Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "disk-io.h"
12#include "ordered-data.h"
13#include "transaction.h"
14#include "backref.h"
15#include "extent_io.h"
16#include "dev-replace.h"
17#include "check-integrity.h"
18#include "rcu-string.h"
19#include "raid56.h"
20
21/*
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
25 * any can be found.
26 *
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
32 */
33
34struct scrub_block;
35struct scrub_ctx;
36
37/*
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
42 */
43#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
46
47/*
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
51 */
52#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
53
54struct scrub_recover {
55 refcount_t refs;
56 struct btrfs_bio *bbio;
57 u64 map_length;
58};
59
60struct scrub_page {
61 struct scrub_block *sblock;
62 struct page *page;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
66 u64 generation;
67 u64 logical;
68 u64 physical;
69 u64 physical_for_dev_replace;
70 atomic_t refs;
71 struct {
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
75 };
76 u8 csum[BTRFS_CSUM_SIZE];
77
78 struct scrub_recover *recover;
79};
80
81struct scrub_bio {
82 int index;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
85 struct bio *bio;
86 blk_status_t status;
87 u64 logical;
88 u64 physical;
89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
91#else
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
93#endif
94 int page_count;
95 int next_free;
96 struct btrfs_work work;
97};
98
99struct scrub_block {
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 int page_count;
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
106 struct {
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
111
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
115 };
116 struct btrfs_work work;
117};
118
119/* Used for the chunks with parity stripe such RAID5/6 */
120struct scrub_parity {
121 struct scrub_ctx *sctx;
122
123 struct btrfs_device *scrub_dev;
124
125 u64 logic_start;
126
127 u64 logic_end;
128
129 int nsectors;
130
131 u64 stripe_len;
132
133 refcount_t refs;
134
135 struct list_head spages;
136
137 /* Work of parity check and repair */
138 struct btrfs_work work;
139
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
142
143 /*
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
146 */
147 unsigned long *ebitmap;
148
149 unsigned long bitmap[0];
150};
151
152struct scrub_ctx {
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
155 int first_free;
156 int curr;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
161 u16 csum_size;
162 struct list_head csum_list;
163 atomic_t cancel_req;
164 int readonly;
165 int pages_per_rd_bio;
166
167 int is_dev_replace;
168
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
174
175 /*
176 * statistics
177 */
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
180
181 /*
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
187 */
188 refcount_t refs;
189};
190
191struct scrub_fixup_nodatasum {
192 struct scrub_ctx *sctx;
193 struct btrfs_device *dev;
194 u64 logical;
195 struct btrfs_root *root;
196 struct btrfs_work work;
197 int mirror_num;
198};
199
200struct scrub_nocow_inode {
201 u64 inum;
202 u64 offset;
203 u64 root;
204 struct list_head list;
205};
206
207struct scrub_copy_nocow_ctx {
208 struct scrub_ctx *sctx;
209 u64 logical;
210 u64 len;
211 int mirror_num;
212 u64 physical_for_dev_replace;
213 struct list_head inodes;
214 struct btrfs_work work;
215};
216
217struct scrub_warning {
218 struct btrfs_path *path;
219 u64 extent_item_size;
220 const char *errstr;
221 u64 physical;
222 u64 logical;
223 struct btrfs_device *dev;
224};
225
226struct full_stripe_lock {
227 struct rb_node node;
228 u64 logical;
229 u64 refs;
230 struct mutex mutex;
231};
232
233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239 struct scrub_block *sblocks_for_recheck);
240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 struct scrub_block *sblock,
242 int retry_failed_mirror);
243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245 struct scrub_block *sblock_good);
246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
247 struct scrub_block *sblock_good,
248 int page_num, int force_write);
249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
251 int page_num);
252static int scrub_checksum_data(struct scrub_block *sblock);
253static int scrub_checksum_tree_block(struct scrub_block *sblock);
254static int scrub_checksum_super(struct scrub_block *sblock);
255static void scrub_block_get(struct scrub_block *sblock);
256static void scrub_block_put(struct scrub_block *sblock);
257static void scrub_page_get(struct scrub_page *spage);
258static void scrub_page_put(struct scrub_page *spage);
259static void scrub_parity_get(struct scrub_parity *sparity);
260static void scrub_parity_put(struct scrub_parity *sparity);
261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
262 struct scrub_page *spage);
263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264 u64 physical, struct btrfs_device *dev, u64 flags,
265 u64 gen, int mirror_num, u8 *csum, int force,
266 u64 physical_for_dev_replace);
267static void scrub_bio_end_io(struct bio *bio);
268static void scrub_bio_end_io_worker(struct btrfs_work *work);
269static void scrub_block_complete(struct scrub_block *sblock);
270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
271 u64 extent_logical, u64 extent_len,
272 u64 *extent_physical,
273 struct btrfs_device **extent_dev,
274 int *extent_mirror_num);
275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
276 struct scrub_page *spage);
277static void scrub_wr_submit(struct scrub_ctx *sctx);
278static void scrub_wr_bio_end_io(struct bio *bio);
279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
280static int write_page_nocow(struct scrub_ctx *sctx,
281 u64 physical_for_dev_replace, struct page *page);
282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283 struct scrub_copy_nocow_ctx *ctx);
284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
285 int mirror_num, u64 physical_for_dev_replace);
286static void copy_nocow_pages_worker(struct btrfs_work *work);
287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
292{
293 return page->recover &&
294 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
295}
296
297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
298{
299 refcount_inc(&sctx->refs);
300 atomic_inc(&sctx->bios_in_flight);
301}
302
303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
304{
305 atomic_dec(&sctx->bios_in_flight);
306 wake_up(&sctx->list_wait);
307 scrub_put_ctx(sctx);
308}
309
310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311{
312 while (atomic_read(&fs_info->scrub_pause_req)) {
313 mutex_unlock(&fs_info->scrub_lock);
314 wait_event(fs_info->scrub_pause_wait,
315 atomic_read(&fs_info->scrub_pause_req) == 0);
316 mutex_lock(&fs_info->scrub_lock);
317 }
318}
319
320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321{
322 atomic_inc(&fs_info->scrubs_paused);
323 wake_up(&fs_info->scrub_pause_wait);
324}
325
326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
327{
328 mutex_lock(&fs_info->scrub_lock);
329 __scrub_blocked_if_needed(fs_info);
330 atomic_dec(&fs_info->scrubs_paused);
331 mutex_unlock(&fs_info->scrub_lock);
332
333 wake_up(&fs_info->scrub_pause_wait);
334}
335
336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
337{
338 scrub_pause_on(fs_info);
339 scrub_pause_off(fs_info);
340}
341
342/*
343 * Insert new full stripe lock into full stripe locks tree
344 *
345 * Return pointer to existing or newly inserted full_stripe_lock structure if
346 * everything works well.
347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
348 *
349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
350 * function
351 */
352static struct full_stripe_lock *insert_full_stripe_lock(
353 struct btrfs_full_stripe_locks_tree *locks_root,
354 u64 fstripe_logical)
355{
356 struct rb_node **p;
357 struct rb_node *parent = NULL;
358 struct full_stripe_lock *entry;
359 struct full_stripe_lock *ret;
360
361 lockdep_assert_held(&locks_root->lock);
362
363 p = &locks_root->root.rb_node;
364 while (*p) {
365 parent = *p;
366 entry = rb_entry(parent, struct full_stripe_lock, node);
367 if (fstripe_logical < entry->logical) {
368 p = &(*p)->rb_left;
369 } else if (fstripe_logical > entry->logical) {
370 p = &(*p)->rb_right;
371 } else {
372 entry->refs++;
373 return entry;
374 }
375 }
376
377 /* Insert new lock */
378 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
379 if (!ret)
380 return ERR_PTR(-ENOMEM);
381 ret->logical = fstripe_logical;
382 ret->refs = 1;
383 mutex_init(&ret->mutex);
384
385 rb_link_node(&ret->node, parent, p);
386 rb_insert_color(&ret->node, &locks_root->root);
387 return ret;
388}
389
390/*
391 * Search for a full stripe lock of a block group
392 *
393 * Return pointer to existing full stripe lock if found
394 * Return NULL if not found
395 */
396static struct full_stripe_lock *search_full_stripe_lock(
397 struct btrfs_full_stripe_locks_tree *locks_root,
398 u64 fstripe_logical)
399{
400 struct rb_node *node;
401 struct full_stripe_lock *entry;
402
403 lockdep_assert_held(&locks_root->lock);
404
405 node = locks_root->root.rb_node;
406 while (node) {
407 entry = rb_entry(node, struct full_stripe_lock, node);
408 if (fstripe_logical < entry->logical)
409 node = node->rb_left;
410 else if (fstripe_logical > entry->logical)
411 node = node->rb_right;
412 else
413 return entry;
414 }
415 return NULL;
416}
417
418/*
419 * Helper to get full stripe logical from a normal bytenr.
420 *
421 * Caller must ensure @cache is a RAID56 block group.
422 */
423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
424 u64 bytenr)
425{
426 u64 ret;
427
428 /*
429 * Due to chunk item size limit, full stripe length should not be
430 * larger than U32_MAX. Just a sanity check here.
431 */
432 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
433
434 /*
435 * round_down() can only handle power of 2, while RAID56 full
436 * stripe length can be 64KiB * n, so we need to manually round down.
437 */
438 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
439 cache->full_stripe_len + cache->key.objectid;
440 return ret;
441}
442
443/*
444 * Lock a full stripe to avoid concurrency of recovery and read
445 *
446 * It's only used for profiles with parities (RAID5/6), for other profiles it
447 * does nothing.
448 *
449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450 * So caller must call unlock_full_stripe() at the same context.
451 *
452 * Return <0 if encounters error.
453 */
454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
455 bool *locked_ret)
456{
457 struct btrfs_block_group_cache *bg_cache;
458 struct btrfs_full_stripe_locks_tree *locks_root;
459 struct full_stripe_lock *existing;
460 u64 fstripe_start;
461 int ret = 0;
462
463 *locked_ret = false;
464 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
465 if (!bg_cache) {
466 ASSERT(0);
467 return -ENOENT;
468 }
469
470 /* Profiles not based on parity don't need full stripe lock */
471 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
472 goto out;
473 locks_root = &bg_cache->full_stripe_locks_root;
474
475 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
476
477 /* Now insert the full stripe lock */
478 mutex_lock(&locks_root->lock);
479 existing = insert_full_stripe_lock(locks_root, fstripe_start);
480 mutex_unlock(&locks_root->lock);
481 if (IS_ERR(existing)) {
482 ret = PTR_ERR(existing);
483 goto out;
484 }
485 mutex_lock(&existing->mutex);
486 *locked_ret = true;
487out:
488 btrfs_put_block_group(bg_cache);
489 return ret;
490}
491
492/*
493 * Unlock a full stripe.
494 *
495 * NOTE: Caller must ensure it's the same context calling corresponding
496 * lock_full_stripe().
497 *
498 * Return 0 if we unlock full stripe without problem.
499 * Return <0 for error
500 */
501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
502 bool locked)
503{
504 struct btrfs_block_group_cache *bg_cache;
505 struct btrfs_full_stripe_locks_tree *locks_root;
506 struct full_stripe_lock *fstripe_lock;
507 u64 fstripe_start;
508 bool freeit = false;
509 int ret = 0;
510
511 /* If we didn't acquire full stripe lock, no need to continue */
512 if (!locked)
513 return 0;
514
515 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
516 if (!bg_cache) {
517 ASSERT(0);
518 return -ENOENT;
519 }
520 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
521 goto out;
522
523 locks_root = &bg_cache->full_stripe_locks_root;
524 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
525
526 mutex_lock(&locks_root->lock);
527 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
528 /* Unpaired unlock_full_stripe() detected */
529 if (!fstripe_lock) {
530 WARN_ON(1);
531 ret = -ENOENT;
532 mutex_unlock(&locks_root->lock);
533 goto out;
534 }
535
536 if (fstripe_lock->refs == 0) {
537 WARN_ON(1);
538 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
539 fstripe_lock->logical);
540 } else {
541 fstripe_lock->refs--;
542 }
543
544 if (fstripe_lock->refs == 0) {
545 rb_erase(&fstripe_lock->node, &locks_root->root);
546 freeit = true;
547 }
548 mutex_unlock(&locks_root->lock);
549
550 mutex_unlock(&fstripe_lock->mutex);
551 if (freeit)
552 kfree(fstripe_lock);
553out:
554 btrfs_put_block_group(bg_cache);
555 return ret;
556}
557
558/*
559 * used for workers that require transaction commits (i.e., for the
560 * NOCOW case)
561 */
562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
563{
564 struct btrfs_fs_info *fs_info = sctx->fs_info;
565
566 refcount_inc(&sctx->refs);
567 /*
568 * increment scrubs_running to prevent cancel requests from
569 * completing as long as a worker is running. we must also
570 * increment scrubs_paused to prevent deadlocking on pause
571 * requests used for transactions commits (as the worker uses a
572 * transaction context). it is safe to regard the worker
573 * as paused for all matters practical. effectively, we only
574 * avoid cancellation requests from completing.
575 */
576 mutex_lock(&fs_info->scrub_lock);
577 atomic_inc(&fs_info->scrubs_running);
578 atomic_inc(&fs_info->scrubs_paused);
579 mutex_unlock(&fs_info->scrub_lock);
580
581 /*
582 * check if @scrubs_running=@scrubs_paused condition
583 * inside wait_event() is not an atomic operation.
584 * which means we may inc/dec @scrub_running/paused
585 * at any time. Let's wake up @scrub_pause_wait as
586 * much as we can to let commit transaction blocked less.
587 */
588 wake_up(&fs_info->scrub_pause_wait);
589
590 atomic_inc(&sctx->workers_pending);
591}
592
593/* used for workers that require transaction commits */
594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
595{
596 struct btrfs_fs_info *fs_info = sctx->fs_info;
597
598 /*
599 * see scrub_pending_trans_workers_inc() why we're pretending
600 * to be paused in the scrub counters
601 */
602 mutex_lock(&fs_info->scrub_lock);
603 atomic_dec(&fs_info->scrubs_running);
604 atomic_dec(&fs_info->scrubs_paused);
605 mutex_unlock(&fs_info->scrub_lock);
606 atomic_dec(&sctx->workers_pending);
607 wake_up(&fs_info->scrub_pause_wait);
608 wake_up(&sctx->list_wait);
609 scrub_put_ctx(sctx);
610}
611
612static void scrub_free_csums(struct scrub_ctx *sctx)
613{
614 while (!list_empty(&sctx->csum_list)) {
615 struct btrfs_ordered_sum *sum;
616 sum = list_first_entry(&sctx->csum_list,
617 struct btrfs_ordered_sum, list);
618 list_del(&sum->list);
619 kfree(sum);
620 }
621}
622
623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
624{
625 int i;
626
627 if (!sctx)
628 return;
629
630 /* this can happen when scrub is cancelled */
631 if (sctx->curr != -1) {
632 struct scrub_bio *sbio = sctx->bios[sctx->curr];
633
634 for (i = 0; i < sbio->page_count; i++) {
635 WARN_ON(!sbio->pagev[i]->page);
636 scrub_block_put(sbio->pagev[i]->sblock);
637 }
638 bio_put(sbio->bio);
639 }
640
641 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642 struct scrub_bio *sbio = sctx->bios[i];
643
644 if (!sbio)
645 break;
646 kfree(sbio);
647 }
648
649 kfree(sctx->wr_curr_bio);
650 scrub_free_csums(sctx);
651 kfree(sctx);
652}
653
654static void scrub_put_ctx(struct scrub_ctx *sctx)
655{
656 if (refcount_dec_and_test(&sctx->refs))
657 scrub_free_ctx(sctx);
658}
659
660static noinline_for_stack
661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
662{
663 struct scrub_ctx *sctx;
664 int i;
665 struct btrfs_fs_info *fs_info = dev->fs_info;
666
667 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668 if (!sctx)
669 goto nomem;
670 refcount_set(&sctx->refs, 1);
671 sctx->is_dev_replace = is_dev_replace;
672 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673 sctx->curr = -1;
674 sctx->fs_info = dev->fs_info;
675 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
676 struct scrub_bio *sbio;
677
678 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
679 if (!sbio)
680 goto nomem;
681 sctx->bios[i] = sbio;
682
683 sbio->index = i;
684 sbio->sctx = sctx;
685 sbio->page_count = 0;
686 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
687 scrub_bio_end_io_worker, NULL, NULL);
688
689 if (i != SCRUB_BIOS_PER_SCTX - 1)
690 sctx->bios[i]->next_free = i + 1;
691 else
692 sctx->bios[i]->next_free = -1;
693 }
694 sctx->first_free = 0;
695 atomic_set(&sctx->bios_in_flight, 0);
696 atomic_set(&sctx->workers_pending, 0);
697 atomic_set(&sctx->cancel_req, 0);
698 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
699 INIT_LIST_HEAD(&sctx->csum_list);
700
701 spin_lock_init(&sctx->list_lock);
702 spin_lock_init(&sctx->stat_lock);
703 init_waitqueue_head(&sctx->list_wait);
704
705 WARN_ON(sctx->wr_curr_bio != NULL);
706 mutex_init(&sctx->wr_lock);
707 sctx->wr_curr_bio = NULL;
708 if (is_dev_replace) {
709 WARN_ON(!fs_info->dev_replace.tgtdev);
710 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712 sctx->flush_all_writes = false;
713 }
714
715 return sctx;
716
717nomem:
718 scrub_free_ctx(sctx);
719 return ERR_PTR(-ENOMEM);
720}
721
722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
723 void *warn_ctx)
724{
725 u64 isize;
726 u32 nlink;
727 int ret;
728 int i;
729 unsigned nofs_flag;
730 struct extent_buffer *eb;
731 struct btrfs_inode_item *inode_item;
732 struct scrub_warning *swarn = warn_ctx;
733 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 struct inode_fs_paths *ipath = NULL;
735 struct btrfs_root *local_root;
736 struct btrfs_key root_key;
737 struct btrfs_key key;
738
739 root_key.objectid = root;
740 root_key.type = BTRFS_ROOT_ITEM_KEY;
741 root_key.offset = (u64)-1;
742 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
743 if (IS_ERR(local_root)) {
744 ret = PTR_ERR(local_root);
745 goto err;
746 }
747
748 /*
749 * this makes the path point to (inum INODE_ITEM ioff)
750 */
751 key.objectid = inum;
752 key.type = BTRFS_INODE_ITEM_KEY;
753 key.offset = 0;
754
755 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 if (ret) {
757 btrfs_release_path(swarn->path);
758 goto err;
759 }
760
761 eb = swarn->path->nodes[0];
762 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
763 struct btrfs_inode_item);
764 isize = btrfs_inode_size(eb, inode_item);
765 nlink = btrfs_inode_nlink(eb, inode_item);
766 btrfs_release_path(swarn->path);
767
768 /*
769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 * not seem to be strictly necessary.
772 */
773 nofs_flag = memalloc_nofs_save();
774 ipath = init_ipath(4096, local_root, swarn->path);
775 memalloc_nofs_restore(nofs_flag);
776 if (IS_ERR(ipath)) {
777 ret = PTR_ERR(ipath);
778 ipath = NULL;
779 goto err;
780 }
781 ret = paths_from_inode(inum, ipath);
782
783 if (ret < 0)
784 goto err;
785
786 /*
787 * we deliberately ignore the bit ipath might have been too small to
788 * hold all of the paths here
789 */
790 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
791 btrfs_warn_in_rcu(fs_info,
792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 swarn->errstr, swarn->logical,
794 rcu_str_deref(swarn->dev->name),
795 swarn->physical,
796 root, inum, offset,
797 min(isize - offset, (u64)PAGE_SIZE), nlink,
798 (char *)(unsigned long)ipath->fspath->val[i]);
799
800 free_ipath(ipath);
801 return 0;
802
803err:
804 btrfs_warn_in_rcu(fs_info,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 swarn->errstr, swarn->logical,
807 rcu_str_deref(swarn->dev->name),
808 swarn->physical,
809 root, inum, offset, ret);
810
811 free_ipath(ipath);
812 return 0;
813}
814
815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816{
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
819 struct btrfs_path *path;
820 struct btrfs_key found_key;
821 struct extent_buffer *eb;
822 struct btrfs_extent_item *ei;
823 struct scrub_warning swarn;
824 unsigned long ptr = 0;
825 u64 extent_item_pos;
826 u64 flags = 0;
827 u64 ref_root;
828 u32 item_size;
829 u8 ref_level = 0;
830 int ret;
831
832 WARN_ON(sblock->page_count < 1);
833 dev = sblock->pagev[0]->dev;
834 fs_info = sblock->sctx->fs_info;
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return;
839
840 swarn.physical = sblock->pagev[0]->physical;
841 swarn.logical = sblock->pagev[0]->logical;
842 swarn.errstr = errstr;
843 swarn.dev = NULL;
844
845 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
846 &flags);
847 if (ret < 0)
848 goto out;
849
850 extent_item_pos = swarn.logical - found_key.objectid;
851 swarn.extent_item_size = found_key.offset;
852
853 eb = path->nodes[0];
854 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
855 item_size = btrfs_item_size_nr(eb, path->slots[0]);
856
857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858 do {
859 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
860 item_size, &ref_root,
861 &ref_level);
862 btrfs_warn_in_rcu(fs_info,
863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 errstr, swarn.logical,
865 rcu_str_deref(dev->name),
866 swarn.physical,
867 ref_level ? "node" : "leaf",
868 ret < 0 ? -1 : ref_level,
869 ret < 0 ? -1 : ref_root);
870 } while (ret != 1);
871 btrfs_release_path(path);
872 } else {
873 btrfs_release_path(path);
874 swarn.path = path;
875 swarn.dev = dev;
876 iterate_extent_inodes(fs_info, found_key.objectid,
877 extent_item_pos, 1,
878 scrub_print_warning_inode, &swarn, false);
879 }
880
881out:
882 btrfs_free_path(path);
883}
884
885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886{
887 struct page *page = NULL;
888 unsigned long index;
889 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890 int ret;
891 int corrected = 0;
892 struct btrfs_key key;
893 struct inode *inode = NULL;
894 struct btrfs_fs_info *fs_info;
895 u64 end = offset + PAGE_SIZE - 1;
896 struct btrfs_root *local_root;
897 int srcu_index;
898
899 key.objectid = root;
900 key.type = BTRFS_ROOT_ITEM_KEY;
901 key.offset = (u64)-1;
902
903 fs_info = fixup->root->fs_info;
904 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
905
906 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
907 if (IS_ERR(local_root)) {
908 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909 return PTR_ERR(local_root);
910 }
911
912 key.type = BTRFS_INODE_ITEM_KEY;
913 key.objectid = inum;
914 key.offset = 0;
915 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 if (IS_ERR(inode))
918 return PTR_ERR(inode);
919
920 index = offset >> PAGE_SHIFT;
921
922 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 if (!page) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 if (PageUptodate(page)) {
929 if (PageDirty(page)) {
930 /*
931 * we need to write the data to the defect sector. the
932 * data that was in that sector is not in memory,
933 * because the page was modified. we must not write the
934 * modified page to that sector.
935 *
936 * TODO: what could be done here: wait for the delalloc
937 * runner to write out that page (might involve
938 * COW) and see whether the sector is still
939 * referenced afterwards.
940 *
941 * For the meantime, we'll treat this error
942 * incorrectable, although there is a chance that a
943 * later scrub will find the bad sector again and that
944 * there's no dirty page in memory, then.
945 */
946 ret = -EIO;
947 goto out;
948 }
949 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950 fixup->logical, page,
951 offset - page_offset(page),
952 fixup->mirror_num);
953 unlock_page(page);
954 corrected = !ret;
955 } else {
956 /*
957 * we need to get good data first. the general readpage path
958 * will call repair_io_failure for us, we just have to make
959 * sure we read the bad mirror.
960 */
961 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962 EXTENT_DAMAGED);
963 if (ret) {
964 /* set_extent_bits should give proper error */
965 WARN_ON(ret > 0);
966 if (ret > 0)
967 ret = -EFAULT;
968 goto out;
969 }
970
971 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
972 btrfs_get_extent,
973 fixup->mirror_num);
974 wait_on_page_locked(page);
975
976 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
977 end, EXTENT_DAMAGED, 0, NULL);
978 if (!corrected)
979 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980 EXTENT_DAMAGED);
981 }
982
983out:
984 if (page)
985 put_page(page);
986
987 iput(inode);
988
989 if (ret < 0)
990 return ret;
991
992 if (ret == 0 && corrected) {
993 /*
994 * we only need to call readpage for one of the inodes belonging
995 * to this extent. so make iterate_extent_inodes stop
996 */
997 return 1;
998 }
999
1000 return -EIO;
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007 struct scrub_fixup_nodatasum *fixup;
1008 struct scrub_ctx *sctx;
1009 struct btrfs_trans_handle *trans = NULL;
1010 struct btrfs_path *path;
1011 int uncorrectable = 0;
1012
1013 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014 sctx = fixup->sctx;
1015 fs_info = fixup->root->fs_info;
1016
1017 path = btrfs_alloc_path();
1018 if (!path) {
1019 spin_lock(&sctx->stat_lock);
1020 ++sctx->stat.malloc_errors;
1021 spin_unlock(&sctx->stat_lock);
1022 uncorrectable = 1;
1023 goto out;
1024 }
1025
1026 trans = btrfs_join_transaction(fixup->root);
1027 if (IS_ERR(trans)) {
1028 uncorrectable = 1;
1029 goto out;
1030 }
1031
1032 /*
1033 * the idea is to trigger a regular read through the standard path. we
1034 * read a page from the (failed) logical address by specifying the
1035 * corresponding copynum of the failed sector. thus, that readpage is
1036 * expected to fail.
1037 * that is the point where on-the-fly error correction will kick in
1038 * (once it's finished) and rewrite the failed sector if a good copy
1039 * can be found.
1040 */
1041 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042 scrub_fixup_readpage, fixup, false);
1043 if (ret < 0) {
1044 uncorrectable = 1;
1045 goto out;
1046 }
1047 WARN_ON(ret != 1);
1048
1049 spin_lock(&sctx->stat_lock);
1050 ++sctx->stat.corrected_errors;
1051 spin_unlock(&sctx->stat_lock);
1052
1053out:
1054 if (trans && !IS_ERR(trans))
1055 btrfs_end_transaction(trans);
1056 if (uncorrectable) {
1057 spin_lock(&sctx->stat_lock);
1058 ++sctx->stat.uncorrectable_errors;
1059 spin_unlock(&sctx->stat_lock);
1060 btrfs_dev_replace_stats_inc(
1061 &fs_info->dev_replace.num_uncorrectable_read_errors);
1062 btrfs_err_rl_in_rcu(fs_info,
1063 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 fixup->logical, rcu_str_deref(fixup->dev->name));
1065 }
1066
1067 btrfs_free_path(path);
1068 kfree(fixup);
1069
1070 scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075 refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079 struct scrub_recover *recover)
1080{
1081 if (refcount_dec_and_test(&recover->refs)) {
1082 btrfs_bio_counter_dec(fs_info);
1083 btrfs_put_bbio(recover->bbio);
1084 kfree(recover);
1085 }
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098 struct scrub_ctx *sctx = sblock_to_check->sctx;
1099 struct btrfs_device *dev;
1100 struct btrfs_fs_info *fs_info;
1101 u64 logical;
1102 unsigned int failed_mirror_index;
1103 unsigned int is_metadata;
1104 unsigned int have_csum;
1105 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106 struct scrub_block *sblock_bad;
1107 int ret;
1108 int mirror_index;
1109 int page_num;
1110 int success;
1111 bool full_stripe_locked;
1112 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 DEFAULT_RATELIMIT_BURST);
1114
1115 BUG_ON(sblock_to_check->page_count < 1);
1116 fs_info = sctx->fs_info;
1117 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118 /*
1119 * if we find an error in a super block, we just report it.
1120 * They will get written with the next transaction commit
1121 * anyway
1122 */
1123 spin_lock(&sctx->stat_lock);
1124 ++sctx->stat.super_errors;
1125 spin_unlock(&sctx->stat_lock);
1126 return 0;
1127 }
1128 logical = sblock_to_check->pagev[0]->logical;
1129 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131 is_metadata = !(sblock_to_check->pagev[0]->flags &
1132 BTRFS_EXTENT_FLAG_DATA);
1133 have_csum = sblock_to_check->pagev[0]->have_csum;
1134 dev = sblock_to_check->pagev[0]->dev;
1135
1136 /*
1137 * For RAID5/6, race can happen for a different device scrub thread.
1138 * For data corruption, Parity and Data threads will both try
1139 * to recovery the data.
1140 * Race can lead to doubly added csum error, or even unrecoverable
1141 * error.
1142 */
1143 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144 if (ret < 0) {
1145 spin_lock(&sctx->stat_lock);
1146 if (ret == -ENOMEM)
1147 sctx->stat.malloc_errors++;
1148 sctx->stat.read_errors++;
1149 sctx->stat.uncorrectable_errors++;
1150 spin_unlock(&sctx->stat_lock);
1151 return ret;
1152 }
1153
1154 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155 sblocks_for_recheck = NULL;
1156 goto nodatasum_case;
1157 }
1158
1159 /*
1160 * read all mirrors one after the other. This includes to
1161 * re-read the extent or metadata block that failed (that was
1162 * the cause that this fixup code is called) another time,
1163 * page by page this time in order to know which pages
1164 * caused I/O errors and which ones are good (for all mirrors).
1165 * It is the goal to handle the situation when more than one
1166 * mirror contains I/O errors, but the errors do not
1167 * overlap, i.e. the data can be repaired by selecting the
1168 * pages from those mirrors without I/O error on the
1169 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170 * would be that mirror #1 has an I/O error on the first page,
1171 * the second page is good, and mirror #2 has an I/O error on
1172 * the second page, but the first page is good.
1173 * Then the first page of the first mirror can be repaired by
1174 * taking the first page of the second mirror, and the
1175 * second page of the second mirror can be repaired by
1176 * copying the contents of the 2nd page of the 1st mirror.
1177 * One more note: if the pages of one mirror contain I/O
1178 * errors, the checksum cannot be verified. In order to get
1179 * the best data for repairing, the first attempt is to find
1180 * a mirror without I/O errors and with a validated checksum.
1181 * Only if this is not possible, the pages are picked from
1182 * mirrors with I/O errors without considering the checksum.
1183 * If the latter is the case, at the end, the checksum of the
1184 * repaired area is verified in order to correctly maintain
1185 * the statistics.
1186 */
1187
1188 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189 sizeof(*sblocks_for_recheck), GFP_NOFS);
1190 if (!sblocks_for_recheck) {
1191 spin_lock(&sctx->stat_lock);
1192 sctx->stat.malloc_errors++;
1193 sctx->stat.read_errors++;
1194 sctx->stat.uncorrectable_errors++;
1195 spin_unlock(&sctx->stat_lock);
1196 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197 goto out;
1198 }
1199
1200 /* setup the context, map the logical blocks and alloc the pages */
1201 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202 if (ret) {
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.read_errors++;
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208 goto out;
1209 }
1210 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211 sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213 /* build and submit the bios for the failed mirror, check checksums */
1214 scrub_recheck_block(fs_info, sblock_bad, 1);
1215
1216 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217 sblock_bad->no_io_error_seen) {
1218 /*
1219 * the error disappeared after reading page by page, or
1220 * the area was part of a huge bio and other parts of the
1221 * bio caused I/O errors, or the block layer merged several
1222 * read requests into one and the error is caused by a
1223 * different bio (usually one of the two latter cases is
1224 * the cause)
1225 */
1226 spin_lock(&sctx->stat_lock);
1227 sctx->stat.unverified_errors++;
1228 sblock_to_check->data_corrected = 1;
1229 spin_unlock(&sctx->stat_lock);
1230
1231 if (sctx->is_dev_replace)
1232 scrub_write_block_to_dev_replace(sblock_bad);
1233 goto out;
1234 }
1235
1236 if (!sblock_bad->no_io_error_seen) {
1237 spin_lock(&sctx->stat_lock);
1238 sctx->stat.read_errors++;
1239 spin_unlock(&sctx->stat_lock);
1240 if (__ratelimit(&_rs))
1241 scrub_print_warning("i/o error", sblock_to_check);
1242 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243 } else if (sblock_bad->checksum_error) {
1244 spin_lock(&sctx->stat_lock);
1245 sctx->stat.csum_errors++;
1246 spin_unlock(&sctx->stat_lock);
1247 if (__ratelimit(&_rs))
1248 scrub_print_warning("checksum error", sblock_to_check);
1249 btrfs_dev_stat_inc_and_print(dev,
1250 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251 } else if (sblock_bad->header_error) {
1252 spin_lock(&sctx->stat_lock);
1253 sctx->stat.verify_errors++;
1254 spin_unlock(&sctx->stat_lock);
1255 if (__ratelimit(&_rs))
1256 scrub_print_warning("checksum/header error",
1257 sblock_to_check);
1258 if (sblock_bad->generation_error)
1259 btrfs_dev_stat_inc_and_print(dev,
1260 BTRFS_DEV_STAT_GENERATION_ERRS);
1261 else
1262 btrfs_dev_stat_inc_and_print(dev,
1263 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264 }
1265
1266 if (sctx->readonly) {
1267 ASSERT(!sctx->is_dev_replace);
1268 goto out;
1269 }
1270
1271 if (!is_metadata && !have_csum) {
1272 struct scrub_fixup_nodatasum *fixup_nodatasum;
1273
1274 WARN_ON(sctx->is_dev_replace);
1275
1276nodatasum_case:
1277
1278 /*
1279 * !is_metadata and !have_csum, this means that the data
1280 * might not be COWed, that it might be modified
1281 * concurrently. The general strategy to work on the
1282 * commit root does not help in the case when COW is not
1283 * used.
1284 */
1285 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286 if (!fixup_nodatasum)
1287 goto did_not_correct_error;
1288 fixup_nodatasum->sctx = sctx;
1289 fixup_nodatasum->dev = dev;
1290 fixup_nodatasum->logical = logical;
1291 fixup_nodatasum->root = fs_info->extent_root;
1292 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293 scrub_pending_trans_workers_inc(sctx);
1294 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295 scrub_fixup_nodatasum, NULL, NULL);
1296 btrfs_queue_work(fs_info->scrub_workers,
1297 &fixup_nodatasum->work);
1298 goto out;
1299 }
1300
1301 /*
1302 * now build and submit the bios for the other mirrors, check
1303 * checksums.
1304 * First try to pick the mirror which is completely without I/O
1305 * errors and also does not have a checksum error.
1306 * If one is found, and if a checksum is present, the full block
1307 * that is known to contain an error is rewritten. Afterwards
1308 * the block is known to be corrected.
1309 * If a mirror is found which is completely correct, and no
1310 * checksum is present, only those pages are rewritten that had
1311 * an I/O error in the block to be repaired, since it cannot be
1312 * determined, which copy of the other pages is better (and it
1313 * could happen otherwise that a correct page would be
1314 * overwritten by a bad one).
1315 */
1316 for (mirror_index = 0; ;mirror_index++) {
1317 struct scrub_block *sblock_other;
1318
1319 if (mirror_index == failed_mirror_index)
1320 continue;
1321
1322 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324 if (mirror_index >= BTRFS_MAX_MIRRORS)
1325 break;
1326 if (!sblocks_for_recheck[mirror_index].page_count)
1327 break;
1328
1329 sblock_other = sblocks_for_recheck + mirror_index;
1330 } else {
1331 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332 int max_allowed = r->bbio->num_stripes -
1333 r->bbio->num_tgtdevs;
1334
1335 if (mirror_index >= max_allowed)
1336 break;
1337 if (!sblocks_for_recheck[1].page_count)
1338 break;
1339
1340 ASSERT(failed_mirror_index == 0);
1341 sblock_other = sblocks_for_recheck + 1;
1342 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343 }
1344
1345 /* build and submit the bios, check checksums */
1346 scrub_recheck_block(fs_info, sblock_other, 0);
1347
1348 if (!sblock_other->header_error &&
1349 !sblock_other->checksum_error &&
1350 sblock_other->no_io_error_seen) {
1351 if (sctx->is_dev_replace) {
1352 scrub_write_block_to_dev_replace(sblock_other);
1353 goto corrected_error;
1354 } else {
1355 ret = scrub_repair_block_from_good_copy(
1356 sblock_bad, sblock_other);
1357 if (!ret)
1358 goto corrected_error;
1359 }
1360 }
1361 }
1362
1363 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364 goto did_not_correct_error;
1365
1366 /*
1367 * In case of I/O errors in the area that is supposed to be
1368 * repaired, continue by picking good copies of those pages.
1369 * Select the good pages from mirrors to rewrite bad pages from
1370 * the area to fix. Afterwards verify the checksum of the block
1371 * that is supposed to be repaired. This verification step is
1372 * only done for the purpose of statistic counting and for the
1373 * final scrub report, whether errors remain.
1374 * A perfect algorithm could make use of the checksum and try
1375 * all possible combinations of pages from the different mirrors
1376 * until the checksum verification succeeds. For example, when
1377 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378 * of mirror #2 is readable but the final checksum test fails,
1379 * then the 2nd page of mirror #3 could be tried, whether now
1380 * the final checksum succeeds. But this would be a rare
1381 * exception and is therefore not implemented. At least it is
1382 * avoided that the good copy is overwritten.
1383 * A more useful improvement would be to pick the sectors
1384 * without I/O error based on sector sizes (512 bytes on legacy
1385 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386 * mirror could be repaired by taking 512 byte of a different
1387 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388 * area are unreadable.
1389 */
1390 success = 1;
1391 for (page_num = 0; page_num < sblock_bad->page_count;
1392 page_num++) {
1393 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394 struct scrub_block *sblock_other = NULL;
1395
1396 /* skip no-io-error page in scrub */
1397 if (!page_bad->io_error && !sctx->is_dev_replace)
1398 continue;
1399
1400 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401 /*
1402 * In case of dev replace, if raid56 rebuild process
1403 * didn't work out correct data, then copy the content
1404 * in sblock_bad to make sure target device is identical
1405 * to source device, instead of writing garbage data in
1406 * sblock_for_recheck array to target device.
1407 */
1408 sblock_other = NULL;
1409 } else if (page_bad->io_error) {
1410 /* try to find no-io-error page in mirrors */
1411 for (mirror_index = 0;
1412 mirror_index < BTRFS_MAX_MIRRORS &&
1413 sblocks_for_recheck[mirror_index].page_count > 0;
1414 mirror_index++) {
1415 if (!sblocks_for_recheck[mirror_index].
1416 pagev[page_num]->io_error) {
1417 sblock_other = sblocks_for_recheck +
1418 mirror_index;
1419 break;
1420 }
1421 }
1422 if (!sblock_other)
1423 success = 0;
1424 }
1425
1426 if (sctx->is_dev_replace) {
1427 /*
1428 * did not find a mirror to fetch the page
1429 * from. scrub_write_page_to_dev_replace()
1430 * handles this case (page->io_error), by
1431 * filling the block with zeros before
1432 * submitting the write request
1433 */
1434 if (!sblock_other)
1435 sblock_other = sblock_bad;
1436
1437 if (scrub_write_page_to_dev_replace(sblock_other,
1438 page_num) != 0) {
1439 btrfs_dev_replace_stats_inc(
1440 &fs_info->dev_replace.num_write_errors);
1441 success = 0;
1442 }
1443 } else if (sblock_other) {
1444 ret = scrub_repair_page_from_good_copy(sblock_bad,
1445 sblock_other,
1446 page_num, 0);
1447 if (0 == ret)
1448 page_bad->io_error = 0;
1449 else
1450 success = 0;
1451 }
1452 }
1453
1454 if (success && !sctx->is_dev_replace) {
1455 if (is_metadata || have_csum) {
1456 /*
1457 * need to verify the checksum now that all
1458 * sectors on disk are repaired (the write
1459 * request for data to be repaired is on its way).
1460 * Just be lazy and use scrub_recheck_block()
1461 * which re-reads the data before the checksum
1462 * is verified, but most likely the data comes out
1463 * of the page cache.
1464 */
1465 scrub_recheck_block(fs_info, sblock_bad, 1);
1466 if (!sblock_bad->header_error &&
1467 !sblock_bad->checksum_error &&
1468 sblock_bad->no_io_error_seen)
1469 goto corrected_error;
1470 else
1471 goto did_not_correct_error;
1472 } else {
1473corrected_error:
1474 spin_lock(&sctx->stat_lock);
1475 sctx->stat.corrected_errors++;
1476 sblock_to_check->data_corrected = 1;
1477 spin_unlock(&sctx->stat_lock);
1478 btrfs_err_rl_in_rcu(fs_info,
1479 "fixed up error at logical %llu on dev %s",
1480 logical, rcu_str_deref(dev->name));
1481 }
1482 } else {
1483did_not_correct_error:
1484 spin_lock(&sctx->stat_lock);
1485 sctx->stat.uncorrectable_errors++;
1486 spin_unlock(&sctx->stat_lock);
1487 btrfs_err_rl_in_rcu(fs_info,
1488 "unable to fixup (regular) error at logical %llu on dev %s",
1489 logical, rcu_str_deref(dev->name));
1490 }
1491
1492out:
1493 if (sblocks_for_recheck) {
1494 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495 mirror_index++) {
1496 struct scrub_block *sblock = sblocks_for_recheck +
1497 mirror_index;
1498 struct scrub_recover *recover;
1499 int page_index;
1500
1501 for (page_index = 0; page_index < sblock->page_count;
1502 page_index++) {
1503 sblock->pagev[page_index]->sblock = NULL;
1504 recover = sblock->pagev[page_index]->recover;
1505 if (recover) {
1506 scrub_put_recover(fs_info, recover);
1507 sblock->pagev[page_index]->recover =
1508 NULL;
1509 }
1510 scrub_page_put(sblock->pagev[page_index]);
1511 }
1512 }
1513 kfree(sblocks_for_recheck);
1514 }
1515
1516 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517 if (ret < 0)
1518 return ret;
1519 return 0;
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525 return 2;
1526 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527 return 3;
1528 else
1529 return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533 u64 *raid_map,
1534 u64 mapped_length,
1535 int nstripes, int mirror,
1536 int *stripe_index,
1537 u64 *stripe_offset)
1538{
1539 int i;
1540
1541 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542 /* RAID5/6 */
1543 for (i = 0; i < nstripes; i++) {
1544 if (raid_map[i] == RAID6_Q_STRIPE ||
1545 raid_map[i] == RAID5_P_STRIPE)
1546 continue;
1547
1548 if (logical >= raid_map[i] &&
1549 logical < raid_map[i] + mapped_length)
1550 break;
1551 }
1552
1553 *stripe_index = i;
1554 *stripe_offset = logical - raid_map[i];
1555 } else {
1556 /* The other RAID type */
1557 *stripe_index = mirror;
1558 *stripe_offset = 0;
1559 }
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563 struct scrub_block *sblocks_for_recheck)
1564{
1565 struct scrub_ctx *sctx = original_sblock->sctx;
1566 struct btrfs_fs_info *fs_info = sctx->fs_info;
1567 u64 length = original_sblock->page_count * PAGE_SIZE;
1568 u64 logical = original_sblock->pagev[0]->logical;
1569 u64 generation = original_sblock->pagev[0]->generation;
1570 u64 flags = original_sblock->pagev[0]->flags;
1571 u64 have_csum = original_sblock->pagev[0]->have_csum;
1572 struct scrub_recover *recover;
1573 struct btrfs_bio *bbio;
1574 u64 sublen;
1575 u64 mapped_length;
1576 u64 stripe_offset;
1577 int stripe_index;
1578 int page_index = 0;
1579 int mirror_index;
1580 int nmirrors;
1581 int ret;
1582
1583 /*
1584 * note: the two members refs and outstanding_pages
1585 * are not used (and not set) in the blocks that are used for
1586 * the recheck procedure
1587 */
1588
1589 while (length > 0) {
1590 sublen = min_t(u64, length, PAGE_SIZE);
1591 mapped_length = sublen;
1592 bbio = NULL;
1593
1594 /*
1595 * with a length of PAGE_SIZE, each returned stripe
1596 * represents one mirror
1597 */
1598 btrfs_bio_counter_inc_blocked(fs_info);
1599 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600 logical, &mapped_length, &bbio);
1601 if (ret || !bbio || mapped_length < sublen) {
1602 btrfs_put_bbio(bbio);
1603 btrfs_bio_counter_dec(fs_info);
1604 return -EIO;
1605 }
1606
1607 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608 if (!recover) {
1609 btrfs_put_bbio(bbio);
1610 btrfs_bio_counter_dec(fs_info);
1611 return -ENOMEM;
1612 }
1613
1614 refcount_set(&recover->refs, 1);
1615 recover->bbio = bbio;
1616 recover->map_length = mapped_length;
1617
1618 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622 for (mirror_index = 0; mirror_index < nmirrors;
1623 mirror_index++) {
1624 struct scrub_block *sblock;
1625 struct scrub_page *page;
1626
1627 sblock = sblocks_for_recheck + mirror_index;
1628 sblock->sctx = sctx;
1629
1630 page = kzalloc(sizeof(*page), GFP_NOFS);
1631 if (!page) {
1632leave_nomem:
1633 spin_lock(&sctx->stat_lock);
1634 sctx->stat.malloc_errors++;
1635 spin_unlock(&sctx->stat_lock);
1636 scrub_put_recover(fs_info, recover);
1637 return -ENOMEM;
1638 }
1639 scrub_page_get(page);
1640 sblock->pagev[page_index] = page;
1641 page->sblock = sblock;
1642 page->flags = flags;
1643 page->generation = generation;
1644 page->logical = logical;
1645 page->have_csum = have_csum;
1646 if (have_csum)
1647 memcpy(page->csum,
1648 original_sblock->pagev[0]->csum,
1649 sctx->csum_size);
1650
1651 scrub_stripe_index_and_offset(logical,
1652 bbio->map_type,
1653 bbio->raid_map,
1654 mapped_length,
1655 bbio->num_stripes -
1656 bbio->num_tgtdevs,
1657 mirror_index,
1658 &stripe_index,
1659 &stripe_offset);
1660 page->physical = bbio->stripes[stripe_index].physical +
1661 stripe_offset;
1662 page->dev = bbio->stripes[stripe_index].dev;
1663
1664 BUG_ON(page_index >= original_sblock->page_count);
1665 page->physical_for_dev_replace =
1666 original_sblock->pagev[page_index]->
1667 physical_for_dev_replace;
1668 /* for missing devices, dev->bdev is NULL */
1669 page->mirror_num = mirror_index + 1;
1670 sblock->page_count++;
1671 page->page = alloc_page(GFP_NOFS);
1672 if (!page->page)
1673 goto leave_nomem;
1674
1675 scrub_get_recover(recover);
1676 page->recover = recover;
1677 }
1678 scrub_put_recover(fs_info, recover);
1679 length -= sublen;
1680 logical += sublen;
1681 page_index++;
1682 }
1683
1684 return 0;
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689 complete(bio->bi_private);
1690}
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693 struct bio *bio,
1694 struct scrub_page *page)
1695{
1696 DECLARE_COMPLETION_ONSTACK(done);
1697 int ret;
1698 int mirror_num;
1699
1700 bio->bi_iter.bi_sector = page->logical >> 9;
1701 bio->bi_private = &done;
1702 bio->bi_end_io = scrub_bio_wait_endio;
1703
1704 mirror_num = page->sblock->pagev[0]->mirror_num;
1705 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706 page->recover->map_length,
1707 mirror_num, 0);
1708 if (ret)
1709 return ret;
1710
1711 wait_for_completion_io(&done);
1712 return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716 struct scrub_block *sblock)
1717{
1718 struct scrub_page *first_page = sblock->pagev[0];
1719 struct bio *bio;
1720 int page_num;
1721
1722 /* All pages in sblock belong to the same stripe on the same device. */
1723 ASSERT(first_page->dev);
1724 if (!first_page->dev->bdev)
1725 goto out;
1726
1727 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728 bio_set_dev(bio, first_page->dev->bdev);
1729
1730 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731 struct scrub_page *page = sblock->pagev[page_num];
1732
1733 WARN_ON(!page->page);
1734 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735 }
1736
1737 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738 bio_put(bio);
1739 goto out;
1740 }
1741
1742 bio_put(bio);
1743
1744 scrub_recheck_block_checksum(sblock);
1745
1746 return;
1747out:
1748 for (page_num = 0; page_num < sblock->page_count; page_num++)
1749 sblock->pagev[page_num]->io_error = 1;
1750
1751 sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762 struct scrub_block *sblock,
1763 int retry_failed_mirror)
1764{
1765 int page_num;
1766
1767 sblock->no_io_error_seen = 1;
1768
1769 /* short cut for raid56 */
1770 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771 return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774 struct bio *bio;
1775 struct scrub_page *page = sblock->pagev[page_num];
1776
1777 if (page->dev->bdev == NULL) {
1778 page->io_error = 1;
1779 sblock->no_io_error_seen = 0;
1780 continue;
1781 }
1782
1783 WARN_ON(!page->page);
1784 bio = btrfs_io_bio_alloc(1);
1785 bio_set_dev(bio, page->dev->bdev);
1786
1787 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788 bio->bi_iter.bi_sector = page->physical >> 9;
1789 bio->bi_opf = REQ_OP_READ;
1790
1791 if (btrfsic_submit_bio_wait(bio)) {
1792 page->io_error = 1;
1793 sblock->no_io_error_seen = 0;
1794 }
1795
1796 bio_put(bio);
1797 }
1798
1799 if (sblock->no_io_error_seen)
1800 scrub_recheck_block_checksum(sblock);
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804 struct scrub_page *spage)
1805{
1806 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807 int ret;
1808
1809 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810 return !ret;
1811}
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815 sblock->header_error = 0;
1816 sblock->checksum_error = 0;
1817 sblock->generation_error = 0;
1818
1819 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820 scrub_checksum_data(sblock);
1821 else
1822 scrub_checksum_tree_block(sblock);
1823}
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826 struct scrub_block *sblock_good)
1827{
1828 int page_num;
1829 int ret = 0;
1830
1831 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832 int ret_sub;
1833
1834 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835 sblock_good,
1836 page_num, 1);
1837 if (ret_sub)
1838 ret = ret_sub;
1839 }
1840
1841 return ret;
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845 struct scrub_block *sblock_good,
1846 int page_num, int force_write)
1847{
1848 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849 struct scrub_page *page_good = sblock_good->pagev[page_num];
1850 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851
1852 BUG_ON(page_bad->page == NULL);
1853 BUG_ON(page_good->page == NULL);
1854 if (force_write || sblock_bad->header_error ||
1855 sblock_bad->checksum_error || page_bad->io_error) {
1856 struct bio *bio;
1857 int ret;
1858
1859 if (!page_bad->dev->bdev) {
1860 btrfs_warn_rl(fs_info,
1861 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862 return -EIO;
1863 }
1864
1865 bio = btrfs_io_bio_alloc(1);
1866 bio_set_dev(bio, page_bad->dev->bdev);
1867 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871 if (PAGE_SIZE != ret) {
1872 bio_put(bio);
1873 return -EIO;
1874 }
1875
1876 if (btrfsic_submit_bio_wait(bio)) {
1877 btrfs_dev_stat_inc_and_print(page_bad->dev,
1878 BTRFS_DEV_STAT_WRITE_ERRS);
1879 btrfs_dev_replace_stats_inc(
1880 &fs_info->dev_replace.num_write_errors);
1881 bio_put(bio);
1882 return -EIO;
1883 }
1884 bio_put(bio);
1885 }
1886
1887 return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893 int page_num;
1894
1895 /*
1896 * This block is used for the check of the parity on the source device,
1897 * so the data needn't be written into the destination device.
1898 */
1899 if (sblock->sparity)
1900 return;
1901
1902 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903 int ret;
1904
1905 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906 if (ret)
1907 btrfs_dev_replace_stats_inc(
1908 &fs_info->dev_replace.num_write_errors);
1909 }
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913 int page_num)
1914{
1915 struct scrub_page *spage = sblock->pagev[page_num];
1916
1917 BUG_ON(spage->page == NULL);
1918 if (spage->io_error) {
1919 void *mapped_buffer = kmap_atomic(spage->page);
1920
1921 clear_page(mapped_buffer);
1922 flush_dcache_page(spage->page);
1923 kunmap_atomic(mapped_buffer);
1924 }
1925 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929 struct scrub_page *spage)
1930{
1931 struct scrub_bio *sbio;
1932 int ret;
1933
1934 mutex_lock(&sctx->wr_lock);
1935again:
1936 if (!sctx->wr_curr_bio) {
1937 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938 GFP_KERNEL);
1939 if (!sctx->wr_curr_bio) {
1940 mutex_unlock(&sctx->wr_lock);
1941 return -ENOMEM;
1942 }
1943 sctx->wr_curr_bio->sctx = sctx;
1944 sctx->wr_curr_bio->page_count = 0;
1945 }
1946 sbio = sctx->wr_curr_bio;
1947 if (sbio->page_count == 0) {
1948 struct bio *bio;
1949
1950 sbio->physical = spage->physical_for_dev_replace;
1951 sbio->logical = spage->logical;
1952 sbio->dev = sctx->wr_tgtdev;
1953 bio = sbio->bio;
1954 if (!bio) {
1955 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956 sbio->bio = bio;
1957 }
1958
1959 bio->bi_private = sbio;
1960 bio->bi_end_io = scrub_wr_bio_end_io;
1961 bio_set_dev(bio, sbio->dev->bdev);
1962 bio->bi_iter.bi_sector = sbio->physical >> 9;
1963 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964 sbio->status = 0;
1965 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966 spage->physical_for_dev_replace ||
1967 sbio->logical + sbio->page_count * PAGE_SIZE !=
1968 spage->logical) {
1969 scrub_wr_submit(sctx);
1970 goto again;
1971 }
1972
1973 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974 if (ret != PAGE_SIZE) {
1975 if (sbio->page_count < 1) {
1976 bio_put(sbio->bio);
1977 sbio->bio = NULL;
1978 mutex_unlock(&sctx->wr_lock);
1979 return -EIO;
1980 }
1981 scrub_wr_submit(sctx);
1982 goto again;
1983 }
1984
1985 sbio->pagev[sbio->page_count] = spage;
1986 scrub_page_get(spage);
1987 sbio->page_count++;
1988 if (sbio->page_count == sctx->pages_per_wr_bio)
1989 scrub_wr_submit(sctx);
1990 mutex_unlock(&sctx->wr_lock);
1991
1992 return 0;
1993}
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
1997 struct scrub_bio *sbio;
1998
1999 if (!sctx->wr_curr_bio)
2000 return;
2001
2002 sbio = sctx->wr_curr_bio;
2003 sctx->wr_curr_bio = NULL;
2004 WARN_ON(!sbio->bio->bi_disk);
2005 scrub_pending_bio_inc(sctx);
2006 /* process all writes in a single worker thread. Then the block layer
2007 * orders the requests before sending them to the driver which
2008 * doubled the write performance on spinning disks when measured
2009 * with Linux 3.5 */
2010 btrfsic_submit_bio(sbio->bio);
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
2014{
2015 struct scrub_bio *sbio = bio->bi_private;
2016 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018 sbio->status = bio->bi_status;
2019 sbio->bio = bio;
2020
2021 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022 scrub_wr_bio_end_io_worker, NULL, NULL);
2023 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027{
2028 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029 struct scrub_ctx *sctx = sbio->sctx;
2030 int i;
2031
2032 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033 if (sbio->status) {
2034 struct btrfs_dev_replace *dev_replace =
2035 &sbio->sctx->fs_info->dev_replace;
2036
2037 for (i = 0; i < sbio->page_count; i++) {
2038 struct scrub_page *spage = sbio->pagev[i];
2039
2040 spage->io_error = 1;
2041 btrfs_dev_replace_stats_inc(&dev_replace->
2042 num_write_errors);
2043 }
2044 }
2045
2046 for (i = 0; i < sbio->page_count; i++)
2047 scrub_page_put(sbio->pagev[i]);
2048
2049 bio_put(sbio->bio);
2050 kfree(sbio);
2051 scrub_pending_bio_dec(sctx);
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056 u64 flags;
2057 int ret;
2058
2059 /*
2060 * No need to initialize these stats currently,
2061 * because this function only use return value
2062 * instead of these stats value.
2063 *
2064 * Todo:
2065 * always use stats
2066 */
2067 sblock->header_error = 0;
2068 sblock->generation_error = 0;
2069 sblock->checksum_error = 0;
2070
2071 WARN_ON(sblock->page_count < 1);
2072 flags = sblock->pagev[0]->flags;
2073 ret = 0;
2074 if (flags & BTRFS_EXTENT_FLAG_DATA)
2075 ret = scrub_checksum_data(sblock);
2076 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077 ret = scrub_checksum_tree_block(sblock);
2078 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079 (void)scrub_checksum_super(sblock);
2080 else
2081 WARN_ON(1);
2082 if (ret)
2083 scrub_handle_errored_block(sblock);
2084
2085 return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090 struct scrub_ctx *sctx = sblock->sctx;
2091 u8 csum[BTRFS_CSUM_SIZE];
2092 u8 *on_disk_csum;
2093 struct page *page;
2094 void *buffer;
2095 u32 crc = ~(u32)0;
2096 u64 len;
2097 int index;
2098
2099 BUG_ON(sblock->page_count < 1);
2100 if (!sblock->pagev[0]->have_csum)
2101 return 0;
2102
2103 on_disk_csum = sblock->pagev[0]->csum;
2104 page = sblock->pagev[0]->page;
2105 buffer = kmap_atomic(page);
2106
2107 len = sctx->fs_info->sectorsize;
2108 index = 0;
2109 for (;;) {
2110 u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112 crc = btrfs_csum_data(buffer, crc, l);
2113 kunmap_atomic(buffer);
2114 len -= l;
2115 if (len == 0)
2116 break;
2117 index++;
2118 BUG_ON(index >= sblock->page_count);
2119 BUG_ON(!sblock->pagev[index]->page);
2120 page = sblock->pagev[index]->page;
2121 buffer = kmap_atomic(page);
2122 }
2123
2124 btrfs_csum_final(crc, csum);
2125 if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126 sblock->checksum_error = 1;
2127
2128 return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132{
2133 struct scrub_ctx *sctx = sblock->sctx;
2134 struct btrfs_header *h;
2135 struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 u8 calculated_csum[BTRFS_CSUM_SIZE];
2137 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138 struct page *page;
2139 void *mapped_buffer;
2140 u64 mapped_size;
2141 void *p;
2142 u32 crc = ~(u32)0;
2143 u64 len;
2144 int index;
2145
2146 BUG_ON(sblock->page_count < 1);
2147 page = sblock->pagev[0]->page;
2148 mapped_buffer = kmap_atomic(page);
2149 h = (struct btrfs_header *)mapped_buffer;
2150 memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151
2152 /*
2153 * we don't use the getter functions here, as we
2154 * a) don't have an extent buffer and
2155 * b) the page is already kmapped
2156 */
2157 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158 sblock->header_error = 1;
2159
2160 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161 sblock->header_error = 1;
2162 sblock->generation_error = 1;
2163 }
2164
2165 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166 sblock->header_error = 1;
2167
2168 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169 BTRFS_UUID_SIZE))
2170 sblock->header_error = 1;
2171
2172 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175 index = 0;
2176 for (;;) {
2177 u64 l = min_t(u64, len, mapped_size);
2178
2179 crc = btrfs_csum_data(p, crc, l);
2180 kunmap_atomic(mapped_buffer);
2181 len -= l;
2182 if (len == 0)
2183 break;
2184 index++;
2185 BUG_ON(index >= sblock->page_count);
2186 BUG_ON(!sblock->pagev[index]->page);
2187 page = sblock->pagev[index]->page;
2188 mapped_buffer = kmap_atomic(page);
2189 mapped_size = PAGE_SIZE;
2190 p = mapped_buffer;
2191 }
2192
2193 btrfs_csum_final(crc, calculated_csum);
2194 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195 sblock->checksum_error = 1;
2196
2197 return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202 struct btrfs_super_block *s;
2203 struct scrub_ctx *sctx = sblock->sctx;
2204 u8 calculated_csum[BTRFS_CSUM_SIZE];
2205 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206 struct page *page;
2207 void *mapped_buffer;
2208 u64 mapped_size;
2209 void *p;
2210 u32 crc = ~(u32)0;
2211 int fail_gen = 0;
2212 int fail_cor = 0;
2213 u64 len;
2214 int index;
2215
2216 BUG_ON(sblock->page_count < 1);
2217 page = sblock->pagev[0]->page;
2218 mapped_buffer = kmap_atomic(page);
2219 s = (struct btrfs_super_block *)mapped_buffer;
2220 memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223 ++fail_cor;
2224
2225 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226 ++fail_gen;
2227
2228 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229 ++fail_cor;
2230
2231 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234 index = 0;
2235 for (;;) {
2236 u64 l = min_t(u64, len, mapped_size);
2237
2238 crc = btrfs_csum_data(p, crc, l);
2239 kunmap_atomic(mapped_buffer);
2240 len -= l;
2241 if (len == 0)
2242 break;
2243 index++;
2244 BUG_ON(index >= sblock->page_count);
2245 BUG_ON(!sblock->pagev[index]->page);
2246 page = sblock->pagev[index]->page;
2247 mapped_buffer = kmap_atomic(page);
2248 mapped_size = PAGE_SIZE;
2249 p = mapped_buffer;
2250 }
2251
2252 btrfs_csum_final(crc, calculated_csum);
2253 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254 ++fail_cor;
2255
2256 if (fail_cor + fail_gen) {
2257 /*
2258 * if we find an error in a super block, we just report it.
2259 * They will get written with the next transaction commit
2260 * anyway
2261 */
2262 spin_lock(&sctx->stat_lock);
2263 ++sctx->stat.super_errors;
2264 spin_unlock(&sctx->stat_lock);
2265 if (fail_cor)
2266 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268 else
2269 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270 BTRFS_DEV_STAT_GENERATION_ERRS);
2271 }
2272
2273 return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278 refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283 if (refcount_dec_and_test(&sblock->refs)) {
2284 int i;
2285
2286 if (sblock->sparity)
2287 scrub_parity_put(sblock->sparity);
2288
2289 for (i = 0; i < sblock->page_count; i++)
2290 scrub_page_put(sblock->pagev[i]);
2291 kfree(sblock);
2292 }
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
2296{
2297 atomic_inc(&spage->refs);
2298}
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302 if (atomic_dec_and_test(&spage->refs)) {
2303 if (spage->page)
2304 __free_page(spage->page);
2305 kfree(spage);
2306 }
2307}
2308
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311 struct scrub_bio *sbio;
2312
2313 if (sctx->curr == -1)
2314 return;
2315
2316 sbio = sctx->bios[sctx->curr];
2317 sctx->curr = -1;
2318 scrub_pending_bio_inc(sctx);
2319 btrfsic_submit_bio(sbio->bio);
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323 struct scrub_page *spage)
2324{
2325 struct scrub_block *sblock = spage->sblock;
2326 struct scrub_bio *sbio;
2327 int ret;
2328
2329again:
2330 /*
2331 * grab a fresh bio or wait for one to become available
2332 */
2333 while (sctx->curr == -1) {
2334 spin_lock(&sctx->list_lock);
2335 sctx->curr = sctx->first_free;
2336 if (sctx->curr != -1) {
2337 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338 sctx->bios[sctx->curr]->next_free = -1;
2339 sctx->bios[sctx->curr]->page_count = 0;
2340 spin_unlock(&sctx->list_lock);
2341 } else {
2342 spin_unlock(&sctx->list_lock);
2343 wait_event(sctx->list_wait, sctx->first_free != -1);
2344 }
2345 }
2346 sbio = sctx->bios[sctx->curr];
2347 if (sbio->page_count == 0) {
2348 struct bio *bio;
2349
2350 sbio->physical = spage->physical;
2351 sbio->logical = spage->logical;
2352 sbio->dev = spage->dev;
2353 bio = sbio->bio;
2354 if (!bio) {
2355 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356 sbio->bio = bio;
2357 }
2358
2359 bio->bi_private = sbio;
2360 bio->bi_end_io = scrub_bio_end_io;
2361 bio_set_dev(bio, sbio->dev->bdev);
2362 bio->bi_iter.bi_sector = sbio->physical >> 9;
2363 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364 sbio->status = 0;
2365 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366 spage->physical ||
2367 sbio->logical + sbio->page_count * PAGE_SIZE !=
2368 spage->logical ||
2369 sbio->dev != spage->dev) {
2370 scrub_submit(sctx);
2371 goto again;
2372 }
2373
2374 sbio->pagev[sbio->page_count] = spage;
2375 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376 if (ret != PAGE_SIZE) {
2377 if (sbio->page_count < 1) {
2378 bio_put(sbio->bio);
2379 sbio->bio = NULL;
2380 return -EIO;
2381 }
2382 scrub_submit(sctx);
2383 goto again;
2384 }
2385
2386 scrub_block_get(sblock); /* one for the page added to the bio */
2387 atomic_inc(&sblock->outstanding_pages);
2388 sbio->page_count++;
2389 if (sbio->page_count == sctx->pages_per_rd_bio)
2390 scrub_submit(sctx);
2391
2392 return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397 struct scrub_block *sblock = bio->bi_private;
2398 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400 if (bio->bi_status)
2401 sblock->no_io_error_seen = 0;
2402
2403 bio_put(bio);
2404
2405 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409{
2410 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411 struct scrub_ctx *sctx = sblock->sctx;
2412 struct btrfs_fs_info *fs_info = sctx->fs_info;
2413 u64 logical;
2414 struct btrfs_device *dev;
2415
2416 logical = sblock->pagev[0]->logical;
2417 dev = sblock->pagev[0]->dev;
2418
2419 if (sblock->no_io_error_seen)
2420 scrub_recheck_block_checksum(sblock);
2421
2422 if (!sblock->no_io_error_seen) {
2423 spin_lock(&sctx->stat_lock);
2424 sctx->stat.read_errors++;
2425 spin_unlock(&sctx->stat_lock);
2426 btrfs_err_rl_in_rcu(fs_info,
2427 "IO error rebuilding logical %llu for dev %s",
2428 logical, rcu_str_deref(dev->name));
2429 } else if (sblock->header_error || sblock->checksum_error) {
2430 spin_lock(&sctx->stat_lock);
2431 sctx->stat.uncorrectable_errors++;
2432 spin_unlock(&sctx->stat_lock);
2433 btrfs_err_rl_in_rcu(fs_info,
2434 "failed to rebuild valid logical %llu for dev %s",
2435 logical, rcu_str_deref(dev->name));
2436 } else {
2437 scrub_write_block_to_dev_replace(sblock);
2438 }
2439
2440 scrub_block_put(sblock);
2441
2442 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443 mutex_lock(&sctx->wr_lock);
2444 scrub_wr_submit(sctx);
2445 mutex_unlock(&sctx->wr_lock);
2446 }
2447
2448 scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453 struct scrub_ctx *sctx = sblock->sctx;
2454 struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 u64 length = sblock->page_count * PAGE_SIZE;
2456 u64 logical = sblock->pagev[0]->logical;
2457 struct btrfs_bio *bbio = NULL;
2458 struct bio *bio;
2459 struct btrfs_raid_bio *rbio;
2460 int ret;
2461 int i;
2462
2463 btrfs_bio_counter_inc_blocked(fs_info);
2464 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465 &length, &bbio);
2466 if (ret || !bbio || !bbio->raid_map)
2467 goto bbio_out;
2468
2469 if (WARN_ON(!sctx->is_dev_replace ||
2470 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471 /*
2472 * We shouldn't be scrubbing a missing device. Even for dev
2473 * replace, we should only get here for RAID 5/6. We either
2474 * managed to mount something with no mirrors remaining or
2475 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476 */
2477 goto bbio_out;
2478 }
2479
2480 bio = btrfs_io_bio_alloc(0);
2481 bio->bi_iter.bi_sector = logical >> 9;
2482 bio->bi_private = sblock;
2483 bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486 if (!rbio)
2487 goto rbio_out;
2488
2489 for (i = 0; i < sblock->page_count; i++) {
2490 struct scrub_page *spage = sblock->pagev[i];
2491
2492 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493 }
2494
2495 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496 scrub_missing_raid56_worker, NULL, NULL);
2497 scrub_block_get(sblock);
2498 scrub_pending_bio_inc(sctx);
2499 raid56_submit_missing_rbio(rbio);
2500 return;
2501
2502rbio_out:
2503 bio_put(bio);
2504bbio_out:
2505 btrfs_bio_counter_dec(fs_info);
2506 btrfs_put_bbio(bbio);
2507 spin_lock(&sctx->stat_lock);
2508 sctx->stat.malloc_errors++;
2509 spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513 u64 physical, struct btrfs_device *dev, u64 flags,
2514 u64 gen, int mirror_num, u8 *csum, int force,
2515 u64 physical_for_dev_replace)
2516{
2517 struct scrub_block *sblock;
2518 int index;
2519
2520 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521 if (!sblock) {
2522 spin_lock(&sctx->stat_lock);
2523 sctx->stat.malloc_errors++;
2524 spin_unlock(&sctx->stat_lock);
2525 return -ENOMEM;
2526 }
2527
2528 /* one ref inside this function, plus one for each page added to
2529 * a bio later on */
2530 refcount_set(&sblock->refs, 1);
2531 sblock->sctx = sctx;
2532 sblock->no_io_error_seen = 1;
2533
2534 for (index = 0; len > 0; index++) {
2535 struct scrub_page *spage;
2536 u64 l = min_t(u64, len, PAGE_SIZE);
2537
2538 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539 if (!spage) {
2540leave_nomem:
2541 spin_lock(&sctx->stat_lock);
2542 sctx->stat.malloc_errors++;
2543 spin_unlock(&sctx->stat_lock);
2544 scrub_block_put(sblock);
2545 return -ENOMEM;
2546 }
2547 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548 scrub_page_get(spage);
2549 sblock->pagev[index] = spage;
2550 spage->sblock = sblock;
2551 spage->dev = dev;
2552 spage->flags = flags;
2553 spage->generation = gen;
2554 spage->logical = logical;
2555 spage->physical = physical;
2556 spage->physical_for_dev_replace = physical_for_dev_replace;
2557 spage->mirror_num = mirror_num;
2558 if (csum) {
2559 spage->have_csum = 1;
2560 memcpy(spage->csum, csum, sctx->csum_size);
2561 } else {
2562 spage->have_csum = 0;
2563 }
2564 sblock->page_count++;
2565 spage->page = alloc_page(GFP_KERNEL);
2566 if (!spage->page)
2567 goto leave_nomem;
2568 len -= l;
2569 logical += l;
2570 physical += l;
2571 physical_for_dev_replace += l;
2572 }
2573
2574 WARN_ON(sblock->page_count == 0);
2575 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576 /*
2577 * This case should only be hit for RAID 5/6 device replace. See
2578 * the comment in scrub_missing_raid56_pages() for details.
2579 */
2580 scrub_missing_raid56_pages(sblock);
2581 } else {
2582 for (index = 0; index < sblock->page_count; index++) {
2583 struct scrub_page *spage = sblock->pagev[index];
2584 int ret;
2585
2586 ret = scrub_add_page_to_rd_bio(sctx, spage);
2587 if (ret) {
2588 scrub_block_put(sblock);
2589 return ret;
2590 }
2591 }
2592
2593 if (force)
2594 scrub_submit(sctx);
2595 }
2596
2597 /* last one frees, either here or in bio completion for last page */
2598 scrub_block_put(sblock);
2599 return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604 struct scrub_bio *sbio = bio->bi_private;
2605 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606
2607 sbio->status = bio->bi_status;
2608 sbio->bio = bio;
2609
2610 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616 struct scrub_ctx *sctx = sbio->sctx;
2617 int i;
2618
2619 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620 if (sbio->status) {
2621 for (i = 0; i < sbio->page_count; i++) {
2622 struct scrub_page *spage = sbio->pagev[i];
2623
2624 spage->io_error = 1;
2625 spage->sblock->no_io_error_seen = 0;
2626 }
2627 }
2628
2629 /* now complete the scrub_block items that have all pages completed */
2630 for (i = 0; i < sbio->page_count; i++) {
2631 struct scrub_page *spage = sbio->pagev[i];
2632 struct scrub_block *sblock = spage->sblock;
2633
2634 if (atomic_dec_and_test(&sblock->outstanding_pages))
2635 scrub_block_complete(sblock);
2636 scrub_block_put(sblock);
2637 }
2638
2639 bio_put(sbio->bio);
2640 sbio->bio = NULL;
2641 spin_lock(&sctx->list_lock);
2642 sbio->next_free = sctx->first_free;
2643 sctx->first_free = sbio->index;
2644 spin_unlock(&sctx->list_lock);
2645
2646 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647 mutex_lock(&sctx->wr_lock);
2648 scrub_wr_submit(sctx);
2649 mutex_unlock(&sctx->wr_lock);
2650 }
2651
2652 scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656 unsigned long *bitmap,
2657 u64 start, u64 len)
2658{
2659 u64 offset;
2660 u64 nsectors64;
2661 u32 nsectors;
2662 int sectorsize = sparity->sctx->fs_info->sectorsize;
2663
2664 if (len >= sparity->stripe_len) {
2665 bitmap_set(bitmap, 0, sparity->nsectors);
2666 return;
2667 }
2668
2669 start -= sparity->logic_start;
2670 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671 offset = div_u64(offset, sectorsize);
2672 nsectors64 = div_u64(len, sectorsize);
2673
2674 ASSERT(nsectors64 < UINT_MAX);
2675 nsectors = (u32)nsectors64;
2676
2677 if (offset + nsectors <= sparity->nsectors) {
2678 bitmap_set(bitmap, offset, nsectors);
2679 return;
2680 }
2681
2682 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687 u64 start, u64 len)
2688{
2689 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693 u64 start, u64 len)
2694{
2695 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700 int corrupted = 0;
2701
2702 if (!sblock->no_io_error_seen) {
2703 corrupted = 1;
2704 scrub_handle_errored_block(sblock);
2705 } else {
2706 /*
2707 * if has checksum error, write via repair mechanism in
2708 * dev replace case, otherwise write here in dev replace
2709 * case.
2710 */
2711 corrupted = scrub_checksum(sblock);
2712 if (!corrupted && sblock->sctx->is_dev_replace)
2713 scrub_write_block_to_dev_replace(sblock);
2714 }
2715
2716 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717 u64 start = sblock->pagev[0]->logical;
2718 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719 PAGE_SIZE;
2720
2721 scrub_parity_mark_sectors_error(sblock->sparity,
2722 start, end - start);
2723 }
2724}
2725
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2727{
2728 struct btrfs_ordered_sum *sum = NULL;
2729 unsigned long index;
2730 unsigned long num_sectors;
2731
2732 while (!list_empty(&sctx->csum_list)) {
2733 sum = list_first_entry(&sctx->csum_list,
2734 struct btrfs_ordered_sum, list);
2735 if (sum->bytenr > logical)
2736 return 0;
2737 if (sum->bytenr + sum->len > logical)
2738 break;
2739
2740 ++sctx->stat.csum_discards;
2741 list_del(&sum->list);
2742 kfree(sum);
2743 sum = NULL;
2744 }
2745 if (!sum)
2746 return 0;
2747
2748 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749 ASSERT(index < UINT_MAX);
2750
2751 num_sectors = sum->len / sctx->fs_info->sectorsize;
2752 memcpy(csum, sum->sums + index, sctx->csum_size);
2753 if (index == num_sectors - 1) {
2754 list_del(&sum->list);
2755 kfree(sum);
2756 }
2757 return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762 u64 logical, u64 len,
2763 u64 physical, struct btrfs_device *dev, u64 flags,
2764 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766 int ret;
2767 u8 csum[BTRFS_CSUM_SIZE];
2768 u32 blocksize;
2769
2770 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772 blocksize = map->stripe_len;
2773 else
2774 blocksize = sctx->fs_info->sectorsize;
2775 spin_lock(&sctx->stat_lock);
2776 sctx->stat.data_extents_scrubbed++;
2777 sctx->stat.data_bytes_scrubbed += len;
2778 spin_unlock(&sctx->stat_lock);
2779 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781 blocksize = map->stripe_len;
2782 else
2783 blocksize = sctx->fs_info->nodesize;
2784 spin_lock(&sctx->stat_lock);
2785 sctx->stat.tree_extents_scrubbed++;
2786 sctx->stat.tree_bytes_scrubbed += len;
2787 spin_unlock(&sctx->stat_lock);
2788 } else {
2789 blocksize = sctx->fs_info->sectorsize;
2790 WARN_ON(1);
2791 }
2792
2793 while (len) {
2794 u64 l = min_t(u64, len, blocksize);
2795 int have_csum = 0;
2796
2797 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798 /* push csums to sbio */
2799 have_csum = scrub_find_csum(sctx, logical, csum);
2800 if (have_csum == 0)
2801 ++sctx->stat.no_csum;
2802 if (sctx->is_dev_replace && !have_csum) {
2803 ret = copy_nocow_pages(sctx, logical, l,
2804 mirror_num,
2805 physical_for_dev_replace);
2806 goto behind_scrub_pages;
2807 }
2808 }
2809 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810 mirror_num, have_csum ? csum : NULL, 0,
2811 physical_for_dev_replace);
2812behind_scrub_pages:
2813 if (ret)
2814 return ret;
2815 len -= l;
2816 logical += l;
2817 physical += l;
2818 physical_for_dev_replace += l;
2819 }
2820 return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824 u64 logical, u64 len,
2825 u64 physical, struct btrfs_device *dev,
2826 u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828 struct scrub_ctx *sctx = sparity->sctx;
2829 struct scrub_block *sblock;
2830 int index;
2831
2832 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833 if (!sblock) {
2834 spin_lock(&sctx->stat_lock);
2835 sctx->stat.malloc_errors++;
2836 spin_unlock(&sctx->stat_lock);
2837 return -ENOMEM;
2838 }
2839
2840 /* one ref inside this function, plus one for each page added to
2841 * a bio later on */
2842 refcount_set(&sblock->refs, 1);
2843 sblock->sctx = sctx;
2844 sblock->no_io_error_seen = 1;
2845 sblock->sparity = sparity;
2846 scrub_parity_get(sparity);
2847
2848 for (index = 0; len > 0; index++) {
2849 struct scrub_page *spage;
2850 u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853 if (!spage) {
2854leave_nomem:
2855 spin_lock(&sctx->stat_lock);
2856 sctx->stat.malloc_errors++;
2857 spin_unlock(&sctx->stat_lock);
2858 scrub_block_put(sblock);
2859 return -ENOMEM;
2860 }
2861 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862 /* For scrub block */
2863 scrub_page_get(spage);
2864 sblock->pagev[index] = spage;
2865 /* For scrub parity */
2866 scrub_page_get(spage);
2867 list_add_tail(&spage->list, &sparity->spages);
2868 spage->sblock = sblock;
2869 spage->dev = dev;
2870 spage->flags = flags;
2871 spage->generation = gen;
2872 spage->logical = logical;
2873 spage->physical = physical;
2874 spage->mirror_num = mirror_num;
2875 if (csum) {
2876 spage->have_csum = 1;
2877 memcpy(spage->csum, csum, sctx->csum_size);
2878 } else {
2879 spage->have_csum = 0;
2880 }
2881 sblock->page_count++;
2882 spage->page = alloc_page(GFP_KERNEL);
2883 if (!spage->page)
2884 goto leave_nomem;
2885 len -= l;
2886 logical += l;
2887 physical += l;
2888 }
2889
2890 WARN_ON(sblock->page_count == 0);
2891 for (index = 0; index < sblock->page_count; index++) {
2892 struct scrub_page *spage = sblock->pagev[index];
2893 int ret;
2894
2895 ret = scrub_add_page_to_rd_bio(sctx, spage);
2896 if (ret) {
2897 scrub_block_put(sblock);
2898 return ret;
2899 }
2900 }
2901
2902 /* last one frees, either here or in bio completion for last page */
2903 scrub_block_put(sblock);
2904 return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908 u64 logical, u64 len,
2909 u64 physical, struct btrfs_device *dev,
2910 u64 flags, u64 gen, int mirror_num)
2911{
2912 struct scrub_ctx *sctx = sparity->sctx;
2913 int ret;
2914 u8 csum[BTRFS_CSUM_SIZE];
2915 u32 blocksize;
2916
2917 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918 scrub_parity_mark_sectors_error(sparity, logical, len);
2919 return 0;
2920 }
2921
2922 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923 blocksize = sparity->stripe_len;
2924 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925 blocksize = sparity->stripe_len;
2926 } else {
2927 blocksize = sctx->fs_info->sectorsize;
2928 WARN_ON(1);
2929 }
2930
2931 while (len) {
2932 u64 l = min_t(u64, len, blocksize);
2933 int have_csum = 0;
2934
2935 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936 /* push csums to sbio */
2937 have_csum = scrub_find_csum(sctx, logical, csum);
2938 if (have_csum == 0)
2939 goto skip;
2940 }
2941 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942 flags, gen, mirror_num,
2943 have_csum ? csum : NULL);
2944 if (ret)
2945 return ret;
2946skip:
2947 len -= l;
2948 logical += l;
2949 physical += l;
2950 }
2951 return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962 struct map_lookup *map, u64 *offset,
2963 u64 *stripe_start)
2964{
2965 int i;
2966 int j = 0;
2967 u64 stripe_nr;
2968 u64 last_offset;
2969 u32 stripe_index;
2970 u32 rot;
2971
2972 last_offset = (physical - map->stripes[num].physical) *
2973 nr_data_stripes(map);
2974 if (stripe_start)
2975 *stripe_start = last_offset;
2976
2977 *offset = last_offset;
2978 for (i = 0; i < nr_data_stripes(map); i++) {
2979 *offset = last_offset + i * map->stripe_len;
2980
2981 stripe_nr = div64_u64(*offset, map->stripe_len);
2982 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983
2984 /* Work out the disk rotation on this stripe-set */
2985 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986 /* calculate which stripe this data locates */
2987 rot += i;
2988 stripe_index = rot % map->num_stripes;
2989 if (stripe_index == num)
2990 return 0;
2991 if (stripe_index < num)
2992 j++;
2993 }
2994 *offset = last_offset + j * map->stripe_len;
2995 return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000 struct scrub_ctx *sctx = sparity->sctx;
3001 struct scrub_page *curr, *next;
3002 int nbits;
3003
3004 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005 if (nbits) {
3006 spin_lock(&sctx->stat_lock);
3007 sctx->stat.read_errors += nbits;
3008 sctx->stat.uncorrectable_errors += nbits;
3009 spin_unlock(&sctx->stat_lock);
3010 }
3011
3012 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013 list_del_init(&curr->list);
3014 scrub_page_put(curr);
3015 }
3016
3017 kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021{
3022 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023 work);
3024 struct scrub_ctx *sctx = sparity->sctx;
3025
3026 scrub_free_parity(sparity);
3027 scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
3031{
3032 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034
3035 if (bio->bi_status)
3036 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037 sparity->nsectors);
3038
3039 bio_put(bio);
3040
3041 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042 scrub_parity_bio_endio_worker, NULL, NULL);
3043 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047{
3048 struct scrub_ctx *sctx = sparity->sctx;
3049 struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 struct bio *bio;
3051 struct btrfs_raid_bio *rbio;
3052 struct btrfs_bio *bbio = NULL;
3053 u64 length;
3054 int ret;
3055
3056 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057 sparity->nsectors))
3058 goto out;
3059
3060 length = sparity->logic_end - sparity->logic_start;
3061
3062 btrfs_bio_counter_inc_blocked(fs_info);
3063 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064 &length, &bbio);
3065 if (ret || !bbio || !bbio->raid_map)
3066 goto bbio_out;
3067
3068 bio = btrfs_io_bio_alloc(0);
3069 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070 bio->bi_private = sparity;
3071 bio->bi_end_io = scrub_parity_bio_endio;
3072
3073 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074 length, sparity->scrub_dev,
3075 sparity->dbitmap,
3076 sparity->nsectors);
3077 if (!rbio)
3078 goto rbio_out;
3079
3080 scrub_pending_bio_inc(sctx);
3081 raid56_parity_submit_scrub_rbio(rbio);
3082 return;
3083
3084rbio_out:
3085 bio_put(bio);
3086bbio_out:
3087 btrfs_bio_counter_dec(fs_info);
3088 btrfs_put_bbio(bbio);
3089 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090 sparity->nsectors);
3091 spin_lock(&sctx->stat_lock);
3092 sctx->stat.malloc_errors++;
3093 spin_unlock(&sctx->stat_lock);
3094out:
3095 scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099{
3100 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105 refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110 if (!refcount_dec_and_test(&sparity->refs))
3111 return;
3112
3113 scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117 struct map_lookup *map,
3118 struct btrfs_device *sdev,
3119 struct btrfs_path *path,
3120 u64 logic_start,
3121 u64 logic_end)
3122{
3123 struct btrfs_fs_info *fs_info = sctx->fs_info;
3124 struct btrfs_root *root = fs_info->extent_root;
3125 struct btrfs_root *csum_root = fs_info->csum_root;
3126 struct btrfs_extent_item *extent;
3127 struct btrfs_bio *bbio = NULL;
3128 u64 flags;
3129 int ret;
3130 int slot;
3131 struct extent_buffer *l;
3132 struct btrfs_key key;
3133 u64 generation;
3134 u64 extent_logical;
3135 u64 extent_physical;
3136 u64 extent_len;
3137 u64 mapped_length;
3138 struct btrfs_device *extent_dev;
3139 struct scrub_parity *sparity;
3140 int nsectors;
3141 int bitmap_len;
3142 int extent_mirror_num;
3143 int stop_loop = 0;
3144
3145 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148 GFP_NOFS);
3149 if (!sparity) {
3150 spin_lock(&sctx->stat_lock);
3151 sctx->stat.malloc_errors++;
3152 spin_unlock(&sctx->stat_lock);
3153 return -ENOMEM;
3154 }
3155
3156 sparity->stripe_len = map->stripe_len;
3157 sparity->nsectors = nsectors;
3158 sparity->sctx = sctx;
3159 sparity->scrub_dev = sdev;
3160 sparity->logic_start = logic_start;
3161 sparity->logic_end = logic_end;
3162 refcount_set(&sparity->refs, 1);
3163 INIT_LIST_HEAD(&sparity->spages);
3164 sparity->dbitmap = sparity->bitmap;
3165 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167 ret = 0;
3168 while (logic_start < logic_end) {
3169 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170 key.type = BTRFS_METADATA_ITEM_KEY;
3171 else
3172 key.type = BTRFS_EXTENT_ITEM_KEY;
3173 key.objectid = logic_start;
3174 key.offset = (u64)-1;
3175
3176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177 if (ret < 0)
3178 goto out;
3179
3180 if (ret > 0) {
3181 ret = btrfs_previous_extent_item(root, path, 0);
3182 if (ret < 0)
3183 goto out;
3184 if (ret > 0) {
3185 btrfs_release_path(path);
3186 ret = btrfs_search_slot(NULL, root, &key,
3187 path, 0, 0);
3188 if (ret < 0)
3189 goto out;
3190 }
3191 }
3192
3193 stop_loop = 0;
3194 while (1) {
3195 u64 bytes;
3196
3197 l = path->nodes[0];
3198 slot = path->slots[0];
3199 if (slot >= btrfs_header_nritems(l)) {
3200 ret = btrfs_next_leaf(root, path);
3201 if (ret == 0)
3202 continue;
3203 if (ret < 0)
3204 goto out;
3205
3206 stop_loop = 1;
3207 break;
3208 }
3209 btrfs_item_key_to_cpu(l, &key, slot);
3210
3211 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212 key.type != BTRFS_METADATA_ITEM_KEY)
3213 goto next;
3214
3215 if (key.type == BTRFS_METADATA_ITEM_KEY)
3216 bytes = fs_info->nodesize;
3217 else
3218 bytes = key.offset;
3219
3220 if (key.objectid + bytes <= logic_start)
3221 goto next;
3222
3223 if (key.objectid >= logic_end) {
3224 stop_loop = 1;
3225 break;
3226 }
3227
3228 while (key.objectid >= logic_start + map->stripe_len)
3229 logic_start += map->stripe_len;
3230
3231 extent = btrfs_item_ptr(l, slot,
3232 struct btrfs_extent_item);
3233 flags = btrfs_extent_flags(l, extent);
3234 generation = btrfs_extent_generation(l, extent);
3235
3236 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237 (key.objectid < logic_start ||
3238 key.objectid + bytes >
3239 logic_start + map->stripe_len)) {
3240 btrfs_err(fs_info,
3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242 key.objectid, logic_start);
3243 spin_lock(&sctx->stat_lock);
3244 sctx->stat.uncorrectable_errors++;
3245 spin_unlock(&sctx->stat_lock);
3246 goto next;
3247 }
3248again:
3249 extent_logical = key.objectid;
3250 extent_len = bytes;
3251
3252 if (extent_logical < logic_start) {
3253 extent_len -= logic_start - extent_logical;
3254 extent_logical = logic_start;
3255 }
3256
3257 if (extent_logical + extent_len >
3258 logic_start + map->stripe_len)
3259 extent_len = logic_start + map->stripe_len -
3260 extent_logical;
3261
3262 scrub_parity_mark_sectors_data(sparity, extent_logical,
3263 extent_len);
3264
3265 mapped_length = extent_len;
3266 bbio = NULL;
3267 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268 extent_logical, &mapped_length, &bbio,
3269 0);
3270 if (!ret) {
3271 if (!bbio || mapped_length < extent_len)
3272 ret = -EIO;
3273 }
3274 if (ret) {
3275 btrfs_put_bbio(bbio);
3276 goto out;
3277 }
3278 extent_physical = bbio->stripes[0].physical;
3279 extent_mirror_num = bbio->mirror_num;
3280 extent_dev = bbio->stripes[0].dev;
3281 btrfs_put_bbio(bbio);
3282
3283 ret = btrfs_lookup_csums_range(csum_root,
3284 extent_logical,
3285 extent_logical + extent_len - 1,
3286 &sctx->csum_list, 1);
3287 if (ret)
3288 goto out;
3289
3290 ret = scrub_extent_for_parity(sparity, extent_logical,
3291 extent_len,
3292 extent_physical,
3293 extent_dev, flags,
3294 generation,
3295 extent_mirror_num);
3296
3297 scrub_free_csums(sctx);
3298
3299 if (ret)
3300 goto out;
3301
3302 if (extent_logical + extent_len <
3303 key.objectid + bytes) {
3304 logic_start += map->stripe_len;
3305
3306 if (logic_start >= logic_end) {
3307 stop_loop = 1;
3308 break;
3309 }
3310
3311 if (logic_start < key.objectid + bytes) {
3312 cond_resched();
3313 goto again;
3314 }
3315 }
3316next:
3317 path->slots[0]++;
3318 }
3319
3320 btrfs_release_path(path);
3321
3322 if (stop_loop)
3323 break;
3324
3325 logic_start += map->stripe_len;
3326 }
3327out:
3328 if (ret < 0)
3329 scrub_parity_mark_sectors_error(sparity, logic_start,
3330 logic_end - logic_start);
3331 scrub_parity_put(sparity);
3332 scrub_submit(sctx);
3333 mutex_lock(&sctx->wr_lock);
3334 scrub_wr_submit(sctx);
3335 mutex_unlock(&sctx->wr_lock);
3336
3337 btrfs_release_path(path);
3338 return ret < 0 ? ret : 0;
3339}
3340
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342 struct map_lookup *map,
3343 struct btrfs_device *scrub_dev,
3344 int num, u64 base, u64 length,
3345 int is_dev_replace)
3346{
3347 struct btrfs_path *path, *ppath;
3348 struct btrfs_fs_info *fs_info = sctx->fs_info;
3349 struct btrfs_root *root = fs_info->extent_root;
3350 struct btrfs_root *csum_root = fs_info->csum_root;
3351 struct btrfs_extent_item *extent;
3352 struct blk_plug plug;
3353 u64 flags;
3354 int ret;
3355 int slot;
3356 u64 nstripes;
3357 struct extent_buffer *l;
3358 u64 physical;
3359 u64 logical;
3360 u64 logic_end;
3361 u64 physical_end;
3362 u64 generation;
3363 int mirror_num;
3364 struct reada_control *reada1;
3365 struct reada_control *reada2;
3366 struct btrfs_key key;
3367 struct btrfs_key key_end;
3368 u64 increment = map->stripe_len;
3369 u64 offset;
3370 u64 extent_logical;
3371 u64 extent_physical;
3372 u64 extent_len;
3373 u64 stripe_logical;
3374 u64 stripe_end;
3375 struct btrfs_device *extent_dev;
3376 int extent_mirror_num;
3377 int stop_loop = 0;
3378
3379 physical = map->stripes[num].physical;
3380 offset = 0;
3381 nstripes = div64_u64(length, map->stripe_len);
3382 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383 offset = map->stripe_len * num;
3384 increment = map->stripe_len * map->num_stripes;
3385 mirror_num = 1;
3386 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387 int factor = map->num_stripes / map->sub_stripes;
3388 offset = map->stripe_len * (num / map->sub_stripes);
3389 increment = map->stripe_len * factor;
3390 mirror_num = num % map->sub_stripes + 1;
3391 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392 increment = map->stripe_len;
3393 mirror_num = num % map->num_stripes + 1;
3394 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395 increment = map->stripe_len;
3396 mirror_num = num % map->num_stripes + 1;
3397 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399 increment = map->stripe_len * nr_data_stripes(map);
3400 mirror_num = 1;
3401 } else {
3402 increment = map->stripe_len;
3403 mirror_num = 1;
3404 }
3405
3406 path = btrfs_alloc_path();
3407 if (!path)
3408 return -ENOMEM;
3409
3410 ppath = btrfs_alloc_path();
3411 if (!ppath) {
3412 btrfs_free_path(path);
3413 return -ENOMEM;
3414 }
3415
3416 /*
3417 * work on commit root. The related disk blocks are static as
3418 * long as COW is applied. This means, it is save to rewrite
3419 * them to repair disk errors without any race conditions
3420 */
3421 path->search_commit_root = 1;
3422 path->skip_locking = 1;
3423
3424 ppath->search_commit_root = 1;
3425 ppath->skip_locking = 1;
3426 /*
3427 * trigger the readahead for extent tree csum tree and wait for
3428 * completion. During readahead, the scrub is officially paused
3429 * to not hold off transaction commits
3430 */
3431 logical = base + offset;
3432 physical_end = physical + nstripes * map->stripe_len;
3433 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434 get_raid56_logic_offset(physical_end, num,
3435 map, &logic_end, NULL);
3436 logic_end += base;
3437 } else {
3438 logic_end = logical + increment * nstripes;
3439 }
3440 wait_event(sctx->list_wait,
3441 atomic_read(&sctx->bios_in_flight) == 0);
3442 scrub_blocked_if_needed(fs_info);
3443
3444 /* FIXME it might be better to start readahead at commit root */
3445 key.objectid = logical;
3446 key.type = BTRFS_EXTENT_ITEM_KEY;
3447 key.offset = (u64)0;
3448 key_end.objectid = logic_end;
3449 key_end.type = BTRFS_METADATA_ITEM_KEY;
3450 key_end.offset = (u64)-1;
3451 reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454 key.type = BTRFS_EXTENT_CSUM_KEY;
3455 key.offset = logical;
3456 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458 key_end.offset = logic_end;
3459 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460
3461 if (!IS_ERR(reada1))
3462 btrfs_reada_wait(reada1);
3463 if (!IS_ERR(reada2))
3464 btrfs_reada_wait(reada2);
3465
3466
3467 /*
3468 * collect all data csums for the stripe to avoid seeking during
3469 * the scrub. This might currently (crc32) end up to be about 1MB
3470 */
3471 blk_start_plug(&plug);
3472
3473 /*
3474 * now find all extents for each stripe and scrub them
3475 */
3476 ret = 0;
3477 while (physical < physical_end) {
3478 /*
3479 * canceled?
3480 */
3481 if (atomic_read(&fs_info->scrub_cancel_req) ||
3482 atomic_read(&sctx->cancel_req)) {
3483 ret = -ECANCELED;
3484 goto out;
3485 }
3486 /*
3487 * check to see if we have to pause
3488 */
3489 if (atomic_read(&fs_info->scrub_pause_req)) {
3490 /* push queued extents */
3491 sctx->flush_all_writes = true;
3492 scrub_submit(sctx);
3493 mutex_lock(&sctx->wr_lock);
3494 scrub_wr_submit(sctx);
3495 mutex_unlock(&sctx->wr_lock);
3496 wait_event(sctx->list_wait,
3497 atomic_read(&sctx->bios_in_flight) == 0);
3498 sctx->flush_all_writes = false;
3499 scrub_blocked_if_needed(fs_info);
3500 }
3501
3502 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503 ret = get_raid56_logic_offset(physical, num, map,
3504 &logical,
3505 &stripe_logical);
3506 logical += base;
3507 if (ret) {
3508 /* it is parity strip */
3509 stripe_logical += base;
3510 stripe_end = stripe_logical + increment;
3511 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512 ppath, stripe_logical,
3513 stripe_end);
3514 if (ret)
3515 goto out;
3516 goto skip;
3517 }
3518 }
3519
3520 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521 key.type = BTRFS_METADATA_ITEM_KEY;
3522 else
3523 key.type = BTRFS_EXTENT_ITEM_KEY;
3524 key.objectid = logical;
3525 key.offset = (u64)-1;
3526
3527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528 if (ret < 0)
3529 goto out;
3530
3531 if (ret > 0) {
3532 ret = btrfs_previous_extent_item(root, path, 0);
3533 if (ret < 0)
3534 goto out;
3535 if (ret > 0) {
3536 /* there's no smaller item, so stick with the
3537 * larger one */
3538 btrfs_release_path(path);
3539 ret = btrfs_search_slot(NULL, root, &key,
3540 path, 0, 0);
3541 if (ret < 0)
3542 goto out;
3543 }
3544 }
3545
3546 stop_loop = 0;
3547 while (1) {
3548 u64 bytes;
3549
3550 l = path->nodes[0];
3551 slot = path->slots[0];
3552 if (slot >= btrfs_header_nritems(l)) {
3553 ret = btrfs_next_leaf(root, path);
3554 if (ret == 0)
3555 continue;
3556 if (ret < 0)
3557 goto out;
3558
3559 stop_loop = 1;
3560 break;
3561 }
3562 btrfs_item_key_to_cpu(l, &key, slot);
3563
3564 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565 key.type != BTRFS_METADATA_ITEM_KEY)
3566 goto next;
3567
3568 if (key.type == BTRFS_METADATA_ITEM_KEY)
3569 bytes = fs_info->nodesize;
3570 else
3571 bytes = key.offset;
3572
3573 if (key.objectid + bytes <= logical)
3574 goto next;
3575
3576 if (key.objectid >= logical + map->stripe_len) {
3577 /* out of this device extent */
3578 if (key.objectid >= logic_end)
3579 stop_loop = 1;
3580 break;
3581 }
3582
3583 extent = btrfs_item_ptr(l, slot,
3584 struct btrfs_extent_item);
3585 flags = btrfs_extent_flags(l, extent);
3586 generation = btrfs_extent_generation(l, extent);
3587
3588 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589 (key.objectid < logical ||
3590 key.objectid + bytes >
3591 logical + map->stripe_len)) {
3592 btrfs_err(fs_info,
3593 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594 key.objectid, logical);
3595 spin_lock(&sctx->stat_lock);
3596 sctx->stat.uncorrectable_errors++;
3597 spin_unlock(&sctx->stat_lock);
3598 goto next;
3599 }
3600
3601again:
3602 extent_logical = key.objectid;
3603 extent_len = bytes;
3604
3605 /*
3606 * trim extent to this stripe
3607 */
3608 if (extent_logical < logical) {
3609 extent_len -= logical - extent_logical;
3610 extent_logical = logical;
3611 }
3612 if (extent_logical + extent_len >
3613 logical + map->stripe_len) {
3614 extent_len = logical + map->stripe_len -
3615 extent_logical;
3616 }
3617
3618 extent_physical = extent_logical - logical + physical;
3619 extent_dev = scrub_dev;
3620 extent_mirror_num = mirror_num;
3621 if (is_dev_replace)
3622 scrub_remap_extent(fs_info, extent_logical,
3623 extent_len, &extent_physical,
3624 &extent_dev,
3625 &extent_mirror_num);
3626
3627 ret = btrfs_lookup_csums_range(csum_root,
3628 extent_logical,
3629 extent_logical +
3630 extent_len - 1,
3631 &sctx->csum_list, 1);
3632 if (ret)
3633 goto out;
3634
3635 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636 extent_physical, extent_dev, flags,
3637 generation, extent_mirror_num,
3638 extent_logical - logical + physical);
3639
3640 scrub_free_csums(sctx);
3641
3642 if (ret)
3643 goto out;
3644
3645 if (extent_logical + extent_len <
3646 key.objectid + bytes) {
3647 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648 /*
3649 * loop until we find next data stripe
3650 * or we have finished all stripes.
3651 */
3652loop:
3653 physical += map->stripe_len;
3654 ret = get_raid56_logic_offset(physical,
3655 num, map, &logical,
3656 &stripe_logical);
3657 logical += base;
3658
3659 if (ret && physical < physical_end) {
3660 stripe_logical += base;
3661 stripe_end = stripe_logical +
3662 increment;
3663 ret = scrub_raid56_parity(sctx,
3664 map, scrub_dev, ppath,
3665 stripe_logical,
3666 stripe_end);
3667 if (ret)
3668 goto out;
3669 goto loop;
3670 }
3671 } else {
3672 physical += map->stripe_len;
3673 logical += increment;
3674 }
3675 if (logical < key.objectid + bytes) {
3676 cond_resched();
3677 goto again;
3678 }
3679
3680 if (physical >= physical_end) {
3681 stop_loop = 1;
3682 break;
3683 }
3684 }
3685next:
3686 path->slots[0]++;
3687 }
3688 btrfs_release_path(path);
3689skip:
3690 logical += increment;
3691 physical += map->stripe_len;
3692 spin_lock(&sctx->stat_lock);
3693 if (stop_loop)
3694 sctx->stat.last_physical = map->stripes[num].physical +
3695 length;
3696 else
3697 sctx->stat.last_physical = physical;
3698 spin_unlock(&sctx->stat_lock);
3699 if (stop_loop)
3700 break;
3701 }
3702out:
3703 /* push queued extents */
3704 scrub_submit(sctx);
3705 mutex_lock(&sctx->wr_lock);
3706 scrub_wr_submit(sctx);
3707 mutex_unlock(&sctx->wr_lock);
3708
3709 blk_finish_plug(&plug);
3710 btrfs_free_path(path);
3711 btrfs_free_path(ppath);
3712 return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716 struct btrfs_device *scrub_dev,
3717 u64 chunk_offset, u64 length,
3718 u64 dev_offset,
3719 struct btrfs_block_group_cache *cache,
3720 int is_dev_replace)
3721{
3722 struct btrfs_fs_info *fs_info = sctx->fs_info;
3723 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724 struct map_lookup *map;
3725 struct extent_map *em;
3726 int i;
3727 int ret = 0;
3728
3729 read_lock(&map_tree->map_tree.lock);
3730 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731 read_unlock(&map_tree->map_tree.lock);
3732
3733 if (!em) {
3734 /*
3735 * Might have been an unused block group deleted by the cleaner
3736 * kthread or relocation.
3737 */
3738 spin_lock(&cache->lock);
3739 if (!cache->removed)
3740 ret = -EINVAL;
3741 spin_unlock(&cache->lock);
3742
3743 return ret;
3744 }
3745
3746 map = em->map_lookup;
3747 if (em->start != chunk_offset)
3748 goto out;
3749
3750 if (em->len < length)
3751 goto out;
3752
3753 for (i = 0; i < map->num_stripes; ++i) {
3754 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755 map->stripes[i].physical == dev_offset) {
3756 ret = scrub_stripe(sctx, map, scrub_dev, i,
3757 chunk_offset, length,
3758 is_dev_replace);
3759 if (ret)
3760 goto out;
3761 }
3762 }
3763out:
3764 free_extent_map(em);
3765
3766 return ret;
3767}
3768
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771 struct btrfs_device *scrub_dev, u64 start, u64 end,
3772 int is_dev_replace)
3773{
3774 struct btrfs_dev_extent *dev_extent = NULL;
3775 struct btrfs_path *path;
3776 struct btrfs_fs_info *fs_info = sctx->fs_info;
3777 struct btrfs_root *root = fs_info->dev_root;
3778 u64 length;
3779 u64 chunk_offset;
3780 int ret = 0;
3781 int ro_set;
3782 int slot;
3783 struct extent_buffer *l;
3784 struct btrfs_key key;
3785 struct btrfs_key found_key;
3786 struct btrfs_block_group_cache *cache;
3787 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789 path = btrfs_alloc_path();
3790 if (!path)
3791 return -ENOMEM;
3792
3793 path->reada = READA_FORWARD;
3794 path->search_commit_root = 1;
3795 path->skip_locking = 1;
3796
3797 key.objectid = scrub_dev->devid;
3798 key.offset = 0ull;
3799 key.type = BTRFS_DEV_EXTENT_KEY;
3800
3801 while (1) {
3802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803 if (ret < 0)
3804 break;
3805 if (ret > 0) {
3806 if (path->slots[0] >=
3807 btrfs_header_nritems(path->nodes[0])) {
3808 ret = btrfs_next_leaf(root, path);
3809 if (ret < 0)
3810 break;
3811 if (ret > 0) {
3812 ret = 0;
3813 break;
3814 }
3815 } else {
3816 ret = 0;
3817 }
3818 }
3819
3820 l = path->nodes[0];
3821 slot = path->slots[0];
3822
3823 btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825 if (found_key.objectid != scrub_dev->devid)
3826 break;
3827
3828 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829 break;
3830
3831 if (found_key.offset >= end)
3832 break;
3833
3834 if (found_key.offset < key.offset)
3835 break;
3836
3837 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838 length = btrfs_dev_extent_length(l, dev_extent);
3839
3840 if (found_key.offset + length <= start)
3841 goto skip;
3842
3843 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845 /*
3846 * get a reference on the corresponding block group to prevent
3847 * the chunk from going away while we scrub it
3848 */
3849 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851 /* some chunks are removed but not committed to disk yet,
3852 * continue scrubbing */
3853 if (!cache)
3854 goto skip;
3855
3856 /*
3857 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858 * to avoid deadlock caused by:
3859 * btrfs_inc_block_group_ro()
3860 * -> btrfs_wait_for_commit()
3861 * -> btrfs_commit_transaction()
3862 * -> btrfs_scrub_pause()
3863 */
3864 scrub_pause_on(fs_info);
3865 ret = btrfs_inc_block_group_ro(fs_info, cache);
3866 if (!ret && is_dev_replace) {
3867 /*
3868 * If we are doing a device replace wait for any tasks
3869 * that started dellaloc right before we set the block
3870 * group to RO mode, as they might have just allocated
3871 * an extent from it or decided they could do a nocow
3872 * write. And if any such tasks did that, wait for their
3873 * ordered extents to complete and then commit the
3874 * current transaction, so that we can later see the new
3875 * extent items in the extent tree - the ordered extents
3876 * create delayed data references (for cow writes) when
3877 * they complete, which will be run and insert the
3878 * corresponding extent items into the extent tree when
3879 * we commit the transaction they used when running
3880 * inode.c:btrfs_finish_ordered_io(). We later use
3881 * the commit root of the extent tree to find extents
3882 * to copy from the srcdev into the tgtdev, and we don't
3883 * want to miss any new extents.
3884 */
3885 btrfs_wait_block_group_reservations(cache);
3886 btrfs_wait_nocow_writers(cache);
3887 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888 cache->key.objectid,
3889 cache->key.offset);
3890 if (ret > 0) {
3891 struct btrfs_trans_handle *trans;
3892
3893 trans = btrfs_join_transaction(root);
3894 if (IS_ERR(trans))
3895 ret = PTR_ERR(trans);
3896 else
3897 ret = btrfs_commit_transaction(trans);
3898 if (ret) {
3899 scrub_pause_off(fs_info);
3900 btrfs_put_block_group(cache);
3901 break;
3902 }
3903 }
3904 }
3905 scrub_pause_off(fs_info);
3906
3907 if (ret == 0) {
3908 ro_set = 1;
3909 } else if (ret == -ENOSPC) {
3910 /*
3911 * btrfs_inc_block_group_ro return -ENOSPC when it
3912 * failed in creating new chunk for metadata.
3913 * It is not a problem for scrub/replace, because
3914 * metadata are always cowed, and our scrub paused
3915 * commit_transactions.
3916 */
3917 ro_set = 0;
3918 } else {
3919 btrfs_warn(fs_info,
3920 "failed setting block group ro: %d", ret);
3921 btrfs_put_block_group(cache);
3922 break;
3923 }
3924
3925 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926 dev_replace->cursor_right = found_key.offset + length;
3927 dev_replace->cursor_left = found_key.offset;
3928 dev_replace->item_needs_writeback = 1;
3929 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931 found_key.offset, cache, is_dev_replace);
3932
3933 /*
3934 * flush, submit all pending read and write bios, afterwards
3935 * wait for them.
3936 * Note that in the dev replace case, a read request causes
3937 * write requests that are submitted in the read completion
3938 * worker. Therefore in the current situation, it is required
3939 * that all write requests are flushed, so that all read and
3940 * write requests are really completed when bios_in_flight
3941 * changes to 0.
3942 */
3943 sctx->flush_all_writes = true;
3944 scrub_submit(sctx);
3945 mutex_lock(&sctx->wr_lock);
3946 scrub_wr_submit(sctx);
3947 mutex_unlock(&sctx->wr_lock);
3948
3949 wait_event(sctx->list_wait,
3950 atomic_read(&sctx->bios_in_flight) == 0);
3951
3952 scrub_pause_on(fs_info);
3953
3954 /*
3955 * must be called before we decrease @scrub_paused.
3956 * make sure we don't block transaction commit while
3957 * we are waiting pending workers finished.
3958 */
3959 wait_event(sctx->list_wait,
3960 atomic_read(&sctx->workers_pending) == 0);
3961 sctx->flush_all_writes = false;
3962
3963 scrub_pause_off(fs_info);
3964
3965 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966 dev_replace->cursor_left = dev_replace->cursor_right;
3967 dev_replace->item_needs_writeback = 1;
3968 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970 if (ro_set)
3971 btrfs_dec_block_group_ro(cache);
3972
3973 /*
3974 * We might have prevented the cleaner kthread from deleting
3975 * this block group if it was already unused because we raced
3976 * and set it to RO mode first. So add it back to the unused
3977 * list, otherwise it might not ever be deleted unless a manual
3978 * balance is triggered or it becomes used and unused again.
3979 */
3980 spin_lock(&cache->lock);
3981 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982 btrfs_block_group_used(&cache->item) == 0) {
3983 spin_unlock(&cache->lock);
3984 spin_lock(&fs_info->unused_bgs_lock);
3985 if (list_empty(&cache->bg_list)) {
3986 btrfs_get_block_group(cache);
3987 list_add_tail(&cache->bg_list,
3988 &fs_info->unused_bgs);
3989 }
3990 spin_unlock(&fs_info->unused_bgs_lock);
3991 } else {
3992 spin_unlock(&cache->lock);
3993 }
3994
3995 btrfs_put_block_group(cache);
3996 if (ret)
3997 break;
3998 if (is_dev_replace &&
3999 atomic64_read(&dev_replace->num_write_errors) > 0) {
4000 ret = -EIO;
4001 break;
4002 }
4003 if (sctx->stat.malloc_errors > 0) {
4004 ret = -ENOMEM;
4005 break;
4006 }
4007skip:
4008 key.offset = found_key.offset + length;
4009 btrfs_release_path(path);
4010 }
4011
4012 btrfs_free_path(path);
4013
4014 return ret;
4015}
4016
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018 struct btrfs_device *scrub_dev)
4019{
4020 int i;
4021 u64 bytenr;
4022 u64 gen;
4023 int ret;
4024 struct btrfs_fs_info *fs_info = sctx->fs_info;
4025
4026 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027 return -EIO;
4028
4029 /* Seed devices of a new filesystem has their own generation. */
4030 if (scrub_dev->fs_devices != fs_info->fs_devices)
4031 gen = scrub_dev->generation;
4032 else
4033 gen = fs_info->last_trans_committed;
4034
4035 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036 bytenr = btrfs_sb_offset(i);
4037 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038 scrub_dev->commit_total_bytes)
4039 break;
4040
4041 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043 NULL, 1, bytenr);
4044 if (ret)
4045 return ret;
4046 }
4047 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4048
4049 return 0;
4050}
4051
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056 int is_dev_replace)
4057{
4058 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4059 int max_active = fs_info->thread_pool_size;
4060
4061 if (fs_info->scrub_workers_refcnt == 0) {
4062 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063 flags, is_dev_replace ? 1 : max_active, 4);
4064 if (!fs_info->scrub_workers)
4065 goto fail_scrub_workers;
4066
4067 fs_info->scrub_wr_completion_workers =
4068 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069 max_active, 2);
4070 if (!fs_info->scrub_wr_completion_workers)
4071 goto fail_scrub_wr_completion_workers;
4072
4073 fs_info->scrub_nocow_workers =
4074 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075 if (!fs_info->scrub_nocow_workers)
4076 goto fail_scrub_nocow_workers;
4077 fs_info->scrub_parity_workers =
4078 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079 max_active, 2);
4080 if (!fs_info->scrub_parity_workers)
4081 goto fail_scrub_parity_workers;
4082 }
4083 ++fs_info->scrub_workers_refcnt;
4084 return 0;
4085
4086fail_scrub_parity_workers:
4087 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091 btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093 return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098 if (--fs_info->scrub_workers_refcnt == 0) {
4099 btrfs_destroy_workqueue(fs_info->scrub_workers);
4100 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103 }
4104 WARN_ON(fs_info->scrub_workers_refcnt < 0);
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108 u64 end, struct btrfs_scrub_progress *progress,
4109 int readonly, int is_dev_replace)
4110{
4111 struct scrub_ctx *sctx;
4112 int ret;
4113 struct btrfs_device *dev;
4114 struct rcu_string *name;
4115
4116 if (btrfs_fs_closing(fs_info))
4117 return -EINVAL;
4118
4119 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4120 /*
4121 * in this case scrub is unable to calculate the checksum
4122 * the way scrub is implemented. Do not handle this
4123 * situation at all because it won't ever happen.
4124 */
4125 btrfs_err(fs_info,
4126 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127 fs_info->nodesize,
4128 BTRFS_STRIPE_LEN);
4129 return -EINVAL;
4130 }
4131
4132 if (fs_info->sectorsize != PAGE_SIZE) {
4133 /* not supported for data w/o checksums */
4134 btrfs_err_rl(fs_info,
4135 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136 fs_info->sectorsize, PAGE_SIZE);
4137 return -EINVAL;
4138 }
4139
4140 if (fs_info->nodesize >
4141 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4143 /*
4144 * would exhaust the array bounds of pagev member in
4145 * struct scrub_block
4146 */
4147 btrfs_err(fs_info,
4148 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149 fs_info->nodesize,
4150 SCRUB_MAX_PAGES_PER_BLOCK,
4151 fs_info->sectorsize,
4152 SCRUB_MAX_PAGES_PER_BLOCK);
4153 return -EINVAL;
4154 }
4155
4156
4157 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160 !is_dev_replace)) {
4161 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162 return -ENODEV;
4163 }
4164
4165 if (!is_dev_replace && !readonly &&
4166 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168 rcu_read_lock();
4169 name = rcu_dereference(dev->name);
4170 btrfs_err(fs_info, "scrub: device %s is not writable",
4171 name->str);
4172 rcu_read_unlock();
4173 return -EROFS;
4174 }
4175
4176 mutex_lock(&fs_info->scrub_lock);
4177 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179 mutex_unlock(&fs_info->scrub_lock);
4180 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181 return -EIO;
4182 }
4183
4184 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185 if (dev->scrub_ctx ||
4186 (!is_dev_replace &&
4187 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189 mutex_unlock(&fs_info->scrub_lock);
4190 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191 return -EINPROGRESS;
4192 }
4193 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195 ret = scrub_workers_get(fs_info, is_dev_replace);
4196 if (ret) {
4197 mutex_unlock(&fs_info->scrub_lock);
4198 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199 return ret;
4200 }
4201
4202 sctx = scrub_setup_ctx(dev, is_dev_replace);
4203 if (IS_ERR(sctx)) {
4204 mutex_unlock(&fs_info->scrub_lock);
4205 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206 scrub_workers_put(fs_info);
4207 return PTR_ERR(sctx);
4208 }
4209 sctx->readonly = readonly;
4210 dev->scrub_ctx = sctx;
4211 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213 /*
4214 * checking @scrub_pause_req here, we can avoid
4215 * race between committing transaction and scrubbing.
4216 */
4217 __scrub_blocked_if_needed(fs_info);
4218 atomic_inc(&fs_info->scrubs_running);
4219 mutex_unlock(&fs_info->scrub_lock);
4220
4221 if (!is_dev_replace) {
4222 /*
4223 * by holding device list mutex, we can
4224 * kick off writing super in log tree sync.
4225 */
4226 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227 ret = scrub_supers(sctx, dev);
4228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4229 }
4230
4231 if (!ret)
4232 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233 is_dev_replace);
4234
4235 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236 atomic_dec(&fs_info->scrubs_running);
4237 wake_up(&fs_info->scrub_pause_wait);
4238
4239 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241 if (progress)
4242 memcpy(progress, &sctx->stat, sizeof(*progress));
4243
4244 mutex_lock(&fs_info->scrub_lock);
4245 dev->scrub_ctx = NULL;
4246 scrub_workers_put(fs_info);
4247 mutex_unlock(&fs_info->scrub_lock);
4248
4249 scrub_put_ctx(sctx);
4250
4251 return ret;
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
4256 mutex_lock(&fs_info->scrub_lock);
4257 atomic_inc(&fs_info->scrub_pause_req);
4258 while (atomic_read(&fs_info->scrubs_paused) !=
4259 atomic_read(&fs_info->scrubs_running)) {
4260 mutex_unlock(&fs_info->scrub_lock);
4261 wait_event(fs_info->scrub_pause_wait,
4262 atomic_read(&fs_info->scrubs_paused) ==
4263 atomic_read(&fs_info->scrubs_running));
4264 mutex_lock(&fs_info->scrub_lock);
4265 }
4266 mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
4271 atomic_dec(&fs_info->scrub_pause_req);
4272 wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4276{
4277 mutex_lock(&fs_info->scrub_lock);
4278 if (!atomic_read(&fs_info->scrubs_running)) {
4279 mutex_unlock(&fs_info->scrub_lock);
4280 return -ENOTCONN;
4281 }
4282
4283 atomic_inc(&fs_info->scrub_cancel_req);
4284 while (atomic_read(&fs_info->scrubs_running)) {
4285 mutex_unlock(&fs_info->scrub_lock);
4286 wait_event(fs_info->scrub_pause_wait,
4287 atomic_read(&fs_info->scrubs_running) == 0);
4288 mutex_lock(&fs_info->scrub_lock);
4289 }
4290 atomic_dec(&fs_info->scrub_cancel_req);
4291 mutex_unlock(&fs_info->scrub_lock);
4292
4293 return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297 struct btrfs_device *dev)
4298{
4299 struct scrub_ctx *sctx;
4300
4301 mutex_lock(&fs_info->scrub_lock);
4302 sctx = dev->scrub_ctx;
4303 if (!sctx) {
4304 mutex_unlock(&fs_info->scrub_lock);
4305 return -ENOTCONN;
4306 }
4307 atomic_inc(&sctx->cancel_req);
4308 while (dev->scrub_ctx) {
4309 mutex_unlock(&fs_info->scrub_lock);
4310 wait_event(fs_info->scrub_pause_wait,
4311 dev->scrub_ctx == NULL);
4312 mutex_lock(&fs_info->scrub_lock);
4313 }
4314 mutex_unlock(&fs_info->scrub_lock);
4315
4316 return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320 struct btrfs_scrub_progress *progress)
4321{
4322 struct btrfs_device *dev;
4323 struct scrub_ctx *sctx = NULL;
4324
4325 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327 if (dev)
4328 sctx = dev->scrub_ctx;
4329 if (sctx)
4330 memcpy(progress, &sctx->stat, sizeof(*progress));
4331 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337 u64 extent_logical, u64 extent_len,
4338 u64 *extent_physical,
4339 struct btrfs_device **extent_dev,
4340 int *extent_mirror_num)
4341{
4342 u64 mapped_length;
4343 struct btrfs_bio *bbio = NULL;
4344 int ret;
4345
4346 mapped_length = extent_len;
4347 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348 &mapped_length, &bbio, 0);
4349 if (ret || !bbio || mapped_length < extent_len ||
4350 !bbio->stripes[0].dev->bdev) {
4351 btrfs_put_bbio(bbio);
4352 return;
4353 }
4354
4355 *extent_physical = bbio->stripes[0].physical;
4356 *extent_mirror_num = bbio->mirror_num;
4357 *extent_dev = bbio->stripes[0].dev;
4358 btrfs_put_bbio(bbio);
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362 int mirror_num, u64 physical_for_dev_replace)
4363{
4364 struct scrub_copy_nocow_ctx *nocow_ctx;
4365 struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368 if (!nocow_ctx) {
4369 spin_lock(&sctx->stat_lock);
4370 sctx->stat.malloc_errors++;
4371 spin_unlock(&sctx->stat_lock);
4372 return -ENOMEM;
4373 }
4374
4375 scrub_pending_trans_workers_inc(sctx);
4376
4377 nocow_ctx->sctx = sctx;
4378 nocow_ctx->logical = logical;
4379 nocow_ctx->len = len;
4380 nocow_ctx->mirror_num = mirror_num;
4381 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383 copy_nocow_pages_worker, NULL, NULL);
4384 INIT_LIST_HEAD(&nocow_ctx->inodes);
4385 btrfs_queue_work(fs_info->scrub_nocow_workers,
4386 &nocow_ctx->work);
4387
4388 return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394 struct scrub_nocow_inode *nocow_inode;
4395
4396 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397 if (!nocow_inode)
4398 return -ENOMEM;
4399 nocow_inode->inum = inum;
4400 nocow_inode->offset = offset;
4401 nocow_inode->root = root;
4402 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403 return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410 struct scrub_copy_nocow_ctx *nocow_ctx =
4411 container_of(work, struct scrub_copy_nocow_ctx, work);
4412 struct scrub_ctx *sctx = nocow_ctx->sctx;
4413 struct btrfs_fs_info *fs_info = sctx->fs_info;
4414 struct btrfs_root *root = fs_info->extent_root;
4415 u64 logical = nocow_ctx->logical;
4416 u64 len = nocow_ctx->len;
4417 int mirror_num = nocow_ctx->mirror_num;
4418 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419 int ret;
4420 struct btrfs_trans_handle *trans = NULL;
4421 struct btrfs_path *path;
4422 int not_written = 0;
4423
4424 path = btrfs_alloc_path();
4425 if (!path) {
4426 spin_lock(&sctx->stat_lock);
4427 sctx->stat.malloc_errors++;
4428 spin_unlock(&sctx->stat_lock);
4429 not_written = 1;
4430 goto out;
4431 }
4432
4433 trans = btrfs_join_transaction(root);
4434 if (IS_ERR(trans)) {
4435 not_written = 1;
4436 goto out;
4437 }
4438
4439 ret = iterate_inodes_from_logical(logical, fs_info, path,
4440 record_inode_for_nocow, nocow_ctx, false);
4441 if (ret != 0 && ret != -ENOENT) {
4442 btrfs_warn(fs_info,
4443 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444 logical, physical_for_dev_replace, len, mirror_num,
4445 ret);
4446 not_written = 1;
4447 goto out;
4448 }
4449
4450 btrfs_end_transaction(trans);
4451 trans = NULL;
4452 while (!list_empty(&nocow_ctx->inodes)) {
4453 struct scrub_nocow_inode *entry;
4454 entry = list_first_entry(&nocow_ctx->inodes,
4455 struct scrub_nocow_inode,
4456 list);
4457 list_del_init(&entry->list);
4458 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459 entry->root, nocow_ctx);
4460 kfree(entry);
4461 if (ret == COPY_COMPLETE) {
4462 ret = 0;
4463 break;
4464 } else if (ret) {
4465 break;
4466 }
4467 }
4468out:
4469 while (!list_empty(&nocow_ctx->inodes)) {
4470 struct scrub_nocow_inode *entry;
4471 entry = list_first_entry(&nocow_ctx->inodes,
4472 struct scrub_nocow_inode,
4473 list);
4474 list_del_init(&entry->list);
4475 kfree(entry);
4476 }
4477 if (trans && !IS_ERR(trans))
4478 btrfs_end_transaction(trans);
4479 if (not_written)
4480 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481 num_uncorrectable_read_errors);
4482
4483 btrfs_free_path(path);
4484 kfree(nocow_ctx);
4485
4486 scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490 u64 logical)
4491{
4492 struct extent_state *cached_state = NULL;
4493 struct btrfs_ordered_extent *ordered;
4494 struct extent_io_tree *io_tree;
4495 struct extent_map *em;
4496 u64 lockstart = start, lockend = start + len - 1;
4497 int ret = 0;
4498
4499 io_tree = &inode->io_tree;
4500
4501 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503 if (ordered) {
4504 btrfs_put_ordered_extent(ordered);
4505 ret = 1;
4506 goto out_unlock;
4507 }
4508
4509 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510 if (IS_ERR(em)) {
4511 ret = PTR_ERR(em);
4512 goto out_unlock;
4513 }
4514
4515 /*
4516 * This extent does not actually cover the logical extent anymore,
4517 * move on to the next inode.
4518 */
4519 if (em->block_start > logical ||
4520 em->block_start + em->block_len < logical + len ||
4521 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522 free_extent_map(em);
4523 ret = 1;
4524 goto out_unlock;
4525 }
4526 free_extent_map(em);
4527
4528out_unlock:
4529 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530 return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534 struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537 struct btrfs_key key;
4538 struct inode *inode;
4539 struct page *page;
4540 struct btrfs_root *local_root;
4541 struct extent_io_tree *io_tree;
4542 u64 physical_for_dev_replace;
4543 u64 nocow_ctx_logical;
4544 u64 len = nocow_ctx->len;
4545 unsigned long index;
4546 int srcu_index;
4547 int ret = 0;
4548 int err = 0;
4549
4550 key.objectid = root;
4551 key.type = BTRFS_ROOT_ITEM_KEY;
4552 key.offset = (u64)-1;
4553
4554 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557 if (IS_ERR(local_root)) {
4558 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559 return PTR_ERR(local_root);
4560 }
4561
4562 key.type = BTRFS_INODE_ITEM_KEY;
4563 key.objectid = inum;
4564 key.offset = 0;
4565 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567 if (IS_ERR(inode))
4568 return PTR_ERR(inode);
4569
4570 /* Avoid truncate/dio/punch hole.. */
4571 inode_lock(inode);
4572 inode_dio_wait(inode);
4573
4574 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575 io_tree = &BTRFS_I(inode)->io_tree;
4576 nocow_ctx_logical = nocow_ctx->logical;
4577
4578 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579 nocow_ctx_logical);
4580 if (ret) {
4581 ret = ret > 0 ? 0 : ret;
4582 goto out;
4583 }
4584
4585 while (len >= PAGE_SIZE) {
4586 index = offset >> PAGE_SHIFT;
4587again:
4588 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589 if (!page) {
4590 btrfs_err(fs_info, "find_or_create_page() failed");
4591 ret = -ENOMEM;
4592 goto out;
4593 }
4594
4595 if (PageUptodate(page)) {
4596 if (PageDirty(page))
4597 goto next_page;
4598 } else {
4599 ClearPageError(page);
4600 err = extent_read_full_page(io_tree, page,
4601 btrfs_get_extent,
4602 nocow_ctx->mirror_num);
4603 if (err) {
4604 ret = err;
4605 goto next_page;
4606 }
4607
4608 lock_page(page);
4609 /*
4610 * If the page has been remove from the page cache,
4611 * the data on it is meaningless, because it may be
4612 * old one, the new data may be written into the new
4613 * page in the page cache.
4614 */
4615 if (page->mapping != inode->i_mapping) {
4616 unlock_page(page);
4617 put_page(page);
4618 goto again;
4619 }
4620 if (!PageUptodate(page)) {
4621 ret = -EIO;
4622 goto next_page;
4623 }
4624 }
4625
4626 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627 nocow_ctx_logical);
4628 if (ret) {
4629 ret = ret > 0 ? 0 : ret;
4630 goto next_page;
4631 }
4632
4633 err = write_page_nocow(nocow_ctx->sctx,
4634 physical_for_dev_replace, page);
4635 if (err)
4636 ret = err;
4637next_page:
4638 unlock_page(page);
4639 put_page(page);
4640
4641 if (ret)
4642 break;
4643
4644 offset += PAGE_SIZE;
4645 physical_for_dev_replace += PAGE_SIZE;
4646 nocow_ctx_logical += PAGE_SIZE;
4647 len -= PAGE_SIZE;
4648 }
4649 ret = COPY_COMPLETE;
4650out:
4651 inode_unlock(inode);
4652 iput(inode);
4653 return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657 u64 physical_for_dev_replace, struct page *page)
4658{
4659 struct bio *bio;
4660 struct btrfs_device *dev;
4661
4662 dev = sctx->wr_tgtdev;
4663 if (!dev)
4664 return -EIO;
4665 if (!dev->bdev) {
4666 btrfs_warn_rl(dev->fs_info,
4667 "scrub write_page_nocow(bdev == NULL) is unexpected");
4668 return -EIO;
4669 }
4670 bio = btrfs_io_bio_alloc(1);
4671 bio->bi_iter.bi_size = 0;
4672 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673 bio_set_dev(bio, dev->bdev);
4674 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675 /* bio_add_page won't fail on a freshly allocated bio */
4676 bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678 if (btrfsic_submit_bio_wait(bio)) {
4679 bio_put(bio);
4680 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681 return -EIO;
4682 }
4683
4684 bio_put(bio);
4685 return 0;
4686}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include <crypto/hash.h>
10#include "ctree.h"
11#include "discard.h"
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
15#include "transaction.h"
16#include "backref.h"
17#include "extent_io.h"
18#include "dev-replace.h"
19#include "check-integrity.h"
20#include "raid56.h"
21#include "block-group.h"
22#include "zoned.h"
23#include "fs.h"
24#include "accessors.h"
25#include "file-item.h"
26#include "scrub.h"
27
28/*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41struct scrub_block;
42struct scrub_ctx;
43
44/*
45 * The following three values only influence the performance.
46 *
47 * The last one configures the number of parallel and outstanding I/O
48 * operations. The first one configures an upper limit for the number
49 * of (dynamically allocated) pages that are added to a bio.
50 */
51#define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */
52#define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */
53
54/*
55 * The following value times PAGE_SIZE needs to be large enough to match the
56 * largest node/leaf/sector size that shall be supported.
57 */
58#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
59
60#define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
61
62/*
63 * Maximum number of mirrors that can be available for all profiles counting
64 * the target device of dev-replace as one. During an active device replace
65 * procedure, the target device of the copy operation is a mirror for the
66 * filesystem data as well that can be used to read data in order to repair
67 * read errors on other disks.
68 *
69 * Current value is derived from RAID1C4 with 4 copies.
70 */
71#define BTRFS_MAX_MIRRORS (4 + 1)
72
73struct scrub_recover {
74 refcount_t refs;
75 struct btrfs_io_context *bioc;
76 u64 map_length;
77};
78
79struct scrub_sector {
80 struct scrub_block *sblock;
81 struct list_head list;
82 u64 flags; /* extent flags */
83 u64 generation;
84 /* Offset in bytes to @sblock. */
85 u32 offset;
86 atomic_t refs;
87 unsigned int have_csum:1;
88 unsigned int io_error:1;
89 u8 csum[BTRFS_CSUM_SIZE];
90
91 struct scrub_recover *recover;
92};
93
94struct scrub_bio {
95 int index;
96 struct scrub_ctx *sctx;
97 struct btrfs_device *dev;
98 struct bio *bio;
99 blk_status_t status;
100 u64 logical;
101 u64 physical;
102 struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO];
103 int sector_count;
104 int next_free;
105 struct work_struct work;
106};
107
108struct scrub_block {
109 /*
110 * Each page will have its page::private used to record the logical
111 * bytenr.
112 */
113 struct page *pages[SCRUB_MAX_PAGES];
114 struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115 struct btrfs_device *dev;
116 /* Logical bytenr of the sblock */
117 u64 logical;
118 u64 physical;
119 u64 physical_for_dev_replace;
120 /* Length of sblock in bytes */
121 u32 len;
122 int sector_count;
123 int mirror_num;
124
125 atomic_t outstanding_sectors;
126 refcount_t refs; /* free mem on transition to zero */
127 struct scrub_ctx *sctx;
128 struct scrub_parity *sparity;
129 struct {
130 unsigned int header_error:1;
131 unsigned int checksum_error:1;
132 unsigned int no_io_error_seen:1;
133 unsigned int generation_error:1; /* also sets header_error */
134
135 /* The following is for the data used to check parity */
136 /* It is for the data with checksum */
137 unsigned int data_corrected:1;
138 };
139 struct work_struct work;
140};
141
142/* Used for the chunks with parity stripe such RAID5/6 */
143struct scrub_parity {
144 struct scrub_ctx *sctx;
145
146 struct btrfs_device *scrub_dev;
147
148 u64 logic_start;
149
150 u64 logic_end;
151
152 int nsectors;
153
154 u32 stripe_len;
155
156 refcount_t refs;
157
158 struct list_head sectors_list;
159
160 /* Work of parity check and repair */
161 struct work_struct work;
162
163 /* Mark the parity blocks which have data */
164 unsigned long dbitmap;
165
166 /*
167 * Mark the parity blocks which have data, but errors happen when
168 * read data or check data
169 */
170 unsigned long ebitmap;
171};
172
173struct scrub_ctx {
174 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
175 struct btrfs_fs_info *fs_info;
176 int first_free;
177 int curr;
178 atomic_t bios_in_flight;
179 atomic_t workers_pending;
180 spinlock_t list_lock;
181 wait_queue_head_t list_wait;
182 struct list_head csum_list;
183 atomic_t cancel_req;
184 int readonly;
185 int sectors_per_bio;
186
187 /* State of IO submission throttling affecting the associated device */
188 ktime_t throttle_deadline;
189 u64 throttle_sent;
190
191 int is_dev_replace;
192 u64 write_pointer;
193
194 struct scrub_bio *wr_curr_bio;
195 struct mutex wr_lock;
196 struct btrfs_device *wr_tgtdev;
197 bool flush_all_writes;
198
199 /*
200 * statistics
201 */
202 struct btrfs_scrub_progress stat;
203 spinlock_t stat_lock;
204
205 /*
206 * Use a ref counter to avoid use-after-free issues. Scrub workers
207 * decrement bios_in_flight and workers_pending and then do a wakeup
208 * on the list_wait wait queue. We must ensure the main scrub task
209 * doesn't free the scrub context before or while the workers are
210 * doing the wakeup() call.
211 */
212 refcount_t refs;
213};
214
215struct scrub_warning {
216 struct btrfs_path *path;
217 u64 extent_item_size;
218 const char *errstr;
219 u64 physical;
220 u64 logical;
221 struct btrfs_device *dev;
222};
223
224struct full_stripe_lock {
225 struct rb_node node;
226 u64 logical;
227 u64 refs;
228 struct mutex mutex;
229};
230
231#ifndef CONFIG_64BIT
232/* This structure is for archtectures whose (void *) is smaller than u64 */
233struct scrub_page_private {
234 u64 logical;
235};
236#endif
237
238static int attach_scrub_page_private(struct page *page, u64 logical)
239{
240#ifdef CONFIG_64BIT
241 attach_page_private(page, (void *)logical);
242 return 0;
243#else
244 struct scrub_page_private *spp;
245
246 spp = kmalloc(sizeof(*spp), GFP_KERNEL);
247 if (!spp)
248 return -ENOMEM;
249 spp->logical = logical;
250 attach_page_private(page, (void *)spp);
251 return 0;
252#endif
253}
254
255static void detach_scrub_page_private(struct page *page)
256{
257#ifdef CONFIG_64BIT
258 detach_page_private(page);
259 return;
260#else
261 struct scrub_page_private *spp;
262
263 spp = detach_page_private(page);
264 kfree(spp);
265 return;
266#endif
267}
268
269static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
270 struct btrfs_device *dev,
271 u64 logical, u64 physical,
272 u64 physical_for_dev_replace,
273 int mirror_num)
274{
275 struct scrub_block *sblock;
276
277 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
278 if (!sblock)
279 return NULL;
280 refcount_set(&sblock->refs, 1);
281 sblock->sctx = sctx;
282 sblock->logical = logical;
283 sblock->physical = physical;
284 sblock->physical_for_dev_replace = physical_for_dev_replace;
285 sblock->dev = dev;
286 sblock->mirror_num = mirror_num;
287 sblock->no_io_error_seen = 1;
288 /*
289 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
290 * the corresponding page is not allocated.
291 */
292 return sblock;
293}
294
295/*
296 * Allocate a new scrub sector and attach it to @sblock.
297 *
298 * Will also allocate new pages for @sblock if needed.
299 */
300static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301 u64 logical)
302{
303 const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304 struct scrub_sector *ssector;
305
306 /* We must never have scrub_block exceed U32_MAX in size. */
307 ASSERT(logical - sblock->logical < U32_MAX);
308
309 ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310 if (!ssector)
311 return NULL;
312
313 /* Allocate a new page if the slot is not allocated */
314 if (!sblock->pages[page_index]) {
315 int ret;
316
317 sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318 if (!sblock->pages[page_index]) {
319 kfree(ssector);
320 return NULL;
321 }
322 ret = attach_scrub_page_private(sblock->pages[page_index],
323 sblock->logical + (page_index << PAGE_SHIFT));
324 if (ret < 0) {
325 kfree(ssector);
326 __free_page(sblock->pages[page_index]);
327 sblock->pages[page_index] = NULL;
328 return NULL;
329 }
330 }
331
332 atomic_set(&ssector->refs, 1);
333 ssector->sblock = sblock;
334 /* The sector to be added should not be used */
335 ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336 ssector->offset = logical - sblock->logical;
337
338 /* The sector count must be smaller than the limit */
339 ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
340
341 sblock->sectors[sblock->sector_count] = ssector;
342 sblock->sector_count++;
343 sblock->len += sblock->sctx->fs_info->sectorsize;
344
345 return ssector;
346}
347
348static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
349{
350 struct scrub_block *sblock = ssector->sblock;
351 pgoff_t index;
352 /*
353 * When calling this function, ssector must be alreaday attached to the
354 * parent sblock.
355 */
356 ASSERT(sblock);
357
358 /* The range should be inside the sblock range */
359 ASSERT(ssector->offset < sblock->len);
360
361 index = ssector->offset >> PAGE_SHIFT;
362 ASSERT(index < SCRUB_MAX_PAGES);
363 ASSERT(sblock->pages[index]);
364 ASSERT(PagePrivate(sblock->pages[index]));
365 return sblock->pages[index];
366}
367
368static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
369{
370 struct scrub_block *sblock = ssector->sblock;
371
372 /*
373 * When calling this function, ssector must be already attached to the
374 * parent sblock.
375 */
376 ASSERT(sblock);
377
378 /* The range should be inside the sblock range */
379 ASSERT(ssector->offset < sblock->len);
380
381 return offset_in_page(ssector->offset);
382}
383
384static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
385{
386 return page_address(scrub_sector_get_page(ssector)) +
387 scrub_sector_get_page_offset(ssector);
388}
389
390static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
391 unsigned int len)
392{
393 return bio_add_page(bio, scrub_sector_get_page(ssector), len,
394 scrub_sector_get_page_offset(ssector));
395}
396
397static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398 struct scrub_block *sblocks_for_recheck[]);
399static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400 struct scrub_block *sblock,
401 int retry_failed_mirror);
402static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404 struct scrub_block *sblock_good);
405static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406 struct scrub_block *sblock_good,
407 int sector_num, int force_write);
408static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
410 int sector_num);
411static int scrub_checksum_data(struct scrub_block *sblock);
412static int scrub_checksum_tree_block(struct scrub_block *sblock);
413static int scrub_checksum_super(struct scrub_block *sblock);
414static void scrub_block_put(struct scrub_block *sblock);
415static void scrub_sector_get(struct scrub_sector *sector);
416static void scrub_sector_put(struct scrub_sector *sector);
417static void scrub_parity_get(struct scrub_parity *sparity);
418static void scrub_parity_put(struct scrub_parity *sparity);
419static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
420 u64 physical, struct btrfs_device *dev, u64 flags,
421 u64 gen, int mirror_num, u8 *csum,
422 u64 physical_for_dev_replace);
423static void scrub_bio_end_io(struct bio *bio);
424static void scrub_bio_end_io_worker(struct work_struct *work);
425static void scrub_block_complete(struct scrub_block *sblock);
426static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
427 u64 extent_logical, u32 extent_len,
428 u64 *extent_physical,
429 struct btrfs_device **extent_dev,
430 int *extent_mirror_num);
431static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
432 struct scrub_sector *sector);
433static void scrub_wr_submit(struct scrub_ctx *sctx);
434static void scrub_wr_bio_end_io(struct bio *bio);
435static void scrub_wr_bio_end_io_worker(struct work_struct *work);
436static void scrub_put_ctx(struct scrub_ctx *sctx);
437
438static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
439{
440 return sector->recover &&
441 (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
442}
443
444static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
445{
446 refcount_inc(&sctx->refs);
447 atomic_inc(&sctx->bios_in_flight);
448}
449
450static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
451{
452 atomic_dec(&sctx->bios_in_flight);
453 wake_up(&sctx->list_wait);
454 scrub_put_ctx(sctx);
455}
456
457static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
458{
459 while (atomic_read(&fs_info->scrub_pause_req)) {
460 mutex_unlock(&fs_info->scrub_lock);
461 wait_event(fs_info->scrub_pause_wait,
462 atomic_read(&fs_info->scrub_pause_req) == 0);
463 mutex_lock(&fs_info->scrub_lock);
464 }
465}
466
467static void scrub_pause_on(struct btrfs_fs_info *fs_info)
468{
469 atomic_inc(&fs_info->scrubs_paused);
470 wake_up(&fs_info->scrub_pause_wait);
471}
472
473static void scrub_pause_off(struct btrfs_fs_info *fs_info)
474{
475 mutex_lock(&fs_info->scrub_lock);
476 __scrub_blocked_if_needed(fs_info);
477 atomic_dec(&fs_info->scrubs_paused);
478 mutex_unlock(&fs_info->scrub_lock);
479
480 wake_up(&fs_info->scrub_pause_wait);
481}
482
483static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
484{
485 scrub_pause_on(fs_info);
486 scrub_pause_off(fs_info);
487}
488
489/*
490 * Insert new full stripe lock into full stripe locks tree
491 *
492 * Return pointer to existing or newly inserted full_stripe_lock structure if
493 * everything works well.
494 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
495 *
496 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
497 * function
498 */
499static struct full_stripe_lock *insert_full_stripe_lock(
500 struct btrfs_full_stripe_locks_tree *locks_root,
501 u64 fstripe_logical)
502{
503 struct rb_node **p;
504 struct rb_node *parent = NULL;
505 struct full_stripe_lock *entry;
506 struct full_stripe_lock *ret;
507
508 lockdep_assert_held(&locks_root->lock);
509
510 p = &locks_root->root.rb_node;
511 while (*p) {
512 parent = *p;
513 entry = rb_entry(parent, struct full_stripe_lock, node);
514 if (fstripe_logical < entry->logical) {
515 p = &(*p)->rb_left;
516 } else if (fstripe_logical > entry->logical) {
517 p = &(*p)->rb_right;
518 } else {
519 entry->refs++;
520 return entry;
521 }
522 }
523
524 /*
525 * Insert new lock.
526 */
527 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
528 if (!ret)
529 return ERR_PTR(-ENOMEM);
530 ret->logical = fstripe_logical;
531 ret->refs = 1;
532 mutex_init(&ret->mutex);
533
534 rb_link_node(&ret->node, parent, p);
535 rb_insert_color(&ret->node, &locks_root->root);
536 return ret;
537}
538
539/*
540 * Search for a full stripe lock of a block group
541 *
542 * Return pointer to existing full stripe lock if found
543 * Return NULL if not found
544 */
545static struct full_stripe_lock *search_full_stripe_lock(
546 struct btrfs_full_stripe_locks_tree *locks_root,
547 u64 fstripe_logical)
548{
549 struct rb_node *node;
550 struct full_stripe_lock *entry;
551
552 lockdep_assert_held(&locks_root->lock);
553
554 node = locks_root->root.rb_node;
555 while (node) {
556 entry = rb_entry(node, struct full_stripe_lock, node);
557 if (fstripe_logical < entry->logical)
558 node = node->rb_left;
559 else if (fstripe_logical > entry->logical)
560 node = node->rb_right;
561 else
562 return entry;
563 }
564 return NULL;
565}
566
567/*
568 * Helper to get full stripe logical from a normal bytenr.
569 *
570 * Caller must ensure @cache is a RAID56 block group.
571 */
572static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
573{
574 u64 ret;
575
576 /*
577 * Due to chunk item size limit, full stripe length should not be
578 * larger than U32_MAX. Just a sanity check here.
579 */
580 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
581
582 /*
583 * round_down() can only handle power of 2, while RAID56 full
584 * stripe length can be 64KiB * n, so we need to manually round down.
585 */
586 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
587 cache->full_stripe_len + cache->start;
588 return ret;
589}
590
591/*
592 * Lock a full stripe to avoid concurrency of recovery and read
593 *
594 * It's only used for profiles with parities (RAID5/6), for other profiles it
595 * does nothing.
596 *
597 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
598 * So caller must call unlock_full_stripe() at the same context.
599 *
600 * Return <0 if encounters error.
601 */
602static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
603 bool *locked_ret)
604{
605 struct btrfs_block_group *bg_cache;
606 struct btrfs_full_stripe_locks_tree *locks_root;
607 struct full_stripe_lock *existing;
608 u64 fstripe_start;
609 int ret = 0;
610
611 *locked_ret = false;
612 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
613 if (!bg_cache) {
614 ASSERT(0);
615 return -ENOENT;
616 }
617
618 /* Profiles not based on parity don't need full stripe lock */
619 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
620 goto out;
621 locks_root = &bg_cache->full_stripe_locks_root;
622
623 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
624
625 /* Now insert the full stripe lock */
626 mutex_lock(&locks_root->lock);
627 existing = insert_full_stripe_lock(locks_root, fstripe_start);
628 mutex_unlock(&locks_root->lock);
629 if (IS_ERR(existing)) {
630 ret = PTR_ERR(existing);
631 goto out;
632 }
633 mutex_lock(&existing->mutex);
634 *locked_ret = true;
635out:
636 btrfs_put_block_group(bg_cache);
637 return ret;
638}
639
640/*
641 * Unlock a full stripe.
642 *
643 * NOTE: Caller must ensure it's the same context calling corresponding
644 * lock_full_stripe().
645 *
646 * Return 0 if we unlock full stripe without problem.
647 * Return <0 for error
648 */
649static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
650 bool locked)
651{
652 struct btrfs_block_group *bg_cache;
653 struct btrfs_full_stripe_locks_tree *locks_root;
654 struct full_stripe_lock *fstripe_lock;
655 u64 fstripe_start;
656 bool freeit = false;
657 int ret = 0;
658
659 /* If we didn't acquire full stripe lock, no need to continue */
660 if (!locked)
661 return 0;
662
663 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
664 if (!bg_cache) {
665 ASSERT(0);
666 return -ENOENT;
667 }
668 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
669 goto out;
670
671 locks_root = &bg_cache->full_stripe_locks_root;
672 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
673
674 mutex_lock(&locks_root->lock);
675 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
676 /* Unpaired unlock_full_stripe() detected */
677 if (!fstripe_lock) {
678 WARN_ON(1);
679 ret = -ENOENT;
680 mutex_unlock(&locks_root->lock);
681 goto out;
682 }
683
684 if (fstripe_lock->refs == 0) {
685 WARN_ON(1);
686 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
687 fstripe_lock->logical);
688 } else {
689 fstripe_lock->refs--;
690 }
691
692 if (fstripe_lock->refs == 0) {
693 rb_erase(&fstripe_lock->node, &locks_root->root);
694 freeit = true;
695 }
696 mutex_unlock(&locks_root->lock);
697
698 mutex_unlock(&fstripe_lock->mutex);
699 if (freeit)
700 kfree(fstripe_lock);
701out:
702 btrfs_put_block_group(bg_cache);
703 return ret;
704}
705
706static void scrub_free_csums(struct scrub_ctx *sctx)
707{
708 while (!list_empty(&sctx->csum_list)) {
709 struct btrfs_ordered_sum *sum;
710 sum = list_first_entry(&sctx->csum_list,
711 struct btrfs_ordered_sum, list);
712 list_del(&sum->list);
713 kfree(sum);
714 }
715}
716
717static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
718{
719 int i;
720
721 if (!sctx)
722 return;
723
724 /* this can happen when scrub is cancelled */
725 if (sctx->curr != -1) {
726 struct scrub_bio *sbio = sctx->bios[sctx->curr];
727
728 for (i = 0; i < sbio->sector_count; i++)
729 scrub_block_put(sbio->sectors[i]->sblock);
730 bio_put(sbio->bio);
731 }
732
733 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
734 struct scrub_bio *sbio = sctx->bios[i];
735
736 if (!sbio)
737 break;
738 kfree(sbio);
739 }
740
741 kfree(sctx->wr_curr_bio);
742 scrub_free_csums(sctx);
743 kfree(sctx);
744}
745
746static void scrub_put_ctx(struct scrub_ctx *sctx)
747{
748 if (refcount_dec_and_test(&sctx->refs))
749 scrub_free_ctx(sctx);
750}
751
752static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
753 struct btrfs_fs_info *fs_info, int is_dev_replace)
754{
755 struct scrub_ctx *sctx;
756 int i;
757
758 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
759 if (!sctx)
760 goto nomem;
761 refcount_set(&sctx->refs, 1);
762 sctx->is_dev_replace = is_dev_replace;
763 sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
764 sctx->curr = -1;
765 sctx->fs_info = fs_info;
766 INIT_LIST_HEAD(&sctx->csum_list);
767 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
768 struct scrub_bio *sbio;
769
770 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
771 if (!sbio)
772 goto nomem;
773 sctx->bios[i] = sbio;
774
775 sbio->index = i;
776 sbio->sctx = sctx;
777 sbio->sector_count = 0;
778 INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
779
780 if (i != SCRUB_BIOS_PER_SCTX - 1)
781 sctx->bios[i]->next_free = i + 1;
782 else
783 sctx->bios[i]->next_free = -1;
784 }
785 sctx->first_free = 0;
786 atomic_set(&sctx->bios_in_flight, 0);
787 atomic_set(&sctx->workers_pending, 0);
788 atomic_set(&sctx->cancel_req, 0);
789
790 spin_lock_init(&sctx->list_lock);
791 spin_lock_init(&sctx->stat_lock);
792 init_waitqueue_head(&sctx->list_wait);
793 sctx->throttle_deadline = 0;
794
795 WARN_ON(sctx->wr_curr_bio != NULL);
796 mutex_init(&sctx->wr_lock);
797 sctx->wr_curr_bio = NULL;
798 if (is_dev_replace) {
799 WARN_ON(!fs_info->dev_replace.tgtdev);
800 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
801 sctx->flush_all_writes = false;
802 }
803
804 return sctx;
805
806nomem:
807 scrub_free_ctx(sctx);
808 return ERR_PTR(-ENOMEM);
809}
810
811static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
812 u64 root, void *warn_ctx)
813{
814 u32 nlink;
815 int ret;
816 int i;
817 unsigned nofs_flag;
818 struct extent_buffer *eb;
819 struct btrfs_inode_item *inode_item;
820 struct scrub_warning *swarn = warn_ctx;
821 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
822 struct inode_fs_paths *ipath = NULL;
823 struct btrfs_root *local_root;
824 struct btrfs_key key;
825
826 local_root = btrfs_get_fs_root(fs_info, root, true);
827 if (IS_ERR(local_root)) {
828 ret = PTR_ERR(local_root);
829 goto err;
830 }
831
832 /*
833 * this makes the path point to (inum INODE_ITEM ioff)
834 */
835 key.objectid = inum;
836 key.type = BTRFS_INODE_ITEM_KEY;
837 key.offset = 0;
838
839 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
840 if (ret) {
841 btrfs_put_root(local_root);
842 btrfs_release_path(swarn->path);
843 goto err;
844 }
845
846 eb = swarn->path->nodes[0];
847 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
848 struct btrfs_inode_item);
849 nlink = btrfs_inode_nlink(eb, inode_item);
850 btrfs_release_path(swarn->path);
851
852 /*
853 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
854 * uses GFP_NOFS in this context, so we keep it consistent but it does
855 * not seem to be strictly necessary.
856 */
857 nofs_flag = memalloc_nofs_save();
858 ipath = init_ipath(4096, local_root, swarn->path);
859 memalloc_nofs_restore(nofs_flag);
860 if (IS_ERR(ipath)) {
861 btrfs_put_root(local_root);
862 ret = PTR_ERR(ipath);
863 ipath = NULL;
864 goto err;
865 }
866 ret = paths_from_inode(inum, ipath);
867
868 if (ret < 0)
869 goto err;
870
871 /*
872 * we deliberately ignore the bit ipath might have been too small to
873 * hold all of the paths here
874 */
875 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
876 btrfs_warn_in_rcu(fs_info,
877"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
878 swarn->errstr, swarn->logical,
879 btrfs_dev_name(swarn->dev),
880 swarn->physical,
881 root, inum, offset,
882 fs_info->sectorsize, nlink,
883 (char *)(unsigned long)ipath->fspath->val[i]);
884
885 btrfs_put_root(local_root);
886 free_ipath(ipath);
887 return 0;
888
889err:
890 btrfs_warn_in_rcu(fs_info,
891 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
892 swarn->errstr, swarn->logical,
893 btrfs_dev_name(swarn->dev),
894 swarn->physical,
895 root, inum, offset, ret);
896
897 free_ipath(ipath);
898 return 0;
899}
900
901static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
902{
903 struct btrfs_device *dev;
904 struct btrfs_fs_info *fs_info;
905 struct btrfs_path *path;
906 struct btrfs_key found_key;
907 struct extent_buffer *eb;
908 struct btrfs_extent_item *ei;
909 struct scrub_warning swarn;
910 unsigned long ptr = 0;
911 u64 flags = 0;
912 u64 ref_root;
913 u32 item_size;
914 u8 ref_level = 0;
915 int ret;
916
917 WARN_ON(sblock->sector_count < 1);
918 dev = sblock->dev;
919 fs_info = sblock->sctx->fs_info;
920
921 /* Super block error, no need to search extent tree. */
922 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
923 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
924 errstr, btrfs_dev_name(dev), sblock->physical);
925 return;
926 }
927 path = btrfs_alloc_path();
928 if (!path)
929 return;
930
931 swarn.physical = sblock->physical;
932 swarn.logical = sblock->logical;
933 swarn.errstr = errstr;
934 swarn.dev = NULL;
935
936 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
937 &flags);
938 if (ret < 0)
939 goto out;
940
941 swarn.extent_item_size = found_key.offset;
942
943 eb = path->nodes[0];
944 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
945 item_size = btrfs_item_size(eb, path->slots[0]);
946
947 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
948 do {
949 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
950 item_size, &ref_root,
951 &ref_level);
952 btrfs_warn_in_rcu(fs_info,
953"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
954 errstr, swarn.logical,
955 btrfs_dev_name(dev),
956 swarn.physical,
957 ref_level ? "node" : "leaf",
958 ret < 0 ? -1 : ref_level,
959 ret < 0 ? -1 : ref_root);
960 } while (ret != 1);
961 btrfs_release_path(path);
962 } else {
963 struct btrfs_backref_walk_ctx ctx = { 0 };
964
965 btrfs_release_path(path);
966
967 ctx.bytenr = found_key.objectid;
968 ctx.extent_item_pos = swarn.logical - found_key.objectid;
969 ctx.fs_info = fs_info;
970
971 swarn.path = path;
972 swarn.dev = dev;
973
974 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
975 }
976
977out:
978 btrfs_free_path(path);
979}
980
981static inline void scrub_get_recover(struct scrub_recover *recover)
982{
983 refcount_inc(&recover->refs);
984}
985
986static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
987 struct scrub_recover *recover)
988{
989 if (refcount_dec_and_test(&recover->refs)) {
990 btrfs_bio_counter_dec(fs_info);
991 btrfs_put_bioc(recover->bioc);
992 kfree(recover);
993 }
994}
995
996/*
997 * scrub_handle_errored_block gets called when either verification of the
998 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
999 * case, this function handles all sectors in the bio, even though only one
1000 * may be bad.
1001 * The goal of this function is to repair the errored block by using the
1002 * contents of one of the mirrors.
1003 */
1004static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1005{
1006 struct scrub_ctx *sctx = sblock_to_check->sctx;
1007 struct btrfs_device *dev = sblock_to_check->dev;
1008 struct btrfs_fs_info *fs_info;
1009 u64 logical;
1010 unsigned int failed_mirror_index;
1011 unsigned int is_metadata;
1012 unsigned int have_csum;
1013 /* One scrub_block for each mirror */
1014 struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015 struct scrub_block *sblock_bad;
1016 int ret;
1017 int mirror_index;
1018 int sector_num;
1019 int success;
1020 bool full_stripe_locked;
1021 unsigned int nofs_flag;
1022 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023 DEFAULT_RATELIMIT_BURST);
1024
1025 BUG_ON(sblock_to_check->sector_count < 1);
1026 fs_info = sctx->fs_info;
1027 if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028 /*
1029 * If we find an error in a super block, we just report it.
1030 * They will get written with the next transaction commit
1031 * anyway
1032 */
1033 scrub_print_warning("super block error", sblock_to_check);
1034 spin_lock(&sctx->stat_lock);
1035 ++sctx->stat.super_errors;
1036 spin_unlock(&sctx->stat_lock);
1037 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038 return 0;
1039 }
1040 logical = sblock_to_check->logical;
1041 ASSERT(sblock_to_check->mirror_num);
1042 failed_mirror_index = sblock_to_check->mirror_num - 1;
1043 is_metadata = !(sblock_to_check->sectors[0]->flags &
1044 BTRFS_EXTENT_FLAG_DATA);
1045 have_csum = sblock_to_check->sectors[0]->have_csum;
1046
1047 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1048 return 0;
1049
1050 /*
1051 * We must use GFP_NOFS because the scrub task might be waiting for a
1052 * worker task executing this function and in turn a transaction commit
1053 * might be waiting the scrub task to pause (which needs to wait for all
1054 * the worker tasks to complete before pausing).
1055 * We do allocations in the workers through insert_full_stripe_lock()
1056 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057 * this function.
1058 */
1059 nofs_flag = memalloc_nofs_save();
1060 /*
1061 * For RAID5/6, race can happen for a different device scrub thread.
1062 * For data corruption, Parity and Data threads will both try
1063 * to recovery the data.
1064 * Race can lead to doubly added csum error, or even unrecoverable
1065 * error.
1066 */
1067 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1068 if (ret < 0) {
1069 memalloc_nofs_restore(nofs_flag);
1070 spin_lock(&sctx->stat_lock);
1071 if (ret == -ENOMEM)
1072 sctx->stat.malloc_errors++;
1073 sctx->stat.read_errors++;
1074 sctx->stat.uncorrectable_errors++;
1075 spin_unlock(&sctx->stat_lock);
1076 return ret;
1077 }
1078
1079 /*
1080 * read all mirrors one after the other. This includes to
1081 * re-read the extent or metadata block that failed (that was
1082 * the cause that this fixup code is called) another time,
1083 * sector by sector this time in order to know which sectors
1084 * caused I/O errors and which ones are good (for all mirrors).
1085 * It is the goal to handle the situation when more than one
1086 * mirror contains I/O errors, but the errors do not
1087 * overlap, i.e. the data can be repaired by selecting the
1088 * sectors from those mirrors without I/O error on the
1089 * particular sectors. One example (with blocks >= 2 * sectorsize)
1090 * would be that mirror #1 has an I/O error on the first sector,
1091 * the second sector is good, and mirror #2 has an I/O error on
1092 * the second sector, but the first sector is good.
1093 * Then the first sector of the first mirror can be repaired by
1094 * taking the first sector of the second mirror, and the
1095 * second sector of the second mirror can be repaired by
1096 * copying the contents of the 2nd sector of the 1st mirror.
1097 * One more note: if the sectors of one mirror contain I/O
1098 * errors, the checksum cannot be verified. In order to get
1099 * the best data for repairing, the first attempt is to find
1100 * a mirror without I/O errors and with a validated checksum.
1101 * Only if this is not possible, the sectors are picked from
1102 * mirrors with I/O errors without considering the checksum.
1103 * If the latter is the case, at the end, the checksum of the
1104 * repaired area is verified in order to correctly maintain
1105 * the statistics.
1106 */
1107 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108 /*
1109 * Note: the two members refs and outstanding_sectors are not
1110 * used in the blocks that are used for the recheck procedure.
1111 *
1112 * But alloc_scrub_block() will initialize sblock::ref anyway,
1113 * so we can use scrub_block_put() to clean them up.
1114 *
1115 * And here we don't setup the physical/dev for the sblock yet,
1116 * they will be correctly initialized in scrub_setup_recheck_block().
1117 */
1118 sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1119 logical, 0, 0, mirror_index);
1120 if (!sblocks_for_recheck[mirror_index]) {
1121 spin_lock(&sctx->stat_lock);
1122 sctx->stat.malloc_errors++;
1123 sctx->stat.read_errors++;
1124 sctx->stat.uncorrectable_errors++;
1125 spin_unlock(&sctx->stat_lock);
1126 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1127 goto out;
1128 }
1129 }
1130
1131 /* Setup the context, map the logical blocks and alloc the sectors */
1132 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1133 if (ret) {
1134 spin_lock(&sctx->stat_lock);
1135 sctx->stat.read_errors++;
1136 sctx->stat.uncorrectable_errors++;
1137 spin_unlock(&sctx->stat_lock);
1138 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139 goto out;
1140 }
1141 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142 sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143
1144 /* build and submit the bios for the failed mirror, check checksums */
1145 scrub_recheck_block(fs_info, sblock_bad, 1);
1146
1147 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1148 sblock_bad->no_io_error_seen) {
1149 /*
1150 * The error disappeared after reading sector by sector, or
1151 * the area was part of a huge bio and other parts of the
1152 * bio caused I/O errors, or the block layer merged several
1153 * read requests into one and the error is caused by a
1154 * different bio (usually one of the two latter cases is
1155 * the cause)
1156 */
1157 spin_lock(&sctx->stat_lock);
1158 sctx->stat.unverified_errors++;
1159 sblock_to_check->data_corrected = 1;
1160 spin_unlock(&sctx->stat_lock);
1161
1162 if (sctx->is_dev_replace)
1163 scrub_write_block_to_dev_replace(sblock_bad);
1164 goto out;
1165 }
1166
1167 if (!sblock_bad->no_io_error_seen) {
1168 spin_lock(&sctx->stat_lock);
1169 sctx->stat.read_errors++;
1170 spin_unlock(&sctx->stat_lock);
1171 if (__ratelimit(&rs))
1172 scrub_print_warning("i/o error", sblock_to_check);
1173 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174 } else if (sblock_bad->checksum_error) {
1175 spin_lock(&sctx->stat_lock);
1176 sctx->stat.csum_errors++;
1177 spin_unlock(&sctx->stat_lock);
1178 if (__ratelimit(&rs))
1179 scrub_print_warning("checksum error", sblock_to_check);
1180 btrfs_dev_stat_inc_and_print(dev,
1181 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182 } else if (sblock_bad->header_error) {
1183 spin_lock(&sctx->stat_lock);
1184 sctx->stat.verify_errors++;
1185 spin_unlock(&sctx->stat_lock);
1186 if (__ratelimit(&rs))
1187 scrub_print_warning("checksum/header error",
1188 sblock_to_check);
1189 if (sblock_bad->generation_error)
1190 btrfs_dev_stat_inc_and_print(dev,
1191 BTRFS_DEV_STAT_GENERATION_ERRS);
1192 else
1193 btrfs_dev_stat_inc_and_print(dev,
1194 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195 }
1196
1197 if (sctx->readonly) {
1198 ASSERT(!sctx->is_dev_replace);
1199 goto out;
1200 }
1201
1202 /*
1203 * now build and submit the bios for the other mirrors, check
1204 * checksums.
1205 * First try to pick the mirror which is completely without I/O
1206 * errors and also does not have a checksum error.
1207 * If one is found, and if a checksum is present, the full block
1208 * that is known to contain an error is rewritten. Afterwards
1209 * the block is known to be corrected.
1210 * If a mirror is found which is completely correct, and no
1211 * checksum is present, only those sectors are rewritten that had
1212 * an I/O error in the block to be repaired, since it cannot be
1213 * determined, which copy of the other sectors is better (and it
1214 * could happen otherwise that a correct sector would be
1215 * overwritten by a bad one).
1216 */
1217 for (mirror_index = 0; ;mirror_index++) {
1218 struct scrub_block *sblock_other;
1219
1220 if (mirror_index == failed_mirror_index)
1221 continue;
1222
1223 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224 if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225 if (mirror_index >= BTRFS_MAX_MIRRORS)
1226 break;
1227 if (!sblocks_for_recheck[mirror_index]->sector_count)
1228 break;
1229
1230 sblock_other = sblocks_for_recheck[mirror_index];
1231 } else {
1232 struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1234
1235 if (mirror_index >= max_allowed)
1236 break;
1237 if (!sblocks_for_recheck[1]->sector_count)
1238 break;
1239
1240 ASSERT(failed_mirror_index == 0);
1241 sblock_other = sblocks_for_recheck[1];
1242 sblock_other->mirror_num = 1 + mirror_index;
1243 }
1244
1245 /* build and submit the bios, check checksums */
1246 scrub_recheck_block(fs_info, sblock_other, 0);
1247
1248 if (!sblock_other->header_error &&
1249 !sblock_other->checksum_error &&
1250 sblock_other->no_io_error_seen) {
1251 if (sctx->is_dev_replace) {
1252 scrub_write_block_to_dev_replace(sblock_other);
1253 goto corrected_error;
1254 } else {
1255 ret = scrub_repair_block_from_good_copy(
1256 sblock_bad, sblock_other);
1257 if (!ret)
1258 goto corrected_error;
1259 }
1260 }
1261 }
1262
1263 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1264 goto did_not_correct_error;
1265
1266 /*
1267 * In case of I/O errors in the area that is supposed to be
1268 * repaired, continue by picking good copies of those sectors.
1269 * Select the good sectors from mirrors to rewrite bad sectors from
1270 * the area to fix. Afterwards verify the checksum of the block
1271 * that is supposed to be repaired. This verification step is
1272 * only done for the purpose of statistic counting and for the
1273 * final scrub report, whether errors remain.
1274 * A perfect algorithm could make use of the checksum and try
1275 * all possible combinations of sectors from the different mirrors
1276 * until the checksum verification succeeds. For example, when
1277 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278 * of mirror #2 is readable but the final checksum test fails,
1279 * then the 2nd sector of mirror #3 could be tried, whether now
1280 * the final checksum succeeds. But this would be a rare
1281 * exception and is therefore not implemented. At least it is
1282 * avoided that the good copy is overwritten.
1283 * A more useful improvement would be to pick the sectors
1284 * without I/O error based on sector sizes (512 bytes on legacy
1285 * disks) instead of on sectorsize. Then maybe 512 byte of one
1286 * mirror could be repaired by taking 512 byte of a different
1287 * mirror, even if other 512 byte sectors in the same sectorsize
1288 * area are unreadable.
1289 */
1290 success = 1;
1291 for (sector_num = 0; sector_num < sblock_bad->sector_count;
1292 sector_num++) {
1293 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294 struct scrub_block *sblock_other = NULL;
1295
1296 /* Skip no-io-error sectors in scrub */
1297 if (!sector_bad->io_error && !sctx->is_dev_replace)
1298 continue;
1299
1300 if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301 /*
1302 * In case of dev replace, if raid56 rebuild process
1303 * didn't work out correct data, then copy the content
1304 * in sblock_bad to make sure target device is identical
1305 * to source device, instead of writing garbage data in
1306 * sblock_for_recheck array to target device.
1307 */
1308 sblock_other = NULL;
1309 } else if (sector_bad->io_error) {
1310 /* Try to find no-io-error sector in mirrors */
1311 for (mirror_index = 0;
1312 mirror_index < BTRFS_MAX_MIRRORS &&
1313 sblocks_for_recheck[mirror_index]->sector_count > 0;
1314 mirror_index++) {
1315 if (!sblocks_for_recheck[mirror_index]->
1316 sectors[sector_num]->io_error) {
1317 sblock_other = sblocks_for_recheck[mirror_index];
1318 break;
1319 }
1320 }
1321 if (!sblock_other)
1322 success = 0;
1323 }
1324
1325 if (sctx->is_dev_replace) {
1326 /*
1327 * Did not find a mirror to fetch the sector from.
1328 * scrub_write_sector_to_dev_replace() handles this
1329 * case (sector->io_error), by filling the block with
1330 * zeros before submitting the write request
1331 */
1332 if (!sblock_other)
1333 sblock_other = sblock_bad;
1334
1335 if (scrub_write_sector_to_dev_replace(sblock_other,
1336 sector_num) != 0) {
1337 atomic64_inc(
1338 &fs_info->dev_replace.num_write_errors);
1339 success = 0;
1340 }
1341 } else if (sblock_other) {
1342 ret = scrub_repair_sector_from_good_copy(sblock_bad,
1343 sblock_other,
1344 sector_num, 0);
1345 if (0 == ret)
1346 sector_bad->io_error = 0;
1347 else
1348 success = 0;
1349 }
1350 }
1351
1352 if (success && !sctx->is_dev_replace) {
1353 if (is_metadata || have_csum) {
1354 /*
1355 * need to verify the checksum now that all
1356 * sectors on disk are repaired (the write
1357 * request for data to be repaired is on its way).
1358 * Just be lazy and use scrub_recheck_block()
1359 * which re-reads the data before the checksum
1360 * is verified, but most likely the data comes out
1361 * of the page cache.
1362 */
1363 scrub_recheck_block(fs_info, sblock_bad, 1);
1364 if (!sblock_bad->header_error &&
1365 !sblock_bad->checksum_error &&
1366 sblock_bad->no_io_error_seen)
1367 goto corrected_error;
1368 else
1369 goto did_not_correct_error;
1370 } else {
1371corrected_error:
1372 spin_lock(&sctx->stat_lock);
1373 sctx->stat.corrected_errors++;
1374 sblock_to_check->data_corrected = 1;
1375 spin_unlock(&sctx->stat_lock);
1376 btrfs_err_rl_in_rcu(fs_info,
1377 "fixed up error at logical %llu on dev %s",
1378 logical, btrfs_dev_name(dev));
1379 }
1380 } else {
1381did_not_correct_error:
1382 spin_lock(&sctx->stat_lock);
1383 sctx->stat.uncorrectable_errors++;
1384 spin_unlock(&sctx->stat_lock);
1385 btrfs_err_rl_in_rcu(fs_info,
1386 "unable to fixup (regular) error at logical %llu on dev %s",
1387 logical, btrfs_dev_name(dev));
1388 }
1389
1390out:
1391 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1392 struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1393 struct scrub_recover *recover;
1394 int sector_index;
1395
1396 /* Not allocated, continue checking the next mirror */
1397 if (!sblock)
1398 continue;
1399
1400 for (sector_index = 0; sector_index < sblock->sector_count;
1401 sector_index++) {
1402 /*
1403 * Here we just cleanup the recover, each sector will be
1404 * properly cleaned up by later scrub_block_put()
1405 */
1406 recover = sblock->sectors[sector_index]->recover;
1407 if (recover) {
1408 scrub_put_recover(fs_info, recover);
1409 sblock->sectors[sector_index]->recover = NULL;
1410 }
1411 }
1412 scrub_block_put(sblock);
1413 }
1414
1415 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416 memalloc_nofs_restore(nofs_flag);
1417 if (ret < 0)
1418 return ret;
1419 return 0;
1420}
1421
1422static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423{
1424 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1425 return 2;
1426 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1427 return 3;
1428 else
1429 return (int)bioc->num_stripes;
1430}
1431
1432static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1433 u64 *raid_map,
1434 int nstripes, int mirror,
1435 int *stripe_index,
1436 u64 *stripe_offset)
1437{
1438 int i;
1439
1440 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441 /* RAID5/6 */
1442 for (i = 0; i < nstripes; i++) {
1443 if (raid_map[i] == RAID6_Q_STRIPE ||
1444 raid_map[i] == RAID5_P_STRIPE)
1445 continue;
1446
1447 if (logical >= raid_map[i] &&
1448 logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449 break;
1450 }
1451
1452 *stripe_index = i;
1453 *stripe_offset = logical - raid_map[i];
1454 } else {
1455 /* The other RAID type */
1456 *stripe_index = mirror;
1457 *stripe_offset = 0;
1458 }
1459}
1460
1461static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462 struct scrub_block *sblocks_for_recheck[])
1463{
1464 struct scrub_ctx *sctx = original_sblock->sctx;
1465 struct btrfs_fs_info *fs_info = sctx->fs_info;
1466 u64 logical = original_sblock->logical;
1467 u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1468 u64 generation = original_sblock->sectors[0]->generation;
1469 u64 flags = original_sblock->sectors[0]->flags;
1470 u64 have_csum = original_sblock->sectors[0]->have_csum;
1471 struct scrub_recover *recover;
1472 struct btrfs_io_context *bioc;
1473 u64 sublen;
1474 u64 mapped_length;
1475 u64 stripe_offset;
1476 int stripe_index;
1477 int sector_index = 0;
1478 int mirror_index;
1479 int nmirrors;
1480 int ret;
1481
1482 while (length > 0) {
1483 sublen = min_t(u64, length, fs_info->sectorsize);
1484 mapped_length = sublen;
1485 bioc = NULL;
1486
1487 /*
1488 * With a length of sectorsize, each returned stripe represents
1489 * one mirror
1490 */
1491 btrfs_bio_counter_inc_blocked(fs_info);
1492 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493 logical, &mapped_length, &bioc);
1494 if (ret || !bioc || mapped_length < sublen) {
1495 btrfs_put_bioc(bioc);
1496 btrfs_bio_counter_dec(fs_info);
1497 return -EIO;
1498 }
1499
1500 recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501 if (!recover) {
1502 btrfs_put_bioc(bioc);
1503 btrfs_bio_counter_dec(fs_info);
1504 return -ENOMEM;
1505 }
1506
1507 refcount_set(&recover->refs, 1);
1508 recover->bioc = bioc;
1509 recover->map_length = mapped_length;
1510
1511 ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512
1513 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1514
1515 for (mirror_index = 0; mirror_index < nmirrors;
1516 mirror_index++) {
1517 struct scrub_block *sblock;
1518 struct scrub_sector *sector;
1519
1520 sblock = sblocks_for_recheck[mirror_index];
1521 sblock->sctx = sctx;
1522
1523 sector = alloc_scrub_sector(sblock, logical);
1524 if (!sector) {
1525 spin_lock(&sctx->stat_lock);
1526 sctx->stat.malloc_errors++;
1527 spin_unlock(&sctx->stat_lock);
1528 scrub_put_recover(fs_info, recover);
1529 return -ENOMEM;
1530 }
1531 sector->flags = flags;
1532 sector->generation = generation;
1533 sector->have_csum = have_csum;
1534 if (have_csum)
1535 memcpy(sector->csum,
1536 original_sblock->sectors[0]->csum,
1537 sctx->fs_info->csum_size);
1538
1539 scrub_stripe_index_and_offset(logical,
1540 bioc->map_type,
1541 bioc->raid_map,
1542 bioc->num_stripes -
1543 bioc->num_tgtdevs,
1544 mirror_index,
1545 &stripe_index,
1546 &stripe_offset);
1547 /*
1548 * We're at the first sector, also populate @sblock
1549 * physical and dev.
1550 */
1551 if (sector_index == 0) {
1552 sblock->physical =
1553 bioc->stripes[stripe_index].physical +
1554 stripe_offset;
1555 sblock->dev = bioc->stripes[stripe_index].dev;
1556 sblock->physical_for_dev_replace =
1557 original_sblock->physical_for_dev_replace;
1558 }
1559
1560 BUG_ON(sector_index >= original_sblock->sector_count);
1561 scrub_get_recover(recover);
1562 sector->recover = recover;
1563 }
1564 scrub_put_recover(fs_info, recover);
1565 length -= sublen;
1566 logical += sublen;
1567 sector_index++;
1568 }
1569
1570 return 0;
1571}
1572
1573static void scrub_bio_wait_endio(struct bio *bio)
1574{
1575 complete(bio->bi_private);
1576}
1577
1578static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1579 struct bio *bio,
1580 struct scrub_sector *sector)
1581{
1582 DECLARE_COMPLETION_ONSTACK(done);
1583
1584 bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1585 SECTOR_SHIFT;
1586 bio->bi_private = &done;
1587 bio->bi_end_io = scrub_bio_wait_endio;
1588 raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1589
1590 wait_for_completion_io(&done);
1591 return blk_status_to_errno(bio->bi_status);
1592}
1593
1594static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1595 struct scrub_block *sblock)
1596{
1597 struct scrub_sector *first_sector = sblock->sectors[0];
1598 struct bio *bio;
1599 int i;
1600
1601 /* All sectors in sblock belong to the same stripe on the same device. */
1602 ASSERT(sblock->dev);
1603 if (!sblock->dev->bdev)
1604 goto out;
1605
1606 bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1607
1608 for (i = 0; i < sblock->sector_count; i++) {
1609 struct scrub_sector *sector = sblock->sectors[i];
1610
1611 bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1612 }
1613
1614 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1615 bio_put(bio);
1616 goto out;
1617 }
1618
1619 bio_put(bio);
1620
1621 scrub_recheck_block_checksum(sblock);
1622
1623 return;
1624out:
1625 for (i = 0; i < sblock->sector_count; i++)
1626 sblock->sectors[i]->io_error = 1;
1627
1628 sblock->no_io_error_seen = 0;
1629}
1630
1631/*
1632 * This function will check the on disk data for checksum errors, header errors
1633 * and read I/O errors. If any I/O errors happen, the exact sectors which are
1634 * errored are marked as being bad. The goal is to enable scrub to take those
1635 * sectors that are not errored from all the mirrors so that the sectors that
1636 * are errored in the just handled mirror can be repaired.
1637 */
1638static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639 struct scrub_block *sblock,
1640 int retry_failed_mirror)
1641{
1642 int i;
1643
1644 sblock->no_io_error_seen = 1;
1645
1646 /* short cut for raid56 */
1647 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1648 return scrub_recheck_block_on_raid56(fs_info, sblock);
1649
1650 for (i = 0; i < sblock->sector_count; i++) {
1651 struct scrub_sector *sector = sblock->sectors[i];
1652 struct bio bio;
1653 struct bio_vec bvec;
1654
1655 if (sblock->dev->bdev == NULL) {
1656 sector->io_error = 1;
1657 sblock->no_io_error_seen = 0;
1658 continue;
1659 }
1660
1661 bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662 bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663 bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1664 SECTOR_SHIFT;
1665
1666 btrfsic_check_bio(&bio);
1667 if (submit_bio_wait(&bio)) {
1668 sector->io_error = 1;
1669 sblock->no_io_error_seen = 0;
1670 }
1671
1672 bio_uninit(&bio);
1673 }
1674
1675 if (sblock->no_io_error_seen)
1676 scrub_recheck_block_checksum(sblock);
1677}
1678
1679static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1680{
1681 struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1682 int ret;
1683
1684 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1685 return !ret;
1686}
1687
1688static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1689{
1690 sblock->header_error = 0;
1691 sblock->checksum_error = 0;
1692 sblock->generation_error = 0;
1693
1694 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695 scrub_checksum_data(sblock);
1696 else
1697 scrub_checksum_tree_block(sblock);
1698}
1699
1700static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701 struct scrub_block *sblock_good)
1702{
1703 int i;
1704 int ret = 0;
1705
1706 for (i = 0; i < sblock_bad->sector_count; i++) {
1707 int ret_sub;
1708
1709 ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1710 sblock_good, i, 1);
1711 if (ret_sub)
1712 ret = ret_sub;
1713 }
1714
1715 return ret;
1716}
1717
1718static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1719 struct scrub_block *sblock_good,
1720 int sector_num, int force_write)
1721{
1722 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1723 struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725 const u32 sectorsize = fs_info->sectorsize;
1726
1727 if (force_write || sblock_bad->header_error ||
1728 sblock_bad->checksum_error || sector_bad->io_error) {
1729 struct bio bio;
1730 struct bio_vec bvec;
1731 int ret;
1732
1733 if (!sblock_bad->dev->bdev) {
1734 btrfs_warn_rl(fs_info,
1735 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1736 return -EIO;
1737 }
1738
1739 bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1740 bio.bi_iter.bi_sector = (sblock_bad->physical +
1741 sector_bad->offset) >> SECTOR_SHIFT;
1742 ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743
1744 btrfsic_check_bio(&bio);
1745 ret = submit_bio_wait(&bio);
1746 bio_uninit(&bio);
1747
1748 if (ret) {
1749 btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1750 BTRFS_DEV_STAT_WRITE_ERRS);
1751 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1752 return -EIO;
1753 }
1754 }
1755
1756 return 0;
1757}
1758
1759static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1760{
1761 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762 int i;
1763
1764 /*
1765 * This block is used for the check of the parity on the source device,
1766 * so the data needn't be written into the destination device.
1767 */
1768 if (sblock->sparity)
1769 return;
1770
1771 for (i = 0; i < sblock->sector_count; i++) {
1772 int ret;
1773
1774 ret = scrub_write_sector_to_dev_replace(sblock, i);
1775 if (ret)
1776 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1777 }
1778}
1779
1780static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1781{
1782 const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783 struct scrub_sector *sector = sblock->sectors[sector_num];
1784
1785 if (sector->io_error)
1786 memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787
1788 return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789}
1790
1791static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1792{
1793 int ret = 0;
1794 u64 length;
1795
1796 if (!btrfs_is_zoned(sctx->fs_info))
1797 return 0;
1798
1799 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1800 return 0;
1801
1802 if (sctx->write_pointer < physical) {
1803 length = physical - sctx->write_pointer;
1804
1805 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1806 sctx->write_pointer, length);
1807 if (!ret)
1808 sctx->write_pointer = physical;
1809 }
1810 return ret;
1811}
1812
1813static void scrub_block_get(struct scrub_block *sblock)
1814{
1815 refcount_inc(&sblock->refs);
1816}
1817
1818static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1819 struct scrub_sector *sector)
1820{
1821 struct scrub_block *sblock = sector->sblock;
1822 struct scrub_bio *sbio;
1823 int ret;
1824 const u32 sectorsize = sctx->fs_info->sectorsize;
1825
1826 mutex_lock(&sctx->wr_lock);
1827again:
1828 if (!sctx->wr_curr_bio) {
1829 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830 GFP_KERNEL);
1831 if (!sctx->wr_curr_bio) {
1832 mutex_unlock(&sctx->wr_lock);
1833 return -ENOMEM;
1834 }
1835 sctx->wr_curr_bio->sctx = sctx;
1836 sctx->wr_curr_bio->sector_count = 0;
1837 }
1838 sbio = sctx->wr_curr_bio;
1839 if (sbio->sector_count == 0) {
1840 ret = fill_writer_pointer_gap(sctx, sector->offset +
1841 sblock->physical_for_dev_replace);
1842 if (ret) {
1843 mutex_unlock(&sctx->wr_lock);
1844 return ret;
1845 }
1846
1847 sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1848 sbio->logical = sblock->logical + sector->offset;
1849 sbio->dev = sctx->wr_tgtdev;
1850 if (!sbio->bio) {
1851 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1852 REQ_OP_WRITE, GFP_NOFS);
1853 }
1854 sbio->bio->bi_private = sbio;
1855 sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1856 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857 sbio->status = 0;
1858 } else if (sbio->physical + sbio->sector_count * sectorsize !=
1859 sblock->physical_for_dev_replace + sector->offset ||
1860 sbio->logical + sbio->sector_count * sectorsize !=
1861 sblock->logical + sector->offset) {
1862 scrub_wr_submit(sctx);
1863 goto again;
1864 }
1865
1866 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867 if (ret != sectorsize) {
1868 if (sbio->sector_count < 1) {
1869 bio_put(sbio->bio);
1870 sbio->bio = NULL;
1871 mutex_unlock(&sctx->wr_lock);
1872 return -EIO;
1873 }
1874 scrub_wr_submit(sctx);
1875 goto again;
1876 }
1877
1878 sbio->sectors[sbio->sector_count] = sector;
1879 scrub_sector_get(sector);
1880 /*
1881 * Since ssector no longer holds a page, but uses sblock::pages, we
1882 * have to ensure the sblock had not been freed before our write bio
1883 * finished.
1884 */
1885 scrub_block_get(sector->sblock);
1886
1887 sbio->sector_count++;
1888 if (sbio->sector_count == sctx->sectors_per_bio)
1889 scrub_wr_submit(sctx);
1890 mutex_unlock(&sctx->wr_lock);
1891
1892 return 0;
1893}
1894
1895static void scrub_wr_submit(struct scrub_ctx *sctx)
1896{
1897 struct scrub_bio *sbio;
1898
1899 if (!sctx->wr_curr_bio)
1900 return;
1901
1902 sbio = sctx->wr_curr_bio;
1903 sctx->wr_curr_bio = NULL;
1904 scrub_pending_bio_inc(sctx);
1905 /* process all writes in a single worker thread. Then the block layer
1906 * orders the requests before sending them to the driver which
1907 * doubled the write performance on spinning disks when measured
1908 * with Linux 3.5 */
1909 btrfsic_check_bio(sbio->bio);
1910 submit_bio(sbio->bio);
1911
1912 if (btrfs_is_zoned(sctx->fs_info))
1913 sctx->write_pointer = sbio->physical + sbio->sector_count *
1914 sctx->fs_info->sectorsize;
1915}
1916
1917static void scrub_wr_bio_end_io(struct bio *bio)
1918{
1919 struct scrub_bio *sbio = bio->bi_private;
1920 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921
1922 sbio->status = bio->bi_status;
1923 sbio->bio = bio;
1924
1925 INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1926 queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1927}
1928
1929static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930{
1931 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1932 struct scrub_ctx *sctx = sbio->sctx;
1933 int i;
1934
1935 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936 if (sbio->status) {
1937 struct btrfs_dev_replace *dev_replace =
1938 &sbio->sctx->fs_info->dev_replace;
1939
1940 for (i = 0; i < sbio->sector_count; i++) {
1941 struct scrub_sector *sector = sbio->sectors[i];
1942
1943 sector->io_error = 1;
1944 atomic64_inc(&dev_replace->num_write_errors);
1945 }
1946 }
1947
1948 /*
1949 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1950 * endio we should put the sblock.
1951 */
1952 for (i = 0; i < sbio->sector_count; i++) {
1953 scrub_block_put(sbio->sectors[i]->sblock);
1954 scrub_sector_put(sbio->sectors[i]);
1955 }
1956
1957 bio_put(sbio->bio);
1958 kfree(sbio);
1959 scrub_pending_bio_dec(sctx);
1960}
1961
1962static int scrub_checksum(struct scrub_block *sblock)
1963{
1964 u64 flags;
1965 int ret;
1966
1967 /*
1968 * No need to initialize these stats currently,
1969 * because this function only use return value
1970 * instead of these stats value.
1971 *
1972 * Todo:
1973 * always use stats
1974 */
1975 sblock->header_error = 0;
1976 sblock->generation_error = 0;
1977 sblock->checksum_error = 0;
1978
1979 WARN_ON(sblock->sector_count < 1);
1980 flags = sblock->sectors[0]->flags;
1981 ret = 0;
1982 if (flags & BTRFS_EXTENT_FLAG_DATA)
1983 ret = scrub_checksum_data(sblock);
1984 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985 ret = scrub_checksum_tree_block(sblock);
1986 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987 ret = scrub_checksum_super(sblock);
1988 else
1989 WARN_ON(1);
1990 if (ret)
1991 scrub_handle_errored_block(sblock);
1992
1993 return ret;
1994}
1995
1996static int scrub_checksum_data(struct scrub_block *sblock)
1997{
1998 struct scrub_ctx *sctx = sblock->sctx;
1999 struct btrfs_fs_info *fs_info = sctx->fs_info;
2000 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2001 u8 csum[BTRFS_CSUM_SIZE];
2002 struct scrub_sector *sector;
2003 char *kaddr;
2004
2005 BUG_ON(sblock->sector_count < 1);
2006 sector = sblock->sectors[0];
2007 if (!sector->have_csum)
2008 return 0;
2009
2010 kaddr = scrub_sector_get_kaddr(sector);
2011
2012 shash->tfm = fs_info->csum_shash;
2013 crypto_shash_init(shash);
2014
2015 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
2016
2017 if (memcmp(csum, sector->csum, fs_info->csum_size))
2018 sblock->checksum_error = 1;
2019 return sblock->checksum_error;
2020}
2021
2022static int scrub_checksum_tree_block(struct scrub_block *sblock)
2023{
2024 struct scrub_ctx *sctx = sblock->sctx;
2025 struct btrfs_header *h;
2026 struct btrfs_fs_info *fs_info = sctx->fs_info;
2027 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028 u8 calculated_csum[BTRFS_CSUM_SIZE];
2029 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030 /*
2031 * This is done in sectorsize steps even for metadata as there's a
2032 * constraint for nodesize to be aligned to sectorsize. This will need
2033 * to change so we don't misuse data and metadata units like that.
2034 */
2035 const u32 sectorsize = sctx->fs_info->sectorsize;
2036 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037 int i;
2038 struct scrub_sector *sector;
2039 char *kaddr;
2040
2041 BUG_ON(sblock->sector_count < 1);
2042
2043 /* Each member in sectors is just one sector */
2044 ASSERT(sblock->sector_count == num_sectors);
2045
2046 sector = sblock->sectors[0];
2047 kaddr = scrub_sector_get_kaddr(sector);
2048 h = (struct btrfs_header *)kaddr;
2049 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2050
2051 /*
2052 * we don't use the getter functions here, as we
2053 * a) don't have an extent buffer and
2054 * b) the page is already kmapped
2055 */
2056 if (sblock->logical != btrfs_stack_header_bytenr(h))
2057 sblock->header_error = 1;
2058
2059 if (sector->generation != btrfs_stack_header_generation(h)) {
2060 sblock->header_error = 1;
2061 sblock->generation_error = 1;
2062 }
2063
2064 if (!scrub_check_fsid(h->fsid, sector))
2065 sblock->header_error = 1;
2066
2067 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2068 BTRFS_UUID_SIZE))
2069 sblock->header_error = 1;
2070
2071 shash->tfm = fs_info->csum_shash;
2072 crypto_shash_init(shash);
2073 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2074 sectorsize - BTRFS_CSUM_SIZE);
2075
2076 for (i = 1; i < num_sectors; i++) {
2077 kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2078 crypto_shash_update(shash, kaddr, sectorsize);
2079 }
2080
2081 crypto_shash_final(shash, calculated_csum);
2082 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2083 sblock->checksum_error = 1;
2084
2085 return sblock->header_error || sblock->checksum_error;
2086}
2087
2088static int scrub_checksum_super(struct scrub_block *sblock)
2089{
2090 struct btrfs_super_block *s;
2091 struct scrub_ctx *sctx = sblock->sctx;
2092 struct btrfs_fs_info *fs_info = sctx->fs_info;
2093 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2094 u8 calculated_csum[BTRFS_CSUM_SIZE];
2095 struct scrub_sector *sector;
2096 char *kaddr;
2097 int fail_gen = 0;
2098 int fail_cor = 0;
2099
2100 BUG_ON(sblock->sector_count < 1);
2101 sector = sblock->sectors[0];
2102 kaddr = scrub_sector_get_kaddr(sector);
2103 s = (struct btrfs_super_block *)kaddr;
2104
2105 if (sblock->logical != btrfs_super_bytenr(s))
2106 ++fail_cor;
2107
2108 if (sector->generation != btrfs_super_generation(s))
2109 ++fail_gen;
2110
2111 if (!scrub_check_fsid(s->fsid, sector))
2112 ++fail_cor;
2113
2114 shash->tfm = fs_info->csum_shash;
2115 crypto_shash_init(shash);
2116 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2117 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2118
2119 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2120 ++fail_cor;
2121
2122 return fail_cor + fail_gen;
2123}
2124
2125static void scrub_block_put(struct scrub_block *sblock)
2126{
2127 if (refcount_dec_and_test(&sblock->refs)) {
2128 int i;
2129
2130 if (sblock->sparity)
2131 scrub_parity_put(sblock->sparity);
2132
2133 for (i = 0; i < sblock->sector_count; i++)
2134 scrub_sector_put(sblock->sectors[i]);
2135 for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2136 if (sblock->pages[i]) {
2137 detach_scrub_page_private(sblock->pages[i]);
2138 __free_page(sblock->pages[i]);
2139 }
2140 }
2141 kfree(sblock);
2142 }
2143}
2144
2145static void scrub_sector_get(struct scrub_sector *sector)
2146{
2147 atomic_inc(§or->refs);
2148}
2149
2150static void scrub_sector_put(struct scrub_sector *sector)
2151{
2152 if (atomic_dec_and_test(§or->refs))
2153 kfree(sector);
2154}
2155
2156/*
2157 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2158 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2159 */
2160static void scrub_throttle(struct scrub_ctx *sctx)
2161{
2162 const int time_slice = 1000;
2163 struct scrub_bio *sbio;
2164 struct btrfs_device *device;
2165 s64 delta;
2166 ktime_t now;
2167 u32 div;
2168 u64 bwlimit;
2169
2170 sbio = sctx->bios[sctx->curr];
2171 device = sbio->dev;
2172 bwlimit = READ_ONCE(device->scrub_speed_max);
2173 if (bwlimit == 0)
2174 return;
2175
2176 /*
2177 * Slice is divided into intervals when the IO is submitted, adjust by
2178 * bwlimit and maximum of 64 intervals.
2179 */
2180 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2181 div = min_t(u32, 64, div);
2182
2183 /* Start new epoch, set deadline */
2184 now = ktime_get();
2185 if (sctx->throttle_deadline == 0) {
2186 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2187 sctx->throttle_sent = 0;
2188 }
2189
2190 /* Still in the time to send? */
2191 if (ktime_before(now, sctx->throttle_deadline)) {
2192 /* If current bio is within the limit, send it */
2193 sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2194 if (sctx->throttle_sent <= div_u64(bwlimit, div))
2195 return;
2196
2197 /* We're over the limit, sleep until the rest of the slice */
2198 delta = ktime_ms_delta(sctx->throttle_deadline, now);
2199 } else {
2200 /* New request after deadline, start new epoch */
2201 delta = 0;
2202 }
2203
2204 if (delta) {
2205 long timeout;
2206
2207 timeout = div_u64(delta * HZ, 1000);
2208 schedule_timeout_interruptible(timeout);
2209 }
2210
2211 /* Next call will start the deadline period */
2212 sctx->throttle_deadline = 0;
2213}
2214
2215static void scrub_submit(struct scrub_ctx *sctx)
2216{
2217 struct scrub_bio *sbio;
2218
2219 if (sctx->curr == -1)
2220 return;
2221
2222 scrub_throttle(sctx);
2223
2224 sbio = sctx->bios[sctx->curr];
2225 sctx->curr = -1;
2226 scrub_pending_bio_inc(sctx);
2227 btrfsic_check_bio(sbio->bio);
2228 submit_bio(sbio->bio);
2229}
2230
2231static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2232 struct scrub_sector *sector)
2233{
2234 struct scrub_block *sblock = sector->sblock;
2235 struct scrub_bio *sbio;
2236 const u32 sectorsize = sctx->fs_info->sectorsize;
2237 int ret;
2238
2239again:
2240 /*
2241 * grab a fresh bio or wait for one to become available
2242 */
2243 while (sctx->curr == -1) {
2244 spin_lock(&sctx->list_lock);
2245 sctx->curr = sctx->first_free;
2246 if (sctx->curr != -1) {
2247 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2248 sctx->bios[sctx->curr]->next_free = -1;
2249 sctx->bios[sctx->curr]->sector_count = 0;
2250 spin_unlock(&sctx->list_lock);
2251 } else {
2252 spin_unlock(&sctx->list_lock);
2253 wait_event(sctx->list_wait, sctx->first_free != -1);
2254 }
2255 }
2256 sbio = sctx->bios[sctx->curr];
2257 if (sbio->sector_count == 0) {
2258 sbio->physical = sblock->physical + sector->offset;
2259 sbio->logical = sblock->logical + sector->offset;
2260 sbio->dev = sblock->dev;
2261 if (!sbio->bio) {
2262 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2263 REQ_OP_READ, GFP_NOFS);
2264 }
2265 sbio->bio->bi_private = sbio;
2266 sbio->bio->bi_end_io = scrub_bio_end_io;
2267 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2268 sbio->status = 0;
2269 } else if (sbio->physical + sbio->sector_count * sectorsize !=
2270 sblock->physical + sector->offset ||
2271 sbio->logical + sbio->sector_count * sectorsize !=
2272 sblock->logical + sector->offset ||
2273 sbio->dev != sblock->dev) {
2274 scrub_submit(sctx);
2275 goto again;
2276 }
2277
2278 sbio->sectors[sbio->sector_count] = sector;
2279 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2280 if (ret != sectorsize) {
2281 if (sbio->sector_count < 1) {
2282 bio_put(sbio->bio);
2283 sbio->bio = NULL;
2284 return -EIO;
2285 }
2286 scrub_submit(sctx);
2287 goto again;
2288 }
2289
2290 scrub_block_get(sblock); /* one for the page added to the bio */
2291 atomic_inc(&sblock->outstanding_sectors);
2292 sbio->sector_count++;
2293 if (sbio->sector_count == sctx->sectors_per_bio)
2294 scrub_submit(sctx);
2295
2296 return 0;
2297}
2298
2299static void scrub_missing_raid56_end_io(struct bio *bio)
2300{
2301 struct scrub_block *sblock = bio->bi_private;
2302 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2303
2304 btrfs_bio_counter_dec(fs_info);
2305 if (bio->bi_status)
2306 sblock->no_io_error_seen = 0;
2307
2308 bio_put(bio);
2309
2310 queue_work(fs_info->scrub_workers, &sblock->work);
2311}
2312
2313static void scrub_missing_raid56_worker(struct work_struct *work)
2314{
2315 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2316 struct scrub_ctx *sctx = sblock->sctx;
2317 struct btrfs_fs_info *fs_info = sctx->fs_info;
2318 u64 logical;
2319 struct btrfs_device *dev;
2320
2321 logical = sblock->logical;
2322 dev = sblock->dev;
2323
2324 if (sblock->no_io_error_seen)
2325 scrub_recheck_block_checksum(sblock);
2326
2327 if (!sblock->no_io_error_seen) {
2328 spin_lock(&sctx->stat_lock);
2329 sctx->stat.read_errors++;
2330 spin_unlock(&sctx->stat_lock);
2331 btrfs_err_rl_in_rcu(fs_info,
2332 "IO error rebuilding logical %llu for dev %s",
2333 logical, btrfs_dev_name(dev));
2334 } else if (sblock->header_error || sblock->checksum_error) {
2335 spin_lock(&sctx->stat_lock);
2336 sctx->stat.uncorrectable_errors++;
2337 spin_unlock(&sctx->stat_lock);
2338 btrfs_err_rl_in_rcu(fs_info,
2339 "failed to rebuild valid logical %llu for dev %s",
2340 logical, btrfs_dev_name(dev));
2341 } else {
2342 scrub_write_block_to_dev_replace(sblock);
2343 }
2344
2345 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346 mutex_lock(&sctx->wr_lock);
2347 scrub_wr_submit(sctx);
2348 mutex_unlock(&sctx->wr_lock);
2349 }
2350
2351 scrub_block_put(sblock);
2352 scrub_pending_bio_dec(sctx);
2353}
2354
2355static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2356{
2357 struct scrub_ctx *sctx = sblock->sctx;
2358 struct btrfs_fs_info *fs_info = sctx->fs_info;
2359 u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2360 u64 logical = sblock->logical;
2361 struct btrfs_io_context *bioc = NULL;
2362 struct bio *bio;
2363 struct btrfs_raid_bio *rbio;
2364 int ret;
2365 int i;
2366
2367 btrfs_bio_counter_inc_blocked(fs_info);
2368 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2369 &length, &bioc);
2370 if (ret || !bioc || !bioc->raid_map)
2371 goto bioc_out;
2372
2373 if (WARN_ON(!sctx->is_dev_replace ||
2374 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2375 /*
2376 * We shouldn't be scrubbing a missing device. Even for dev
2377 * replace, we should only get here for RAID 5/6. We either
2378 * managed to mount something with no mirrors remaining or
2379 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2380 */
2381 goto bioc_out;
2382 }
2383
2384 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2385 bio->bi_iter.bi_sector = logical >> 9;
2386 bio->bi_private = sblock;
2387 bio->bi_end_io = scrub_missing_raid56_end_io;
2388
2389 rbio = raid56_alloc_missing_rbio(bio, bioc);
2390 if (!rbio)
2391 goto rbio_out;
2392
2393 for (i = 0; i < sblock->sector_count; i++) {
2394 struct scrub_sector *sector = sblock->sectors[i];
2395
2396 raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2397 scrub_sector_get_page_offset(sector),
2398 sector->offset + sector->sblock->logical);
2399 }
2400
2401 INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2402 scrub_block_get(sblock);
2403 scrub_pending_bio_inc(sctx);
2404 raid56_submit_missing_rbio(rbio);
2405 btrfs_put_bioc(bioc);
2406 return;
2407
2408rbio_out:
2409 bio_put(bio);
2410bioc_out:
2411 btrfs_bio_counter_dec(fs_info);
2412 btrfs_put_bioc(bioc);
2413 spin_lock(&sctx->stat_lock);
2414 sctx->stat.malloc_errors++;
2415 spin_unlock(&sctx->stat_lock);
2416}
2417
2418static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2419 u64 physical, struct btrfs_device *dev, u64 flags,
2420 u64 gen, int mirror_num, u8 *csum,
2421 u64 physical_for_dev_replace)
2422{
2423 struct scrub_block *sblock;
2424 const u32 sectorsize = sctx->fs_info->sectorsize;
2425 int index;
2426
2427 sblock = alloc_scrub_block(sctx, dev, logical, physical,
2428 physical_for_dev_replace, mirror_num);
2429 if (!sblock) {
2430 spin_lock(&sctx->stat_lock);
2431 sctx->stat.malloc_errors++;
2432 spin_unlock(&sctx->stat_lock);
2433 return -ENOMEM;
2434 }
2435
2436 for (index = 0; len > 0; index++) {
2437 struct scrub_sector *sector;
2438 /*
2439 * Here we will allocate one page for one sector to scrub.
2440 * This is fine if PAGE_SIZE == sectorsize, but will cost
2441 * more memory for PAGE_SIZE > sectorsize case.
2442 */
2443 u32 l = min(sectorsize, len);
2444
2445 sector = alloc_scrub_sector(sblock, logical);
2446 if (!sector) {
2447 spin_lock(&sctx->stat_lock);
2448 sctx->stat.malloc_errors++;
2449 spin_unlock(&sctx->stat_lock);
2450 scrub_block_put(sblock);
2451 return -ENOMEM;
2452 }
2453 sector->flags = flags;
2454 sector->generation = gen;
2455 if (csum) {
2456 sector->have_csum = 1;
2457 memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2458 } else {
2459 sector->have_csum = 0;
2460 }
2461 len -= l;
2462 logical += l;
2463 physical += l;
2464 physical_for_dev_replace += l;
2465 }
2466
2467 WARN_ON(sblock->sector_count == 0);
2468 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2469 /*
2470 * This case should only be hit for RAID 5/6 device replace. See
2471 * the comment in scrub_missing_raid56_pages() for details.
2472 */
2473 scrub_missing_raid56_pages(sblock);
2474 } else {
2475 for (index = 0; index < sblock->sector_count; index++) {
2476 struct scrub_sector *sector = sblock->sectors[index];
2477 int ret;
2478
2479 ret = scrub_add_sector_to_rd_bio(sctx, sector);
2480 if (ret) {
2481 scrub_block_put(sblock);
2482 return ret;
2483 }
2484 }
2485
2486 if (flags & BTRFS_EXTENT_FLAG_SUPER)
2487 scrub_submit(sctx);
2488 }
2489
2490 /* last one frees, either here or in bio completion for last page */
2491 scrub_block_put(sblock);
2492 return 0;
2493}
2494
2495static void scrub_bio_end_io(struct bio *bio)
2496{
2497 struct scrub_bio *sbio = bio->bi_private;
2498 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2499
2500 sbio->status = bio->bi_status;
2501 sbio->bio = bio;
2502
2503 queue_work(fs_info->scrub_workers, &sbio->work);
2504}
2505
2506static void scrub_bio_end_io_worker(struct work_struct *work)
2507{
2508 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2509 struct scrub_ctx *sctx = sbio->sctx;
2510 int i;
2511
2512 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2513 if (sbio->status) {
2514 for (i = 0; i < sbio->sector_count; i++) {
2515 struct scrub_sector *sector = sbio->sectors[i];
2516
2517 sector->io_error = 1;
2518 sector->sblock->no_io_error_seen = 0;
2519 }
2520 }
2521
2522 /* Now complete the scrub_block items that have all pages completed */
2523 for (i = 0; i < sbio->sector_count; i++) {
2524 struct scrub_sector *sector = sbio->sectors[i];
2525 struct scrub_block *sblock = sector->sblock;
2526
2527 if (atomic_dec_and_test(&sblock->outstanding_sectors))
2528 scrub_block_complete(sblock);
2529 scrub_block_put(sblock);
2530 }
2531
2532 bio_put(sbio->bio);
2533 sbio->bio = NULL;
2534 spin_lock(&sctx->list_lock);
2535 sbio->next_free = sctx->first_free;
2536 sctx->first_free = sbio->index;
2537 spin_unlock(&sctx->list_lock);
2538
2539 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2540 mutex_lock(&sctx->wr_lock);
2541 scrub_wr_submit(sctx);
2542 mutex_unlock(&sctx->wr_lock);
2543 }
2544
2545 scrub_pending_bio_dec(sctx);
2546}
2547
2548static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2549 unsigned long *bitmap,
2550 u64 start, u32 len)
2551{
2552 u64 offset;
2553 u32 nsectors;
2554 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2555
2556 if (len >= sparity->stripe_len) {
2557 bitmap_set(bitmap, 0, sparity->nsectors);
2558 return;
2559 }
2560
2561 start -= sparity->logic_start;
2562 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2563 offset = offset >> sectorsize_bits;
2564 nsectors = len >> sectorsize_bits;
2565
2566 if (offset + nsectors <= sparity->nsectors) {
2567 bitmap_set(bitmap, offset, nsectors);
2568 return;
2569 }
2570
2571 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2572 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2573}
2574
2575static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2576 u64 start, u32 len)
2577{
2578 __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2579}
2580
2581static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2582 u64 start, u32 len)
2583{
2584 __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2585}
2586
2587static void scrub_block_complete(struct scrub_block *sblock)
2588{
2589 int corrupted = 0;
2590
2591 if (!sblock->no_io_error_seen) {
2592 corrupted = 1;
2593 scrub_handle_errored_block(sblock);
2594 } else {
2595 /*
2596 * if has checksum error, write via repair mechanism in
2597 * dev replace case, otherwise write here in dev replace
2598 * case.
2599 */
2600 corrupted = scrub_checksum(sblock);
2601 if (!corrupted && sblock->sctx->is_dev_replace)
2602 scrub_write_block_to_dev_replace(sblock);
2603 }
2604
2605 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2606 u64 start = sblock->logical;
2607 u64 end = sblock->logical +
2608 sblock->sectors[sblock->sector_count - 1]->offset +
2609 sblock->sctx->fs_info->sectorsize;
2610
2611 ASSERT(end - start <= U32_MAX);
2612 scrub_parity_mark_sectors_error(sblock->sparity,
2613 start, end - start);
2614 }
2615}
2616
2617static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2618{
2619 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2620 list_del(&sum->list);
2621 kfree(sum);
2622}
2623
2624/*
2625 * Find the desired csum for range [logical, logical + sectorsize), and store
2626 * the csum into @csum.
2627 *
2628 * The search source is sctx->csum_list, which is a pre-populated list
2629 * storing bytenr ordered csum ranges. We're responsible to cleanup any range
2630 * that is before @logical.
2631 *
2632 * Return 0 if there is no csum for the range.
2633 * Return 1 if there is csum for the range and copied to @csum.
2634 */
2635static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2636{
2637 bool found = false;
2638
2639 while (!list_empty(&sctx->csum_list)) {
2640 struct btrfs_ordered_sum *sum = NULL;
2641 unsigned long index;
2642 unsigned long num_sectors;
2643
2644 sum = list_first_entry(&sctx->csum_list,
2645 struct btrfs_ordered_sum, list);
2646 /* The current csum range is beyond our range, no csum found */
2647 if (sum->bytenr > logical)
2648 break;
2649
2650 /*
2651 * The current sum is before our bytenr, since scrub is always
2652 * done in bytenr order, the csum will never be used anymore,
2653 * clean it up so that later calls won't bother with the range,
2654 * and continue search the next range.
2655 */
2656 if (sum->bytenr + sum->len <= logical) {
2657 drop_csum_range(sctx, sum);
2658 continue;
2659 }
2660
2661 /* Now the csum range covers our bytenr, copy the csum */
2662 found = true;
2663 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2664 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2665
2666 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2667 sctx->fs_info->csum_size);
2668
2669 /* Cleanup the range if we're at the end of the csum range */
2670 if (index == num_sectors - 1)
2671 drop_csum_range(sctx, sum);
2672 break;
2673 }
2674 if (!found)
2675 return 0;
2676 return 1;
2677}
2678
2679/* scrub extent tries to collect up to 64 kB for each bio */
2680static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2681 u64 logical, u32 len,
2682 u64 physical, struct btrfs_device *dev, u64 flags,
2683 u64 gen, int mirror_num)
2684{
2685 struct btrfs_device *src_dev = dev;
2686 u64 src_physical = physical;
2687 int src_mirror = mirror_num;
2688 int ret;
2689 u8 csum[BTRFS_CSUM_SIZE];
2690 u32 blocksize;
2691
2692 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2693 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2694 blocksize = map->stripe_len;
2695 else
2696 blocksize = sctx->fs_info->sectorsize;
2697 spin_lock(&sctx->stat_lock);
2698 sctx->stat.data_extents_scrubbed++;
2699 sctx->stat.data_bytes_scrubbed += len;
2700 spin_unlock(&sctx->stat_lock);
2701 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2703 blocksize = map->stripe_len;
2704 else
2705 blocksize = sctx->fs_info->nodesize;
2706 spin_lock(&sctx->stat_lock);
2707 sctx->stat.tree_extents_scrubbed++;
2708 sctx->stat.tree_bytes_scrubbed += len;
2709 spin_unlock(&sctx->stat_lock);
2710 } else {
2711 blocksize = sctx->fs_info->sectorsize;
2712 WARN_ON(1);
2713 }
2714
2715 /*
2716 * For dev-replace case, we can have @dev being a missing device.
2717 * Regular scrub will avoid its execution on missing device at all,
2718 * as that would trigger tons of read error.
2719 *
2720 * Reading from missing device will cause read error counts to
2721 * increase unnecessarily.
2722 * So here we change the read source to a good mirror.
2723 */
2724 if (sctx->is_dev_replace && !dev->bdev)
2725 scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2726 &src_dev, &src_mirror);
2727 while (len) {
2728 u32 l = min(len, blocksize);
2729 int have_csum = 0;
2730
2731 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2732 /* push csums to sbio */
2733 have_csum = scrub_find_csum(sctx, logical, csum);
2734 if (have_csum == 0)
2735 ++sctx->stat.no_csum;
2736 }
2737 ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2738 flags, gen, src_mirror,
2739 have_csum ? csum : NULL, physical);
2740 if (ret)
2741 return ret;
2742 len -= l;
2743 logical += l;
2744 physical += l;
2745 src_physical += l;
2746 }
2747 return 0;
2748}
2749
2750static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2751 u64 logical, u32 len,
2752 u64 physical, struct btrfs_device *dev,
2753 u64 flags, u64 gen, int mirror_num, u8 *csum)
2754{
2755 struct scrub_ctx *sctx = sparity->sctx;
2756 struct scrub_block *sblock;
2757 const u32 sectorsize = sctx->fs_info->sectorsize;
2758 int index;
2759
2760 ASSERT(IS_ALIGNED(len, sectorsize));
2761
2762 sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2763 if (!sblock) {
2764 spin_lock(&sctx->stat_lock);
2765 sctx->stat.malloc_errors++;
2766 spin_unlock(&sctx->stat_lock);
2767 return -ENOMEM;
2768 }
2769
2770 sblock->sparity = sparity;
2771 scrub_parity_get(sparity);
2772
2773 for (index = 0; len > 0; index++) {
2774 struct scrub_sector *sector;
2775
2776 sector = alloc_scrub_sector(sblock, logical);
2777 if (!sector) {
2778 spin_lock(&sctx->stat_lock);
2779 sctx->stat.malloc_errors++;
2780 spin_unlock(&sctx->stat_lock);
2781 scrub_block_put(sblock);
2782 return -ENOMEM;
2783 }
2784 sblock->sectors[index] = sector;
2785 /* For scrub parity */
2786 scrub_sector_get(sector);
2787 list_add_tail(§or->list, &sparity->sectors_list);
2788 sector->flags = flags;
2789 sector->generation = gen;
2790 if (csum) {
2791 sector->have_csum = 1;
2792 memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2793 } else {
2794 sector->have_csum = 0;
2795 }
2796
2797 /* Iterate over the stripe range in sectorsize steps */
2798 len -= sectorsize;
2799 logical += sectorsize;
2800 physical += sectorsize;
2801 }
2802
2803 WARN_ON(sblock->sector_count == 0);
2804 for (index = 0; index < sblock->sector_count; index++) {
2805 struct scrub_sector *sector = sblock->sectors[index];
2806 int ret;
2807
2808 ret = scrub_add_sector_to_rd_bio(sctx, sector);
2809 if (ret) {
2810 scrub_block_put(sblock);
2811 return ret;
2812 }
2813 }
2814
2815 /* Last one frees, either here or in bio completion for last sector */
2816 scrub_block_put(sblock);
2817 return 0;
2818}
2819
2820static int scrub_extent_for_parity(struct scrub_parity *sparity,
2821 u64 logical, u32 len,
2822 u64 physical, struct btrfs_device *dev,
2823 u64 flags, u64 gen, int mirror_num)
2824{
2825 struct scrub_ctx *sctx = sparity->sctx;
2826 int ret;
2827 u8 csum[BTRFS_CSUM_SIZE];
2828 u32 blocksize;
2829
2830 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2831 scrub_parity_mark_sectors_error(sparity, logical, len);
2832 return 0;
2833 }
2834
2835 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2836 blocksize = sparity->stripe_len;
2837 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2838 blocksize = sparity->stripe_len;
2839 } else {
2840 blocksize = sctx->fs_info->sectorsize;
2841 WARN_ON(1);
2842 }
2843
2844 while (len) {
2845 u32 l = min(len, blocksize);
2846 int have_csum = 0;
2847
2848 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2849 /* push csums to sbio */
2850 have_csum = scrub_find_csum(sctx, logical, csum);
2851 if (have_csum == 0)
2852 goto skip;
2853 }
2854 ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2855 flags, gen, mirror_num,
2856 have_csum ? csum : NULL);
2857 if (ret)
2858 return ret;
2859skip:
2860 len -= l;
2861 logical += l;
2862 physical += l;
2863 }
2864 return 0;
2865}
2866
2867/*
2868 * Given a physical address, this will calculate it's
2869 * logical offset. if this is a parity stripe, it will return
2870 * the most left data stripe's logical offset.
2871 *
2872 * return 0 if it is a data stripe, 1 means parity stripe.
2873 */
2874static int get_raid56_logic_offset(u64 physical, int num,
2875 struct map_lookup *map, u64 *offset,
2876 u64 *stripe_start)
2877{
2878 int i;
2879 int j = 0;
2880 u64 stripe_nr;
2881 u64 last_offset;
2882 u32 stripe_index;
2883 u32 rot;
2884 const int data_stripes = nr_data_stripes(map);
2885
2886 last_offset = (physical - map->stripes[num].physical) * data_stripes;
2887 if (stripe_start)
2888 *stripe_start = last_offset;
2889
2890 *offset = last_offset;
2891 for (i = 0; i < data_stripes; i++) {
2892 *offset = last_offset + i * map->stripe_len;
2893
2894 stripe_nr = div64_u64(*offset, map->stripe_len);
2895 stripe_nr = div_u64(stripe_nr, data_stripes);
2896
2897 /* Work out the disk rotation on this stripe-set */
2898 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2899 /* calculate which stripe this data locates */
2900 rot += i;
2901 stripe_index = rot % map->num_stripes;
2902 if (stripe_index == num)
2903 return 0;
2904 if (stripe_index < num)
2905 j++;
2906 }
2907 *offset = last_offset + j * map->stripe_len;
2908 return 1;
2909}
2910
2911static void scrub_free_parity(struct scrub_parity *sparity)
2912{
2913 struct scrub_ctx *sctx = sparity->sctx;
2914 struct scrub_sector *curr, *next;
2915 int nbits;
2916
2917 nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2918 if (nbits) {
2919 spin_lock(&sctx->stat_lock);
2920 sctx->stat.read_errors += nbits;
2921 sctx->stat.uncorrectable_errors += nbits;
2922 spin_unlock(&sctx->stat_lock);
2923 }
2924
2925 list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2926 list_del_init(&curr->list);
2927 scrub_sector_put(curr);
2928 }
2929
2930 kfree(sparity);
2931}
2932
2933static void scrub_parity_bio_endio_worker(struct work_struct *work)
2934{
2935 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2936 work);
2937 struct scrub_ctx *sctx = sparity->sctx;
2938
2939 btrfs_bio_counter_dec(sctx->fs_info);
2940 scrub_free_parity(sparity);
2941 scrub_pending_bio_dec(sctx);
2942}
2943
2944static void scrub_parity_bio_endio(struct bio *bio)
2945{
2946 struct scrub_parity *sparity = bio->bi_private;
2947 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2948
2949 if (bio->bi_status)
2950 bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2951 &sparity->dbitmap, sparity->nsectors);
2952
2953 bio_put(bio);
2954
2955 INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2956 queue_work(fs_info->scrub_parity_workers, &sparity->work);
2957}
2958
2959static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2960{
2961 struct scrub_ctx *sctx = sparity->sctx;
2962 struct btrfs_fs_info *fs_info = sctx->fs_info;
2963 struct bio *bio;
2964 struct btrfs_raid_bio *rbio;
2965 struct btrfs_io_context *bioc = NULL;
2966 u64 length;
2967 int ret;
2968
2969 if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2970 &sparity->ebitmap, sparity->nsectors))
2971 goto out;
2972
2973 length = sparity->logic_end - sparity->logic_start;
2974
2975 btrfs_bio_counter_inc_blocked(fs_info);
2976 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2977 &length, &bioc);
2978 if (ret || !bioc || !bioc->raid_map)
2979 goto bioc_out;
2980
2981 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2982 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2983 bio->bi_private = sparity;
2984 bio->bi_end_io = scrub_parity_bio_endio;
2985
2986 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2987 sparity->scrub_dev,
2988 &sparity->dbitmap,
2989 sparity->nsectors);
2990 btrfs_put_bioc(bioc);
2991 if (!rbio)
2992 goto rbio_out;
2993
2994 scrub_pending_bio_inc(sctx);
2995 raid56_parity_submit_scrub_rbio(rbio);
2996 return;
2997
2998rbio_out:
2999 bio_put(bio);
3000bioc_out:
3001 btrfs_bio_counter_dec(fs_info);
3002 bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3003 sparity->nsectors);
3004 spin_lock(&sctx->stat_lock);
3005 sctx->stat.malloc_errors++;
3006 spin_unlock(&sctx->stat_lock);
3007out:
3008 scrub_free_parity(sparity);
3009}
3010
3011static void scrub_parity_get(struct scrub_parity *sparity)
3012{
3013 refcount_inc(&sparity->refs);
3014}
3015
3016static void scrub_parity_put(struct scrub_parity *sparity)
3017{
3018 if (!refcount_dec_and_test(&sparity->refs))
3019 return;
3020
3021 scrub_parity_check_and_repair(sparity);
3022}
3023
3024/*
3025 * Return 0 if the extent item range covers any byte of the range.
3026 * Return <0 if the extent item is before @search_start.
3027 * Return >0 if the extent item is after @start_start + @search_len.
3028 */
3029static int compare_extent_item_range(struct btrfs_path *path,
3030 u64 search_start, u64 search_len)
3031{
3032 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3033 u64 len;
3034 struct btrfs_key key;
3035
3036 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3037 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3038 key.type == BTRFS_METADATA_ITEM_KEY);
3039 if (key.type == BTRFS_METADATA_ITEM_KEY)
3040 len = fs_info->nodesize;
3041 else
3042 len = key.offset;
3043
3044 if (key.objectid + len <= search_start)
3045 return -1;
3046 if (key.objectid >= search_start + search_len)
3047 return 1;
3048 return 0;
3049}
3050
3051/*
3052 * Locate one extent item which covers any byte in range
3053 * [@search_start, @search_start + @search_length)
3054 *
3055 * If the path is not initialized, we will initialize the search by doing
3056 * a btrfs_search_slot().
3057 * If the path is already initialized, we will use the path as the initial
3058 * slot, to avoid duplicated btrfs_search_slot() calls.
3059 *
3060 * NOTE: If an extent item starts before @search_start, we will still
3061 * return the extent item. This is for data extent crossing stripe boundary.
3062 *
3063 * Return 0 if we found such extent item, and @path will point to the extent item.
3064 * Return >0 if no such extent item can be found, and @path will be released.
3065 * Return <0 if hit fatal error, and @path will be released.
3066 */
3067static int find_first_extent_item(struct btrfs_root *extent_root,
3068 struct btrfs_path *path,
3069 u64 search_start, u64 search_len)
3070{
3071 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3072 struct btrfs_key key;
3073 int ret;
3074
3075 /* Continue using the existing path */
3076 if (path->nodes[0])
3077 goto search_forward;
3078
3079 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3080 key.type = BTRFS_METADATA_ITEM_KEY;
3081 else
3082 key.type = BTRFS_EXTENT_ITEM_KEY;
3083 key.objectid = search_start;
3084 key.offset = (u64)-1;
3085
3086 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3087 if (ret < 0)
3088 return ret;
3089
3090 ASSERT(ret > 0);
3091 /*
3092 * Here we intentionally pass 0 as @min_objectid, as there could be
3093 * an extent item starting before @search_start.
3094 */
3095 ret = btrfs_previous_extent_item(extent_root, path, 0);
3096 if (ret < 0)
3097 return ret;
3098 /*
3099 * No matter whether we have found an extent item, the next loop will
3100 * properly do every check on the key.
3101 */
3102search_forward:
3103 while (true) {
3104 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3105 if (key.objectid >= search_start + search_len)
3106 break;
3107 if (key.type != BTRFS_METADATA_ITEM_KEY &&
3108 key.type != BTRFS_EXTENT_ITEM_KEY)
3109 goto next;
3110
3111 ret = compare_extent_item_range(path, search_start, search_len);
3112 if (ret == 0)
3113 return ret;
3114 if (ret > 0)
3115 break;
3116next:
3117 path->slots[0]++;
3118 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3119 ret = btrfs_next_leaf(extent_root, path);
3120 if (ret) {
3121 /* Either no more item or fatal error */
3122 btrfs_release_path(path);
3123 return ret;
3124 }
3125 }
3126 }
3127 btrfs_release_path(path);
3128 return 1;
3129}
3130
3131static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3132 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3133{
3134 struct btrfs_key key;
3135 struct btrfs_extent_item *ei;
3136
3137 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3138 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3139 key.type == BTRFS_EXTENT_ITEM_KEY);
3140 *extent_start_ret = key.objectid;
3141 if (key.type == BTRFS_METADATA_ITEM_KEY)
3142 *size_ret = path->nodes[0]->fs_info->nodesize;
3143 else
3144 *size_ret = key.offset;
3145 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3146 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3147 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3148}
3149
3150static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3151 u64 boundary_start, u64 boudary_len)
3152{
3153 return (extent_start < boundary_start &&
3154 extent_start + extent_len > boundary_start) ||
3155 (extent_start < boundary_start + boudary_len &&
3156 extent_start + extent_len > boundary_start + boudary_len);
3157}
3158
3159static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3160 struct scrub_parity *sparity,
3161 struct map_lookup *map,
3162 struct btrfs_device *sdev,
3163 struct btrfs_path *path,
3164 u64 logical)
3165{
3166 struct btrfs_fs_info *fs_info = sctx->fs_info;
3167 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3168 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3169 u64 cur_logical = logical;
3170 int ret;
3171
3172 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3173
3174 /* Path must not be populated */
3175 ASSERT(!path->nodes[0]);
3176
3177 while (cur_logical < logical + map->stripe_len) {
3178 struct btrfs_io_context *bioc = NULL;
3179 struct btrfs_device *extent_dev;
3180 u64 extent_start;
3181 u64 extent_size;
3182 u64 mapped_length;
3183 u64 extent_flags;
3184 u64 extent_gen;
3185 u64 extent_physical;
3186 u64 extent_mirror_num;
3187
3188 ret = find_first_extent_item(extent_root, path, cur_logical,
3189 logical + map->stripe_len - cur_logical);
3190 /* No more extent item in this data stripe */
3191 if (ret > 0) {
3192 ret = 0;
3193 break;
3194 }
3195 if (ret < 0)
3196 break;
3197 get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3198 &extent_gen);
3199
3200 /* Metadata should not cross stripe boundaries */
3201 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3202 does_range_cross_boundary(extent_start, extent_size,
3203 logical, map->stripe_len)) {
3204 btrfs_err(fs_info,
3205 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206 extent_start, logical);
3207 spin_lock(&sctx->stat_lock);
3208 sctx->stat.uncorrectable_errors++;
3209 spin_unlock(&sctx->stat_lock);
3210 cur_logical += extent_size;
3211 continue;
3212 }
3213
3214 /* Skip hole range which doesn't have any extent */
3215 cur_logical = max(extent_start, cur_logical);
3216
3217 /* Truncate the range inside this data stripe */
3218 extent_size = min(extent_start + extent_size,
3219 logical + map->stripe_len) - cur_logical;
3220 extent_start = cur_logical;
3221 ASSERT(extent_size <= U32_MAX);
3222
3223 scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3224
3225 mapped_length = extent_size;
3226 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3227 &mapped_length, &bioc, 0);
3228 if (!ret && (!bioc || mapped_length < extent_size))
3229 ret = -EIO;
3230 if (ret) {
3231 btrfs_put_bioc(bioc);
3232 scrub_parity_mark_sectors_error(sparity, extent_start,
3233 extent_size);
3234 break;
3235 }
3236 extent_physical = bioc->stripes[0].physical;
3237 extent_mirror_num = bioc->mirror_num;
3238 extent_dev = bioc->stripes[0].dev;
3239 btrfs_put_bioc(bioc);
3240
3241 ret = btrfs_lookup_csums_list(csum_root, extent_start,
3242 extent_start + extent_size - 1,
3243 &sctx->csum_list, 1, false);
3244 if (ret) {
3245 scrub_parity_mark_sectors_error(sparity, extent_start,
3246 extent_size);
3247 break;
3248 }
3249
3250 ret = scrub_extent_for_parity(sparity, extent_start,
3251 extent_size, extent_physical,
3252 extent_dev, extent_flags,
3253 extent_gen, extent_mirror_num);
3254 scrub_free_csums(sctx);
3255
3256 if (ret) {
3257 scrub_parity_mark_sectors_error(sparity, extent_start,
3258 extent_size);
3259 break;
3260 }
3261
3262 cond_resched();
3263 cur_logical += extent_size;
3264 }
3265 btrfs_release_path(path);
3266 return ret;
3267}
3268
3269static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3270 struct map_lookup *map,
3271 struct btrfs_device *sdev,
3272 u64 logic_start,
3273 u64 logic_end)
3274{
3275 struct btrfs_fs_info *fs_info = sctx->fs_info;
3276 struct btrfs_path *path;
3277 u64 cur_logical;
3278 int ret;
3279 struct scrub_parity *sparity;
3280 int nsectors;
3281
3282 path = btrfs_alloc_path();
3283 if (!path) {
3284 spin_lock(&sctx->stat_lock);
3285 sctx->stat.malloc_errors++;
3286 spin_unlock(&sctx->stat_lock);
3287 return -ENOMEM;
3288 }
3289 path->search_commit_root = 1;
3290 path->skip_locking = 1;
3291
3292 ASSERT(map->stripe_len <= U32_MAX);
3293 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3294 ASSERT(nsectors <= BITS_PER_LONG);
3295 sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3296 if (!sparity) {
3297 spin_lock(&sctx->stat_lock);
3298 sctx->stat.malloc_errors++;
3299 spin_unlock(&sctx->stat_lock);
3300 btrfs_free_path(path);
3301 return -ENOMEM;
3302 }
3303
3304 ASSERT(map->stripe_len <= U32_MAX);
3305 sparity->stripe_len = map->stripe_len;
3306 sparity->nsectors = nsectors;
3307 sparity->sctx = sctx;
3308 sparity->scrub_dev = sdev;
3309 sparity->logic_start = logic_start;
3310 sparity->logic_end = logic_end;
3311 refcount_set(&sparity->refs, 1);
3312 INIT_LIST_HEAD(&sparity->sectors_list);
3313
3314 ret = 0;
3315 for (cur_logical = logic_start; cur_logical < logic_end;
3316 cur_logical += map->stripe_len) {
3317 ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3318 sdev, path, cur_logical);
3319 if (ret < 0)
3320 break;
3321 }
3322
3323 scrub_parity_put(sparity);
3324 scrub_submit(sctx);
3325 mutex_lock(&sctx->wr_lock);
3326 scrub_wr_submit(sctx);
3327 mutex_unlock(&sctx->wr_lock);
3328
3329 btrfs_free_path(path);
3330 return ret < 0 ? ret : 0;
3331}
3332
3333static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3334{
3335 if (!btrfs_is_zoned(sctx->fs_info))
3336 return;
3337
3338 sctx->flush_all_writes = true;
3339 scrub_submit(sctx);
3340 mutex_lock(&sctx->wr_lock);
3341 scrub_wr_submit(sctx);
3342 mutex_unlock(&sctx->wr_lock);
3343
3344 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3345}
3346
3347static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3348 u64 physical, u64 physical_end)
3349{
3350 struct btrfs_fs_info *fs_info = sctx->fs_info;
3351 int ret = 0;
3352
3353 if (!btrfs_is_zoned(fs_info))
3354 return 0;
3355
3356 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3357
3358 mutex_lock(&sctx->wr_lock);
3359 if (sctx->write_pointer < physical_end) {
3360 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3361 physical,
3362 sctx->write_pointer);
3363 if (ret)
3364 btrfs_err(fs_info,
3365 "zoned: failed to recover write pointer");
3366 }
3367 mutex_unlock(&sctx->wr_lock);
3368 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3369
3370 return ret;
3371}
3372
3373/*
3374 * Scrub one range which can only has simple mirror based profile.
3375 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3376 * RAID0/RAID10).
3377 *
3378 * Since we may need to handle a subset of block group, we need @logical_start
3379 * and @logical_length parameter.
3380 */
3381static int scrub_simple_mirror(struct scrub_ctx *sctx,
3382 struct btrfs_root *extent_root,
3383 struct btrfs_root *csum_root,
3384 struct btrfs_block_group *bg,
3385 struct map_lookup *map,
3386 u64 logical_start, u64 logical_length,
3387 struct btrfs_device *device,
3388 u64 physical, int mirror_num)
3389{
3390 struct btrfs_fs_info *fs_info = sctx->fs_info;
3391 const u64 logical_end = logical_start + logical_length;
3392 /* An artificial limit, inherit from old scrub behavior */
3393 const u32 max_length = SZ_64K;
3394 struct btrfs_path path = { 0 };
3395 u64 cur_logical = logical_start;
3396 int ret;
3397
3398 /* The range must be inside the bg */
3399 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3400
3401 path.search_commit_root = 1;
3402 path.skip_locking = 1;
3403 /* Go through each extent items inside the logical range */
3404 while (cur_logical < logical_end) {
3405 u64 extent_start;
3406 u64 extent_len;
3407 u64 extent_flags;
3408 u64 extent_gen;
3409 u64 scrub_len;
3410
3411 /* Canceled? */
3412 if (atomic_read(&fs_info->scrub_cancel_req) ||
3413 atomic_read(&sctx->cancel_req)) {
3414 ret = -ECANCELED;
3415 break;
3416 }
3417 /* Paused? */
3418 if (atomic_read(&fs_info->scrub_pause_req)) {
3419 /* Push queued extents */
3420 sctx->flush_all_writes = true;
3421 scrub_submit(sctx);
3422 mutex_lock(&sctx->wr_lock);
3423 scrub_wr_submit(sctx);
3424 mutex_unlock(&sctx->wr_lock);
3425 wait_event(sctx->list_wait,
3426 atomic_read(&sctx->bios_in_flight) == 0);
3427 sctx->flush_all_writes = false;
3428 scrub_blocked_if_needed(fs_info);
3429 }
3430 /* Block group removed? */
3431 spin_lock(&bg->lock);
3432 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3433 spin_unlock(&bg->lock);
3434 ret = 0;
3435 break;
3436 }
3437 spin_unlock(&bg->lock);
3438
3439 ret = find_first_extent_item(extent_root, &path, cur_logical,
3440 logical_end - cur_logical);
3441 if (ret > 0) {
3442 /* No more extent, just update the accounting */
3443 sctx->stat.last_physical = physical + logical_length;
3444 ret = 0;
3445 break;
3446 }
3447 if (ret < 0)
3448 break;
3449 get_extent_info(&path, &extent_start, &extent_len,
3450 &extent_flags, &extent_gen);
3451 /* Skip hole range which doesn't have any extent */
3452 cur_logical = max(extent_start, cur_logical);
3453
3454 /*
3455 * Scrub len has three limits:
3456 * - Extent size limit
3457 * - Scrub range limit
3458 * This is especially imporatant for RAID0/RAID10 to reuse
3459 * this function
3460 * - Max scrub size limit
3461 */
3462 scrub_len = min(min(extent_start + extent_len,
3463 logical_end), cur_logical + max_length) -
3464 cur_logical;
3465
3466 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3467 ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3468 cur_logical + scrub_len - 1,
3469 &sctx->csum_list, 1, false);
3470 if (ret)
3471 break;
3472 }
3473 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3474 does_range_cross_boundary(extent_start, extent_len,
3475 logical_start, logical_length)) {
3476 btrfs_err(fs_info,
3477"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3478 extent_start, logical_start, logical_end);
3479 spin_lock(&sctx->stat_lock);
3480 sctx->stat.uncorrectable_errors++;
3481 spin_unlock(&sctx->stat_lock);
3482 cur_logical += scrub_len;
3483 continue;
3484 }
3485 ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3486 cur_logical - logical_start + physical,
3487 device, extent_flags, extent_gen,
3488 mirror_num);
3489 scrub_free_csums(sctx);
3490 if (ret)
3491 break;
3492 if (sctx->is_dev_replace)
3493 sync_replace_for_zoned(sctx);
3494 cur_logical += scrub_len;
3495 /* Don't hold CPU for too long time */
3496 cond_resched();
3497 }
3498 btrfs_release_path(&path);
3499 return ret;
3500}
3501
3502/* Calculate the full stripe length for simple stripe based profiles */
3503static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3504{
3505 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506 BTRFS_BLOCK_GROUP_RAID10));
3507
3508 return map->num_stripes / map->sub_stripes * map->stripe_len;
3509}
3510
3511/* Get the logical bytenr for the stripe */
3512static u64 simple_stripe_get_logical(struct map_lookup *map,
3513 struct btrfs_block_group *bg,
3514 int stripe_index)
3515{
3516 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3517 BTRFS_BLOCK_GROUP_RAID10));
3518 ASSERT(stripe_index < map->num_stripes);
3519
3520 /*
3521 * (stripe_index / sub_stripes) gives how many data stripes we need to
3522 * skip.
3523 */
3524 return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3525}
3526
3527/* Get the mirror number for the stripe */
3528static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3529{
3530 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531 BTRFS_BLOCK_GROUP_RAID10));
3532 ASSERT(stripe_index < map->num_stripes);
3533
3534 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3535 return stripe_index % map->sub_stripes + 1;
3536}
3537
3538static int scrub_simple_stripe(struct scrub_ctx *sctx,
3539 struct btrfs_root *extent_root,
3540 struct btrfs_root *csum_root,
3541 struct btrfs_block_group *bg,
3542 struct map_lookup *map,
3543 struct btrfs_device *device,
3544 int stripe_index)
3545{
3546 const u64 logical_increment = simple_stripe_full_stripe_len(map);
3547 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3548 const u64 orig_physical = map->stripes[stripe_index].physical;
3549 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3550 u64 cur_logical = orig_logical;
3551 u64 cur_physical = orig_physical;
3552 int ret = 0;
3553
3554 while (cur_logical < bg->start + bg->length) {
3555 /*
3556 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3557 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3558 * this stripe.
3559 */
3560 ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3561 cur_logical, map->stripe_len, device,
3562 cur_physical, mirror_num);
3563 if (ret)
3564 return ret;
3565 /* Skip to next stripe which belongs to the target device */
3566 cur_logical += logical_increment;
3567 /* For physical offset, we just go to next stripe */
3568 cur_physical += map->stripe_len;
3569 }
3570 return ret;
3571}
3572
3573static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3574 struct btrfs_block_group *bg,
3575 struct extent_map *em,
3576 struct btrfs_device *scrub_dev,
3577 int stripe_index)
3578{
3579 struct btrfs_path *path;
3580 struct btrfs_fs_info *fs_info = sctx->fs_info;
3581 struct btrfs_root *root;
3582 struct btrfs_root *csum_root;
3583 struct blk_plug plug;
3584 struct map_lookup *map = em->map_lookup;
3585 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3586 const u64 chunk_logical = bg->start;
3587 int ret;
3588 u64 physical = map->stripes[stripe_index].physical;
3589 const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3590 const u64 physical_end = physical + dev_stripe_len;
3591 u64 logical;
3592 u64 logic_end;
3593 /* The logical increment after finishing one stripe */
3594 u64 increment;
3595 /* Offset inside the chunk */
3596 u64 offset;
3597 u64 stripe_logical;
3598 u64 stripe_end;
3599 int stop_loop = 0;
3600
3601 path = btrfs_alloc_path();
3602 if (!path)
3603 return -ENOMEM;
3604
3605 /*
3606 * work on commit root. The related disk blocks are static as
3607 * long as COW is applied. This means, it is save to rewrite
3608 * them to repair disk errors without any race conditions
3609 */
3610 path->search_commit_root = 1;
3611 path->skip_locking = 1;
3612 path->reada = READA_FORWARD;
3613
3614 wait_event(sctx->list_wait,
3615 atomic_read(&sctx->bios_in_flight) == 0);
3616 scrub_blocked_if_needed(fs_info);
3617
3618 root = btrfs_extent_root(fs_info, bg->start);
3619 csum_root = btrfs_csum_root(fs_info, bg->start);
3620
3621 /*
3622 * collect all data csums for the stripe to avoid seeking during
3623 * the scrub. This might currently (crc32) end up to be about 1MB
3624 */
3625 blk_start_plug(&plug);
3626
3627 if (sctx->is_dev_replace &&
3628 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3629 mutex_lock(&sctx->wr_lock);
3630 sctx->write_pointer = physical;
3631 mutex_unlock(&sctx->wr_lock);
3632 sctx->flush_all_writes = true;
3633 }
3634
3635 /*
3636 * There used to be a big double loop to handle all profiles using the
3637 * same routine, which grows larger and more gross over time.
3638 *
3639 * So here we handle each profile differently, so simpler profiles
3640 * have simpler scrubbing function.
3641 */
3642 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3643 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3644 /*
3645 * Above check rules out all complex profile, the remaining
3646 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3647 * mirrored duplication without stripe.
3648 *
3649 * Only @physical and @mirror_num needs to calculated using
3650 * @stripe_index.
3651 */
3652 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3653 bg->start, bg->length, scrub_dev,
3654 map->stripes[stripe_index].physical,
3655 stripe_index + 1);
3656 offset = 0;
3657 goto out;
3658 }
3659 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3660 ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3661 scrub_dev, stripe_index);
3662 offset = map->stripe_len * (stripe_index / map->sub_stripes);
3663 goto out;
3664 }
3665
3666 /* Only RAID56 goes through the old code */
3667 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3668 ret = 0;
3669
3670 /* Calculate the logical end of the stripe */
3671 get_raid56_logic_offset(physical_end, stripe_index,
3672 map, &logic_end, NULL);
3673 logic_end += chunk_logical;
3674
3675 /* Initialize @offset in case we need to go to out: label */
3676 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3677 increment = map->stripe_len * nr_data_stripes(map);
3678
3679 /*
3680 * Due to the rotation, for RAID56 it's better to iterate each stripe
3681 * using their physical offset.
3682 */
3683 while (physical < physical_end) {
3684 ret = get_raid56_logic_offset(physical, stripe_index, map,
3685 &logical, &stripe_logical);
3686 logical += chunk_logical;
3687 if (ret) {
3688 /* it is parity strip */
3689 stripe_logical += chunk_logical;
3690 stripe_end = stripe_logical + increment;
3691 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3692 stripe_logical,
3693 stripe_end);
3694 if (ret)
3695 goto out;
3696 goto next;
3697 }
3698
3699 /*
3700 * Now we're at a data stripe, scrub each extents in the range.
3701 *
3702 * At this stage, if we ignore the repair part, inside each data
3703 * stripe it is no different than SINGLE profile.
3704 * We can reuse scrub_simple_mirror() here, as the repair part
3705 * is still based on @mirror_num.
3706 */
3707 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3708 logical, map->stripe_len,
3709 scrub_dev, physical, 1);
3710 if (ret < 0)
3711 goto out;
3712next:
3713 logical += increment;
3714 physical += map->stripe_len;
3715 spin_lock(&sctx->stat_lock);
3716 if (stop_loop)
3717 sctx->stat.last_physical =
3718 map->stripes[stripe_index].physical + dev_stripe_len;
3719 else
3720 sctx->stat.last_physical = physical;
3721 spin_unlock(&sctx->stat_lock);
3722 if (stop_loop)
3723 break;
3724 }
3725out:
3726 /* push queued extents */
3727 scrub_submit(sctx);
3728 mutex_lock(&sctx->wr_lock);
3729 scrub_wr_submit(sctx);
3730 mutex_unlock(&sctx->wr_lock);
3731
3732 blk_finish_plug(&plug);
3733 btrfs_free_path(path);
3734
3735 if (sctx->is_dev_replace && ret >= 0) {
3736 int ret2;
3737
3738 ret2 = sync_write_pointer_for_zoned(sctx,
3739 chunk_logical + offset,
3740 map->stripes[stripe_index].physical,
3741 physical_end);
3742 if (ret2)
3743 ret = ret2;
3744 }
3745
3746 return ret < 0 ? ret : 0;
3747}
3748
3749static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3750 struct btrfs_block_group *bg,
3751 struct btrfs_device *scrub_dev,
3752 u64 dev_offset,
3753 u64 dev_extent_len)
3754{
3755 struct btrfs_fs_info *fs_info = sctx->fs_info;
3756 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3757 struct map_lookup *map;
3758 struct extent_map *em;
3759 int i;
3760 int ret = 0;
3761
3762 read_lock(&map_tree->lock);
3763 em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3764 read_unlock(&map_tree->lock);
3765
3766 if (!em) {
3767 /*
3768 * Might have been an unused block group deleted by the cleaner
3769 * kthread or relocation.
3770 */
3771 spin_lock(&bg->lock);
3772 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3773 ret = -EINVAL;
3774 spin_unlock(&bg->lock);
3775
3776 return ret;
3777 }
3778 if (em->start != bg->start)
3779 goto out;
3780 if (em->len < dev_extent_len)
3781 goto out;
3782
3783 map = em->map_lookup;
3784 for (i = 0; i < map->num_stripes; ++i) {
3785 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3786 map->stripes[i].physical == dev_offset) {
3787 ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3788 if (ret)
3789 goto out;
3790 }
3791 }
3792out:
3793 free_extent_map(em);
3794
3795 return ret;
3796}
3797
3798static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3799 struct btrfs_block_group *cache)
3800{
3801 struct btrfs_fs_info *fs_info = cache->fs_info;
3802 struct btrfs_trans_handle *trans;
3803
3804 if (!btrfs_is_zoned(fs_info))
3805 return 0;
3806
3807 btrfs_wait_block_group_reservations(cache);
3808 btrfs_wait_nocow_writers(cache);
3809 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3810
3811 trans = btrfs_join_transaction(root);
3812 if (IS_ERR(trans))
3813 return PTR_ERR(trans);
3814 return btrfs_commit_transaction(trans);
3815}
3816
3817static noinline_for_stack
3818int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3819 struct btrfs_device *scrub_dev, u64 start, u64 end)
3820{
3821 struct btrfs_dev_extent *dev_extent = NULL;
3822 struct btrfs_path *path;
3823 struct btrfs_fs_info *fs_info = sctx->fs_info;
3824 struct btrfs_root *root = fs_info->dev_root;
3825 u64 chunk_offset;
3826 int ret = 0;
3827 int ro_set;
3828 int slot;
3829 struct extent_buffer *l;
3830 struct btrfs_key key;
3831 struct btrfs_key found_key;
3832 struct btrfs_block_group *cache;
3833 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3834
3835 path = btrfs_alloc_path();
3836 if (!path)
3837 return -ENOMEM;
3838
3839 path->reada = READA_FORWARD;
3840 path->search_commit_root = 1;
3841 path->skip_locking = 1;
3842
3843 key.objectid = scrub_dev->devid;
3844 key.offset = 0ull;
3845 key.type = BTRFS_DEV_EXTENT_KEY;
3846
3847 while (1) {
3848 u64 dev_extent_len;
3849
3850 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3851 if (ret < 0)
3852 break;
3853 if (ret > 0) {
3854 if (path->slots[0] >=
3855 btrfs_header_nritems(path->nodes[0])) {
3856 ret = btrfs_next_leaf(root, path);
3857 if (ret < 0)
3858 break;
3859 if (ret > 0) {
3860 ret = 0;
3861 break;
3862 }
3863 } else {
3864 ret = 0;
3865 }
3866 }
3867
3868 l = path->nodes[0];
3869 slot = path->slots[0];
3870
3871 btrfs_item_key_to_cpu(l, &found_key, slot);
3872
3873 if (found_key.objectid != scrub_dev->devid)
3874 break;
3875
3876 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3877 break;
3878
3879 if (found_key.offset >= end)
3880 break;
3881
3882 if (found_key.offset < key.offset)
3883 break;
3884
3885 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3886 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3887
3888 if (found_key.offset + dev_extent_len <= start)
3889 goto skip;
3890
3891 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3892
3893 /*
3894 * get a reference on the corresponding block group to prevent
3895 * the chunk from going away while we scrub it
3896 */
3897 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3898
3899 /* some chunks are removed but not committed to disk yet,
3900 * continue scrubbing */
3901 if (!cache)
3902 goto skip;
3903
3904 ASSERT(cache->start <= chunk_offset);
3905 /*
3906 * We are using the commit root to search for device extents, so
3907 * that means we could have found a device extent item from a
3908 * block group that was deleted in the current transaction. The
3909 * logical start offset of the deleted block group, stored at
3910 * @chunk_offset, might be part of the logical address range of
3911 * a new block group (which uses different physical extents).
3912 * In this case btrfs_lookup_block_group() has returned the new
3913 * block group, and its start address is less than @chunk_offset.
3914 *
3915 * We skip such new block groups, because it's pointless to
3916 * process them, as we won't find their extents because we search
3917 * for them using the commit root of the extent tree. For a device
3918 * replace it's also fine to skip it, we won't miss copying them
3919 * to the target device because we have the write duplication
3920 * setup through the regular write path (by btrfs_map_block()),
3921 * and we have committed a transaction when we started the device
3922 * replace, right after setting up the device replace state.
3923 */
3924 if (cache->start < chunk_offset) {
3925 btrfs_put_block_group(cache);
3926 goto skip;
3927 }
3928
3929 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3930 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3931 btrfs_put_block_group(cache);
3932 goto skip;
3933 }
3934 }
3935
3936 /*
3937 * Make sure that while we are scrubbing the corresponding block
3938 * group doesn't get its logical address and its device extents
3939 * reused for another block group, which can possibly be of a
3940 * different type and different profile. We do this to prevent
3941 * false error detections and crashes due to bogus attempts to
3942 * repair extents.
3943 */
3944 spin_lock(&cache->lock);
3945 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3946 spin_unlock(&cache->lock);
3947 btrfs_put_block_group(cache);
3948 goto skip;
3949 }
3950 btrfs_freeze_block_group(cache);
3951 spin_unlock(&cache->lock);
3952
3953 /*
3954 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3955 * to avoid deadlock caused by:
3956 * btrfs_inc_block_group_ro()
3957 * -> btrfs_wait_for_commit()
3958 * -> btrfs_commit_transaction()
3959 * -> btrfs_scrub_pause()
3960 */
3961 scrub_pause_on(fs_info);
3962
3963 /*
3964 * Don't do chunk preallocation for scrub.
3965 *
3966 * This is especially important for SYSTEM bgs, or we can hit
3967 * -EFBIG from btrfs_finish_chunk_alloc() like:
3968 * 1. The only SYSTEM bg is marked RO.
3969 * Since SYSTEM bg is small, that's pretty common.
3970 * 2. New SYSTEM bg will be allocated
3971 * Due to regular version will allocate new chunk.
3972 * 3. New SYSTEM bg is empty and will get cleaned up
3973 * Before cleanup really happens, it's marked RO again.
3974 * 4. Empty SYSTEM bg get scrubbed
3975 * We go back to 2.
3976 *
3977 * This can easily boost the amount of SYSTEM chunks if cleaner
3978 * thread can't be triggered fast enough, and use up all space
3979 * of btrfs_super_block::sys_chunk_array
3980 *
3981 * While for dev replace, we need to try our best to mark block
3982 * group RO, to prevent race between:
3983 * - Write duplication
3984 * Contains latest data
3985 * - Scrub copy
3986 * Contains data from commit tree
3987 *
3988 * If target block group is not marked RO, nocow writes can
3989 * be overwritten by scrub copy, causing data corruption.
3990 * So for dev-replace, it's not allowed to continue if a block
3991 * group is not RO.
3992 */
3993 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3994 if (!ret && sctx->is_dev_replace) {
3995 ret = finish_extent_writes_for_zoned(root, cache);
3996 if (ret) {
3997 btrfs_dec_block_group_ro(cache);
3998 scrub_pause_off(fs_info);
3999 btrfs_put_block_group(cache);
4000 break;
4001 }
4002 }
4003
4004 if (ret == 0) {
4005 ro_set = 1;
4006 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4007 /*
4008 * btrfs_inc_block_group_ro return -ENOSPC when it
4009 * failed in creating new chunk for metadata.
4010 * It is not a problem for scrub, because
4011 * metadata are always cowed, and our scrub paused
4012 * commit_transactions.
4013 */
4014 ro_set = 0;
4015 } else if (ret == -ETXTBSY) {
4016 btrfs_warn(fs_info,
4017 "skipping scrub of block group %llu due to active swapfile",
4018 cache->start);
4019 scrub_pause_off(fs_info);
4020 ret = 0;
4021 goto skip_unfreeze;
4022 } else {
4023 btrfs_warn(fs_info,
4024 "failed setting block group ro: %d", ret);
4025 btrfs_unfreeze_block_group(cache);
4026 btrfs_put_block_group(cache);
4027 scrub_pause_off(fs_info);
4028 break;
4029 }
4030
4031 /*
4032 * Now the target block is marked RO, wait for nocow writes to
4033 * finish before dev-replace.
4034 * COW is fine, as COW never overwrites extents in commit tree.
4035 */
4036 if (sctx->is_dev_replace) {
4037 btrfs_wait_nocow_writers(cache);
4038 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4039 cache->length);
4040 }
4041
4042 scrub_pause_off(fs_info);
4043 down_write(&dev_replace->rwsem);
4044 dev_replace->cursor_right = found_key.offset + dev_extent_len;
4045 dev_replace->cursor_left = found_key.offset;
4046 dev_replace->item_needs_writeback = 1;
4047 up_write(&dev_replace->rwsem);
4048
4049 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4050 dev_extent_len);
4051
4052 /*
4053 * flush, submit all pending read and write bios, afterwards
4054 * wait for them.
4055 * Note that in the dev replace case, a read request causes
4056 * write requests that are submitted in the read completion
4057 * worker. Therefore in the current situation, it is required
4058 * that all write requests are flushed, so that all read and
4059 * write requests are really completed when bios_in_flight
4060 * changes to 0.
4061 */
4062 sctx->flush_all_writes = true;
4063 scrub_submit(sctx);
4064 mutex_lock(&sctx->wr_lock);
4065 scrub_wr_submit(sctx);
4066 mutex_unlock(&sctx->wr_lock);
4067
4068 wait_event(sctx->list_wait,
4069 atomic_read(&sctx->bios_in_flight) == 0);
4070
4071 scrub_pause_on(fs_info);
4072
4073 /*
4074 * must be called before we decrease @scrub_paused.
4075 * make sure we don't block transaction commit while
4076 * we are waiting pending workers finished.
4077 */
4078 wait_event(sctx->list_wait,
4079 atomic_read(&sctx->workers_pending) == 0);
4080 sctx->flush_all_writes = false;
4081
4082 scrub_pause_off(fs_info);
4083
4084 if (sctx->is_dev_replace &&
4085 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4086 cache, found_key.offset))
4087 ro_set = 0;
4088
4089 down_write(&dev_replace->rwsem);
4090 dev_replace->cursor_left = dev_replace->cursor_right;
4091 dev_replace->item_needs_writeback = 1;
4092 up_write(&dev_replace->rwsem);
4093
4094 if (ro_set)
4095 btrfs_dec_block_group_ro(cache);
4096
4097 /*
4098 * We might have prevented the cleaner kthread from deleting
4099 * this block group if it was already unused because we raced
4100 * and set it to RO mode first. So add it back to the unused
4101 * list, otherwise it might not ever be deleted unless a manual
4102 * balance is triggered or it becomes used and unused again.
4103 */
4104 spin_lock(&cache->lock);
4105 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4106 !cache->ro && cache->reserved == 0 && cache->used == 0) {
4107 spin_unlock(&cache->lock);
4108 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4109 btrfs_discard_queue_work(&fs_info->discard_ctl,
4110 cache);
4111 else
4112 btrfs_mark_bg_unused(cache);
4113 } else {
4114 spin_unlock(&cache->lock);
4115 }
4116skip_unfreeze:
4117 btrfs_unfreeze_block_group(cache);
4118 btrfs_put_block_group(cache);
4119 if (ret)
4120 break;
4121 if (sctx->is_dev_replace &&
4122 atomic64_read(&dev_replace->num_write_errors) > 0) {
4123 ret = -EIO;
4124 break;
4125 }
4126 if (sctx->stat.malloc_errors > 0) {
4127 ret = -ENOMEM;
4128 break;
4129 }
4130skip:
4131 key.offset = found_key.offset + dev_extent_len;
4132 btrfs_release_path(path);
4133 }
4134
4135 btrfs_free_path(path);
4136
4137 return ret;
4138}
4139
4140static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4141 struct btrfs_device *scrub_dev)
4142{
4143 int i;
4144 u64 bytenr;
4145 u64 gen;
4146 int ret;
4147 struct btrfs_fs_info *fs_info = sctx->fs_info;
4148
4149 if (BTRFS_FS_ERROR(fs_info))
4150 return -EROFS;
4151
4152 /* Seed devices of a new filesystem has their own generation. */
4153 if (scrub_dev->fs_devices != fs_info->fs_devices)
4154 gen = scrub_dev->generation;
4155 else
4156 gen = fs_info->last_trans_committed;
4157
4158 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4159 bytenr = btrfs_sb_offset(i);
4160 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4161 scrub_dev->commit_total_bytes)
4162 break;
4163 if (!btrfs_check_super_location(scrub_dev, bytenr))
4164 continue;
4165
4166 ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4167 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4168 NULL, bytenr);
4169 if (ret)
4170 return ret;
4171 }
4172 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4173
4174 return 0;
4175}
4176
4177static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4178{
4179 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4180 &fs_info->scrub_lock)) {
4181 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4182 struct workqueue_struct *scrub_wr_comp =
4183 fs_info->scrub_wr_completion_workers;
4184 struct workqueue_struct *scrub_parity =
4185 fs_info->scrub_parity_workers;
4186
4187 fs_info->scrub_workers = NULL;
4188 fs_info->scrub_wr_completion_workers = NULL;
4189 fs_info->scrub_parity_workers = NULL;
4190 mutex_unlock(&fs_info->scrub_lock);
4191
4192 if (scrub_workers)
4193 destroy_workqueue(scrub_workers);
4194 if (scrub_wr_comp)
4195 destroy_workqueue(scrub_wr_comp);
4196 if (scrub_parity)
4197 destroy_workqueue(scrub_parity);
4198 }
4199}
4200
4201/*
4202 * get a reference count on fs_info->scrub_workers. start worker if necessary
4203 */
4204static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4205 int is_dev_replace)
4206{
4207 struct workqueue_struct *scrub_workers = NULL;
4208 struct workqueue_struct *scrub_wr_comp = NULL;
4209 struct workqueue_struct *scrub_parity = NULL;
4210 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4211 int max_active = fs_info->thread_pool_size;
4212 int ret = -ENOMEM;
4213
4214 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4215 return 0;
4216
4217 scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4218 is_dev_replace ? 1 : max_active);
4219 if (!scrub_workers)
4220 goto fail_scrub_workers;
4221
4222 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4223 if (!scrub_wr_comp)
4224 goto fail_scrub_wr_completion_workers;
4225
4226 scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4227 if (!scrub_parity)
4228 goto fail_scrub_parity_workers;
4229
4230 mutex_lock(&fs_info->scrub_lock);
4231 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4232 ASSERT(fs_info->scrub_workers == NULL &&
4233 fs_info->scrub_wr_completion_workers == NULL &&
4234 fs_info->scrub_parity_workers == NULL);
4235 fs_info->scrub_workers = scrub_workers;
4236 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4237 fs_info->scrub_parity_workers = scrub_parity;
4238 refcount_set(&fs_info->scrub_workers_refcnt, 1);
4239 mutex_unlock(&fs_info->scrub_lock);
4240 return 0;
4241 }
4242 /* Other thread raced in and created the workers for us */
4243 refcount_inc(&fs_info->scrub_workers_refcnt);
4244 mutex_unlock(&fs_info->scrub_lock);
4245
4246 ret = 0;
4247 destroy_workqueue(scrub_parity);
4248fail_scrub_parity_workers:
4249 destroy_workqueue(scrub_wr_comp);
4250fail_scrub_wr_completion_workers:
4251 destroy_workqueue(scrub_workers);
4252fail_scrub_workers:
4253 return ret;
4254}
4255
4256int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4257 u64 end, struct btrfs_scrub_progress *progress,
4258 int readonly, int is_dev_replace)
4259{
4260 struct btrfs_dev_lookup_args args = { .devid = devid };
4261 struct scrub_ctx *sctx;
4262 int ret;
4263 struct btrfs_device *dev;
4264 unsigned int nofs_flag;
4265 bool need_commit = false;
4266
4267 if (btrfs_fs_closing(fs_info))
4268 return -EAGAIN;
4269
4270 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4271 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4272
4273 /*
4274 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4275 * value (max nodesize / min sectorsize), thus nodesize should always
4276 * be fine.
4277 */
4278 ASSERT(fs_info->nodesize <=
4279 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4280
4281 /* Allocate outside of device_list_mutex */
4282 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4283 if (IS_ERR(sctx))
4284 return PTR_ERR(sctx);
4285
4286 ret = scrub_workers_get(fs_info, is_dev_replace);
4287 if (ret)
4288 goto out_free_ctx;
4289
4290 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4291 dev = btrfs_find_device(fs_info->fs_devices, &args);
4292 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4293 !is_dev_replace)) {
4294 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295 ret = -ENODEV;
4296 goto out;
4297 }
4298
4299 if (!is_dev_replace && !readonly &&
4300 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4301 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302 btrfs_err_in_rcu(fs_info,
4303 "scrub on devid %llu: filesystem on %s is not writable",
4304 devid, btrfs_dev_name(dev));
4305 ret = -EROFS;
4306 goto out;
4307 }
4308
4309 mutex_lock(&fs_info->scrub_lock);
4310 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4311 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4312 mutex_unlock(&fs_info->scrub_lock);
4313 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4314 ret = -EIO;
4315 goto out;
4316 }
4317
4318 down_read(&fs_info->dev_replace.rwsem);
4319 if (dev->scrub_ctx ||
4320 (!is_dev_replace &&
4321 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4322 up_read(&fs_info->dev_replace.rwsem);
4323 mutex_unlock(&fs_info->scrub_lock);
4324 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325 ret = -EINPROGRESS;
4326 goto out;
4327 }
4328 up_read(&fs_info->dev_replace.rwsem);
4329
4330 sctx->readonly = readonly;
4331 dev->scrub_ctx = sctx;
4332 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333
4334 /*
4335 * checking @scrub_pause_req here, we can avoid
4336 * race between committing transaction and scrubbing.
4337 */
4338 __scrub_blocked_if_needed(fs_info);
4339 atomic_inc(&fs_info->scrubs_running);
4340 mutex_unlock(&fs_info->scrub_lock);
4341
4342 /*
4343 * In order to avoid deadlock with reclaim when there is a transaction
4344 * trying to pause scrub, make sure we use GFP_NOFS for all the
4345 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4346 * invoked by our callees. The pausing request is done when the
4347 * transaction commit starts, and it blocks the transaction until scrub
4348 * is paused (done at specific points at scrub_stripe() or right above
4349 * before incrementing fs_info->scrubs_running).
4350 */
4351 nofs_flag = memalloc_nofs_save();
4352 if (!is_dev_replace) {
4353 u64 old_super_errors;
4354
4355 spin_lock(&sctx->stat_lock);
4356 old_super_errors = sctx->stat.super_errors;
4357 spin_unlock(&sctx->stat_lock);
4358
4359 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4360 /*
4361 * by holding device list mutex, we can
4362 * kick off writing super in log tree sync.
4363 */
4364 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4365 ret = scrub_supers(sctx, dev);
4366 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4367
4368 spin_lock(&sctx->stat_lock);
4369 /*
4370 * Super block errors found, but we can not commit transaction
4371 * at current context, since btrfs_commit_transaction() needs
4372 * to pause the current running scrub (hold by ourselves).
4373 */
4374 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4375 need_commit = true;
4376 spin_unlock(&sctx->stat_lock);
4377 }
4378
4379 if (!ret)
4380 ret = scrub_enumerate_chunks(sctx, dev, start, end);
4381 memalloc_nofs_restore(nofs_flag);
4382
4383 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4384 atomic_dec(&fs_info->scrubs_running);
4385 wake_up(&fs_info->scrub_pause_wait);
4386
4387 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4388
4389 if (progress)
4390 memcpy(progress, &sctx->stat, sizeof(*progress));
4391
4392 if (!is_dev_replace)
4393 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4394 ret ? "not finished" : "finished", devid, ret);
4395
4396 mutex_lock(&fs_info->scrub_lock);
4397 dev->scrub_ctx = NULL;
4398 mutex_unlock(&fs_info->scrub_lock);
4399
4400 scrub_workers_put(fs_info);
4401 scrub_put_ctx(sctx);
4402
4403 /*
4404 * We found some super block errors before, now try to force a
4405 * transaction commit, as scrub has finished.
4406 */
4407 if (need_commit) {
4408 struct btrfs_trans_handle *trans;
4409
4410 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4411 if (IS_ERR(trans)) {
4412 ret = PTR_ERR(trans);
4413 btrfs_err(fs_info,
4414 "scrub: failed to start transaction to fix super block errors: %d", ret);
4415 return ret;
4416 }
4417 ret = btrfs_commit_transaction(trans);
4418 if (ret < 0)
4419 btrfs_err(fs_info,
4420 "scrub: failed to commit transaction to fix super block errors: %d", ret);
4421 }
4422 return ret;
4423out:
4424 scrub_workers_put(fs_info);
4425out_free_ctx:
4426 scrub_free_ctx(sctx);
4427
4428 return ret;
4429}
4430
4431void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4432{
4433 mutex_lock(&fs_info->scrub_lock);
4434 atomic_inc(&fs_info->scrub_pause_req);
4435 while (atomic_read(&fs_info->scrubs_paused) !=
4436 atomic_read(&fs_info->scrubs_running)) {
4437 mutex_unlock(&fs_info->scrub_lock);
4438 wait_event(fs_info->scrub_pause_wait,
4439 atomic_read(&fs_info->scrubs_paused) ==
4440 atomic_read(&fs_info->scrubs_running));
4441 mutex_lock(&fs_info->scrub_lock);
4442 }
4443 mutex_unlock(&fs_info->scrub_lock);
4444}
4445
4446void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4447{
4448 atomic_dec(&fs_info->scrub_pause_req);
4449 wake_up(&fs_info->scrub_pause_wait);
4450}
4451
4452int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4453{
4454 mutex_lock(&fs_info->scrub_lock);
4455 if (!atomic_read(&fs_info->scrubs_running)) {
4456 mutex_unlock(&fs_info->scrub_lock);
4457 return -ENOTCONN;
4458 }
4459
4460 atomic_inc(&fs_info->scrub_cancel_req);
4461 while (atomic_read(&fs_info->scrubs_running)) {
4462 mutex_unlock(&fs_info->scrub_lock);
4463 wait_event(fs_info->scrub_pause_wait,
4464 atomic_read(&fs_info->scrubs_running) == 0);
4465 mutex_lock(&fs_info->scrub_lock);
4466 }
4467 atomic_dec(&fs_info->scrub_cancel_req);
4468 mutex_unlock(&fs_info->scrub_lock);
4469
4470 return 0;
4471}
4472
4473int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4474{
4475 struct btrfs_fs_info *fs_info = dev->fs_info;
4476 struct scrub_ctx *sctx;
4477
4478 mutex_lock(&fs_info->scrub_lock);
4479 sctx = dev->scrub_ctx;
4480 if (!sctx) {
4481 mutex_unlock(&fs_info->scrub_lock);
4482 return -ENOTCONN;
4483 }
4484 atomic_inc(&sctx->cancel_req);
4485 while (dev->scrub_ctx) {
4486 mutex_unlock(&fs_info->scrub_lock);
4487 wait_event(fs_info->scrub_pause_wait,
4488 dev->scrub_ctx == NULL);
4489 mutex_lock(&fs_info->scrub_lock);
4490 }
4491 mutex_unlock(&fs_info->scrub_lock);
4492
4493 return 0;
4494}
4495
4496int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4497 struct btrfs_scrub_progress *progress)
4498{
4499 struct btrfs_dev_lookup_args args = { .devid = devid };
4500 struct btrfs_device *dev;
4501 struct scrub_ctx *sctx = NULL;
4502
4503 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4504 dev = btrfs_find_device(fs_info->fs_devices, &args);
4505 if (dev)
4506 sctx = dev->scrub_ctx;
4507 if (sctx)
4508 memcpy(progress, &sctx->stat, sizeof(*progress));
4509 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4510
4511 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4512}
4513
4514static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4515 u64 extent_logical, u32 extent_len,
4516 u64 *extent_physical,
4517 struct btrfs_device **extent_dev,
4518 int *extent_mirror_num)
4519{
4520 u64 mapped_length;
4521 struct btrfs_io_context *bioc = NULL;
4522 int ret;
4523
4524 mapped_length = extent_len;
4525 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4526 &mapped_length, &bioc, 0);
4527 if (ret || !bioc || mapped_length < extent_len ||
4528 !bioc->stripes[0].dev->bdev) {
4529 btrfs_put_bioc(bioc);
4530 return;
4531 }
4532
4533 *extent_physical = bioc->stripes[0].physical;
4534 *extent_mirror_num = bioc->mirror_num;
4535 *extent_dev = bioc->stripes[0].dev;
4536 btrfs_put_bioc(bioc);
4537}