Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "disk-io.h"
12#include "ordered-data.h"
13#include "transaction.h"
14#include "backref.h"
15#include "extent_io.h"
16#include "dev-replace.h"
17#include "check-integrity.h"
18#include "rcu-string.h"
19#include "raid56.h"
20
21/*
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
25 * any can be found.
26 *
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
32 */
33
34struct scrub_block;
35struct scrub_ctx;
36
37/*
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
42 */
43#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
46
47/*
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
51 */
52#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
53
54struct scrub_recover {
55 refcount_t refs;
56 struct btrfs_bio *bbio;
57 u64 map_length;
58};
59
60struct scrub_page {
61 struct scrub_block *sblock;
62 struct page *page;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
66 u64 generation;
67 u64 logical;
68 u64 physical;
69 u64 physical_for_dev_replace;
70 atomic_t refs;
71 struct {
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
75 };
76 u8 csum[BTRFS_CSUM_SIZE];
77
78 struct scrub_recover *recover;
79};
80
81struct scrub_bio {
82 int index;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
85 struct bio *bio;
86 blk_status_t status;
87 u64 logical;
88 u64 physical;
89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
91#else
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
93#endif
94 int page_count;
95 int next_free;
96 struct btrfs_work work;
97};
98
99struct scrub_block {
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 int page_count;
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
106 struct {
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
111
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
115 };
116 struct btrfs_work work;
117};
118
119/* Used for the chunks with parity stripe such RAID5/6 */
120struct scrub_parity {
121 struct scrub_ctx *sctx;
122
123 struct btrfs_device *scrub_dev;
124
125 u64 logic_start;
126
127 u64 logic_end;
128
129 int nsectors;
130
131 u64 stripe_len;
132
133 refcount_t refs;
134
135 struct list_head spages;
136
137 /* Work of parity check and repair */
138 struct btrfs_work work;
139
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
142
143 /*
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
146 */
147 unsigned long *ebitmap;
148
149 unsigned long bitmap[0];
150};
151
152struct scrub_ctx {
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
155 int first_free;
156 int curr;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
161 u16 csum_size;
162 struct list_head csum_list;
163 atomic_t cancel_req;
164 int readonly;
165 int pages_per_rd_bio;
166
167 int is_dev_replace;
168
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
174
175 /*
176 * statistics
177 */
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
180
181 /*
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
187 */
188 refcount_t refs;
189};
190
191struct scrub_fixup_nodatasum {
192 struct scrub_ctx *sctx;
193 struct btrfs_device *dev;
194 u64 logical;
195 struct btrfs_root *root;
196 struct btrfs_work work;
197 int mirror_num;
198};
199
200struct scrub_nocow_inode {
201 u64 inum;
202 u64 offset;
203 u64 root;
204 struct list_head list;
205};
206
207struct scrub_copy_nocow_ctx {
208 struct scrub_ctx *sctx;
209 u64 logical;
210 u64 len;
211 int mirror_num;
212 u64 physical_for_dev_replace;
213 struct list_head inodes;
214 struct btrfs_work work;
215};
216
217struct scrub_warning {
218 struct btrfs_path *path;
219 u64 extent_item_size;
220 const char *errstr;
221 u64 physical;
222 u64 logical;
223 struct btrfs_device *dev;
224};
225
226struct full_stripe_lock {
227 struct rb_node node;
228 u64 logical;
229 u64 refs;
230 struct mutex mutex;
231};
232
233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239 struct scrub_block *sblocks_for_recheck);
240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 struct scrub_block *sblock,
242 int retry_failed_mirror);
243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245 struct scrub_block *sblock_good);
246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
247 struct scrub_block *sblock_good,
248 int page_num, int force_write);
249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
251 int page_num);
252static int scrub_checksum_data(struct scrub_block *sblock);
253static int scrub_checksum_tree_block(struct scrub_block *sblock);
254static int scrub_checksum_super(struct scrub_block *sblock);
255static void scrub_block_get(struct scrub_block *sblock);
256static void scrub_block_put(struct scrub_block *sblock);
257static void scrub_page_get(struct scrub_page *spage);
258static void scrub_page_put(struct scrub_page *spage);
259static void scrub_parity_get(struct scrub_parity *sparity);
260static void scrub_parity_put(struct scrub_parity *sparity);
261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
262 struct scrub_page *spage);
263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264 u64 physical, struct btrfs_device *dev, u64 flags,
265 u64 gen, int mirror_num, u8 *csum, int force,
266 u64 physical_for_dev_replace);
267static void scrub_bio_end_io(struct bio *bio);
268static void scrub_bio_end_io_worker(struct btrfs_work *work);
269static void scrub_block_complete(struct scrub_block *sblock);
270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
271 u64 extent_logical, u64 extent_len,
272 u64 *extent_physical,
273 struct btrfs_device **extent_dev,
274 int *extent_mirror_num);
275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
276 struct scrub_page *spage);
277static void scrub_wr_submit(struct scrub_ctx *sctx);
278static void scrub_wr_bio_end_io(struct bio *bio);
279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
280static int write_page_nocow(struct scrub_ctx *sctx,
281 u64 physical_for_dev_replace, struct page *page);
282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283 struct scrub_copy_nocow_ctx *ctx);
284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
285 int mirror_num, u64 physical_for_dev_replace);
286static void copy_nocow_pages_worker(struct btrfs_work *work);
287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
292{
293 return page->recover &&
294 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
295}
296
297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
298{
299 refcount_inc(&sctx->refs);
300 atomic_inc(&sctx->bios_in_flight);
301}
302
303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
304{
305 atomic_dec(&sctx->bios_in_flight);
306 wake_up(&sctx->list_wait);
307 scrub_put_ctx(sctx);
308}
309
310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311{
312 while (atomic_read(&fs_info->scrub_pause_req)) {
313 mutex_unlock(&fs_info->scrub_lock);
314 wait_event(fs_info->scrub_pause_wait,
315 atomic_read(&fs_info->scrub_pause_req) == 0);
316 mutex_lock(&fs_info->scrub_lock);
317 }
318}
319
320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321{
322 atomic_inc(&fs_info->scrubs_paused);
323 wake_up(&fs_info->scrub_pause_wait);
324}
325
326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
327{
328 mutex_lock(&fs_info->scrub_lock);
329 __scrub_blocked_if_needed(fs_info);
330 atomic_dec(&fs_info->scrubs_paused);
331 mutex_unlock(&fs_info->scrub_lock);
332
333 wake_up(&fs_info->scrub_pause_wait);
334}
335
336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
337{
338 scrub_pause_on(fs_info);
339 scrub_pause_off(fs_info);
340}
341
342/*
343 * Insert new full stripe lock into full stripe locks tree
344 *
345 * Return pointer to existing or newly inserted full_stripe_lock structure if
346 * everything works well.
347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
348 *
349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
350 * function
351 */
352static struct full_stripe_lock *insert_full_stripe_lock(
353 struct btrfs_full_stripe_locks_tree *locks_root,
354 u64 fstripe_logical)
355{
356 struct rb_node **p;
357 struct rb_node *parent = NULL;
358 struct full_stripe_lock *entry;
359 struct full_stripe_lock *ret;
360
361 lockdep_assert_held(&locks_root->lock);
362
363 p = &locks_root->root.rb_node;
364 while (*p) {
365 parent = *p;
366 entry = rb_entry(parent, struct full_stripe_lock, node);
367 if (fstripe_logical < entry->logical) {
368 p = &(*p)->rb_left;
369 } else if (fstripe_logical > entry->logical) {
370 p = &(*p)->rb_right;
371 } else {
372 entry->refs++;
373 return entry;
374 }
375 }
376
377 /* Insert new lock */
378 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
379 if (!ret)
380 return ERR_PTR(-ENOMEM);
381 ret->logical = fstripe_logical;
382 ret->refs = 1;
383 mutex_init(&ret->mutex);
384
385 rb_link_node(&ret->node, parent, p);
386 rb_insert_color(&ret->node, &locks_root->root);
387 return ret;
388}
389
390/*
391 * Search for a full stripe lock of a block group
392 *
393 * Return pointer to existing full stripe lock if found
394 * Return NULL if not found
395 */
396static struct full_stripe_lock *search_full_stripe_lock(
397 struct btrfs_full_stripe_locks_tree *locks_root,
398 u64 fstripe_logical)
399{
400 struct rb_node *node;
401 struct full_stripe_lock *entry;
402
403 lockdep_assert_held(&locks_root->lock);
404
405 node = locks_root->root.rb_node;
406 while (node) {
407 entry = rb_entry(node, struct full_stripe_lock, node);
408 if (fstripe_logical < entry->logical)
409 node = node->rb_left;
410 else if (fstripe_logical > entry->logical)
411 node = node->rb_right;
412 else
413 return entry;
414 }
415 return NULL;
416}
417
418/*
419 * Helper to get full stripe logical from a normal bytenr.
420 *
421 * Caller must ensure @cache is a RAID56 block group.
422 */
423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
424 u64 bytenr)
425{
426 u64 ret;
427
428 /*
429 * Due to chunk item size limit, full stripe length should not be
430 * larger than U32_MAX. Just a sanity check here.
431 */
432 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
433
434 /*
435 * round_down() can only handle power of 2, while RAID56 full
436 * stripe length can be 64KiB * n, so we need to manually round down.
437 */
438 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
439 cache->full_stripe_len + cache->key.objectid;
440 return ret;
441}
442
443/*
444 * Lock a full stripe to avoid concurrency of recovery and read
445 *
446 * It's only used for profiles with parities (RAID5/6), for other profiles it
447 * does nothing.
448 *
449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450 * So caller must call unlock_full_stripe() at the same context.
451 *
452 * Return <0 if encounters error.
453 */
454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
455 bool *locked_ret)
456{
457 struct btrfs_block_group_cache *bg_cache;
458 struct btrfs_full_stripe_locks_tree *locks_root;
459 struct full_stripe_lock *existing;
460 u64 fstripe_start;
461 int ret = 0;
462
463 *locked_ret = false;
464 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
465 if (!bg_cache) {
466 ASSERT(0);
467 return -ENOENT;
468 }
469
470 /* Profiles not based on parity don't need full stripe lock */
471 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
472 goto out;
473 locks_root = &bg_cache->full_stripe_locks_root;
474
475 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
476
477 /* Now insert the full stripe lock */
478 mutex_lock(&locks_root->lock);
479 existing = insert_full_stripe_lock(locks_root, fstripe_start);
480 mutex_unlock(&locks_root->lock);
481 if (IS_ERR(existing)) {
482 ret = PTR_ERR(existing);
483 goto out;
484 }
485 mutex_lock(&existing->mutex);
486 *locked_ret = true;
487out:
488 btrfs_put_block_group(bg_cache);
489 return ret;
490}
491
492/*
493 * Unlock a full stripe.
494 *
495 * NOTE: Caller must ensure it's the same context calling corresponding
496 * lock_full_stripe().
497 *
498 * Return 0 if we unlock full stripe without problem.
499 * Return <0 for error
500 */
501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
502 bool locked)
503{
504 struct btrfs_block_group_cache *bg_cache;
505 struct btrfs_full_stripe_locks_tree *locks_root;
506 struct full_stripe_lock *fstripe_lock;
507 u64 fstripe_start;
508 bool freeit = false;
509 int ret = 0;
510
511 /* If we didn't acquire full stripe lock, no need to continue */
512 if (!locked)
513 return 0;
514
515 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
516 if (!bg_cache) {
517 ASSERT(0);
518 return -ENOENT;
519 }
520 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
521 goto out;
522
523 locks_root = &bg_cache->full_stripe_locks_root;
524 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
525
526 mutex_lock(&locks_root->lock);
527 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
528 /* Unpaired unlock_full_stripe() detected */
529 if (!fstripe_lock) {
530 WARN_ON(1);
531 ret = -ENOENT;
532 mutex_unlock(&locks_root->lock);
533 goto out;
534 }
535
536 if (fstripe_lock->refs == 0) {
537 WARN_ON(1);
538 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
539 fstripe_lock->logical);
540 } else {
541 fstripe_lock->refs--;
542 }
543
544 if (fstripe_lock->refs == 0) {
545 rb_erase(&fstripe_lock->node, &locks_root->root);
546 freeit = true;
547 }
548 mutex_unlock(&locks_root->lock);
549
550 mutex_unlock(&fstripe_lock->mutex);
551 if (freeit)
552 kfree(fstripe_lock);
553out:
554 btrfs_put_block_group(bg_cache);
555 return ret;
556}
557
558/*
559 * used for workers that require transaction commits (i.e., for the
560 * NOCOW case)
561 */
562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
563{
564 struct btrfs_fs_info *fs_info = sctx->fs_info;
565
566 refcount_inc(&sctx->refs);
567 /*
568 * increment scrubs_running to prevent cancel requests from
569 * completing as long as a worker is running. we must also
570 * increment scrubs_paused to prevent deadlocking on pause
571 * requests used for transactions commits (as the worker uses a
572 * transaction context). it is safe to regard the worker
573 * as paused for all matters practical. effectively, we only
574 * avoid cancellation requests from completing.
575 */
576 mutex_lock(&fs_info->scrub_lock);
577 atomic_inc(&fs_info->scrubs_running);
578 atomic_inc(&fs_info->scrubs_paused);
579 mutex_unlock(&fs_info->scrub_lock);
580
581 /*
582 * check if @scrubs_running=@scrubs_paused condition
583 * inside wait_event() is not an atomic operation.
584 * which means we may inc/dec @scrub_running/paused
585 * at any time. Let's wake up @scrub_pause_wait as
586 * much as we can to let commit transaction blocked less.
587 */
588 wake_up(&fs_info->scrub_pause_wait);
589
590 atomic_inc(&sctx->workers_pending);
591}
592
593/* used for workers that require transaction commits */
594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
595{
596 struct btrfs_fs_info *fs_info = sctx->fs_info;
597
598 /*
599 * see scrub_pending_trans_workers_inc() why we're pretending
600 * to be paused in the scrub counters
601 */
602 mutex_lock(&fs_info->scrub_lock);
603 atomic_dec(&fs_info->scrubs_running);
604 atomic_dec(&fs_info->scrubs_paused);
605 mutex_unlock(&fs_info->scrub_lock);
606 atomic_dec(&sctx->workers_pending);
607 wake_up(&fs_info->scrub_pause_wait);
608 wake_up(&sctx->list_wait);
609 scrub_put_ctx(sctx);
610}
611
612static void scrub_free_csums(struct scrub_ctx *sctx)
613{
614 while (!list_empty(&sctx->csum_list)) {
615 struct btrfs_ordered_sum *sum;
616 sum = list_first_entry(&sctx->csum_list,
617 struct btrfs_ordered_sum, list);
618 list_del(&sum->list);
619 kfree(sum);
620 }
621}
622
623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
624{
625 int i;
626
627 if (!sctx)
628 return;
629
630 /* this can happen when scrub is cancelled */
631 if (sctx->curr != -1) {
632 struct scrub_bio *sbio = sctx->bios[sctx->curr];
633
634 for (i = 0; i < sbio->page_count; i++) {
635 WARN_ON(!sbio->pagev[i]->page);
636 scrub_block_put(sbio->pagev[i]->sblock);
637 }
638 bio_put(sbio->bio);
639 }
640
641 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642 struct scrub_bio *sbio = sctx->bios[i];
643
644 if (!sbio)
645 break;
646 kfree(sbio);
647 }
648
649 kfree(sctx->wr_curr_bio);
650 scrub_free_csums(sctx);
651 kfree(sctx);
652}
653
654static void scrub_put_ctx(struct scrub_ctx *sctx)
655{
656 if (refcount_dec_and_test(&sctx->refs))
657 scrub_free_ctx(sctx);
658}
659
660static noinline_for_stack
661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
662{
663 struct scrub_ctx *sctx;
664 int i;
665 struct btrfs_fs_info *fs_info = dev->fs_info;
666
667 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668 if (!sctx)
669 goto nomem;
670 refcount_set(&sctx->refs, 1);
671 sctx->is_dev_replace = is_dev_replace;
672 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673 sctx->curr = -1;
674 sctx->fs_info = dev->fs_info;
675 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
676 struct scrub_bio *sbio;
677
678 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
679 if (!sbio)
680 goto nomem;
681 sctx->bios[i] = sbio;
682
683 sbio->index = i;
684 sbio->sctx = sctx;
685 sbio->page_count = 0;
686 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
687 scrub_bio_end_io_worker, NULL, NULL);
688
689 if (i != SCRUB_BIOS_PER_SCTX - 1)
690 sctx->bios[i]->next_free = i + 1;
691 else
692 sctx->bios[i]->next_free = -1;
693 }
694 sctx->first_free = 0;
695 atomic_set(&sctx->bios_in_flight, 0);
696 atomic_set(&sctx->workers_pending, 0);
697 atomic_set(&sctx->cancel_req, 0);
698 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
699 INIT_LIST_HEAD(&sctx->csum_list);
700
701 spin_lock_init(&sctx->list_lock);
702 spin_lock_init(&sctx->stat_lock);
703 init_waitqueue_head(&sctx->list_wait);
704
705 WARN_ON(sctx->wr_curr_bio != NULL);
706 mutex_init(&sctx->wr_lock);
707 sctx->wr_curr_bio = NULL;
708 if (is_dev_replace) {
709 WARN_ON(!fs_info->dev_replace.tgtdev);
710 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712 sctx->flush_all_writes = false;
713 }
714
715 return sctx;
716
717nomem:
718 scrub_free_ctx(sctx);
719 return ERR_PTR(-ENOMEM);
720}
721
722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
723 void *warn_ctx)
724{
725 u64 isize;
726 u32 nlink;
727 int ret;
728 int i;
729 unsigned nofs_flag;
730 struct extent_buffer *eb;
731 struct btrfs_inode_item *inode_item;
732 struct scrub_warning *swarn = warn_ctx;
733 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 struct inode_fs_paths *ipath = NULL;
735 struct btrfs_root *local_root;
736 struct btrfs_key root_key;
737 struct btrfs_key key;
738
739 root_key.objectid = root;
740 root_key.type = BTRFS_ROOT_ITEM_KEY;
741 root_key.offset = (u64)-1;
742 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
743 if (IS_ERR(local_root)) {
744 ret = PTR_ERR(local_root);
745 goto err;
746 }
747
748 /*
749 * this makes the path point to (inum INODE_ITEM ioff)
750 */
751 key.objectid = inum;
752 key.type = BTRFS_INODE_ITEM_KEY;
753 key.offset = 0;
754
755 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 if (ret) {
757 btrfs_release_path(swarn->path);
758 goto err;
759 }
760
761 eb = swarn->path->nodes[0];
762 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
763 struct btrfs_inode_item);
764 isize = btrfs_inode_size(eb, inode_item);
765 nlink = btrfs_inode_nlink(eb, inode_item);
766 btrfs_release_path(swarn->path);
767
768 /*
769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 * not seem to be strictly necessary.
772 */
773 nofs_flag = memalloc_nofs_save();
774 ipath = init_ipath(4096, local_root, swarn->path);
775 memalloc_nofs_restore(nofs_flag);
776 if (IS_ERR(ipath)) {
777 ret = PTR_ERR(ipath);
778 ipath = NULL;
779 goto err;
780 }
781 ret = paths_from_inode(inum, ipath);
782
783 if (ret < 0)
784 goto err;
785
786 /*
787 * we deliberately ignore the bit ipath might have been too small to
788 * hold all of the paths here
789 */
790 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
791 btrfs_warn_in_rcu(fs_info,
792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 swarn->errstr, swarn->logical,
794 rcu_str_deref(swarn->dev->name),
795 swarn->physical,
796 root, inum, offset,
797 min(isize - offset, (u64)PAGE_SIZE), nlink,
798 (char *)(unsigned long)ipath->fspath->val[i]);
799
800 free_ipath(ipath);
801 return 0;
802
803err:
804 btrfs_warn_in_rcu(fs_info,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 swarn->errstr, swarn->logical,
807 rcu_str_deref(swarn->dev->name),
808 swarn->physical,
809 root, inum, offset, ret);
810
811 free_ipath(ipath);
812 return 0;
813}
814
815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816{
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
819 struct btrfs_path *path;
820 struct btrfs_key found_key;
821 struct extent_buffer *eb;
822 struct btrfs_extent_item *ei;
823 struct scrub_warning swarn;
824 unsigned long ptr = 0;
825 u64 extent_item_pos;
826 u64 flags = 0;
827 u64 ref_root;
828 u32 item_size;
829 u8 ref_level = 0;
830 int ret;
831
832 WARN_ON(sblock->page_count < 1);
833 dev = sblock->pagev[0]->dev;
834 fs_info = sblock->sctx->fs_info;
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return;
839
840 swarn.physical = sblock->pagev[0]->physical;
841 swarn.logical = sblock->pagev[0]->logical;
842 swarn.errstr = errstr;
843 swarn.dev = NULL;
844
845 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
846 &flags);
847 if (ret < 0)
848 goto out;
849
850 extent_item_pos = swarn.logical - found_key.objectid;
851 swarn.extent_item_size = found_key.offset;
852
853 eb = path->nodes[0];
854 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
855 item_size = btrfs_item_size_nr(eb, path->slots[0]);
856
857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858 do {
859 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
860 item_size, &ref_root,
861 &ref_level);
862 btrfs_warn_in_rcu(fs_info,
863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 errstr, swarn.logical,
865 rcu_str_deref(dev->name),
866 swarn.physical,
867 ref_level ? "node" : "leaf",
868 ret < 0 ? -1 : ref_level,
869 ret < 0 ? -1 : ref_root);
870 } while (ret != 1);
871 btrfs_release_path(path);
872 } else {
873 btrfs_release_path(path);
874 swarn.path = path;
875 swarn.dev = dev;
876 iterate_extent_inodes(fs_info, found_key.objectid,
877 extent_item_pos, 1,
878 scrub_print_warning_inode, &swarn, false);
879 }
880
881out:
882 btrfs_free_path(path);
883}
884
885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886{
887 struct page *page = NULL;
888 unsigned long index;
889 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890 int ret;
891 int corrected = 0;
892 struct btrfs_key key;
893 struct inode *inode = NULL;
894 struct btrfs_fs_info *fs_info;
895 u64 end = offset + PAGE_SIZE - 1;
896 struct btrfs_root *local_root;
897 int srcu_index;
898
899 key.objectid = root;
900 key.type = BTRFS_ROOT_ITEM_KEY;
901 key.offset = (u64)-1;
902
903 fs_info = fixup->root->fs_info;
904 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
905
906 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
907 if (IS_ERR(local_root)) {
908 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909 return PTR_ERR(local_root);
910 }
911
912 key.type = BTRFS_INODE_ITEM_KEY;
913 key.objectid = inum;
914 key.offset = 0;
915 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 if (IS_ERR(inode))
918 return PTR_ERR(inode);
919
920 index = offset >> PAGE_SHIFT;
921
922 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 if (!page) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 if (PageUptodate(page)) {
929 if (PageDirty(page)) {
930 /*
931 * we need to write the data to the defect sector. the
932 * data that was in that sector is not in memory,
933 * because the page was modified. we must not write the
934 * modified page to that sector.
935 *
936 * TODO: what could be done here: wait for the delalloc
937 * runner to write out that page (might involve
938 * COW) and see whether the sector is still
939 * referenced afterwards.
940 *
941 * For the meantime, we'll treat this error
942 * incorrectable, although there is a chance that a
943 * later scrub will find the bad sector again and that
944 * there's no dirty page in memory, then.
945 */
946 ret = -EIO;
947 goto out;
948 }
949 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950 fixup->logical, page,
951 offset - page_offset(page),
952 fixup->mirror_num);
953 unlock_page(page);
954 corrected = !ret;
955 } else {
956 /*
957 * we need to get good data first. the general readpage path
958 * will call repair_io_failure for us, we just have to make
959 * sure we read the bad mirror.
960 */
961 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962 EXTENT_DAMAGED);
963 if (ret) {
964 /* set_extent_bits should give proper error */
965 WARN_ON(ret > 0);
966 if (ret > 0)
967 ret = -EFAULT;
968 goto out;
969 }
970
971 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
972 btrfs_get_extent,
973 fixup->mirror_num);
974 wait_on_page_locked(page);
975
976 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
977 end, EXTENT_DAMAGED, 0, NULL);
978 if (!corrected)
979 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980 EXTENT_DAMAGED);
981 }
982
983out:
984 if (page)
985 put_page(page);
986
987 iput(inode);
988
989 if (ret < 0)
990 return ret;
991
992 if (ret == 0 && corrected) {
993 /*
994 * we only need to call readpage for one of the inodes belonging
995 * to this extent. so make iterate_extent_inodes stop
996 */
997 return 1;
998 }
999
1000 return -EIO;
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007 struct scrub_fixup_nodatasum *fixup;
1008 struct scrub_ctx *sctx;
1009 struct btrfs_trans_handle *trans = NULL;
1010 struct btrfs_path *path;
1011 int uncorrectable = 0;
1012
1013 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014 sctx = fixup->sctx;
1015 fs_info = fixup->root->fs_info;
1016
1017 path = btrfs_alloc_path();
1018 if (!path) {
1019 spin_lock(&sctx->stat_lock);
1020 ++sctx->stat.malloc_errors;
1021 spin_unlock(&sctx->stat_lock);
1022 uncorrectable = 1;
1023 goto out;
1024 }
1025
1026 trans = btrfs_join_transaction(fixup->root);
1027 if (IS_ERR(trans)) {
1028 uncorrectable = 1;
1029 goto out;
1030 }
1031
1032 /*
1033 * the idea is to trigger a regular read through the standard path. we
1034 * read a page from the (failed) logical address by specifying the
1035 * corresponding copynum of the failed sector. thus, that readpage is
1036 * expected to fail.
1037 * that is the point where on-the-fly error correction will kick in
1038 * (once it's finished) and rewrite the failed sector if a good copy
1039 * can be found.
1040 */
1041 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042 scrub_fixup_readpage, fixup, false);
1043 if (ret < 0) {
1044 uncorrectable = 1;
1045 goto out;
1046 }
1047 WARN_ON(ret != 1);
1048
1049 spin_lock(&sctx->stat_lock);
1050 ++sctx->stat.corrected_errors;
1051 spin_unlock(&sctx->stat_lock);
1052
1053out:
1054 if (trans && !IS_ERR(trans))
1055 btrfs_end_transaction(trans);
1056 if (uncorrectable) {
1057 spin_lock(&sctx->stat_lock);
1058 ++sctx->stat.uncorrectable_errors;
1059 spin_unlock(&sctx->stat_lock);
1060 btrfs_dev_replace_stats_inc(
1061 &fs_info->dev_replace.num_uncorrectable_read_errors);
1062 btrfs_err_rl_in_rcu(fs_info,
1063 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 fixup->logical, rcu_str_deref(fixup->dev->name));
1065 }
1066
1067 btrfs_free_path(path);
1068 kfree(fixup);
1069
1070 scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075 refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079 struct scrub_recover *recover)
1080{
1081 if (refcount_dec_and_test(&recover->refs)) {
1082 btrfs_bio_counter_dec(fs_info);
1083 btrfs_put_bbio(recover->bbio);
1084 kfree(recover);
1085 }
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098 struct scrub_ctx *sctx = sblock_to_check->sctx;
1099 struct btrfs_device *dev;
1100 struct btrfs_fs_info *fs_info;
1101 u64 logical;
1102 unsigned int failed_mirror_index;
1103 unsigned int is_metadata;
1104 unsigned int have_csum;
1105 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106 struct scrub_block *sblock_bad;
1107 int ret;
1108 int mirror_index;
1109 int page_num;
1110 int success;
1111 bool full_stripe_locked;
1112 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 DEFAULT_RATELIMIT_BURST);
1114
1115 BUG_ON(sblock_to_check->page_count < 1);
1116 fs_info = sctx->fs_info;
1117 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118 /*
1119 * if we find an error in a super block, we just report it.
1120 * They will get written with the next transaction commit
1121 * anyway
1122 */
1123 spin_lock(&sctx->stat_lock);
1124 ++sctx->stat.super_errors;
1125 spin_unlock(&sctx->stat_lock);
1126 return 0;
1127 }
1128 logical = sblock_to_check->pagev[0]->logical;
1129 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131 is_metadata = !(sblock_to_check->pagev[0]->flags &
1132 BTRFS_EXTENT_FLAG_DATA);
1133 have_csum = sblock_to_check->pagev[0]->have_csum;
1134 dev = sblock_to_check->pagev[0]->dev;
1135
1136 /*
1137 * For RAID5/6, race can happen for a different device scrub thread.
1138 * For data corruption, Parity and Data threads will both try
1139 * to recovery the data.
1140 * Race can lead to doubly added csum error, or even unrecoverable
1141 * error.
1142 */
1143 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144 if (ret < 0) {
1145 spin_lock(&sctx->stat_lock);
1146 if (ret == -ENOMEM)
1147 sctx->stat.malloc_errors++;
1148 sctx->stat.read_errors++;
1149 sctx->stat.uncorrectable_errors++;
1150 spin_unlock(&sctx->stat_lock);
1151 return ret;
1152 }
1153
1154 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155 sblocks_for_recheck = NULL;
1156 goto nodatasum_case;
1157 }
1158
1159 /*
1160 * read all mirrors one after the other. This includes to
1161 * re-read the extent or metadata block that failed (that was
1162 * the cause that this fixup code is called) another time,
1163 * page by page this time in order to know which pages
1164 * caused I/O errors and which ones are good (for all mirrors).
1165 * It is the goal to handle the situation when more than one
1166 * mirror contains I/O errors, but the errors do not
1167 * overlap, i.e. the data can be repaired by selecting the
1168 * pages from those mirrors without I/O error on the
1169 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170 * would be that mirror #1 has an I/O error on the first page,
1171 * the second page is good, and mirror #2 has an I/O error on
1172 * the second page, but the first page is good.
1173 * Then the first page of the first mirror can be repaired by
1174 * taking the first page of the second mirror, and the
1175 * second page of the second mirror can be repaired by
1176 * copying the contents of the 2nd page of the 1st mirror.
1177 * One more note: if the pages of one mirror contain I/O
1178 * errors, the checksum cannot be verified. In order to get
1179 * the best data for repairing, the first attempt is to find
1180 * a mirror without I/O errors and with a validated checksum.
1181 * Only if this is not possible, the pages are picked from
1182 * mirrors with I/O errors without considering the checksum.
1183 * If the latter is the case, at the end, the checksum of the
1184 * repaired area is verified in order to correctly maintain
1185 * the statistics.
1186 */
1187
1188 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189 sizeof(*sblocks_for_recheck), GFP_NOFS);
1190 if (!sblocks_for_recheck) {
1191 spin_lock(&sctx->stat_lock);
1192 sctx->stat.malloc_errors++;
1193 sctx->stat.read_errors++;
1194 sctx->stat.uncorrectable_errors++;
1195 spin_unlock(&sctx->stat_lock);
1196 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197 goto out;
1198 }
1199
1200 /* setup the context, map the logical blocks and alloc the pages */
1201 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202 if (ret) {
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.read_errors++;
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208 goto out;
1209 }
1210 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211 sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213 /* build and submit the bios for the failed mirror, check checksums */
1214 scrub_recheck_block(fs_info, sblock_bad, 1);
1215
1216 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217 sblock_bad->no_io_error_seen) {
1218 /*
1219 * the error disappeared after reading page by page, or
1220 * the area was part of a huge bio and other parts of the
1221 * bio caused I/O errors, or the block layer merged several
1222 * read requests into one and the error is caused by a
1223 * different bio (usually one of the two latter cases is
1224 * the cause)
1225 */
1226 spin_lock(&sctx->stat_lock);
1227 sctx->stat.unverified_errors++;
1228 sblock_to_check->data_corrected = 1;
1229 spin_unlock(&sctx->stat_lock);
1230
1231 if (sctx->is_dev_replace)
1232 scrub_write_block_to_dev_replace(sblock_bad);
1233 goto out;
1234 }
1235
1236 if (!sblock_bad->no_io_error_seen) {
1237 spin_lock(&sctx->stat_lock);
1238 sctx->stat.read_errors++;
1239 spin_unlock(&sctx->stat_lock);
1240 if (__ratelimit(&_rs))
1241 scrub_print_warning("i/o error", sblock_to_check);
1242 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243 } else if (sblock_bad->checksum_error) {
1244 spin_lock(&sctx->stat_lock);
1245 sctx->stat.csum_errors++;
1246 spin_unlock(&sctx->stat_lock);
1247 if (__ratelimit(&_rs))
1248 scrub_print_warning("checksum error", sblock_to_check);
1249 btrfs_dev_stat_inc_and_print(dev,
1250 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251 } else if (sblock_bad->header_error) {
1252 spin_lock(&sctx->stat_lock);
1253 sctx->stat.verify_errors++;
1254 spin_unlock(&sctx->stat_lock);
1255 if (__ratelimit(&_rs))
1256 scrub_print_warning("checksum/header error",
1257 sblock_to_check);
1258 if (sblock_bad->generation_error)
1259 btrfs_dev_stat_inc_and_print(dev,
1260 BTRFS_DEV_STAT_GENERATION_ERRS);
1261 else
1262 btrfs_dev_stat_inc_and_print(dev,
1263 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264 }
1265
1266 if (sctx->readonly) {
1267 ASSERT(!sctx->is_dev_replace);
1268 goto out;
1269 }
1270
1271 if (!is_metadata && !have_csum) {
1272 struct scrub_fixup_nodatasum *fixup_nodatasum;
1273
1274 WARN_ON(sctx->is_dev_replace);
1275
1276nodatasum_case:
1277
1278 /*
1279 * !is_metadata and !have_csum, this means that the data
1280 * might not be COWed, that it might be modified
1281 * concurrently. The general strategy to work on the
1282 * commit root does not help in the case when COW is not
1283 * used.
1284 */
1285 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286 if (!fixup_nodatasum)
1287 goto did_not_correct_error;
1288 fixup_nodatasum->sctx = sctx;
1289 fixup_nodatasum->dev = dev;
1290 fixup_nodatasum->logical = logical;
1291 fixup_nodatasum->root = fs_info->extent_root;
1292 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293 scrub_pending_trans_workers_inc(sctx);
1294 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295 scrub_fixup_nodatasum, NULL, NULL);
1296 btrfs_queue_work(fs_info->scrub_workers,
1297 &fixup_nodatasum->work);
1298 goto out;
1299 }
1300
1301 /*
1302 * now build and submit the bios for the other mirrors, check
1303 * checksums.
1304 * First try to pick the mirror which is completely without I/O
1305 * errors and also does not have a checksum error.
1306 * If one is found, and if a checksum is present, the full block
1307 * that is known to contain an error is rewritten. Afterwards
1308 * the block is known to be corrected.
1309 * If a mirror is found which is completely correct, and no
1310 * checksum is present, only those pages are rewritten that had
1311 * an I/O error in the block to be repaired, since it cannot be
1312 * determined, which copy of the other pages is better (and it
1313 * could happen otherwise that a correct page would be
1314 * overwritten by a bad one).
1315 */
1316 for (mirror_index = 0; ;mirror_index++) {
1317 struct scrub_block *sblock_other;
1318
1319 if (mirror_index == failed_mirror_index)
1320 continue;
1321
1322 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324 if (mirror_index >= BTRFS_MAX_MIRRORS)
1325 break;
1326 if (!sblocks_for_recheck[mirror_index].page_count)
1327 break;
1328
1329 sblock_other = sblocks_for_recheck + mirror_index;
1330 } else {
1331 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332 int max_allowed = r->bbio->num_stripes -
1333 r->bbio->num_tgtdevs;
1334
1335 if (mirror_index >= max_allowed)
1336 break;
1337 if (!sblocks_for_recheck[1].page_count)
1338 break;
1339
1340 ASSERT(failed_mirror_index == 0);
1341 sblock_other = sblocks_for_recheck + 1;
1342 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343 }
1344
1345 /* build and submit the bios, check checksums */
1346 scrub_recheck_block(fs_info, sblock_other, 0);
1347
1348 if (!sblock_other->header_error &&
1349 !sblock_other->checksum_error &&
1350 sblock_other->no_io_error_seen) {
1351 if (sctx->is_dev_replace) {
1352 scrub_write_block_to_dev_replace(sblock_other);
1353 goto corrected_error;
1354 } else {
1355 ret = scrub_repair_block_from_good_copy(
1356 sblock_bad, sblock_other);
1357 if (!ret)
1358 goto corrected_error;
1359 }
1360 }
1361 }
1362
1363 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364 goto did_not_correct_error;
1365
1366 /*
1367 * In case of I/O errors in the area that is supposed to be
1368 * repaired, continue by picking good copies of those pages.
1369 * Select the good pages from mirrors to rewrite bad pages from
1370 * the area to fix. Afterwards verify the checksum of the block
1371 * that is supposed to be repaired. This verification step is
1372 * only done for the purpose of statistic counting and for the
1373 * final scrub report, whether errors remain.
1374 * A perfect algorithm could make use of the checksum and try
1375 * all possible combinations of pages from the different mirrors
1376 * until the checksum verification succeeds. For example, when
1377 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378 * of mirror #2 is readable but the final checksum test fails,
1379 * then the 2nd page of mirror #3 could be tried, whether now
1380 * the final checksum succeeds. But this would be a rare
1381 * exception and is therefore not implemented. At least it is
1382 * avoided that the good copy is overwritten.
1383 * A more useful improvement would be to pick the sectors
1384 * without I/O error based on sector sizes (512 bytes on legacy
1385 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386 * mirror could be repaired by taking 512 byte of a different
1387 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388 * area are unreadable.
1389 */
1390 success = 1;
1391 for (page_num = 0; page_num < sblock_bad->page_count;
1392 page_num++) {
1393 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394 struct scrub_block *sblock_other = NULL;
1395
1396 /* skip no-io-error page in scrub */
1397 if (!page_bad->io_error && !sctx->is_dev_replace)
1398 continue;
1399
1400 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401 /*
1402 * In case of dev replace, if raid56 rebuild process
1403 * didn't work out correct data, then copy the content
1404 * in sblock_bad to make sure target device is identical
1405 * to source device, instead of writing garbage data in
1406 * sblock_for_recheck array to target device.
1407 */
1408 sblock_other = NULL;
1409 } else if (page_bad->io_error) {
1410 /* try to find no-io-error page in mirrors */
1411 for (mirror_index = 0;
1412 mirror_index < BTRFS_MAX_MIRRORS &&
1413 sblocks_for_recheck[mirror_index].page_count > 0;
1414 mirror_index++) {
1415 if (!sblocks_for_recheck[mirror_index].
1416 pagev[page_num]->io_error) {
1417 sblock_other = sblocks_for_recheck +
1418 mirror_index;
1419 break;
1420 }
1421 }
1422 if (!sblock_other)
1423 success = 0;
1424 }
1425
1426 if (sctx->is_dev_replace) {
1427 /*
1428 * did not find a mirror to fetch the page
1429 * from. scrub_write_page_to_dev_replace()
1430 * handles this case (page->io_error), by
1431 * filling the block with zeros before
1432 * submitting the write request
1433 */
1434 if (!sblock_other)
1435 sblock_other = sblock_bad;
1436
1437 if (scrub_write_page_to_dev_replace(sblock_other,
1438 page_num) != 0) {
1439 btrfs_dev_replace_stats_inc(
1440 &fs_info->dev_replace.num_write_errors);
1441 success = 0;
1442 }
1443 } else if (sblock_other) {
1444 ret = scrub_repair_page_from_good_copy(sblock_bad,
1445 sblock_other,
1446 page_num, 0);
1447 if (0 == ret)
1448 page_bad->io_error = 0;
1449 else
1450 success = 0;
1451 }
1452 }
1453
1454 if (success && !sctx->is_dev_replace) {
1455 if (is_metadata || have_csum) {
1456 /*
1457 * need to verify the checksum now that all
1458 * sectors on disk are repaired (the write
1459 * request for data to be repaired is on its way).
1460 * Just be lazy and use scrub_recheck_block()
1461 * which re-reads the data before the checksum
1462 * is verified, but most likely the data comes out
1463 * of the page cache.
1464 */
1465 scrub_recheck_block(fs_info, sblock_bad, 1);
1466 if (!sblock_bad->header_error &&
1467 !sblock_bad->checksum_error &&
1468 sblock_bad->no_io_error_seen)
1469 goto corrected_error;
1470 else
1471 goto did_not_correct_error;
1472 } else {
1473corrected_error:
1474 spin_lock(&sctx->stat_lock);
1475 sctx->stat.corrected_errors++;
1476 sblock_to_check->data_corrected = 1;
1477 spin_unlock(&sctx->stat_lock);
1478 btrfs_err_rl_in_rcu(fs_info,
1479 "fixed up error at logical %llu on dev %s",
1480 logical, rcu_str_deref(dev->name));
1481 }
1482 } else {
1483did_not_correct_error:
1484 spin_lock(&sctx->stat_lock);
1485 sctx->stat.uncorrectable_errors++;
1486 spin_unlock(&sctx->stat_lock);
1487 btrfs_err_rl_in_rcu(fs_info,
1488 "unable to fixup (regular) error at logical %llu on dev %s",
1489 logical, rcu_str_deref(dev->name));
1490 }
1491
1492out:
1493 if (sblocks_for_recheck) {
1494 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495 mirror_index++) {
1496 struct scrub_block *sblock = sblocks_for_recheck +
1497 mirror_index;
1498 struct scrub_recover *recover;
1499 int page_index;
1500
1501 for (page_index = 0; page_index < sblock->page_count;
1502 page_index++) {
1503 sblock->pagev[page_index]->sblock = NULL;
1504 recover = sblock->pagev[page_index]->recover;
1505 if (recover) {
1506 scrub_put_recover(fs_info, recover);
1507 sblock->pagev[page_index]->recover =
1508 NULL;
1509 }
1510 scrub_page_put(sblock->pagev[page_index]);
1511 }
1512 }
1513 kfree(sblocks_for_recheck);
1514 }
1515
1516 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517 if (ret < 0)
1518 return ret;
1519 return 0;
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525 return 2;
1526 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527 return 3;
1528 else
1529 return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533 u64 *raid_map,
1534 u64 mapped_length,
1535 int nstripes, int mirror,
1536 int *stripe_index,
1537 u64 *stripe_offset)
1538{
1539 int i;
1540
1541 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542 /* RAID5/6 */
1543 for (i = 0; i < nstripes; i++) {
1544 if (raid_map[i] == RAID6_Q_STRIPE ||
1545 raid_map[i] == RAID5_P_STRIPE)
1546 continue;
1547
1548 if (logical >= raid_map[i] &&
1549 logical < raid_map[i] + mapped_length)
1550 break;
1551 }
1552
1553 *stripe_index = i;
1554 *stripe_offset = logical - raid_map[i];
1555 } else {
1556 /* The other RAID type */
1557 *stripe_index = mirror;
1558 *stripe_offset = 0;
1559 }
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563 struct scrub_block *sblocks_for_recheck)
1564{
1565 struct scrub_ctx *sctx = original_sblock->sctx;
1566 struct btrfs_fs_info *fs_info = sctx->fs_info;
1567 u64 length = original_sblock->page_count * PAGE_SIZE;
1568 u64 logical = original_sblock->pagev[0]->logical;
1569 u64 generation = original_sblock->pagev[0]->generation;
1570 u64 flags = original_sblock->pagev[0]->flags;
1571 u64 have_csum = original_sblock->pagev[0]->have_csum;
1572 struct scrub_recover *recover;
1573 struct btrfs_bio *bbio;
1574 u64 sublen;
1575 u64 mapped_length;
1576 u64 stripe_offset;
1577 int stripe_index;
1578 int page_index = 0;
1579 int mirror_index;
1580 int nmirrors;
1581 int ret;
1582
1583 /*
1584 * note: the two members refs and outstanding_pages
1585 * are not used (and not set) in the blocks that are used for
1586 * the recheck procedure
1587 */
1588
1589 while (length > 0) {
1590 sublen = min_t(u64, length, PAGE_SIZE);
1591 mapped_length = sublen;
1592 bbio = NULL;
1593
1594 /*
1595 * with a length of PAGE_SIZE, each returned stripe
1596 * represents one mirror
1597 */
1598 btrfs_bio_counter_inc_blocked(fs_info);
1599 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600 logical, &mapped_length, &bbio);
1601 if (ret || !bbio || mapped_length < sublen) {
1602 btrfs_put_bbio(bbio);
1603 btrfs_bio_counter_dec(fs_info);
1604 return -EIO;
1605 }
1606
1607 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608 if (!recover) {
1609 btrfs_put_bbio(bbio);
1610 btrfs_bio_counter_dec(fs_info);
1611 return -ENOMEM;
1612 }
1613
1614 refcount_set(&recover->refs, 1);
1615 recover->bbio = bbio;
1616 recover->map_length = mapped_length;
1617
1618 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622 for (mirror_index = 0; mirror_index < nmirrors;
1623 mirror_index++) {
1624 struct scrub_block *sblock;
1625 struct scrub_page *page;
1626
1627 sblock = sblocks_for_recheck + mirror_index;
1628 sblock->sctx = sctx;
1629
1630 page = kzalloc(sizeof(*page), GFP_NOFS);
1631 if (!page) {
1632leave_nomem:
1633 spin_lock(&sctx->stat_lock);
1634 sctx->stat.malloc_errors++;
1635 spin_unlock(&sctx->stat_lock);
1636 scrub_put_recover(fs_info, recover);
1637 return -ENOMEM;
1638 }
1639 scrub_page_get(page);
1640 sblock->pagev[page_index] = page;
1641 page->sblock = sblock;
1642 page->flags = flags;
1643 page->generation = generation;
1644 page->logical = logical;
1645 page->have_csum = have_csum;
1646 if (have_csum)
1647 memcpy(page->csum,
1648 original_sblock->pagev[0]->csum,
1649 sctx->csum_size);
1650
1651 scrub_stripe_index_and_offset(logical,
1652 bbio->map_type,
1653 bbio->raid_map,
1654 mapped_length,
1655 bbio->num_stripes -
1656 bbio->num_tgtdevs,
1657 mirror_index,
1658 &stripe_index,
1659 &stripe_offset);
1660 page->physical = bbio->stripes[stripe_index].physical +
1661 stripe_offset;
1662 page->dev = bbio->stripes[stripe_index].dev;
1663
1664 BUG_ON(page_index >= original_sblock->page_count);
1665 page->physical_for_dev_replace =
1666 original_sblock->pagev[page_index]->
1667 physical_for_dev_replace;
1668 /* for missing devices, dev->bdev is NULL */
1669 page->mirror_num = mirror_index + 1;
1670 sblock->page_count++;
1671 page->page = alloc_page(GFP_NOFS);
1672 if (!page->page)
1673 goto leave_nomem;
1674
1675 scrub_get_recover(recover);
1676 page->recover = recover;
1677 }
1678 scrub_put_recover(fs_info, recover);
1679 length -= sublen;
1680 logical += sublen;
1681 page_index++;
1682 }
1683
1684 return 0;
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689 complete(bio->bi_private);
1690}
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693 struct bio *bio,
1694 struct scrub_page *page)
1695{
1696 DECLARE_COMPLETION_ONSTACK(done);
1697 int ret;
1698 int mirror_num;
1699
1700 bio->bi_iter.bi_sector = page->logical >> 9;
1701 bio->bi_private = &done;
1702 bio->bi_end_io = scrub_bio_wait_endio;
1703
1704 mirror_num = page->sblock->pagev[0]->mirror_num;
1705 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706 page->recover->map_length,
1707 mirror_num, 0);
1708 if (ret)
1709 return ret;
1710
1711 wait_for_completion_io(&done);
1712 return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716 struct scrub_block *sblock)
1717{
1718 struct scrub_page *first_page = sblock->pagev[0];
1719 struct bio *bio;
1720 int page_num;
1721
1722 /* All pages in sblock belong to the same stripe on the same device. */
1723 ASSERT(first_page->dev);
1724 if (!first_page->dev->bdev)
1725 goto out;
1726
1727 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728 bio_set_dev(bio, first_page->dev->bdev);
1729
1730 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731 struct scrub_page *page = sblock->pagev[page_num];
1732
1733 WARN_ON(!page->page);
1734 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735 }
1736
1737 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738 bio_put(bio);
1739 goto out;
1740 }
1741
1742 bio_put(bio);
1743
1744 scrub_recheck_block_checksum(sblock);
1745
1746 return;
1747out:
1748 for (page_num = 0; page_num < sblock->page_count; page_num++)
1749 sblock->pagev[page_num]->io_error = 1;
1750
1751 sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762 struct scrub_block *sblock,
1763 int retry_failed_mirror)
1764{
1765 int page_num;
1766
1767 sblock->no_io_error_seen = 1;
1768
1769 /* short cut for raid56 */
1770 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771 return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774 struct bio *bio;
1775 struct scrub_page *page = sblock->pagev[page_num];
1776
1777 if (page->dev->bdev == NULL) {
1778 page->io_error = 1;
1779 sblock->no_io_error_seen = 0;
1780 continue;
1781 }
1782
1783 WARN_ON(!page->page);
1784 bio = btrfs_io_bio_alloc(1);
1785 bio_set_dev(bio, page->dev->bdev);
1786
1787 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788 bio->bi_iter.bi_sector = page->physical >> 9;
1789 bio->bi_opf = REQ_OP_READ;
1790
1791 if (btrfsic_submit_bio_wait(bio)) {
1792 page->io_error = 1;
1793 sblock->no_io_error_seen = 0;
1794 }
1795
1796 bio_put(bio);
1797 }
1798
1799 if (sblock->no_io_error_seen)
1800 scrub_recheck_block_checksum(sblock);
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804 struct scrub_page *spage)
1805{
1806 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807 int ret;
1808
1809 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810 return !ret;
1811}
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815 sblock->header_error = 0;
1816 sblock->checksum_error = 0;
1817 sblock->generation_error = 0;
1818
1819 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820 scrub_checksum_data(sblock);
1821 else
1822 scrub_checksum_tree_block(sblock);
1823}
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826 struct scrub_block *sblock_good)
1827{
1828 int page_num;
1829 int ret = 0;
1830
1831 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832 int ret_sub;
1833
1834 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835 sblock_good,
1836 page_num, 1);
1837 if (ret_sub)
1838 ret = ret_sub;
1839 }
1840
1841 return ret;
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845 struct scrub_block *sblock_good,
1846 int page_num, int force_write)
1847{
1848 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849 struct scrub_page *page_good = sblock_good->pagev[page_num];
1850 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851
1852 BUG_ON(page_bad->page == NULL);
1853 BUG_ON(page_good->page == NULL);
1854 if (force_write || sblock_bad->header_error ||
1855 sblock_bad->checksum_error || page_bad->io_error) {
1856 struct bio *bio;
1857 int ret;
1858
1859 if (!page_bad->dev->bdev) {
1860 btrfs_warn_rl(fs_info,
1861 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862 return -EIO;
1863 }
1864
1865 bio = btrfs_io_bio_alloc(1);
1866 bio_set_dev(bio, page_bad->dev->bdev);
1867 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871 if (PAGE_SIZE != ret) {
1872 bio_put(bio);
1873 return -EIO;
1874 }
1875
1876 if (btrfsic_submit_bio_wait(bio)) {
1877 btrfs_dev_stat_inc_and_print(page_bad->dev,
1878 BTRFS_DEV_STAT_WRITE_ERRS);
1879 btrfs_dev_replace_stats_inc(
1880 &fs_info->dev_replace.num_write_errors);
1881 bio_put(bio);
1882 return -EIO;
1883 }
1884 bio_put(bio);
1885 }
1886
1887 return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893 int page_num;
1894
1895 /*
1896 * This block is used for the check of the parity on the source device,
1897 * so the data needn't be written into the destination device.
1898 */
1899 if (sblock->sparity)
1900 return;
1901
1902 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903 int ret;
1904
1905 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906 if (ret)
1907 btrfs_dev_replace_stats_inc(
1908 &fs_info->dev_replace.num_write_errors);
1909 }
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913 int page_num)
1914{
1915 struct scrub_page *spage = sblock->pagev[page_num];
1916
1917 BUG_ON(spage->page == NULL);
1918 if (spage->io_error) {
1919 void *mapped_buffer = kmap_atomic(spage->page);
1920
1921 clear_page(mapped_buffer);
1922 flush_dcache_page(spage->page);
1923 kunmap_atomic(mapped_buffer);
1924 }
1925 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929 struct scrub_page *spage)
1930{
1931 struct scrub_bio *sbio;
1932 int ret;
1933
1934 mutex_lock(&sctx->wr_lock);
1935again:
1936 if (!sctx->wr_curr_bio) {
1937 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938 GFP_KERNEL);
1939 if (!sctx->wr_curr_bio) {
1940 mutex_unlock(&sctx->wr_lock);
1941 return -ENOMEM;
1942 }
1943 sctx->wr_curr_bio->sctx = sctx;
1944 sctx->wr_curr_bio->page_count = 0;
1945 }
1946 sbio = sctx->wr_curr_bio;
1947 if (sbio->page_count == 0) {
1948 struct bio *bio;
1949
1950 sbio->physical = spage->physical_for_dev_replace;
1951 sbio->logical = spage->logical;
1952 sbio->dev = sctx->wr_tgtdev;
1953 bio = sbio->bio;
1954 if (!bio) {
1955 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956 sbio->bio = bio;
1957 }
1958
1959 bio->bi_private = sbio;
1960 bio->bi_end_io = scrub_wr_bio_end_io;
1961 bio_set_dev(bio, sbio->dev->bdev);
1962 bio->bi_iter.bi_sector = sbio->physical >> 9;
1963 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964 sbio->status = 0;
1965 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966 spage->physical_for_dev_replace ||
1967 sbio->logical + sbio->page_count * PAGE_SIZE !=
1968 spage->logical) {
1969 scrub_wr_submit(sctx);
1970 goto again;
1971 }
1972
1973 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974 if (ret != PAGE_SIZE) {
1975 if (sbio->page_count < 1) {
1976 bio_put(sbio->bio);
1977 sbio->bio = NULL;
1978 mutex_unlock(&sctx->wr_lock);
1979 return -EIO;
1980 }
1981 scrub_wr_submit(sctx);
1982 goto again;
1983 }
1984
1985 sbio->pagev[sbio->page_count] = spage;
1986 scrub_page_get(spage);
1987 sbio->page_count++;
1988 if (sbio->page_count == sctx->pages_per_wr_bio)
1989 scrub_wr_submit(sctx);
1990 mutex_unlock(&sctx->wr_lock);
1991
1992 return 0;
1993}
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
1997 struct scrub_bio *sbio;
1998
1999 if (!sctx->wr_curr_bio)
2000 return;
2001
2002 sbio = sctx->wr_curr_bio;
2003 sctx->wr_curr_bio = NULL;
2004 WARN_ON(!sbio->bio->bi_disk);
2005 scrub_pending_bio_inc(sctx);
2006 /* process all writes in a single worker thread. Then the block layer
2007 * orders the requests before sending them to the driver which
2008 * doubled the write performance on spinning disks when measured
2009 * with Linux 3.5 */
2010 btrfsic_submit_bio(sbio->bio);
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
2014{
2015 struct scrub_bio *sbio = bio->bi_private;
2016 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018 sbio->status = bio->bi_status;
2019 sbio->bio = bio;
2020
2021 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022 scrub_wr_bio_end_io_worker, NULL, NULL);
2023 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027{
2028 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029 struct scrub_ctx *sctx = sbio->sctx;
2030 int i;
2031
2032 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033 if (sbio->status) {
2034 struct btrfs_dev_replace *dev_replace =
2035 &sbio->sctx->fs_info->dev_replace;
2036
2037 for (i = 0; i < sbio->page_count; i++) {
2038 struct scrub_page *spage = sbio->pagev[i];
2039
2040 spage->io_error = 1;
2041 btrfs_dev_replace_stats_inc(&dev_replace->
2042 num_write_errors);
2043 }
2044 }
2045
2046 for (i = 0; i < sbio->page_count; i++)
2047 scrub_page_put(sbio->pagev[i]);
2048
2049 bio_put(sbio->bio);
2050 kfree(sbio);
2051 scrub_pending_bio_dec(sctx);
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056 u64 flags;
2057 int ret;
2058
2059 /*
2060 * No need to initialize these stats currently,
2061 * because this function only use return value
2062 * instead of these stats value.
2063 *
2064 * Todo:
2065 * always use stats
2066 */
2067 sblock->header_error = 0;
2068 sblock->generation_error = 0;
2069 sblock->checksum_error = 0;
2070
2071 WARN_ON(sblock->page_count < 1);
2072 flags = sblock->pagev[0]->flags;
2073 ret = 0;
2074 if (flags & BTRFS_EXTENT_FLAG_DATA)
2075 ret = scrub_checksum_data(sblock);
2076 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077 ret = scrub_checksum_tree_block(sblock);
2078 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079 (void)scrub_checksum_super(sblock);
2080 else
2081 WARN_ON(1);
2082 if (ret)
2083 scrub_handle_errored_block(sblock);
2084
2085 return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090 struct scrub_ctx *sctx = sblock->sctx;
2091 u8 csum[BTRFS_CSUM_SIZE];
2092 u8 *on_disk_csum;
2093 struct page *page;
2094 void *buffer;
2095 u32 crc = ~(u32)0;
2096 u64 len;
2097 int index;
2098
2099 BUG_ON(sblock->page_count < 1);
2100 if (!sblock->pagev[0]->have_csum)
2101 return 0;
2102
2103 on_disk_csum = sblock->pagev[0]->csum;
2104 page = sblock->pagev[0]->page;
2105 buffer = kmap_atomic(page);
2106
2107 len = sctx->fs_info->sectorsize;
2108 index = 0;
2109 for (;;) {
2110 u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112 crc = btrfs_csum_data(buffer, crc, l);
2113 kunmap_atomic(buffer);
2114 len -= l;
2115 if (len == 0)
2116 break;
2117 index++;
2118 BUG_ON(index >= sblock->page_count);
2119 BUG_ON(!sblock->pagev[index]->page);
2120 page = sblock->pagev[index]->page;
2121 buffer = kmap_atomic(page);
2122 }
2123
2124 btrfs_csum_final(crc, csum);
2125 if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126 sblock->checksum_error = 1;
2127
2128 return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132{
2133 struct scrub_ctx *sctx = sblock->sctx;
2134 struct btrfs_header *h;
2135 struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 u8 calculated_csum[BTRFS_CSUM_SIZE];
2137 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138 struct page *page;
2139 void *mapped_buffer;
2140 u64 mapped_size;
2141 void *p;
2142 u32 crc = ~(u32)0;
2143 u64 len;
2144 int index;
2145
2146 BUG_ON(sblock->page_count < 1);
2147 page = sblock->pagev[0]->page;
2148 mapped_buffer = kmap_atomic(page);
2149 h = (struct btrfs_header *)mapped_buffer;
2150 memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151
2152 /*
2153 * we don't use the getter functions here, as we
2154 * a) don't have an extent buffer and
2155 * b) the page is already kmapped
2156 */
2157 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158 sblock->header_error = 1;
2159
2160 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161 sblock->header_error = 1;
2162 sblock->generation_error = 1;
2163 }
2164
2165 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166 sblock->header_error = 1;
2167
2168 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169 BTRFS_UUID_SIZE))
2170 sblock->header_error = 1;
2171
2172 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175 index = 0;
2176 for (;;) {
2177 u64 l = min_t(u64, len, mapped_size);
2178
2179 crc = btrfs_csum_data(p, crc, l);
2180 kunmap_atomic(mapped_buffer);
2181 len -= l;
2182 if (len == 0)
2183 break;
2184 index++;
2185 BUG_ON(index >= sblock->page_count);
2186 BUG_ON(!sblock->pagev[index]->page);
2187 page = sblock->pagev[index]->page;
2188 mapped_buffer = kmap_atomic(page);
2189 mapped_size = PAGE_SIZE;
2190 p = mapped_buffer;
2191 }
2192
2193 btrfs_csum_final(crc, calculated_csum);
2194 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195 sblock->checksum_error = 1;
2196
2197 return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202 struct btrfs_super_block *s;
2203 struct scrub_ctx *sctx = sblock->sctx;
2204 u8 calculated_csum[BTRFS_CSUM_SIZE];
2205 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206 struct page *page;
2207 void *mapped_buffer;
2208 u64 mapped_size;
2209 void *p;
2210 u32 crc = ~(u32)0;
2211 int fail_gen = 0;
2212 int fail_cor = 0;
2213 u64 len;
2214 int index;
2215
2216 BUG_ON(sblock->page_count < 1);
2217 page = sblock->pagev[0]->page;
2218 mapped_buffer = kmap_atomic(page);
2219 s = (struct btrfs_super_block *)mapped_buffer;
2220 memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223 ++fail_cor;
2224
2225 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226 ++fail_gen;
2227
2228 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229 ++fail_cor;
2230
2231 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234 index = 0;
2235 for (;;) {
2236 u64 l = min_t(u64, len, mapped_size);
2237
2238 crc = btrfs_csum_data(p, crc, l);
2239 kunmap_atomic(mapped_buffer);
2240 len -= l;
2241 if (len == 0)
2242 break;
2243 index++;
2244 BUG_ON(index >= sblock->page_count);
2245 BUG_ON(!sblock->pagev[index]->page);
2246 page = sblock->pagev[index]->page;
2247 mapped_buffer = kmap_atomic(page);
2248 mapped_size = PAGE_SIZE;
2249 p = mapped_buffer;
2250 }
2251
2252 btrfs_csum_final(crc, calculated_csum);
2253 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254 ++fail_cor;
2255
2256 if (fail_cor + fail_gen) {
2257 /*
2258 * if we find an error in a super block, we just report it.
2259 * They will get written with the next transaction commit
2260 * anyway
2261 */
2262 spin_lock(&sctx->stat_lock);
2263 ++sctx->stat.super_errors;
2264 spin_unlock(&sctx->stat_lock);
2265 if (fail_cor)
2266 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268 else
2269 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270 BTRFS_DEV_STAT_GENERATION_ERRS);
2271 }
2272
2273 return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278 refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283 if (refcount_dec_and_test(&sblock->refs)) {
2284 int i;
2285
2286 if (sblock->sparity)
2287 scrub_parity_put(sblock->sparity);
2288
2289 for (i = 0; i < sblock->page_count; i++)
2290 scrub_page_put(sblock->pagev[i]);
2291 kfree(sblock);
2292 }
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
2296{
2297 atomic_inc(&spage->refs);
2298}
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302 if (atomic_dec_and_test(&spage->refs)) {
2303 if (spage->page)
2304 __free_page(spage->page);
2305 kfree(spage);
2306 }
2307}
2308
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311 struct scrub_bio *sbio;
2312
2313 if (sctx->curr == -1)
2314 return;
2315
2316 sbio = sctx->bios[sctx->curr];
2317 sctx->curr = -1;
2318 scrub_pending_bio_inc(sctx);
2319 btrfsic_submit_bio(sbio->bio);
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323 struct scrub_page *spage)
2324{
2325 struct scrub_block *sblock = spage->sblock;
2326 struct scrub_bio *sbio;
2327 int ret;
2328
2329again:
2330 /*
2331 * grab a fresh bio or wait for one to become available
2332 */
2333 while (sctx->curr == -1) {
2334 spin_lock(&sctx->list_lock);
2335 sctx->curr = sctx->first_free;
2336 if (sctx->curr != -1) {
2337 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338 sctx->bios[sctx->curr]->next_free = -1;
2339 sctx->bios[sctx->curr]->page_count = 0;
2340 spin_unlock(&sctx->list_lock);
2341 } else {
2342 spin_unlock(&sctx->list_lock);
2343 wait_event(sctx->list_wait, sctx->first_free != -1);
2344 }
2345 }
2346 sbio = sctx->bios[sctx->curr];
2347 if (sbio->page_count == 0) {
2348 struct bio *bio;
2349
2350 sbio->physical = spage->physical;
2351 sbio->logical = spage->logical;
2352 sbio->dev = spage->dev;
2353 bio = sbio->bio;
2354 if (!bio) {
2355 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356 sbio->bio = bio;
2357 }
2358
2359 bio->bi_private = sbio;
2360 bio->bi_end_io = scrub_bio_end_io;
2361 bio_set_dev(bio, sbio->dev->bdev);
2362 bio->bi_iter.bi_sector = sbio->physical >> 9;
2363 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364 sbio->status = 0;
2365 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366 spage->physical ||
2367 sbio->logical + sbio->page_count * PAGE_SIZE !=
2368 spage->logical ||
2369 sbio->dev != spage->dev) {
2370 scrub_submit(sctx);
2371 goto again;
2372 }
2373
2374 sbio->pagev[sbio->page_count] = spage;
2375 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376 if (ret != PAGE_SIZE) {
2377 if (sbio->page_count < 1) {
2378 bio_put(sbio->bio);
2379 sbio->bio = NULL;
2380 return -EIO;
2381 }
2382 scrub_submit(sctx);
2383 goto again;
2384 }
2385
2386 scrub_block_get(sblock); /* one for the page added to the bio */
2387 atomic_inc(&sblock->outstanding_pages);
2388 sbio->page_count++;
2389 if (sbio->page_count == sctx->pages_per_rd_bio)
2390 scrub_submit(sctx);
2391
2392 return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397 struct scrub_block *sblock = bio->bi_private;
2398 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400 if (bio->bi_status)
2401 sblock->no_io_error_seen = 0;
2402
2403 bio_put(bio);
2404
2405 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409{
2410 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411 struct scrub_ctx *sctx = sblock->sctx;
2412 struct btrfs_fs_info *fs_info = sctx->fs_info;
2413 u64 logical;
2414 struct btrfs_device *dev;
2415
2416 logical = sblock->pagev[0]->logical;
2417 dev = sblock->pagev[0]->dev;
2418
2419 if (sblock->no_io_error_seen)
2420 scrub_recheck_block_checksum(sblock);
2421
2422 if (!sblock->no_io_error_seen) {
2423 spin_lock(&sctx->stat_lock);
2424 sctx->stat.read_errors++;
2425 spin_unlock(&sctx->stat_lock);
2426 btrfs_err_rl_in_rcu(fs_info,
2427 "IO error rebuilding logical %llu for dev %s",
2428 logical, rcu_str_deref(dev->name));
2429 } else if (sblock->header_error || sblock->checksum_error) {
2430 spin_lock(&sctx->stat_lock);
2431 sctx->stat.uncorrectable_errors++;
2432 spin_unlock(&sctx->stat_lock);
2433 btrfs_err_rl_in_rcu(fs_info,
2434 "failed to rebuild valid logical %llu for dev %s",
2435 logical, rcu_str_deref(dev->name));
2436 } else {
2437 scrub_write_block_to_dev_replace(sblock);
2438 }
2439
2440 scrub_block_put(sblock);
2441
2442 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443 mutex_lock(&sctx->wr_lock);
2444 scrub_wr_submit(sctx);
2445 mutex_unlock(&sctx->wr_lock);
2446 }
2447
2448 scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453 struct scrub_ctx *sctx = sblock->sctx;
2454 struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 u64 length = sblock->page_count * PAGE_SIZE;
2456 u64 logical = sblock->pagev[0]->logical;
2457 struct btrfs_bio *bbio = NULL;
2458 struct bio *bio;
2459 struct btrfs_raid_bio *rbio;
2460 int ret;
2461 int i;
2462
2463 btrfs_bio_counter_inc_blocked(fs_info);
2464 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465 &length, &bbio);
2466 if (ret || !bbio || !bbio->raid_map)
2467 goto bbio_out;
2468
2469 if (WARN_ON(!sctx->is_dev_replace ||
2470 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471 /*
2472 * We shouldn't be scrubbing a missing device. Even for dev
2473 * replace, we should only get here for RAID 5/6. We either
2474 * managed to mount something with no mirrors remaining or
2475 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476 */
2477 goto bbio_out;
2478 }
2479
2480 bio = btrfs_io_bio_alloc(0);
2481 bio->bi_iter.bi_sector = logical >> 9;
2482 bio->bi_private = sblock;
2483 bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486 if (!rbio)
2487 goto rbio_out;
2488
2489 for (i = 0; i < sblock->page_count; i++) {
2490 struct scrub_page *spage = sblock->pagev[i];
2491
2492 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493 }
2494
2495 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496 scrub_missing_raid56_worker, NULL, NULL);
2497 scrub_block_get(sblock);
2498 scrub_pending_bio_inc(sctx);
2499 raid56_submit_missing_rbio(rbio);
2500 return;
2501
2502rbio_out:
2503 bio_put(bio);
2504bbio_out:
2505 btrfs_bio_counter_dec(fs_info);
2506 btrfs_put_bbio(bbio);
2507 spin_lock(&sctx->stat_lock);
2508 sctx->stat.malloc_errors++;
2509 spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513 u64 physical, struct btrfs_device *dev, u64 flags,
2514 u64 gen, int mirror_num, u8 *csum, int force,
2515 u64 physical_for_dev_replace)
2516{
2517 struct scrub_block *sblock;
2518 int index;
2519
2520 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521 if (!sblock) {
2522 spin_lock(&sctx->stat_lock);
2523 sctx->stat.malloc_errors++;
2524 spin_unlock(&sctx->stat_lock);
2525 return -ENOMEM;
2526 }
2527
2528 /* one ref inside this function, plus one for each page added to
2529 * a bio later on */
2530 refcount_set(&sblock->refs, 1);
2531 sblock->sctx = sctx;
2532 sblock->no_io_error_seen = 1;
2533
2534 for (index = 0; len > 0; index++) {
2535 struct scrub_page *spage;
2536 u64 l = min_t(u64, len, PAGE_SIZE);
2537
2538 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539 if (!spage) {
2540leave_nomem:
2541 spin_lock(&sctx->stat_lock);
2542 sctx->stat.malloc_errors++;
2543 spin_unlock(&sctx->stat_lock);
2544 scrub_block_put(sblock);
2545 return -ENOMEM;
2546 }
2547 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548 scrub_page_get(spage);
2549 sblock->pagev[index] = spage;
2550 spage->sblock = sblock;
2551 spage->dev = dev;
2552 spage->flags = flags;
2553 spage->generation = gen;
2554 spage->logical = logical;
2555 spage->physical = physical;
2556 spage->physical_for_dev_replace = physical_for_dev_replace;
2557 spage->mirror_num = mirror_num;
2558 if (csum) {
2559 spage->have_csum = 1;
2560 memcpy(spage->csum, csum, sctx->csum_size);
2561 } else {
2562 spage->have_csum = 0;
2563 }
2564 sblock->page_count++;
2565 spage->page = alloc_page(GFP_KERNEL);
2566 if (!spage->page)
2567 goto leave_nomem;
2568 len -= l;
2569 logical += l;
2570 physical += l;
2571 physical_for_dev_replace += l;
2572 }
2573
2574 WARN_ON(sblock->page_count == 0);
2575 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576 /*
2577 * This case should only be hit for RAID 5/6 device replace. See
2578 * the comment in scrub_missing_raid56_pages() for details.
2579 */
2580 scrub_missing_raid56_pages(sblock);
2581 } else {
2582 for (index = 0; index < sblock->page_count; index++) {
2583 struct scrub_page *spage = sblock->pagev[index];
2584 int ret;
2585
2586 ret = scrub_add_page_to_rd_bio(sctx, spage);
2587 if (ret) {
2588 scrub_block_put(sblock);
2589 return ret;
2590 }
2591 }
2592
2593 if (force)
2594 scrub_submit(sctx);
2595 }
2596
2597 /* last one frees, either here or in bio completion for last page */
2598 scrub_block_put(sblock);
2599 return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604 struct scrub_bio *sbio = bio->bi_private;
2605 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606
2607 sbio->status = bio->bi_status;
2608 sbio->bio = bio;
2609
2610 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616 struct scrub_ctx *sctx = sbio->sctx;
2617 int i;
2618
2619 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620 if (sbio->status) {
2621 for (i = 0; i < sbio->page_count; i++) {
2622 struct scrub_page *spage = sbio->pagev[i];
2623
2624 spage->io_error = 1;
2625 spage->sblock->no_io_error_seen = 0;
2626 }
2627 }
2628
2629 /* now complete the scrub_block items that have all pages completed */
2630 for (i = 0; i < sbio->page_count; i++) {
2631 struct scrub_page *spage = sbio->pagev[i];
2632 struct scrub_block *sblock = spage->sblock;
2633
2634 if (atomic_dec_and_test(&sblock->outstanding_pages))
2635 scrub_block_complete(sblock);
2636 scrub_block_put(sblock);
2637 }
2638
2639 bio_put(sbio->bio);
2640 sbio->bio = NULL;
2641 spin_lock(&sctx->list_lock);
2642 sbio->next_free = sctx->first_free;
2643 sctx->first_free = sbio->index;
2644 spin_unlock(&sctx->list_lock);
2645
2646 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647 mutex_lock(&sctx->wr_lock);
2648 scrub_wr_submit(sctx);
2649 mutex_unlock(&sctx->wr_lock);
2650 }
2651
2652 scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656 unsigned long *bitmap,
2657 u64 start, u64 len)
2658{
2659 u64 offset;
2660 u64 nsectors64;
2661 u32 nsectors;
2662 int sectorsize = sparity->sctx->fs_info->sectorsize;
2663
2664 if (len >= sparity->stripe_len) {
2665 bitmap_set(bitmap, 0, sparity->nsectors);
2666 return;
2667 }
2668
2669 start -= sparity->logic_start;
2670 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671 offset = div_u64(offset, sectorsize);
2672 nsectors64 = div_u64(len, sectorsize);
2673
2674 ASSERT(nsectors64 < UINT_MAX);
2675 nsectors = (u32)nsectors64;
2676
2677 if (offset + nsectors <= sparity->nsectors) {
2678 bitmap_set(bitmap, offset, nsectors);
2679 return;
2680 }
2681
2682 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687 u64 start, u64 len)
2688{
2689 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693 u64 start, u64 len)
2694{
2695 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700 int corrupted = 0;
2701
2702 if (!sblock->no_io_error_seen) {
2703 corrupted = 1;
2704 scrub_handle_errored_block(sblock);
2705 } else {
2706 /*
2707 * if has checksum error, write via repair mechanism in
2708 * dev replace case, otherwise write here in dev replace
2709 * case.
2710 */
2711 corrupted = scrub_checksum(sblock);
2712 if (!corrupted && sblock->sctx->is_dev_replace)
2713 scrub_write_block_to_dev_replace(sblock);
2714 }
2715
2716 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717 u64 start = sblock->pagev[0]->logical;
2718 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719 PAGE_SIZE;
2720
2721 scrub_parity_mark_sectors_error(sblock->sparity,
2722 start, end - start);
2723 }
2724}
2725
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2727{
2728 struct btrfs_ordered_sum *sum = NULL;
2729 unsigned long index;
2730 unsigned long num_sectors;
2731
2732 while (!list_empty(&sctx->csum_list)) {
2733 sum = list_first_entry(&sctx->csum_list,
2734 struct btrfs_ordered_sum, list);
2735 if (sum->bytenr > logical)
2736 return 0;
2737 if (sum->bytenr + sum->len > logical)
2738 break;
2739
2740 ++sctx->stat.csum_discards;
2741 list_del(&sum->list);
2742 kfree(sum);
2743 sum = NULL;
2744 }
2745 if (!sum)
2746 return 0;
2747
2748 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749 ASSERT(index < UINT_MAX);
2750
2751 num_sectors = sum->len / sctx->fs_info->sectorsize;
2752 memcpy(csum, sum->sums + index, sctx->csum_size);
2753 if (index == num_sectors - 1) {
2754 list_del(&sum->list);
2755 kfree(sum);
2756 }
2757 return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762 u64 logical, u64 len,
2763 u64 physical, struct btrfs_device *dev, u64 flags,
2764 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766 int ret;
2767 u8 csum[BTRFS_CSUM_SIZE];
2768 u32 blocksize;
2769
2770 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772 blocksize = map->stripe_len;
2773 else
2774 blocksize = sctx->fs_info->sectorsize;
2775 spin_lock(&sctx->stat_lock);
2776 sctx->stat.data_extents_scrubbed++;
2777 sctx->stat.data_bytes_scrubbed += len;
2778 spin_unlock(&sctx->stat_lock);
2779 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781 blocksize = map->stripe_len;
2782 else
2783 blocksize = sctx->fs_info->nodesize;
2784 spin_lock(&sctx->stat_lock);
2785 sctx->stat.tree_extents_scrubbed++;
2786 sctx->stat.tree_bytes_scrubbed += len;
2787 spin_unlock(&sctx->stat_lock);
2788 } else {
2789 blocksize = sctx->fs_info->sectorsize;
2790 WARN_ON(1);
2791 }
2792
2793 while (len) {
2794 u64 l = min_t(u64, len, blocksize);
2795 int have_csum = 0;
2796
2797 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798 /* push csums to sbio */
2799 have_csum = scrub_find_csum(sctx, logical, csum);
2800 if (have_csum == 0)
2801 ++sctx->stat.no_csum;
2802 if (sctx->is_dev_replace && !have_csum) {
2803 ret = copy_nocow_pages(sctx, logical, l,
2804 mirror_num,
2805 physical_for_dev_replace);
2806 goto behind_scrub_pages;
2807 }
2808 }
2809 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810 mirror_num, have_csum ? csum : NULL, 0,
2811 physical_for_dev_replace);
2812behind_scrub_pages:
2813 if (ret)
2814 return ret;
2815 len -= l;
2816 logical += l;
2817 physical += l;
2818 physical_for_dev_replace += l;
2819 }
2820 return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824 u64 logical, u64 len,
2825 u64 physical, struct btrfs_device *dev,
2826 u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828 struct scrub_ctx *sctx = sparity->sctx;
2829 struct scrub_block *sblock;
2830 int index;
2831
2832 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833 if (!sblock) {
2834 spin_lock(&sctx->stat_lock);
2835 sctx->stat.malloc_errors++;
2836 spin_unlock(&sctx->stat_lock);
2837 return -ENOMEM;
2838 }
2839
2840 /* one ref inside this function, plus one for each page added to
2841 * a bio later on */
2842 refcount_set(&sblock->refs, 1);
2843 sblock->sctx = sctx;
2844 sblock->no_io_error_seen = 1;
2845 sblock->sparity = sparity;
2846 scrub_parity_get(sparity);
2847
2848 for (index = 0; len > 0; index++) {
2849 struct scrub_page *spage;
2850 u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853 if (!spage) {
2854leave_nomem:
2855 spin_lock(&sctx->stat_lock);
2856 sctx->stat.malloc_errors++;
2857 spin_unlock(&sctx->stat_lock);
2858 scrub_block_put(sblock);
2859 return -ENOMEM;
2860 }
2861 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862 /* For scrub block */
2863 scrub_page_get(spage);
2864 sblock->pagev[index] = spage;
2865 /* For scrub parity */
2866 scrub_page_get(spage);
2867 list_add_tail(&spage->list, &sparity->spages);
2868 spage->sblock = sblock;
2869 spage->dev = dev;
2870 spage->flags = flags;
2871 spage->generation = gen;
2872 spage->logical = logical;
2873 spage->physical = physical;
2874 spage->mirror_num = mirror_num;
2875 if (csum) {
2876 spage->have_csum = 1;
2877 memcpy(spage->csum, csum, sctx->csum_size);
2878 } else {
2879 spage->have_csum = 0;
2880 }
2881 sblock->page_count++;
2882 spage->page = alloc_page(GFP_KERNEL);
2883 if (!spage->page)
2884 goto leave_nomem;
2885 len -= l;
2886 logical += l;
2887 physical += l;
2888 }
2889
2890 WARN_ON(sblock->page_count == 0);
2891 for (index = 0; index < sblock->page_count; index++) {
2892 struct scrub_page *spage = sblock->pagev[index];
2893 int ret;
2894
2895 ret = scrub_add_page_to_rd_bio(sctx, spage);
2896 if (ret) {
2897 scrub_block_put(sblock);
2898 return ret;
2899 }
2900 }
2901
2902 /* last one frees, either here or in bio completion for last page */
2903 scrub_block_put(sblock);
2904 return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908 u64 logical, u64 len,
2909 u64 physical, struct btrfs_device *dev,
2910 u64 flags, u64 gen, int mirror_num)
2911{
2912 struct scrub_ctx *sctx = sparity->sctx;
2913 int ret;
2914 u8 csum[BTRFS_CSUM_SIZE];
2915 u32 blocksize;
2916
2917 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918 scrub_parity_mark_sectors_error(sparity, logical, len);
2919 return 0;
2920 }
2921
2922 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923 blocksize = sparity->stripe_len;
2924 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925 blocksize = sparity->stripe_len;
2926 } else {
2927 blocksize = sctx->fs_info->sectorsize;
2928 WARN_ON(1);
2929 }
2930
2931 while (len) {
2932 u64 l = min_t(u64, len, blocksize);
2933 int have_csum = 0;
2934
2935 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936 /* push csums to sbio */
2937 have_csum = scrub_find_csum(sctx, logical, csum);
2938 if (have_csum == 0)
2939 goto skip;
2940 }
2941 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942 flags, gen, mirror_num,
2943 have_csum ? csum : NULL);
2944 if (ret)
2945 return ret;
2946skip:
2947 len -= l;
2948 logical += l;
2949 physical += l;
2950 }
2951 return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962 struct map_lookup *map, u64 *offset,
2963 u64 *stripe_start)
2964{
2965 int i;
2966 int j = 0;
2967 u64 stripe_nr;
2968 u64 last_offset;
2969 u32 stripe_index;
2970 u32 rot;
2971
2972 last_offset = (physical - map->stripes[num].physical) *
2973 nr_data_stripes(map);
2974 if (stripe_start)
2975 *stripe_start = last_offset;
2976
2977 *offset = last_offset;
2978 for (i = 0; i < nr_data_stripes(map); i++) {
2979 *offset = last_offset + i * map->stripe_len;
2980
2981 stripe_nr = div64_u64(*offset, map->stripe_len);
2982 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983
2984 /* Work out the disk rotation on this stripe-set */
2985 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986 /* calculate which stripe this data locates */
2987 rot += i;
2988 stripe_index = rot % map->num_stripes;
2989 if (stripe_index == num)
2990 return 0;
2991 if (stripe_index < num)
2992 j++;
2993 }
2994 *offset = last_offset + j * map->stripe_len;
2995 return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000 struct scrub_ctx *sctx = sparity->sctx;
3001 struct scrub_page *curr, *next;
3002 int nbits;
3003
3004 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005 if (nbits) {
3006 spin_lock(&sctx->stat_lock);
3007 sctx->stat.read_errors += nbits;
3008 sctx->stat.uncorrectable_errors += nbits;
3009 spin_unlock(&sctx->stat_lock);
3010 }
3011
3012 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013 list_del_init(&curr->list);
3014 scrub_page_put(curr);
3015 }
3016
3017 kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021{
3022 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023 work);
3024 struct scrub_ctx *sctx = sparity->sctx;
3025
3026 scrub_free_parity(sparity);
3027 scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
3031{
3032 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034
3035 if (bio->bi_status)
3036 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037 sparity->nsectors);
3038
3039 bio_put(bio);
3040
3041 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042 scrub_parity_bio_endio_worker, NULL, NULL);
3043 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047{
3048 struct scrub_ctx *sctx = sparity->sctx;
3049 struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 struct bio *bio;
3051 struct btrfs_raid_bio *rbio;
3052 struct btrfs_bio *bbio = NULL;
3053 u64 length;
3054 int ret;
3055
3056 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057 sparity->nsectors))
3058 goto out;
3059
3060 length = sparity->logic_end - sparity->logic_start;
3061
3062 btrfs_bio_counter_inc_blocked(fs_info);
3063 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064 &length, &bbio);
3065 if (ret || !bbio || !bbio->raid_map)
3066 goto bbio_out;
3067
3068 bio = btrfs_io_bio_alloc(0);
3069 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070 bio->bi_private = sparity;
3071 bio->bi_end_io = scrub_parity_bio_endio;
3072
3073 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074 length, sparity->scrub_dev,
3075 sparity->dbitmap,
3076 sparity->nsectors);
3077 if (!rbio)
3078 goto rbio_out;
3079
3080 scrub_pending_bio_inc(sctx);
3081 raid56_parity_submit_scrub_rbio(rbio);
3082 return;
3083
3084rbio_out:
3085 bio_put(bio);
3086bbio_out:
3087 btrfs_bio_counter_dec(fs_info);
3088 btrfs_put_bbio(bbio);
3089 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090 sparity->nsectors);
3091 spin_lock(&sctx->stat_lock);
3092 sctx->stat.malloc_errors++;
3093 spin_unlock(&sctx->stat_lock);
3094out:
3095 scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099{
3100 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105 refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110 if (!refcount_dec_and_test(&sparity->refs))
3111 return;
3112
3113 scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117 struct map_lookup *map,
3118 struct btrfs_device *sdev,
3119 struct btrfs_path *path,
3120 u64 logic_start,
3121 u64 logic_end)
3122{
3123 struct btrfs_fs_info *fs_info = sctx->fs_info;
3124 struct btrfs_root *root = fs_info->extent_root;
3125 struct btrfs_root *csum_root = fs_info->csum_root;
3126 struct btrfs_extent_item *extent;
3127 struct btrfs_bio *bbio = NULL;
3128 u64 flags;
3129 int ret;
3130 int slot;
3131 struct extent_buffer *l;
3132 struct btrfs_key key;
3133 u64 generation;
3134 u64 extent_logical;
3135 u64 extent_physical;
3136 u64 extent_len;
3137 u64 mapped_length;
3138 struct btrfs_device *extent_dev;
3139 struct scrub_parity *sparity;
3140 int nsectors;
3141 int bitmap_len;
3142 int extent_mirror_num;
3143 int stop_loop = 0;
3144
3145 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148 GFP_NOFS);
3149 if (!sparity) {
3150 spin_lock(&sctx->stat_lock);
3151 sctx->stat.malloc_errors++;
3152 spin_unlock(&sctx->stat_lock);
3153 return -ENOMEM;
3154 }
3155
3156 sparity->stripe_len = map->stripe_len;
3157 sparity->nsectors = nsectors;
3158 sparity->sctx = sctx;
3159 sparity->scrub_dev = sdev;
3160 sparity->logic_start = logic_start;
3161 sparity->logic_end = logic_end;
3162 refcount_set(&sparity->refs, 1);
3163 INIT_LIST_HEAD(&sparity->spages);
3164 sparity->dbitmap = sparity->bitmap;
3165 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167 ret = 0;
3168 while (logic_start < logic_end) {
3169 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170 key.type = BTRFS_METADATA_ITEM_KEY;
3171 else
3172 key.type = BTRFS_EXTENT_ITEM_KEY;
3173 key.objectid = logic_start;
3174 key.offset = (u64)-1;
3175
3176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177 if (ret < 0)
3178 goto out;
3179
3180 if (ret > 0) {
3181 ret = btrfs_previous_extent_item(root, path, 0);
3182 if (ret < 0)
3183 goto out;
3184 if (ret > 0) {
3185 btrfs_release_path(path);
3186 ret = btrfs_search_slot(NULL, root, &key,
3187 path, 0, 0);
3188 if (ret < 0)
3189 goto out;
3190 }
3191 }
3192
3193 stop_loop = 0;
3194 while (1) {
3195 u64 bytes;
3196
3197 l = path->nodes[0];
3198 slot = path->slots[0];
3199 if (slot >= btrfs_header_nritems(l)) {
3200 ret = btrfs_next_leaf(root, path);
3201 if (ret == 0)
3202 continue;
3203 if (ret < 0)
3204 goto out;
3205
3206 stop_loop = 1;
3207 break;
3208 }
3209 btrfs_item_key_to_cpu(l, &key, slot);
3210
3211 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212 key.type != BTRFS_METADATA_ITEM_KEY)
3213 goto next;
3214
3215 if (key.type == BTRFS_METADATA_ITEM_KEY)
3216 bytes = fs_info->nodesize;
3217 else
3218 bytes = key.offset;
3219
3220 if (key.objectid + bytes <= logic_start)
3221 goto next;
3222
3223 if (key.objectid >= logic_end) {
3224 stop_loop = 1;
3225 break;
3226 }
3227
3228 while (key.objectid >= logic_start + map->stripe_len)
3229 logic_start += map->stripe_len;
3230
3231 extent = btrfs_item_ptr(l, slot,
3232 struct btrfs_extent_item);
3233 flags = btrfs_extent_flags(l, extent);
3234 generation = btrfs_extent_generation(l, extent);
3235
3236 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237 (key.objectid < logic_start ||
3238 key.objectid + bytes >
3239 logic_start + map->stripe_len)) {
3240 btrfs_err(fs_info,
3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242 key.objectid, logic_start);
3243 spin_lock(&sctx->stat_lock);
3244 sctx->stat.uncorrectable_errors++;
3245 spin_unlock(&sctx->stat_lock);
3246 goto next;
3247 }
3248again:
3249 extent_logical = key.objectid;
3250 extent_len = bytes;
3251
3252 if (extent_logical < logic_start) {
3253 extent_len -= logic_start - extent_logical;
3254 extent_logical = logic_start;
3255 }
3256
3257 if (extent_logical + extent_len >
3258 logic_start + map->stripe_len)
3259 extent_len = logic_start + map->stripe_len -
3260 extent_logical;
3261
3262 scrub_parity_mark_sectors_data(sparity, extent_logical,
3263 extent_len);
3264
3265 mapped_length = extent_len;
3266 bbio = NULL;
3267 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268 extent_logical, &mapped_length, &bbio,
3269 0);
3270 if (!ret) {
3271 if (!bbio || mapped_length < extent_len)
3272 ret = -EIO;
3273 }
3274 if (ret) {
3275 btrfs_put_bbio(bbio);
3276 goto out;
3277 }
3278 extent_physical = bbio->stripes[0].physical;
3279 extent_mirror_num = bbio->mirror_num;
3280 extent_dev = bbio->stripes[0].dev;
3281 btrfs_put_bbio(bbio);
3282
3283 ret = btrfs_lookup_csums_range(csum_root,
3284 extent_logical,
3285 extent_logical + extent_len - 1,
3286 &sctx->csum_list, 1);
3287 if (ret)
3288 goto out;
3289
3290 ret = scrub_extent_for_parity(sparity, extent_logical,
3291 extent_len,
3292 extent_physical,
3293 extent_dev, flags,
3294 generation,
3295 extent_mirror_num);
3296
3297 scrub_free_csums(sctx);
3298
3299 if (ret)
3300 goto out;
3301
3302 if (extent_logical + extent_len <
3303 key.objectid + bytes) {
3304 logic_start += map->stripe_len;
3305
3306 if (logic_start >= logic_end) {
3307 stop_loop = 1;
3308 break;
3309 }
3310
3311 if (logic_start < key.objectid + bytes) {
3312 cond_resched();
3313 goto again;
3314 }
3315 }
3316next:
3317 path->slots[0]++;
3318 }
3319
3320 btrfs_release_path(path);
3321
3322 if (stop_loop)
3323 break;
3324
3325 logic_start += map->stripe_len;
3326 }
3327out:
3328 if (ret < 0)
3329 scrub_parity_mark_sectors_error(sparity, logic_start,
3330 logic_end - logic_start);
3331 scrub_parity_put(sparity);
3332 scrub_submit(sctx);
3333 mutex_lock(&sctx->wr_lock);
3334 scrub_wr_submit(sctx);
3335 mutex_unlock(&sctx->wr_lock);
3336
3337 btrfs_release_path(path);
3338 return ret < 0 ? ret : 0;
3339}
3340
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342 struct map_lookup *map,
3343 struct btrfs_device *scrub_dev,
3344 int num, u64 base, u64 length,
3345 int is_dev_replace)
3346{
3347 struct btrfs_path *path, *ppath;
3348 struct btrfs_fs_info *fs_info = sctx->fs_info;
3349 struct btrfs_root *root = fs_info->extent_root;
3350 struct btrfs_root *csum_root = fs_info->csum_root;
3351 struct btrfs_extent_item *extent;
3352 struct blk_plug plug;
3353 u64 flags;
3354 int ret;
3355 int slot;
3356 u64 nstripes;
3357 struct extent_buffer *l;
3358 u64 physical;
3359 u64 logical;
3360 u64 logic_end;
3361 u64 physical_end;
3362 u64 generation;
3363 int mirror_num;
3364 struct reada_control *reada1;
3365 struct reada_control *reada2;
3366 struct btrfs_key key;
3367 struct btrfs_key key_end;
3368 u64 increment = map->stripe_len;
3369 u64 offset;
3370 u64 extent_logical;
3371 u64 extent_physical;
3372 u64 extent_len;
3373 u64 stripe_logical;
3374 u64 stripe_end;
3375 struct btrfs_device *extent_dev;
3376 int extent_mirror_num;
3377 int stop_loop = 0;
3378
3379 physical = map->stripes[num].physical;
3380 offset = 0;
3381 nstripes = div64_u64(length, map->stripe_len);
3382 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383 offset = map->stripe_len * num;
3384 increment = map->stripe_len * map->num_stripes;
3385 mirror_num = 1;
3386 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387 int factor = map->num_stripes / map->sub_stripes;
3388 offset = map->stripe_len * (num / map->sub_stripes);
3389 increment = map->stripe_len * factor;
3390 mirror_num = num % map->sub_stripes + 1;
3391 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392 increment = map->stripe_len;
3393 mirror_num = num % map->num_stripes + 1;
3394 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395 increment = map->stripe_len;
3396 mirror_num = num % map->num_stripes + 1;
3397 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399 increment = map->stripe_len * nr_data_stripes(map);
3400 mirror_num = 1;
3401 } else {
3402 increment = map->stripe_len;
3403 mirror_num = 1;
3404 }
3405
3406 path = btrfs_alloc_path();
3407 if (!path)
3408 return -ENOMEM;
3409
3410 ppath = btrfs_alloc_path();
3411 if (!ppath) {
3412 btrfs_free_path(path);
3413 return -ENOMEM;
3414 }
3415
3416 /*
3417 * work on commit root. The related disk blocks are static as
3418 * long as COW is applied. This means, it is save to rewrite
3419 * them to repair disk errors without any race conditions
3420 */
3421 path->search_commit_root = 1;
3422 path->skip_locking = 1;
3423
3424 ppath->search_commit_root = 1;
3425 ppath->skip_locking = 1;
3426 /*
3427 * trigger the readahead for extent tree csum tree and wait for
3428 * completion. During readahead, the scrub is officially paused
3429 * to not hold off transaction commits
3430 */
3431 logical = base + offset;
3432 physical_end = physical + nstripes * map->stripe_len;
3433 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434 get_raid56_logic_offset(physical_end, num,
3435 map, &logic_end, NULL);
3436 logic_end += base;
3437 } else {
3438 logic_end = logical + increment * nstripes;
3439 }
3440 wait_event(sctx->list_wait,
3441 atomic_read(&sctx->bios_in_flight) == 0);
3442 scrub_blocked_if_needed(fs_info);
3443
3444 /* FIXME it might be better to start readahead at commit root */
3445 key.objectid = logical;
3446 key.type = BTRFS_EXTENT_ITEM_KEY;
3447 key.offset = (u64)0;
3448 key_end.objectid = logic_end;
3449 key_end.type = BTRFS_METADATA_ITEM_KEY;
3450 key_end.offset = (u64)-1;
3451 reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454 key.type = BTRFS_EXTENT_CSUM_KEY;
3455 key.offset = logical;
3456 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458 key_end.offset = logic_end;
3459 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460
3461 if (!IS_ERR(reada1))
3462 btrfs_reada_wait(reada1);
3463 if (!IS_ERR(reada2))
3464 btrfs_reada_wait(reada2);
3465
3466
3467 /*
3468 * collect all data csums for the stripe to avoid seeking during
3469 * the scrub. This might currently (crc32) end up to be about 1MB
3470 */
3471 blk_start_plug(&plug);
3472
3473 /*
3474 * now find all extents for each stripe and scrub them
3475 */
3476 ret = 0;
3477 while (physical < physical_end) {
3478 /*
3479 * canceled?
3480 */
3481 if (atomic_read(&fs_info->scrub_cancel_req) ||
3482 atomic_read(&sctx->cancel_req)) {
3483 ret = -ECANCELED;
3484 goto out;
3485 }
3486 /*
3487 * check to see if we have to pause
3488 */
3489 if (atomic_read(&fs_info->scrub_pause_req)) {
3490 /* push queued extents */
3491 sctx->flush_all_writes = true;
3492 scrub_submit(sctx);
3493 mutex_lock(&sctx->wr_lock);
3494 scrub_wr_submit(sctx);
3495 mutex_unlock(&sctx->wr_lock);
3496 wait_event(sctx->list_wait,
3497 atomic_read(&sctx->bios_in_flight) == 0);
3498 sctx->flush_all_writes = false;
3499 scrub_blocked_if_needed(fs_info);
3500 }
3501
3502 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503 ret = get_raid56_logic_offset(physical, num, map,
3504 &logical,
3505 &stripe_logical);
3506 logical += base;
3507 if (ret) {
3508 /* it is parity strip */
3509 stripe_logical += base;
3510 stripe_end = stripe_logical + increment;
3511 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512 ppath, stripe_logical,
3513 stripe_end);
3514 if (ret)
3515 goto out;
3516 goto skip;
3517 }
3518 }
3519
3520 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521 key.type = BTRFS_METADATA_ITEM_KEY;
3522 else
3523 key.type = BTRFS_EXTENT_ITEM_KEY;
3524 key.objectid = logical;
3525 key.offset = (u64)-1;
3526
3527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528 if (ret < 0)
3529 goto out;
3530
3531 if (ret > 0) {
3532 ret = btrfs_previous_extent_item(root, path, 0);
3533 if (ret < 0)
3534 goto out;
3535 if (ret > 0) {
3536 /* there's no smaller item, so stick with the
3537 * larger one */
3538 btrfs_release_path(path);
3539 ret = btrfs_search_slot(NULL, root, &key,
3540 path, 0, 0);
3541 if (ret < 0)
3542 goto out;
3543 }
3544 }
3545
3546 stop_loop = 0;
3547 while (1) {
3548 u64 bytes;
3549
3550 l = path->nodes[0];
3551 slot = path->slots[0];
3552 if (slot >= btrfs_header_nritems(l)) {
3553 ret = btrfs_next_leaf(root, path);
3554 if (ret == 0)
3555 continue;
3556 if (ret < 0)
3557 goto out;
3558
3559 stop_loop = 1;
3560 break;
3561 }
3562 btrfs_item_key_to_cpu(l, &key, slot);
3563
3564 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565 key.type != BTRFS_METADATA_ITEM_KEY)
3566 goto next;
3567
3568 if (key.type == BTRFS_METADATA_ITEM_KEY)
3569 bytes = fs_info->nodesize;
3570 else
3571 bytes = key.offset;
3572
3573 if (key.objectid + bytes <= logical)
3574 goto next;
3575
3576 if (key.objectid >= logical + map->stripe_len) {
3577 /* out of this device extent */
3578 if (key.objectid >= logic_end)
3579 stop_loop = 1;
3580 break;
3581 }
3582
3583 extent = btrfs_item_ptr(l, slot,
3584 struct btrfs_extent_item);
3585 flags = btrfs_extent_flags(l, extent);
3586 generation = btrfs_extent_generation(l, extent);
3587
3588 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589 (key.objectid < logical ||
3590 key.objectid + bytes >
3591 logical + map->stripe_len)) {
3592 btrfs_err(fs_info,
3593 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594 key.objectid, logical);
3595 spin_lock(&sctx->stat_lock);
3596 sctx->stat.uncorrectable_errors++;
3597 spin_unlock(&sctx->stat_lock);
3598 goto next;
3599 }
3600
3601again:
3602 extent_logical = key.objectid;
3603 extent_len = bytes;
3604
3605 /*
3606 * trim extent to this stripe
3607 */
3608 if (extent_logical < logical) {
3609 extent_len -= logical - extent_logical;
3610 extent_logical = logical;
3611 }
3612 if (extent_logical + extent_len >
3613 logical + map->stripe_len) {
3614 extent_len = logical + map->stripe_len -
3615 extent_logical;
3616 }
3617
3618 extent_physical = extent_logical - logical + physical;
3619 extent_dev = scrub_dev;
3620 extent_mirror_num = mirror_num;
3621 if (is_dev_replace)
3622 scrub_remap_extent(fs_info, extent_logical,
3623 extent_len, &extent_physical,
3624 &extent_dev,
3625 &extent_mirror_num);
3626
3627 ret = btrfs_lookup_csums_range(csum_root,
3628 extent_logical,
3629 extent_logical +
3630 extent_len - 1,
3631 &sctx->csum_list, 1);
3632 if (ret)
3633 goto out;
3634
3635 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636 extent_physical, extent_dev, flags,
3637 generation, extent_mirror_num,
3638 extent_logical - logical + physical);
3639
3640 scrub_free_csums(sctx);
3641
3642 if (ret)
3643 goto out;
3644
3645 if (extent_logical + extent_len <
3646 key.objectid + bytes) {
3647 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648 /*
3649 * loop until we find next data stripe
3650 * or we have finished all stripes.
3651 */
3652loop:
3653 physical += map->stripe_len;
3654 ret = get_raid56_logic_offset(physical,
3655 num, map, &logical,
3656 &stripe_logical);
3657 logical += base;
3658
3659 if (ret && physical < physical_end) {
3660 stripe_logical += base;
3661 stripe_end = stripe_logical +
3662 increment;
3663 ret = scrub_raid56_parity(sctx,
3664 map, scrub_dev, ppath,
3665 stripe_logical,
3666 stripe_end);
3667 if (ret)
3668 goto out;
3669 goto loop;
3670 }
3671 } else {
3672 physical += map->stripe_len;
3673 logical += increment;
3674 }
3675 if (logical < key.objectid + bytes) {
3676 cond_resched();
3677 goto again;
3678 }
3679
3680 if (physical >= physical_end) {
3681 stop_loop = 1;
3682 break;
3683 }
3684 }
3685next:
3686 path->slots[0]++;
3687 }
3688 btrfs_release_path(path);
3689skip:
3690 logical += increment;
3691 physical += map->stripe_len;
3692 spin_lock(&sctx->stat_lock);
3693 if (stop_loop)
3694 sctx->stat.last_physical = map->stripes[num].physical +
3695 length;
3696 else
3697 sctx->stat.last_physical = physical;
3698 spin_unlock(&sctx->stat_lock);
3699 if (stop_loop)
3700 break;
3701 }
3702out:
3703 /* push queued extents */
3704 scrub_submit(sctx);
3705 mutex_lock(&sctx->wr_lock);
3706 scrub_wr_submit(sctx);
3707 mutex_unlock(&sctx->wr_lock);
3708
3709 blk_finish_plug(&plug);
3710 btrfs_free_path(path);
3711 btrfs_free_path(ppath);
3712 return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716 struct btrfs_device *scrub_dev,
3717 u64 chunk_offset, u64 length,
3718 u64 dev_offset,
3719 struct btrfs_block_group_cache *cache,
3720 int is_dev_replace)
3721{
3722 struct btrfs_fs_info *fs_info = sctx->fs_info;
3723 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724 struct map_lookup *map;
3725 struct extent_map *em;
3726 int i;
3727 int ret = 0;
3728
3729 read_lock(&map_tree->map_tree.lock);
3730 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731 read_unlock(&map_tree->map_tree.lock);
3732
3733 if (!em) {
3734 /*
3735 * Might have been an unused block group deleted by the cleaner
3736 * kthread or relocation.
3737 */
3738 spin_lock(&cache->lock);
3739 if (!cache->removed)
3740 ret = -EINVAL;
3741 spin_unlock(&cache->lock);
3742
3743 return ret;
3744 }
3745
3746 map = em->map_lookup;
3747 if (em->start != chunk_offset)
3748 goto out;
3749
3750 if (em->len < length)
3751 goto out;
3752
3753 for (i = 0; i < map->num_stripes; ++i) {
3754 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755 map->stripes[i].physical == dev_offset) {
3756 ret = scrub_stripe(sctx, map, scrub_dev, i,
3757 chunk_offset, length,
3758 is_dev_replace);
3759 if (ret)
3760 goto out;
3761 }
3762 }
3763out:
3764 free_extent_map(em);
3765
3766 return ret;
3767}
3768
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771 struct btrfs_device *scrub_dev, u64 start, u64 end,
3772 int is_dev_replace)
3773{
3774 struct btrfs_dev_extent *dev_extent = NULL;
3775 struct btrfs_path *path;
3776 struct btrfs_fs_info *fs_info = sctx->fs_info;
3777 struct btrfs_root *root = fs_info->dev_root;
3778 u64 length;
3779 u64 chunk_offset;
3780 int ret = 0;
3781 int ro_set;
3782 int slot;
3783 struct extent_buffer *l;
3784 struct btrfs_key key;
3785 struct btrfs_key found_key;
3786 struct btrfs_block_group_cache *cache;
3787 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789 path = btrfs_alloc_path();
3790 if (!path)
3791 return -ENOMEM;
3792
3793 path->reada = READA_FORWARD;
3794 path->search_commit_root = 1;
3795 path->skip_locking = 1;
3796
3797 key.objectid = scrub_dev->devid;
3798 key.offset = 0ull;
3799 key.type = BTRFS_DEV_EXTENT_KEY;
3800
3801 while (1) {
3802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803 if (ret < 0)
3804 break;
3805 if (ret > 0) {
3806 if (path->slots[0] >=
3807 btrfs_header_nritems(path->nodes[0])) {
3808 ret = btrfs_next_leaf(root, path);
3809 if (ret < 0)
3810 break;
3811 if (ret > 0) {
3812 ret = 0;
3813 break;
3814 }
3815 } else {
3816 ret = 0;
3817 }
3818 }
3819
3820 l = path->nodes[0];
3821 slot = path->slots[0];
3822
3823 btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825 if (found_key.objectid != scrub_dev->devid)
3826 break;
3827
3828 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829 break;
3830
3831 if (found_key.offset >= end)
3832 break;
3833
3834 if (found_key.offset < key.offset)
3835 break;
3836
3837 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838 length = btrfs_dev_extent_length(l, dev_extent);
3839
3840 if (found_key.offset + length <= start)
3841 goto skip;
3842
3843 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845 /*
3846 * get a reference on the corresponding block group to prevent
3847 * the chunk from going away while we scrub it
3848 */
3849 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851 /* some chunks are removed but not committed to disk yet,
3852 * continue scrubbing */
3853 if (!cache)
3854 goto skip;
3855
3856 /*
3857 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858 * to avoid deadlock caused by:
3859 * btrfs_inc_block_group_ro()
3860 * -> btrfs_wait_for_commit()
3861 * -> btrfs_commit_transaction()
3862 * -> btrfs_scrub_pause()
3863 */
3864 scrub_pause_on(fs_info);
3865 ret = btrfs_inc_block_group_ro(fs_info, cache);
3866 if (!ret && is_dev_replace) {
3867 /*
3868 * If we are doing a device replace wait for any tasks
3869 * that started dellaloc right before we set the block
3870 * group to RO mode, as they might have just allocated
3871 * an extent from it or decided they could do a nocow
3872 * write. And if any such tasks did that, wait for their
3873 * ordered extents to complete and then commit the
3874 * current transaction, so that we can later see the new
3875 * extent items in the extent tree - the ordered extents
3876 * create delayed data references (for cow writes) when
3877 * they complete, which will be run and insert the
3878 * corresponding extent items into the extent tree when
3879 * we commit the transaction they used when running
3880 * inode.c:btrfs_finish_ordered_io(). We later use
3881 * the commit root of the extent tree to find extents
3882 * to copy from the srcdev into the tgtdev, and we don't
3883 * want to miss any new extents.
3884 */
3885 btrfs_wait_block_group_reservations(cache);
3886 btrfs_wait_nocow_writers(cache);
3887 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888 cache->key.objectid,
3889 cache->key.offset);
3890 if (ret > 0) {
3891 struct btrfs_trans_handle *trans;
3892
3893 trans = btrfs_join_transaction(root);
3894 if (IS_ERR(trans))
3895 ret = PTR_ERR(trans);
3896 else
3897 ret = btrfs_commit_transaction(trans);
3898 if (ret) {
3899 scrub_pause_off(fs_info);
3900 btrfs_put_block_group(cache);
3901 break;
3902 }
3903 }
3904 }
3905 scrub_pause_off(fs_info);
3906
3907 if (ret == 0) {
3908 ro_set = 1;
3909 } else if (ret == -ENOSPC) {
3910 /*
3911 * btrfs_inc_block_group_ro return -ENOSPC when it
3912 * failed in creating new chunk for metadata.
3913 * It is not a problem for scrub/replace, because
3914 * metadata are always cowed, and our scrub paused
3915 * commit_transactions.
3916 */
3917 ro_set = 0;
3918 } else {
3919 btrfs_warn(fs_info,
3920 "failed setting block group ro: %d", ret);
3921 btrfs_put_block_group(cache);
3922 break;
3923 }
3924
3925 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926 dev_replace->cursor_right = found_key.offset + length;
3927 dev_replace->cursor_left = found_key.offset;
3928 dev_replace->item_needs_writeback = 1;
3929 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931 found_key.offset, cache, is_dev_replace);
3932
3933 /*
3934 * flush, submit all pending read and write bios, afterwards
3935 * wait for them.
3936 * Note that in the dev replace case, a read request causes
3937 * write requests that are submitted in the read completion
3938 * worker. Therefore in the current situation, it is required
3939 * that all write requests are flushed, so that all read and
3940 * write requests are really completed when bios_in_flight
3941 * changes to 0.
3942 */
3943 sctx->flush_all_writes = true;
3944 scrub_submit(sctx);
3945 mutex_lock(&sctx->wr_lock);
3946 scrub_wr_submit(sctx);
3947 mutex_unlock(&sctx->wr_lock);
3948
3949 wait_event(sctx->list_wait,
3950 atomic_read(&sctx->bios_in_flight) == 0);
3951
3952 scrub_pause_on(fs_info);
3953
3954 /*
3955 * must be called before we decrease @scrub_paused.
3956 * make sure we don't block transaction commit while
3957 * we are waiting pending workers finished.
3958 */
3959 wait_event(sctx->list_wait,
3960 atomic_read(&sctx->workers_pending) == 0);
3961 sctx->flush_all_writes = false;
3962
3963 scrub_pause_off(fs_info);
3964
3965 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966 dev_replace->cursor_left = dev_replace->cursor_right;
3967 dev_replace->item_needs_writeback = 1;
3968 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970 if (ro_set)
3971 btrfs_dec_block_group_ro(cache);
3972
3973 /*
3974 * We might have prevented the cleaner kthread from deleting
3975 * this block group if it was already unused because we raced
3976 * and set it to RO mode first. So add it back to the unused
3977 * list, otherwise it might not ever be deleted unless a manual
3978 * balance is triggered or it becomes used and unused again.
3979 */
3980 spin_lock(&cache->lock);
3981 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982 btrfs_block_group_used(&cache->item) == 0) {
3983 spin_unlock(&cache->lock);
3984 spin_lock(&fs_info->unused_bgs_lock);
3985 if (list_empty(&cache->bg_list)) {
3986 btrfs_get_block_group(cache);
3987 list_add_tail(&cache->bg_list,
3988 &fs_info->unused_bgs);
3989 }
3990 spin_unlock(&fs_info->unused_bgs_lock);
3991 } else {
3992 spin_unlock(&cache->lock);
3993 }
3994
3995 btrfs_put_block_group(cache);
3996 if (ret)
3997 break;
3998 if (is_dev_replace &&
3999 atomic64_read(&dev_replace->num_write_errors) > 0) {
4000 ret = -EIO;
4001 break;
4002 }
4003 if (sctx->stat.malloc_errors > 0) {
4004 ret = -ENOMEM;
4005 break;
4006 }
4007skip:
4008 key.offset = found_key.offset + length;
4009 btrfs_release_path(path);
4010 }
4011
4012 btrfs_free_path(path);
4013
4014 return ret;
4015}
4016
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018 struct btrfs_device *scrub_dev)
4019{
4020 int i;
4021 u64 bytenr;
4022 u64 gen;
4023 int ret;
4024 struct btrfs_fs_info *fs_info = sctx->fs_info;
4025
4026 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027 return -EIO;
4028
4029 /* Seed devices of a new filesystem has their own generation. */
4030 if (scrub_dev->fs_devices != fs_info->fs_devices)
4031 gen = scrub_dev->generation;
4032 else
4033 gen = fs_info->last_trans_committed;
4034
4035 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036 bytenr = btrfs_sb_offset(i);
4037 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038 scrub_dev->commit_total_bytes)
4039 break;
4040
4041 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043 NULL, 1, bytenr);
4044 if (ret)
4045 return ret;
4046 }
4047 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4048
4049 return 0;
4050}
4051
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056 int is_dev_replace)
4057{
4058 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4059 int max_active = fs_info->thread_pool_size;
4060
4061 if (fs_info->scrub_workers_refcnt == 0) {
4062 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063 flags, is_dev_replace ? 1 : max_active, 4);
4064 if (!fs_info->scrub_workers)
4065 goto fail_scrub_workers;
4066
4067 fs_info->scrub_wr_completion_workers =
4068 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069 max_active, 2);
4070 if (!fs_info->scrub_wr_completion_workers)
4071 goto fail_scrub_wr_completion_workers;
4072
4073 fs_info->scrub_nocow_workers =
4074 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075 if (!fs_info->scrub_nocow_workers)
4076 goto fail_scrub_nocow_workers;
4077 fs_info->scrub_parity_workers =
4078 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079 max_active, 2);
4080 if (!fs_info->scrub_parity_workers)
4081 goto fail_scrub_parity_workers;
4082 }
4083 ++fs_info->scrub_workers_refcnt;
4084 return 0;
4085
4086fail_scrub_parity_workers:
4087 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091 btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093 return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098 if (--fs_info->scrub_workers_refcnt == 0) {
4099 btrfs_destroy_workqueue(fs_info->scrub_workers);
4100 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103 }
4104 WARN_ON(fs_info->scrub_workers_refcnt < 0);
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108 u64 end, struct btrfs_scrub_progress *progress,
4109 int readonly, int is_dev_replace)
4110{
4111 struct scrub_ctx *sctx;
4112 int ret;
4113 struct btrfs_device *dev;
4114 struct rcu_string *name;
4115
4116 if (btrfs_fs_closing(fs_info))
4117 return -EINVAL;
4118
4119 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4120 /*
4121 * in this case scrub is unable to calculate the checksum
4122 * the way scrub is implemented. Do not handle this
4123 * situation at all because it won't ever happen.
4124 */
4125 btrfs_err(fs_info,
4126 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127 fs_info->nodesize,
4128 BTRFS_STRIPE_LEN);
4129 return -EINVAL;
4130 }
4131
4132 if (fs_info->sectorsize != PAGE_SIZE) {
4133 /* not supported for data w/o checksums */
4134 btrfs_err_rl(fs_info,
4135 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136 fs_info->sectorsize, PAGE_SIZE);
4137 return -EINVAL;
4138 }
4139
4140 if (fs_info->nodesize >
4141 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4143 /*
4144 * would exhaust the array bounds of pagev member in
4145 * struct scrub_block
4146 */
4147 btrfs_err(fs_info,
4148 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149 fs_info->nodesize,
4150 SCRUB_MAX_PAGES_PER_BLOCK,
4151 fs_info->sectorsize,
4152 SCRUB_MAX_PAGES_PER_BLOCK);
4153 return -EINVAL;
4154 }
4155
4156
4157 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160 !is_dev_replace)) {
4161 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162 return -ENODEV;
4163 }
4164
4165 if (!is_dev_replace && !readonly &&
4166 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168 rcu_read_lock();
4169 name = rcu_dereference(dev->name);
4170 btrfs_err(fs_info, "scrub: device %s is not writable",
4171 name->str);
4172 rcu_read_unlock();
4173 return -EROFS;
4174 }
4175
4176 mutex_lock(&fs_info->scrub_lock);
4177 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179 mutex_unlock(&fs_info->scrub_lock);
4180 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181 return -EIO;
4182 }
4183
4184 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185 if (dev->scrub_ctx ||
4186 (!is_dev_replace &&
4187 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189 mutex_unlock(&fs_info->scrub_lock);
4190 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191 return -EINPROGRESS;
4192 }
4193 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195 ret = scrub_workers_get(fs_info, is_dev_replace);
4196 if (ret) {
4197 mutex_unlock(&fs_info->scrub_lock);
4198 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199 return ret;
4200 }
4201
4202 sctx = scrub_setup_ctx(dev, is_dev_replace);
4203 if (IS_ERR(sctx)) {
4204 mutex_unlock(&fs_info->scrub_lock);
4205 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206 scrub_workers_put(fs_info);
4207 return PTR_ERR(sctx);
4208 }
4209 sctx->readonly = readonly;
4210 dev->scrub_ctx = sctx;
4211 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213 /*
4214 * checking @scrub_pause_req here, we can avoid
4215 * race between committing transaction and scrubbing.
4216 */
4217 __scrub_blocked_if_needed(fs_info);
4218 atomic_inc(&fs_info->scrubs_running);
4219 mutex_unlock(&fs_info->scrub_lock);
4220
4221 if (!is_dev_replace) {
4222 /*
4223 * by holding device list mutex, we can
4224 * kick off writing super in log tree sync.
4225 */
4226 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227 ret = scrub_supers(sctx, dev);
4228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4229 }
4230
4231 if (!ret)
4232 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233 is_dev_replace);
4234
4235 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236 atomic_dec(&fs_info->scrubs_running);
4237 wake_up(&fs_info->scrub_pause_wait);
4238
4239 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241 if (progress)
4242 memcpy(progress, &sctx->stat, sizeof(*progress));
4243
4244 mutex_lock(&fs_info->scrub_lock);
4245 dev->scrub_ctx = NULL;
4246 scrub_workers_put(fs_info);
4247 mutex_unlock(&fs_info->scrub_lock);
4248
4249 scrub_put_ctx(sctx);
4250
4251 return ret;
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
4256 mutex_lock(&fs_info->scrub_lock);
4257 atomic_inc(&fs_info->scrub_pause_req);
4258 while (atomic_read(&fs_info->scrubs_paused) !=
4259 atomic_read(&fs_info->scrubs_running)) {
4260 mutex_unlock(&fs_info->scrub_lock);
4261 wait_event(fs_info->scrub_pause_wait,
4262 atomic_read(&fs_info->scrubs_paused) ==
4263 atomic_read(&fs_info->scrubs_running));
4264 mutex_lock(&fs_info->scrub_lock);
4265 }
4266 mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
4271 atomic_dec(&fs_info->scrub_pause_req);
4272 wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4276{
4277 mutex_lock(&fs_info->scrub_lock);
4278 if (!atomic_read(&fs_info->scrubs_running)) {
4279 mutex_unlock(&fs_info->scrub_lock);
4280 return -ENOTCONN;
4281 }
4282
4283 atomic_inc(&fs_info->scrub_cancel_req);
4284 while (atomic_read(&fs_info->scrubs_running)) {
4285 mutex_unlock(&fs_info->scrub_lock);
4286 wait_event(fs_info->scrub_pause_wait,
4287 atomic_read(&fs_info->scrubs_running) == 0);
4288 mutex_lock(&fs_info->scrub_lock);
4289 }
4290 atomic_dec(&fs_info->scrub_cancel_req);
4291 mutex_unlock(&fs_info->scrub_lock);
4292
4293 return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297 struct btrfs_device *dev)
4298{
4299 struct scrub_ctx *sctx;
4300
4301 mutex_lock(&fs_info->scrub_lock);
4302 sctx = dev->scrub_ctx;
4303 if (!sctx) {
4304 mutex_unlock(&fs_info->scrub_lock);
4305 return -ENOTCONN;
4306 }
4307 atomic_inc(&sctx->cancel_req);
4308 while (dev->scrub_ctx) {
4309 mutex_unlock(&fs_info->scrub_lock);
4310 wait_event(fs_info->scrub_pause_wait,
4311 dev->scrub_ctx == NULL);
4312 mutex_lock(&fs_info->scrub_lock);
4313 }
4314 mutex_unlock(&fs_info->scrub_lock);
4315
4316 return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320 struct btrfs_scrub_progress *progress)
4321{
4322 struct btrfs_device *dev;
4323 struct scrub_ctx *sctx = NULL;
4324
4325 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327 if (dev)
4328 sctx = dev->scrub_ctx;
4329 if (sctx)
4330 memcpy(progress, &sctx->stat, sizeof(*progress));
4331 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337 u64 extent_logical, u64 extent_len,
4338 u64 *extent_physical,
4339 struct btrfs_device **extent_dev,
4340 int *extent_mirror_num)
4341{
4342 u64 mapped_length;
4343 struct btrfs_bio *bbio = NULL;
4344 int ret;
4345
4346 mapped_length = extent_len;
4347 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348 &mapped_length, &bbio, 0);
4349 if (ret || !bbio || mapped_length < extent_len ||
4350 !bbio->stripes[0].dev->bdev) {
4351 btrfs_put_bbio(bbio);
4352 return;
4353 }
4354
4355 *extent_physical = bbio->stripes[0].physical;
4356 *extent_mirror_num = bbio->mirror_num;
4357 *extent_dev = bbio->stripes[0].dev;
4358 btrfs_put_bbio(bbio);
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362 int mirror_num, u64 physical_for_dev_replace)
4363{
4364 struct scrub_copy_nocow_ctx *nocow_ctx;
4365 struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368 if (!nocow_ctx) {
4369 spin_lock(&sctx->stat_lock);
4370 sctx->stat.malloc_errors++;
4371 spin_unlock(&sctx->stat_lock);
4372 return -ENOMEM;
4373 }
4374
4375 scrub_pending_trans_workers_inc(sctx);
4376
4377 nocow_ctx->sctx = sctx;
4378 nocow_ctx->logical = logical;
4379 nocow_ctx->len = len;
4380 nocow_ctx->mirror_num = mirror_num;
4381 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383 copy_nocow_pages_worker, NULL, NULL);
4384 INIT_LIST_HEAD(&nocow_ctx->inodes);
4385 btrfs_queue_work(fs_info->scrub_nocow_workers,
4386 &nocow_ctx->work);
4387
4388 return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394 struct scrub_nocow_inode *nocow_inode;
4395
4396 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397 if (!nocow_inode)
4398 return -ENOMEM;
4399 nocow_inode->inum = inum;
4400 nocow_inode->offset = offset;
4401 nocow_inode->root = root;
4402 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403 return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410 struct scrub_copy_nocow_ctx *nocow_ctx =
4411 container_of(work, struct scrub_copy_nocow_ctx, work);
4412 struct scrub_ctx *sctx = nocow_ctx->sctx;
4413 struct btrfs_fs_info *fs_info = sctx->fs_info;
4414 struct btrfs_root *root = fs_info->extent_root;
4415 u64 logical = nocow_ctx->logical;
4416 u64 len = nocow_ctx->len;
4417 int mirror_num = nocow_ctx->mirror_num;
4418 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419 int ret;
4420 struct btrfs_trans_handle *trans = NULL;
4421 struct btrfs_path *path;
4422 int not_written = 0;
4423
4424 path = btrfs_alloc_path();
4425 if (!path) {
4426 spin_lock(&sctx->stat_lock);
4427 sctx->stat.malloc_errors++;
4428 spin_unlock(&sctx->stat_lock);
4429 not_written = 1;
4430 goto out;
4431 }
4432
4433 trans = btrfs_join_transaction(root);
4434 if (IS_ERR(trans)) {
4435 not_written = 1;
4436 goto out;
4437 }
4438
4439 ret = iterate_inodes_from_logical(logical, fs_info, path,
4440 record_inode_for_nocow, nocow_ctx, false);
4441 if (ret != 0 && ret != -ENOENT) {
4442 btrfs_warn(fs_info,
4443 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444 logical, physical_for_dev_replace, len, mirror_num,
4445 ret);
4446 not_written = 1;
4447 goto out;
4448 }
4449
4450 btrfs_end_transaction(trans);
4451 trans = NULL;
4452 while (!list_empty(&nocow_ctx->inodes)) {
4453 struct scrub_nocow_inode *entry;
4454 entry = list_first_entry(&nocow_ctx->inodes,
4455 struct scrub_nocow_inode,
4456 list);
4457 list_del_init(&entry->list);
4458 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459 entry->root, nocow_ctx);
4460 kfree(entry);
4461 if (ret == COPY_COMPLETE) {
4462 ret = 0;
4463 break;
4464 } else if (ret) {
4465 break;
4466 }
4467 }
4468out:
4469 while (!list_empty(&nocow_ctx->inodes)) {
4470 struct scrub_nocow_inode *entry;
4471 entry = list_first_entry(&nocow_ctx->inodes,
4472 struct scrub_nocow_inode,
4473 list);
4474 list_del_init(&entry->list);
4475 kfree(entry);
4476 }
4477 if (trans && !IS_ERR(trans))
4478 btrfs_end_transaction(trans);
4479 if (not_written)
4480 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481 num_uncorrectable_read_errors);
4482
4483 btrfs_free_path(path);
4484 kfree(nocow_ctx);
4485
4486 scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490 u64 logical)
4491{
4492 struct extent_state *cached_state = NULL;
4493 struct btrfs_ordered_extent *ordered;
4494 struct extent_io_tree *io_tree;
4495 struct extent_map *em;
4496 u64 lockstart = start, lockend = start + len - 1;
4497 int ret = 0;
4498
4499 io_tree = &inode->io_tree;
4500
4501 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503 if (ordered) {
4504 btrfs_put_ordered_extent(ordered);
4505 ret = 1;
4506 goto out_unlock;
4507 }
4508
4509 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510 if (IS_ERR(em)) {
4511 ret = PTR_ERR(em);
4512 goto out_unlock;
4513 }
4514
4515 /*
4516 * This extent does not actually cover the logical extent anymore,
4517 * move on to the next inode.
4518 */
4519 if (em->block_start > logical ||
4520 em->block_start + em->block_len < logical + len ||
4521 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522 free_extent_map(em);
4523 ret = 1;
4524 goto out_unlock;
4525 }
4526 free_extent_map(em);
4527
4528out_unlock:
4529 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530 return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534 struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537 struct btrfs_key key;
4538 struct inode *inode;
4539 struct page *page;
4540 struct btrfs_root *local_root;
4541 struct extent_io_tree *io_tree;
4542 u64 physical_for_dev_replace;
4543 u64 nocow_ctx_logical;
4544 u64 len = nocow_ctx->len;
4545 unsigned long index;
4546 int srcu_index;
4547 int ret = 0;
4548 int err = 0;
4549
4550 key.objectid = root;
4551 key.type = BTRFS_ROOT_ITEM_KEY;
4552 key.offset = (u64)-1;
4553
4554 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557 if (IS_ERR(local_root)) {
4558 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559 return PTR_ERR(local_root);
4560 }
4561
4562 key.type = BTRFS_INODE_ITEM_KEY;
4563 key.objectid = inum;
4564 key.offset = 0;
4565 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567 if (IS_ERR(inode))
4568 return PTR_ERR(inode);
4569
4570 /* Avoid truncate/dio/punch hole.. */
4571 inode_lock(inode);
4572 inode_dio_wait(inode);
4573
4574 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575 io_tree = &BTRFS_I(inode)->io_tree;
4576 nocow_ctx_logical = nocow_ctx->logical;
4577
4578 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579 nocow_ctx_logical);
4580 if (ret) {
4581 ret = ret > 0 ? 0 : ret;
4582 goto out;
4583 }
4584
4585 while (len >= PAGE_SIZE) {
4586 index = offset >> PAGE_SHIFT;
4587again:
4588 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589 if (!page) {
4590 btrfs_err(fs_info, "find_or_create_page() failed");
4591 ret = -ENOMEM;
4592 goto out;
4593 }
4594
4595 if (PageUptodate(page)) {
4596 if (PageDirty(page))
4597 goto next_page;
4598 } else {
4599 ClearPageError(page);
4600 err = extent_read_full_page(io_tree, page,
4601 btrfs_get_extent,
4602 nocow_ctx->mirror_num);
4603 if (err) {
4604 ret = err;
4605 goto next_page;
4606 }
4607
4608 lock_page(page);
4609 /*
4610 * If the page has been remove from the page cache,
4611 * the data on it is meaningless, because it may be
4612 * old one, the new data may be written into the new
4613 * page in the page cache.
4614 */
4615 if (page->mapping != inode->i_mapping) {
4616 unlock_page(page);
4617 put_page(page);
4618 goto again;
4619 }
4620 if (!PageUptodate(page)) {
4621 ret = -EIO;
4622 goto next_page;
4623 }
4624 }
4625
4626 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627 nocow_ctx_logical);
4628 if (ret) {
4629 ret = ret > 0 ? 0 : ret;
4630 goto next_page;
4631 }
4632
4633 err = write_page_nocow(nocow_ctx->sctx,
4634 physical_for_dev_replace, page);
4635 if (err)
4636 ret = err;
4637next_page:
4638 unlock_page(page);
4639 put_page(page);
4640
4641 if (ret)
4642 break;
4643
4644 offset += PAGE_SIZE;
4645 physical_for_dev_replace += PAGE_SIZE;
4646 nocow_ctx_logical += PAGE_SIZE;
4647 len -= PAGE_SIZE;
4648 }
4649 ret = COPY_COMPLETE;
4650out:
4651 inode_unlock(inode);
4652 iput(inode);
4653 return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657 u64 physical_for_dev_replace, struct page *page)
4658{
4659 struct bio *bio;
4660 struct btrfs_device *dev;
4661
4662 dev = sctx->wr_tgtdev;
4663 if (!dev)
4664 return -EIO;
4665 if (!dev->bdev) {
4666 btrfs_warn_rl(dev->fs_info,
4667 "scrub write_page_nocow(bdev == NULL) is unexpected");
4668 return -EIO;
4669 }
4670 bio = btrfs_io_bio_alloc(1);
4671 bio->bi_iter.bi_size = 0;
4672 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673 bio_set_dev(bio, dev->bdev);
4674 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675 /* bio_add_page won't fail on a freshly allocated bio */
4676 bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678 if (btrfsic_submit_bio_wait(bio)) {
4679 bio_put(bio);
4680 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681 return -EIO;
4682 }
4683
4684 bio_put(bio);
4685 return 0;
4686}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include <crypto/hash.h>
10#include "ctree.h"
11#include "discard.h"
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
15#include "transaction.h"
16#include "backref.h"
17#include "extent_io.h"
18#include "dev-replace.h"
19#include "check-integrity.h"
20#include "rcu-string.h"
21#include "raid56.h"
22#include "block-group.h"
23#include "zoned.h"
24
25/*
26 * This is only the first step towards a full-features scrub. It reads all
27 * extent and super block and verifies the checksums. In case a bad checksum
28 * is found or the extent cannot be read, good data will be written back if
29 * any can be found.
30 *
31 * Future enhancements:
32 * - In case an unrepairable extent is encountered, track which files are
33 * affected and report them
34 * - track and record media errors, throw out bad devices
35 * - add a mode to also read unallocated space
36 */
37
38struct scrub_block;
39struct scrub_ctx;
40
41/*
42 * the following three values only influence the performance.
43 * The last one configures the number of parallel and outstanding I/O
44 * operations. The first two values configure an upper limit for the number
45 * of (dynamically allocated) pages that are added to a bio.
46 */
47#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
48#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
49#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
50
51/*
52 * the following value times PAGE_SIZE needs to be large enough to match the
53 * largest node/leaf/sector size that shall be supported.
54 * Values larger than BTRFS_STRIPE_LEN are not supported.
55 */
56#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
57
58struct scrub_recover {
59 refcount_t refs;
60 struct btrfs_bio *bbio;
61 u64 map_length;
62};
63
64struct scrub_page {
65 struct scrub_block *sblock;
66 struct page *page;
67 struct btrfs_device *dev;
68 struct list_head list;
69 u64 flags; /* extent flags */
70 u64 generation;
71 u64 logical;
72 u64 physical;
73 u64 physical_for_dev_replace;
74 atomic_t refs;
75 u8 mirror_num;
76 int have_csum:1;
77 int io_error:1;
78 u8 csum[BTRFS_CSUM_SIZE];
79
80 struct scrub_recover *recover;
81};
82
83struct scrub_bio {
84 int index;
85 struct scrub_ctx *sctx;
86 struct btrfs_device *dev;
87 struct bio *bio;
88 blk_status_t status;
89 u64 logical;
90 u64 physical;
91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93#else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95#endif
96 int page_count;
97 int next_free;
98 struct btrfs_work work;
99};
100
101struct scrub_block {
102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 int page_count;
104 atomic_t outstanding_pages;
105 refcount_t refs; /* free mem on transition to zero */
106 struct scrub_ctx *sctx;
107 struct scrub_parity *sparity;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
117 };
118 struct btrfs_work work;
119};
120
121/* Used for the chunks with parity stripe such RAID5/6 */
122struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
133 u32 stripe_len;
134
135 refcount_t refs;
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
151 unsigned long bitmap[];
152};
153
154struct scrub_ctx {
155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
156 struct btrfs_fs_info *fs_info;
157 int first_free;
158 int curr;
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
163 struct list_head csum_list;
164 atomic_t cancel_req;
165 int readonly;
166 int pages_per_rd_bio;
167
168 /* State of IO submission throttling affecting the associated device */
169 ktime_t throttle_deadline;
170 u64 throttle_sent;
171
172 int is_dev_replace;
173 u64 write_pointer;
174
175 struct scrub_bio *wr_curr_bio;
176 struct mutex wr_lock;
177 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
178 struct btrfs_device *wr_tgtdev;
179 bool flush_all_writes;
180
181 /*
182 * statistics
183 */
184 struct btrfs_scrub_progress stat;
185 spinlock_t stat_lock;
186
187 /*
188 * Use a ref counter to avoid use-after-free issues. Scrub workers
189 * decrement bios_in_flight and workers_pending and then do a wakeup
190 * on the list_wait wait queue. We must ensure the main scrub task
191 * doesn't free the scrub context before or while the workers are
192 * doing the wakeup() call.
193 */
194 refcount_t refs;
195};
196
197struct scrub_warning {
198 struct btrfs_path *path;
199 u64 extent_item_size;
200 const char *errstr;
201 u64 physical;
202 u64 logical;
203 struct btrfs_device *dev;
204};
205
206struct full_stripe_lock {
207 struct rb_node node;
208 u64 logical;
209 u64 refs;
210 struct mutex mutex;
211};
212
213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 struct scrub_block *sblocks_for_recheck);
215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 struct scrub_block *sblock,
217 int retry_failed_mirror);
218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 struct scrub_block *sblock_good);
221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 struct scrub_block *sblock_good,
223 int page_num, int force_write);
224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 int page_num);
227static int scrub_checksum_data(struct scrub_block *sblock);
228static int scrub_checksum_tree_block(struct scrub_block *sblock);
229static int scrub_checksum_super(struct scrub_block *sblock);
230static void scrub_block_put(struct scrub_block *sblock);
231static void scrub_page_get(struct scrub_page *spage);
232static void scrub_page_put(struct scrub_page *spage);
233static void scrub_parity_get(struct scrub_parity *sparity);
234static void scrub_parity_put(struct scrub_parity *sparity);
235static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum,
238 u64 physical_for_dev_replace);
239static void scrub_bio_end_io(struct bio *bio);
240static void scrub_bio_end_io_worker(struct btrfs_work *work);
241static void scrub_block_complete(struct scrub_block *sblock);
242static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u32 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249static void scrub_wr_submit(struct scrub_ctx *sctx);
250static void scrub_wr_bio_end_io(struct bio *bio);
251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252static void scrub_put_ctx(struct scrub_ctx *sctx);
253
254static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
255{
256 return spage->recover &&
257 (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
258}
259
260static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
261{
262 refcount_inc(&sctx->refs);
263 atomic_inc(&sctx->bios_in_flight);
264}
265
266static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
267{
268 atomic_dec(&sctx->bios_in_flight);
269 wake_up(&sctx->list_wait);
270 scrub_put_ctx(sctx);
271}
272
273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274{
275 while (atomic_read(&fs_info->scrub_pause_req)) {
276 mutex_unlock(&fs_info->scrub_lock);
277 wait_event(fs_info->scrub_pause_wait,
278 atomic_read(&fs_info->scrub_pause_req) == 0);
279 mutex_lock(&fs_info->scrub_lock);
280 }
281}
282
283static void scrub_pause_on(struct btrfs_fs_info *fs_info)
284{
285 atomic_inc(&fs_info->scrubs_paused);
286 wake_up(&fs_info->scrub_pause_wait);
287}
288
289static void scrub_pause_off(struct btrfs_fs_info *fs_info)
290{
291 mutex_lock(&fs_info->scrub_lock);
292 __scrub_blocked_if_needed(fs_info);
293 atomic_dec(&fs_info->scrubs_paused);
294 mutex_unlock(&fs_info->scrub_lock);
295
296 wake_up(&fs_info->scrub_pause_wait);
297}
298
299static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
300{
301 scrub_pause_on(fs_info);
302 scrub_pause_off(fs_info);
303}
304
305/*
306 * Insert new full stripe lock into full stripe locks tree
307 *
308 * Return pointer to existing or newly inserted full_stripe_lock structure if
309 * everything works well.
310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
311 *
312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
313 * function
314 */
315static struct full_stripe_lock *insert_full_stripe_lock(
316 struct btrfs_full_stripe_locks_tree *locks_root,
317 u64 fstripe_logical)
318{
319 struct rb_node **p;
320 struct rb_node *parent = NULL;
321 struct full_stripe_lock *entry;
322 struct full_stripe_lock *ret;
323
324 lockdep_assert_held(&locks_root->lock);
325
326 p = &locks_root->root.rb_node;
327 while (*p) {
328 parent = *p;
329 entry = rb_entry(parent, struct full_stripe_lock, node);
330 if (fstripe_logical < entry->logical) {
331 p = &(*p)->rb_left;
332 } else if (fstripe_logical > entry->logical) {
333 p = &(*p)->rb_right;
334 } else {
335 entry->refs++;
336 return entry;
337 }
338 }
339
340 /*
341 * Insert new lock.
342 */
343 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344 if (!ret)
345 return ERR_PTR(-ENOMEM);
346 ret->logical = fstripe_logical;
347 ret->refs = 1;
348 mutex_init(&ret->mutex);
349
350 rb_link_node(&ret->node, parent, p);
351 rb_insert_color(&ret->node, &locks_root->root);
352 return ret;
353}
354
355/*
356 * Search for a full stripe lock of a block group
357 *
358 * Return pointer to existing full stripe lock if found
359 * Return NULL if not found
360 */
361static struct full_stripe_lock *search_full_stripe_lock(
362 struct btrfs_full_stripe_locks_tree *locks_root,
363 u64 fstripe_logical)
364{
365 struct rb_node *node;
366 struct full_stripe_lock *entry;
367
368 lockdep_assert_held(&locks_root->lock);
369
370 node = locks_root->root.rb_node;
371 while (node) {
372 entry = rb_entry(node, struct full_stripe_lock, node);
373 if (fstripe_logical < entry->logical)
374 node = node->rb_left;
375 else if (fstripe_logical > entry->logical)
376 node = node->rb_right;
377 else
378 return entry;
379 }
380 return NULL;
381}
382
383/*
384 * Helper to get full stripe logical from a normal bytenr.
385 *
386 * Caller must ensure @cache is a RAID56 block group.
387 */
388static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
389{
390 u64 ret;
391
392 /*
393 * Due to chunk item size limit, full stripe length should not be
394 * larger than U32_MAX. Just a sanity check here.
395 */
396 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
397
398 /*
399 * round_down() can only handle power of 2, while RAID56 full
400 * stripe length can be 64KiB * n, so we need to manually round down.
401 */
402 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
403 cache->full_stripe_len + cache->start;
404 return ret;
405}
406
407/*
408 * Lock a full stripe to avoid concurrency of recovery and read
409 *
410 * It's only used for profiles with parities (RAID5/6), for other profiles it
411 * does nothing.
412 *
413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
414 * So caller must call unlock_full_stripe() at the same context.
415 *
416 * Return <0 if encounters error.
417 */
418static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
419 bool *locked_ret)
420{
421 struct btrfs_block_group *bg_cache;
422 struct btrfs_full_stripe_locks_tree *locks_root;
423 struct full_stripe_lock *existing;
424 u64 fstripe_start;
425 int ret = 0;
426
427 *locked_ret = false;
428 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
429 if (!bg_cache) {
430 ASSERT(0);
431 return -ENOENT;
432 }
433
434 /* Profiles not based on parity don't need full stripe lock */
435 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
436 goto out;
437 locks_root = &bg_cache->full_stripe_locks_root;
438
439 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
440
441 /* Now insert the full stripe lock */
442 mutex_lock(&locks_root->lock);
443 existing = insert_full_stripe_lock(locks_root, fstripe_start);
444 mutex_unlock(&locks_root->lock);
445 if (IS_ERR(existing)) {
446 ret = PTR_ERR(existing);
447 goto out;
448 }
449 mutex_lock(&existing->mutex);
450 *locked_ret = true;
451out:
452 btrfs_put_block_group(bg_cache);
453 return ret;
454}
455
456/*
457 * Unlock a full stripe.
458 *
459 * NOTE: Caller must ensure it's the same context calling corresponding
460 * lock_full_stripe().
461 *
462 * Return 0 if we unlock full stripe without problem.
463 * Return <0 for error
464 */
465static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
466 bool locked)
467{
468 struct btrfs_block_group *bg_cache;
469 struct btrfs_full_stripe_locks_tree *locks_root;
470 struct full_stripe_lock *fstripe_lock;
471 u64 fstripe_start;
472 bool freeit = false;
473 int ret = 0;
474
475 /* If we didn't acquire full stripe lock, no need to continue */
476 if (!locked)
477 return 0;
478
479 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
480 if (!bg_cache) {
481 ASSERT(0);
482 return -ENOENT;
483 }
484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
485 goto out;
486
487 locks_root = &bg_cache->full_stripe_locks_root;
488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
489
490 mutex_lock(&locks_root->lock);
491 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
492 /* Unpaired unlock_full_stripe() detected */
493 if (!fstripe_lock) {
494 WARN_ON(1);
495 ret = -ENOENT;
496 mutex_unlock(&locks_root->lock);
497 goto out;
498 }
499
500 if (fstripe_lock->refs == 0) {
501 WARN_ON(1);
502 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
503 fstripe_lock->logical);
504 } else {
505 fstripe_lock->refs--;
506 }
507
508 if (fstripe_lock->refs == 0) {
509 rb_erase(&fstripe_lock->node, &locks_root->root);
510 freeit = true;
511 }
512 mutex_unlock(&locks_root->lock);
513
514 mutex_unlock(&fstripe_lock->mutex);
515 if (freeit)
516 kfree(fstripe_lock);
517out:
518 btrfs_put_block_group(bg_cache);
519 return ret;
520}
521
522static void scrub_free_csums(struct scrub_ctx *sctx)
523{
524 while (!list_empty(&sctx->csum_list)) {
525 struct btrfs_ordered_sum *sum;
526 sum = list_first_entry(&sctx->csum_list,
527 struct btrfs_ordered_sum, list);
528 list_del(&sum->list);
529 kfree(sum);
530 }
531}
532
533static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
534{
535 int i;
536
537 if (!sctx)
538 return;
539
540 /* this can happen when scrub is cancelled */
541 if (sctx->curr != -1) {
542 struct scrub_bio *sbio = sctx->bios[sctx->curr];
543
544 for (i = 0; i < sbio->page_count; i++) {
545 WARN_ON(!sbio->pagev[i]->page);
546 scrub_block_put(sbio->pagev[i]->sblock);
547 }
548 bio_put(sbio->bio);
549 }
550
551 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
552 struct scrub_bio *sbio = sctx->bios[i];
553
554 if (!sbio)
555 break;
556 kfree(sbio);
557 }
558
559 kfree(sctx->wr_curr_bio);
560 scrub_free_csums(sctx);
561 kfree(sctx);
562}
563
564static void scrub_put_ctx(struct scrub_ctx *sctx)
565{
566 if (refcount_dec_and_test(&sctx->refs))
567 scrub_free_ctx(sctx);
568}
569
570static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
571 struct btrfs_fs_info *fs_info, int is_dev_replace)
572{
573 struct scrub_ctx *sctx;
574 int i;
575
576 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
577 if (!sctx)
578 goto nomem;
579 refcount_set(&sctx->refs, 1);
580 sctx->is_dev_replace = is_dev_replace;
581 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
582 sctx->curr = -1;
583 sctx->fs_info = fs_info;
584 INIT_LIST_HEAD(&sctx->csum_list);
585 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
586 struct scrub_bio *sbio;
587
588 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
589 if (!sbio)
590 goto nomem;
591 sctx->bios[i] = sbio;
592
593 sbio->index = i;
594 sbio->sctx = sctx;
595 sbio->page_count = 0;
596 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
597 NULL);
598
599 if (i != SCRUB_BIOS_PER_SCTX - 1)
600 sctx->bios[i]->next_free = i + 1;
601 else
602 sctx->bios[i]->next_free = -1;
603 }
604 sctx->first_free = 0;
605 atomic_set(&sctx->bios_in_flight, 0);
606 atomic_set(&sctx->workers_pending, 0);
607 atomic_set(&sctx->cancel_req, 0);
608
609 spin_lock_init(&sctx->list_lock);
610 spin_lock_init(&sctx->stat_lock);
611 init_waitqueue_head(&sctx->list_wait);
612 sctx->throttle_deadline = 0;
613
614 WARN_ON(sctx->wr_curr_bio != NULL);
615 mutex_init(&sctx->wr_lock);
616 sctx->wr_curr_bio = NULL;
617 if (is_dev_replace) {
618 WARN_ON(!fs_info->dev_replace.tgtdev);
619 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
620 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
621 sctx->flush_all_writes = false;
622 }
623
624 return sctx;
625
626nomem:
627 scrub_free_ctx(sctx);
628 return ERR_PTR(-ENOMEM);
629}
630
631static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
632 void *warn_ctx)
633{
634 u32 nlink;
635 int ret;
636 int i;
637 unsigned nofs_flag;
638 struct extent_buffer *eb;
639 struct btrfs_inode_item *inode_item;
640 struct scrub_warning *swarn = warn_ctx;
641 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
642 struct inode_fs_paths *ipath = NULL;
643 struct btrfs_root *local_root;
644 struct btrfs_key key;
645
646 local_root = btrfs_get_fs_root(fs_info, root, true);
647 if (IS_ERR(local_root)) {
648 ret = PTR_ERR(local_root);
649 goto err;
650 }
651
652 /*
653 * this makes the path point to (inum INODE_ITEM ioff)
654 */
655 key.objectid = inum;
656 key.type = BTRFS_INODE_ITEM_KEY;
657 key.offset = 0;
658
659 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
660 if (ret) {
661 btrfs_put_root(local_root);
662 btrfs_release_path(swarn->path);
663 goto err;
664 }
665
666 eb = swarn->path->nodes[0];
667 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
668 struct btrfs_inode_item);
669 nlink = btrfs_inode_nlink(eb, inode_item);
670 btrfs_release_path(swarn->path);
671
672 /*
673 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
674 * uses GFP_NOFS in this context, so we keep it consistent but it does
675 * not seem to be strictly necessary.
676 */
677 nofs_flag = memalloc_nofs_save();
678 ipath = init_ipath(4096, local_root, swarn->path);
679 memalloc_nofs_restore(nofs_flag);
680 if (IS_ERR(ipath)) {
681 btrfs_put_root(local_root);
682 ret = PTR_ERR(ipath);
683 ipath = NULL;
684 goto err;
685 }
686 ret = paths_from_inode(inum, ipath);
687
688 if (ret < 0)
689 goto err;
690
691 /*
692 * we deliberately ignore the bit ipath might have been too small to
693 * hold all of the paths here
694 */
695 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
696 btrfs_warn_in_rcu(fs_info,
697"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
698 swarn->errstr, swarn->logical,
699 rcu_str_deref(swarn->dev->name),
700 swarn->physical,
701 root, inum, offset,
702 fs_info->sectorsize, nlink,
703 (char *)(unsigned long)ipath->fspath->val[i]);
704
705 btrfs_put_root(local_root);
706 free_ipath(ipath);
707 return 0;
708
709err:
710 btrfs_warn_in_rcu(fs_info,
711 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
712 swarn->errstr, swarn->logical,
713 rcu_str_deref(swarn->dev->name),
714 swarn->physical,
715 root, inum, offset, ret);
716
717 free_ipath(ipath);
718 return 0;
719}
720
721static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
722{
723 struct btrfs_device *dev;
724 struct btrfs_fs_info *fs_info;
725 struct btrfs_path *path;
726 struct btrfs_key found_key;
727 struct extent_buffer *eb;
728 struct btrfs_extent_item *ei;
729 struct scrub_warning swarn;
730 unsigned long ptr = 0;
731 u64 extent_item_pos;
732 u64 flags = 0;
733 u64 ref_root;
734 u32 item_size;
735 u8 ref_level = 0;
736 int ret;
737
738 WARN_ON(sblock->page_count < 1);
739 dev = sblock->pagev[0]->dev;
740 fs_info = sblock->sctx->fs_info;
741
742 path = btrfs_alloc_path();
743 if (!path)
744 return;
745
746 swarn.physical = sblock->pagev[0]->physical;
747 swarn.logical = sblock->pagev[0]->logical;
748 swarn.errstr = errstr;
749 swarn.dev = NULL;
750
751 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
752 &flags);
753 if (ret < 0)
754 goto out;
755
756 extent_item_pos = swarn.logical - found_key.objectid;
757 swarn.extent_item_size = found_key.offset;
758
759 eb = path->nodes[0];
760 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
761 item_size = btrfs_item_size_nr(eb, path->slots[0]);
762
763 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
764 do {
765 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
766 item_size, &ref_root,
767 &ref_level);
768 btrfs_warn_in_rcu(fs_info,
769"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
770 errstr, swarn.logical,
771 rcu_str_deref(dev->name),
772 swarn.physical,
773 ref_level ? "node" : "leaf",
774 ret < 0 ? -1 : ref_level,
775 ret < 0 ? -1 : ref_root);
776 } while (ret != 1);
777 btrfs_release_path(path);
778 } else {
779 btrfs_release_path(path);
780 swarn.path = path;
781 swarn.dev = dev;
782 iterate_extent_inodes(fs_info, found_key.objectid,
783 extent_item_pos, 1,
784 scrub_print_warning_inode, &swarn, false);
785 }
786
787out:
788 btrfs_free_path(path);
789}
790
791static inline void scrub_get_recover(struct scrub_recover *recover)
792{
793 refcount_inc(&recover->refs);
794}
795
796static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
797 struct scrub_recover *recover)
798{
799 if (refcount_dec_and_test(&recover->refs)) {
800 btrfs_bio_counter_dec(fs_info);
801 btrfs_put_bbio(recover->bbio);
802 kfree(recover);
803 }
804}
805
806/*
807 * scrub_handle_errored_block gets called when either verification of the
808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
809 * case, this function handles all pages in the bio, even though only one
810 * may be bad.
811 * The goal of this function is to repair the errored block by using the
812 * contents of one of the mirrors.
813 */
814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
815{
816 struct scrub_ctx *sctx = sblock_to_check->sctx;
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
819 u64 logical;
820 unsigned int failed_mirror_index;
821 unsigned int is_metadata;
822 unsigned int have_csum;
823 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
824 struct scrub_block *sblock_bad;
825 int ret;
826 int mirror_index;
827 int page_num;
828 int success;
829 bool full_stripe_locked;
830 unsigned int nofs_flag;
831 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
832 DEFAULT_RATELIMIT_BURST);
833
834 BUG_ON(sblock_to_check->page_count < 1);
835 fs_info = sctx->fs_info;
836 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
837 /*
838 * if we find an error in a super block, we just report it.
839 * They will get written with the next transaction commit
840 * anyway
841 */
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.super_errors;
844 spin_unlock(&sctx->stat_lock);
845 return 0;
846 }
847 logical = sblock_to_check->pagev[0]->logical;
848 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
849 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
850 is_metadata = !(sblock_to_check->pagev[0]->flags &
851 BTRFS_EXTENT_FLAG_DATA);
852 have_csum = sblock_to_check->pagev[0]->have_csum;
853 dev = sblock_to_check->pagev[0]->dev;
854
855 if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
856 return btrfs_repair_one_zone(fs_info, logical);
857
858 /*
859 * We must use GFP_NOFS because the scrub task might be waiting for a
860 * worker task executing this function and in turn a transaction commit
861 * might be waiting the scrub task to pause (which needs to wait for all
862 * the worker tasks to complete before pausing).
863 * We do allocations in the workers through insert_full_stripe_lock()
864 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
865 * this function.
866 */
867 nofs_flag = memalloc_nofs_save();
868 /*
869 * For RAID5/6, race can happen for a different device scrub thread.
870 * For data corruption, Parity and Data threads will both try
871 * to recovery the data.
872 * Race can lead to doubly added csum error, or even unrecoverable
873 * error.
874 */
875 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
876 if (ret < 0) {
877 memalloc_nofs_restore(nofs_flag);
878 spin_lock(&sctx->stat_lock);
879 if (ret == -ENOMEM)
880 sctx->stat.malloc_errors++;
881 sctx->stat.read_errors++;
882 sctx->stat.uncorrectable_errors++;
883 spin_unlock(&sctx->stat_lock);
884 return ret;
885 }
886
887 /*
888 * read all mirrors one after the other. This includes to
889 * re-read the extent or metadata block that failed (that was
890 * the cause that this fixup code is called) another time,
891 * sector by sector this time in order to know which sectors
892 * caused I/O errors and which ones are good (for all mirrors).
893 * It is the goal to handle the situation when more than one
894 * mirror contains I/O errors, but the errors do not
895 * overlap, i.e. the data can be repaired by selecting the
896 * sectors from those mirrors without I/O error on the
897 * particular sectors. One example (with blocks >= 2 * sectorsize)
898 * would be that mirror #1 has an I/O error on the first sector,
899 * the second sector is good, and mirror #2 has an I/O error on
900 * the second sector, but the first sector is good.
901 * Then the first sector of the first mirror can be repaired by
902 * taking the first sector of the second mirror, and the
903 * second sector of the second mirror can be repaired by
904 * copying the contents of the 2nd sector of the 1st mirror.
905 * One more note: if the sectors of one mirror contain I/O
906 * errors, the checksum cannot be verified. In order to get
907 * the best data for repairing, the first attempt is to find
908 * a mirror without I/O errors and with a validated checksum.
909 * Only if this is not possible, the sectors are picked from
910 * mirrors with I/O errors without considering the checksum.
911 * If the latter is the case, at the end, the checksum of the
912 * repaired area is verified in order to correctly maintain
913 * the statistics.
914 */
915
916 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
917 sizeof(*sblocks_for_recheck), GFP_KERNEL);
918 if (!sblocks_for_recheck) {
919 spin_lock(&sctx->stat_lock);
920 sctx->stat.malloc_errors++;
921 sctx->stat.read_errors++;
922 sctx->stat.uncorrectable_errors++;
923 spin_unlock(&sctx->stat_lock);
924 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
925 goto out;
926 }
927
928 /* setup the context, map the logical blocks and alloc the pages */
929 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
930 if (ret) {
931 spin_lock(&sctx->stat_lock);
932 sctx->stat.read_errors++;
933 sctx->stat.uncorrectable_errors++;
934 spin_unlock(&sctx->stat_lock);
935 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
936 goto out;
937 }
938 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
939 sblock_bad = sblocks_for_recheck + failed_mirror_index;
940
941 /* build and submit the bios for the failed mirror, check checksums */
942 scrub_recheck_block(fs_info, sblock_bad, 1);
943
944 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
945 sblock_bad->no_io_error_seen) {
946 /*
947 * the error disappeared after reading page by page, or
948 * the area was part of a huge bio and other parts of the
949 * bio caused I/O errors, or the block layer merged several
950 * read requests into one and the error is caused by a
951 * different bio (usually one of the two latter cases is
952 * the cause)
953 */
954 spin_lock(&sctx->stat_lock);
955 sctx->stat.unverified_errors++;
956 sblock_to_check->data_corrected = 1;
957 spin_unlock(&sctx->stat_lock);
958
959 if (sctx->is_dev_replace)
960 scrub_write_block_to_dev_replace(sblock_bad);
961 goto out;
962 }
963
964 if (!sblock_bad->no_io_error_seen) {
965 spin_lock(&sctx->stat_lock);
966 sctx->stat.read_errors++;
967 spin_unlock(&sctx->stat_lock);
968 if (__ratelimit(&rs))
969 scrub_print_warning("i/o error", sblock_to_check);
970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 } else if (sblock_bad->checksum_error) {
972 spin_lock(&sctx->stat_lock);
973 sctx->stat.csum_errors++;
974 spin_unlock(&sctx->stat_lock);
975 if (__ratelimit(&rs))
976 scrub_print_warning("checksum error", sblock_to_check);
977 btrfs_dev_stat_inc_and_print(dev,
978 BTRFS_DEV_STAT_CORRUPTION_ERRS);
979 } else if (sblock_bad->header_error) {
980 spin_lock(&sctx->stat_lock);
981 sctx->stat.verify_errors++;
982 spin_unlock(&sctx->stat_lock);
983 if (__ratelimit(&rs))
984 scrub_print_warning("checksum/header error",
985 sblock_to_check);
986 if (sblock_bad->generation_error)
987 btrfs_dev_stat_inc_and_print(dev,
988 BTRFS_DEV_STAT_GENERATION_ERRS);
989 else
990 btrfs_dev_stat_inc_and_print(dev,
991 BTRFS_DEV_STAT_CORRUPTION_ERRS);
992 }
993
994 if (sctx->readonly) {
995 ASSERT(!sctx->is_dev_replace);
996 goto out;
997 }
998
999 /*
1000 * now build and submit the bios for the other mirrors, check
1001 * checksums.
1002 * First try to pick the mirror which is completely without I/O
1003 * errors and also does not have a checksum error.
1004 * If one is found, and if a checksum is present, the full block
1005 * that is known to contain an error is rewritten. Afterwards
1006 * the block is known to be corrected.
1007 * If a mirror is found which is completely correct, and no
1008 * checksum is present, only those pages are rewritten that had
1009 * an I/O error in the block to be repaired, since it cannot be
1010 * determined, which copy of the other pages is better (and it
1011 * could happen otherwise that a correct page would be
1012 * overwritten by a bad one).
1013 */
1014 for (mirror_index = 0; ;mirror_index++) {
1015 struct scrub_block *sblock_other;
1016
1017 if (mirror_index == failed_mirror_index)
1018 continue;
1019
1020 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022 if (mirror_index >= BTRFS_MAX_MIRRORS)
1023 break;
1024 if (!sblocks_for_recheck[mirror_index].page_count)
1025 break;
1026
1027 sblock_other = sblocks_for_recheck + mirror_index;
1028 } else {
1029 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030 int max_allowed = r->bbio->num_stripes -
1031 r->bbio->num_tgtdevs;
1032
1033 if (mirror_index >= max_allowed)
1034 break;
1035 if (!sblocks_for_recheck[1].page_count)
1036 break;
1037
1038 ASSERT(failed_mirror_index == 0);
1039 sblock_other = sblocks_for_recheck + 1;
1040 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1041 }
1042
1043 /* build and submit the bios, check checksums */
1044 scrub_recheck_block(fs_info, sblock_other, 0);
1045
1046 if (!sblock_other->header_error &&
1047 !sblock_other->checksum_error &&
1048 sblock_other->no_io_error_seen) {
1049 if (sctx->is_dev_replace) {
1050 scrub_write_block_to_dev_replace(sblock_other);
1051 goto corrected_error;
1052 } else {
1053 ret = scrub_repair_block_from_good_copy(
1054 sblock_bad, sblock_other);
1055 if (!ret)
1056 goto corrected_error;
1057 }
1058 }
1059 }
1060
1061 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1062 goto did_not_correct_error;
1063
1064 /*
1065 * In case of I/O errors in the area that is supposed to be
1066 * repaired, continue by picking good copies of those sectors.
1067 * Select the good sectors from mirrors to rewrite bad sectors from
1068 * the area to fix. Afterwards verify the checksum of the block
1069 * that is supposed to be repaired. This verification step is
1070 * only done for the purpose of statistic counting and for the
1071 * final scrub report, whether errors remain.
1072 * A perfect algorithm could make use of the checksum and try
1073 * all possible combinations of sectors from the different mirrors
1074 * until the checksum verification succeeds. For example, when
1075 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1076 * of mirror #2 is readable but the final checksum test fails,
1077 * then the 2nd sector of mirror #3 could be tried, whether now
1078 * the final checksum succeeds. But this would be a rare
1079 * exception and is therefore not implemented. At least it is
1080 * avoided that the good copy is overwritten.
1081 * A more useful improvement would be to pick the sectors
1082 * without I/O error based on sector sizes (512 bytes on legacy
1083 * disks) instead of on sectorsize. Then maybe 512 byte of one
1084 * mirror could be repaired by taking 512 byte of a different
1085 * mirror, even if other 512 byte sectors in the same sectorsize
1086 * area are unreadable.
1087 */
1088 success = 1;
1089 for (page_num = 0; page_num < sblock_bad->page_count;
1090 page_num++) {
1091 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1092 struct scrub_block *sblock_other = NULL;
1093
1094 /* skip no-io-error page in scrub */
1095 if (!spage_bad->io_error && !sctx->is_dev_replace)
1096 continue;
1097
1098 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1099 /*
1100 * In case of dev replace, if raid56 rebuild process
1101 * didn't work out correct data, then copy the content
1102 * in sblock_bad to make sure target device is identical
1103 * to source device, instead of writing garbage data in
1104 * sblock_for_recheck array to target device.
1105 */
1106 sblock_other = NULL;
1107 } else if (spage_bad->io_error) {
1108 /* try to find no-io-error page in mirrors */
1109 for (mirror_index = 0;
1110 mirror_index < BTRFS_MAX_MIRRORS &&
1111 sblocks_for_recheck[mirror_index].page_count > 0;
1112 mirror_index++) {
1113 if (!sblocks_for_recheck[mirror_index].
1114 pagev[page_num]->io_error) {
1115 sblock_other = sblocks_for_recheck +
1116 mirror_index;
1117 break;
1118 }
1119 }
1120 if (!sblock_other)
1121 success = 0;
1122 }
1123
1124 if (sctx->is_dev_replace) {
1125 /*
1126 * did not find a mirror to fetch the page
1127 * from. scrub_write_page_to_dev_replace()
1128 * handles this case (page->io_error), by
1129 * filling the block with zeros before
1130 * submitting the write request
1131 */
1132 if (!sblock_other)
1133 sblock_other = sblock_bad;
1134
1135 if (scrub_write_page_to_dev_replace(sblock_other,
1136 page_num) != 0) {
1137 atomic64_inc(
1138 &fs_info->dev_replace.num_write_errors);
1139 success = 0;
1140 }
1141 } else if (sblock_other) {
1142 ret = scrub_repair_page_from_good_copy(sblock_bad,
1143 sblock_other,
1144 page_num, 0);
1145 if (0 == ret)
1146 spage_bad->io_error = 0;
1147 else
1148 success = 0;
1149 }
1150 }
1151
1152 if (success && !sctx->is_dev_replace) {
1153 if (is_metadata || have_csum) {
1154 /*
1155 * need to verify the checksum now that all
1156 * sectors on disk are repaired (the write
1157 * request for data to be repaired is on its way).
1158 * Just be lazy and use scrub_recheck_block()
1159 * which re-reads the data before the checksum
1160 * is verified, but most likely the data comes out
1161 * of the page cache.
1162 */
1163 scrub_recheck_block(fs_info, sblock_bad, 1);
1164 if (!sblock_bad->header_error &&
1165 !sblock_bad->checksum_error &&
1166 sblock_bad->no_io_error_seen)
1167 goto corrected_error;
1168 else
1169 goto did_not_correct_error;
1170 } else {
1171corrected_error:
1172 spin_lock(&sctx->stat_lock);
1173 sctx->stat.corrected_errors++;
1174 sblock_to_check->data_corrected = 1;
1175 spin_unlock(&sctx->stat_lock);
1176 btrfs_err_rl_in_rcu(fs_info,
1177 "fixed up error at logical %llu on dev %s",
1178 logical, rcu_str_deref(dev->name));
1179 }
1180 } else {
1181did_not_correct_error:
1182 spin_lock(&sctx->stat_lock);
1183 sctx->stat.uncorrectable_errors++;
1184 spin_unlock(&sctx->stat_lock);
1185 btrfs_err_rl_in_rcu(fs_info,
1186 "unable to fixup (regular) error at logical %llu on dev %s",
1187 logical, rcu_str_deref(dev->name));
1188 }
1189
1190out:
1191 if (sblocks_for_recheck) {
1192 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1193 mirror_index++) {
1194 struct scrub_block *sblock = sblocks_for_recheck +
1195 mirror_index;
1196 struct scrub_recover *recover;
1197 int page_index;
1198
1199 for (page_index = 0; page_index < sblock->page_count;
1200 page_index++) {
1201 sblock->pagev[page_index]->sblock = NULL;
1202 recover = sblock->pagev[page_index]->recover;
1203 if (recover) {
1204 scrub_put_recover(fs_info, recover);
1205 sblock->pagev[page_index]->recover =
1206 NULL;
1207 }
1208 scrub_page_put(sblock->pagev[page_index]);
1209 }
1210 }
1211 kfree(sblocks_for_recheck);
1212 }
1213
1214 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1215 memalloc_nofs_restore(nofs_flag);
1216 if (ret < 0)
1217 return ret;
1218 return 0;
1219}
1220
1221static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1222{
1223 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1224 return 2;
1225 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1226 return 3;
1227 else
1228 return (int)bbio->num_stripes;
1229}
1230
1231static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1232 u64 *raid_map,
1233 u64 mapped_length,
1234 int nstripes, int mirror,
1235 int *stripe_index,
1236 u64 *stripe_offset)
1237{
1238 int i;
1239
1240 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1241 /* RAID5/6 */
1242 for (i = 0; i < nstripes; i++) {
1243 if (raid_map[i] == RAID6_Q_STRIPE ||
1244 raid_map[i] == RAID5_P_STRIPE)
1245 continue;
1246
1247 if (logical >= raid_map[i] &&
1248 logical < raid_map[i] + mapped_length)
1249 break;
1250 }
1251
1252 *stripe_index = i;
1253 *stripe_offset = logical - raid_map[i];
1254 } else {
1255 /* The other RAID type */
1256 *stripe_index = mirror;
1257 *stripe_offset = 0;
1258 }
1259}
1260
1261static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1262 struct scrub_block *sblocks_for_recheck)
1263{
1264 struct scrub_ctx *sctx = original_sblock->sctx;
1265 struct btrfs_fs_info *fs_info = sctx->fs_info;
1266 u64 length = original_sblock->page_count * fs_info->sectorsize;
1267 u64 logical = original_sblock->pagev[0]->logical;
1268 u64 generation = original_sblock->pagev[0]->generation;
1269 u64 flags = original_sblock->pagev[0]->flags;
1270 u64 have_csum = original_sblock->pagev[0]->have_csum;
1271 struct scrub_recover *recover;
1272 struct btrfs_bio *bbio;
1273 u64 sublen;
1274 u64 mapped_length;
1275 u64 stripe_offset;
1276 int stripe_index;
1277 int page_index = 0;
1278 int mirror_index;
1279 int nmirrors;
1280 int ret;
1281
1282 /*
1283 * note: the two members refs and outstanding_pages
1284 * are not used (and not set) in the blocks that are used for
1285 * the recheck procedure
1286 */
1287
1288 while (length > 0) {
1289 sublen = min_t(u64, length, fs_info->sectorsize);
1290 mapped_length = sublen;
1291 bbio = NULL;
1292
1293 /*
1294 * With a length of sectorsize, each returned stripe represents
1295 * one mirror
1296 */
1297 btrfs_bio_counter_inc_blocked(fs_info);
1298 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1299 logical, &mapped_length, &bbio);
1300 if (ret || !bbio || mapped_length < sublen) {
1301 btrfs_put_bbio(bbio);
1302 btrfs_bio_counter_dec(fs_info);
1303 return -EIO;
1304 }
1305
1306 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1307 if (!recover) {
1308 btrfs_put_bbio(bbio);
1309 btrfs_bio_counter_dec(fs_info);
1310 return -ENOMEM;
1311 }
1312
1313 refcount_set(&recover->refs, 1);
1314 recover->bbio = bbio;
1315 recover->map_length = mapped_length;
1316
1317 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1318
1319 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1320
1321 for (mirror_index = 0; mirror_index < nmirrors;
1322 mirror_index++) {
1323 struct scrub_block *sblock;
1324 struct scrub_page *spage;
1325
1326 sblock = sblocks_for_recheck + mirror_index;
1327 sblock->sctx = sctx;
1328
1329 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1330 if (!spage) {
1331leave_nomem:
1332 spin_lock(&sctx->stat_lock);
1333 sctx->stat.malloc_errors++;
1334 spin_unlock(&sctx->stat_lock);
1335 scrub_put_recover(fs_info, recover);
1336 return -ENOMEM;
1337 }
1338 scrub_page_get(spage);
1339 sblock->pagev[page_index] = spage;
1340 spage->sblock = sblock;
1341 spage->flags = flags;
1342 spage->generation = generation;
1343 spage->logical = logical;
1344 spage->have_csum = have_csum;
1345 if (have_csum)
1346 memcpy(spage->csum,
1347 original_sblock->pagev[0]->csum,
1348 sctx->fs_info->csum_size);
1349
1350 scrub_stripe_index_and_offset(logical,
1351 bbio->map_type,
1352 bbio->raid_map,
1353 mapped_length,
1354 bbio->num_stripes -
1355 bbio->num_tgtdevs,
1356 mirror_index,
1357 &stripe_index,
1358 &stripe_offset);
1359 spage->physical = bbio->stripes[stripe_index].physical +
1360 stripe_offset;
1361 spage->dev = bbio->stripes[stripe_index].dev;
1362
1363 BUG_ON(page_index >= original_sblock->page_count);
1364 spage->physical_for_dev_replace =
1365 original_sblock->pagev[page_index]->
1366 physical_for_dev_replace;
1367 /* for missing devices, dev->bdev is NULL */
1368 spage->mirror_num = mirror_index + 1;
1369 sblock->page_count++;
1370 spage->page = alloc_page(GFP_NOFS);
1371 if (!spage->page)
1372 goto leave_nomem;
1373
1374 scrub_get_recover(recover);
1375 spage->recover = recover;
1376 }
1377 scrub_put_recover(fs_info, recover);
1378 length -= sublen;
1379 logical += sublen;
1380 page_index++;
1381 }
1382
1383 return 0;
1384}
1385
1386static void scrub_bio_wait_endio(struct bio *bio)
1387{
1388 complete(bio->bi_private);
1389}
1390
1391static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1392 struct bio *bio,
1393 struct scrub_page *spage)
1394{
1395 DECLARE_COMPLETION_ONSTACK(done);
1396 int ret;
1397 int mirror_num;
1398
1399 bio->bi_iter.bi_sector = spage->logical >> 9;
1400 bio->bi_private = &done;
1401 bio->bi_end_io = scrub_bio_wait_endio;
1402
1403 mirror_num = spage->sblock->pagev[0]->mirror_num;
1404 ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1405 spage->recover->map_length,
1406 mirror_num, 0);
1407 if (ret)
1408 return ret;
1409
1410 wait_for_completion_io(&done);
1411 return blk_status_to_errno(bio->bi_status);
1412}
1413
1414static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1415 struct scrub_block *sblock)
1416{
1417 struct scrub_page *first_page = sblock->pagev[0];
1418 struct bio *bio;
1419 int page_num;
1420
1421 /* All pages in sblock belong to the same stripe on the same device. */
1422 ASSERT(first_page->dev);
1423 if (!first_page->dev->bdev)
1424 goto out;
1425
1426 bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
1427 bio_set_dev(bio, first_page->dev->bdev);
1428
1429 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1430 struct scrub_page *spage = sblock->pagev[page_num];
1431
1432 WARN_ON(!spage->page);
1433 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1434 }
1435
1436 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1437 bio_put(bio);
1438 goto out;
1439 }
1440
1441 bio_put(bio);
1442
1443 scrub_recheck_block_checksum(sblock);
1444
1445 return;
1446out:
1447 for (page_num = 0; page_num < sblock->page_count; page_num++)
1448 sblock->pagev[page_num]->io_error = 1;
1449
1450 sblock->no_io_error_seen = 0;
1451}
1452
1453/*
1454 * this function will check the on disk data for checksum errors, header
1455 * errors and read I/O errors. If any I/O errors happen, the exact pages
1456 * which are errored are marked as being bad. The goal is to enable scrub
1457 * to take those pages that are not errored from all the mirrors so that
1458 * the pages that are errored in the just handled mirror can be repaired.
1459 */
1460static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1461 struct scrub_block *sblock,
1462 int retry_failed_mirror)
1463{
1464 int page_num;
1465
1466 sblock->no_io_error_seen = 1;
1467
1468 /* short cut for raid56 */
1469 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1470 return scrub_recheck_block_on_raid56(fs_info, sblock);
1471
1472 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473 struct bio *bio;
1474 struct scrub_page *spage = sblock->pagev[page_num];
1475
1476 if (spage->dev->bdev == NULL) {
1477 spage->io_error = 1;
1478 sblock->no_io_error_seen = 0;
1479 continue;
1480 }
1481
1482 WARN_ON(!spage->page);
1483 bio = btrfs_io_bio_alloc(1);
1484 bio_set_dev(bio, spage->dev->bdev);
1485
1486 bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1487 bio->bi_iter.bi_sector = spage->physical >> 9;
1488 bio->bi_opf = REQ_OP_READ;
1489
1490 if (btrfsic_submit_bio_wait(bio)) {
1491 spage->io_error = 1;
1492 sblock->no_io_error_seen = 0;
1493 }
1494
1495 bio_put(bio);
1496 }
1497
1498 if (sblock->no_io_error_seen)
1499 scrub_recheck_block_checksum(sblock);
1500}
1501
1502static inline int scrub_check_fsid(u8 fsid[],
1503 struct scrub_page *spage)
1504{
1505 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1506 int ret;
1507
1508 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1509 return !ret;
1510}
1511
1512static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1513{
1514 sblock->header_error = 0;
1515 sblock->checksum_error = 0;
1516 sblock->generation_error = 0;
1517
1518 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1519 scrub_checksum_data(sblock);
1520 else
1521 scrub_checksum_tree_block(sblock);
1522}
1523
1524static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1525 struct scrub_block *sblock_good)
1526{
1527 int page_num;
1528 int ret = 0;
1529
1530 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1531 int ret_sub;
1532
1533 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1534 sblock_good,
1535 page_num, 1);
1536 if (ret_sub)
1537 ret = ret_sub;
1538 }
1539
1540 return ret;
1541}
1542
1543static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1544 struct scrub_block *sblock_good,
1545 int page_num, int force_write)
1546{
1547 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1548 struct scrub_page *spage_good = sblock_good->pagev[page_num];
1549 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1550 const u32 sectorsize = fs_info->sectorsize;
1551
1552 BUG_ON(spage_bad->page == NULL);
1553 BUG_ON(spage_good->page == NULL);
1554 if (force_write || sblock_bad->header_error ||
1555 sblock_bad->checksum_error || spage_bad->io_error) {
1556 struct bio *bio;
1557 int ret;
1558
1559 if (!spage_bad->dev->bdev) {
1560 btrfs_warn_rl(fs_info,
1561 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 return -EIO;
1563 }
1564
1565 bio = btrfs_io_bio_alloc(1);
1566 bio_set_dev(bio, spage_bad->dev->bdev);
1567 bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1568 bio->bi_opf = REQ_OP_WRITE;
1569
1570 ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1571 if (ret != sectorsize) {
1572 bio_put(bio);
1573 return -EIO;
1574 }
1575
1576 if (btrfsic_submit_bio_wait(bio)) {
1577 btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578 BTRFS_DEV_STAT_WRITE_ERRS);
1579 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580 bio_put(bio);
1581 return -EIO;
1582 }
1583 bio_put(bio);
1584 }
1585
1586 return 0;
1587}
1588
1589static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1590{
1591 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592 int page_num;
1593
1594 /*
1595 * This block is used for the check of the parity on the source device,
1596 * so the data needn't be written into the destination device.
1597 */
1598 if (sblock->sparity)
1599 return;
1600
1601 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602 int ret;
1603
1604 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605 if (ret)
1606 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1607 }
1608}
1609
1610static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611 int page_num)
1612{
1613 struct scrub_page *spage = sblock->pagev[page_num];
1614
1615 BUG_ON(spage->page == NULL);
1616 if (spage->io_error)
1617 clear_page(page_address(spage->page));
1618
1619 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620}
1621
1622static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1623{
1624 int ret = 0;
1625 u64 length;
1626
1627 if (!btrfs_is_zoned(sctx->fs_info))
1628 return 0;
1629
1630 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1631 return 0;
1632
1633 if (sctx->write_pointer < physical) {
1634 length = physical - sctx->write_pointer;
1635
1636 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1637 sctx->write_pointer, length);
1638 if (!ret)
1639 sctx->write_pointer = physical;
1640 }
1641 return ret;
1642}
1643
1644static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1645 struct scrub_page *spage)
1646{
1647 struct scrub_bio *sbio;
1648 int ret;
1649 const u32 sectorsize = sctx->fs_info->sectorsize;
1650
1651 mutex_lock(&sctx->wr_lock);
1652again:
1653 if (!sctx->wr_curr_bio) {
1654 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655 GFP_KERNEL);
1656 if (!sctx->wr_curr_bio) {
1657 mutex_unlock(&sctx->wr_lock);
1658 return -ENOMEM;
1659 }
1660 sctx->wr_curr_bio->sctx = sctx;
1661 sctx->wr_curr_bio->page_count = 0;
1662 }
1663 sbio = sctx->wr_curr_bio;
1664 if (sbio->page_count == 0) {
1665 struct bio *bio;
1666
1667 ret = fill_writer_pointer_gap(sctx,
1668 spage->physical_for_dev_replace);
1669 if (ret) {
1670 mutex_unlock(&sctx->wr_lock);
1671 return ret;
1672 }
1673
1674 sbio->physical = spage->physical_for_dev_replace;
1675 sbio->logical = spage->logical;
1676 sbio->dev = sctx->wr_tgtdev;
1677 bio = sbio->bio;
1678 if (!bio) {
1679 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680 sbio->bio = bio;
1681 }
1682
1683 bio->bi_private = sbio;
1684 bio->bi_end_io = scrub_wr_bio_end_io;
1685 bio_set_dev(bio, sbio->dev->bdev);
1686 bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 bio->bi_opf = REQ_OP_WRITE;
1688 sbio->status = 0;
1689 } else if (sbio->physical + sbio->page_count * sectorsize !=
1690 spage->physical_for_dev_replace ||
1691 sbio->logical + sbio->page_count * sectorsize !=
1692 spage->logical) {
1693 scrub_wr_submit(sctx);
1694 goto again;
1695 }
1696
1697 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1698 if (ret != sectorsize) {
1699 if (sbio->page_count < 1) {
1700 bio_put(sbio->bio);
1701 sbio->bio = NULL;
1702 mutex_unlock(&sctx->wr_lock);
1703 return -EIO;
1704 }
1705 scrub_wr_submit(sctx);
1706 goto again;
1707 }
1708
1709 sbio->pagev[sbio->page_count] = spage;
1710 scrub_page_get(spage);
1711 sbio->page_count++;
1712 if (sbio->page_count == sctx->pages_per_wr_bio)
1713 scrub_wr_submit(sctx);
1714 mutex_unlock(&sctx->wr_lock);
1715
1716 return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721 struct scrub_bio *sbio;
1722
1723 if (!sctx->wr_curr_bio)
1724 return;
1725
1726 sbio = sctx->wr_curr_bio;
1727 sctx->wr_curr_bio = NULL;
1728 WARN_ON(!sbio->bio->bi_bdev);
1729 scrub_pending_bio_inc(sctx);
1730 /* process all writes in a single worker thread. Then the block layer
1731 * orders the requests before sending them to the driver which
1732 * doubled the write performance on spinning disks when measured
1733 * with Linux 3.5 */
1734 btrfsic_submit_bio(sbio->bio);
1735
1736 if (btrfs_is_zoned(sctx->fs_info))
1737 sctx->write_pointer = sbio->physical + sbio->page_count *
1738 sctx->fs_info->sectorsize;
1739}
1740
1741static void scrub_wr_bio_end_io(struct bio *bio)
1742{
1743 struct scrub_bio *sbio = bio->bi_private;
1744 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1745
1746 sbio->status = bio->bi_status;
1747 sbio->bio = bio;
1748
1749 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1750 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751}
1752
1753static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1754{
1755 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1756 struct scrub_ctx *sctx = sbio->sctx;
1757 int i;
1758
1759 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760 if (sbio->status) {
1761 struct btrfs_dev_replace *dev_replace =
1762 &sbio->sctx->fs_info->dev_replace;
1763
1764 for (i = 0; i < sbio->page_count; i++) {
1765 struct scrub_page *spage = sbio->pagev[i];
1766
1767 spage->io_error = 1;
1768 atomic64_inc(&dev_replace->num_write_errors);
1769 }
1770 }
1771
1772 for (i = 0; i < sbio->page_count; i++)
1773 scrub_page_put(sbio->pagev[i]);
1774
1775 bio_put(sbio->bio);
1776 kfree(sbio);
1777 scrub_pending_bio_dec(sctx);
1778}
1779
1780static int scrub_checksum(struct scrub_block *sblock)
1781{
1782 u64 flags;
1783 int ret;
1784
1785 /*
1786 * No need to initialize these stats currently,
1787 * because this function only use return value
1788 * instead of these stats value.
1789 *
1790 * Todo:
1791 * always use stats
1792 */
1793 sblock->header_error = 0;
1794 sblock->generation_error = 0;
1795 sblock->checksum_error = 0;
1796
1797 WARN_ON(sblock->page_count < 1);
1798 flags = sblock->pagev[0]->flags;
1799 ret = 0;
1800 if (flags & BTRFS_EXTENT_FLAG_DATA)
1801 ret = scrub_checksum_data(sblock);
1802 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1803 ret = scrub_checksum_tree_block(sblock);
1804 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1805 (void)scrub_checksum_super(sblock);
1806 else
1807 WARN_ON(1);
1808 if (ret)
1809 scrub_handle_errored_block(sblock);
1810
1811 return ret;
1812}
1813
1814static int scrub_checksum_data(struct scrub_block *sblock)
1815{
1816 struct scrub_ctx *sctx = sblock->sctx;
1817 struct btrfs_fs_info *fs_info = sctx->fs_info;
1818 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1819 u8 csum[BTRFS_CSUM_SIZE];
1820 struct scrub_page *spage;
1821 char *kaddr;
1822
1823 BUG_ON(sblock->page_count < 1);
1824 spage = sblock->pagev[0];
1825 if (!spage->have_csum)
1826 return 0;
1827
1828 kaddr = page_address(spage->page);
1829
1830 shash->tfm = fs_info->csum_shash;
1831 crypto_shash_init(shash);
1832
1833 /*
1834 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1835 * only contains one sector of data.
1836 */
1837 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1838
1839 if (memcmp(csum, spage->csum, fs_info->csum_size))
1840 sblock->checksum_error = 1;
1841 return sblock->checksum_error;
1842}
1843
1844static int scrub_checksum_tree_block(struct scrub_block *sblock)
1845{
1846 struct scrub_ctx *sctx = sblock->sctx;
1847 struct btrfs_header *h;
1848 struct btrfs_fs_info *fs_info = sctx->fs_info;
1849 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1850 u8 calculated_csum[BTRFS_CSUM_SIZE];
1851 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1852 /*
1853 * This is done in sectorsize steps even for metadata as there's a
1854 * constraint for nodesize to be aligned to sectorsize. This will need
1855 * to change so we don't misuse data and metadata units like that.
1856 */
1857 const u32 sectorsize = sctx->fs_info->sectorsize;
1858 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1859 int i;
1860 struct scrub_page *spage;
1861 char *kaddr;
1862
1863 BUG_ON(sblock->page_count < 1);
1864
1865 /* Each member in pagev is just one block, not a full page */
1866 ASSERT(sblock->page_count == num_sectors);
1867
1868 spage = sblock->pagev[0];
1869 kaddr = page_address(spage->page);
1870 h = (struct btrfs_header *)kaddr;
1871 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1872
1873 /*
1874 * we don't use the getter functions here, as we
1875 * a) don't have an extent buffer and
1876 * b) the page is already kmapped
1877 */
1878 if (spage->logical != btrfs_stack_header_bytenr(h))
1879 sblock->header_error = 1;
1880
1881 if (spage->generation != btrfs_stack_header_generation(h)) {
1882 sblock->header_error = 1;
1883 sblock->generation_error = 1;
1884 }
1885
1886 if (!scrub_check_fsid(h->fsid, spage))
1887 sblock->header_error = 1;
1888
1889 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1890 BTRFS_UUID_SIZE))
1891 sblock->header_error = 1;
1892
1893 shash->tfm = fs_info->csum_shash;
1894 crypto_shash_init(shash);
1895 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1896 sectorsize - BTRFS_CSUM_SIZE);
1897
1898 for (i = 1; i < num_sectors; i++) {
1899 kaddr = page_address(sblock->pagev[i]->page);
1900 crypto_shash_update(shash, kaddr, sectorsize);
1901 }
1902
1903 crypto_shash_final(shash, calculated_csum);
1904 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1905 sblock->checksum_error = 1;
1906
1907 return sblock->header_error || sblock->checksum_error;
1908}
1909
1910static int scrub_checksum_super(struct scrub_block *sblock)
1911{
1912 struct btrfs_super_block *s;
1913 struct scrub_ctx *sctx = sblock->sctx;
1914 struct btrfs_fs_info *fs_info = sctx->fs_info;
1915 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916 u8 calculated_csum[BTRFS_CSUM_SIZE];
1917 struct scrub_page *spage;
1918 char *kaddr;
1919 int fail_gen = 0;
1920 int fail_cor = 0;
1921
1922 BUG_ON(sblock->page_count < 1);
1923 spage = sblock->pagev[0];
1924 kaddr = page_address(spage->page);
1925 s = (struct btrfs_super_block *)kaddr;
1926
1927 if (spage->logical != btrfs_super_bytenr(s))
1928 ++fail_cor;
1929
1930 if (spage->generation != btrfs_super_generation(s))
1931 ++fail_gen;
1932
1933 if (!scrub_check_fsid(s->fsid, spage))
1934 ++fail_cor;
1935
1936 shash->tfm = fs_info->csum_shash;
1937 crypto_shash_init(shash);
1938 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1939 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1940
1941 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1942 ++fail_cor;
1943
1944 if (fail_cor + fail_gen) {
1945 /*
1946 * if we find an error in a super block, we just report it.
1947 * They will get written with the next transaction commit
1948 * anyway
1949 */
1950 spin_lock(&sctx->stat_lock);
1951 ++sctx->stat.super_errors;
1952 spin_unlock(&sctx->stat_lock);
1953 if (fail_cor)
1954 btrfs_dev_stat_inc_and_print(spage->dev,
1955 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1956 else
1957 btrfs_dev_stat_inc_and_print(spage->dev,
1958 BTRFS_DEV_STAT_GENERATION_ERRS);
1959 }
1960
1961 return fail_cor + fail_gen;
1962}
1963
1964static void scrub_block_get(struct scrub_block *sblock)
1965{
1966 refcount_inc(&sblock->refs);
1967}
1968
1969static void scrub_block_put(struct scrub_block *sblock)
1970{
1971 if (refcount_dec_and_test(&sblock->refs)) {
1972 int i;
1973
1974 if (sblock->sparity)
1975 scrub_parity_put(sblock->sparity);
1976
1977 for (i = 0; i < sblock->page_count; i++)
1978 scrub_page_put(sblock->pagev[i]);
1979 kfree(sblock);
1980 }
1981}
1982
1983static void scrub_page_get(struct scrub_page *spage)
1984{
1985 atomic_inc(&spage->refs);
1986}
1987
1988static void scrub_page_put(struct scrub_page *spage)
1989{
1990 if (atomic_dec_and_test(&spage->refs)) {
1991 if (spage->page)
1992 __free_page(spage->page);
1993 kfree(spage);
1994 }
1995}
1996
1997/*
1998 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1999 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2000 */
2001static void scrub_throttle(struct scrub_ctx *sctx)
2002{
2003 const int time_slice = 1000;
2004 struct scrub_bio *sbio;
2005 struct btrfs_device *device;
2006 s64 delta;
2007 ktime_t now;
2008 u32 div;
2009 u64 bwlimit;
2010
2011 sbio = sctx->bios[sctx->curr];
2012 device = sbio->dev;
2013 bwlimit = READ_ONCE(device->scrub_speed_max);
2014 if (bwlimit == 0)
2015 return;
2016
2017 /*
2018 * Slice is divided into intervals when the IO is submitted, adjust by
2019 * bwlimit and maximum of 64 intervals.
2020 */
2021 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2022 div = min_t(u32, 64, div);
2023
2024 /* Start new epoch, set deadline */
2025 now = ktime_get();
2026 if (sctx->throttle_deadline == 0) {
2027 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2028 sctx->throttle_sent = 0;
2029 }
2030
2031 /* Still in the time to send? */
2032 if (ktime_before(now, sctx->throttle_deadline)) {
2033 /* If current bio is within the limit, send it */
2034 sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2035 if (sctx->throttle_sent <= div_u64(bwlimit, div))
2036 return;
2037
2038 /* We're over the limit, sleep until the rest of the slice */
2039 delta = ktime_ms_delta(sctx->throttle_deadline, now);
2040 } else {
2041 /* New request after deadline, start new epoch */
2042 delta = 0;
2043 }
2044
2045 if (delta) {
2046 long timeout;
2047
2048 timeout = div_u64(delta * HZ, 1000);
2049 schedule_timeout_interruptible(timeout);
2050 }
2051
2052 /* Next call will start the deadline period */
2053 sctx->throttle_deadline = 0;
2054}
2055
2056static void scrub_submit(struct scrub_ctx *sctx)
2057{
2058 struct scrub_bio *sbio;
2059
2060 if (sctx->curr == -1)
2061 return;
2062
2063 scrub_throttle(sctx);
2064
2065 sbio = sctx->bios[sctx->curr];
2066 sctx->curr = -1;
2067 scrub_pending_bio_inc(sctx);
2068 btrfsic_submit_bio(sbio->bio);
2069}
2070
2071static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2072 struct scrub_page *spage)
2073{
2074 struct scrub_block *sblock = spage->sblock;
2075 struct scrub_bio *sbio;
2076 const u32 sectorsize = sctx->fs_info->sectorsize;
2077 int ret;
2078
2079again:
2080 /*
2081 * grab a fresh bio or wait for one to become available
2082 */
2083 while (sctx->curr == -1) {
2084 spin_lock(&sctx->list_lock);
2085 sctx->curr = sctx->first_free;
2086 if (sctx->curr != -1) {
2087 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2088 sctx->bios[sctx->curr]->next_free = -1;
2089 sctx->bios[sctx->curr]->page_count = 0;
2090 spin_unlock(&sctx->list_lock);
2091 } else {
2092 spin_unlock(&sctx->list_lock);
2093 wait_event(sctx->list_wait, sctx->first_free != -1);
2094 }
2095 }
2096 sbio = sctx->bios[sctx->curr];
2097 if (sbio->page_count == 0) {
2098 struct bio *bio;
2099
2100 sbio->physical = spage->physical;
2101 sbio->logical = spage->logical;
2102 sbio->dev = spage->dev;
2103 bio = sbio->bio;
2104 if (!bio) {
2105 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2106 sbio->bio = bio;
2107 }
2108
2109 bio->bi_private = sbio;
2110 bio->bi_end_io = scrub_bio_end_io;
2111 bio_set_dev(bio, sbio->dev->bdev);
2112 bio->bi_iter.bi_sector = sbio->physical >> 9;
2113 bio->bi_opf = REQ_OP_READ;
2114 sbio->status = 0;
2115 } else if (sbio->physical + sbio->page_count * sectorsize !=
2116 spage->physical ||
2117 sbio->logical + sbio->page_count * sectorsize !=
2118 spage->logical ||
2119 sbio->dev != spage->dev) {
2120 scrub_submit(sctx);
2121 goto again;
2122 }
2123
2124 sbio->pagev[sbio->page_count] = spage;
2125 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2126 if (ret != sectorsize) {
2127 if (sbio->page_count < 1) {
2128 bio_put(sbio->bio);
2129 sbio->bio = NULL;
2130 return -EIO;
2131 }
2132 scrub_submit(sctx);
2133 goto again;
2134 }
2135
2136 scrub_block_get(sblock); /* one for the page added to the bio */
2137 atomic_inc(&sblock->outstanding_pages);
2138 sbio->page_count++;
2139 if (sbio->page_count == sctx->pages_per_rd_bio)
2140 scrub_submit(sctx);
2141
2142 return 0;
2143}
2144
2145static void scrub_missing_raid56_end_io(struct bio *bio)
2146{
2147 struct scrub_block *sblock = bio->bi_private;
2148 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2149
2150 if (bio->bi_status)
2151 sblock->no_io_error_seen = 0;
2152
2153 bio_put(bio);
2154
2155 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2156}
2157
2158static void scrub_missing_raid56_worker(struct btrfs_work *work)
2159{
2160 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2161 struct scrub_ctx *sctx = sblock->sctx;
2162 struct btrfs_fs_info *fs_info = sctx->fs_info;
2163 u64 logical;
2164 struct btrfs_device *dev;
2165
2166 logical = sblock->pagev[0]->logical;
2167 dev = sblock->pagev[0]->dev;
2168
2169 if (sblock->no_io_error_seen)
2170 scrub_recheck_block_checksum(sblock);
2171
2172 if (!sblock->no_io_error_seen) {
2173 spin_lock(&sctx->stat_lock);
2174 sctx->stat.read_errors++;
2175 spin_unlock(&sctx->stat_lock);
2176 btrfs_err_rl_in_rcu(fs_info,
2177 "IO error rebuilding logical %llu for dev %s",
2178 logical, rcu_str_deref(dev->name));
2179 } else if (sblock->header_error || sblock->checksum_error) {
2180 spin_lock(&sctx->stat_lock);
2181 sctx->stat.uncorrectable_errors++;
2182 spin_unlock(&sctx->stat_lock);
2183 btrfs_err_rl_in_rcu(fs_info,
2184 "failed to rebuild valid logical %llu for dev %s",
2185 logical, rcu_str_deref(dev->name));
2186 } else {
2187 scrub_write_block_to_dev_replace(sblock);
2188 }
2189
2190 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2191 mutex_lock(&sctx->wr_lock);
2192 scrub_wr_submit(sctx);
2193 mutex_unlock(&sctx->wr_lock);
2194 }
2195
2196 scrub_block_put(sblock);
2197 scrub_pending_bio_dec(sctx);
2198}
2199
2200static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2201{
2202 struct scrub_ctx *sctx = sblock->sctx;
2203 struct btrfs_fs_info *fs_info = sctx->fs_info;
2204 u64 length = sblock->page_count * PAGE_SIZE;
2205 u64 logical = sblock->pagev[0]->logical;
2206 struct btrfs_bio *bbio = NULL;
2207 struct bio *bio;
2208 struct btrfs_raid_bio *rbio;
2209 int ret;
2210 int i;
2211
2212 btrfs_bio_counter_inc_blocked(fs_info);
2213 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2214 &length, &bbio);
2215 if (ret || !bbio || !bbio->raid_map)
2216 goto bbio_out;
2217
2218 if (WARN_ON(!sctx->is_dev_replace ||
2219 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2220 /*
2221 * We shouldn't be scrubbing a missing device. Even for dev
2222 * replace, we should only get here for RAID 5/6. We either
2223 * managed to mount something with no mirrors remaining or
2224 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2225 */
2226 goto bbio_out;
2227 }
2228
2229 bio = btrfs_io_bio_alloc(0);
2230 bio->bi_iter.bi_sector = logical >> 9;
2231 bio->bi_private = sblock;
2232 bio->bi_end_io = scrub_missing_raid56_end_io;
2233
2234 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2235 if (!rbio)
2236 goto rbio_out;
2237
2238 for (i = 0; i < sblock->page_count; i++) {
2239 struct scrub_page *spage = sblock->pagev[i];
2240
2241 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2242 }
2243
2244 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2245 scrub_block_get(sblock);
2246 scrub_pending_bio_inc(sctx);
2247 raid56_submit_missing_rbio(rbio);
2248 return;
2249
2250rbio_out:
2251 bio_put(bio);
2252bbio_out:
2253 btrfs_bio_counter_dec(fs_info);
2254 btrfs_put_bbio(bbio);
2255 spin_lock(&sctx->stat_lock);
2256 sctx->stat.malloc_errors++;
2257 spin_unlock(&sctx->stat_lock);
2258}
2259
2260static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2261 u64 physical, struct btrfs_device *dev, u64 flags,
2262 u64 gen, int mirror_num, u8 *csum,
2263 u64 physical_for_dev_replace)
2264{
2265 struct scrub_block *sblock;
2266 const u32 sectorsize = sctx->fs_info->sectorsize;
2267 int index;
2268
2269 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2270 if (!sblock) {
2271 spin_lock(&sctx->stat_lock);
2272 sctx->stat.malloc_errors++;
2273 spin_unlock(&sctx->stat_lock);
2274 return -ENOMEM;
2275 }
2276
2277 /* one ref inside this function, plus one for each page added to
2278 * a bio later on */
2279 refcount_set(&sblock->refs, 1);
2280 sblock->sctx = sctx;
2281 sblock->no_io_error_seen = 1;
2282
2283 for (index = 0; len > 0; index++) {
2284 struct scrub_page *spage;
2285 /*
2286 * Here we will allocate one page for one sector to scrub.
2287 * This is fine if PAGE_SIZE == sectorsize, but will cost
2288 * more memory for PAGE_SIZE > sectorsize case.
2289 */
2290 u32 l = min(sectorsize, len);
2291
2292 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2293 if (!spage) {
2294leave_nomem:
2295 spin_lock(&sctx->stat_lock);
2296 sctx->stat.malloc_errors++;
2297 spin_unlock(&sctx->stat_lock);
2298 scrub_block_put(sblock);
2299 return -ENOMEM;
2300 }
2301 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2302 scrub_page_get(spage);
2303 sblock->pagev[index] = spage;
2304 spage->sblock = sblock;
2305 spage->dev = dev;
2306 spage->flags = flags;
2307 spage->generation = gen;
2308 spage->logical = logical;
2309 spage->physical = physical;
2310 spage->physical_for_dev_replace = physical_for_dev_replace;
2311 spage->mirror_num = mirror_num;
2312 if (csum) {
2313 spage->have_csum = 1;
2314 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2315 } else {
2316 spage->have_csum = 0;
2317 }
2318 sblock->page_count++;
2319 spage->page = alloc_page(GFP_KERNEL);
2320 if (!spage->page)
2321 goto leave_nomem;
2322 len -= l;
2323 logical += l;
2324 physical += l;
2325 physical_for_dev_replace += l;
2326 }
2327
2328 WARN_ON(sblock->page_count == 0);
2329 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2330 /*
2331 * This case should only be hit for RAID 5/6 device replace. See
2332 * the comment in scrub_missing_raid56_pages() for details.
2333 */
2334 scrub_missing_raid56_pages(sblock);
2335 } else {
2336 for (index = 0; index < sblock->page_count; index++) {
2337 struct scrub_page *spage = sblock->pagev[index];
2338 int ret;
2339
2340 ret = scrub_add_page_to_rd_bio(sctx, spage);
2341 if (ret) {
2342 scrub_block_put(sblock);
2343 return ret;
2344 }
2345 }
2346
2347 if (flags & BTRFS_EXTENT_FLAG_SUPER)
2348 scrub_submit(sctx);
2349 }
2350
2351 /* last one frees, either here or in bio completion for last page */
2352 scrub_block_put(sblock);
2353 return 0;
2354}
2355
2356static void scrub_bio_end_io(struct bio *bio)
2357{
2358 struct scrub_bio *sbio = bio->bi_private;
2359 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2360
2361 sbio->status = bio->bi_status;
2362 sbio->bio = bio;
2363
2364 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2365}
2366
2367static void scrub_bio_end_io_worker(struct btrfs_work *work)
2368{
2369 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2370 struct scrub_ctx *sctx = sbio->sctx;
2371 int i;
2372
2373 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2374 if (sbio->status) {
2375 for (i = 0; i < sbio->page_count; i++) {
2376 struct scrub_page *spage = sbio->pagev[i];
2377
2378 spage->io_error = 1;
2379 spage->sblock->no_io_error_seen = 0;
2380 }
2381 }
2382
2383 /* now complete the scrub_block items that have all pages completed */
2384 for (i = 0; i < sbio->page_count; i++) {
2385 struct scrub_page *spage = sbio->pagev[i];
2386 struct scrub_block *sblock = spage->sblock;
2387
2388 if (atomic_dec_and_test(&sblock->outstanding_pages))
2389 scrub_block_complete(sblock);
2390 scrub_block_put(sblock);
2391 }
2392
2393 bio_put(sbio->bio);
2394 sbio->bio = NULL;
2395 spin_lock(&sctx->list_lock);
2396 sbio->next_free = sctx->first_free;
2397 sctx->first_free = sbio->index;
2398 spin_unlock(&sctx->list_lock);
2399
2400 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2401 mutex_lock(&sctx->wr_lock);
2402 scrub_wr_submit(sctx);
2403 mutex_unlock(&sctx->wr_lock);
2404 }
2405
2406 scrub_pending_bio_dec(sctx);
2407}
2408
2409static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2410 unsigned long *bitmap,
2411 u64 start, u32 len)
2412{
2413 u64 offset;
2414 u32 nsectors;
2415 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2416
2417 if (len >= sparity->stripe_len) {
2418 bitmap_set(bitmap, 0, sparity->nsectors);
2419 return;
2420 }
2421
2422 start -= sparity->logic_start;
2423 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2424 offset = offset >> sectorsize_bits;
2425 nsectors = len >> sectorsize_bits;
2426
2427 if (offset + nsectors <= sparity->nsectors) {
2428 bitmap_set(bitmap, offset, nsectors);
2429 return;
2430 }
2431
2432 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2433 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2434}
2435
2436static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2437 u64 start, u32 len)
2438{
2439 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2440}
2441
2442static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2443 u64 start, u32 len)
2444{
2445 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2446}
2447
2448static void scrub_block_complete(struct scrub_block *sblock)
2449{
2450 int corrupted = 0;
2451
2452 if (!sblock->no_io_error_seen) {
2453 corrupted = 1;
2454 scrub_handle_errored_block(sblock);
2455 } else {
2456 /*
2457 * if has checksum error, write via repair mechanism in
2458 * dev replace case, otherwise write here in dev replace
2459 * case.
2460 */
2461 corrupted = scrub_checksum(sblock);
2462 if (!corrupted && sblock->sctx->is_dev_replace)
2463 scrub_write_block_to_dev_replace(sblock);
2464 }
2465
2466 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2467 u64 start = sblock->pagev[0]->logical;
2468 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2469 sblock->sctx->fs_info->sectorsize;
2470
2471 ASSERT(end - start <= U32_MAX);
2472 scrub_parity_mark_sectors_error(sblock->sparity,
2473 start, end - start);
2474 }
2475}
2476
2477static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2478{
2479 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2480 list_del(&sum->list);
2481 kfree(sum);
2482}
2483
2484/*
2485 * Find the desired csum for range [logical, logical + sectorsize), and store
2486 * the csum into @csum.
2487 *
2488 * The search source is sctx->csum_list, which is a pre-populated list
2489 * storing bytenr ordered csum ranges. We're responsible to cleanup any range
2490 * that is before @logical.
2491 *
2492 * Return 0 if there is no csum for the range.
2493 * Return 1 if there is csum for the range and copied to @csum.
2494 */
2495static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2496{
2497 bool found = false;
2498
2499 while (!list_empty(&sctx->csum_list)) {
2500 struct btrfs_ordered_sum *sum = NULL;
2501 unsigned long index;
2502 unsigned long num_sectors;
2503
2504 sum = list_first_entry(&sctx->csum_list,
2505 struct btrfs_ordered_sum, list);
2506 /* The current csum range is beyond our range, no csum found */
2507 if (sum->bytenr > logical)
2508 break;
2509
2510 /*
2511 * The current sum is before our bytenr, since scrub is always
2512 * done in bytenr order, the csum will never be used anymore,
2513 * clean it up so that later calls won't bother with the range,
2514 * and continue search the next range.
2515 */
2516 if (sum->bytenr + sum->len <= logical) {
2517 drop_csum_range(sctx, sum);
2518 continue;
2519 }
2520
2521 /* Now the csum range covers our bytenr, copy the csum */
2522 found = true;
2523 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2524 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2525
2526 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2527 sctx->fs_info->csum_size);
2528
2529 /* Cleanup the range if we're at the end of the csum range */
2530 if (index == num_sectors - 1)
2531 drop_csum_range(sctx, sum);
2532 break;
2533 }
2534 if (!found)
2535 return 0;
2536 return 1;
2537}
2538
2539/* scrub extent tries to collect up to 64 kB for each bio */
2540static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2541 u64 logical, u32 len,
2542 u64 physical, struct btrfs_device *dev, u64 flags,
2543 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2544{
2545 int ret;
2546 u8 csum[BTRFS_CSUM_SIZE];
2547 u32 blocksize;
2548
2549 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2550 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2551 blocksize = map->stripe_len;
2552 else
2553 blocksize = sctx->fs_info->sectorsize;
2554 spin_lock(&sctx->stat_lock);
2555 sctx->stat.data_extents_scrubbed++;
2556 sctx->stat.data_bytes_scrubbed += len;
2557 spin_unlock(&sctx->stat_lock);
2558 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2559 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2560 blocksize = map->stripe_len;
2561 else
2562 blocksize = sctx->fs_info->nodesize;
2563 spin_lock(&sctx->stat_lock);
2564 sctx->stat.tree_extents_scrubbed++;
2565 sctx->stat.tree_bytes_scrubbed += len;
2566 spin_unlock(&sctx->stat_lock);
2567 } else {
2568 blocksize = sctx->fs_info->sectorsize;
2569 WARN_ON(1);
2570 }
2571
2572 while (len) {
2573 u32 l = min(len, blocksize);
2574 int have_csum = 0;
2575
2576 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2577 /* push csums to sbio */
2578 have_csum = scrub_find_csum(sctx, logical, csum);
2579 if (have_csum == 0)
2580 ++sctx->stat.no_csum;
2581 }
2582 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2583 mirror_num, have_csum ? csum : NULL,
2584 physical_for_dev_replace);
2585 if (ret)
2586 return ret;
2587 len -= l;
2588 logical += l;
2589 physical += l;
2590 physical_for_dev_replace += l;
2591 }
2592 return 0;
2593}
2594
2595static int scrub_pages_for_parity(struct scrub_parity *sparity,
2596 u64 logical, u32 len,
2597 u64 physical, struct btrfs_device *dev,
2598 u64 flags, u64 gen, int mirror_num, u8 *csum)
2599{
2600 struct scrub_ctx *sctx = sparity->sctx;
2601 struct scrub_block *sblock;
2602 const u32 sectorsize = sctx->fs_info->sectorsize;
2603 int index;
2604
2605 ASSERT(IS_ALIGNED(len, sectorsize));
2606
2607 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2608 if (!sblock) {
2609 spin_lock(&sctx->stat_lock);
2610 sctx->stat.malloc_errors++;
2611 spin_unlock(&sctx->stat_lock);
2612 return -ENOMEM;
2613 }
2614
2615 /* one ref inside this function, plus one for each page added to
2616 * a bio later on */
2617 refcount_set(&sblock->refs, 1);
2618 sblock->sctx = sctx;
2619 sblock->no_io_error_seen = 1;
2620 sblock->sparity = sparity;
2621 scrub_parity_get(sparity);
2622
2623 for (index = 0; len > 0; index++) {
2624 struct scrub_page *spage;
2625
2626 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2627 if (!spage) {
2628leave_nomem:
2629 spin_lock(&sctx->stat_lock);
2630 sctx->stat.malloc_errors++;
2631 spin_unlock(&sctx->stat_lock);
2632 scrub_block_put(sblock);
2633 return -ENOMEM;
2634 }
2635 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2636 /* For scrub block */
2637 scrub_page_get(spage);
2638 sblock->pagev[index] = spage;
2639 /* For scrub parity */
2640 scrub_page_get(spage);
2641 list_add_tail(&spage->list, &sparity->spages);
2642 spage->sblock = sblock;
2643 spage->dev = dev;
2644 spage->flags = flags;
2645 spage->generation = gen;
2646 spage->logical = logical;
2647 spage->physical = physical;
2648 spage->mirror_num = mirror_num;
2649 if (csum) {
2650 spage->have_csum = 1;
2651 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2652 } else {
2653 spage->have_csum = 0;
2654 }
2655 sblock->page_count++;
2656 spage->page = alloc_page(GFP_KERNEL);
2657 if (!spage->page)
2658 goto leave_nomem;
2659
2660
2661 /* Iterate over the stripe range in sectorsize steps */
2662 len -= sectorsize;
2663 logical += sectorsize;
2664 physical += sectorsize;
2665 }
2666
2667 WARN_ON(sblock->page_count == 0);
2668 for (index = 0; index < sblock->page_count; index++) {
2669 struct scrub_page *spage = sblock->pagev[index];
2670 int ret;
2671
2672 ret = scrub_add_page_to_rd_bio(sctx, spage);
2673 if (ret) {
2674 scrub_block_put(sblock);
2675 return ret;
2676 }
2677 }
2678
2679 /* last one frees, either here or in bio completion for last page */
2680 scrub_block_put(sblock);
2681 return 0;
2682}
2683
2684static int scrub_extent_for_parity(struct scrub_parity *sparity,
2685 u64 logical, u32 len,
2686 u64 physical, struct btrfs_device *dev,
2687 u64 flags, u64 gen, int mirror_num)
2688{
2689 struct scrub_ctx *sctx = sparity->sctx;
2690 int ret;
2691 u8 csum[BTRFS_CSUM_SIZE];
2692 u32 blocksize;
2693
2694 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2695 scrub_parity_mark_sectors_error(sparity, logical, len);
2696 return 0;
2697 }
2698
2699 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2700 blocksize = sparity->stripe_len;
2701 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702 blocksize = sparity->stripe_len;
2703 } else {
2704 blocksize = sctx->fs_info->sectorsize;
2705 WARN_ON(1);
2706 }
2707
2708 while (len) {
2709 u32 l = min(len, blocksize);
2710 int have_csum = 0;
2711
2712 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2713 /* push csums to sbio */
2714 have_csum = scrub_find_csum(sctx, logical, csum);
2715 if (have_csum == 0)
2716 goto skip;
2717 }
2718 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2719 flags, gen, mirror_num,
2720 have_csum ? csum : NULL);
2721 if (ret)
2722 return ret;
2723skip:
2724 len -= l;
2725 logical += l;
2726 physical += l;
2727 }
2728 return 0;
2729}
2730
2731/*
2732 * Given a physical address, this will calculate it's
2733 * logical offset. if this is a parity stripe, it will return
2734 * the most left data stripe's logical offset.
2735 *
2736 * return 0 if it is a data stripe, 1 means parity stripe.
2737 */
2738static int get_raid56_logic_offset(u64 physical, int num,
2739 struct map_lookup *map, u64 *offset,
2740 u64 *stripe_start)
2741{
2742 int i;
2743 int j = 0;
2744 u64 stripe_nr;
2745 u64 last_offset;
2746 u32 stripe_index;
2747 u32 rot;
2748 const int data_stripes = nr_data_stripes(map);
2749
2750 last_offset = (physical - map->stripes[num].physical) * data_stripes;
2751 if (stripe_start)
2752 *stripe_start = last_offset;
2753
2754 *offset = last_offset;
2755 for (i = 0; i < data_stripes; i++) {
2756 *offset = last_offset + i * map->stripe_len;
2757
2758 stripe_nr = div64_u64(*offset, map->stripe_len);
2759 stripe_nr = div_u64(stripe_nr, data_stripes);
2760
2761 /* Work out the disk rotation on this stripe-set */
2762 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2763 /* calculate which stripe this data locates */
2764 rot += i;
2765 stripe_index = rot % map->num_stripes;
2766 if (stripe_index == num)
2767 return 0;
2768 if (stripe_index < num)
2769 j++;
2770 }
2771 *offset = last_offset + j * map->stripe_len;
2772 return 1;
2773}
2774
2775static void scrub_free_parity(struct scrub_parity *sparity)
2776{
2777 struct scrub_ctx *sctx = sparity->sctx;
2778 struct scrub_page *curr, *next;
2779 int nbits;
2780
2781 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2782 if (nbits) {
2783 spin_lock(&sctx->stat_lock);
2784 sctx->stat.read_errors += nbits;
2785 sctx->stat.uncorrectable_errors += nbits;
2786 spin_unlock(&sctx->stat_lock);
2787 }
2788
2789 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2790 list_del_init(&curr->list);
2791 scrub_page_put(curr);
2792 }
2793
2794 kfree(sparity);
2795}
2796
2797static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2798{
2799 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2800 work);
2801 struct scrub_ctx *sctx = sparity->sctx;
2802
2803 scrub_free_parity(sparity);
2804 scrub_pending_bio_dec(sctx);
2805}
2806
2807static void scrub_parity_bio_endio(struct bio *bio)
2808{
2809 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2810 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2811
2812 if (bio->bi_status)
2813 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2814 sparity->nsectors);
2815
2816 bio_put(bio);
2817
2818 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2819 NULL);
2820 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2821}
2822
2823static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2824{
2825 struct scrub_ctx *sctx = sparity->sctx;
2826 struct btrfs_fs_info *fs_info = sctx->fs_info;
2827 struct bio *bio;
2828 struct btrfs_raid_bio *rbio;
2829 struct btrfs_bio *bbio = NULL;
2830 u64 length;
2831 int ret;
2832
2833 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2834 sparity->nsectors))
2835 goto out;
2836
2837 length = sparity->logic_end - sparity->logic_start;
2838
2839 btrfs_bio_counter_inc_blocked(fs_info);
2840 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2841 &length, &bbio);
2842 if (ret || !bbio || !bbio->raid_map)
2843 goto bbio_out;
2844
2845 bio = btrfs_io_bio_alloc(0);
2846 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2847 bio->bi_private = sparity;
2848 bio->bi_end_io = scrub_parity_bio_endio;
2849
2850 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2851 length, sparity->scrub_dev,
2852 sparity->dbitmap,
2853 sparity->nsectors);
2854 if (!rbio)
2855 goto rbio_out;
2856
2857 scrub_pending_bio_inc(sctx);
2858 raid56_parity_submit_scrub_rbio(rbio);
2859 return;
2860
2861rbio_out:
2862 bio_put(bio);
2863bbio_out:
2864 btrfs_bio_counter_dec(fs_info);
2865 btrfs_put_bbio(bbio);
2866 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2867 sparity->nsectors);
2868 spin_lock(&sctx->stat_lock);
2869 sctx->stat.malloc_errors++;
2870 spin_unlock(&sctx->stat_lock);
2871out:
2872 scrub_free_parity(sparity);
2873}
2874
2875static inline int scrub_calc_parity_bitmap_len(int nsectors)
2876{
2877 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2878}
2879
2880static void scrub_parity_get(struct scrub_parity *sparity)
2881{
2882 refcount_inc(&sparity->refs);
2883}
2884
2885static void scrub_parity_put(struct scrub_parity *sparity)
2886{
2887 if (!refcount_dec_and_test(&sparity->refs))
2888 return;
2889
2890 scrub_parity_check_and_repair(sparity);
2891}
2892
2893static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2894 struct map_lookup *map,
2895 struct btrfs_device *sdev,
2896 struct btrfs_path *path,
2897 u64 logic_start,
2898 u64 logic_end)
2899{
2900 struct btrfs_fs_info *fs_info = sctx->fs_info;
2901 struct btrfs_root *root = fs_info->extent_root;
2902 struct btrfs_root *csum_root = fs_info->csum_root;
2903 struct btrfs_extent_item *extent;
2904 struct btrfs_bio *bbio = NULL;
2905 u64 flags;
2906 int ret;
2907 int slot;
2908 struct extent_buffer *l;
2909 struct btrfs_key key;
2910 u64 generation;
2911 u64 extent_logical;
2912 u64 extent_physical;
2913 /* Check the comment in scrub_stripe() for why u32 is enough here */
2914 u32 extent_len;
2915 u64 mapped_length;
2916 struct btrfs_device *extent_dev;
2917 struct scrub_parity *sparity;
2918 int nsectors;
2919 int bitmap_len;
2920 int extent_mirror_num;
2921 int stop_loop = 0;
2922
2923 ASSERT(map->stripe_len <= U32_MAX);
2924 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2925 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2926 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2927 GFP_NOFS);
2928 if (!sparity) {
2929 spin_lock(&sctx->stat_lock);
2930 sctx->stat.malloc_errors++;
2931 spin_unlock(&sctx->stat_lock);
2932 return -ENOMEM;
2933 }
2934
2935 ASSERT(map->stripe_len <= U32_MAX);
2936 sparity->stripe_len = map->stripe_len;
2937 sparity->nsectors = nsectors;
2938 sparity->sctx = sctx;
2939 sparity->scrub_dev = sdev;
2940 sparity->logic_start = logic_start;
2941 sparity->logic_end = logic_end;
2942 refcount_set(&sparity->refs, 1);
2943 INIT_LIST_HEAD(&sparity->spages);
2944 sparity->dbitmap = sparity->bitmap;
2945 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2946
2947 ret = 0;
2948 while (logic_start < logic_end) {
2949 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2950 key.type = BTRFS_METADATA_ITEM_KEY;
2951 else
2952 key.type = BTRFS_EXTENT_ITEM_KEY;
2953 key.objectid = logic_start;
2954 key.offset = (u64)-1;
2955
2956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2957 if (ret < 0)
2958 goto out;
2959
2960 if (ret > 0) {
2961 ret = btrfs_previous_extent_item(root, path, 0);
2962 if (ret < 0)
2963 goto out;
2964 if (ret > 0) {
2965 btrfs_release_path(path);
2966 ret = btrfs_search_slot(NULL, root, &key,
2967 path, 0, 0);
2968 if (ret < 0)
2969 goto out;
2970 }
2971 }
2972
2973 stop_loop = 0;
2974 while (1) {
2975 u64 bytes;
2976
2977 l = path->nodes[0];
2978 slot = path->slots[0];
2979 if (slot >= btrfs_header_nritems(l)) {
2980 ret = btrfs_next_leaf(root, path);
2981 if (ret == 0)
2982 continue;
2983 if (ret < 0)
2984 goto out;
2985
2986 stop_loop = 1;
2987 break;
2988 }
2989 btrfs_item_key_to_cpu(l, &key, slot);
2990
2991 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2992 key.type != BTRFS_METADATA_ITEM_KEY)
2993 goto next;
2994
2995 if (key.type == BTRFS_METADATA_ITEM_KEY)
2996 bytes = fs_info->nodesize;
2997 else
2998 bytes = key.offset;
2999
3000 if (key.objectid + bytes <= logic_start)
3001 goto next;
3002
3003 if (key.objectid >= logic_end) {
3004 stop_loop = 1;
3005 break;
3006 }
3007
3008 while (key.objectid >= logic_start + map->stripe_len)
3009 logic_start += map->stripe_len;
3010
3011 extent = btrfs_item_ptr(l, slot,
3012 struct btrfs_extent_item);
3013 flags = btrfs_extent_flags(l, extent);
3014 generation = btrfs_extent_generation(l, extent);
3015
3016 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3017 (key.objectid < logic_start ||
3018 key.objectid + bytes >
3019 logic_start + map->stripe_len)) {
3020 btrfs_err(fs_info,
3021 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3022 key.objectid, logic_start);
3023 spin_lock(&sctx->stat_lock);
3024 sctx->stat.uncorrectable_errors++;
3025 spin_unlock(&sctx->stat_lock);
3026 goto next;
3027 }
3028again:
3029 extent_logical = key.objectid;
3030 ASSERT(bytes <= U32_MAX);
3031 extent_len = bytes;
3032
3033 if (extent_logical < logic_start) {
3034 extent_len -= logic_start - extent_logical;
3035 extent_logical = logic_start;
3036 }
3037
3038 if (extent_logical + extent_len >
3039 logic_start + map->stripe_len)
3040 extent_len = logic_start + map->stripe_len -
3041 extent_logical;
3042
3043 scrub_parity_mark_sectors_data(sparity, extent_logical,
3044 extent_len);
3045
3046 mapped_length = extent_len;
3047 bbio = NULL;
3048 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3049 extent_logical, &mapped_length, &bbio,
3050 0);
3051 if (!ret) {
3052 if (!bbio || mapped_length < extent_len)
3053 ret = -EIO;
3054 }
3055 if (ret) {
3056 btrfs_put_bbio(bbio);
3057 goto out;
3058 }
3059 extent_physical = bbio->stripes[0].physical;
3060 extent_mirror_num = bbio->mirror_num;
3061 extent_dev = bbio->stripes[0].dev;
3062 btrfs_put_bbio(bbio);
3063
3064 ret = btrfs_lookup_csums_range(csum_root,
3065 extent_logical,
3066 extent_logical + extent_len - 1,
3067 &sctx->csum_list, 1);
3068 if (ret)
3069 goto out;
3070
3071 ret = scrub_extent_for_parity(sparity, extent_logical,
3072 extent_len,
3073 extent_physical,
3074 extent_dev, flags,
3075 generation,
3076 extent_mirror_num);
3077
3078 scrub_free_csums(sctx);
3079
3080 if (ret)
3081 goto out;
3082
3083 if (extent_logical + extent_len <
3084 key.objectid + bytes) {
3085 logic_start += map->stripe_len;
3086
3087 if (logic_start >= logic_end) {
3088 stop_loop = 1;
3089 break;
3090 }
3091
3092 if (logic_start < key.objectid + bytes) {
3093 cond_resched();
3094 goto again;
3095 }
3096 }
3097next:
3098 path->slots[0]++;
3099 }
3100
3101 btrfs_release_path(path);
3102
3103 if (stop_loop)
3104 break;
3105
3106 logic_start += map->stripe_len;
3107 }
3108out:
3109 if (ret < 0) {
3110 ASSERT(logic_end - logic_start <= U32_MAX);
3111 scrub_parity_mark_sectors_error(sparity, logic_start,
3112 logic_end - logic_start);
3113 }
3114 scrub_parity_put(sparity);
3115 scrub_submit(sctx);
3116 mutex_lock(&sctx->wr_lock);
3117 scrub_wr_submit(sctx);
3118 mutex_unlock(&sctx->wr_lock);
3119
3120 btrfs_release_path(path);
3121 return ret < 0 ? ret : 0;
3122}
3123
3124static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3125{
3126 if (!btrfs_is_zoned(sctx->fs_info))
3127 return;
3128
3129 sctx->flush_all_writes = true;
3130 scrub_submit(sctx);
3131 mutex_lock(&sctx->wr_lock);
3132 scrub_wr_submit(sctx);
3133 mutex_unlock(&sctx->wr_lock);
3134
3135 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3136}
3137
3138static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3139 u64 physical, u64 physical_end)
3140{
3141 struct btrfs_fs_info *fs_info = sctx->fs_info;
3142 int ret = 0;
3143
3144 if (!btrfs_is_zoned(fs_info))
3145 return 0;
3146
3147 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3148
3149 mutex_lock(&sctx->wr_lock);
3150 if (sctx->write_pointer < physical_end) {
3151 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3152 physical,
3153 sctx->write_pointer);
3154 if (ret)
3155 btrfs_err(fs_info,
3156 "zoned: failed to recover write pointer");
3157 }
3158 mutex_unlock(&sctx->wr_lock);
3159 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3160
3161 return ret;
3162}
3163
3164static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165 struct map_lookup *map,
3166 struct btrfs_device *scrub_dev,
3167 int num, u64 base, u64 length,
3168 struct btrfs_block_group *cache)
3169{
3170 struct btrfs_path *path, *ppath;
3171 struct btrfs_fs_info *fs_info = sctx->fs_info;
3172 struct btrfs_root *root = fs_info->extent_root;
3173 struct btrfs_root *csum_root = fs_info->csum_root;
3174 struct btrfs_extent_item *extent;
3175 struct blk_plug plug;
3176 u64 flags;
3177 int ret;
3178 int slot;
3179 u64 nstripes;
3180 struct extent_buffer *l;
3181 u64 physical;
3182 u64 logical;
3183 u64 logic_end;
3184 u64 physical_end;
3185 u64 generation;
3186 int mirror_num;
3187 struct reada_control *reada1;
3188 struct reada_control *reada2;
3189 struct btrfs_key key;
3190 struct btrfs_key key_end;
3191 u64 increment = map->stripe_len;
3192 u64 offset;
3193 u64 extent_logical;
3194 u64 extent_physical;
3195 /*
3196 * Unlike chunk length, extent length should never go beyond
3197 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3198 */
3199 u32 extent_len;
3200 u64 stripe_logical;
3201 u64 stripe_end;
3202 struct btrfs_device *extent_dev;
3203 int extent_mirror_num;
3204 int stop_loop = 0;
3205
3206 physical = map->stripes[num].physical;
3207 offset = 0;
3208 nstripes = div64_u64(length, map->stripe_len);
3209 mirror_num = 1;
3210 increment = map->stripe_len;
3211 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3212 offset = map->stripe_len * num;
3213 increment = map->stripe_len * map->num_stripes;
3214 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3215 int factor = map->num_stripes / map->sub_stripes;
3216 offset = map->stripe_len * (num / map->sub_stripes);
3217 increment = map->stripe_len * factor;
3218 mirror_num = num % map->sub_stripes + 1;
3219 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3220 mirror_num = num % map->num_stripes + 1;
3221 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3222 mirror_num = num % map->num_stripes + 1;
3223 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3224 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3225 increment = map->stripe_len * nr_data_stripes(map);
3226 }
3227
3228 path = btrfs_alloc_path();
3229 if (!path)
3230 return -ENOMEM;
3231
3232 ppath = btrfs_alloc_path();
3233 if (!ppath) {
3234 btrfs_free_path(path);
3235 return -ENOMEM;
3236 }
3237
3238 /*
3239 * work on commit root. The related disk blocks are static as
3240 * long as COW is applied. This means, it is save to rewrite
3241 * them to repair disk errors without any race conditions
3242 */
3243 path->search_commit_root = 1;
3244 path->skip_locking = 1;
3245
3246 ppath->search_commit_root = 1;
3247 ppath->skip_locking = 1;
3248 /*
3249 * trigger the readahead for extent tree csum tree and wait for
3250 * completion. During readahead, the scrub is officially paused
3251 * to not hold off transaction commits
3252 */
3253 logical = base + offset;
3254 physical_end = physical + nstripes * map->stripe_len;
3255 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256 get_raid56_logic_offset(physical_end, num,
3257 map, &logic_end, NULL);
3258 logic_end += base;
3259 } else {
3260 logic_end = logical + increment * nstripes;
3261 }
3262 wait_event(sctx->list_wait,
3263 atomic_read(&sctx->bios_in_flight) == 0);
3264 scrub_blocked_if_needed(fs_info);
3265
3266 /* FIXME it might be better to start readahead at commit root */
3267 key.objectid = logical;
3268 key.type = BTRFS_EXTENT_ITEM_KEY;
3269 key.offset = (u64)0;
3270 key_end.objectid = logic_end;
3271 key_end.type = BTRFS_METADATA_ITEM_KEY;
3272 key_end.offset = (u64)-1;
3273 reada1 = btrfs_reada_add(root, &key, &key_end);
3274
3275 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3276 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3277 key.type = BTRFS_EXTENT_CSUM_KEY;
3278 key.offset = logical;
3279 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3280 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3281 key_end.offset = logic_end;
3282 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3283 } else {
3284 reada2 = NULL;
3285 }
3286
3287 if (!IS_ERR(reada1))
3288 btrfs_reada_wait(reada1);
3289 if (!IS_ERR_OR_NULL(reada2))
3290 btrfs_reada_wait(reada2);
3291
3292
3293 /*
3294 * collect all data csums for the stripe to avoid seeking during
3295 * the scrub. This might currently (crc32) end up to be about 1MB
3296 */
3297 blk_start_plug(&plug);
3298
3299 if (sctx->is_dev_replace &&
3300 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3301 mutex_lock(&sctx->wr_lock);
3302 sctx->write_pointer = physical;
3303 mutex_unlock(&sctx->wr_lock);
3304 sctx->flush_all_writes = true;
3305 }
3306
3307 /*
3308 * now find all extents for each stripe and scrub them
3309 */
3310 ret = 0;
3311 while (physical < physical_end) {
3312 /*
3313 * canceled?
3314 */
3315 if (atomic_read(&fs_info->scrub_cancel_req) ||
3316 atomic_read(&sctx->cancel_req)) {
3317 ret = -ECANCELED;
3318 goto out;
3319 }
3320 /*
3321 * check to see if we have to pause
3322 */
3323 if (atomic_read(&fs_info->scrub_pause_req)) {
3324 /* push queued extents */
3325 sctx->flush_all_writes = true;
3326 scrub_submit(sctx);
3327 mutex_lock(&sctx->wr_lock);
3328 scrub_wr_submit(sctx);
3329 mutex_unlock(&sctx->wr_lock);
3330 wait_event(sctx->list_wait,
3331 atomic_read(&sctx->bios_in_flight) == 0);
3332 sctx->flush_all_writes = false;
3333 scrub_blocked_if_needed(fs_info);
3334 }
3335
3336 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3337 ret = get_raid56_logic_offset(physical, num, map,
3338 &logical,
3339 &stripe_logical);
3340 logical += base;
3341 if (ret) {
3342 /* it is parity strip */
3343 stripe_logical += base;
3344 stripe_end = stripe_logical + increment;
3345 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3346 ppath, stripe_logical,
3347 stripe_end);
3348 if (ret)
3349 goto out;
3350 goto skip;
3351 }
3352 }
3353
3354 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3355 key.type = BTRFS_METADATA_ITEM_KEY;
3356 else
3357 key.type = BTRFS_EXTENT_ITEM_KEY;
3358 key.objectid = logical;
3359 key.offset = (u64)-1;
3360
3361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362 if (ret < 0)
3363 goto out;
3364
3365 if (ret > 0) {
3366 ret = btrfs_previous_extent_item(root, path, 0);
3367 if (ret < 0)
3368 goto out;
3369 if (ret > 0) {
3370 /* there's no smaller item, so stick with the
3371 * larger one */
3372 btrfs_release_path(path);
3373 ret = btrfs_search_slot(NULL, root, &key,
3374 path, 0, 0);
3375 if (ret < 0)
3376 goto out;
3377 }
3378 }
3379
3380 stop_loop = 0;
3381 while (1) {
3382 u64 bytes;
3383
3384 l = path->nodes[0];
3385 slot = path->slots[0];
3386 if (slot >= btrfs_header_nritems(l)) {
3387 ret = btrfs_next_leaf(root, path);
3388 if (ret == 0)
3389 continue;
3390 if (ret < 0)
3391 goto out;
3392
3393 stop_loop = 1;
3394 break;
3395 }
3396 btrfs_item_key_to_cpu(l, &key, slot);
3397
3398 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3399 key.type != BTRFS_METADATA_ITEM_KEY)
3400 goto next;
3401
3402 if (key.type == BTRFS_METADATA_ITEM_KEY)
3403 bytes = fs_info->nodesize;
3404 else
3405 bytes = key.offset;
3406
3407 if (key.objectid + bytes <= logical)
3408 goto next;
3409
3410 if (key.objectid >= logical + map->stripe_len) {
3411 /* out of this device extent */
3412 if (key.objectid >= logic_end)
3413 stop_loop = 1;
3414 break;
3415 }
3416
3417 /*
3418 * If our block group was removed in the meanwhile, just
3419 * stop scrubbing since there is no point in continuing.
3420 * Continuing would prevent reusing its device extents
3421 * for new block groups for a long time.
3422 */
3423 spin_lock(&cache->lock);
3424 if (cache->removed) {
3425 spin_unlock(&cache->lock);
3426 ret = 0;
3427 goto out;
3428 }
3429 spin_unlock(&cache->lock);
3430
3431 extent = btrfs_item_ptr(l, slot,
3432 struct btrfs_extent_item);
3433 flags = btrfs_extent_flags(l, extent);
3434 generation = btrfs_extent_generation(l, extent);
3435
3436 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3437 (key.objectid < logical ||
3438 key.objectid + bytes >
3439 logical + map->stripe_len)) {
3440 btrfs_err(fs_info,
3441 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442 key.objectid, logical);
3443 spin_lock(&sctx->stat_lock);
3444 sctx->stat.uncorrectable_errors++;
3445 spin_unlock(&sctx->stat_lock);
3446 goto next;
3447 }
3448
3449again:
3450 extent_logical = key.objectid;
3451 ASSERT(bytes <= U32_MAX);
3452 extent_len = bytes;
3453
3454 /*
3455 * trim extent to this stripe
3456 */
3457 if (extent_logical < logical) {
3458 extent_len -= logical - extent_logical;
3459 extent_logical = logical;
3460 }
3461 if (extent_logical + extent_len >
3462 logical + map->stripe_len) {
3463 extent_len = logical + map->stripe_len -
3464 extent_logical;
3465 }
3466
3467 extent_physical = extent_logical - logical + physical;
3468 extent_dev = scrub_dev;
3469 extent_mirror_num = mirror_num;
3470 if (sctx->is_dev_replace)
3471 scrub_remap_extent(fs_info, extent_logical,
3472 extent_len, &extent_physical,
3473 &extent_dev,
3474 &extent_mirror_num);
3475
3476 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3477 ret = btrfs_lookup_csums_range(csum_root,
3478 extent_logical,
3479 extent_logical + extent_len - 1,
3480 &sctx->csum_list, 1);
3481 if (ret)
3482 goto out;
3483 }
3484
3485 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486 extent_physical, extent_dev, flags,
3487 generation, extent_mirror_num,
3488 extent_logical - logical + physical);
3489
3490 scrub_free_csums(sctx);
3491
3492 if (ret)
3493 goto out;
3494
3495 if (sctx->is_dev_replace)
3496 sync_replace_for_zoned(sctx);
3497
3498 if (extent_logical + extent_len <
3499 key.objectid + bytes) {
3500 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501 /*
3502 * loop until we find next data stripe
3503 * or we have finished all stripes.
3504 */
3505loop:
3506 physical += map->stripe_len;
3507 ret = get_raid56_logic_offset(physical,
3508 num, map, &logical,
3509 &stripe_logical);
3510 logical += base;
3511
3512 if (ret && physical < physical_end) {
3513 stripe_logical += base;
3514 stripe_end = stripe_logical +
3515 increment;
3516 ret = scrub_raid56_parity(sctx,
3517 map, scrub_dev, ppath,
3518 stripe_logical,
3519 stripe_end);
3520 if (ret)
3521 goto out;
3522 goto loop;
3523 }
3524 } else {
3525 physical += map->stripe_len;
3526 logical += increment;
3527 }
3528 if (logical < key.objectid + bytes) {
3529 cond_resched();
3530 goto again;
3531 }
3532
3533 if (physical >= physical_end) {
3534 stop_loop = 1;
3535 break;
3536 }
3537 }
3538next:
3539 path->slots[0]++;
3540 }
3541 btrfs_release_path(path);
3542skip:
3543 logical += increment;
3544 physical += map->stripe_len;
3545 spin_lock(&sctx->stat_lock);
3546 if (stop_loop)
3547 sctx->stat.last_physical = map->stripes[num].physical +
3548 length;
3549 else
3550 sctx->stat.last_physical = physical;
3551 spin_unlock(&sctx->stat_lock);
3552 if (stop_loop)
3553 break;
3554 }
3555out:
3556 /* push queued extents */
3557 scrub_submit(sctx);
3558 mutex_lock(&sctx->wr_lock);
3559 scrub_wr_submit(sctx);
3560 mutex_unlock(&sctx->wr_lock);
3561
3562 blk_finish_plug(&plug);
3563 btrfs_free_path(path);
3564 btrfs_free_path(ppath);
3565
3566 if (sctx->is_dev_replace && ret >= 0) {
3567 int ret2;
3568
3569 ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3570 map->stripes[num].physical,
3571 physical_end);
3572 if (ret2)
3573 ret = ret2;
3574 }
3575
3576 return ret < 0 ? ret : 0;
3577}
3578
3579static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3580 struct btrfs_device *scrub_dev,
3581 u64 chunk_offset, u64 length,
3582 u64 dev_offset,
3583 struct btrfs_block_group *cache)
3584{
3585 struct btrfs_fs_info *fs_info = sctx->fs_info;
3586 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3587 struct map_lookup *map;
3588 struct extent_map *em;
3589 int i;
3590 int ret = 0;
3591
3592 read_lock(&map_tree->lock);
3593 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3594 read_unlock(&map_tree->lock);
3595
3596 if (!em) {
3597 /*
3598 * Might have been an unused block group deleted by the cleaner
3599 * kthread or relocation.
3600 */
3601 spin_lock(&cache->lock);
3602 if (!cache->removed)
3603 ret = -EINVAL;
3604 spin_unlock(&cache->lock);
3605
3606 return ret;
3607 }
3608
3609 map = em->map_lookup;
3610 if (em->start != chunk_offset)
3611 goto out;
3612
3613 if (em->len < length)
3614 goto out;
3615
3616 for (i = 0; i < map->num_stripes; ++i) {
3617 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3618 map->stripes[i].physical == dev_offset) {
3619 ret = scrub_stripe(sctx, map, scrub_dev, i,
3620 chunk_offset, length, cache);
3621 if (ret)
3622 goto out;
3623 }
3624 }
3625out:
3626 free_extent_map(em);
3627
3628 return ret;
3629}
3630
3631static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3632 struct btrfs_block_group *cache)
3633{
3634 struct btrfs_fs_info *fs_info = cache->fs_info;
3635 struct btrfs_trans_handle *trans;
3636
3637 if (!btrfs_is_zoned(fs_info))
3638 return 0;
3639
3640 btrfs_wait_block_group_reservations(cache);
3641 btrfs_wait_nocow_writers(cache);
3642 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3643
3644 trans = btrfs_join_transaction(root);
3645 if (IS_ERR(trans))
3646 return PTR_ERR(trans);
3647 return btrfs_commit_transaction(trans);
3648}
3649
3650static noinline_for_stack
3651int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3652 struct btrfs_device *scrub_dev, u64 start, u64 end)
3653{
3654 struct btrfs_dev_extent *dev_extent = NULL;
3655 struct btrfs_path *path;
3656 struct btrfs_fs_info *fs_info = sctx->fs_info;
3657 struct btrfs_root *root = fs_info->dev_root;
3658 u64 length;
3659 u64 chunk_offset;
3660 int ret = 0;
3661 int ro_set;
3662 int slot;
3663 struct extent_buffer *l;
3664 struct btrfs_key key;
3665 struct btrfs_key found_key;
3666 struct btrfs_block_group *cache;
3667 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3668
3669 path = btrfs_alloc_path();
3670 if (!path)
3671 return -ENOMEM;
3672
3673 path->reada = READA_FORWARD;
3674 path->search_commit_root = 1;
3675 path->skip_locking = 1;
3676
3677 key.objectid = scrub_dev->devid;
3678 key.offset = 0ull;
3679 key.type = BTRFS_DEV_EXTENT_KEY;
3680
3681 while (1) {
3682 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3683 if (ret < 0)
3684 break;
3685 if (ret > 0) {
3686 if (path->slots[0] >=
3687 btrfs_header_nritems(path->nodes[0])) {
3688 ret = btrfs_next_leaf(root, path);
3689 if (ret < 0)
3690 break;
3691 if (ret > 0) {
3692 ret = 0;
3693 break;
3694 }
3695 } else {
3696 ret = 0;
3697 }
3698 }
3699
3700 l = path->nodes[0];
3701 slot = path->slots[0];
3702
3703 btrfs_item_key_to_cpu(l, &found_key, slot);
3704
3705 if (found_key.objectid != scrub_dev->devid)
3706 break;
3707
3708 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3709 break;
3710
3711 if (found_key.offset >= end)
3712 break;
3713
3714 if (found_key.offset < key.offset)
3715 break;
3716
3717 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3718 length = btrfs_dev_extent_length(l, dev_extent);
3719
3720 if (found_key.offset + length <= start)
3721 goto skip;
3722
3723 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3724
3725 /*
3726 * get a reference on the corresponding block group to prevent
3727 * the chunk from going away while we scrub it
3728 */
3729 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3730
3731 /* some chunks are removed but not committed to disk yet,
3732 * continue scrubbing */
3733 if (!cache)
3734 goto skip;
3735
3736 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3737 spin_lock(&cache->lock);
3738 if (!cache->to_copy) {
3739 spin_unlock(&cache->lock);
3740 btrfs_put_block_group(cache);
3741 goto skip;
3742 }
3743 spin_unlock(&cache->lock);
3744 }
3745
3746 /*
3747 * Make sure that while we are scrubbing the corresponding block
3748 * group doesn't get its logical address and its device extents
3749 * reused for another block group, which can possibly be of a
3750 * different type and different profile. We do this to prevent
3751 * false error detections and crashes due to bogus attempts to
3752 * repair extents.
3753 */
3754 spin_lock(&cache->lock);
3755 if (cache->removed) {
3756 spin_unlock(&cache->lock);
3757 btrfs_put_block_group(cache);
3758 goto skip;
3759 }
3760 btrfs_freeze_block_group(cache);
3761 spin_unlock(&cache->lock);
3762
3763 /*
3764 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3765 * to avoid deadlock caused by:
3766 * btrfs_inc_block_group_ro()
3767 * -> btrfs_wait_for_commit()
3768 * -> btrfs_commit_transaction()
3769 * -> btrfs_scrub_pause()
3770 */
3771 scrub_pause_on(fs_info);
3772
3773 /*
3774 * Don't do chunk preallocation for scrub.
3775 *
3776 * This is especially important for SYSTEM bgs, or we can hit
3777 * -EFBIG from btrfs_finish_chunk_alloc() like:
3778 * 1. The only SYSTEM bg is marked RO.
3779 * Since SYSTEM bg is small, that's pretty common.
3780 * 2. New SYSTEM bg will be allocated
3781 * Due to regular version will allocate new chunk.
3782 * 3. New SYSTEM bg is empty and will get cleaned up
3783 * Before cleanup really happens, it's marked RO again.
3784 * 4. Empty SYSTEM bg get scrubbed
3785 * We go back to 2.
3786 *
3787 * This can easily boost the amount of SYSTEM chunks if cleaner
3788 * thread can't be triggered fast enough, and use up all space
3789 * of btrfs_super_block::sys_chunk_array
3790 *
3791 * While for dev replace, we need to try our best to mark block
3792 * group RO, to prevent race between:
3793 * - Write duplication
3794 * Contains latest data
3795 * - Scrub copy
3796 * Contains data from commit tree
3797 *
3798 * If target block group is not marked RO, nocow writes can
3799 * be overwritten by scrub copy, causing data corruption.
3800 * So for dev-replace, it's not allowed to continue if a block
3801 * group is not RO.
3802 */
3803 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3804 if (!ret && sctx->is_dev_replace) {
3805 ret = finish_extent_writes_for_zoned(root, cache);
3806 if (ret) {
3807 btrfs_dec_block_group_ro(cache);
3808 scrub_pause_off(fs_info);
3809 btrfs_put_block_group(cache);
3810 break;
3811 }
3812 }
3813
3814 if (ret == 0) {
3815 ro_set = 1;
3816 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3817 /*
3818 * btrfs_inc_block_group_ro return -ENOSPC when it
3819 * failed in creating new chunk for metadata.
3820 * It is not a problem for scrub, because
3821 * metadata are always cowed, and our scrub paused
3822 * commit_transactions.
3823 */
3824 ro_set = 0;
3825 } else if (ret == -ETXTBSY) {
3826 btrfs_warn(fs_info,
3827 "skipping scrub of block group %llu due to active swapfile",
3828 cache->start);
3829 scrub_pause_off(fs_info);
3830 ret = 0;
3831 goto skip_unfreeze;
3832 } else {
3833 btrfs_warn(fs_info,
3834 "failed setting block group ro: %d", ret);
3835 btrfs_unfreeze_block_group(cache);
3836 btrfs_put_block_group(cache);
3837 scrub_pause_off(fs_info);
3838 break;
3839 }
3840
3841 /*
3842 * Now the target block is marked RO, wait for nocow writes to
3843 * finish before dev-replace.
3844 * COW is fine, as COW never overwrites extents in commit tree.
3845 */
3846 if (sctx->is_dev_replace) {
3847 btrfs_wait_nocow_writers(cache);
3848 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3849 cache->length);
3850 }
3851
3852 scrub_pause_off(fs_info);
3853 down_write(&dev_replace->rwsem);
3854 dev_replace->cursor_right = found_key.offset + length;
3855 dev_replace->cursor_left = found_key.offset;
3856 dev_replace->item_needs_writeback = 1;
3857 up_write(&dev_replace->rwsem);
3858
3859 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3860 found_key.offset, cache);
3861
3862 /*
3863 * flush, submit all pending read and write bios, afterwards
3864 * wait for them.
3865 * Note that in the dev replace case, a read request causes
3866 * write requests that are submitted in the read completion
3867 * worker. Therefore in the current situation, it is required
3868 * that all write requests are flushed, so that all read and
3869 * write requests are really completed when bios_in_flight
3870 * changes to 0.
3871 */
3872 sctx->flush_all_writes = true;
3873 scrub_submit(sctx);
3874 mutex_lock(&sctx->wr_lock);
3875 scrub_wr_submit(sctx);
3876 mutex_unlock(&sctx->wr_lock);
3877
3878 wait_event(sctx->list_wait,
3879 atomic_read(&sctx->bios_in_flight) == 0);
3880
3881 scrub_pause_on(fs_info);
3882
3883 /*
3884 * must be called before we decrease @scrub_paused.
3885 * make sure we don't block transaction commit while
3886 * we are waiting pending workers finished.
3887 */
3888 wait_event(sctx->list_wait,
3889 atomic_read(&sctx->workers_pending) == 0);
3890 sctx->flush_all_writes = false;
3891
3892 scrub_pause_off(fs_info);
3893
3894 if (sctx->is_dev_replace &&
3895 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3896 cache, found_key.offset))
3897 ro_set = 0;
3898
3899 down_write(&dev_replace->rwsem);
3900 dev_replace->cursor_left = dev_replace->cursor_right;
3901 dev_replace->item_needs_writeback = 1;
3902 up_write(&dev_replace->rwsem);
3903
3904 if (ro_set)
3905 btrfs_dec_block_group_ro(cache);
3906
3907 /*
3908 * We might have prevented the cleaner kthread from deleting
3909 * this block group if it was already unused because we raced
3910 * and set it to RO mode first. So add it back to the unused
3911 * list, otherwise it might not ever be deleted unless a manual
3912 * balance is triggered or it becomes used and unused again.
3913 */
3914 spin_lock(&cache->lock);
3915 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3916 cache->used == 0) {
3917 spin_unlock(&cache->lock);
3918 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3919 btrfs_discard_queue_work(&fs_info->discard_ctl,
3920 cache);
3921 else
3922 btrfs_mark_bg_unused(cache);
3923 } else {
3924 spin_unlock(&cache->lock);
3925 }
3926skip_unfreeze:
3927 btrfs_unfreeze_block_group(cache);
3928 btrfs_put_block_group(cache);
3929 if (ret)
3930 break;
3931 if (sctx->is_dev_replace &&
3932 atomic64_read(&dev_replace->num_write_errors) > 0) {
3933 ret = -EIO;
3934 break;
3935 }
3936 if (sctx->stat.malloc_errors > 0) {
3937 ret = -ENOMEM;
3938 break;
3939 }
3940skip:
3941 key.offset = found_key.offset + length;
3942 btrfs_release_path(path);
3943 }
3944
3945 btrfs_free_path(path);
3946
3947 return ret;
3948}
3949
3950static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3951 struct btrfs_device *scrub_dev)
3952{
3953 int i;
3954 u64 bytenr;
3955 u64 gen;
3956 int ret;
3957 struct btrfs_fs_info *fs_info = sctx->fs_info;
3958
3959 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3960 return -EROFS;
3961
3962 /* Seed devices of a new filesystem has their own generation. */
3963 if (scrub_dev->fs_devices != fs_info->fs_devices)
3964 gen = scrub_dev->generation;
3965 else
3966 gen = fs_info->last_trans_committed;
3967
3968 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3969 bytenr = btrfs_sb_offset(i);
3970 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3971 scrub_dev->commit_total_bytes)
3972 break;
3973 if (!btrfs_check_super_location(scrub_dev, bytenr))
3974 continue;
3975
3976 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3977 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3978 NULL, bytenr);
3979 if (ret)
3980 return ret;
3981 }
3982 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3983
3984 return 0;
3985}
3986
3987static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3988{
3989 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3990 &fs_info->scrub_lock)) {
3991 struct btrfs_workqueue *scrub_workers = NULL;
3992 struct btrfs_workqueue *scrub_wr_comp = NULL;
3993 struct btrfs_workqueue *scrub_parity = NULL;
3994
3995 scrub_workers = fs_info->scrub_workers;
3996 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3997 scrub_parity = fs_info->scrub_parity_workers;
3998
3999 fs_info->scrub_workers = NULL;
4000 fs_info->scrub_wr_completion_workers = NULL;
4001 fs_info->scrub_parity_workers = NULL;
4002 mutex_unlock(&fs_info->scrub_lock);
4003
4004 btrfs_destroy_workqueue(scrub_workers);
4005 btrfs_destroy_workqueue(scrub_wr_comp);
4006 btrfs_destroy_workqueue(scrub_parity);
4007 }
4008}
4009
4010/*
4011 * get a reference count on fs_info->scrub_workers. start worker if necessary
4012 */
4013static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4014 int is_dev_replace)
4015{
4016 struct btrfs_workqueue *scrub_workers = NULL;
4017 struct btrfs_workqueue *scrub_wr_comp = NULL;
4018 struct btrfs_workqueue *scrub_parity = NULL;
4019 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4020 int max_active = fs_info->thread_pool_size;
4021 int ret = -ENOMEM;
4022
4023 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4024 return 0;
4025
4026 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4027 is_dev_replace ? 1 : max_active, 4);
4028 if (!scrub_workers)
4029 goto fail_scrub_workers;
4030
4031 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4032 max_active, 2);
4033 if (!scrub_wr_comp)
4034 goto fail_scrub_wr_completion_workers;
4035
4036 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4037 max_active, 2);
4038 if (!scrub_parity)
4039 goto fail_scrub_parity_workers;
4040
4041 mutex_lock(&fs_info->scrub_lock);
4042 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4043 ASSERT(fs_info->scrub_workers == NULL &&
4044 fs_info->scrub_wr_completion_workers == NULL &&
4045 fs_info->scrub_parity_workers == NULL);
4046 fs_info->scrub_workers = scrub_workers;
4047 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4048 fs_info->scrub_parity_workers = scrub_parity;
4049 refcount_set(&fs_info->scrub_workers_refcnt, 1);
4050 mutex_unlock(&fs_info->scrub_lock);
4051 return 0;
4052 }
4053 /* Other thread raced in and created the workers for us */
4054 refcount_inc(&fs_info->scrub_workers_refcnt);
4055 mutex_unlock(&fs_info->scrub_lock);
4056
4057 ret = 0;
4058 btrfs_destroy_workqueue(scrub_parity);
4059fail_scrub_parity_workers:
4060 btrfs_destroy_workqueue(scrub_wr_comp);
4061fail_scrub_wr_completion_workers:
4062 btrfs_destroy_workqueue(scrub_workers);
4063fail_scrub_workers:
4064 return ret;
4065}
4066
4067int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4068 u64 end, struct btrfs_scrub_progress *progress,
4069 int readonly, int is_dev_replace)
4070{
4071 struct scrub_ctx *sctx;
4072 int ret;
4073 struct btrfs_device *dev;
4074 unsigned int nofs_flag;
4075
4076 if (btrfs_fs_closing(fs_info))
4077 return -EAGAIN;
4078
4079 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080 /*
4081 * in this case scrub is unable to calculate the checksum
4082 * the way scrub is implemented. Do not handle this
4083 * situation at all because it won't ever happen.
4084 */
4085 btrfs_err(fs_info,
4086 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087 fs_info->nodesize,
4088 BTRFS_STRIPE_LEN);
4089 return -EINVAL;
4090 }
4091
4092 if (fs_info->nodesize >
4093 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095 /*
4096 * would exhaust the array bounds of pagev member in
4097 * struct scrub_block
4098 */
4099 btrfs_err(fs_info,
4100 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101 fs_info->nodesize,
4102 SCRUB_MAX_PAGES_PER_BLOCK,
4103 fs_info->sectorsize,
4104 SCRUB_MAX_PAGES_PER_BLOCK);
4105 return -EINVAL;
4106 }
4107
4108 /* Allocate outside of device_list_mutex */
4109 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4110 if (IS_ERR(sctx))
4111 return PTR_ERR(sctx);
4112
4113 ret = scrub_workers_get(fs_info, is_dev_replace);
4114 if (ret)
4115 goto out_free_ctx;
4116
4117 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4119 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4120 !is_dev_replace)) {
4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 ret = -ENODEV;
4123 goto out;
4124 }
4125
4126 if (!is_dev_replace && !readonly &&
4127 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129 btrfs_err_in_rcu(fs_info,
4130 "scrub on devid %llu: filesystem on %s is not writable",
4131 devid, rcu_str_deref(dev->name));
4132 ret = -EROFS;
4133 goto out;
4134 }
4135
4136 mutex_lock(&fs_info->scrub_lock);
4137 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4139 mutex_unlock(&fs_info->scrub_lock);
4140 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141 ret = -EIO;
4142 goto out;
4143 }
4144
4145 down_read(&fs_info->dev_replace.rwsem);
4146 if (dev->scrub_ctx ||
4147 (!is_dev_replace &&
4148 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149 up_read(&fs_info->dev_replace.rwsem);
4150 mutex_unlock(&fs_info->scrub_lock);
4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152 ret = -EINPROGRESS;
4153 goto out;
4154 }
4155 up_read(&fs_info->dev_replace.rwsem);
4156
4157 sctx->readonly = readonly;
4158 dev->scrub_ctx = sctx;
4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160
4161 /*
4162 * checking @scrub_pause_req here, we can avoid
4163 * race between committing transaction and scrubbing.
4164 */
4165 __scrub_blocked_if_needed(fs_info);
4166 atomic_inc(&fs_info->scrubs_running);
4167 mutex_unlock(&fs_info->scrub_lock);
4168
4169 /*
4170 * In order to avoid deadlock with reclaim when there is a transaction
4171 * trying to pause scrub, make sure we use GFP_NOFS for all the
4172 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4173 * invoked by our callees. The pausing request is done when the
4174 * transaction commit starts, and it blocks the transaction until scrub
4175 * is paused (done at specific points at scrub_stripe() or right above
4176 * before incrementing fs_info->scrubs_running).
4177 */
4178 nofs_flag = memalloc_nofs_save();
4179 if (!is_dev_replace) {
4180 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181 /*
4182 * by holding device list mutex, we can
4183 * kick off writing super in log tree sync.
4184 */
4185 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186 ret = scrub_supers(sctx, dev);
4187 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188 }
4189
4190 if (!ret)
4191 ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192 memalloc_nofs_restore(nofs_flag);
4193
4194 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4195 atomic_dec(&fs_info->scrubs_running);
4196 wake_up(&fs_info->scrub_pause_wait);
4197
4198 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199
4200 if (progress)
4201 memcpy(progress, &sctx->stat, sizeof(*progress));
4202
4203 if (!is_dev_replace)
4204 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4205 ret ? "not finished" : "finished", devid, ret);
4206
4207 mutex_lock(&fs_info->scrub_lock);
4208 dev->scrub_ctx = NULL;
4209 mutex_unlock(&fs_info->scrub_lock);
4210
4211 scrub_workers_put(fs_info);
4212 scrub_put_ctx(sctx);
4213
4214 return ret;
4215out:
4216 scrub_workers_put(fs_info);
4217out_free_ctx:
4218 scrub_free_ctx(sctx);
4219
4220 return ret;
4221}
4222
4223void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4224{
4225 mutex_lock(&fs_info->scrub_lock);
4226 atomic_inc(&fs_info->scrub_pause_req);
4227 while (atomic_read(&fs_info->scrubs_paused) !=
4228 atomic_read(&fs_info->scrubs_running)) {
4229 mutex_unlock(&fs_info->scrub_lock);
4230 wait_event(fs_info->scrub_pause_wait,
4231 atomic_read(&fs_info->scrubs_paused) ==
4232 atomic_read(&fs_info->scrubs_running));
4233 mutex_lock(&fs_info->scrub_lock);
4234 }
4235 mutex_unlock(&fs_info->scrub_lock);
4236}
4237
4238void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4239{
4240 atomic_dec(&fs_info->scrub_pause_req);
4241 wake_up(&fs_info->scrub_pause_wait);
4242}
4243
4244int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4245{
4246 mutex_lock(&fs_info->scrub_lock);
4247 if (!atomic_read(&fs_info->scrubs_running)) {
4248 mutex_unlock(&fs_info->scrub_lock);
4249 return -ENOTCONN;
4250 }
4251
4252 atomic_inc(&fs_info->scrub_cancel_req);
4253 while (atomic_read(&fs_info->scrubs_running)) {
4254 mutex_unlock(&fs_info->scrub_lock);
4255 wait_event(fs_info->scrub_pause_wait,
4256 atomic_read(&fs_info->scrubs_running) == 0);
4257 mutex_lock(&fs_info->scrub_lock);
4258 }
4259 atomic_dec(&fs_info->scrub_cancel_req);
4260 mutex_unlock(&fs_info->scrub_lock);
4261
4262 return 0;
4263}
4264
4265int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266{
4267 struct btrfs_fs_info *fs_info = dev->fs_info;
4268 struct scrub_ctx *sctx;
4269
4270 mutex_lock(&fs_info->scrub_lock);
4271 sctx = dev->scrub_ctx;
4272 if (!sctx) {
4273 mutex_unlock(&fs_info->scrub_lock);
4274 return -ENOTCONN;
4275 }
4276 atomic_inc(&sctx->cancel_req);
4277 while (dev->scrub_ctx) {
4278 mutex_unlock(&fs_info->scrub_lock);
4279 wait_event(fs_info->scrub_pause_wait,
4280 dev->scrub_ctx == NULL);
4281 mutex_lock(&fs_info->scrub_lock);
4282 }
4283 mutex_unlock(&fs_info->scrub_lock);
4284
4285 return 0;
4286}
4287
4288int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4289 struct btrfs_scrub_progress *progress)
4290{
4291 struct btrfs_device *dev;
4292 struct scrub_ctx *sctx = NULL;
4293
4294 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4295 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4296 if (dev)
4297 sctx = dev->scrub_ctx;
4298 if (sctx)
4299 memcpy(progress, &sctx->stat, sizeof(*progress));
4300 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4301
4302 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4303}
4304
4305static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4306 u64 extent_logical, u32 extent_len,
4307 u64 *extent_physical,
4308 struct btrfs_device **extent_dev,
4309 int *extent_mirror_num)
4310{
4311 u64 mapped_length;
4312 struct btrfs_bio *bbio = NULL;
4313 int ret;
4314
4315 mapped_length = extent_len;
4316 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4317 &mapped_length, &bbio, 0);
4318 if (ret || !bbio || mapped_length < extent_len ||
4319 !bbio->stripes[0].dev->bdev) {
4320 btrfs_put_bbio(bbio);
4321 return;
4322 }
4323
4324 *extent_physical = bbio->stripes[0].physical;
4325 *extent_mirror_num = bbio->mirror_num;
4326 *extent_dev = bbio->stripes[0].dev;
4327 btrfs_put_bbio(bbio);
4328}