Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
 
   9#include "ctree.h"
 
  10#include "volumes.h"
  11#include "disk-io.h"
  12#include "ordered-data.h"
  13#include "transaction.h"
  14#include "backref.h"
  15#include "extent_io.h"
  16#include "dev-replace.h"
  17#include "check-integrity.h"
  18#include "rcu-string.h"
  19#include "raid56.h"
 
 
  20
  21/*
  22 * This is only the first step towards a full-features scrub. It reads all
  23 * extent and super block and verifies the checksums. In case a bad checksum
  24 * is found or the extent cannot be read, good data will be written back if
  25 * any can be found.
  26 *
  27 * Future enhancements:
  28 *  - In case an unrepairable extent is encountered, track which files are
  29 *    affected and report them
  30 *  - track and record media errors, throw out bad devices
  31 *  - add a mode to also read unallocated space
  32 */
  33
  34struct scrub_block;
  35struct scrub_ctx;
  36
  37/*
  38 * the following three values only influence the performance.
  39 * The last one configures the number of parallel and outstanding I/O
  40 * operations. The first two values configure an upper limit for the number
  41 * of (dynamically allocated) pages that are added to a bio.
  42 */
  43#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  44#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  45#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  46
  47/*
  48 * the following value times PAGE_SIZE needs to be large enough to match the
  49 * largest node/leaf/sector size that shall be supported.
  50 * Values larger than BTRFS_STRIPE_LEN are not supported.
  51 */
  52#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  53
  54struct scrub_recover {
  55	refcount_t		refs;
  56	struct btrfs_bio	*bbio;
  57	u64			map_length;
  58};
  59
  60struct scrub_page {
  61	struct scrub_block	*sblock;
  62	struct page		*page;
  63	struct btrfs_device	*dev;
  64	struct list_head	list;
  65	u64			flags;  /* extent flags */
  66	u64			generation;
  67	u64			logical;
  68	u64			physical;
  69	u64			physical_for_dev_replace;
  70	atomic_t		refs;
  71	struct {
  72		unsigned int	mirror_num:8;
  73		unsigned int	have_csum:1;
  74		unsigned int	io_error:1;
  75	};
  76	u8			csum[BTRFS_CSUM_SIZE];
  77
  78	struct scrub_recover	*recover;
  79};
  80
  81struct scrub_bio {
  82	int			index;
  83	struct scrub_ctx	*sctx;
  84	struct btrfs_device	*dev;
  85	struct bio		*bio;
  86	blk_status_t		status;
  87	u64			logical;
  88	u64			physical;
  89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  90	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  91#else
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  93#endif
  94	int			page_count;
  95	int			next_free;
  96	struct btrfs_work	work;
  97};
  98
  99struct scrub_block {
 100	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 101	int			page_count;
 102	atomic_t		outstanding_pages;
 103	refcount_t		refs; /* free mem on transition to zero */
 104	struct scrub_ctx	*sctx;
 105	struct scrub_parity	*sparity;
 106	struct {
 107		unsigned int	header_error:1;
 108		unsigned int	checksum_error:1;
 109		unsigned int	no_io_error_seen:1;
 110		unsigned int	generation_error:1; /* also sets header_error */
 111
 112		/* The following is for the data used to check parity */
 113		/* It is for the data with checksum */
 114		unsigned int	data_corrected:1;
 115	};
 116	struct btrfs_work	work;
 117};
 118
 119/* Used for the chunks with parity stripe such RAID5/6 */
 120struct scrub_parity {
 121	struct scrub_ctx	*sctx;
 122
 123	struct btrfs_device	*scrub_dev;
 124
 125	u64			logic_start;
 126
 127	u64			logic_end;
 128
 129	int			nsectors;
 130
 131	u64			stripe_len;
 132
 133	refcount_t		refs;
 134
 135	struct list_head	spages;
 136
 137	/* Work of parity check and repair */
 138	struct btrfs_work	work;
 139
 140	/* Mark the parity blocks which have data */
 141	unsigned long		*dbitmap;
 142
 143	/*
 144	 * Mark the parity blocks which have data, but errors happen when
 145	 * read data or check data
 146	 */
 147	unsigned long		*ebitmap;
 148
 149	unsigned long		bitmap[0];
 150};
 151
 152struct scrub_ctx {
 153	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 154	struct btrfs_fs_info	*fs_info;
 155	int			first_free;
 156	int			curr;
 157	atomic_t		bios_in_flight;
 158	atomic_t		workers_pending;
 159	spinlock_t		list_lock;
 160	wait_queue_head_t	list_wait;
 161	u16			csum_size;
 162	struct list_head	csum_list;
 163	atomic_t		cancel_req;
 164	int			readonly;
 165	int			pages_per_rd_bio;
 166
 
 
 
 
 167	int			is_dev_replace;
 
 168
 169	struct scrub_bio        *wr_curr_bio;
 170	struct mutex            wr_lock;
 171	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 172	struct btrfs_device     *wr_tgtdev;
 173	bool                    flush_all_writes;
 174
 175	/*
 176	 * statistics
 177	 */
 178	struct btrfs_scrub_progress stat;
 179	spinlock_t		stat_lock;
 180
 181	/*
 182	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 183	 * decrement bios_in_flight and workers_pending and then do a wakeup
 184	 * on the list_wait wait queue. We must ensure the main scrub task
 185	 * doesn't free the scrub context before or while the workers are
 186	 * doing the wakeup() call.
 187	 */
 188	refcount_t              refs;
 189};
 190
 191struct scrub_fixup_nodatasum {
 192	struct scrub_ctx	*sctx;
 193	struct btrfs_device	*dev;
 194	u64			logical;
 195	struct btrfs_root	*root;
 196	struct btrfs_work	work;
 197	int			mirror_num;
 198};
 199
 200struct scrub_nocow_inode {
 201	u64			inum;
 202	u64			offset;
 203	u64			root;
 204	struct list_head	list;
 205};
 206
 207struct scrub_copy_nocow_ctx {
 208	struct scrub_ctx	*sctx;
 209	u64			logical;
 210	u64			len;
 211	int			mirror_num;
 212	u64			physical_for_dev_replace;
 213	struct list_head	inodes;
 214	struct btrfs_work	work;
 215};
 216
 217struct scrub_warning {
 218	struct btrfs_path	*path;
 219	u64			extent_item_size;
 220	const char		*errstr;
 221	u64			physical;
 222	u64			logical;
 223	struct btrfs_device	*dev;
 224};
 225
 226struct full_stripe_lock {
 227	struct rb_node node;
 228	u64 logical;
 229	u64 refs;
 230	struct mutex mutex;
 231};
 232
 233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 239				     struct scrub_block *sblocks_for_recheck);
 240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 241				struct scrub_block *sblock,
 242				int retry_failed_mirror);
 243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 245					     struct scrub_block *sblock_good);
 246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 247					    struct scrub_block *sblock_good,
 248					    int page_num, int force_write);
 249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 251					   int page_num);
 252static int scrub_checksum_data(struct scrub_block *sblock);
 253static int scrub_checksum_tree_block(struct scrub_block *sblock);
 254static int scrub_checksum_super(struct scrub_block *sblock);
 255static void scrub_block_get(struct scrub_block *sblock);
 256static void scrub_block_put(struct scrub_block *sblock);
 257static void scrub_page_get(struct scrub_page *spage);
 258static void scrub_page_put(struct scrub_page *spage);
 259static void scrub_parity_get(struct scrub_parity *sparity);
 260static void scrub_parity_put(struct scrub_parity *sparity);
 261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 262				    struct scrub_page *spage);
 263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 264		       u64 physical, struct btrfs_device *dev, u64 flags,
 265		       u64 gen, int mirror_num, u8 *csum, int force,
 266		       u64 physical_for_dev_replace);
 267static void scrub_bio_end_io(struct bio *bio);
 268static void scrub_bio_end_io_worker(struct btrfs_work *work);
 269static void scrub_block_complete(struct scrub_block *sblock);
 270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 271			       u64 extent_logical, u64 extent_len,
 272			       u64 *extent_physical,
 273			       struct btrfs_device **extent_dev,
 274			       int *extent_mirror_num);
 275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 276				    struct scrub_page *spage);
 277static void scrub_wr_submit(struct scrub_ctx *sctx);
 278static void scrub_wr_bio_end_io(struct bio *bio);
 279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 280static int write_page_nocow(struct scrub_ctx *sctx,
 281			    u64 physical_for_dev_replace, struct page *page);
 282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 283				      struct scrub_copy_nocow_ctx *ctx);
 284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 285			    int mirror_num, u64 physical_for_dev_replace);
 286static void copy_nocow_pages_worker(struct btrfs_work *work);
 287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 292{
 293	return page->recover &&
 294	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 295}
 296
 297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 298{
 299	refcount_inc(&sctx->refs);
 300	atomic_inc(&sctx->bios_in_flight);
 301}
 302
 303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 304{
 305	atomic_dec(&sctx->bios_in_flight);
 306	wake_up(&sctx->list_wait);
 307	scrub_put_ctx(sctx);
 308}
 309
 310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 311{
 312	while (atomic_read(&fs_info->scrub_pause_req)) {
 313		mutex_unlock(&fs_info->scrub_lock);
 314		wait_event(fs_info->scrub_pause_wait,
 315		   atomic_read(&fs_info->scrub_pause_req) == 0);
 316		mutex_lock(&fs_info->scrub_lock);
 317	}
 318}
 319
 320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 321{
 322	atomic_inc(&fs_info->scrubs_paused);
 323	wake_up(&fs_info->scrub_pause_wait);
 324}
 325
 326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 327{
 328	mutex_lock(&fs_info->scrub_lock);
 329	__scrub_blocked_if_needed(fs_info);
 330	atomic_dec(&fs_info->scrubs_paused);
 331	mutex_unlock(&fs_info->scrub_lock);
 332
 333	wake_up(&fs_info->scrub_pause_wait);
 334}
 335
 336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 337{
 338	scrub_pause_on(fs_info);
 339	scrub_pause_off(fs_info);
 340}
 341
 342/*
 343 * Insert new full stripe lock into full stripe locks tree
 344 *
 345 * Return pointer to existing or newly inserted full_stripe_lock structure if
 346 * everything works well.
 347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 348 *
 349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 350 * function
 351 */
 352static struct full_stripe_lock *insert_full_stripe_lock(
 353		struct btrfs_full_stripe_locks_tree *locks_root,
 354		u64 fstripe_logical)
 355{
 356	struct rb_node **p;
 357	struct rb_node *parent = NULL;
 358	struct full_stripe_lock *entry;
 359	struct full_stripe_lock *ret;
 360
 361	lockdep_assert_held(&locks_root->lock);
 362
 363	p = &locks_root->root.rb_node;
 364	while (*p) {
 365		parent = *p;
 366		entry = rb_entry(parent, struct full_stripe_lock, node);
 367		if (fstripe_logical < entry->logical) {
 368			p = &(*p)->rb_left;
 369		} else if (fstripe_logical > entry->logical) {
 370			p = &(*p)->rb_right;
 371		} else {
 372			entry->refs++;
 373			return entry;
 374		}
 375	}
 376
 377	/* Insert new lock */
 
 
 378	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 379	if (!ret)
 380		return ERR_PTR(-ENOMEM);
 381	ret->logical = fstripe_logical;
 382	ret->refs = 1;
 383	mutex_init(&ret->mutex);
 384
 385	rb_link_node(&ret->node, parent, p);
 386	rb_insert_color(&ret->node, &locks_root->root);
 387	return ret;
 388}
 389
 390/*
 391 * Search for a full stripe lock of a block group
 392 *
 393 * Return pointer to existing full stripe lock if found
 394 * Return NULL if not found
 395 */
 396static struct full_stripe_lock *search_full_stripe_lock(
 397		struct btrfs_full_stripe_locks_tree *locks_root,
 398		u64 fstripe_logical)
 399{
 400	struct rb_node *node;
 401	struct full_stripe_lock *entry;
 402
 403	lockdep_assert_held(&locks_root->lock);
 404
 405	node = locks_root->root.rb_node;
 406	while (node) {
 407		entry = rb_entry(node, struct full_stripe_lock, node);
 408		if (fstripe_logical < entry->logical)
 409			node = node->rb_left;
 410		else if (fstripe_logical > entry->logical)
 411			node = node->rb_right;
 412		else
 413			return entry;
 414	}
 415	return NULL;
 416}
 417
 418/*
 419 * Helper to get full stripe logical from a normal bytenr.
 420 *
 421 * Caller must ensure @cache is a RAID56 block group.
 422 */
 423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 424				   u64 bytenr)
 425{
 426	u64 ret;
 427
 428	/*
 429	 * Due to chunk item size limit, full stripe length should not be
 430	 * larger than U32_MAX. Just a sanity check here.
 431	 */
 432	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 433
 434	/*
 435	 * round_down() can only handle power of 2, while RAID56 full
 436	 * stripe length can be 64KiB * n, so we need to manually round down.
 437	 */
 438	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 439		cache->full_stripe_len + cache->key.objectid;
 440	return ret;
 441}
 442
 443/*
 444 * Lock a full stripe to avoid concurrency of recovery and read
 445 *
 446 * It's only used for profiles with parities (RAID5/6), for other profiles it
 447 * does nothing.
 448 *
 449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 450 * So caller must call unlock_full_stripe() at the same context.
 451 *
 452 * Return <0 if encounters error.
 453 */
 454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 455			    bool *locked_ret)
 456{
 457	struct btrfs_block_group_cache *bg_cache;
 458	struct btrfs_full_stripe_locks_tree *locks_root;
 459	struct full_stripe_lock *existing;
 460	u64 fstripe_start;
 461	int ret = 0;
 462
 463	*locked_ret = false;
 464	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 465	if (!bg_cache) {
 466		ASSERT(0);
 467		return -ENOENT;
 468	}
 469
 470	/* Profiles not based on parity don't need full stripe lock */
 471	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 472		goto out;
 473	locks_root = &bg_cache->full_stripe_locks_root;
 474
 475	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 476
 477	/* Now insert the full stripe lock */
 478	mutex_lock(&locks_root->lock);
 479	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 480	mutex_unlock(&locks_root->lock);
 481	if (IS_ERR(existing)) {
 482		ret = PTR_ERR(existing);
 483		goto out;
 484	}
 485	mutex_lock(&existing->mutex);
 486	*locked_ret = true;
 487out:
 488	btrfs_put_block_group(bg_cache);
 489	return ret;
 490}
 491
 492/*
 493 * Unlock a full stripe.
 494 *
 495 * NOTE: Caller must ensure it's the same context calling corresponding
 496 * lock_full_stripe().
 497 *
 498 * Return 0 if we unlock full stripe without problem.
 499 * Return <0 for error
 500 */
 501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 502			      bool locked)
 503{
 504	struct btrfs_block_group_cache *bg_cache;
 505	struct btrfs_full_stripe_locks_tree *locks_root;
 506	struct full_stripe_lock *fstripe_lock;
 507	u64 fstripe_start;
 508	bool freeit = false;
 509	int ret = 0;
 510
 511	/* If we didn't acquire full stripe lock, no need to continue */
 512	if (!locked)
 513		return 0;
 514
 515	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 516	if (!bg_cache) {
 517		ASSERT(0);
 518		return -ENOENT;
 519	}
 520	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 521		goto out;
 522
 523	locks_root = &bg_cache->full_stripe_locks_root;
 524	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 525
 526	mutex_lock(&locks_root->lock);
 527	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 528	/* Unpaired unlock_full_stripe() detected */
 529	if (!fstripe_lock) {
 530		WARN_ON(1);
 531		ret = -ENOENT;
 532		mutex_unlock(&locks_root->lock);
 533		goto out;
 534	}
 535
 536	if (fstripe_lock->refs == 0) {
 537		WARN_ON(1);
 538		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 539			fstripe_lock->logical);
 540	} else {
 541		fstripe_lock->refs--;
 542	}
 543
 544	if (fstripe_lock->refs == 0) {
 545		rb_erase(&fstripe_lock->node, &locks_root->root);
 546		freeit = true;
 547	}
 548	mutex_unlock(&locks_root->lock);
 549
 550	mutex_unlock(&fstripe_lock->mutex);
 551	if (freeit)
 552		kfree(fstripe_lock);
 553out:
 554	btrfs_put_block_group(bg_cache);
 555	return ret;
 556}
 557
 558/*
 559 * used for workers that require transaction commits (i.e., for the
 560 * NOCOW case)
 561 */
 562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 563{
 564	struct btrfs_fs_info *fs_info = sctx->fs_info;
 565
 566	refcount_inc(&sctx->refs);
 567	/*
 568	 * increment scrubs_running to prevent cancel requests from
 569	 * completing as long as a worker is running. we must also
 570	 * increment scrubs_paused to prevent deadlocking on pause
 571	 * requests used for transactions commits (as the worker uses a
 572	 * transaction context). it is safe to regard the worker
 573	 * as paused for all matters practical. effectively, we only
 574	 * avoid cancellation requests from completing.
 575	 */
 576	mutex_lock(&fs_info->scrub_lock);
 577	atomic_inc(&fs_info->scrubs_running);
 578	atomic_inc(&fs_info->scrubs_paused);
 579	mutex_unlock(&fs_info->scrub_lock);
 580
 581	/*
 582	 * check if @scrubs_running=@scrubs_paused condition
 583	 * inside wait_event() is not an atomic operation.
 584	 * which means we may inc/dec @scrub_running/paused
 585	 * at any time. Let's wake up @scrub_pause_wait as
 586	 * much as we can to let commit transaction blocked less.
 587	 */
 588	wake_up(&fs_info->scrub_pause_wait);
 589
 590	atomic_inc(&sctx->workers_pending);
 591}
 592
 593/* used for workers that require transaction commits */
 594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 595{
 596	struct btrfs_fs_info *fs_info = sctx->fs_info;
 597
 598	/*
 599	 * see scrub_pending_trans_workers_inc() why we're pretending
 600	 * to be paused in the scrub counters
 601	 */
 602	mutex_lock(&fs_info->scrub_lock);
 603	atomic_dec(&fs_info->scrubs_running);
 604	atomic_dec(&fs_info->scrubs_paused);
 605	mutex_unlock(&fs_info->scrub_lock);
 606	atomic_dec(&sctx->workers_pending);
 607	wake_up(&fs_info->scrub_pause_wait);
 608	wake_up(&sctx->list_wait);
 609	scrub_put_ctx(sctx);
 610}
 611
 612static void scrub_free_csums(struct scrub_ctx *sctx)
 613{
 614	while (!list_empty(&sctx->csum_list)) {
 615		struct btrfs_ordered_sum *sum;
 616		sum = list_first_entry(&sctx->csum_list,
 617				       struct btrfs_ordered_sum, list);
 618		list_del(&sum->list);
 619		kfree(sum);
 620	}
 621}
 622
 623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 624{
 625	int i;
 626
 627	if (!sctx)
 628		return;
 629
 630	/* this can happen when scrub is cancelled */
 631	if (sctx->curr != -1) {
 632		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 633
 634		for (i = 0; i < sbio->page_count; i++) {
 635			WARN_ON(!sbio->pagev[i]->page);
 636			scrub_block_put(sbio->pagev[i]->sblock);
 637		}
 638		bio_put(sbio->bio);
 639	}
 640
 641	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 642		struct scrub_bio *sbio = sctx->bios[i];
 643
 644		if (!sbio)
 645			break;
 646		kfree(sbio);
 647	}
 648
 649	kfree(sctx->wr_curr_bio);
 650	scrub_free_csums(sctx);
 651	kfree(sctx);
 652}
 653
 654static void scrub_put_ctx(struct scrub_ctx *sctx)
 655{
 656	if (refcount_dec_and_test(&sctx->refs))
 657		scrub_free_ctx(sctx);
 658}
 659
 660static noinline_for_stack
 661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 662{
 663	struct scrub_ctx *sctx;
 664	int		i;
 665	struct btrfs_fs_info *fs_info = dev->fs_info;
 666
 667	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 668	if (!sctx)
 669		goto nomem;
 670	refcount_set(&sctx->refs, 1);
 671	sctx->is_dev_replace = is_dev_replace;
 672	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 673	sctx->curr = -1;
 674	sctx->fs_info = dev->fs_info;
 
 675	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 676		struct scrub_bio *sbio;
 677
 678		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 679		if (!sbio)
 680			goto nomem;
 681		sctx->bios[i] = sbio;
 682
 683		sbio->index = i;
 684		sbio->sctx = sctx;
 685		sbio->page_count = 0;
 686		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 687				scrub_bio_end_io_worker, NULL, NULL);
 688
 689		if (i != SCRUB_BIOS_PER_SCTX - 1)
 690			sctx->bios[i]->next_free = i + 1;
 691		else
 692			sctx->bios[i]->next_free = -1;
 693	}
 694	sctx->first_free = 0;
 695	atomic_set(&sctx->bios_in_flight, 0);
 696	atomic_set(&sctx->workers_pending, 0);
 697	atomic_set(&sctx->cancel_req, 0);
 698	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 699	INIT_LIST_HEAD(&sctx->csum_list);
 700
 701	spin_lock_init(&sctx->list_lock);
 702	spin_lock_init(&sctx->stat_lock);
 703	init_waitqueue_head(&sctx->list_wait);
 
 704
 705	WARN_ON(sctx->wr_curr_bio != NULL);
 706	mutex_init(&sctx->wr_lock);
 707	sctx->wr_curr_bio = NULL;
 708	if (is_dev_replace) {
 709		WARN_ON(!fs_info->dev_replace.tgtdev);
 710		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 711		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 712		sctx->flush_all_writes = false;
 713	}
 714
 715	return sctx;
 716
 717nomem:
 718	scrub_free_ctx(sctx);
 719	return ERR_PTR(-ENOMEM);
 720}
 721
 722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 723				     void *warn_ctx)
 724{
 725	u64 isize;
 726	u32 nlink;
 727	int ret;
 728	int i;
 729	unsigned nofs_flag;
 730	struct extent_buffer *eb;
 731	struct btrfs_inode_item *inode_item;
 732	struct scrub_warning *swarn = warn_ctx;
 733	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 734	struct inode_fs_paths *ipath = NULL;
 735	struct btrfs_root *local_root;
 736	struct btrfs_key root_key;
 737	struct btrfs_key key;
 738
 739	root_key.objectid = root;
 740	root_key.type = BTRFS_ROOT_ITEM_KEY;
 741	root_key.offset = (u64)-1;
 742	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 743	if (IS_ERR(local_root)) {
 744		ret = PTR_ERR(local_root);
 745		goto err;
 746	}
 747
 748	/*
 749	 * this makes the path point to (inum INODE_ITEM ioff)
 750	 */
 751	key.objectid = inum;
 752	key.type = BTRFS_INODE_ITEM_KEY;
 753	key.offset = 0;
 754
 755	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 756	if (ret) {
 
 757		btrfs_release_path(swarn->path);
 758		goto err;
 759	}
 760
 761	eb = swarn->path->nodes[0];
 762	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 763					struct btrfs_inode_item);
 764	isize = btrfs_inode_size(eb, inode_item);
 765	nlink = btrfs_inode_nlink(eb, inode_item);
 766	btrfs_release_path(swarn->path);
 767
 768	/*
 769	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 770	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 771	 * not seem to be strictly necessary.
 772	 */
 773	nofs_flag = memalloc_nofs_save();
 774	ipath = init_ipath(4096, local_root, swarn->path);
 775	memalloc_nofs_restore(nofs_flag);
 776	if (IS_ERR(ipath)) {
 
 777		ret = PTR_ERR(ipath);
 778		ipath = NULL;
 779		goto err;
 780	}
 781	ret = paths_from_inode(inum, ipath);
 782
 783	if (ret < 0)
 784		goto err;
 785
 786	/*
 787	 * we deliberately ignore the bit ipath might have been too small to
 788	 * hold all of the paths here
 789	 */
 790	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 791		btrfs_warn_in_rcu(fs_info,
 792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 793				  swarn->errstr, swarn->logical,
 794				  rcu_str_deref(swarn->dev->name),
 795				  swarn->physical,
 796				  root, inum, offset,
 797				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 798				  (char *)(unsigned long)ipath->fspath->val[i]);
 799
 
 800	free_ipath(ipath);
 801	return 0;
 802
 803err:
 804	btrfs_warn_in_rcu(fs_info,
 805			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 806			  swarn->errstr, swarn->logical,
 807			  rcu_str_deref(swarn->dev->name),
 808			  swarn->physical,
 809			  root, inum, offset, ret);
 810
 811	free_ipath(ipath);
 812	return 0;
 813}
 814
 815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 816{
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	struct btrfs_path *path;
 820	struct btrfs_key found_key;
 821	struct extent_buffer *eb;
 822	struct btrfs_extent_item *ei;
 823	struct scrub_warning swarn;
 824	unsigned long ptr = 0;
 825	u64 extent_item_pos;
 826	u64 flags = 0;
 827	u64 ref_root;
 828	u32 item_size;
 829	u8 ref_level = 0;
 830	int ret;
 831
 832	WARN_ON(sblock->page_count < 1);
 833	dev = sblock->pagev[0]->dev;
 834	fs_info = sblock->sctx->fs_info;
 835
 836	path = btrfs_alloc_path();
 837	if (!path)
 838		return;
 839
 840	swarn.physical = sblock->pagev[0]->physical;
 841	swarn.logical = sblock->pagev[0]->logical;
 842	swarn.errstr = errstr;
 843	swarn.dev = NULL;
 844
 845	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 846				  &flags);
 847	if (ret < 0)
 848		goto out;
 849
 850	extent_item_pos = swarn.logical - found_key.objectid;
 851	swarn.extent_item_size = found_key.offset;
 852
 853	eb = path->nodes[0];
 854	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 855	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 856
 857	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 858		do {
 859			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 860						      item_size, &ref_root,
 861						      &ref_level);
 862			btrfs_warn_in_rcu(fs_info,
 863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 864				errstr, swarn.logical,
 865				rcu_str_deref(dev->name),
 866				swarn.physical,
 867				ref_level ? "node" : "leaf",
 868				ret < 0 ? -1 : ref_level,
 869				ret < 0 ? -1 : ref_root);
 870		} while (ret != 1);
 871		btrfs_release_path(path);
 872	} else {
 873		btrfs_release_path(path);
 874		swarn.path = path;
 875		swarn.dev = dev;
 876		iterate_extent_inodes(fs_info, found_key.objectid,
 877					extent_item_pos, 1,
 878					scrub_print_warning_inode, &swarn, false);
 879	}
 880
 881out:
 882	btrfs_free_path(path);
 883}
 884
 885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 886{
 887	struct page *page = NULL;
 888	unsigned long index;
 889	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 890	int ret;
 891	int corrected = 0;
 892	struct btrfs_key key;
 893	struct inode *inode = NULL;
 894	struct btrfs_fs_info *fs_info;
 895	u64 end = offset + PAGE_SIZE - 1;
 896	struct btrfs_root *local_root;
 897	int srcu_index;
 898
 899	key.objectid = root;
 900	key.type = BTRFS_ROOT_ITEM_KEY;
 901	key.offset = (u64)-1;
 902
 903	fs_info = fixup->root->fs_info;
 904	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 905
 906	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 907	if (IS_ERR(local_root)) {
 908		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 909		return PTR_ERR(local_root);
 910	}
 911
 912	key.type = BTRFS_INODE_ITEM_KEY;
 913	key.objectid = inum;
 914	key.offset = 0;
 915	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 916	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 917	if (IS_ERR(inode))
 918		return PTR_ERR(inode);
 919
 920	index = offset >> PAGE_SHIFT;
 921
 922	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 923	if (!page) {
 924		ret = -ENOMEM;
 925		goto out;
 926	}
 927
 928	if (PageUptodate(page)) {
 929		if (PageDirty(page)) {
 930			/*
 931			 * we need to write the data to the defect sector. the
 932			 * data that was in that sector is not in memory,
 933			 * because the page was modified. we must not write the
 934			 * modified page to that sector.
 935			 *
 936			 * TODO: what could be done here: wait for the delalloc
 937			 *       runner to write out that page (might involve
 938			 *       COW) and see whether the sector is still
 939			 *       referenced afterwards.
 940			 *
 941			 * For the meantime, we'll treat this error
 942			 * incorrectable, although there is a chance that a
 943			 * later scrub will find the bad sector again and that
 944			 * there's no dirty page in memory, then.
 945			 */
 946			ret = -EIO;
 947			goto out;
 948		}
 949		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
 950					fixup->logical, page,
 951					offset - page_offset(page),
 952					fixup->mirror_num);
 953		unlock_page(page);
 954		corrected = !ret;
 955	} else {
 956		/*
 957		 * we need to get good data first. the general readpage path
 958		 * will call repair_io_failure for us, we just have to make
 959		 * sure we read the bad mirror.
 960		 */
 961		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 962					EXTENT_DAMAGED);
 963		if (ret) {
 964			/* set_extent_bits should give proper error */
 965			WARN_ON(ret > 0);
 966			if (ret > 0)
 967				ret = -EFAULT;
 968			goto out;
 969		}
 970
 971		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 972						btrfs_get_extent,
 973						fixup->mirror_num);
 974		wait_on_page_locked(page);
 975
 976		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 977						end, EXTENT_DAMAGED, 0, NULL);
 978		if (!corrected)
 979			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 980						EXTENT_DAMAGED);
 981	}
 982
 983out:
 984	if (page)
 985		put_page(page);
 986
 987	iput(inode);
 988
 989	if (ret < 0)
 990		return ret;
 991
 992	if (ret == 0 && corrected) {
 993		/*
 994		 * we only need to call readpage for one of the inodes belonging
 995		 * to this extent. so make iterate_extent_inodes stop
 996		 */
 997		return 1;
 998	}
 999
1000	return -EIO;
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005	struct btrfs_fs_info *fs_info;
1006	int ret;
1007	struct scrub_fixup_nodatasum *fixup;
1008	struct scrub_ctx *sctx;
1009	struct btrfs_trans_handle *trans = NULL;
1010	struct btrfs_path *path;
1011	int uncorrectable = 0;
1012
1013	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014	sctx = fixup->sctx;
1015	fs_info = fixup->root->fs_info;
1016
1017	path = btrfs_alloc_path();
1018	if (!path) {
1019		spin_lock(&sctx->stat_lock);
1020		++sctx->stat.malloc_errors;
1021		spin_unlock(&sctx->stat_lock);
1022		uncorrectable = 1;
1023		goto out;
1024	}
1025
1026	trans = btrfs_join_transaction(fixup->root);
1027	if (IS_ERR(trans)) {
1028		uncorrectable = 1;
1029		goto out;
1030	}
1031
1032	/*
1033	 * the idea is to trigger a regular read through the standard path. we
1034	 * read a page from the (failed) logical address by specifying the
1035	 * corresponding copynum of the failed sector. thus, that readpage is
1036	 * expected to fail.
1037	 * that is the point where on-the-fly error correction will kick in
1038	 * (once it's finished) and rewrite the failed sector if a good copy
1039	 * can be found.
1040	 */
1041	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042					  scrub_fixup_readpage, fixup, false);
1043	if (ret < 0) {
1044		uncorrectable = 1;
1045		goto out;
1046	}
1047	WARN_ON(ret != 1);
1048
1049	spin_lock(&sctx->stat_lock);
1050	++sctx->stat.corrected_errors;
1051	spin_unlock(&sctx->stat_lock);
1052
1053out:
1054	if (trans && !IS_ERR(trans))
1055		btrfs_end_transaction(trans);
1056	if (uncorrectable) {
1057		spin_lock(&sctx->stat_lock);
1058		++sctx->stat.uncorrectable_errors;
1059		spin_unlock(&sctx->stat_lock);
1060		btrfs_dev_replace_stats_inc(
1061			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062		btrfs_err_rl_in_rcu(fs_info,
1063		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064			fixup->logical, rcu_str_deref(fixup->dev->name));
1065	}
1066
1067	btrfs_free_path(path);
1068	kfree(fixup);
1069
1070	scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075	refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079				     struct scrub_recover *recover)
1080{
1081	if (refcount_dec_and_test(&recover->refs)) {
1082		btrfs_bio_counter_dec(fs_info);
1083		btrfs_put_bbio(recover->bbio);
1084		kfree(recover);
1085	}
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099	struct btrfs_device *dev;
1100	struct btrfs_fs_info *fs_info;
1101	u64 logical;
1102	unsigned int failed_mirror_index;
1103	unsigned int is_metadata;
1104	unsigned int have_csum;
1105	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106	struct scrub_block *sblock_bad;
1107	int ret;
1108	int mirror_index;
1109	int page_num;
1110	int success;
1111	bool full_stripe_locked;
1112	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 
1113				      DEFAULT_RATELIMIT_BURST);
1114
1115	BUG_ON(sblock_to_check->page_count < 1);
1116	fs_info = sctx->fs_info;
1117	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118		/*
1119		 * if we find an error in a super block, we just report it.
1120		 * They will get written with the next transaction commit
1121		 * anyway
1122		 */
1123		spin_lock(&sctx->stat_lock);
1124		++sctx->stat.super_errors;
1125		spin_unlock(&sctx->stat_lock);
1126		return 0;
1127	}
1128	logical = sblock_to_check->pagev[0]->logical;
1129	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132			BTRFS_EXTENT_FLAG_DATA);
1133	have_csum = sblock_to_check->pagev[0]->have_csum;
1134	dev = sblock_to_check->pagev[0]->dev;
1135
 
 
 
 
 
 
 
 
 
 
 
 
 
1136	/*
1137	 * For RAID5/6, race can happen for a different device scrub thread.
1138	 * For data corruption, Parity and Data threads will both try
1139	 * to recovery the data.
1140	 * Race can lead to doubly added csum error, or even unrecoverable
1141	 * error.
1142	 */
1143	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144	if (ret < 0) {
 
1145		spin_lock(&sctx->stat_lock);
1146		if (ret == -ENOMEM)
1147			sctx->stat.malloc_errors++;
1148		sctx->stat.read_errors++;
1149		sctx->stat.uncorrectable_errors++;
1150		spin_unlock(&sctx->stat_lock);
1151		return ret;
1152	}
1153
1154	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155		sblocks_for_recheck = NULL;
1156		goto nodatasum_case;
1157	}
1158
1159	/*
1160	 * read all mirrors one after the other. This includes to
1161	 * re-read the extent or metadata block that failed (that was
1162	 * the cause that this fixup code is called) another time,
1163	 * page by page this time in order to know which pages
1164	 * caused I/O errors and which ones are good (for all mirrors).
1165	 * It is the goal to handle the situation when more than one
1166	 * mirror contains I/O errors, but the errors do not
1167	 * overlap, i.e. the data can be repaired by selecting the
1168	 * pages from those mirrors without I/O error on the
1169	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170	 * would be that mirror #1 has an I/O error on the first page,
1171	 * the second page is good, and mirror #2 has an I/O error on
1172	 * the second page, but the first page is good.
1173	 * Then the first page of the first mirror can be repaired by
1174	 * taking the first page of the second mirror, and the
1175	 * second page of the second mirror can be repaired by
1176	 * copying the contents of the 2nd page of the 1st mirror.
1177	 * One more note: if the pages of one mirror contain I/O
1178	 * errors, the checksum cannot be verified. In order to get
1179	 * the best data for repairing, the first attempt is to find
1180	 * a mirror without I/O errors and with a validated checksum.
1181	 * Only if this is not possible, the pages are picked from
1182	 * mirrors with I/O errors without considering the checksum.
1183	 * If the latter is the case, at the end, the checksum of the
1184	 * repaired area is verified in order to correctly maintain
1185	 * the statistics.
1186	 */
1187
1188	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1190	if (!sblocks_for_recheck) {
1191		spin_lock(&sctx->stat_lock);
1192		sctx->stat.malloc_errors++;
1193		sctx->stat.read_errors++;
1194		sctx->stat.uncorrectable_errors++;
1195		spin_unlock(&sctx->stat_lock);
1196		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197		goto out;
1198	}
1199
1200	/* setup the context, map the logical blocks and alloc the pages */
1201	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202	if (ret) {
1203		spin_lock(&sctx->stat_lock);
1204		sctx->stat.read_errors++;
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208		goto out;
1209	}
1210	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213	/* build and submit the bios for the failed mirror, check checksums */
1214	scrub_recheck_block(fs_info, sblock_bad, 1);
1215
1216	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217	    sblock_bad->no_io_error_seen) {
1218		/*
1219		 * the error disappeared after reading page by page, or
1220		 * the area was part of a huge bio and other parts of the
1221		 * bio caused I/O errors, or the block layer merged several
1222		 * read requests into one and the error is caused by a
1223		 * different bio (usually one of the two latter cases is
1224		 * the cause)
1225		 */
1226		spin_lock(&sctx->stat_lock);
1227		sctx->stat.unverified_errors++;
1228		sblock_to_check->data_corrected = 1;
1229		spin_unlock(&sctx->stat_lock);
1230
1231		if (sctx->is_dev_replace)
1232			scrub_write_block_to_dev_replace(sblock_bad);
1233		goto out;
1234	}
1235
1236	if (!sblock_bad->no_io_error_seen) {
1237		spin_lock(&sctx->stat_lock);
1238		sctx->stat.read_errors++;
1239		spin_unlock(&sctx->stat_lock);
1240		if (__ratelimit(&_rs))
1241			scrub_print_warning("i/o error", sblock_to_check);
1242		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243	} else if (sblock_bad->checksum_error) {
1244		spin_lock(&sctx->stat_lock);
1245		sctx->stat.csum_errors++;
1246		spin_unlock(&sctx->stat_lock);
1247		if (__ratelimit(&_rs))
1248			scrub_print_warning("checksum error", sblock_to_check);
1249		btrfs_dev_stat_inc_and_print(dev,
1250					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251	} else if (sblock_bad->header_error) {
1252		spin_lock(&sctx->stat_lock);
1253		sctx->stat.verify_errors++;
1254		spin_unlock(&sctx->stat_lock);
1255		if (__ratelimit(&_rs))
1256			scrub_print_warning("checksum/header error",
1257					    sblock_to_check);
1258		if (sblock_bad->generation_error)
1259			btrfs_dev_stat_inc_and_print(dev,
1260				BTRFS_DEV_STAT_GENERATION_ERRS);
1261		else
1262			btrfs_dev_stat_inc_and_print(dev,
1263				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264	}
1265
1266	if (sctx->readonly) {
1267		ASSERT(!sctx->is_dev_replace);
1268		goto out;
1269	}
1270
1271	if (!is_metadata && !have_csum) {
1272		struct scrub_fixup_nodatasum *fixup_nodatasum;
1273
1274		WARN_ON(sctx->is_dev_replace);
1275
1276nodatasum_case:
1277
1278		/*
1279		 * !is_metadata and !have_csum, this means that the data
1280		 * might not be COWed, that it might be modified
1281		 * concurrently. The general strategy to work on the
1282		 * commit root does not help in the case when COW is not
1283		 * used.
1284		 */
1285		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286		if (!fixup_nodatasum)
1287			goto did_not_correct_error;
1288		fixup_nodatasum->sctx = sctx;
1289		fixup_nodatasum->dev = dev;
1290		fixup_nodatasum->logical = logical;
1291		fixup_nodatasum->root = fs_info->extent_root;
1292		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293		scrub_pending_trans_workers_inc(sctx);
1294		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295				scrub_fixup_nodatasum, NULL, NULL);
1296		btrfs_queue_work(fs_info->scrub_workers,
1297				 &fixup_nodatasum->work);
1298		goto out;
1299	}
1300
1301	/*
1302	 * now build and submit the bios for the other mirrors, check
1303	 * checksums.
1304	 * First try to pick the mirror which is completely without I/O
1305	 * errors and also does not have a checksum error.
1306	 * If one is found, and if a checksum is present, the full block
1307	 * that is known to contain an error is rewritten. Afterwards
1308	 * the block is known to be corrected.
1309	 * If a mirror is found which is completely correct, and no
1310	 * checksum is present, only those pages are rewritten that had
1311	 * an I/O error in the block to be repaired, since it cannot be
1312	 * determined, which copy of the other pages is better (and it
1313	 * could happen otherwise that a correct page would be
1314	 * overwritten by a bad one).
1315	 */
1316	for (mirror_index = 0; ;mirror_index++) {
1317		struct scrub_block *sblock_other;
1318
1319		if (mirror_index == failed_mirror_index)
1320			continue;
1321
1322		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324			if (mirror_index >= BTRFS_MAX_MIRRORS)
1325				break;
1326			if (!sblocks_for_recheck[mirror_index].page_count)
1327				break;
1328
1329			sblock_other = sblocks_for_recheck + mirror_index;
1330		} else {
1331			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332			int max_allowed = r->bbio->num_stripes -
1333						r->bbio->num_tgtdevs;
1334
1335			if (mirror_index >= max_allowed)
1336				break;
1337			if (!sblocks_for_recheck[1].page_count)
1338				break;
1339
1340			ASSERT(failed_mirror_index == 0);
1341			sblock_other = sblocks_for_recheck + 1;
1342			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343		}
1344
1345		/* build and submit the bios, check checksums */
1346		scrub_recheck_block(fs_info, sblock_other, 0);
1347
1348		if (!sblock_other->header_error &&
1349		    !sblock_other->checksum_error &&
1350		    sblock_other->no_io_error_seen) {
1351			if (sctx->is_dev_replace) {
1352				scrub_write_block_to_dev_replace(sblock_other);
1353				goto corrected_error;
1354			} else {
1355				ret = scrub_repair_block_from_good_copy(
1356						sblock_bad, sblock_other);
1357				if (!ret)
1358					goto corrected_error;
1359			}
1360		}
1361	}
1362
1363	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364		goto did_not_correct_error;
1365
1366	/*
1367	 * In case of I/O errors in the area that is supposed to be
1368	 * repaired, continue by picking good copies of those pages.
1369	 * Select the good pages from mirrors to rewrite bad pages from
1370	 * the area to fix. Afterwards verify the checksum of the block
1371	 * that is supposed to be repaired. This verification step is
1372	 * only done for the purpose of statistic counting and for the
1373	 * final scrub report, whether errors remain.
1374	 * A perfect algorithm could make use of the checksum and try
1375	 * all possible combinations of pages from the different mirrors
1376	 * until the checksum verification succeeds. For example, when
1377	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378	 * of mirror #2 is readable but the final checksum test fails,
1379	 * then the 2nd page of mirror #3 could be tried, whether now
1380	 * the final checksum succeeds. But this would be a rare
1381	 * exception and is therefore not implemented. At least it is
1382	 * avoided that the good copy is overwritten.
1383	 * A more useful improvement would be to pick the sectors
1384	 * without I/O error based on sector sizes (512 bytes on legacy
1385	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386	 * mirror could be repaired by taking 512 byte of a different
1387	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388	 * area are unreadable.
1389	 */
1390	success = 1;
1391	for (page_num = 0; page_num < sblock_bad->page_count;
1392	     page_num++) {
1393		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394		struct scrub_block *sblock_other = NULL;
1395
1396		/* skip no-io-error page in scrub */
1397		if (!page_bad->io_error && !sctx->is_dev_replace)
1398			continue;
1399
1400		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401			/*
1402			 * In case of dev replace, if raid56 rebuild process
1403			 * didn't work out correct data, then copy the content
1404			 * in sblock_bad to make sure target device is identical
1405			 * to source device, instead of writing garbage data in
1406			 * sblock_for_recheck array to target device.
1407			 */
1408			sblock_other = NULL;
1409		} else if (page_bad->io_error) {
1410			/* try to find no-io-error page in mirrors */
1411			for (mirror_index = 0;
1412			     mirror_index < BTRFS_MAX_MIRRORS &&
1413			     sblocks_for_recheck[mirror_index].page_count > 0;
1414			     mirror_index++) {
1415				if (!sblocks_for_recheck[mirror_index].
1416				    pagev[page_num]->io_error) {
1417					sblock_other = sblocks_for_recheck +
1418						       mirror_index;
1419					break;
1420				}
1421			}
1422			if (!sblock_other)
1423				success = 0;
1424		}
1425
1426		if (sctx->is_dev_replace) {
1427			/*
1428			 * did not find a mirror to fetch the page
1429			 * from. scrub_write_page_to_dev_replace()
1430			 * handles this case (page->io_error), by
1431			 * filling the block with zeros before
1432			 * submitting the write request
1433			 */
1434			if (!sblock_other)
1435				sblock_other = sblock_bad;
1436
1437			if (scrub_write_page_to_dev_replace(sblock_other,
1438							    page_num) != 0) {
1439				btrfs_dev_replace_stats_inc(
1440					&fs_info->dev_replace.num_write_errors);
1441				success = 0;
1442			}
1443		} else if (sblock_other) {
1444			ret = scrub_repair_page_from_good_copy(sblock_bad,
1445							       sblock_other,
1446							       page_num, 0);
1447			if (0 == ret)
1448				page_bad->io_error = 0;
1449			else
1450				success = 0;
1451		}
1452	}
1453
1454	if (success && !sctx->is_dev_replace) {
1455		if (is_metadata || have_csum) {
1456			/*
1457			 * need to verify the checksum now that all
1458			 * sectors on disk are repaired (the write
1459			 * request for data to be repaired is on its way).
1460			 * Just be lazy and use scrub_recheck_block()
1461			 * which re-reads the data before the checksum
1462			 * is verified, but most likely the data comes out
1463			 * of the page cache.
1464			 */
1465			scrub_recheck_block(fs_info, sblock_bad, 1);
1466			if (!sblock_bad->header_error &&
1467			    !sblock_bad->checksum_error &&
1468			    sblock_bad->no_io_error_seen)
1469				goto corrected_error;
1470			else
1471				goto did_not_correct_error;
1472		} else {
1473corrected_error:
1474			spin_lock(&sctx->stat_lock);
1475			sctx->stat.corrected_errors++;
1476			sblock_to_check->data_corrected = 1;
1477			spin_unlock(&sctx->stat_lock);
1478			btrfs_err_rl_in_rcu(fs_info,
1479				"fixed up error at logical %llu on dev %s",
1480				logical, rcu_str_deref(dev->name));
1481		}
1482	} else {
1483did_not_correct_error:
1484		spin_lock(&sctx->stat_lock);
1485		sctx->stat.uncorrectable_errors++;
1486		spin_unlock(&sctx->stat_lock);
1487		btrfs_err_rl_in_rcu(fs_info,
1488			"unable to fixup (regular) error at logical %llu on dev %s",
1489			logical, rcu_str_deref(dev->name));
1490	}
1491
1492out:
1493	if (sblocks_for_recheck) {
1494		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495		     mirror_index++) {
1496			struct scrub_block *sblock = sblocks_for_recheck +
1497						     mirror_index;
1498			struct scrub_recover *recover;
1499			int page_index;
1500
1501			for (page_index = 0; page_index < sblock->page_count;
1502			     page_index++) {
1503				sblock->pagev[page_index]->sblock = NULL;
1504				recover = sblock->pagev[page_index]->recover;
1505				if (recover) {
1506					scrub_put_recover(fs_info, recover);
1507					sblock->pagev[page_index]->recover =
1508									NULL;
1509				}
1510				scrub_page_put(sblock->pagev[page_index]);
1511			}
1512		}
1513		kfree(sblocks_for_recheck);
1514	}
1515
1516	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
 
1517	if (ret < 0)
1518		return ret;
1519	return 0;
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525		return 2;
1526	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527		return 3;
1528	else
1529		return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533						 u64 *raid_map,
1534						 u64 mapped_length,
1535						 int nstripes, int mirror,
1536						 int *stripe_index,
1537						 u64 *stripe_offset)
1538{
1539	int i;
1540
1541	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542		/* RAID5/6 */
1543		for (i = 0; i < nstripes; i++) {
1544			if (raid_map[i] == RAID6_Q_STRIPE ||
1545			    raid_map[i] == RAID5_P_STRIPE)
1546				continue;
1547
1548			if (logical >= raid_map[i] &&
1549			    logical < raid_map[i] + mapped_length)
1550				break;
1551		}
1552
1553		*stripe_index = i;
1554		*stripe_offset = logical - raid_map[i];
1555	} else {
1556		/* The other RAID type */
1557		*stripe_index = mirror;
1558		*stripe_offset = 0;
1559	}
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563				     struct scrub_block *sblocks_for_recheck)
1564{
1565	struct scrub_ctx *sctx = original_sblock->sctx;
1566	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567	u64 length = original_sblock->page_count * PAGE_SIZE;
1568	u64 logical = original_sblock->pagev[0]->logical;
1569	u64 generation = original_sblock->pagev[0]->generation;
1570	u64 flags = original_sblock->pagev[0]->flags;
1571	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572	struct scrub_recover *recover;
1573	struct btrfs_bio *bbio;
1574	u64 sublen;
1575	u64 mapped_length;
1576	u64 stripe_offset;
1577	int stripe_index;
1578	int page_index = 0;
1579	int mirror_index;
1580	int nmirrors;
1581	int ret;
1582
1583	/*
1584	 * note: the two members refs and outstanding_pages
1585	 * are not used (and not set) in the blocks that are used for
1586	 * the recheck procedure
1587	 */
1588
1589	while (length > 0) {
1590		sublen = min_t(u64, length, PAGE_SIZE);
1591		mapped_length = sublen;
1592		bbio = NULL;
1593
1594		/*
1595		 * with a length of PAGE_SIZE, each returned stripe
1596		 * represents one mirror
1597		 */
1598		btrfs_bio_counter_inc_blocked(fs_info);
1599		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600				logical, &mapped_length, &bbio);
1601		if (ret || !bbio || mapped_length < sublen) {
1602			btrfs_put_bbio(bbio);
1603			btrfs_bio_counter_dec(fs_info);
1604			return -EIO;
1605		}
1606
1607		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608		if (!recover) {
1609			btrfs_put_bbio(bbio);
1610			btrfs_bio_counter_dec(fs_info);
1611			return -ENOMEM;
1612		}
1613
1614		refcount_set(&recover->refs, 1);
1615		recover->bbio = bbio;
1616		recover->map_length = mapped_length;
1617
1618		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622		for (mirror_index = 0; mirror_index < nmirrors;
1623		     mirror_index++) {
1624			struct scrub_block *sblock;
1625			struct scrub_page *page;
1626
1627			sblock = sblocks_for_recheck + mirror_index;
1628			sblock->sctx = sctx;
1629
1630			page = kzalloc(sizeof(*page), GFP_NOFS);
1631			if (!page) {
1632leave_nomem:
1633				spin_lock(&sctx->stat_lock);
1634				sctx->stat.malloc_errors++;
1635				spin_unlock(&sctx->stat_lock);
1636				scrub_put_recover(fs_info, recover);
1637				return -ENOMEM;
1638			}
1639			scrub_page_get(page);
1640			sblock->pagev[page_index] = page;
1641			page->sblock = sblock;
1642			page->flags = flags;
1643			page->generation = generation;
1644			page->logical = logical;
1645			page->have_csum = have_csum;
1646			if (have_csum)
1647				memcpy(page->csum,
1648				       original_sblock->pagev[0]->csum,
1649				       sctx->csum_size);
1650
1651			scrub_stripe_index_and_offset(logical,
1652						      bbio->map_type,
1653						      bbio->raid_map,
1654						      mapped_length,
1655						      bbio->num_stripes -
1656						      bbio->num_tgtdevs,
1657						      mirror_index,
1658						      &stripe_index,
1659						      &stripe_offset);
1660			page->physical = bbio->stripes[stripe_index].physical +
1661					 stripe_offset;
1662			page->dev = bbio->stripes[stripe_index].dev;
1663
1664			BUG_ON(page_index >= original_sblock->page_count);
1665			page->physical_for_dev_replace =
1666				original_sblock->pagev[page_index]->
1667				physical_for_dev_replace;
1668			/* for missing devices, dev->bdev is NULL */
1669			page->mirror_num = mirror_index + 1;
1670			sblock->page_count++;
1671			page->page = alloc_page(GFP_NOFS);
1672			if (!page->page)
1673				goto leave_nomem;
1674
1675			scrub_get_recover(recover);
1676			page->recover = recover;
1677		}
1678		scrub_put_recover(fs_info, recover);
1679		length -= sublen;
1680		logical += sublen;
1681		page_index++;
1682	}
1683
1684	return 0;
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689	complete(bio->bi_private);
1690}
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693					struct bio *bio,
1694					struct scrub_page *page)
1695{
1696	DECLARE_COMPLETION_ONSTACK(done);
1697	int ret;
1698	int mirror_num;
1699
1700	bio->bi_iter.bi_sector = page->logical >> 9;
1701	bio->bi_private = &done;
1702	bio->bi_end_io = scrub_bio_wait_endio;
1703
1704	mirror_num = page->sblock->pagev[0]->mirror_num;
1705	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706				    page->recover->map_length,
1707				    mirror_num, 0);
1708	if (ret)
1709		return ret;
1710
1711	wait_for_completion_io(&done);
1712	return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716					  struct scrub_block *sblock)
1717{
1718	struct scrub_page *first_page = sblock->pagev[0];
1719	struct bio *bio;
1720	int page_num;
1721
1722	/* All pages in sblock belong to the same stripe on the same device. */
1723	ASSERT(first_page->dev);
1724	if (!first_page->dev->bdev)
1725		goto out;
1726
1727	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728	bio_set_dev(bio, first_page->dev->bdev);
1729
1730	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731		struct scrub_page *page = sblock->pagev[page_num];
1732
1733		WARN_ON(!page->page);
1734		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735	}
1736
1737	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738		bio_put(bio);
1739		goto out;
1740	}
1741
1742	bio_put(bio);
1743
1744	scrub_recheck_block_checksum(sblock);
1745
1746	return;
1747out:
1748	for (page_num = 0; page_num < sblock->page_count; page_num++)
1749		sblock->pagev[page_num]->io_error = 1;
1750
1751	sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762				struct scrub_block *sblock,
1763				int retry_failed_mirror)
1764{
1765	int page_num;
1766
1767	sblock->no_io_error_seen = 1;
1768
1769	/* short cut for raid56 */
1770	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771		return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774		struct bio *bio;
1775		struct scrub_page *page = sblock->pagev[page_num];
1776
1777		if (page->dev->bdev == NULL) {
1778			page->io_error = 1;
1779			sblock->no_io_error_seen = 0;
1780			continue;
1781		}
1782
1783		WARN_ON(!page->page);
1784		bio = btrfs_io_bio_alloc(1);
1785		bio_set_dev(bio, page->dev->bdev);
1786
1787		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788		bio->bi_iter.bi_sector = page->physical >> 9;
1789		bio->bi_opf = REQ_OP_READ;
1790
1791		if (btrfsic_submit_bio_wait(bio)) {
1792			page->io_error = 1;
1793			sblock->no_io_error_seen = 0;
1794		}
1795
1796		bio_put(bio);
1797	}
1798
1799	if (sblock->no_io_error_seen)
1800		scrub_recheck_block_checksum(sblock);
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804				   struct scrub_page *spage)
1805{
1806	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807	int ret;
1808
1809	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810	return !ret;
1811}
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815	sblock->header_error = 0;
1816	sblock->checksum_error = 0;
1817	sblock->generation_error = 0;
1818
1819	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820		scrub_checksum_data(sblock);
1821	else
1822		scrub_checksum_tree_block(sblock);
1823}
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826					     struct scrub_block *sblock_good)
1827{
1828	int page_num;
1829	int ret = 0;
1830
1831	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832		int ret_sub;
1833
1834		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835							   sblock_good,
1836							   page_num, 1);
1837		if (ret_sub)
1838			ret = ret_sub;
1839	}
1840
1841	return ret;
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845					    struct scrub_block *sblock_good,
1846					    int page_num, int force_write)
1847{
1848	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
 
1851
1852	BUG_ON(page_bad->page == NULL);
1853	BUG_ON(page_good->page == NULL);
1854	if (force_write || sblock_bad->header_error ||
1855	    sblock_bad->checksum_error || page_bad->io_error) {
1856		struct bio *bio;
1857		int ret;
1858
1859		if (!page_bad->dev->bdev) {
1860			btrfs_warn_rl(fs_info,
1861				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862			return -EIO;
1863		}
1864
1865		bio = btrfs_io_bio_alloc(1);
1866		bio_set_dev(bio, page_bad->dev->bdev);
1867		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871		if (PAGE_SIZE != ret) {
1872			bio_put(bio);
1873			return -EIO;
1874		}
1875
1876		if (btrfsic_submit_bio_wait(bio)) {
1877			btrfs_dev_stat_inc_and_print(page_bad->dev,
1878				BTRFS_DEV_STAT_WRITE_ERRS);
1879			btrfs_dev_replace_stats_inc(
1880				&fs_info->dev_replace.num_write_errors);
1881			bio_put(bio);
1882			return -EIO;
1883		}
1884		bio_put(bio);
1885	}
1886
1887	return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893	int page_num;
1894
1895	/*
1896	 * This block is used for the check of the parity on the source device,
1897	 * so the data needn't be written into the destination device.
1898	 */
1899	if (sblock->sparity)
1900		return;
1901
1902	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903		int ret;
1904
1905		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906		if (ret)
1907			btrfs_dev_replace_stats_inc(
1908				&fs_info->dev_replace.num_write_errors);
1909	}
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913					   int page_num)
1914{
1915	struct scrub_page *spage = sblock->pagev[page_num];
1916
1917	BUG_ON(spage->page == NULL);
1918	if (spage->io_error) {
1919		void *mapped_buffer = kmap_atomic(spage->page);
1920
1921		clear_page(mapped_buffer);
1922		flush_dcache_page(spage->page);
1923		kunmap_atomic(mapped_buffer);
1924	}
1925	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929				    struct scrub_page *spage)
1930{
1931	struct scrub_bio *sbio;
1932	int ret;
 
1933
1934	mutex_lock(&sctx->wr_lock);
1935again:
1936	if (!sctx->wr_curr_bio) {
1937		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938					      GFP_KERNEL);
1939		if (!sctx->wr_curr_bio) {
1940			mutex_unlock(&sctx->wr_lock);
1941			return -ENOMEM;
1942		}
1943		sctx->wr_curr_bio->sctx = sctx;
1944		sctx->wr_curr_bio->page_count = 0;
1945	}
1946	sbio = sctx->wr_curr_bio;
1947	if (sbio->page_count == 0) {
1948		struct bio *bio;
1949
 
 
 
 
 
 
 
1950		sbio->physical = spage->physical_for_dev_replace;
1951		sbio->logical = spage->logical;
1952		sbio->dev = sctx->wr_tgtdev;
1953		bio = sbio->bio;
1954		if (!bio) {
1955			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956			sbio->bio = bio;
1957		}
1958
1959		bio->bi_private = sbio;
1960		bio->bi_end_io = scrub_wr_bio_end_io;
1961		bio_set_dev(bio, sbio->dev->bdev);
1962		bio->bi_iter.bi_sector = sbio->physical >> 9;
1963		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964		sbio->status = 0;
1965	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966		   spage->physical_for_dev_replace ||
1967		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1968		   spage->logical) {
1969		scrub_wr_submit(sctx);
1970		goto again;
1971	}
1972
1973	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974	if (ret != PAGE_SIZE) {
1975		if (sbio->page_count < 1) {
1976			bio_put(sbio->bio);
1977			sbio->bio = NULL;
1978			mutex_unlock(&sctx->wr_lock);
1979			return -EIO;
1980		}
1981		scrub_wr_submit(sctx);
1982		goto again;
1983	}
1984
1985	sbio->pagev[sbio->page_count] = spage;
1986	scrub_page_get(spage);
1987	sbio->page_count++;
1988	if (sbio->page_count == sctx->pages_per_wr_bio)
1989		scrub_wr_submit(sctx);
1990	mutex_unlock(&sctx->wr_lock);
1991
1992	return 0;
1993}
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
1997	struct scrub_bio *sbio;
1998
1999	if (!sctx->wr_curr_bio)
2000		return;
2001
2002	sbio = sctx->wr_curr_bio;
2003	sctx->wr_curr_bio = NULL;
2004	WARN_ON(!sbio->bio->bi_disk);
2005	scrub_pending_bio_inc(sctx);
2006	/* process all writes in a single worker thread. Then the block layer
2007	 * orders the requests before sending them to the driver which
2008	 * doubled the write performance on spinning disks when measured
2009	 * with Linux 3.5 */
2010	btrfsic_submit_bio(sbio->bio);
 
 
 
 
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
2014{
2015	struct scrub_bio *sbio = bio->bi_private;
2016	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018	sbio->status = bio->bi_status;
2019	sbio->bio = bio;
2020
2021	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027{
2028	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029	struct scrub_ctx *sctx = sbio->sctx;
2030	int i;
2031
2032	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033	if (sbio->status) {
2034		struct btrfs_dev_replace *dev_replace =
2035			&sbio->sctx->fs_info->dev_replace;
2036
2037		for (i = 0; i < sbio->page_count; i++) {
2038			struct scrub_page *spage = sbio->pagev[i];
2039
2040			spage->io_error = 1;
2041			btrfs_dev_replace_stats_inc(&dev_replace->
2042						    num_write_errors);
2043		}
2044	}
2045
2046	for (i = 0; i < sbio->page_count; i++)
2047		scrub_page_put(sbio->pagev[i]);
2048
2049	bio_put(sbio->bio);
2050	kfree(sbio);
2051	scrub_pending_bio_dec(sctx);
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056	u64 flags;
2057	int ret;
2058
2059	/*
2060	 * No need to initialize these stats currently,
2061	 * because this function only use return value
2062	 * instead of these stats value.
2063	 *
2064	 * Todo:
2065	 * always use stats
2066	 */
2067	sblock->header_error = 0;
2068	sblock->generation_error = 0;
2069	sblock->checksum_error = 0;
2070
2071	WARN_ON(sblock->page_count < 1);
2072	flags = sblock->pagev[0]->flags;
2073	ret = 0;
2074	if (flags & BTRFS_EXTENT_FLAG_DATA)
2075		ret = scrub_checksum_data(sblock);
2076	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077		ret = scrub_checksum_tree_block(sblock);
2078	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079		(void)scrub_checksum_super(sblock);
2080	else
2081		WARN_ON(1);
2082	if (ret)
2083		scrub_handle_errored_block(sblock);
2084
2085	return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090	struct scrub_ctx *sctx = sblock->sctx;
 
 
2091	u8 csum[BTRFS_CSUM_SIZE];
2092	u8 *on_disk_csum;
2093	struct page *page;
2094	void *buffer;
2095	u32 crc = ~(u32)0;
2096	u64 len;
2097	int index;
2098
2099	BUG_ON(sblock->page_count < 1);
2100	if (!sblock->pagev[0]->have_csum)
 
2101		return 0;
2102
2103	on_disk_csum = sblock->pagev[0]->csum;
2104	page = sblock->pagev[0]->page;
2105	buffer = kmap_atomic(page);
2106
2107	len = sctx->fs_info->sectorsize;
2108	index = 0;
2109	for (;;) {
2110		u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112		crc = btrfs_csum_data(buffer, crc, l);
2113		kunmap_atomic(buffer);
2114		len -= l;
2115		if (len == 0)
2116			break;
2117		index++;
2118		BUG_ON(index >= sblock->page_count);
2119		BUG_ON(!sblock->pagev[index]->page);
2120		page = sblock->pagev[index]->page;
2121		buffer = kmap_atomic(page);
2122	}
2123
2124	btrfs_csum_final(crc, csum);
2125	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126		sblock->checksum_error = 1;
 
 
2127
 
 
2128	return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132{
2133	struct scrub_ctx *sctx = sblock->sctx;
2134	struct btrfs_header *h;
2135	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
2136	u8 calculated_csum[BTRFS_CSUM_SIZE];
2137	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138	struct page *page;
2139	void *mapped_buffer;
2140	u64 mapped_size;
2141	void *p;
2142	u32 crc = ~(u32)0;
2143	u64 len;
2144	int index;
 
 
 
2145
2146	BUG_ON(sblock->page_count < 1);
2147	page = sblock->pagev[0]->page;
2148	mapped_buffer = kmap_atomic(page);
2149	h = (struct btrfs_header *)mapped_buffer;
2150	memcpy(on_disk_csum, h->csum, sctx->csum_size);
 
 
 
 
2151
2152	/*
2153	 * we don't use the getter functions here, as we
2154	 * a) don't have an extent buffer and
2155	 * b) the page is already kmapped
2156	 */
2157	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158		sblock->header_error = 1;
2159
2160	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161		sblock->header_error = 1;
2162		sblock->generation_error = 1;
2163	}
2164
2165	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166		sblock->header_error = 1;
2167
2168	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169		   BTRFS_UUID_SIZE))
2170		sblock->header_error = 1;
2171
2172	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175	index = 0;
2176	for (;;) {
2177		u64 l = min_t(u64, len, mapped_size);
2178
2179		crc = btrfs_csum_data(p, crc, l);
2180		kunmap_atomic(mapped_buffer);
2181		len -= l;
2182		if (len == 0)
2183			break;
2184		index++;
2185		BUG_ON(index >= sblock->page_count);
2186		BUG_ON(!sblock->pagev[index]->page);
2187		page = sblock->pagev[index]->page;
2188		mapped_buffer = kmap_atomic(page);
2189		mapped_size = PAGE_SIZE;
2190		p = mapped_buffer;
2191	}
2192
2193	btrfs_csum_final(crc, calculated_csum);
2194	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195		sblock->checksum_error = 1;
2196
2197	return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202	struct btrfs_super_block *s;
2203	struct scrub_ctx *sctx = sblock->sctx;
 
 
2204	u8 calculated_csum[BTRFS_CSUM_SIZE];
2205	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206	struct page *page;
2207	void *mapped_buffer;
2208	u64 mapped_size;
2209	void *p;
2210	u32 crc = ~(u32)0;
2211	int fail_gen = 0;
2212	int fail_cor = 0;
2213	u64 len;
2214	int index;
2215
2216	BUG_ON(sblock->page_count < 1);
2217	page = sblock->pagev[0]->page;
2218	mapped_buffer = kmap_atomic(page);
2219	s = (struct btrfs_super_block *)mapped_buffer;
2220	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223		++fail_cor;
2224
2225	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226		++fail_gen;
2227
2228	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229		++fail_cor;
2230
2231	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234	index = 0;
2235	for (;;) {
2236		u64 l = min_t(u64, len, mapped_size);
2237
2238		crc = btrfs_csum_data(p, crc, l);
2239		kunmap_atomic(mapped_buffer);
2240		len -= l;
2241		if (len == 0)
2242			break;
2243		index++;
2244		BUG_ON(index >= sblock->page_count);
2245		BUG_ON(!sblock->pagev[index]->page);
2246		page = sblock->pagev[index]->page;
2247		mapped_buffer = kmap_atomic(page);
2248		mapped_size = PAGE_SIZE;
2249		p = mapped_buffer;
2250	}
2251
2252	btrfs_csum_final(crc, calculated_csum);
2253	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254		++fail_cor;
2255
2256	if (fail_cor + fail_gen) {
2257		/*
2258		 * if we find an error in a super block, we just report it.
2259		 * They will get written with the next transaction commit
2260		 * anyway
2261		 */
2262		spin_lock(&sctx->stat_lock);
2263		++sctx->stat.super_errors;
2264		spin_unlock(&sctx->stat_lock);
2265		if (fail_cor)
2266			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268		else
2269			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270				BTRFS_DEV_STAT_GENERATION_ERRS);
2271	}
2272
2273	return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278	refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283	if (refcount_dec_and_test(&sblock->refs)) {
2284		int i;
2285
2286		if (sblock->sparity)
2287			scrub_parity_put(sblock->sparity);
2288
2289		for (i = 0; i < sblock->page_count; i++)
2290			scrub_page_put(sblock->pagev[i]);
2291		kfree(sblock);
2292	}
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
2296{
2297	atomic_inc(&spage->refs);
2298}
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302	if (atomic_dec_and_test(&spage->refs)) {
2303		if (spage->page)
2304			__free_page(spage->page);
2305		kfree(spage);
2306	}
2307}
2308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311	struct scrub_bio *sbio;
2312
2313	if (sctx->curr == -1)
2314		return;
2315
 
 
2316	sbio = sctx->bios[sctx->curr];
2317	sctx->curr = -1;
2318	scrub_pending_bio_inc(sctx);
2319	btrfsic_submit_bio(sbio->bio);
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323				    struct scrub_page *spage)
2324{
2325	struct scrub_block *sblock = spage->sblock;
2326	struct scrub_bio *sbio;
 
2327	int ret;
2328
2329again:
2330	/*
2331	 * grab a fresh bio or wait for one to become available
2332	 */
2333	while (sctx->curr == -1) {
2334		spin_lock(&sctx->list_lock);
2335		sctx->curr = sctx->first_free;
2336		if (sctx->curr != -1) {
2337			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338			sctx->bios[sctx->curr]->next_free = -1;
2339			sctx->bios[sctx->curr]->page_count = 0;
2340			spin_unlock(&sctx->list_lock);
2341		} else {
2342			spin_unlock(&sctx->list_lock);
2343			wait_event(sctx->list_wait, sctx->first_free != -1);
2344		}
2345	}
2346	sbio = sctx->bios[sctx->curr];
2347	if (sbio->page_count == 0) {
2348		struct bio *bio;
2349
2350		sbio->physical = spage->physical;
2351		sbio->logical = spage->logical;
2352		sbio->dev = spage->dev;
2353		bio = sbio->bio;
2354		if (!bio) {
2355			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356			sbio->bio = bio;
2357		}
2358
2359		bio->bi_private = sbio;
2360		bio->bi_end_io = scrub_bio_end_io;
2361		bio_set_dev(bio, sbio->dev->bdev);
2362		bio->bi_iter.bi_sector = sbio->physical >> 9;
2363		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364		sbio->status = 0;
2365	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366		   spage->physical ||
2367		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368		   spage->logical ||
2369		   sbio->dev != spage->dev) {
2370		scrub_submit(sctx);
2371		goto again;
2372	}
2373
2374	sbio->pagev[sbio->page_count] = spage;
2375	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376	if (ret != PAGE_SIZE) {
2377		if (sbio->page_count < 1) {
2378			bio_put(sbio->bio);
2379			sbio->bio = NULL;
2380			return -EIO;
2381		}
2382		scrub_submit(sctx);
2383		goto again;
2384	}
2385
2386	scrub_block_get(sblock); /* one for the page added to the bio */
2387	atomic_inc(&sblock->outstanding_pages);
2388	sbio->page_count++;
2389	if (sbio->page_count == sctx->pages_per_rd_bio)
2390		scrub_submit(sctx);
2391
2392	return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397	struct scrub_block *sblock = bio->bi_private;
2398	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400	if (bio->bi_status)
2401		sblock->no_io_error_seen = 0;
2402
2403	bio_put(bio);
2404
2405	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409{
2410	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411	struct scrub_ctx *sctx = sblock->sctx;
2412	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413	u64 logical;
2414	struct btrfs_device *dev;
2415
2416	logical = sblock->pagev[0]->logical;
2417	dev = sblock->pagev[0]->dev;
2418
2419	if (sblock->no_io_error_seen)
2420		scrub_recheck_block_checksum(sblock);
2421
2422	if (!sblock->no_io_error_seen) {
2423		spin_lock(&sctx->stat_lock);
2424		sctx->stat.read_errors++;
2425		spin_unlock(&sctx->stat_lock);
2426		btrfs_err_rl_in_rcu(fs_info,
2427			"IO error rebuilding logical %llu for dev %s",
2428			logical, rcu_str_deref(dev->name));
2429	} else if (sblock->header_error || sblock->checksum_error) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.uncorrectable_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		btrfs_err_rl_in_rcu(fs_info,
2434			"failed to rebuild valid logical %llu for dev %s",
2435			logical, rcu_str_deref(dev->name));
2436	} else {
2437		scrub_write_block_to_dev_replace(sblock);
2438	}
2439
2440	scrub_block_put(sblock);
2441
2442	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443		mutex_lock(&sctx->wr_lock);
2444		scrub_wr_submit(sctx);
2445		mutex_unlock(&sctx->wr_lock);
2446	}
2447
 
2448	scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453	struct scrub_ctx *sctx = sblock->sctx;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	u64 length = sblock->page_count * PAGE_SIZE;
2456	u64 logical = sblock->pagev[0]->logical;
2457	struct btrfs_bio *bbio = NULL;
2458	struct bio *bio;
2459	struct btrfs_raid_bio *rbio;
2460	int ret;
2461	int i;
2462
2463	btrfs_bio_counter_inc_blocked(fs_info);
2464	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465			&length, &bbio);
2466	if (ret || !bbio || !bbio->raid_map)
2467		goto bbio_out;
2468
2469	if (WARN_ON(!sctx->is_dev_replace ||
2470		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471		/*
2472		 * We shouldn't be scrubbing a missing device. Even for dev
2473		 * replace, we should only get here for RAID 5/6. We either
2474		 * managed to mount something with no mirrors remaining or
2475		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476		 */
2477		goto bbio_out;
2478	}
2479
2480	bio = btrfs_io_bio_alloc(0);
2481	bio->bi_iter.bi_sector = logical >> 9;
2482	bio->bi_private = sblock;
2483	bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486	if (!rbio)
2487		goto rbio_out;
2488
2489	for (i = 0; i < sblock->page_count; i++) {
2490		struct scrub_page *spage = sblock->pagev[i];
2491
2492		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493	}
2494
2495	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496			scrub_missing_raid56_worker, NULL, NULL);
2497	scrub_block_get(sblock);
2498	scrub_pending_bio_inc(sctx);
2499	raid56_submit_missing_rbio(rbio);
2500	return;
2501
2502rbio_out:
2503	bio_put(bio);
2504bbio_out:
2505	btrfs_bio_counter_dec(fs_info);
2506	btrfs_put_bbio(bbio);
2507	spin_lock(&sctx->stat_lock);
2508	sctx->stat.malloc_errors++;
2509	spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513		       u64 physical, struct btrfs_device *dev, u64 flags,
2514		       u64 gen, int mirror_num, u8 *csum, int force,
2515		       u64 physical_for_dev_replace)
2516{
2517	struct scrub_block *sblock;
 
2518	int index;
2519
2520	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521	if (!sblock) {
2522		spin_lock(&sctx->stat_lock);
2523		sctx->stat.malloc_errors++;
2524		spin_unlock(&sctx->stat_lock);
2525		return -ENOMEM;
2526	}
2527
2528	/* one ref inside this function, plus one for each page added to
2529	 * a bio later on */
2530	refcount_set(&sblock->refs, 1);
2531	sblock->sctx = sctx;
2532	sblock->no_io_error_seen = 1;
2533
2534	for (index = 0; len > 0; index++) {
2535		struct scrub_page *spage;
2536		u64 l = min_t(u64, len, PAGE_SIZE);
 
 
 
 
 
2537
2538		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539		if (!spage) {
2540leave_nomem:
2541			spin_lock(&sctx->stat_lock);
2542			sctx->stat.malloc_errors++;
2543			spin_unlock(&sctx->stat_lock);
2544			scrub_block_put(sblock);
2545			return -ENOMEM;
2546		}
2547		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548		scrub_page_get(spage);
2549		sblock->pagev[index] = spage;
2550		spage->sblock = sblock;
2551		spage->dev = dev;
2552		spage->flags = flags;
2553		spage->generation = gen;
2554		spage->logical = logical;
2555		spage->physical = physical;
2556		spage->physical_for_dev_replace = physical_for_dev_replace;
2557		spage->mirror_num = mirror_num;
2558		if (csum) {
2559			spage->have_csum = 1;
2560			memcpy(spage->csum, csum, sctx->csum_size);
2561		} else {
2562			spage->have_csum = 0;
2563		}
2564		sblock->page_count++;
2565		spage->page = alloc_page(GFP_KERNEL);
2566		if (!spage->page)
2567			goto leave_nomem;
2568		len -= l;
2569		logical += l;
2570		physical += l;
2571		physical_for_dev_replace += l;
2572	}
2573
2574	WARN_ON(sblock->page_count == 0);
2575	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576		/*
2577		 * This case should only be hit for RAID 5/6 device replace. See
2578		 * the comment in scrub_missing_raid56_pages() for details.
2579		 */
2580		scrub_missing_raid56_pages(sblock);
2581	} else {
2582		for (index = 0; index < sblock->page_count; index++) {
2583			struct scrub_page *spage = sblock->pagev[index];
2584			int ret;
2585
2586			ret = scrub_add_page_to_rd_bio(sctx, spage);
2587			if (ret) {
2588				scrub_block_put(sblock);
2589				return ret;
2590			}
2591		}
2592
2593		if (force)
2594			scrub_submit(sctx);
2595	}
2596
2597	/* last one frees, either here or in bio completion for last page */
2598	scrub_block_put(sblock);
2599	return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604	struct scrub_bio *sbio = bio->bi_private;
2605	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606
2607	sbio->status = bio->bi_status;
2608	sbio->bio = bio;
2609
2610	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616	struct scrub_ctx *sctx = sbio->sctx;
2617	int i;
2618
2619	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620	if (sbio->status) {
2621		for (i = 0; i < sbio->page_count; i++) {
2622			struct scrub_page *spage = sbio->pagev[i];
2623
2624			spage->io_error = 1;
2625			spage->sblock->no_io_error_seen = 0;
2626		}
2627	}
2628
2629	/* now complete the scrub_block items that have all pages completed */
2630	for (i = 0; i < sbio->page_count; i++) {
2631		struct scrub_page *spage = sbio->pagev[i];
2632		struct scrub_block *sblock = spage->sblock;
2633
2634		if (atomic_dec_and_test(&sblock->outstanding_pages))
2635			scrub_block_complete(sblock);
2636		scrub_block_put(sblock);
2637	}
2638
2639	bio_put(sbio->bio);
2640	sbio->bio = NULL;
2641	spin_lock(&sctx->list_lock);
2642	sbio->next_free = sctx->first_free;
2643	sctx->first_free = sbio->index;
2644	spin_unlock(&sctx->list_lock);
2645
2646	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647		mutex_lock(&sctx->wr_lock);
2648		scrub_wr_submit(sctx);
2649		mutex_unlock(&sctx->wr_lock);
2650	}
2651
2652	scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656				       unsigned long *bitmap,
2657				       u64 start, u64 len)
2658{
2659	u64 offset;
2660	u64 nsectors64;
2661	u32 nsectors;
2662	int sectorsize = sparity->sctx->fs_info->sectorsize;
2663
2664	if (len >= sparity->stripe_len) {
2665		bitmap_set(bitmap, 0, sparity->nsectors);
2666		return;
2667	}
2668
2669	start -= sparity->logic_start;
2670	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671	offset = div_u64(offset, sectorsize);
2672	nsectors64 = div_u64(len, sectorsize);
2673
2674	ASSERT(nsectors64 < UINT_MAX);
2675	nsectors = (u32)nsectors64;
2676
2677	if (offset + nsectors <= sparity->nsectors) {
2678		bitmap_set(bitmap, offset, nsectors);
2679		return;
2680	}
2681
2682	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687						   u64 start, u64 len)
2688{
2689	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693						  u64 start, u64 len)
2694{
2695	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700	int corrupted = 0;
2701
2702	if (!sblock->no_io_error_seen) {
2703		corrupted = 1;
2704		scrub_handle_errored_block(sblock);
2705	} else {
2706		/*
2707		 * if has checksum error, write via repair mechanism in
2708		 * dev replace case, otherwise write here in dev replace
2709		 * case.
2710		 */
2711		corrupted = scrub_checksum(sblock);
2712		if (!corrupted && sblock->sctx->is_dev_replace)
2713			scrub_write_block_to_dev_replace(sblock);
2714	}
2715
2716	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717		u64 start = sblock->pagev[0]->logical;
2718		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719			  PAGE_SIZE;
2720
 
2721		scrub_parity_mark_sectors_error(sblock->sparity,
2722						start, end - start);
2723	}
2724}
2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2727{
2728	struct btrfs_ordered_sum *sum = NULL;
2729	unsigned long index;
2730	unsigned long num_sectors;
2731
2732	while (!list_empty(&sctx->csum_list)) {
 
 
 
 
2733		sum = list_first_entry(&sctx->csum_list,
2734				       struct btrfs_ordered_sum, list);
 
2735		if (sum->bytenr > logical)
2736			return 0;
2737		if (sum->bytenr + sum->len > logical)
2738			break;
2739
2740		++sctx->stat.csum_discards;
2741		list_del(&sum->list);
2742		kfree(sum);
2743		sum = NULL;
2744	}
2745	if (!sum)
2746		return 0;
2747
2748	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749	ASSERT(index < UINT_MAX);
2750
2751	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752	memcpy(csum, sum->sums + index, sctx->csum_size);
2753	if (index == num_sectors - 1) {
2754		list_del(&sum->list);
2755		kfree(sum);
 
 
 
 
 
 
 
2756	}
 
 
2757	return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762			u64 logical, u64 len,
2763			u64 physical, struct btrfs_device *dev, u64 flags,
2764			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766	int ret;
2767	u8 csum[BTRFS_CSUM_SIZE];
2768	u32 blocksize;
2769
2770	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772			blocksize = map->stripe_len;
2773		else
2774			blocksize = sctx->fs_info->sectorsize;
2775		spin_lock(&sctx->stat_lock);
2776		sctx->stat.data_extents_scrubbed++;
2777		sctx->stat.data_bytes_scrubbed += len;
2778		spin_unlock(&sctx->stat_lock);
2779	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781			blocksize = map->stripe_len;
2782		else
2783			blocksize = sctx->fs_info->nodesize;
2784		spin_lock(&sctx->stat_lock);
2785		sctx->stat.tree_extents_scrubbed++;
2786		sctx->stat.tree_bytes_scrubbed += len;
2787		spin_unlock(&sctx->stat_lock);
2788	} else {
2789		blocksize = sctx->fs_info->sectorsize;
2790		WARN_ON(1);
2791	}
2792
2793	while (len) {
2794		u64 l = min_t(u64, len, blocksize);
2795		int have_csum = 0;
2796
2797		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798			/* push csums to sbio */
2799			have_csum = scrub_find_csum(sctx, logical, csum);
2800			if (have_csum == 0)
2801				++sctx->stat.no_csum;
2802			if (sctx->is_dev_replace && !have_csum) {
2803				ret = copy_nocow_pages(sctx, logical, l,
2804						       mirror_num,
2805						      physical_for_dev_replace);
2806				goto behind_scrub_pages;
2807			}
2808		}
2809		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810				  mirror_num, have_csum ? csum : NULL, 0,
2811				  physical_for_dev_replace);
2812behind_scrub_pages:
2813		if (ret)
2814			return ret;
2815		len -= l;
2816		logical += l;
2817		physical += l;
2818		physical_for_dev_replace += l;
2819	}
2820	return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824				  u64 logical, u64 len,
2825				  u64 physical, struct btrfs_device *dev,
2826				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828	struct scrub_ctx *sctx = sparity->sctx;
2829	struct scrub_block *sblock;
 
2830	int index;
2831
 
 
2832	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833	if (!sblock) {
2834		spin_lock(&sctx->stat_lock);
2835		sctx->stat.malloc_errors++;
2836		spin_unlock(&sctx->stat_lock);
2837		return -ENOMEM;
2838	}
2839
2840	/* one ref inside this function, plus one for each page added to
2841	 * a bio later on */
2842	refcount_set(&sblock->refs, 1);
2843	sblock->sctx = sctx;
2844	sblock->no_io_error_seen = 1;
2845	sblock->sparity = sparity;
2846	scrub_parity_get(sparity);
2847
2848	for (index = 0; len > 0; index++) {
2849		struct scrub_page *spage;
2850		u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853		if (!spage) {
2854leave_nomem:
2855			spin_lock(&sctx->stat_lock);
2856			sctx->stat.malloc_errors++;
2857			spin_unlock(&sctx->stat_lock);
2858			scrub_block_put(sblock);
2859			return -ENOMEM;
2860		}
2861		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862		/* For scrub block */
2863		scrub_page_get(spage);
2864		sblock->pagev[index] = spage;
2865		/* For scrub parity */
2866		scrub_page_get(spage);
2867		list_add_tail(&spage->list, &sparity->spages);
2868		spage->sblock = sblock;
2869		spage->dev = dev;
2870		spage->flags = flags;
2871		spage->generation = gen;
2872		spage->logical = logical;
2873		spage->physical = physical;
2874		spage->mirror_num = mirror_num;
2875		if (csum) {
2876			spage->have_csum = 1;
2877			memcpy(spage->csum, csum, sctx->csum_size);
2878		} else {
2879			spage->have_csum = 0;
2880		}
2881		sblock->page_count++;
2882		spage->page = alloc_page(GFP_KERNEL);
2883		if (!spage->page)
2884			goto leave_nomem;
2885		len -= l;
2886		logical += l;
2887		physical += l;
 
 
 
2888	}
2889
2890	WARN_ON(sblock->page_count == 0);
2891	for (index = 0; index < sblock->page_count; index++) {
2892		struct scrub_page *spage = sblock->pagev[index];
2893		int ret;
2894
2895		ret = scrub_add_page_to_rd_bio(sctx, spage);
2896		if (ret) {
2897			scrub_block_put(sblock);
2898			return ret;
2899		}
2900	}
2901
2902	/* last one frees, either here or in bio completion for last page */
2903	scrub_block_put(sblock);
2904	return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908				   u64 logical, u64 len,
2909				   u64 physical, struct btrfs_device *dev,
2910				   u64 flags, u64 gen, int mirror_num)
2911{
2912	struct scrub_ctx *sctx = sparity->sctx;
2913	int ret;
2914	u8 csum[BTRFS_CSUM_SIZE];
2915	u32 blocksize;
2916
2917	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918		scrub_parity_mark_sectors_error(sparity, logical, len);
2919		return 0;
2920	}
2921
2922	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923		blocksize = sparity->stripe_len;
2924	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925		blocksize = sparity->stripe_len;
2926	} else {
2927		blocksize = sctx->fs_info->sectorsize;
2928		WARN_ON(1);
2929	}
2930
2931	while (len) {
2932		u64 l = min_t(u64, len, blocksize);
2933		int have_csum = 0;
2934
2935		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936			/* push csums to sbio */
2937			have_csum = scrub_find_csum(sctx, logical, csum);
2938			if (have_csum == 0)
2939				goto skip;
2940		}
2941		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942					     flags, gen, mirror_num,
2943					     have_csum ? csum : NULL);
2944		if (ret)
2945			return ret;
2946skip:
2947		len -= l;
2948		logical += l;
2949		physical += l;
2950	}
2951	return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962				   struct map_lookup *map, u64 *offset,
2963				   u64 *stripe_start)
2964{
2965	int i;
2966	int j = 0;
2967	u64 stripe_nr;
2968	u64 last_offset;
2969	u32 stripe_index;
2970	u32 rot;
 
2971
2972	last_offset = (physical - map->stripes[num].physical) *
2973		      nr_data_stripes(map);
2974	if (stripe_start)
2975		*stripe_start = last_offset;
2976
2977	*offset = last_offset;
2978	for (i = 0; i < nr_data_stripes(map); i++) {
2979		*offset = last_offset + i * map->stripe_len;
2980
2981		stripe_nr = div64_u64(*offset, map->stripe_len);
2982		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983
2984		/* Work out the disk rotation on this stripe-set */
2985		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986		/* calculate which stripe this data locates */
2987		rot += i;
2988		stripe_index = rot % map->num_stripes;
2989		if (stripe_index == num)
2990			return 0;
2991		if (stripe_index < num)
2992			j++;
2993	}
2994	*offset = last_offset + j * map->stripe_len;
2995	return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000	struct scrub_ctx *sctx = sparity->sctx;
3001	struct scrub_page *curr, *next;
3002	int nbits;
3003
3004	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005	if (nbits) {
3006		spin_lock(&sctx->stat_lock);
3007		sctx->stat.read_errors += nbits;
3008		sctx->stat.uncorrectable_errors += nbits;
3009		spin_unlock(&sctx->stat_lock);
3010	}
3011
3012	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013		list_del_init(&curr->list);
3014		scrub_page_put(curr);
3015	}
3016
3017	kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021{
3022	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023						    work);
3024	struct scrub_ctx *sctx = sparity->sctx;
3025
3026	scrub_free_parity(sparity);
3027	scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
3031{
3032	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034
3035	if (bio->bi_status)
3036		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037			  sparity->nsectors);
3038
3039	bio_put(bio);
3040
3041	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042			scrub_parity_bio_endio_worker, NULL, NULL);
3043	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047{
3048	struct scrub_ctx *sctx = sparity->sctx;
3049	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050	struct bio *bio;
3051	struct btrfs_raid_bio *rbio;
3052	struct btrfs_bio *bbio = NULL;
3053	u64 length;
3054	int ret;
3055
3056	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057			   sparity->nsectors))
3058		goto out;
3059
3060	length = sparity->logic_end - sparity->logic_start;
3061
3062	btrfs_bio_counter_inc_blocked(fs_info);
3063	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064			       &length, &bbio);
3065	if (ret || !bbio || !bbio->raid_map)
3066		goto bbio_out;
3067
3068	bio = btrfs_io_bio_alloc(0);
3069	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070	bio->bi_private = sparity;
3071	bio->bi_end_io = scrub_parity_bio_endio;
3072
3073	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074					      length, sparity->scrub_dev,
3075					      sparity->dbitmap,
3076					      sparity->nsectors);
3077	if (!rbio)
3078		goto rbio_out;
3079
3080	scrub_pending_bio_inc(sctx);
3081	raid56_parity_submit_scrub_rbio(rbio);
3082	return;
3083
3084rbio_out:
3085	bio_put(bio);
3086bbio_out:
3087	btrfs_bio_counter_dec(fs_info);
3088	btrfs_put_bbio(bbio);
3089	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090		  sparity->nsectors);
3091	spin_lock(&sctx->stat_lock);
3092	sctx->stat.malloc_errors++;
3093	spin_unlock(&sctx->stat_lock);
3094out:
3095	scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099{
3100	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105	refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110	if (!refcount_dec_and_test(&sparity->refs))
3111		return;
3112
3113	scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117						  struct map_lookup *map,
3118						  struct btrfs_device *sdev,
3119						  struct btrfs_path *path,
3120						  u64 logic_start,
3121						  u64 logic_end)
3122{
3123	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124	struct btrfs_root *root = fs_info->extent_root;
3125	struct btrfs_root *csum_root = fs_info->csum_root;
3126	struct btrfs_extent_item *extent;
3127	struct btrfs_bio *bbio = NULL;
3128	u64 flags;
3129	int ret;
3130	int slot;
3131	struct extent_buffer *l;
3132	struct btrfs_key key;
3133	u64 generation;
3134	u64 extent_logical;
3135	u64 extent_physical;
3136	u64 extent_len;
 
3137	u64 mapped_length;
3138	struct btrfs_device *extent_dev;
3139	struct scrub_parity *sparity;
3140	int nsectors;
3141	int bitmap_len;
3142	int extent_mirror_num;
3143	int stop_loop = 0;
3144
3145	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
 
3146	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148			  GFP_NOFS);
3149	if (!sparity) {
3150		spin_lock(&sctx->stat_lock);
3151		sctx->stat.malloc_errors++;
3152		spin_unlock(&sctx->stat_lock);
3153		return -ENOMEM;
3154	}
3155
 
3156	sparity->stripe_len = map->stripe_len;
3157	sparity->nsectors = nsectors;
3158	sparity->sctx = sctx;
3159	sparity->scrub_dev = sdev;
3160	sparity->logic_start = logic_start;
3161	sparity->logic_end = logic_end;
3162	refcount_set(&sparity->refs, 1);
3163	INIT_LIST_HEAD(&sparity->spages);
3164	sparity->dbitmap = sparity->bitmap;
3165	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167	ret = 0;
3168	while (logic_start < logic_end) {
3169		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170			key.type = BTRFS_METADATA_ITEM_KEY;
3171		else
3172			key.type = BTRFS_EXTENT_ITEM_KEY;
3173		key.objectid = logic_start;
3174		key.offset = (u64)-1;
3175
3176		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177		if (ret < 0)
3178			goto out;
3179
3180		if (ret > 0) {
3181			ret = btrfs_previous_extent_item(root, path, 0);
3182			if (ret < 0)
3183				goto out;
3184			if (ret > 0) {
3185				btrfs_release_path(path);
3186				ret = btrfs_search_slot(NULL, root, &key,
3187							path, 0, 0);
3188				if (ret < 0)
3189					goto out;
3190			}
3191		}
3192
3193		stop_loop = 0;
3194		while (1) {
3195			u64 bytes;
3196
3197			l = path->nodes[0];
3198			slot = path->slots[0];
3199			if (slot >= btrfs_header_nritems(l)) {
3200				ret = btrfs_next_leaf(root, path);
3201				if (ret == 0)
3202					continue;
3203				if (ret < 0)
3204					goto out;
3205
3206				stop_loop = 1;
3207				break;
3208			}
3209			btrfs_item_key_to_cpu(l, &key, slot);
3210
3211			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212			    key.type != BTRFS_METADATA_ITEM_KEY)
3213				goto next;
3214
3215			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216				bytes = fs_info->nodesize;
3217			else
3218				bytes = key.offset;
3219
3220			if (key.objectid + bytes <= logic_start)
3221				goto next;
3222
3223			if (key.objectid >= logic_end) {
3224				stop_loop = 1;
3225				break;
3226			}
3227
3228			while (key.objectid >= logic_start + map->stripe_len)
3229				logic_start += map->stripe_len;
3230
3231			extent = btrfs_item_ptr(l, slot,
3232						struct btrfs_extent_item);
3233			flags = btrfs_extent_flags(l, extent);
3234			generation = btrfs_extent_generation(l, extent);
3235
3236			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237			    (key.objectid < logic_start ||
3238			     key.objectid + bytes >
3239			     logic_start + map->stripe_len)) {
3240				btrfs_err(fs_info,
3241					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242					  key.objectid, logic_start);
3243				spin_lock(&sctx->stat_lock);
3244				sctx->stat.uncorrectable_errors++;
3245				spin_unlock(&sctx->stat_lock);
3246				goto next;
3247			}
3248again:
3249			extent_logical = key.objectid;
 
3250			extent_len = bytes;
3251
3252			if (extent_logical < logic_start) {
3253				extent_len -= logic_start - extent_logical;
3254				extent_logical = logic_start;
3255			}
3256
3257			if (extent_logical + extent_len >
3258			    logic_start + map->stripe_len)
3259				extent_len = logic_start + map->stripe_len -
3260					     extent_logical;
3261
3262			scrub_parity_mark_sectors_data(sparity, extent_logical,
3263						       extent_len);
3264
3265			mapped_length = extent_len;
3266			bbio = NULL;
3267			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268					extent_logical, &mapped_length, &bbio,
3269					0);
3270			if (!ret) {
3271				if (!bbio || mapped_length < extent_len)
3272					ret = -EIO;
3273			}
3274			if (ret) {
3275				btrfs_put_bbio(bbio);
3276				goto out;
3277			}
3278			extent_physical = bbio->stripes[0].physical;
3279			extent_mirror_num = bbio->mirror_num;
3280			extent_dev = bbio->stripes[0].dev;
3281			btrfs_put_bbio(bbio);
3282
3283			ret = btrfs_lookup_csums_range(csum_root,
3284						extent_logical,
3285						extent_logical + extent_len - 1,
3286						&sctx->csum_list, 1);
3287			if (ret)
3288				goto out;
3289
3290			ret = scrub_extent_for_parity(sparity, extent_logical,
3291						      extent_len,
3292						      extent_physical,
3293						      extent_dev, flags,
3294						      generation,
3295						      extent_mirror_num);
3296
3297			scrub_free_csums(sctx);
3298
3299			if (ret)
3300				goto out;
3301
3302			if (extent_logical + extent_len <
3303			    key.objectid + bytes) {
3304				logic_start += map->stripe_len;
3305
3306				if (logic_start >= logic_end) {
3307					stop_loop = 1;
3308					break;
3309				}
3310
3311				if (logic_start < key.objectid + bytes) {
3312					cond_resched();
3313					goto again;
3314				}
3315			}
3316next:
3317			path->slots[0]++;
3318		}
3319
3320		btrfs_release_path(path);
3321
3322		if (stop_loop)
3323			break;
3324
3325		logic_start += map->stripe_len;
3326	}
3327out:
3328	if (ret < 0)
 
3329		scrub_parity_mark_sectors_error(sparity, logic_start,
3330						logic_end - logic_start);
 
3331	scrub_parity_put(sparity);
3332	scrub_submit(sctx);
3333	mutex_lock(&sctx->wr_lock);
3334	scrub_wr_submit(sctx);
3335	mutex_unlock(&sctx->wr_lock);
3336
3337	btrfs_release_path(path);
3338	return ret < 0 ? ret : 0;
3339}
3340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342					   struct map_lookup *map,
3343					   struct btrfs_device *scrub_dev,
3344					   int num, u64 base, u64 length,
3345					   int is_dev_replace)
3346{
3347	struct btrfs_path *path, *ppath;
3348	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349	struct btrfs_root *root = fs_info->extent_root;
3350	struct btrfs_root *csum_root = fs_info->csum_root;
3351	struct btrfs_extent_item *extent;
3352	struct blk_plug plug;
3353	u64 flags;
3354	int ret;
3355	int slot;
3356	u64 nstripes;
3357	struct extent_buffer *l;
3358	u64 physical;
3359	u64 logical;
3360	u64 logic_end;
3361	u64 physical_end;
3362	u64 generation;
3363	int mirror_num;
3364	struct reada_control *reada1;
3365	struct reada_control *reada2;
3366	struct btrfs_key key;
3367	struct btrfs_key key_end;
3368	u64 increment = map->stripe_len;
3369	u64 offset;
3370	u64 extent_logical;
3371	u64 extent_physical;
3372	u64 extent_len;
 
 
 
 
3373	u64 stripe_logical;
3374	u64 stripe_end;
3375	struct btrfs_device *extent_dev;
3376	int extent_mirror_num;
3377	int stop_loop = 0;
3378
3379	physical = map->stripes[num].physical;
3380	offset = 0;
3381	nstripes = div64_u64(length, map->stripe_len);
 
 
3382	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383		offset = map->stripe_len * num;
3384		increment = map->stripe_len * map->num_stripes;
3385		mirror_num = 1;
3386	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387		int factor = map->num_stripes / map->sub_stripes;
3388		offset = map->stripe_len * (num / map->sub_stripes);
3389		increment = map->stripe_len * factor;
3390		mirror_num = num % map->sub_stripes + 1;
3391	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392		increment = map->stripe_len;
3393		mirror_num = num % map->num_stripes + 1;
3394	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395		increment = map->stripe_len;
3396		mirror_num = num % map->num_stripes + 1;
3397	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399		increment = map->stripe_len * nr_data_stripes(map);
3400		mirror_num = 1;
3401	} else {
3402		increment = map->stripe_len;
3403		mirror_num = 1;
3404	}
3405
3406	path = btrfs_alloc_path();
3407	if (!path)
3408		return -ENOMEM;
3409
3410	ppath = btrfs_alloc_path();
3411	if (!ppath) {
3412		btrfs_free_path(path);
3413		return -ENOMEM;
3414	}
3415
3416	/*
3417	 * work on commit root. The related disk blocks are static as
3418	 * long as COW is applied. This means, it is save to rewrite
3419	 * them to repair disk errors without any race conditions
3420	 */
3421	path->search_commit_root = 1;
3422	path->skip_locking = 1;
3423
3424	ppath->search_commit_root = 1;
3425	ppath->skip_locking = 1;
3426	/*
3427	 * trigger the readahead for extent tree csum tree and wait for
3428	 * completion. During readahead, the scrub is officially paused
3429	 * to not hold off transaction commits
3430	 */
3431	logical = base + offset;
3432	physical_end = physical + nstripes * map->stripe_len;
3433	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434		get_raid56_logic_offset(physical_end, num,
3435					map, &logic_end, NULL);
3436		logic_end += base;
3437	} else {
3438		logic_end = logical + increment * nstripes;
3439	}
3440	wait_event(sctx->list_wait,
3441		   atomic_read(&sctx->bios_in_flight) == 0);
3442	scrub_blocked_if_needed(fs_info);
3443
3444	/* FIXME it might be better to start readahead at commit root */
3445	key.objectid = logical;
3446	key.type = BTRFS_EXTENT_ITEM_KEY;
3447	key.offset = (u64)0;
3448	key_end.objectid = logic_end;
3449	key_end.type = BTRFS_METADATA_ITEM_KEY;
3450	key_end.offset = (u64)-1;
3451	reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454	key.type = BTRFS_EXTENT_CSUM_KEY;
3455	key.offset = logical;
3456	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458	key_end.offset = logic_end;
3459	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
 
 
 
 
3460
3461	if (!IS_ERR(reada1))
3462		btrfs_reada_wait(reada1);
3463	if (!IS_ERR(reada2))
3464		btrfs_reada_wait(reada2);
3465
3466
3467	/*
3468	 * collect all data csums for the stripe to avoid seeking during
3469	 * the scrub. This might currently (crc32) end up to be about 1MB
3470	 */
3471	blk_start_plug(&plug);
3472
 
 
 
 
 
 
 
 
3473	/*
3474	 * now find all extents for each stripe and scrub them
3475	 */
3476	ret = 0;
3477	while (physical < physical_end) {
3478		/*
3479		 * canceled?
3480		 */
3481		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482		    atomic_read(&sctx->cancel_req)) {
3483			ret = -ECANCELED;
3484			goto out;
3485		}
3486		/*
3487		 * check to see if we have to pause
3488		 */
3489		if (atomic_read(&fs_info->scrub_pause_req)) {
3490			/* push queued extents */
3491			sctx->flush_all_writes = true;
3492			scrub_submit(sctx);
3493			mutex_lock(&sctx->wr_lock);
3494			scrub_wr_submit(sctx);
3495			mutex_unlock(&sctx->wr_lock);
3496			wait_event(sctx->list_wait,
3497				   atomic_read(&sctx->bios_in_flight) == 0);
3498			sctx->flush_all_writes = false;
3499			scrub_blocked_if_needed(fs_info);
3500		}
3501
3502		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503			ret = get_raid56_logic_offset(physical, num, map,
3504						      &logical,
3505						      &stripe_logical);
3506			logical += base;
3507			if (ret) {
3508				/* it is parity strip */
3509				stripe_logical += base;
3510				stripe_end = stripe_logical + increment;
3511				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512							  ppath, stripe_logical,
3513							  stripe_end);
3514				if (ret)
3515					goto out;
3516				goto skip;
3517			}
3518		}
3519
3520		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521			key.type = BTRFS_METADATA_ITEM_KEY;
3522		else
3523			key.type = BTRFS_EXTENT_ITEM_KEY;
3524		key.objectid = logical;
3525		key.offset = (u64)-1;
3526
3527		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528		if (ret < 0)
3529			goto out;
3530
3531		if (ret > 0) {
3532			ret = btrfs_previous_extent_item(root, path, 0);
3533			if (ret < 0)
3534				goto out;
3535			if (ret > 0) {
3536				/* there's no smaller item, so stick with the
3537				 * larger one */
3538				btrfs_release_path(path);
3539				ret = btrfs_search_slot(NULL, root, &key,
3540							path, 0, 0);
3541				if (ret < 0)
3542					goto out;
3543			}
3544		}
3545
3546		stop_loop = 0;
3547		while (1) {
3548			u64 bytes;
3549
3550			l = path->nodes[0];
3551			slot = path->slots[0];
3552			if (slot >= btrfs_header_nritems(l)) {
3553				ret = btrfs_next_leaf(root, path);
3554				if (ret == 0)
3555					continue;
3556				if (ret < 0)
3557					goto out;
3558
3559				stop_loop = 1;
3560				break;
3561			}
3562			btrfs_item_key_to_cpu(l, &key, slot);
3563
3564			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565			    key.type != BTRFS_METADATA_ITEM_KEY)
3566				goto next;
3567
3568			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569				bytes = fs_info->nodesize;
3570			else
3571				bytes = key.offset;
3572
3573			if (key.objectid + bytes <= logical)
3574				goto next;
3575
3576			if (key.objectid >= logical + map->stripe_len) {
3577				/* out of this device extent */
3578				if (key.objectid >= logic_end)
3579					stop_loop = 1;
3580				break;
3581			}
3582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3583			extent = btrfs_item_ptr(l, slot,
3584						struct btrfs_extent_item);
3585			flags = btrfs_extent_flags(l, extent);
3586			generation = btrfs_extent_generation(l, extent);
3587
3588			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589			    (key.objectid < logical ||
3590			     key.objectid + bytes >
3591			     logical + map->stripe_len)) {
3592				btrfs_err(fs_info,
3593					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594				       key.objectid, logical);
3595				spin_lock(&sctx->stat_lock);
3596				sctx->stat.uncorrectable_errors++;
3597				spin_unlock(&sctx->stat_lock);
3598				goto next;
3599			}
3600
3601again:
3602			extent_logical = key.objectid;
 
3603			extent_len = bytes;
3604
3605			/*
3606			 * trim extent to this stripe
3607			 */
3608			if (extent_logical < logical) {
3609				extent_len -= logical - extent_logical;
3610				extent_logical = logical;
3611			}
3612			if (extent_logical + extent_len >
3613			    logical + map->stripe_len) {
3614				extent_len = logical + map->stripe_len -
3615					     extent_logical;
3616			}
3617
3618			extent_physical = extent_logical - logical + physical;
3619			extent_dev = scrub_dev;
3620			extent_mirror_num = mirror_num;
3621			if (is_dev_replace)
3622				scrub_remap_extent(fs_info, extent_logical,
3623						   extent_len, &extent_physical,
3624						   &extent_dev,
3625						   &extent_mirror_num);
3626
3627			ret = btrfs_lookup_csums_range(csum_root,
3628						       extent_logical,
3629						       extent_logical +
3630						       extent_len - 1,
3631						       &sctx->csum_list, 1);
3632			if (ret)
3633				goto out;
 
3634
3635			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636					   extent_physical, extent_dev, flags,
3637					   generation, extent_mirror_num,
3638					   extent_logical - logical + physical);
3639
3640			scrub_free_csums(sctx);
3641
3642			if (ret)
3643				goto out;
3644
 
 
 
3645			if (extent_logical + extent_len <
3646			    key.objectid + bytes) {
3647				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648					/*
3649					 * loop until we find next data stripe
3650					 * or we have finished all stripes.
3651					 */
3652loop:
3653					physical += map->stripe_len;
3654					ret = get_raid56_logic_offset(physical,
3655							num, map, &logical,
3656							&stripe_logical);
3657					logical += base;
3658
3659					if (ret && physical < physical_end) {
3660						stripe_logical += base;
3661						stripe_end = stripe_logical +
3662								increment;
3663						ret = scrub_raid56_parity(sctx,
3664							map, scrub_dev, ppath,
3665							stripe_logical,
3666							stripe_end);
3667						if (ret)
3668							goto out;
3669						goto loop;
3670					}
3671				} else {
3672					physical += map->stripe_len;
3673					logical += increment;
3674				}
3675				if (logical < key.objectid + bytes) {
3676					cond_resched();
3677					goto again;
3678				}
3679
3680				if (physical >= physical_end) {
3681					stop_loop = 1;
3682					break;
3683				}
3684			}
3685next:
3686			path->slots[0]++;
3687		}
3688		btrfs_release_path(path);
3689skip:
3690		logical += increment;
3691		physical += map->stripe_len;
3692		spin_lock(&sctx->stat_lock);
3693		if (stop_loop)
3694			sctx->stat.last_physical = map->stripes[num].physical +
3695						   length;
3696		else
3697			sctx->stat.last_physical = physical;
3698		spin_unlock(&sctx->stat_lock);
3699		if (stop_loop)
3700			break;
3701	}
3702out:
3703	/* push queued extents */
3704	scrub_submit(sctx);
3705	mutex_lock(&sctx->wr_lock);
3706	scrub_wr_submit(sctx);
3707	mutex_unlock(&sctx->wr_lock);
3708
3709	blk_finish_plug(&plug);
3710	btrfs_free_path(path);
3711	btrfs_free_path(ppath);
 
 
 
 
 
 
 
 
 
 
 
3712	return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716					  struct btrfs_device *scrub_dev,
3717					  u64 chunk_offset, u64 length,
3718					  u64 dev_offset,
3719					  struct btrfs_block_group_cache *cache,
3720					  int is_dev_replace)
3721{
3722	struct btrfs_fs_info *fs_info = sctx->fs_info;
3723	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724	struct map_lookup *map;
3725	struct extent_map *em;
3726	int i;
3727	int ret = 0;
3728
3729	read_lock(&map_tree->map_tree.lock);
3730	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731	read_unlock(&map_tree->map_tree.lock);
3732
3733	if (!em) {
3734		/*
3735		 * Might have been an unused block group deleted by the cleaner
3736		 * kthread or relocation.
3737		 */
3738		spin_lock(&cache->lock);
3739		if (!cache->removed)
3740			ret = -EINVAL;
3741		spin_unlock(&cache->lock);
3742
3743		return ret;
3744	}
3745
3746	map = em->map_lookup;
3747	if (em->start != chunk_offset)
3748		goto out;
3749
3750	if (em->len < length)
3751		goto out;
3752
3753	for (i = 0; i < map->num_stripes; ++i) {
3754		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755		    map->stripes[i].physical == dev_offset) {
3756			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757					   chunk_offset, length,
3758					   is_dev_replace);
3759			if (ret)
3760				goto out;
3761		}
3762	}
3763out:
3764	free_extent_map(em);
3765
3766	return ret;
3767}
3768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3772			   int is_dev_replace)
3773{
3774	struct btrfs_dev_extent *dev_extent = NULL;
3775	struct btrfs_path *path;
3776	struct btrfs_fs_info *fs_info = sctx->fs_info;
3777	struct btrfs_root *root = fs_info->dev_root;
3778	u64 length;
3779	u64 chunk_offset;
3780	int ret = 0;
3781	int ro_set;
3782	int slot;
3783	struct extent_buffer *l;
3784	struct btrfs_key key;
3785	struct btrfs_key found_key;
3786	struct btrfs_block_group_cache *cache;
3787	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789	path = btrfs_alloc_path();
3790	if (!path)
3791		return -ENOMEM;
3792
3793	path->reada = READA_FORWARD;
3794	path->search_commit_root = 1;
3795	path->skip_locking = 1;
3796
3797	key.objectid = scrub_dev->devid;
3798	key.offset = 0ull;
3799	key.type = BTRFS_DEV_EXTENT_KEY;
3800
3801	while (1) {
3802		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803		if (ret < 0)
3804			break;
3805		if (ret > 0) {
3806			if (path->slots[0] >=
3807			    btrfs_header_nritems(path->nodes[0])) {
3808				ret = btrfs_next_leaf(root, path);
3809				if (ret < 0)
3810					break;
3811				if (ret > 0) {
3812					ret = 0;
3813					break;
3814				}
3815			} else {
3816				ret = 0;
3817			}
3818		}
3819
3820		l = path->nodes[0];
3821		slot = path->slots[0];
3822
3823		btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825		if (found_key.objectid != scrub_dev->devid)
3826			break;
3827
3828		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829			break;
3830
3831		if (found_key.offset >= end)
3832			break;
3833
3834		if (found_key.offset < key.offset)
3835			break;
3836
3837		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838		length = btrfs_dev_extent_length(l, dev_extent);
3839
3840		if (found_key.offset + length <= start)
3841			goto skip;
3842
3843		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845		/*
3846		 * get a reference on the corresponding block group to prevent
3847		 * the chunk from going away while we scrub it
3848		 */
3849		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851		/* some chunks are removed but not committed to disk yet,
3852		 * continue scrubbing */
3853		if (!cache)
3854			goto skip;
3855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3856		/*
3857		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858		 * to avoid deadlock caused by:
3859		 * btrfs_inc_block_group_ro()
3860		 * -> btrfs_wait_for_commit()
3861		 * -> btrfs_commit_transaction()
3862		 * -> btrfs_scrub_pause()
3863		 */
3864		scrub_pause_on(fs_info);
3865		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866		if (!ret && is_dev_replace) {
3867			/*
3868			 * If we are doing a device replace wait for any tasks
3869			 * that started dellaloc right before we set the block
3870			 * group to RO mode, as they might have just allocated
3871			 * an extent from it or decided they could do a nocow
3872			 * write. And if any such tasks did that, wait for their
3873			 * ordered extents to complete and then commit the
3874			 * current transaction, so that we can later see the new
3875			 * extent items in the extent tree - the ordered extents
3876			 * create delayed data references (for cow writes) when
3877			 * they complete, which will be run and insert the
3878			 * corresponding extent items into the extent tree when
3879			 * we commit the transaction they used when running
3880			 * inode.c:btrfs_finish_ordered_io(). We later use
3881			 * the commit root of the extent tree to find extents
3882			 * to copy from the srcdev into the tgtdev, and we don't
3883			 * want to miss any new extents.
3884			 */
3885			btrfs_wait_block_group_reservations(cache);
3886			btrfs_wait_nocow_writers(cache);
3887			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888						       cache->key.objectid,
3889						       cache->key.offset);
3890			if (ret > 0) {
3891				struct btrfs_trans_handle *trans;
3892
3893				trans = btrfs_join_transaction(root);
3894				if (IS_ERR(trans))
3895					ret = PTR_ERR(trans);
3896				else
3897					ret = btrfs_commit_transaction(trans);
3898				if (ret) {
3899					scrub_pause_off(fs_info);
3900					btrfs_put_block_group(cache);
3901					break;
3902				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903			}
3904		}
3905		scrub_pause_off(fs_info);
3906
3907		if (ret == 0) {
3908			ro_set = 1;
3909		} else if (ret == -ENOSPC) {
3910			/*
3911			 * btrfs_inc_block_group_ro return -ENOSPC when it
3912			 * failed in creating new chunk for metadata.
3913			 * It is not a problem for scrub/replace, because
3914			 * metadata are always cowed, and our scrub paused
3915			 * commit_transactions.
3916			 */
3917			ro_set = 0;
 
 
 
 
 
 
 
3918		} else {
3919			btrfs_warn(fs_info,
3920				   "failed setting block group ro: %d", ret);
 
3921			btrfs_put_block_group(cache);
 
3922			break;
3923		}
3924
3925		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
 
 
 
 
 
 
 
 
 
 
 
 
3926		dev_replace->cursor_right = found_key.offset + length;
3927		dev_replace->cursor_left = found_key.offset;
3928		dev_replace->item_needs_writeback = 1;
3929		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
 
3930		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931				  found_key.offset, cache, is_dev_replace);
3932
3933		/*
3934		 * flush, submit all pending read and write bios, afterwards
3935		 * wait for them.
3936		 * Note that in the dev replace case, a read request causes
3937		 * write requests that are submitted in the read completion
3938		 * worker. Therefore in the current situation, it is required
3939		 * that all write requests are flushed, so that all read and
3940		 * write requests are really completed when bios_in_flight
3941		 * changes to 0.
3942		 */
3943		sctx->flush_all_writes = true;
3944		scrub_submit(sctx);
3945		mutex_lock(&sctx->wr_lock);
3946		scrub_wr_submit(sctx);
3947		mutex_unlock(&sctx->wr_lock);
3948
3949		wait_event(sctx->list_wait,
3950			   atomic_read(&sctx->bios_in_flight) == 0);
3951
3952		scrub_pause_on(fs_info);
3953
3954		/*
3955		 * must be called before we decrease @scrub_paused.
3956		 * make sure we don't block transaction commit while
3957		 * we are waiting pending workers finished.
3958		 */
3959		wait_event(sctx->list_wait,
3960			   atomic_read(&sctx->workers_pending) == 0);
3961		sctx->flush_all_writes = false;
3962
3963		scrub_pause_off(fs_info);
3964
3965		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
 
 
 
 
 
3966		dev_replace->cursor_left = dev_replace->cursor_right;
3967		dev_replace->item_needs_writeback = 1;
3968		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970		if (ro_set)
3971			btrfs_dec_block_group_ro(cache);
3972
3973		/*
3974		 * We might have prevented the cleaner kthread from deleting
3975		 * this block group if it was already unused because we raced
3976		 * and set it to RO mode first. So add it back to the unused
3977		 * list, otherwise it might not ever be deleted unless a manual
3978		 * balance is triggered or it becomes used and unused again.
3979		 */
3980		spin_lock(&cache->lock);
3981		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982		    btrfs_block_group_used(&cache->item) == 0) {
3983			spin_unlock(&cache->lock);
3984			spin_lock(&fs_info->unused_bgs_lock);
3985			if (list_empty(&cache->bg_list)) {
3986				btrfs_get_block_group(cache);
3987				list_add_tail(&cache->bg_list,
3988					      &fs_info->unused_bgs);
3989			}
3990			spin_unlock(&fs_info->unused_bgs_lock);
3991		} else {
3992			spin_unlock(&cache->lock);
3993		}
3994
 
3995		btrfs_put_block_group(cache);
3996		if (ret)
3997			break;
3998		if (is_dev_replace &&
3999		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4000			ret = -EIO;
4001			break;
4002		}
4003		if (sctx->stat.malloc_errors > 0) {
4004			ret = -ENOMEM;
4005			break;
4006		}
4007skip:
4008		key.offset = found_key.offset + length;
4009		btrfs_release_path(path);
4010	}
4011
4012	btrfs_free_path(path);
4013
4014	return ret;
4015}
4016
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018					   struct btrfs_device *scrub_dev)
4019{
4020	int	i;
4021	u64	bytenr;
4022	u64	gen;
4023	int	ret;
4024	struct btrfs_fs_info *fs_info = sctx->fs_info;
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027		return -EIO;
4028
4029	/* Seed devices of a new filesystem has their own generation. */
4030	if (scrub_dev->fs_devices != fs_info->fs_devices)
4031		gen = scrub_dev->generation;
4032	else
4033		gen = fs_info->last_trans_committed;
4034
4035	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036		bytenr = btrfs_sb_offset(i);
4037		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038		    scrub_dev->commit_total_bytes)
4039			break;
 
 
4040
4041		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043				  NULL, 1, bytenr);
4044		if (ret)
4045			return ret;
4046	}
4047	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4048
4049	return 0;
4050}
4051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056						int is_dev_replace)
4057{
 
 
 
4058	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4059	int max_active = fs_info->thread_pool_size;
 
4060
4061	if (fs_info->scrub_workers_refcnt == 0) {
4062		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063				flags, is_dev_replace ? 1 : max_active, 4);
4064		if (!fs_info->scrub_workers)
4065			goto fail_scrub_workers;
4066
4067		fs_info->scrub_wr_completion_workers =
4068			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069					      max_active, 2);
4070		if (!fs_info->scrub_wr_completion_workers)
4071			goto fail_scrub_wr_completion_workers;
4072
4073		fs_info->scrub_nocow_workers =
4074			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075		if (!fs_info->scrub_nocow_workers)
4076			goto fail_scrub_nocow_workers;
4077		fs_info->scrub_parity_workers =
4078			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079					      max_active, 2);
4080		if (!fs_info->scrub_parity_workers)
4081			goto fail_scrub_parity_workers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4082	}
4083	++fs_info->scrub_workers_refcnt;
4084	return 0;
 
4085
 
 
4086fail_scrub_parity_workers:
4087	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091	btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093	return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098	if (--fs_info->scrub_workers_refcnt == 0) {
4099		btrfs_destroy_workqueue(fs_info->scrub_workers);
4100		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103	}
4104	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108		    u64 end, struct btrfs_scrub_progress *progress,
4109		    int readonly, int is_dev_replace)
4110{
4111	struct scrub_ctx *sctx;
4112	int ret;
4113	struct btrfs_device *dev;
4114	struct rcu_string *name;
4115
4116	if (btrfs_fs_closing(fs_info))
4117		return -EINVAL;
4118
4119	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4120		/*
4121		 * in this case scrub is unable to calculate the checksum
4122		 * the way scrub is implemented. Do not handle this
4123		 * situation at all because it won't ever happen.
4124		 */
4125		btrfs_err(fs_info,
4126			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127		       fs_info->nodesize,
4128		       BTRFS_STRIPE_LEN);
4129		return -EINVAL;
4130	}
4131
4132	if (fs_info->sectorsize != PAGE_SIZE) {
4133		/* not supported for data w/o checksums */
4134		btrfs_err_rl(fs_info,
4135			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136		       fs_info->sectorsize, PAGE_SIZE);
4137		return -EINVAL;
4138	}
4139
4140	if (fs_info->nodesize >
4141	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4143		/*
4144		 * would exhaust the array bounds of pagev member in
4145		 * struct scrub_block
4146		 */
4147		btrfs_err(fs_info,
4148			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149		       fs_info->nodesize,
4150		       SCRUB_MAX_PAGES_PER_BLOCK,
4151		       fs_info->sectorsize,
4152		       SCRUB_MAX_PAGES_PER_BLOCK);
4153		return -EINVAL;
4154	}
4155
 
 
 
 
 
 
 
 
4156
4157	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160		     !is_dev_replace)) {
4161		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162		return -ENODEV;
 
4163	}
4164
4165	if (!is_dev_replace && !readonly &&
4166	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168		rcu_read_lock();
4169		name = rcu_dereference(dev->name);
4170		btrfs_err(fs_info, "scrub: device %s is not writable",
4171			  name->str);
4172		rcu_read_unlock();
4173		return -EROFS;
4174	}
4175
4176	mutex_lock(&fs_info->scrub_lock);
4177	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179		mutex_unlock(&fs_info->scrub_lock);
4180		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181		return -EIO;
 
4182	}
4183
4184	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185	if (dev->scrub_ctx ||
4186	    (!is_dev_replace &&
4187	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189		mutex_unlock(&fs_info->scrub_lock);
4190		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191		return -EINPROGRESS;
4192	}
4193	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195	ret = scrub_workers_get(fs_info, is_dev_replace);
4196	if (ret) {
4197		mutex_unlock(&fs_info->scrub_lock);
4198		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199		return ret;
4200	}
 
4201
4202	sctx = scrub_setup_ctx(dev, is_dev_replace);
4203	if (IS_ERR(sctx)) {
4204		mutex_unlock(&fs_info->scrub_lock);
4205		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206		scrub_workers_put(fs_info);
4207		return PTR_ERR(sctx);
4208	}
4209	sctx->readonly = readonly;
4210	dev->scrub_ctx = sctx;
4211	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213	/*
4214	 * checking @scrub_pause_req here, we can avoid
4215	 * race between committing transaction and scrubbing.
4216	 */
4217	__scrub_blocked_if_needed(fs_info);
4218	atomic_inc(&fs_info->scrubs_running);
4219	mutex_unlock(&fs_info->scrub_lock);
4220
 
 
 
 
 
 
 
 
 
 
4221	if (!is_dev_replace) {
 
4222		/*
4223		 * by holding device list mutex, we can
4224		 * kick off writing super in log tree sync.
4225		 */
4226		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227		ret = scrub_supers(sctx, dev);
4228		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4229	}
4230
4231	if (!ret)
4232		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233					     is_dev_replace);
4234
4235	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236	atomic_dec(&fs_info->scrubs_running);
4237	wake_up(&fs_info->scrub_pause_wait);
4238
4239	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241	if (progress)
4242		memcpy(progress, &sctx->stat, sizeof(*progress));
4243
 
 
 
 
4244	mutex_lock(&fs_info->scrub_lock);
4245	dev->scrub_ctx = NULL;
4246	scrub_workers_put(fs_info);
4247	mutex_unlock(&fs_info->scrub_lock);
4248
 
4249	scrub_put_ctx(sctx);
4250
4251	return ret;
 
 
 
 
 
 
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
4256	mutex_lock(&fs_info->scrub_lock);
4257	atomic_inc(&fs_info->scrub_pause_req);
4258	while (atomic_read(&fs_info->scrubs_paused) !=
4259	       atomic_read(&fs_info->scrubs_running)) {
4260		mutex_unlock(&fs_info->scrub_lock);
4261		wait_event(fs_info->scrub_pause_wait,
4262			   atomic_read(&fs_info->scrubs_paused) ==
4263			   atomic_read(&fs_info->scrubs_running));
4264		mutex_lock(&fs_info->scrub_lock);
4265	}
4266	mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
4271	atomic_dec(&fs_info->scrub_pause_req);
4272	wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4276{
4277	mutex_lock(&fs_info->scrub_lock);
4278	if (!atomic_read(&fs_info->scrubs_running)) {
4279		mutex_unlock(&fs_info->scrub_lock);
4280		return -ENOTCONN;
4281	}
4282
4283	atomic_inc(&fs_info->scrub_cancel_req);
4284	while (atomic_read(&fs_info->scrubs_running)) {
4285		mutex_unlock(&fs_info->scrub_lock);
4286		wait_event(fs_info->scrub_pause_wait,
4287			   atomic_read(&fs_info->scrubs_running) == 0);
4288		mutex_lock(&fs_info->scrub_lock);
4289	}
4290	atomic_dec(&fs_info->scrub_cancel_req);
4291	mutex_unlock(&fs_info->scrub_lock);
4292
4293	return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297			   struct btrfs_device *dev)
4298{
 
4299	struct scrub_ctx *sctx;
4300
4301	mutex_lock(&fs_info->scrub_lock);
4302	sctx = dev->scrub_ctx;
4303	if (!sctx) {
4304		mutex_unlock(&fs_info->scrub_lock);
4305		return -ENOTCONN;
4306	}
4307	atomic_inc(&sctx->cancel_req);
4308	while (dev->scrub_ctx) {
4309		mutex_unlock(&fs_info->scrub_lock);
4310		wait_event(fs_info->scrub_pause_wait,
4311			   dev->scrub_ctx == NULL);
4312		mutex_lock(&fs_info->scrub_lock);
4313	}
4314	mutex_unlock(&fs_info->scrub_lock);
4315
4316	return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320			 struct btrfs_scrub_progress *progress)
4321{
4322	struct btrfs_device *dev;
4323	struct scrub_ctx *sctx = NULL;
4324
4325	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327	if (dev)
4328		sctx = dev->scrub_ctx;
4329	if (sctx)
4330		memcpy(progress, &sctx->stat, sizeof(*progress));
4331	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337			       u64 extent_logical, u64 extent_len,
4338			       u64 *extent_physical,
4339			       struct btrfs_device **extent_dev,
4340			       int *extent_mirror_num)
4341{
4342	u64 mapped_length;
4343	struct btrfs_bio *bbio = NULL;
4344	int ret;
4345
4346	mapped_length = extent_len;
4347	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348			      &mapped_length, &bbio, 0);
4349	if (ret || !bbio || mapped_length < extent_len ||
4350	    !bbio->stripes[0].dev->bdev) {
4351		btrfs_put_bbio(bbio);
4352		return;
4353	}
4354
4355	*extent_physical = bbio->stripes[0].physical;
4356	*extent_mirror_num = bbio->mirror_num;
4357	*extent_dev = bbio->stripes[0].dev;
4358	btrfs_put_bbio(bbio);
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362			    int mirror_num, u64 physical_for_dev_replace)
4363{
4364	struct scrub_copy_nocow_ctx *nocow_ctx;
4365	struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368	if (!nocow_ctx) {
4369		spin_lock(&sctx->stat_lock);
4370		sctx->stat.malloc_errors++;
4371		spin_unlock(&sctx->stat_lock);
4372		return -ENOMEM;
4373	}
4374
4375	scrub_pending_trans_workers_inc(sctx);
4376
4377	nocow_ctx->sctx = sctx;
4378	nocow_ctx->logical = logical;
4379	nocow_ctx->len = len;
4380	nocow_ctx->mirror_num = mirror_num;
4381	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383			copy_nocow_pages_worker, NULL, NULL);
4384	INIT_LIST_HEAD(&nocow_ctx->inodes);
4385	btrfs_queue_work(fs_info->scrub_nocow_workers,
4386			 &nocow_ctx->work);
4387
4388	return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394	struct scrub_nocow_inode *nocow_inode;
4395
4396	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397	if (!nocow_inode)
4398		return -ENOMEM;
4399	nocow_inode->inum = inum;
4400	nocow_inode->offset = offset;
4401	nocow_inode->root = root;
4402	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403	return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410	struct scrub_copy_nocow_ctx *nocow_ctx =
4411		container_of(work, struct scrub_copy_nocow_ctx, work);
4412	struct scrub_ctx *sctx = nocow_ctx->sctx;
4413	struct btrfs_fs_info *fs_info = sctx->fs_info;
4414	struct btrfs_root *root = fs_info->extent_root;
4415	u64 logical = nocow_ctx->logical;
4416	u64 len = nocow_ctx->len;
4417	int mirror_num = nocow_ctx->mirror_num;
4418	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419	int ret;
4420	struct btrfs_trans_handle *trans = NULL;
4421	struct btrfs_path *path;
4422	int not_written = 0;
4423
4424	path = btrfs_alloc_path();
4425	if (!path) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		not_written = 1;
4430		goto out;
4431	}
4432
4433	trans = btrfs_join_transaction(root);
4434	if (IS_ERR(trans)) {
4435		not_written = 1;
4436		goto out;
4437	}
4438
4439	ret = iterate_inodes_from_logical(logical, fs_info, path,
4440			record_inode_for_nocow, nocow_ctx, false);
4441	if (ret != 0 && ret != -ENOENT) {
4442		btrfs_warn(fs_info,
4443			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444			   logical, physical_for_dev_replace, len, mirror_num,
4445			   ret);
4446		not_written = 1;
4447		goto out;
4448	}
4449
4450	btrfs_end_transaction(trans);
4451	trans = NULL;
4452	while (!list_empty(&nocow_ctx->inodes)) {
4453		struct scrub_nocow_inode *entry;
4454		entry = list_first_entry(&nocow_ctx->inodes,
4455					 struct scrub_nocow_inode,
4456					 list);
4457		list_del_init(&entry->list);
4458		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459						 entry->root, nocow_ctx);
4460		kfree(entry);
4461		if (ret == COPY_COMPLETE) {
4462			ret = 0;
4463			break;
4464		} else if (ret) {
4465			break;
4466		}
4467	}
4468out:
4469	while (!list_empty(&nocow_ctx->inodes)) {
4470		struct scrub_nocow_inode *entry;
4471		entry = list_first_entry(&nocow_ctx->inodes,
4472					 struct scrub_nocow_inode,
4473					 list);
4474		list_del_init(&entry->list);
4475		kfree(entry);
4476	}
4477	if (trans && !IS_ERR(trans))
4478		btrfs_end_transaction(trans);
4479	if (not_written)
4480		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481					    num_uncorrectable_read_errors);
4482
4483	btrfs_free_path(path);
4484	kfree(nocow_ctx);
4485
4486	scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490				 u64 logical)
4491{
4492	struct extent_state *cached_state = NULL;
4493	struct btrfs_ordered_extent *ordered;
4494	struct extent_io_tree *io_tree;
4495	struct extent_map *em;
4496	u64 lockstart = start, lockend = start + len - 1;
4497	int ret = 0;
4498
4499	io_tree = &inode->io_tree;
4500
4501	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503	if (ordered) {
4504		btrfs_put_ordered_extent(ordered);
4505		ret = 1;
4506		goto out_unlock;
4507	}
4508
4509	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510	if (IS_ERR(em)) {
4511		ret = PTR_ERR(em);
4512		goto out_unlock;
4513	}
4514
4515	/*
4516	 * This extent does not actually cover the logical extent anymore,
4517	 * move on to the next inode.
4518	 */
4519	if (em->block_start > logical ||
4520	    em->block_start + em->block_len < logical + len ||
4521	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522		free_extent_map(em);
4523		ret = 1;
4524		goto out_unlock;
4525	}
4526	free_extent_map(em);
4527
4528out_unlock:
4529	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530	return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534				      struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537	struct btrfs_key key;
4538	struct inode *inode;
4539	struct page *page;
4540	struct btrfs_root *local_root;
4541	struct extent_io_tree *io_tree;
4542	u64 physical_for_dev_replace;
4543	u64 nocow_ctx_logical;
4544	u64 len = nocow_ctx->len;
4545	unsigned long index;
4546	int srcu_index;
4547	int ret = 0;
4548	int err = 0;
4549
4550	key.objectid = root;
4551	key.type = BTRFS_ROOT_ITEM_KEY;
4552	key.offset = (u64)-1;
4553
4554	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557	if (IS_ERR(local_root)) {
4558		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559		return PTR_ERR(local_root);
4560	}
4561
4562	key.type = BTRFS_INODE_ITEM_KEY;
4563	key.objectid = inum;
4564	key.offset = 0;
4565	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567	if (IS_ERR(inode))
4568		return PTR_ERR(inode);
4569
4570	/* Avoid truncate/dio/punch hole.. */
4571	inode_lock(inode);
4572	inode_dio_wait(inode);
4573
4574	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575	io_tree = &BTRFS_I(inode)->io_tree;
4576	nocow_ctx_logical = nocow_ctx->logical;
4577
4578	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579			nocow_ctx_logical);
4580	if (ret) {
4581		ret = ret > 0 ? 0 : ret;
4582		goto out;
4583	}
4584
4585	while (len >= PAGE_SIZE) {
4586		index = offset >> PAGE_SHIFT;
4587again:
4588		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589		if (!page) {
4590			btrfs_err(fs_info, "find_or_create_page() failed");
4591			ret = -ENOMEM;
4592			goto out;
4593		}
4594
4595		if (PageUptodate(page)) {
4596			if (PageDirty(page))
4597				goto next_page;
4598		} else {
4599			ClearPageError(page);
4600			err = extent_read_full_page(io_tree, page,
4601							   btrfs_get_extent,
4602							   nocow_ctx->mirror_num);
4603			if (err) {
4604				ret = err;
4605				goto next_page;
4606			}
4607
4608			lock_page(page);
4609			/*
4610			 * If the page has been remove from the page cache,
4611			 * the data on it is meaningless, because it may be
4612			 * old one, the new data may be written into the new
4613			 * page in the page cache.
4614			 */
4615			if (page->mapping != inode->i_mapping) {
4616				unlock_page(page);
4617				put_page(page);
4618				goto again;
4619			}
4620			if (!PageUptodate(page)) {
4621				ret = -EIO;
4622				goto next_page;
4623			}
4624		}
4625
4626		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627					    nocow_ctx_logical);
4628		if (ret) {
4629			ret = ret > 0 ? 0 : ret;
4630			goto next_page;
4631		}
4632
4633		err = write_page_nocow(nocow_ctx->sctx,
4634				       physical_for_dev_replace, page);
4635		if (err)
4636			ret = err;
4637next_page:
4638		unlock_page(page);
4639		put_page(page);
4640
4641		if (ret)
4642			break;
4643
4644		offset += PAGE_SIZE;
4645		physical_for_dev_replace += PAGE_SIZE;
4646		nocow_ctx_logical += PAGE_SIZE;
4647		len -= PAGE_SIZE;
4648	}
4649	ret = COPY_COMPLETE;
4650out:
4651	inode_unlock(inode);
4652	iput(inode);
4653	return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657			    u64 physical_for_dev_replace, struct page *page)
4658{
4659	struct bio *bio;
4660	struct btrfs_device *dev;
4661
4662	dev = sctx->wr_tgtdev;
4663	if (!dev)
4664		return -EIO;
4665	if (!dev->bdev) {
4666		btrfs_warn_rl(dev->fs_info,
4667			"scrub write_page_nocow(bdev == NULL) is unexpected");
4668		return -EIO;
4669	}
4670	bio = btrfs_io_bio_alloc(1);
4671	bio->bi_iter.bi_size = 0;
4672	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673	bio_set_dev(bio, dev->bdev);
4674	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675	/* bio_add_page won't fail on a freshly allocated bio */
4676	bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678	if (btrfsic_submit_bio_wait(bio)) {
4679		bio_put(bio);
4680		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681		return -EIO;
4682	}
4683
4684	bio_put(bio);
4685	return 0;
4686}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
  20#include "rcu-string.h"
  21#include "raid56.h"
  22#include "block-group.h"
  23#include "zoned.h"
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - In case an unrepairable extent is encountered, track which files are
  33 *    affected and report them
  34 *  - track and record media errors, throw out bad devices
  35 *  - add a mode to also read unallocated space
  36 */
  37
  38struct scrub_block;
  39struct scrub_ctx;
  40
  41/*
  42 * the following three values only influence the performance.
  43 * The last one configures the number of parallel and outstanding I/O
  44 * operations. The first two values configure an upper limit for the number
  45 * of (dynamically allocated) pages that are added to a bio.
  46 */
  47#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  48#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  49#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  50
  51/*
  52 * the following value times PAGE_SIZE needs to be large enough to match the
  53 * largest node/leaf/sector size that shall be supported.
  54 * Values larger than BTRFS_STRIPE_LEN are not supported.
  55 */
  56#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  57
  58struct scrub_recover {
  59	refcount_t		refs;
  60	struct btrfs_bio	*bbio;
  61	u64			map_length;
  62};
  63
  64struct scrub_page {
  65	struct scrub_block	*sblock;
  66	struct page		*page;
  67	struct btrfs_device	*dev;
  68	struct list_head	list;
  69	u64			flags;  /* extent flags */
  70	u64			generation;
  71	u64			logical;
  72	u64			physical;
  73	u64			physical_for_dev_replace;
  74	atomic_t		refs;
  75	u8			mirror_num;
  76	int			have_csum:1;
  77	int			io_error:1;
 
 
  78	u8			csum[BTRFS_CSUM_SIZE];
  79
  80	struct scrub_recover	*recover;
  81};
  82
  83struct scrub_bio {
  84	int			index;
  85	struct scrub_ctx	*sctx;
  86	struct btrfs_device	*dev;
  87	struct bio		*bio;
  88	blk_status_t		status;
  89	u64			logical;
  90	u64			physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96	int			page_count;
  97	int			next_free;
  98	struct btrfs_work	work;
  99};
 100
 101struct scrub_block {
 102	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103	int			page_count;
 104	atomic_t		outstanding_pages;
 105	refcount_t		refs; /* free mem on transition to zero */
 106	struct scrub_ctx	*sctx;
 107	struct scrub_parity	*sparity;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113
 114		/* The following is for the data used to check parity */
 115		/* It is for the data with checksum */
 116		unsigned int	data_corrected:1;
 117	};
 118	struct btrfs_work	work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123	struct scrub_ctx	*sctx;
 124
 125	struct btrfs_device	*scrub_dev;
 126
 127	u64			logic_start;
 128
 129	u64			logic_end;
 130
 131	int			nsectors;
 132
 133	u32			stripe_len;
 134
 135	refcount_t		refs;
 136
 137	struct list_head	spages;
 138
 139	/* Work of parity check and repair */
 140	struct btrfs_work	work;
 141
 142	/* Mark the parity blocks which have data */
 143	unsigned long		*dbitmap;
 144
 145	/*
 146	 * Mark the parity blocks which have data, but errors happen when
 147	 * read data or check data
 148	 */
 149	unsigned long		*ebitmap;
 150
 151	unsigned long		bitmap[];
 152};
 153
 154struct scrub_ctx {
 155	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 156	struct btrfs_fs_info	*fs_info;
 157	int			first_free;
 158	int			curr;
 159	atomic_t		bios_in_flight;
 160	atomic_t		workers_pending;
 161	spinlock_t		list_lock;
 162	wait_queue_head_t	list_wait;
 
 163	struct list_head	csum_list;
 164	atomic_t		cancel_req;
 165	int			readonly;
 166	int			pages_per_rd_bio;
 167
 168	/* State of IO submission throttling affecting the associated device */
 169	ktime_t			throttle_deadline;
 170	u64			throttle_sent;
 171
 172	int			is_dev_replace;
 173	u64			write_pointer;
 174
 175	struct scrub_bio        *wr_curr_bio;
 176	struct mutex            wr_lock;
 177	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 178	struct btrfs_device     *wr_tgtdev;
 179	bool                    flush_all_writes;
 180
 181	/*
 182	 * statistics
 183	 */
 184	struct btrfs_scrub_progress stat;
 185	spinlock_t		stat_lock;
 186
 187	/*
 188	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 189	 * decrement bios_in_flight and workers_pending and then do a wakeup
 190	 * on the list_wait wait queue. We must ensure the main scrub task
 191	 * doesn't free the scrub context before or while the workers are
 192	 * doing the wakeup() call.
 193	 */
 194	refcount_t              refs;
 195};
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197struct scrub_warning {
 198	struct btrfs_path	*path;
 199	u64			extent_item_size;
 200	const char		*errstr;
 201	u64			physical;
 202	u64			logical;
 203	struct btrfs_device	*dev;
 204};
 205
 206struct full_stripe_lock {
 207	struct rb_node node;
 208	u64 logical;
 209	u64 refs;
 210	struct mutex mutex;
 211};
 212
 
 
 
 
 
 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 214				     struct scrub_block *sblocks_for_recheck);
 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 216				struct scrub_block *sblock,
 217				int retry_failed_mirror);
 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 220					     struct scrub_block *sblock_good);
 221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 222					    struct scrub_block *sblock_good,
 223					    int page_num, int force_write);
 224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 226					   int page_num);
 227static int scrub_checksum_data(struct scrub_block *sblock);
 228static int scrub_checksum_tree_block(struct scrub_block *sblock);
 229static int scrub_checksum_super(struct scrub_block *sblock);
 
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
 
 
 236		       u64 physical, struct btrfs_device *dev, u64 flags,
 237		       u64 gen, int mirror_num, u8 *csum,
 238		       u64 physical_for_dev_replace);
 239static void scrub_bio_end_io(struct bio *bio);
 240static void scrub_bio_end_io_worker(struct btrfs_work *work);
 241static void scrub_block_complete(struct scrub_block *sblock);
 242static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 243			       u64 extent_logical, u32 extent_len,
 244			       u64 *extent_physical,
 245			       struct btrfs_device **extent_dev,
 246			       int *extent_mirror_num);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 
 
 
 
 
 
 
 
 
 252static void scrub_put_ctx(struct scrub_ctx *sctx);
 253
 254static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
 255{
 256	return spage->recover &&
 257	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 258}
 259
 260static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 261{
 262	refcount_inc(&sctx->refs);
 263	atomic_inc(&sctx->bios_in_flight);
 264}
 265
 266static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 267{
 268	atomic_dec(&sctx->bios_in_flight);
 269	wake_up(&sctx->list_wait);
 270	scrub_put_ctx(sctx);
 271}
 272
 273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 274{
 275	while (atomic_read(&fs_info->scrub_pause_req)) {
 276		mutex_unlock(&fs_info->scrub_lock);
 277		wait_event(fs_info->scrub_pause_wait,
 278		   atomic_read(&fs_info->scrub_pause_req) == 0);
 279		mutex_lock(&fs_info->scrub_lock);
 280	}
 281}
 282
 283static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 284{
 285	atomic_inc(&fs_info->scrubs_paused);
 286	wake_up(&fs_info->scrub_pause_wait);
 287}
 288
 289static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 290{
 291	mutex_lock(&fs_info->scrub_lock);
 292	__scrub_blocked_if_needed(fs_info);
 293	atomic_dec(&fs_info->scrubs_paused);
 294	mutex_unlock(&fs_info->scrub_lock);
 295
 296	wake_up(&fs_info->scrub_pause_wait);
 297}
 298
 299static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 300{
 301	scrub_pause_on(fs_info);
 302	scrub_pause_off(fs_info);
 303}
 304
 305/*
 306 * Insert new full stripe lock into full stripe locks tree
 307 *
 308 * Return pointer to existing or newly inserted full_stripe_lock structure if
 309 * everything works well.
 310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 311 *
 312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 313 * function
 314 */
 315static struct full_stripe_lock *insert_full_stripe_lock(
 316		struct btrfs_full_stripe_locks_tree *locks_root,
 317		u64 fstripe_logical)
 318{
 319	struct rb_node **p;
 320	struct rb_node *parent = NULL;
 321	struct full_stripe_lock *entry;
 322	struct full_stripe_lock *ret;
 323
 324	lockdep_assert_held(&locks_root->lock);
 325
 326	p = &locks_root->root.rb_node;
 327	while (*p) {
 328		parent = *p;
 329		entry = rb_entry(parent, struct full_stripe_lock, node);
 330		if (fstripe_logical < entry->logical) {
 331			p = &(*p)->rb_left;
 332		} else if (fstripe_logical > entry->logical) {
 333			p = &(*p)->rb_right;
 334		} else {
 335			entry->refs++;
 336			return entry;
 337		}
 338	}
 339
 340	/*
 341	 * Insert new lock.
 342	 */
 343	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 344	if (!ret)
 345		return ERR_PTR(-ENOMEM);
 346	ret->logical = fstripe_logical;
 347	ret->refs = 1;
 348	mutex_init(&ret->mutex);
 349
 350	rb_link_node(&ret->node, parent, p);
 351	rb_insert_color(&ret->node, &locks_root->root);
 352	return ret;
 353}
 354
 355/*
 356 * Search for a full stripe lock of a block group
 357 *
 358 * Return pointer to existing full stripe lock if found
 359 * Return NULL if not found
 360 */
 361static struct full_stripe_lock *search_full_stripe_lock(
 362		struct btrfs_full_stripe_locks_tree *locks_root,
 363		u64 fstripe_logical)
 364{
 365	struct rb_node *node;
 366	struct full_stripe_lock *entry;
 367
 368	lockdep_assert_held(&locks_root->lock);
 369
 370	node = locks_root->root.rb_node;
 371	while (node) {
 372		entry = rb_entry(node, struct full_stripe_lock, node);
 373		if (fstripe_logical < entry->logical)
 374			node = node->rb_left;
 375		else if (fstripe_logical > entry->logical)
 376			node = node->rb_right;
 377		else
 378			return entry;
 379	}
 380	return NULL;
 381}
 382
 383/*
 384 * Helper to get full stripe logical from a normal bytenr.
 385 *
 386 * Caller must ensure @cache is a RAID56 block group.
 387 */
 388static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 
 389{
 390	u64 ret;
 391
 392	/*
 393	 * Due to chunk item size limit, full stripe length should not be
 394	 * larger than U32_MAX. Just a sanity check here.
 395	 */
 396	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 397
 398	/*
 399	 * round_down() can only handle power of 2, while RAID56 full
 400	 * stripe length can be 64KiB * n, so we need to manually round down.
 401	 */
 402	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 403			cache->full_stripe_len + cache->start;
 404	return ret;
 405}
 406
 407/*
 408 * Lock a full stripe to avoid concurrency of recovery and read
 409 *
 410 * It's only used for profiles with parities (RAID5/6), for other profiles it
 411 * does nothing.
 412 *
 413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 414 * So caller must call unlock_full_stripe() at the same context.
 415 *
 416 * Return <0 if encounters error.
 417 */
 418static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 419			    bool *locked_ret)
 420{
 421	struct btrfs_block_group *bg_cache;
 422	struct btrfs_full_stripe_locks_tree *locks_root;
 423	struct full_stripe_lock *existing;
 424	u64 fstripe_start;
 425	int ret = 0;
 426
 427	*locked_ret = false;
 428	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 429	if (!bg_cache) {
 430		ASSERT(0);
 431		return -ENOENT;
 432	}
 433
 434	/* Profiles not based on parity don't need full stripe lock */
 435	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 436		goto out;
 437	locks_root = &bg_cache->full_stripe_locks_root;
 438
 439	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 440
 441	/* Now insert the full stripe lock */
 442	mutex_lock(&locks_root->lock);
 443	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 444	mutex_unlock(&locks_root->lock);
 445	if (IS_ERR(existing)) {
 446		ret = PTR_ERR(existing);
 447		goto out;
 448	}
 449	mutex_lock(&existing->mutex);
 450	*locked_ret = true;
 451out:
 452	btrfs_put_block_group(bg_cache);
 453	return ret;
 454}
 455
 456/*
 457 * Unlock a full stripe.
 458 *
 459 * NOTE: Caller must ensure it's the same context calling corresponding
 460 * lock_full_stripe().
 461 *
 462 * Return 0 if we unlock full stripe without problem.
 463 * Return <0 for error
 464 */
 465static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 466			      bool locked)
 467{
 468	struct btrfs_block_group *bg_cache;
 469	struct btrfs_full_stripe_locks_tree *locks_root;
 470	struct full_stripe_lock *fstripe_lock;
 471	u64 fstripe_start;
 472	bool freeit = false;
 473	int ret = 0;
 474
 475	/* If we didn't acquire full stripe lock, no need to continue */
 476	if (!locked)
 477		return 0;
 478
 479	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 480	if (!bg_cache) {
 481		ASSERT(0);
 482		return -ENOENT;
 483	}
 484	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 485		goto out;
 486
 487	locks_root = &bg_cache->full_stripe_locks_root;
 488	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 489
 490	mutex_lock(&locks_root->lock);
 491	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 492	/* Unpaired unlock_full_stripe() detected */
 493	if (!fstripe_lock) {
 494		WARN_ON(1);
 495		ret = -ENOENT;
 496		mutex_unlock(&locks_root->lock);
 497		goto out;
 498	}
 499
 500	if (fstripe_lock->refs == 0) {
 501		WARN_ON(1);
 502		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 503			fstripe_lock->logical);
 504	} else {
 505		fstripe_lock->refs--;
 506	}
 507
 508	if (fstripe_lock->refs == 0) {
 509		rb_erase(&fstripe_lock->node, &locks_root->root);
 510		freeit = true;
 511	}
 512	mutex_unlock(&locks_root->lock);
 513
 514	mutex_unlock(&fstripe_lock->mutex);
 515	if (freeit)
 516		kfree(fstripe_lock);
 517out:
 518	btrfs_put_block_group(bg_cache);
 519	return ret;
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522static void scrub_free_csums(struct scrub_ctx *sctx)
 523{
 524	while (!list_empty(&sctx->csum_list)) {
 525		struct btrfs_ordered_sum *sum;
 526		sum = list_first_entry(&sctx->csum_list,
 527				       struct btrfs_ordered_sum, list);
 528		list_del(&sum->list);
 529		kfree(sum);
 530	}
 531}
 532
 533static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 534{
 535	int i;
 536
 537	if (!sctx)
 538		return;
 539
 540	/* this can happen when scrub is cancelled */
 541	if (sctx->curr != -1) {
 542		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 543
 544		for (i = 0; i < sbio->page_count; i++) {
 545			WARN_ON(!sbio->pagev[i]->page);
 546			scrub_block_put(sbio->pagev[i]->sblock);
 547		}
 548		bio_put(sbio->bio);
 549	}
 550
 551	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 552		struct scrub_bio *sbio = sctx->bios[i];
 553
 554		if (!sbio)
 555			break;
 556		kfree(sbio);
 557	}
 558
 559	kfree(sctx->wr_curr_bio);
 560	scrub_free_csums(sctx);
 561	kfree(sctx);
 562}
 563
 564static void scrub_put_ctx(struct scrub_ctx *sctx)
 565{
 566	if (refcount_dec_and_test(&sctx->refs))
 567		scrub_free_ctx(sctx);
 568}
 569
 570static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 571		struct btrfs_fs_info *fs_info, int is_dev_replace)
 572{
 573	struct scrub_ctx *sctx;
 574	int		i;
 
 575
 576	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 577	if (!sctx)
 578		goto nomem;
 579	refcount_set(&sctx->refs, 1);
 580	sctx->is_dev_replace = is_dev_replace;
 581	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 582	sctx->curr = -1;
 583	sctx->fs_info = fs_info;
 584	INIT_LIST_HEAD(&sctx->csum_list);
 585	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 586		struct scrub_bio *sbio;
 587
 588		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 589		if (!sbio)
 590			goto nomem;
 591		sctx->bios[i] = sbio;
 592
 593		sbio->index = i;
 594		sbio->sctx = sctx;
 595		sbio->page_count = 0;
 596		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 597				NULL);
 598
 599		if (i != SCRUB_BIOS_PER_SCTX - 1)
 600			sctx->bios[i]->next_free = i + 1;
 601		else
 602			sctx->bios[i]->next_free = -1;
 603	}
 604	sctx->first_free = 0;
 605	atomic_set(&sctx->bios_in_flight, 0);
 606	atomic_set(&sctx->workers_pending, 0);
 607	atomic_set(&sctx->cancel_req, 0);
 
 
 608
 609	spin_lock_init(&sctx->list_lock);
 610	spin_lock_init(&sctx->stat_lock);
 611	init_waitqueue_head(&sctx->list_wait);
 612	sctx->throttle_deadline = 0;
 613
 614	WARN_ON(sctx->wr_curr_bio != NULL);
 615	mutex_init(&sctx->wr_lock);
 616	sctx->wr_curr_bio = NULL;
 617	if (is_dev_replace) {
 618		WARN_ON(!fs_info->dev_replace.tgtdev);
 619		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 620		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 621		sctx->flush_all_writes = false;
 622	}
 623
 624	return sctx;
 625
 626nomem:
 627	scrub_free_ctx(sctx);
 628	return ERR_PTR(-ENOMEM);
 629}
 630
 631static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 632				     void *warn_ctx)
 633{
 
 634	u32 nlink;
 635	int ret;
 636	int i;
 637	unsigned nofs_flag;
 638	struct extent_buffer *eb;
 639	struct btrfs_inode_item *inode_item;
 640	struct scrub_warning *swarn = warn_ctx;
 641	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 642	struct inode_fs_paths *ipath = NULL;
 643	struct btrfs_root *local_root;
 
 644	struct btrfs_key key;
 645
 646	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 647	if (IS_ERR(local_root)) {
 648		ret = PTR_ERR(local_root);
 649		goto err;
 650	}
 651
 652	/*
 653	 * this makes the path point to (inum INODE_ITEM ioff)
 654	 */
 655	key.objectid = inum;
 656	key.type = BTRFS_INODE_ITEM_KEY;
 657	key.offset = 0;
 658
 659	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 660	if (ret) {
 661		btrfs_put_root(local_root);
 662		btrfs_release_path(swarn->path);
 663		goto err;
 664	}
 665
 666	eb = swarn->path->nodes[0];
 667	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 668					struct btrfs_inode_item);
 
 669	nlink = btrfs_inode_nlink(eb, inode_item);
 670	btrfs_release_path(swarn->path);
 671
 672	/*
 673	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 674	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 675	 * not seem to be strictly necessary.
 676	 */
 677	nofs_flag = memalloc_nofs_save();
 678	ipath = init_ipath(4096, local_root, swarn->path);
 679	memalloc_nofs_restore(nofs_flag);
 680	if (IS_ERR(ipath)) {
 681		btrfs_put_root(local_root);
 682		ret = PTR_ERR(ipath);
 683		ipath = NULL;
 684		goto err;
 685	}
 686	ret = paths_from_inode(inum, ipath);
 687
 688	if (ret < 0)
 689		goto err;
 690
 691	/*
 692	 * we deliberately ignore the bit ipath might have been too small to
 693	 * hold all of the paths here
 694	 */
 695	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 696		btrfs_warn_in_rcu(fs_info,
 697"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 698				  swarn->errstr, swarn->logical,
 699				  rcu_str_deref(swarn->dev->name),
 700				  swarn->physical,
 701				  root, inum, offset,
 702				  fs_info->sectorsize, nlink,
 703				  (char *)(unsigned long)ipath->fspath->val[i]);
 704
 705	btrfs_put_root(local_root);
 706	free_ipath(ipath);
 707	return 0;
 708
 709err:
 710	btrfs_warn_in_rcu(fs_info,
 711			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 712			  swarn->errstr, swarn->logical,
 713			  rcu_str_deref(swarn->dev->name),
 714			  swarn->physical,
 715			  root, inum, offset, ret);
 716
 717	free_ipath(ipath);
 718	return 0;
 719}
 720
 721static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 722{
 723	struct btrfs_device *dev;
 724	struct btrfs_fs_info *fs_info;
 725	struct btrfs_path *path;
 726	struct btrfs_key found_key;
 727	struct extent_buffer *eb;
 728	struct btrfs_extent_item *ei;
 729	struct scrub_warning swarn;
 730	unsigned long ptr = 0;
 731	u64 extent_item_pos;
 732	u64 flags = 0;
 733	u64 ref_root;
 734	u32 item_size;
 735	u8 ref_level = 0;
 736	int ret;
 737
 738	WARN_ON(sblock->page_count < 1);
 739	dev = sblock->pagev[0]->dev;
 740	fs_info = sblock->sctx->fs_info;
 741
 742	path = btrfs_alloc_path();
 743	if (!path)
 744		return;
 745
 746	swarn.physical = sblock->pagev[0]->physical;
 747	swarn.logical = sblock->pagev[0]->logical;
 748	swarn.errstr = errstr;
 749	swarn.dev = NULL;
 750
 751	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 752				  &flags);
 753	if (ret < 0)
 754		goto out;
 755
 756	extent_item_pos = swarn.logical - found_key.objectid;
 757	swarn.extent_item_size = found_key.offset;
 758
 759	eb = path->nodes[0];
 760	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 761	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 762
 763	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 764		do {
 765			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 766						      item_size, &ref_root,
 767						      &ref_level);
 768			btrfs_warn_in_rcu(fs_info,
 769"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 770				errstr, swarn.logical,
 771				rcu_str_deref(dev->name),
 772				swarn.physical,
 773				ref_level ? "node" : "leaf",
 774				ret < 0 ? -1 : ref_level,
 775				ret < 0 ? -1 : ref_root);
 776		} while (ret != 1);
 777		btrfs_release_path(path);
 778	} else {
 779		btrfs_release_path(path);
 780		swarn.path = path;
 781		swarn.dev = dev;
 782		iterate_extent_inodes(fs_info, found_key.objectid,
 783					extent_item_pos, 1,
 784					scrub_print_warning_inode, &swarn, false);
 785	}
 786
 787out:
 788	btrfs_free_path(path);
 789}
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791static inline void scrub_get_recover(struct scrub_recover *recover)
 792{
 793	refcount_inc(&recover->refs);
 794}
 795
 796static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 797				     struct scrub_recover *recover)
 798{
 799	if (refcount_dec_and_test(&recover->refs)) {
 800		btrfs_bio_counter_dec(fs_info);
 801		btrfs_put_bbio(recover->bbio);
 802		kfree(recover);
 803	}
 804}
 805
 806/*
 807 * scrub_handle_errored_block gets called when either verification of the
 808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 809 * case, this function handles all pages in the bio, even though only one
 810 * may be bad.
 811 * The goal of this function is to repair the errored block by using the
 812 * contents of one of the mirrors.
 813 */
 814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 815{
 816	struct scrub_ctx *sctx = sblock_to_check->sctx;
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	u64 logical;
 820	unsigned int failed_mirror_index;
 821	unsigned int is_metadata;
 822	unsigned int have_csum;
 823	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 824	struct scrub_block *sblock_bad;
 825	int ret;
 826	int mirror_index;
 827	int page_num;
 828	int success;
 829	bool full_stripe_locked;
 830	unsigned int nofs_flag;
 831	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 832				      DEFAULT_RATELIMIT_BURST);
 833
 834	BUG_ON(sblock_to_check->page_count < 1);
 835	fs_info = sctx->fs_info;
 836	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 837		/*
 838		 * if we find an error in a super block, we just report it.
 839		 * They will get written with the next transaction commit
 840		 * anyway
 841		 */
 842		spin_lock(&sctx->stat_lock);
 843		++sctx->stat.super_errors;
 844		spin_unlock(&sctx->stat_lock);
 845		return 0;
 846	}
 847	logical = sblock_to_check->pagev[0]->logical;
 848	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 849	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 850	is_metadata = !(sblock_to_check->pagev[0]->flags &
 851			BTRFS_EXTENT_FLAG_DATA);
 852	have_csum = sblock_to_check->pagev[0]->have_csum;
 853	dev = sblock_to_check->pagev[0]->dev;
 854
 855	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
 856		return btrfs_repair_one_zone(fs_info, logical);
 857
 858	/*
 859	 * We must use GFP_NOFS because the scrub task might be waiting for a
 860	 * worker task executing this function and in turn a transaction commit
 861	 * might be waiting the scrub task to pause (which needs to wait for all
 862	 * the worker tasks to complete before pausing).
 863	 * We do allocations in the workers through insert_full_stripe_lock()
 864	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 865	 * this function.
 866	 */
 867	nofs_flag = memalloc_nofs_save();
 868	/*
 869	 * For RAID5/6, race can happen for a different device scrub thread.
 870	 * For data corruption, Parity and Data threads will both try
 871	 * to recovery the data.
 872	 * Race can lead to doubly added csum error, or even unrecoverable
 873	 * error.
 874	 */
 875	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 876	if (ret < 0) {
 877		memalloc_nofs_restore(nofs_flag);
 878		spin_lock(&sctx->stat_lock);
 879		if (ret == -ENOMEM)
 880			sctx->stat.malloc_errors++;
 881		sctx->stat.read_errors++;
 882		sctx->stat.uncorrectable_errors++;
 883		spin_unlock(&sctx->stat_lock);
 884		return ret;
 885	}
 886
 
 
 
 
 
 887	/*
 888	 * read all mirrors one after the other. This includes to
 889	 * re-read the extent or metadata block that failed (that was
 890	 * the cause that this fixup code is called) another time,
 891	 * sector by sector this time in order to know which sectors
 892	 * caused I/O errors and which ones are good (for all mirrors).
 893	 * It is the goal to handle the situation when more than one
 894	 * mirror contains I/O errors, but the errors do not
 895	 * overlap, i.e. the data can be repaired by selecting the
 896	 * sectors from those mirrors without I/O error on the
 897	 * particular sectors. One example (with blocks >= 2 * sectorsize)
 898	 * would be that mirror #1 has an I/O error on the first sector,
 899	 * the second sector is good, and mirror #2 has an I/O error on
 900	 * the second sector, but the first sector is good.
 901	 * Then the first sector of the first mirror can be repaired by
 902	 * taking the first sector of the second mirror, and the
 903	 * second sector of the second mirror can be repaired by
 904	 * copying the contents of the 2nd sector of the 1st mirror.
 905	 * One more note: if the sectors of one mirror contain I/O
 906	 * errors, the checksum cannot be verified. In order to get
 907	 * the best data for repairing, the first attempt is to find
 908	 * a mirror without I/O errors and with a validated checksum.
 909	 * Only if this is not possible, the sectors are picked from
 910	 * mirrors with I/O errors without considering the checksum.
 911	 * If the latter is the case, at the end, the checksum of the
 912	 * repaired area is verified in order to correctly maintain
 913	 * the statistics.
 914	 */
 915
 916	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 917				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 918	if (!sblocks_for_recheck) {
 919		spin_lock(&sctx->stat_lock);
 920		sctx->stat.malloc_errors++;
 921		sctx->stat.read_errors++;
 922		sctx->stat.uncorrectable_errors++;
 923		spin_unlock(&sctx->stat_lock);
 924		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 925		goto out;
 926	}
 927
 928	/* setup the context, map the logical blocks and alloc the pages */
 929	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 930	if (ret) {
 931		spin_lock(&sctx->stat_lock);
 932		sctx->stat.read_errors++;
 933		sctx->stat.uncorrectable_errors++;
 934		spin_unlock(&sctx->stat_lock);
 935		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 936		goto out;
 937	}
 938	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 939	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 940
 941	/* build and submit the bios for the failed mirror, check checksums */
 942	scrub_recheck_block(fs_info, sblock_bad, 1);
 943
 944	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 945	    sblock_bad->no_io_error_seen) {
 946		/*
 947		 * the error disappeared after reading page by page, or
 948		 * the area was part of a huge bio and other parts of the
 949		 * bio caused I/O errors, or the block layer merged several
 950		 * read requests into one and the error is caused by a
 951		 * different bio (usually one of the two latter cases is
 952		 * the cause)
 953		 */
 954		spin_lock(&sctx->stat_lock);
 955		sctx->stat.unverified_errors++;
 956		sblock_to_check->data_corrected = 1;
 957		spin_unlock(&sctx->stat_lock);
 958
 959		if (sctx->is_dev_replace)
 960			scrub_write_block_to_dev_replace(sblock_bad);
 961		goto out;
 962	}
 963
 964	if (!sblock_bad->no_io_error_seen) {
 965		spin_lock(&sctx->stat_lock);
 966		sctx->stat.read_errors++;
 967		spin_unlock(&sctx->stat_lock);
 968		if (__ratelimit(&rs))
 969			scrub_print_warning("i/o error", sblock_to_check);
 970		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 971	} else if (sblock_bad->checksum_error) {
 972		spin_lock(&sctx->stat_lock);
 973		sctx->stat.csum_errors++;
 974		spin_unlock(&sctx->stat_lock);
 975		if (__ratelimit(&rs))
 976			scrub_print_warning("checksum error", sblock_to_check);
 977		btrfs_dev_stat_inc_and_print(dev,
 978					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 979	} else if (sblock_bad->header_error) {
 980		spin_lock(&sctx->stat_lock);
 981		sctx->stat.verify_errors++;
 982		spin_unlock(&sctx->stat_lock);
 983		if (__ratelimit(&rs))
 984			scrub_print_warning("checksum/header error",
 985					    sblock_to_check);
 986		if (sblock_bad->generation_error)
 987			btrfs_dev_stat_inc_and_print(dev,
 988				BTRFS_DEV_STAT_GENERATION_ERRS);
 989		else
 990			btrfs_dev_stat_inc_and_print(dev,
 991				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 992	}
 993
 994	if (sctx->readonly) {
 995		ASSERT(!sctx->is_dev_replace);
 996		goto out;
 997	}
 998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/*
1000	 * now build and submit the bios for the other mirrors, check
1001	 * checksums.
1002	 * First try to pick the mirror which is completely without I/O
1003	 * errors and also does not have a checksum error.
1004	 * If one is found, and if a checksum is present, the full block
1005	 * that is known to contain an error is rewritten. Afterwards
1006	 * the block is known to be corrected.
1007	 * If a mirror is found which is completely correct, and no
1008	 * checksum is present, only those pages are rewritten that had
1009	 * an I/O error in the block to be repaired, since it cannot be
1010	 * determined, which copy of the other pages is better (and it
1011	 * could happen otherwise that a correct page would be
1012	 * overwritten by a bad one).
1013	 */
1014	for (mirror_index = 0; ;mirror_index++) {
1015		struct scrub_block *sblock_other;
1016
1017		if (mirror_index == failed_mirror_index)
1018			continue;
1019
1020		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022			if (mirror_index >= BTRFS_MAX_MIRRORS)
1023				break;
1024			if (!sblocks_for_recheck[mirror_index].page_count)
1025				break;
1026
1027			sblock_other = sblocks_for_recheck + mirror_index;
1028		} else {
1029			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030			int max_allowed = r->bbio->num_stripes -
1031						r->bbio->num_tgtdevs;
1032
1033			if (mirror_index >= max_allowed)
1034				break;
1035			if (!sblocks_for_recheck[1].page_count)
1036				break;
1037
1038			ASSERT(failed_mirror_index == 0);
1039			sblock_other = sblocks_for_recheck + 1;
1040			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1041		}
1042
1043		/* build and submit the bios, check checksums */
1044		scrub_recheck_block(fs_info, sblock_other, 0);
1045
1046		if (!sblock_other->header_error &&
1047		    !sblock_other->checksum_error &&
1048		    sblock_other->no_io_error_seen) {
1049			if (sctx->is_dev_replace) {
1050				scrub_write_block_to_dev_replace(sblock_other);
1051				goto corrected_error;
1052			} else {
1053				ret = scrub_repair_block_from_good_copy(
1054						sblock_bad, sblock_other);
1055				if (!ret)
1056					goto corrected_error;
1057			}
1058		}
1059	}
1060
1061	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1062		goto did_not_correct_error;
1063
1064	/*
1065	 * In case of I/O errors in the area that is supposed to be
1066	 * repaired, continue by picking good copies of those sectors.
1067	 * Select the good sectors from mirrors to rewrite bad sectors from
1068	 * the area to fix. Afterwards verify the checksum of the block
1069	 * that is supposed to be repaired. This verification step is
1070	 * only done for the purpose of statistic counting and for the
1071	 * final scrub report, whether errors remain.
1072	 * A perfect algorithm could make use of the checksum and try
1073	 * all possible combinations of sectors from the different mirrors
1074	 * until the checksum verification succeeds. For example, when
1075	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1076	 * of mirror #2 is readable but the final checksum test fails,
1077	 * then the 2nd sector of mirror #3 could be tried, whether now
1078	 * the final checksum succeeds. But this would be a rare
1079	 * exception and is therefore not implemented. At least it is
1080	 * avoided that the good copy is overwritten.
1081	 * A more useful improvement would be to pick the sectors
1082	 * without I/O error based on sector sizes (512 bytes on legacy
1083	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1084	 * mirror could be repaired by taking 512 byte of a different
1085	 * mirror, even if other 512 byte sectors in the same sectorsize
1086	 * area are unreadable.
1087	 */
1088	success = 1;
1089	for (page_num = 0; page_num < sblock_bad->page_count;
1090	     page_num++) {
1091		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1092		struct scrub_block *sblock_other = NULL;
1093
1094		/* skip no-io-error page in scrub */
1095		if (!spage_bad->io_error && !sctx->is_dev_replace)
1096			continue;
1097
1098		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1099			/*
1100			 * In case of dev replace, if raid56 rebuild process
1101			 * didn't work out correct data, then copy the content
1102			 * in sblock_bad to make sure target device is identical
1103			 * to source device, instead of writing garbage data in
1104			 * sblock_for_recheck array to target device.
1105			 */
1106			sblock_other = NULL;
1107		} else if (spage_bad->io_error) {
1108			/* try to find no-io-error page in mirrors */
1109			for (mirror_index = 0;
1110			     mirror_index < BTRFS_MAX_MIRRORS &&
1111			     sblocks_for_recheck[mirror_index].page_count > 0;
1112			     mirror_index++) {
1113				if (!sblocks_for_recheck[mirror_index].
1114				    pagev[page_num]->io_error) {
1115					sblock_other = sblocks_for_recheck +
1116						       mirror_index;
1117					break;
1118				}
1119			}
1120			if (!sblock_other)
1121				success = 0;
1122		}
1123
1124		if (sctx->is_dev_replace) {
1125			/*
1126			 * did not find a mirror to fetch the page
1127			 * from. scrub_write_page_to_dev_replace()
1128			 * handles this case (page->io_error), by
1129			 * filling the block with zeros before
1130			 * submitting the write request
1131			 */
1132			if (!sblock_other)
1133				sblock_other = sblock_bad;
1134
1135			if (scrub_write_page_to_dev_replace(sblock_other,
1136							    page_num) != 0) {
1137				atomic64_inc(
1138					&fs_info->dev_replace.num_write_errors);
1139				success = 0;
1140			}
1141		} else if (sblock_other) {
1142			ret = scrub_repair_page_from_good_copy(sblock_bad,
1143							       sblock_other,
1144							       page_num, 0);
1145			if (0 == ret)
1146				spage_bad->io_error = 0;
1147			else
1148				success = 0;
1149		}
1150	}
1151
1152	if (success && !sctx->is_dev_replace) {
1153		if (is_metadata || have_csum) {
1154			/*
1155			 * need to verify the checksum now that all
1156			 * sectors on disk are repaired (the write
1157			 * request for data to be repaired is on its way).
1158			 * Just be lazy and use scrub_recheck_block()
1159			 * which re-reads the data before the checksum
1160			 * is verified, but most likely the data comes out
1161			 * of the page cache.
1162			 */
1163			scrub_recheck_block(fs_info, sblock_bad, 1);
1164			if (!sblock_bad->header_error &&
1165			    !sblock_bad->checksum_error &&
1166			    sblock_bad->no_io_error_seen)
1167				goto corrected_error;
1168			else
1169				goto did_not_correct_error;
1170		} else {
1171corrected_error:
1172			spin_lock(&sctx->stat_lock);
1173			sctx->stat.corrected_errors++;
1174			sblock_to_check->data_corrected = 1;
1175			spin_unlock(&sctx->stat_lock);
1176			btrfs_err_rl_in_rcu(fs_info,
1177				"fixed up error at logical %llu on dev %s",
1178				logical, rcu_str_deref(dev->name));
1179		}
1180	} else {
1181did_not_correct_error:
1182		spin_lock(&sctx->stat_lock);
1183		sctx->stat.uncorrectable_errors++;
1184		spin_unlock(&sctx->stat_lock);
1185		btrfs_err_rl_in_rcu(fs_info,
1186			"unable to fixup (regular) error at logical %llu on dev %s",
1187			logical, rcu_str_deref(dev->name));
1188	}
1189
1190out:
1191	if (sblocks_for_recheck) {
1192		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1193		     mirror_index++) {
1194			struct scrub_block *sblock = sblocks_for_recheck +
1195						     mirror_index;
1196			struct scrub_recover *recover;
1197			int page_index;
1198
1199			for (page_index = 0; page_index < sblock->page_count;
1200			     page_index++) {
1201				sblock->pagev[page_index]->sblock = NULL;
1202				recover = sblock->pagev[page_index]->recover;
1203				if (recover) {
1204					scrub_put_recover(fs_info, recover);
1205					sblock->pagev[page_index]->recover =
1206									NULL;
1207				}
1208				scrub_page_put(sblock->pagev[page_index]);
1209			}
1210		}
1211		kfree(sblocks_for_recheck);
1212	}
1213
1214	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1215	memalloc_nofs_restore(nofs_flag);
1216	if (ret < 0)
1217		return ret;
1218	return 0;
1219}
1220
1221static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1222{
1223	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1224		return 2;
1225	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1226		return 3;
1227	else
1228		return (int)bbio->num_stripes;
1229}
1230
1231static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1232						 u64 *raid_map,
1233						 u64 mapped_length,
1234						 int nstripes, int mirror,
1235						 int *stripe_index,
1236						 u64 *stripe_offset)
1237{
1238	int i;
1239
1240	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1241		/* RAID5/6 */
1242		for (i = 0; i < nstripes; i++) {
1243			if (raid_map[i] == RAID6_Q_STRIPE ||
1244			    raid_map[i] == RAID5_P_STRIPE)
1245				continue;
1246
1247			if (logical >= raid_map[i] &&
1248			    logical < raid_map[i] + mapped_length)
1249				break;
1250		}
1251
1252		*stripe_index = i;
1253		*stripe_offset = logical - raid_map[i];
1254	} else {
1255		/* The other RAID type */
1256		*stripe_index = mirror;
1257		*stripe_offset = 0;
1258	}
1259}
1260
1261static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1262				     struct scrub_block *sblocks_for_recheck)
1263{
1264	struct scrub_ctx *sctx = original_sblock->sctx;
1265	struct btrfs_fs_info *fs_info = sctx->fs_info;
1266	u64 length = original_sblock->page_count * fs_info->sectorsize;
1267	u64 logical = original_sblock->pagev[0]->logical;
1268	u64 generation = original_sblock->pagev[0]->generation;
1269	u64 flags = original_sblock->pagev[0]->flags;
1270	u64 have_csum = original_sblock->pagev[0]->have_csum;
1271	struct scrub_recover *recover;
1272	struct btrfs_bio *bbio;
1273	u64 sublen;
1274	u64 mapped_length;
1275	u64 stripe_offset;
1276	int stripe_index;
1277	int page_index = 0;
1278	int mirror_index;
1279	int nmirrors;
1280	int ret;
1281
1282	/*
1283	 * note: the two members refs and outstanding_pages
1284	 * are not used (and not set) in the blocks that are used for
1285	 * the recheck procedure
1286	 */
1287
1288	while (length > 0) {
1289		sublen = min_t(u64, length, fs_info->sectorsize);
1290		mapped_length = sublen;
1291		bbio = NULL;
1292
1293		/*
1294		 * With a length of sectorsize, each returned stripe represents
1295		 * one mirror
1296		 */
1297		btrfs_bio_counter_inc_blocked(fs_info);
1298		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1299				logical, &mapped_length, &bbio);
1300		if (ret || !bbio || mapped_length < sublen) {
1301			btrfs_put_bbio(bbio);
1302			btrfs_bio_counter_dec(fs_info);
1303			return -EIO;
1304		}
1305
1306		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1307		if (!recover) {
1308			btrfs_put_bbio(bbio);
1309			btrfs_bio_counter_dec(fs_info);
1310			return -ENOMEM;
1311		}
1312
1313		refcount_set(&recover->refs, 1);
1314		recover->bbio = bbio;
1315		recover->map_length = mapped_length;
1316
1317		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1318
1319		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1320
1321		for (mirror_index = 0; mirror_index < nmirrors;
1322		     mirror_index++) {
1323			struct scrub_block *sblock;
1324			struct scrub_page *spage;
1325
1326			sblock = sblocks_for_recheck + mirror_index;
1327			sblock->sctx = sctx;
1328
1329			spage = kzalloc(sizeof(*spage), GFP_NOFS);
1330			if (!spage) {
1331leave_nomem:
1332				spin_lock(&sctx->stat_lock);
1333				sctx->stat.malloc_errors++;
1334				spin_unlock(&sctx->stat_lock);
1335				scrub_put_recover(fs_info, recover);
1336				return -ENOMEM;
1337			}
1338			scrub_page_get(spage);
1339			sblock->pagev[page_index] = spage;
1340			spage->sblock = sblock;
1341			spage->flags = flags;
1342			spage->generation = generation;
1343			spage->logical = logical;
1344			spage->have_csum = have_csum;
1345			if (have_csum)
1346				memcpy(spage->csum,
1347				       original_sblock->pagev[0]->csum,
1348				       sctx->fs_info->csum_size);
1349
1350			scrub_stripe_index_and_offset(logical,
1351						      bbio->map_type,
1352						      bbio->raid_map,
1353						      mapped_length,
1354						      bbio->num_stripes -
1355						      bbio->num_tgtdevs,
1356						      mirror_index,
1357						      &stripe_index,
1358						      &stripe_offset);
1359			spage->physical = bbio->stripes[stripe_index].physical +
1360					 stripe_offset;
1361			spage->dev = bbio->stripes[stripe_index].dev;
1362
1363			BUG_ON(page_index >= original_sblock->page_count);
1364			spage->physical_for_dev_replace =
1365				original_sblock->pagev[page_index]->
1366				physical_for_dev_replace;
1367			/* for missing devices, dev->bdev is NULL */
1368			spage->mirror_num = mirror_index + 1;
1369			sblock->page_count++;
1370			spage->page = alloc_page(GFP_NOFS);
1371			if (!spage->page)
1372				goto leave_nomem;
1373
1374			scrub_get_recover(recover);
1375			spage->recover = recover;
1376		}
1377		scrub_put_recover(fs_info, recover);
1378		length -= sublen;
1379		logical += sublen;
1380		page_index++;
1381	}
1382
1383	return 0;
1384}
1385
1386static void scrub_bio_wait_endio(struct bio *bio)
1387{
1388	complete(bio->bi_private);
1389}
1390
1391static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1392					struct bio *bio,
1393					struct scrub_page *spage)
1394{
1395	DECLARE_COMPLETION_ONSTACK(done);
1396	int ret;
1397	int mirror_num;
1398
1399	bio->bi_iter.bi_sector = spage->logical >> 9;
1400	bio->bi_private = &done;
1401	bio->bi_end_io = scrub_bio_wait_endio;
1402
1403	mirror_num = spage->sblock->pagev[0]->mirror_num;
1404	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1405				    spage->recover->map_length,
1406				    mirror_num, 0);
1407	if (ret)
1408		return ret;
1409
1410	wait_for_completion_io(&done);
1411	return blk_status_to_errno(bio->bi_status);
1412}
1413
1414static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1415					  struct scrub_block *sblock)
1416{
1417	struct scrub_page *first_page = sblock->pagev[0];
1418	struct bio *bio;
1419	int page_num;
1420
1421	/* All pages in sblock belong to the same stripe on the same device. */
1422	ASSERT(first_page->dev);
1423	if (!first_page->dev->bdev)
1424		goto out;
1425
1426	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
1427	bio_set_dev(bio, first_page->dev->bdev);
1428
1429	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1430		struct scrub_page *spage = sblock->pagev[page_num];
1431
1432		WARN_ON(!spage->page);
1433		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1434	}
1435
1436	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1437		bio_put(bio);
1438		goto out;
1439	}
1440
1441	bio_put(bio);
1442
1443	scrub_recheck_block_checksum(sblock);
1444
1445	return;
1446out:
1447	for (page_num = 0; page_num < sblock->page_count; page_num++)
1448		sblock->pagev[page_num]->io_error = 1;
1449
1450	sblock->no_io_error_seen = 0;
1451}
1452
1453/*
1454 * this function will check the on disk data for checksum errors, header
1455 * errors and read I/O errors. If any I/O errors happen, the exact pages
1456 * which are errored are marked as being bad. The goal is to enable scrub
1457 * to take those pages that are not errored from all the mirrors so that
1458 * the pages that are errored in the just handled mirror can be repaired.
1459 */
1460static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1461				struct scrub_block *sblock,
1462				int retry_failed_mirror)
1463{
1464	int page_num;
1465
1466	sblock->no_io_error_seen = 1;
1467
1468	/* short cut for raid56 */
1469	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1470		return scrub_recheck_block_on_raid56(fs_info, sblock);
1471
1472	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473		struct bio *bio;
1474		struct scrub_page *spage = sblock->pagev[page_num];
1475
1476		if (spage->dev->bdev == NULL) {
1477			spage->io_error = 1;
1478			sblock->no_io_error_seen = 0;
1479			continue;
1480		}
1481
1482		WARN_ON(!spage->page);
1483		bio = btrfs_io_bio_alloc(1);
1484		bio_set_dev(bio, spage->dev->bdev);
1485
1486		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1487		bio->bi_iter.bi_sector = spage->physical >> 9;
1488		bio->bi_opf = REQ_OP_READ;
1489
1490		if (btrfsic_submit_bio_wait(bio)) {
1491			spage->io_error = 1;
1492			sblock->no_io_error_seen = 0;
1493		}
1494
1495		bio_put(bio);
1496	}
1497
1498	if (sblock->no_io_error_seen)
1499		scrub_recheck_block_checksum(sblock);
1500}
1501
1502static inline int scrub_check_fsid(u8 fsid[],
1503				   struct scrub_page *spage)
1504{
1505	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1506	int ret;
1507
1508	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1509	return !ret;
1510}
1511
1512static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1513{
1514	sblock->header_error = 0;
1515	sblock->checksum_error = 0;
1516	sblock->generation_error = 0;
1517
1518	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1519		scrub_checksum_data(sblock);
1520	else
1521		scrub_checksum_tree_block(sblock);
1522}
1523
1524static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1525					     struct scrub_block *sblock_good)
1526{
1527	int page_num;
1528	int ret = 0;
1529
1530	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1531		int ret_sub;
1532
1533		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1534							   sblock_good,
1535							   page_num, 1);
1536		if (ret_sub)
1537			ret = ret_sub;
1538	}
1539
1540	return ret;
1541}
1542
1543static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1544					    struct scrub_block *sblock_good,
1545					    int page_num, int force_write)
1546{
1547	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1548	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1549	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1550	const u32 sectorsize = fs_info->sectorsize;
1551
1552	BUG_ON(spage_bad->page == NULL);
1553	BUG_ON(spage_good->page == NULL);
1554	if (force_write || sblock_bad->header_error ||
1555	    sblock_bad->checksum_error || spage_bad->io_error) {
1556		struct bio *bio;
1557		int ret;
1558
1559		if (!spage_bad->dev->bdev) {
1560			btrfs_warn_rl(fs_info,
1561				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562			return -EIO;
1563		}
1564
1565		bio = btrfs_io_bio_alloc(1);
1566		bio_set_dev(bio, spage_bad->dev->bdev);
1567		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1568		bio->bi_opf = REQ_OP_WRITE;
1569
1570		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1571		if (ret != sectorsize) {
1572			bio_put(bio);
1573			return -EIO;
1574		}
1575
1576		if (btrfsic_submit_bio_wait(bio)) {
1577			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578				BTRFS_DEV_STAT_WRITE_ERRS);
1579			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
1580			bio_put(bio);
1581			return -EIO;
1582		}
1583		bio_put(bio);
1584	}
1585
1586	return 0;
1587}
1588
1589static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1590{
1591	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592	int page_num;
1593
1594	/*
1595	 * This block is used for the check of the parity on the source device,
1596	 * so the data needn't be written into the destination device.
1597	 */
1598	if (sblock->sparity)
1599		return;
1600
1601	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602		int ret;
1603
1604		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605		if (ret)
1606			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
1607	}
1608}
1609
1610static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611					   int page_num)
1612{
1613	struct scrub_page *spage = sblock->pagev[page_num];
1614
1615	BUG_ON(spage->page == NULL);
1616	if (spage->io_error)
1617		clear_page(page_address(spage->page));
1618
 
 
 
 
1619	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620}
1621
1622static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1623{
1624	int ret = 0;
1625	u64 length;
1626
1627	if (!btrfs_is_zoned(sctx->fs_info))
1628		return 0;
1629
1630	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1631		return 0;
1632
1633	if (sctx->write_pointer < physical) {
1634		length = physical - sctx->write_pointer;
1635
1636		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1637						sctx->write_pointer, length);
1638		if (!ret)
1639			sctx->write_pointer = physical;
1640	}
1641	return ret;
1642}
1643
1644static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1645				    struct scrub_page *spage)
1646{
1647	struct scrub_bio *sbio;
1648	int ret;
1649	const u32 sectorsize = sctx->fs_info->sectorsize;
1650
1651	mutex_lock(&sctx->wr_lock);
1652again:
1653	if (!sctx->wr_curr_bio) {
1654		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655					      GFP_KERNEL);
1656		if (!sctx->wr_curr_bio) {
1657			mutex_unlock(&sctx->wr_lock);
1658			return -ENOMEM;
1659		}
1660		sctx->wr_curr_bio->sctx = sctx;
1661		sctx->wr_curr_bio->page_count = 0;
1662	}
1663	sbio = sctx->wr_curr_bio;
1664	if (sbio->page_count == 0) {
1665		struct bio *bio;
1666
1667		ret = fill_writer_pointer_gap(sctx,
1668					      spage->physical_for_dev_replace);
1669		if (ret) {
1670			mutex_unlock(&sctx->wr_lock);
1671			return ret;
1672		}
1673
1674		sbio->physical = spage->physical_for_dev_replace;
1675		sbio->logical = spage->logical;
1676		sbio->dev = sctx->wr_tgtdev;
1677		bio = sbio->bio;
1678		if (!bio) {
1679			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio_set_dev(bio, sbio->dev->bdev);
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		bio->bi_opf = REQ_OP_WRITE;
1688		sbio->status = 0;
1689	} else if (sbio->physical + sbio->page_count * sectorsize !=
1690		   spage->physical_for_dev_replace ||
1691		   sbio->logical + sbio->page_count * sectorsize !=
1692		   spage->logical) {
1693		scrub_wr_submit(sctx);
1694		goto again;
1695	}
1696
1697	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1698	if (ret != sectorsize) {
1699		if (sbio->page_count < 1) {
1700			bio_put(sbio->bio);
1701			sbio->bio = NULL;
1702			mutex_unlock(&sctx->wr_lock);
1703			return -EIO;
1704		}
1705		scrub_wr_submit(sctx);
1706		goto again;
1707	}
1708
1709	sbio->pagev[sbio->page_count] = spage;
1710	scrub_page_get(spage);
1711	sbio->page_count++;
1712	if (sbio->page_count == sctx->pages_per_wr_bio)
1713		scrub_wr_submit(sctx);
1714	mutex_unlock(&sctx->wr_lock);
1715
1716	return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721	struct scrub_bio *sbio;
1722
1723	if (!sctx->wr_curr_bio)
1724		return;
1725
1726	sbio = sctx->wr_curr_bio;
1727	sctx->wr_curr_bio = NULL;
1728	WARN_ON(!sbio->bio->bi_bdev);
1729	scrub_pending_bio_inc(sctx);
1730	/* process all writes in a single worker thread. Then the block layer
1731	 * orders the requests before sending them to the driver which
1732	 * doubled the write performance on spinning disks when measured
1733	 * with Linux 3.5 */
1734	btrfsic_submit_bio(sbio->bio);
1735
1736	if (btrfs_is_zoned(sctx->fs_info))
1737		sctx->write_pointer = sbio->physical + sbio->page_count *
1738			sctx->fs_info->sectorsize;
1739}
1740
1741static void scrub_wr_bio_end_io(struct bio *bio)
1742{
1743	struct scrub_bio *sbio = bio->bi_private;
1744	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1745
1746	sbio->status = bio->bi_status;
1747	sbio->bio = bio;
1748
1749	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
 
1750	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751}
1752
1753static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1754{
1755	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1756	struct scrub_ctx *sctx = sbio->sctx;
1757	int i;
1758
1759	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760	if (sbio->status) {
1761		struct btrfs_dev_replace *dev_replace =
1762			&sbio->sctx->fs_info->dev_replace;
1763
1764		for (i = 0; i < sbio->page_count; i++) {
1765			struct scrub_page *spage = sbio->pagev[i];
1766
1767			spage->io_error = 1;
1768			atomic64_inc(&dev_replace->num_write_errors);
 
1769		}
1770	}
1771
1772	for (i = 0; i < sbio->page_count; i++)
1773		scrub_page_put(sbio->pagev[i]);
1774
1775	bio_put(sbio->bio);
1776	kfree(sbio);
1777	scrub_pending_bio_dec(sctx);
1778}
1779
1780static int scrub_checksum(struct scrub_block *sblock)
1781{
1782	u64 flags;
1783	int ret;
1784
1785	/*
1786	 * No need to initialize these stats currently,
1787	 * because this function only use return value
1788	 * instead of these stats value.
1789	 *
1790	 * Todo:
1791	 * always use stats
1792	 */
1793	sblock->header_error = 0;
1794	sblock->generation_error = 0;
1795	sblock->checksum_error = 0;
1796
1797	WARN_ON(sblock->page_count < 1);
1798	flags = sblock->pagev[0]->flags;
1799	ret = 0;
1800	if (flags & BTRFS_EXTENT_FLAG_DATA)
1801		ret = scrub_checksum_data(sblock);
1802	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1803		ret = scrub_checksum_tree_block(sblock);
1804	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1805		(void)scrub_checksum_super(sblock);
1806	else
1807		WARN_ON(1);
1808	if (ret)
1809		scrub_handle_errored_block(sblock);
1810
1811	return ret;
1812}
1813
1814static int scrub_checksum_data(struct scrub_block *sblock)
1815{
1816	struct scrub_ctx *sctx = sblock->sctx;
1817	struct btrfs_fs_info *fs_info = sctx->fs_info;
1818	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1819	u8 csum[BTRFS_CSUM_SIZE];
1820	struct scrub_page *spage;
1821	char *kaddr;
 
 
 
 
1822
1823	BUG_ON(sblock->page_count < 1);
1824	spage = sblock->pagev[0];
1825	if (!spage->have_csum)
1826		return 0;
1827
1828	kaddr = page_address(spage->page);
 
 
 
 
 
 
 
1829
1830	shash->tfm = fs_info->csum_shash;
1831	crypto_shash_init(shash);
 
 
 
 
 
 
 
 
 
1832
1833	/*
1834	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1835	 * only contains one sector of data.
1836	 */
1837	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1838
1839	if (memcmp(csum, spage->csum, fs_info->csum_size))
1840		sblock->checksum_error = 1;
1841	return sblock->checksum_error;
1842}
1843
1844static int scrub_checksum_tree_block(struct scrub_block *sblock)
1845{
1846	struct scrub_ctx *sctx = sblock->sctx;
1847	struct btrfs_header *h;
1848	struct btrfs_fs_info *fs_info = sctx->fs_info;
1849	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1850	u8 calculated_csum[BTRFS_CSUM_SIZE];
1851	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1852	/*
1853	 * This is done in sectorsize steps even for metadata as there's a
1854	 * constraint for nodesize to be aligned to sectorsize. This will need
1855	 * to change so we don't misuse data and metadata units like that.
1856	 */
1857	const u32 sectorsize = sctx->fs_info->sectorsize;
1858	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1859	int i;
1860	struct scrub_page *spage;
1861	char *kaddr;
1862
1863	BUG_ON(sblock->page_count < 1);
1864
1865	/* Each member in pagev is just one block, not a full page */
1866	ASSERT(sblock->page_count == num_sectors);
1867
1868	spage = sblock->pagev[0];
1869	kaddr = page_address(spage->page);
1870	h = (struct btrfs_header *)kaddr;
1871	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1872
1873	/*
1874	 * we don't use the getter functions here, as we
1875	 * a) don't have an extent buffer and
1876	 * b) the page is already kmapped
1877	 */
1878	if (spage->logical != btrfs_stack_header_bytenr(h))
1879		sblock->header_error = 1;
1880
1881	if (spage->generation != btrfs_stack_header_generation(h)) {
1882		sblock->header_error = 1;
1883		sblock->generation_error = 1;
1884	}
1885
1886	if (!scrub_check_fsid(h->fsid, spage))
1887		sblock->header_error = 1;
1888
1889	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1890		   BTRFS_UUID_SIZE))
1891		sblock->header_error = 1;
1892
1893	shash->tfm = fs_info->csum_shash;
1894	crypto_shash_init(shash);
1895	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1896			    sectorsize - BTRFS_CSUM_SIZE);
1897
1898	for (i = 1; i < num_sectors; i++) {
1899		kaddr = page_address(sblock->pagev[i]->page);
1900		crypto_shash_update(shash, kaddr, sectorsize);
 
 
 
 
 
 
 
 
 
 
 
1901	}
1902
1903	crypto_shash_final(shash, calculated_csum);
1904	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1905		sblock->checksum_error = 1;
1906
1907	return sblock->header_error || sblock->checksum_error;
1908}
1909
1910static int scrub_checksum_super(struct scrub_block *sblock)
1911{
1912	struct btrfs_super_block *s;
1913	struct scrub_ctx *sctx = sblock->sctx;
1914	struct btrfs_fs_info *fs_info = sctx->fs_info;
1915	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916	u8 calculated_csum[BTRFS_CSUM_SIZE];
1917	struct scrub_page *spage;
1918	char *kaddr;
 
 
 
 
1919	int fail_gen = 0;
1920	int fail_cor = 0;
 
 
1921
1922	BUG_ON(sblock->page_count < 1);
1923	spage = sblock->pagev[0];
1924	kaddr = page_address(spage->page);
1925	s = (struct btrfs_super_block *)kaddr;
 
1926
1927	if (spage->logical != btrfs_super_bytenr(s))
1928		++fail_cor;
1929
1930	if (spage->generation != btrfs_super_generation(s))
1931		++fail_gen;
1932
1933	if (!scrub_check_fsid(s->fsid, spage))
1934		++fail_cor;
1935
1936	shash->tfm = fs_info->csum_shash;
1937	crypto_shash_init(shash);
1938	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1939			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940
1941	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
 
1942		++fail_cor;
1943
1944	if (fail_cor + fail_gen) {
1945		/*
1946		 * if we find an error in a super block, we just report it.
1947		 * They will get written with the next transaction commit
1948		 * anyway
1949		 */
1950		spin_lock(&sctx->stat_lock);
1951		++sctx->stat.super_errors;
1952		spin_unlock(&sctx->stat_lock);
1953		if (fail_cor)
1954			btrfs_dev_stat_inc_and_print(spage->dev,
1955				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1956		else
1957			btrfs_dev_stat_inc_and_print(spage->dev,
1958				BTRFS_DEV_STAT_GENERATION_ERRS);
1959	}
1960
1961	return fail_cor + fail_gen;
1962}
1963
1964static void scrub_block_get(struct scrub_block *sblock)
1965{
1966	refcount_inc(&sblock->refs);
1967}
1968
1969static void scrub_block_put(struct scrub_block *sblock)
1970{
1971	if (refcount_dec_and_test(&sblock->refs)) {
1972		int i;
1973
1974		if (sblock->sparity)
1975			scrub_parity_put(sblock->sparity);
1976
1977		for (i = 0; i < sblock->page_count; i++)
1978			scrub_page_put(sblock->pagev[i]);
1979		kfree(sblock);
1980	}
1981}
1982
1983static void scrub_page_get(struct scrub_page *spage)
1984{
1985	atomic_inc(&spage->refs);
1986}
1987
1988static void scrub_page_put(struct scrub_page *spage)
1989{
1990	if (atomic_dec_and_test(&spage->refs)) {
1991		if (spage->page)
1992			__free_page(spage->page);
1993		kfree(spage);
1994	}
1995}
1996
1997/*
1998 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1999 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2000 */
2001static void scrub_throttle(struct scrub_ctx *sctx)
2002{
2003	const int time_slice = 1000;
2004	struct scrub_bio *sbio;
2005	struct btrfs_device *device;
2006	s64 delta;
2007	ktime_t now;
2008	u32 div;
2009	u64 bwlimit;
2010
2011	sbio = sctx->bios[sctx->curr];
2012	device = sbio->dev;
2013	bwlimit = READ_ONCE(device->scrub_speed_max);
2014	if (bwlimit == 0)
2015		return;
2016
2017	/*
2018	 * Slice is divided into intervals when the IO is submitted, adjust by
2019	 * bwlimit and maximum of 64 intervals.
2020	 */
2021	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2022	div = min_t(u32, 64, div);
2023
2024	/* Start new epoch, set deadline */
2025	now = ktime_get();
2026	if (sctx->throttle_deadline == 0) {
2027		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2028		sctx->throttle_sent = 0;
2029	}
2030
2031	/* Still in the time to send? */
2032	if (ktime_before(now, sctx->throttle_deadline)) {
2033		/* If current bio is within the limit, send it */
2034		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2035		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2036			return;
2037
2038		/* We're over the limit, sleep until the rest of the slice */
2039		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2040	} else {
2041		/* New request after deadline, start new epoch */
2042		delta = 0;
2043	}
2044
2045	if (delta) {
2046		long timeout;
2047
2048		timeout = div_u64(delta * HZ, 1000);
2049		schedule_timeout_interruptible(timeout);
2050	}
2051
2052	/* Next call will start the deadline period */
2053	sctx->throttle_deadline = 0;
2054}
2055
2056static void scrub_submit(struct scrub_ctx *sctx)
2057{
2058	struct scrub_bio *sbio;
2059
2060	if (sctx->curr == -1)
2061		return;
2062
2063	scrub_throttle(sctx);
2064
2065	sbio = sctx->bios[sctx->curr];
2066	sctx->curr = -1;
2067	scrub_pending_bio_inc(sctx);
2068	btrfsic_submit_bio(sbio->bio);
2069}
2070
2071static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2072				    struct scrub_page *spage)
2073{
2074	struct scrub_block *sblock = spage->sblock;
2075	struct scrub_bio *sbio;
2076	const u32 sectorsize = sctx->fs_info->sectorsize;
2077	int ret;
2078
2079again:
2080	/*
2081	 * grab a fresh bio or wait for one to become available
2082	 */
2083	while (sctx->curr == -1) {
2084		spin_lock(&sctx->list_lock);
2085		sctx->curr = sctx->first_free;
2086		if (sctx->curr != -1) {
2087			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2088			sctx->bios[sctx->curr]->next_free = -1;
2089			sctx->bios[sctx->curr]->page_count = 0;
2090			spin_unlock(&sctx->list_lock);
2091		} else {
2092			spin_unlock(&sctx->list_lock);
2093			wait_event(sctx->list_wait, sctx->first_free != -1);
2094		}
2095	}
2096	sbio = sctx->bios[sctx->curr];
2097	if (sbio->page_count == 0) {
2098		struct bio *bio;
2099
2100		sbio->physical = spage->physical;
2101		sbio->logical = spage->logical;
2102		sbio->dev = spage->dev;
2103		bio = sbio->bio;
2104		if (!bio) {
2105			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2106			sbio->bio = bio;
2107		}
2108
2109		bio->bi_private = sbio;
2110		bio->bi_end_io = scrub_bio_end_io;
2111		bio_set_dev(bio, sbio->dev->bdev);
2112		bio->bi_iter.bi_sector = sbio->physical >> 9;
2113		bio->bi_opf = REQ_OP_READ;
2114		sbio->status = 0;
2115	} else if (sbio->physical + sbio->page_count * sectorsize !=
2116		   spage->physical ||
2117		   sbio->logical + sbio->page_count * sectorsize !=
2118		   spage->logical ||
2119		   sbio->dev != spage->dev) {
2120		scrub_submit(sctx);
2121		goto again;
2122	}
2123
2124	sbio->pagev[sbio->page_count] = spage;
2125	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2126	if (ret != sectorsize) {
2127		if (sbio->page_count < 1) {
2128			bio_put(sbio->bio);
2129			sbio->bio = NULL;
2130			return -EIO;
2131		}
2132		scrub_submit(sctx);
2133		goto again;
2134	}
2135
2136	scrub_block_get(sblock); /* one for the page added to the bio */
2137	atomic_inc(&sblock->outstanding_pages);
2138	sbio->page_count++;
2139	if (sbio->page_count == sctx->pages_per_rd_bio)
2140		scrub_submit(sctx);
2141
2142	return 0;
2143}
2144
2145static void scrub_missing_raid56_end_io(struct bio *bio)
2146{
2147	struct scrub_block *sblock = bio->bi_private;
2148	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2149
2150	if (bio->bi_status)
2151		sblock->no_io_error_seen = 0;
2152
2153	bio_put(bio);
2154
2155	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2156}
2157
2158static void scrub_missing_raid56_worker(struct btrfs_work *work)
2159{
2160	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2161	struct scrub_ctx *sctx = sblock->sctx;
2162	struct btrfs_fs_info *fs_info = sctx->fs_info;
2163	u64 logical;
2164	struct btrfs_device *dev;
2165
2166	logical = sblock->pagev[0]->logical;
2167	dev = sblock->pagev[0]->dev;
2168
2169	if (sblock->no_io_error_seen)
2170		scrub_recheck_block_checksum(sblock);
2171
2172	if (!sblock->no_io_error_seen) {
2173		spin_lock(&sctx->stat_lock);
2174		sctx->stat.read_errors++;
2175		spin_unlock(&sctx->stat_lock);
2176		btrfs_err_rl_in_rcu(fs_info,
2177			"IO error rebuilding logical %llu for dev %s",
2178			logical, rcu_str_deref(dev->name));
2179	} else if (sblock->header_error || sblock->checksum_error) {
2180		spin_lock(&sctx->stat_lock);
2181		sctx->stat.uncorrectable_errors++;
2182		spin_unlock(&sctx->stat_lock);
2183		btrfs_err_rl_in_rcu(fs_info,
2184			"failed to rebuild valid logical %llu for dev %s",
2185			logical, rcu_str_deref(dev->name));
2186	} else {
2187		scrub_write_block_to_dev_replace(sblock);
2188	}
2189
 
 
2190	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2191		mutex_lock(&sctx->wr_lock);
2192		scrub_wr_submit(sctx);
2193		mutex_unlock(&sctx->wr_lock);
2194	}
2195
2196	scrub_block_put(sblock);
2197	scrub_pending_bio_dec(sctx);
2198}
2199
2200static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2201{
2202	struct scrub_ctx *sctx = sblock->sctx;
2203	struct btrfs_fs_info *fs_info = sctx->fs_info;
2204	u64 length = sblock->page_count * PAGE_SIZE;
2205	u64 logical = sblock->pagev[0]->logical;
2206	struct btrfs_bio *bbio = NULL;
2207	struct bio *bio;
2208	struct btrfs_raid_bio *rbio;
2209	int ret;
2210	int i;
2211
2212	btrfs_bio_counter_inc_blocked(fs_info);
2213	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2214			&length, &bbio);
2215	if (ret || !bbio || !bbio->raid_map)
2216		goto bbio_out;
2217
2218	if (WARN_ON(!sctx->is_dev_replace ||
2219		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2220		/*
2221		 * We shouldn't be scrubbing a missing device. Even for dev
2222		 * replace, we should only get here for RAID 5/6. We either
2223		 * managed to mount something with no mirrors remaining or
2224		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2225		 */
2226		goto bbio_out;
2227	}
2228
2229	bio = btrfs_io_bio_alloc(0);
2230	bio->bi_iter.bi_sector = logical >> 9;
2231	bio->bi_private = sblock;
2232	bio->bi_end_io = scrub_missing_raid56_end_io;
2233
2234	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2235	if (!rbio)
2236		goto rbio_out;
2237
2238	for (i = 0; i < sblock->page_count; i++) {
2239		struct scrub_page *spage = sblock->pagev[i];
2240
2241		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2242	}
2243
2244	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
 
2245	scrub_block_get(sblock);
2246	scrub_pending_bio_inc(sctx);
2247	raid56_submit_missing_rbio(rbio);
2248	return;
2249
2250rbio_out:
2251	bio_put(bio);
2252bbio_out:
2253	btrfs_bio_counter_dec(fs_info);
2254	btrfs_put_bbio(bbio);
2255	spin_lock(&sctx->stat_lock);
2256	sctx->stat.malloc_errors++;
2257	spin_unlock(&sctx->stat_lock);
2258}
2259
2260static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2261		       u64 physical, struct btrfs_device *dev, u64 flags,
2262		       u64 gen, int mirror_num, u8 *csum,
2263		       u64 physical_for_dev_replace)
2264{
2265	struct scrub_block *sblock;
2266	const u32 sectorsize = sctx->fs_info->sectorsize;
2267	int index;
2268
2269	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2270	if (!sblock) {
2271		spin_lock(&sctx->stat_lock);
2272		sctx->stat.malloc_errors++;
2273		spin_unlock(&sctx->stat_lock);
2274		return -ENOMEM;
2275	}
2276
2277	/* one ref inside this function, plus one for each page added to
2278	 * a bio later on */
2279	refcount_set(&sblock->refs, 1);
2280	sblock->sctx = sctx;
2281	sblock->no_io_error_seen = 1;
2282
2283	for (index = 0; len > 0; index++) {
2284		struct scrub_page *spage;
2285		/*
2286		 * Here we will allocate one page for one sector to scrub.
2287		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2288		 * more memory for PAGE_SIZE > sectorsize case.
2289		 */
2290		u32 l = min(sectorsize, len);
2291
2292		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2293		if (!spage) {
2294leave_nomem:
2295			spin_lock(&sctx->stat_lock);
2296			sctx->stat.malloc_errors++;
2297			spin_unlock(&sctx->stat_lock);
2298			scrub_block_put(sblock);
2299			return -ENOMEM;
2300		}
2301		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2302		scrub_page_get(spage);
2303		sblock->pagev[index] = spage;
2304		spage->sblock = sblock;
2305		spage->dev = dev;
2306		spage->flags = flags;
2307		spage->generation = gen;
2308		spage->logical = logical;
2309		spage->physical = physical;
2310		spage->physical_for_dev_replace = physical_for_dev_replace;
2311		spage->mirror_num = mirror_num;
2312		if (csum) {
2313			spage->have_csum = 1;
2314			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2315		} else {
2316			spage->have_csum = 0;
2317		}
2318		sblock->page_count++;
2319		spage->page = alloc_page(GFP_KERNEL);
2320		if (!spage->page)
2321			goto leave_nomem;
2322		len -= l;
2323		logical += l;
2324		physical += l;
2325		physical_for_dev_replace += l;
2326	}
2327
2328	WARN_ON(sblock->page_count == 0);
2329	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2330		/*
2331		 * This case should only be hit for RAID 5/6 device replace. See
2332		 * the comment in scrub_missing_raid56_pages() for details.
2333		 */
2334		scrub_missing_raid56_pages(sblock);
2335	} else {
2336		for (index = 0; index < sblock->page_count; index++) {
2337			struct scrub_page *spage = sblock->pagev[index];
2338			int ret;
2339
2340			ret = scrub_add_page_to_rd_bio(sctx, spage);
2341			if (ret) {
2342				scrub_block_put(sblock);
2343				return ret;
2344			}
2345		}
2346
2347		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2348			scrub_submit(sctx);
2349	}
2350
2351	/* last one frees, either here or in bio completion for last page */
2352	scrub_block_put(sblock);
2353	return 0;
2354}
2355
2356static void scrub_bio_end_io(struct bio *bio)
2357{
2358	struct scrub_bio *sbio = bio->bi_private;
2359	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2360
2361	sbio->status = bio->bi_status;
2362	sbio->bio = bio;
2363
2364	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2365}
2366
2367static void scrub_bio_end_io_worker(struct btrfs_work *work)
2368{
2369	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2370	struct scrub_ctx *sctx = sbio->sctx;
2371	int i;
2372
2373	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2374	if (sbio->status) {
2375		for (i = 0; i < sbio->page_count; i++) {
2376			struct scrub_page *spage = sbio->pagev[i];
2377
2378			spage->io_error = 1;
2379			spage->sblock->no_io_error_seen = 0;
2380		}
2381	}
2382
2383	/* now complete the scrub_block items that have all pages completed */
2384	for (i = 0; i < sbio->page_count; i++) {
2385		struct scrub_page *spage = sbio->pagev[i];
2386		struct scrub_block *sblock = spage->sblock;
2387
2388		if (atomic_dec_and_test(&sblock->outstanding_pages))
2389			scrub_block_complete(sblock);
2390		scrub_block_put(sblock);
2391	}
2392
2393	bio_put(sbio->bio);
2394	sbio->bio = NULL;
2395	spin_lock(&sctx->list_lock);
2396	sbio->next_free = sctx->first_free;
2397	sctx->first_free = sbio->index;
2398	spin_unlock(&sctx->list_lock);
2399
2400	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2401		mutex_lock(&sctx->wr_lock);
2402		scrub_wr_submit(sctx);
2403		mutex_unlock(&sctx->wr_lock);
2404	}
2405
2406	scrub_pending_bio_dec(sctx);
2407}
2408
2409static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2410				       unsigned long *bitmap,
2411				       u64 start, u32 len)
2412{
2413	u64 offset;
 
2414	u32 nsectors;
2415	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2416
2417	if (len >= sparity->stripe_len) {
2418		bitmap_set(bitmap, 0, sparity->nsectors);
2419		return;
2420	}
2421
2422	start -= sparity->logic_start;
2423	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2424	offset = offset >> sectorsize_bits;
2425	nsectors = len >> sectorsize_bits;
 
 
 
2426
2427	if (offset + nsectors <= sparity->nsectors) {
2428		bitmap_set(bitmap, offset, nsectors);
2429		return;
2430	}
2431
2432	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2433	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2434}
2435
2436static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2437						   u64 start, u32 len)
2438{
2439	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2440}
2441
2442static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2443						  u64 start, u32 len)
2444{
2445	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2446}
2447
2448static void scrub_block_complete(struct scrub_block *sblock)
2449{
2450	int corrupted = 0;
2451
2452	if (!sblock->no_io_error_seen) {
2453		corrupted = 1;
2454		scrub_handle_errored_block(sblock);
2455	} else {
2456		/*
2457		 * if has checksum error, write via repair mechanism in
2458		 * dev replace case, otherwise write here in dev replace
2459		 * case.
2460		 */
2461		corrupted = scrub_checksum(sblock);
2462		if (!corrupted && sblock->sctx->is_dev_replace)
2463			scrub_write_block_to_dev_replace(sblock);
2464	}
2465
2466	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2467		u64 start = sblock->pagev[0]->logical;
2468		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2469			  sblock->sctx->fs_info->sectorsize;
2470
2471		ASSERT(end - start <= U32_MAX);
2472		scrub_parity_mark_sectors_error(sblock->sparity,
2473						start, end - start);
2474	}
2475}
2476
2477static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2478{
2479	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2480	list_del(&sum->list);
2481	kfree(sum);
2482}
2483
2484/*
2485 * Find the desired csum for range [logical, logical + sectorsize), and store
2486 * the csum into @csum.
2487 *
2488 * The search source is sctx->csum_list, which is a pre-populated list
2489 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2490 * that is before @logical.
2491 *
2492 * Return 0 if there is no csum for the range.
2493 * Return 1 if there is csum for the range and copied to @csum.
2494 */
2495static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2496{
2497	bool found = false;
 
 
2498
2499	while (!list_empty(&sctx->csum_list)) {
2500		struct btrfs_ordered_sum *sum = NULL;
2501		unsigned long index;
2502		unsigned long num_sectors;
2503
2504		sum = list_first_entry(&sctx->csum_list,
2505				       struct btrfs_ordered_sum, list);
2506		/* The current csum range is beyond our range, no csum found */
2507		if (sum->bytenr > logical)
 
 
2508			break;
2509
2510		/*
2511		 * The current sum is before our bytenr, since scrub is always
2512		 * done in bytenr order, the csum will never be used anymore,
2513		 * clean it up so that later calls won't bother with the range,
2514		 * and continue search the next range.
2515		 */
2516		if (sum->bytenr + sum->len <= logical) {
2517			drop_csum_range(sctx, sum);
2518			continue;
2519		}
2520
2521		/* Now the csum range covers our bytenr, copy the csum */
2522		found = true;
2523		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2524		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2525
2526		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2527		       sctx->fs_info->csum_size);
2528
2529		/* Cleanup the range if we're at the end of the csum range */
2530		if (index == num_sectors - 1)
2531			drop_csum_range(sctx, sum);
2532		break;
2533	}
2534	if (!found)
2535		return 0;
2536	return 1;
2537}
2538
2539/* scrub extent tries to collect up to 64 kB for each bio */
2540static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2541			u64 logical, u32 len,
2542			u64 physical, struct btrfs_device *dev, u64 flags,
2543			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2544{
2545	int ret;
2546	u8 csum[BTRFS_CSUM_SIZE];
2547	u32 blocksize;
2548
2549	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2550		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2551			blocksize = map->stripe_len;
2552		else
2553			blocksize = sctx->fs_info->sectorsize;
2554		spin_lock(&sctx->stat_lock);
2555		sctx->stat.data_extents_scrubbed++;
2556		sctx->stat.data_bytes_scrubbed += len;
2557		spin_unlock(&sctx->stat_lock);
2558	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2559		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2560			blocksize = map->stripe_len;
2561		else
2562			blocksize = sctx->fs_info->nodesize;
2563		spin_lock(&sctx->stat_lock);
2564		sctx->stat.tree_extents_scrubbed++;
2565		sctx->stat.tree_bytes_scrubbed += len;
2566		spin_unlock(&sctx->stat_lock);
2567	} else {
2568		blocksize = sctx->fs_info->sectorsize;
2569		WARN_ON(1);
2570	}
2571
2572	while (len) {
2573		u32 l = min(len, blocksize);
2574		int have_csum = 0;
2575
2576		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2577			/* push csums to sbio */
2578			have_csum = scrub_find_csum(sctx, logical, csum);
2579			if (have_csum == 0)
2580				++sctx->stat.no_csum;
 
 
 
 
 
 
2581		}
2582		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2583				  mirror_num, have_csum ? csum : NULL,
2584				  physical_for_dev_replace);
 
2585		if (ret)
2586			return ret;
2587		len -= l;
2588		logical += l;
2589		physical += l;
2590		physical_for_dev_replace += l;
2591	}
2592	return 0;
2593}
2594
2595static int scrub_pages_for_parity(struct scrub_parity *sparity,
2596				  u64 logical, u32 len,
2597				  u64 physical, struct btrfs_device *dev,
2598				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2599{
2600	struct scrub_ctx *sctx = sparity->sctx;
2601	struct scrub_block *sblock;
2602	const u32 sectorsize = sctx->fs_info->sectorsize;
2603	int index;
2604
2605	ASSERT(IS_ALIGNED(len, sectorsize));
2606
2607	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2608	if (!sblock) {
2609		spin_lock(&sctx->stat_lock);
2610		sctx->stat.malloc_errors++;
2611		spin_unlock(&sctx->stat_lock);
2612		return -ENOMEM;
2613	}
2614
2615	/* one ref inside this function, plus one for each page added to
2616	 * a bio later on */
2617	refcount_set(&sblock->refs, 1);
2618	sblock->sctx = sctx;
2619	sblock->no_io_error_seen = 1;
2620	sblock->sparity = sparity;
2621	scrub_parity_get(sparity);
2622
2623	for (index = 0; len > 0; index++) {
2624		struct scrub_page *spage;
 
2625
2626		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2627		if (!spage) {
2628leave_nomem:
2629			spin_lock(&sctx->stat_lock);
2630			sctx->stat.malloc_errors++;
2631			spin_unlock(&sctx->stat_lock);
2632			scrub_block_put(sblock);
2633			return -ENOMEM;
2634		}
2635		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2636		/* For scrub block */
2637		scrub_page_get(spage);
2638		sblock->pagev[index] = spage;
2639		/* For scrub parity */
2640		scrub_page_get(spage);
2641		list_add_tail(&spage->list, &sparity->spages);
2642		spage->sblock = sblock;
2643		spage->dev = dev;
2644		spage->flags = flags;
2645		spage->generation = gen;
2646		spage->logical = logical;
2647		spage->physical = physical;
2648		spage->mirror_num = mirror_num;
2649		if (csum) {
2650			spage->have_csum = 1;
2651			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2652		} else {
2653			spage->have_csum = 0;
2654		}
2655		sblock->page_count++;
2656		spage->page = alloc_page(GFP_KERNEL);
2657		if (!spage->page)
2658			goto leave_nomem;
2659
2660
2661		/* Iterate over the stripe range in sectorsize steps */
2662		len -= sectorsize;
2663		logical += sectorsize;
2664		physical += sectorsize;
2665	}
2666
2667	WARN_ON(sblock->page_count == 0);
2668	for (index = 0; index < sblock->page_count; index++) {
2669		struct scrub_page *spage = sblock->pagev[index];
2670		int ret;
2671
2672		ret = scrub_add_page_to_rd_bio(sctx, spage);
2673		if (ret) {
2674			scrub_block_put(sblock);
2675			return ret;
2676		}
2677	}
2678
2679	/* last one frees, either here or in bio completion for last page */
2680	scrub_block_put(sblock);
2681	return 0;
2682}
2683
2684static int scrub_extent_for_parity(struct scrub_parity *sparity,
2685				   u64 logical, u32 len,
2686				   u64 physical, struct btrfs_device *dev,
2687				   u64 flags, u64 gen, int mirror_num)
2688{
2689	struct scrub_ctx *sctx = sparity->sctx;
2690	int ret;
2691	u8 csum[BTRFS_CSUM_SIZE];
2692	u32 blocksize;
2693
2694	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2695		scrub_parity_mark_sectors_error(sparity, logical, len);
2696		return 0;
2697	}
2698
2699	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2700		blocksize = sparity->stripe_len;
2701	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702		blocksize = sparity->stripe_len;
2703	} else {
2704		blocksize = sctx->fs_info->sectorsize;
2705		WARN_ON(1);
2706	}
2707
2708	while (len) {
2709		u32 l = min(len, blocksize);
2710		int have_csum = 0;
2711
2712		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2713			/* push csums to sbio */
2714			have_csum = scrub_find_csum(sctx, logical, csum);
2715			if (have_csum == 0)
2716				goto skip;
2717		}
2718		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2719					     flags, gen, mirror_num,
2720					     have_csum ? csum : NULL);
2721		if (ret)
2722			return ret;
2723skip:
2724		len -= l;
2725		logical += l;
2726		physical += l;
2727	}
2728	return 0;
2729}
2730
2731/*
2732 * Given a physical address, this will calculate it's
2733 * logical offset. if this is a parity stripe, it will return
2734 * the most left data stripe's logical offset.
2735 *
2736 * return 0 if it is a data stripe, 1 means parity stripe.
2737 */
2738static int get_raid56_logic_offset(u64 physical, int num,
2739				   struct map_lookup *map, u64 *offset,
2740				   u64 *stripe_start)
2741{
2742	int i;
2743	int j = 0;
2744	u64 stripe_nr;
2745	u64 last_offset;
2746	u32 stripe_index;
2747	u32 rot;
2748	const int data_stripes = nr_data_stripes(map);
2749
2750	last_offset = (physical - map->stripes[num].physical) * data_stripes;
 
2751	if (stripe_start)
2752		*stripe_start = last_offset;
2753
2754	*offset = last_offset;
2755	for (i = 0; i < data_stripes; i++) {
2756		*offset = last_offset + i * map->stripe_len;
2757
2758		stripe_nr = div64_u64(*offset, map->stripe_len);
2759		stripe_nr = div_u64(stripe_nr, data_stripes);
2760
2761		/* Work out the disk rotation on this stripe-set */
2762		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2763		/* calculate which stripe this data locates */
2764		rot += i;
2765		stripe_index = rot % map->num_stripes;
2766		if (stripe_index == num)
2767			return 0;
2768		if (stripe_index < num)
2769			j++;
2770	}
2771	*offset = last_offset + j * map->stripe_len;
2772	return 1;
2773}
2774
2775static void scrub_free_parity(struct scrub_parity *sparity)
2776{
2777	struct scrub_ctx *sctx = sparity->sctx;
2778	struct scrub_page *curr, *next;
2779	int nbits;
2780
2781	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2782	if (nbits) {
2783		spin_lock(&sctx->stat_lock);
2784		sctx->stat.read_errors += nbits;
2785		sctx->stat.uncorrectable_errors += nbits;
2786		spin_unlock(&sctx->stat_lock);
2787	}
2788
2789	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2790		list_del_init(&curr->list);
2791		scrub_page_put(curr);
2792	}
2793
2794	kfree(sparity);
2795}
2796
2797static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2798{
2799	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2800						    work);
2801	struct scrub_ctx *sctx = sparity->sctx;
2802
2803	scrub_free_parity(sparity);
2804	scrub_pending_bio_dec(sctx);
2805}
2806
2807static void scrub_parity_bio_endio(struct bio *bio)
2808{
2809	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2810	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2811
2812	if (bio->bi_status)
2813		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2814			  sparity->nsectors);
2815
2816	bio_put(bio);
2817
2818	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2819			NULL);
2820	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2821}
2822
2823static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2824{
2825	struct scrub_ctx *sctx = sparity->sctx;
2826	struct btrfs_fs_info *fs_info = sctx->fs_info;
2827	struct bio *bio;
2828	struct btrfs_raid_bio *rbio;
2829	struct btrfs_bio *bbio = NULL;
2830	u64 length;
2831	int ret;
2832
2833	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2834			   sparity->nsectors))
2835		goto out;
2836
2837	length = sparity->logic_end - sparity->logic_start;
2838
2839	btrfs_bio_counter_inc_blocked(fs_info);
2840	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2841			       &length, &bbio);
2842	if (ret || !bbio || !bbio->raid_map)
2843		goto bbio_out;
2844
2845	bio = btrfs_io_bio_alloc(0);
2846	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2847	bio->bi_private = sparity;
2848	bio->bi_end_io = scrub_parity_bio_endio;
2849
2850	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2851					      length, sparity->scrub_dev,
2852					      sparity->dbitmap,
2853					      sparity->nsectors);
2854	if (!rbio)
2855		goto rbio_out;
2856
2857	scrub_pending_bio_inc(sctx);
2858	raid56_parity_submit_scrub_rbio(rbio);
2859	return;
2860
2861rbio_out:
2862	bio_put(bio);
2863bbio_out:
2864	btrfs_bio_counter_dec(fs_info);
2865	btrfs_put_bbio(bbio);
2866	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2867		  sparity->nsectors);
2868	spin_lock(&sctx->stat_lock);
2869	sctx->stat.malloc_errors++;
2870	spin_unlock(&sctx->stat_lock);
2871out:
2872	scrub_free_parity(sparity);
2873}
2874
2875static inline int scrub_calc_parity_bitmap_len(int nsectors)
2876{
2877	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2878}
2879
2880static void scrub_parity_get(struct scrub_parity *sparity)
2881{
2882	refcount_inc(&sparity->refs);
2883}
2884
2885static void scrub_parity_put(struct scrub_parity *sparity)
2886{
2887	if (!refcount_dec_and_test(&sparity->refs))
2888		return;
2889
2890	scrub_parity_check_and_repair(sparity);
2891}
2892
2893static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2894						  struct map_lookup *map,
2895						  struct btrfs_device *sdev,
2896						  struct btrfs_path *path,
2897						  u64 logic_start,
2898						  u64 logic_end)
2899{
2900	struct btrfs_fs_info *fs_info = sctx->fs_info;
2901	struct btrfs_root *root = fs_info->extent_root;
2902	struct btrfs_root *csum_root = fs_info->csum_root;
2903	struct btrfs_extent_item *extent;
2904	struct btrfs_bio *bbio = NULL;
2905	u64 flags;
2906	int ret;
2907	int slot;
2908	struct extent_buffer *l;
2909	struct btrfs_key key;
2910	u64 generation;
2911	u64 extent_logical;
2912	u64 extent_physical;
2913	/* Check the comment in scrub_stripe() for why u32 is enough here */
2914	u32 extent_len;
2915	u64 mapped_length;
2916	struct btrfs_device *extent_dev;
2917	struct scrub_parity *sparity;
2918	int nsectors;
2919	int bitmap_len;
2920	int extent_mirror_num;
2921	int stop_loop = 0;
2922
2923	ASSERT(map->stripe_len <= U32_MAX);
2924	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2925	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2926	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2927			  GFP_NOFS);
2928	if (!sparity) {
2929		spin_lock(&sctx->stat_lock);
2930		sctx->stat.malloc_errors++;
2931		spin_unlock(&sctx->stat_lock);
2932		return -ENOMEM;
2933	}
2934
2935	ASSERT(map->stripe_len <= U32_MAX);
2936	sparity->stripe_len = map->stripe_len;
2937	sparity->nsectors = nsectors;
2938	sparity->sctx = sctx;
2939	sparity->scrub_dev = sdev;
2940	sparity->logic_start = logic_start;
2941	sparity->logic_end = logic_end;
2942	refcount_set(&sparity->refs, 1);
2943	INIT_LIST_HEAD(&sparity->spages);
2944	sparity->dbitmap = sparity->bitmap;
2945	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2946
2947	ret = 0;
2948	while (logic_start < logic_end) {
2949		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2950			key.type = BTRFS_METADATA_ITEM_KEY;
2951		else
2952			key.type = BTRFS_EXTENT_ITEM_KEY;
2953		key.objectid = logic_start;
2954		key.offset = (u64)-1;
2955
2956		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2957		if (ret < 0)
2958			goto out;
2959
2960		if (ret > 0) {
2961			ret = btrfs_previous_extent_item(root, path, 0);
2962			if (ret < 0)
2963				goto out;
2964			if (ret > 0) {
2965				btrfs_release_path(path);
2966				ret = btrfs_search_slot(NULL, root, &key,
2967							path, 0, 0);
2968				if (ret < 0)
2969					goto out;
2970			}
2971		}
2972
2973		stop_loop = 0;
2974		while (1) {
2975			u64 bytes;
2976
2977			l = path->nodes[0];
2978			slot = path->slots[0];
2979			if (slot >= btrfs_header_nritems(l)) {
2980				ret = btrfs_next_leaf(root, path);
2981				if (ret == 0)
2982					continue;
2983				if (ret < 0)
2984					goto out;
2985
2986				stop_loop = 1;
2987				break;
2988			}
2989			btrfs_item_key_to_cpu(l, &key, slot);
2990
2991			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2992			    key.type != BTRFS_METADATA_ITEM_KEY)
2993				goto next;
2994
2995			if (key.type == BTRFS_METADATA_ITEM_KEY)
2996				bytes = fs_info->nodesize;
2997			else
2998				bytes = key.offset;
2999
3000			if (key.objectid + bytes <= logic_start)
3001				goto next;
3002
3003			if (key.objectid >= logic_end) {
3004				stop_loop = 1;
3005				break;
3006			}
3007
3008			while (key.objectid >= logic_start + map->stripe_len)
3009				logic_start += map->stripe_len;
3010
3011			extent = btrfs_item_ptr(l, slot,
3012						struct btrfs_extent_item);
3013			flags = btrfs_extent_flags(l, extent);
3014			generation = btrfs_extent_generation(l, extent);
3015
3016			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3017			    (key.objectid < logic_start ||
3018			     key.objectid + bytes >
3019			     logic_start + map->stripe_len)) {
3020				btrfs_err(fs_info,
3021					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3022					  key.objectid, logic_start);
3023				spin_lock(&sctx->stat_lock);
3024				sctx->stat.uncorrectable_errors++;
3025				spin_unlock(&sctx->stat_lock);
3026				goto next;
3027			}
3028again:
3029			extent_logical = key.objectid;
3030			ASSERT(bytes <= U32_MAX);
3031			extent_len = bytes;
3032
3033			if (extent_logical < logic_start) {
3034				extent_len -= logic_start - extent_logical;
3035				extent_logical = logic_start;
3036			}
3037
3038			if (extent_logical + extent_len >
3039			    logic_start + map->stripe_len)
3040				extent_len = logic_start + map->stripe_len -
3041					     extent_logical;
3042
3043			scrub_parity_mark_sectors_data(sparity, extent_logical,
3044						       extent_len);
3045
3046			mapped_length = extent_len;
3047			bbio = NULL;
3048			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3049					extent_logical, &mapped_length, &bbio,
3050					0);
3051			if (!ret) {
3052				if (!bbio || mapped_length < extent_len)
3053					ret = -EIO;
3054			}
3055			if (ret) {
3056				btrfs_put_bbio(bbio);
3057				goto out;
3058			}
3059			extent_physical = bbio->stripes[0].physical;
3060			extent_mirror_num = bbio->mirror_num;
3061			extent_dev = bbio->stripes[0].dev;
3062			btrfs_put_bbio(bbio);
3063
3064			ret = btrfs_lookup_csums_range(csum_root,
3065						extent_logical,
3066						extent_logical + extent_len - 1,
3067						&sctx->csum_list, 1);
3068			if (ret)
3069				goto out;
3070
3071			ret = scrub_extent_for_parity(sparity, extent_logical,
3072						      extent_len,
3073						      extent_physical,
3074						      extent_dev, flags,
3075						      generation,
3076						      extent_mirror_num);
3077
3078			scrub_free_csums(sctx);
3079
3080			if (ret)
3081				goto out;
3082
3083			if (extent_logical + extent_len <
3084			    key.objectid + bytes) {
3085				logic_start += map->stripe_len;
3086
3087				if (logic_start >= logic_end) {
3088					stop_loop = 1;
3089					break;
3090				}
3091
3092				if (logic_start < key.objectid + bytes) {
3093					cond_resched();
3094					goto again;
3095				}
3096			}
3097next:
3098			path->slots[0]++;
3099		}
3100
3101		btrfs_release_path(path);
3102
3103		if (stop_loop)
3104			break;
3105
3106		logic_start += map->stripe_len;
3107	}
3108out:
3109	if (ret < 0) {
3110		ASSERT(logic_end - logic_start <= U32_MAX);
3111		scrub_parity_mark_sectors_error(sparity, logic_start,
3112						logic_end - logic_start);
3113	}
3114	scrub_parity_put(sparity);
3115	scrub_submit(sctx);
3116	mutex_lock(&sctx->wr_lock);
3117	scrub_wr_submit(sctx);
3118	mutex_unlock(&sctx->wr_lock);
3119
3120	btrfs_release_path(path);
3121	return ret < 0 ? ret : 0;
3122}
3123
3124static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3125{
3126	if (!btrfs_is_zoned(sctx->fs_info))
3127		return;
3128
3129	sctx->flush_all_writes = true;
3130	scrub_submit(sctx);
3131	mutex_lock(&sctx->wr_lock);
3132	scrub_wr_submit(sctx);
3133	mutex_unlock(&sctx->wr_lock);
3134
3135	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3136}
3137
3138static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3139					u64 physical, u64 physical_end)
3140{
3141	struct btrfs_fs_info *fs_info = sctx->fs_info;
3142	int ret = 0;
3143
3144	if (!btrfs_is_zoned(fs_info))
3145		return 0;
3146
3147	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3148
3149	mutex_lock(&sctx->wr_lock);
3150	if (sctx->write_pointer < physical_end) {
3151		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3152						    physical,
3153						    sctx->write_pointer);
3154		if (ret)
3155			btrfs_err(fs_info,
3156				  "zoned: failed to recover write pointer");
3157	}
3158	mutex_unlock(&sctx->wr_lock);
3159	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3160
3161	return ret;
3162}
3163
3164static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165					   struct map_lookup *map,
3166					   struct btrfs_device *scrub_dev,
3167					   int num, u64 base, u64 length,
3168					   struct btrfs_block_group *cache)
3169{
3170	struct btrfs_path *path, *ppath;
3171	struct btrfs_fs_info *fs_info = sctx->fs_info;
3172	struct btrfs_root *root = fs_info->extent_root;
3173	struct btrfs_root *csum_root = fs_info->csum_root;
3174	struct btrfs_extent_item *extent;
3175	struct blk_plug plug;
3176	u64 flags;
3177	int ret;
3178	int slot;
3179	u64 nstripes;
3180	struct extent_buffer *l;
3181	u64 physical;
3182	u64 logical;
3183	u64 logic_end;
3184	u64 physical_end;
3185	u64 generation;
3186	int mirror_num;
3187	struct reada_control *reada1;
3188	struct reada_control *reada2;
3189	struct btrfs_key key;
3190	struct btrfs_key key_end;
3191	u64 increment = map->stripe_len;
3192	u64 offset;
3193	u64 extent_logical;
3194	u64 extent_physical;
3195	/*
3196	 * Unlike chunk length, extent length should never go beyond
3197	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3198	 */
3199	u32 extent_len;
3200	u64 stripe_logical;
3201	u64 stripe_end;
3202	struct btrfs_device *extent_dev;
3203	int extent_mirror_num;
3204	int stop_loop = 0;
3205
3206	physical = map->stripes[num].physical;
3207	offset = 0;
3208	nstripes = div64_u64(length, map->stripe_len);
3209	mirror_num = 1;
3210	increment = map->stripe_len;
3211	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3212		offset = map->stripe_len * num;
3213		increment = map->stripe_len * map->num_stripes;
 
3214	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3215		int factor = map->num_stripes / map->sub_stripes;
3216		offset = map->stripe_len * (num / map->sub_stripes);
3217		increment = map->stripe_len * factor;
3218		mirror_num = num % map->sub_stripes + 1;
3219	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
 
3220		mirror_num = num % map->num_stripes + 1;
3221	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 
3222		mirror_num = num % map->num_stripes + 1;
3223	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3224		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3225		increment = map->stripe_len * nr_data_stripes(map);
 
 
 
 
3226	}
3227
3228	path = btrfs_alloc_path();
3229	if (!path)
3230		return -ENOMEM;
3231
3232	ppath = btrfs_alloc_path();
3233	if (!ppath) {
3234		btrfs_free_path(path);
3235		return -ENOMEM;
3236	}
3237
3238	/*
3239	 * work on commit root. The related disk blocks are static as
3240	 * long as COW is applied. This means, it is save to rewrite
3241	 * them to repair disk errors without any race conditions
3242	 */
3243	path->search_commit_root = 1;
3244	path->skip_locking = 1;
3245
3246	ppath->search_commit_root = 1;
3247	ppath->skip_locking = 1;
3248	/*
3249	 * trigger the readahead for extent tree csum tree and wait for
3250	 * completion. During readahead, the scrub is officially paused
3251	 * to not hold off transaction commits
3252	 */
3253	logical = base + offset;
3254	physical_end = physical + nstripes * map->stripe_len;
3255	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256		get_raid56_logic_offset(physical_end, num,
3257					map, &logic_end, NULL);
3258		logic_end += base;
3259	} else {
3260		logic_end = logical + increment * nstripes;
3261	}
3262	wait_event(sctx->list_wait,
3263		   atomic_read(&sctx->bios_in_flight) == 0);
3264	scrub_blocked_if_needed(fs_info);
3265
3266	/* FIXME it might be better to start readahead at commit root */
3267	key.objectid = logical;
3268	key.type = BTRFS_EXTENT_ITEM_KEY;
3269	key.offset = (u64)0;
3270	key_end.objectid = logic_end;
3271	key_end.type = BTRFS_METADATA_ITEM_KEY;
3272	key_end.offset = (u64)-1;
3273	reada1 = btrfs_reada_add(root, &key, &key_end);
3274
3275	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3276		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3277		key.type = BTRFS_EXTENT_CSUM_KEY;
3278		key.offset = logical;
3279		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3280		key_end.type = BTRFS_EXTENT_CSUM_KEY;
3281		key_end.offset = logic_end;
3282		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3283	} else {
3284		reada2 = NULL;
3285	}
3286
3287	if (!IS_ERR(reada1))
3288		btrfs_reada_wait(reada1);
3289	if (!IS_ERR_OR_NULL(reada2))
3290		btrfs_reada_wait(reada2);
3291
3292
3293	/*
3294	 * collect all data csums for the stripe to avoid seeking during
3295	 * the scrub. This might currently (crc32) end up to be about 1MB
3296	 */
3297	blk_start_plug(&plug);
3298
3299	if (sctx->is_dev_replace &&
3300	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3301		mutex_lock(&sctx->wr_lock);
3302		sctx->write_pointer = physical;
3303		mutex_unlock(&sctx->wr_lock);
3304		sctx->flush_all_writes = true;
3305	}
3306
3307	/*
3308	 * now find all extents for each stripe and scrub them
3309	 */
3310	ret = 0;
3311	while (physical < physical_end) {
3312		/*
3313		 * canceled?
3314		 */
3315		if (atomic_read(&fs_info->scrub_cancel_req) ||
3316		    atomic_read(&sctx->cancel_req)) {
3317			ret = -ECANCELED;
3318			goto out;
3319		}
3320		/*
3321		 * check to see if we have to pause
3322		 */
3323		if (atomic_read(&fs_info->scrub_pause_req)) {
3324			/* push queued extents */
3325			sctx->flush_all_writes = true;
3326			scrub_submit(sctx);
3327			mutex_lock(&sctx->wr_lock);
3328			scrub_wr_submit(sctx);
3329			mutex_unlock(&sctx->wr_lock);
3330			wait_event(sctx->list_wait,
3331				   atomic_read(&sctx->bios_in_flight) == 0);
3332			sctx->flush_all_writes = false;
3333			scrub_blocked_if_needed(fs_info);
3334		}
3335
3336		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3337			ret = get_raid56_logic_offset(physical, num, map,
3338						      &logical,
3339						      &stripe_logical);
3340			logical += base;
3341			if (ret) {
3342				/* it is parity strip */
3343				stripe_logical += base;
3344				stripe_end = stripe_logical + increment;
3345				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3346							  ppath, stripe_logical,
3347							  stripe_end);
3348				if (ret)
3349					goto out;
3350				goto skip;
3351			}
3352		}
3353
3354		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3355			key.type = BTRFS_METADATA_ITEM_KEY;
3356		else
3357			key.type = BTRFS_EXTENT_ITEM_KEY;
3358		key.objectid = logical;
3359		key.offset = (u64)-1;
3360
3361		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362		if (ret < 0)
3363			goto out;
3364
3365		if (ret > 0) {
3366			ret = btrfs_previous_extent_item(root, path, 0);
3367			if (ret < 0)
3368				goto out;
3369			if (ret > 0) {
3370				/* there's no smaller item, so stick with the
3371				 * larger one */
3372				btrfs_release_path(path);
3373				ret = btrfs_search_slot(NULL, root, &key,
3374							path, 0, 0);
3375				if (ret < 0)
3376					goto out;
3377			}
3378		}
3379
3380		stop_loop = 0;
3381		while (1) {
3382			u64 bytes;
3383
3384			l = path->nodes[0];
3385			slot = path->slots[0];
3386			if (slot >= btrfs_header_nritems(l)) {
3387				ret = btrfs_next_leaf(root, path);
3388				if (ret == 0)
3389					continue;
3390				if (ret < 0)
3391					goto out;
3392
3393				stop_loop = 1;
3394				break;
3395			}
3396			btrfs_item_key_to_cpu(l, &key, slot);
3397
3398			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3399			    key.type != BTRFS_METADATA_ITEM_KEY)
3400				goto next;
3401
3402			if (key.type == BTRFS_METADATA_ITEM_KEY)
3403				bytes = fs_info->nodesize;
3404			else
3405				bytes = key.offset;
3406
3407			if (key.objectid + bytes <= logical)
3408				goto next;
3409
3410			if (key.objectid >= logical + map->stripe_len) {
3411				/* out of this device extent */
3412				if (key.objectid >= logic_end)
3413					stop_loop = 1;
3414				break;
3415			}
3416
3417			/*
3418			 * If our block group was removed in the meanwhile, just
3419			 * stop scrubbing since there is no point in continuing.
3420			 * Continuing would prevent reusing its device extents
3421			 * for new block groups for a long time.
3422			 */
3423			spin_lock(&cache->lock);
3424			if (cache->removed) {
3425				spin_unlock(&cache->lock);
3426				ret = 0;
3427				goto out;
3428			}
3429			spin_unlock(&cache->lock);
3430
3431			extent = btrfs_item_ptr(l, slot,
3432						struct btrfs_extent_item);
3433			flags = btrfs_extent_flags(l, extent);
3434			generation = btrfs_extent_generation(l, extent);
3435
3436			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3437			    (key.objectid < logical ||
3438			     key.objectid + bytes >
3439			     logical + map->stripe_len)) {
3440				btrfs_err(fs_info,
3441					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442				       key.objectid, logical);
3443				spin_lock(&sctx->stat_lock);
3444				sctx->stat.uncorrectable_errors++;
3445				spin_unlock(&sctx->stat_lock);
3446				goto next;
3447			}
3448
3449again:
3450			extent_logical = key.objectid;
3451			ASSERT(bytes <= U32_MAX);
3452			extent_len = bytes;
3453
3454			/*
3455			 * trim extent to this stripe
3456			 */
3457			if (extent_logical < logical) {
3458				extent_len -= logical - extent_logical;
3459				extent_logical = logical;
3460			}
3461			if (extent_logical + extent_len >
3462			    logical + map->stripe_len) {
3463				extent_len = logical + map->stripe_len -
3464					     extent_logical;
3465			}
3466
3467			extent_physical = extent_logical - logical + physical;
3468			extent_dev = scrub_dev;
3469			extent_mirror_num = mirror_num;
3470			if (sctx->is_dev_replace)
3471				scrub_remap_extent(fs_info, extent_logical,
3472						   extent_len, &extent_physical,
3473						   &extent_dev,
3474						   &extent_mirror_num);
3475
3476			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3477				ret = btrfs_lookup_csums_range(csum_root,
3478						extent_logical,
3479						extent_logical + extent_len - 1,
3480						&sctx->csum_list, 1);
3481				if (ret)
3482					goto out;
3483			}
3484
3485			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486					   extent_physical, extent_dev, flags,
3487					   generation, extent_mirror_num,
3488					   extent_logical - logical + physical);
3489
3490			scrub_free_csums(sctx);
3491
3492			if (ret)
3493				goto out;
3494
3495			if (sctx->is_dev_replace)
3496				sync_replace_for_zoned(sctx);
3497
3498			if (extent_logical + extent_len <
3499			    key.objectid + bytes) {
3500				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501					/*
3502					 * loop until we find next data stripe
3503					 * or we have finished all stripes.
3504					 */
3505loop:
3506					physical += map->stripe_len;
3507					ret = get_raid56_logic_offset(physical,
3508							num, map, &logical,
3509							&stripe_logical);
3510					logical += base;
3511
3512					if (ret && physical < physical_end) {
3513						stripe_logical += base;
3514						stripe_end = stripe_logical +
3515								increment;
3516						ret = scrub_raid56_parity(sctx,
3517							map, scrub_dev, ppath,
3518							stripe_logical,
3519							stripe_end);
3520						if (ret)
3521							goto out;
3522						goto loop;
3523					}
3524				} else {
3525					physical += map->stripe_len;
3526					logical += increment;
3527				}
3528				if (logical < key.objectid + bytes) {
3529					cond_resched();
3530					goto again;
3531				}
3532
3533				if (physical >= physical_end) {
3534					stop_loop = 1;
3535					break;
3536				}
3537			}
3538next:
3539			path->slots[0]++;
3540		}
3541		btrfs_release_path(path);
3542skip:
3543		logical += increment;
3544		physical += map->stripe_len;
3545		spin_lock(&sctx->stat_lock);
3546		if (stop_loop)
3547			sctx->stat.last_physical = map->stripes[num].physical +
3548						   length;
3549		else
3550			sctx->stat.last_physical = physical;
3551		spin_unlock(&sctx->stat_lock);
3552		if (stop_loop)
3553			break;
3554	}
3555out:
3556	/* push queued extents */
3557	scrub_submit(sctx);
3558	mutex_lock(&sctx->wr_lock);
3559	scrub_wr_submit(sctx);
3560	mutex_unlock(&sctx->wr_lock);
3561
3562	blk_finish_plug(&plug);
3563	btrfs_free_path(path);
3564	btrfs_free_path(ppath);
3565
3566	if (sctx->is_dev_replace && ret >= 0) {
3567		int ret2;
3568
3569		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3570						    map->stripes[num].physical,
3571						    physical_end);
3572		if (ret2)
3573			ret = ret2;
3574	}
3575
3576	return ret < 0 ? ret : 0;
3577}
3578
3579static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3580					  struct btrfs_device *scrub_dev,
3581					  u64 chunk_offset, u64 length,
3582					  u64 dev_offset,
3583					  struct btrfs_block_group *cache)
 
3584{
3585	struct btrfs_fs_info *fs_info = sctx->fs_info;
3586	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3587	struct map_lookup *map;
3588	struct extent_map *em;
3589	int i;
3590	int ret = 0;
3591
3592	read_lock(&map_tree->lock);
3593	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3594	read_unlock(&map_tree->lock);
3595
3596	if (!em) {
3597		/*
3598		 * Might have been an unused block group deleted by the cleaner
3599		 * kthread or relocation.
3600		 */
3601		spin_lock(&cache->lock);
3602		if (!cache->removed)
3603			ret = -EINVAL;
3604		spin_unlock(&cache->lock);
3605
3606		return ret;
3607	}
3608
3609	map = em->map_lookup;
3610	if (em->start != chunk_offset)
3611		goto out;
3612
3613	if (em->len < length)
3614		goto out;
3615
3616	for (i = 0; i < map->num_stripes; ++i) {
3617		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3618		    map->stripes[i].physical == dev_offset) {
3619			ret = scrub_stripe(sctx, map, scrub_dev, i,
3620					   chunk_offset, length, cache);
 
3621			if (ret)
3622				goto out;
3623		}
3624	}
3625out:
3626	free_extent_map(em);
3627
3628	return ret;
3629}
3630
3631static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3632					  struct btrfs_block_group *cache)
3633{
3634	struct btrfs_fs_info *fs_info = cache->fs_info;
3635	struct btrfs_trans_handle *trans;
3636
3637	if (!btrfs_is_zoned(fs_info))
3638		return 0;
3639
3640	btrfs_wait_block_group_reservations(cache);
3641	btrfs_wait_nocow_writers(cache);
3642	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3643
3644	trans = btrfs_join_transaction(root);
3645	if (IS_ERR(trans))
3646		return PTR_ERR(trans);
3647	return btrfs_commit_transaction(trans);
3648}
3649
3650static noinline_for_stack
3651int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3652			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
3653{
3654	struct btrfs_dev_extent *dev_extent = NULL;
3655	struct btrfs_path *path;
3656	struct btrfs_fs_info *fs_info = sctx->fs_info;
3657	struct btrfs_root *root = fs_info->dev_root;
3658	u64 length;
3659	u64 chunk_offset;
3660	int ret = 0;
3661	int ro_set;
3662	int slot;
3663	struct extent_buffer *l;
3664	struct btrfs_key key;
3665	struct btrfs_key found_key;
3666	struct btrfs_block_group *cache;
3667	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3668
3669	path = btrfs_alloc_path();
3670	if (!path)
3671		return -ENOMEM;
3672
3673	path->reada = READA_FORWARD;
3674	path->search_commit_root = 1;
3675	path->skip_locking = 1;
3676
3677	key.objectid = scrub_dev->devid;
3678	key.offset = 0ull;
3679	key.type = BTRFS_DEV_EXTENT_KEY;
3680
3681	while (1) {
3682		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3683		if (ret < 0)
3684			break;
3685		if (ret > 0) {
3686			if (path->slots[0] >=
3687			    btrfs_header_nritems(path->nodes[0])) {
3688				ret = btrfs_next_leaf(root, path);
3689				if (ret < 0)
3690					break;
3691				if (ret > 0) {
3692					ret = 0;
3693					break;
3694				}
3695			} else {
3696				ret = 0;
3697			}
3698		}
3699
3700		l = path->nodes[0];
3701		slot = path->slots[0];
3702
3703		btrfs_item_key_to_cpu(l, &found_key, slot);
3704
3705		if (found_key.objectid != scrub_dev->devid)
3706			break;
3707
3708		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3709			break;
3710
3711		if (found_key.offset >= end)
3712			break;
3713
3714		if (found_key.offset < key.offset)
3715			break;
3716
3717		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3718		length = btrfs_dev_extent_length(l, dev_extent);
3719
3720		if (found_key.offset + length <= start)
3721			goto skip;
3722
3723		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3724
3725		/*
3726		 * get a reference on the corresponding block group to prevent
3727		 * the chunk from going away while we scrub it
3728		 */
3729		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3730
3731		/* some chunks are removed but not committed to disk yet,
3732		 * continue scrubbing */
3733		if (!cache)
3734			goto skip;
3735
3736		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3737			spin_lock(&cache->lock);
3738			if (!cache->to_copy) {
3739				spin_unlock(&cache->lock);
3740				btrfs_put_block_group(cache);
3741				goto skip;
3742			}
3743			spin_unlock(&cache->lock);
3744		}
3745
3746		/*
3747		 * Make sure that while we are scrubbing the corresponding block
3748		 * group doesn't get its logical address and its device extents
3749		 * reused for another block group, which can possibly be of a
3750		 * different type and different profile. We do this to prevent
3751		 * false error detections and crashes due to bogus attempts to
3752		 * repair extents.
3753		 */
3754		spin_lock(&cache->lock);
3755		if (cache->removed) {
3756			spin_unlock(&cache->lock);
3757			btrfs_put_block_group(cache);
3758			goto skip;
3759		}
3760		btrfs_freeze_block_group(cache);
3761		spin_unlock(&cache->lock);
3762
3763		/*
3764		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3765		 * to avoid deadlock caused by:
3766		 * btrfs_inc_block_group_ro()
3767		 * -> btrfs_wait_for_commit()
3768		 * -> btrfs_commit_transaction()
3769		 * -> btrfs_scrub_pause()
3770		 */
3771		scrub_pause_on(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3772
3773		/*
3774		 * Don't do chunk preallocation for scrub.
3775		 *
3776		 * This is especially important for SYSTEM bgs, or we can hit
3777		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3778		 * 1. The only SYSTEM bg is marked RO.
3779		 *    Since SYSTEM bg is small, that's pretty common.
3780		 * 2. New SYSTEM bg will be allocated
3781		 *    Due to regular version will allocate new chunk.
3782		 * 3. New SYSTEM bg is empty and will get cleaned up
3783		 *    Before cleanup really happens, it's marked RO again.
3784		 * 4. Empty SYSTEM bg get scrubbed
3785		 *    We go back to 2.
3786		 *
3787		 * This can easily boost the amount of SYSTEM chunks if cleaner
3788		 * thread can't be triggered fast enough, and use up all space
3789		 * of btrfs_super_block::sys_chunk_array
3790		 *
3791		 * While for dev replace, we need to try our best to mark block
3792		 * group RO, to prevent race between:
3793		 * - Write duplication
3794		 *   Contains latest data
3795		 * - Scrub copy
3796		 *   Contains data from commit tree
3797		 *
3798		 * If target block group is not marked RO, nocow writes can
3799		 * be overwritten by scrub copy, causing data corruption.
3800		 * So for dev-replace, it's not allowed to continue if a block
3801		 * group is not RO.
3802		 */
3803		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3804		if (!ret && sctx->is_dev_replace) {
3805			ret = finish_extent_writes_for_zoned(root, cache);
3806			if (ret) {
3807				btrfs_dec_block_group_ro(cache);
3808				scrub_pause_off(fs_info);
3809				btrfs_put_block_group(cache);
3810				break;
3811			}
3812		}
 
3813
3814		if (ret == 0) {
3815			ro_set = 1;
3816		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3817			/*
3818			 * btrfs_inc_block_group_ro return -ENOSPC when it
3819			 * failed in creating new chunk for metadata.
3820			 * It is not a problem for scrub, because
3821			 * metadata are always cowed, and our scrub paused
3822			 * commit_transactions.
3823			 */
3824			ro_set = 0;
3825		} else if (ret == -ETXTBSY) {
3826			btrfs_warn(fs_info,
3827		   "skipping scrub of block group %llu due to active swapfile",
3828				   cache->start);
3829			scrub_pause_off(fs_info);
3830			ret = 0;
3831			goto skip_unfreeze;
3832		} else {
3833			btrfs_warn(fs_info,
3834				   "failed setting block group ro: %d", ret);
3835			btrfs_unfreeze_block_group(cache);
3836			btrfs_put_block_group(cache);
3837			scrub_pause_off(fs_info);
3838			break;
3839		}
3840
3841		/*
3842		 * Now the target block is marked RO, wait for nocow writes to
3843		 * finish before dev-replace.
3844		 * COW is fine, as COW never overwrites extents in commit tree.
3845		 */
3846		if (sctx->is_dev_replace) {
3847			btrfs_wait_nocow_writers(cache);
3848			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3849					cache->length);
3850		}
3851
3852		scrub_pause_off(fs_info);
3853		down_write(&dev_replace->rwsem);
3854		dev_replace->cursor_right = found_key.offset + length;
3855		dev_replace->cursor_left = found_key.offset;
3856		dev_replace->item_needs_writeback = 1;
3857		up_write(&dev_replace->rwsem);
3858
3859		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3860				  found_key.offset, cache);
3861
3862		/*
3863		 * flush, submit all pending read and write bios, afterwards
3864		 * wait for them.
3865		 * Note that in the dev replace case, a read request causes
3866		 * write requests that are submitted in the read completion
3867		 * worker. Therefore in the current situation, it is required
3868		 * that all write requests are flushed, so that all read and
3869		 * write requests are really completed when bios_in_flight
3870		 * changes to 0.
3871		 */
3872		sctx->flush_all_writes = true;
3873		scrub_submit(sctx);
3874		mutex_lock(&sctx->wr_lock);
3875		scrub_wr_submit(sctx);
3876		mutex_unlock(&sctx->wr_lock);
3877
3878		wait_event(sctx->list_wait,
3879			   atomic_read(&sctx->bios_in_flight) == 0);
3880
3881		scrub_pause_on(fs_info);
3882
3883		/*
3884		 * must be called before we decrease @scrub_paused.
3885		 * make sure we don't block transaction commit while
3886		 * we are waiting pending workers finished.
3887		 */
3888		wait_event(sctx->list_wait,
3889			   atomic_read(&sctx->workers_pending) == 0);
3890		sctx->flush_all_writes = false;
3891
3892		scrub_pause_off(fs_info);
3893
3894		if (sctx->is_dev_replace &&
3895		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3896						      cache, found_key.offset))
3897			ro_set = 0;
3898
3899		down_write(&dev_replace->rwsem);
3900		dev_replace->cursor_left = dev_replace->cursor_right;
3901		dev_replace->item_needs_writeback = 1;
3902		up_write(&dev_replace->rwsem);
3903
3904		if (ro_set)
3905			btrfs_dec_block_group_ro(cache);
3906
3907		/*
3908		 * We might have prevented the cleaner kthread from deleting
3909		 * this block group if it was already unused because we raced
3910		 * and set it to RO mode first. So add it back to the unused
3911		 * list, otherwise it might not ever be deleted unless a manual
3912		 * balance is triggered or it becomes used and unused again.
3913		 */
3914		spin_lock(&cache->lock);
3915		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3916		    cache->used == 0) {
3917			spin_unlock(&cache->lock);
3918			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3919				btrfs_discard_queue_work(&fs_info->discard_ctl,
3920							 cache);
3921			else
3922				btrfs_mark_bg_unused(cache);
 
 
3923		} else {
3924			spin_unlock(&cache->lock);
3925		}
3926skip_unfreeze:
3927		btrfs_unfreeze_block_group(cache);
3928		btrfs_put_block_group(cache);
3929		if (ret)
3930			break;
3931		if (sctx->is_dev_replace &&
3932		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3933			ret = -EIO;
3934			break;
3935		}
3936		if (sctx->stat.malloc_errors > 0) {
3937			ret = -ENOMEM;
3938			break;
3939		}
3940skip:
3941		key.offset = found_key.offset + length;
3942		btrfs_release_path(path);
3943	}
3944
3945	btrfs_free_path(path);
3946
3947	return ret;
3948}
3949
3950static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3951					   struct btrfs_device *scrub_dev)
3952{
3953	int	i;
3954	u64	bytenr;
3955	u64	gen;
3956	int	ret;
3957	struct btrfs_fs_info *fs_info = sctx->fs_info;
3958
3959	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3960		return -EROFS;
3961
3962	/* Seed devices of a new filesystem has their own generation. */
3963	if (scrub_dev->fs_devices != fs_info->fs_devices)
3964		gen = scrub_dev->generation;
3965	else
3966		gen = fs_info->last_trans_committed;
3967
3968	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3969		bytenr = btrfs_sb_offset(i);
3970		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3971		    scrub_dev->commit_total_bytes)
3972			break;
3973		if (!btrfs_check_super_location(scrub_dev, bytenr))
3974			continue;
3975
3976		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3977				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3978				  NULL, bytenr);
3979		if (ret)
3980			return ret;
3981	}
3982	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3983
3984	return 0;
3985}
3986
3987static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3988{
3989	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3990					&fs_info->scrub_lock)) {
3991		struct btrfs_workqueue *scrub_workers = NULL;
3992		struct btrfs_workqueue *scrub_wr_comp = NULL;
3993		struct btrfs_workqueue *scrub_parity = NULL;
3994
3995		scrub_workers = fs_info->scrub_workers;
3996		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3997		scrub_parity = fs_info->scrub_parity_workers;
3998
3999		fs_info->scrub_workers = NULL;
4000		fs_info->scrub_wr_completion_workers = NULL;
4001		fs_info->scrub_parity_workers = NULL;
4002		mutex_unlock(&fs_info->scrub_lock);
4003
4004		btrfs_destroy_workqueue(scrub_workers);
4005		btrfs_destroy_workqueue(scrub_wr_comp);
4006		btrfs_destroy_workqueue(scrub_parity);
4007	}
4008}
4009
4010/*
4011 * get a reference count on fs_info->scrub_workers. start worker if necessary
4012 */
4013static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4014						int is_dev_replace)
4015{
4016	struct btrfs_workqueue *scrub_workers = NULL;
4017	struct btrfs_workqueue *scrub_wr_comp = NULL;
4018	struct btrfs_workqueue *scrub_parity = NULL;
4019	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4020	int max_active = fs_info->thread_pool_size;
4021	int ret = -ENOMEM;
4022
4023	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4024		return 0;
 
 
 
4025
4026	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4027					      is_dev_replace ? 1 : max_active, 4);
4028	if (!scrub_workers)
4029		goto fail_scrub_workers;
 
4030
4031	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
 
 
 
 
 
4032					      max_active, 2);
4033	if (!scrub_wr_comp)
4034		goto fail_scrub_wr_completion_workers;
4035
4036	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4037					     max_active, 2);
4038	if (!scrub_parity)
4039		goto fail_scrub_parity_workers;
4040
4041	mutex_lock(&fs_info->scrub_lock);
4042	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4043		ASSERT(fs_info->scrub_workers == NULL &&
4044		       fs_info->scrub_wr_completion_workers == NULL &&
4045		       fs_info->scrub_parity_workers == NULL);
4046		fs_info->scrub_workers = scrub_workers;
4047		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4048		fs_info->scrub_parity_workers = scrub_parity;
4049		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4050		mutex_unlock(&fs_info->scrub_lock);
4051		return 0;
4052	}
4053	/* Other thread raced in and created the workers for us */
4054	refcount_inc(&fs_info->scrub_workers_refcnt);
4055	mutex_unlock(&fs_info->scrub_lock);
4056
4057	ret = 0;
4058	btrfs_destroy_workqueue(scrub_parity);
4059fail_scrub_parity_workers:
4060	btrfs_destroy_workqueue(scrub_wr_comp);
 
 
4061fail_scrub_wr_completion_workers:
4062	btrfs_destroy_workqueue(scrub_workers);
4063fail_scrub_workers:
4064	return ret;
 
 
 
 
 
 
 
 
 
 
 
4065}
4066
4067int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4068		    u64 end, struct btrfs_scrub_progress *progress,
4069		    int readonly, int is_dev_replace)
4070{
4071	struct scrub_ctx *sctx;
4072	int ret;
4073	struct btrfs_device *dev;
4074	unsigned int nofs_flag;
4075
4076	if (btrfs_fs_closing(fs_info))
4077		return -EAGAIN;
4078
4079	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080		/*
4081		 * in this case scrub is unable to calculate the checksum
4082		 * the way scrub is implemented. Do not handle this
4083		 * situation at all because it won't ever happen.
4084		 */
4085		btrfs_err(fs_info,
4086			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087		       fs_info->nodesize,
4088		       BTRFS_STRIPE_LEN);
4089		return -EINVAL;
4090	}
4091
 
 
 
 
 
 
 
 
4092	if (fs_info->nodesize >
4093	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095		/*
4096		 * would exhaust the array bounds of pagev member in
4097		 * struct scrub_block
4098		 */
4099		btrfs_err(fs_info,
4100			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101		       fs_info->nodesize,
4102		       SCRUB_MAX_PAGES_PER_BLOCK,
4103		       fs_info->sectorsize,
4104		       SCRUB_MAX_PAGES_PER_BLOCK);
4105		return -EINVAL;
4106	}
4107
4108	/* Allocate outside of device_list_mutex */
4109	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4110	if (IS_ERR(sctx))
4111		return PTR_ERR(sctx);
4112
4113	ret = scrub_workers_get(fs_info, is_dev_replace);
4114	if (ret)
4115		goto out_free_ctx;
4116
4117	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4119	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4120		     !is_dev_replace)) {
4121		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122		ret = -ENODEV;
4123		goto out;
4124	}
4125
4126	if (!is_dev_replace && !readonly &&
4127	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129		btrfs_err_in_rcu(fs_info,
4130			"scrub on devid %llu: filesystem on %s is not writable",
4131				 devid, rcu_str_deref(dev->name));
4132		ret = -EROFS;
4133		goto out;
 
4134	}
4135
4136	mutex_lock(&fs_info->scrub_lock);
4137	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4139		mutex_unlock(&fs_info->scrub_lock);
4140		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141		ret = -EIO;
4142		goto out;
4143	}
4144
4145	down_read(&fs_info->dev_replace.rwsem);
4146	if (dev->scrub_ctx ||
4147	    (!is_dev_replace &&
4148	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149		up_read(&fs_info->dev_replace.rwsem);
4150		mutex_unlock(&fs_info->scrub_lock);
4151		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152		ret = -EINPROGRESS;
4153		goto out;
 
 
 
 
 
 
 
4154	}
4155	up_read(&fs_info->dev_replace.rwsem);
4156
 
 
 
 
 
 
 
4157	sctx->readonly = readonly;
4158	dev->scrub_ctx = sctx;
4159	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160
4161	/*
4162	 * checking @scrub_pause_req here, we can avoid
4163	 * race between committing transaction and scrubbing.
4164	 */
4165	__scrub_blocked_if_needed(fs_info);
4166	atomic_inc(&fs_info->scrubs_running);
4167	mutex_unlock(&fs_info->scrub_lock);
4168
4169	/*
4170	 * In order to avoid deadlock with reclaim when there is a transaction
4171	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4172	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4173	 * invoked by our callees. The pausing request is done when the
4174	 * transaction commit starts, and it blocks the transaction until scrub
4175	 * is paused (done at specific points at scrub_stripe() or right above
4176	 * before incrementing fs_info->scrubs_running).
4177	 */
4178	nofs_flag = memalloc_nofs_save();
4179	if (!is_dev_replace) {
4180		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181		/*
4182		 * by holding device list mutex, we can
4183		 * kick off writing super in log tree sync.
4184		 */
4185		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186		ret = scrub_supers(sctx, dev);
4187		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188	}
4189
4190	if (!ret)
4191		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192	memalloc_nofs_restore(nofs_flag);
4193
4194	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4195	atomic_dec(&fs_info->scrubs_running);
4196	wake_up(&fs_info->scrub_pause_wait);
4197
4198	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199
4200	if (progress)
4201		memcpy(progress, &sctx->stat, sizeof(*progress));
4202
4203	if (!is_dev_replace)
4204		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4205			ret ? "not finished" : "finished", devid, ret);
4206
4207	mutex_lock(&fs_info->scrub_lock);
4208	dev->scrub_ctx = NULL;
 
4209	mutex_unlock(&fs_info->scrub_lock);
4210
4211	scrub_workers_put(fs_info);
4212	scrub_put_ctx(sctx);
4213
4214	return ret;
4215out:
4216	scrub_workers_put(fs_info);
4217out_free_ctx:
4218	scrub_free_ctx(sctx);
4219
4220	return ret;
4221}
4222
4223void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4224{
4225	mutex_lock(&fs_info->scrub_lock);
4226	atomic_inc(&fs_info->scrub_pause_req);
4227	while (atomic_read(&fs_info->scrubs_paused) !=
4228	       atomic_read(&fs_info->scrubs_running)) {
4229		mutex_unlock(&fs_info->scrub_lock);
4230		wait_event(fs_info->scrub_pause_wait,
4231			   atomic_read(&fs_info->scrubs_paused) ==
4232			   atomic_read(&fs_info->scrubs_running));
4233		mutex_lock(&fs_info->scrub_lock);
4234	}
4235	mutex_unlock(&fs_info->scrub_lock);
4236}
4237
4238void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4239{
4240	atomic_dec(&fs_info->scrub_pause_req);
4241	wake_up(&fs_info->scrub_pause_wait);
4242}
4243
4244int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4245{
4246	mutex_lock(&fs_info->scrub_lock);
4247	if (!atomic_read(&fs_info->scrubs_running)) {
4248		mutex_unlock(&fs_info->scrub_lock);
4249		return -ENOTCONN;
4250	}
4251
4252	atomic_inc(&fs_info->scrub_cancel_req);
4253	while (atomic_read(&fs_info->scrubs_running)) {
4254		mutex_unlock(&fs_info->scrub_lock);
4255		wait_event(fs_info->scrub_pause_wait,
4256			   atomic_read(&fs_info->scrubs_running) == 0);
4257		mutex_lock(&fs_info->scrub_lock);
4258	}
4259	atomic_dec(&fs_info->scrub_cancel_req);
4260	mutex_unlock(&fs_info->scrub_lock);
4261
4262	return 0;
4263}
4264
4265int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
4266{
4267	struct btrfs_fs_info *fs_info = dev->fs_info;
4268	struct scrub_ctx *sctx;
4269
4270	mutex_lock(&fs_info->scrub_lock);
4271	sctx = dev->scrub_ctx;
4272	if (!sctx) {
4273		mutex_unlock(&fs_info->scrub_lock);
4274		return -ENOTCONN;
4275	}
4276	atomic_inc(&sctx->cancel_req);
4277	while (dev->scrub_ctx) {
4278		mutex_unlock(&fs_info->scrub_lock);
4279		wait_event(fs_info->scrub_pause_wait,
4280			   dev->scrub_ctx == NULL);
4281		mutex_lock(&fs_info->scrub_lock);
4282	}
4283	mutex_unlock(&fs_info->scrub_lock);
4284
4285	return 0;
4286}
4287
4288int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4289			 struct btrfs_scrub_progress *progress)
4290{
4291	struct btrfs_device *dev;
4292	struct scrub_ctx *sctx = NULL;
4293
4294	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4295	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4296	if (dev)
4297		sctx = dev->scrub_ctx;
4298	if (sctx)
4299		memcpy(progress, &sctx->stat, sizeof(*progress));
4300	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4301
4302	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4303}
4304
4305static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4306			       u64 extent_logical, u32 extent_len,
4307			       u64 *extent_physical,
4308			       struct btrfs_device **extent_dev,
4309			       int *extent_mirror_num)
4310{
4311	u64 mapped_length;
4312	struct btrfs_bio *bbio = NULL;
4313	int ret;
4314
4315	mapped_length = extent_len;
4316	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4317			      &mapped_length, &bbio, 0);
4318	if (ret || !bbio || mapped_length < extent_len ||
4319	    !bbio->stripes[0].dev->bdev) {
4320		btrfs_put_bbio(bbio);
4321		return;
4322	}
4323
4324	*extent_physical = bbio->stripes[0].physical;
4325	*extent_mirror_num = bbio->mirror_num;
4326	*extent_dev = bbio->stripes[0].dev;
4327	btrfs_put_bbio(bbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328}