Linux Audio

Check our new training course

Loading...
v4.17
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
 
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
 
  12#include <linux/sched/task.h>
 
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
  31#include <linux/percpu-rwsem.h>
 
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:	The current cpu state
  42 * @target:	The target state
  43 * @thread:	Pointer to the hotplug thread
  44 * @should_run:	Thread should execute
  45 * @rollback:	Perform a rollback
  46 * @single:	Single callback invocation
  47 * @bringup:	Single callback bringup or teardown selector
  48 * @cb_state:	The state for a single callback (install/uninstall)
  49 * @result:	Result of the operation
  50 * @done_up:	Signal completion to the issuer of the task for cpu-up
  51 * @done_down:	Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54	enum cpuhp_state	state;
  55	enum cpuhp_state	target;
  56	enum cpuhp_state	fail;
  57#ifdef CONFIG_SMP
  58	struct task_struct	*thread;
  59	bool			should_run;
  60	bool			rollback;
  61	bool			single;
  62	bool			bringup;
 
  63	struct hlist_node	*node;
  64	struct hlist_node	*last;
  65	enum cpuhp_state	cb_state;
  66	int			result;
  67	struct completion	done_up;
  68	struct completion	done_down;
  69#endif
  70};
  71
  72static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  73	.fail = CPUHP_INVALID,
  74};
  75
 
 
 
 
  76#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  77static struct lockdep_map cpuhp_state_up_map =
  78	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  79static struct lockdep_map cpuhp_state_down_map =
  80	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  81
  82
  83static inline void cpuhp_lock_acquire(bool bringup)
  84{
  85	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  86}
  87
  88static inline void cpuhp_lock_release(bool bringup)
  89{
  90	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  91}
  92#else
  93
  94static inline void cpuhp_lock_acquire(bool bringup) { }
  95static inline void cpuhp_lock_release(bool bringup) { }
  96
  97#endif
  98
  99/**
 100 * cpuhp_step - Hotplug state machine step
 101 * @name:	Name of the step
 102 * @startup:	Startup function of the step
 103 * @teardown:	Teardown function of the step
 104 * @skip_onerr:	Do not invoke the functions on error rollback
 105 *		Will go away once the notifiers	are gone
 106 * @cant_stop:	Bringup/teardown can't be stopped at this step
 107 */
 108struct cpuhp_step {
 109	const char		*name;
 110	union {
 111		int		(*single)(unsigned int cpu);
 112		int		(*multi)(unsigned int cpu,
 113					 struct hlist_node *node);
 114	} startup;
 115	union {
 116		int		(*single)(unsigned int cpu);
 117		int		(*multi)(unsigned int cpu,
 118					 struct hlist_node *node);
 119	} teardown;
 120	struct hlist_head	list;
 121	bool			skip_onerr;
 122	bool			cant_stop;
 123	bool			multi_instance;
 124};
 125
 126static DEFINE_MUTEX(cpuhp_state_mutex);
 127static struct cpuhp_step cpuhp_hp_states[];
 128
 129static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 130{
 131	return cpuhp_hp_states + state;
 132}
 133
 
 
 
 
 
 134/**
 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 136 * @cpu:	The cpu for which the callback should be invoked
 137 * @state:	The state to do callbacks for
 138 * @bringup:	True if the bringup callback should be invoked
 139 * @node:	For multi-instance, do a single entry callback for install/remove
 140 * @lastp:	For multi-instance rollback, remember how far we got
 141 *
 142 * Called from cpu hotplug and from the state register machinery.
 143 */
 144static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 145				 bool bringup, struct hlist_node *node,
 146				 struct hlist_node **lastp)
 147{
 148	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 149	struct cpuhp_step *step = cpuhp_get_step(state);
 150	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 151	int (*cb)(unsigned int cpu);
 152	int ret, cnt;
 153
 154	if (st->fail == state) {
 155		st->fail = CPUHP_INVALID;
 156
 157		if (!(bringup ? step->startup.single : step->teardown.single))
 158			return 0;
 159
 160		return -EAGAIN;
 161	}
 162
 
 
 
 
 
 163	if (!step->multi_instance) {
 164		WARN_ON_ONCE(lastp && *lastp);
 165		cb = bringup ? step->startup.single : step->teardown.single;
 166		if (!cb)
 167			return 0;
 168		trace_cpuhp_enter(cpu, st->target, state, cb);
 169		ret = cb(cpu);
 170		trace_cpuhp_exit(cpu, st->state, state, ret);
 171		return ret;
 172	}
 173	cbm = bringup ? step->startup.multi : step->teardown.multi;
 174	if (!cbm)
 175		return 0;
 176
 177	/* Single invocation for instance add/remove */
 178	if (node) {
 179		WARN_ON_ONCE(lastp && *lastp);
 180		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 181		ret = cbm(cpu, node);
 182		trace_cpuhp_exit(cpu, st->state, state, ret);
 183		return ret;
 184	}
 185
 186	/* State transition. Invoke on all instances */
 187	cnt = 0;
 188	hlist_for_each(node, &step->list) {
 189		if (lastp && node == *lastp)
 190			break;
 191
 192		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 193		ret = cbm(cpu, node);
 194		trace_cpuhp_exit(cpu, st->state, state, ret);
 195		if (ret) {
 196			if (!lastp)
 197				goto err;
 198
 199			*lastp = node;
 200			return ret;
 201		}
 202		cnt++;
 203	}
 204	if (lastp)
 205		*lastp = NULL;
 206	return 0;
 207err:
 208	/* Rollback the instances if one failed */
 209	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 210	if (!cbm)
 211		return ret;
 212
 213	hlist_for_each(node, &step->list) {
 214		if (!cnt--)
 215			break;
 216
 217		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 218		ret = cbm(cpu, node);
 219		trace_cpuhp_exit(cpu, st->state, state, ret);
 220		/*
 221		 * Rollback must not fail,
 222		 */
 223		WARN_ON_ONCE(ret);
 224	}
 225	return ret;
 226}
 227
 228#ifdef CONFIG_SMP
 229static bool cpuhp_is_ap_state(enum cpuhp_state state)
 230{
 231	/*
 232	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 233	 * purposes as that state is handled explicitly in cpu_down.
 234	 */
 235	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 236}
 237
 238static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 239{
 240	struct completion *done = bringup ? &st->done_up : &st->done_down;
 241	wait_for_completion(done);
 242}
 243
 244static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 245{
 246	struct completion *done = bringup ? &st->done_up : &st->done_down;
 247	complete(done);
 248}
 249
 250/*
 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 252 */
 253static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 254{
 255	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 256}
 257
 258/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 259static DEFINE_MUTEX(cpu_add_remove_lock);
 260bool cpuhp_tasks_frozen;
 261EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 262
 263/*
 264 * The following two APIs (cpu_maps_update_begin/done) must be used when
 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 266 */
 267void cpu_maps_update_begin(void)
 268{
 269	mutex_lock(&cpu_add_remove_lock);
 270}
 271
 272void cpu_maps_update_done(void)
 273{
 274	mutex_unlock(&cpu_add_remove_lock);
 275}
 276
 277/*
 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 279 * Should always be manipulated under cpu_add_remove_lock
 280 */
 281static int cpu_hotplug_disabled;
 282
 283#ifdef CONFIG_HOTPLUG_CPU
 284
 285DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 286
 287void cpus_read_lock(void)
 288{
 289	percpu_down_read(&cpu_hotplug_lock);
 290}
 291EXPORT_SYMBOL_GPL(cpus_read_lock);
 292
 
 
 
 
 
 
 293void cpus_read_unlock(void)
 294{
 295	percpu_up_read(&cpu_hotplug_lock);
 296}
 297EXPORT_SYMBOL_GPL(cpus_read_unlock);
 298
 299void cpus_write_lock(void)
 300{
 301	percpu_down_write(&cpu_hotplug_lock);
 302}
 303
 304void cpus_write_unlock(void)
 305{
 306	percpu_up_write(&cpu_hotplug_lock);
 307}
 308
 309void lockdep_assert_cpus_held(void)
 310{
 
 
 
 
 
 
 
 
 
 311	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314/*
 315 * Wait for currently running CPU hotplug operations to complete (if any) and
 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 318 * hotplug path before performing hotplug operations. So acquiring that lock
 319 * guarantees mutual exclusion from any currently running hotplug operations.
 320 */
 321void cpu_hotplug_disable(void)
 322{
 323	cpu_maps_update_begin();
 324	cpu_hotplug_disabled++;
 325	cpu_maps_update_done();
 326}
 327EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 328
 329static void __cpu_hotplug_enable(void)
 330{
 331	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 332		return;
 333	cpu_hotplug_disabled--;
 334}
 335
 336void cpu_hotplug_enable(void)
 337{
 338	cpu_maps_update_begin();
 339	__cpu_hotplug_enable();
 340	cpu_maps_update_done();
 341}
 342EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 
 
 
 
 
 
 
 
 
 
 
 343#endif	/* CONFIG_HOTPLUG_CPU */
 344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345static inline enum cpuhp_state
 346cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 347{
 348	enum cpuhp_state prev_state = st->state;
 
 349
 350	st->rollback = false;
 351	st->last = NULL;
 352
 353	st->target = target;
 354	st->single = false;
 355	st->bringup = st->state < target;
 
 
 356
 357	return prev_state;
 358}
 359
 360static inline void
 361cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 362{
 
 
 
 
 
 
 
 
 
 
 
 363	st->rollback = true;
 364
 365	/*
 366	 * If we have st->last we need to undo partial multi_instance of this
 367	 * state first. Otherwise start undo at the previous state.
 368	 */
 369	if (!st->last) {
 370		if (st->bringup)
 371			st->state--;
 372		else
 373			st->state++;
 374	}
 375
 376	st->target = prev_state;
 377	st->bringup = !st->bringup;
 
 378}
 379
 380/* Regular hotplug invocation of the AP hotplug thread */
 381static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 382{
 383	if (!st->single && st->state == st->target)
 384		return;
 385
 386	st->result = 0;
 387	/*
 388	 * Make sure the above stores are visible before should_run becomes
 389	 * true. Paired with the mb() above in cpuhp_thread_fun()
 390	 */
 391	smp_mb();
 392	st->should_run = true;
 393	wake_up_process(st->thread);
 394	wait_for_ap_thread(st, st->bringup);
 395}
 396
 397static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 398{
 399	enum cpuhp_state prev_state;
 400	int ret;
 401
 402	prev_state = cpuhp_set_state(st, target);
 403	__cpuhp_kick_ap(st);
 404	if ((ret = st->result)) {
 405		cpuhp_reset_state(st, prev_state);
 406		__cpuhp_kick_ap(st);
 407	}
 408
 409	return ret;
 410}
 411
 412static int bringup_wait_for_ap(unsigned int cpu)
 413{
 414	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 415
 416	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 417	wait_for_ap_thread(st, true);
 418	if (WARN_ON_ONCE((!cpu_online(cpu))))
 419		return -ECANCELED;
 420
 421	/* Unpark the stopper thread and the hotplug thread of the target cpu */
 422	stop_machine_unpark(cpu);
 423	kthread_unpark(st->thread);
 424
 
 
 
 
 
 
 
 
 
 
 425	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 426		return 0;
 427
 428	return cpuhp_kick_ap(st, st->target);
 429}
 430
 431static int bringup_cpu(unsigned int cpu)
 432{
 433	struct task_struct *idle = idle_thread_get(cpu);
 434	int ret;
 435
 436	/*
 437	 * Some architectures have to walk the irq descriptors to
 438	 * setup the vector space for the cpu which comes online.
 439	 * Prevent irq alloc/free across the bringup.
 440	 */
 441	irq_lock_sparse();
 442
 443	/* Arch-specific enabling code. */
 444	ret = __cpu_up(cpu, idle);
 445	irq_unlock_sparse();
 446	if (ret)
 447		return ret;
 448	return bringup_wait_for_ap(cpu);
 449}
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/*
 452 * Hotplug state machine related functions
 453 */
 454
 455static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 
 
 
 
 
 
 
 
 
 
 456{
 457	for (st->state--; st->state > st->target; st->state--) {
 458		struct cpuhp_step *step = cpuhp_get_step(st->state);
 
 
 
 
 
 
 
 459
 460		if (!step->skip_onerr)
 461			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463}
 464
 465static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 466			      enum cpuhp_state target)
 467{
 468	enum cpuhp_state prev_state = st->state;
 469	int ret = 0;
 470
 471	while (st->state < target) {
 472		st->state++;
 473		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 474		if (ret) {
 475			st->target = prev_state;
 476			undo_cpu_up(cpu, st);
 477			break;
 478		}
 479	}
 480	return ret;
 481}
 482
 483/*
 484 * The cpu hotplug threads manage the bringup and teardown of the cpus
 485 */
 486static void cpuhp_create(unsigned int cpu)
 487{
 488	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 489
 490	init_completion(&st->done_up);
 491	init_completion(&st->done_down);
 
 492}
 493
 494static int cpuhp_should_run(unsigned int cpu)
 495{
 496	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 497
 498	return st->should_run;
 499}
 500
 501/*
 502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 503 * callbacks when a state gets [un]installed at runtime.
 504 *
 505 * Each invocation of this function by the smpboot thread does a single AP
 506 * state callback.
 507 *
 508 * It has 3 modes of operation:
 509 *  - single: runs st->cb_state
 510 *  - up:     runs ++st->state, while st->state < st->target
 511 *  - down:   runs st->state--, while st->state > st->target
 512 *
 513 * When complete or on error, should_run is cleared and the completion is fired.
 514 */
 515static void cpuhp_thread_fun(unsigned int cpu)
 516{
 517	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 518	bool bringup = st->bringup;
 519	enum cpuhp_state state;
 520
 
 
 
 521	/*
 522	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 523	 * that if we see ->should_run we also see the rest of the state.
 524	 */
 525	smp_mb();
 526
 527	if (WARN_ON_ONCE(!st->should_run))
 528		return;
 529
 
 
 
 530	cpuhp_lock_acquire(bringup);
 531
 532	if (st->single) {
 533		state = st->cb_state;
 534		st->should_run = false;
 535	} else {
 536		if (bringup) {
 537			st->state++;
 538			state = st->state;
 539			st->should_run = (st->state < st->target);
 540			WARN_ON_ONCE(st->state > st->target);
 541		} else {
 542			state = st->state;
 543			st->state--;
 544			st->should_run = (st->state > st->target);
 545			WARN_ON_ONCE(st->state < st->target);
 546		}
 547	}
 548
 549	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 550
 551	if (st->rollback) {
 552		struct cpuhp_step *step = cpuhp_get_step(state);
 553		if (step->skip_onerr)
 554			goto next;
 555	}
 556
 557	if (cpuhp_is_atomic_state(state)) {
 558		local_irq_disable();
 559		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 560		local_irq_enable();
 561
 562		/*
 563		 * STARTING/DYING must not fail!
 564		 */
 565		WARN_ON_ONCE(st->result);
 566	} else {
 567		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 568	}
 569
 570	if (st->result) {
 571		/*
 572		 * If we fail on a rollback, we're up a creek without no
 573		 * paddle, no way forward, no way back. We loose, thanks for
 574		 * playing.
 575		 */
 576		WARN_ON_ONCE(st->rollback);
 577		st->should_run = false;
 578	}
 579
 580next:
 581	cpuhp_lock_release(bringup);
 
 582
 583	if (!st->should_run)
 584		complete_ap_thread(st, bringup);
 585}
 586
 587/* Invoke a single callback on a remote cpu */
 588static int
 589cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 590			 struct hlist_node *node)
 591{
 592	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 593	int ret;
 594
 595	if (!cpu_online(cpu))
 596		return 0;
 597
 598	cpuhp_lock_acquire(false);
 599	cpuhp_lock_release(false);
 600
 601	cpuhp_lock_acquire(true);
 602	cpuhp_lock_release(true);
 603
 604	/*
 605	 * If we are up and running, use the hotplug thread. For early calls
 606	 * we invoke the thread function directly.
 607	 */
 608	if (!st->thread)
 609		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 610
 611	st->rollback = false;
 612	st->last = NULL;
 613
 614	st->node = node;
 615	st->bringup = bringup;
 616	st->cb_state = state;
 617	st->single = true;
 618
 619	__cpuhp_kick_ap(st);
 620
 621	/*
 622	 * If we failed and did a partial, do a rollback.
 623	 */
 624	if ((ret = st->result) && st->last) {
 625		st->rollback = true;
 626		st->bringup = !bringup;
 627
 628		__cpuhp_kick_ap(st);
 629	}
 630
 631	/*
 632	 * Clean up the leftovers so the next hotplug operation wont use stale
 633	 * data.
 634	 */
 635	st->node = st->last = NULL;
 636	return ret;
 637}
 638
 639static int cpuhp_kick_ap_work(unsigned int cpu)
 640{
 641	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 642	enum cpuhp_state prev_state = st->state;
 643	int ret;
 644
 645	cpuhp_lock_acquire(false);
 646	cpuhp_lock_release(false);
 647
 648	cpuhp_lock_acquire(true);
 649	cpuhp_lock_release(true);
 650
 651	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 652	ret = cpuhp_kick_ap(st, st->target);
 653	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 654
 655	return ret;
 656}
 657
 658static struct smp_hotplug_thread cpuhp_threads = {
 659	.store			= &cpuhp_state.thread,
 660	.create			= &cpuhp_create,
 661	.thread_should_run	= cpuhp_should_run,
 662	.thread_fn		= cpuhp_thread_fun,
 663	.thread_comm		= "cpuhp/%u",
 664	.selfparking		= true,
 665};
 666
 667void __init cpuhp_threads_init(void)
 668{
 669	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 670	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 671}
 672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 674/**
 675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 676 * @cpu: a CPU id
 677 *
 678 * This function walks all processes, finds a valid mm struct for each one and
 679 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 680 * trivial, there are various non-obvious corner cases, which this function
 681 * tries to solve in a safe manner.
 682 *
 683 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 684 * be called only for an already offlined CPU.
 685 */
 686void clear_tasks_mm_cpumask(int cpu)
 687{
 688	struct task_struct *p;
 689
 690	/*
 691	 * This function is called after the cpu is taken down and marked
 692	 * offline, so its not like new tasks will ever get this cpu set in
 693	 * their mm mask. -- Peter Zijlstra
 694	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 695	 * full-fledged tasklist_lock.
 696	 */
 697	WARN_ON(cpu_online(cpu));
 698	rcu_read_lock();
 699	for_each_process(p) {
 700		struct task_struct *t;
 701
 702		/*
 703		 * Main thread might exit, but other threads may still have
 704		 * a valid mm. Find one.
 705		 */
 706		t = find_lock_task_mm(p);
 707		if (!t)
 708			continue;
 709		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 710		task_unlock(t);
 711	}
 712	rcu_read_unlock();
 713}
 714
 715/* Take this CPU down. */
 716static int take_cpu_down(void *_param)
 717{
 718	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 719	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 720	int err, cpu = smp_processor_id();
 721	int ret;
 722
 723	/* Ensure this CPU doesn't handle any more interrupts. */
 724	err = __cpu_disable();
 725	if (err < 0)
 726		return err;
 727
 728	/*
 729	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 730	 * do this step again.
 731	 */
 732	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 733	st->state--;
 734	/* Invoke the former CPU_DYING callbacks */
 735	for (; st->state > target; st->state--) {
 736		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 737		/*
 738		 * DYING must not fail!
 739		 */
 740		WARN_ON_ONCE(ret);
 741	}
 742
 743	/* Give up timekeeping duties */
 744	tick_handover_do_timer();
 
 
 745	/* Park the stopper thread */
 746	stop_machine_park(cpu);
 747	return 0;
 748}
 749
 750static int takedown_cpu(unsigned int cpu)
 751{
 752	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 753	int err;
 754
 755	/* Park the smpboot threads */
 756	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 757	smpboot_park_threads(cpu);
 758
 759	/*
 760	 * Prevent irq alloc/free while the dying cpu reorganizes the
 761	 * interrupt affinities.
 762	 */
 763	irq_lock_sparse();
 764
 765	/*
 766	 * So now all preempt/rcu users must observe !cpu_active().
 767	 */
 768	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 769	if (err) {
 770		/* CPU refused to die */
 771		irq_unlock_sparse();
 772		/* Unpark the hotplug thread so we can rollback there */
 773		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 774		return err;
 775	}
 776	BUG_ON(cpu_online(cpu));
 777
 778	/*
 779	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 780	 * all runnable tasks from the CPU, there's only the idle task left now
 781	 * that the migration thread is done doing the stop_machine thing.
 782	 *
 783	 * Wait for the stop thread to go away.
 784	 */
 785	wait_for_ap_thread(st, false);
 786	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 787
 788	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 789	irq_unlock_sparse();
 790
 791	hotplug_cpu__broadcast_tick_pull(cpu);
 792	/* This actually kills the CPU. */
 793	__cpu_die(cpu);
 794
 795	tick_cleanup_dead_cpu(cpu);
 796	rcutree_migrate_callbacks(cpu);
 797	return 0;
 798}
 799
 800static void cpuhp_complete_idle_dead(void *arg)
 801{
 802	struct cpuhp_cpu_state *st = arg;
 803
 804	complete_ap_thread(st, false);
 805}
 806
 807void cpuhp_report_idle_dead(void)
 808{
 809	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 810
 811	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 812	rcu_report_dead(smp_processor_id());
 813	st->state = CPUHP_AP_IDLE_DEAD;
 814	/*
 815	 * We cannot call complete after rcu_report_dead() so we delegate it
 816	 * to an online cpu.
 817	 */
 818	smp_call_function_single(cpumask_first(cpu_online_mask),
 819				 cpuhp_complete_idle_dead, st, 0);
 820}
 821
 822static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 823{
 824	for (st->state++; st->state < st->target; st->state++) {
 825		struct cpuhp_step *step = cpuhp_get_step(st->state);
 826
 827		if (!step->skip_onerr)
 828			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 829	}
 830}
 831
 832static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 833				enum cpuhp_state target)
 834{
 835	enum cpuhp_state prev_state = st->state;
 836	int ret = 0;
 837
 838	for (; st->state > target; st->state--) {
 839		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 840		if (ret) {
 841			st->target = prev_state;
 842			undo_cpu_down(cpu, st);
 843			break;
 844		}
 
 845	}
 
 846	return ret;
 847}
 848
 849/* Requires cpu_add_remove_lock to be held */
 850static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 851			   enum cpuhp_state target)
 852{
 853	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 854	int prev_state, ret = 0;
 855
 856	if (num_online_cpus() == 1)
 857		return -EBUSY;
 858
 859	if (!cpu_present(cpu))
 860		return -EINVAL;
 861
 862	cpus_write_lock();
 863
 864	cpuhp_tasks_frozen = tasks_frozen;
 865
 866	prev_state = cpuhp_set_state(st, target);
 867	/*
 868	 * If the current CPU state is in the range of the AP hotplug thread,
 869	 * then we need to kick the thread.
 870	 */
 871	if (st->state > CPUHP_TEARDOWN_CPU) {
 872		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 873		ret = cpuhp_kick_ap_work(cpu);
 874		/*
 875		 * The AP side has done the error rollback already. Just
 876		 * return the error code..
 877		 */
 878		if (ret)
 879			goto out;
 880
 881		/*
 882		 * We might have stopped still in the range of the AP hotplug
 883		 * thread. Nothing to do anymore.
 884		 */
 885		if (st->state > CPUHP_TEARDOWN_CPU)
 886			goto out;
 887
 888		st->target = target;
 889	}
 890	/*
 891	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 892	 * to do the further cleanups.
 893	 */
 894	ret = cpuhp_down_callbacks(cpu, st, target);
 895	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 896		cpuhp_reset_state(st, prev_state);
 897		__cpuhp_kick_ap(st);
 
 
 
 
 898	}
 899
 900out:
 901	cpus_write_unlock();
 902	/*
 903	 * Do post unplug cleanup. This is still protected against
 904	 * concurrent CPU hotplug via cpu_add_remove_lock.
 905	 */
 906	lockup_detector_cleanup();
 
 
 907	return ret;
 908}
 909
 910static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 
 
 
 
 
 
 
 911{
 912	int err;
 913
 914	cpu_maps_update_begin();
 
 
 
 
 915
 916	if (cpu_hotplug_disabled) {
 917		err = -EBUSY;
 918		goto out;
 919	}
 
 
 
 
 
 
 
 
 920
 921	err = _cpu_down(cpu, 0, target);
 
 
 922
 923out:
 924	cpu_maps_update_done();
 925	return err;
 
 
 926}
 
 927
 928int cpu_down(unsigned int cpu)
 929{
 930	return do_cpu_down(cpu, CPUHP_OFFLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931}
 932EXPORT_SYMBOL(cpu_down);
 933
 934#else
 935#define takedown_cpu		NULL
 936#endif /*CONFIG_HOTPLUG_CPU*/
 937
 938/**
 939 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 940 * @cpu: cpu that just started
 941 *
 942 * It must be called by the arch code on the new cpu, before the new cpu
 943 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 944 */
 945void notify_cpu_starting(unsigned int cpu)
 946{
 947	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 948	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 949	int ret;
 950
 951	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
 952	while (st->state < target) {
 953		st->state++;
 954		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 955		/*
 956		 * STARTING must not fail!
 957		 */
 958		WARN_ON_ONCE(ret);
 959	}
 960}
 961
 962/*
 963 * Called from the idle task. Wake up the controlling task which brings the
 964 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 965 * the rest of the online bringup to the hotplug thread.
 966 */
 967void cpuhp_online_idle(enum cpuhp_state state)
 968{
 969	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 970
 971	/* Happens for the boot cpu */
 972	if (state != CPUHP_AP_ONLINE_IDLE)
 973		return;
 974
 
 
 
 
 
 
 975	st->state = CPUHP_AP_ONLINE_IDLE;
 976	complete_ap_thread(st, true);
 977}
 978
 979/* Requires cpu_add_remove_lock to be held */
 980static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 981{
 982	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 983	struct task_struct *idle;
 984	int ret = 0;
 985
 986	cpus_write_lock();
 987
 988	if (!cpu_present(cpu)) {
 989		ret = -EINVAL;
 990		goto out;
 991	}
 992
 993	/*
 994	 * The caller of do_cpu_up might have raced with another
 995	 * caller. Ignore it for now.
 996	 */
 997	if (st->state >= target)
 998		goto out;
 999
1000	if (st->state == CPUHP_OFFLINE) {
1001		/* Let it fail before we try to bring the cpu up */
1002		idle = idle_thread_get(cpu);
1003		if (IS_ERR(idle)) {
1004			ret = PTR_ERR(idle);
1005			goto out;
1006		}
1007	}
1008
1009	cpuhp_tasks_frozen = tasks_frozen;
1010
1011	cpuhp_set_state(st, target);
1012	/*
1013	 * If the current CPU state is in the range of the AP hotplug thread,
1014	 * then we need to kick the thread once more.
1015	 */
1016	if (st->state > CPUHP_BRINGUP_CPU) {
1017		ret = cpuhp_kick_ap_work(cpu);
1018		/*
1019		 * The AP side has done the error rollback already. Just
1020		 * return the error code..
1021		 */
1022		if (ret)
1023			goto out;
1024	}
1025
1026	/*
1027	 * Try to reach the target state. We max out on the BP at
1028	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029	 * responsible for bringing it up to the target state.
1030	 */
1031	target = min((int)target, CPUHP_BRINGUP_CPU);
1032	ret = cpuhp_up_callbacks(cpu, st, target);
1033out:
1034	cpus_write_unlock();
 
 
1035	return ret;
1036}
1037
1038static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039{
1040	int err = 0;
1041
1042	if (!cpu_possible(cpu)) {
1043		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044		       cpu);
1045#if defined(CONFIG_IA64)
1046		pr_err("please check additional_cpus= boot parameter\n");
1047#endif
1048		return -EINVAL;
1049	}
1050
1051	err = try_online_node(cpu_to_node(cpu));
1052	if (err)
1053		return err;
1054
1055	cpu_maps_update_begin();
1056
1057	if (cpu_hotplug_disabled) {
1058		err = -EBUSY;
1059		goto out;
1060	}
 
 
 
 
1061
1062	err = _cpu_up(cpu, 0, target);
1063out:
1064	cpu_maps_update_done();
1065	return err;
1066}
1067
1068int cpu_up(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069{
1070	return do_cpu_up(cpu, CPUHP_ONLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071}
1072EXPORT_SYMBOL_GPL(cpu_up);
1073
1074#ifdef CONFIG_PM_SLEEP_SMP
1075static cpumask_var_t frozen_cpus;
1076
1077int freeze_secondary_cpus(int primary)
1078{
1079	int cpu, error = 0;
1080
1081	cpu_maps_update_begin();
1082	if (!cpu_online(primary))
1083		primary = cpumask_first(cpu_online_mask);
 
 
 
 
 
 
 
1084	/*
1085	 * We take down all of the non-boot CPUs in one shot to avoid races
1086	 * with the userspace trying to use the CPU hotplug at the same time
1087	 */
1088	cpumask_clear(frozen_cpus);
1089
1090	pr_info("Disabling non-boot CPUs ...\n");
1091	for_each_online_cpu(cpu) {
1092		if (cpu == primary)
1093			continue;
 
 
 
 
 
 
 
1094		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097		if (!error)
1098			cpumask_set_cpu(cpu, frozen_cpus);
1099		else {
1100			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101			break;
1102		}
1103	}
1104
1105	if (!error)
1106		BUG_ON(num_online_cpus() > 1);
1107	else
1108		pr_err("Non-boot CPUs are not disabled\n");
1109
1110	/*
1111	 * Make sure the CPUs won't be enabled by someone else. We need to do
1112	 * this even in case of failure as all disable_nonboot_cpus() users are
1113	 * supposed to do enable_nonboot_cpus() on the failure path.
1114	 */
1115	cpu_hotplug_disabled++;
1116
1117	cpu_maps_update_done();
1118	return error;
1119}
1120
1121void __weak arch_enable_nonboot_cpus_begin(void)
1122{
1123}
1124
1125void __weak arch_enable_nonboot_cpus_end(void)
1126{
1127}
1128
1129void enable_nonboot_cpus(void)
1130{
1131	int cpu, error;
1132
1133	/* Allow everyone to use the CPU hotplug again */
1134	cpu_maps_update_begin();
1135	__cpu_hotplug_enable();
1136	if (cpumask_empty(frozen_cpus))
1137		goto out;
1138
1139	pr_info("Enabling non-boot CPUs ...\n");
1140
1141	arch_enable_nonboot_cpus_begin();
1142
1143	for_each_cpu(cpu, frozen_cpus) {
1144		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147		if (!error) {
1148			pr_info("CPU%d is up\n", cpu);
1149			continue;
1150		}
1151		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152	}
1153
1154	arch_enable_nonboot_cpus_end();
1155
1156	cpumask_clear(frozen_cpus);
1157out:
1158	cpu_maps_update_done();
1159}
1160
1161static int __init alloc_frozen_cpus(void)
1162{
1163	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164		return -ENOMEM;
1165	return 0;
1166}
1167core_initcall(alloc_frozen_cpus);
1168
1169/*
1170 * When callbacks for CPU hotplug notifications are being executed, we must
1171 * ensure that the state of the system with respect to the tasks being frozen
1172 * or not, as reported by the notification, remains unchanged *throughout the
1173 * duration* of the execution of the callbacks.
1174 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175 *
1176 * This synchronization is implemented by mutually excluding regular CPU
1177 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178 * Hibernate notifications.
1179 */
1180static int
1181cpu_hotplug_pm_callback(struct notifier_block *nb,
1182			unsigned long action, void *ptr)
1183{
1184	switch (action) {
1185
1186	case PM_SUSPEND_PREPARE:
1187	case PM_HIBERNATION_PREPARE:
1188		cpu_hotplug_disable();
1189		break;
1190
1191	case PM_POST_SUSPEND:
1192	case PM_POST_HIBERNATION:
1193		cpu_hotplug_enable();
1194		break;
1195
1196	default:
1197		return NOTIFY_DONE;
1198	}
1199
1200	return NOTIFY_OK;
1201}
1202
1203
1204static int __init cpu_hotplug_pm_sync_init(void)
1205{
1206	/*
1207	 * cpu_hotplug_pm_callback has higher priority than x86
1208	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209	 * to disable cpu hotplug to avoid cpu hotplug race.
1210	 */
1211	pm_notifier(cpu_hotplug_pm_callback, 0);
1212	return 0;
1213}
1214core_initcall(cpu_hotplug_pm_sync_init);
1215
1216#endif /* CONFIG_PM_SLEEP_SMP */
1217
1218int __boot_cpu_id;
1219
1220#endif /* CONFIG_SMP */
1221
1222/* Boot processor state steps */
1223static struct cpuhp_step cpuhp_hp_states[] = {
1224	[CPUHP_OFFLINE] = {
1225		.name			= "offline",
1226		.startup.single		= NULL,
1227		.teardown.single	= NULL,
1228	},
1229#ifdef CONFIG_SMP
1230	[CPUHP_CREATE_THREADS]= {
1231		.name			= "threads:prepare",
1232		.startup.single		= smpboot_create_threads,
1233		.teardown.single	= NULL,
1234		.cant_stop		= true,
1235	},
1236	[CPUHP_PERF_PREPARE] = {
1237		.name			= "perf:prepare",
1238		.startup.single		= perf_event_init_cpu,
1239		.teardown.single	= perf_event_exit_cpu,
1240	},
1241	[CPUHP_WORKQUEUE_PREP] = {
1242		.name			= "workqueue:prepare",
1243		.startup.single		= workqueue_prepare_cpu,
1244		.teardown.single	= NULL,
1245	},
1246	[CPUHP_HRTIMERS_PREPARE] = {
1247		.name			= "hrtimers:prepare",
1248		.startup.single		= hrtimers_prepare_cpu,
1249		.teardown.single	= hrtimers_dead_cpu,
1250	},
1251	[CPUHP_SMPCFD_PREPARE] = {
1252		.name			= "smpcfd:prepare",
1253		.startup.single		= smpcfd_prepare_cpu,
1254		.teardown.single	= smpcfd_dead_cpu,
1255	},
1256	[CPUHP_RELAY_PREPARE] = {
1257		.name			= "relay:prepare",
1258		.startup.single		= relay_prepare_cpu,
1259		.teardown.single	= NULL,
1260	},
1261	[CPUHP_SLAB_PREPARE] = {
1262		.name			= "slab:prepare",
1263		.startup.single		= slab_prepare_cpu,
1264		.teardown.single	= slab_dead_cpu,
1265	},
1266	[CPUHP_RCUTREE_PREP] = {
1267		.name			= "RCU/tree:prepare",
1268		.startup.single		= rcutree_prepare_cpu,
1269		.teardown.single	= rcutree_dead_cpu,
1270	},
1271	/*
1272	 * On the tear-down path, timers_dead_cpu() must be invoked
1273	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1274	 * otherwise a RCU stall occurs.
1275	 */
1276	[CPUHP_TIMERS_PREPARE] = {
1277		.name			= "timers:dead",
1278		.startup.single		= timers_prepare_cpu,
1279		.teardown.single	= timers_dead_cpu,
1280	},
1281	/* Kicks the plugged cpu into life */
1282	[CPUHP_BRINGUP_CPU] = {
1283		.name			= "cpu:bringup",
1284		.startup.single		= bringup_cpu,
1285		.teardown.single	= NULL,
1286		.cant_stop		= true,
1287	},
1288	/* Final state before CPU kills itself */
1289	[CPUHP_AP_IDLE_DEAD] = {
1290		.name			= "idle:dead",
1291	},
1292	/*
1293	 * Last state before CPU enters the idle loop to die. Transient state
1294	 * for synchronization.
1295	 */
1296	[CPUHP_AP_OFFLINE] = {
1297		.name			= "ap:offline",
1298		.cant_stop		= true,
1299	},
1300	/* First state is scheduler control. Interrupts are disabled */
1301	[CPUHP_AP_SCHED_STARTING] = {
1302		.name			= "sched:starting",
1303		.startup.single		= sched_cpu_starting,
1304		.teardown.single	= sched_cpu_dying,
1305	},
1306	[CPUHP_AP_RCUTREE_DYING] = {
1307		.name			= "RCU/tree:dying",
1308		.startup.single		= NULL,
1309		.teardown.single	= rcutree_dying_cpu,
1310	},
1311	[CPUHP_AP_SMPCFD_DYING] = {
1312		.name			= "smpcfd:dying",
1313		.startup.single		= NULL,
1314		.teardown.single	= smpcfd_dying_cpu,
1315	},
1316	/* Entry state on starting. Interrupts enabled from here on. Transient
1317	 * state for synchronsization */
1318	[CPUHP_AP_ONLINE] = {
1319		.name			= "ap:online",
1320	},
1321	/*
1322	 * Handled on controll processor until the plugged processor manages
1323	 * this itself.
1324	 */
1325	[CPUHP_TEARDOWN_CPU] = {
1326		.name			= "cpu:teardown",
1327		.startup.single		= NULL,
1328		.teardown.single	= takedown_cpu,
1329		.cant_stop		= true,
1330	},
 
 
 
 
 
 
 
1331	/* Handle smpboot threads park/unpark */
1332	[CPUHP_AP_SMPBOOT_THREADS] = {
1333		.name			= "smpboot/threads:online",
1334		.startup.single		= smpboot_unpark_threads,
1335		.teardown.single	= NULL,
1336	},
1337	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338		.name			= "irq/affinity:online",
1339		.startup.single		= irq_affinity_online_cpu,
1340		.teardown.single	= NULL,
1341	},
1342	[CPUHP_AP_PERF_ONLINE] = {
1343		.name			= "perf:online",
1344		.startup.single		= perf_event_init_cpu,
1345		.teardown.single	= perf_event_exit_cpu,
1346	},
 
 
 
 
 
1347	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1348		.name			= "workqueue:online",
1349		.startup.single		= workqueue_online_cpu,
1350		.teardown.single	= workqueue_offline_cpu,
1351	},
1352	[CPUHP_AP_RCUTREE_ONLINE] = {
1353		.name			= "RCU/tree:online",
1354		.startup.single		= rcutree_online_cpu,
1355		.teardown.single	= rcutree_offline_cpu,
1356	},
1357#endif
1358	/*
1359	 * The dynamically registered state space is here
1360	 */
1361
1362#ifdef CONFIG_SMP
1363	/* Last state is scheduler control setting the cpu active */
1364	[CPUHP_AP_ACTIVE] = {
1365		.name			= "sched:active",
1366		.startup.single		= sched_cpu_activate,
1367		.teardown.single	= sched_cpu_deactivate,
1368	},
1369#endif
1370
1371	/* CPU is fully up and running. */
1372	[CPUHP_ONLINE] = {
1373		.name			= "online",
1374		.startup.single		= NULL,
1375		.teardown.single	= NULL,
1376	},
1377};
1378
1379/* Sanity check for callbacks */
1380static int cpuhp_cb_check(enum cpuhp_state state)
1381{
1382	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1383		return -EINVAL;
1384	return 0;
1385}
1386
1387/*
1388 * Returns a free for dynamic slot assignment of the Online state. The states
1389 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1390 * by having no name assigned.
1391 */
1392static int cpuhp_reserve_state(enum cpuhp_state state)
1393{
1394	enum cpuhp_state i, end;
1395	struct cpuhp_step *step;
1396
1397	switch (state) {
1398	case CPUHP_AP_ONLINE_DYN:
1399		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1400		end = CPUHP_AP_ONLINE_DYN_END;
1401		break;
1402	case CPUHP_BP_PREPARE_DYN:
1403		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1404		end = CPUHP_BP_PREPARE_DYN_END;
1405		break;
1406	default:
1407		return -EINVAL;
1408	}
1409
1410	for (i = state; i <= end; i++, step++) {
1411		if (!step->name)
1412			return i;
1413	}
1414	WARN(1, "No more dynamic states available for CPU hotplug\n");
1415	return -ENOSPC;
1416}
1417
1418static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1419				 int (*startup)(unsigned int cpu),
1420				 int (*teardown)(unsigned int cpu),
1421				 bool multi_instance)
1422{
1423	/* (Un)Install the callbacks for further cpu hotplug operations */
1424	struct cpuhp_step *sp;
1425	int ret = 0;
1426
1427	/*
1428	 * If name is NULL, then the state gets removed.
1429	 *
1430	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1431	 * the first allocation from these dynamic ranges, so the removal
1432	 * would trigger a new allocation and clear the wrong (already
1433	 * empty) state, leaving the callbacks of the to be cleared state
1434	 * dangling, which causes wreckage on the next hotplug operation.
1435	 */
1436	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1437		     state == CPUHP_BP_PREPARE_DYN)) {
1438		ret = cpuhp_reserve_state(state);
1439		if (ret < 0)
1440			return ret;
1441		state = ret;
1442	}
1443	sp = cpuhp_get_step(state);
1444	if (name && sp->name)
1445		return -EBUSY;
1446
1447	sp->startup.single = startup;
1448	sp->teardown.single = teardown;
1449	sp->name = name;
1450	sp->multi_instance = multi_instance;
1451	INIT_HLIST_HEAD(&sp->list);
1452	return ret;
1453}
1454
1455static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1456{
1457	return cpuhp_get_step(state)->teardown.single;
1458}
1459
1460/*
1461 * Call the startup/teardown function for a step either on the AP or
1462 * on the current CPU.
1463 */
1464static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1465			    struct hlist_node *node)
1466{
1467	struct cpuhp_step *sp = cpuhp_get_step(state);
1468	int ret;
1469
1470	/*
1471	 * If there's nothing to do, we done.
1472	 * Relies on the union for multi_instance.
1473	 */
1474	if ((bringup && !sp->startup.single) ||
1475	    (!bringup && !sp->teardown.single))
1476		return 0;
1477	/*
1478	 * The non AP bound callbacks can fail on bringup. On teardown
1479	 * e.g. module removal we crash for now.
1480	 */
1481#ifdef CONFIG_SMP
1482	if (cpuhp_is_ap_state(state))
1483		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1484	else
1485		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1486#else
1487	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1488#endif
1489	BUG_ON(ret && !bringup);
1490	return ret;
1491}
1492
1493/*
1494 * Called from __cpuhp_setup_state on a recoverable failure.
1495 *
1496 * Note: The teardown callbacks for rollback are not allowed to fail!
1497 */
1498static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1499				   struct hlist_node *node)
1500{
1501	int cpu;
1502
1503	/* Roll back the already executed steps on the other cpus */
1504	for_each_present_cpu(cpu) {
1505		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506		int cpustate = st->state;
1507
1508		if (cpu >= failedcpu)
1509			break;
1510
1511		/* Did we invoke the startup call on that cpu ? */
1512		if (cpustate >= state)
1513			cpuhp_issue_call(cpu, state, false, node);
1514	}
1515}
1516
1517int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1518					  struct hlist_node *node,
1519					  bool invoke)
1520{
1521	struct cpuhp_step *sp;
1522	int cpu;
1523	int ret;
1524
1525	lockdep_assert_cpus_held();
1526
1527	sp = cpuhp_get_step(state);
1528	if (sp->multi_instance == false)
1529		return -EINVAL;
1530
1531	mutex_lock(&cpuhp_state_mutex);
1532
1533	if (!invoke || !sp->startup.multi)
1534		goto add_node;
1535
1536	/*
1537	 * Try to call the startup callback for each present cpu
1538	 * depending on the hotplug state of the cpu.
1539	 */
1540	for_each_present_cpu(cpu) {
1541		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1542		int cpustate = st->state;
1543
1544		if (cpustate < state)
1545			continue;
1546
1547		ret = cpuhp_issue_call(cpu, state, true, node);
1548		if (ret) {
1549			if (sp->teardown.multi)
1550				cpuhp_rollback_install(cpu, state, node);
1551			goto unlock;
1552		}
1553	}
1554add_node:
1555	ret = 0;
1556	hlist_add_head(node, &sp->list);
1557unlock:
1558	mutex_unlock(&cpuhp_state_mutex);
1559	return ret;
1560}
1561
1562int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1563			       bool invoke)
1564{
1565	int ret;
1566
1567	cpus_read_lock();
1568	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1569	cpus_read_unlock();
1570	return ret;
1571}
1572EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1573
1574/**
1575 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1576 * @state:		The state to setup
1577 * @invoke:		If true, the startup function is invoked for cpus where
1578 *			cpu state >= @state
1579 * @startup:		startup callback function
1580 * @teardown:		teardown callback function
1581 * @multi_instance:	State is set up for multiple instances which get
1582 *			added afterwards.
1583 *
1584 * The caller needs to hold cpus read locked while calling this function.
1585 * Returns:
1586 *   On success:
1587 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1588 *      0 for all other states
1589 *   On failure: proper (negative) error code
1590 */
1591int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1592				   const char *name, bool invoke,
1593				   int (*startup)(unsigned int cpu),
1594				   int (*teardown)(unsigned int cpu),
1595				   bool multi_instance)
1596{
1597	int cpu, ret = 0;
1598	bool dynstate;
1599
1600	lockdep_assert_cpus_held();
1601
1602	if (cpuhp_cb_check(state) || !name)
1603		return -EINVAL;
1604
1605	mutex_lock(&cpuhp_state_mutex);
1606
1607	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1608				    multi_instance);
1609
1610	dynstate = state == CPUHP_AP_ONLINE_DYN;
1611	if (ret > 0 && dynstate) {
1612		state = ret;
1613		ret = 0;
1614	}
1615
1616	if (ret || !invoke || !startup)
1617		goto out;
1618
1619	/*
1620	 * Try to call the startup callback for each present cpu
1621	 * depending on the hotplug state of the cpu.
1622	 */
1623	for_each_present_cpu(cpu) {
1624		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625		int cpustate = st->state;
1626
1627		if (cpustate < state)
1628			continue;
1629
1630		ret = cpuhp_issue_call(cpu, state, true, NULL);
1631		if (ret) {
1632			if (teardown)
1633				cpuhp_rollback_install(cpu, state, NULL);
1634			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635			goto out;
1636		}
1637	}
1638out:
1639	mutex_unlock(&cpuhp_state_mutex);
1640	/*
1641	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1642	 * dynamically allocated state in case of success.
1643	 */
1644	if (!ret && dynstate)
1645		return state;
1646	return ret;
1647}
1648EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1649
1650int __cpuhp_setup_state(enum cpuhp_state state,
1651			const char *name, bool invoke,
1652			int (*startup)(unsigned int cpu),
1653			int (*teardown)(unsigned int cpu),
1654			bool multi_instance)
1655{
1656	int ret;
1657
1658	cpus_read_lock();
1659	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1660					     teardown, multi_instance);
1661	cpus_read_unlock();
1662	return ret;
1663}
1664EXPORT_SYMBOL(__cpuhp_setup_state);
1665
1666int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667				  struct hlist_node *node, bool invoke)
1668{
1669	struct cpuhp_step *sp = cpuhp_get_step(state);
1670	int cpu;
1671
1672	BUG_ON(cpuhp_cb_check(state));
1673
1674	if (!sp->multi_instance)
1675		return -EINVAL;
1676
1677	cpus_read_lock();
1678	mutex_lock(&cpuhp_state_mutex);
1679
1680	if (!invoke || !cpuhp_get_teardown_cb(state))
1681		goto remove;
1682	/*
1683	 * Call the teardown callback for each present cpu depending
1684	 * on the hotplug state of the cpu. This function is not
1685	 * allowed to fail currently!
1686	 */
1687	for_each_present_cpu(cpu) {
1688		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689		int cpustate = st->state;
1690
1691		if (cpustate >= state)
1692			cpuhp_issue_call(cpu, state, false, node);
1693	}
1694
1695remove:
1696	hlist_del(node);
1697	mutex_unlock(&cpuhp_state_mutex);
1698	cpus_read_unlock();
1699
1700	return 0;
1701}
1702EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703
1704/**
1705 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1706 * @state:	The state to remove
1707 * @invoke:	If true, the teardown function is invoked for cpus where
1708 *		cpu state >= @state
1709 *
1710 * The caller needs to hold cpus read locked while calling this function.
1711 * The teardown callback is currently not allowed to fail. Think
1712 * about module removal!
1713 */
1714void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1715{
1716	struct cpuhp_step *sp = cpuhp_get_step(state);
1717	int cpu;
1718
1719	BUG_ON(cpuhp_cb_check(state));
1720
1721	lockdep_assert_cpus_held();
1722
1723	mutex_lock(&cpuhp_state_mutex);
1724	if (sp->multi_instance) {
1725		WARN(!hlist_empty(&sp->list),
1726		     "Error: Removing state %d which has instances left.\n",
1727		     state);
1728		goto remove;
1729	}
1730
1731	if (!invoke || !cpuhp_get_teardown_cb(state))
1732		goto remove;
1733
1734	/*
1735	 * Call the teardown callback for each present cpu depending
1736	 * on the hotplug state of the cpu. This function is not
1737	 * allowed to fail currently!
1738	 */
1739	for_each_present_cpu(cpu) {
1740		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741		int cpustate = st->state;
1742
1743		if (cpustate >= state)
1744			cpuhp_issue_call(cpu, state, false, NULL);
1745	}
1746remove:
1747	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1748	mutex_unlock(&cpuhp_state_mutex);
1749}
1750EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1751
1752void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1753{
1754	cpus_read_lock();
1755	__cpuhp_remove_state_cpuslocked(state, invoke);
1756	cpus_read_unlock();
1757}
1758EXPORT_SYMBOL(__cpuhp_remove_state);
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1761static ssize_t show_cpuhp_state(struct device *dev,
1762				struct device_attribute *attr, char *buf)
1763{
1764	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1765
1766	return sprintf(buf, "%d\n", st->state);
1767}
1768static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1769
1770static ssize_t write_cpuhp_target(struct device *dev,
1771				  struct device_attribute *attr,
1772				  const char *buf, size_t count)
1773{
1774	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1775	struct cpuhp_step *sp;
1776	int target, ret;
1777
1778	ret = kstrtoint(buf, 10, &target);
1779	if (ret)
1780		return ret;
1781
1782#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1783	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1784		return -EINVAL;
1785#else
1786	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1787		return -EINVAL;
1788#endif
1789
1790	ret = lock_device_hotplug_sysfs();
1791	if (ret)
1792		return ret;
1793
1794	mutex_lock(&cpuhp_state_mutex);
1795	sp = cpuhp_get_step(target);
1796	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1797	mutex_unlock(&cpuhp_state_mutex);
1798	if (ret)
1799		goto out;
1800
1801	if (st->state < target)
1802		ret = do_cpu_up(dev->id, target);
1803	else
1804		ret = do_cpu_down(dev->id, target);
1805out:
1806	unlock_device_hotplug();
1807	return ret ? ret : count;
1808}
1809
1810static ssize_t show_cpuhp_target(struct device *dev,
1811				 struct device_attribute *attr, char *buf)
1812{
1813	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1814
1815	return sprintf(buf, "%d\n", st->target);
1816}
1817static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1818
1819
1820static ssize_t write_cpuhp_fail(struct device *dev,
1821				struct device_attribute *attr,
1822				const char *buf, size_t count)
1823{
1824	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825	struct cpuhp_step *sp;
1826	int fail, ret;
1827
1828	ret = kstrtoint(buf, 10, &fail);
1829	if (ret)
1830		return ret;
1831
 
 
 
 
 
 
 
 
1832	/*
1833	 * Cannot fail STARTING/DYING callbacks.
1834	 */
1835	if (cpuhp_is_atomic_state(fail))
1836		return -EINVAL;
1837
1838	/*
 
 
 
 
 
 
 
 
 
1839	 * Cannot fail anything that doesn't have callbacks.
1840	 */
1841	mutex_lock(&cpuhp_state_mutex);
1842	sp = cpuhp_get_step(fail);
1843	if (!sp->startup.single && !sp->teardown.single)
1844		ret = -EINVAL;
1845	mutex_unlock(&cpuhp_state_mutex);
1846	if (ret)
1847		return ret;
1848
1849	st->fail = fail;
1850
1851	return count;
1852}
1853
1854static ssize_t show_cpuhp_fail(struct device *dev,
1855			       struct device_attribute *attr, char *buf)
1856{
1857	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1858
1859	return sprintf(buf, "%d\n", st->fail);
1860}
1861
1862static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1863
1864static struct attribute *cpuhp_cpu_attrs[] = {
1865	&dev_attr_state.attr,
1866	&dev_attr_target.attr,
1867	&dev_attr_fail.attr,
1868	NULL
1869};
1870
1871static const struct attribute_group cpuhp_cpu_attr_group = {
1872	.attrs = cpuhp_cpu_attrs,
1873	.name = "hotplug",
1874	NULL
1875};
1876
1877static ssize_t show_cpuhp_states(struct device *dev,
1878				 struct device_attribute *attr, char *buf)
1879{
1880	ssize_t cur, res = 0;
1881	int i;
1882
1883	mutex_lock(&cpuhp_state_mutex);
1884	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1885		struct cpuhp_step *sp = cpuhp_get_step(i);
1886
1887		if (sp->name) {
1888			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1889			buf += cur;
1890			res += cur;
1891		}
1892	}
1893	mutex_unlock(&cpuhp_state_mutex);
1894	return res;
1895}
1896static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1897
1898static struct attribute *cpuhp_cpu_root_attrs[] = {
1899	&dev_attr_states.attr,
1900	NULL
1901};
1902
1903static const struct attribute_group cpuhp_cpu_root_attr_group = {
1904	.attrs = cpuhp_cpu_root_attrs,
1905	.name = "hotplug",
1906	NULL
1907};
1908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909static int __init cpuhp_sysfs_init(void)
1910{
1911	int cpu, ret;
1912
 
 
 
 
1913	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1914				 &cpuhp_cpu_root_attr_group);
1915	if (ret)
1916		return ret;
1917
1918	for_each_possible_cpu(cpu) {
1919		struct device *dev = get_cpu_device(cpu);
1920
1921		if (!dev)
1922			continue;
1923		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1924		if (ret)
1925			return ret;
1926	}
1927	return 0;
1928}
1929device_initcall(cpuhp_sysfs_init);
1930#endif
1931
1932/*
1933 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1934 * represents all NR_CPUS bits binary values of 1<<nr.
1935 *
1936 * It is used by cpumask_of() to get a constant address to a CPU
1937 * mask value that has a single bit set only.
1938 */
1939
1940/* cpu_bit_bitmap[0] is empty - so we can back into it */
1941#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1942#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1943#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1944#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1945
1946const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1947
1948	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1949	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1950#if BITS_PER_LONG > 32
1951	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1952	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1953#endif
1954};
1955EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1956
1957const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1958EXPORT_SYMBOL(cpu_all_bits);
1959
1960#ifdef CONFIG_INIT_ALL_POSSIBLE
1961struct cpumask __cpu_possible_mask __read_mostly
1962	= {CPU_BITS_ALL};
1963#else
1964struct cpumask __cpu_possible_mask __read_mostly;
1965#endif
1966EXPORT_SYMBOL(__cpu_possible_mask);
1967
1968struct cpumask __cpu_online_mask __read_mostly;
1969EXPORT_SYMBOL(__cpu_online_mask);
1970
1971struct cpumask __cpu_present_mask __read_mostly;
1972EXPORT_SYMBOL(__cpu_present_mask);
1973
1974struct cpumask __cpu_active_mask __read_mostly;
1975EXPORT_SYMBOL(__cpu_active_mask);
1976
 
 
 
 
 
 
1977void init_cpu_present(const struct cpumask *src)
1978{
1979	cpumask_copy(&__cpu_present_mask, src);
1980}
1981
1982void init_cpu_possible(const struct cpumask *src)
1983{
1984	cpumask_copy(&__cpu_possible_mask, src);
1985}
1986
1987void init_cpu_online(const struct cpumask *src)
1988{
1989	cpumask_copy(&__cpu_online_mask, src);
1990}
1991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992/*
1993 * Activate the first processor.
1994 */
1995void __init boot_cpu_init(void)
1996{
1997	int cpu = smp_processor_id();
1998
1999	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2000	set_cpu_online(cpu, true);
2001	set_cpu_active(cpu, true);
2002	set_cpu_present(cpu, true);
2003	set_cpu_possible(cpu, true);
2004
2005#ifdef CONFIG_SMP
2006	__boot_cpu_id = cpu;
2007#endif
2008}
2009
2010/*
2011 * Must be called _AFTER_ setting up the per_cpu areas
2012 */
2013void __init boot_cpu_state_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014{
2015	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2016}
v5.14.15
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/export.h>
  21#include <linux/bug.h>
  22#include <linux/kthread.h>
  23#include <linux/stop_machine.h>
  24#include <linux/mutex.h>
  25#include <linux/gfp.h>
  26#include <linux/suspend.h>
  27#include <linux/lockdep.h>
  28#include <linux/tick.h>
  29#include <linux/irq.h>
  30#include <linux/nmi.h>
  31#include <linux/smpboot.h>
  32#include <linux/relay.h>
  33#include <linux/slab.h>
  34#include <linux/percpu-rwsem.h>
  35#include <linux/cpuset.h>
  36
  37#include <trace/events/power.h>
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/cpuhp.h>
  40
  41#include "smpboot.h"
  42
  43/**
  44 * cpuhp_cpu_state - Per cpu hotplug state storage
  45 * @state:	The current cpu state
  46 * @target:	The target state
  47 * @thread:	Pointer to the hotplug thread
  48 * @should_run:	Thread should execute
  49 * @rollback:	Perform a rollback
  50 * @single:	Single callback invocation
  51 * @bringup:	Single callback bringup or teardown selector
  52 * @cb_state:	The state for a single callback (install/uninstall)
  53 * @result:	Result of the operation
  54 * @done_up:	Signal completion to the issuer of the task for cpu-up
  55 * @done_down:	Signal completion to the issuer of the task for cpu-down
  56 */
  57struct cpuhp_cpu_state {
  58	enum cpuhp_state	state;
  59	enum cpuhp_state	target;
  60	enum cpuhp_state	fail;
  61#ifdef CONFIG_SMP
  62	struct task_struct	*thread;
  63	bool			should_run;
  64	bool			rollback;
  65	bool			single;
  66	bool			bringup;
  67	int			cpu;
  68	struct hlist_node	*node;
  69	struct hlist_node	*last;
  70	enum cpuhp_state	cb_state;
  71	int			result;
  72	struct completion	done_up;
  73	struct completion	done_down;
  74#endif
  75};
  76
  77static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  78	.fail = CPUHP_INVALID,
  79};
  80
  81#ifdef CONFIG_SMP
  82cpumask_t cpus_booted_once_mask;
  83#endif
  84
  85#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  86static struct lockdep_map cpuhp_state_up_map =
  87	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  88static struct lockdep_map cpuhp_state_down_map =
  89	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  90
  91
  92static inline void cpuhp_lock_acquire(bool bringup)
  93{
  94	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  95}
  96
  97static inline void cpuhp_lock_release(bool bringup)
  98{
  99	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 100}
 101#else
 102
 103static inline void cpuhp_lock_acquire(bool bringup) { }
 104static inline void cpuhp_lock_release(bool bringup) { }
 105
 106#endif
 107
 108/**
 109 * cpuhp_step - Hotplug state machine step
 110 * @name:	Name of the step
 111 * @startup:	Startup function of the step
 112 * @teardown:	Teardown function of the step
 
 
 113 * @cant_stop:	Bringup/teardown can't be stopped at this step
 114 */
 115struct cpuhp_step {
 116	const char		*name;
 117	union {
 118		int		(*single)(unsigned int cpu);
 119		int		(*multi)(unsigned int cpu,
 120					 struct hlist_node *node);
 121	} startup;
 122	union {
 123		int		(*single)(unsigned int cpu);
 124		int		(*multi)(unsigned int cpu,
 125					 struct hlist_node *node);
 126	} teardown;
 127	struct hlist_head	list;
 
 128	bool			cant_stop;
 129	bool			multi_instance;
 130};
 131
 132static DEFINE_MUTEX(cpuhp_state_mutex);
 133static struct cpuhp_step cpuhp_hp_states[];
 134
 135static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 136{
 137	return cpuhp_hp_states + state;
 138}
 139
 140static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
 141{
 142	return bringup ? !step->startup.single : !step->teardown.single;
 143}
 144
 145/**
 146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 147 * @cpu:	The cpu for which the callback should be invoked
 148 * @state:	The state to do callbacks for
 149 * @bringup:	True if the bringup callback should be invoked
 150 * @node:	For multi-instance, do a single entry callback for install/remove
 151 * @lastp:	For multi-instance rollback, remember how far we got
 152 *
 153 * Called from cpu hotplug and from the state register machinery.
 154 */
 155static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 156				 bool bringup, struct hlist_node *node,
 157				 struct hlist_node **lastp)
 158{
 159	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 160	struct cpuhp_step *step = cpuhp_get_step(state);
 161	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 162	int (*cb)(unsigned int cpu);
 163	int ret, cnt;
 164
 165	if (st->fail == state) {
 166		st->fail = CPUHP_INVALID;
 
 
 
 
 167		return -EAGAIN;
 168	}
 169
 170	if (cpuhp_step_empty(bringup, step)) {
 171		WARN_ON_ONCE(1);
 172		return 0;
 173	}
 174
 175	if (!step->multi_instance) {
 176		WARN_ON_ONCE(lastp && *lastp);
 177		cb = bringup ? step->startup.single : step->teardown.single;
 178
 
 179		trace_cpuhp_enter(cpu, st->target, state, cb);
 180		ret = cb(cpu);
 181		trace_cpuhp_exit(cpu, st->state, state, ret);
 182		return ret;
 183	}
 184	cbm = bringup ? step->startup.multi : step->teardown.multi;
 
 
 185
 186	/* Single invocation for instance add/remove */
 187	if (node) {
 188		WARN_ON_ONCE(lastp && *lastp);
 189		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 190		ret = cbm(cpu, node);
 191		trace_cpuhp_exit(cpu, st->state, state, ret);
 192		return ret;
 193	}
 194
 195	/* State transition. Invoke on all instances */
 196	cnt = 0;
 197	hlist_for_each(node, &step->list) {
 198		if (lastp && node == *lastp)
 199			break;
 200
 201		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 202		ret = cbm(cpu, node);
 203		trace_cpuhp_exit(cpu, st->state, state, ret);
 204		if (ret) {
 205			if (!lastp)
 206				goto err;
 207
 208			*lastp = node;
 209			return ret;
 210		}
 211		cnt++;
 212	}
 213	if (lastp)
 214		*lastp = NULL;
 215	return 0;
 216err:
 217	/* Rollback the instances if one failed */
 218	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 219	if (!cbm)
 220		return ret;
 221
 222	hlist_for_each(node, &step->list) {
 223		if (!cnt--)
 224			break;
 225
 226		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 227		ret = cbm(cpu, node);
 228		trace_cpuhp_exit(cpu, st->state, state, ret);
 229		/*
 230		 * Rollback must not fail,
 231		 */
 232		WARN_ON_ONCE(ret);
 233	}
 234	return ret;
 235}
 236
 237#ifdef CONFIG_SMP
 238static bool cpuhp_is_ap_state(enum cpuhp_state state)
 239{
 240	/*
 241	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 242	 * purposes as that state is handled explicitly in cpu_down.
 243	 */
 244	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 245}
 246
 247static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 248{
 249	struct completion *done = bringup ? &st->done_up : &st->done_down;
 250	wait_for_completion(done);
 251}
 252
 253static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 254{
 255	struct completion *done = bringup ? &st->done_up : &st->done_down;
 256	complete(done);
 257}
 258
 259/*
 260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 261 */
 262static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 263{
 264	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 265}
 266
 267/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 268static DEFINE_MUTEX(cpu_add_remove_lock);
 269bool cpuhp_tasks_frozen;
 270EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 271
 272/*
 273 * The following two APIs (cpu_maps_update_begin/done) must be used when
 274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 275 */
 276void cpu_maps_update_begin(void)
 277{
 278	mutex_lock(&cpu_add_remove_lock);
 279}
 280
 281void cpu_maps_update_done(void)
 282{
 283	mutex_unlock(&cpu_add_remove_lock);
 284}
 285
 286/*
 287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 288 * Should always be manipulated under cpu_add_remove_lock
 289 */
 290static int cpu_hotplug_disabled;
 291
 292#ifdef CONFIG_HOTPLUG_CPU
 293
 294DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 295
 296void cpus_read_lock(void)
 297{
 298	percpu_down_read(&cpu_hotplug_lock);
 299}
 300EXPORT_SYMBOL_GPL(cpus_read_lock);
 301
 302int cpus_read_trylock(void)
 303{
 304	return percpu_down_read_trylock(&cpu_hotplug_lock);
 305}
 306EXPORT_SYMBOL_GPL(cpus_read_trylock);
 307
 308void cpus_read_unlock(void)
 309{
 310	percpu_up_read(&cpu_hotplug_lock);
 311}
 312EXPORT_SYMBOL_GPL(cpus_read_unlock);
 313
 314void cpus_write_lock(void)
 315{
 316	percpu_down_write(&cpu_hotplug_lock);
 317}
 318
 319void cpus_write_unlock(void)
 320{
 321	percpu_up_write(&cpu_hotplug_lock);
 322}
 323
 324void lockdep_assert_cpus_held(void)
 325{
 326	/*
 327	 * We can't have hotplug operations before userspace starts running,
 328	 * and some init codepaths will knowingly not take the hotplug lock.
 329	 * This is all valid, so mute lockdep until it makes sense to report
 330	 * unheld locks.
 331	 */
 332	if (system_state < SYSTEM_RUNNING)
 333		return;
 334
 335	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 336}
 337
 338#ifdef CONFIG_LOCKDEP
 339int lockdep_is_cpus_held(void)
 340{
 341	return percpu_rwsem_is_held(&cpu_hotplug_lock);
 342}
 343#endif
 344
 345static void lockdep_acquire_cpus_lock(void)
 346{
 347	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 348}
 349
 350static void lockdep_release_cpus_lock(void)
 351{
 352	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 353}
 354
 355/*
 356 * Wait for currently running CPU hotplug operations to complete (if any) and
 357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 359 * hotplug path before performing hotplug operations. So acquiring that lock
 360 * guarantees mutual exclusion from any currently running hotplug operations.
 361 */
 362void cpu_hotplug_disable(void)
 363{
 364	cpu_maps_update_begin();
 365	cpu_hotplug_disabled++;
 366	cpu_maps_update_done();
 367}
 368EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 369
 370static void __cpu_hotplug_enable(void)
 371{
 372	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 373		return;
 374	cpu_hotplug_disabled--;
 375}
 376
 377void cpu_hotplug_enable(void)
 378{
 379	cpu_maps_update_begin();
 380	__cpu_hotplug_enable();
 381	cpu_maps_update_done();
 382}
 383EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 384
 385#else
 386
 387static void lockdep_acquire_cpus_lock(void)
 388{
 389}
 390
 391static void lockdep_release_cpus_lock(void)
 392{
 393}
 394
 395#endif	/* CONFIG_HOTPLUG_CPU */
 396
 397/*
 398 * Architectures that need SMT-specific errata handling during SMT hotplug
 399 * should override this.
 400 */
 401void __weak arch_smt_update(void) { }
 402
 403#ifdef CONFIG_HOTPLUG_SMT
 404enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 405
 406void __init cpu_smt_disable(bool force)
 407{
 408	if (!cpu_smt_possible())
 409		return;
 410
 411	if (force) {
 412		pr_info("SMT: Force disabled\n");
 413		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 414	} else {
 415		pr_info("SMT: disabled\n");
 416		cpu_smt_control = CPU_SMT_DISABLED;
 417	}
 418}
 419
 420/*
 421 * The decision whether SMT is supported can only be done after the full
 422 * CPU identification. Called from architecture code.
 423 */
 424void __init cpu_smt_check_topology(void)
 425{
 426	if (!topology_smt_supported())
 427		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 428}
 429
 430static int __init smt_cmdline_disable(char *str)
 431{
 432	cpu_smt_disable(str && !strcmp(str, "force"));
 433	return 0;
 434}
 435early_param("nosmt", smt_cmdline_disable);
 436
 437static inline bool cpu_smt_allowed(unsigned int cpu)
 438{
 439	if (cpu_smt_control == CPU_SMT_ENABLED)
 440		return true;
 441
 442	if (topology_is_primary_thread(cpu))
 443		return true;
 444
 445	/*
 446	 * On x86 it's required to boot all logical CPUs at least once so
 447	 * that the init code can get a chance to set CR4.MCE on each
 448	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 449	 * core will shutdown the machine.
 450	 */
 451	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 452}
 453
 454/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 455bool cpu_smt_possible(void)
 456{
 457	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 458		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 459}
 460EXPORT_SYMBOL_GPL(cpu_smt_possible);
 461#else
 462static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 463#endif
 464
 465static inline enum cpuhp_state
 466cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 467{
 468	enum cpuhp_state prev_state = st->state;
 469	bool bringup = st->state < target;
 470
 471	st->rollback = false;
 472	st->last = NULL;
 473
 474	st->target = target;
 475	st->single = false;
 476	st->bringup = bringup;
 477	if (cpu_dying(st->cpu) != !bringup)
 478		set_cpu_dying(st->cpu, !bringup);
 479
 480	return prev_state;
 481}
 482
 483static inline void
 484cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 485{
 486	bool bringup = !st->bringup;
 487
 488	st->target = prev_state;
 489
 490	/*
 491	 * Already rolling back. No need invert the bringup value or to change
 492	 * the current state.
 493	 */
 494	if (st->rollback)
 495		return;
 496
 497	st->rollback = true;
 498
 499	/*
 500	 * If we have st->last we need to undo partial multi_instance of this
 501	 * state first. Otherwise start undo at the previous state.
 502	 */
 503	if (!st->last) {
 504		if (st->bringup)
 505			st->state--;
 506		else
 507			st->state++;
 508	}
 509
 510	st->bringup = bringup;
 511	if (cpu_dying(st->cpu) != !bringup)
 512		set_cpu_dying(st->cpu, !bringup);
 513}
 514
 515/* Regular hotplug invocation of the AP hotplug thread */
 516static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 517{
 518	if (!st->single && st->state == st->target)
 519		return;
 520
 521	st->result = 0;
 522	/*
 523	 * Make sure the above stores are visible before should_run becomes
 524	 * true. Paired with the mb() above in cpuhp_thread_fun()
 525	 */
 526	smp_mb();
 527	st->should_run = true;
 528	wake_up_process(st->thread);
 529	wait_for_ap_thread(st, st->bringup);
 530}
 531
 532static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 533{
 534	enum cpuhp_state prev_state;
 535	int ret;
 536
 537	prev_state = cpuhp_set_state(st, target);
 538	__cpuhp_kick_ap(st);
 539	if ((ret = st->result)) {
 540		cpuhp_reset_state(st, prev_state);
 541		__cpuhp_kick_ap(st);
 542	}
 543
 544	return ret;
 545}
 546
 547static int bringup_wait_for_ap(unsigned int cpu)
 548{
 549	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 550
 551	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 552	wait_for_ap_thread(st, true);
 553	if (WARN_ON_ONCE((!cpu_online(cpu))))
 554		return -ECANCELED;
 555
 556	/* Unpark the hotplug thread of the target cpu */
 
 557	kthread_unpark(st->thread);
 558
 559	/*
 560	 * SMT soft disabling on X86 requires to bring the CPU out of the
 561	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 562	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 563	 * cpu_smt_allowed() check will now return false if this is not the
 564	 * primary sibling.
 565	 */
 566	if (!cpu_smt_allowed(cpu))
 567		return -ECANCELED;
 568
 569	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 570		return 0;
 571
 572	return cpuhp_kick_ap(st, st->target);
 573}
 574
 575static int bringup_cpu(unsigned int cpu)
 576{
 577	struct task_struct *idle = idle_thread_get(cpu);
 578	int ret;
 579
 580	/*
 581	 * Some architectures have to walk the irq descriptors to
 582	 * setup the vector space for the cpu which comes online.
 583	 * Prevent irq alloc/free across the bringup.
 584	 */
 585	irq_lock_sparse();
 586
 587	/* Arch-specific enabling code. */
 588	ret = __cpu_up(cpu, idle);
 589	irq_unlock_sparse();
 590	if (ret)
 591		return ret;
 592	return bringup_wait_for_ap(cpu);
 593}
 594
 595static int finish_cpu(unsigned int cpu)
 596{
 597	struct task_struct *idle = idle_thread_get(cpu);
 598	struct mm_struct *mm = idle->active_mm;
 599
 600	/*
 601	 * idle_task_exit() will have switched to &init_mm, now
 602	 * clean up any remaining active_mm state.
 603	 */
 604	if (mm != &init_mm)
 605		idle->active_mm = &init_mm;
 606	mmdrop(mm);
 607	return 0;
 608}
 609
 610/*
 611 * Hotplug state machine related functions
 612 */
 613
 614/*
 615 * Get the next state to run. Empty ones will be skipped. Returns true if a
 616 * state must be run.
 617 *
 618 * st->state will be modified ahead of time, to match state_to_run, as if it
 619 * has already ran.
 620 */
 621static bool cpuhp_next_state(bool bringup,
 622			     enum cpuhp_state *state_to_run,
 623			     struct cpuhp_cpu_state *st,
 624			     enum cpuhp_state target)
 625{
 626	do {
 627		if (bringup) {
 628			if (st->state >= target)
 629				return false;
 630
 631			*state_to_run = ++st->state;
 632		} else {
 633			if (st->state <= target)
 634				return false;
 635
 636			*state_to_run = st->state--;
 637		}
 638
 639		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
 640			break;
 641	} while (true);
 642
 643	return true;
 644}
 645
 646static int cpuhp_invoke_callback_range(bool bringup,
 647				       unsigned int cpu,
 648				       struct cpuhp_cpu_state *st,
 649				       enum cpuhp_state target)
 650{
 651	enum cpuhp_state state;
 652	int err = 0;
 653
 654	while (cpuhp_next_state(bringup, &state, st, target)) {
 655		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
 656		if (err)
 657			break;
 658	}
 659
 660	return err;
 661}
 662
 663static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 664{
 665	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 666		return true;
 667	/*
 668	 * When CPU hotplug is disabled, then taking the CPU down is not
 669	 * possible because takedown_cpu() and the architecture and
 670	 * subsystem specific mechanisms are not available. So the CPU
 671	 * which would be completely unplugged again needs to stay around
 672	 * in the current state.
 673	 */
 674	return st->state <= CPUHP_BRINGUP_CPU;
 675}
 676
 677static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 678			      enum cpuhp_state target)
 679{
 680	enum cpuhp_state prev_state = st->state;
 681	int ret = 0;
 682
 683	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
 684	if (ret) {
 685		cpuhp_reset_state(st, prev_state);
 686		if (can_rollback_cpu(st))
 687			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
 688							    prev_state));
 
 
 689	}
 690	return ret;
 691}
 692
 693/*
 694 * The cpu hotplug threads manage the bringup and teardown of the cpus
 695 */
 696static void cpuhp_create(unsigned int cpu)
 697{
 698	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 699
 700	init_completion(&st->done_up);
 701	init_completion(&st->done_down);
 702	st->cpu = cpu;
 703}
 704
 705static int cpuhp_should_run(unsigned int cpu)
 706{
 707	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 708
 709	return st->should_run;
 710}
 711
 712/*
 713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 714 * callbacks when a state gets [un]installed at runtime.
 715 *
 716 * Each invocation of this function by the smpboot thread does a single AP
 717 * state callback.
 718 *
 719 * It has 3 modes of operation:
 720 *  - single: runs st->cb_state
 721 *  - up:     runs ++st->state, while st->state < st->target
 722 *  - down:   runs st->state--, while st->state > st->target
 723 *
 724 * When complete or on error, should_run is cleared and the completion is fired.
 725 */
 726static void cpuhp_thread_fun(unsigned int cpu)
 727{
 728	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 729	bool bringup = st->bringup;
 730	enum cpuhp_state state;
 731
 732	if (WARN_ON_ONCE(!st->should_run))
 733		return;
 734
 735	/*
 736	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 737	 * that if we see ->should_run we also see the rest of the state.
 738	 */
 739	smp_mb();
 740
 741	/*
 742	 * The BP holds the hotplug lock, but we're now running on the AP,
 743	 * ensure that anybody asserting the lock is held, will actually find
 744	 * it so.
 745	 */
 746	lockdep_acquire_cpus_lock();
 747	cpuhp_lock_acquire(bringup);
 748
 749	if (st->single) {
 750		state = st->cb_state;
 751		st->should_run = false;
 752	} else {
 753		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
 754		if (!st->should_run)
 755			goto end;
 
 
 
 
 
 
 
 
 756	}
 757
 758	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 759
 
 
 
 
 
 
 760	if (cpuhp_is_atomic_state(state)) {
 761		local_irq_disable();
 762		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 763		local_irq_enable();
 764
 765		/*
 766		 * STARTING/DYING must not fail!
 767		 */
 768		WARN_ON_ONCE(st->result);
 769	} else {
 770		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 771	}
 772
 773	if (st->result) {
 774		/*
 775		 * If we fail on a rollback, we're up a creek without no
 776		 * paddle, no way forward, no way back. We loose, thanks for
 777		 * playing.
 778		 */
 779		WARN_ON_ONCE(st->rollback);
 780		st->should_run = false;
 781	}
 782
 783end:
 784	cpuhp_lock_release(bringup);
 785	lockdep_release_cpus_lock();
 786
 787	if (!st->should_run)
 788		complete_ap_thread(st, bringup);
 789}
 790
 791/* Invoke a single callback on a remote cpu */
 792static int
 793cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 794			 struct hlist_node *node)
 795{
 796	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 797	int ret;
 798
 799	if (!cpu_online(cpu))
 800		return 0;
 801
 802	cpuhp_lock_acquire(false);
 803	cpuhp_lock_release(false);
 804
 805	cpuhp_lock_acquire(true);
 806	cpuhp_lock_release(true);
 807
 808	/*
 809	 * If we are up and running, use the hotplug thread. For early calls
 810	 * we invoke the thread function directly.
 811	 */
 812	if (!st->thread)
 813		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 814
 815	st->rollback = false;
 816	st->last = NULL;
 817
 818	st->node = node;
 819	st->bringup = bringup;
 820	st->cb_state = state;
 821	st->single = true;
 822
 823	__cpuhp_kick_ap(st);
 824
 825	/*
 826	 * If we failed and did a partial, do a rollback.
 827	 */
 828	if ((ret = st->result) && st->last) {
 829		st->rollback = true;
 830		st->bringup = !bringup;
 831
 832		__cpuhp_kick_ap(st);
 833	}
 834
 835	/*
 836	 * Clean up the leftovers so the next hotplug operation wont use stale
 837	 * data.
 838	 */
 839	st->node = st->last = NULL;
 840	return ret;
 841}
 842
 843static int cpuhp_kick_ap_work(unsigned int cpu)
 844{
 845	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 846	enum cpuhp_state prev_state = st->state;
 847	int ret;
 848
 849	cpuhp_lock_acquire(false);
 850	cpuhp_lock_release(false);
 851
 852	cpuhp_lock_acquire(true);
 853	cpuhp_lock_release(true);
 854
 855	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 856	ret = cpuhp_kick_ap(st, st->target);
 857	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 858
 859	return ret;
 860}
 861
 862static struct smp_hotplug_thread cpuhp_threads = {
 863	.store			= &cpuhp_state.thread,
 864	.create			= &cpuhp_create,
 865	.thread_should_run	= cpuhp_should_run,
 866	.thread_fn		= cpuhp_thread_fun,
 867	.thread_comm		= "cpuhp/%u",
 868	.selfparking		= true,
 869};
 870
 871void __init cpuhp_threads_init(void)
 872{
 873	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 874	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 875}
 876
 877/*
 878 *
 879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
 880 * protected region.
 881 *
 882 * The operation is still serialized against concurrent CPU hotplug via
 883 * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
 884 * serialized against other hotplug related activity like adding or
 885 * removing of state callbacks and state instances, which invoke either the
 886 * startup or the teardown callback of the affected state.
 887 *
 888 * This is required for subsystems which are unfixable vs. CPU hotplug and
 889 * evade lock inversion problems by scheduling work which has to be
 890 * completed _before_ cpu_up()/_cpu_down() returns.
 891 *
 892 * Don't even think about adding anything to this for any new code or even
 893 * drivers. It's only purpose is to keep existing lock order trainwrecks
 894 * working.
 895 *
 896 * For cpu_down() there might be valid reasons to finish cleanups which are
 897 * not required to be done under cpu_hotplug_lock, but that's a different
 898 * story and would be not invoked via this.
 899 */
 900static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
 901{
 902	/*
 903	 * cpusets delegate hotplug operations to a worker to "solve" the
 904	 * lock order problems. Wait for the worker, but only if tasks are
 905	 * _not_ frozen (suspend, hibernate) as that would wait forever.
 906	 *
 907	 * The wait is required because otherwise the hotplug operation
 908	 * returns with inconsistent state, which could even be observed in
 909	 * user space when a new CPU is brought up. The CPU plug uevent
 910	 * would be delivered and user space reacting on it would fail to
 911	 * move tasks to the newly plugged CPU up to the point where the
 912	 * work has finished because up to that point the newly plugged CPU
 913	 * is not assignable in cpusets/cgroups. On unplug that's not
 914	 * necessarily a visible issue, but it is still inconsistent state,
 915	 * which is the real problem which needs to be "fixed". This can't
 916	 * prevent the transient state between scheduling the work and
 917	 * returning from waiting for it.
 918	 */
 919	if (!tasks_frozen)
 920		cpuset_wait_for_hotplug();
 921}
 922
 923#ifdef CONFIG_HOTPLUG_CPU
 924#ifndef arch_clear_mm_cpumask_cpu
 925#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
 926#endif
 927
 928/**
 929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 930 * @cpu: a CPU id
 931 *
 932 * This function walks all processes, finds a valid mm struct for each one and
 933 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 934 * trivial, there are various non-obvious corner cases, which this function
 935 * tries to solve in a safe manner.
 936 *
 937 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 938 * be called only for an already offlined CPU.
 939 */
 940void clear_tasks_mm_cpumask(int cpu)
 941{
 942	struct task_struct *p;
 943
 944	/*
 945	 * This function is called after the cpu is taken down and marked
 946	 * offline, so its not like new tasks will ever get this cpu set in
 947	 * their mm mask. -- Peter Zijlstra
 948	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 949	 * full-fledged tasklist_lock.
 950	 */
 951	WARN_ON(cpu_online(cpu));
 952	rcu_read_lock();
 953	for_each_process(p) {
 954		struct task_struct *t;
 955
 956		/*
 957		 * Main thread might exit, but other threads may still have
 958		 * a valid mm. Find one.
 959		 */
 960		t = find_lock_task_mm(p);
 961		if (!t)
 962			continue;
 963		arch_clear_mm_cpumask_cpu(cpu, t->mm);
 964		task_unlock(t);
 965	}
 966	rcu_read_unlock();
 967}
 968
 969/* Take this CPU down. */
 970static int take_cpu_down(void *_param)
 971{
 972	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 973	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 974	int err, cpu = smp_processor_id();
 975	int ret;
 976
 977	/* Ensure this CPU doesn't handle any more interrupts. */
 978	err = __cpu_disable();
 979	if (err < 0)
 980		return err;
 981
 982	/*
 983	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
 984	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
 985	 */
 986	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
 987
 988	/* Invoke the former CPU_DYING callbacks */
 989	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
 990
 991	/*
 992	 * DYING must not fail!
 993	 */
 994	WARN_ON_ONCE(ret);
 
 995
 996	/* Give up timekeeping duties */
 997	tick_handover_do_timer();
 998	/* Remove CPU from timer broadcasting */
 999	tick_offline_cpu(cpu);
1000	/* Park the stopper thread */
1001	stop_machine_park(cpu);
1002	return 0;
1003}
1004
1005static int takedown_cpu(unsigned int cpu)
1006{
1007	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008	int err;
1009
1010	/* Park the smpboot threads */
1011	kthread_park(st->thread);
 
1012
1013	/*
1014	 * Prevent irq alloc/free while the dying cpu reorganizes the
1015	 * interrupt affinities.
1016	 */
1017	irq_lock_sparse();
1018
1019	/*
1020	 * So now all preempt/rcu users must observe !cpu_active().
1021	 */
1022	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1023	if (err) {
1024		/* CPU refused to die */
1025		irq_unlock_sparse();
1026		/* Unpark the hotplug thread so we can rollback there */
1027		kthread_unpark(st->thread);
1028		return err;
1029	}
1030	BUG_ON(cpu_online(cpu));
1031
1032	/*
1033	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034	 * all runnable tasks from the CPU, there's only the idle task left now
1035	 * that the migration thread is done doing the stop_machine thing.
1036	 *
1037	 * Wait for the stop thread to go away.
1038	 */
1039	wait_for_ap_thread(st, false);
1040	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1041
1042	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043	irq_unlock_sparse();
1044
1045	hotplug_cpu__broadcast_tick_pull(cpu);
1046	/* This actually kills the CPU. */
1047	__cpu_die(cpu);
1048
1049	tick_cleanup_dead_cpu(cpu);
1050	rcutree_migrate_callbacks(cpu);
1051	return 0;
1052}
1053
1054static void cpuhp_complete_idle_dead(void *arg)
1055{
1056	struct cpuhp_cpu_state *st = arg;
1057
1058	complete_ap_thread(st, false);
1059}
1060
1061void cpuhp_report_idle_dead(void)
1062{
1063	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064
1065	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1066	rcu_report_dead(smp_processor_id());
1067	st->state = CPUHP_AP_IDLE_DEAD;
1068	/*
1069	 * We cannot call complete after rcu_report_dead() so we delegate it
1070	 * to an online cpu.
1071	 */
1072	smp_call_function_single(cpumask_first(cpu_online_mask),
1073				 cpuhp_complete_idle_dead, st, 0);
1074}
1075
 
 
 
 
 
 
 
 
 
 
1076static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077				enum cpuhp_state target)
1078{
1079	enum cpuhp_state prev_state = st->state;
1080	int ret = 0;
1081
1082	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1083	if (ret) {
1084
1085		cpuhp_reset_state(st, prev_state);
1086
1087		if (st->state < prev_state)
1088			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1089							    prev_state));
1090	}
1091
1092	return ret;
1093}
1094
1095/* Requires cpu_add_remove_lock to be held */
1096static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097			   enum cpuhp_state target)
1098{
1099	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100	int prev_state, ret = 0;
1101
1102	if (num_online_cpus() == 1)
1103		return -EBUSY;
1104
1105	if (!cpu_present(cpu))
1106		return -EINVAL;
1107
1108	cpus_write_lock();
1109
1110	cpuhp_tasks_frozen = tasks_frozen;
1111
1112	prev_state = cpuhp_set_state(st, target);
1113	/*
1114	 * If the current CPU state is in the range of the AP hotplug thread,
1115	 * then we need to kick the thread.
1116	 */
1117	if (st->state > CPUHP_TEARDOWN_CPU) {
1118		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1119		ret = cpuhp_kick_ap_work(cpu);
1120		/*
1121		 * The AP side has done the error rollback already. Just
1122		 * return the error code..
1123		 */
1124		if (ret)
1125			goto out;
1126
1127		/*
1128		 * We might have stopped still in the range of the AP hotplug
1129		 * thread. Nothing to do anymore.
1130		 */
1131		if (st->state > CPUHP_TEARDOWN_CPU)
1132			goto out;
1133
1134		st->target = target;
1135	}
1136	/*
1137	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138	 * to do the further cleanups.
1139	 */
1140	ret = cpuhp_down_callbacks(cpu, st, target);
1141	if (ret && st->state < prev_state) {
1142		if (st->state == CPUHP_TEARDOWN_CPU) {
1143			cpuhp_reset_state(st, prev_state);
1144			__cpuhp_kick_ap(st);
1145		} else {
1146			WARN(1, "DEAD callback error for CPU%d", cpu);
1147		}
1148	}
1149
1150out:
1151	cpus_write_unlock();
1152	/*
1153	 * Do post unplug cleanup. This is still protected against
1154	 * concurrent CPU hotplug via cpu_add_remove_lock.
1155	 */
1156	lockup_detector_cleanup();
1157	arch_smt_update();
1158	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1159	return ret;
1160}
1161
1162static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1163{
1164	if (cpu_hotplug_disabled)
1165		return -EBUSY;
1166	return _cpu_down(cpu, 0, target);
1167}
1168
1169static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1170{
1171	int err;
1172
1173	cpu_maps_update_begin();
1174	err = cpu_down_maps_locked(cpu, target);
1175	cpu_maps_update_done();
1176	return err;
1177}
1178
1179/**
1180 * cpu_device_down - Bring down a cpu device
1181 * @dev: Pointer to the cpu device to offline
1182 *
1183 * This function is meant to be used by device core cpu subsystem only.
1184 *
1185 * Other subsystems should use remove_cpu() instead.
1186 */
1187int cpu_device_down(struct device *dev)
1188{
1189	return cpu_down(dev->id, CPUHP_OFFLINE);
1190}
1191
1192int remove_cpu(unsigned int cpu)
1193{
1194	int ret;
1195
1196	lock_device_hotplug();
1197	ret = device_offline(get_cpu_device(cpu));
1198	unlock_device_hotplug();
1199
1200	return ret;
1201}
1202EXPORT_SYMBOL_GPL(remove_cpu);
1203
1204void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1205{
1206	unsigned int cpu;
1207	int error;
1208
1209	cpu_maps_update_begin();
1210
1211	/*
1212	 * Make certain the cpu I'm about to reboot on is online.
1213	 *
1214	 * This is inline to what migrate_to_reboot_cpu() already do.
1215	 */
1216	if (!cpu_online(primary_cpu))
1217		primary_cpu = cpumask_first(cpu_online_mask);
1218
1219	for_each_online_cpu(cpu) {
1220		if (cpu == primary_cpu)
1221			continue;
1222
1223		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224		if (error) {
1225			pr_err("Failed to offline CPU%d - error=%d",
1226				cpu, error);
1227			break;
1228		}
1229	}
1230
1231	/*
1232	 * Ensure all but the reboot CPU are offline.
1233	 */
1234	BUG_ON(num_online_cpus() > 1);
1235
1236	/*
1237	 * Make sure the CPUs won't be enabled by someone else after this
1238	 * point. Kexec will reboot to a new kernel shortly resetting
1239	 * everything along the way.
1240	 */
1241	cpu_hotplug_disabled++;
1242
1243	cpu_maps_update_done();
1244}
 
1245
1246#else
1247#define takedown_cpu		NULL
1248#endif /*CONFIG_HOTPLUG_CPU*/
1249
1250/**
1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1252 * @cpu: cpu that just started
1253 *
1254 * It must be called by the arch code on the new cpu, before the new cpu
1255 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1256 */
1257void notify_cpu_starting(unsigned int cpu)
1258{
1259	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1261	int ret;
1262
1263	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1264	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1265	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1266
1267	/*
1268	 * STARTING must not fail!
1269	 */
1270	WARN_ON_ONCE(ret);
 
1271}
1272
1273/*
1274 * Called from the idle task. Wake up the controlling task which brings the
1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276 * online bringup to the hotplug thread.
1277 */
1278void cpuhp_online_idle(enum cpuhp_state state)
1279{
1280	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1281
1282	/* Happens for the boot cpu */
1283	if (state != CPUHP_AP_ONLINE_IDLE)
1284		return;
1285
1286	/*
1287	 * Unpart the stopper thread before we start the idle loop (and start
1288	 * scheduling); this ensures the stopper task is always available.
1289	 */
1290	stop_machine_unpark(smp_processor_id());
1291
1292	st->state = CPUHP_AP_ONLINE_IDLE;
1293	complete_ap_thread(st, true);
1294}
1295
1296/* Requires cpu_add_remove_lock to be held */
1297static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1298{
1299	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300	struct task_struct *idle;
1301	int ret = 0;
1302
1303	cpus_write_lock();
1304
1305	if (!cpu_present(cpu)) {
1306		ret = -EINVAL;
1307		goto out;
1308	}
1309
1310	/*
1311	 * The caller of cpu_up() might have raced with another
1312	 * caller. Nothing to do.
1313	 */
1314	if (st->state >= target)
1315		goto out;
1316
1317	if (st->state == CPUHP_OFFLINE) {
1318		/* Let it fail before we try to bring the cpu up */
1319		idle = idle_thread_get(cpu);
1320		if (IS_ERR(idle)) {
1321			ret = PTR_ERR(idle);
1322			goto out;
1323		}
1324	}
1325
1326	cpuhp_tasks_frozen = tasks_frozen;
1327
1328	cpuhp_set_state(st, target);
1329	/*
1330	 * If the current CPU state is in the range of the AP hotplug thread,
1331	 * then we need to kick the thread once more.
1332	 */
1333	if (st->state > CPUHP_BRINGUP_CPU) {
1334		ret = cpuhp_kick_ap_work(cpu);
1335		/*
1336		 * The AP side has done the error rollback already. Just
1337		 * return the error code..
1338		 */
1339		if (ret)
1340			goto out;
1341	}
1342
1343	/*
1344	 * Try to reach the target state. We max out on the BP at
1345	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1346	 * responsible for bringing it up to the target state.
1347	 */
1348	target = min((int)target, CPUHP_BRINGUP_CPU);
1349	ret = cpuhp_up_callbacks(cpu, st, target);
1350out:
1351	cpus_write_unlock();
1352	arch_smt_update();
1353	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1354	return ret;
1355}
1356
1357static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1358{
1359	int err = 0;
1360
1361	if (!cpu_possible(cpu)) {
1362		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1363		       cpu);
1364#if defined(CONFIG_IA64)
1365		pr_err("please check additional_cpus= boot parameter\n");
1366#endif
1367		return -EINVAL;
1368	}
1369
1370	err = try_online_node(cpu_to_node(cpu));
1371	if (err)
1372		return err;
1373
1374	cpu_maps_update_begin();
1375
1376	if (cpu_hotplug_disabled) {
1377		err = -EBUSY;
1378		goto out;
1379	}
1380	if (!cpu_smt_allowed(cpu)) {
1381		err = -EPERM;
1382		goto out;
1383	}
1384
1385	err = _cpu_up(cpu, 0, target);
1386out:
1387	cpu_maps_update_done();
1388	return err;
1389}
1390
1391/**
1392 * cpu_device_up - Bring up a cpu device
1393 * @dev: Pointer to the cpu device to online
1394 *
1395 * This function is meant to be used by device core cpu subsystem only.
1396 *
1397 * Other subsystems should use add_cpu() instead.
1398 */
1399int cpu_device_up(struct device *dev)
1400{
1401	return cpu_up(dev->id, CPUHP_ONLINE);
1402}
1403
1404int add_cpu(unsigned int cpu)
1405{
1406	int ret;
1407
1408	lock_device_hotplug();
1409	ret = device_online(get_cpu_device(cpu));
1410	unlock_device_hotplug();
1411
1412	return ret;
1413}
1414EXPORT_SYMBOL_GPL(add_cpu);
1415
1416/**
1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1419 *
1420 * On some architectures like arm64, we can hibernate on any CPU, but on
1421 * wake up the CPU we hibernated on might be offline as a side effect of
1422 * using maxcpus= for example.
1423 */
1424int bringup_hibernate_cpu(unsigned int sleep_cpu)
1425{
1426	int ret;
1427
1428	if (!cpu_online(sleep_cpu)) {
1429		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1430		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1431		if (ret) {
1432			pr_err("Failed to bring hibernate-CPU up!\n");
1433			return ret;
1434		}
1435	}
1436	return 0;
1437}
1438
1439void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1440{
1441	unsigned int cpu;
1442
1443	for_each_present_cpu(cpu) {
1444		if (num_online_cpus() >= setup_max_cpus)
1445			break;
1446		if (!cpu_online(cpu))
1447			cpu_up(cpu, CPUHP_ONLINE);
1448	}
1449}
 
1450
1451#ifdef CONFIG_PM_SLEEP_SMP
1452static cpumask_var_t frozen_cpus;
1453
1454int freeze_secondary_cpus(int primary)
1455{
1456	int cpu, error = 0;
1457
1458	cpu_maps_update_begin();
1459	if (primary == -1) {
1460		primary = cpumask_first(cpu_online_mask);
1461		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1463	} else {
1464		if (!cpu_online(primary))
1465			primary = cpumask_first(cpu_online_mask);
1466	}
1467
1468	/*
1469	 * We take down all of the non-boot CPUs in one shot to avoid races
1470	 * with the userspace trying to use the CPU hotplug at the same time
1471	 */
1472	cpumask_clear(frozen_cpus);
1473
1474	pr_info("Disabling non-boot CPUs ...\n");
1475	for_each_online_cpu(cpu) {
1476		if (cpu == primary)
1477			continue;
1478
1479		if (pm_wakeup_pending()) {
1480			pr_info("Wakeup pending. Abort CPU freeze\n");
1481			error = -EBUSY;
1482			break;
1483		}
1484
1485		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1486		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1487		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1488		if (!error)
1489			cpumask_set_cpu(cpu, frozen_cpus);
1490		else {
1491			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1492			break;
1493		}
1494	}
1495
1496	if (!error)
1497		BUG_ON(num_online_cpus() > 1);
1498	else
1499		pr_err("Non-boot CPUs are not disabled\n");
1500
1501	/*
1502	 * Make sure the CPUs won't be enabled by someone else. We need to do
1503	 * this even in case of failure as all freeze_secondary_cpus() users are
1504	 * supposed to do thaw_secondary_cpus() on the failure path.
1505	 */
1506	cpu_hotplug_disabled++;
1507
1508	cpu_maps_update_done();
1509	return error;
1510}
1511
1512void __weak arch_thaw_secondary_cpus_begin(void)
1513{
1514}
1515
1516void __weak arch_thaw_secondary_cpus_end(void)
1517{
1518}
1519
1520void thaw_secondary_cpus(void)
1521{
1522	int cpu, error;
1523
1524	/* Allow everyone to use the CPU hotplug again */
1525	cpu_maps_update_begin();
1526	__cpu_hotplug_enable();
1527	if (cpumask_empty(frozen_cpus))
1528		goto out;
1529
1530	pr_info("Enabling non-boot CPUs ...\n");
1531
1532	arch_thaw_secondary_cpus_begin();
1533
1534	for_each_cpu(cpu, frozen_cpus) {
1535		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1536		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1537		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1538		if (!error) {
1539			pr_info("CPU%d is up\n", cpu);
1540			continue;
1541		}
1542		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1543	}
1544
1545	arch_thaw_secondary_cpus_end();
1546
1547	cpumask_clear(frozen_cpus);
1548out:
1549	cpu_maps_update_done();
1550}
1551
1552static int __init alloc_frozen_cpus(void)
1553{
1554	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1555		return -ENOMEM;
1556	return 0;
1557}
1558core_initcall(alloc_frozen_cpus);
1559
1560/*
1561 * When callbacks for CPU hotplug notifications are being executed, we must
1562 * ensure that the state of the system with respect to the tasks being frozen
1563 * or not, as reported by the notification, remains unchanged *throughout the
1564 * duration* of the execution of the callbacks.
1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1566 *
1567 * This synchronization is implemented by mutually excluding regular CPU
1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569 * Hibernate notifications.
1570 */
1571static int
1572cpu_hotplug_pm_callback(struct notifier_block *nb,
1573			unsigned long action, void *ptr)
1574{
1575	switch (action) {
1576
1577	case PM_SUSPEND_PREPARE:
1578	case PM_HIBERNATION_PREPARE:
1579		cpu_hotplug_disable();
1580		break;
1581
1582	case PM_POST_SUSPEND:
1583	case PM_POST_HIBERNATION:
1584		cpu_hotplug_enable();
1585		break;
1586
1587	default:
1588		return NOTIFY_DONE;
1589	}
1590
1591	return NOTIFY_OK;
1592}
1593
1594
1595static int __init cpu_hotplug_pm_sync_init(void)
1596{
1597	/*
1598	 * cpu_hotplug_pm_callback has higher priority than x86
1599	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600	 * to disable cpu hotplug to avoid cpu hotplug race.
1601	 */
1602	pm_notifier(cpu_hotplug_pm_callback, 0);
1603	return 0;
1604}
1605core_initcall(cpu_hotplug_pm_sync_init);
1606
1607#endif /* CONFIG_PM_SLEEP_SMP */
1608
1609int __boot_cpu_id;
1610
1611#endif /* CONFIG_SMP */
1612
1613/* Boot processor state steps */
1614static struct cpuhp_step cpuhp_hp_states[] = {
1615	[CPUHP_OFFLINE] = {
1616		.name			= "offline",
1617		.startup.single		= NULL,
1618		.teardown.single	= NULL,
1619	},
1620#ifdef CONFIG_SMP
1621	[CPUHP_CREATE_THREADS]= {
1622		.name			= "threads:prepare",
1623		.startup.single		= smpboot_create_threads,
1624		.teardown.single	= NULL,
1625		.cant_stop		= true,
1626	},
1627	[CPUHP_PERF_PREPARE] = {
1628		.name			= "perf:prepare",
1629		.startup.single		= perf_event_init_cpu,
1630		.teardown.single	= perf_event_exit_cpu,
1631	},
1632	[CPUHP_WORKQUEUE_PREP] = {
1633		.name			= "workqueue:prepare",
1634		.startup.single		= workqueue_prepare_cpu,
1635		.teardown.single	= NULL,
1636	},
1637	[CPUHP_HRTIMERS_PREPARE] = {
1638		.name			= "hrtimers:prepare",
1639		.startup.single		= hrtimers_prepare_cpu,
1640		.teardown.single	= hrtimers_dead_cpu,
1641	},
1642	[CPUHP_SMPCFD_PREPARE] = {
1643		.name			= "smpcfd:prepare",
1644		.startup.single		= smpcfd_prepare_cpu,
1645		.teardown.single	= smpcfd_dead_cpu,
1646	},
1647	[CPUHP_RELAY_PREPARE] = {
1648		.name			= "relay:prepare",
1649		.startup.single		= relay_prepare_cpu,
1650		.teardown.single	= NULL,
1651	},
1652	[CPUHP_SLAB_PREPARE] = {
1653		.name			= "slab:prepare",
1654		.startup.single		= slab_prepare_cpu,
1655		.teardown.single	= slab_dead_cpu,
1656	},
1657	[CPUHP_RCUTREE_PREP] = {
1658		.name			= "RCU/tree:prepare",
1659		.startup.single		= rcutree_prepare_cpu,
1660		.teardown.single	= rcutree_dead_cpu,
1661	},
1662	/*
1663	 * On the tear-down path, timers_dead_cpu() must be invoked
1664	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665	 * otherwise a RCU stall occurs.
1666	 */
1667	[CPUHP_TIMERS_PREPARE] = {
1668		.name			= "timers:prepare",
1669		.startup.single		= timers_prepare_cpu,
1670		.teardown.single	= timers_dead_cpu,
1671	},
1672	/* Kicks the plugged cpu into life */
1673	[CPUHP_BRINGUP_CPU] = {
1674		.name			= "cpu:bringup",
1675		.startup.single		= bringup_cpu,
1676		.teardown.single	= finish_cpu,
1677		.cant_stop		= true,
1678	},
1679	/* Final state before CPU kills itself */
1680	[CPUHP_AP_IDLE_DEAD] = {
1681		.name			= "idle:dead",
1682	},
1683	/*
1684	 * Last state before CPU enters the idle loop to die. Transient state
1685	 * for synchronization.
1686	 */
1687	[CPUHP_AP_OFFLINE] = {
1688		.name			= "ap:offline",
1689		.cant_stop		= true,
1690	},
1691	/* First state is scheduler control. Interrupts are disabled */
1692	[CPUHP_AP_SCHED_STARTING] = {
1693		.name			= "sched:starting",
1694		.startup.single		= sched_cpu_starting,
1695		.teardown.single	= sched_cpu_dying,
1696	},
1697	[CPUHP_AP_RCUTREE_DYING] = {
1698		.name			= "RCU/tree:dying",
1699		.startup.single		= NULL,
1700		.teardown.single	= rcutree_dying_cpu,
1701	},
1702	[CPUHP_AP_SMPCFD_DYING] = {
1703		.name			= "smpcfd:dying",
1704		.startup.single		= NULL,
1705		.teardown.single	= smpcfd_dying_cpu,
1706	},
1707	/* Entry state on starting. Interrupts enabled from here on. Transient
1708	 * state for synchronsization */
1709	[CPUHP_AP_ONLINE] = {
1710		.name			= "ap:online",
1711	},
1712	/*
1713	 * Handled on control processor until the plugged processor manages
1714	 * this itself.
1715	 */
1716	[CPUHP_TEARDOWN_CPU] = {
1717		.name			= "cpu:teardown",
1718		.startup.single		= NULL,
1719		.teardown.single	= takedown_cpu,
1720		.cant_stop		= true,
1721	},
1722
1723	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724		.name			= "sched:waitempty",
1725		.startup.single		= NULL,
1726		.teardown.single	= sched_cpu_wait_empty,
1727	},
1728
1729	/* Handle smpboot threads park/unpark */
1730	[CPUHP_AP_SMPBOOT_THREADS] = {
1731		.name			= "smpboot/threads:online",
1732		.startup.single		= smpboot_unpark_threads,
1733		.teardown.single	= smpboot_park_threads,
1734	},
1735	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736		.name			= "irq/affinity:online",
1737		.startup.single		= irq_affinity_online_cpu,
1738		.teardown.single	= NULL,
1739	},
1740	[CPUHP_AP_PERF_ONLINE] = {
1741		.name			= "perf:online",
1742		.startup.single		= perf_event_init_cpu,
1743		.teardown.single	= perf_event_exit_cpu,
1744	},
1745	[CPUHP_AP_WATCHDOG_ONLINE] = {
1746		.name			= "lockup_detector:online",
1747		.startup.single		= lockup_detector_online_cpu,
1748		.teardown.single	= lockup_detector_offline_cpu,
1749	},
1750	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1751		.name			= "workqueue:online",
1752		.startup.single		= workqueue_online_cpu,
1753		.teardown.single	= workqueue_offline_cpu,
1754	},
1755	[CPUHP_AP_RCUTREE_ONLINE] = {
1756		.name			= "RCU/tree:online",
1757		.startup.single		= rcutree_online_cpu,
1758		.teardown.single	= rcutree_offline_cpu,
1759	},
1760#endif
1761	/*
1762	 * The dynamically registered state space is here
1763	 */
1764
1765#ifdef CONFIG_SMP
1766	/* Last state is scheduler control setting the cpu active */
1767	[CPUHP_AP_ACTIVE] = {
1768		.name			= "sched:active",
1769		.startup.single		= sched_cpu_activate,
1770		.teardown.single	= sched_cpu_deactivate,
1771	},
1772#endif
1773
1774	/* CPU is fully up and running. */
1775	[CPUHP_ONLINE] = {
1776		.name			= "online",
1777		.startup.single		= NULL,
1778		.teardown.single	= NULL,
1779	},
1780};
1781
1782/* Sanity check for callbacks */
1783static int cpuhp_cb_check(enum cpuhp_state state)
1784{
1785	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1786		return -EINVAL;
1787	return 0;
1788}
1789
1790/*
1791 * Returns a free for dynamic slot assignment of the Online state. The states
1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793 * by having no name assigned.
1794 */
1795static int cpuhp_reserve_state(enum cpuhp_state state)
1796{
1797	enum cpuhp_state i, end;
1798	struct cpuhp_step *step;
1799
1800	switch (state) {
1801	case CPUHP_AP_ONLINE_DYN:
1802		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1803		end = CPUHP_AP_ONLINE_DYN_END;
1804		break;
1805	case CPUHP_BP_PREPARE_DYN:
1806		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1807		end = CPUHP_BP_PREPARE_DYN_END;
1808		break;
1809	default:
1810		return -EINVAL;
1811	}
1812
1813	for (i = state; i <= end; i++, step++) {
1814		if (!step->name)
1815			return i;
1816	}
1817	WARN(1, "No more dynamic states available for CPU hotplug\n");
1818	return -ENOSPC;
1819}
1820
1821static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822				 int (*startup)(unsigned int cpu),
1823				 int (*teardown)(unsigned int cpu),
1824				 bool multi_instance)
1825{
1826	/* (Un)Install the callbacks for further cpu hotplug operations */
1827	struct cpuhp_step *sp;
1828	int ret = 0;
1829
1830	/*
1831	 * If name is NULL, then the state gets removed.
1832	 *
1833	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834	 * the first allocation from these dynamic ranges, so the removal
1835	 * would trigger a new allocation and clear the wrong (already
1836	 * empty) state, leaving the callbacks of the to be cleared state
1837	 * dangling, which causes wreckage on the next hotplug operation.
1838	 */
1839	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840		     state == CPUHP_BP_PREPARE_DYN)) {
1841		ret = cpuhp_reserve_state(state);
1842		if (ret < 0)
1843			return ret;
1844		state = ret;
1845	}
1846	sp = cpuhp_get_step(state);
1847	if (name && sp->name)
1848		return -EBUSY;
1849
1850	sp->startup.single = startup;
1851	sp->teardown.single = teardown;
1852	sp->name = name;
1853	sp->multi_instance = multi_instance;
1854	INIT_HLIST_HEAD(&sp->list);
1855	return ret;
1856}
1857
1858static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1859{
1860	return cpuhp_get_step(state)->teardown.single;
1861}
1862
1863/*
1864 * Call the startup/teardown function for a step either on the AP or
1865 * on the current CPU.
1866 */
1867static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868			    struct hlist_node *node)
1869{
1870	struct cpuhp_step *sp = cpuhp_get_step(state);
1871	int ret;
1872
1873	/*
1874	 * If there's nothing to do, we done.
1875	 * Relies on the union for multi_instance.
1876	 */
1877	if (cpuhp_step_empty(bringup, sp))
 
1878		return 0;
1879	/*
1880	 * The non AP bound callbacks can fail on bringup. On teardown
1881	 * e.g. module removal we crash for now.
1882	 */
1883#ifdef CONFIG_SMP
1884	if (cpuhp_is_ap_state(state))
1885		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1886	else
1887		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1888#else
1889	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1890#endif
1891	BUG_ON(ret && !bringup);
1892	return ret;
1893}
1894
1895/*
1896 * Called from __cpuhp_setup_state on a recoverable failure.
1897 *
1898 * Note: The teardown callbacks for rollback are not allowed to fail!
1899 */
1900static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1901				   struct hlist_node *node)
1902{
1903	int cpu;
1904
1905	/* Roll back the already executed steps on the other cpus */
1906	for_each_present_cpu(cpu) {
1907		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908		int cpustate = st->state;
1909
1910		if (cpu >= failedcpu)
1911			break;
1912
1913		/* Did we invoke the startup call on that cpu ? */
1914		if (cpustate >= state)
1915			cpuhp_issue_call(cpu, state, false, node);
1916	}
1917}
1918
1919int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920					  struct hlist_node *node,
1921					  bool invoke)
1922{
1923	struct cpuhp_step *sp;
1924	int cpu;
1925	int ret;
1926
1927	lockdep_assert_cpus_held();
1928
1929	sp = cpuhp_get_step(state);
1930	if (sp->multi_instance == false)
1931		return -EINVAL;
1932
1933	mutex_lock(&cpuhp_state_mutex);
1934
1935	if (!invoke || !sp->startup.multi)
1936		goto add_node;
1937
1938	/*
1939	 * Try to call the startup callback for each present cpu
1940	 * depending on the hotplug state of the cpu.
1941	 */
1942	for_each_present_cpu(cpu) {
1943		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944		int cpustate = st->state;
1945
1946		if (cpustate < state)
1947			continue;
1948
1949		ret = cpuhp_issue_call(cpu, state, true, node);
1950		if (ret) {
1951			if (sp->teardown.multi)
1952				cpuhp_rollback_install(cpu, state, node);
1953			goto unlock;
1954		}
1955	}
1956add_node:
1957	ret = 0;
1958	hlist_add_head(node, &sp->list);
1959unlock:
1960	mutex_unlock(&cpuhp_state_mutex);
1961	return ret;
1962}
1963
1964int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1965			       bool invoke)
1966{
1967	int ret;
1968
1969	cpus_read_lock();
1970	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1971	cpus_read_unlock();
1972	return ret;
1973}
1974EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1975
1976/**
1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1978 * @state:		The state to setup
1979 * @invoke:		If true, the startup function is invoked for cpus where
1980 *			cpu state >= @state
1981 * @startup:		startup callback function
1982 * @teardown:		teardown callback function
1983 * @multi_instance:	State is set up for multiple instances which get
1984 *			added afterwards.
1985 *
1986 * The caller needs to hold cpus read locked while calling this function.
1987 * Returns:
1988 *   On success:
1989 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990 *      0 for all other states
1991 *   On failure: proper (negative) error code
1992 */
1993int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994				   const char *name, bool invoke,
1995				   int (*startup)(unsigned int cpu),
1996				   int (*teardown)(unsigned int cpu),
1997				   bool multi_instance)
1998{
1999	int cpu, ret = 0;
2000	bool dynstate;
2001
2002	lockdep_assert_cpus_held();
2003
2004	if (cpuhp_cb_check(state) || !name)
2005		return -EINVAL;
2006
2007	mutex_lock(&cpuhp_state_mutex);
2008
2009	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2010				    multi_instance);
2011
2012	dynstate = state == CPUHP_AP_ONLINE_DYN;
2013	if (ret > 0 && dynstate) {
2014		state = ret;
2015		ret = 0;
2016	}
2017
2018	if (ret || !invoke || !startup)
2019		goto out;
2020
2021	/*
2022	 * Try to call the startup callback for each present cpu
2023	 * depending on the hotplug state of the cpu.
2024	 */
2025	for_each_present_cpu(cpu) {
2026		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027		int cpustate = st->state;
2028
2029		if (cpustate < state)
2030			continue;
2031
2032		ret = cpuhp_issue_call(cpu, state, true, NULL);
2033		if (ret) {
2034			if (teardown)
2035				cpuhp_rollback_install(cpu, state, NULL);
2036			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2037			goto out;
2038		}
2039	}
2040out:
2041	mutex_unlock(&cpuhp_state_mutex);
2042	/*
2043	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044	 * dynamically allocated state in case of success.
2045	 */
2046	if (!ret && dynstate)
2047		return state;
2048	return ret;
2049}
2050EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2051
2052int __cpuhp_setup_state(enum cpuhp_state state,
2053			const char *name, bool invoke,
2054			int (*startup)(unsigned int cpu),
2055			int (*teardown)(unsigned int cpu),
2056			bool multi_instance)
2057{
2058	int ret;
2059
2060	cpus_read_lock();
2061	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062					     teardown, multi_instance);
2063	cpus_read_unlock();
2064	return ret;
2065}
2066EXPORT_SYMBOL(__cpuhp_setup_state);
2067
2068int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069				  struct hlist_node *node, bool invoke)
2070{
2071	struct cpuhp_step *sp = cpuhp_get_step(state);
2072	int cpu;
2073
2074	BUG_ON(cpuhp_cb_check(state));
2075
2076	if (!sp->multi_instance)
2077		return -EINVAL;
2078
2079	cpus_read_lock();
2080	mutex_lock(&cpuhp_state_mutex);
2081
2082	if (!invoke || !cpuhp_get_teardown_cb(state))
2083		goto remove;
2084	/*
2085	 * Call the teardown callback for each present cpu depending
2086	 * on the hotplug state of the cpu. This function is not
2087	 * allowed to fail currently!
2088	 */
2089	for_each_present_cpu(cpu) {
2090		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091		int cpustate = st->state;
2092
2093		if (cpustate >= state)
2094			cpuhp_issue_call(cpu, state, false, node);
2095	}
2096
2097remove:
2098	hlist_del(node);
2099	mutex_unlock(&cpuhp_state_mutex);
2100	cpus_read_unlock();
2101
2102	return 0;
2103}
2104EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2105
2106/**
2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2108 * @state:	The state to remove
2109 * @invoke:	If true, the teardown function is invoked for cpus where
2110 *		cpu state >= @state
2111 *
2112 * The caller needs to hold cpus read locked while calling this function.
2113 * The teardown callback is currently not allowed to fail. Think
2114 * about module removal!
2115 */
2116void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2117{
2118	struct cpuhp_step *sp = cpuhp_get_step(state);
2119	int cpu;
2120
2121	BUG_ON(cpuhp_cb_check(state));
2122
2123	lockdep_assert_cpus_held();
2124
2125	mutex_lock(&cpuhp_state_mutex);
2126	if (sp->multi_instance) {
2127		WARN(!hlist_empty(&sp->list),
2128		     "Error: Removing state %d which has instances left.\n",
2129		     state);
2130		goto remove;
2131	}
2132
2133	if (!invoke || !cpuhp_get_teardown_cb(state))
2134		goto remove;
2135
2136	/*
2137	 * Call the teardown callback for each present cpu depending
2138	 * on the hotplug state of the cpu. This function is not
2139	 * allowed to fail currently!
2140	 */
2141	for_each_present_cpu(cpu) {
2142		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143		int cpustate = st->state;
2144
2145		if (cpustate >= state)
2146			cpuhp_issue_call(cpu, state, false, NULL);
2147	}
2148remove:
2149	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2150	mutex_unlock(&cpuhp_state_mutex);
2151}
2152EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2153
2154void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2155{
2156	cpus_read_lock();
2157	__cpuhp_remove_state_cpuslocked(state, invoke);
2158	cpus_read_unlock();
2159}
2160EXPORT_SYMBOL(__cpuhp_remove_state);
2161
2162#ifdef CONFIG_HOTPLUG_SMT
2163static void cpuhp_offline_cpu_device(unsigned int cpu)
2164{
2165	struct device *dev = get_cpu_device(cpu);
2166
2167	dev->offline = true;
2168	/* Tell user space about the state change */
2169	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2170}
2171
2172static void cpuhp_online_cpu_device(unsigned int cpu)
2173{
2174	struct device *dev = get_cpu_device(cpu);
2175
2176	dev->offline = false;
2177	/* Tell user space about the state change */
2178	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2179}
2180
2181int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2182{
2183	int cpu, ret = 0;
2184
2185	cpu_maps_update_begin();
2186	for_each_online_cpu(cpu) {
2187		if (topology_is_primary_thread(cpu))
2188			continue;
2189		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2190		if (ret)
2191			break;
2192		/*
2193		 * As this needs to hold the cpu maps lock it's impossible
2194		 * to call device_offline() because that ends up calling
2195		 * cpu_down() which takes cpu maps lock. cpu maps lock
2196		 * needs to be held as this might race against in kernel
2197		 * abusers of the hotplug machinery (thermal management).
2198		 *
2199		 * So nothing would update device:offline state. That would
2200		 * leave the sysfs entry stale and prevent onlining after
2201		 * smt control has been changed to 'off' again. This is
2202		 * called under the sysfs hotplug lock, so it is properly
2203		 * serialized against the regular offline usage.
2204		 */
2205		cpuhp_offline_cpu_device(cpu);
2206	}
2207	if (!ret)
2208		cpu_smt_control = ctrlval;
2209	cpu_maps_update_done();
2210	return ret;
2211}
2212
2213int cpuhp_smt_enable(void)
2214{
2215	int cpu, ret = 0;
2216
2217	cpu_maps_update_begin();
2218	cpu_smt_control = CPU_SMT_ENABLED;
2219	for_each_present_cpu(cpu) {
2220		/* Skip online CPUs and CPUs on offline nodes */
2221		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2222			continue;
2223		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2224		if (ret)
2225			break;
2226		/* See comment in cpuhp_smt_disable() */
2227		cpuhp_online_cpu_device(cpu);
2228	}
2229	cpu_maps_update_done();
2230	return ret;
2231}
2232#endif
2233
2234#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235static ssize_t show_cpuhp_state(struct device *dev,
2236				struct device_attribute *attr, char *buf)
2237{
2238	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240	return sprintf(buf, "%d\n", st->state);
2241}
2242static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2243
2244static ssize_t write_cpuhp_target(struct device *dev,
2245				  struct device_attribute *attr,
2246				  const char *buf, size_t count)
2247{
2248	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249	struct cpuhp_step *sp;
2250	int target, ret;
2251
2252	ret = kstrtoint(buf, 10, &target);
2253	if (ret)
2254		return ret;
2255
2256#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2258		return -EINVAL;
2259#else
2260	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2261		return -EINVAL;
2262#endif
2263
2264	ret = lock_device_hotplug_sysfs();
2265	if (ret)
2266		return ret;
2267
2268	mutex_lock(&cpuhp_state_mutex);
2269	sp = cpuhp_get_step(target);
2270	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271	mutex_unlock(&cpuhp_state_mutex);
2272	if (ret)
2273		goto out;
2274
2275	if (st->state < target)
2276		ret = cpu_up(dev->id, target);
2277	else
2278		ret = cpu_down(dev->id, target);
2279out:
2280	unlock_device_hotplug();
2281	return ret ? ret : count;
2282}
2283
2284static ssize_t show_cpuhp_target(struct device *dev,
2285				 struct device_attribute *attr, char *buf)
2286{
2287	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2288
2289	return sprintf(buf, "%d\n", st->target);
2290}
2291static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2292
2293
2294static ssize_t write_cpuhp_fail(struct device *dev,
2295				struct device_attribute *attr,
2296				const char *buf, size_t count)
2297{
2298	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299	struct cpuhp_step *sp;
2300	int fail, ret;
2301
2302	ret = kstrtoint(buf, 10, &fail);
2303	if (ret)
2304		return ret;
2305
2306	if (fail == CPUHP_INVALID) {
2307		st->fail = fail;
2308		return count;
2309	}
2310
2311	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2312		return -EINVAL;
2313
2314	/*
2315	 * Cannot fail STARTING/DYING callbacks.
2316	 */
2317	if (cpuhp_is_atomic_state(fail))
2318		return -EINVAL;
2319
2320	/*
2321	 * DEAD callbacks cannot fail...
2322	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323	 * triggering STARTING callbacks, a failure in this state would
2324	 * hinder rollback.
2325	 */
2326	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2327		return -EINVAL;
2328
2329	/*
2330	 * Cannot fail anything that doesn't have callbacks.
2331	 */
2332	mutex_lock(&cpuhp_state_mutex);
2333	sp = cpuhp_get_step(fail);
2334	if (!sp->startup.single && !sp->teardown.single)
2335		ret = -EINVAL;
2336	mutex_unlock(&cpuhp_state_mutex);
2337	if (ret)
2338		return ret;
2339
2340	st->fail = fail;
2341
2342	return count;
2343}
2344
2345static ssize_t show_cpuhp_fail(struct device *dev,
2346			       struct device_attribute *attr, char *buf)
2347{
2348	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349
2350	return sprintf(buf, "%d\n", st->fail);
2351}
2352
2353static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2354
2355static struct attribute *cpuhp_cpu_attrs[] = {
2356	&dev_attr_state.attr,
2357	&dev_attr_target.attr,
2358	&dev_attr_fail.attr,
2359	NULL
2360};
2361
2362static const struct attribute_group cpuhp_cpu_attr_group = {
2363	.attrs = cpuhp_cpu_attrs,
2364	.name = "hotplug",
2365	NULL
2366};
2367
2368static ssize_t show_cpuhp_states(struct device *dev,
2369				 struct device_attribute *attr, char *buf)
2370{
2371	ssize_t cur, res = 0;
2372	int i;
2373
2374	mutex_lock(&cpuhp_state_mutex);
2375	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2376		struct cpuhp_step *sp = cpuhp_get_step(i);
2377
2378		if (sp->name) {
2379			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2380			buf += cur;
2381			res += cur;
2382		}
2383	}
2384	mutex_unlock(&cpuhp_state_mutex);
2385	return res;
2386}
2387static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2388
2389static struct attribute *cpuhp_cpu_root_attrs[] = {
2390	&dev_attr_states.attr,
2391	NULL
2392};
2393
2394static const struct attribute_group cpuhp_cpu_root_attr_group = {
2395	.attrs = cpuhp_cpu_root_attrs,
2396	.name = "hotplug",
2397	NULL
2398};
2399
2400#ifdef CONFIG_HOTPLUG_SMT
2401
2402static ssize_t
2403__store_smt_control(struct device *dev, struct device_attribute *attr,
2404		    const char *buf, size_t count)
2405{
2406	int ctrlval, ret;
2407
2408	if (sysfs_streq(buf, "on"))
2409		ctrlval = CPU_SMT_ENABLED;
2410	else if (sysfs_streq(buf, "off"))
2411		ctrlval = CPU_SMT_DISABLED;
2412	else if (sysfs_streq(buf, "forceoff"))
2413		ctrlval = CPU_SMT_FORCE_DISABLED;
2414	else
2415		return -EINVAL;
2416
2417	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2418		return -EPERM;
2419
2420	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2421		return -ENODEV;
2422
2423	ret = lock_device_hotplug_sysfs();
2424	if (ret)
2425		return ret;
2426
2427	if (ctrlval != cpu_smt_control) {
2428		switch (ctrlval) {
2429		case CPU_SMT_ENABLED:
2430			ret = cpuhp_smt_enable();
2431			break;
2432		case CPU_SMT_DISABLED:
2433		case CPU_SMT_FORCE_DISABLED:
2434			ret = cpuhp_smt_disable(ctrlval);
2435			break;
2436		}
2437	}
2438
2439	unlock_device_hotplug();
2440	return ret ? ret : count;
2441}
2442
2443#else /* !CONFIG_HOTPLUG_SMT */
2444static ssize_t
2445__store_smt_control(struct device *dev, struct device_attribute *attr,
2446		    const char *buf, size_t count)
2447{
2448	return -ENODEV;
2449}
2450#endif /* CONFIG_HOTPLUG_SMT */
2451
2452static const char *smt_states[] = {
2453	[CPU_SMT_ENABLED]		= "on",
2454	[CPU_SMT_DISABLED]		= "off",
2455	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2456	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2457	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2458};
2459
2460static ssize_t
2461show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2462{
2463	const char *state = smt_states[cpu_smt_control];
2464
2465	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2466}
2467
2468static ssize_t
2469store_smt_control(struct device *dev, struct device_attribute *attr,
2470		  const char *buf, size_t count)
2471{
2472	return __store_smt_control(dev, attr, buf, count);
2473}
2474static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2475
2476static ssize_t
2477show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2478{
2479	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2480}
2481static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2482
2483static struct attribute *cpuhp_smt_attrs[] = {
2484	&dev_attr_control.attr,
2485	&dev_attr_active.attr,
2486	NULL
2487};
2488
2489static const struct attribute_group cpuhp_smt_attr_group = {
2490	.attrs = cpuhp_smt_attrs,
2491	.name = "smt",
2492	NULL
2493};
2494
2495static int __init cpu_smt_sysfs_init(void)
2496{
2497	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498				  &cpuhp_smt_attr_group);
2499}
2500
2501static int __init cpuhp_sysfs_init(void)
2502{
2503	int cpu, ret;
2504
2505	ret = cpu_smt_sysfs_init();
2506	if (ret)
2507		return ret;
2508
2509	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510				 &cpuhp_cpu_root_attr_group);
2511	if (ret)
2512		return ret;
2513
2514	for_each_possible_cpu(cpu) {
2515		struct device *dev = get_cpu_device(cpu);
2516
2517		if (!dev)
2518			continue;
2519		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2520		if (ret)
2521			return ret;
2522	}
2523	return 0;
2524}
2525device_initcall(cpuhp_sysfs_init);
2526#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2527
2528/*
2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530 * represents all NR_CPUS bits binary values of 1<<nr.
2531 *
2532 * It is used by cpumask_of() to get a constant address to a CPU
2533 * mask value that has a single bit set only.
2534 */
2535
2536/* cpu_bit_bitmap[0] is empty - so we can back into it */
2537#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2538#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2541
2542const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2543
2544	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2545	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2546#if BITS_PER_LONG > 32
2547	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2548	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2549#endif
2550};
2551EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2552
2553const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554EXPORT_SYMBOL(cpu_all_bits);
2555
2556#ifdef CONFIG_INIT_ALL_POSSIBLE
2557struct cpumask __cpu_possible_mask __read_mostly
2558	= {CPU_BITS_ALL};
2559#else
2560struct cpumask __cpu_possible_mask __read_mostly;
2561#endif
2562EXPORT_SYMBOL(__cpu_possible_mask);
2563
2564struct cpumask __cpu_online_mask __read_mostly;
2565EXPORT_SYMBOL(__cpu_online_mask);
2566
2567struct cpumask __cpu_present_mask __read_mostly;
2568EXPORT_SYMBOL(__cpu_present_mask);
2569
2570struct cpumask __cpu_active_mask __read_mostly;
2571EXPORT_SYMBOL(__cpu_active_mask);
2572
2573struct cpumask __cpu_dying_mask __read_mostly;
2574EXPORT_SYMBOL(__cpu_dying_mask);
2575
2576atomic_t __num_online_cpus __read_mostly;
2577EXPORT_SYMBOL(__num_online_cpus);
2578
2579void init_cpu_present(const struct cpumask *src)
2580{
2581	cpumask_copy(&__cpu_present_mask, src);
2582}
2583
2584void init_cpu_possible(const struct cpumask *src)
2585{
2586	cpumask_copy(&__cpu_possible_mask, src);
2587}
2588
2589void init_cpu_online(const struct cpumask *src)
2590{
2591	cpumask_copy(&__cpu_online_mask, src);
2592}
2593
2594void set_cpu_online(unsigned int cpu, bool online)
2595{
2596	/*
2597	 * atomic_inc/dec() is required to handle the horrid abuse of this
2598	 * function by the reboot and kexec code which invoke it from
2599	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600	 * regular CPU hotplug is properly serialized.
2601	 *
2602	 * Note, that the fact that __num_online_cpus is of type atomic_t
2603	 * does not protect readers which are not serialized against
2604	 * concurrent hotplug operations.
2605	 */
2606	if (online) {
2607		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608			atomic_inc(&__num_online_cpus);
2609	} else {
2610		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611			atomic_dec(&__num_online_cpus);
2612	}
2613}
2614
2615/*
2616 * Activate the first processor.
2617 */
2618void __init boot_cpu_init(void)
2619{
2620	int cpu = smp_processor_id();
2621
2622	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623	set_cpu_online(cpu, true);
2624	set_cpu_active(cpu, true);
2625	set_cpu_present(cpu, true);
2626	set_cpu_possible(cpu, true);
2627
2628#ifdef CONFIG_SMP
2629	__boot_cpu_id = cpu;
2630#endif
2631}
2632
2633/*
2634 * Must be called _AFTER_ setting up the per_cpu areas
2635 */
2636void __init boot_cpu_hotplug_init(void)
2637{
2638#ifdef CONFIG_SMP
2639	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2640#endif
2641	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2642}
2643
2644/*
2645 * These are used for a global "mitigations=" cmdline option for toggling
2646 * optional CPU mitigations.
2647 */
2648enum cpu_mitigations {
2649	CPU_MITIGATIONS_OFF,
2650	CPU_MITIGATIONS_AUTO,
2651	CPU_MITIGATIONS_AUTO_NOSMT,
2652};
2653
2654static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655	CPU_MITIGATIONS_AUTO;
2656
2657static int __init mitigations_parse_cmdline(char *arg)
2658{
2659	if (!strcmp(arg, "off"))
2660		cpu_mitigations = CPU_MITIGATIONS_OFF;
2661	else if (!strcmp(arg, "auto"))
2662		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663	else if (!strcmp(arg, "auto,nosmt"))
2664		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2665	else
2666		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2667			arg);
2668
2669	return 0;
2670}
2671early_param("mitigations", mitigations_parse_cmdline);
2672
2673/* mitigations=off */
2674bool cpu_mitigations_off(void)
2675{
2676	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2677}
2678EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2679
2680/* mitigations=auto,nosmt */
2681bool cpu_mitigations_auto_nosmt(void)
2682{
2683	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2684}
2685EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);