886	 * satisfied
7887	 */
7888	usable_nodes--;
7889	if (usable_nodes && required_kernelcore > usable_nodes)
7890		goto restart;
7891
7892out2:
7893	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7894	for (nid = 0; nid < MAX_NUMNODES; nid++)
7895		zone_movable_pfn[nid] =
7896			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7897
7898out:
7899	/* restore the node_state */
7900	node_states[N_MEMORY] = saved_node_state;
7901}
7902
7903/* Any regular or high memory on that node ? */
7904static void check_for_memory(pg_data_t *pgdat, int nid)
7905{
7906	enum zone_type zone_type;
7907
 
 
 
7908	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7909		struct zone *zone = &pgdat->node_zones[zone_type];
7910		if (populated_zone(zone)) {
7911			if (IS_ENABLED(CONFIG_HIGHMEM))
7912				node_set_state(nid, N_HIGH_MEMORY);
7913			if (zone_type <= ZONE_NORMAL)
7914				node_set_state(nid, N_NORMAL_MEMORY);
7915			break;
7916		}
7917	}
7918}
7919
7920/*
7921 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7922 * such cases we allow max_zone_pfn sorted in the descending order
7923 */
7924bool __weak arch_has_descending_max_zone_pfns(void)
7925{
7926	return false;
7927}
7928
7929/**
7930 * free_area_init - Initialise all pg_data_t and zone data
7931 * @max_zone_pfn: an array of max PFNs for each zone
7932 *
7933 * This will call free_area_init_node() for each active node in the system.
7934 * Using the page ranges provided by memblock_set_node(), the size of each
7935 * zone in each node and their holes is calculated. If the maximum PFN
7936 * between two adjacent zones match, it is assumed that the zone is empty.
7937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7939 * starts where the previous one ended. For example, ZONE_DMA32 starts
7940 * at arch_max_dma_pfn.
7941 */
7942void __init free_area_init(unsigned long *max_zone_pfn)
7943{
7944	unsigned long start_pfn, end_pfn;
7945	int i, nid, zone;
7946	bool descending;
7947
7948	/* Record where the zone boundaries are */
7949	memset(arch_zone_lowest_possible_pfn, 0,
7950				sizeof(arch_zone_lowest_possible_pfn));
7951	memset(arch_zone_highest_possible_pfn, 0,
7952				sizeof(arch_zone_highest_possible_pfn));
7953
7954	start_pfn = find_min_pfn_with_active_regions();
7955	descending = arch_has_descending_max_zone_pfns();
7956
7957	for (i = 0; i < MAX_NR_ZONES; i++) {
7958		if (descending)
7959			zone = MAX_NR_ZONES - i - 1;
7960		else
7961			zone = i;
7962
7963		if (zone == ZONE_MOVABLE)
7964			continue;
7965
7966		end_pfn = max(max_zone_pfn[zone], start_pfn);
7967		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7968		arch_zone_highest_possible_pfn[zone] = end_pfn;
7969
7970		start_pfn = end_pfn;
7971	}
7972
7973	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7974	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7975	find_zone_movable_pfns_for_nodes();
7976
7977	/* Print out the zone ranges */
7978	pr_info("Zone ranges:\n");
7979	for (i = 0; i < MAX_NR_ZONES; i++) {
7980		if (i == ZONE_MOVABLE)
7981			continue;
7982		pr_info("  %-8s ", zone_names[i]);
7983		if (arch_zone_lowest_possible_pfn[i] ==
7984				arch_zone_highest_possible_pfn[i])
7985			pr_cont("empty\n");
7986		else
7987			pr_cont("[mem %#018Lx-%#018Lx]\n",
7988				(u64)arch_zone_lowest_possible_pfn[i]
7989					<< PAGE_SHIFT,
7990				((u64)arch_zone_highest_possible_pfn[i]
7991					<< PAGE_SHIFT) - 1);
7992	}
7993
7994	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7995	pr_info("Movable zone start for each node\n");
7996	for (i = 0; i < MAX_NUMNODES; i++) {
7997		if (zone_movable_pfn[i])
7998			pr_info("  Node %d: %#018Lx\n", i,
7999			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8000	}
8001
8002	/*
8003	 * Print out the early node map, and initialize the
8004	 * subsection-map relative to active online memory ranges to
8005	 * enable future "sub-section" extensions of the memory map.
8006	 */
8007	pr_info("Early memory node ranges\n");
8008	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8009		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8010			(u64)start_pfn << PAGE_SHIFT,
8011			((u64)end_pfn << PAGE_SHIFT) - 1);
8012		subsection_map_init(start_pfn, end_pfn - start_pfn);
8013	}
8014
8015	/* Initialise every node */
8016	mminit_verify_pageflags_layout();
8017	setup_nr_node_ids();
8018	for_each_online_node(nid) {
8019		pg_data_t *pgdat = NODE_DATA(nid);
8020		free_area_init_node(nid);
 
8021
8022		/* Any memory on that node */
8023		if (pgdat->node_present_pages)
8024			node_set_state(nid, N_MEMORY);
8025		check_for_memory(pgdat, nid);
8026	}
8027
8028	memmap_init();
8029}
8030
8031static int __init cmdline_parse_core(char *p, unsigned long *core,
8032				     unsigned long *percent)
8033{
8034	unsigned long long coremem;
8035	char *endptr;
8036
8037	if (!p)
8038		return -EINVAL;
8039
8040	/* Value may be a percentage of total memory, otherwise bytes */
8041	coremem = simple_strtoull(p, &endptr, 0);
8042	if (*endptr == '%') {
8043		/* Paranoid check for percent values greater than 100 */
8044		WARN_ON(coremem > 100);
8045
8046		*percent = coremem;
8047	} else {
8048		coremem = memparse(p, &p);
8049		/* Paranoid check that UL is enough for the coremem value */
8050		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8051
8052		*core = coremem >> PAGE_SHIFT;
8053		*percent = 0UL;
8054	}
8055	return 0;
8056}
8057
8058/*
8059 * kernelcore=size sets the amount of memory for use for allocations that
8060 * cannot be reclaimed or migrated.
8061 */
8062static int __init cmdline_parse_kernelcore(char *p)
8063{
8064	/* parse kernelcore=mirror */
8065	if (parse_option_str(p, "mirror")) {
8066		mirrored_kernelcore = true;
8067		return 0;
8068	}
8069
8070	return cmdline_parse_core(p, &required_kernelcore,
8071				  &required_kernelcore_percent);
8072}
8073
8074/*
8075 * movablecore=size sets the amount of memory for use for allocations that
8076 * can be reclaimed or migrated.
8077 */
8078static int __init cmdline_parse_movablecore(char *p)
8079{
8080	return cmdline_parse_core(p, &required_movablecore,
8081				  &required_movablecore_percent);
8082}
8083
8084early_param("kernelcore", cmdline_parse_kernelcore);
8085early_param("movablecore", cmdline_parse_movablecore);
8086
 
 
8087void adjust_managed_page_count(struct page *page, long count)
8088{
8089	atomic_long_add(count, &page_zone(page)->managed_pages);
8090	totalram_pages_add(count);
 
8091#ifdef CONFIG_HIGHMEM
8092	if (PageHighMem(page))
8093		totalhigh_pages_add(count);
8094#endif
 
8095}
8096EXPORT_SYMBOL(adjust_managed_page_count);
8097
8098unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8099{
8100	void *pos;
8101	unsigned long pages = 0;
8102
8103	start = (void *)PAGE_ALIGN((unsigned long)start);
8104	end = (void *)((unsigned long)end & PAGE_MASK);
8105	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8106		struct page *page = virt_to_page(pos);
8107		void *direct_map_addr;
8108
8109		/*
8110		 * 'direct_map_addr' might be different from 'pos'
8111		 * because some architectures' virt_to_page()
8112		 * work with aliases.  Getting the direct map
8113		 * address ensures that we get a _writeable_
8114		 * alias for the memset().
8115		 */
8116		direct_map_addr = page_address(page);
8117		/*
8118		 * Perform a kasan-unchecked memset() since this memory
8119		 * has not been initialized.
8120		 */
8121		direct_map_addr = kasan_reset_tag(direct_map_addr);
8122		if ((unsigned int)poison <= 0xFF)
8123			memset(direct_map_addr, poison, PAGE_SIZE);
8124
8125		free_reserved_page(page);
8126	}
8127
8128	if (pages && s)
8129		pr_info("Freeing %s memory: %ldK\n",
8130			s, pages << (PAGE_SHIFT - 10));
8131
8132	return pages;
8133}
 
 
 
 
 
 
 
 
 
 
 
 
8134
8135void __init mem_init_print_info(void)
8136{
8137	unsigned long physpages, codesize, datasize, rosize, bss_size;
8138	unsigned long init_code_size, init_data_size;
8139
8140	physpages = get_num_physpages();
8141	codesize = _etext - _stext;
8142	datasize = _edata - _sdata;
8143	rosize = __end_rodata - __start_rodata;
8144	bss_size = __bss_stop - __bss_start;
8145	init_data_size = __init_end - __init_begin;
8146	init_code_size = _einittext - _sinittext;
8147
8148	/*
8149	 * Detect special cases and adjust section sizes accordingly:
8150	 * 1) .init.* may be embedded into .data sections
8151	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8152	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8153	 * 3) .rodata.* may be embedded into .text or .data sections.
8154	 */
8155#define adj_init_size(start, end, size, pos, adj) \
8156	do { \
8157		if (start <= pos && pos < end && size > adj) \
8158			size -= adj; \
8159	} while (0)
8160
8161	adj_init_size(__init_begin, __init_end, init_data_size,
8162		     _sinittext, init_code_size);
8163	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8164	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8165	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8166	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8167
8168#undef	adj_init_size
8169
8170	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8171#ifdef	CONFIG_HIGHMEM
8172		", %luK highmem"
8173#endif
8174		")\n",
8175		nr_free_pages() << (PAGE_SHIFT - 10),
8176		physpages << (PAGE_SHIFT - 10),
8177		codesize >> 10, datasize >> 10, rosize >> 10,
8178		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8179		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8180		totalcma_pages << (PAGE_SHIFT - 10)
8181#ifdef	CONFIG_HIGHMEM
8182		, totalhigh_pages() << (PAGE_SHIFT - 10)
8183#endif
8184		);
8185}
8186
8187/**
8188 * set_dma_reserve - set the specified number of pages reserved in the first zone
8189 * @new_dma_reserve: The number of pages to mark reserved
8190 *
8191 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8192 * In the DMA zone, a significant percentage may be consumed by kernel image
8193 * and other unfreeable allocations which can skew the watermarks badly. This
8194 * function may optionally be used to account for unfreeable pages in the
8195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8196 * smaller per-cpu batchsize.
8197 */
8198void __init set_dma_reserve(unsigned long new_dma_reserve)
8199{
8200	dma_reserve = new_dma_reserve;
8201}
8202
 
 
 
 
 
 
 
8203static int page_alloc_cpu_dead(unsigned int cpu)
8204{
8205	struct zone *zone;
8206
8207	lru_add_drain_cpu(cpu);
8208	drain_pages(cpu);
8209
8210	/*
8211	 * Spill the event counters of the dead processor
8212	 * into the current processors event counters.
8213	 * This artificially elevates the count of the current
8214	 * processor.
8215	 */
8216	vm_events_fold_cpu(cpu);
8217
8218	/*
8219	 * Zero the differential counters of the dead processor
8220	 * so that the vm statistics are consistent.
8221	 *
8222	 * This is only okay since the processor is dead and cannot
8223	 * race with what we are doing.
8224	 */
8225	cpu_vm_stats_fold(cpu);
8226
8227	for_each_populated_zone(zone)
8228		zone_pcp_update(zone, 0);
8229
8230	return 0;
8231}
8232
8233static int page_alloc_cpu_online(unsigned int cpu)
8234{
8235	struct zone *zone;
8236
8237	for_each_populated_zone(zone)
8238		zone_pcp_update(zone, 1);
8239	return 0;
8240}
8241
8242#ifdef CONFIG_NUMA
8243int hashdist = HASHDIST_DEFAULT;
8244
8245static int __init set_hashdist(char *str)
8246{
8247	if (!str)
8248		return 0;
8249	hashdist = simple_strtoul(str, &str, 0);
8250	return 1;
8251}
8252__setup("hashdist=", set_hashdist);
8253#endif
8254
8255void __init page_alloc_init(void)
8256{
8257	int ret;
8258
8259#ifdef CONFIG_NUMA
8260	if (num_node_state(N_MEMORY) == 1)
8261		hashdist = 0;
8262#endif
8263
8264	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8265					"mm/page_alloc:pcp",
8266					page_alloc_cpu_online,
8267					page_alloc_cpu_dead);
8268	WARN_ON(ret < 0);
8269}
8270
8271/*
8272 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8273 *	or min_free_kbytes changes.
8274 */
8275static void calculate_totalreserve_pages(void)
8276{
8277	struct pglist_data *pgdat;
8278	unsigned long reserve_pages = 0;
8279	enum zone_type i, j;
8280
8281	for_each_online_pgdat(pgdat) {
8282
8283		pgdat->totalreserve_pages = 0;
8284
8285		for (i = 0; i < MAX_NR_ZONES; i++) {
8286			struct zone *zone = pgdat->node_zones + i;
8287			long max = 0;
8288			unsigned long managed_pages = zone_managed_pages(zone);
8289
8290			/* Find valid and maximum lowmem_reserve in the zone */
8291			for (j = i; j < MAX_NR_ZONES; j++) {
8292				if (zone->lowmem_reserve[j] > max)
8293					max = zone->lowmem_reserve[j];
8294			}
8295
8296			/* we treat the high watermark as reserved pages. */
8297			max += high_wmark_pages(zone);
8298
8299			if (max > managed_pages)
8300				max = managed_pages;
8301
8302			pgdat->totalreserve_pages += max;
8303
8304			reserve_pages += max;
8305		}
8306	}
8307	totalreserve_pages = reserve_pages;
8308}
8309
8310/*
8311 * setup_per_zone_lowmem_reserve - called whenever
8312 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8313 *	has a correct pages reserved value, so an adequate number of
8314 *	pages are left in the zone after a successful __alloc_pages().
8315 */
8316static void setup_per_zone_lowmem_reserve(void)
8317{
8318	struct pglist_data *pgdat;
8319	enum zone_type i, j;
8320
8321	for_each_online_pgdat(pgdat) {
8322		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8323			struct zone *zone = &pgdat->node_zones[i];
8324			int ratio = sysctl_lowmem_reserve_ratio[i];
8325			bool clear = !ratio || !zone_managed_pages(zone);
8326			unsigned long managed_pages = 0;
8327
8328			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8329				struct zone *upper_zone = &pgdat->node_zones[j];
8330
8331				managed_pages += zone_managed_pages(upper_zone);
8332
8333				if (clear)
8334					zone->lowmem_reserve[j] = 0;
8335				else
8336					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
 
 
8337			}
8338		}
8339	}
8340
8341	/* update totalreserve_pages */
8342	calculate_totalreserve_pages();
8343}
8344
8345static void __setup_per_zone_wmarks(void)
8346{
8347	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8348	unsigned long lowmem_pages = 0;
8349	struct zone *zone;
8350	unsigned long flags;
8351
8352	/* Calculate total number of !ZONE_HIGHMEM pages */
8353	for_each_zone(zone) {
8354		if (!is_highmem(zone))
8355			lowmem_pages += zone_managed_pages(zone);
8356	}
8357
8358	for_each_zone(zone) {
8359		u64 tmp;
8360
8361		spin_lock_irqsave(&zone->lock, flags);
8362		tmp = (u64)pages_min * zone_managed_pages(zone);
8363		do_div(tmp, lowmem_pages);
8364		if (is_highmem(zone)) {
8365			/*
8366			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8367			 * need highmem pages, so cap pages_min to a small
8368			 * value here.
8369			 *
8370			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8371			 * deltas control async page reclaim, and so should
8372			 * not be capped for highmem.
8373			 */
8374			unsigned long min_pages;
8375
8376			min_pages = zone_managed_pages(zone) / 1024;
8377			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8378			zone->_watermark[WMARK_MIN] = min_pages;
8379		} else {
8380			/*
8381			 * If it's a lowmem zone, reserve a number of pages
8382			 * proportionate to the zone's size.
8383			 */
8384			zone->_watermark[WMARK_MIN] = tmp;
8385		}
8386
8387		/*
8388		 * Set the kswapd watermarks distance according to the
8389		 * scale factor in proportion to available memory, but
8390		 * ensure a minimum size on small systems.
8391		 */
8392		tmp = max_t(u64, tmp >> 2,
8393			    mult_frac(zone_managed_pages(zone),
8394				      watermark_scale_factor, 10000));
8395
8396		zone->watermark_boost = 0;
8397		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8398		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8399
8400		spin_unlock_irqrestore(&zone->lock, flags);
8401	}
8402
8403	/* update totalreserve_pages */
8404	calculate_totalreserve_pages();
8405}
8406
8407/**
8408 * setup_per_zone_wmarks - called when min_free_kbytes changes
8409 * or when memory is hot-{added|removed}
8410 *
8411 * Ensures that the watermark[min,low,high] values for each zone are set
8412 * correctly with respect to min_free_kbytes.
8413 */
8414void setup_per_zone_wmarks(void)
8415{
8416	struct zone *zone;
8417	static DEFINE_SPINLOCK(lock);
8418
8419	spin_lock(&lock);
8420	__setup_per_zone_wmarks();
8421	spin_unlock(&lock);
8422
8423	/*
8424	 * The watermark size have changed so update the pcpu batch
8425	 * and high limits or the limits may be inappropriate.
8426	 */
8427	for_each_zone(zone)
8428		zone_pcp_update(zone, 0);
8429}
8430
8431/*
8432 * Initialise min_free_kbytes.
8433 *
8434 * For small machines we want it small (128k min).  For large machines
8435 * we want it large (256MB max).  But it is not linear, because network
8436 * bandwidth does not increase linearly with machine size.  We use
8437 *
8438 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8439 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8440 *
8441 * which yields
8442 *
8443 * 16MB:	512k
8444 * 32MB:	724k
8445 * 64MB:	1024k
8446 * 128MB:	1448k
8447 * 256MB:	2048k
8448 * 512MB:	2896k
8449 * 1024MB:	4096k
8450 * 2048MB:	5792k
8451 * 4096MB:	8192k
8452 * 8192MB:	11584k
8453 * 16384MB:	16384k
8454 */
8455int __meminit init_per_zone_wmark_min(void)
8456{
8457	unsigned long lowmem_kbytes;
8458	int new_min_free_kbytes;
8459
8460	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8461	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8462
8463	if (new_min_free_kbytes > user_min_free_kbytes) {
8464		min_free_kbytes = new_min_free_kbytes;
8465		if (min_free_kbytes < 128)
8466			min_free_kbytes = 128;
8467		if (min_free_kbytes > 262144)
8468			min_free_kbytes = 262144;
8469	} else {
8470		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8471				new_min_free_kbytes, user_min_free_kbytes);
8472	}
8473	setup_per_zone_wmarks();
8474	refresh_zone_stat_thresholds();
8475	setup_per_zone_lowmem_reserve();
8476
8477#ifdef CONFIG_NUMA
8478	setup_min_unmapped_ratio();
8479	setup_min_slab_ratio();
8480#endif
8481
8482	khugepaged_min_free_kbytes_update();
8483
8484	return 0;
8485}
8486postcore_initcall(init_per_zone_wmark_min)
8487
8488/*
8489 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8490 *	that we can call two helper functions whenever min_free_kbytes
8491 *	changes.
8492 */
8493int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8494		void *buffer, size_t *length, loff_t *ppos)
8495{
8496	int rc;
8497
8498	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499	if (rc)
8500		return rc;
8501
8502	if (write) {
8503		user_min_free_kbytes = min_free_kbytes;
8504		setup_per_zone_wmarks();
8505	}
8506	return 0;
8507}
8508
8509int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8510		void *buffer, size_t *length, loff_t *ppos)
8511{
8512	int rc;
8513
8514	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515	if (rc)
8516		return rc;
8517
8518	if (write)
8519		setup_per_zone_wmarks();
8520
8521	return 0;
8522}
8523
8524#ifdef CONFIG_NUMA
8525static void setup_min_unmapped_ratio(void)
8526{
8527	pg_data_t *pgdat;
8528	struct zone *zone;
8529
8530	for_each_online_pgdat(pgdat)
8531		pgdat->min_unmapped_pages = 0;
8532
8533	for_each_zone(zone)
8534		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8535						         sysctl_min_unmapped_ratio) / 100;
8536}
8537
8538
8539int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8540		void *buffer, size_t *length, loff_t *ppos)
8541{
8542	int rc;
8543
8544	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8545	if (rc)
8546		return rc;
8547
8548	setup_min_unmapped_ratio();
8549
8550	return 0;
8551}
8552
8553static void setup_min_slab_ratio(void)
8554{
8555	pg_data_t *pgdat;
8556	struct zone *zone;
8557
8558	for_each_online_pgdat(pgdat)
8559		pgdat->min_slab_pages = 0;
8560
8561	for_each_zone(zone)
8562		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8563						     sysctl_min_slab_ratio) / 100;
8564}
8565
8566int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8567		void *buffer, size_t *length, loff_t *ppos)
8568{
8569	int rc;
8570
8571	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572	if (rc)
8573		return rc;
8574
8575	setup_min_slab_ratio();
8576
8577	return 0;
8578}
8579#endif
8580
8581/*
8582 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8583 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8584 *	whenever sysctl_lowmem_reserve_ratio changes.
8585 *
8586 * The reserve ratio obviously has absolutely no relation with the
8587 * minimum watermarks. The lowmem reserve ratio can only make sense
8588 * if in function of the boot time zone sizes.
8589 */
8590int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8591		void *buffer, size_t *length, loff_t *ppos)
8592{
8593	int i;
8594
8595	proc_dointvec_minmax(table, write, buffer, length, ppos);
8596
8597	for (i = 0; i < MAX_NR_ZONES; i++) {
8598		if (sysctl_lowmem_reserve_ratio[i] < 1)
8599			sysctl_lowmem_reserve_ratio[i] = 0;
8600	}
8601
8602	setup_per_zone_lowmem_reserve();
8603	return 0;
8604}
8605
8606/*
8607 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8608 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8609 * pagelist can have before it gets flushed back to buddy allocator.
8610 */
8611int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8612		int write, void *buffer, size_t *length, loff_t *ppos)
8613{
8614	struct zone *zone;
8615	int old_percpu_pagelist_high_fraction;
8616	int ret;
8617
8618	mutex_lock(&pcp_batch_high_lock);
8619	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8620
8621	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622	if (!write || ret < 0)
8623		goto out;
8624
8625	/* Sanity checking to avoid pcp imbalance */
8626	if (percpu_pagelist_high_fraction &&
8627	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8628		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8629		ret = -EINVAL;
8630		goto out;
8631	}
8632
8633	/* No change? */
8634	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8635		goto out;
8636
8637	for_each_populated_zone(zone)
8638		zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
8639out:
8640	mutex_unlock(&pcp_batch_high_lock);
8641	return ret;
8642}
8643
 
 
 
 
 
 
 
 
 
 
 
 
 
8644#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8645/*
8646 * Returns the number of pages that arch has reserved but
8647 * is not known to alloc_large_system_hash().
8648 */
8649static unsigned long __init arch_reserved_kernel_pages(void)
8650{
8651	return 0;
8652}
8653#endif
8654
8655/*
8656 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8657 * machines. As memory size is increased the scale is also increased but at
8658 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8659 * quadruples the scale is increased by one, which means the size of hash table
8660 * only doubles, instead of quadrupling as well.
8661 * Because 32-bit systems cannot have large physical memory, where this scaling
8662 * makes sense, it is disabled on such platforms.
8663 */
8664#if __BITS_PER_LONG > 32
8665#define ADAPT_SCALE_BASE	(64ul << 30)
8666#define ADAPT_SCALE_SHIFT	2
8667#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8668#endif
8669
8670/*
8671 * allocate a large system hash table from bootmem
8672 * - it is assumed that the hash table must contain an exact power-of-2
8673 *   quantity of entries
8674 * - limit is the number of hash buckets, not the total allocation size
8675 */
8676void *__init alloc_large_system_hash(const char *tablename,
8677				     unsigned long bucketsize,
8678				     unsigned long numentries,
8679				     int scale,
8680				     int flags,
8681				     unsigned int *_hash_shift,
8682				     unsigned int *_hash_mask,
8683				     unsigned long low_limit,
8684				     unsigned long high_limit)
8685{
8686	unsigned long long max = high_limit;
8687	unsigned long log2qty, size;
8688	void *table = NULL;
8689	gfp_t gfp_flags;
8690	bool virt;
8691	bool huge;
8692
8693	/* allow the kernel cmdline to have a say */
8694	if (!numentries) {
8695		/* round applicable memory size up to nearest megabyte */
8696		numentries = nr_kernel_pages;
8697		numentries -= arch_reserved_kernel_pages();
8698
8699		/* It isn't necessary when PAGE_SIZE >= 1MB */
8700		if (PAGE_SHIFT < 20)
8701			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8702
8703#if __BITS_PER_LONG > 32
8704		if (!high_limit) {
8705			unsigned long adapt;
8706
8707			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8708			     adapt <<= ADAPT_SCALE_SHIFT)
8709				scale++;
8710		}
8711#endif
8712
8713		/* limit to 1 bucket per 2^scale bytes of low memory */
8714		if (scale > PAGE_SHIFT)
8715			numentries >>= (scale - PAGE_SHIFT);
8716		else
8717			numentries <<= (PAGE_SHIFT - scale);
8718
8719		/* Make sure we've got at least a 0-order allocation.. */
8720		if (unlikely(flags & HASH_SMALL)) {
8721			/* Makes no sense without HASH_EARLY */
8722			WARN_ON(!(flags & HASH_EARLY));
8723			if (!(numentries >> *_hash_shift)) {
8724				numentries = 1UL << *_hash_shift;
8725				BUG_ON(!numentries);
8726			}
8727		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8728			numentries = PAGE_SIZE / bucketsize;
8729	}
8730	numentries = roundup_pow_of_two(numentries);
8731
8732	/* limit allocation size to 1/16 total memory by default */
8733	if (max == 0) {
8734		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8735		do_div(max, bucketsize);
8736	}
8737	max = min(max, 0x80000000ULL);
8738
8739	if (numentries < low_limit)
8740		numentries = low_limit;
8741	if (numentries > max)
8742		numentries = max;
8743
8744	log2qty = ilog2(numentries);
8745
8746	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8747	do {
8748		virt = false;
8749		size = bucketsize << log2qty;
8750		if (flags & HASH_EARLY) {
8751			if (flags & HASH_ZERO)
8752				table = memblock_alloc(size, SMP_CACHE_BYTES);
8753			else
8754				table = memblock_alloc_raw(size,
8755							   SMP_CACHE_BYTES);
8756		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8757			table = __vmalloc(size, gfp_flags);
8758			virt = true;
8759			huge = is_vm_area_hugepages(table);
8760		} else {
8761			/*
8762			 * If bucketsize is not a power-of-two, we may free
8763			 * some pages at the end of hash table which
8764			 * alloc_pages_exact() automatically does
8765			 */
8766			table = alloc_pages_exact(size, gfp_flags);
8767			kmemleak_alloc(table, size, 1, gfp_flags);
 
 
8768		}
8769	} while (!table && size > PAGE_SIZE && --log2qty);
8770
8771	if (!table)
8772		panic("Failed to allocate %s hash table\n", tablename);
8773
8774	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8775		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8776		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8777
8778	if (_hash_shift)
8779		*_hash_shift = log2qty;
8780	if (_hash_mask)
8781		*_hash_mask = (1 << log2qty) - 1;
8782
8783	return table;
8784}
8785
8786/*
8787 * This function checks whether pageblock includes unmovable pages or not.
 
8788 *
8789 * PageLRU check without isolation or lru_lock could race so that
8790 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8791 * check without lock_page also may miss some movable non-lru pages at
8792 * race condition. So you can't expect this function should be exact.
8793 *
8794 * Returns a page without holding a reference. If the caller wants to
8795 * dereference that page (e.g., dumping), it has to make sure that it
8796 * cannot get removed (e.g., via memory unplug) concurrently.
8797 *
8798 */
8799struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8800				 int migratetype, int flags)
 
8801{
8802	unsigned long iter = 0;
8803	unsigned long pfn = page_to_pfn(page);
8804	unsigned long offset = pfn % pageblock_nr_pages;
 
 
 
 
 
 
8805
8806	if (is_migrate_cma_page(page)) {
8807		/*
8808		 * CMA allocations (alloc_contig_range) really need to mark
8809		 * isolate CMA pageblocks even when they are not movable in fact
8810		 * so consider them movable here.
8811		 */
8812		if (is_migrate_cma(migratetype))
8813			return NULL;
8814
8815		return page;
8816	}
 
8817
8818	for (; iter < pageblock_nr_pages - offset; iter++) {
8819		if (!pfn_valid_within(pfn + iter))
8820			continue;
8821
8822		page = pfn_to_page(pfn + iter);
8823
8824		/*
8825		 * Both, bootmem allocations and memory holes are marked
8826		 * PG_reserved and are unmovable. We can even have unmovable
8827		 * allocations inside ZONE_MOVABLE, for example when
8828		 * specifying "movablecore".
8829		 */
8830		if (PageReserved(page))
8831			return page;
8832
8833		/*
8834		 * If the zone is movable and we have ruled out all reserved
8835		 * pages then it should be reasonably safe to assume the rest
8836		 * is movable.
8837		 */
8838		if (zone_idx(zone) == ZONE_MOVABLE)
8839			continue;
8840
8841		/*
8842		 * Hugepages are not in LRU lists, but they're movable.
8843		 * THPs are on the LRU, but need to be counted as #small pages.
8844		 * We need not scan over tail pages because we don't
8845		 * handle each tail page individually in migration.
8846		 */
8847		if (PageHuge(page) || PageTransCompound(page)) {
8848			struct page *head = compound_head(page);
8849			unsigned int skip_pages;
8850
8851			if (PageHuge(page)) {
8852				if (!hugepage_migration_supported(page_hstate(head)))
8853					return page;
8854			} else if (!PageLRU(head) && !__PageMovable(head)) {
8855				return page;
8856			}
8857
8858			skip_pages = compound_nr(head) - (page - head);
8859			iter += skip_pages - 1;
8860			continue;
8861		}
8862
8863		/*
8864		 * We can't use page_count without pin a page
8865		 * because another CPU can free compound page.
8866		 * This check already skips compound tails of THP
8867		 * because their page->_refcount is zero at all time.
8868		 */
8869		if (!page_ref_count(page)) {
8870			if (PageBuddy(page))
8871				iter += (1 << buddy_order(page)) - 1;
8872			continue;
8873		}
8874
8875		/*
8876		 * The HWPoisoned page may be not in buddy system, and
8877		 * page_count() is not 0.
8878		 */
8879		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8880			continue;
8881
8882		/*
8883		 * We treat all PageOffline() pages as movable when offlining
8884		 * to give drivers a chance to decrement their reference count
8885		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8886		 * can be offlined as there are no direct references anymore.
8887		 * For actually unmovable PageOffline() where the driver does
8888		 * not support this, we will fail later when trying to actually
8889		 * move these pages that still have a reference count > 0.
8890		 * (false negatives in this function only)
8891		 */
8892		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8893			continue;
8894
8895		if (__PageMovable(page) || PageLRU(page))
8896			continue;
8897
 
 
8898		/*
8899		 * If there are RECLAIMABLE pages, we need to check
8900		 * it.  But now, memory offline itself doesn't call
8901		 * shrink_node_slabs() and it still to be fixed.
8902		 */
8903		return page;
 
 
 
 
 
 
 
 
 
8904	}
8905	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8906}
8907
8908#ifdef CONFIG_CONTIG_ALLOC
 
8909static unsigned long pfn_max_align_down(unsigned long pfn)
8910{
8911	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8912			     pageblock_nr_pages) - 1);
8913}
8914
8915static unsigned long pfn_max_align_up(unsigned long pfn)
8916{
8917	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8918				pageblock_nr_pages));
8919}
8920
8921#if defined(CONFIG_DYNAMIC_DEBUG) || \
8922	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8923/* Usage: See admin-guide/dynamic-debug-howto.rst */
8924static void alloc_contig_dump_pages(struct list_head *page_list)
8925{
8926	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8927
8928	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8929		struct page *page;
8930
8931		dump_stack();
8932		list_for_each_entry(page, page_list, lru)
8933			dump_page(page, "migration failure");
8934	}
8935}
8936#else
8937static inline void alloc_contig_dump_pages(struct list_head *page_list)
8938{
8939}
8940#endif
8941
8942/* [start, end) must belong to a single zone. */
8943static int __alloc_contig_migrate_range(struct compact_control *cc,
8944					unsigned long start, unsigned long end)
8945{
8946	/* This function is based on compact_zone() from compaction.c. */
8947	unsigned int nr_reclaimed;
8948	unsigned long pfn = start;
8949	unsigned int tries = 0;
8950	int ret = 0;
8951	struct migration_target_control mtc = {
8952		.nid = zone_to_nid(cc->zone),
8953		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8954	};
8955
8956	lru_cache_disable();
8957
8958	while (pfn < end || !list_empty(&cc->migratepages)) {
8959		if (fatal_signal_pending(current)) {
8960			ret = -EINTR;
8961			break;
8962		}
8963
8964		if (list_empty(&cc->migratepages)) {
8965			cc->nr_migratepages = 0;
8966			ret = isolate_migratepages_range(cc, pfn, end);
8967			if (ret && ret != -EAGAIN)
 
8968				break;
8969			pfn = cc->migrate_pfn;
8970			tries = 0;
8971		} else if (++tries == 5) {
8972			ret = -EBUSY;
8973			break;
8974		}
8975
8976		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8977							&cc->migratepages);
8978		cc->nr_migratepages -= nr_reclaimed;
8979
8980		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8981				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8982
8983		/*
8984		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8985		 * to retry again over this error, so do the same here.
8986		 */
8987		if (ret == -ENOMEM)
8988			break;
8989	}
8990
8991	lru_cache_enable();
8992	if (ret < 0) {
8993		if (ret == -EBUSY)
8994			alloc_contig_dump_pages(&cc->migratepages);
8995		putback_movable_pages(&cc->migratepages);
8996		return ret;
8997	}
8998	return 0;
8999}
9000
9001/**
9002 * alloc_contig_range() -- tries to allocate given range of pages
9003 * @start:	start PFN to allocate
9004 * @end:	one-past-the-last PFN to allocate
9005 * @migratetype:	migratetype of the underlying pageblocks (either
9006 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9007 *			in range must have the same migratetype and it must
9008 *			be either of the two.
9009 * @gfp_mask:	GFP mask to use during compaction
9010 *
9011 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9012 * aligned.  The PFN range must belong to a single zone.
9013 *
9014 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9015 * pageblocks in the range.  Once isolated, the pageblocks should not
9016 * be modified by others.
9017 *
9018 * Return: zero on success or negative error code.  On success all
9019 * pages which PFN is in [start, end) are allocated for the caller and
9020 * need to be freed with free_contig_range().
9021 */
9022int alloc_contig_range(unsigned long start, unsigned long end,
9023		       unsigned migratetype, gfp_t gfp_mask)
9024{
9025	unsigned long outer_start, outer_end;
9026	unsigned int order;
9027	int ret = 0;
9028
9029	struct compact_control cc = {
9030		.nr_migratepages = 0,
9031		.order = -1,
9032		.zone = page_zone(pfn_to_page(start)),
9033		.mode = MIGRATE_SYNC,
9034		.ignore_skip_hint = true,
9035		.no_set_skip_hint = true,
9036		.gfp_mask = current_gfp_context(gfp_mask),
9037		.alloc_contig = true,
9038	};
9039	INIT_LIST_HEAD(&cc.migratepages);
9040
9041	/*
9042	 * What we do here is we mark all pageblocks in range as
9043	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9044	 * have different sizes, and due to the way page allocator
9045	 * work, we align the range to biggest of the two pages so
9046	 * that page allocator won't try to merge buddies from
9047	 * different pageblocks and change MIGRATE_ISOLATE to some
9048	 * other migration type.
9049	 *
9050	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9051	 * migrate the pages from an unaligned range (ie. pages that
9052	 * we are interested in).  This will put all the pages in
9053	 * range back to page allocator as MIGRATE_ISOLATE.
9054	 *
9055	 * When this is done, we take the pages in range from page
9056	 * allocator removing them from the buddy system.  This way
9057	 * page allocator will never consider using them.
9058	 *
9059	 * This lets us mark the pageblocks back as
9060	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9061	 * aligned range but not in the unaligned, original range are
9062	 * put back to page allocator so that buddy can use them.
9063	 */
9064
9065	ret = start_isolate_page_range(pfn_max_align_down(start),
9066				       pfn_max_align_up(end), migratetype, 0);
 
9067	if (ret)
9068		return ret;
9069
9070	drain_all_pages(cc.zone);
9071
9072	/*
9073	 * In case of -EBUSY, we'd like to know which page causes problem.
9074	 * So, just fall through. test_pages_isolated() has a tracepoint
9075	 * which will report the busy page.
9076	 *
9077	 * It is possible that busy pages could become available before
9078	 * the call to test_pages_isolated, and the range will actually be
9079	 * allocated.  So, if we fall through be sure to clear ret so that
9080	 * -EBUSY is not accidentally used or returned to caller.
9081	 */
9082	ret = __alloc_contig_migrate_range(&cc, start, end);
9083	if (ret && ret != -EBUSY)
9084		goto done;
9085	ret = 0;
9086
9087	/*
9088	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9089	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9090	 * more, all pages in [start, end) are free in page allocator.
9091	 * What we are going to do is to allocate all pages from
9092	 * [start, end) (that is remove them from page allocator).
9093	 *
9094	 * The only problem is that pages at the beginning and at the
9095	 * end of interesting range may be not aligned with pages that
9096	 * page allocator holds, ie. they can be part of higher order
9097	 * pages.  Because of this, we reserve the bigger range and
9098	 * once this is done free the pages we are not interested in.
9099	 *
9100	 * We don't have to hold zone->lock here because the pages are
9101	 * isolated thus they won't get removed from buddy.
9102	 */
9103
 
 
 
9104	order = 0;
9105	outer_start = start;
9106	while (!PageBuddy(pfn_to_page(outer_start))) {
9107		if (++order >= MAX_ORDER) {
9108			outer_start = start;
9109			break;
9110		}
9111		outer_start &= ~0UL << order;
9112	}
9113
9114	if (outer_start != start) {
9115		order = buddy_order(pfn_to_page(outer_start));
9116
9117		/*
9118		 * outer_start page could be small order buddy page and
9119		 * it doesn't include start page. Adjust outer_start
9120		 * in this case to report failed page properly
9121		 * on tracepoint in test_pages_isolated()
9122		 */
9123		if (outer_start + (1UL << order) <= start)
9124			outer_start = start;
9125	}
9126
9127	/* Make sure the range is really isolated. */
9128	if (test_pages_isolated(outer_start, end, 0)) {
 
 
9129		ret = -EBUSY;
9130		goto done;
9131	}
9132
9133	/* Grab isolated pages from freelists. */
9134	outer_end = isolate_freepages_range(&cc, outer_start, end);
9135	if (!outer_end) {
9136		ret = -EBUSY;
9137		goto done;
9138	}
9139
9140	/* Free head and tail (if any) */
9141	if (start != outer_start)
9142		free_contig_range(outer_start, start - outer_start);
9143	if (end != outer_end)
9144		free_contig_range(end, outer_end - end);
9145
9146done:
9147	undo_isolate_page_range(pfn_max_align_down(start),
9148				pfn_max_align_up(end), migratetype);
9149	return ret;
9150}
9151EXPORT_SYMBOL(alloc_contig_range);
9152
9153static int __alloc_contig_pages(unsigned long start_pfn,
9154				unsigned long nr_pages, gfp_t gfp_mask)
9155{
9156	unsigned long end_pfn = start_pfn + nr_pages;
9157
9158	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9159				  gfp_mask);
9160}
9161
9162static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9163				   unsigned long nr_pages)
9164{
9165	unsigned long i, end_pfn = start_pfn + nr_pages;
9166	struct page *page;
9167
9168	for (i = start_pfn; i < end_pfn; i++) {
9169		page = pfn_to_online_page(i);
9170		if (!page)
9171			return false;
9172
9173		if (page_zone(page) != z)
9174			return false;
9175
9176		if (PageReserved(page))
9177			return false;
9178	}
9179	return true;
9180}
9181
9182static bool zone_spans_last_pfn(const struct zone *zone,
9183				unsigned long start_pfn, unsigned long nr_pages)
9184{
9185	unsigned long last_pfn = start_pfn + nr_pages - 1;
9186
9187	return zone_spans_pfn(zone, last_pfn);
9188}
9189
9190/**
9191 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9192 * @nr_pages:	Number of contiguous pages to allocate
9193 * @gfp_mask:	GFP mask to limit search and used during compaction
9194 * @nid:	Target node
9195 * @nodemask:	Mask for other possible nodes
9196 *
9197 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9198 * on an applicable zonelist to find a contiguous pfn range which can then be
9199 * tried for allocation with alloc_contig_range(). This routine is intended
9200 * for allocation requests which can not be fulfilled with the buddy allocator.
9201 *
9202 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9203 * power of two then the alignment is guaranteed to be to the given nr_pages
9204 * (e.g. 1GB request would be aligned to 1GB).
9205 *
9206 * Allocated pages can be freed with free_contig_range() or by manually calling
9207 * __free_page() on each allocated page.
9208 *
9209 * Return: pointer to contiguous pages on success, or NULL if not successful.
9210 */
9211struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9212				int nid, nodemask_t *nodemask)
9213{
9214	unsigned long ret, pfn, flags;
9215	struct zonelist *zonelist;
9216	struct zone *zone;
9217	struct zoneref *z;
9218
9219	zonelist = node_zonelist(nid, gfp_mask);
9220	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9221					gfp_zone(gfp_mask), nodemask) {
9222		spin_lock_irqsave(&zone->lock, flags);
9223
9224		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9225		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9226			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9227				/*
9228				 * We release the zone lock here because
9229				 * alloc_contig_range() will also lock the zone
9230				 * at some point. If there's an allocation
9231				 * spinning on this lock, it may win the race
9232				 * and cause alloc_contig_range() to fail...
9233				 */
9234				spin_unlock_irqrestore(&zone->lock, flags);
9235				ret = __alloc_contig_pages(pfn, nr_pages,
9236							gfp_mask);
9237				if (!ret)
9238					return pfn_to_page(pfn);
9239				spin_lock_irqsave(&zone->lock, flags);
9240			}
9241			pfn += nr_pages;
9242		}
9243		spin_unlock_irqrestore(&zone->lock, flags);
9244	}
9245	return NULL;
9246}
9247#endif /* CONFIG_CONTIG_ALLOC */
9248
9249void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9250{
9251	unsigned long count = 0;
9252
9253	for (; nr_pages--; pfn++) {
9254		struct page *page = pfn_to_page(pfn);
9255
9256		count += page_count(page) != 1;
9257		__free_page(page);
9258	}
9259	WARN(count != 0, "%lu pages are still in use!\n", count);
9260}
9261EXPORT_SYMBOL(free_contig_range);
9262
 
9263/*
9264 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9265 * page high values need to be recalculated.
9266 */
9267void zone_pcp_update(struct zone *zone, int cpu_online)
9268{
 
9269	mutex_lock(&pcp_batch_high_lock);
9270	zone_set_pageset_high_and_batch(zone, cpu_online);
9271	mutex_unlock(&pcp_batch_high_lock);
9272}
9273
9274/*
9275 * Effectively disable pcplists for the zone by setting the high limit to 0
9276 * and draining all cpus. A concurrent page freeing on another CPU that's about
9277 * to put the page on pcplist will either finish before the drain and the page
9278 * will be drained, or observe the new high limit and skip the pcplist.
9279 *
9280 * Must be paired with a call to zone_pcp_enable().
9281 */
9282void zone_pcp_disable(struct zone *zone)
9283{
9284	mutex_lock(&pcp_batch_high_lock);
9285	__zone_set_pageset_high_and_batch(zone, 0, 1);
9286	__drain_all_pages(zone, true);
9287}
9288
9289void zone_pcp_enable(struct zone *zone)
9290{
9291	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9292	mutex_unlock(&pcp_batch_high_lock);
9293}
 
9294
9295void zone_pcp_reset(struct zone *zone)
9296{
 
9297	int cpu;
9298	struct per_cpu_zonestat *pzstats;
9299
9300	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
9301		for_each_online_cpu(cpu) {
9302			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9303			drain_zonestat(zone, pzstats);
9304		}
9305		free_percpu(zone->per_cpu_pageset);
9306		free_percpu(zone->per_cpu_zonestats);
9307		zone->per_cpu_pageset = &boot_pageset;
9308		zone->per_cpu_zonestats = &boot_zonestats;
9309	}
 
9310}
9311
9312#ifdef CONFIG_MEMORY_HOTREMOVE
9313/*
9314 * All pages in the range must be in a single zone, must not contain holes,
9315 * must span full sections, and must be isolated before calling this function.
9316 */
9317void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
9318{
9319	unsigned long pfn = start_pfn;
9320	struct page *page;
9321	struct zone *zone;
9322	unsigned int order;
 
9323	unsigned long flags;
9324
 
 
 
 
 
9325	offline_mem_sections(pfn, end_pfn);
9326	zone = page_zone(pfn_to_page(pfn));
9327	spin_lock_irqsave(&zone->lock, flags);
 
9328	while (pfn < end_pfn) {
 
 
 
 
9329		page = pfn_to_page(pfn);
9330		/*
9331		 * The HWPoisoned page may be not in buddy system, and
9332		 * page_count() is not 0.
9333		 */
9334		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9335			pfn++;
9336			continue;
9337		}
9338		/*
9339		 * At this point all remaining PageOffline() pages have a
9340		 * reference count of 0 and can simply be skipped.
9341		 */
9342		if (PageOffline(page)) {
9343			BUG_ON(page_count(page));
9344			BUG_ON(PageBuddy(page));
9345			pfn++;
9346			continue;
9347		}
9348
9349		BUG_ON(page_count(page));
9350		BUG_ON(!PageBuddy(page));
9351		order = buddy_order(page);
9352		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
9353		pfn += (1 << order);
9354	}
9355	spin_unlock_irqrestore(&zone->lock, flags);
9356}
9357#endif
9358
9359bool is_free_buddy_page(struct page *page)
9360{
9361	struct zone *zone = page_zone(page);
9362	unsigned long pfn = page_to_pfn(page);
9363	unsigned long flags;
9364	unsigned int order;
9365
9366	spin_lock_irqsave(&zone->lock, flags);
9367	for (order = 0; order < MAX_ORDER; order++) {
9368		struct page *page_head = page - (pfn & ((1 << order) - 1));
9369
9370		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9371			break;
9372	}
9373	spin_unlock_irqrestore(&zone->lock, flags);
9374
9375	return order < MAX_ORDER;
9376}
9377
9378#ifdef CONFIG_MEMORY_FAILURE
9379/*
9380 * Break down a higher-order page in sub-pages, and keep our target out of
9381 * buddy allocator.
9382 */
9383static void break_down_buddy_pages(struct zone *zone, struct page *page,
9384				   struct page *target, int low, int high,
9385				   int migratetype)
9386{
9387	unsigned long size = 1 << high;
9388	struct page *current_buddy, *next_page;
9389
9390	while (high > low) {
9391		high--;
9392		size >>= 1;
9393
9394		if (target >= &page[size]) {
9395			next_page = page + size;
9396			current_buddy = page;
9397		} else {
9398			next_page = page;
9399			current_buddy = page + size;
9400		}
9401
9402		if (set_page_guard(zone, current_buddy, high, migratetype))
9403			continue;
9404
9405		if (current_buddy != target) {
9406			add_to_free_list(current_buddy, zone, high, migratetype);
9407			set_buddy_order(current_buddy, high);
9408			page = next_page;
9409		}
9410	}
9411}
9412
9413/*
9414 * Take a page that will be marked as poisoned off the buddy allocator.
9415 */
9416bool take_page_off_buddy(struct page *page)
9417{
9418	struct zone *zone = page_zone(page);
9419	unsigned long pfn = page_to_pfn(page);
9420	unsigned long flags;
9421	unsigned int order;
9422	bool ret = false;
9423
9424	spin_lock_irqsave(&zone->lock, flags);
9425	for (order = 0; order < MAX_ORDER; order++) {
9426		struct page *page_head = page - (pfn & ((1 << order) - 1));
9427		int page_order = buddy_order(page_head);
9428
9429		if (PageBuddy(page_head) && page_order >= order) {
9430			unsigned long pfn_head = page_to_pfn(page_head);
9431			int migratetype = get_pfnblock_migratetype(page_head,
9432								   pfn_head);
9433
9434			del_page_from_free_list(page_head, zone, page_order);
9435			break_down_buddy_pages(zone, page_head, page, 0,
9436						page_order, migratetype);
9437			if (!is_migrate_isolate(migratetype))
9438				__mod_zone_freepage_state(zone, -1, migratetype);
9439			ret = true;
9440			break;
9441		}
9442		if (page_count(page_head) > 0)
9443			break;
9444	}
9445	spin_unlock_irqrestore(&zone->lock, flags);
9446	return ret;
9447}
9448#endif