Linux Audio

Check our new training course

Loading...
v4.17
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
 
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
 
  12#include <linux/sched/task.h>
 
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
 
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
 
  31#include <linux/percpu-rwsem.h>
 
 
 
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:	The current cpu state
  42 * @target:	The target state
 
  43 * @thread:	Pointer to the hotplug thread
  44 * @should_run:	Thread should execute
  45 * @rollback:	Perform a rollback
  46 * @single:	Single callback invocation
  47 * @bringup:	Single callback bringup or teardown selector
 
 
 
  48 * @cb_state:	The state for a single callback (install/uninstall)
  49 * @result:	Result of the operation
 
  50 * @done_up:	Signal completion to the issuer of the task for cpu-up
  51 * @done_down:	Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54	enum cpuhp_state	state;
  55	enum cpuhp_state	target;
  56	enum cpuhp_state	fail;
  57#ifdef CONFIG_SMP
  58	struct task_struct	*thread;
  59	bool			should_run;
  60	bool			rollback;
  61	bool			single;
  62	bool			bringup;
  63	struct hlist_node	*node;
  64	struct hlist_node	*last;
  65	enum cpuhp_state	cb_state;
  66	int			result;
 
  67	struct completion	done_up;
  68	struct completion	done_down;
  69#endif
  70};
  71
  72static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  73	.fail = CPUHP_INVALID,
  74};
  75
 
 
 
 
  76#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  77static struct lockdep_map cpuhp_state_up_map =
  78	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  79static struct lockdep_map cpuhp_state_down_map =
  80	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  81
  82
  83static inline void cpuhp_lock_acquire(bool bringup)
  84{
  85	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  86}
  87
  88static inline void cpuhp_lock_release(bool bringup)
  89{
  90	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  91}
  92#else
  93
  94static inline void cpuhp_lock_acquire(bool bringup) { }
  95static inline void cpuhp_lock_release(bool bringup) { }
  96
  97#endif
  98
  99/**
 100 * cpuhp_step - Hotplug state machine step
 101 * @name:	Name of the step
 102 * @startup:	Startup function of the step
 103 * @teardown:	Teardown function of the step
 104 * @skip_onerr:	Do not invoke the functions on error rollback
 105 *		Will go away once the notifiers	are gone
 106 * @cant_stop:	Bringup/teardown can't be stopped at this step
 
 107 */
 108struct cpuhp_step {
 109	const char		*name;
 110	union {
 111		int		(*single)(unsigned int cpu);
 112		int		(*multi)(unsigned int cpu,
 113					 struct hlist_node *node);
 114	} startup;
 115	union {
 116		int		(*single)(unsigned int cpu);
 117		int		(*multi)(unsigned int cpu,
 118					 struct hlist_node *node);
 119	} teardown;
 
 120	struct hlist_head	list;
 121	bool			skip_onerr;
 122	bool			cant_stop;
 123	bool			multi_instance;
 124};
 125
 126static DEFINE_MUTEX(cpuhp_state_mutex);
 127static struct cpuhp_step cpuhp_hp_states[];
 128
 129static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 130{
 131	return cpuhp_hp_states + state;
 132}
 133
 
 
 
 
 
 134/**
 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 136 * @cpu:	The cpu for which the callback should be invoked
 137 * @state:	The state to do callbacks for
 138 * @bringup:	True if the bringup callback should be invoked
 139 * @node:	For multi-instance, do a single entry callback for install/remove
 140 * @lastp:	For multi-instance rollback, remember how far we got
 141 *
 142 * Called from cpu hotplug and from the state register machinery.
 
 
 143 */
 144static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 145				 bool bringup, struct hlist_node *node,
 146				 struct hlist_node **lastp)
 147{
 148	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 149	struct cpuhp_step *step = cpuhp_get_step(state);
 150	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 151	int (*cb)(unsigned int cpu);
 152	int ret, cnt;
 153
 154	if (st->fail == state) {
 155		st->fail = CPUHP_INVALID;
 156
 157		if (!(bringup ? step->startup.single : step->teardown.single))
 158			return 0;
 159
 160		return -EAGAIN;
 161	}
 162
 
 
 
 
 
 163	if (!step->multi_instance) {
 164		WARN_ON_ONCE(lastp && *lastp);
 165		cb = bringup ? step->startup.single : step->teardown.single;
 166		if (!cb)
 167			return 0;
 168		trace_cpuhp_enter(cpu, st->target, state, cb);
 169		ret = cb(cpu);
 170		trace_cpuhp_exit(cpu, st->state, state, ret);
 171		return ret;
 172	}
 173	cbm = bringup ? step->startup.multi : step->teardown.multi;
 174	if (!cbm)
 175		return 0;
 176
 177	/* Single invocation for instance add/remove */
 178	if (node) {
 179		WARN_ON_ONCE(lastp && *lastp);
 180		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 181		ret = cbm(cpu, node);
 182		trace_cpuhp_exit(cpu, st->state, state, ret);
 183		return ret;
 184	}
 185
 186	/* State transition. Invoke on all instances */
 187	cnt = 0;
 188	hlist_for_each(node, &step->list) {
 189		if (lastp && node == *lastp)
 190			break;
 191
 192		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 193		ret = cbm(cpu, node);
 194		trace_cpuhp_exit(cpu, st->state, state, ret);
 195		if (ret) {
 196			if (!lastp)
 197				goto err;
 198
 199			*lastp = node;
 200			return ret;
 201		}
 202		cnt++;
 203	}
 204	if (lastp)
 205		*lastp = NULL;
 206	return 0;
 207err:
 208	/* Rollback the instances if one failed */
 209	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 210	if (!cbm)
 211		return ret;
 212
 213	hlist_for_each(node, &step->list) {
 214		if (!cnt--)
 215			break;
 216
 217		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 218		ret = cbm(cpu, node);
 219		trace_cpuhp_exit(cpu, st->state, state, ret);
 220		/*
 221		 * Rollback must not fail,
 222		 */
 223		WARN_ON_ONCE(ret);
 224	}
 225	return ret;
 226}
 227
 228#ifdef CONFIG_SMP
 229static bool cpuhp_is_ap_state(enum cpuhp_state state)
 230{
 231	/*
 232	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 233	 * purposes as that state is handled explicitly in cpu_down.
 234	 */
 235	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 236}
 237
 238static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 239{
 240	struct completion *done = bringup ? &st->done_up : &st->done_down;
 241	wait_for_completion(done);
 242}
 243
 244static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 245{
 246	struct completion *done = bringup ? &st->done_up : &st->done_down;
 247	complete(done);
 248}
 249
 250/*
 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 252 */
 253static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 254{
 255	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 256}
 257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 259static DEFINE_MUTEX(cpu_add_remove_lock);
 260bool cpuhp_tasks_frozen;
 261EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 262
 263/*
 264 * The following two APIs (cpu_maps_update_begin/done) must be used when
 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 266 */
 267void cpu_maps_update_begin(void)
 268{
 269	mutex_lock(&cpu_add_remove_lock);
 270}
 271
 272void cpu_maps_update_done(void)
 273{
 274	mutex_unlock(&cpu_add_remove_lock);
 275}
 276
 277/*
 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 279 * Should always be manipulated under cpu_add_remove_lock
 280 */
 281static int cpu_hotplug_disabled;
 282
 283#ifdef CONFIG_HOTPLUG_CPU
 284
 285DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 286
 
 
 287void cpus_read_lock(void)
 288{
 289	percpu_down_read(&cpu_hotplug_lock);
 290}
 291EXPORT_SYMBOL_GPL(cpus_read_lock);
 292
 
 
 
 
 
 
 293void cpus_read_unlock(void)
 294{
 295	percpu_up_read(&cpu_hotplug_lock);
 296}
 297EXPORT_SYMBOL_GPL(cpus_read_unlock);
 298
 299void cpus_write_lock(void)
 300{
 301	percpu_down_write(&cpu_hotplug_lock);
 302}
 303
 304void cpus_write_unlock(void)
 305{
 306	percpu_up_write(&cpu_hotplug_lock);
 307}
 308
 309void lockdep_assert_cpus_held(void)
 310{
 
 
 
 
 
 
 
 
 
 311	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314/*
 315 * Wait for currently running CPU hotplug operations to complete (if any) and
 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 318 * hotplug path before performing hotplug operations. So acquiring that lock
 319 * guarantees mutual exclusion from any currently running hotplug operations.
 320 */
 321void cpu_hotplug_disable(void)
 322{
 323	cpu_maps_update_begin();
 324	cpu_hotplug_disabled++;
 325	cpu_maps_update_done();
 326}
 327EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 328
 329static void __cpu_hotplug_enable(void)
 330{
 331	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 332		return;
 333	cpu_hotplug_disabled--;
 334}
 335
 336void cpu_hotplug_enable(void)
 337{
 338	cpu_maps_update_begin();
 339	__cpu_hotplug_enable();
 340	cpu_maps_update_done();
 341}
 342EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 
 
 
 
 
 
 
 
 
 
 
 343#endif	/* CONFIG_HOTPLUG_CPU */
 344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345static inline enum cpuhp_state
 346cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 347{
 348	enum cpuhp_state prev_state = st->state;
 
 349
 350	st->rollback = false;
 351	st->last = NULL;
 352
 353	st->target = target;
 354	st->single = false;
 355	st->bringup = st->state < target;
 
 
 356
 357	return prev_state;
 358}
 359
 360static inline void
 361cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 
 362{
 
 
 
 
 
 
 
 
 
 
 
 363	st->rollback = true;
 364
 365	/*
 366	 * If we have st->last we need to undo partial multi_instance of this
 367	 * state first. Otherwise start undo at the previous state.
 368	 */
 369	if (!st->last) {
 370		if (st->bringup)
 371			st->state--;
 372		else
 373			st->state++;
 374	}
 375
 376	st->target = prev_state;
 377	st->bringup = !st->bringup;
 
 378}
 379
 380/* Regular hotplug invocation of the AP hotplug thread */
 381static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 382{
 383	if (!st->single && st->state == st->target)
 384		return;
 385
 386	st->result = 0;
 387	/*
 388	 * Make sure the above stores are visible before should_run becomes
 389	 * true. Paired with the mb() above in cpuhp_thread_fun()
 390	 */
 391	smp_mb();
 392	st->should_run = true;
 393	wake_up_process(st->thread);
 394	wait_for_ap_thread(st, st->bringup);
 395}
 396
 397static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 
 398{
 399	enum cpuhp_state prev_state;
 400	int ret;
 401
 402	prev_state = cpuhp_set_state(st, target);
 403	__cpuhp_kick_ap(st);
 404	if ((ret = st->result)) {
 405		cpuhp_reset_state(st, prev_state);
 406		__cpuhp_kick_ap(st);
 407	}
 408
 409	return ret;
 410}
 411
 412static int bringup_wait_for_ap(unsigned int cpu)
 413{
 414	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 415
 416	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 417	wait_for_ap_thread(st, true);
 418	if (WARN_ON_ONCE((!cpu_online(cpu))))
 419		return -ECANCELED;
 420
 421	/* Unpark the stopper thread and the hotplug thread of the target cpu */
 422	stop_machine_unpark(cpu);
 423	kthread_unpark(st->thread);
 424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 426		return 0;
 427
 428	return cpuhp_kick_ap(st, st->target);
 429}
 430
 
 
 
 
 
 431static int bringup_cpu(unsigned int cpu)
 432{
 
 433	struct task_struct *idle = idle_thread_get(cpu);
 434	int ret;
 435
 
 
 
 436	/*
 437	 * Some architectures have to walk the irq descriptors to
 438	 * setup the vector space for the cpu which comes online.
 439	 * Prevent irq alloc/free across the bringup.
 
 
 
 
 440	 */
 441	irq_lock_sparse();
 442
 443	/* Arch-specific enabling code. */
 444	ret = __cpu_up(cpu, idle);
 445	irq_unlock_sparse();
 446	if (ret)
 447		return ret;
 448	return bringup_wait_for_ap(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451/*
 452 * Hotplug state machine related functions
 453 */
 454
 455static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 
 
 
 
 
 
 
 
 
 
 456{
 457	for (st->state--; st->state > st->target; st->state--) {
 458		struct cpuhp_step *step = cpuhp_get_step(st->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460		if (!step->skip_onerr)
 461			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463}
 464
 465static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 466			      enum cpuhp_state target)
 467{
 468	enum cpuhp_state prev_state = st->state;
 469	int ret = 0;
 470
 471	while (st->state < target) {
 472		st->state++;
 473		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 474		if (ret) {
 475			st->target = prev_state;
 476			undo_cpu_up(cpu, st);
 477			break;
 478		}
 
 
 479	}
 480	return ret;
 481}
 482
 483/*
 484 * The cpu hotplug threads manage the bringup and teardown of the cpus
 485 */
 486static void cpuhp_create(unsigned int cpu)
 487{
 488	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 489
 490	init_completion(&st->done_up);
 491	init_completion(&st->done_down);
 492}
 493
 494static int cpuhp_should_run(unsigned int cpu)
 495{
 496	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 497
 498	return st->should_run;
 499}
 500
 501/*
 502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 503 * callbacks when a state gets [un]installed at runtime.
 504 *
 505 * Each invocation of this function by the smpboot thread does a single AP
 506 * state callback.
 507 *
 508 * It has 3 modes of operation:
 509 *  - single: runs st->cb_state
 510 *  - up:     runs ++st->state, while st->state < st->target
 511 *  - down:   runs st->state--, while st->state > st->target
 512 *
 513 * When complete or on error, should_run is cleared and the completion is fired.
 514 */
 515static void cpuhp_thread_fun(unsigned int cpu)
 516{
 517	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 518	bool bringup = st->bringup;
 519	enum cpuhp_state state;
 520
 
 
 
 521	/*
 522	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 523	 * that if we see ->should_run we also see the rest of the state.
 524	 */
 525	smp_mb();
 526
 527	if (WARN_ON_ONCE(!st->should_run))
 528		return;
 529
 
 
 
 530	cpuhp_lock_acquire(bringup);
 531
 532	if (st->single) {
 533		state = st->cb_state;
 534		st->should_run = false;
 535	} else {
 536		if (bringup) {
 537			st->state++;
 538			state = st->state;
 539			st->should_run = (st->state < st->target);
 540			WARN_ON_ONCE(st->state > st->target);
 541		} else {
 542			state = st->state;
 543			st->state--;
 544			st->should_run = (st->state > st->target);
 545			WARN_ON_ONCE(st->state < st->target);
 546		}
 547	}
 548
 549	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 550
 551	if (st->rollback) {
 552		struct cpuhp_step *step = cpuhp_get_step(state);
 553		if (step->skip_onerr)
 554			goto next;
 555	}
 556
 557	if (cpuhp_is_atomic_state(state)) {
 558		local_irq_disable();
 559		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 560		local_irq_enable();
 561
 562		/*
 563		 * STARTING/DYING must not fail!
 564		 */
 565		WARN_ON_ONCE(st->result);
 566	} else {
 567		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 568	}
 569
 570	if (st->result) {
 571		/*
 572		 * If we fail on a rollback, we're up a creek without no
 573		 * paddle, no way forward, no way back. We loose, thanks for
 574		 * playing.
 575		 */
 576		WARN_ON_ONCE(st->rollback);
 577		st->should_run = false;
 578	}
 579
 580next:
 581	cpuhp_lock_release(bringup);
 
 582
 583	if (!st->should_run)
 584		complete_ap_thread(st, bringup);
 585}
 586
 587/* Invoke a single callback on a remote cpu */
 588static int
 589cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 590			 struct hlist_node *node)
 591{
 592	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 593	int ret;
 594
 595	if (!cpu_online(cpu))
 596		return 0;
 597
 598	cpuhp_lock_acquire(false);
 599	cpuhp_lock_release(false);
 600
 601	cpuhp_lock_acquire(true);
 602	cpuhp_lock_release(true);
 603
 604	/*
 605	 * If we are up and running, use the hotplug thread. For early calls
 606	 * we invoke the thread function directly.
 607	 */
 608	if (!st->thread)
 609		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 610
 611	st->rollback = false;
 612	st->last = NULL;
 613
 614	st->node = node;
 615	st->bringup = bringup;
 616	st->cb_state = state;
 617	st->single = true;
 618
 619	__cpuhp_kick_ap(st);
 620
 621	/*
 622	 * If we failed and did a partial, do a rollback.
 623	 */
 624	if ((ret = st->result) && st->last) {
 625		st->rollback = true;
 626		st->bringup = !bringup;
 627
 628		__cpuhp_kick_ap(st);
 629	}
 630
 631	/*
 632	 * Clean up the leftovers so the next hotplug operation wont use stale
 633	 * data.
 634	 */
 635	st->node = st->last = NULL;
 636	return ret;
 637}
 638
 639static int cpuhp_kick_ap_work(unsigned int cpu)
 640{
 641	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 642	enum cpuhp_state prev_state = st->state;
 643	int ret;
 644
 645	cpuhp_lock_acquire(false);
 646	cpuhp_lock_release(false);
 647
 648	cpuhp_lock_acquire(true);
 649	cpuhp_lock_release(true);
 650
 651	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 652	ret = cpuhp_kick_ap(st, st->target);
 653	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 654
 655	return ret;
 656}
 657
 658static struct smp_hotplug_thread cpuhp_threads = {
 659	.store			= &cpuhp_state.thread,
 660	.create			= &cpuhp_create,
 661	.thread_should_run	= cpuhp_should_run,
 662	.thread_fn		= cpuhp_thread_fun,
 663	.thread_comm		= "cpuhp/%u",
 664	.selfparking		= true,
 665};
 666
 
 
 
 
 
 
 
 
 
 
 
 
 667void __init cpuhp_threads_init(void)
 668{
 
 669	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 670	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 671}
 672
 673#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 674/**
 675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 676 * @cpu: a CPU id
 677 *
 678 * This function walks all processes, finds a valid mm struct for each one and
 679 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 680 * trivial, there are various non-obvious corner cases, which this function
 681 * tries to solve in a safe manner.
 682 *
 683 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 684 * be called only for an already offlined CPU.
 685 */
 686void clear_tasks_mm_cpumask(int cpu)
 687{
 688	struct task_struct *p;
 689
 690	/*
 691	 * This function is called after the cpu is taken down and marked
 692	 * offline, so its not like new tasks will ever get this cpu set in
 693	 * their mm mask. -- Peter Zijlstra
 694	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 695	 * full-fledged tasklist_lock.
 696	 */
 697	WARN_ON(cpu_online(cpu));
 698	rcu_read_lock();
 699	for_each_process(p) {
 700		struct task_struct *t;
 701
 702		/*
 703		 * Main thread might exit, but other threads may still have
 704		 * a valid mm. Find one.
 705		 */
 706		t = find_lock_task_mm(p);
 707		if (!t)
 708			continue;
 709		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 710		task_unlock(t);
 711	}
 712	rcu_read_unlock();
 713}
 714
 715/* Take this CPU down. */
 716static int take_cpu_down(void *_param)
 717{
 718	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 719	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 720	int err, cpu = smp_processor_id();
 721	int ret;
 722
 723	/* Ensure this CPU doesn't handle any more interrupts. */
 724	err = __cpu_disable();
 725	if (err < 0)
 726		return err;
 727
 728	/*
 729	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 730	 * do this step again.
 731	 */
 732	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 733	st->state--;
 734	/* Invoke the former CPU_DYING callbacks */
 735	for (; st->state > target; st->state--) {
 736		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 737		/*
 738		 * DYING must not fail!
 739		 */
 740		WARN_ON_ONCE(ret);
 741	}
 742
 743	/* Give up timekeeping duties */
 744	tick_handover_do_timer();
 745	/* Park the stopper thread */
 746	stop_machine_park(cpu);
 747	return 0;
 748}
 749
 750static int takedown_cpu(unsigned int cpu)
 751{
 752	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 753	int err;
 754
 755	/* Park the smpboot threads */
 756	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 757	smpboot_park_threads(cpu);
 758
 759	/*
 760	 * Prevent irq alloc/free while the dying cpu reorganizes the
 761	 * interrupt affinities.
 762	 */
 763	irq_lock_sparse();
 764
 765	/*
 766	 * So now all preempt/rcu users must observe !cpu_active().
 767	 */
 768	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 769	if (err) {
 770		/* CPU refused to die */
 771		irq_unlock_sparse();
 772		/* Unpark the hotplug thread so we can rollback there */
 773		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 774		return err;
 775	}
 776	BUG_ON(cpu_online(cpu));
 777
 778	/*
 779	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 780	 * all runnable tasks from the CPU, there's only the idle task left now
 781	 * that the migration thread is done doing the stop_machine thing.
 782	 *
 783	 * Wait for the stop thread to go away.
 784	 */
 785	wait_for_ap_thread(st, false);
 786	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 787
 788	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 789	irq_unlock_sparse();
 790
 791	hotplug_cpu__broadcast_tick_pull(cpu);
 792	/* This actually kills the CPU. */
 793	__cpu_die(cpu);
 794
 795	tick_cleanup_dead_cpu(cpu);
 
 
 
 
 
 
 
 
 796	rcutree_migrate_callbacks(cpu);
 
 797	return 0;
 798}
 799
 800static void cpuhp_complete_idle_dead(void *arg)
 801{
 802	struct cpuhp_cpu_state *st = arg;
 803
 804	complete_ap_thread(st, false);
 805}
 806
 807void cpuhp_report_idle_dead(void)
 808{
 809	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 810
 811	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 812	rcu_report_dead(smp_processor_id());
 
 813	st->state = CPUHP_AP_IDLE_DEAD;
 814	/*
 815	 * We cannot call complete after rcu_report_dead() so we delegate it
 816	 * to an online cpu.
 817	 */
 818	smp_call_function_single(cpumask_first(cpu_online_mask),
 819				 cpuhp_complete_idle_dead, st, 0);
 820}
 821
 822static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 823{
 824	for (st->state++; st->state < st->target; st->state++) {
 825		struct cpuhp_step *step = cpuhp_get_step(st->state);
 826
 827		if (!step->skip_onerr)
 828			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 829	}
 830}
 831
 832static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 833				enum cpuhp_state target)
 834{
 835	enum cpuhp_state prev_state = st->state;
 836	int ret = 0;
 837
 838	for (; st->state > target; st->state--) {
 839		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 840		if (ret) {
 841			st->target = prev_state;
 842			undo_cpu_down(cpu, st);
 843			break;
 844		}
 
 
 
 
 845	}
 
 846	return ret;
 847}
 848
 849/* Requires cpu_add_remove_lock to be held */
 850static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 851			   enum cpuhp_state target)
 852{
 853	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 854	int prev_state, ret = 0;
 855
 856	if (num_online_cpus() == 1)
 857		return -EBUSY;
 858
 859	if (!cpu_present(cpu))
 860		return -EINVAL;
 861
 862	cpus_write_lock();
 863
 864	cpuhp_tasks_frozen = tasks_frozen;
 865
 866	prev_state = cpuhp_set_state(st, target);
 867	/*
 868	 * If the current CPU state is in the range of the AP hotplug thread,
 869	 * then we need to kick the thread.
 870	 */
 871	if (st->state > CPUHP_TEARDOWN_CPU) {
 872		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 873		ret = cpuhp_kick_ap_work(cpu);
 874		/*
 875		 * The AP side has done the error rollback already. Just
 876		 * return the error code..
 877		 */
 878		if (ret)
 879			goto out;
 880
 881		/*
 882		 * We might have stopped still in the range of the AP hotplug
 883		 * thread. Nothing to do anymore.
 884		 */
 885		if (st->state > CPUHP_TEARDOWN_CPU)
 886			goto out;
 887
 888		st->target = target;
 889	}
 890	/*
 891	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 892	 * to do the further cleanups.
 893	 */
 894	ret = cpuhp_down_callbacks(cpu, st, target);
 895	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 896		cpuhp_reset_state(st, prev_state);
 897		__cpuhp_kick_ap(st);
 
 
 
 
 898	}
 899
 900out:
 901	cpus_write_unlock();
 902	/*
 903	 * Do post unplug cleanup. This is still protected against
 904	 * concurrent CPU hotplug via cpu_add_remove_lock.
 905	 */
 906	lockup_detector_cleanup();
 
 907	return ret;
 908}
 909
 910static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 
 
 
 
 
 
 
 
 
 
 
 
 911{
 912	int err;
 913
 914	cpu_maps_update_begin();
 
 
 
 
 
 
 
 915
 916	if (cpu_hotplug_disabled) {
 917		err = -EBUSY;
 918		goto out;
 
 
 
 
 
 
 919	}
 
 
 920
 921	err = _cpu_down(cpu, 0, target);
 
 
 922
 923out:
 
 924	cpu_maps_update_done();
 925	return err;
 926}
 927
 928int cpu_down(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929{
 930	return do_cpu_down(cpu, CPUHP_OFFLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931}
 932EXPORT_SYMBOL(cpu_down);
 933
 934#else
 935#define takedown_cpu		NULL
 936#endif /*CONFIG_HOTPLUG_CPU*/
 937
 938/**
 939 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 940 * @cpu: cpu that just started
 941 *
 942 * It must be called by the arch code on the new cpu, before the new cpu
 943 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 944 */
 945void notify_cpu_starting(unsigned int cpu)
 946{
 947	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 948	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 949	int ret;
 950
 951	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
 952	while (st->state < target) {
 953		st->state++;
 954		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 955		/*
 956		 * STARTING must not fail!
 957		 */
 958		WARN_ON_ONCE(ret);
 959	}
 960}
 961
 962/*
 963 * Called from the idle task. Wake up the controlling task which brings the
 964 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 965 * the rest of the online bringup to the hotplug thread.
 966 */
 967void cpuhp_online_idle(enum cpuhp_state state)
 968{
 969	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 970
 971	/* Happens for the boot cpu */
 972	if (state != CPUHP_AP_ONLINE_IDLE)
 973		return;
 974
 
 
 
 
 
 
 
 
 975	st->state = CPUHP_AP_ONLINE_IDLE;
 976	complete_ap_thread(st, true);
 977}
 978
 979/* Requires cpu_add_remove_lock to be held */
 980static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 981{
 982	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 983	struct task_struct *idle;
 984	int ret = 0;
 985
 986	cpus_write_lock();
 987
 988	if (!cpu_present(cpu)) {
 989		ret = -EINVAL;
 990		goto out;
 991	}
 992
 993	/*
 994	 * The caller of do_cpu_up might have raced with another
 995	 * caller. Ignore it for now.
 996	 */
 997	if (st->state >= target)
 998		goto out;
 999
1000	if (st->state == CPUHP_OFFLINE) {
1001		/* Let it fail before we try to bring the cpu up */
1002		idle = idle_thread_get(cpu);
1003		if (IS_ERR(idle)) {
1004			ret = PTR_ERR(idle);
1005			goto out;
1006		}
 
 
 
 
 
 
1007	}
1008
1009	cpuhp_tasks_frozen = tasks_frozen;
1010
1011	cpuhp_set_state(st, target);
1012	/*
1013	 * If the current CPU state is in the range of the AP hotplug thread,
1014	 * then we need to kick the thread once more.
1015	 */
1016	if (st->state > CPUHP_BRINGUP_CPU) {
1017		ret = cpuhp_kick_ap_work(cpu);
1018		/*
1019		 * The AP side has done the error rollback already. Just
1020		 * return the error code..
1021		 */
1022		if (ret)
1023			goto out;
1024	}
1025
1026	/*
1027	 * Try to reach the target state. We max out on the BP at
1028	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029	 * responsible for bringing it up to the target state.
1030	 */
1031	target = min((int)target, CPUHP_BRINGUP_CPU);
1032	ret = cpuhp_up_callbacks(cpu, st, target);
1033out:
1034	cpus_write_unlock();
 
1035	return ret;
1036}
1037
1038static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039{
1040	int err = 0;
1041
1042	if (!cpu_possible(cpu)) {
1043		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044		       cpu);
1045#if defined(CONFIG_IA64)
1046		pr_err("please check additional_cpus= boot parameter\n");
1047#endif
1048		return -EINVAL;
1049	}
1050
1051	err = try_online_node(cpu_to_node(cpu));
1052	if (err)
1053		return err;
1054
1055	cpu_maps_update_begin();
1056
1057	if (cpu_hotplug_disabled) {
1058		err = -EBUSY;
1059		goto out;
1060	}
 
 
 
 
1061
1062	err = _cpu_up(cpu, 0, target);
1063out:
1064	cpu_maps_update_done();
1065	return err;
1066}
1067
1068int cpu_up(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069{
1070	return do_cpu_up(cpu, CPUHP_ONLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071}
1072EXPORT_SYMBOL_GPL(cpu_up);
1073
1074#ifdef CONFIG_PM_SLEEP_SMP
1075static cpumask_var_t frozen_cpus;
1076
1077int freeze_secondary_cpus(int primary)
1078{
1079	int cpu, error = 0;
1080
1081	cpu_maps_update_begin();
1082	if (!cpu_online(primary))
1083		primary = cpumask_first(cpu_online_mask);
 
 
 
 
 
 
 
1084	/*
1085	 * We take down all of the non-boot CPUs in one shot to avoid races
1086	 * with the userspace trying to use the CPU hotplug at the same time
1087	 */
1088	cpumask_clear(frozen_cpus);
1089
1090	pr_info("Disabling non-boot CPUs ...\n");
1091	for_each_online_cpu(cpu) {
1092		if (cpu == primary)
1093			continue;
 
 
 
 
 
 
 
1094		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097		if (!error)
1098			cpumask_set_cpu(cpu, frozen_cpus);
1099		else {
1100			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101			break;
1102		}
1103	}
1104
1105	if (!error)
1106		BUG_ON(num_online_cpus() > 1);
1107	else
1108		pr_err("Non-boot CPUs are not disabled\n");
1109
1110	/*
1111	 * Make sure the CPUs won't be enabled by someone else. We need to do
1112	 * this even in case of failure as all disable_nonboot_cpus() users are
1113	 * supposed to do enable_nonboot_cpus() on the failure path.
1114	 */
1115	cpu_hotplug_disabled++;
1116
1117	cpu_maps_update_done();
1118	return error;
1119}
1120
1121void __weak arch_enable_nonboot_cpus_begin(void)
1122{
1123}
1124
1125void __weak arch_enable_nonboot_cpus_end(void)
1126{
1127}
1128
1129void enable_nonboot_cpus(void)
1130{
1131	int cpu, error;
1132
1133	/* Allow everyone to use the CPU hotplug again */
1134	cpu_maps_update_begin();
1135	__cpu_hotplug_enable();
1136	if (cpumask_empty(frozen_cpus))
1137		goto out;
1138
1139	pr_info("Enabling non-boot CPUs ...\n");
1140
1141	arch_enable_nonboot_cpus_begin();
1142
1143	for_each_cpu(cpu, frozen_cpus) {
1144		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147		if (!error) {
1148			pr_info("CPU%d is up\n", cpu);
1149			continue;
1150		}
1151		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152	}
1153
1154	arch_enable_nonboot_cpus_end();
1155
1156	cpumask_clear(frozen_cpus);
1157out:
1158	cpu_maps_update_done();
1159}
1160
1161static int __init alloc_frozen_cpus(void)
1162{
1163	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164		return -ENOMEM;
1165	return 0;
1166}
1167core_initcall(alloc_frozen_cpus);
1168
1169/*
1170 * When callbacks for CPU hotplug notifications are being executed, we must
1171 * ensure that the state of the system with respect to the tasks being frozen
1172 * or not, as reported by the notification, remains unchanged *throughout the
1173 * duration* of the execution of the callbacks.
1174 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175 *
1176 * This synchronization is implemented by mutually excluding regular CPU
1177 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178 * Hibernate notifications.
1179 */
1180static int
1181cpu_hotplug_pm_callback(struct notifier_block *nb,
1182			unsigned long action, void *ptr)
1183{
1184	switch (action) {
1185
1186	case PM_SUSPEND_PREPARE:
1187	case PM_HIBERNATION_PREPARE:
1188		cpu_hotplug_disable();
1189		break;
1190
1191	case PM_POST_SUSPEND:
1192	case PM_POST_HIBERNATION:
1193		cpu_hotplug_enable();
1194		break;
1195
1196	default:
1197		return NOTIFY_DONE;
1198	}
1199
1200	return NOTIFY_OK;
1201}
1202
1203
1204static int __init cpu_hotplug_pm_sync_init(void)
1205{
1206	/*
1207	 * cpu_hotplug_pm_callback has higher priority than x86
1208	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209	 * to disable cpu hotplug to avoid cpu hotplug race.
1210	 */
1211	pm_notifier(cpu_hotplug_pm_callback, 0);
1212	return 0;
1213}
1214core_initcall(cpu_hotplug_pm_sync_init);
1215
1216#endif /* CONFIG_PM_SLEEP_SMP */
1217
1218int __boot_cpu_id;
1219
1220#endif /* CONFIG_SMP */
1221
1222/* Boot processor state steps */
1223static struct cpuhp_step cpuhp_hp_states[] = {
1224	[CPUHP_OFFLINE] = {
1225		.name			= "offline",
1226		.startup.single		= NULL,
1227		.teardown.single	= NULL,
1228	},
1229#ifdef CONFIG_SMP
1230	[CPUHP_CREATE_THREADS]= {
1231		.name			= "threads:prepare",
1232		.startup.single		= smpboot_create_threads,
1233		.teardown.single	= NULL,
1234		.cant_stop		= true,
1235	},
1236	[CPUHP_PERF_PREPARE] = {
1237		.name			= "perf:prepare",
1238		.startup.single		= perf_event_init_cpu,
1239		.teardown.single	= perf_event_exit_cpu,
1240	},
 
 
 
 
 
1241	[CPUHP_WORKQUEUE_PREP] = {
1242		.name			= "workqueue:prepare",
1243		.startup.single		= workqueue_prepare_cpu,
1244		.teardown.single	= NULL,
1245	},
1246	[CPUHP_HRTIMERS_PREPARE] = {
1247		.name			= "hrtimers:prepare",
1248		.startup.single		= hrtimers_prepare_cpu,
1249		.teardown.single	= hrtimers_dead_cpu,
1250	},
1251	[CPUHP_SMPCFD_PREPARE] = {
1252		.name			= "smpcfd:prepare",
1253		.startup.single		= smpcfd_prepare_cpu,
1254		.teardown.single	= smpcfd_dead_cpu,
1255	},
1256	[CPUHP_RELAY_PREPARE] = {
1257		.name			= "relay:prepare",
1258		.startup.single		= relay_prepare_cpu,
1259		.teardown.single	= NULL,
1260	},
1261	[CPUHP_SLAB_PREPARE] = {
1262		.name			= "slab:prepare",
1263		.startup.single		= slab_prepare_cpu,
1264		.teardown.single	= slab_dead_cpu,
1265	},
1266	[CPUHP_RCUTREE_PREP] = {
1267		.name			= "RCU/tree:prepare",
1268		.startup.single		= rcutree_prepare_cpu,
1269		.teardown.single	= rcutree_dead_cpu,
1270	},
1271	/*
1272	 * On the tear-down path, timers_dead_cpu() must be invoked
1273	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1274	 * otherwise a RCU stall occurs.
1275	 */
1276	[CPUHP_TIMERS_PREPARE] = {
1277		.name			= "timers:dead",
1278		.startup.single		= timers_prepare_cpu,
1279		.teardown.single	= timers_dead_cpu,
1280	},
1281	/* Kicks the plugged cpu into life */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282	[CPUHP_BRINGUP_CPU] = {
1283		.name			= "cpu:bringup",
1284		.startup.single		= bringup_cpu,
1285		.teardown.single	= NULL,
1286		.cant_stop		= true,
1287	},
 
1288	/* Final state before CPU kills itself */
1289	[CPUHP_AP_IDLE_DEAD] = {
1290		.name			= "idle:dead",
1291	},
1292	/*
1293	 * Last state before CPU enters the idle loop to die. Transient state
1294	 * for synchronization.
1295	 */
1296	[CPUHP_AP_OFFLINE] = {
1297		.name			= "ap:offline",
1298		.cant_stop		= true,
1299	},
1300	/* First state is scheduler control. Interrupts are disabled */
1301	[CPUHP_AP_SCHED_STARTING] = {
1302		.name			= "sched:starting",
1303		.startup.single		= sched_cpu_starting,
1304		.teardown.single	= sched_cpu_dying,
1305	},
1306	[CPUHP_AP_RCUTREE_DYING] = {
1307		.name			= "RCU/tree:dying",
1308		.startup.single		= NULL,
1309		.teardown.single	= rcutree_dying_cpu,
1310	},
1311	[CPUHP_AP_SMPCFD_DYING] = {
1312		.name			= "smpcfd:dying",
1313		.startup.single		= NULL,
1314		.teardown.single	= smpcfd_dying_cpu,
1315	},
 
 
 
 
 
 
 
 
 
 
1316	/* Entry state on starting. Interrupts enabled from here on. Transient
1317	 * state for synchronsization */
1318	[CPUHP_AP_ONLINE] = {
1319		.name			= "ap:online",
1320	},
1321	/*
1322	 * Handled on controll processor until the plugged processor manages
1323	 * this itself.
1324	 */
1325	[CPUHP_TEARDOWN_CPU] = {
1326		.name			= "cpu:teardown",
1327		.startup.single		= NULL,
1328		.teardown.single	= takedown_cpu,
1329		.cant_stop		= true,
1330	},
 
 
 
 
 
 
 
1331	/* Handle smpboot threads park/unpark */
1332	[CPUHP_AP_SMPBOOT_THREADS] = {
1333		.name			= "smpboot/threads:online",
1334		.startup.single		= smpboot_unpark_threads,
1335		.teardown.single	= NULL,
1336	},
1337	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338		.name			= "irq/affinity:online",
1339		.startup.single		= irq_affinity_online_cpu,
1340		.teardown.single	= NULL,
1341	},
1342	[CPUHP_AP_PERF_ONLINE] = {
1343		.name			= "perf:online",
1344		.startup.single		= perf_event_init_cpu,
1345		.teardown.single	= perf_event_exit_cpu,
1346	},
 
 
 
 
 
1347	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1348		.name			= "workqueue:online",
1349		.startup.single		= workqueue_online_cpu,
1350		.teardown.single	= workqueue_offline_cpu,
1351	},
 
 
 
 
 
1352	[CPUHP_AP_RCUTREE_ONLINE] = {
1353		.name			= "RCU/tree:online",
1354		.startup.single		= rcutree_online_cpu,
1355		.teardown.single	= rcutree_offline_cpu,
1356	},
1357#endif
1358	/*
1359	 * The dynamically registered state space is here
1360	 */
1361
1362#ifdef CONFIG_SMP
1363	/* Last state is scheduler control setting the cpu active */
1364	[CPUHP_AP_ACTIVE] = {
1365		.name			= "sched:active",
1366		.startup.single		= sched_cpu_activate,
1367		.teardown.single	= sched_cpu_deactivate,
1368	},
1369#endif
1370
1371	/* CPU is fully up and running. */
1372	[CPUHP_ONLINE] = {
1373		.name			= "online",
1374		.startup.single		= NULL,
1375		.teardown.single	= NULL,
1376	},
1377};
1378
1379/* Sanity check for callbacks */
1380static int cpuhp_cb_check(enum cpuhp_state state)
1381{
1382	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1383		return -EINVAL;
1384	return 0;
1385}
1386
1387/*
1388 * Returns a free for dynamic slot assignment of the Online state. The states
1389 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1390 * by having no name assigned.
1391 */
1392static int cpuhp_reserve_state(enum cpuhp_state state)
1393{
1394	enum cpuhp_state i, end;
1395	struct cpuhp_step *step;
1396
1397	switch (state) {
1398	case CPUHP_AP_ONLINE_DYN:
1399		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1400		end = CPUHP_AP_ONLINE_DYN_END;
1401		break;
1402	case CPUHP_BP_PREPARE_DYN:
1403		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1404		end = CPUHP_BP_PREPARE_DYN_END;
1405		break;
1406	default:
1407		return -EINVAL;
1408	}
1409
1410	for (i = state; i <= end; i++, step++) {
1411		if (!step->name)
1412			return i;
1413	}
1414	WARN(1, "No more dynamic states available for CPU hotplug\n");
1415	return -ENOSPC;
1416}
1417
1418static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1419				 int (*startup)(unsigned int cpu),
1420				 int (*teardown)(unsigned int cpu),
1421				 bool multi_instance)
1422{
1423	/* (Un)Install the callbacks for further cpu hotplug operations */
1424	struct cpuhp_step *sp;
1425	int ret = 0;
1426
1427	/*
1428	 * If name is NULL, then the state gets removed.
1429	 *
1430	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1431	 * the first allocation from these dynamic ranges, so the removal
1432	 * would trigger a new allocation and clear the wrong (already
1433	 * empty) state, leaving the callbacks of the to be cleared state
1434	 * dangling, which causes wreckage on the next hotplug operation.
1435	 */
1436	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1437		     state == CPUHP_BP_PREPARE_DYN)) {
1438		ret = cpuhp_reserve_state(state);
1439		if (ret < 0)
1440			return ret;
1441		state = ret;
1442	}
1443	sp = cpuhp_get_step(state);
1444	if (name && sp->name)
1445		return -EBUSY;
1446
1447	sp->startup.single = startup;
1448	sp->teardown.single = teardown;
1449	sp->name = name;
1450	sp->multi_instance = multi_instance;
1451	INIT_HLIST_HEAD(&sp->list);
1452	return ret;
1453}
1454
1455static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1456{
1457	return cpuhp_get_step(state)->teardown.single;
1458}
1459
1460/*
1461 * Call the startup/teardown function for a step either on the AP or
1462 * on the current CPU.
1463 */
1464static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1465			    struct hlist_node *node)
1466{
1467	struct cpuhp_step *sp = cpuhp_get_step(state);
1468	int ret;
1469
1470	/*
1471	 * If there's nothing to do, we done.
1472	 * Relies on the union for multi_instance.
1473	 */
1474	if ((bringup && !sp->startup.single) ||
1475	    (!bringup && !sp->teardown.single))
1476		return 0;
1477	/*
1478	 * The non AP bound callbacks can fail on bringup. On teardown
1479	 * e.g. module removal we crash for now.
1480	 */
1481#ifdef CONFIG_SMP
1482	if (cpuhp_is_ap_state(state))
1483		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1484	else
1485		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1486#else
1487	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1488#endif
1489	BUG_ON(ret && !bringup);
1490	return ret;
1491}
1492
1493/*
1494 * Called from __cpuhp_setup_state on a recoverable failure.
1495 *
1496 * Note: The teardown callbacks for rollback are not allowed to fail!
1497 */
1498static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1499				   struct hlist_node *node)
1500{
1501	int cpu;
1502
1503	/* Roll back the already executed steps on the other cpus */
1504	for_each_present_cpu(cpu) {
1505		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506		int cpustate = st->state;
1507
1508		if (cpu >= failedcpu)
1509			break;
1510
1511		/* Did we invoke the startup call on that cpu ? */
1512		if (cpustate >= state)
1513			cpuhp_issue_call(cpu, state, false, node);
1514	}
1515}
1516
1517int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1518					  struct hlist_node *node,
1519					  bool invoke)
1520{
1521	struct cpuhp_step *sp;
1522	int cpu;
1523	int ret;
1524
1525	lockdep_assert_cpus_held();
1526
1527	sp = cpuhp_get_step(state);
1528	if (sp->multi_instance == false)
1529		return -EINVAL;
1530
1531	mutex_lock(&cpuhp_state_mutex);
1532
1533	if (!invoke || !sp->startup.multi)
1534		goto add_node;
1535
1536	/*
1537	 * Try to call the startup callback for each present cpu
1538	 * depending on the hotplug state of the cpu.
1539	 */
1540	for_each_present_cpu(cpu) {
1541		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1542		int cpustate = st->state;
1543
1544		if (cpustate < state)
1545			continue;
1546
1547		ret = cpuhp_issue_call(cpu, state, true, node);
1548		if (ret) {
1549			if (sp->teardown.multi)
1550				cpuhp_rollback_install(cpu, state, node);
1551			goto unlock;
1552		}
1553	}
1554add_node:
1555	ret = 0;
1556	hlist_add_head(node, &sp->list);
1557unlock:
1558	mutex_unlock(&cpuhp_state_mutex);
1559	return ret;
1560}
1561
1562int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1563			       bool invoke)
1564{
1565	int ret;
1566
1567	cpus_read_lock();
1568	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1569	cpus_read_unlock();
1570	return ret;
1571}
1572EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1573
1574/**
1575 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1576 * @state:		The state to setup
 
1577 * @invoke:		If true, the startup function is invoked for cpus where
1578 *			cpu state >= @state
1579 * @startup:		startup callback function
1580 * @teardown:		teardown callback function
1581 * @multi_instance:	State is set up for multiple instances which get
1582 *			added afterwards.
1583 *
1584 * The caller needs to hold cpus read locked while calling this function.
1585 * Returns:
1586 *   On success:
1587 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1588 *      0 for all other states
1589 *   On failure: proper (negative) error code
1590 */
1591int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1592				   const char *name, bool invoke,
1593				   int (*startup)(unsigned int cpu),
1594				   int (*teardown)(unsigned int cpu),
1595				   bool multi_instance)
1596{
1597	int cpu, ret = 0;
1598	bool dynstate;
1599
1600	lockdep_assert_cpus_held();
1601
1602	if (cpuhp_cb_check(state) || !name)
1603		return -EINVAL;
1604
1605	mutex_lock(&cpuhp_state_mutex);
1606
1607	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1608				    multi_instance);
1609
1610	dynstate = state == CPUHP_AP_ONLINE_DYN;
1611	if (ret > 0 && dynstate) {
1612		state = ret;
1613		ret = 0;
1614	}
1615
1616	if (ret || !invoke || !startup)
1617		goto out;
1618
1619	/*
1620	 * Try to call the startup callback for each present cpu
1621	 * depending on the hotplug state of the cpu.
1622	 */
1623	for_each_present_cpu(cpu) {
1624		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625		int cpustate = st->state;
1626
1627		if (cpustate < state)
1628			continue;
1629
1630		ret = cpuhp_issue_call(cpu, state, true, NULL);
1631		if (ret) {
1632			if (teardown)
1633				cpuhp_rollback_install(cpu, state, NULL);
1634			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635			goto out;
1636		}
1637	}
1638out:
1639	mutex_unlock(&cpuhp_state_mutex);
1640	/*
1641	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1642	 * dynamically allocated state in case of success.
1643	 */
1644	if (!ret && dynstate)
1645		return state;
1646	return ret;
1647}
1648EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1649
1650int __cpuhp_setup_state(enum cpuhp_state state,
1651			const char *name, bool invoke,
1652			int (*startup)(unsigned int cpu),
1653			int (*teardown)(unsigned int cpu),
1654			bool multi_instance)
1655{
1656	int ret;
1657
1658	cpus_read_lock();
1659	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1660					     teardown, multi_instance);
1661	cpus_read_unlock();
1662	return ret;
1663}
1664EXPORT_SYMBOL(__cpuhp_setup_state);
1665
1666int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667				  struct hlist_node *node, bool invoke)
1668{
1669	struct cpuhp_step *sp = cpuhp_get_step(state);
1670	int cpu;
1671
1672	BUG_ON(cpuhp_cb_check(state));
1673
1674	if (!sp->multi_instance)
1675		return -EINVAL;
1676
1677	cpus_read_lock();
1678	mutex_lock(&cpuhp_state_mutex);
1679
1680	if (!invoke || !cpuhp_get_teardown_cb(state))
1681		goto remove;
1682	/*
1683	 * Call the teardown callback for each present cpu depending
1684	 * on the hotplug state of the cpu. This function is not
1685	 * allowed to fail currently!
1686	 */
1687	for_each_present_cpu(cpu) {
1688		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689		int cpustate = st->state;
1690
1691		if (cpustate >= state)
1692			cpuhp_issue_call(cpu, state, false, node);
1693	}
1694
1695remove:
1696	hlist_del(node);
1697	mutex_unlock(&cpuhp_state_mutex);
1698	cpus_read_unlock();
1699
1700	return 0;
1701}
1702EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703
1704/**
1705 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1706 * @state:	The state to remove
1707 * @invoke:	If true, the teardown function is invoked for cpus where
1708 *		cpu state >= @state
1709 *
1710 * The caller needs to hold cpus read locked while calling this function.
1711 * The teardown callback is currently not allowed to fail. Think
1712 * about module removal!
1713 */
1714void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1715{
1716	struct cpuhp_step *sp = cpuhp_get_step(state);
1717	int cpu;
1718
1719	BUG_ON(cpuhp_cb_check(state));
1720
1721	lockdep_assert_cpus_held();
1722
1723	mutex_lock(&cpuhp_state_mutex);
1724	if (sp->multi_instance) {
1725		WARN(!hlist_empty(&sp->list),
1726		     "Error: Removing state %d which has instances left.\n",
1727		     state);
1728		goto remove;
1729	}
1730
1731	if (!invoke || !cpuhp_get_teardown_cb(state))
1732		goto remove;
1733
1734	/*
1735	 * Call the teardown callback for each present cpu depending
1736	 * on the hotplug state of the cpu. This function is not
1737	 * allowed to fail currently!
1738	 */
1739	for_each_present_cpu(cpu) {
1740		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741		int cpustate = st->state;
1742
1743		if (cpustate >= state)
1744			cpuhp_issue_call(cpu, state, false, NULL);
1745	}
1746remove:
1747	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1748	mutex_unlock(&cpuhp_state_mutex);
1749}
1750EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1751
1752void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1753{
1754	cpus_read_lock();
1755	__cpuhp_remove_state_cpuslocked(state, invoke);
1756	cpus_read_unlock();
1757}
1758EXPORT_SYMBOL(__cpuhp_remove_state);
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1761static ssize_t show_cpuhp_state(struct device *dev,
1762				struct device_attribute *attr, char *buf)
1763{
1764	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1765
1766	return sprintf(buf, "%d\n", st->state);
1767}
1768static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1769
1770static ssize_t write_cpuhp_target(struct device *dev,
1771				  struct device_attribute *attr,
1772				  const char *buf, size_t count)
1773{
1774	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1775	struct cpuhp_step *sp;
1776	int target, ret;
1777
1778	ret = kstrtoint(buf, 10, &target);
1779	if (ret)
1780		return ret;
1781
1782#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1783	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1784		return -EINVAL;
1785#else
1786	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1787		return -EINVAL;
1788#endif
1789
1790	ret = lock_device_hotplug_sysfs();
1791	if (ret)
1792		return ret;
1793
1794	mutex_lock(&cpuhp_state_mutex);
1795	sp = cpuhp_get_step(target);
1796	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1797	mutex_unlock(&cpuhp_state_mutex);
1798	if (ret)
1799		goto out;
1800
1801	if (st->state < target)
1802		ret = do_cpu_up(dev->id, target);
1803	else
1804		ret = do_cpu_down(dev->id, target);
 
 
1805out:
1806	unlock_device_hotplug();
1807	return ret ? ret : count;
1808}
1809
1810static ssize_t show_cpuhp_target(struct device *dev,
1811				 struct device_attribute *attr, char *buf)
1812{
1813	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1814
1815	return sprintf(buf, "%d\n", st->target);
1816}
1817static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1818
1819
1820static ssize_t write_cpuhp_fail(struct device *dev,
1821				struct device_attribute *attr,
1822				const char *buf, size_t count)
1823{
1824	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825	struct cpuhp_step *sp;
1826	int fail, ret;
1827
1828	ret = kstrtoint(buf, 10, &fail);
1829	if (ret)
1830		return ret;
1831
 
 
 
 
 
 
 
 
1832	/*
1833	 * Cannot fail STARTING/DYING callbacks.
1834	 */
1835	if (cpuhp_is_atomic_state(fail))
1836		return -EINVAL;
1837
1838	/*
 
 
 
 
 
 
 
 
 
1839	 * Cannot fail anything that doesn't have callbacks.
1840	 */
1841	mutex_lock(&cpuhp_state_mutex);
1842	sp = cpuhp_get_step(fail);
1843	if (!sp->startup.single && !sp->teardown.single)
1844		ret = -EINVAL;
1845	mutex_unlock(&cpuhp_state_mutex);
1846	if (ret)
1847		return ret;
1848
1849	st->fail = fail;
1850
1851	return count;
1852}
1853
1854static ssize_t show_cpuhp_fail(struct device *dev,
1855			       struct device_attribute *attr, char *buf)
1856{
1857	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1858
1859	return sprintf(buf, "%d\n", st->fail);
1860}
1861
1862static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1863
1864static struct attribute *cpuhp_cpu_attrs[] = {
1865	&dev_attr_state.attr,
1866	&dev_attr_target.attr,
1867	&dev_attr_fail.attr,
1868	NULL
1869};
1870
1871static const struct attribute_group cpuhp_cpu_attr_group = {
1872	.attrs = cpuhp_cpu_attrs,
1873	.name = "hotplug",
1874	NULL
1875};
1876
1877static ssize_t show_cpuhp_states(struct device *dev,
1878				 struct device_attribute *attr, char *buf)
1879{
1880	ssize_t cur, res = 0;
1881	int i;
1882
1883	mutex_lock(&cpuhp_state_mutex);
1884	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1885		struct cpuhp_step *sp = cpuhp_get_step(i);
1886
1887		if (sp->name) {
1888			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1889			buf += cur;
1890			res += cur;
1891		}
1892	}
1893	mutex_unlock(&cpuhp_state_mutex);
1894	return res;
1895}
1896static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1897
1898static struct attribute *cpuhp_cpu_root_attrs[] = {
1899	&dev_attr_states.attr,
1900	NULL
1901};
1902
1903static const struct attribute_group cpuhp_cpu_root_attr_group = {
1904	.attrs = cpuhp_cpu_root_attrs,
1905	.name = "hotplug",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906	NULL
1907};
1908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909static int __init cpuhp_sysfs_init(void)
1910{
 
1911	int cpu, ret;
1912
1913	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1914				 &cpuhp_cpu_root_attr_group);
1915	if (ret)
1916		return ret;
1917
 
 
 
 
 
 
 
 
1918	for_each_possible_cpu(cpu) {
1919		struct device *dev = get_cpu_device(cpu);
1920
1921		if (!dev)
1922			continue;
1923		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1924		if (ret)
1925			return ret;
1926	}
1927	return 0;
1928}
1929device_initcall(cpuhp_sysfs_init);
1930#endif
1931
1932/*
1933 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1934 * represents all NR_CPUS bits binary values of 1<<nr.
1935 *
1936 * It is used by cpumask_of() to get a constant address to a CPU
1937 * mask value that has a single bit set only.
1938 */
1939
1940/* cpu_bit_bitmap[0] is empty - so we can back into it */
1941#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1942#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1943#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1944#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1945
1946const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1947
1948	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1949	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1950#if BITS_PER_LONG > 32
1951	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1952	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1953#endif
1954};
1955EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1956
1957const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1958EXPORT_SYMBOL(cpu_all_bits);
1959
1960#ifdef CONFIG_INIT_ALL_POSSIBLE
1961struct cpumask __cpu_possible_mask __read_mostly
1962	= {CPU_BITS_ALL};
1963#else
1964struct cpumask __cpu_possible_mask __read_mostly;
1965#endif
1966EXPORT_SYMBOL(__cpu_possible_mask);
1967
1968struct cpumask __cpu_online_mask __read_mostly;
1969EXPORT_SYMBOL(__cpu_online_mask);
1970
 
 
 
1971struct cpumask __cpu_present_mask __read_mostly;
1972EXPORT_SYMBOL(__cpu_present_mask);
1973
1974struct cpumask __cpu_active_mask __read_mostly;
1975EXPORT_SYMBOL(__cpu_active_mask);
1976
 
 
 
 
 
 
1977void init_cpu_present(const struct cpumask *src)
1978{
1979	cpumask_copy(&__cpu_present_mask, src);
1980}
1981
1982void init_cpu_possible(const struct cpumask *src)
1983{
1984	cpumask_copy(&__cpu_possible_mask, src);
1985}
1986
1987void init_cpu_online(const struct cpumask *src)
1988{
1989	cpumask_copy(&__cpu_online_mask, src);
1990}
1991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992/*
1993 * Activate the first processor.
1994 */
1995void __init boot_cpu_init(void)
1996{
1997	int cpu = smp_processor_id();
1998
1999	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2000	set_cpu_online(cpu, true);
2001	set_cpu_active(cpu, true);
2002	set_cpu_present(cpu, true);
2003	set_cpu_possible(cpu, true);
2004
2005#ifdef CONFIG_SMP
2006	__boot_cpu_id = cpu;
2007#endif
2008}
2009
2010/*
2011 * Must be called _AFTER_ setting up the per_cpu areas
2012 */
2013void __init boot_cpu_state_init(void)
2014{
2015	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
 
 
 
 
 
2016}
v6.13.7
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/delay.h>
  21#include <linux/export.h>
  22#include <linux/bug.h>
  23#include <linux/kthread.h>
  24#include <linux/stop_machine.h>
  25#include <linux/mutex.h>
  26#include <linux/gfp.h>
  27#include <linux/suspend.h>
  28#include <linux/lockdep.h>
  29#include <linux/tick.h>
  30#include <linux/irq.h>
  31#include <linux/nmi.h>
  32#include <linux/smpboot.h>
  33#include <linux/relay.h>
  34#include <linux/slab.h>
  35#include <linux/scs.h>
  36#include <linux/percpu-rwsem.h>
  37#include <linux/cpuset.h>
  38#include <linux/random.h>
  39#include <linux/cc_platform.h>
  40
  41#include <trace/events/power.h>
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/cpuhp.h>
  44
  45#include "smpboot.h"
  46
  47/**
  48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
  49 * @state:	The current cpu state
  50 * @target:	The target state
  51 * @fail:	Current CPU hotplug callback state
  52 * @thread:	Pointer to the hotplug thread
  53 * @should_run:	Thread should execute
  54 * @rollback:	Perform a rollback
  55 * @single:	Single callback invocation
  56 * @bringup:	Single callback bringup or teardown selector
  57 * @node:	Remote CPU node; for multi-instance, do a
  58 *		single entry callback for install/remove
  59 * @last:	For multi-instance rollback, remember how far we got
  60 * @cb_state:	The state for a single callback (install/uninstall)
  61 * @result:	Result of the operation
  62 * @ap_sync_state:	State for AP synchronization
  63 * @done_up:	Signal completion to the issuer of the task for cpu-up
  64 * @done_down:	Signal completion to the issuer of the task for cpu-down
  65 */
  66struct cpuhp_cpu_state {
  67	enum cpuhp_state	state;
  68	enum cpuhp_state	target;
  69	enum cpuhp_state	fail;
  70#ifdef CONFIG_SMP
  71	struct task_struct	*thread;
  72	bool			should_run;
  73	bool			rollback;
  74	bool			single;
  75	bool			bringup;
  76	struct hlist_node	*node;
  77	struct hlist_node	*last;
  78	enum cpuhp_state	cb_state;
  79	int			result;
  80	atomic_t		ap_sync_state;
  81	struct completion	done_up;
  82	struct completion	done_down;
  83#endif
  84};
  85
  86static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  87	.fail = CPUHP_INVALID,
  88};
  89
  90#ifdef CONFIG_SMP
  91cpumask_t cpus_booted_once_mask;
  92#endif
  93
  94#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  95static struct lockdep_map cpuhp_state_up_map =
  96	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  97static struct lockdep_map cpuhp_state_down_map =
  98	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  99
 100
 101static inline void cpuhp_lock_acquire(bool bringup)
 102{
 103	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 104}
 105
 106static inline void cpuhp_lock_release(bool bringup)
 107{
 108	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 109}
 110#else
 111
 112static inline void cpuhp_lock_acquire(bool bringup) { }
 113static inline void cpuhp_lock_release(bool bringup) { }
 114
 115#endif
 116
 117/**
 118 * struct cpuhp_step - Hotplug state machine step
 119 * @name:	Name of the step
 120 * @startup:	Startup function of the step
 121 * @teardown:	Teardown function of the step
 
 
 122 * @cant_stop:	Bringup/teardown can't be stopped at this step
 123 * @multi_instance:	State has multiple instances which get added afterwards
 124 */
 125struct cpuhp_step {
 126	const char		*name;
 127	union {
 128		int		(*single)(unsigned int cpu);
 129		int		(*multi)(unsigned int cpu,
 130					 struct hlist_node *node);
 131	} startup;
 132	union {
 133		int		(*single)(unsigned int cpu);
 134		int		(*multi)(unsigned int cpu,
 135					 struct hlist_node *node);
 136	} teardown;
 137	/* private: */
 138	struct hlist_head	list;
 139	/* public: */
 140	bool			cant_stop;
 141	bool			multi_instance;
 142};
 143
 144static DEFINE_MUTEX(cpuhp_state_mutex);
 145static struct cpuhp_step cpuhp_hp_states[];
 146
 147static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 148{
 149	return cpuhp_hp_states + state;
 150}
 151
 152static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
 153{
 154	return bringup ? !step->startup.single : !step->teardown.single;
 155}
 156
 157/**
 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
 159 * @cpu:	The cpu for which the callback should be invoked
 160 * @state:	The state to do callbacks for
 161 * @bringup:	True if the bringup callback should be invoked
 162 * @node:	For multi-instance, do a single entry callback for install/remove
 163 * @lastp:	For multi-instance rollback, remember how far we got
 164 *
 165 * Called from cpu hotplug and from the state register machinery.
 166 *
 167 * Return: %0 on success or a negative errno code
 168 */
 169static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 170				 bool bringup, struct hlist_node *node,
 171				 struct hlist_node **lastp)
 172{
 173	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 174	struct cpuhp_step *step = cpuhp_get_step(state);
 175	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 176	int (*cb)(unsigned int cpu);
 177	int ret, cnt;
 178
 179	if (st->fail == state) {
 180		st->fail = CPUHP_INVALID;
 
 
 
 
 181		return -EAGAIN;
 182	}
 183
 184	if (cpuhp_step_empty(bringup, step)) {
 185		WARN_ON_ONCE(1);
 186		return 0;
 187	}
 188
 189	if (!step->multi_instance) {
 190		WARN_ON_ONCE(lastp && *lastp);
 191		cb = bringup ? step->startup.single : step->teardown.single;
 192
 
 193		trace_cpuhp_enter(cpu, st->target, state, cb);
 194		ret = cb(cpu);
 195		trace_cpuhp_exit(cpu, st->state, state, ret);
 196		return ret;
 197	}
 198	cbm = bringup ? step->startup.multi : step->teardown.multi;
 
 
 199
 200	/* Single invocation for instance add/remove */
 201	if (node) {
 202		WARN_ON_ONCE(lastp && *lastp);
 203		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 204		ret = cbm(cpu, node);
 205		trace_cpuhp_exit(cpu, st->state, state, ret);
 206		return ret;
 207	}
 208
 209	/* State transition. Invoke on all instances */
 210	cnt = 0;
 211	hlist_for_each(node, &step->list) {
 212		if (lastp && node == *lastp)
 213			break;
 214
 215		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 216		ret = cbm(cpu, node);
 217		trace_cpuhp_exit(cpu, st->state, state, ret);
 218		if (ret) {
 219			if (!lastp)
 220				goto err;
 221
 222			*lastp = node;
 223			return ret;
 224		}
 225		cnt++;
 226	}
 227	if (lastp)
 228		*lastp = NULL;
 229	return 0;
 230err:
 231	/* Rollback the instances if one failed */
 232	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 233	if (!cbm)
 234		return ret;
 235
 236	hlist_for_each(node, &step->list) {
 237		if (!cnt--)
 238			break;
 239
 240		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 241		ret = cbm(cpu, node);
 242		trace_cpuhp_exit(cpu, st->state, state, ret);
 243		/*
 244		 * Rollback must not fail,
 245		 */
 246		WARN_ON_ONCE(ret);
 247	}
 248	return ret;
 249}
 250
 251#ifdef CONFIG_SMP
 252static bool cpuhp_is_ap_state(enum cpuhp_state state)
 253{
 254	/*
 255	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 256	 * purposes as that state is handled explicitly in cpu_down.
 257	 */
 258	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 259}
 260
 261static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 262{
 263	struct completion *done = bringup ? &st->done_up : &st->done_down;
 264	wait_for_completion(done);
 265}
 266
 267static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 268{
 269	struct completion *done = bringup ? &st->done_up : &st->done_down;
 270	complete(done);
 271}
 272
 273/*
 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 275 */
 276static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 277{
 278	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 279}
 280
 281/* Synchronization state management */
 282enum cpuhp_sync_state {
 283	SYNC_STATE_DEAD,
 284	SYNC_STATE_KICKED,
 285	SYNC_STATE_SHOULD_DIE,
 286	SYNC_STATE_ALIVE,
 287	SYNC_STATE_SHOULD_ONLINE,
 288	SYNC_STATE_ONLINE,
 289};
 290
 291#ifdef CONFIG_HOTPLUG_CORE_SYNC
 292/**
 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
 294 * @state:	The synchronization state to set
 295 *
 296 * No synchronization point. Just update of the synchronization state, but implies
 297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
 298 */
 299static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
 300{
 301	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
 302
 303	(void)atomic_xchg(st, state);
 304}
 305
 306void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
 307
 308static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
 309				      enum cpuhp_sync_state next_state)
 310{
 311	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 312	ktime_t now, end, start = ktime_get();
 313	int sync;
 314
 315	end = start + 10ULL * NSEC_PER_SEC;
 316
 317	sync = atomic_read(st);
 318	while (1) {
 319		if (sync == state) {
 320			if (!atomic_try_cmpxchg(st, &sync, next_state))
 321				continue;
 322			return true;
 323		}
 324
 325		now = ktime_get();
 326		if (now > end) {
 327			/* Timeout. Leave the state unchanged */
 328			return false;
 329		} else if (now - start < NSEC_PER_MSEC) {
 330			/* Poll for one millisecond */
 331			arch_cpuhp_sync_state_poll();
 332		} else {
 333			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
 334		}
 335		sync = atomic_read(st);
 336	}
 337	return true;
 338}
 339#else  /* CONFIG_HOTPLUG_CORE_SYNC */
 340static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
 341#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
 342
 343#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
 344/**
 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
 346 *
 347 * No synchronization point. Just update of the synchronization state.
 348 */
 349void cpuhp_ap_report_dead(void)
 350{
 351	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
 352}
 353
 354void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
 355
 356/*
 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
 358 * because the AP cannot issue complete() at this stage.
 359 */
 360static void cpuhp_bp_sync_dead(unsigned int cpu)
 361{
 362	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 363	int sync = atomic_read(st);
 364
 365	do {
 366		/* CPU can have reported dead already. Don't overwrite that! */
 367		if (sync == SYNC_STATE_DEAD)
 368			break;
 369	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
 370
 371	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
 372		/* CPU reached dead state. Invoke the cleanup function */
 373		arch_cpuhp_cleanup_dead_cpu(cpu);
 374		return;
 375	}
 376
 377	/* No further action possible. Emit message and give up. */
 378	pr_err("CPU%u failed to report dead state\n", cpu);
 379}
 380#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
 381static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
 382#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
 383
 384#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
 385/**
 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
 387 *
 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
 389 * for the BP to release it.
 390 */
 391void cpuhp_ap_sync_alive(void)
 392{
 393	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
 394
 395	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
 396
 397	/* Wait for the control CPU to release it. */
 398	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
 399		cpu_relax();
 400}
 401
 402static bool cpuhp_can_boot_ap(unsigned int cpu)
 403{
 404	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 405	int sync = atomic_read(st);
 406
 407again:
 408	switch (sync) {
 409	case SYNC_STATE_DEAD:
 410		/* CPU is properly dead */
 411		break;
 412	case SYNC_STATE_KICKED:
 413		/* CPU did not come up in previous attempt */
 414		break;
 415	case SYNC_STATE_ALIVE:
 416		/* CPU is stuck cpuhp_ap_sync_alive(). */
 417		break;
 418	default:
 419		/* CPU failed to report online or dead and is in limbo state. */
 420		return false;
 421	}
 422
 423	/* Prepare for booting */
 424	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
 425		goto again;
 426
 427	return true;
 428}
 429
 430void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
 431
 432/*
 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
 434 * because the AP cannot issue complete() so early in the bringup.
 435 */
 436static int cpuhp_bp_sync_alive(unsigned int cpu)
 437{
 438	int ret = 0;
 439
 440	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
 441		return 0;
 442
 443	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
 444		pr_err("CPU%u failed to report alive state\n", cpu);
 445		ret = -EIO;
 446	}
 447
 448	/* Let the architecture cleanup the kick alive mechanics. */
 449	arch_cpuhp_cleanup_kick_cpu(cpu);
 450	return ret;
 451}
 452#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
 453static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
 454static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
 455#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
 456
 457/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 458static DEFINE_MUTEX(cpu_add_remove_lock);
 459bool cpuhp_tasks_frozen;
 460EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 461
 462/*
 463 * The following two APIs (cpu_maps_update_begin/done) must be used when
 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 465 */
 466void cpu_maps_update_begin(void)
 467{
 468	mutex_lock(&cpu_add_remove_lock);
 469}
 470
 471void cpu_maps_update_done(void)
 472{
 473	mutex_unlock(&cpu_add_remove_lock);
 474}
 475
 476/*
 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 478 * Should always be manipulated under cpu_add_remove_lock
 479 */
 480static int cpu_hotplug_disabled;
 481
 482#ifdef CONFIG_HOTPLUG_CPU
 483
 484DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 485
 486static bool cpu_hotplug_offline_disabled __ro_after_init;
 487
 488void cpus_read_lock(void)
 489{
 490	percpu_down_read(&cpu_hotplug_lock);
 491}
 492EXPORT_SYMBOL_GPL(cpus_read_lock);
 493
 494int cpus_read_trylock(void)
 495{
 496	return percpu_down_read_trylock(&cpu_hotplug_lock);
 497}
 498EXPORT_SYMBOL_GPL(cpus_read_trylock);
 499
 500void cpus_read_unlock(void)
 501{
 502	percpu_up_read(&cpu_hotplug_lock);
 503}
 504EXPORT_SYMBOL_GPL(cpus_read_unlock);
 505
 506void cpus_write_lock(void)
 507{
 508	percpu_down_write(&cpu_hotplug_lock);
 509}
 510
 511void cpus_write_unlock(void)
 512{
 513	percpu_up_write(&cpu_hotplug_lock);
 514}
 515
 516void lockdep_assert_cpus_held(void)
 517{
 518	/*
 519	 * We can't have hotplug operations before userspace starts running,
 520	 * and some init codepaths will knowingly not take the hotplug lock.
 521	 * This is all valid, so mute lockdep until it makes sense to report
 522	 * unheld locks.
 523	 */
 524	if (system_state < SYSTEM_RUNNING)
 525		return;
 526
 527	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 528}
 529
 530#ifdef CONFIG_LOCKDEP
 531int lockdep_is_cpus_held(void)
 532{
 533	return percpu_rwsem_is_held(&cpu_hotplug_lock);
 534}
 535#endif
 536
 537static void lockdep_acquire_cpus_lock(void)
 538{
 539	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 540}
 541
 542static void lockdep_release_cpus_lock(void)
 543{
 544	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 545}
 546
 547/* Declare CPU offlining not supported */
 548void cpu_hotplug_disable_offlining(void)
 549{
 550	cpu_maps_update_begin();
 551	cpu_hotplug_offline_disabled = true;
 552	cpu_maps_update_done();
 553}
 554
 555/*
 556 * Wait for currently running CPU hotplug operations to complete (if any) and
 557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 559 * hotplug path before performing hotplug operations. So acquiring that lock
 560 * guarantees mutual exclusion from any currently running hotplug operations.
 561 */
 562void cpu_hotplug_disable(void)
 563{
 564	cpu_maps_update_begin();
 565	cpu_hotplug_disabled++;
 566	cpu_maps_update_done();
 567}
 568EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 569
 570static void __cpu_hotplug_enable(void)
 571{
 572	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 573		return;
 574	cpu_hotplug_disabled--;
 575}
 576
 577void cpu_hotplug_enable(void)
 578{
 579	cpu_maps_update_begin();
 580	__cpu_hotplug_enable();
 581	cpu_maps_update_done();
 582}
 583EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 584
 585#else
 586
 587static void lockdep_acquire_cpus_lock(void)
 588{
 589}
 590
 591static void lockdep_release_cpus_lock(void)
 592{
 593}
 594
 595#endif	/* CONFIG_HOTPLUG_CPU */
 596
 597/*
 598 * Architectures that need SMT-specific errata handling during SMT hotplug
 599 * should override this.
 600 */
 601void __weak arch_smt_update(void) { }
 602
 603#ifdef CONFIG_HOTPLUG_SMT
 604
 605enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 606static unsigned int cpu_smt_max_threads __ro_after_init;
 607unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
 608
 609void __init cpu_smt_disable(bool force)
 610{
 611	if (!cpu_smt_possible())
 612		return;
 613
 614	if (force) {
 615		pr_info("SMT: Force disabled\n");
 616		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 617	} else {
 618		pr_info("SMT: disabled\n");
 619		cpu_smt_control = CPU_SMT_DISABLED;
 620	}
 621	cpu_smt_num_threads = 1;
 622}
 623
 624/*
 625 * The decision whether SMT is supported can only be done after the full
 626 * CPU identification. Called from architecture code.
 627 */
 628void __init cpu_smt_set_num_threads(unsigned int num_threads,
 629				    unsigned int max_threads)
 630{
 631	WARN_ON(!num_threads || (num_threads > max_threads));
 632
 633	if (max_threads == 1)
 634		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 635
 636	cpu_smt_max_threads = max_threads;
 637
 638	/*
 639	 * If SMT has been disabled via the kernel command line or SMT is
 640	 * not supported, set cpu_smt_num_threads to 1 for consistency.
 641	 * If enabled, take the architecture requested number of threads
 642	 * to bring up into account.
 643	 */
 644	if (cpu_smt_control != CPU_SMT_ENABLED)
 645		cpu_smt_num_threads = 1;
 646	else if (num_threads < cpu_smt_num_threads)
 647		cpu_smt_num_threads = num_threads;
 648}
 649
 650static int __init smt_cmdline_disable(char *str)
 651{
 652	cpu_smt_disable(str && !strcmp(str, "force"));
 653	return 0;
 654}
 655early_param("nosmt", smt_cmdline_disable);
 656
 657/*
 658 * For Archicture supporting partial SMT states check if the thread is allowed.
 659 * Otherwise this has already been checked through cpu_smt_max_threads when
 660 * setting the SMT level.
 661 */
 662static inline bool cpu_smt_thread_allowed(unsigned int cpu)
 663{
 664#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
 665	return topology_smt_thread_allowed(cpu);
 666#else
 667	return true;
 668#endif
 669}
 670
 671static inline bool cpu_bootable(unsigned int cpu)
 672{
 673	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
 674		return true;
 675
 676	/* All CPUs are bootable if controls are not configured */
 677	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
 678		return true;
 679
 680	/* All CPUs are bootable if CPU is not SMT capable */
 681	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
 682		return true;
 683
 684	if (topology_is_primary_thread(cpu))
 685		return true;
 686
 687	/*
 688	 * On x86 it's required to boot all logical CPUs at least once so
 689	 * that the init code can get a chance to set CR4.MCE on each
 690	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 691	 * core will shutdown the machine.
 692	 */
 693	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 694}
 695
 696/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
 697bool cpu_smt_possible(void)
 698{
 699	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 700		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 701}
 702EXPORT_SYMBOL_GPL(cpu_smt_possible);
 703
 704#else
 705static inline bool cpu_bootable(unsigned int cpu) { return true; }
 706#endif
 707
 708static inline enum cpuhp_state
 709cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
 710{
 711	enum cpuhp_state prev_state = st->state;
 712	bool bringup = st->state < target;
 713
 714	st->rollback = false;
 715	st->last = NULL;
 716
 717	st->target = target;
 718	st->single = false;
 719	st->bringup = bringup;
 720	if (cpu_dying(cpu) != !bringup)
 721		set_cpu_dying(cpu, !bringup);
 722
 723	return prev_state;
 724}
 725
 726static inline void
 727cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
 728		  enum cpuhp_state prev_state)
 729{
 730	bool bringup = !st->bringup;
 731
 732	st->target = prev_state;
 733
 734	/*
 735	 * Already rolling back. No need invert the bringup value or to change
 736	 * the current state.
 737	 */
 738	if (st->rollback)
 739		return;
 740
 741	st->rollback = true;
 742
 743	/*
 744	 * If we have st->last we need to undo partial multi_instance of this
 745	 * state first. Otherwise start undo at the previous state.
 746	 */
 747	if (!st->last) {
 748		if (st->bringup)
 749			st->state--;
 750		else
 751			st->state++;
 752	}
 753
 754	st->bringup = bringup;
 755	if (cpu_dying(cpu) != !bringup)
 756		set_cpu_dying(cpu, !bringup);
 757}
 758
 759/* Regular hotplug invocation of the AP hotplug thread */
 760static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 761{
 762	if (!st->single && st->state == st->target)
 763		return;
 764
 765	st->result = 0;
 766	/*
 767	 * Make sure the above stores are visible before should_run becomes
 768	 * true. Paired with the mb() above in cpuhp_thread_fun()
 769	 */
 770	smp_mb();
 771	st->should_run = true;
 772	wake_up_process(st->thread);
 773	wait_for_ap_thread(st, st->bringup);
 774}
 775
 776static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
 777			 enum cpuhp_state target)
 778{
 779	enum cpuhp_state prev_state;
 780	int ret;
 781
 782	prev_state = cpuhp_set_state(cpu, st, target);
 783	__cpuhp_kick_ap(st);
 784	if ((ret = st->result)) {
 785		cpuhp_reset_state(cpu, st, prev_state);
 786		__cpuhp_kick_ap(st);
 787	}
 788
 789	return ret;
 790}
 791
 792static int bringup_wait_for_ap_online(unsigned int cpu)
 793{
 794	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 795
 796	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 797	wait_for_ap_thread(st, true);
 798	if (WARN_ON_ONCE((!cpu_online(cpu))))
 799		return -ECANCELED;
 800
 801	/* Unpark the hotplug thread of the target cpu */
 
 802	kthread_unpark(st->thread);
 803
 804	/*
 805	 * SMT soft disabling on X86 requires to bring the CPU out of the
 806	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 807	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 808	 * cpu_bootable() check will now return false if this is not the
 809	 * primary sibling.
 810	 */
 811	if (!cpu_bootable(cpu))
 812		return -ECANCELED;
 813	return 0;
 814}
 815
 816#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
 817static int cpuhp_kick_ap_alive(unsigned int cpu)
 818{
 819	if (!cpuhp_can_boot_ap(cpu))
 820		return -EAGAIN;
 821
 822	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
 823}
 824
 825static int cpuhp_bringup_ap(unsigned int cpu)
 826{
 827	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 828	int ret;
 829
 830	/*
 831	 * Some architectures have to walk the irq descriptors to
 832	 * setup the vector space for the cpu which comes online.
 833	 * Prevent irq alloc/free across the bringup.
 834	 */
 835	irq_lock_sparse();
 836
 837	ret = cpuhp_bp_sync_alive(cpu);
 838	if (ret)
 839		goto out_unlock;
 840
 841	ret = bringup_wait_for_ap_online(cpu);
 842	if (ret)
 843		goto out_unlock;
 844
 845	irq_unlock_sparse();
 846
 847	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 848		return 0;
 849
 850	return cpuhp_kick_ap(cpu, st, st->target);
 
 851
 852out_unlock:
 853	irq_unlock_sparse();
 854	return ret;
 855}
 856#else
 857static int bringup_cpu(unsigned int cpu)
 858{
 859	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 860	struct task_struct *idle = idle_thread_get(cpu);
 861	int ret;
 862
 863	if (!cpuhp_can_boot_ap(cpu))
 864		return -EAGAIN;
 865
 866	/*
 867	 * Some architectures have to walk the irq descriptors to
 868	 * setup the vector space for the cpu which comes online.
 869	 *
 870	 * Prevent irq alloc/free across the bringup by acquiring the
 871	 * sparse irq lock. Hold it until the upcoming CPU completes the
 872	 * startup in cpuhp_online_idle() which allows to avoid
 873	 * intermediate synchronization points in the architecture code.
 874	 */
 875	irq_lock_sparse();
 876
 
 877	ret = __cpu_up(cpu, idle);
 
 878	if (ret)
 879		goto out_unlock;
 880
 881	ret = cpuhp_bp_sync_alive(cpu);
 882	if (ret)
 883		goto out_unlock;
 884
 885	ret = bringup_wait_for_ap_online(cpu);
 886	if (ret)
 887		goto out_unlock;
 888
 889	irq_unlock_sparse();
 890
 891	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 892		return 0;
 893
 894	return cpuhp_kick_ap(cpu, st, st->target);
 895
 896out_unlock:
 897	irq_unlock_sparse();
 898	return ret;
 899}
 900#endif
 901
 902static int finish_cpu(unsigned int cpu)
 903{
 904	struct task_struct *idle = idle_thread_get(cpu);
 905	struct mm_struct *mm = idle->active_mm;
 906
 907	/*
 908	 * idle_task_exit() will have switched to &init_mm, now
 909	 * clean up any remaining active_mm state.
 910	 */
 911	if (mm != &init_mm)
 912		idle->active_mm = &init_mm;
 913	mmdrop_lazy_tlb(mm);
 914	return 0;
 915}
 916
 917/*
 918 * Hotplug state machine related functions
 919 */
 920
 921/*
 922 * Get the next state to run. Empty ones will be skipped. Returns true if a
 923 * state must be run.
 924 *
 925 * st->state will be modified ahead of time, to match state_to_run, as if it
 926 * has already ran.
 927 */
 928static bool cpuhp_next_state(bool bringup,
 929			     enum cpuhp_state *state_to_run,
 930			     struct cpuhp_cpu_state *st,
 931			     enum cpuhp_state target)
 932{
 933	do {
 934		if (bringup) {
 935			if (st->state >= target)
 936				return false;
 937
 938			*state_to_run = ++st->state;
 939		} else {
 940			if (st->state <= target)
 941				return false;
 942
 943			*state_to_run = st->state--;
 944		}
 945
 946		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
 947			break;
 948	} while (true);
 949
 950	return true;
 951}
 952
 953static int __cpuhp_invoke_callback_range(bool bringup,
 954					 unsigned int cpu,
 955					 struct cpuhp_cpu_state *st,
 956					 enum cpuhp_state target,
 957					 bool nofail)
 958{
 959	enum cpuhp_state state;
 960	int ret = 0;
 961
 962	while (cpuhp_next_state(bringup, &state, st, target)) {
 963		int err;
 964
 965		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
 966		if (!err)
 967			continue;
 968
 969		if (nofail) {
 970			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
 971				cpu, bringup ? "UP" : "DOWN",
 972				cpuhp_get_step(st->state)->name,
 973				st->state, err);
 974			ret = -1;
 975		} else {
 976			ret = err;
 977			break;
 978		}
 979	}
 980
 981	return ret;
 982}
 983
 984static inline int cpuhp_invoke_callback_range(bool bringup,
 985					      unsigned int cpu,
 986					      struct cpuhp_cpu_state *st,
 987					      enum cpuhp_state target)
 988{
 989	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
 990}
 991
 992static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
 993						      unsigned int cpu,
 994						      struct cpuhp_cpu_state *st,
 995						      enum cpuhp_state target)
 996{
 997	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
 998}
 999
1000static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1001{
1002	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1003		return true;
1004	/*
1005	 * When CPU hotplug is disabled, then taking the CPU down is not
1006	 * possible because takedown_cpu() and the architecture and
1007	 * subsystem specific mechanisms are not available. So the CPU
1008	 * which would be completely unplugged again needs to stay around
1009	 * in the current state.
1010	 */
1011	return st->state <= CPUHP_BRINGUP_CPU;
1012}
1013
1014static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015			      enum cpuhp_state target)
1016{
1017	enum cpuhp_state prev_state = st->state;
1018	int ret = 0;
1019
1020	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1021	if (ret) {
1022		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023			 ret, cpu, cpuhp_get_step(st->state)->name,
1024			 st->state);
1025
1026		cpuhp_reset_state(cpu, st, prev_state);
1027		if (can_rollback_cpu(st))
1028			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1029							    prev_state));
1030	}
1031	return ret;
1032}
1033
1034/*
1035 * The cpu hotplug threads manage the bringup and teardown of the cpus
1036 */
 
 
 
 
 
 
 
 
1037static int cpuhp_should_run(unsigned int cpu)
1038{
1039	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1040
1041	return st->should_run;
1042}
1043
1044/*
1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046 * callbacks when a state gets [un]installed at runtime.
1047 *
1048 * Each invocation of this function by the smpboot thread does a single AP
1049 * state callback.
1050 *
1051 * It has 3 modes of operation:
1052 *  - single: runs st->cb_state
1053 *  - up:     runs ++st->state, while st->state < st->target
1054 *  - down:   runs st->state--, while st->state > st->target
1055 *
1056 * When complete or on error, should_run is cleared and the completion is fired.
1057 */
1058static void cpuhp_thread_fun(unsigned int cpu)
1059{
1060	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061	bool bringup = st->bringup;
1062	enum cpuhp_state state;
1063
1064	if (WARN_ON_ONCE(!st->should_run))
1065		return;
1066
1067	/*
1068	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069	 * that if we see ->should_run we also see the rest of the state.
1070	 */
1071	smp_mb();
1072
1073	/*
1074	 * The BP holds the hotplug lock, but we're now running on the AP,
1075	 * ensure that anybody asserting the lock is held, will actually find
1076	 * it so.
1077	 */
1078	lockdep_acquire_cpus_lock();
1079	cpuhp_lock_acquire(bringup);
1080
1081	if (st->single) {
1082		state = st->cb_state;
1083		st->should_run = false;
1084	} else {
1085		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086		if (!st->should_run)
1087			goto end;
 
 
 
 
 
 
 
 
1088	}
1089
1090	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1091
 
 
 
 
 
 
1092	if (cpuhp_is_atomic_state(state)) {
1093		local_irq_disable();
1094		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1095		local_irq_enable();
1096
1097		/*
1098		 * STARTING/DYING must not fail!
1099		 */
1100		WARN_ON_ONCE(st->result);
1101	} else {
1102		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103	}
1104
1105	if (st->result) {
1106		/*
1107		 * If we fail on a rollback, we're up a creek without no
1108		 * paddle, no way forward, no way back. We loose, thanks for
1109		 * playing.
1110		 */
1111		WARN_ON_ONCE(st->rollback);
1112		st->should_run = false;
1113	}
1114
1115end:
1116	cpuhp_lock_release(bringup);
1117	lockdep_release_cpus_lock();
1118
1119	if (!st->should_run)
1120		complete_ap_thread(st, bringup);
1121}
1122
1123/* Invoke a single callback on a remote cpu */
1124static int
1125cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126			 struct hlist_node *node)
1127{
1128	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129	int ret;
1130
1131	if (!cpu_online(cpu))
1132		return 0;
1133
1134	cpuhp_lock_acquire(false);
1135	cpuhp_lock_release(false);
1136
1137	cpuhp_lock_acquire(true);
1138	cpuhp_lock_release(true);
1139
1140	/*
1141	 * If we are up and running, use the hotplug thread. For early calls
1142	 * we invoke the thread function directly.
1143	 */
1144	if (!st->thread)
1145		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1146
1147	st->rollback = false;
1148	st->last = NULL;
1149
1150	st->node = node;
1151	st->bringup = bringup;
1152	st->cb_state = state;
1153	st->single = true;
1154
1155	__cpuhp_kick_ap(st);
1156
1157	/*
1158	 * If we failed and did a partial, do a rollback.
1159	 */
1160	if ((ret = st->result) && st->last) {
1161		st->rollback = true;
1162		st->bringup = !bringup;
1163
1164		__cpuhp_kick_ap(st);
1165	}
1166
1167	/*
1168	 * Clean up the leftovers so the next hotplug operation wont use stale
1169	 * data.
1170	 */
1171	st->node = st->last = NULL;
1172	return ret;
1173}
1174
1175static int cpuhp_kick_ap_work(unsigned int cpu)
1176{
1177	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178	enum cpuhp_state prev_state = st->state;
1179	int ret;
1180
1181	cpuhp_lock_acquire(false);
1182	cpuhp_lock_release(false);
1183
1184	cpuhp_lock_acquire(true);
1185	cpuhp_lock_release(true);
1186
1187	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188	ret = cpuhp_kick_ap(cpu, st, st->target);
1189	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1190
1191	return ret;
1192}
1193
1194static struct smp_hotplug_thread cpuhp_threads = {
1195	.store			= &cpuhp_state.thread,
 
1196	.thread_should_run	= cpuhp_should_run,
1197	.thread_fn		= cpuhp_thread_fun,
1198	.thread_comm		= "cpuhp/%u",
1199	.selfparking		= true,
1200};
1201
1202static __init void cpuhp_init_state(void)
1203{
1204	struct cpuhp_cpu_state *st;
1205	int cpu;
1206
1207	for_each_possible_cpu(cpu) {
1208		st = per_cpu_ptr(&cpuhp_state, cpu);
1209		init_completion(&st->done_up);
1210		init_completion(&st->done_down);
1211	}
1212}
1213
1214void __init cpuhp_threads_init(void)
1215{
1216	cpuhp_init_state();
1217	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1219}
1220
1221#ifdef CONFIG_HOTPLUG_CPU
1222#ifndef arch_clear_mm_cpumask_cpu
1223#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1224#endif
1225
1226/**
1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1228 * @cpu: a CPU id
1229 *
1230 * This function walks all processes, finds a valid mm struct for each one and
1231 * then clears a corresponding bit in mm's cpumask.  While this all sounds
1232 * trivial, there are various non-obvious corner cases, which this function
1233 * tries to solve in a safe manner.
1234 *
1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236 * be called only for an already offlined CPU.
1237 */
1238void clear_tasks_mm_cpumask(int cpu)
1239{
1240	struct task_struct *p;
1241
1242	/*
1243	 * This function is called after the cpu is taken down and marked
1244	 * offline, so its not like new tasks will ever get this cpu set in
1245	 * their mm mask. -- Peter Zijlstra
1246	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247	 * full-fledged tasklist_lock.
1248	 */
1249	WARN_ON(cpu_online(cpu));
1250	rcu_read_lock();
1251	for_each_process(p) {
1252		struct task_struct *t;
1253
1254		/*
1255		 * Main thread might exit, but other threads may still have
1256		 * a valid mm. Find one.
1257		 */
1258		t = find_lock_task_mm(p);
1259		if (!t)
1260			continue;
1261		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1262		task_unlock(t);
1263	}
1264	rcu_read_unlock();
1265}
1266
1267/* Take this CPU down. */
1268static int take_cpu_down(void *_param)
1269{
1270	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272	int err, cpu = smp_processor_id();
 
1273
1274	/* Ensure this CPU doesn't handle any more interrupts. */
1275	err = __cpu_disable();
1276	if (err < 0)
1277		return err;
1278
1279	/*
1280	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1282	 */
1283	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1284
1285	/*
1286	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1287	 */
1288	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
 
 
 
 
1289
 
 
1290	/* Park the stopper thread */
1291	stop_machine_park(cpu);
1292	return 0;
1293}
1294
1295static int takedown_cpu(unsigned int cpu)
1296{
1297	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298	int err;
1299
1300	/* Park the smpboot threads */
1301	kthread_park(st->thread);
 
1302
1303	/*
1304	 * Prevent irq alloc/free while the dying cpu reorganizes the
1305	 * interrupt affinities.
1306	 */
1307	irq_lock_sparse();
1308
1309	/*
1310	 * So now all preempt/rcu users must observe !cpu_active().
1311	 */
1312	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313	if (err) {
1314		/* CPU refused to die */
1315		irq_unlock_sparse();
1316		/* Unpark the hotplug thread so we can rollback there */
1317		kthread_unpark(st->thread);
1318		return err;
1319	}
1320	BUG_ON(cpu_online(cpu));
1321
1322	/*
1323	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324	 * all runnable tasks from the CPU, there's only the idle task left now
1325	 * that the migration thread is done doing the stop_machine thing.
1326	 *
1327	 * Wait for the stop thread to go away.
1328	 */
1329	wait_for_ap_thread(st, false);
1330	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331
1332	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333	irq_unlock_sparse();
1334
1335	hotplug_cpu__broadcast_tick_pull(cpu);
1336	/* This actually kills the CPU. */
1337	__cpu_die(cpu);
1338
1339	cpuhp_bp_sync_dead(cpu);
1340
1341	lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1342
1343	/*
1344	 * Callbacks must be re-integrated right away to the RCU state machine.
1345	 * Otherwise an RCU callback could block a further teardown function
1346	 * waiting for its completion.
1347	 */
1348	rcutree_migrate_callbacks(cpu);
1349
1350	return 0;
1351}
1352
1353static void cpuhp_complete_idle_dead(void *arg)
1354{
1355	struct cpuhp_cpu_state *st = arg;
1356
1357	complete_ap_thread(st, false);
1358}
1359
1360void cpuhp_report_idle_dead(void)
1361{
1362	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1363
1364	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365	tick_assert_timekeeping_handover();
1366	rcutree_report_cpu_dead();
1367	st->state = CPUHP_AP_IDLE_DEAD;
1368	/*
1369	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1370	 * to an online cpu.
1371	 */
1372	smp_call_function_single(cpumask_first(cpu_online_mask),
1373				 cpuhp_complete_idle_dead, st, 0);
1374}
1375
 
 
 
 
 
 
 
 
 
 
1376static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377				enum cpuhp_state target)
1378{
1379	enum cpuhp_state prev_state = st->state;
1380	int ret = 0;
1381
1382	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1383	if (ret) {
1384		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385			 ret, cpu, cpuhp_get_step(st->state)->name,
1386			 st->state);
1387
1388		cpuhp_reset_state(cpu, st, prev_state);
1389
1390		if (st->state < prev_state)
1391			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1392							    prev_state));
1393	}
1394
1395	return ret;
1396}
1397
1398/* Requires cpu_add_remove_lock to be held */
1399static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400			   enum cpuhp_state target)
1401{
1402	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403	int prev_state, ret = 0;
1404
1405	if (num_online_cpus() == 1)
1406		return -EBUSY;
1407
1408	if (!cpu_present(cpu))
1409		return -EINVAL;
1410
1411	cpus_write_lock();
1412
1413	cpuhp_tasks_frozen = tasks_frozen;
1414
1415	prev_state = cpuhp_set_state(cpu, st, target);
1416	/*
1417	 * If the current CPU state is in the range of the AP hotplug thread,
1418	 * then we need to kick the thread.
1419	 */
1420	if (st->state > CPUHP_TEARDOWN_CPU) {
1421		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422		ret = cpuhp_kick_ap_work(cpu);
1423		/*
1424		 * The AP side has done the error rollback already. Just
1425		 * return the error code..
1426		 */
1427		if (ret)
1428			goto out;
1429
1430		/*
1431		 * We might have stopped still in the range of the AP hotplug
1432		 * thread. Nothing to do anymore.
1433		 */
1434		if (st->state > CPUHP_TEARDOWN_CPU)
1435			goto out;
1436
1437		st->target = target;
1438	}
1439	/*
1440	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441	 * to do the further cleanups.
1442	 */
1443	ret = cpuhp_down_callbacks(cpu, st, target);
1444	if (ret && st->state < prev_state) {
1445		if (st->state == CPUHP_TEARDOWN_CPU) {
1446			cpuhp_reset_state(cpu, st, prev_state);
1447			__cpuhp_kick_ap(st);
1448		} else {
1449			WARN(1, "DEAD callback error for CPU%d", cpu);
1450		}
1451	}
1452
1453out:
1454	cpus_write_unlock();
1455	/*
1456	 * Do post unplug cleanup. This is still protected against
1457	 * concurrent CPU hotplug via cpu_add_remove_lock.
1458	 */
1459	lockup_detector_cleanup();
1460	arch_smt_update();
1461	return ret;
1462}
1463
1464struct cpu_down_work {
1465	unsigned int		cpu;
1466	enum cpuhp_state	target;
1467};
1468
1469static long __cpu_down_maps_locked(void *arg)
1470{
1471	struct cpu_down_work *work = arg;
1472
1473	return _cpu_down(work->cpu, 0, work->target);
1474}
1475
1476static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1477{
1478	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1479
1480	/*
1481	 * If the platform does not support hotplug, report it explicitly to
1482	 * differentiate it from a transient offlining failure.
1483	 */
1484	if (cpu_hotplug_offline_disabled)
1485		return -EOPNOTSUPP;
1486	if (cpu_hotplug_disabled)
1487		return -EBUSY;
1488
1489	/*
1490	 * Ensure that the control task does not run on the to be offlined
1491	 * CPU to prevent a deadlock against cfs_b->period_timer.
1492	 * Also keep at least one housekeeping cpu onlined to avoid generating
1493	 * an empty sched_domain span.
1494	 */
1495	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1496		if (cpu != work.cpu)
1497			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1498	}
1499	return -EBUSY;
1500}
1501
1502static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1503{
1504	int err;
1505
1506	cpu_maps_update_begin();
1507	err = cpu_down_maps_locked(cpu, target);
1508	cpu_maps_update_done();
1509	return err;
1510}
1511
1512/**
1513 * cpu_device_down - Bring down a cpu device
1514 * @dev: Pointer to the cpu device to offline
1515 *
1516 * This function is meant to be used by device core cpu subsystem only.
1517 *
1518 * Other subsystems should use remove_cpu() instead.
1519 *
1520 * Return: %0 on success or a negative errno code
1521 */
1522int cpu_device_down(struct device *dev)
1523{
1524	return cpu_down(dev->id, CPUHP_OFFLINE);
1525}
1526
1527int remove_cpu(unsigned int cpu)
1528{
1529	int ret;
1530
1531	lock_device_hotplug();
1532	ret = device_offline(get_cpu_device(cpu));
1533	unlock_device_hotplug();
1534
1535	return ret;
1536}
1537EXPORT_SYMBOL_GPL(remove_cpu);
1538
1539void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1540{
1541	unsigned int cpu;
1542	int error;
1543
1544	cpu_maps_update_begin();
1545
1546	/*
1547	 * Make certain the cpu I'm about to reboot on is online.
1548	 *
1549	 * This is inline to what migrate_to_reboot_cpu() already do.
1550	 */
1551	if (!cpu_online(primary_cpu))
1552		primary_cpu = cpumask_first(cpu_online_mask);
1553
1554	for_each_online_cpu(cpu) {
1555		if (cpu == primary_cpu)
1556			continue;
1557
1558		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1559		if (error) {
1560			pr_err("Failed to offline CPU%d - error=%d",
1561				cpu, error);
1562			break;
1563		}
1564	}
1565
1566	/*
1567	 * Ensure all but the reboot CPU are offline.
1568	 */
1569	BUG_ON(num_online_cpus() > 1);
1570
1571	/*
1572	 * Make sure the CPUs won't be enabled by someone else after this
1573	 * point. Kexec will reboot to a new kernel shortly resetting
1574	 * everything along the way.
1575	 */
1576	cpu_hotplug_disabled++;
1577
1578	cpu_maps_update_done();
1579}
 
1580
1581#else
1582#define takedown_cpu		NULL
1583#endif /*CONFIG_HOTPLUG_CPU*/
1584
1585/**
1586 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587 * @cpu: cpu that just started
1588 *
1589 * It must be called by the arch code on the new cpu, before the new cpu
1590 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1591 */
1592void notify_cpu_starting(unsigned int cpu)
1593{
1594	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 
1596
1597	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1598	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1599
1600	/*
1601	 * STARTING must not fail!
1602	 */
1603	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
 
 
1604}
1605
1606/*
1607 * Called from the idle task. Wake up the controlling task which brings the
1608 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609 * online bringup to the hotplug thread.
1610 */
1611void cpuhp_online_idle(enum cpuhp_state state)
1612{
1613	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1614
1615	/* Happens for the boot cpu */
1616	if (state != CPUHP_AP_ONLINE_IDLE)
1617		return;
1618
1619	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1620
1621	/*
1622	 * Unpark the stopper thread before we start the idle loop (and start
1623	 * scheduling); this ensures the stopper task is always available.
1624	 */
1625	stop_machine_unpark(smp_processor_id());
1626
1627	st->state = CPUHP_AP_ONLINE_IDLE;
1628	complete_ap_thread(st, true);
1629}
1630
1631/* Requires cpu_add_remove_lock to be held */
1632static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1633{
1634	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635	struct task_struct *idle;
1636	int ret = 0;
1637
1638	cpus_write_lock();
1639
1640	if (!cpu_present(cpu)) {
1641		ret = -EINVAL;
1642		goto out;
1643	}
1644
1645	/*
1646	 * The caller of cpu_up() might have raced with another
1647	 * caller. Nothing to do.
1648	 */
1649	if (st->state >= target)
1650		goto out;
1651
1652	if (st->state == CPUHP_OFFLINE) {
1653		/* Let it fail before we try to bring the cpu up */
1654		idle = idle_thread_get(cpu);
1655		if (IS_ERR(idle)) {
1656			ret = PTR_ERR(idle);
1657			goto out;
1658		}
1659
1660		/*
1661		 * Reset stale stack state from the last time this CPU was online.
1662		 */
1663		scs_task_reset(idle);
1664		kasan_unpoison_task_stack(idle);
1665	}
1666
1667	cpuhp_tasks_frozen = tasks_frozen;
1668
1669	cpuhp_set_state(cpu, st, target);
1670	/*
1671	 * If the current CPU state is in the range of the AP hotplug thread,
1672	 * then we need to kick the thread once more.
1673	 */
1674	if (st->state > CPUHP_BRINGUP_CPU) {
1675		ret = cpuhp_kick_ap_work(cpu);
1676		/*
1677		 * The AP side has done the error rollback already. Just
1678		 * return the error code..
1679		 */
1680		if (ret)
1681			goto out;
1682	}
1683
1684	/*
1685	 * Try to reach the target state. We max out on the BP at
1686	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687	 * responsible for bringing it up to the target state.
1688	 */
1689	target = min((int)target, CPUHP_BRINGUP_CPU);
1690	ret = cpuhp_up_callbacks(cpu, st, target);
1691out:
1692	cpus_write_unlock();
1693	arch_smt_update();
1694	return ret;
1695}
1696
1697static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1698{
1699	int err = 0;
1700
1701	if (!cpu_possible(cpu)) {
1702		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1703		       cpu);
 
 
 
1704		return -EINVAL;
1705	}
1706
1707	err = try_online_node(cpu_to_node(cpu));
1708	if (err)
1709		return err;
1710
1711	cpu_maps_update_begin();
1712
1713	if (cpu_hotplug_disabled) {
1714		err = -EBUSY;
1715		goto out;
1716	}
1717	if (!cpu_bootable(cpu)) {
1718		err = -EPERM;
1719		goto out;
1720	}
1721
1722	err = _cpu_up(cpu, 0, target);
1723out:
1724	cpu_maps_update_done();
1725	return err;
1726}
1727
1728/**
1729 * cpu_device_up - Bring up a cpu device
1730 * @dev: Pointer to the cpu device to online
1731 *
1732 * This function is meant to be used by device core cpu subsystem only.
1733 *
1734 * Other subsystems should use add_cpu() instead.
1735 *
1736 * Return: %0 on success or a negative errno code
1737 */
1738int cpu_device_up(struct device *dev)
1739{
1740	return cpu_up(dev->id, CPUHP_ONLINE);
1741}
1742
1743int add_cpu(unsigned int cpu)
1744{
1745	int ret;
1746
1747	lock_device_hotplug();
1748	ret = device_online(get_cpu_device(cpu));
1749	unlock_device_hotplug();
1750
1751	return ret;
1752}
1753EXPORT_SYMBOL_GPL(add_cpu);
1754
1755/**
1756 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1758 *
1759 * On some architectures like arm64, we can hibernate on any CPU, but on
1760 * wake up the CPU we hibernated on might be offline as a side effect of
1761 * using maxcpus= for example.
1762 *
1763 * Return: %0 on success or a negative errno code
1764 */
1765int bringup_hibernate_cpu(unsigned int sleep_cpu)
1766{
1767	int ret;
1768
1769	if (!cpu_online(sleep_cpu)) {
1770		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1772		if (ret) {
1773			pr_err("Failed to bring hibernate-CPU up!\n");
1774			return ret;
1775		}
1776	}
1777	return 0;
1778}
1779
1780static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1781				      enum cpuhp_state target)
1782{
1783	unsigned int cpu;
1784
1785	for_each_cpu(cpu, mask) {
1786		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1787
1788		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1789			/*
1790			 * If this failed then cpu_up() might have only
1791			 * rolled back to CPUHP_BP_KICK_AP for the final
1792			 * online. Clean it up. NOOP if already rolled back.
1793			 */
1794			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1795		}
1796
1797		if (!--ncpus)
1798			break;
1799	}
1800}
1801
1802#ifdef CONFIG_HOTPLUG_PARALLEL
1803static bool __cpuhp_parallel_bringup __ro_after_init = true;
1804
1805static int __init parallel_bringup_parse_param(char *arg)
1806{
1807	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1808}
1809early_param("cpuhp.parallel", parallel_bringup_parse_param);
1810
1811#ifdef CONFIG_HOTPLUG_SMT
1812static inline bool cpuhp_smt_aware(void)
1813{
1814	return cpu_smt_max_threads > 1;
1815}
1816
1817static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1818{
1819	return cpu_primary_thread_mask;
1820}
1821#else
1822static inline bool cpuhp_smt_aware(void)
1823{
1824	return false;
1825}
1826static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1827{
1828	return cpu_none_mask;
1829}
1830#endif
1831
1832bool __weak arch_cpuhp_init_parallel_bringup(void)
1833{
1834	return true;
1835}
1836
1837/*
1838 * On architectures which have enabled parallel bringup this invokes all BP
1839 * prepare states for each of the to be onlined APs first. The last state
1840 * sends the startup IPI to the APs. The APs proceed through the low level
1841 * bringup code in parallel and then wait for the control CPU to release
1842 * them one by one for the final onlining procedure.
1843 *
1844 * This avoids waiting for each AP to respond to the startup IPI in
1845 * CPUHP_BRINGUP_CPU.
1846 */
1847static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1848{
1849	const struct cpumask *mask = cpu_present_mask;
1850
1851	if (__cpuhp_parallel_bringup)
1852		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1853	if (!__cpuhp_parallel_bringup)
1854		return false;
1855
1856	if (cpuhp_smt_aware()) {
1857		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1858		static struct cpumask tmp_mask __initdata;
1859
1860		/*
1861		 * X86 requires to prevent that SMT siblings stopped while
1862		 * the primary thread does a microcode update for various
1863		 * reasons. Bring the primary threads up first.
1864		 */
1865		cpumask_and(&tmp_mask, mask, pmask);
1866		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1867		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1868		/* Account for the online CPUs */
1869		ncpus -= num_online_cpus();
1870		if (!ncpus)
1871			return true;
1872		/* Create the mask for secondary CPUs */
1873		cpumask_andnot(&tmp_mask, mask, pmask);
1874		mask = &tmp_mask;
1875	}
1876
1877	/* Bring the not-yet started CPUs up */
1878	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1879	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1880	return true;
1881}
1882#else
1883static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1884#endif /* CONFIG_HOTPLUG_PARALLEL */
1885
1886void __init bringup_nonboot_cpus(unsigned int max_cpus)
1887{
1888	if (!max_cpus)
1889		return;
1890
1891	/* Try parallel bringup optimization if enabled */
1892	if (cpuhp_bringup_cpus_parallel(max_cpus))
1893		return;
1894
1895	/* Full per CPU serialized bringup */
1896	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1897}
 
1898
1899#ifdef CONFIG_PM_SLEEP_SMP
1900static cpumask_var_t frozen_cpus;
1901
1902int freeze_secondary_cpus(int primary)
1903{
1904	int cpu, error = 0;
1905
1906	cpu_maps_update_begin();
1907	if (primary == -1) {
1908		primary = cpumask_first(cpu_online_mask);
1909		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1910			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1911	} else {
1912		if (!cpu_online(primary))
1913			primary = cpumask_first(cpu_online_mask);
1914	}
1915
1916	/*
1917	 * We take down all of the non-boot CPUs in one shot to avoid races
1918	 * with the userspace trying to use the CPU hotplug at the same time
1919	 */
1920	cpumask_clear(frozen_cpus);
1921
1922	pr_info("Disabling non-boot CPUs ...\n");
1923	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1924		if (!cpu_online(cpu) || cpu == primary)
1925			continue;
1926
1927		if (pm_wakeup_pending()) {
1928			pr_info("Wakeup pending. Abort CPU freeze\n");
1929			error = -EBUSY;
1930			break;
1931		}
1932
1933		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1934		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1935		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1936		if (!error)
1937			cpumask_set_cpu(cpu, frozen_cpus);
1938		else {
1939			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1940			break;
1941		}
1942	}
1943
1944	if (!error)
1945		BUG_ON(num_online_cpus() > 1);
1946	else
1947		pr_err("Non-boot CPUs are not disabled\n");
1948
1949	/*
1950	 * Make sure the CPUs won't be enabled by someone else. We need to do
1951	 * this even in case of failure as all freeze_secondary_cpus() users are
1952	 * supposed to do thaw_secondary_cpus() on the failure path.
1953	 */
1954	cpu_hotplug_disabled++;
1955
1956	cpu_maps_update_done();
1957	return error;
1958}
1959
1960void __weak arch_thaw_secondary_cpus_begin(void)
1961{
1962}
1963
1964void __weak arch_thaw_secondary_cpus_end(void)
1965{
1966}
1967
1968void thaw_secondary_cpus(void)
1969{
1970	int cpu, error;
1971
1972	/* Allow everyone to use the CPU hotplug again */
1973	cpu_maps_update_begin();
1974	__cpu_hotplug_enable();
1975	if (cpumask_empty(frozen_cpus))
1976		goto out;
1977
1978	pr_info("Enabling non-boot CPUs ...\n");
1979
1980	arch_thaw_secondary_cpus_begin();
1981
1982	for_each_cpu(cpu, frozen_cpus) {
1983		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1984		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1985		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1986		if (!error) {
1987			pr_info("CPU%d is up\n", cpu);
1988			continue;
1989		}
1990		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1991	}
1992
1993	arch_thaw_secondary_cpus_end();
1994
1995	cpumask_clear(frozen_cpus);
1996out:
1997	cpu_maps_update_done();
1998}
1999
2000static int __init alloc_frozen_cpus(void)
2001{
2002	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2003		return -ENOMEM;
2004	return 0;
2005}
2006core_initcall(alloc_frozen_cpus);
2007
2008/*
2009 * When callbacks for CPU hotplug notifications are being executed, we must
2010 * ensure that the state of the system with respect to the tasks being frozen
2011 * or not, as reported by the notification, remains unchanged *throughout the
2012 * duration* of the execution of the callbacks.
2013 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2014 *
2015 * This synchronization is implemented by mutually excluding regular CPU
2016 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2017 * Hibernate notifications.
2018 */
2019static int
2020cpu_hotplug_pm_callback(struct notifier_block *nb,
2021			unsigned long action, void *ptr)
2022{
2023	switch (action) {
2024
2025	case PM_SUSPEND_PREPARE:
2026	case PM_HIBERNATION_PREPARE:
2027		cpu_hotplug_disable();
2028		break;
2029
2030	case PM_POST_SUSPEND:
2031	case PM_POST_HIBERNATION:
2032		cpu_hotplug_enable();
2033		break;
2034
2035	default:
2036		return NOTIFY_DONE;
2037	}
2038
2039	return NOTIFY_OK;
2040}
2041
2042
2043static int __init cpu_hotplug_pm_sync_init(void)
2044{
2045	/*
2046	 * cpu_hotplug_pm_callback has higher priority than x86
2047	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2048	 * to disable cpu hotplug to avoid cpu hotplug race.
2049	 */
2050	pm_notifier(cpu_hotplug_pm_callback, 0);
2051	return 0;
2052}
2053core_initcall(cpu_hotplug_pm_sync_init);
2054
2055#endif /* CONFIG_PM_SLEEP_SMP */
2056
2057int __boot_cpu_id;
2058
2059#endif /* CONFIG_SMP */
2060
2061/* Boot processor state steps */
2062static struct cpuhp_step cpuhp_hp_states[] = {
2063	[CPUHP_OFFLINE] = {
2064		.name			= "offline",
2065		.startup.single		= NULL,
2066		.teardown.single	= NULL,
2067	},
2068#ifdef CONFIG_SMP
2069	[CPUHP_CREATE_THREADS]= {
2070		.name			= "threads:prepare",
2071		.startup.single		= smpboot_create_threads,
2072		.teardown.single	= NULL,
2073		.cant_stop		= true,
2074	},
2075	[CPUHP_PERF_PREPARE] = {
2076		.name			= "perf:prepare",
2077		.startup.single		= perf_event_init_cpu,
2078		.teardown.single	= perf_event_exit_cpu,
2079	},
2080	[CPUHP_RANDOM_PREPARE] = {
2081		.name			= "random:prepare",
2082		.startup.single		= random_prepare_cpu,
2083		.teardown.single	= NULL,
2084	},
2085	[CPUHP_WORKQUEUE_PREP] = {
2086		.name			= "workqueue:prepare",
2087		.startup.single		= workqueue_prepare_cpu,
2088		.teardown.single	= NULL,
2089	},
2090	[CPUHP_HRTIMERS_PREPARE] = {
2091		.name			= "hrtimers:prepare",
2092		.startup.single		= hrtimers_prepare_cpu,
2093		.teardown.single	= NULL,
2094	},
2095	[CPUHP_SMPCFD_PREPARE] = {
2096		.name			= "smpcfd:prepare",
2097		.startup.single		= smpcfd_prepare_cpu,
2098		.teardown.single	= smpcfd_dead_cpu,
2099	},
2100	[CPUHP_RELAY_PREPARE] = {
2101		.name			= "relay:prepare",
2102		.startup.single		= relay_prepare_cpu,
2103		.teardown.single	= NULL,
2104	},
 
 
 
 
 
2105	[CPUHP_RCUTREE_PREP] = {
2106		.name			= "RCU/tree:prepare",
2107		.startup.single		= rcutree_prepare_cpu,
2108		.teardown.single	= rcutree_dead_cpu,
2109	},
2110	/*
2111	 * On the tear-down path, timers_dead_cpu() must be invoked
2112	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2113	 * otherwise a RCU stall occurs.
2114	 */
2115	[CPUHP_TIMERS_PREPARE] = {
2116		.name			= "timers:prepare",
2117		.startup.single		= timers_prepare_cpu,
2118		.teardown.single	= timers_dead_cpu,
2119	},
2120
2121#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2122	/*
2123	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2124	 * the next step will release it.
2125	 */
2126	[CPUHP_BP_KICK_AP] = {
2127		.name			= "cpu:kick_ap",
2128		.startup.single		= cpuhp_kick_ap_alive,
2129	},
2130
2131	/*
2132	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2133	 * releases it for the complete bringup.
2134	 */
2135	[CPUHP_BRINGUP_CPU] = {
2136		.name			= "cpu:bringup",
2137		.startup.single		= cpuhp_bringup_ap,
2138		.teardown.single	= finish_cpu,
2139		.cant_stop		= true,
2140	},
2141#else
2142	/*
2143	 * All-in-one CPU bringup state which includes the kick alive.
2144	 */
2145	[CPUHP_BRINGUP_CPU] = {
2146		.name			= "cpu:bringup",
2147		.startup.single		= bringup_cpu,
2148		.teardown.single	= finish_cpu,
2149		.cant_stop		= true,
2150	},
2151#endif
2152	/* Final state before CPU kills itself */
2153	[CPUHP_AP_IDLE_DEAD] = {
2154		.name			= "idle:dead",
2155	},
2156	/*
2157	 * Last state before CPU enters the idle loop to die. Transient state
2158	 * for synchronization.
2159	 */
2160	[CPUHP_AP_OFFLINE] = {
2161		.name			= "ap:offline",
2162		.cant_stop		= true,
2163	},
2164	/* First state is scheduler control. Interrupts are disabled */
2165	[CPUHP_AP_SCHED_STARTING] = {
2166		.name			= "sched:starting",
2167		.startup.single		= sched_cpu_starting,
2168		.teardown.single	= sched_cpu_dying,
2169	},
2170	[CPUHP_AP_RCUTREE_DYING] = {
2171		.name			= "RCU/tree:dying",
2172		.startup.single		= NULL,
2173		.teardown.single	= rcutree_dying_cpu,
2174	},
2175	[CPUHP_AP_SMPCFD_DYING] = {
2176		.name			= "smpcfd:dying",
2177		.startup.single		= NULL,
2178		.teardown.single	= smpcfd_dying_cpu,
2179	},
2180	[CPUHP_AP_HRTIMERS_DYING] = {
2181		.name			= "hrtimers:dying",
2182		.startup.single		= hrtimers_cpu_starting,
2183		.teardown.single	= hrtimers_cpu_dying,
2184	},
2185	[CPUHP_AP_TICK_DYING] = {
2186		.name			= "tick:dying",
2187		.startup.single		= NULL,
2188		.teardown.single	= tick_cpu_dying,
2189	},
2190	/* Entry state on starting. Interrupts enabled from here on. Transient
2191	 * state for synchronsization */
2192	[CPUHP_AP_ONLINE] = {
2193		.name			= "ap:online",
2194	},
2195	/*
2196	 * Handled on control processor until the plugged processor manages
2197	 * this itself.
2198	 */
2199	[CPUHP_TEARDOWN_CPU] = {
2200		.name			= "cpu:teardown",
2201		.startup.single		= NULL,
2202		.teardown.single	= takedown_cpu,
2203		.cant_stop		= true,
2204	},
2205
2206	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2207		.name			= "sched:waitempty",
2208		.startup.single		= NULL,
2209		.teardown.single	= sched_cpu_wait_empty,
2210	},
2211
2212	/* Handle smpboot threads park/unpark */
2213	[CPUHP_AP_SMPBOOT_THREADS] = {
2214		.name			= "smpboot/threads:online",
2215		.startup.single		= smpboot_unpark_threads,
2216		.teardown.single	= smpboot_park_threads,
2217	},
2218	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2219		.name			= "irq/affinity:online",
2220		.startup.single		= irq_affinity_online_cpu,
2221		.teardown.single	= NULL,
2222	},
2223	[CPUHP_AP_PERF_ONLINE] = {
2224		.name			= "perf:online",
2225		.startup.single		= perf_event_init_cpu,
2226		.teardown.single	= perf_event_exit_cpu,
2227	},
2228	[CPUHP_AP_WATCHDOG_ONLINE] = {
2229		.name			= "lockup_detector:online",
2230		.startup.single		= lockup_detector_online_cpu,
2231		.teardown.single	= lockup_detector_offline_cpu,
2232	},
2233	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2234		.name			= "workqueue:online",
2235		.startup.single		= workqueue_online_cpu,
2236		.teardown.single	= workqueue_offline_cpu,
2237	},
2238	[CPUHP_AP_RANDOM_ONLINE] = {
2239		.name			= "random:online",
2240		.startup.single		= random_online_cpu,
2241		.teardown.single	= NULL,
2242	},
2243	[CPUHP_AP_RCUTREE_ONLINE] = {
2244		.name			= "RCU/tree:online",
2245		.startup.single		= rcutree_online_cpu,
2246		.teardown.single	= rcutree_offline_cpu,
2247	},
2248#endif
2249	/*
2250	 * The dynamically registered state space is here
2251	 */
2252
2253#ifdef CONFIG_SMP
2254	/* Last state is scheduler control setting the cpu active */
2255	[CPUHP_AP_ACTIVE] = {
2256		.name			= "sched:active",
2257		.startup.single		= sched_cpu_activate,
2258		.teardown.single	= sched_cpu_deactivate,
2259	},
2260#endif
2261
2262	/* CPU is fully up and running. */
2263	[CPUHP_ONLINE] = {
2264		.name			= "online",
2265		.startup.single		= NULL,
2266		.teardown.single	= NULL,
2267	},
2268};
2269
2270/* Sanity check for callbacks */
2271static int cpuhp_cb_check(enum cpuhp_state state)
2272{
2273	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2274		return -EINVAL;
2275	return 0;
2276}
2277
2278/*
2279 * Returns a free for dynamic slot assignment of the Online state. The states
2280 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2281 * by having no name assigned.
2282 */
2283static int cpuhp_reserve_state(enum cpuhp_state state)
2284{
2285	enum cpuhp_state i, end;
2286	struct cpuhp_step *step;
2287
2288	switch (state) {
2289	case CPUHP_AP_ONLINE_DYN:
2290		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2291		end = CPUHP_AP_ONLINE_DYN_END;
2292		break;
2293	case CPUHP_BP_PREPARE_DYN:
2294		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2295		end = CPUHP_BP_PREPARE_DYN_END;
2296		break;
2297	default:
2298		return -EINVAL;
2299	}
2300
2301	for (i = state; i <= end; i++, step++) {
2302		if (!step->name)
2303			return i;
2304	}
2305	WARN(1, "No more dynamic states available for CPU hotplug\n");
2306	return -ENOSPC;
2307}
2308
2309static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2310				 int (*startup)(unsigned int cpu),
2311				 int (*teardown)(unsigned int cpu),
2312				 bool multi_instance)
2313{
2314	/* (Un)Install the callbacks for further cpu hotplug operations */
2315	struct cpuhp_step *sp;
2316	int ret = 0;
2317
2318	/*
2319	 * If name is NULL, then the state gets removed.
2320	 *
2321	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2322	 * the first allocation from these dynamic ranges, so the removal
2323	 * would trigger a new allocation and clear the wrong (already
2324	 * empty) state, leaving the callbacks of the to be cleared state
2325	 * dangling, which causes wreckage on the next hotplug operation.
2326	 */
2327	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2328		     state == CPUHP_BP_PREPARE_DYN)) {
2329		ret = cpuhp_reserve_state(state);
2330		if (ret < 0)
2331			return ret;
2332		state = ret;
2333	}
2334	sp = cpuhp_get_step(state);
2335	if (name && sp->name)
2336		return -EBUSY;
2337
2338	sp->startup.single = startup;
2339	sp->teardown.single = teardown;
2340	sp->name = name;
2341	sp->multi_instance = multi_instance;
2342	INIT_HLIST_HEAD(&sp->list);
2343	return ret;
2344}
2345
2346static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2347{
2348	return cpuhp_get_step(state)->teardown.single;
2349}
2350
2351/*
2352 * Call the startup/teardown function for a step either on the AP or
2353 * on the current CPU.
2354 */
2355static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2356			    struct hlist_node *node)
2357{
2358	struct cpuhp_step *sp = cpuhp_get_step(state);
2359	int ret;
2360
2361	/*
2362	 * If there's nothing to do, we done.
2363	 * Relies on the union for multi_instance.
2364	 */
2365	if (cpuhp_step_empty(bringup, sp))
 
2366		return 0;
2367	/*
2368	 * The non AP bound callbacks can fail on bringup. On teardown
2369	 * e.g. module removal we crash for now.
2370	 */
2371#ifdef CONFIG_SMP
2372	if (cpuhp_is_ap_state(state))
2373		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2374	else
2375		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2376#else
2377	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2378#endif
2379	BUG_ON(ret && !bringup);
2380	return ret;
2381}
2382
2383/*
2384 * Called from __cpuhp_setup_state on a recoverable failure.
2385 *
2386 * Note: The teardown callbacks for rollback are not allowed to fail!
2387 */
2388static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2389				   struct hlist_node *node)
2390{
2391	int cpu;
2392
2393	/* Roll back the already executed steps on the other cpus */
2394	for_each_present_cpu(cpu) {
2395		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2396		int cpustate = st->state;
2397
2398		if (cpu >= failedcpu)
2399			break;
2400
2401		/* Did we invoke the startup call on that cpu ? */
2402		if (cpustate >= state)
2403			cpuhp_issue_call(cpu, state, false, node);
2404	}
2405}
2406
2407int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2408					  struct hlist_node *node,
2409					  bool invoke)
2410{
2411	struct cpuhp_step *sp;
2412	int cpu;
2413	int ret;
2414
2415	lockdep_assert_cpus_held();
2416
2417	sp = cpuhp_get_step(state);
2418	if (sp->multi_instance == false)
2419		return -EINVAL;
2420
2421	mutex_lock(&cpuhp_state_mutex);
2422
2423	if (!invoke || !sp->startup.multi)
2424		goto add_node;
2425
2426	/*
2427	 * Try to call the startup callback for each present cpu
2428	 * depending on the hotplug state of the cpu.
2429	 */
2430	for_each_present_cpu(cpu) {
2431		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2432		int cpustate = st->state;
2433
2434		if (cpustate < state)
2435			continue;
2436
2437		ret = cpuhp_issue_call(cpu, state, true, node);
2438		if (ret) {
2439			if (sp->teardown.multi)
2440				cpuhp_rollback_install(cpu, state, node);
2441			goto unlock;
2442		}
2443	}
2444add_node:
2445	ret = 0;
2446	hlist_add_head(node, &sp->list);
2447unlock:
2448	mutex_unlock(&cpuhp_state_mutex);
2449	return ret;
2450}
2451
2452int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2453			       bool invoke)
2454{
2455	int ret;
2456
2457	cpus_read_lock();
2458	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2459	cpus_read_unlock();
2460	return ret;
2461}
2462EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2463
2464/**
2465 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2466 * @state:		The state to setup
2467 * @name:		Name of the step
2468 * @invoke:		If true, the startup function is invoked for cpus where
2469 *			cpu state >= @state
2470 * @startup:		startup callback function
2471 * @teardown:		teardown callback function
2472 * @multi_instance:	State is set up for multiple instances which get
2473 *			added afterwards.
2474 *
2475 * The caller needs to hold cpus read locked while calling this function.
2476 * Return:
2477 *   On success:
2478 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2479 *      0 for all other states
2480 *   On failure: proper (negative) error code
2481 */
2482int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2483				   const char *name, bool invoke,
2484				   int (*startup)(unsigned int cpu),
2485				   int (*teardown)(unsigned int cpu),
2486				   bool multi_instance)
2487{
2488	int cpu, ret = 0;
2489	bool dynstate;
2490
2491	lockdep_assert_cpus_held();
2492
2493	if (cpuhp_cb_check(state) || !name)
2494		return -EINVAL;
2495
2496	mutex_lock(&cpuhp_state_mutex);
2497
2498	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2499				    multi_instance);
2500
2501	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2502	if (ret > 0 && dynstate) {
2503		state = ret;
2504		ret = 0;
2505	}
2506
2507	if (ret || !invoke || !startup)
2508		goto out;
2509
2510	/*
2511	 * Try to call the startup callback for each present cpu
2512	 * depending on the hotplug state of the cpu.
2513	 */
2514	for_each_present_cpu(cpu) {
2515		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2516		int cpustate = st->state;
2517
2518		if (cpustate < state)
2519			continue;
2520
2521		ret = cpuhp_issue_call(cpu, state, true, NULL);
2522		if (ret) {
2523			if (teardown)
2524				cpuhp_rollback_install(cpu, state, NULL);
2525			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2526			goto out;
2527		}
2528	}
2529out:
2530	mutex_unlock(&cpuhp_state_mutex);
2531	/*
2532	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2533	 * return the dynamically allocated state in case of success.
2534	 */
2535	if (!ret && dynstate)
2536		return state;
2537	return ret;
2538}
2539EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2540
2541int __cpuhp_setup_state(enum cpuhp_state state,
2542			const char *name, bool invoke,
2543			int (*startup)(unsigned int cpu),
2544			int (*teardown)(unsigned int cpu),
2545			bool multi_instance)
2546{
2547	int ret;
2548
2549	cpus_read_lock();
2550	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2551					     teardown, multi_instance);
2552	cpus_read_unlock();
2553	return ret;
2554}
2555EXPORT_SYMBOL(__cpuhp_setup_state);
2556
2557int __cpuhp_state_remove_instance(enum cpuhp_state state,
2558				  struct hlist_node *node, bool invoke)
2559{
2560	struct cpuhp_step *sp = cpuhp_get_step(state);
2561	int cpu;
2562
2563	BUG_ON(cpuhp_cb_check(state));
2564
2565	if (!sp->multi_instance)
2566		return -EINVAL;
2567
2568	cpus_read_lock();
2569	mutex_lock(&cpuhp_state_mutex);
2570
2571	if (!invoke || !cpuhp_get_teardown_cb(state))
2572		goto remove;
2573	/*
2574	 * Call the teardown callback for each present cpu depending
2575	 * on the hotplug state of the cpu. This function is not
2576	 * allowed to fail currently!
2577	 */
2578	for_each_present_cpu(cpu) {
2579		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2580		int cpustate = st->state;
2581
2582		if (cpustate >= state)
2583			cpuhp_issue_call(cpu, state, false, node);
2584	}
2585
2586remove:
2587	hlist_del(node);
2588	mutex_unlock(&cpuhp_state_mutex);
2589	cpus_read_unlock();
2590
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2594
2595/**
2596 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2597 * @state:	The state to remove
2598 * @invoke:	If true, the teardown function is invoked for cpus where
2599 *		cpu state >= @state
2600 *
2601 * The caller needs to hold cpus read locked while calling this function.
2602 * The teardown callback is currently not allowed to fail. Think
2603 * about module removal!
2604 */
2605void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2606{
2607	struct cpuhp_step *sp = cpuhp_get_step(state);
2608	int cpu;
2609
2610	BUG_ON(cpuhp_cb_check(state));
2611
2612	lockdep_assert_cpus_held();
2613
2614	mutex_lock(&cpuhp_state_mutex);
2615	if (sp->multi_instance) {
2616		WARN(!hlist_empty(&sp->list),
2617		     "Error: Removing state %d which has instances left.\n",
2618		     state);
2619		goto remove;
2620	}
2621
2622	if (!invoke || !cpuhp_get_teardown_cb(state))
2623		goto remove;
2624
2625	/*
2626	 * Call the teardown callback for each present cpu depending
2627	 * on the hotplug state of the cpu. This function is not
2628	 * allowed to fail currently!
2629	 */
2630	for_each_present_cpu(cpu) {
2631		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2632		int cpustate = st->state;
2633
2634		if (cpustate >= state)
2635			cpuhp_issue_call(cpu, state, false, NULL);
2636	}
2637remove:
2638	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2639	mutex_unlock(&cpuhp_state_mutex);
2640}
2641EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2642
2643void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2644{
2645	cpus_read_lock();
2646	__cpuhp_remove_state_cpuslocked(state, invoke);
2647	cpus_read_unlock();
2648}
2649EXPORT_SYMBOL(__cpuhp_remove_state);
2650
2651#ifdef CONFIG_HOTPLUG_SMT
2652static void cpuhp_offline_cpu_device(unsigned int cpu)
2653{
2654	struct device *dev = get_cpu_device(cpu);
2655
2656	dev->offline = true;
2657	/* Tell user space about the state change */
2658	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2659}
2660
2661static void cpuhp_online_cpu_device(unsigned int cpu)
2662{
2663	struct device *dev = get_cpu_device(cpu);
2664
2665	dev->offline = false;
2666	/* Tell user space about the state change */
2667	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2668}
2669
2670int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2671{
2672	int cpu, ret = 0;
2673
2674	cpu_maps_update_begin();
2675	for_each_online_cpu(cpu) {
2676		if (topology_is_primary_thread(cpu))
2677			continue;
2678		/*
2679		 * Disable can be called with CPU_SMT_ENABLED when changing
2680		 * from a higher to lower number of SMT threads per core.
2681		 */
2682		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2683			continue;
2684		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2685		if (ret)
2686			break;
2687		/*
2688		 * As this needs to hold the cpu maps lock it's impossible
2689		 * to call device_offline() because that ends up calling
2690		 * cpu_down() which takes cpu maps lock. cpu maps lock
2691		 * needs to be held as this might race against in kernel
2692		 * abusers of the hotplug machinery (thermal management).
2693		 *
2694		 * So nothing would update device:offline state. That would
2695		 * leave the sysfs entry stale and prevent onlining after
2696		 * smt control has been changed to 'off' again. This is
2697		 * called under the sysfs hotplug lock, so it is properly
2698		 * serialized against the regular offline usage.
2699		 */
2700		cpuhp_offline_cpu_device(cpu);
2701	}
2702	if (!ret)
2703		cpu_smt_control = ctrlval;
2704	cpu_maps_update_done();
2705	return ret;
2706}
2707
2708/* Check if the core a CPU belongs to is online */
2709#if !defined(topology_is_core_online)
2710static inline bool topology_is_core_online(unsigned int cpu)
2711{
2712	return true;
2713}
2714#endif
2715
2716int cpuhp_smt_enable(void)
2717{
2718	int cpu, ret = 0;
2719
2720	cpu_maps_update_begin();
2721	cpu_smt_control = CPU_SMT_ENABLED;
2722	for_each_present_cpu(cpu) {
2723		/* Skip online CPUs and CPUs on offline nodes */
2724		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2725			continue;
2726		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2727			continue;
2728		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2729		if (ret)
2730			break;
2731		/* See comment in cpuhp_smt_disable() */
2732		cpuhp_online_cpu_device(cpu);
2733	}
2734	cpu_maps_update_done();
2735	return ret;
2736}
2737#endif
2738
2739#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2740static ssize_t state_show(struct device *dev,
2741			  struct device_attribute *attr, char *buf)
2742{
2743	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2744
2745	return sprintf(buf, "%d\n", st->state);
2746}
2747static DEVICE_ATTR_RO(state);
2748
2749static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2750			    const char *buf, size_t count)
 
2751{
2752	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2753	struct cpuhp_step *sp;
2754	int target, ret;
2755
2756	ret = kstrtoint(buf, 10, &target);
2757	if (ret)
2758		return ret;
2759
2760#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2761	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2762		return -EINVAL;
2763#else
2764	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2765		return -EINVAL;
2766#endif
2767
2768	ret = lock_device_hotplug_sysfs();
2769	if (ret)
2770		return ret;
2771
2772	mutex_lock(&cpuhp_state_mutex);
2773	sp = cpuhp_get_step(target);
2774	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2775	mutex_unlock(&cpuhp_state_mutex);
2776	if (ret)
2777		goto out;
2778
2779	if (st->state < target)
2780		ret = cpu_up(dev->id, target);
2781	else if (st->state > target)
2782		ret = cpu_down(dev->id, target);
2783	else if (WARN_ON(st->target != target))
2784		st->target = target;
2785out:
2786	unlock_device_hotplug();
2787	return ret ? ret : count;
2788}
2789
2790static ssize_t target_show(struct device *dev,
2791			   struct device_attribute *attr, char *buf)
2792{
2793	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2794
2795	return sprintf(buf, "%d\n", st->target);
2796}
2797static DEVICE_ATTR_RW(target);
 
2798
2799static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2800			  const char *buf, size_t count)
 
2801{
2802	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2803	struct cpuhp_step *sp;
2804	int fail, ret;
2805
2806	ret = kstrtoint(buf, 10, &fail);
2807	if (ret)
2808		return ret;
2809
2810	if (fail == CPUHP_INVALID) {
2811		st->fail = fail;
2812		return count;
2813	}
2814
2815	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2816		return -EINVAL;
2817
2818	/*
2819	 * Cannot fail STARTING/DYING callbacks.
2820	 */
2821	if (cpuhp_is_atomic_state(fail))
2822		return -EINVAL;
2823
2824	/*
2825	 * DEAD callbacks cannot fail...
2826	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2827	 * triggering STARTING callbacks, a failure in this state would
2828	 * hinder rollback.
2829	 */
2830	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2831		return -EINVAL;
2832
2833	/*
2834	 * Cannot fail anything that doesn't have callbacks.
2835	 */
2836	mutex_lock(&cpuhp_state_mutex);
2837	sp = cpuhp_get_step(fail);
2838	if (!sp->startup.single && !sp->teardown.single)
2839		ret = -EINVAL;
2840	mutex_unlock(&cpuhp_state_mutex);
2841	if (ret)
2842		return ret;
2843
2844	st->fail = fail;
2845
2846	return count;
2847}
2848
2849static ssize_t fail_show(struct device *dev,
2850			 struct device_attribute *attr, char *buf)
2851{
2852	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2853
2854	return sprintf(buf, "%d\n", st->fail);
2855}
2856
2857static DEVICE_ATTR_RW(fail);
2858
2859static struct attribute *cpuhp_cpu_attrs[] = {
2860	&dev_attr_state.attr,
2861	&dev_attr_target.attr,
2862	&dev_attr_fail.attr,
2863	NULL
2864};
2865
2866static const struct attribute_group cpuhp_cpu_attr_group = {
2867	.attrs = cpuhp_cpu_attrs,
2868	.name = "hotplug",
 
2869};
2870
2871static ssize_t states_show(struct device *dev,
2872				 struct device_attribute *attr, char *buf)
2873{
2874	ssize_t cur, res = 0;
2875	int i;
2876
2877	mutex_lock(&cpuhp_state_mutex);
2878	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2879		struct cpuhp_step *sp = cpuhp_get_step(i);
2880
2881		if (sp->name) {
2882			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2883			buf += cur;
2884			res += cur;
2885		}
2886	}
2887	mutex_unlock(&cpuhp_state_mutex);
2888	return res;
2889}
2890static DEVICE_ATTR_RO(states);
2891
2892static struct attribute *cpuhp_cpu_root_attrs[] = {
2893	&dev_attr_states.attr,
2894	NULL
2895};
2896
2897static const struct attribute_group cpuhp_cpu_root_attr_group = {
2898	.attrs = cpuhp_cpu_root_attrs,
2899	.name = "hotplug",
2900};
2901
2902#ifdef CONFIG_HOTPLUG_SMT
2903
2904static bool cpu_smt_num_threads_valid(unsigned int threads)
2905{
2906	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2907		return threads >= 1 && threads <= cpu_smt_max_threads;
2908	return threads == 1 || threads == cpu_smt_max_threads;
2909}
2910
2911static ssize_t
2912__store_smt_control(struct device *dev, struct device_attribute *attr,
2913		    const char *buf, size_t count)
2914{
2915	int ctrlval, ret, num_threads, orig_threads;
2916	bool force_off;
2917
2918	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2919		return -EPERM;
2920
2921	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2922		return -ENODEV;
2923
2924	if (sysfs_streq(buf, "on")) {
2925		ctrlval = CPU_SMT_ENABLED;
2926		num_threads = cpu_smt_max_threads;
2927	} else if (sysfs_streq(buf, "off")) {
2928		ctrlval = CPU_SMT_DISABLED;
2929		num_threads = 1;
2930	} else if (sysfs_streq(buf, "forceoff")) {
2931		ctrlval = CPU_SMT_FORCE_DISABLED;
2932		num_threads = 1;
2933	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2934		if (num_threads == 1)
2935			ctrlval = CPU_SMT_DISABLED;
2936		else if (cpu_smt_num_threads_valid(num_threads))
2937			ctrlval = CPU_SMT_ENABLED;
2938		else
2939			return -EINVAL;
2940	} else {
2941		return -EINVAL;
2942	}
2943
2944	ret = lock_device_hotplug_sysfs();
2945	if (ret)
2946		return ret;
2947
2948	orig_threads = cpu_smt_num_threads;
2949	cpu_smt_num_threads = num_threads;
2950
2951	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2952
2953	if (num_threads > orig_threads)
2954		ret = cpuhp_smt_enable();
2955	else if (num_threads < orig_threads || force_off)
2956		ret = cpuhp_smt_disable(ctrlval);
2957
2958	unlock_device_hotplug();
2959	return ret ? ret : count;
2960}
2961
2962#else /* !CONFIG_HOTPLUG_SMT */
2963static ssize_t
2964__store_smt_control(struct device *dev, struct device_attribute *attr,
2965		    const char *buf, size_t count)
2966{
2967	return -ENODEV;
2968}
2969#endif /* CONFIG_HOTPLUG_SMT */
2970
2971static const char *smt_states[] = {
2972	[CPU_SMT_ENABLED]		= "on",
2973	[CPU_SMT_DISABLED]		= "off",
2974	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2975	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2976	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2977};
2978
2979static ssize_t control_show(struct device *dev,
2980			    struct device_attribute *attr, char *buf)
2981{
2982	const char *state = smt_states[cpu_smt_control];
2983
2984#ifdef CONFIG_HOTPLUG_SMT
2985	/*
2986	 * If SMT is enabled but not all threads are enabled then show the
2987	 * number of threads. If all threads are enabled show "on". Otherwise
2988	 * show the state name.
2989	 */
2990	if (cpu_smt_control == CPU_SMT_ENABLED &&
2991	    cpu_smt_num_threads != cpu_smt_max_threads)
2992		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2993#endif
2994
2995	return sysfs_emit(buf, "%s\n", state);
2996}
2997
2998static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2999			     const char *buf, size_t count)
3000{
3001	return __store_smt_control(dev, attr, buf, count);
3002}
3003static DEVICE_ATTR_RW(control);
3004
3005static ssize_t active_show(struct device *dev,
3006			   struct device_attribute *attr, char *buf)
3007{
3008	return sysfs_emit(buf, "%d\n", sched_smt_active());
3009}
3010static DEVICE_ATTR_RO(active);
3011
3012static struct attribute *cpuhp_smt_attrs[] = {
3013	&dev_attr_control.attr,
3014	&dev_attr_active.attr,
3015	NULL
3016};
3017
3018static const struct attribute_group cpuhp_smt_attr_group = {
3019	.attrs = cpuhp_smt_attrs,
3020	.name = "smt",
3021};
3022
3023static int __init cpu_smt_sysfs_init(void)
3024{
3025	struct device *dev_root;
3026	int ret = -ENODEV;
3027
3028	dev_root = bus_get_dev_root(&cpu_subsys);
3029	if (dev_root) {
3030		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3031		put_device(dev_root);
3032	}
3033	return ret;
3034}
3035
3036static int __init cpuhp_sysfs_init(void)
3037{
3038	struct device *dev_root;
3039	int cpu, ret;
3040
3041	ret = cpu_smt_sysfs_init();
 
3042	if (ret)
3043		return ret;
3044
3045	dev_root = bus_get_dev_root(&cpu_subsys);
3046	if (dev_root) {
3047		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3048		put_device(dev_root);
3049		if (ret)
3050			return ret;
3051	}
3052
3053	for_each_possible_cpu(cpu) {
3054		struct device *dev = get_cpu_device(cpu);
3055
3056		if (!dev)
3057			continue;
3058		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3059		if (ret)
3060			return ret;
3061	}
3062	return 0;
3063}
3064device_initcall(cpuhp_sysfs_init);
3065#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3066
3067/*
3068 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3069 * represents all NR_CPUS bits binary values of 1<<nr.
3070 *
3071 * It is used by cpumask_of() to get a constant address to a CPU
3072 * mask value that has a single bit set only.
3073 */
3074
3075/* cpu_bit_bitmap[0] is empty - so we can back into it */
3076#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3077#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3078#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3079#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3080
3081const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3082
3083	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3084	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3085#if BITS_PER_LONG > 32
3086	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3087	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3088#endif
3089};
3090EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3091
3092const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3093EXPORT_SYMBOL(cpu_all_bits);
3094
3095#ifdef CONFIG_INIT_ALL_POSSIBLE
3096struct cpumask __cpu_possible_mask __ro_after_init
3097	= {CPU_BITS_ALL};
3098#else
3099struct cpumask __cpu_possible_mask __ro_after_init;
3100#endif
3101EXPORT_SYMBOL(__cpu_possible_mask);
3102
3103struct cpumask __cpu_online_mask __read_mostly;
3104EXPORT_SYMBOL(__cpu_online_mask);
3105
3106struct cpumask __cpu_enabled_mask __read_mostly;
3107EXPORT_SYMBOL(__cpu_enabled_mask);
3108
3109struct cpumask __cpu_present_mask __read_mostly;
3110EXPORT_SYMBOL(__cpu_present_mask);
3111
3112struct cpumask __cpu_active_mask __read_mostly;
3113EXPORT_SYMBOL(__cpu_active_mask);
3114
3115struct cpumask __cpu_dying_mask __read_mostly;
3116EXPORT_SYMBOL(__cpu_dying_mask);
3117
3118atomic_t __num_online_cpus __read_mostly;
3119EXPORT_SYMBOL(__num_online_cpus);
3120
3121void init_cpu_present(const struct cpumask *src)
3122{
3123	cpumask_copy(&__cpu_present_mask, src);
3124}
3125
3126void init_cpu_possible(const struct cpumask *src)
3127{
3128	cpumask_copy(&__cpu_possible_mask, src);
3129}
3130
3131void init_cpu_online(const struct cpumask *src)
3132{
3133	cpumask_copy(&__cpu_online_mask, src);
3134}
3135
3136void set_cpu_online(unsigned int cpu, bool online)
3137{
3138	/*
3139	 * atomic_inc/dec() is required to handle the horrid abuse of this
3140	 * function by the reboot and kexec code which invoke it from
3141	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3142	 * regular CPU hotplug is properly serialized.
3143	 *
3144	 * Note, that the fact that __num_online_cpus is of type atomic_t
3145	 * does not protect readers which are not serialized against
3146	 * concurrent hotplug operations.
3147	 */
3148	if (online) {
3149		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3150			atomic_inc(&__num_online_cpus);
3151	} else {
3152		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3153			atomic_dec(&__num_online_cpus);
3154	}
3155}
3156
3157/*
3158 * Activate the first processor.
3159 */
3160void __init boot_cpu_init(void)
3161{
3162	int cpu = smp_processor_id();
3163
3164	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3165	set_cpu_online(cpu, true);
3166	set_cpu_active(cpu, true);
3167	set_cpu_present(cpu, true);
3168	set_cpu_possible(cpu, true);
3169
3170#ifdef CONFIG_SMP
3171	__boot_cpu_id = cpu;
3172#endif
3173}
3174
3175/*
3176 * Must be called _AFTER_ setting up the per_cpu areas
3177 */
3178void __init boot_cpu_hotplug_init(void)
3179{
3180#ifdef CONFIG_SMP
3181	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3182	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3183#endif
3184	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3185	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3186}
3187
3188#ifdef CONFIG_CPU_MITIGATIONS
3189/*
3190 * These are used for a global "mitigations=" cmdline option for toggling
3191 * optional CPU mitigations.
3192 */
3193enum cpu_mitigations {
3194	CPU_MITIGATIONS_OFF,
3195	CPU_MITIGATIONS_AUTO,
3196	CPU_MITIGATIONS_AUTO_NOSMT,
3197};
3198
3199static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3200
3201static int __init mitigations_parse_cmdline(char *arg)
3202{
3203	if (!strcmp(arg, "off"))
3204		cpu_mitigations = CPU_MITIGATIONS_OFF;
3205	else if (!strcmp(arg, "auto"))
3206		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3207	else if (!strcmp(arg, "auto,nosmt"))
3208		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3209	else
3210		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3211			arg);
3212
3213	return 0;
3214}
3215
3216/* mitigations=off */
3217bool cpu_mitigations_off(void)
3218{
3219	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3220}
3221EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3222
3223/* mitigations=auto,nosmt */
3224bool cpu_mitigations_auto_nosmt(void)
3225{
3226	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3227}
3228EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3229#else
3230static int __init mitigations_parse_cmdline(char *arg)
3231{
3232	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3233	return 0;
3234}
3235#endif
3236early_param("mitigations", mitigations_parse_cmdline);