Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/scatterlist.h>
   9#include <linux/swap.h>
  10#include <linux/radix-tree.h>
  11#include <linux/writeback.h>
  12#include <linux/buffer_head.h>
  13#include <linux/workqueue.h>
  14#include <linux/kthread.h>
  15#include <linux/slab.h>
  16#include <linux/migrate.h>
  17#include <linux/ratelimit.h>
  18#include <linux/uuid.h>
  19#include <linux/semaphore.h>
  20#include <linux/error-injection.h>
  21#include <linux/crc32c.h>
 
  22#include <asm/unaligned.h>
 
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43
  44#ifdef CONFIG_X86
  45#include <asm/cpufeature.h>
  46#endif
 
  47
  48#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  49				 BTRFS_HEADER_FLAG_RELOC |\
  50				 BTRFS_SUPER_FLAG_ERROR |\
  51				 BTRFS_SUPER_FLAG_SEEDING |\
  52				 BTRFS_SUPER_FLAG_METADUMP |\
  53				 BTRFS_SUPER_FLAG_METADUMP_V2)
  54
  55static const struct extent_io_ops btree_extent_io_ops;
  56static void end_workqueue_fn(struct btrfs_work *work);
  57static void free_fs_root(struct btrfs_root *root);
  58static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  59static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61				      struct btrfs_fs_info *fs_info);
  62static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  64					struct extent_io_tree *dirty_pages,
  65					int mark);
  66static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  67				       struct extent_io_tree *pinned_extents);
  68static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  69static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  70
  71/*
  72 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  73 * is complete.  This is used during reads to verify checksums, and it is used
  74 * by writes to insert metadata for new file extents after IO is complete.
  75 */
  76struct btrfs_end_io_wq {
  77	struct bio *bio;
  78	bio_end_io_t *end_io;
  79	void *private;
  80	struct btrfs_fs_info *info;
  81	blk_status_t status;
  82	enum btrfs_wq_endio_type metadata;
  83	struct btrfs_work work;
  84};
  85
  86static struct kmem_cache *btrfs_end_io_wq_cache;
  87
  88int __init btrfs_end_io_wq_init(void)
  89{
  90	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  91					sizeof(struct btrfs_end_io_wq),
  92					0,
  93					SLAB_MEM_SPREAD,
  94					NULL);
  95	if (!btrfs_end_io_wq_cache)
  96		return -ENOMEM;
  97	return 0;
  98}
  99
 100void __cold btrfs_end_io_wq_exit(void)
 101{
 102	kmem_cache_destroy(btrfs_end_io_wq_cache);
 103}
 104
 
 
 
 
 
 
 105/*
 106 * async submit bios are used to offload expensive checksumming
 107 * onto the worker threads.  They checksum file and metadata bios
 108 * just before they are sent down the IO stack.
 109 */
 110struct async_submit_bio {
 111	void *private_data;
 112	struct btrfs_fs_info *fs_info;
 113	struct bio *bio;
 114	extent_submit_bio_start_t *submit_bio_start;
 115	extent_submit_bio_done_t *submit_bio_done;
 116	int mirror_num;
 117	unsigned long bio_flags;
 118	/*
 119	 * bio_offset is optional, can be used if the pages in the bio
 120	 * can't tell us where in the file the bio should go
 121	 */
 122	u64 bio_offset;
 123	struct btrfs_work work;
 124	blk_status_t status;
 125};
 126
 127/*
 128 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 129 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 130 * the level the eb occupies in the tree.
 131 *
 132 * Different roots are used for different purposes and may nest inside each
 133 * other and they require separate keysets.  As lockdep keys should be
 134 * static, assign keysets according to the purpose of the root as indicated
 135 * by btrfs_root->objectid.  This ensures that all special purpose roots
 136 * have separate keysets.
 137 *
 138 * Lock-nesting across peer nodes is always done with the immediate parent
 139 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 140 * subclass to avoid triggering lockdep warning in such cases.
 141 *
 142 * The key is set by the readpage_end_io_hook after the buffer has passed
 143 * csum validation but before the pages are unlocked.  It is also set by
 144 * btrfs_init_new_buffer on freshly allocated blocks.
 145 *
 146 * We also add a check to make sure the highest level of the tree is the
 147 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 148 * needs update as well.
 149 */
 150#ifdef CONFIG_DEBUG_LOCK_ALLOC
 151# if BTRFS_MAX_LEVEL != 8
 152#  error
 153# endif
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 155static struct btrfs_lockdep_keyset {
 156	u64			id;		/* root objectid */
 157	const char		*name_stem;	/* lock name stem */
 158	char			names[BTRFS_MAX_LEVEL + 1][20];
 159	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 160} btrfs_lockdep_keysets[] = {
 161	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 162	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 163	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 164	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 165	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 166	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 167	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 168	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 169	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 170	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 171	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 172	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 173	{ .id = 0,				.name_stem = "tree"	},
 174};
 175
 176void __init btrfs_init_lockdep(void)
 177{
 178	int i, j;
 179
 180	/* initialize lockdep class names */
 181	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 182		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 183
 184		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 185			snprintf(ks->names[j], sizeof(ks->names[j]),
 186				 "btrfs-%s-%02d", ks->name_stem, j);
 187	}
 188}
 189
 190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 191				    int level)
 192{
 193	struct btrfs_lockdep_keyset *ks;
 194
 195	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 196
 197	/* find the matching keyset, id 0 is the default entry */
 198	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 199		if (ks->id == objectid)
 200			break;
 201
 202	lockdep_set_class_and_name(&eb->lock,
 203				   &ks->keys[level], ks->names[level]);
 204}
 205
 206#endif
 207
 208/*
 209 * extents on the btree inode are pretty simple, there's one extent
 210 * that covers the entire device
 211 */
 212struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 213		struct page *page, size_t pg_offset, u64 start, u64 len,
 214		int create)
 215{
 216	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 217	struct extent_map_tree *em_tree = &inode->extent_tree;
 218	struct extent_map *em;
 219	int ret;
 220
 221	read_lock(&em_tree->lock);
 222	em = lookup_extent_mapping(em_tree, start, len);
 223	if (em) {
 224		em->bdev = fs_info->fs_devices->latest_bdev;
 225		read_unlock(&em_tree->lock);
 226		goto out;
 227	}
 228	read_unlock(&em_tree->lock);
 229
 230	em = alloc_extent_map();
 231	if (!em) {
 232		em = ERR_PTR(-ENOMEM);
 233		goto out;
 234	}
 235	em->start = 0;
 236	em->len = (u64)-1;
 237	em->block_len = (u64)-1;
 238	em->block_start = 0;
 239	em->bdev = fs_info->fs_devices->latest_bdev;
 240
 241	write_lock(&em_tree->lock);
 242	ret = add_extent_mapping(em_tree, em, 0);
 243	if (ret == -EEXIST) {
 244		free_extent_map(em);
 245		em = lookup_extent_mapping(em_tree, start, len);
 246		if (!em)
 247			em = ERR_PTR(-EIO);
 248	} else if (ret) {
 249		free_extent_map(em);
 250		em = ERR_PTR(ret);
 251	}
 252	write_unlock(&em_tree->lock);
 253
 254out:
 255	return em;
 256}
 257
 258u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
 259{
 260	return crc32c(seed, data, len);
 261}
 262
 263void btrfs_csum_final(u32 crc, u8 *result)
 264{
 265	put_unaligned_le32(~crc, result);
 266}
 267
 268/*
 269 * compute the csum for a btree block, and either verify it or write it
 270 * into the csum field of the block.
 271 */
 272static int csum_tree_block(struct btrfs_fs_info *fs_info,
 273			   struct extent_buffer *buf,
 274			   int verify)
 275{
 276	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 277	char result[BTRFS_CSUM_SIZE];
 278	unsigned long len;
 279	unsigned long cur_len;
 280	unsigned long offset = BTRFS_CSUM_SIZE;
 281	char *kaddr;
 282	unsigned long map_start;
 283	unsigned long map_len;
 284	int err;
 285	u32 crc = ~(u32)0;
 286
 287	len = buf->len - offset;
 288	while (len > 0) {
 289		err = map_private_extent_buffer(buf, offset, 32,
 290					&kaddr, &map_start, &map_len);
 291		if (err)
 292			return err;
 293		cur_len = min(len, map_len - (offset - map_start));
 294		crc = btrfs_csum_data(kaddr + offset - map_start,
 295				      crc, cur_len);
 296		len -= cur_len;
 297		offset += cur_len;
 298	}
 299	memset(result, 0, BTRFS_CSUM_SIZE);
 300
 301	btrfs_csum_final(crc, result);
 302
 303	if (verify) {
 304		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 305			u32 val;
 306			u32 found = 0;
 307			memcpy(&found, result, csum_size);
 308
 309			read_extent_buffer(buf, &val, 0, csum_size);
 310			btrfs_warn_rl(fs_info,
 311				"%s checksum verify failed on %llu wanted %X found %X level %d",
 312				fs_info->sb->s_id, buf->start,
 313				val, found, btrfs_header_level(buf));
 314			return -EUCLEAN;
 315		}
 316	} else {
 317		write_extent_buffer(buf, result, 0, csum_size);
 318	}
 319
 320	return 0;
 321}
 322
 323/*
 324 * we can't consider a given block up to date unless the transid of the
 325 * block matches the transid in the parent node's pointer.  This is how we
 326 * detect blocks that either didn't get written at all or got written
 327 * in the wrong place.
 328 */
 329static int verify_parent_transid(struct extent_io_tree *io_tree,
 330				 struct extent_buffer *eb, u64 parent_transid,
 331				 int atomic)
 332{
 333	struct extent_state *cached_state = NULL;
 334	int ret;
 335	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 336
 337	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 338		return 0;
 339
 340	if (atomic)
 341		return -EAGAIN;
 342
 343	if (need_lock) {
 344		btrfs_tree_read_lock(eb);
 345		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 346	}
 347
 348	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 349			 &cached_state);
 350	if (extent_buffer_uptodate(eb) &&
 351	    btrfs_header_generation(eb) == parent_transid) {
 352		ret = 0;
 353		goto out;
 354	}
 355	btrfs_err_rl(eb->fs_info,
 356		"parent transid verify failed on %llu wanted %llu found %llu",
 357			eb->start,
 358			parent_transid, btrfs_header_generation(eb));
 359	ret = 1;
 360
 361	/*
 362	 * Things reading via commit roots that don't have normal protection,
 363	 * like send, can have a really old block in cache that may point at a
 364	 * block that has been freed and re-allocated.  So don't clear uptodate
 365	 * if we find an eb that is under IO (dirty/writeback) because we could
 366	 * end up reading in the stale data and then writing it back out and
 367	 * making everybody very sad.
 368	 */
 369	if (!extent_buffer_under_io(eb))
 370		clear_extent_buffer_uptodate(eb);
 371out:
 372	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 373			     &cached_state);
 374	if (need_lock)
 375		btrfs_tree_read_unlock_blocking(eb);
 376	return ret;
 377}
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 379/*
 380 * Return 0 if the superblock checksum type matches the checksum value of that
 381 * algorithm. Pass the raw disk superblock data.
 382 */
 383static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 384				  char *raw_disk_sb)
 385{
 386	struct btrfs_super_block *disk_sb =
 387		(struct btrfs_super_block *)raw_disk_sb;
 388	u16 csum_type = btrfs_super_csum_type(disk_sb);
 389	int ret = 0;
 390
 391	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 392		u32 crc = ~(u32)0;
 393		char result[sizeof(crc)];
 394
 395		/*
 396		 * The super_block structure does not span the whole
 397		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 398		 * is filled with zeros and is included in the checksum.
 399		 */
 400		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 401				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 402		btrfs_csum_final(crc, result);
 403
 404		if (memcmp(raw_disk_sb, result, sizeof(result)))
 405			ret = 1;
 406	}
 407
 408	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 409		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 410				csum_type);
 411		ret = 1;
 412	}
 413
 414	return ret;
 415}
 416
 417static int verify_level_key(struct btrfs_fs_info *fs_info,
 418			    struct extent_buffer *eb, int level,
 419			    struct btrfs_key *first_key)
 420{
 
 421	int found_level;
 422	struct btrfs_key found_key;
 423	int ret;
 424
 425	found_level = btrfs_header_level(eb);
 426	if (found_level != level) {
 427#ifdef CONFIG_BTRFS_DEBUG
 428		WARN_ON(1);
 429		btrfs_err(fs_info,
 430"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 431			  eb->start, level, found_level);
 432#endif
 433		return -EIO;
 434	}
 435
 436	if (!first_key)
 437		return 0;
 438
 439	/*
 440	 * For live tree block (new tree blocks in current transaction),
 441	 * we need proper lock context to avoid race, which is impossible here.
 442	 * So we only checks tree blocks which is read from disk, whose
 443	 * generation <= fs_info->last_trans_committed.
 444	 */
 445	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 446		return 0;
 
 
 
 
 
 
 
 
 
 
 447	if (found_level)
 448		btrfs_node_key_to_cpu(eb, &found_key, 0);
 449	else
 450		btrfs_item_key_to_cpu(eb, &found_key, 0);
 451	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 452
 453#ifdef CONFIG_BTRFS_DEBUG
 454	if (ret) {
 455		WARN_ON(1);
 
 456		btrfs_err(fs_info,
 457"tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
 458			  eb->start, first_key->objectid, first_key->type,
 459			  first_key->offset, found_key.objectid,
 460			  found_key.type, found_key.offset);
 
 461	}
 462#endif
 463	return ret;
 464}
 465
 466/*
 467 * helper to read a given tree block, doing retries as required when
 468 * the checksums don't match and we have alternate mirrors to try.
 469 *
 470 * @parent_transid:	expected transid, skip check if 0
 471 * @level:		expected level, mandatory check
 472 * @first_key:		expected key of first slot, skip check if NULL
 473 */
 474static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 475					  struct extent_buffer *eb,
 476					  u64 parent_transid, int level,
 477					  struct btrfs_key *first_key)
 478{
 
 479	struct extent_io_tree *io_tree;
 480	int failed = 0;
 481	int ret;
 482	int num_copies = 0;
 483	int mirror_num = 0;
 484	int failed_mirror = 0;
 485
 486	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 487	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 488	while (1) {
 489		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 490					       mirror_num);
 491		if (!ret) {
 492			if (verify_parent_transid(io_tree, eb,
 493						   parent_transid, 0))
 494				ret = -EIO;
 495			else if (verify_level_key(fs_info, eb, level,
 496						  first_key))
 497				ret = -EUCLEAN;
 498			else
 499				break;
 500		}
 501
 502		/*
 503		 * This buffer's crc is fine, but its contents are corrupted, so
 504		 * there is no reason to read the other copies, they won't be
 505		 * any less wrong.
 506		 */
 507		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
 508		    ret == -EUCLEAN)
 509			break;
 510
 511		num_copies = btrfs_num_copies(fs_info,
 512					      eb->start, eb->len);
 513		if (num_copies == 1)
 514			break;
 515
 516		if (!failed_mirror) {
 517			failed = 1;
 518			failed_mirror = eb->read_mirror;
 519		}
 520
 521		mirror_num++;
 522		if (mirror_num == failed_mirror)
 523			mirror_num++;
 524
 525		if (mirror_num > num_copies)
 526			break;
 527	}
 528
 529	if (failed && !ret && failed_mirror)
 530		repair_eb_io_failure(fs_info, eb, failed_mirror);
 531
 532	return ret;
 533}
 534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535/*
 536 * checksum a dirty tree block before IO.  This has extra checks to make sure
 537 * we only fill in the checksum field in the first page of a multi-page block
 
 538 */
 539
 540static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 541{
 
 542	u64 start = page_offset(page);
 543	u64 found_start;
 544	struct extent_buffer *eb;
 545
 
 
 
 546	eb = (struct extent_buffer *)page->private;
 547	if (page != eb->pages[0])
 548		return 0;
 549
 550	found_start = btrfs_header_bytenr(eb);
 
 
 
 
 
 
 551	/*
 552	 * Please do not consolidate these warnings into a single if.
 553	 * It is useful to know what went wrong.
 554	 */
 555	if (WARN_ON(found_start != start))
 556		return -EUCLEAN;
 557	if (WARN_ON(!PageUptodate(page)))
 558		return -EUCLEAN;
 559
 560	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 561			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 562
 563	return csum_tree_block(fs_info, eb, 0);
 564}
 565
 566static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 567				 struct extent_buffer *eb)
 568{
 569	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
 570	u8 fsid[BTRFS_FSID_SIZE];
 571	int ret = 1;
 572
 573	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 574	while (fs_devices) {
 575		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 576			ret = 0;
 577			break;
 578		}
 579		fs_devices = fs_devices->seed;
 580	}
 581	return ret;
 
 
 
 
 
 
 
 
 
 
 
 582}
 583
 584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 585				      u64 phy_offset, struct page *page,
 586				      u64 start, u64 end, int mirror)
 587{
 
 588	u64 found_start;
 589	int found_level;
 590	struct extent_buffer *eb;
 591	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 592	struct btrfs_fs_info *fs_info = root->fs_info;
 593	int ret = 0;
 594	int reads_done;
 595
 596	if (!page->private)
 597		goto out;
 598
 599	eb = (struct extent_buffer *)page->private;
 600
 601	/* the pending IO might have been the only thing that kept this buffer
 602	 * in memory.  Make sure we have a ref for all this other checks
 603	 */
 604	extent_buffer_get(eb);
 605
 606	reads_done = atomic_dec_and_test(&eb->io_pages);
 607	if (!reads_done)
 608		goto err;
 609
 610	eb->read_mirror = mirror;
 611	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 612		ret = -EIO;
 613		goto err;
 614	}
 615
 616	found_start = btrfs_header_bytenr(eb);
 617	if (found_start != eb->start) {
 618		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 619			     found_start, eb->start);
 620		ret = -EIO;
 621		goto err;
 622	}
 623	if (check_tree_block_fsid(fs_info, eb)) {
 624		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 625			     eb->start);
 626		ret = -EIO;
 627		goto err;
 628	}
 629	found_level = btrfs_header_level(eb);
 630	if (found_level >= BTRFS_MAX_LEVEL) {
 631		btrfs_err(fs_info, "bad tree block level %d",
 632			  (int)btrfs_header_level(eb));
 633		ret = -EIO;
 634		goto err;
 635	}
 636
 637	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 638				       eb, found_level);
 639
 640	ret = csum_tree_block(fs_info, eb, 1);
 641	if (ret)
 642		goto err;
 
 
 
 
 
 
 
 
 643
 644	/*
 645	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 646	 * that we don't try and read the other copies of this block, just
 647	 * return -EIO.
 648	 */
 649	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
 650		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 651		ret = -EIO;
 652	}
 653
 654	if (found_level > 0 && btrfs_check_node(fs_info, eb))
 655		ret = -EIO;
 656
 657	if (!ret)
 658		set_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659err:
 660	if (reads_done &&
 661	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 662		btree_readahead_hook(eb, ret);
 663
 664	if (ret) {
 665		/*
 666		 * our io error hook is going to dec the io pages
 667		 * again, we have to make sure it has something
 668		 * to decrement
 669		 */
 670		atomic_inc(&eb->io_pages);
 671		clear_extent_buffer_uptodate(eb);
 672	}
 673	free_extent_buffer(eb);
 674out:
 675	return ret;
 676}
 677
 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
 679{
 680	struct extent_buffer *eb;
 681
 682	eb = (struct extent_buffer *)page->private;
 683	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 684	eb->read_mirror = failed_mirror;
 685	atomic_dec(&eb->io_pages);
 686	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 687		btree_readahead_hook(eb, -EIO);
 688	return -EIO;	/* we fixed nothing */
 689}
 690
 691static void end_workqueue_bio(struct bio *bio)
 692{
 693	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 694	struct btrfs_fs_info *fs_info;
 695	struct btrfs_workqueue *wq;
 696	btrfs_work_func_t func;
 697
 698	fs_info = end_io_wq->info;
 699	end_io_wq->status = bio->bi_status;
 700
 701	if (bio_op(bio) == REQ_OP_WRITE) {
 702		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 703			wq = fs_info->endio_meta_write_workers;
 704			func = btrfs_endio_meta_write_helper;
 705		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 706			wq = fs_info->endio_freespace_worker;
 707			func = btrfs_freespace_write_helper;
 708		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 709			wq = fs_info->endio_raid56_workers;
 710			func = btrfs_endio_raid56_helper;
 711		} else {
 712			wq = fs_info->endio_write_workers;
 713			func = btrfs_endio_write_helper;
 714		}
 715	} else {
 716		if (unlikely(end_io_wq->metadata ==
 717			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 718			wq = fs_info->endio_repair_workers;
 719			func = btrfs_endio_repair_helper;
 720		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 721			wq = fs_info->endio_raid56_workers;
 722			func = btrfs_endio_raid56_helper;
 723		} else if (end_io_wq->metadata) {
 724			wq = fs_info->endio_meta_workers;
 725			func = btrfs_endio_meta_helper;
 726		} else {
 727			wq = fs_info->endio_workers;
 728			func = btrfs_endio_helper;
 729		}
 730	}
 731
 732	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 733	btrfs_queue_work(wq, &end_io_wq->work);
 734}
 735
 736blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 737			enum btrfs_wq_endio_type metadata)
 738{
 739	struct btrfs_end_io_wq *end_io_wq;
 740
 741	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 742	if (!end_io_wq)
 743		return BLK_STS_RESOURCE;
 744
 745	end_io_wq->private = bio->bi_private;
 746	end_io_wq->end_io = bio->bi_end_io;
 747	end_io_wq->info = info;
 748	end_io_wq->status = 0;
 749	end_io_wq->bio = bio;
 750	end_io_wq->metadata = metadata;
 751
 752	bio->bi_private = end_io_wq;
 753	bio->bi_end_io = end_workqueue_bio;
 754	return 0;
 755}
 756
 757static void run_one_async_start(struct btrfs_work *work)
 758{
 759	struct async_submit_bio *async;
 760	blk_status_t ret;
 761
 762	async = container_of(work, struct  async_submit_bio, work);
 763	ret = async->submit_bio_start(async->private_data, async->bio,
 764				      async->bio_offset);
 765	if (ret)
 766		async->status = ret;
 767}
 768
 
 
 
 
 
 
 
 
 769static void run_one_async_done(struct btrfs_work *work)
 770{
 771	struct async_submit_bio *async;
 
 
 772
 773	async = container_of(work, struct  async_submit_bio, work);
 
 774
 775	/* If an error occurred we just want to clean up the bio and move on */
 776	if (async->status) {
 777		async->bio->bi_status = async->status;
 778		bio_endio(async->bio);
 779		return;
 780	}
 781
 782	async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
 
 
 
 
 
 
 
 
 
 
 783}
 784
 785static void run_one_async_free(struct btrfs_work *work)
 786{
 787	struct async_submit_bio *async;
 788
 789	async = container_of(work, struct  async_submit_bio, work);
 790	kfree(async);
 791}
 792
 793blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 794				 int mirror_num, unsigned long bio_flags,
 795				 u64 bio_offset, void *private_data,
 796				 extent_submit_bio_start_t *submit_bio_start,
 797				 extent_submit_bio_done_t *submit_bio_done)
 798{
 
 799	struct async_submit_bio *async;
 800
 801	async = kmalloc(sizeof(*async), GFP_NOFS);
 802	if (!async)
 803		return BLK_STS_RESOURCE;
 804
 805	async->private_data = private_data;
 806	async->fs_info = fs_info;
 807	async->bio = bio;
 808	async->mirror_num = mirror_num;
 809	async->submit_bio_start = submit_bio_start;
 810	async->submit_bio_done = submit_bio_done;
 811
 812	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 813			run_one_async_done, run_one_async_free);
 814
 815	async->bio_flags = bio_flags;
 816	async->bio_offset = bio_offset;
 817
 818	async->status = 0;
 819
 820	if (op_is_sync(bio->bi_opf))
 821		btrfs_set_work_high_priority(&async->work);
 822
 823	btrfs_queue_work(fs_info->workers, &async->work);
 824	return 0;
 825}
 826
 827static blk_status_t btree_csum_one_bio(struct bio *bio)
 828{
 829	struct bio_vec *bvec;
 830	struct btrfs_root *root;
 831	int i, ret = 0;
 
 832
 833	ASSERT(!bio_flagged(bio, BIO_CLONED));
 834	bio_for_each_segment_all(bvec, bio, i) {
 835		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 836		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 837		if (ret)
 838			break;
 839	}
 840
 841	return errno_to_blk_status(ret);
 842}
 843
 844static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 845					     u64 bio_offset)
 846{
 847	/*
 848	 * when we're called for a write, we're already in the async
 849	 * submission context.  Just jump into btrfs_map_bio
 850	 */
 851	return btree_csum_one_bio(bio);
 852}
 853
 854static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
 855					    int mirror_num)
 856{
 857	struct inode *inode = private_data;
 858	blk_status_t ret;
 859
 860	/*
 861	 * when we're called for a write, we're already in the async
 862	 * submission context.  Just jump into btrfs_map_bio
 863	 */
 864	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
 865	if (ret) {
 866		bio->bi_status = ret;
 867		bio_endio(bio);
 868	}
 869	return ret;
 870}
 871
 872static int check_async_write(struct btrfs_inode *bi)
 873{
 
 
 874	if (atomic_read(&bi->sync_writers))
 875		return 0;
 876#ifdef CONFIG_X86
 877	if (static_cpu_has(X86_FEATURE_XMM4_2))
 878		return 0;
 879#endif
 880	return 1;
 881}
 882
 883static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
 884					  int mirror_num, unsigned long bio_flags,
 885					  u64 bio_offset)
 886{
 887	struct inode *inode = private_data;
 888	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 889	int async = check_async_write(BTRFS_I(inode));
 890	blk_status_t ret;
 891
 892	if (bio_op(bio) != REQ_OP_WRITE) {
 893		/*
 894		 * called for a read, do the setup so that checksum validation
 895		 * can happen in the async kernel threads
 896		 */
 897		ret = btrfs_bio_wq_end_io(fs_info, bio,
 898					  BTRFS_WQ_ENDIO_METADATA);
 899		if (ret)
 900			goto out_w_error;
 901		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 902	} else if (!async) {
 903		ret = btree_csum_one_bio(bio);
 904		if (ret)
 905			goto out_w_error;
 906		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 907	} else {
 908		/*
 909		 * kthread helpers are used to submit writes so that
 910		 * checksumming can happen in parallel across all CPUs
 911		 */
 912		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 913					  bio_offset, private_data,
 914					  btree_submit_bio_start,
 915					  btree_submit_bio_done);
 916	}
 917
 918	if (ret)
 919		goto out_w_error;
 920	return 0;
 921
 922out_w_error:
 923	bio->bi_status = ret;
 924	bio_endio(bio);
 925	return ret;
 926}
 927
 928#ifdef CONFIG_MIGRATION
 929static int btree_migratepage(struct address_space *mapping,
 930			struct page *newpage, struct page *page,
 931			enum migrate_mode mode)
 932{
 933	/*
 934	 * we can't safely write a btree page from here,
 935	 * we haven't done the locking hook
 936	 */
 937	if (PageDirty(page))
 938		return -EAGAIN;
 939	/*
 940	 * Buffers may be managed in a filesystem specific way.
 941	 * We must have no buffers or drop them.
 942	 */
 943	if (page_has_private(page) &&
 944	    !try_to_release_page(page, GFP_KERNEL))
 945		return -EAGAIN;
 946	return migrate_page(mapping, newpage, page, mode);
 947}
 948#endif
 949
 950
 951static int btree_writepages(struct address_space *mapping,
 952			    struct writeback_control *wbc)
 953{
 954	struct btrfs_fs_info *fs_info;
 955	int ret;
 956
 957	if (wbc->sync_mode == WB_SYNC_NONE) {
 958
 959		if (wbc->for_kupdate)
 960			return 0;
 961
 962		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 963		/* this is a bit racy, but that's ok */
 964		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 965					     BTRFS_DIRTY_METADATA_THRESH);
 
 966		if (ret < 0)
 967			return 0;
 968	}
 969	return btree_write_cache_pages(mapping, wbc);
 970}
 971
 972static int btree_readpage(struct file *file, struct page *page)
 973{
 974	struct extent_io_tree *tree;
 975	tree = &BTRFS_I(page->mapping->host)->io_tree;
 976	return extent_read_full_page(tree, page, btree_get_extent, 0);
 977}
 978
 979static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 980{
 981	if (PageWriteback(page) || PageDirty(page))
 982		return 0;
 983
 984	return try_release_extent_buffer(page);
 985}
 986
 987static void btree_invalidatepage(struct page *page, unsigned int offset,
 988				 unsigned int length)
 989{
 990	struct extent_io_tree *tree;
 991	tree = &BTRFS_I(page->mapping->host)->io_tree;
 992	extent_invalidatepage(tree, page, offset);
 993	btree_releasepage(page, GFP_NOFS);
 994	if (PagePrivate(page)) {
 995		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 996			   "page private not zero on page %llu",
 997			   (unsigned long long)page_offset(page));
 998		ClearPagePrivate(page);
 999		set_page_private(page, 0);
1000		put_page(page);
1001	}
1002}
1003
1004static int btree_set_page_dirty(struct page *page)
1005{
1006#ifdef DEBUG
 
 
1007	struct extent_buffer *eb;
 
 
1008
1009	BUG_ON(!PagePrivate(page));
1010	eb = (struct extent_buffer *)page->private;
1011	BUG_ON(!eb);
1012	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013	BUG_ON(!atomic_read(&eb->refs));
1014	btrfs_assert_tree_locked(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015#endif
1016	return __set_page_dirty_nobuffers(page);
1017}
1018
1019static const struct address_space_operations btree_aops = {
1020	.readpage	= btree_readpage,
1021	.writepages	= btree_writepages,
1022	.releasepage	= btree_releasepage,
1023	.invalidatepage = btree_invalidatepage,
1024#ifdef CONFIG_MIGRATION
1025	.migratepage	= btree_migratepage,
1026#endif
1027	.set_page_dirty = btree_set_page_dirty,
1028};
1029
1030void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031{
1032	struct extent_buffer *buf = NULL;
1033	struct inode *btree_inode = fs_info->btree_inode;
1034
1035	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036	if (IS_ERR(buf))
1037		return;
1038	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039				 buf, WAIT_NONE, 0);
1040	free_extent_buffer(buf);
1041}
1042
1043int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1044			 int mirror_num, struct extent_buffer **eb)
1045{
1046	struct extent_buffer *buf = NULL;
1047	struct inode *btree_inode = fs_info->btree_inode;
1048	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049	int ret;
1050
1051	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052	if (IS_ERR(buf))
1053		return 0;
1054
1055	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1056
1057	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1058				       mirror_num);
1059	if (ret) {
1060		free_extent_buffer(buf);
1061		return ret;
1062	}
1063
1064	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1065		free_extent_buffer(buf);
1066		return -EIO;
1067	} else if (extent_buffer_uptodate(buf)) {
1068		*eb = buf;
1069	} else {
1070		free_extent_buffer(buf);
1071	}
1072	return 0;
1073}
1074
1075struct extent_buffer *btrfs_find_create_tree_block(
1076						struct btrfs_fs_info *fs_info,
1077						u64 bytenr)
 
1078{
1079	if (btrfs_is_testing(fs_info))
1080		return alloc_test_extent_buffer(fs_info, bytenr);
1081	return alloc_extent_buffer(fs_info, bytenr);
1082}
1083
1084
1085int btrfs_write_tree_block(struct extent_buffer *buf)
1086{
1087	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088					buf->start + buf->len - 1);
1089}
1090
1091void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092{
1093	filemap_fdatawait_range(buf->pages[0]->mapping,
1094			        buf->start, buf->start + buf->len - 1);
1095}
1096
1097/*
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1099 * verification.
1100 *
 
1101 * @parent_transid:	expected transid of this tree block, skip check if 0
1102 * @level:		expected level, mandatory check
1103 * @first_key:		expected key in slot 0, skip check if NULL
1104 */
1105struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1106				      u64 parent_transid, int level,
1107				      struct btrfs_key *first_key)
1108{
1109	struct extent_buffer *buf = NULL;
1110	int ret;
1111
1112	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1113	if (IS_ERR(buf))
1114		return buf;
1115
1116	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117					     level, first_key);
1118	if (ret) {
1119		free_extent_buffer(buf);
1120		return ERR_PTR(ret);
1121	}
1122	return buf;
1123
1124}
1125
1126void clean_tree_block(struct btrfs_fs_info *fs_info,
1127		      struct extent_buffer *buf)
1128{
 
1129	if (btrfs_header_generation(buf) ==
1130	    fs_info->running_transaction->transid) {
1131		btrfs_assert_tree_locked(buf);
1132
1133		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1134			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135						 -buf->len,
1136						 fs_info->dirty_metadata_batch);
1137			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1138			btrfs_set_lock_blocking(buf);
1139			clear_extent_buffer_dirty(buf);
1140		}
1141	}
1142}
1143
1144static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1145{
1146	struct btrfs_subvolume_writers *writers;
1147	int ret;
1148
1149	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1150	if (!writers)
1151		return ERR_PTR(-ENOMEM);
1152
1153	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1154	if (ret < 0) {
1155		kfree(writers);
1156		return ERR_PTR(ret);
1157	}
1158
1159	init_waitqueue_head(&writers->wait);
1160	return writers;
1161}
1162
1163static void
1164btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1165{
1166	percpu_counter_destroy(&writers->counter);
1167	kfree(writers);
1168}
1169
1170static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1171			 u64 objectid)
1172{
1173	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
1174	root->node = NULL;
1175	root->commit_root = NULL;
1176	root->state = 0;
1177	root->orphan_cleanup_state = 0;
1178
1179	root->objectid = objectid;
1180	root->last_trans = 0;
1181	root->highest_objectid = 0;
1182	root->nr_delalloc_inodes = 0;
1183	root->nr_ordered_extents = 0;
1184	root->name = NULL;
1185	root->inode_tree = RB_ROOT;
1186	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187	root->block_rsv = NULL;
1188	root->orphan_block_rsv = NULL;
1189
1190	INIT_LIST_HEAD(&root->dirty_list);
1191	INIT_LIST_HEAD(&root->root_list);
1192	INIT_LIST_HEAD(&root->delalloc_inodes);
1193	INIT_LIST_HEAD(&root->delalloc_root);
1194	INIT_LIST_HEAD(&root->ordered_extents);
1195	INIT_LIST_HEAD(&root->ordered_root);
 
1196	INIT_LIST_HEAD(&root->logged_list[0]);
1197	INIT_LIST_HEAD(&root->logged_list[1]);
1198	spin_lock_init(&root->orphan_lock);
1199	spin_lock_init(&root->inode_lock);
1200	spin_lock_init(&root->delalloc_lock);
1201	spin_lock_init(&root->ordered_extent_lock);
1202	spin_lock_init(&root->accounting_lock);
1203	spin_lock_init(&root->log_extents_lock[0]);
1204	spin_lock_init(&root->log_extents_lock[1]);
1205	spin_lock_init(&root->qgroup_meta_rsv_lock);
1206	mutex_init(&root->objectid_mutex);
1207	mutex_init(&root->log_mutex);
1208	mutex_init(&root->ordered_extent_mutex);
1209	mutex_init(&root->delalloc_mutex);
 
1210	init_waitqueue_head(&root->log_writer_wait);
1211	init_waitqueue_head(&root->log_commit_wait[0]);
1212	init_waitqueue_head(&root->log_commit_wait[1]);
1213	INIT_LIST_HEAD(&root->log_ctxs[0]);
1214	INIT_LIST_HEAD(&root->log_ctxs[1]);
1215	atomic_set(&root->log_commit[0], 0);
1216	atomic_set(&root->log_commit[1], 0);
1217	atomic_set(&root->log_writers, 0);
1218	atomic_set(&root->log_batch, 0);
1219	atomic_set(&root->orphan_inodes, 0);
1220	refcount_set(&root->refs, 1);
1221	atomic_set(&root->will_be_snapshotted, 0);
 
1222	root->log_transid = 0;
1223	root->log_transid_committed = -1;
1224	root->last_log_commit = 0;
1225	if (!dummy)
1226		extent_io_tree_init(&root->dirty_log_pages, NULL);
 
 
 
 
1227
1228	memset(&root->root_key, 0, sizeof(root->root_key));
1229	memset(&root->root_item, 0, sizeof(root->root_item));
1230	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1231	if (!dummy)
1232		root->defrag_trans_start = fs_info->generation;
1233	else
1234		root->defrag_trans_start = 0;
1235	root->root_key.objectid = objectid;
1236	root->anon_dev = 0;
1237
1238	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1239}
1240
1241static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1242		gfp_t flags)
1243{
1244	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1245	if (root)
1246		root->fs_info = fs_info;
1247	return root;
1248}
1249
1250#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1251/* Should only be used by the testing infrastructure */
1252struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1253{
1254	struct btrfs_root *root;
1255
1256	if (!fs_info)
1257		return ERR_PTR(-EINVAL);
1258
1259	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1260	if (!root)
1261		return ERR_PTR(-ENOMEM);
1262
1263	/* We don't use the stripesize in selftest, set it as sectorsize */
1264	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1265	root->alloc_bytenr = 0;
1266
1267	return root;
1268}
1269#endif
1270
1271struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1272				     struct btrfs_fs_info *fs_info,
1273				     u64 objectid)
1274{
 
1275	struct extent_buffer *leaf;
1276	struct btrfs_root *tree_root = fs_info->tree_root;
1277	struct btrfs_root *root;
1278	struct btrfs_key key;
 
1279	int ret = 0;
1280	uuid_le uuid = NULL_UUID_LE;
1281
1282	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
 
 
 
 
 
1283	if (!root)
1284		return ERR_PTR(-ENOMEM);
1285
1286	__setup_root(root, fs_info, objectid);
1287	root->root_key.objectid = objectid;
1288	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289	root->root_key.offset = 0;
1290
1291	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
1292	if (IS_ERR(leaf)) {
1293		ret = PTR_ERR(leaf);
1294		leaf = NULL;
1295		goto fail;
1296	}
1297
1298	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1299	btrfs_set_header_bytenr(leaf, leaf->start);
1300	btrfs_set_header_generation(leaf, trans->transid);
1301	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302	btrfs_set_header_owner(leaf, objectid);
1303	root->node = leaf;
1304
1305	write_extent_buffer_fsid(leaf, fs_info->fsid);
1306	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1307	btrfs_mark_buffer_dirty(leaf);
1308
1309	root->commit_root = btrfs_root_node(root);
1310	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1311
1312	root->root_item.flags = 0;
1313	root->root_item.byte_limit = 0;
1314	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1315	btrfs_set_root_generation(&root->root_item, trans->transid);
1316	btrfs_set_root_level(&root->root_item, 0);
1317	btrfs_set_root_refs(&root->root_item, 1);
1318	btrfs_set_root_used(&root->root_item, leaf->len);
1319	btrfs_set_root_last_snapshot(&root->root_item, 0);
1320	btrfs_set_root_dirid(&root->root_item, 0);
1321	if (is_fstree(objectid))
1322		uuid_le_gen(&uuid);
1323	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1324	root->root_item.drop_level = 0;
 
 
 
1325
1326	key.objectid = objectid;
1327	key.type = BTRFS_ROOT_ITEM_KEY;
1328	key.offset = 0;
1329	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1330	if (ret)
1331		goto fail;
1332
1333	btrfs_tree_unlock(leaf);
1334
1335	return root;
1336
1337fail:
1338	if (leaf) {
1339		btrfs_tree_unlock(leaf);
1340		free_extent_buffer(root->commit_root);
1341		free_extent_buffer(leaf);
1342	}
1343	kfree(root);
1344
1345	return ERR_PTR(ret);
1346}
1347
1348static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1349					 struct btrfs_fs_info *fs_info)
1350{
1351	struct btrfs_root *root;
1352	struct extent_buffer *leaf;
1353
1354	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1355	if (!root)
1356		return ERR_PTR(-ENOMEM);
1357
1358	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363
 
 
 
 
 
 
 
 
1364	/*
1365	 * DON'T set REF_COWS for log trees
 
 
 
1366	 *
1367	 * log trees do not get reference counted because they go away
1368	 * before a real commit is actually done.  They do store pointers
1369	 * to file data extents, and those reference counts still get
1370	 * updated (along with back refs to the log tree).
1371	 */
1372
1373	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1374			NULL, 0, 0, 0);
1375	if (IS_ERR(leaf)) {
1376		kfree(root);
1377		return ERR_CAST(leaf);
1378	}
1379
1380	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1381	btrfs_set_header_bytenr(leaf, leaf->start);
1382	btrfs_set_header_generation(leaf, trans->transid);
1383	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1384	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1385	root->node = leaf;
1386
1387	write_extent_buffer_fsid(root->node, fs_info->fsid);
1388	btrfs_mark_buffer_dirty(root->node);
1389	btrfs_tree_unlock(root->node);
1390	return root;
 
1391}
1392
1393int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394			     struct btrfs_fs_info *fs_info)
1395{
1396	struct btrfs_root *log_root;
1397
1398	log_root = alloc_log_tree(trans, fs_info);
1399	if (IS_ERR(log_root))
1400		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1401	WARN_ON(fs_info->log_root_tree);
1402	fs_info->log_root_tree = log_root;
1403	return 0;
1404}
1405
1406int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407		       struct btrfs_root *root)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct btrfs_root *log_root;
1411	struct btrfs_inode_item *inode_item;
 
1412
1413	log_root = alloc_log_tree(trans, fs_info);
1414	if (IS_ERR(log_root))
1415		return PTR_ERR(log_root);
1416
 
 
 
 
 
 
1417	log_root->last_trans = trans->transid;
1418	log_root->root_key.offset = root->root_key.objectid;
1419
1420	inode_item = &log_root->root_item.inode;
1421	btrfs_set_stack_inode_generation(inode_item, 1);
1422	btrfs_set_stack_inode_size(inode_item, 3);
1423	btrfs_set_stack_inode_nlink(inode_item, 1);
1424	btrfs_set_stack_inode_nbytes(inode_item,
1425				     fs_info->nodesize);
1426	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1427
1428	btrfs_set_root_node(&log_root->root_item, log_root->node);
1429
1430	WARN_ON(root->log_root);
1431	root->log_root = log_root;
1432	root->log_transid = 0;
1433	root->log_transid_committed = -1;
1434	root->last_log_commit = 0;
1435	return 0;
1436}
1437
1438static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1439					       struct btrfs_key *key)
 
1440{
1441	struct btrfs_root *root;
1442	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1443	struct btrfs_path *path;
1444	u64 generation;
1445	int ret;
1446	int level;
1447
1448	path = btrfs_alloc_path();
1449	if (!path)
1450		return ERR_PTR(-ENOMEM);
1451
1452	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1453	if (!root) {
1454		ret = -ENOMEM;
1455		goto alloc_fail;
1456	}
1457
1458	__setup_root(root, fs_info, key->objectid);
1459
1460	ret = btrfs_find_root(tree_root, key, path,
1461			      &root->root_item, &root->root_key);
1462	if (ret) {
1463		if (ret > 0)
1464			ret = -ENOENT;
1465		goto find_fail;
1466	}
1467
1468	generation = btrfs_root_generation(&root->root_item);
1469	level = btrfs_root_level(&root->root_item);
1470	root->node = read_tree_block(fs_info,
1471				     btrfs_root_bytenr(&root->root_item),
1472				     generation, level, NULL);
1473	if (IS_ERR(root->node)) {
1474		ret = PTR_ERR(root->node);
1475		goto find_fail;
 
1476	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477		ret = -EIO;
1478		free_extent_buffer(root->node);
1479		goto find_fail;
1480	}
1481	root->commit_root = btrfs_root_node(root);
1482out:
1483	btrfs_free_path(path);
1484	return root;
1485
1486find_fail:
1487	kfree(root);
1488alloc_fail:
1489	root = ERR_PTR(ret);
1490	goto out;
1491}
1492
1493struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494				      struct btrfs_key *location)
1495{
1496	struct btrfs_root *root;
 
1497
1498	root = btrfs_read_tree_root(tree_root, location);
1499	if (IS_ERR(root))
1500		return root;
1501
1502	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1504		btrfs_check_and_init_root_item(&root->root_item);
1505	}
1506
1507	return root;
1508}
1509
1510int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1511{
1512	int ret;
1513	struct btrfs_subvolume_writers *writers;
1514
1515	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517					GFP_NOFS);
1518	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519		ret = -ENOMEM;
 
 
 
1520		goto fail;
1521	}
1522
1523	writers = btrfs_alloc_subvolume_writers();
1524	if (IS_ERR(writers)) {
1525		ret = PTR_ERR(writers);
1526		goto fail;
1527	}
1528	root->subv_writers = writers;
1529
1530	btrfs_init_free_ino_ctl(root);
1531	spin_lock_init(&root->ino_cache_lock);
1532	init_waitqueue_head(&root->ino_cache_wait);
1533
1534	ret = get_anon_bdev(&root->anon_dev);
1535	if (ret)
1536		goto fail;
 
 
 
 
 
 
 
 
 
 
 
1537
1538	mutex_lock(&root->objectid_mutex);
1539	ret = btrfs_find_highest_objectid(root,
1540					&root->highest_objectid);
1541	if (ret) {
1542		mutex_unlock(&root->objectid_mutex);
1543		goto fail;
1544	}
1545
1546	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1547
1548	mutex_unlock(&root->objectid_mutex);
1549
1550	return 0;
1551fail:
1552	/* the caller is responsible to call free_fs_root */
1553	return ret;
1554}
1555
1556struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1557					u64 root_id)
1558{
1559	struct btrfs_root *root;
1560
1561	spin_lock(&fs_info->fs_roots_radix_lock);
1562	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1563				 (unsigned long)root_id);
 
 
1564	spin_unlock(&fs_info->fs_roots_radix_lock);
1565	return root;
1566}
1567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1569			 struct btrfs_root *root)
1570{
1571	int ret;
1572
1573	ret = radix_tree_preload(GFP_NOFS);
1574	if (ret)
1575		return ret;
1576
1577	spin_lock(&fs_info->fs_roots_radix_lock);
1578	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1579				(unsigned long)root->root_key.objectid,
1580				root);
1581	if (ret == 0)
 
1582		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1583	spin_unlock(&fs_info->fs_roots_radix_lock);
1584	radix_tree_preload_end();
1585
1586	return ret;
1587}
1588
1589struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1590				     struct btrfs_key *location,
1591				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592{
1593	struct btrfs_root *root;
1594	struct btrfs_path *path;
1595	struct btrfs_key key;
1596	int ret;
1597
1598	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1599		return fs_info->tree_root;
1600	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1601		return fs_info->extent_root;
1602	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1603		return fs_info->chunk_root;
1604	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1605		return fs_info->dev_root;
1606	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1607		return fs_info->csum_root;
1608	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1609		return fs_info->quota_root ? fs_info->quota_root :
1610					     ERR_PTR(-ENOENT);
1611	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1612		return fs_info->uuid_root ? fs_info->uuid_root :
1613					    ERR_PTR(-ENOENT);
1614	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1615		return fs_info->free_space_root ? fs_info->free_space_root :
1616						  ERR_PTR(-ENOENT);
1617again:
1618	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1619	if (root) {
1620		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
1621			return ERR_PTR(-ENOENT);
 
1622		return root;
1623	}
1624
1625	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1626	if (IS_ERR(root))
1627		return root;
1628
1629	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1630		ret = -ENOENT;
1631		goto fail;
1632	}
1633
1634	ret = btrfs_init_fs_root(root);
1635	if (ret)
1636		goto fail;
1637
1638	path = btrfs_alloc_path();
1639	if (!path) {
1640		ret = -ENOMEM;
1641		goto fail;
1642	}
1643	key.objectid = BTRFS_ORPHAN_OBJECTID;
1644	key.type = BTRFS_ORPHAN_ITEM_KEY;
1645	key.offset = location->objectid;
1646
1647	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1648	btrfs_free_path(path);
1649	if (ret < 0)
1650		goto fail;
1651	if (ret == 0)
1652		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1653
1654	ret = btrfs_insert_fs_root(fs_info, root);
1655	if (ret) {
1656		if (ret == -EEXIST) {
1657			free_fs_root(root);
1658			goto again;
1659		}
1660		goto fail;
1661	}
1662	return root;
1663fail:
1664	free_fs_root(root);
1665	return ERR_PTR(ret);
1666}
1667
1668static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1669{
1670	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1671	int ret = 0;
1672	struct btrfs_device *device;
1673	struct backing_dev_info *bdi;
1674
1675	rcu_read_lock();
1676	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1677		if (!device->bdev)
1678			continue;
1679		bdi = device->bdev->bd_bdi;
1680		if (bdi_congested(bdi, bdi_bits)) {
1681			ret = 1;
1682			break;
1683		}
1684	}
1685	rcu_read_unlock();
1686	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687}
1688
1689/*
1690 * called by the kthread helper functions to finally call the bio end_io
1691 * functions.  This is where read checksum verification actually happens
1692 */
1693static void end_workqueue_fn(struct btrfs_work *work)
1694{
1695	struct bio *bio;
1696	struct btrfs_end_io_wq *end_io_wq;
1697
1698	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1699	bio = end_io_wq->bio;
1700
1701	bio->bi_status = end_io_wq->status;
1702	bio->bi_private = end_io_wq->private;
1703	bio->bi_end_io = end_io_wq->end_io;
1704	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1705	bio_endio(bio);
 
1706}
1707
1708static int cleaner_kthread(void *arg)
1709{
1710	struct btrfs_root *root = arg;
1711	struct btrfs_fs_info *fs_info = root->fs_info;
1712	int again;
1713	struct btrfs_trans_handle *trans;
1714
1715	do {
1716		again = 0;
1717
 
 
1718		/* Make the cleaner go to sleep early. */
1719		if (btrfs_need_cleaner_sleep(fs_info))
1720			goto sleep;
1721
1722		/*
1723		 * Do not do anything if we might cause open_ctree() to block
1724		 * before we have finished mounting the filesystem.
1725		 */
1726		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1727			goto sleep;
1728
1729		if (!mutex_trylock(&fs_info->cleaner_mutex))
1730			goto sleep;
1731
1732		/*
1733		 * Avoid the problem that we change the status of the fs
1734		 * during the above check and trylock.
1735		 */
1736		if (btrfs_need_cleaner_sleep(fs_info)) {
1737			mutex_unlock(&fs_info->cleaner_mutex);
1738			goto sleep;
1739		}
1740
1741		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1742		btrfs_run_delayed_iputs(fs_info);
1743		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1744
1745		again = btrfs_clean_one_deleted_snapshot(root);
1746		mutex_unlock(&fs_info->cleaner_mutex);
1747
1748		/*
1749		 * The defragger has dealt with the R/O remount and umount,
1750		 * needn't do anything special here.
1751		 */
1752		btrfs_run_defrag_inodes(fs_info);
1753
1754		/*
1755		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1756		 * with relocation (btrfs_relocate_chunk) and relocation
1757		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1758		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1759		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1760		 * unused block groups.
1761		 */
1762		btrfs_delete_unused_bgs(fs_info);
 
 
 
 
 
 
 
1763sleep:
 
 
 
 
 
1764		if (!again) {
1765			set_current_state(TASK_INTERRUPTIBLE);
1766			if (!kthread_should_stop())
1767				schedule();
1768			__set_current_state(TASK_RUNNING);
1769		}
1770	} while (!kthread_should_stop());
1771
1772	/*
1773	 * Transaction kthread is stopped before us and wakes us up.
1774	 * However we might have started a new transaction and COWed some
1775	 * tree blocks when deleting unused block groups for example. So
1776	 * make sure we commit the transaction we started to have a clean
1777	 * shutdown when evicting the btree inode - if it has dirty pages
1778	 * when we do the final iput() on it, eviction will trigger a
1779	 * writeback for it which will fail with null pointer dereferences
1780	 * since work queues and other resources were already released and
1781	 * destroyed by the time the iput/eviction/writeback is made.
1782	 */
1783	trans = btrfs_attach_transaction(root);
1784	if (IS_ERR(trans)) {
1785		if (PTR_ERR(trans) != -ENOENT)
1786			btrfs_err(fs_info,
1787				  "cleaner transaction attach returned %ld",
1788				  PTR_ERR(trans));
1789	} else {
1790		int ret;
1791
1792		ret = btrfs_commit_transaction(trans);
1793		if (ret)
1794			btrfs_err(fs_info,
1795				  "cleaner open transaction commit returned %d",
1796				  ret);
1797	}
1798
1799	return 0;
1800}
1801
1802static int transaction_kthread(void *arg)
1803{
1804	struct btrfs_root *root = arg;
1805	struct btrfs_fs_info *fs_info = root->fs_info;
1806	struct btrfs_trans_handle *trans;
1807	struct btrfs_transaction *cur;
1808	u64 transid;
1809	unsigned long now;
1810	unsigned long delay;
1811	bool cannot_commit;
1812
1813	do {
1814		cannot_commit = false;
1815		delay = HZ * fs_info->commit_interval;
1816		mutex_lock(&fs_info->transaction_kthread_mutex);
1817
1818		spin_lock(&fs_info->trans_lock);
1819		cur = fs_info->running_transaction;
1820		if (!cur) {
1821			spin_unlock(&fs_info->trans_lock);
1822			goto sleep;
1823		}
1824
1825		now = get_seconds();
1826		if (cur->state < TRANS_STATE_BLOCKED &&
1827		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1828		    (now < cur->start_time ||
1829		     now - cur->start_time < fs_info->commit_interval)) {
1830			spin_unlock(&fs_info->trans_lock);
1831			delay = HZ * 5;
 
 
1832			goto sleep;
1833		}
1834		transid = cur->transid;
1835		spin_unlock(&fs_info->trans_lock);
1836
1837		/* If the file system is aborted, this will always fail. */
1838		trans = btrfs_attach_transaction(root);
1839		if (IS_ERR(trans)) {
1840			if (PTR_ERR(trans) != -ENOENT)
1841				cannot_commit = true;
1842			goto sleep;
1843		}
1844		if (transid == trans->transid) {
1845			btrfs_commit_transaction(trans);
1846		} else {
1847			btrfs_end_transaction(trans);
1848		}
1849sleep:
1850		wake_up_process(fs_info->cleaner_kthread);
1851		mutex_unlock(&fs_info->transaction_kthread_mutex);
1852
1853		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1854				      &fs_info->fs_state)))
1855			btrfs_cleanup_transaction(fs_info);
1856		if (!kthread_should_stop() &&
1857				(!btrfs_transaction_blocked(fs_info) ||
1858				 cannot_commit))
1859			schedule_timeout_interruptible(delay);
1860	} while (!kthread_should_stop());
1861	return 0;
1862}
1863
1864/*
1865 * this will find the highest generation in the array of
1866 * root backups.  The index of the highest array is returned,
1867 * or -1 if we can't find anything.
1868 *
1869 * We check to make sure the array is valid by comparing the
1870 * generation of the latest  root in the array with the generation
1871 * in the super block.  If they don't match we pitch it.
1872 */
1873static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1874{
 
1875	u64 cur;
1876	int newest_index = -1;
1877	struct btrfs_root_backup *root_backup;
1878	int i;
1879
1880	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1881		root_backup = info->super_copy->super_roots + i;
1882		cur = btrfs_backup_tree_root_gen(root_backup);
1883		if (cur == newest_gen)
1884			newest_index = i;
1885	}
1886
1887	/* check to see if we actually wrapped around */
1888	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1889		root_backup = info->super_copy->super_roots;
1890		cur = btrfs_backup_tree_root_gen(root_backup);
1891		if (cur == newest_gen)
1892			newest_index = 0;
1893	}
1894	return newest_index;
1895}
1896
1897
1898/*
1899 * find the oldest backup so we know where to store new entries
1900 * in the backup array.  This will set the backup_root_index
1901 * field in the fs_info struct
1902 */
1903static void find_oldest_super_backup(struct btrfs_fs_info *info,
1904				     u64 newest_gen)
1905{
1906	int newest_index = -1;
1907
1908	newest_index = find_newest_super_backup(info, newest_gen);
1909	/* if there was garbage in there, just move along */
1910	if (newest_index == -1) {
1911		info->backup_root_index = 0;
1912	} else {
1913		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1914	}
1915}
1916
1917/*
1918 * copy all the root pointers into the super backup array.
1919 * this will bump the backup pointer by one when it is
1920 * done
1921 */
1922static void backup_super_roots(struct btrfs_fs_info *info)
1923{
1924	int next_backup;
1925	struct btrfs_root_backup *root_backup;
1926	int last_backup;
1927
1928	next_backup = info->backup_root_index;
1929	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1930		BTRFS_NUM_BACKUP_ROOTS;
1931
1932	/*
1933	 * just overwrite the last backup if we're at the same generation
1934	 * this happens only at umount
1935	 */
1936	root_backup = info->super_for_commit->super_roots + last_backup;
1937	if (btrfs_backup_tree_root_gen(root_backup) ==
1938	    btrfs_header_generation(info->tree_root->node))
1939		next_backup = last_backup;
1940
1941	root_backup = info->super_for_commit->super_roots + next_backup;
1942
1943	/*
1944	 * make sure all of our padding and empty slots get zero filled
1945	 * regardless of which ones we use today
1946	 */
1947	memset(root_backup, 0, sizeof(*root_backup));
1948
1949	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1950
1951	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1952	btrfs_set_backup_tree_root_gen(root_backup,
1953			       btrfs_header_generation(info->tree_root->node));
1954
1955	btrfs_set_backup_tree_root_level(root_backup,
1956			       btrfs_header_level(info->tree_root->node));
1957
1958	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1959	btrfs_set_backup_chunk_root_gen(root_backup,
1960			       btrfs_header_generation(info->chunk_root->node));
1961	btrfs_set_backup_chunk_root_level(root_backup,
1962			       btrfs_header_level(info->chunk_root->node));
1963
1964	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1965	btrfs_set_backup_extent_root_gen(root_backup,
1966			       btrfs_header_generation(info->extent_root->node));
1967	btrfs_set_backup_extent_root_level(root_backup,
1968			       btrfs_header_level(info->extent_root->node));
1969
1970	/*
1971	 * we might commit during log recovery, which happens before we set
1972	 * the fs_root.  Make sure it is valid before we fill it in.
1973	 */
1974	if (info->fs_root && info->fs_root->node) {
1975		btrfs_set_backup_fs_root(root_backup,
1976					 info->fs_root->node->start);
1977		btrfs_set_backup_fs_root_gen(root_backup,
1978			       btrfs_header_generation(info->fs_root->node));
1979		btrfs_set_backup_fs_root_level(root_backup,
1980			       btrfs_header_level(info->fs_root->node));
1981	}
1982
1983	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1984	btrfs_set_backup_dev_root_gen(root_backup,
1985			       btrfs_header_generation(info->dev_root->node));
1986	btrfs_set_backup_dev_root_level(root_backup,
1987				       btrfs_header_level(info->dev_root->node));
1988
1989	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1990	btrfs_set_backup_csum_root_gen(root_backup,
1991			       btrfs_header_generation(info->csum_root->node));
1992	btrfs_set_backup_csum_root_level(root_backup,
1993			       btrfs_header_level(info->csum_root->node));
1994
1995	btrfs_set_backup_total_bytes(root_backup,
1996			     btrfs_super_total_bytes(info->super_copy));
1997	btrfs_set_backup_bytes_used(root_backup,
1998			     btrfs_super_bytes_used(info->super_copy));
1999	btrfs_set_backup_num_devices(root_backup,
2000			     btrfs_super_num_devices(info->super_copy));
2001
2002	/*
2003	 * if we don't copy this out to the super_copy, it won't get remembered
2004	 * for the next commit
2005	 */
2006	memcpy(&info->super_copy->super_roots,
2007	       &info->super_for_commit->super_roots,
2008	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2009}
2010
2011/*
2012 * this copies info out of the root backup array and back into
2013 * the in-memory super block.  It is meant to help iterate through
2014 * the array, so you send it the number of backups you've already
2015 * tried and the last backup index you used.
2016 *
2017 * this returns -1 when it has tried all the backups
 
 
 
2018 */
2019static noinline int next_root_backup(struct btrfs_fs_info *info,
2020				     struct btrfs_super_block *super,
2021				     int *num_backups_tried, int *backup_index)
2022{
 
 
2023	struct btrfs_root_backup *root_backup;
2024	int newest = *backup_index;
2025
2026	if (*num_backups_tried == 0) {
2027		u64 gen = btrfs_super_generation(super);
 
2028
2029		newest = find_newest_super_backup(info, gen);
2030		if (newest == -1)
2031			return -1;
2032
2033		*backup_index = newest;
2034		*num_backups_tried = 1;
2035	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2036		/* we've tried all the backups, all done */
2037		return -1;
2038	} else {
2039		/* jump to the next oldest backup */
2040		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2041			BTRFS_NUM_BACKUP_ROOTS;
2042		*backup_index = newest;
2043		*num_backups_tried += 1;
2044	}
2045	root_backup = super->super_roots + newest;
 
2046
2047	btrfs_set_super_generation(super,
2048				   btrfs_backup_tree_root_gen(root_backup));
2049	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2050	btrfs_set_super_root_level(super,
2051				   btrfs_backup_tree_root_level(root_backup));
2052	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2053
2054	/*
2055	 * fixme: the total bytes and num_devices need to match or we should
2056	 * need a fsck
2057	 */
2058	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2059	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2060	return 0;
 
2061}
2062
2063/* helper to cleanup workers */
2064static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2065{
2066	btrfs_destroy_workqueue(fs_info->fixup_workers);
2067	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2068	btrfs_destroy_workqueue(fs_info->workers);
2069	btrfs_destroy_workqueue(fs_info->endio_workers);
2070	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2071	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2072	btrfs_destroy_workqueue(fs_info->rmw_workers);
2073	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2074	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2075	btrfs_destroy_workqueue(fs_info->submit_workers);
2076	btrfs_destroy_workqueue(fs_info->delayed_workers);
2077	btrfs_destroy_workqueue(fs_info->caching_workers);
2078	btrfs_destroy_workqueue(fs_info->readahead_workers);
2079	btrfs_destroy_workqueue(fs_info->flush_workers);
2080	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2081	btrfs_destroy_workqueue(fs_info->extent_workers);
 
2082	/*
2083	 * Now that all other work queues are destroyed, we can safely destroy
2084	 * the queues used for metadata I/O, since tasks from those other work
2085	 * queues can do metadata I/O operations.
2086	 */
2087	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2088	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089}
2090
2091static void free_root_extent_buffers(struct btrfs_root *root)
2092{
2093	if (root) {
2094		free_extent_buffer(root->node);
2095		free_extent_buffer(root->commit_root);
2096		root->node = NULL;
2097		root->commit_root = NULL;
2098	}
2099}
2100
2101/* helper to cleanup tree roots */
2102static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2103{
2104	free_root_extent_buffers(info->tree_root);
2105
2106	free_root_extent_buffers(info->dev_root);
2107	free_root_extent_buffers(info->extent_root);
2108	free_root_extent_buffers(info->csum_root);
2109	free_root_extent_buffers(info->quota_root);
2110	free_root_extent_buffers(info->uuid_root);
2111	if (chunk_root)
 
 
2112		free_root_extent_buffers(info->chunk_root);
2113	free_root_extent_buffers(info->free_space_root);
2114}
2115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2117{
2118	int ret;
2119	struct btrfs_root *gang[8];
2120	int i;
2121
2122	while (!list_empty(&fs_info->dead_roots)) {
2123		gang[0] = list_entry(fs_info->dead_roots.next,
2124				     struct btrfs_root, root_list);
2125		list_del(&gang[0]->root_list);
2126
2127		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2128			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2129		} else {
2130			free_extent_buffer(gang[0]->node);
2131			free_extent_buffer(gang[0]->commit_root);
2132			btrfs_put_fs_root(gang[0]);
2133		}
2134	}
2135
2136	while (1) {
2137		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2138					     (void **)gang, 0,
2139					     ARRAY_SIZE(gang));
2140		if (!ret)
2141			break;
2142		for (i = 0; i < ret; i++)
2143			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2144	}
2145
2146	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2147		btrfs_free_log_root_tree(NULL, fs_info);
2148		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2149	}
2150}
2151
2152static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2153{
2154	mutex_init(&fs_info->scrub_lock);
2155	atomic_set(&fs_info->scrubs_running, 0);
2156	atomic_set(&fs_info->scrub_pause_req, 0);
2157	atomic_set(&fs_info->scrubs_paused, 0);
2158	atomic_set(&fs_info->scrub_cancel_req, 0);
2159	init_waitqueue_head(&fs_info->scrub_pause_wait);
2160	fs_info->scrub_workers_refcnt = 0;
2161}
2162
2163static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2164{
2165	spin_lock_init(&fs_info->balance_lock);
2166	mutex_init(&fs_info->balance_mutex);
2167	atomic_set(&fs_info->balance_running, 0);
2168	atomic_set(&fs_info->balance_pause_req, 0);
2169	atomic_set(&fs_info->balance_cancel_req, 0);
2170	fs_info->balance_ctl = NULL;
2171	init_waitqueue_head(&fs_info->balance_wait_q);
 
2172}
2173
2174static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2175{
2176	struct inode *inode = fs_info->btree_inode;
2177
2178	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2179	set_nlink(inode, 1);
2180	/*
2181	 * we set the i_size on the btree inode to the max possible int.
2182	 * the real end of the address space is determined by all of
2183	 * the devices in the system
2184	 */
2185	inode->i_size = OFFSET_MAX;
2186	inode->i_mapping->a_ops = &btree_aops;
2187
2188	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2189	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2190	BTRFS_I(inode)->io_tree.track_uptodate = 0;
 
2191	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2192
2193	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2194
2195	BTRFS_I(inode)->root = fs_info->tree_root;
2196	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2197	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2198	btrfs_insert_inode_hash(inode);
2199}
2200
2201static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2202{
2203	fs_info->dev_replace.lock_owner = 0;
2204	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2205	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2206	rwlock_init(&fs_info->dev_replace.lock);
2207	atomic_set(&fs_info->dev_replace.read_locks, 0);
2208	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2209	init_waitqueue_head(&fs_info->replace_wait);
2210	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2211}
2212
2213static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2214{
2215	spin_lock_init(&fs_info->qgroup_lock);
2216	mutex_init(&fs_info->qgroup_ioctl_lock);
2217	fs_info->qgroup_tree = RB_ROOT;
2218	fs_info->qgroup_op_tree = RB_ROOT;
2219	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2220	fs_info->qgroup_seq = 1;
2221	fs_info->qgroup_ulist = NULL;
2222	fs_info->qgroup_rescan_running = false;
2223	mutex_init(&fs_info->qgroup_rescan_lock);
2224}
2225
2226static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2227		struct btrfs_fs_devices *fs_devices)
2228{
2229	u32 max_active = fs_info->thread_pool_size;
2230	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2231
2232	fs_info->workers =
2233		btrfs_alloc_workqueue(fs_info, "worker",
2234				      flags | WQ_HIGHPRI, max_active, 16);
2235
2236	fs_info->delalloc_workers =
2237		btrfs_alloc_workqueue(fs_info, "delalloc",
2238				      flags, max_active, 2);
2239
2240	fs_info->flush_workers =
2241		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2242				      flags, max_active, 0);
2243
2244	fs_info->caching_workers =
2245		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2246
2247	/*
2248	 * a higher idle thresh on the submit workers makes it much more
2249	 * likely that bios will be send down in a sane order to the
2250	 * devices
2251	 */
2252	fs_info->submit_workers =
2253		btrfs_alloc_workqueue(fs_info, "submit", flags,
2254				      min_t(u64, fs_devices->num_devices,
2255					    max_active), 64);
2256
2257	fs_info->fixup_workers =
2258		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2259
2260	/*
2261	 * endios are largely parallel and should have a very
2262	 * low idle thresh
2263	 */
2264	fs_info->endio_workers =
2265		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2266	fs_info->endio_meta_workers =
2267		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2268				      max_active, 4);
2269	fs_info->endio_meta_write_workers =
2270		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2271				      max_active, 2);
2272	fs_info->endio_raid56_workers =
2273		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2274				      max_active, 4);
2275	fs_info->endio_repair_workers =
2276		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2277	fs_info->rmw_workers =
2278		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2279	fs_info->endio_write_workers =
2280		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2281				      max_active, 2);
2282	fs_info->endio_freespace_worker =
2283		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2284				      max_active, 0);
2285	fs_info->delayed_workers =
2286		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2287				      max_active, 0);
2288	fs_info->readahead_workers =
2289		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2290				      max_active, 2);
2291	fs_info->qgroup_rescan_workers =
2292		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2293	fs_info->extent_workers =
2294		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2295				      min_t(u64, fs_devices->num_devices,
2296					    max_active), 8);
2297
2298	if (!(fs_info->workers && fs_info->delalloc_workers &&
2299	      fs_info->submit_workers && fs_info->flush_workers &&
2300	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2301	      fs_info->endio_meta_write_workers &&
2302	      fs_info->endio_repair_workers &&
2303	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2304	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2305	      fs_info->caching_workers && fs_info->readahead_workers &&
2306	      fs_info->fixup_workers && fs_info->delayed_workers &&
2307	      fs_info->extent_workers &&
2308	      fs_info->qgroup_rescan_workers)) {
2309		return -ENOMEM;
2310	}
2311
2312	return 0;
2313}
2314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2316			    struct btrfs_fs_devices *fs_devices)
2317{
2318	int ret;
2319	struct btrfs_root *log_tree_root;
2320	struct btrfs_super_block *disk_super = fs_info->super_copy;
2321	u64 bytenr = btrfs_super_log_root(disk_super);
2322	int level = btrfs_super_log_root_level(disk_super);
2323
2324	if (fs_devices->rw_devices == 0) {
2325		btrfs_warn(fs_info, "log replay required on RO media");
2326		return -EIO;
2327	}
2328
2329	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2330	if (!log_tree_root)
2331		return -ENOMEM;
2332
2333	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2334
2335	log_tree_root->node = read_tree_block(fs_info, bytenr,
2336					      fs_info->generation + 1,
2337					      level, NULL);
 
2338	if (IS_ERR(log_tree_root->node)) {
2339		btrfs_warn(fs_info, "failed to read log tree");
2340		ret = PTR_ERR(log_tree_root->node);
2341		kfree(log_tree_root);
 
2342		return ret;
2343	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2344		btrfs_err(fs_info, "failed to read log tree");
2345		free_extent_buffer(log_tree_root->node);
2346		kfree(log_tree_root);
2347		return -EIO;
2348	}
2349	/* returns with log_tree_root freed on success */
2350	ret = btrfs_recover_log_trees(log_tree_root);
2351	if (ret) {
2352		btrfs_handle_fs_error(fs_info, ret,
2353				      "Failed to recover log tree");
2354		free_extent_buffer(log_tree_root->node);
2355		kfree(log_tree_root);
2356		return ret;
2357	}
2358
2359	if (sb_rdonly(fs_info->sb)) {
2360		ret = btrfs_commit_super(fs_info);
2361		if (ret)
2362			return ret;
2363	}
2364
2365	return 0;
2366}
2367
2368static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2369{
2370	struct btrfs_root *tree_root = fs_info->tree_root;
2371	struct btrfs_root *root;
2372	struct btrfs_key location;
2373	int ret;
2374
2375	BUG_ON(!fs_info->tree_root);
2376
2377	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2378	location.type = BTRFS_ROOT_ITEM_KEY;
2379	location.offset = 0;
2380
2381	root = btrfs_read_tree_root(tree_root, &location);
2382	if (IS_ERR(root)) {
2383		ret = PTR_ERR(root);
2384		goto out;
 
 
 
 
 
2385	}
2386	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387	fs_info->extent_root = root;
2388
2389	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2390	root = btrfs_read_tree_root(tree_root, &location);
2391	if (IS_ERR(root)) {
2392		ret = PTR_ERR(root);
2393		goto out;
 
 
 
 
 
2394	}
2395	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2396	fs_info->dev_root = root;
2397	btrfs_init_devices_late(fs_info);
2398
2399	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2400	root = btrfs_read_tree_root(tree_root, &location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401	if (IS_ERR(root)) {
2402		ret = PTR_ERR(root);
2403		goto out;
 
 
 
 
 
2404	}
2405	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2406	fs_info->csum_root = root;
2407
2408	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2409	root = btrfs_read_tree_root(tree_root, &location);
2410	if (!IS_ERR(root)) {
2411		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2413		fs_info->quota_root = root;
2414	}
2415
2416	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2417	root = btrfs_read_tree_root(tree_root, &location);
2418	if (IS_ERR(root)) {
2419		ret = PTR_ERR(root);
2420		if (ret != -ENOENT)
2421			goto out;
 
 
2422	} else {
2423		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424		fs_info->uuid_root = root;
2425	}
2426
2427	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2428		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2429		root = btrfs_read_tree_root(tree_root, &location);
2430		if (IS_ERR(root)) {
2431			ret = PTR_ERR(root);
2432			goto out;
 
 
 
 
 
2433		}
2434		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435		fs_info->free_space_root = root;
2436	}
2437
2438	return 0;
2439out:
2440	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2441		   location.objectid, ret);
2442	return ret;
2443}
2444
2445int open_ctree(struct super_block *sb,
2446	       struct btrfs_fs_devices *fs_devices,
2447	       char *options)
 
 
 
 
 
 
 
 
 
2448{
2449	u32 sectorsize;
2450	u32 nodesize;
2451	u32 stripesize;
2452	u64 generation;
2453	u64 features;
2454	struct btrfs_key location;
2455	struct buffer_head *bh;
2456	struct btrfs_super_block *disk_super;
2457	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458	struct btrfs_root *tree_root;
2459	struct btrfs_root *chunk_root;
2460	int ret;
2461	int err = -EINVAL;
2462	int num_backups_tried = 0;
2463	int backup_index = 0;
2464	int clear_free_space_tree = 0;
2465	int level;
2466
2467	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2468	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2469	if (!tree_root || !chunk_root) {
2470		err = -ENOMEM;
2471		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2472	}
2473
2474	ret = init_srcu_struct(&fs_info->subvol_srcu);
2475	if (ret) {
2476		err = ret;
2477		goto fail;
 
 
 
 
2478	}
2479
2480	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2481	if (ret) {
2482		err = ret;
2483		goto fail_srcu;
 
 
 
 
 
 
 
 
2484	}
2485	fs_info->dirty_metadata_batch = PAGE_SIZE *
2486					(1 + ilog2(nr_cpu_ids));
2487
2488	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2489	if (ret) {
2490		err = ret;
2491		goto fail_dirty_metadata_bytes;
 
 
 
 
 
2492	}
2493
2494	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2495	if (ret) {
2496		err = ret;
2497		goto fail_delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	}
2499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2500	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2501	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2502	INIT_LIST_HEAD(&fs_info->trans_list);
2503	INIT_LIST_HEAD(&fs_info->dead_roots);
2504	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2505	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2506	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2507	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2508	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2509	spin_lock_init(&fs_info->delalloc_root_lock);
2510	spin_lock_init(&fs_info->trans_lock);
2511	spin_lock_init(&fs_info->fs_roots_radix_lock);
2512	spin_lock_init(&fs_info->delayed_iput_lock);
2513	spin_lock_init(&fs_info->defrag_inodes_lock);
2514	spin_lock_init(&fs_info->tree_mod_seq_lock);
2515	spin_lock_init(&fs_info->super_lock);
2516	spin_lock_init(&fs_info->qgroup_op_lock);
2517	spin_lock_init(&fs_info->buffer_lock);
2518	spin_lock_init(&fs_info->unused_bgs_lock);
 
2519	rwlock_init(&fs_info->tree_mod_log_lock);
2520	mutex_init(&fs_info->unused_bg_unpin_mutex);
2521	mutex_init(&fs_info->delete_unused_bgs_mutex);
2522	mutex_init(&fs_info->reloc_mutex);
2523	mutex_init(&fs_info->delalloc_root_mutex);
2524	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2525	seqlock_init(&fs_info->profiles_lock);
2526
2527	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2528	INIT_LIST_HEAD(&fs_info->space_info);
2529	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2530	INIT_LIST_HEAD(&fs_info->unused_bgs);
2531	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
 
2532	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2533			     BTRFS_BLOCK_RSV_GLOBAL);
2534	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2535	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2536	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2537	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2538			     BTRFS_BLOCK_RSV_DELOPS);
 
 
 
2539	atomic_set(&fs_info->async_delalloc_pages, 0);
2540	atomic_set(&fs_info->defrag_running, 0);
2541	atomic_set(&fs_info->qgroup_op_seq, 0);
2542	atomic_set(&fs_info->reada_works_cnt, 0);
 
2543	atomic64_set(&fs_info->tree_mod_seq, 0);
2544	fs_info->sb = sb;
2545	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2546	fs_info->metadata_ratio = 0;
2547	fs_info->defrag_inodes = RB_ROOT;
2548	atomic64_set(&fs_info->free_chunk_space, 0);
2549	fs_info->tree_mod_log = RB_ROOT;
2550	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2551	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2552	/* readahead state */
2553	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2554	spin_lock_init(&fs_info->reada_lock);
2555	btrfs_init_ref_verify(fs_info);
2556
2557	fs_info->thread_pool_size = min_t(unsigned long,
2558					  num_online_cpus() + 2, 8);
2559
2560	INIT_LIST_HEAD(&fs_info->ordered_roots);
2561	spin_lock_init(&fs_info->ordered_root_lock);
2562
2563	fs_info->btree_inode = new_inode(sb);
2564	if (!fs_info->btree_inode) {
2565		err = -ENOMEM;
2566		goto fail_bio_counter;
2567	}
2568	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2569
2570	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2571					GFP_KERNEL);
2572	if (!fs_info->delayed_root) {
2573		err = -ENOMEM;
2574		goto fail_iput;
2575	}
2576	btrfs_init_delayed_root(fs_info->delayed_root);
2577
2578	btrfs_init_scrub(fs_info);
2579#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2580	fs_info->check_integrity_print_mask = 0;
2581#endif
2582	btrfs_init_balance(fs_info);
2583	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2584
2585	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2586	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2587
2588	btrfs_init_btree_inode(fs_info);
2589
2590	spin_lock_init(&fs_info->block_group_cache_lock);
2591	fs_info->block_group_cache_tree = RB_ROOT;
2592	fs_info->first_logical_byte = (u64)-1;
2593
2594	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2595	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2596	fs_info->pinned_extents = &fs_info->freed_extents[0];
2597	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2598
2599	mutex_init(&fs_info->ordered_operations_mutex);
2600	mutex_init(&fs_info->tree_log_mutex);
2601	mutex_init(&fs_info->chunk_mutex);
2602	mutex_init(&fs_info->transaction_kthread_mutex);
2603	mutex_init(&fs_info->cleaner_mutex);
2604	mutex_init(&fs_info->volume_mutex);
2605	mutex_init(&fs_info->ro_block_group_mutex);
2606	init_rwsem(&fs_info->commit_root_sem);
2607	init_rwsem(&fs_info->cleanup_work_sem);
2608	init_rwsem(&fs_info->subvol_sem);
2609	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2610
2611	btrfs_init_dev_replace_locks(fs_info);
2612	btrfs_init_qgroup(fs_info);
 
2613
2614	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2615	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2616
2617	init_waitqueue_head(&fs_info->transaction_throttle);
2618	init_waitqueue_head(&fs_info->transaction_wait);
2619	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2620	init_waitqueue_head(&fs_info->async_submit_wait);
2621
2622	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2623
2624	/* Usable values until the real ones are cached from the superblock */
2625	fs_info->nodesize = 4096;
2626	fs_info->sectorsize = 4096;
 
2627	fs_info->stripesize = 4096;
2628
2629	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2630	if (ret) {
2631		err = ret;
2632		goto fail_alloc;
2633	}
2634
2635	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636
2637	invalidate_bdev(fs_devices->latest_bdev);
2638
2639	/*
2640	 * Read super block and check the signature bytes only
2641	 */
2642	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2643	if (IS_ERR(bh)) {
2644		err = PTR_ERR(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645		goto fail_alloc;
2646	}
2647
2648	/*
2649	 * We want to check superblock checksum, the type is stored inside.
2650	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2651	 */
2652	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2653		btrfs_err(fs_info, "superblock checksum mismatch");
2654		err = -EINVAL;
2655		brelse(bh);
2656		goto fail_alloc;
2657	}
2658
2659	/*
2660	 * super_copy is zeroed at allocation time and we never touch the
2661	 * following bytes up to INFO_SIZE, the checksum is calculated from
2662	 * the whole block of INFO_SIZE
2663	 */
2664	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 
 
 
 
 
 
 
 
 
 
 
 
 
2665	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2666	       sizeof(*fs_info->super_for_commit));
2667	brelse(bh);
2668
2669	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2670
2671	ret = btrfs_check_super_valid(fs_info);
2672	if (ret) {
2673		btrfs_err(fs_info, "superblock contains fatal errors");
2674		err = -EINVAL;
2675		goto fail_alloc;
2676	}
2677
2678	disk_super = fs_info->super_copy;
2679	if (!btrfs_super_root(disk_super))
2680		goto fail_alloc;
2681
2682	/* check FS state, whether FS is broken. */
2683	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2684		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2685
2686	/*
2687	 * run through our array of backup supers and setup
2688	 * our ring pointer to the oldest one
2689	 */
2690	generation = btrfs_super_generation(disk_super);
2691	find_oldest_super_backup(fs_info, generation);
2692
2693	/*
2694	 * In the long term, we'll store the compression type in the super
2695	 * block, and it'll be used for per file compression control.
2696	 */
2697	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2700	if (ret) {
2701		err = ret;
2702		goto fail_alloc;
2703	}
2704
2705	features = btrfs_super_incompat_flags(disk_super) &
2706		~BTRFS_FEATURE_INCOMPAT_SUPP;
2707	if (features) {
2708		btrfs_err(fs_info,
2709		    "cannot mount because of unsupported optional features (%llx)",
2710		    features);
2711		err = -EINVAL;
2712		goto fail_alloc;
2713	}
2714
2715	features = btrfs_super_incompat_flags(disk_super);
2716	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2717	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2718		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2719	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2720		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2721
2722	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2723		btrfs_info(fs_info, "has skinny extents");
2724
2725	/*
2726	 * flag our filesystem as having big metadata blocks if
2727	 * they are bigger than the page size
2728	 */
2729	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2730		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2731			btrfs_info(fs_info,
2732				"flagging fs with big metadata feature");
2733		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2734	}
2735
2736	nodesize = btrfs_super_nodesize(disk_super);
2737	sectorsize = btrfs_super_sectorsize(disk_super);
2738	stripesize = sectorsize;
2739	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2740	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2741
2742	/* Cache block sizes */
2743	fs_info->nodesize = nodesize;
2744	fs_info->sectorsize = sectorsize;
2745	fs_info->stripesize = stripesize;
2746
2747	/*
2748	 * mixed block groups end up with duplicate but slightly offset
2749	 * extent buffers for the same range.  It leads to corruptions
2750	 */
2751	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2752	    (sectorsize != nodesize)) {
2753		btrfs_err(fs_info,
2754"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2755			nodesize, sectorsize);
2756		goto fail_alloc;
2757	}
2758
2759	/*
2760	 * Needn't use the lock because there is no other task which will
2761	 * update the flag.
2762	 */
2763	btrfs_set_super_incompat_flags(disk_super, features);
2764
2765	features = btrfs_super_compat_ro_flags(disk_super) &
2766		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2767	if (!sb_rdonly(sb) && features) {
2768		btrfs_err(fs_info,
2769	"cannot mount read-write because of unsupported optional features (%llx)",
2770		       features);
2771		err = -EINVAL;
2772		goto fail_alloc;
2773	}
2774
 
 
 
 
 
 
 
 
 
 
 
2775	ret = btrfs_init_workqueues(fs_info, fs_devices);
2776	if (ret) {
2777		err = ret;
2778		goto fail_sb_buffer;
2779	}
2780
2781	sb->s_bdi->congested_fn = btrfs_congested_fn;
2782	sb->s_bdi->congested_data = fs_info;
2783	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2784	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2785	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2786	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2787
2788	sb->s_blocksize = sectorsize;
2789	sb->s_blocksize_bits = blksize_bits(sectorsize);
2790	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2791
2792	mutex_lock(&fs_info->chunk_mutex);
2793	ret = btrfs_read_sys_array(fs_info);
2794	mutex_unlock(&fs_info->chunk_mutex);
2795	if (ret) {
2796		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2797		goto fail_sb_buffer;
2798	}
2799
2800	generation = btrfs_super_chunk_root_generation(disk_super);
2801	level = btrfs_super_chunk_root_level(disk_super);
2802
2803	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2804
2805	chunk_root->node = read_tree_block(fs_info,
2806					   btrfs_super_chunk_root(disk_super),
 
2807					   generation, level, NULL);
2808	if (IS_ERR(chunk_root->node) ||
2809	    !extent_buffer_uptodate(chunk_root->node)) {
2810		btrfs_err(fs_info, "failed to read chunk root");
2811		if (!IS_ERR(chunk_root->node))
2812			free_extent_buffer(chunk_root->node);
2813		chunk_root->node = NULL;
2814		goto fail_tree_roots;
2815	}
2816	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2817	chunk_root->commit_root = btrfs_root_node(chunk_root);
2818
2819	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2820	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2821
2822	ret = btrfs_read_chunk_tree(fs_info);
2823	if (ret) {
2824		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2825		goto fail_tree_roots;
2826	}
2827
2828	/*
2829	 * Keep the devid that is marked to be the target device for the
2830	 * device replace procedure
 
 
 
2831	 */
2832	btrfs_free_extra_devids(fs_devices, 0);
2833
2834	if (!fs_devices->latest_bdev) {
2835		btrfs_err(fs_info, "failed to read devices");
2836		goto fail_tree_roots;
2837	}
2838
2839retry_root_backup:
2840	generation = btrfs_super_generation(disk_super);
2841	level = btrfs_super_root_level(disk_super);
2842
2843	tree_root->node = read_tree_block(fs_info,
2844					  btrfs_super_root(disk_super),
2845					  generation, level, NULL);
2846	if (IS_ERR(tree_root->node) ||
2847	    !extent_buffer_uptodate(tree_root->node)) {
2848		btrfs_warn(fs_info, "failed to read tree root");
2849		if (!IS_ERR(tree_root->node))
2850			free_extent_buffer(tree_root->node);
2851		tree_root->node = NULL;
2852		goto recovery_tree_root;
2853	}
2854
2855	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2856	tree_root->commit_root = btrfs_root_node(tree_root);
2857	btrfs_set_root_refs(&tree_root->root_item, 1);
2858
2859	mutex_lock(&tree_root->objectid_mutex);
2860	ret = btrfs_find_highest_objectid(tree_root,
2861					&tree_root->highest_objectid);
2862	if (ret) {
2863		mutex_unlock(&tree_root->objectid_mutex);
2864		goto recovery_tree_root;
 
 
2865	}
2866
2867	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2868
2869	mutex_unlock(&tree_root->objectid_mutex);
2870
2871	ret = btrfs_read_roots(fs_info);
2872	if (ret)
2873		goto recovery_tree_root;
2874
2875	fs_info->generation = generation;
2876	fs_info->last_trans_committed = generation;
 
2877
 
 
 
 
 
 
 
2878	ret = btrfs_recover_balance(fs_info);
2879	if (ret) {
2880		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2881		goto fail_block_groups;
2882	}
2883
2884	ret = btrfs_init_dev_stats(fs_info);
2885	if (ret) {
2886		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2887		goto fail_block_groups;
2888	}
2889
2890	ret = btrfs_init_dev_replace(fs_info);
2891	if (ret) {
2892		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2893		goto fail_block_groups;
2894	}
2895
2896	btrfs_free_extra_devids(fs_devices, 1);
2897
2898	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2899	if (ret) {
2900		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2901				ret);
2902		goto fail_block_groups;
2903	}
2904
2905	ret = btrfs_sysfs_add_device(fs_devices);
2906	if (ret) {
2907		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2908				ret);
2909		goto fail_fsdev_sysfs;
2910	}
2911
2912	ret = btrfs_sysfs_add_mounted(fs_info);
2913	if (ret) {
2914		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2915		goto fail_fsdev_sysfs;
2916	}
2917
2918	ret = btrfs_init_space_info(fs_info);
2919	if (ret) {
2920		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2921		goto fail_sysfs;
2922	}
2923
2924	ret = btrfs_read_block_groups(fs_info);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2927		goto fail_sysfs;
2928	}
2929
2930	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2931		btrfs_warn(fs_info,
2932		"writeable mount is not allowed due to too many missing devices");
2933		goto fail_sysfs;
2934	}
2935
2936	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2937					       "btrfs-cleaner");
2938	if (IS_ERR(fs_info->cleaner_kthread))
2939		goto fail_sysfs;
2940
2941	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2942						   tree_root,
2943						   "btrfs-transaction");
2944	if (IS_ERR(fs_info->transaction_kthread))
2945		goto fail_cleaner;
2946
2947	if (!btrfs_test_opt(fs_info, NOSSD) &&
2948	    !fs_info->fs_devices->rotating) {
2949		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2950	}
2951
2952	/*
2953	 * Mount does not set all options immediately, we can do it now and do
2954	 * not have to wait for transaction commit
2955	 */
2956	btrfs_apply_pending_changes(fs_info);
2957
2958#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2959	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2960		ret = btrfsic_mount(fs_info, fs_devices,
2961				    btrfs_test_opt(fs_info,
2962					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2963				    1 : 0,
2964				    fs_info->check_integrity_print_mask);
2965		if (ret)
2966			btrfs_warn(fs_info,
2967				"failed to initialize integrity check module: %d",
2968				ret);
2969	}
2970#endif
2971	ret = btrfs_read_qgroup_config(fs_info);
2972	if (ret)
2973		goto fail_trans_kthread;
2974
2975	if (btrfs_build_ref_tree(fs_info))
2976		btrfs_err(fs_info, "couldn't build ref tree");
2977
2978	/* do not make disk changes in broken FS or nologreplay is given */
2979	if (btrfs_super_log_root(disk_super) != 0 &&
2980	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
2981		ret = btrfs_replay_log(fs_info, fs_devices);
2982		if (ret) {
2983			err = ret;
2984			goto fail_qgroup;
2985		}
2986	}
2987
2988	ret = btrfs_find_orphan_roots(fs_info);
2989	if (ret)
2990		goto fail_qgroup;
2991
2992	if (!sb_rdonly(sb)) {
2993		ret = btrfs_cleanup_fs_roots(fs_info);
2994		if (ret)
2995			goto fail_qgroup;
2996
2997		mutex_lock(&fs_info->cleaner_mutex);
2998		ret = btrfs_recover_relocation(tree_root);
2999		mutex_unlock(&fs_info->cleaner_mutex);
3000		if (ret < 0) {
3001			btrfs_warn(fs_info, "failed to recover relocation: %d",
3002					ret);
3003			err = -EINVAL;
3004			goto fail_qgroup;
3005		}
3006	}
3007
3008	location.objectid = BTRFS_FS_TREE_OBJECTID;
3009	location.type = BTRFS_ROOT_ITEM_KEY;
3010	location.offset = 0;
3011
3012	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3013	if (IS_ERR(fs_info->fs_root)) {
3014		err = PTR_ERR(fs_info->fs_root);
3015		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
 
3016		goto fail_qgroup;
3017	}
3018
3019	if (sb_rdonly(sb))
3020		return 0;
3021
3022	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3023	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3024		clear_free_space_tree = 1;
3025	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3026		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3027		btrfs_warn(fs_info, "free space tree is invalid");
3028		clear_free_space_tree = 1;
3029	}
3030
3031	if (clear_free_space_tree) {
3032		btrfs_info(fs_info, "clearing free space tree");
3033		ret = btrfs_clear_free_space_tree(fs_info);
3034		if (ret) {
3035			btrfs_warn(fs_info,
3036				   "failed to clear free space tree: %d", ret);
3037			close_ctree(fs_info);
3038			return ret;
3039		}
3040	}
3041
3042	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3043	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3044		btrfs_info(fs_info, "creating free space tree");
3045		ret = btrfs_create_free_space_tree(fs_info);
3046		if (ret) {
3047			btrfs_warn(fs_info,
3048				"failed to create free space tree: %d", ret);
3049			close_ctree(fs_info);
3050			return ret;
3051		}
3052	}
3053
3054	down_read(&fs_info->cleanup_work_sem);
3055	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3056	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3057		up_read(&fs_info->cleanup_work_sem);
3058		close_ctree(fs_info);
3059		return ret;
3060	}
3061	up_read(&fs_info->cleanup_work_sem);
3062
3063	ret = btrfs_resume_balance_async(fs_info);
3064	if (ret) {
3065		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3066		close_ctree(fs_info);
3067		return ret;
3068	}
3069
3070	ret = btrfs_resume_dev_replace_async(fs_info);
3071	if (ret) {
3072		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3073		close_ctree(fs_info);
3074		return ret;
3075	}
 
3076
3077	btrfs_qgroup_rescan_resume(fs_info);
3078
3079	if (!fs_info->uuid_root) {
3080		btrfs_info(fs_info, "creating UUID tree");
3081		ret = btrfs_create_uuid_tree(fs_info);
3082		if (ret) {
3083			btrfs_warn(fs_info,
3084				"failed to create the UUID tree: %d", ret);
3085			close_ctree(fs_info);
3086			return ret;
3087		}
3088	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3089		   fs_info->generation !=
3090				btrfs_super_uuid_tree_generation(disk_super)) {
3091		btrfs_info(fs_info, "checking UUID tree");
3092		ret = btrfs_check_uuid_tree(fs_info);
3093		if (ret) {
3094			btrfs_warn(fs_info,
3095				"failed to check the UUID tree: %d", ret);
3096			close_ctree(fs_info);
3097			return ret;
3098		}
3099	} else {
3100		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3101	}
3102	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3103
3104	/*
3105	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3106	 * no need to keep the flag
3107	 */
3108	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3109
 
 
3110	return 0;
3111
3112fail_qgroup:
3113	btrfs_free_qgroup_config(fs_info);
3114fail_trans_kthread:
3115	kthread_stop(fs_info->transaction_kthread);
3116	btrfs_cleanup_transaction(fs_info);
3117	btrfs_free_fs_roots(fs_info);
3118fail_cleaner:
3119	kthread_stop(fs_info->cleaner_kthread);
3120
3121	/*
3122	 * make sure we're done with the btree inode before we stop our
3123	 * kthreads
3124	 */
3125	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3126
3127fail_sysfs:
3128	btrfs_sysfs_remove_mounted(fs_info);
3129
3130fail_fsdev_sysfs:
3131	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3132
3133fail_block_groups:
3134	btrfs_put_block_group_cache(fs_info);
3135
3136fail_tree_roots:
3137	free_root_pointers(fs_info, 1);
 
 
3138	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3139
3140fail_sb_buffer:
3141	btrfs_stop_all_workers(fs_info);
3142	btrfs_free_block_groups(fs_info);
3143fail_alloc:
3144fail_iput:
3145	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3146
3147	iput(fs_info->btree_inode);
3148fail_bio_counter:
3149	percpu_counter_destroy(&fs_info->bio_counter);
3150fail_delalloc_bytes:
3151	percpu_counter_destroy(&fs_info->delalloc_bytes);
3152fail_dirty_metadata_bytes:
3153	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3154fail_srcu:
3155	cleanup_srcu_struct(&fs_info->subvol_srcu);
3156fail:
3157	btrfs_free_stripe_hash_table(fs_info);
3158	btrfs_close_devices(fs_info->fs_devices);
3159	return err;
3160
3161recovery_tree_root:
3162	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3163		goto fail_tree_roots;
3164
3165	free_root_pointers(fs_info, 0);
3166
3167	/* don't use the log in recovery mode, it won't be valid */
3168	btrfs_set_super_log_root(disk_super, 0);
3169
3170	/* we can't trust the free space cache either */
3171	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3172
3173	ret = next_root_backup(fs_info, fs_info->super_copy,
3174			       &num_backups_tried, &backup_index);
3175	if (ret == -1)
3176		goto fail_block_groups;
3177	goto retry_root_backup;
3178}
3179ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3180
3181static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3182{
3183	if (uptodate) {
3184		set_buffer_uptodate(bh);
3185	} else {
3186		struct btrfs_device *device = (struct btrfs_device *)
3187			bh->b_private;
3188
3189		btrfs_warn_rl_in_rcu(device->fs_info,
3190				"lost page write due to IO error on %s",
3191					  rcu_str_deref(device->name));
3192		/* note, we don't set_buffer_write_io_error because we have
3193		 * our own ways of dealing with the IO errors
3194		 */
3195		clear_buffer_uptodate(bh);
3196		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
 
3197	}
3198	unlock_buffer(bh);
3199	put_bh(bh);
3200}
3201
3202int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3203			struct buffer_head **bh_ret)
3204{
3205	struct buffer_head *bh;
3206	struct btrfs_super_block *super;
3207	u64 bytenr;
 
 
 
 
 
 
 
 
 
 
3208
3209	bytenr = btrfs_sb_offset(copy_num);
3210	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3211		return -EINVAL;
3212
3213	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3214	/*
3215	 * If we fail to read from the underlying devices, as of now
3216	 * the best option we have is to mark it EIO.
3217	 */
3218	if (!bh)
3219		return -EIO;
 
 
3220
3221	super = (struct btrfs_super_block *)bh->b_data;
3222	if (btrfs_super_bytenr(super) != bytenr ||
3223		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3224		brelse(bh);
3225		return -EINVAL;
3226	}
3227
3228	*bh_ret = bh;
3229	return 0;
3230}
3231
3232
3233struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3234{
3235	struct buffer_head *bh;
3236	struct buffer_head *latest = NULL;
3237	struct btrfs_super_block *super;
3238	int i;
3239	u64 transid = 0;
3240	int ret = -EINVAL;
3241
3242	/* we would like to check all the supers, but that would make
3243	 * a btrfs mount succeed after a mkfs from a different FS.
3244	 * So, we need to add a special mount option to scan for
3245	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3246	 */
3247	for (i = 0; i < 1; i++) {
3248		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3249		if (ret)
3250			continue;
3251
3252		super = (struct btrfs_super_block *)bh->b_data;
3253
3254		if (!latest || btrfs_super_generation(super) > transid) {
3255			brelse(latest);
3256			latest = bh;
 
 
3257			transid = btrfs_super_generation(super);
3258		} else {
3259			brelse(bh);
3260		}
3261	}
3262
3263	if (!latest)
3264		return ERR_PTR(ret);
3265
3266	return latest;
3267}
3268
3269/*
3270 * Write superblock @sb to the @device. Do not wait for completion, all the
3271 * buffer heads we write are pinned.
3272 *
3273 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3274 * the expected device size at commit time. Note that max_mirrors must be
3275 * same for write and wait phases.
3276 *
3277 * Return number of errors when buffer head is not found or submission fails.
3278 */
3279static int write_dev_supers(struct btrfs_device *device,
3280			    struct btrfs_super_block *sb, int max_mirrors)
3281{
3282	struct buffer_head *bh;
 
 
3283	int i;
3284	int ret;
3285	int errors = 0;
3286	u32 crc;
3287	u64 bytenr;
3288	int op_flags;
3289
3290	if (max_mirrors == 0)
3291		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3292
 
 
3293	for (i = 0; i < max_mirrors; i++) {
3294		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3296		    device->commit_total_bytes)
3297			break;
3298
3299		btrfs_set_super_bytenr(sb, bytenr);
3300
3301		crc = ~(u32)0;
3302		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3303				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3304		btrfs_csum_final(crc, sb->csum);
3305
3306		/* One reference for us, and we leave it for the caller */
3307		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3308			      BTRFS_SUPER_INFO_SIZE);
3309		if (!bh) {
3310			btrfs_err(device->fs_info,
3311			    "couldn't get super buffer head for bytenr %llu",
3312			    bytenr);
3313			errors++;
3314			continue;
3315		}
3316
3317		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3318
3319		/* one reference for submit_bh */
3320		get_bh(bh);
3321
3322		set_buffer_uptodate(bh);
3323		lock_buffer(bh);
3324		bh->b_end_io = btrfs_end_buffer_write_sync;
3325		bh->b_private = device;
 
 
 
 
 
 
 
 
3326
3327		/*
3328		 * we fua the first super.  The others we allow
3329		 * to go down lazy.
 
3330		 */
3331		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3332		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3333			op_flags |= REQ_FUA;
3334		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3335		if (ret)
3336			errors++;
3337	}
3338	return errors < i ? 0 : -1;
3339}
3340
3341/*
3342 * Wait for write completion of superblocks done by write_dev_supers,
3343 * @max_mirrors same for write and wait phases.
3344 *
3345 * Return number of errors when buffer head is not found or not marked up to
3346 * date.
3347 */
3348static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3349{
3350	struct buffer_head *bh;
3351	int i;
3352	int errors = 0;
3353	bool primary_failed = false;
 
3354	u64 bytenr;
3355
3356	if (max_mirrors == 0)
3357		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358
3359	for (i = 0; i < max_mirrors; i++) {
3360		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
3361		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362		    device->commit_total_bytes)
3363			break;
3364
3365		bh = __find_get_block(device->bdev,
3366				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3367				      BTRFS_SUPER_INFO_SIZE);
3368		if (!bh) {
3369			errors++;
3370			if (i == 0)
3371				primary_failed = true;
3372			continue;
3373		}
3374		wait_on_buffer(bh);
3375		if (!buffer_uptodate(bh)) {
 
3376			errors++;
3377			if (i == 0)
3378				primary_failed = true;
3379		}
3380
3381		/* drop our reference */
3382		brelse(bh);
3383
3384		/* drop the reference from the writing run */
3385		brelse(bh);
3386	}
3387
3388	/* log error, force error return */
3389	if (primary_failed) {
3390		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3391			  device->devid);
3392		return -1;
3393	}
3394
3395	return errors < i ? 0 : -1;
3396}
3397
3398/*
3399 * endio for the write_dev_flush, this will wake anyone waiting
3400 * for the barrier when it is done
3401 */
3402static void btrfs_end_empty_barrier(struct bio *bio)
3403{
3404	complete(bio->bi_private);
3405}
3406
3407/*
3408 * Submit a flush request to the device if it supports it. Error handling is
3409 * done in the waiting counterpart.
3410 */
3411static void write_dev_flush(struct btrfs_device *device)
3412{
3413	struct request_queue *q = bdev_get_queue(device->bdev);
3414	struct bio *bio = device->flush_bio;
3415
3416	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3417		return;
3418
3419	bio_reset(bio);
3420	bio->bi_end_io = btrfs_end_empty_barrier;
3421	bio_set_dev(bio, device->bdev);
3422	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3423	init_completion(&device->flush_wait);
3424	bio->bi_private = &device->flush_wait;
3425
3426	btrfsic_submit_bio(bio);
3427	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3428}
3429
3430/*
3431 * If the flush bio has been submitted by write_dev_flush, wait for it.
3432 */
3433static blk_status_t wait_dev_flush(struct btrfs_device *device)
3434{
3435	struct bio *bio = device->flush_bio;
3436
3437	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3438		return BLK_STS_OK;
3439
3440	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3441	wait_for_completion_io(&device->flush_wait);
3442
3443	return bio->bi_status;
3444}
3445
3446static int check_barrier_error(struct btrfs_fs_info *fs_info)
3447{
3448	if (!btrfs_check_rw_degradable(fs_info, NULL))
3449		return -EIO;
3450	return 0;
3451}
3452
3453/*
3454 * send an empty flush down to each device in parallel,
3455 * then wait for them
3456 */
3457static int barrier_all_devices(struct btrfs_fs_info *info)
3458{
3459	struct list_head *head;
3460	struct btrfs_device *dev;
3461	int errors_wait = 0;
3462	blk_status_t ret;
3463
3464	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3465	/* send down all the barriers */
3466	head = &info->fs_devices->devices;
3467	list_for_each_entry(dev, head, dev_list) {
3468		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3469			continue;
3470		if (!dev->bdev)
3471			continue;
3472		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3473		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3474			continue;
3475
3476		write_dev_flush(dev);
3477		dev->last_flush_error = BLK_STS_OK;
3478	}
3479
3480	/* wait for all the barriers */
3481	list_for_each_entry(dev, head, dev_list) {
3482		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3483			continue;
3484		if (!dev->bdev) {
3485			errors_wait++;
3486			continue;
3487		}
3488		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3489		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3490			continue;
3491
3492		ret = wait_dev_flush(dev);
3493		if (ret) {
3494			dev->last_flush_error = ret;
3495			btrfs_dev_stat_inc_and_print(dev,
3496					BTRFS_DEV_STAT_FLUSH_ERRS);
3497			errors_wait++;
3498		}
3499	}
3500
3501	if (errors_wait) {
3502		/*
3503		 * At some point we need the status of all disks
3504		 * to arrive at the volume status. So error checking
3505		 * is being pushed to a separate loop.
3506		 */
3507		return check_barrier_error(info);
3508	}
3509	return 0;
3510}
3511
3512int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3513{
3514	int raid_type;
3515	int min_tolerated = INT_MAX;
3516
3517	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3518	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3519		min_tolerated = min(min_tolerated,
3520				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3521				    tolerated_failures);
3522
3523	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3524		if (raid_type == BTRFS_RAID_SINGLE)
3525			continue;
3526		if (!(flags & btrfs_raid_group[raid_type]))
3527			continue;
3528		min_tolerated = min(min_tolerated,
3529				    btrfs_raid_array[raid_type].
3530				    tolerated_failures);
3531	}
3532
3533	if (min_tolerated == INT_MAX) {
3534		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3535		min_tolerated = 0;
3536	}
3537
3538	return min_tolerated;
3539}
3540
3541int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3542{
3543	struct list_head *head;
3544	struct btrfs_device *dev;
3545	struct btrfs_super_block *sb;
3546	struct btrfs_dev_item *dev_item;
3547	int ret;
3548	int do_barriers;
3549	int max_errors;
3550	int total_errors = 0;
3551	u64 flags;
3552
3553	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3554
3555	/*
3556	 * max_mirrors == 0 indicates we're from commit_transaction,
3557	 * not from fsync where the tree roots in fs_info have not
3558	 * been consistent on disk.
3559	 */
3560	if (max_mirrors == 0)
3561		backup_super_roots(fs_info);
3562
3563	sb = fs_info->super_for_commit;
3564	dev_item = &sb->dev_item;
3565
3566	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3567	head = &fs_info->fs_devices->devices;
3568	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3569
3570	if (do_barriers) {
3571		ret = barrier_all_devices(fs_info);
3572		if (ret) {
3573			mutex_unlock(
3574				&fs_info->fs_devices->device_list_mutex);
3575			btrfs_handle_fs_error(fs_info, ret,
3576					      "errors while submitting device barriers.");
3577			return ret;
3578		}
3579	}
3580
3581	list_for_each_entry(dev, head, dev_list) {
3582		if (!dev->bdev) {
3583			total_errors++;
3584			continue;
3585		}
3586		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3587		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3588			continue;
3589
3590		btrfs_set_stack_device_generation(dev_item, 0);
3591		btrfs_set_stack_device_type(dev_item, dev->type);
3592		btrfs_set_stack_device_id(dev_item, dev->devid);
3593		btrfs_set_stack_device_total_bytes(dev_item,
3594						   dev->commit_total_bytes);
3595		btrfs_set_stack_device_bytes_used(dev_item,
3596						  dev->commit_bytes_used);
3597		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3598		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3599		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3600		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3601		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
 
3602
3603		flags = btrfs_super_flags(sb);
3604		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3605
 
 
 
 
 
 
 
 
3606		ret = write_dev_supers(dev, sb, max_mirrors);
3607		if (ret)
3608			total_errors++;
3609	}
3610	if (total_errors > max_errors) {
3611		btrfs_err(fs_info, "%d errors while writing supers",
3612			  total_errors);
3613		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3614
3615		/* FUA is masked off if unsupported and can't be the reason */
3616		btrfs_handle_fs_error(fs_info, -EIO,
3617				      "%d errors while writing supers",
3618				      total_errors);
3619		return -EIO;
3620	}
3621
3622	total_errors = 0;
3623	list_for_each_entry(dev, head, dev_list) {
3624		if (!dev->bdev)
3625			continue;
3626		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3627		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3628			continue;
3629
3630		ret = wait_dev_supers(dev, max_mirrors);
3631		if (ret)
3632			total_errors++;
3633	}
3634	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3635	if (total_errors > max_errors) {
3636		btrfs_handle_fs_error(fs_info, -EIO,
3637				      "%d errors while writing supers",
3638				      total_errors);
3639		return -EIO;
3640	}
3641	return 0;
3642}
3643
3644/* Drop a fs root from the radix tree and free it. */
3645void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3646				  struct btrfs_root *root)
3647{
 
 
3648	spin_lock(&fs_info->fs_roots_radix_lock);
3649	radix_tree_delete(&fs_info->fs_roots_radix,
3650			  (unsigned long)root->root_key.objectid);
 
 
3651	spin_unlock(&fs_info->fs_roots_radix_lock);
3652
3653	if (btrfs_root_refs(&root->root_item) == 0)
3654		synchronize_srcu(&fs_info->subvol_srcu);
3655
3656	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3657		btrfs_free_log(NULL, root);
3658		if (root->reloc_root) {
3659			free_extent_buffer(root->reloc_root->node);
3660			free_extent_buffer(root->reloc_root->commit_root);
3661			btrfs_put_fs_root(root->reloc_root);
3662			root->reloc_root = NULL;
3663		}
3664	}
3665
3666	if (root->free_ino_pinned)
3667		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3668	if (root->free_ino_ctl)
3669		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3670	free_fs_root(root);
3671}
3672
3673static void free_fs_root(struct btrfs_root *root)
3674{
3675	iput(root->ino_cache_inode);
3676	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3677	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3678	root->orphan_block_rsv = NULL;
3679	if (root->anon_dev)
3680		free_anon_bdev(root->anon_dev);
3681	if (root->subv_writers)
3682		btrfs_free_subvolume_writers(root->subv_writers);
3683	free_extent_buffer(root->node);
3684	free_extent_buffer(root->commit_root);
3685	kfree(root->free_ino_ctl);
3686	kfree(root->free_ino_pinned);
3687	kfree(root->name);
3688	btrfs_put_fs_root(root);
3689}
3690
3691void btrfs_free_fs_root(struct btrfs_root *root)
3692{
3693	free_fs_root(root);
3694}
3695
3696int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3697{
3698	u64 root_objectid = 0;
3699	struct btrfs_root *gang[8];
3700	int i = 0;
3701	int err = 0;
3702	unsigned int ret = 0;
3703	int index;
3704
3705	while (1) {
3706		index = srcu_read_lock(&fs_info->subvol_srcu);
3707		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3708					     (void **)gang, root_objectid,
3709					     ARRAY_SIZE(gang));
3710		if (!ret) {
3711			srcu_read_unlock(&fs_info->subvol_srcu, index);
3712			break;
3713		}
3714		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3715
3716		for (i = 0; i < ret; i++) {
3717			/* Avoid to grab roots in dead_roots */
3718			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3719				gang[i] = NULL;
3720				continue;
3721			}
3722			/* grab all the search result for later use */
3723			gang[i] = btrfs_grab_fs_root(gang[i]);
3724		}
3725		srcu_read_unlock(&fs_info->subvol_srcu, index);
3726
3727		for (i = 0; i < ret; i++) {
3728			if (!gang[i])
3729				continue;
3730			root_objectid = gang[i]->root_key.objectid;
3731			err = btrfs_orphan_cleanup(gang[i]);
3732			if (err)
3733				break;
3734			btrfs_put_fs_root(gang[i]);
3735		}
3736		root_objectid++;
3737	}
3738
3739	/* release the uncleaned roots due to error */
3740	for (; i < ret; i++) {
3741		if (gang[i])
3742			btrfs_put_fs_root(gang[i]);
3743	}
3744	return err;
3745}
3746
3747int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3748{
3749	struct btrfs_root *root = fs_info->tree_root;
3750	struct btrfs_trans_handle *trans;
3751
3752	mutex_lock(&fs_info->cleaner_mutex);
3753	btrfs_run_delayed_iputs(fs_info);
3754	mutex_unlock(&fs_info->cleaner_mutex);
3755	wake_up_process(fs_info->cleaner_kthread);
3756
3757	/* wait until ongoing cleanup work done */
3758	down_write(&fs_info->cleanup_work_sem);
3759	up_write(&fs_info->cleanup_work_sem);
3760
3761	trans = btrfs_join_transaction(root);
3762	if (IS_ERR(trans))
3763		return PTR_ERR(trans);
3764	return btrfs_commit_transaction(trans);
3765}
3766
3767void close_ctree(struct btrfs_fs_info *fs_info)
3768{
3769	struct btrfs_root *root = fs_info->tree_root;
3770	int ret;
3771
3772	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
 
 
 
 
3773
3774	/* wait for the qgroup rescan worker to stop */
3775	btrfs_qgroup_wait_for_completion(fs_info, false);
3776
3777	/* wait for the uuid_scan task to finish */
3778	down(&fs_info->uuid_tree_rescan_sem);
3779	/* avoid complains from lockdep et al., set sem back to initial state */
3780	up(&fs_info->uuid_tree_rescan_sem);
3781
3782	/* pause restriper - we want to resume on mount */
3783	btrfs_pause_balance(fs_info);
3784
3785	btrfs_dev_replace_suspend_for_unmount(fs_info);
3786
3787	btrfs_scrub_cancel(fs_info);
3788
3789	/* wait for any defraggers to finish */
3790	wait_event(fs_info->transaction_wait,
3791		   (atomic_read(&fs_info->defrag_running) == 0));
3792
3793	/* clear out the rbtree of defraggable inodes */
3794	btrfs_cleanup_defrag_inodes(fs_info);
3795
3796	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
 
 
 
 
3797
3798	if (!sb_rdonly(fs_info->sb)) {
3799		/*
3800		 * If the cleaner thread is stopped and there are
3801		 * block groups queued for removal, the deletion will be
3802		 * skipped when we quit the cleaner thread.
3803		 */
3804		btrfs_delete_unused_bgs(fs_info);
3805
 
 
 
 
 
 
 
 
 
 
 
 
 
3806		ret = btrfs_commit_super(fs_info);
3807		if (ret)
3808			btrfs_err(fs_info, "commit super ret %d", ret);
3809	}
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3812	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3813		btrfs_error_commit_super(fs_info);
3814
3815	kthread_stop(fs_info->transaction_kthread);
3816	kthread_stop(fs_info->cleaner_kthread);
3817
 
3818	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3819
 
 
 
 
 
3820	btrfs_free_qgroup_config(fs_info);
3821	ASSERT(list_empty(&fs_info->delalloc_roots));
3822
3823	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3824		btrfs_info(fs_info, "at unmount delalloc count %lld",
3825		       percpu_counter_sum(&fs_info->delalloc_bytes));
3826	}
3827
 
 
 
 
3828	btrfs_sysfs_remove_mounted(fs_info);
3829	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3830
3831	btrfs_free_fs_roots(fs_info);
3832
3833	btrfs_put_block_group_cache(fs_info);
3834
3835	/*
3836	 * we must make sure there is not any read request to
3837	 * submit after we stopping all workers.
3838	 */
3839	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3840	btrfs_stop_all_workers(fs_info);
3841
3842	btrfs_free_block_groups(fs_info);
 
3843
3844	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3845	free_root_pointers(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
3846
3847	iput(fs_info->btree_inode);
3848
3849#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3850	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3851		btrfsic_unmount(fs_info->fs_devices);
3852#endif
3853
3854	btrfs_close_devices(fs_info->fs_devices);
3855	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3856
3857	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3858	percpu_counter_destroy(&fs_info->delalloc_bytes);
3859	percpu_counter_destroy(&fs_info->bio_counter);
3860	cleanup_srcu_struct(&fs_info->subvol_srcu);
3861
3862	btrfs_free_stripe_hash_table(fs_info);
3863	btrfs_free_ref_cache(fs_info);
3864
3865	__btrfs_free_block_rsv(root->orphan_block_rsv);
3866	root->orphan_block_rsv = NULL;
3867
3868	while (!list_empty(&fs_info->pinned_chunks)) {
3869		struct extent_map *em;
3870
3871		em = list_first_entry(&fs_info->pinned_chunks,
3872				      struct extent_map, list);
3873		list_del_init(&em->list);
3874		free_extent_map(em);
3875	}
3876}
3877
3878int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3879			  int atomic)
3880{
3881	int ret;
3882	struct inode *btree_inode = buf->pages[0]->mapping->host;
3883
3884	ret = extent_buffer_uptodate(buf);
3885	if (!ret)
3886		return ret;
3887
3888	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3889				    parent_transid, atomic);
3890	if (ret == -EAGAIN)
3891		return ret;
3892	return !ret;
3893}
3894
3895void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3896{
3897	struct btrfs_fs_info *fs_info;
3898	struct btrfs_root *root;
3899	u64 transid = btrfs_header_generation(buf);
3900	int was_dirty;
3901
3902#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3903	/*
3904	 * This is a fast path so only do this check if we have sanity tests
3905	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3906	 * outside of the sanity tests.
3907	 */
3908	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3909		return;
3910#endif
3911	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3912	fs_info = root->fs_info;
3913	btrfs_assert_tree_locked(buf);
3914	if (transid != fs_info->generation)
3915		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3916			buf->start, transid, fs_info->generation);
3917	was_dirty = set_extent_buffer_dirty(buf);
3918	if (!was_dirty)
3919		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3920					 buf->len,
3921					 fs_info->dirty_metadata_batch);
3922#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923	/*
3924	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3925	 * but item data not updated.
3926	 * So here we should only check item pointers, not item data.
3927	 */
3928	if (btrfs_header_level(buf) == 0 &&
3929	    btrfs_check_leaf_relaxed(fs_info, buf)) {
3930		btrfs_print_leaf(buf);
3931		ASSERT(0);
3932	}
3933#endif
3934}
3935
3936static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3937					int flush_delayed)
3938{
3939	/*
3940	 * looks as though older kernels can get into trouble with
3941	 * this code, they end up stuck in balance_dirty_pages forever
3942	 */
3943	int ret;
3944
3945	if (current->flags & PF_MEMALLOC)
3946		return;
3947
3948	if (flush_delayed)
3949		btrfs_balance_delayed_items(fs_info);
3950
3951	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3952				     BTRFS_DIRTY_METADATA_THRESH);
 
3953	if (ret > 0) {
3954		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3955	}
3956}
3957
3958void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3959{
3960	__btrfs_btree_balance_dirty(fs_info, 1);
3961}
3962
3963void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3964{
3965	__btrfs_btree_balance_dirty(fs_info, 0);
3966}
3967
3968int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
3969		      struct btrfs_key *first_key)
3970{
3971	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3972	struct btrfs_fs_info *fs_info = root->fs_info;
3973
3974	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
3975					      level, first_key);
3976}
3977
3978static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3979{
3980	struct btrfs_super_block *sb = fs_info->super_copy;
3981	u64 nodesize = btrfs_super_nodesize(sb);
3982	u64 sectorsize = btrfs_super_sectorsize(sb);
3983	int ret = 0;
3984
3985	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3986		btrfs_err(fs_info, "no valid FS found");
3987		ret = -EINVAL;
3988	}
3989	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3990		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3991				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3992		ret = -EINVAL;
3993	}
3994	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3995		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3996				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3997		ret = -EINVAL;
3998	}
3999	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4000		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4001				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4002		ret = -EINVAL;
4003	}
4004	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4005		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4006				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4007		ret = -EINVAL;
4008	}
4009
4010	/*
4011	 * Check sectorsize and nodesize first, other check will need it.
4012	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4013	 */
4014	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4015	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4016		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4017		ret = -EINVAL;
4018	}
4019	/* Only PAGE SIZE is supported yet */
4020	if (sectorsize != PAGE_SIZE) {
4021		btrfs_err(fs_info,
4022			"sectorsize %llu not supported yet, only support %lu",
4023			sectorsize, PAGE_SIZE);
4024		ret = -EINVAL;
4025	}
4026	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4027	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4028		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4029		ret = -EINVAL;
4030	}
4031	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4032		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4033			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4034		ret = -EINVAL;
4035	}
4036
4037	/* Root alignment check */
4038	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4039		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4040			   btrfs_super_root(sb));
4041		ret = -EINVAL;
4042	}
4043	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4044		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4045			   btrfs_super_chunk_root(sb));
4046		ret = -EINVAL;
4047	}
4048	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4049		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4050			   btrfs_super_log_root(sb));
4051		ret = -EINVAL;
4052	}
4053
4054	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4055		btrfs_err(fs_info,
4056			   "dev_item UUID does not match fsid: %pU != %pU",
4057			   fs_info->fsid, sb->dev_item.fsid);
4058		ret = -EINVAL;
4059	}
4060
4061	/*
4062	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4063	 * done later
4064	 */
4065	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4066		btrfs_err(fs_info, "bytes_used is too small %llu",
4067			  btrfs_super_bytes_used(sb));
4068		ret = -EINVAL;
4069	}
4070	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4071		btrfs_err(fs_info, "invalid stripesize %u",
4072			  btrfs_super_stripesize(sb));
4073		ret = -EINVAL;
4074	}
4075	if (btrfs_super_num_devices(sb) > (1UL << 31))
4076		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4077			   btrfs_super_num_devices(sb));
4078	if (btrfs_super_num_devices(sb) == 0) {
4079		btrfs_err(fs_info, "number of devices is 0");
4080		ret = -EINVAL;
4081	}
4082
4083	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4084		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4085			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4086		ret = -EINVAL;
4087	}
4088
4089	/*
4090	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4091	 * and one chunk
4092	 */
4093	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4094		btrfs_err(fs_info, "system chunk array too big %u > %u",
4095			  btrfs_super_sys_array_size(sb),
4096			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4097		ret = -EINVAL;
4098	}
4099	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4100			+ sizeof(struct btrfs_chunk)) {
4101		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4102			  btrfs_super_sys_array_size(sb),
4103			  sizeof(struct btrfs_disk_key)
4104			  + sizeof(struct btrfs_chunk));
4105		ret = -EINVAL;
4106	}
4107
4108	/*
4109	 * The generation is a global counter, we'll trust it more than the others
4110	 * but it's still possible that it's the one that's wrong.
4111	 */
4112	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4113		btrfs_warn(fs_info,
4114			"suspicious: generation < chunk_root_generation: %llu < %llu",
4115			btrfs_super_generation(sb),
4116			btrfs_super_chunk_root_generation(sb));
4117	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4118	    && btrfs_super_cache_generation(sb) != (u64)-1)
4119		btrfs_warn(fs_info,
4120			"suspicious: generation < cache_generation: %llu < %llu",
4121			btrfs_super_generation(sb),
4122			btrfs_super_cache_generation(sb));
4123
4124	return ret;
4125}
4126
4127static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4128{
4129	/* cleanup FS via transaction */
4130	btrfs_cleanup_transaction(fs_info);
4131
4132	mutex_lock(&fs_info->cleaner_mutex);
4133	btrfs_run_delayed_iputs(fs_info);
4134	mutex_unlock(&fs_info->cleaner_mutex);
4135
4136	down_write(&fs_info->cleanup_work_sem);
4137	up_write(&fs_info->cleanup_work_sem);
4138}
4139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4140static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4141{
4142	struct btrfs_ordered_extent *ordered;
4143
4144	spin_lock(&root->ordered_extent_lock);
4145	/*
4146	 * This will just short circuit the ordered completion stuff which will
4147	 * make sure the ordered extent gets properly cleaned up.
4148	 */
4149	list_for_each_entry(ordered, &root->ordered_extents,
4150			    root_extent_list)
4151		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4152	spin_unlock(&root->ordered_extent_lock);
4153}
4154
4155static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4156{
4157	struct btrfs_root *root;
4158	struct list_head splice;
4159
4160	INIT_LIST_HEAD(&splice);
4161
4162	spin_lock(&fs_info->ordered_root_lock);
4163	list_splice_init(&fs_info->ordered_roots, &splice);
4164	while (!list_empty(&splice)) {
4165		root = list_first_entry(&splice, struct btrfs_root,
4166					ordered_root);
4167		list_move_tail(&root->ordered_root,
4168			       &fs_info->ordered_roots);
4169
4170		spin_unlock(&fs_info->ordered_root_lock);
4171		btrfs_destroy_ordered_extents(root);
4172
4173		cond_resched();
4174		spin_lock(&fs_info->ordered_root_lock);
4175	}
4176	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4177}
4178
4179static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4180				      struct btrfs_fs_info *fs_info)
4181{
4182	struct rb_node *node;
4183	struct btrfs_delayed_ref_root *delayed_refs;
4184	struct btrfs_delayed_ref_node *ref;
4185	int ret = 0;
4186
4187	delayed_refs = &trans->delayed_refs;
4188
4189	spin_lock(&delayed_refs->lock);
4190	if (atomic_read(&delayed_refs->num_entries) == 0) {
4191		spin_unlock(&delayed_refs->lock);
4192		btrfs_info(fs_info, "delayed_refs has NO entry");
4193		return ret;
4194	}
4195
4196	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4197		struct btrfs_delayed_ref_head *head;
4198		struct rb_node *n;
4199		bool pin_bytes = false;
4200
4201		head = rb_entry(node, struct btrfs_delayed_ref_head,
4202				href_node);
4203		if (!mutex_trylock(&head->mutex)) {
4204			refcount_inc(&head->refs);
4205			spin_unlock(&delayed_refs->lock);
4206
4207			mutex_lock(&head->mutex);
4208			mutex_unlock(&head->mutex);
4209			btrfs_put_delayed_ref_head(head);
4210			spin_lock(&delayed_refs->lock);
4211			continue;
4212		}
4213		spin_lock(&head->lock);
4214		while ((n = rb_first(&head->ref_tree)) != NULL) {
4215			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4216				       ref_node);
4217			ref->in_tree = 0;
4218			rb_erase(&ref->ref_node, &head->ref_tree);
4219			RB_CLEAR_NODE(&ref->ref_node);
4220			if (!list_empty(&ref->add_list))
4221				list_del(&ref->add_list);
4222			atomic_dec(&delayed_refs->num_entries);
4223			btrfs_put_delayed_ref(ref);
4224		}
4225		if (head->must_insert_reserved)
4226			pin_bytes = true;
4227		btrfs_free_delayed_extent_op(head->extent_op);
4228		delayed_refs->num_heads--;
4229		if (head->processing == 0)
4230			delayed_refs->num_heads_ready--;
4231		atomic_dec(&delayed_refs->num_entries);
4232		rb_erase(&head->href_node, &delayed_refs->href_root);
4233		RB_CLEAR_NODE(&head->href_node);
4234		spin_unlock(&head->lock);
4235		spin_unlock(&delayed_refs->lock);
4236		mutex_unlock(&head->mutex);
4237
4238		if (pin_bytes)
4239			btrfs_pin_extent(fs_info, head->bytenr,
4240					 head->num_bytes, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4241		btrfs_put_delayed_ref_head(head);
4242		cond_resched();
4243		spin_lock(&delayed_refs->lock);
4244	}
 
4245
4246	spin_unlock(&delayed_refs->lock);
4247
4248	return ret;
4249}
4250
4251static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4252{
4253	struct btrfs_inode *btrfs_inode;
4254	struct list_head splice;
4255
4256	INIT_LIST_HEAD(&splice);
4257
4258	spin_lock(&root->delalloc_lock);
4259	list_splice_init(&root->delalloc_inodes, &splice);
4260
4261	while (!list_empty(&splice)) {
4262		struct inode *inode = NULL;
4263		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4264					       delalloc_inodes);
4265		__btrfs_del_delalloc_inode(root, btrfs_inode);
4266		spin_unlock(&root->delalloc_lock);
4267
4268		/*
4269		 * Make sure we get a live inode and that it'll not disappear
4270		 * meanwhile.
4271		 */
4272		inode = igrab(&btrfs_inode->vfs_inode);
4273		if (inode) {
4274			invalidate_inode_pages2(inode->i_mapping);
4275			iput(inode);
4276		}
4277		spin_lock(&root->delalloc_lock);
4278	}
4279	spin_unlock(&root->delalloc_lock);
4280}
4281
4282static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4283{
4284	struct btrfs_root *root;
4285	struct list_head splice;
4286
4287	INIT_LIST_HEAD(&splice);
4288
4289	spin_lock(&fs_info->delalloc_root_lock);
4290	list_splice_init(&fs_info->delalloc_roots, &splice);
4291	while (!list_empty(&splice)) {
4292		root = list_first_entry(&splice, struct btrfs_root,
4293					 delalloc_root);
4294		root = btrfs_grab_fs_root(root);
4295		BUG_ON(!root);
4296		spin_unlock(&fs_info->delalloc_root_lock);
4297
4298		btrfs_destroy_delalloc_inodes(root);
4299		btrfs_put_fs_root(root);
4300
4301		spin_lock(&fs_info->delalloc_root_lock);
4302	}
4303	spin_unlock(&fs_info->delalloc_root_lock);
4304}
4305
4306static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4307					struct extent_io_tree *dirty_pages,
4308					int mark)
4309{
4310	int ret;
4311	struct extent_buffer *eb;
4312	u64 start = 0;
4313	u64 end;
4314
4315	while (1) {
4316		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4317					    mark, NULL);
4318		if (ret)
4319			break;
4320
4321		clear_extent_bits(dirty_pages, start, end, mark);
4322		while (start <= end) {
4323			eb = find_extent_buffer(fs_info, start);
4324			start += fs_info->nodesize;
4325			if (!eb)
4326				continue;
4327			wait_on_extent_buffer_writeback(eb);
4328
4329			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4330					       &eb->bflags))
4331				clear_extent_buffer_dirty(eb);
4332			free_extent_buffer_stale(eb);
4333		}
4334	}
4335
4336	return ret;
4337}
4338
4339static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4340				       struct extent_io_tree *pinned_extents)
4341{
4342	struct extent_io_tree *unpin;
4343	u64 start;
4344	u64 end;
4345	int ret;
4346	bool loop = true;
4347
4348	unpin = pinned_extents;
4349again:
4350	while (1) {
 
 
 
 
 
 
 
 
 
4351		ret = find_first_extent_bit(unpin, 0, &start, &end,
4352					    EXTENT_DIRTY, NULL);
4353		if (ret)
 
4354			break;
 
4355
4356		clear_extent_dirty(unpin, start, end);
 
4357		btrfs_error_unpin_extent_range(fs_info, start, end);
 
4358		cond_resched();
4359	}
4360
4361	if (loop) {
4362		if (unpin == &fs_info->freed_extents[0])
4363			unpin = &fs_info->freed_extents[1];
4364		else
4365			unpin = &fs_info->freed_extents[0];
4366		loop = false;
4367		goto again;
4368	}
4369
4370	return 0;
4371}
4372
4373static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4374{
4375	struct inode *inode;
4376
4377	inode = cache->io_ctl.inode;
4378	if (inode) {
4379		invalidate_inode_pages2(inode->i_mapping);
4380		BTRFS_I(inode)->generation = 0;
4381		cache->io_ctl.inode = NULL;
4382		iput(inode);
4383	}
 
4384	btrfs_put_block_group(cache);
4385}
4386
4387void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4388			     struct btrfs_fs_info *fs_info)
4389{
4390	struct btrfs_block_group_cache *cache;
4391
4392	spin_lock(&cur_trans->dirty_bgs_lock);
4393	while (!list_empty(&cur_trans->dirty_bgs)) {
4394		cache = list_first_entry(&cur_trans->dirty_bgs,
4395					 struct btrfs_block_group_cache,
4396					 dirty_list);
4397
4398		if (!list_empty(&cache->io_list)) {
4399			spin_unlock(&cur_trans->dirty_bgs_lock);
4400			list_del_init(&cache->io_list);
4401			btrfs_cleanup_bg_io(cache);
4402			spin_lock(&cur_trans->dirty_bgs_lock);
4403		}
4404
4405		list_del_init(&cache->dirty_list);
4406		spin_lock(&cache->lock);
4407		cache->disk_cache_state = BTRFS_DC_ERROR;
4408		spin_unlock(&cache->lock);
4409
4410		spin_unlock(&cur_trans->dirty_bgs_lock);
4411		btrfs_put_block_group(cache);
 
4412		spin_lock(&cur_trans->dirty_bgs_lock);
4413	}
4414	spin_unlock(&cur_trans->dirty_bgs_lock);
4415
4416	/*
4417	 * Refer to the definition of io_bgs member for details why it's safe
4418	 * to use it without any locking
4419	 */
4420	while (!list_empty(&cur_trans->io_bgs)) {
4421		cache = list_first_entry(&cur_trans->io_bgs,
4422					 struct btrfs_block_group_cache,
4423					 io_list);
4424
4425		list_del_init(&cache->io_list);
4426		spin_lock(&cache->lock);
4427		cache->disk_cache_state = BTRFS_DC_ERROR;
4428		spin_unlock(&cache->lock);
4429		btrfs_cleanup_bg_io(cache);
4430	}
4431}
4432
4433void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4434				   struct btrfs_fs_info *fs_info)
4435{
 
 
4436	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4437	ASSERT(list_empty(&cur_trans->dirty_bgs));
4438	ASSERT(list_empty(&cur_trans->io_bgs));
4439
 
 
 
 
 
4440	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4441
4442	cur_trans->state = TRANS_STATE_COMMIT_START;
4443	wake_up(&fs_info->transaction_blocked_wait);
4444
4445	cur_trans->state = TRANS_STATE_UNBLOCKED;
4446	wake_up(&fs_info->transaction_wait);
4447
4448	btrfs_destroy_delayed_inodes(fs_info);
4449	btrfs_assert_delayed_root_empty(fs_info);
4450
4451	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4452				     EXTENT_DIRTY);
4453	btrfs_destroy_pinned_extent(fs_info,
4454				    fs_info->pinned_extents);
 
4455
4456	cur_trans->state =TRANS_STATE_COMPLETED;
4457	wake_up(&cur_trans->commit_wait);
4458}
4459
4460static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4461{
4462	struct btrfs_transaction *t;
4463
4464	mutex_lock(&fs_info->transaction_kthread_mutex);
4465
4466	spin_lock(&fs_info->trans_lock);
4467	while (!list_empty(&fs_info->trans_list)) {
4468		t = list_first_entry(&fs_info->trans_list,
4469				     struct btrfs_transaction, list);
4470		if (t->state >= TRANS_STATE_COMMIT_START) {
4471			refcount_inc(&t->use_count);
4472			spin_unlock(&fs_info->trans_lock);
4473			btrfs_wait_for_commit(fs_info, t->transid);
4474			btrfs_put_transaction(t);
4475			spin_lock(&fs_info->trans_lock);
4476			continue;
4477		}
4478		if (t == fs_info->running_transaction) {
4479			t->state = TRANS_STATE_COMMIT_DOING;
4480			spin_unlock(&fs_info->trans_lock);
4481			/*
4482			 * We wait for 0 num_writers since we don't hold a trans
4483			 * handle open currently for this transaction.
4484			 */
4485			wait_event(t->writer_wait,
4486				   atomic_read(&t->num_writers) == 0);
4487		} else {
4488			spin_unlock(&fs_info->trans_lock);
4489		}
4490		btrfs_cleanup_one_transaction(t, fs_info);
4491
4492		spin_lock(&fs_info->trans_lock);
4493		if (t == fs_info->running_transaction)
4494			fs_info->running_transaction = NULL;
4495		list_del_init(&t->list);
4496		spin_unlock(&fs_info->trans_lock);
4497
4498		btrfs_put_transaction(t);
4499		trace_btrfs_transaction_commit(fs_info->tree_root);
4500		spin_lock(&fs_info->trans_lock);
4501	}
4502	spin_unlock(&fs_info->trans_lock);
4503	btrfs_destroy_all_ordered_extents(fs_info);
4504	btrfs_destroy_delayed_inodes(fs_info);
4505	btrfs_assert_delayed_root_empty(fs_info);
4506	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4507	btrfs_destroy_all_delalloc_inodes(fs_info);
 
4508	mutex_unlock(&fs_info->transaction_kthread_mutex);
4509
4510	return 0;
4511}
4512
4513static struct btrfs_fs_info *btree_fs_info(void *private_data)
4514{
4515	struct inode *inode = private_data;
4516	return btrfs_sb(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4517}
4518
4519static const struct extent_io_ops btree_extent_io_ops = {
4520	/* mandatory callbacks */
4521	.submit_bio_hook = btree_submit_bio_hook,
4522	.readpage_end_io_hook = btree_readpage_end_io_hook,
4523	/* note we're sharing with inode.c for the merge bio hook */
4524	.merge_bio_hook = btrfs_merge_bio_hook,
4525	.readpage_io_failed_hook = btree_io_failed_hook,
4526	.set_range_writeback = btrfs_set_range_writeback,
4527	.tree_fs_info = btree_fs_info,
4528
4529	/* optional callbacks */
4530};
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
  32#include "check-integrity.h"
  33#include "rcu-string.h"
  34#include "dev-replace.h"
  35#include "raid56.h"
  36#include "sysfs.h"
  37#include "qgroup.h"
  38#include "compression.h"
  39#include "tree-checker.h"
  40#include "ref-verify.h"
  41#include "block-group.h"
  42#include "discard.h"
  43#include "space-info.h"
  44#include "zoned.h"
  45#include "subpage.h"
  46
  47#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  48				 BTRFS_HEADER_FLAG_RELOC |\
  49				 BTRFS_SUPER_FLAG_ERROR |\
  50				 BTRFS_SUPER_FLAG_SEEDING |\
  51				 BTRFS_SUPER_FLAG_METADUMP |\
  52				 BTRFS_SUPER_FLAG_METADUMP_V2)
  53
 
  54static void end_workqueue_fn(struct btrfs_work *work);
 
 
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_fs_info *fs_info);
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60					struct extent_io_tree *dirty_pages,
  61					int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63				       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73	struct bio *bio;
  74	bio_end_io_t *end_io;
  75	void *private;
  76	struct btrfs_fs_info *info;
  77	blk_status_t status;
  78	enum btrfs_wq_endio_type metadata;
  79	struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87					sizeof(struct btrfs_end_io_wq),
  88					0,
  89					SLAB_MEM_SPREAD,
  90					NULL);
  91	if (!btrfs_end_io_wq_cache)
  92		return -ENOMEM;
  93	return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98	kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103	if (fs_info->csum_shash)
 104		crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113	struct inode *inode;
 
 114	struct bio *bio;
 115	extent_submit_bio_start_t *submit_bio_start;
 
 116	int mirror_num;
 117
 118	/* Optional parameter for submit_bio_start used by direct io */
 119	u64 dio_file_offset;
 
 
 
 120	struct btrfs_work work;
 121	blk_status_t status;
 122};
 123
 124/*
 125 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 127 * the level the eb occupies in the tree.
 128 *
 129 * Different roots are used for different purposes and may nest inside each
 130 * other and they require separate keysets.  As lockdep keys should be
 131 * static, assign keysets according to the purpose of the root as indicated
 132 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 133 * roots have separate keysets.
 134 *
 135 * Lock-nesting across peer nodes is always done with the immediate parent
 136 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 137 * subclass to avoid triggering lockdep warning in such cases.
 138 *
 139 * The key is set by the readpage_end_io_hook after the buffer has passed
 140 * csum validation but before the pages are unlocked.  It is also set by
 141 * btrfs_init_new_buffer on freshly allocated blocks.
 142 *
 143 * We also add a check to make sure the highest level of the tree is the
 144 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 145 * needs update as well.
 146 */
 147#ifdef CONFIG_DEBUG_LOCK_ALLOC
 148# if BTRFS_MAX_LEVEL != 8
 149#  error
 150# endif
 151
 152#define DEFINE_LEVEL(stem, level)					\
 153	.names[level] = "btrfs-" stem "-0" #level,
 154
 155#define DEFINE_NAME(stem)						\
 156	DEFINE_LEVEL(stem, 0)						\
 157	DEFINE_LEVEL(stem, 1)						\
 158	DEFINE_LEVEL(stem, 2)						\
 159	DEFINE_LEVEL(stem, 3)						\
 160	DEFINE_LEVEL(stem, 4)						\
 161	DEFINE_LEVEL(stem, 5)						\
 162	DEFINE_LEVEL(stem, 6)						\
 163	DEFINE_LEVEL(stem, 7)
 164
 165static struct btrfs_lockdep_keyset {
 166	u64			id;		/* root objectid */
 167	/* Longest entry: btrfs-free-space-00 */
 168	char			names[BTRFS_MAX_LEVEL][20];
 169	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 170} btrfs_lockdep_keysets[] = {
 171	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 172	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 173	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 174	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 175	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 176	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 177	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 178	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 179	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 180	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 181	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 182	{ .id = 0,				DEFINE_NAME("tree")	},
 
 183};
 184
 185#undef DEFINE_LEVEL
 186#undef DEFINE_NAME
 
 
 
 
 
 
 
 
 
 
 
 187
 188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 189				    int level)
 190{
 191	struct btrfs_lockdep_keyset *ks;
 192
 193	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 194
 195	/* find the matching keyset, id 0 is the default entry */
 196	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 197		if (ks->id == objectid)
 198			break;
 199
 200	lockdep_set_class_and_name(&eb->lock,
 201				   &ks->keys[level], ks->names[level]);
 202}
 203
 204#endif
 205
 206/*
 207 * Compute the csum of a btree block and store the result to provided buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208 */
 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 210{
 211	struct btrfs_fs_info *fs_info = buf->fs_info;
 212	const int num_pages = num_extent_pages(buf);
 213	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 214	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 215	char *kaddr;
 216	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217
 218	shash->tfm = fs_info->csum_shash;
 219	crypto_shash_init(shash);
 220	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
 221	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 222			    first_page_part - BTRFS_CSUM_SIZE);
 223
 224	for (i = 1; i < num_pages; i++) {
 225		kaddr = page_address(buf->pages[i]);
 226		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 227	}
 228	memset(result, 0, BTRFS_CSUM_SIZE);
 229	crypto_shash_final(shash, result);
 230}
 231
 232/*
 233 * we can't consider a given block up to date unless the transid of the
 234 * block matches the transid in the parent node's pointer.  This is how we
 235 * detect blocks that either didn't get written at all or got written
 236 * in the wrong place.
 237 */
 238static int verify_parent_transid(struct extent_io_tree *io_tree,
 239				 struct extent_buffer *eb, u64 parent_transid,
 240				 int atomic)
 241{
 242	struct extent_state *cached_state = NULL;
 243	int ret;
 
 244
 245	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 246		return 0;
 247
 248	if (atomic)
 249		return -EAGAIN;
 250
 
 
 
 
 
 251	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 252			 &cached_state);
 253	if (extent_buffer_uptodate(eb) &&
 254	    btrfs_header_generation(eb) == parent_transid) {
 255		ret = 0;
 256		goto out;
 257	}
 258	btrfs_err_rl(eb->fs_info,
 259		"parent transid verify failed on %llu wanted %llu found %llu",
 260			eb->start,
 261			parent_transid, btrfs_header_generation(eb));
 262	ret = 1;
 263	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 264out:
 265	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 266			     &cached_state);
 
 
 267	return ret;
 268}
 269
 270static bool btrfs_supported_super_csum(u16 csum_type)
 271{
 272	switch (csum_type) {
 273	case BTRFS_CSUM_TYPE_CRC32:
 274	case BTRFS_CSUM_TYPE_XXHASH:
 275	case BTRFS_CSUM_TYPE_SHA256:
 276	case BTRFS_CSUM_TYPE_BLAKE2:
 277		return true;
 278	default:
 279		return false;
 280	}
 281}
 282
 283/*
 284 * Return 0 if the superblock checksum type matches the checksum value of that
 285 * algorithm. Pass the raw disk superblock data.
 286 */
 287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 288				  char *raw_disk_sb)
 289{
 290	struct btrfs_super_block *disk_sb =
 291		(struct btrfs_super_block *)raw_disk_sb;
 292	char result[BTRFS_CSUM_SIZE];
 293	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 294
 295	shash->tfm = fs_info->csum_shash;
 
 
 296
 297	/*
 298	 * The super_block structure does not span the whole
 299	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 300	 * filled with zeros and is included in the checksum.
 301	 */
 302	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 303			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 
 
 
 
 
 304
 305	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 306		return 1;
 
 
 
 307
 308	return 0;
 309}
 310
 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 312			   struct btrfs_key *first_key, u64 parent_transid)
 
 313{
 314	struct btrfs_fs_info *fs_info = eb->fs_info;
 315	int found_level;
 316	struct btrfs_key found_key;
 317	int ret;
 318
 319	found_level = btrfs_header_level(eb);
 320	if (found_level != level) {
 321		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 322		     KERN_ERR "BTRFS: tree level check failed\n");
 323		btrfs_err(fs_info,
 324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 325			  eb->start, level, found_level);
 
 326		return -EIO;
 327	}
 328
 329	if (!first_key)
 330		return 0;
 331
 332	/*
 333	 * For live tree block (new tree blocks in current transaction),
 334	 * we need proper lock context to avoid race, which is impossible here.
 335	 * So we only checks tree blocks which is read from disk, whose
 336	 * generation <= fs_info->last_trans_committed.
 337	 */
 338	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 339		return 0;
 340
 341	/* We have @first_key, so this @eb must have at least one item */
 342	if (btrfs_header_nritems(eb) == 0) {
 343		btrfs_err(fs_info,
 344		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 345			  eb->start);
 346		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 347		return -EUCLEAN;
 348	}
 349
 350	if (found_level)
 351		btrfs_node_key_to_cpu(eb, &found_key, 0);
 352	else
 353		btrfs_item_key_to_cpu(eb, &found_key, 0);
 354	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 355
 
 356	if (ret) {
 357		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 358		     KERN_ERR "BTRFS: tree first key check failed\n");
 359		btrfs_err(fs_info,
 360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 361			  eb->start, parent_transid, first_key->objectid,
 362			  first_key->type, first_key->offset,
 363			  found_key.objectid, found_key.type,
 364			  found_key.offset);
 365	}
 
 366	return ret;
 367}
 368
 369/*
 370 * helper to read a given tree block, doing retries as required when
 371 * the checksums don't match and we have alternate mirrors to try.
 372 *
 373 * @parent_transid:	expected transid, skip check if 0
 374 * @level:		expected level, mandatory check
 375 * @first_key:		expected key of first slot, skip check if NULL
 376 */
 377static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 
 378					  u64 parent_transid, int level,
 379					  struct btrfs_key *first_key)
 380{
 381	struct btrfs_fs_info *fs_info = eb->fs_info;
 382	struct extent_io_tree *io_tree;
 383	int failed = 0;
 384	int ret;
 385	int num_copies = 0;
 386	int mirror_num = 0;
 387	int failed_mirror = 0;
 388
 
 389	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 390	while (1) {
 391		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 392		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 393		if (!ret) {
 394			if (verify_parent_transid(io_tree, eb,
 395						   parent_transid, 0))
 396				ret = -EIO;
 397			else if (btrfs_verify_level_key(eb, level,
 398						first_key, parent_transid))
 399				ret = -EUCLEAN;
 400			else
 401				break;
 402		}
 403
 
 
 
 
 
 
 
 
 
 404		num_copies = btrfs_num_copies(fs_info,
 405					      eb->start, eb->len);
 406		if (num_copies == 1)
 407			break;
 408
 409		if (!failed_mirror) {
 410			failed = 1;
 411			failed_mirror = eb->read_mirror;
 412		}
 413
 414		mirror_num++;
 415		if (mirror_num == failed_mirror)
 416			mirror_num++;
 417
 418		if (mirror_num > num_copies)
 419			break;
 420	}
 421
 422	if (failed && !ret && failed_mirror)
 423		btrfs_repair_eb_io_failure(eb, failed_mirror);
 424
 425	return ret;
 426}
 427
 428static int csum_one_extent_buffer(struct extent_buffer *eb)
 429{
 430	struct btrfs_fs_info *fs_info = eb->fs_info;
 431	u8 result[BTRFS_CSUM_SIZE];
 432	int ret;
 433
 434	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 435				    offsetof(struct btrfs_header, fsid),
 436				    BTRFS_FSID_SIZE) == 0);
 437	csum_tree_block(eb, result);
 438
 439	if (btrfs_header_level(eb))
 440		ret = btrfs_check_node(eb);
 441	else
 442		ret = btrfs_check_leaf_full(eb);
 443
 444	if (ret < 0) {
 445		btrfs_print_tree(eb, 0);
 446		btrfs_err(fs_info,
 447			"block=%llu write time tree block corruption detected",
 448			eb->start);
 449		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 450		return ret;
 451	}
 452	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 453
 454	return 0;
 455}
 456
 457/* Checksum all dirty extent buffers in one bio_vec */
 458static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
 459				      struct bio_vec *bvec)
 460{
 461	struct page *page = bvec->bv_page;
 462	u64 bvec_start = page_offset(page) + bvec->bv_offset;
 463	u64 cur;
 464	int ret = 0;
 465
 466	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
 467	     cur += fs_info->nodesize) {
 468		struct extent_buffer *eb;
 469		bool uptodate;
 470
 471		eb = find_extent_buffer(fs_info, cur);
 472		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
 473						       fs_info->nodesize);
 474
 475		/* A dirty eb shouldn't disappear from buffer_radix */
 476		if (WARN_ON(!eb))
 477			return -EUCLEAN;
 478
 479		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
 480			free_extent_buffer(eb);
 481			return -EUCLEAN;
 482		}
 483		if (WARN_ON(!uptodate)) {
 484			free_extent_buffer(eb);
 485			return -EUCLEAN;
 486		}
 487
 488		ret = csum_one_extent_buffer(eb);
 489		free_extent_buffer(eb);
 490		if (ret < 0)
 491			return ret;
 492	}
 493	return ret;
 494}
 495
 496/*
 497 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 498 * we only fill in the checksum field in the first page of a multi-page block.
 499 * For subpage extent buffers we need bvec to also read the offset in the page.
 500 */
 501static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
 
 502{
 503	struct page *page = bvec->bv_page;
 504	u64 start = page_offset(page);
 505	u64 found_start;
 506	struct extent_buffer *eb;
 507
 508	if (fs_info->sectorsize < PAGE_SIZE)
 509		return csum_dirty_subpage_buffers(fs_info, bvec);
 510
 511	eb = (struct extent_buffer *)page->private;
 512	if (page != eb->pages[0])
 513		return 0;
 514
 515	found_start = btrfs_header_bytenr(eb);
 516
 517	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
 518		WARN_ON(found_start != 0);
 519		return 0;
 520	}
 521
 522	/*
 523	 * Please do not consolidate these warnings into a single if.
 524	 * It is useful to know what went wrong.
 525	 */
 526	if (WARN_ON(found_start != start))
 527		return -EUCLEAN;
 528	if (WARN_ON(!PageUptodate(page)))
 529		return -EUCLEAN;
 530
 531	return csum_one_extent_buffer(eb);
 
 
 
 532}
 533
 534static int check_tree_block_fsid(struct extent_buffer *eb)
 
 535{
 536	struct btrfs_fs_info *fs_info = eb->fs_info;
 537	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 538	u8 fsid[BTRFS_FSID_SIZE];
 539	u8 *metadata_uuid;
 540
 541	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 542			   BTRFS_FSID_SIZE);
 543	/*
 544	 * Checking the incompat flag is only valid for the current fs. For
 545	 * seed devices it's forbidden to have their uuid changed so reading
 546	 * ->fsid in this case is fine
 547	 */
 548	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 549		metadata_uuid = fs_devices->metadata_uuid;
 550	else
 551		metadata_uuid = fs_devices->fsid;
 552
 553	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
 554		return 0;
 555
 556	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 557		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 558			return 0;
 559
 560	return 1;
 561}
 562
 563/* Do basic extent buffer checks at read time */
 564static int validate_extent_buffer(struct extent_buffer *eb)
 
 565{
 566	struct btrfs_fs_info *fs_info = eb->fs_info;
 567	u64 found_start;
 568	const u32 csum_size = fs_info->csum_size;
 569	u8 found_level;
 570	u8 result[BTRFS_CSUM_SIZE];
 571	const u8 *header_csum;
 572	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573
 574	found_start = btrfs_header_bytenr(eb);
 575	if (found_start != eb->start) {
 576		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 577			     eb->start, found_start);
 578		ret = -EIO;
 579		goto out;
 580	}
 581	if (check_tree_block_fsid(eb)) {
 582		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 583			     eb->start);
 584		ret = -EIO;
 585		goto out;
 586	}
 587	found_level = btrfs_header_level(eb);
 588	if (found_level >= BTRFS_MAX_LEVEL) {
 589		btrfs_err(fs_info, "bad tree block level %d on %llu",
 590			  (int)btrfs_header_level(eb), eb->start);
 591		ret = -EIO;
 592		goto out;
 593	}
 594
 595	csum_tree_block(eb, result);
 596	header_csum = page_address(eb->pages[0]) +
 597		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
 598
 599	if (memcmp(result, header_csum, csum_size) != 0) {
 600		btrfs_warn_rl(fs_info,
 601	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 602			      eb->start,
 603			      CSUM_FMT_VALUE(csum_size, header_csum),
 604			      CSUM_FMT_VALUE(csum_size, result),
 605			      btrfs_header_level(eb));
 606		ret = -EUCLEAN;
 607		goto out;
 608	}
 609
 610	/*
 611	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 612	 * that we don't try and read the other copies of this block, just
 613	 * return -EIO.
 614	 */
 615	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 616		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 617		ret = -EIO;
 618	}
 619
 620	if (found_level > 0 && btrfs_check_node(eb))
 621		ret = -EIO;
 622
 623	if (!ret)
 624		set_extent_buffer_uptodate(eb);
 625	else
 626		btrfs_err(fs_info,
 627			  "block=%llu read time tree block corruption detected",
 628			  eb->start);
 629out:
 630	return ret;
 631}
 632
 633static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
 634				   int mirror)
 635{
 636	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 637	struct extent_buffer *eb;
 638	bool reads_done;
 639	int ret = 0;
 640
 641	/*
 642	 * We don't allow bio merge for subpage metadata read, so we should
 643	 * only get one eb for each endio hook.
 644	 */
 645	ASSERT(end == start + fs_info->nodesize - 1);
 646	ASSERT(PagePrivate(page));
 647
 648	eb = find_extent_buffer(fs_info, start);
 649	/*
 650	 * When we are reading one tree block, eb must have been inserted into
 651	 * the radix tree. If not, something is wrong.
 652	 */
 653	ASSERT(eb);
 654
 655	reads_done = atomic_dec_and_test(&eb->io_pages);
 656	/* Subpage read must finish in page read */
 657	ASSERT(reads_done);
 658
 659	eb->read_mirror = mirror;
 660	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 661		ret = -EIO;
 662		goto err;
 663	}
 664	ret = validate_extent_buffer(eb);
 665	if (ret < 0)
 666		goto err;
 667
 668	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 669		btree_readahead_hook(eb, ret);
 670
 671	set_extent_buffer_uptodate(eb);
 672
 673	free_extent_buffer(eb);
 674	return ret;
 675err:
 676	/*
 677	 * end_bio_extent_readpage decrements io_pages in case of error,
 678	 * make sure it has something to decrement.
 679	 */
 680	atomic_inc(&eb->io_pages);
 681	clear_extent_buffer_uptodate(eb);
 682	free_extent_buffer(eb);
 683	return ret;
 684}
 685
 686int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
 687				   struct page *page, u64 start, u64 end,
 688				   int mirror)
 689{
 690	struct extent_buffer *eb;
 691	int ret = 0;
 692	int reads_done;
 693
 694	ASSERT(page->private);
 695
 696	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
 697		return validate_subpage_buffer(page, start, end, mirror);
 698
 699	eb = (struct extent_buffer *)page->private;
 700
 701	/*
 702	 * The pending IO might have been the only thing that kept this buffer
 703	 * in memory.  Make sure we have a ref for all this other checks
 704	 */
 705	atomic_inc(&eb->refs);
 706
 707	reads_done = atomic_dec_and_test(&eb->io_pages);
 708	if (!reads_done)
 709		goto err;
 710
 711	eb->read_mirror = mirror;
 712	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 713		ret = -EIO;
 714		goto err;
 715	}
 716	ret = validate_extent_buffer(eb);
 717err:
 718	if (reads_done &&
 719	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 720		btree_readahead_hook(eb, ret);
 721
 722	if (ret) {
 723		/*
 724		 * our io error hook is going to dec the io pages
 725		 * again, we have to make sure it has something
 726		 * to decrement
 727		 */
 728		atomic_inc(&eb->io_pages);
 729		clear_extent_buffer_uptodate(eb);
 730	}
 731	free_extent_buffer(eb);
 
 
 
 
 
 
 
 732
 733	return ret;
 
 
 
 
 
 
 734}
 735
 736static void end_workqueue_bio(struct bio *bio)
 737{
 738	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 739	struct btrfs_fs_info *fs_info;
 740	struct btrfs_workqueue *wq;
 
 741
 742	fs_info = end_io_wq->info;
 743	end_io_wq->status = bio->bi_status;
 744
 745	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
 746		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 747			wq = fs_info->endio_meta_write_workers;
 748		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 
 749			wq = fs_info->endio_freespace_worker;
 750		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 751			wq = fs_info->endio_raid56_workers;
 752		else
 
 753			wq = fs_info->endio_write_workers;
 
 
 754	} else {
 755		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 
 
 
 756			wq = fs_info->endio_raid56_workers;
 757		else if (end_io_wq->metadata)
 
 758			wq = fs_info->endio_meta_workers;
 759		else
 
 760			wq = fs_info->endio_workers;
 
 
 761	}
 762
 763	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 764	btrfs_queue_work(wq, &end_io_wq->work);
 765}
 766
 767blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 768			enum btrfs_wq_endio_type metadata)
 769{
 770	struct btrfs_end_io_wq *end_io_wq;
 771
 772	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 773	if (!end_io_wq)
 774		return BLK_STS_RESOURCE;
 775
 776	end_io_wq->private = bio->bi_private;
 777	end_io_wq->end_io = bio->bi_end_io;
 778	end_io_wq->info = info;
 779	end_io_wq->status = 0;
 780	end_io_wq->bio = bio;
 781	end_io_wq->metadata = metadata;
 782
 783	bio->bi_private = end_io_wq;
 784	bio->bi_end_io = end_workqueue_bio;
 785	return 0;
 786}
 787
 788static void run_one_async_start(struct btrfs_work *work)
 789{
 790	struct async_submit_bio *async;
 791	blk_status_t ret;
 792
 793	async = container_of(work, struct  async_submit_bio, work);
 794	ret = async->submit_bio_start(async->inode, async->bio,
 795				      async->dio_file_offset);
 796	if (ret)
 797		async->status = ret;
 798}
 799
 800/*
 801 * In order to insert checksums into the metadata in large chunks, we wait
 802 * until bio submission time.   All the pages in the bio are checksummed and
 803 * sums are attached onto the ordered extent record.
 804 *
 805 * At IO completion time the csums attached on the ordered extent record are
 806 * inserted into the tree.
 807 */
 808static void run_one_async_done(struct btrfs_work *work)
 809{
 810	struct async_submit_bio *async;
 811	struct inode *inode;
 812	blk_status_t ret;
 813
 814	async = container_of(work, struct  async_submit_bio, work);
 815	inode = async->inode;
 816
 817	/* If an error occurred we just want to clean up the bio and move on */
 818	if (async->status) {
 819		async->bio->bi_status = async->status;
 820		bio_endio(async->bio);
 821		return;
 822	}
 823
 824	/*
 825	 * All of the bios that pass through here are from async helpers.
 826	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 827	 * This changes nothing when cgroups aren't in use.
 828	 */
 829	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 830	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 831	if (ret) {
 832		async->bio->bi_status = ret;
 833		bio_endio(async->bio);
 834	}
 835}
 836
 837static void run_one_async_free(struct btrfs_work *work)
 838{
 839	struct async_submit_bio *async;
 840
 841	async = container_of(work, struct  async_submit_bio, work);
 842	kfree(async);
 843}
 844
 845blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
 846				 int mirror_num, unsigned long bio_flags,
 847				 u64 dio_file_offset,
 848				 extent_submit_bio_start_t *submit_bio_start)
 
 849{
 850	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 851	struct async_submit_bio *async;
 852
 853	async = kmalloc(sizeof(*async), GFP_NOFS);
 854	if (!async)
 855		return BLK_STS_RESOURCE;
 856
 857	async->inode = inode;
 
 858	async->bio = bio;
 859	async->mirror_num = mirror_num;
 860	async->submit_bio_start = submit_bio_start;
 
 861
 862	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 863			run_one_async_free);
 864
 865	async->dio_file_offset = dio_file_offset;
 
 866
 867	async->status = 0;
 868
 869	if (op_is_sync(bio->bi_opf))
 870		btrfs_set_work_high_priority(&async->work);
 871
 872	btrfs_queue_work(fs_info->workers, &async->work);
 873	return 0;
 874}
 875
 876static blk_status_t btree_csum_one_bio(struct bio *bio)
 877{
 878	struct bio_vec *bvec;
 879	struct btrfs_root *root;
 880	int ret = 0;
 881	struct bvec_iter_all iter_all;
 882
 883	ASSERT(!bio_flagged(bio, BIO_CLONED));
 884	bio_for_each_segment_all(bvec, bio, iter_all) {
 885		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 886		ret = csum_dirty_buffer(root->fs_info, bvec);
 887		if (ret)
 888			break;
 889	}
 890
 891	return errno_to_blk_status(ret);
 892}
 893
 894static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
 895					   u64 dio_file_offset)
 896{
 897	/*
 898	 * when we're called for a write, we're already in the async
 899	 * submission context.  Just jump into btrfs_map_bio
 900	 */
 901	return btree_csum_one_bio(bio);
 902}
 903
 904static bool should_async_write(struct btrfs_fs_info *fs_info,
 905			     struct btrfs_inode *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906{
 907	if (btrfs_is_zoned(fs_info))
 908		return false;
 909	if (atomic_read(&bi->sync_writers))
 910		return false;
 911	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 912		return false;
 913	return true;
 
 
 914}
 915
 916blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
 917				       int mirror_num, unsigned long bio_flags)
 
 918{
 
 919	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 920	blk_status_t ret;
 921
 922	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 923		/*
 924		 * called for a read, do the setup so that checksum validation
 925		 * can happen in the async kernel threads
 926		 */
 927		ret = btrfs_bio_wq_end_io(fs_info, bio,
 928					  BTRFS_WQ_ENDIO_METADATA);
 929		if (ret)
 930			goto out_w_error;
 931		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 932	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
 933		ret = btree_csum_one_bio(bio);
 934		if (ret)
 935			goto out_w_error;
 936		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 937	} else {
 938		/*
 939		 * kthread helpers are used to submit writes so that
 940		 * checksumming can happen in parallel across all CPUs
 941		 */
 942		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
 943					  0, btree_submit_bio_start);
 
 
 944	}
 945
 946	if (ret)
 947		goto out_w_error;
 948	return 0;
 949
 950out_w_error:
 951	bio->bi_status = ret;
 952	bio_endio(bio);
 953	return ret;
 954}
 955
 956#ifdef CONFIG_MIGRATION
 957static int btree_migratepage(struct address_space *mapping,
 958			struct page *newpage, struct page *page,
 959			enum migrate_mode mode)
 960{
 961	/*
 962	 * we can't safely write a btree page from here,
 963	 * we haven't done the locking hook
 964	 */
 965	if (PageDirty(page))
 966		return -EAGAIN;
 967	/*
 968	 * Buffers may be managed in a filesystem specific way.
 969	 * We must have no buffers or drop them.
 970	 */
 971	if (page_has_private(page) &&
 972	    !try_to_release_page(page, GFP_KERNEL))
 973		return -EAGAIN;
 974	return migrate_page(mapping, newpage, page, mode);
 975}
 976#endif
 977
 978
 979static int btree_writepages(struct address_space *mapping,
 980			    struct writeback_control *wbc)
 981{
 982	struct btrfs_fs_info *fs_info;
 983	int ret;
 984
 985	if (wbc->sync_mode == WB_SYNC_NONE) {
 986
 987		if (wbc->for_kupdate)
 988			return 0;
 989
 990		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 991		/* this is a bit racy, but that's ok */
 992		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 993					     BTRFS_DIRTY_METADATA_THRESH,
 994					     fs_info->dirty_metadata_batch);
 995		if (ret < 0)
 996			return 0;
 997	}
 998	return btree_write_cache_pages(mapping, wbc);
 999}
1000
 
 
 
 
 
 
 
1001static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002{
1003	if (PageWriteback(page) || PageDirty(page))
1004		return 0;
1005
1006	return try_release_extent_buffer(page);
1007}
1008
1009static void btree_invalidatepage(struct page *page, unsigned int offset,
1010				 unsigned int length)
1011{
1012	struct extent_io_tree *tree;
1013	tree = &BTRFS_I(page->mapping->host)->io_tree;
1014	extent_invalidatepage(tree, page, offset);
1015	btree_releasepage(page, GFP_NOFS);
1016	if (PagePrivate(page)) {
1017		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018			   "page private not zero on page %llu",
1019			   (unsigned long long)page_offset(page));
1020		detach_page_private(page);
 
 
1021	}
1022}
1023
1024static int btree_set_page_dirty(struct page *page)
1025{
1026#ifdef DEBUG
1027	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028	struct btrfs_subpage *subpage;
1029	struct extent_buffer *eb;
1030	int cur_bit = 0;
1031	u64 page_start = page_offset(page);
1032
1033	if (fs_info->sectorsize == PAGE_SIZE) {
1034		BUG_ON(!PagePrivate(page));
1035		eb = (struct extent_buffer *)page->private;
1036		BUG_ON(!eb);
1037		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038		BUG_ON(!atomic_read(&eb->refs));
1039		btrfs_assert_tree_locked(eb);
1040		return __set_page_dirty_nobuffers(page);
1041	}
1042	ASSERT(PagePrivate(page) && page->private);
1043	subpage = (struct btrfs_subpage *)page->private;
1044
1045	ASSERT(subpage->dirty_bitmap);
1046	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047		unsigned long flags;
1048		u64 cur;
1049		u16 tmp = (1 << cur_bit);
1050
1051		spin_lock_irqsave(&subpage->lock, flags);
1052		if (!(tmp & subpage->dirty_bitmap)) {
1053			spin_unlock_irqrestore(&subpage->lock, flags);
1054			cur_bit++;
1055			continue;
1056		}
1057		spin_unlock_irqrestore(&subpage->lock, flags);
1058		cur = page_start + cur_bit * fs_info->sectorsize;
1059
1060		eb = find_extent_buffer(fs_info, cur);
1061		ASSERT(eb);
1062		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063		ASSERT(atomic_read(&eb->refs));
1064		btrfs_assert_tree_locked(eb);
1065		free_extent_buffer(eb);
1066
1067		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068	}
1069#endif
1070	return __set_page_dirty_nobuffers(page);
1071}
1072
1073static const struct address_space_operations btree_aops = {
 
1074	.writepages	= btree_writepages,
1075	.releasepage	= btree_releasepage,
1076	.invalidatepage = btree_invalidatepage,
1077#ifdef CONFIG_MIGRATION
1078	.migratepage	= btree_migratepage,
1079#endif
1080	.set_page_dirty = btree_set_page_dirty,
1081};
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083struct extent_buffer *btrfs_find_create_tree_block(
1084						struct btrfs_fs_info *fs_info,
1085						u64 bytenr, u64 owner_root,
1086						int level)
1087{
1088	if (btrfs_is_testing(fs_info))
1089		return alloc_test_extent_buffer(fs_info, bytenr);
1090	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
1091}
1092
1093/*
1094 * Read tree block at logical address @bytenr and do variant basic but critical
1095 * verification.
1096 *
1097 * @owner_root:		the objectid of the root owner for this block.
1098 * @parent_transid:	expected transid of this tree block, skip check if 0
1099 * @level:		expected level, mandatory check
1100 * @first_key:		expected key in slot 0, skip check if NULL
1101 */
1102struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103				      u64 owner_root, u64 parent_transid,
1104				      int level, struct btrfs_key *first_key)
1105{
1106	struct extent_buffer *buf = NULL;
1107	int ret;
1108
1109	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110	if (IS_ERR(buf))
1111		return buf;
1112
1113	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114					     level, first_key);
1115	if (ret) {
1116		free_extent_buffer_stale(buf);
1117		return ERR_PTR(ret);
1118	}
1119	return buf;
1120
1121}
1122
1123void btrfs_clean_tree_block(struct extent_buffer *buf)
 
1124{
1125	struct btrfs_fs_info *fs_info = buf->fs_info;
1126	if (btrfs_header_generation(buf) ==
1127	    fs_info->running_transaction->transid) {
1128		btrfs_assert_tree_locked(buf);
1129
1130		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132						 -buf->len,
1133						 fs_info->dirty_metadata_batch);
 
 
1134			clear_extent_buffer_dirty(buf);
1135		}
1136	}
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140			 u64 objectid)
1141{
1142	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143	root->fs_info = fs_info;
1144	root->node = NULL;
1145	root->commit_root = NULL;
1146	root->state = 0;
1147	root->orphan_cleanup_state = 0;
1148
 
1149	root->last_trans = 0;
1150	root->free_objectid = 0;
1151	root->nr_delalloc_inodes = 0;
1152	root->nr_ordered_extents = 0;
 
1153	root->inode_tree = RB_ROOT;
1154	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155	root->block_rsv = NULL;
 
1156
1157	INIT_LIST_HEAD(&root->dirty_list);
1158	INIT_LIST_HEAD(&root->root_list);
1159	INIT_LIST_HEAD(&root->delalloc_inodes);
1160	INIT_LIST_HEAD(&root->delalloc_root);
1161	INIT_LIST_HEAD(&root->ordered_extents);
1162	INIT_LIST_HEAD(&root->ordered_root);
1163	INIT_LIST_HEAD(&root->reloc_dirty_list);
1164	INIT_LIST_HEAD(&root->logged_list[0]);
1165	INIT_LIST_HEAD(&root->logged_list[1]);
 
1166	spin_lock_init(&root->inode_lock);
1167	spin_lock_init(&root->delalloc_lock);
1168	spin_lock_init(&root->ordered_extent_lock);
1169	spin_lock_init(&root->accounting_lock);
1170	spin_lock_init(&root->log_extents_lock[0]);
1171	spin_lock_init(&root->log_extents_lock[1]);
1172	spin_lock_init(&root->qgroup_meta_rsv_lock);
1173	mutex_init(&root->objectid_mutex);
1174	mutex_init(&root->log_mutex);
1175	mutex_init(&root->ordered_extent_mutex);
1176	mutex_init(&root->delalloc_mutex);
1177	init_waitqueue_head(&root->qgroup_flush_wait);
1178	init_waitqueue_head(&root->log_writer_wait);
1179	init_waitqueue_head(&root->log_commit_wait[0]);
1180	init_waitqueue_head(&root->log_commit_wait[1]);
1181	INIT_LIST_HEAD(&root->log_ctxs[0]);
1182	INIT_LIST_HEAD(&root->log_ctxs[1]);
1183	atomic_set(&root->log_commit[0], 0);
1184	atomic_set(&root->log_commit[1], 0);
1185	atomic_set(&root->log_writers, 0);
1186	atomic_set(&root->log_batch, 0);
 
1187	refcount_set(&root->refs, 1);
1188	atomic_set(&root->snapshot_force_cow, 0);
1189	atomic_set(&root->nr_swapfiles, 0);
1190	root->log_transid = 0;
1191	root->log_transid_committed = -1;
1192	root->last_log_commit = 0;
1193	if (!dummy) {
1194		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196		extent_io_tree_init(fs_info, &root->log_csum_range,
1197				    IO_TREE_LOG_CSUM_RANGE, NULL);
1198	}
1199
1200	memset(&root->root_key, 0, sizeof(root->root_key));
1201	memset(&root->root_item, 0, sizeof(root->root_item));
1202	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 
 
 
 
1203	root->root_key.objectid = objectid;
1204	root->anon_dev = 0;
1205
1206	spin_lock_init(&root->root_item_lock);
1207	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1208#ifdef CONFIG_BTRFS_DEBUG
1209	INIT_LIST_HEAD(&root->leak_list);
1210	spin_lock(&fs_info->fs_roots_radix_lock);
1211	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212	spin_unlock(&fs_info->fs_roots_radix_lock);
1213#endif
1214}
1215
1216static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217					   u64 objectid, gfp_t flags)
1218{
1219	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1220	if (root)
1221		__setup_root(root, fs_info, objectid);
1222	return root;
1223}
1224
1225#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226/* Should only be used by the testing infrastructure */
1227struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228{
1229	struct btrfs_root *root;
1230
1231	if (!fs_info)
1232		return ERR_PTR(-EINVAL);
1233
1234	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235	if (!root)
1236		return ERR_PTR(-ENOMEM);
1237
1238	/* We don't use the stripesize in selftest, set it as sectorsize */
 
1239	root->alloc_bytenr = 0;
1240
1241	return root;
1242}
1243#endif
1244
1245struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
1246				     u64 objectid)
1247{
1248	struct btrfs_fs_info *fs_info = trans->fs_info;
1249	struct extent_buffer *leaf;
1250	struct btrfs_root *tree_root = fs_info->tree_root;
1251	struct btrfs_root *root;
1252	struct btrfs_key key;
1253	unsigned int nofs_flag;
1254	int ret = 0;
 
1255
1256	/*
1257	 * We're holding a transaction handle, so use a NOFS memory allocation
1258	 * context to avoid deadlock if reclaim happens.
1259	 */
1260	nofs_flag = memalloc_nofs_save();
1261	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262	memalloc_nofs_restore(nofs_flag);
1263	if (!root)
1264		return ERR_PTR(-ENOMEM);
1265
 
1266	root->root_key.objectid = objectid;
1267	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268	root->root_key.offset = 0;
1269
1270	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271				      BTRFS_NESTING_NORMAL);
1272	if (IS_ERR(leaf)) {
1273		ret = PTR_ERR(leaf);
1274		leaf = NULL;
1275		goto fail_unlock;
1276	}
1277
 
 
 
 
 
1278	root->node = leaf;
 
 
 
1279	btrfs_mark_buffer_dirty(leaf);
1280
1281	root->commit_root = btrfs_root_node(root);
1282	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283
1284	btrfs_set_root_flags(&root->root_item, 0);
1285	btrfs_set_root_limit(&root->root_item, 0);
1286	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287	btrfs_set_root_generation(&root->root_item, trans->transid);
1288	btrfs_set_root_level(&root->root_item, 0);
1289	btrfs_set_root_refs(&root->root_item, 1);
1290	btrfs_set_root_used(&root->root_item, leaf->len);
1291	btrfs_set_root_last_snapshot(&root->root_item, 0);
1292	btrfs_set_root_dirid(&root->root_item, 0);
1293	if (is_fstree(objectid))
1294		generate_random_guid(root->root_item.uuid);
1295	else
1296		export_guid(root->root_item.uuid, &guid_null);
1297	btrfs_set_root_drop_level(&root->root_item, 0);
1298
1299	btrfs_tree_unlock(leaf);
1300
1301	key.objectid = objectid;
1302	key.type = BTRFS_ROOT_ITEM_KEY;
1303	key.offset = 0;
1304	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305	if (ret)
1306		goto fail;
1307
 
 
1308	return root;
1309
1310fail_unlock:
1311	if (leaf)
1312		btrfs_tree_unlock(leaf);
1313fail:
1314	btrfs_put_root(root);
 
 
1315
1316	return ERR_PTR(ret);
1317}
1318
1319static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320					 struct btrfs_fs_info *fs_info)
1321{
1322	struct btrfs_root *root;
 
1323
1324	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325	if (!root)
1326		return ERR_PTR(-ENOMEM);
1327
 
 
1328	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331
1332	return root;
1333}
1334
1335int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336			      struct btrfs_root *root)
1337{
1338	struct extent_buffer *leaf;
1339
1340	/*
1341	 * DON'T set SHAREABLE bit for log trees.
1342	 *
1343	 * Log trees are not exposed to user space thus can't be snapshotted,
1344	 * and they go away before a real commit is actually done.
1345	 *
1346	 * They do store pointers to file data extents, and those reference
1347	 * counts still get updated (along with back refs to the log tree).
 
 
1348	 */
1349
1350	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1352	if (IS_ERR(leaf))
1353		return PTR_ERR(leaf);
 
 
1354
 
 
 
 
 
1355	root->node = leaf;
1356
 
1357	btrfs_mark_buffer_dirty(root->node);
1358	btrfs_tree_unlock(root->node);
1359
1360	return 0;
1361}
1362
1363int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364			     struct btrfs_fs_info *fs_info)
1365{
1366	struct btrfs_root *log_root;
1367
1368	log_root = alloc_log_tree(trans, fs_info);
1369	if (IS_ERR(log_root))
1370		return PTR_ERR(log_root);
1371
1372	if (!btrfs_is_zoned(fs_info)) {
1373		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374
1375		if (ret) {
1376			btrfs_put_root(log_root);
1377			return ret;
1378		}
1379	}
1380
1381	WARN_ON(fs_info->log_root_tree);
1382	fs_info->log_root_tree = log_root;
1383	return 0;
1384}
1385
1386int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387		       struct btrfs_root *root)
1388{
1389	struct btrfs_fs_info *fs_info = root->fs_info;
1390	struct btrfs_root *log_root;
1391	struct btrfs_inode_item *inode_item;
1392	int ret;
1393
1394	log_root = alloc_log_tree(trans, fs_info);
1395	if (IS_ERR(log_root))
1396		return PTR_ERR(log_root);
1397
1398	ret = btrfs_alloc_log_tree_node(trans, log_root);
1399	if (ret) {
1400		btrfs_put_root(log_root);
1401		return ret;
1402	}
1403
1404	log_root->last_trans = trans->transid;
1405	log_root->root_key.offset = root->root_key.objectid;
1406
1407	inode_item = &log_root->root_item.inode;
1408	btrfs_set_stack_inode_generation(inode_item, 1);
1409	btrfs_set_stack_inode_size(inode_item, 3);
1410	btrfs_set_stack_inode_nlink(inode_item, 1);
1411	btrfs_set_stack_inode_nbytes(inode_item,
1412				     fs_info->nodesize);
1413	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414
1415	btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417	WARN_ON(root->log_root);
1418	root->log_root = log_root;
1419	root->log_transid = 0;
1420	root->log_transid_committed = -1;
1421	root->last_log_commit = 0;
1422	return 0;
1423}
1424
1425static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426					      struct btrfs_path *path,
1427					      struct btrfs_key *key)
1428{
1429	struct btrfs_root *root;
1430	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1431	u64 generation;
1432	int ret;
1433	int level;
1434
1435	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436	if (!root)
1437		return ERR_PTR(-ENOMEM);
1438
 
 
 
 
 
 
 
 
1439	ret = btrfs_find_root(tree_root, key, path,
1440			      &root->root_item, &root->root_key);
1441	if (ret) {
1442		if (ret > 0)
1443			ret = -ENOENT;
1444		goto fail;
1445	}
1446
1447	generation = btrfs_root_generation(&root->root_item);
1448	level = btrfs_root_level(&root->root_item);
1449	root->node = read_tree_block(fs_info,
1450				     btrfs_root_bytenr(&root->root_item),
1451				     key->objectid, generation, level, NULL);
1452	if (IS_ERR(root->node)) {
1453		ret = PTR_ERR(root->node);
1454		root->node = NULL;
1455		goto fail;
1456	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457		ret = -EIO;
1458		goto fail;
 
1459	}
1460	root->commit_root = btrfs_root_node(root);
 
 
1461	return root;
1462fail:
1463	btrfs_put_root(root);
1464	return ERR_PTR(ret);
 
 
 
1465}
1466
1467struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468					struct btrfs_key *key)
1469{
1470	struct btrfs_root *root;
1471	struct btrfs_path *path;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return ERR_PTR(-ENOMEM);
1476	root = read_tree_root_path(tree_root, path, key);
1477	btrfs_free_path(path);
 
 
 
1478
1479	return root;
1480}
1481
1482/*
1483 * Initialize subvolume root in-memory structure
1484 *
1485 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1486 */
1487static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488{
1489	int ret;
1490	unsigned int nofs_flag;
1491
1492	/*
1493	 * We might be called under a transaction (e.g. indirect backref
1494	 * resolution) which could deadlock if it triggers memory reclaim
1495	 */
1496	nofs_flag = memalloc_nofs_save();
1497	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498	memalloc_nofs_restore(nofs_flag);
1499	if (ret)
1500		goto fail;
 
1501
1502	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1504		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505		btrfs_check_and_init_root_item(&root->root_item);
1506	}
 
 
 
 
 
1507
1508	/*
1509	 * Don't assign anonymous block device to roots that are not exposed to
1510	 * userspace, the id pool is limited to 1M
1511	 */
1512	if (is_fstree(root->root_key.objectid) &&
1513	    btrfs_root_refs(&root->root_item) > 0) {
1514		if (!anon_dev) {
1515			ret = get_anon_bdev(&root->anon_dev);
1516			if (ret)
1517				goto fail;
1518		} else {
1519			root->anon_dev = anon_dev;
1520		}
1521	}
1522
1523	mutex_lock(&root->objectid_mutex);
1524	ret = btrfs_init_root_free_objectid(root);
 
1525	if (ret) {
1526		mutex_unlock(&root->objectid_mutex);
1527		goto fail;
1528	}
1529
1530	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531
1532	mutex_unlock(&root->objectid_mutex);
1533
1534	return 0;
1535fail:
1536	/* The caller is responsible to call btrfs_free_fs_root */
1537	return ret;
1538}
1539
1540static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541					       u64 root_id)
1542{
1543	struct btrfs_root *root;
1544
1545	spin_lock(&fs_info->fs_roots_radix_lock);
1546	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547				 (unsigned long)root_id);
1548	if (root)
1549		root = btrfs_grab_root(root);
1550	spin_unlock(&fs_info->fs_roots_radix_lock);
1551	return root;
1552}
1553
1554static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555						u64 objectid)
1556{
1557	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558		return btrfs_grab_root(fs_info->tree_root);
1559	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560		return btrfs_grab_root(fs_info->extent_root);
1561	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562		return btrfs_grab_root(fs_info->chunk_root);
1563	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564		return btrfs_grab_root(fs_info->dev_root);
1565	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566		return btrfs_grab_root(fs_info->csum_root);
1567	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568		return btrfs_grab_root(fs_info->quota_root) ?
1569			fs_info->quota_root : ERR_PTR(-ENOENT);
1570	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571		return btrfs_grab_root(fs_info->uuid_root) ?
1572			fs_info->uuid_root : ERR_PTR(-ENOENT);
1573	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574		return btrfs_grab_root(fs_info->free_space_root) ?
1575			fs_info->free_space_root : ERR_PTR(-ENOENT);
1576	return NULL;
1577}
1578
1579int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580			 struct btrfs_root *root)
1581{
1582	int ret;
1583
1584	ret = radix_tree_preload(GFP_NOFS);
1585	if (ret)
1586		return ret;
1587
1588	spin_lock(&fs_info->fs_roots_radix_lock);
1589	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590				(unsigned long)root->root_key.objectid,
1591				root);
1592	if (ret == 0) {
1593		btrfs_grab_root(root);
1594		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595	}
1596	spin_unlock(&fs_info->fs_roots_radix_lock);
1597	radix_tree_preload_end();
1598
1599	return ret;
1600}
1601
1602void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603{
1604#ifdef CONFIG_BTRFS_DEBUG
1605	struct btrfs_root *root;
1606
1607	while (!list_empty(&fs_info->allocated_roots)) {
1608		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609
1610		root = list_first_entry(&fs_info->allocated_roots,
1611					struct btrfs_root, leak_list);
1612		btrfs_err(fs_info, "leaked root %s refcount %d",
1613			  btrfs_root_name(&root->root_key, buf),
1614			  refcount_read(&root->refs));
1615		while (refcount_read(&root->refs) > 1)
1616			btrfs_put_root(root);
1617		btrfs_put_root(root);
1618	}
1619#endif
1620}
1621
1622void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623{
1624	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625	percpu_counter_destroy(&fs_info->delalloc_bytes);
1626	percpu_counter_destroy(&fs_info->ordered_bytes);
1627	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628	btrfs_free_csum_hash(fs_info);
1629	btrfs_free_stripe_hash_table(fs_info);
1630	btrfs_free_ref_cache(fs_info);
1631	kfree(fs_info->balance_ctl);
1632	kfree(fs_info->delayed_root);
1633	btrfs_put_root(fs_info->extent_root);
1634	btrfs_put_root(fs_info->tree_root);
1635	btrfs_put_root(fs_info->chunk_root);
1636	btrfs_put_root(fs_info->dev_root);
1637	btrfs_put_root(fs_info->csum_root);
1638	btrfs_put_root(fs_info->quota_root);
1639	btrfs_put_root(fs_info->uuid_root);
1640	btrfs_put_root(fs_info->free_space_root);
1641	btrfs_put_root(fs_info->fs_root);
1642	btrfs_put_root(fs_info->data_reloc_root);
1643	btrfs_check_leaked_roots(fs_info);
1644	btrfs_extent_buffer_leak_debug_check(fs_info);
1645	kfree(fs_info->super_copy);
1646	kfree(fs_info->super_for_commit);
1647	kvfree(fs_info);
1648}
1649
1650
1651/*
1652 * Get an in-memory reference of a root structure.
1653 *
1654 * For essential trees like root/extent tree, we grab it from fs_info directly.
1655 * For subvolume trees, we check the cached filesystem roots first. If not
1656 * found, then read it from disk and add it to cached fs roots.
1657 *
1658 * Caller should release the root by calling btrfs_put_root() after the usage.
1659 *
1660 * NOTE: Reloc and log trees can't be read by this function as they share the
1661 *	 same root objectid.
1662 *
1663 * @objectid:	root id
1664 * @anon_dev:	preallocated anonymous block device number for new roots,
1665 * 		pass 0 for new allocation.
1666 * @check_ref:	whether to check root item references, If true, return -ENOENT
1667 *		for orphan roots
1668 */
1669static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1670					     u64 objectid, dev_t anon_dev,
1671					     bool check_ref)
1672{
1673	struct btrfs_root *root;
1674	struct btrfs_path *path;
1675	struct btrfs_key key;
1676	int ret;
1677
1678	root = btrfs_get_global_root(fs_info, objectid);
1679	if (root)
1680		return root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681again:
1682	root = btrfs_lookup_fs_root(fs_info, objectid);
1683	if (root) {
1684		/* Shouldn't get preallocated anon_dev for cached roots */
1685		ASSERT(!anon_dev);
1686		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1687			btrfs_put_root(root);
1688			return ERR_PTR(-ENOENT);
1689		}
1690		return root;
1691	}
1692
1693	key.objectid = objectid;
1694	key.type = BTRFS_ROOT_ITEM_KEY;
1695	key.offset = (u64)-1;
1696	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1697	if (IS_ERR(root))
1698		return root;
1699
1700	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1701		ret = -ENOENT;
1702		goto fail;
1703	}
1704
1705	ret = btrfs_init_fs_root(root, anon_dev);
1706	if (ret)
1707		goto fail;
1708
1709	path = btrfs_alloc_path();
1710	if (!path) {
1711		ret = -ENOMEM;
1712		goto fail;
1713	}
1714	key.objectid = BTRFS_ORPHAN_OBJECTID;
1715	key.type = BTRFS_ORPHAN_ITEM_KEY;
1716	key.offset = objectid;
1717
1718	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1719	btrfs_free_path(path);
1720	if (ret < 0)
1721		goto fail;
1722	if (ret == 0)
1723		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1724
1725	ret = btrfs_insert_fs_root(fs_info, root);
1726	if (ret) {
1727		btrfs_put_root(root);
1728		if (ret == -EEXIST)
1729			goto again;
 
1730		goto fail;
1731	}
1732	return root;
1733fail:
1734	btrfs_put_root(root);
1735	return ERR_PTR(ret);
1736}
1737
1738/*
1739 * Get in-memory reference of a root structure
1740 *
1741 * @objectid:	tree objectid
1742 * @check_ref:	if set, verify that the tree exists and the item has at least
1743 *		one reference
1744 */
1745struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1746				     u64 objectid, bool check_ref)
1747{
1748	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1749}
 
 
1750
1751/*
1752 * Get in-memory reference of a root structure, created as new, optionally pass
1753 * the anonymous block device id
1754 *
1755 * @objectid:	tree objectid
1756 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1757 *		parameter value
1758 */
1759struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1760					 u64 objectid, dev_t anon_dev)
1761{
1762	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1763}
1764
1765/*
1766 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1767 * @fs_info:	the fs_info
1768 * @objectid:	the objectid we need to lookup
1769 *
1770 * This is exclusively used for backref walking, and exists specifically because
1771 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1772 * creation time, which means we may have to read the tree_root in order to look
1773 * up a fs root that is not in memory.  If the root is not in memory we will
1774 * read the tree root commit root and look up the fs root from there.  This is a
1775 * temporary root, it will not be inserted into the radix tree as it doesn't
1776 * have the most uptodate information, it'll simply be discarded once the
1777 * backref code is finished using the root.
1778 */
1779struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1780						 struct btrfs_path *path,
1781						 u64 objectid)
1782{
1783	struct btrfs_root *root;
1784	struct btrfs_key key;
1785
1786	ASSERT(path->search_commit_root && path->skip_locking);
1787
1788	/*
1789	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1790	 * since this is called via the backref walking code we won't be looking
1791	 * up a root that doesn't exist, unless there's corruption.  So if root
1792	 * != NULL just return it.
1793	 */
1794	root = btrfs_get_global_root(fs_info, objectid);
1795	if (root)
1796		return root;
1797
1798	root = btrfs_lookup_fs_root(fs_info, objectid);
1799	if (root)
1800		return root;
1801
1802	key.objectid = objectid;
1803	key.type = BTRFS_ROOT_ITEM_KEY;
1804	key.offset = (u64)-1;
1805	root = read_tree_root_path(fs_info->tree_root, path, &key);
1806	btrfs_release_path(path);
1807
1808	return root;
1809}
1810
1811/*
1812 * called by the kthread helper functions to finally call the bio end_io
1813 * functions.  This is where read checksum verification actually happens
1814 */
1815static void end_workqueue_fn(struct btrfs_work *work)
1816{
1817	struct bio *bio;
1818	struct btrfs_end_io_wq *end_io_wq;
1819
1820	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1821	bio = end_io_wq->bio;
1822
1823	bio->bi_status = end_io_wq->status;
1824	bio->bi_private = end_io_wq->private;
1825	bio->bi_end_io = end_io_wq->end_io;
 
1826	bio_endio(bio);
1827	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1828}
1829
1830static int cleaner_kthread(void *arg)
1831{
1832	struct btrfs_root *root = arg;
1833	struct btrfs_fs_info *fs_info = root->fs_info;
1834	int again;
 
1835
1836	while (1) {
1837		again = 0;
1838
1839		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1840
1841		/* Make the cleaner go to sleep early. */
1842		if (btrfs_need_cleaner_sleep(fs_info))
1843			goto sleep;
1844
1845		/*
1846		 * Do not do anything if we might cause open_ctree() to block
1847		 * before we have finished mounting the filesystem.
1848		 */
1849		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1850			goto sleep;
1851
1852		if (!mutex_trylock(&fs_info->cleaner_mutex))
1853			goto sleep;
1854
1855		/*
1856		 * Avoid the problem that we change the status of the fs
1857		 * during the above check and trylock.
1858		 */
1859		if (btrfs_need_cleaner_sleep(fs_info)) {
1860			mutex_unlock(&fs_info->cleaner_mutex);
1861			goto sleep;
1862		}
1863
 
1864		btrfs_run_delayed_iputs(fs_info);
 
1865
1866		again = btrfs_clean_one_deleted_snapshot(root);
1867		mutex_unlock(&fs_info->cleaner_mutex);
1868
1869		/*
1870		 * The defragger has dealt with the R/O remount and umount,
1871		 * needn't do anything special here.
1872		 */
1873		btrfs_run_defrag_inodes(fs_info);
1874
1875		/*
1876		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1877		 * with relocation (btrfs_relocate_chunk) and relocation
1878		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1879		 * after acquiring fs_info->reclaim_bgs_lock. So we
1880		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1881		 * unused block groups.
1882		 */
1883		btrfs_delete_unused_bgs(fs_info);
1884
1885		/*
1886		 * Reclaim block groups in the reclaim_bgs list after we deleted
1887		 * all unused block_groups. This possibly gives us some more free
1888		 * space.
1889		 */
1890		btrfs_reclaim_bgs(fs_info);
1891sleep:
1892		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1893		if (kthread_should_park())
1894			kthread_parkme();
1895		if (kthread_should_stop())
1896			return 0;
1897		if (!again) {
1898			set_current_state(TASK_INTERRUPTIBLE);
1899			schedule();
 
1900			__set_current_state(TASK_RUNNING);
1901		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902	}
 
 
1903}
1904
1905static int transaction_kthread(void *arg)
1906{
1907	struct btrfs_root *root = arg;
1908	struct btrfs_fs_info *fs_info = root->fs_info;
1909	struct btrfs_trans_handle *trans;
1910	struct btrfs_transaction *cur;
1911	u64 transid;
1912	time64_t delta;
1913	unsigned long delay;
1914	bool cannot_commit;
1915
1916	do {
1917		cannot_commit = false;
1918		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1919		mutex_lock(&fs_info->transaction_kthread_mutex);
1920
1921		spin_lock(&fs_info->trans_lock);
1922		cur = fs_info->running_transaction;
1923		if (!cur) {
1924			spin_unlock(&fs_info->trans_lock);
1925			goto sleep;
1926		}
1927
1928		delta = ktime_get_seconds() - cur->start_time;
1929		if (cur->state < TRANS_STATE_COMMIT_START &&
1930		    delta < fs_info->commit_interval) {
 
 
1931			spin_unlock(&fs_info->trans_lock);
1932			delay -= msecs_to_jiffies((delta - 1) * 1000);
1933			delay = min(delay,
1934				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1935			goto sleep;
1936		}
1937		transid = cur->transid;
1938		spin_unlock(&fs_info->trans_lock);
1939
1940		/* If the file system is aborted, this will always fail. */
1941		trans = btrfs_attach_transaction(root);
1942		if (IS_ERR(trans)) {
1943			if (PTR_ERR(trans) != -ENOENT)
1944				cannot_commit = true;
1945			goto sleep;
1946		}
1947		if (transid == trans->transid) {
1948			btrfs_commit_transaction(trans);
1949		} else {
1950			btrfs_end_transaction(trans);
1951		}
1952sleep:
1953		wake_up_process(fs_info->cleaner_kthread);
1954		mutex_unlock(&fs_info->transaction_kthread_mutex);
1955
1956		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1957				      &fs_info->fs_state)))
1958			btrfs_cleanup_transaction(fs_info);
1959		if (!kthread_should_stop() &&
1960				(!btrfs_transaction_blocked(fs_info) ||
1961				 cannot_commit))
1962			schedule_timeout_interruptible(delay);
1963	} while (!kthread_should_stop());
1964	return 0;
1965}
1966
1967/*
1968 * This will find the highest generation in the array of root backups.  The
1969 * index of the highest array is returned, or -EINVAL if we can't find
1970 * anything.
1971 *
1972 * We check to make sure the array is valid by comparing the
1973 * generation of the latest  root in the array with the generation
1974 * in the super block.  If they don't match we pitch it.
1975 */
1976static int find_newest_super_backup(struct btrfs_fs_info *info)
1977{
1978	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1979	u64 cur;
 
1980	struct btrfs_root_backup *root_backup;
1981	int i;
1982
1983	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1984		root_backup = info->super_copy->super_roots + i;
1985		cur = btrfs_backup_tree_root_gen(root_backup);
1986		if (cur == newest_gen)
1987			return i;
 
 
 
 
 
 
 
 
1988	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1989
1990	return -EINVAL;
 
 
 
 
 
 
1991}
1992
1993/*
1994 * copy all the root pointers into the super backup array.
1995 * this will bump the backup pointer by one when it is
1996 * done
1997 */
1998static void backup_super_roots(struct btrfs_fs_info *info)
1999{
2000	const int next_backup = info->backup_root_index;
2001	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002
2003	root_backup = info->super_for_commit->super_roots + next_backup;
2004
2005	/*
2006	 * make sure all of our padding and empty slots get zero filled
2007	 * regardless of which ones we use today
2008	 */
2009	memset(root_backup, 0, sizeof(*root_backup));
2010
2011	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012
2013	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2014	btrfs_set_backup_tree_root_gen(root_backup,
2015			       btrfs_header_generation(info->tree_root->node));
2016
2017	btrfs_set_backup_tree_root_level(root_backup,
2018			       btrfs_header_level(info->tree_root->node));
2019
2020	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2021	btrfs_set_backup_chunk_root_gen(root_backup,
2022			       btrfs_header_generation(info->chunk_root->node));
2023	btrfs_set_backup_chunk_root_level(root_backup,
2024			       btrfs_header_level(info->chunk_root->node));
2025
2026	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2027	btrfs_set_backup_extent_root_gen(root_backup,
2028			       btrfs_header_generation(info->extent_root->node));
2029	btrfs_set_backup_extent_root_level(root_backup,
2030			       btrfs_header_level(info->extent_root->node));
2031
2032	/*
2033	 * we might commit during log recovery, which happens before we set
2034	 * the fs_root.  Make sure it is valid before we fill it in.
2035	 */
2036	if (info->fs_root && info->fs_root->node) {
2037		btrfs_set_backup_fs_root(root_backup,
2038					 info->fs_root->node->start);
2039		btrfs_set_backup_fs_root_gen(root_backup,
2040			       btrfs_header_generation(info->fs_root->node));
2041		btrfs_set_backup_fs_root_level(root_backup,
2042			       btrfs_header_level(info->fs_root->node));
2043	}
2044
2045	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2046	btrfs_set_backup_dev_root_gen(root_backup,
2047			       btrfs_header_generation(info->dev_root->node));
2048	btrfs_set_backup_dev_root_level(root_backup,
2049				       btrfs_header_level(info->dev_root->node));
2050
2051	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2052	btrfs_set_backup_csum_root_gen(root_backup,
2053			       btrfs_header_generation(info->csum_root->node));
2054	btrfs_set_backup_csum_root_level(root_backup,
2055			       btrfs_header_level(info->csum_root->node));
2056
2057	btrfs_set_backup_total_bytes(root_backup,
2058			     btrfs_super_total_bytes(info->super_copy));
2059	btrfs_set_backup_bytes_used(root_backup,
2060			     btrfs_super_bytes_used(info->super_copy));
2061	btrfs_set_backup_num_devices(root_backup,
2062			     btrfs_super_num_devices(info->super_copy));
2063
2064	/*
2065	 * if we don't copy this out to the super_copy, it won't get remembered
2066	 * for the next commit
2067	 */
2068	memcpy(&info->super_copy->super_roots,
2069	       &info->super_for_commit->super_roots,
2070	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2071}
2072
2073/*
2074 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2075 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 
 
2076 *
2077 * fs_info - filesystem whose backup roots need to be read
2078 * priority - priority of backup root required
2079 *
2080 * Returns backup root index on success and -EINVAL otherwise.
2081 */
2082static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
2083{
2084	int backup_index = find_newest_super_backup(fs_info);
2085	struct btrfs_super_block *super = fs_info->super_copy;
2086	struct btrfs_root_backup *root_backup;
 
2087
2088	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2089		if (priority == 0)
2090			return backup_index;
2091
2092		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2093		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
2094	} else {
2095		return -EINVAL;
 
 
 
 
2096	}
2097
2098	root_backup = super->super_roots + backup_index;
2099
2100	btrfs_set_super_generation(super,
2101				   btrfs_backup_tree_root_gen(root_backup));
2102	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2103	btrfs_set_super_root_level(super,
2104				   btrfs_backup_tree_root_level(root_backup));
2105	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2106
2107	/*
2108	 * Fixme: the total bytes and num_devices need to match or we should
2109	 * need a fsck
2110	 */
2111	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2112	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2113
2114	return backup_index;
2115}
2116
2117/* helper to cleanup workers */
2118static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2119{
2120	btrfs_destroy_workqueue(fs_info->fixup_workers);
2121	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2122	btrfs_destroy_workqueue(fs_info->workers);
2123	btrfs_destroy_workqueue(fs_info->endio_workers);
2124	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
 
2125	btrfs_destroy_workqueue(fs_info->rmw_workers);
2126	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2127	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
2128	btrfs_destroy_workqueue(fs_info->delayed_workers);
2129	btrfs_destroy_workqueue(fs_info->caching_workers);
2130	btrfs_destroy_workqueue(fs_info->readahead_workers);
2131	btrfs_destroy_workqueue(fs_info->flush_workers);
2132	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2133	if (fs_info->discard_ctl.discard_workers)
2134		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2135	/*
2136	 * Now that all other work queues are destroyed, we can safely destroy
2137	 * the queues used for metadata I/O, since tasks from those other work
2138	 * queues can do metadata I/O operations.
2139	 */
2140	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2141	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2142}
2143
2144static void free_root_extent_buffers(struct btrfs_root *root)
2145{
2146	if (root) {
2147		free_extent_buffer(root->node);
2148		free_extent_buffer(root->commit_root);
2149		root->node = NULL;
2150		root->commit_root = NULL;
2151	}
2152}
2153
2154/* helper to cleanup tree roots */
2155static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2156{
2157	free_root_extent_buffers(info->tree_root);
2158
2159	free_root_extent_buffers(info->dev_root);
2160	free_root_extent_buffers(info->extent_root);
2161	free_root_extent_buffers(info->csum_root);
2162	free_root_extent_buffers(info->quota_root);
2163	free_root_extent_buffers(info->uuid_root);
2164	free_root_extent_buffers(info->fs_root);
2165	free_root_extent_buffers(info->data_reloc_root);
2166	if (free_chunk_root)
2167		free_root_extent_buffers(info->chunk_root);
2168	free_root_extent_buffers(info->free_space_root);
2169}
2170
2171void btrfs_put_root(struct btrfs_root *root)
2172{
2173	if (!root)
2174		return;
2175
2176	if (refcount_dec_and_test(&root->refs)) {
2177		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2178		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2179		if (root->anon_dev)
2180			free_anon_bdev(root->anon_dev);
2181		btrfs_drew_lock_destroy(&root->snapshot_lock);
2182		free_root_extent_buffers(root);
2183#ifdef CONFIG_BTRFS_DEBUG
2184		spin_lock(&root->fs_info->fs_roots_radix_lock);
2185		list_del_init(&root->leak_list);
2186		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2187#endif
2188		kfree(root);
2189	}
2190}
2191
2192void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193{
2194	int ret;
2195	struct btrfs_root *gang[8];
2196	int i;
2197
2198	while (!list_empty(&fs_info->dead_roots)) {
2199		gang[0] = list_entry(fs_info->dead_roots.next,
2200				     struct btrfs_root, root_list);
2201		list_del(&gang[0]->root_list);
2202
2203		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2204			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205		btrfs_put_root(gang[0]);
 
 
 
 
2206	}
2207
2208	while (1) {
2209		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210					     (void **)gang, 0,
2211					     ARRAY_SIZE(gang));
2212		if (!ret)
2213			break;
2214		for (i = 0; i < ret; i++)
2215			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216	}
 
 
 
 
 
2217}
2218
2219static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220{
2221	mutex_init(&fs_info->scrub_lock);
2222	atomic_set(&fs_info->scrubs_running, 0);
2223	atomic_set(&fs_info->scrub_pause_req, 0);
2224	atomic_set(&fs_info->scrubs_paused, 0);
2225	atomic_set(&fs_info->scrub_cancel_req, 0);
2226	init_waitqueue_head(&fs_info->scrub_pause_wait);
2227	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2228}
2229
2230static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231{
2232	spin_lock_init(&fs_info->balance_lock);
2233	mutex_init(&fs_info->balance_mutex);
 
2234	atomic_set(&fs_info->balance_pause_req, 0);
2235	atomic_set(&fs_info->balance_cancel_req, 0);
2236	fs_info->balance_ctl = NULL;
2237	init_waitqueue_head(&fs_info->balance_wait_q);
2238	atomic_set(&fs_info->reloc_cancel_req, 0);
2239}
2240
2241static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2242{
2243	struct inode *inode = fs_info->btree_inode;
2244
2245	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246	set_nlink(inode, 1);
2247	/*
2248	 * we set the i_size on the btree inode to the max possible int.
2249	 * the real end of the address space is determined by all of
2250	 * the devices in the system
2251	 */
2252	inode->i_size = OFFSET_MAX;
2253	inode->i_mapping->a_ops = &btree_aops;
2254
2255	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2256	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2257			    IO_TREE_BTREE_INODE_IO, inode);
2258	BTRFS_I(inode)->io_tree.track_uptodate = false;
2259	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2260
2261	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
 
 
2262	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2263	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2264	btrfs_insert_inode_hash(inode);
2265}
2266
2267static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2268{
 
 
2269	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2270	init_rwsem(&fs_info->dev_replace.rwsem);
2271	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
2272}
2273
2274static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2275{
2276	spin_lock_init(&fs_info->qgroup_lock);
2277	mutex_init(&fs_info->qgroup_ioctl_lock);
2278	fs_info->qgroup_tree = RB_ROOT;
 
2279	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2280	fs_info->qgroup_seq = 1;
2281	fs_info->qgroup_ulist = NULL;
2282	fs_info->qgroup_rescan_running = false;
2283	mutex_init(&fs_info->qgroup_rescan_lock);
2284}
2285
2286static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2287		struct btrfs_fs_devices *fs_devices)
2288{
2289	u32 max_active = fs_info->thread_pool_size;
2290	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2291
2292	fs_info->workers =
2293		btrfs_alloc_workqueue(fs_info, "worker",
2294				      flags | WQ_HIGHPRI, max_active, 16);
2295
2296	fs_info->delalloc_workers =
2297		btrfs_alloc_workqueue(fs_info, "delalloc",
2298				      flags, max_active, 2);
2299
2300	fs_info->flush_workers =
2301		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2302				      flags, max_active, 0);
2303
2304	fs_info->caching_workers =
2305		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2306
 
 
 
 
 
 
 
 
 
 
2307	fs_info->fixup_workers =
2308		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2309
2310	/*
2311	 * endios are largely parallel and should have a very
2312	 * low idle thresh
2313	 */
2314	fs_info->endio_workers =
2315		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2316	fs_info->endio_meta_workers =
2317		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2318				      max_active, 4);
2319	fs_info->endio_meta_write_workers =
2320		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2321				      max_active, 2);
2322	fs_info->endio_raid56_workers =
2323		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2324				      max_active, 4);
 
 
2325	fs_info->rmw_workers =
2326		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2327	fs_info->endio_write_workers =
2328		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2329				      max_active, 2);
2330	fs_info->endio_freespace_worker =
2331		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2332				      max_active, 0);
2333	fs_info->delayed_workers =
2334		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2335				      max_active, 0);
2336	fs_info->readahead_workers =
2337		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2338				      max_active, 2);
2339	fs_info->qgroup_rescan_workers =
2340		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2341	fs_info->discard_ctl.discard_workers =
2342		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
 
 
2343
2344	if (!(fs_info->workers && fs_info->delalloc_workers &&
2345	      fs_info->flush_workers &&
2346	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2347	      fs_info->endio_meta_write_workers &&
 
2348	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2349	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2350	      fs_info->caching_workers && fs_info->readahead_workers &&
2351	      fs_info->fixup_workers && fs_info->delayed_workers &&
2352	      fs_info->qgroup_rescan_workers &&
2353	      fs_info->discard_ctl.discard_workers)) {
2354		return -ENOMEM;
2355	}
2356
2357	return 0;
2358}
2359
2360static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2361{
2362	struct crypto_shash *csum_shash;
2363	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2364
2365	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2366
2367	if (IS_ERR(csum_shash)) {
2368		btrfs_err(fs_info, "error allocating %s hash for checksum",
2369			  csum_driver);
2370		return PTR_ERR(csum_shash);
2371	}
2372
2373	fs_info->csum_shash = csum_shash;
2374
2375	return 0;
2376}
2377
2378static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2379			    struct btrfs_fs_devices *fs_devices)
2380{
2381	int ret;
2382	struct btrfs_root *log_tree_root;
2383	struct btrfs_super_block *disk_super = fs_info->super_copy;
2384	u64 bytenr = btrfs_super_log_root(disk_super);
2385	int level = btrfs_super_log_root_level(disk_super);
2386
2387	if (fs_devices->rw_devices == 0) {
2388		btrfs_warn(fs_info, "log replay required on RO media");
2389		return -EIO;
2390	}
2391
2392	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2393					 GFP_KERNEL);
2394	if (!log_tree_root)
2395		return -ENOMEM;
2396
 
 
2397	log_tree_root->node = read_tree_block(fs_info, bytenr,
2398					      BTRFS_TREE_LOG_OBJECTID,
2399					      fs_info->generation + 1, level,
2400					      NULL);
2401	if (IS_ERR(log_tree_root->node)) {
2402		btrfs_warn(fs_info, "failed to read log tree");
2403		ret = PTR_ERR(log_tree_root->node);
2404		log_tree_root->node = NULL;
2405		btrfs_put_root(log_tree_root);
2406		return ret;
2407	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2408		btrfs_err(fs_info, "failed to read log tree");
2409		btrfs_put_root(log_tree_root);
 
2410		return -EIO;
2411	}
2412	/* returns with log_tree_root freed on success */
2413	ret = btrfs_recover_log_trees(log_tree_root);
2414	if (ret) {
2415		btrfs_handle_fs_error(fs_info, ret,
2416				      "Failed to recover log tree");
2417		btrfs_put_root(log_tree_root);
 
2418		return ret;
2419	}
2420
2421	if (sb_rdonly(fs_info->sb)) {
2422		ret = btrfs_commit_super(fs_info);
2423		if (ret)
2424			return ret;
2425	}
2426
2427	return 0;
2428}
2429
2430static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2431{
2432	struct btrfs_root *tree_root = fs_info->tree_root;
2433	struct btrfs_root *root;
2434	struct btrfs_key location;
2435	int ret;
2436
2437	BUG_ON(!fs_info->tree_root);
2438
2439	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2440	location.type = BTRFS_ROOT_ITEM_KEY;
2441	location.offset = 0;
2442
2443	root = btrfs_read_tree_root(tree_root, &location);
2444	if (IS_ERR(root)) {
2445		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2446			ret = PTR_ERR(root);
2447			goto out;
2448		}
2449	} else {
2450		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451		fs_info->extent_root = root;
2452	}
 
 
2453
2454	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2455	root = btrfs_read_tree_root(tree_root, &location);
2456	if (IS_ERR(root)) {
2457		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2458			ret = PTR_ERR(root);
2459			goto out;
2460		}
2461	} else {
2462		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463		fs_info->dev_root = root;
2464	}
2465	/* Initialize fs_info for all devices in any case */
 
2466	btrfs_init_devices_late(fs_info);
2467
2468	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2469	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2470		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2471		root = btrfs_read_tree_root(tree_root, &location);
2472		if (IS_ERR(root)) {
2473			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2474				ret = PTR_ERR(root);
2475				goto out;
2476			}
2477		} else {
2478			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479			fs_info->csum_root = root;
2480		}
2481	}
2482
2483	/*
2484	 * This tree can share blocks with some other fs tree during relocation
2485	 * and we need a proper setup by btrfs_get_fs_root
2486	 */
2487	root = btrfs_get_fs_root(tree_root->fs_info,
2488				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2489	if (IS_ERR(root)) {
2490		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2491			ret = PTR_ERR(root);
2492			goto out;
2493		}
2494	} else {
2495		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496		fs_info->data_reloc_root = root;
2497	}
 
 
2498
2499	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2500	root = btrfs_read_tree_root(tree_root, &location);
2501	if (!IS_ERR(root)) {
2502		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2504		fs_info->quota_root = root;
2505	}
2506
2507	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2508	root = btrfs_read_tree_root(tree_root, &location);
2509	if (IS_ERR(root)) {
2510		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2511			ret = PTR_ERR(root);
2512			if (ret != -ENOENT)
2513				goto out;
2514		}
2515	} else {
2516		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517		fs_info->uuid_root = root;
2518	}
2519
2520	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2521		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2522		root = btrfs_read_tree_root(tree_root, &location);
2523		if (IS_ERR(root)) {
2524			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2525				ret = PTR_ERR(root);
2526				goto out;
2527			}
2528		}  else {
2529			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2530			fs_info->free_space_root = root;
2531		}
 
 
2532	}
2533
2534	return 0;
2535out:
2536	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2537		   location.objectid, ret);
2538	return ret;
2539}
2540
2541/*
2542 * Real super block validation
2543 * NOTE: super csum type and incompat features will not be checked here.
2544 *
2545 * @sb:		super block to check
2546 * @mirror_num:	the super block number to check its bytenr:
2547 * 		0	the primary (1st) sb
2548 * 		1, 2	2nd and 3rd backup copy
2549 * 	       -1	skip bytenr check
2550 */
2551static int validate_super(struct btrfs_fs_info *fs_info,
2552			    struct btrfs_super_block *sb, int mirror_num)
2553{
2554	u64 nodesize = btrfs_super_nodesize(sb);
2555	u64 sectorsize = btrfs_super_sectorsize(sb);
2556	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557
2558	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2559		btrfs_err(fs_info, "no valid FS found");
2560		ret = -EINVAL;
2561	}
2562	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2563		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2564				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2565		ret = -EINVAL;
2566	}
2567	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2568		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2569				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2570		ret = -EINVAL;
2571	}
2572	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2573		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2574				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2575		ret = -EINVAL;
2576	}
2577	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2578		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2579				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2580		ret = -EINVAL;
2581	}
2582
2583	/*
2584	 * Check sectorsize and nodesize first, other check will need it.
2585	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2586	 */
2587	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2588	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2589		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2590		ret = -EINVAL;
2591	}
2592
2593	/*
2594	 * For 4K page size, we only support 4K sector size.
2595	 * For 64K page size, we support read-write for 64K sector size, and
2596	 * read-only for 4K sector size.
2597	 */
2598	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2599	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2600				     sectorsize != SZ_64K))) {
2601		btrfs_err(fs_info,
2602			"sectorsize %llu not yet supported for page size %lu",
2603			sectorsize, PAGE_SIZE);
2604		ret = -EINVAL;
2605	}
 
 
2606
2607	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2608	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2609		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2610		ret = -EINVAL;
2611	}
2612	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2613		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2614			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2615		ret = -EINVAL;
2616	}
2617
2618	/* Root alignment check */
2619	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2620		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2621			   btrfs_super_root(sb));
2622		ret = -EINVAL;
2623	}
2624	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2625		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2626			   btrfs_super_chunk_root(sb));
2627		ret = -EINVAL;
2628	}
2629	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2630		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2631			   btrfs_super_log_root(sb));
2632		ret = -EINVAL;
2633	}
2634
2635	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2636		   BTRFS_FSID_SIZE)) {
2637		btrfs_err(fs_info,
2638		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2639			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2640		ret = -EINVAL;
2641	}
2642
2643	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2644	    memcmp(fs_info->fs_devices->metadata_uuid,
2645		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2646		btrfs_err(fs_info,
2647"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2648			fs_info->super_copy->metadata_uuid,
2649			fs_info->fs_devices->metadata_uuid);
2650		ret = -EINVAL;
2651	}
2652
2653	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2654		   BTRFS_FSID_SIZE) != 0) {
2655		btrfs_err(fs_info,
2656			"dev_item UUID does not match metadata fsid: %pU != %pU",
2657			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2658		ret = -EINVAL;
2659	}
2660
2661	/*
2662	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2663	 * done later
2664	 */
2665	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2666		btrfs_err(fs_info, "bytes_used is too small %llu",
2667			  btrfs_super_bytes_used(sb));
2668		ret = -EINVAL;
2669	}
2670	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2671		btrfs_err(fs_info, "invalid stripesize %u",
2672			  btrfs_super_stripesize(sb));
2673		ret = -EINVAL;
2674	}
2675	if (btrfs_super_num_devices(sb) > (1UL << 31))
2676		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2677			   btrfs_super_num_devices(sb));
2678	if (btrfs_super_num_devices(sb) == 0) {
2679		btrfs_err(fs_info, "number of devices is 0");
2680		ret = -EINVAL;
2681	}
2682
2683	if (mirror_num >= 0 &&
2684	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2685		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2686			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2687		ret = -EINVAL;
2688	}
2689
2690	/*
2691	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2692	 * and one chunk
2693	 */
2694	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2695		btrfs_err(fs_info, "system chunk array too big %u > %u",
2696			  btrfs_super_sys_array_size(sb),
2697			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2698		ret = -EINVAL;
2699	}
2700	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2701			+ sizeof(struct btrfs_chunk)) {
2702		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2703			  btrfs_super_sys_array_size(sb),
2704			  sizeof(struct btrfs_disk_key)
2705			  + sizeof(struct btrfs_chunk));
2706		ret = -EINVAL;
2707	}
2708
2709	/*
2710	 * The generation is a global counter, we'll trust it more than the others
2711	 * but it's still possible that it's the one that's wrong.
2712	 */
2713	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2714		btrfs_warn(fs_info,
2715			"suspicious: generation < chunk_root_generation: %llu < %llu",
2716			btrfs_super_generation(sb),
2717			btrfs_super_chunk_root_generation(sb));
2718	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2719	    && btrfs_super_cache_generation(sb) != (u64)-1)
2720		btrfs_warn(fs_info,
2721			"suspicious: generation < cache_generation: %llu < %llu",
2722			btrfs_super_generation(sb),
2723			btrfs_super_cache_generation(sb));
2724
2725	return ret;
2726}
2727
2728/*
2729 * Validation of super block at mount time.
2730 * Some checks already done early at mount time, like csum type and incompat
2731 * flags will be skipped.
2732 */
2733static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2734{
2735	return validate_super(fs_info, fs_info->super_copy, 0);
2736}
2737
2738/*
2739 * Validation of super block at write time.
2740 * Some checks like bytenr check will be skipped as their values will be
2741 * overwritten soon.
2742 * Extra checks like csum type and incompat flags will be done here.
2743 */
2744static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2745				      struct btrfs_super_block *sb)
2746{
2747	int ret;
2748
2749	ret = validate_super(fs_info, sb, -1);
2750	if (ret < 0)
2751		goto out;
2752	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2753		ret = -EUCLEAN;
2754		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2755			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2756		goto out;
2757	}
2758	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2759		ret = -EUCLEAN;
2760		btrfs_err(fs_info,
2761		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2762			  btrfs_super_incompat_flags(sb),
2763			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2764		goto out;
2765	}
2766out:
2767	if (ret < 0)
2768		btrfs_err(fs_info,
2769		"super block corruption detected before writing it to disk");
2770	return ret;
2771}
2772
2773static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2774{
2775	int backup_index = find_newest_super_backup(fs_info);
2776	struct btrfs_super_block *sb = fs_info->super_copy;
2777	struct btrfs_root *tree_root = fs_info->tree_root;
2778	bool handle_error = false;
2779	int ret = 0;
2780	int i;
2781
2782	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2783		u64 generation;
2784		int level;
2785
2786		if (handle_error) {
2787			if (!IS_ERR(tree_root->node))
2788				free_extent_buffer(tree_root->node);
2789			tree_root->node = NULL;
2790
2791			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2792				break;
2793
2794			free_root_pointers(fs_info, 0);
2795
2796			/*
2797			 * Don't use the log in recovery mode, it won't be
2798			 * valid
2799			 */
2800			btrfs_set_super_log_root(sb, 0);
2801
2802			/* We can't trust the free space cache either */
2803			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2804
2805			ret = read_backup_root(fs_info, i);
2806			backup_index = ret;
2807			if (ret < 0)
2808				return ret;
2809		}
2810		generation = btrfs_super_generation(sb);
2811		level = btrfs_super_root_level(sb);
2812		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2813						  BTRFS_ROOT_TREE_OBJECTID,
2814						  generation, level, NULL);
2815		if (IS_ERR(tree_root->node)) {
2816			handle_error = true;
2817			ret = PTR_ERR(tree_root->node);
2818			tree_root->node = NULL;
2819			btrfs_warn(fs_info, "couldn't read tree root");
2820			continue;
2821
2822		} else if (!extent_buffer_uptodate(tree_root->node)) {
2823			handle_error = true;
2824			ret = -EIO;
2825			btrfs_warn(fs_info, "error while reading tree root");
2826			continue;
2827		}
2828
2829		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2830		tree_root->commit_root = btrfs_root_node(tree_root);
2831		btrfs_set_root_refs(&tree_root->root_item, 1);
2832
2833		/*
2834		 * No need to hold btrfs_root::objectid_mutex since the fs
2835		 * hasn't been fully initialised and we are the only user
2836		 */
2837		ret = btrfs_init_root_free_objectid(tree_root);
2838		if (ret < 0) {
2839			handle_error = true;
2840			continue;
2841		}
2842
2843		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2844
2845		ret = btrfs_read_roots(fs_info);
2846		if (ret < 0) {
2847			handle_error = true;
2848			continue;
2849		}
2850
2851		/* All successful */
2852		fs_info->generation = generation;
2853		fs_info->last_trans_committed = generation;
2854
2855		/* Always begin writing backup roots after the one being used */
2856		if (backup_index < 0) {
2857			fs_info->backup_root_index = 0;
2858		} else {
2859			fs_info->backup_root_index = backup_index + 1;
2860			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2861		}
2862		break;
2863	}
2864
2865	return ret;
2866}
2867
2868void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2869{
2870	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2871	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2872	INIT_LIST_HEAD(&fs_info->trans_list);
2873	INIT_LIST_HEAD(&fs_info->dead_roots);
2874	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2875	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2876	INIT_LIST_HEAD(&fs_info->caching_block_groups);
 
 
2877	spin_lock_init(&fs_info->delalloc_root_lock);
2878	spin_lock_init(&fs_info->trans_lock);
2879	spin_lock_init(&fs_info->fs_roots_radix_lock);
2880	spin_lock_init(&fs_info->delayed_iput_lock);
2881	spin_lock_init(&fs_info->defrag_inodes_lock);
 
2882	spin_lock_init(&fs_info->super_lock);
 
2883	spin_lock_init(&fs_info->buffer_lock);
2884	spin_lock_init(&fs_info->unused_bgs_lock);
2885	spin_lock_init(&fs_info->treelog_bg_lock);
2886	rwlock_init(&fs_info->tree_mod_log_lock);
2887	mutex_init(&fs_info->unused_bg_unpin_mutex);
2888	mutex_init(&fs_info->reclaim_bgs_lock);
2889	mutex_init(&fs_info->reloc_mutex);
2890	mutex_init(&fs_info->delalloc_root_mutex);
2891	mutex_init(&fs_info->zoned_meta_io_lock);
2892	seqlock_init(&fs_info->profiles_lock);
2893
2894	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2895	INIT_LIST_HEAD(&fs_info->space_info);
2896	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2897	INIT_LIST_HEAD(&fs_info->unused_bgs);
2898	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2899#ifdef CONFIG_BTRFS_DEBUG
2900	INIT_LIST_HEAD(&fs_info->allocated_roots);
2901	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2902	spin_lock_init(&fs_info->eb_leak_lock);
2903#endif
2904	extent_map_tree_init(&fs_info->mapping_tree);
2905	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2906			     BTRFS_BLOCK_RSV_GLOBAL);
2907	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2908	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2909	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2910	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2911			     BTRFS_BLOCK_RSV_DELOPS);
2912	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2913			     BTRFS_BLOCK_RSV_DELREFS);
2914
2915	atomic_set(&fs_info->async_delalloc_pages, 0);
2916	atomic_set(&fs_info->defrag_running, 0);
 
2917	atomic_set(&fs_info->reada_works_cnt, 0);
2918	atomic_set(&fs_info->nr_delayed_iputs, 0);
2919	atomic64_set(&fs_info->tree_mod_seq, 0);
 
2920	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2921	fs_info->metadata_ratio = 0;
2922	fs_info->defrag_inodes = RB_ROOT;
2923	atomic64_set(&fs_info->free_chunk_space, 0);
2924	fs_info->tree_mod_log = RB_ROOT;
2925	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2926	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2927	/* readahead state */
2928	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2929	spin_lock_init(&fs_info->reada_lock);
2930	btrfs_init_ref_verify(fs_info);
2931
2932	fs_info->thread_pool_size = min_t(unsigned long,
2933					  num_online_cpus() + 2, 8);
2934
2935	INIT_LIST_HEAD(&fs_info->ordered_roots);
2936	spin_lock_init(&fs_info->ordered_root_lock);
2937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2938	btrfs_init_scrub(fs_info);
2939#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2940	fs_info->check_integrity_print_mask = 0;
2941#endif
2942	btrfs_init_balance(fs_info);
2943	btrfs_init_async_reclaim_work(fs_info);
 
 
 
 
 
2944
2945	spin_lock_init(&fs_info->block_group_cache_lock);
2946	fs_info->block_group_cache_tree = RB_ROOT;
2947	fs_info->first_logical_byte = (u64)-1;
2948
2949	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2950			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
 
2951	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2952
2953	mutex_init(&fs_info->ordered_operations_mutex);
2954	mutex_init(&fs_info->tree_log_mutex);
2955	mutex_init(&fs_info->chunk_mutex);
2956	mutex_init(&fs_info->transaction_kthread_mutex);
2957	mutex_init(&fs_info->cleaner_mutex);
 
2958	mutex_init(&fs_info->ro_block_group_mutex);
2959	init_rwsem(&fs_info->commit_root_sem);
2960	init_rwsem(&fs_info->cleanup_work_sem);
2961	init_rwsem(&fs_info->subvol_sem);
2962	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2963
2964	btrfs_init_dev_replace_locks(fs_info);
2965	btrfs_init_qgroup(fs_info);
2966	btrfs_discard_init(fs_info);
2967
2968	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2969	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2970
2971	init_waitqueue_head(&fs_info->transaction_throttle);
2972	init_waitqueue_head(&fs_info->transaction_wait);
2973	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2974	init_waitqueue_head(&fs_info->async_submit_wait);
2975	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 
2976
2977	/* Usable values until the real ones are cached from the superblock */
2978	fs_info->nodesize = 4096;
2979	fs_info->sectorsize = 4096;
2980	fs_info->sectorsize_bits = ilog2(4096);
2981	fs_info->stripesize = 4096;
2982
2983	spin_lock_init(&fs_info->swapfile_pins_lock);
2984	fs_info->swapfile_pins = RB_ROOT;
2985
2986	spin_lock_init(&fs_info->send_reloc_lock);
2987	fs_info->send_in_progress = 0;
2988
2989	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2990	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2991}
2992
2993static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2994{
2995	int ret;
2996
2997	fs_info->sb = sb;
2998	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2999	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3000
3001	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3002	if (ret)
3003		return ret;
3004
3005	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3006	if (ret)
3007		return ret;
3008
3009	fs_info->dirty_metadata_batch = PAGE_SIZE *
3010					(1 + ilog2(nr_cpu_ids));
3011
3012	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3013	if (ret)
3014		return ret;
3015
3016	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3017			GFP_KERNEL);
3018	if (ret)
3019		return ret;
3020
3021	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3022					GFP_KERNEL);
3023	if (!fs_info->delayed_root)
3024		return -ENOMEM;
3025	btrfs_init_delayed_root(fs_info->delayed_root);
3026
3027	if (sb_rdonly(sb))
3028		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3029
3030	return btrfs_alloc_stripe_hash_table(fs_info);
3031}
3032
3033static int btrfs_uuid_rescan_kthread(void *data)
3034{
3035	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3036	int ret;
3037
3038	/*
3039	 * 1st step is to iterate through the existing UUID tree and
3040	 * to delete all entries that contain outdated data.
3041	 * 2nd step is to add all missing entries to the UUID tree.
3042	 */
3043	ret = btrfs_uuid_tree_iterate(fs_info);
3044	if (ret < 0) {
3045		if (ret != -EINTR)
3046			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3047				   ret);
3048		up(&fs_info->uuid_tree_rescan_sem);
3049		return ret;
3050	}
3051	return btrfs_uuid_scan_kthread(data);
3052}
3053
3054static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3055{
3056	struct task_struct *task;
3057
3058	down(&fs_info->uuid_tree_rescan_sem);
3059	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3060	if (IS_ERR(task)) {
3061		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3062		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3063		up(&fs_info->uuid_tree_rescan_sem);
3064		return PTR_ERR(task);
3065	}
3066
3067	return 0;
3068}
3069
3070/*
3071 * Some options only have meaning at mount time and shouldn't persist across
3072 * remounts, or be displayed. Clear these at the end of mount and remount
3073 * code paths.
3074 */
3075void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3076{
3077	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3078	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3079}
3080
3081/*
3082 * Mounting logic specific to read-write file systems. Shared by open_ctree
3083 * and btrfs_remount when remounting from read-only to read-write.
3084 */
3085int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3086{
3087	int ret;
3088	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3089	bool clear_free_space_tree = false;
3090
3091	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3092	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3093		clear_free_space_tree = true;
3094	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3095		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3096		btrfs_warn(fs_info, "free space tree is invalid");
3097		clear_free_space_tree = true;
3098	}
3099
3100	if (clear_free_space_tree) {
3101		btrfs_info(fs_info, "clearing free space tree");
3102		ret = btrfs_clear_free_space_tree(fs_info);
3103		if (ret) {
3104			btrfs_warn(fs_info,
3105				   "failed to clear free space tree: %d", ret);
3106			goto out;
3107		}
3108	}
3109
3110	/*
3111	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3112	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3113	 * them into the fs_info->fs_roots_radix tree. This must be done before
3114	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3115	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3116	 * item before the root's tree is deleted - this means that if we unmount
3117	 * or crash before the deletion completes, on the next mount we will not
3118	 * delete what remains of the tree because the orphan item does not
3119	 * exists anymore, which is what tells us we have a pending deletion.
3120	 */
3121	ret = btrfs_find_orphan_roots(fs_info);
3122	if (ret)
3123		goto out;
3124
3125	ret = btrfs_cleanup_fs_roots(fs_info);
3126	if (ret)
3127		goto out;
3128
3129	down_read(&fs_info->cleanup_work_sem);
3130	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3131	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3132		up_read(&fs_info->cleanup_work_sem);
3133		goto out;
3134	}
3135	up_read(&fs_info->cleanup_work_sem);
3136
3137	mutex_lock(&fs_info->cleaner_mutex);
3138	ret = btrfs_recover_relocation(fs_info->tree_root);
3139	mutex_unlock(&fs_info->cleaner_mutex);
3140	if (ret < 0) {
3141		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3142		goto out;
3143	}
3144
3145	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3146	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3147		btrfs_info(fs_info, "creating free space tree");
3148		ret = btrfs_create_free_space_tree(fs_info);
3149		if (ret) {
3150			btrfs_warn(fs_info,
3151				"failed to create free space tree: %d", ret);
3152			goto out;
3153		}
3154	}
3155
3156	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3157		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3158		if (ret)
3159			goto out;
3160	}
3161
3162	ret = btrfs_resume_balance_async(fs_info);
3163	if (ret)
3164		goto out;
3165
3166	ret = btrfs_resume_dev_replace_async(fs_info);
3167	if (ret) {
3168		btrfs_warn(fs_info, "failed to resume dev_replace");
3169		goto out;
3170	}
3171
3172	btrfs_qgroup_rescan_resume(fs_info);
3173
3174	if (!fs_info->uuid_root) {
3175		btrfs_info(fs_info, "creating UUID tree");
3176		ret = btrfs_create_uuid_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				   "failed to create the UUID tree %d", ret);
3180			goto out;
3181		}
3182	}
3183
3184out:
3185	return ret;
3186}
3187
3188int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3189		      char *options)
3190{
3191	u32 sectorsize;
3192	u32 nodesize;
3193	u32 stripesize;
3194	u64 generation;
3195	u64 features;
3196	u16 csum_type;
3197	struct btrfs_super_block *disk_super;
3198	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3199	struct btrfs_root *tree_root;
3200	struct btrfs_root *chunk_root;
3201	int ret;
3202	int err = -EINVAL;
3203	int level;
3204
3205	ret = init_mount_fs_info(fs_info, sb);
3206	if (ret) {
3207		err = ret;
3208		goto fail;
3209	}
3210
3211	/* These need to be init'ed before we start creating inodes and such. */
3212	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3213				     GFP_KERNEL);
3214	fs_info->tree_root = tree_root;
3215	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3216				      GFP_KERNEL);
3217	fs_info->chunk_root = chunk_root;
3218	if (!tree_root || !chunk_root) {
3219		err = -ENOMEM;
3220		goto fail;
3221	}
3222
3223	fs_info->btree_inode = new_inode(sb);
3224	if (!fs_info->btree_inode) {
3225		err = -ENOMEM;
3226		goto fail;
3227	}
3228	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3229	btrfs_init_btree_inode(fs_info);
3230
3231	invalidate_bdev(fs_devices->latest_bdev);
3232
3233	/*
3234	 * Read super block and check the signature bytes only
3235	 */
3236	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3237	if (IS_ERR(disk_super)) {
3238		err = PTR_ERR(disk_super);
3239		goto fail_alloc;
3240	}
3241
3242	/*
3243	 * Verify the type first, if that or the checksum value are
3244	 * corrupted, we'll find out
3245	 */
3246	csum_type = btrfs_super_csum_type(disk_super);
3247	if (!btrfs_supported_super_csum(csum_type)) {
3248		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3249			  csum_type);
3250		err = -EINVAL;
3251		btrfs_release_disk_super(disk_super);
3252		goto fail_alloc;
3253	}
3254
3255	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3256
3257	ret = btrfs_init_csum_hash(fs_info, csum_type);
3258	if (ret) {
3259		err = ret;
3260		btrfs_release_disk_super(disk_super);
3261		goto fail_alloc;
3262	}
3263
3264	/*
3265	 * We want to check superblock checksum, the type is stored inside.
3266	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267	 */
3268	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3269		btrfs_err(fs_info, "superblock checksum mismatch");
3270		err = -EINVAL;
3271		btrfs_release_disk_super(disk_super);
3272		goto fail_alloc;
3273	}
3274
3275	/*
3276	 * super_copy is zeroed at allocation time and we never touch the
3277	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278	 * the whole block of INFO_SIZE
3279	 */
3280	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281	btrfs_release_disk_super(disk_super);
3282
3283	disk_super = fs_info->super_copy;
3284
3285
3286	features = btrfs_super_flags(disk_super);
3287	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3288		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3289		btrfs_set_super_flags(disk_super, features);
3290		btrfs_info(fs_info,
3291			"found metadata UUID change in progress flag, clearing");
3292	}
3293
3294	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3295	       sizeof(*fs_info->super_for_commit));
 
 
 
3296
3297	ret = btrfs_validate_mount_super(fs_info);
3298	if (ret) {
3299		btrfs_err(fs_info, "superblock contains fatal errors");
3300		err = -EINVAL;
3301		goto fail_alloc;
3302	}
3303
 
3304	if (!btrfs_super_root(disk_super))
3305		goto fail_alloc;
3306
3307	/* check FS state, whether FS is broken. */
3308	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3310
3311	/*
 
 
 
 
 
 
 
3312	 * In the long term, we'll store the compression type in the super
3313	 * block, and it'll be used for per file compression control.
3314	 */
3315	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3316
3317	/*
3318	 * Flag our filesystem as having big metadata blocks if they are bigger
3319	 * than the page size.
3320	 */
3321	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3322		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3323			btrfs_info(fs_info,
3324				"flagging fs with big metadata feature");
3325		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3326	}
3327
3328	/* Set up fs_info before parsing mount options */
3329	nodesize = btrfs_super_nodesize(disk_super);
3330	sectorsize = btrfs_super_sectorsize(disk_super);
3331	stripesize = sectorsize;
3332	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3333	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3334
3335	fs_info->nodesize = nodesize;
3336	fs_info->sectorsize = sectorsize;
3337	fs_info->sectorsize_bits = ilog2(sectorsize);
3338	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3339	fs_info->stripesize = stripesize;
3340
3341	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3342	if (ret) {
3343		err = ret;
3344		goto fail_alloc;
3345	}
3346
3347	features = btrfs_super_incompat_flags(disk_super) &
3348		~BTRFS_FEATURE_INCOMPAT_SUPP;
3349	if (features) {
3350		btrfs_err(fs_info,
3351		    "cannot mount because of unsupported optional features (%llx)",
3352		    features);
3353		err = -EINVAL;
3354		goto fail_alloc;
3355	}
3356
3357	features = btrfs_super_incompat_flags(disk_super);
3358	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3359	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3360		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3361	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3362		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3363
3364	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3365		btrfs_info(fs_info, "has skinny extents");
3366
3367	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368	 * mixed block groups end up with duplicate but slightly offset
3369	 * extent buffers for the same range.  It leads to corruptions
3370	 */
3371	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3372	    (sectorsize != nodesize)) {
3373		btrfs_err(fs_info,
3374"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3375			nodesize, sectorsize);
3376		goto fail_alloc;
3377	}
3378
3379	/*
3380	 * Needn't use the lock because there is no other task which will
3381	 * update the flag.
3382	 */
3383	btrfs_set_super_incompat_flags(disk_super, features);
3384
3385	features = btrfs_super_compat_ro_flags(disk_super) &
3386		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3387	if (!sb_rdonly(sb) && features) {
3388		btrfs_err(fs_info,
3389	"cannot mount read-write because of unsupported optional features (%llx)",
3390		       features);
3391		err = -EINVAL;
3392		goto fail_alloc;
3393	}
3394
3395	/* For 4K sector size support, it's only read-only */
3396	if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3397		if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3398			btrfs_err(fs_info,
3399	"subpage sectorsize %u only supported read-only for page size %lu",
3400				sectorsize, PAGE_SIZE);
3401			err = -EINVAL;
3402			goto fail_alloc;
3403		}
3404	}
3405
3406	ret = btrfs_init_workqueues(fs_info, fs_devices);
3407	if (ret) {
3408		err = ret;
3409		goto fail_sb_buffer;
3410	}
3411
 
 
 
 
3412	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3413	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3414
3415	sb->s_blocksize = sectorsize;
3416	sb->s_blocksize_bits = blksize_bits(sectorsize);
3417	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3418
3419	mutex_lock(&fs_info->chunk_mutex);
3420	ret = btrfs_read_sys_array(fs_info);
3421	mutex_unlock(&fs_info->chunk_mutex);
3422	if (ret) {
3423		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3424		goto fail_sb_buffer;
3425	}
3426
3427	generation = btrfs_super_chunk_root_generation(disk_super);
3428	level = btrfs_super_chunk_root_level(disk_super);
3429
 
 
3430	chunk_root->node = read_tree_block(fs_info,
3431					   btrfs_super_chunk_root(disk_super),
3432					   BTRFS_CHUNK_TREE_OBJECTID,
3433					   generation, level, NULL);
3434	if (IS_ERR(chunk_root->node) ||
3435	    !extent_buffer_uptodate(chunk_root->node)) {
3436		btrfs_err(fs_info, "failed to read chunk root");
3437		if (!IS_ERR(chunk_root->node))
3438			free_extent_buffer(chunk_root->node);
3439		chunk_root->node = NULL;
3440		goto fail_tree_roots;
3441	}
3442	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3443	chunk_root->commit_root = btrfs_root_node(chunk_root);
3444
3445	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3446			   offsetof(struct btrfs_header, chunk_tree_uuid),
3447			   BTRFS_UUID_SIZE);
3448
3449	ret = btrfs_read_chunk_tree(fs_info);
3450	if (ret) {
3451		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3452		goto fail_tree_roots;
3453	}
3454
3455	/*
3456	 * At this point we know all the devices that make this filesystem,
3457	 * including the seed devices but we don't know yet if the replace
3458	 * target is required. So free devices that are not part of this
3459	 * filesystem but skip the replace target device which is checked
3460	 * below in btrfs_init_dev_replace().
3461	 */
3462	btrfs_free_extra_devids(fs_devices);
 
3463	if (!fs_devices->latest_bdev) {
3464		btrfs_err(fs_info, "failed to read devices");
3465		goto fail_tree_roots;
3466	}
3467
3468	ret = init_tree_roots(fs_info);
3469	if (ret)
3470		goto fail_tree_roots;
3471
3472	/*
3473	 * Get zone type information of zoned block devices. This will also
3474	 * handle emulation of a zoned filesystem if a regular device has the
3475	 * zoned incompat feature flag set.
3476	 */
3477	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
3478	if (ret) {
3479		btrfs_err(fs_info,
3480			  "zoned: failed to read device zone info: %d",
3481			  ret);
3482		goto fail_block_groups;
3483	}
3484
3485	/*
3486	 * If we have a uuid root and we're not being told to rescan we need to
3487	 * check the generation here so we can set the
3488	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3489	 * transaction during a balance or the log replay without updating the
3490	 * uuid generation, and then if we crash we would rescan the uuid tree,
3491	 * even though it was perfectly fine.
3492	 */
3493	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3494	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3495		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3496
3497	ret = btrfs_verify_dev_extents(fs_info);
3498	if (ret) {
3499		btrfs_err(fs_info,
3500			  "failed to verify dev extents against chunks: %d",
3501			  ret);
3502		goto fail_block_groups;
3503	}
3504	ret = btrfs_recover_balance(fs_info);
3505	if (ret) {
3506		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3507		goto fail_block_groups;
3508	}
3509
3510	ret = btrfs_init_dev_stats(fs_info);
3511	if (ret) {
3512		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3513		goto fail_block_groups;
3514	}
3515
3516	ret = btrfs_init_dev_replace(fs_info);
3517	if (ret) {
3518		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3519		goto fail_block_groups;
3520	}
3521
3522	ret = btrfs_check_zoned_mode(fs_info);
 
 
3523	if (ret) {
3524		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3525			  ret);
3526		goto fail_block_groups;
3527	}
3528
3529	ret = btrfs_sysfs_add_fsid(fs_devices);
3530	if (ret) {
3531		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3532				ret);
3533		goto fail_block_groups;
3534	}
3535
3536	ret = btrfs_sysfs_add_mounted(fs_info);
3537	if (ret) {
3538		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3539		goto fail_fsdev_sysfs;
3540	}
3541
3542	ret = btrfs_init_space_info(fs_info);
3543	if (ret) {
3544		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3545		goto fail_sysfs;
3546	}
3547
3548	ret = btrfs_read_block_groups(fs_info);
3549	if (ret) {
3550		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3551		goto fail_sysfs;
3552	}
3553
3554	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3555		btrfs_warn(fs_info,
3556		"writable mount is not allowed due to too many missing devices");
3557		goto fail_sysfs;
3558	}
3559
3560	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3561					       "btrfs-cleaner");
3562	if (IS_ERR(fs_info->cleaner_kthread))
3563		goto fail_sysfs;
3564
3565	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3566						   tree_root,
3567						   "btrfs-transaction");
3568	if (IS_ERR(fs_info->transaction_kthread))
3569		goto fail_cleaner;
3570
3571	if (!btrfs_test_opt(fs_info, NOSSD) &&
3572	    !fs_info->fs_devices->rotating) {
3573		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3574	}
3575
3576	/*
3577	 * Mount does not set all options immediately, we can do it now and do
3578	 * not have to wait for transaction commit
3579	 */
3580	btrfs_apply_pending_changes(fs_info);
3581
3582#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3583	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3584		ret = btrfsic_mount(fs_info, fs_devices,
3585				    btrfs_test_opt(fs_info,
3586					CHECK_INTEGRITY_DATA) ? 1 : 0,
 
3587				    fs_info->check_integrity_print_mask);
3588		if (ret)
3589			btrfs_warn(fs_info,
3590				"failed to initialize integrity check module: %d",
3591				ret);
3592	}
3593#endif
3594	ret = btrfs_read_qgroup_config(fs_info);
3595	if (ret)
3596		goto fail_trans_kthread;
3597
3598	if (btrfs_build_ref_tree(fs_info))
3599		btrfs_err(fs_info, "couldn't build ref tree");
3600
3601	/* do not make disk changes in broken FS or nologreplay is given */
3602	if (btrfs_super_log_root(disk_super) != 0 &&
3603	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3604		btrfs_info(fs_info, "start tree-log replay");
3605		ret = btrfs_replay_log(fs_info, fs_devices);
3606		if (ret) {
3607			err = ret;
3608			goto fail_qgroup;
3609		}
3610	}
3611
3612	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613	if (IS_ERR(fs_info->fs_root)) {
3614		err = PTR_ERR(fs_info->fs_root);
3615		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3616		fs_info->fs_root = NULL;
3617		goto fail_qgroup;
3618	}
3619
3620	if (sb_rdonly(sb))
3621		goto clear_oneshot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3622
3623	ret = btrfs_start_pre_rw_mount(fs_info);
3624	if (ret) {
 
3625		close_ctree(fs_info);
3626		return ret;
3627	}
3628	btrfs_discard_resume(fs_info);
3629
3630	if (fs_info->uuid_root &&
3631	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3632	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
 
 
 
 
 
 
 
 
 
 
 
3633		btrfs_info(fs_info, "checking UUID tree");
3634		ret = btrfs_check_uuid_tree(fs_info);
3635		if (ret) {
3636			btrfs_warn(fs_info,
3637				"failed to check the UUID tree: %d", ret);
3638			close_ctree(fs_info);
3639			return ret;
3640		}
 
 
3641	}
 
3642
3643	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
 
 
 
3644
3645clear_oneshot:
3646	btrfs_clear_oneshot_options(fs_info);
3647	return 0;
3648
3649fail_qgroup:
3650	btrfs_free_qgroup_config(fs_info);
3651fail_trans_kthread:
3652	kthread_stop(fs_info->transaction_kthread);
3653	btrfs_cleanup_transaction(fs_info);
3654	btrfs_free_fs_roots(fs_info);
3655fail_cleaner:
3656	kthread_stop(fs_info->cleaner_kthread);
3657
3658	/*
3659	 * make sure we're done with the btree inode before we stop our
3660	 * kthreads
3661	 */
3662	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3663
3664fail_sysfs:
3665	btrfs_sysfs_remove_mounted(fs_info);
3666
3667fail_fsdev_sysfs:
3668	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3669
3670fail_block_groups:
3671	btrfs_put_block_group_cache(fs_info);
3672
3673fail_tree_roots:
3674	if (fs_info->data_reloc_root)
3675		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3676	free_root_pointers(fs_info, true);
3677	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3678
3679fail_sb_buffer:
3680	btrfs_stop_all_workers(fs_info);
3681	btrfs_free_block_groups(fs_info);
3682fail_alloc:
 
3683	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3684
3685	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
3686fail:
 
3687	btrfs_close_devices(fs_info->fs_devices);
3688	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3689}
3690ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3691
3692static void btrfs_end_super_write(struct bio *bio)
3693{
3694	struct btrfs_device *device = bio->bi_private;
3695	struct bio_vec *bvec;
3696	struct bvec_iter_all iter_all;
3697	struct page *page;
 
3698
3699	bio_for_each_segment_all(bvec, bio, iter_all) {
3700		page = bvec->bv_page;
3701
3702		if (bio->bi_status) {
3703			btrfs_warn_rl_in_rcu(device->fs_info,
3704				"lost page write due to IO error on %s (%d)",
3705				rcu_str_deref(device->name),
3706				blk_status_to_errno(bio->bi_status));
3707			ClearPageUptodate(page);
3708			SetPageError(page);
3709			btrfs_dev_stat_inc_and_print(device,
3710						     BTRFS_DEV_STAT_WRITE_ERRS);
3711		} else {
3712			SetPageUptodate(page);
3713		}
3714
3715		put_page(page);
3716		unlock_page(page);
3717	}
3718
3719	bio_put(bio);
3720}
3721
3722struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3723						   int copy_num)
3724{
 
3725	struct btrfs_super_block *super;
3726	struct page *page;
3727	u64 bytenr, bytenr_orig;
3728	struct address_space *mapping = bdev->bd_inode->i_mapping;
3729	int ret;
3730
3731	bytenr_orig = btrfs_sb_offset(copy_num);
3732	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3733	if (ret == -ENOENT)
3734		return ERR_PTR(-EINVAL);
3735	else if (ret)
3736		return ERR_PTR(ret);
3737
 
3738	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3739		return ERR_PTR(-EINVAL);
3740
3741	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3742	if (IS_ERR(page))
3743		return ERR_CAST(page);
3744
3745	super = page_address(page);
3746	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3747		btrfs_release_disk_super(super);
3748		return ERR_PTR(-ENODATA);
3749	}
3750
3751	if (btrfs_super_bytenr(super) != bytenr_orig) {
3752		btrfs_release_disk_super(super);
3753		return ERR_PTR(-EINVAL);
 
 
3754	}
3755
3756	return super;
 
3757}
3758
3759
3760struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3761{
3762	struct btrfs_super_block *super, *latest = NULL;
 
 
3763	int i;
3764	u64 transid = 0;
 
3765
3766	/* we would like to check all the supers, but that would make
3767	 * a btrfs mount succeed after a mkfs from a different FS.
3768	 * So, we need to add a special mount option to scan for
3769	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3770	 */
3771	for (i = 0; i < 1; i++) {
3772		super = btrfs_read_dev_one_super(bdev, i);
3773		if (IS_ERR(super))
3774			continue;
3775
 
 
3776		if (!latest || btrfs_super_generation(super) > transid) {
3777			if (latest)
3778				btrfs_release_disk_super(super);
3779
3780			latest = super;
3781			transid = btrfs_super_generation(super);
 
 
3782		}
3783	}
3784
3785	return super;
 
 
 
3786}
3787
3788/*
3789 * Write superblock @sb to the @device. Do not wait for completion, all the
3790 * pages we use for writing are locked.
3791 *
3792 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3793 * the expected device size at commit time. Note that max_mirrors must be
3794 * same for write and wait phases.
3795 *
3796 * Return number of errors when page is not found or submission fails.
3797 */
3798static int write_dev_supers(struct btrfs_device *device,
3799			    struct btrfs_super_block *sb, int max_mirrors)
3800{
3801	struct btrfs_fs_info *fs_info = device->fs_info;
3802	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3803	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3804	int i;
 
3805	int errors = 0;
3806	int ret;
3807	u64 bytenr, bytenr_orig;
 
3808
3809	if (max_mirrors == 0)
3810		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3811
3812	shash->tfm = fs_info->csum_shash;
3813
3814	for (i = 0; i < max_mirrors; i++) {
3815		struct page *page;
3816		struct bio *bio;
3817		struct btrfs_super_block *disk_super;
3818
3819		bytenr_orig = btrfs_sb_offset(i);
3820		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3821		if (ret == -ENOENT) {
3822			continue;
3823		} else if (ret < 0) {
3824			btrfs_err(device->fs_info,
3825				"couldn't get super block location for mirror %d",
3826				i);
3827			errors++;
3828			continue;
3829		}
3830		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3831		    device->commit_total_bytes)
3832			break;
3833
3834		btrfs_set_super_bytenr(sb, bytenr_orig);
3835
3836		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3837				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3838				    sb->csum);
3839
3840		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3841					   GFP_NOFS);
3842		if (!page) {
 
 
3843			btrfs_err(device->fs_info,
3844			    "couldn't get super block page for bytenr %llu",
3845			    bytenr);
3846			errors++;
3847			continue;
3848		}
3849
3850		/* Bump the refcount for wait_dev_supers() */
3851		get_page(page);
3852
3853		disk_super = page_address(page);
3854		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3855
3856		/*
3857		 * Directly use bios here instead of relying on the page cache
3858		 * to do I/O, so we don't lose the ability to do integrity
3859		 * checking.
3860		 */
3861		bio = bio_alloc(GFP_NOFS, 1);
3862		bio_set_dev(bio, device->bdev);
3863		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3864		bio->bi_private = device;
3865		bio->bi_end_io = btrfs_end_super_write;
3866		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3867			       offset_in_page(bytenr));
3868
3869		/*
3870		 * We FUA only the first super block.  The others we allow to
3871		 * go down lazy and there's a short window where the on-disk
3872		 * copies might still contain the older version.
3873		 */
3874		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3875		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3876			bio->bi_opf |= REQ_FUA;
3877
3878		btrfsic_submit_bio(bio);
3879		btrfs_advance_sb_log(device, i);
3880	}
3881	return errors < i ? 0 : -1;
3882}
3883
3884/*
3885 * Wait for write completion of superblocks done by write_dev_supers,
3886 * @max_mirrors same for write and wait phases.
3887 *
3888 * Return number of errors when page is not found or not marked up to
3889 * date.
3890 */
3891static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3892{
 
3893	int i;
3894	int errors = 0;
3895	bool primary_failed = false;
3896	int ret;
3897	u64 bytenr;
3898
3899	if (max_mirrors == 0)
3900		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3901
3902	for (i = 0; i < max_mirrors; i++) {
3903		struct page *page;
3904
3905		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3906		if (ret == -ENOENT) {
3907			break;
3908		} else if (ret < 0) {
3909			errors++;
3910			if (i == 0)
3911				primary_failed = true;
3912			continue;
3913		}
3914		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3915		    device->commit_total_bytes)
3916			break;
3917
3918		page = find_get_page(device->bdev->bd_inode->i_mapping,
3919				     bytenr >> PAGE_SHIFT);
3920		if (!page) {
 
3921			errors++;
3922			if (i == 0)
3923				primary_failed = true;
3924			continue;
3925		}
3926		/* Page is submitted locked and unlocked once the IO completes */
3927		wait_on_page_locked(page);
3928		if (PageError(page)) {
3929			errors++;
3930			if (i == 0)
3931				primary_failed = true;
3932		}
3933
3934		/* Drop our reference */
3935		put_page(page);
3936
3937		/* Drop the reference from the writing run */
3938		put_page(page);
3939	}
3940
3941	/* log error, force error return */
3942	if (primary_failed) {
3943		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3944			  device->devid);
3945		return -1;
3946	}
3947
3948	return errors < i ? 0 : -1;
3949}
3950
3951/*
3952 * endio for the write_dev_flush, this will wake anyone waiting
3953 * for the barrier when it is done
3954 */
3955static void btrfs_end_empty_barrier(struct bio *bio)
3956{
3957	complete(bio->bi_private);
3958}
3959
3960/*
3961 * Submit a flush request to the device if it supports it. Error handling is
3962 * done in the waiting counterpart.
3963 */
3964static void write_dev_flush(struct btrfs_device *device)
3965{
3966	struct request_queue *q = bdev_get_queue(device->bdev);
3967	struct bio *bio = device->flush_bio;
3968
3969	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3970		return;
3971
3972	bio_reset(bio);
3973	bio->bi_end_io = btrfs_end_empty_barrier;
3974	bio_set_dev(bio, device->bdev);
3975	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3976	init_completion(&device->flush_wait);
3977	bio->bi_private = &device->flush_wait;
3978
3979	btrfsic_submit_bio(bio);
3980	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3981}
3982
3983/*
3984 * If the flush bio has been submitted by write_dev_flush, wait for it.
3985 */
3986static blk_status_t wait_dev_flush(struct btrfs_device *device)
3987{
3988	struct bio *bio = device->flush_bio;
3989
3990	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3991		return BLK_STS_OK;
3992
3993	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3994	wait_for_completion_io(&device->flush_wait);
3995
3996	return bio->bi_status;
3997}
3998
3999static int check_barrier_error(struct btrfs_fs_info *fs_info)
4000{
4001	if (!btrfs_check_rw_degradable(fs_info, NULL))
4002		return -EIO;
4003	return 0;
4004}
4005
4006/*
4007 * send an empty flush down to each device in parallel,
4008 * then wait for them
4009 */
4010static int barrier_all_devices(struct btrfs_fs_info *info)
4011{
4012	struct list_head *head;
4013	struct btrfs_device *dev;
4014	int errors_wait = 0;
4015	blk_status_t ret;
4016
4017	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4018	/* send down all the barriers */
4019	head = &info->fs_devices->devices;
4020	list_for_each_entry(dev, head, dev_list) {
4021		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4022			continue;
4023		if (!dev->bdev)
4024			continue;
4025		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4026		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4027			continue;
4028
4029		write_dev_flush(dev);
4030		dev->last_flush_error = BLK_STS_OK;
4031	}
4032
4033	/* wait for all the barriers */
4034	list_for_each_entry(dev, head, dev_list) {
4035		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4036			continue;
4037		if (!dev->bdev) {
4038			errors_wait++;
4039			continue;
4040		}
4041		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4042		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4043			continue;
4044
4045		ret = wait_dev_flush(dev);
4046		if (ret) {
4047			dev->last_flush_error = ret;
4048			btrfs_dev_stat_inc_and_print(dev,
4049					BTRFS_DEV_STAT_FLUSH_ERRS);
4050			errors_wait++;
4051		}
4052	}
4053
4054	if (errors_wait) {
4055		/*
4056		 * At some point we need the status of all disks
4057		 * to arrive at the volume status. So error checking
4058		 * is being pushed to a separate loop.
4059		 */
4060		return check_barrier_error(info);
4061	}
4062	return 0;
4063}
4064
4065int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4066{
4067	int raid_type;
4068	int min_tolerated = INT_MAX;
4069
4070	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4071	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4072		min_tolerated = min_t(int, min_tolerated,
4073				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4074				    tolerated_failures);
4075
4076	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4077		if (raid_type == BTRFS_RAID_SINGLE)
4078			continue;
4079		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4080			continue;
4081		min_tolerated = min_t(int, min_tolerated,
4082				    btrfs_raid_array[raid_type].
4083				    tolerated_failures);
4084	}
4085
4086	if (min_tolerated == INT_MAX) {
4087		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4088		min_tolerated = 0;
4089	}
4090
4091	return min_tolerated;
4092}
4093
4094int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4095{
4096	struct list_head *head;
4097	struct btrfs_device *dev;
4098	struct btrfs_super_block *sb;
4099	struct btrfs_dev_item *dev_item;
4100	int ret;
4101	int do_barriers;
4102	int max_errors;
4103	int total_errors = 0;
4104	u64 flags;
4105
4106	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4107
4108	/*
4109	 * max_mirrors == 0 indicates we're from commit_transaction,
4110	 * not from fsync where the tree roots in fs_info have not
4111	 * been consistent on disk.
4112	 */
4113	if (max_mirrors == 0)
4114		backup_super_roots(fs_info);
4115
4116	sb = fs_info->super_for_commit;
4117	dev_item = &sb->dev_item;
4118
4119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4120	head = &fs_info->fs_devices->devices;
4121	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4122
4123	if (do_barriers) {
4124		ret = barrier_all_devices(fs_info);
4125		if (ret) {
4126			mutex_unlock(
4127				&fs_info->fs_devices->device_list_mutex);
4128			btrfs_handle_fs_error(fs_info, ret,
4129					      "errors while submitting device barriers.");
4130			return ret;
4131		}
4132	}
4133
4134	list_for_each_entry(dev, head, dev_list) {
4135		if (!dev->bdev) {
4136			total_errors++;
4137			continue;
4138		}
4139		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4140		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4141			continue;
4142
4143		btrfs_set_stack_device_generation(dev_item, 0);
4144		btrfs_set_stack_device_type(dev_item, dev->type);
4145		btrfs_set_stack_device_id(dev_item, dev->devid);
4146		btrfs_set_stack_device_total_bytes(dev_item,
4147						   dev->commit_total_bytes);
4148		btrfs_set_stack_device_bytes_used(dev_item,
4149						  dev->commit_bytes_used);
4150		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4151		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4152		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4153		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4154		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4155		       BTRFS_FSID_SIZE);
4156
4157		flags = btrfs_super_flags(sb);
4158		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4159
4160		ret = btrfs_validate_write_super(fs_info, sb);
4161		if (ret < 0) {
4162			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4163			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4164				"unexpected superblock corruption detected");
4165			return -EUCLEAN;
4166		}
4167
4168		ret = write_dev_supers(dev, sb, max_mirrors);
4169		if (ret)
4170			total_errors++;
4171	}
4172	if (total_errors > max_errors) {
4173		btrfs_err(fs_info, "%d errors while writing supers",
4174			  total_errors);
4175		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4176
4177		/* FUA is masked off if unsupported and can't be the reason */
4178		btrfs_handle_fs_error(fs_info, -EIO,
4179				      "%d errors while writing supers",
4180				      total_errors);
4181		return -EIO;
4182	}
4183
4184	total_errors = 0;
4185	list_for_each_entry(dev, head, dev_list) {
4186		if (!dev->bdev)
4187			continue;
4188		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4189		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4190			continue;
4191
4192		ret = wait_dev_supers(dev, max_mirrors);
4193		if (ret)
4194			total_errors++;
4195	}
4196	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4197	if (total_errors > max_errors) {
4198		btrfs_handle_fs_error(fs_info, -EIO,
4199				      "%d errors while writing supers",
4200				      total_errors);
4201		return -EIO;
4202	}
4203	return 0;
4204}
4205
4206/* Drop a fs root from the radix tree and free it. */
4207void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4208				  struct btrfs_root *root)
4209{
4210	bool drop_ref = false;
4211
4212	spin_lock(&fs_info->fs_roots_radix_lock);
4213	radix_tree_delete(&fs_info->fs_roots_radix,
4214			  (unsigned long)root->root_key.objectid);
4215	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4216		drop_ref = true;
4217	spin_unlock(&fs_info->fs_roots_radix_lock);
4218
 
 
 
4219	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4220		ASSERT(root->log_root == NULL);
4221		if (root->reloc_root) {
4222			btrfs_put_root(root->reloc_root);
 
 
4223			root->reloc_root = NULL;
4224		}
4225	}
4226
4227	if (drop_ref)
4228		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229}
4230
4231int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4232{
4233	u64 root_objectid = 0;
4234	struct btrfs_root *gang[8];
4235	int i = 0;
4236	int err = 0;
4237	unsigned int ret = 0;
 
4238
4239	while (1) {
4240		spin_lock(&fs_info->fs_roots_radix_lock);
4241		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4242					     (void **)gang, root_objectid,
4243					     ARRAY_SIZE(gang));
4244		if (!ret) {
4245			spin_unlock(&fs_info->fs_roots_radix_lock);
4246			break;
4247		}
4248		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4249
4250		for (i = 0; i < ret; i++) {
4251			/* Avoid to grab roots in dead_roots */
4252			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4253				gang[i] = NULL;
4254				continue;
4255			}
4256			/* grab all the search result for later use */
4257			gang[i] = btrfs_grab_root(gang[i]);
4258		}
4259		spin_unlock(&fs_info->fs_roots_radix_lock);
4260
4261		for (i = 0; i < ret; i++) {
4262			if (!gang[i])
4263				continue;
4264			root_objectid = gang[i]->root_key.objectid;
4265			err = btrfs_orphan_cleanup(gang[i]);
4266			if (err)
4267				break;
4268			btrfs_put_root(gang[i]);
4269		}
4270		root_objectid++;
4271	}
4272
4273	/* release the uncleaned roots due to error */
4274	for (; i < ret; i++) {
4275		if (gang[i])
4276			btrfs_put_root(gang[i]);
4277	}
4278	return err;
4279}
4280
4281int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4282{
4283	struct btrfs_root *root = fs_info->tree_root;
4284	struct btrfs_trans_handle *trans;
4285
4286	mutex_lock(&fs_info->cleaner_mutex);
4287	btrfs_run_delayed_iputs(fs_info);
4288	mutex_unlock(&fs_info->cleaner_mutex);
4289	wake_up_process(fs_info->cleaner_kthread);
4290
4291	/* wait until ongoing cleanup work done */
4292	down_write(&fs_info->cleanup_work_sem);
4293	up_write(&fs_info->cleanup_work_sem);
4294
4295	trans = btrfs_join_transaction(root);
4296	if (IS_ERR(trans))
4297		return PTR_ERR(trans);
4298	return btrfs_commit_transaction(trans);
4299}
4300
4301void __cold close_ctree(struct btrfs_fs_info *fs_info)
4302{
 
4303	int ret;
4304
4305	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4306	/*
4307	 * We don't want the cleaner to start new transactions, add more delayed
4308	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4309	 * because that frees the task_struct, and the transaction kthread might
4310	 * still try to wake up the cleaner.
4311	 */
4312	kthread_park(fs_info->cleaner_kthread);
4313
4314	/* wait for the qgroup rescan worker to stop */
4315	btrfs_qgroup_wait_for_completion(fs_info, false);
4316
4317	/* wait for the uuid_scan task to finish */
4318	down(&fs_info->uuid_tree_rescan_sem);
4319	/* avoid complains from lockdep et al., set sem back to initial state */
4320	up(&fs_info->uuid_tree_rescan_sem);
4321
4322	/* pause restriper - we want to resume on mount */
4323	btrfs_pause_balance(fs_info);
4324
4325	btrfs_dev_replace_suspend_for_unmount(fs_info);
4326
4327	btrfs_scrub_cancel(fs_info);
4328
4329	/* wait for any defraggers to finish */
4330	wait_event(fs_info->transaction_wait,
4331		   (atomic_read(&fs_info->defrag_running) == 0));
4332
4333	/* clear out the rbtree of defraggable inodes */
4334	btrfs_cleanup_defrag_inodes(fs_info);
4335
4336	cancel_work_sync(&fs_info->async_reclaim_work);
4337	cancel_work_sync(&fs_info->async_data_reclaim_work);
4338	cancel_work_sync(&fs_info->preempt_reclaim_work);
4339
4340	cancel_work_sync(&fs_info->reclaim_bgs_work);
4341
4342	/* Cancel or finish ongoing discard work */
4343	btrfs_discard_cleanup(fs_info);
4344
4345	if (!sb_rdonly(fs_info->sb)) {
4346		/*
4347		 * The cleaner kthread is stopped, so do one final pass over
4348		 * unused block groups.
 
4349		 */
4350		btrfs_delete_unused_bgs(fs_info);
4351
4352		/*
4353		 * There might be existing delayed inode workers still running
4354		 * and holding an empty delayed inode item. We must wait for
4355		 * them to complete first because they can create a transaction.
4356		 * This happens when someone calls btrfs_balance_delayed_items()
4357		 * and then a transaction commit runs the same delayed nodes
4358		 * before any delayed worker has done something with the nodes.
4359		 * We must wait for any worker here and not at transaction
4360		 * commit time since that could cause a deadlock.
4361		 * This is a very rare case.
4362		 */
4363		btrfs_flush_workqueue(fs_info->delayed_workers);
4364
4365		ret = btrfs_commit_super(fs_info);
4366		if (ret)
4367			btrfs_err(fs_info, "commit super ret %d", ret);
4368	}
4369
4370	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4371	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4372		btrfs_error_commit_super(fs_info);
4373
4374	kthread_stop(fs_info->transaction_kthread);
4375	kthread_stop(fs_info->cleaner_kthread);
4376
4377	ASSERT(list_empty(&fs_info->delayed_iputs));
4378	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4379
4380	if (btrfs_check_quota_leak(fs_info)) {
4381		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4382		btrfs_err(fs_info, "qgroup reserved space leaked");
4383	}
4384
4385	btrfs_free_qgroup_config(fs_info);
4386	ASSERT(list_empty(&fs_info->delalloc_roots));
4387
4388	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4389		btrfs_info(fs_info, "at unmount delalloc count %lld",
4390		       percpu_counter_sum(&fs_info->delalloc_bytes));
4391	}
4392
4393	if (percpu_counter_sum(&fs_info->ordered_bytes))
4394		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4395			   percpu_counter_sum(&fs_info->ordered_bytes));
4396
4397	btrfs_sysfs_remove_mounted(fs_info);
4398	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4399
 
 
4400	btrfs_put_block_group_cache(fs_info);
4401
4402	/*
4403	 * we must make sure there is not any read request to
4404	 * submit after we stopping all workers.
4405	 */
4406	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4407	btrfs_stop_all_workers(fs_info);
4408
4409	/* We shouldn't have any transaction open at this point */
4410	ASSERT(list_empty(&fs_info->trans_list));
4411
4412	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4413	free_root_pointers(fs_info, true);
4414	btrfs_free_fs_roots(fs_info);
4415
4416	/*
4417	 * We must free the block groups after dropping the fs_roots as we could
4418	 * have had an IO error and have left over tree log blocks that aren't
4419	 * cleaned up until the fs roots are freed.  This makes the block group
4420	 * accounting appear to be wrong because there's pending reserved bytes,
4421	 * so make sure we do the block group cleanup afterwards.
4422	 */
4423	btrfs_free_block_groups(fs_info);
4424
4425	iput(fs_info->btree_inode);
4426
4427#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4428	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4429		btrfsic_unmount(fs_info->fs_devices);
4430#endif
4431
 
4432	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4433	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434}
4435
4436int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4437			  int atomic)
4438{
4439	int ret;
4440	struct inode *btree_inode = buf->pages[0]->mapping->host;
4441
4442	ret = extent_buffer_uptodate(buf);
4443	if (!ret)
4444		return ret;
4445
4446	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4447				    parent_transid, atomic);
4448	if (ret == -EAGAIN)
4449		return ret;
4450	return !ret;
4451}
4452
4453void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4454{
4455	struct btrfs_fs_info *fs_info = buf->fs_info;
 
4456	u64 transid = btrfs_header_generation(buf);
4457	int was_dirty;
4458
4459#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4460	/*
4461	 * This is a fast path so only do this check if we have sanity tests
4462	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4463	 * outside of the sanity tests.
4464	 */
4465	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4466		return;
4467#endif
 
 
4468	btrfs_assert_tree_locked(buf);
4469	if (transid != fs_info->generation)
4470		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4471			buf->start, transid, fs_info->generation);
4472	was_dirty = set_extent_buffer_dirty(buf);
4473	if (!was_dirty)
4474		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4475					 buf->len,
4476					 fs_info->dirty_metadata_batch);
4477#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4478	/*
4479	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4480	 * but item data not updated.
4481	 * So here we should only check item pointers, not item data.
4482	 */
4483	if (btrfs_header_level(buf) == 0 &&
4484	    btrfs_check_leaf_relaxed(buf)) {
4485		btrfs_print_leaf(buf);
4486		ASSERT(0);
4487	}
4488#endif
4489}
4490
4491static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4492					int flush_delayed)
4493{
4494	/*
4495	 * looks as though older kernels can get into trouble with
4496	 * this code, they end up stuck in balance_dirty_pages forever
4497	 */
4498	int ret;
4499
4500	if (current->flags & PF_MEMALLOC)
4501		return;
4502
4503	if (flush_delayed)
4504		btrfs_balance_delayed_items(fs_info);
4505
4506	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4507				     BTRFS_DIRTY_METADATA_THRESH,
4508				     fs_info->dirty_metadata_batch);
4509	if (ret > 0) {
4510		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4511	}
4512}
4513
4514void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4515{
4516	__btrfs_btree_balance_dirty(fs_info, 1);
4517}
4518
4519void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4520{
4521	__btrfs_btree_balance_dirty(fs_info, 0);
4522}
4523
4524int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4525		      struct btrfs_key *first_key)
4526{
4527	return btree_read_extent_buffer_pages(buf, parent_transid,
 
 
 
4528					      level, first_key);
4529}
4530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4532{
4533	/* cleanup FS via transaction */
4534	btrfs_cleanup_transaction(fs_info);
4535
4536	mutex_lock(&fs_info->cleaner_mutex);
4537	btrfs_run_delayed_iputs(fs_info);
4538	mutex_unlock(&fs_info->cleaner_mutex);
4539
4540	down_write(&fs_info->cleanup_work_sem);
4541	up_write(&fs_info->cleanup_work_sem);
4542}
4543
4544static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4545{
4546	struct btrfs_root *gang[8];
4547	u64 root_objectid = 0;
4548	int ret;
4549
4550	spin_lock(&fs_info->fs_roots_radix_lock);
4551	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4552					     (void **)gang, root_objectid,
4553					     ARRAY_SIZE(gang))) != 0) {
4554		int i;
4555
4556		for (i = 0; i < ret; i++)
4557			gang[i] = btrfs_grab_root(gang[i]);
4558		spin_unlock(&fs_info->fs_roots_radix_lock);
4559
4560		for (i = 0; i < ret; i++) {
4561			if (!gang[i])
4562				continue;
4563			root_objectid = gang[i]->root_key.objectid;
4564			btrfs_free_log(NULL, gang[i]);
4565			btrfs_put_root(gang[i]);
4566		}
4567		root_objectid++;
4568		spin_lock(&fs_info->fs_roots_radix_lock);
4569	}
4570	spin_unlock(&fs_info->fs_roots_radix_lock);
4571	btrfs_free_log_root_tree(NULL, fs_info);
4572}
4573
4574static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4575{
4576	struct btrfs_ordered_extent *ordered;
4577
4578	spin_lock(&root->ordered_extent_lock);
4579	/*
4580	 * This will just short circuit the ordered completion stuff which will
4581	 * make sure the ordered extent gets properly cleaned up.
4582	 */
4583	list_for_each_entry(ordered, &root->ordered_extents,
4584			    root_extent_list)
4585		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4586	spin_unlock(&root->ordered_extent_lock);
4587}
4588
4589static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4590{
4591	struct btrfs_root *root;
4592	struct list_head splice;
4593
4594	INIT_LIST_HEAD(&splice);
4595
4596	spin_lock(&fs_info->ordered_root_lock);
4597	list_splice_init(&fs_info->ordered_roots, &splice);
4598	while (!list_empty(&splice)) {
4599		root = list_first_entry(&splice, struct btrfs_root,
4600					ordered_root);
4601		list_move_tail(&root->ordered_root,
4602			       &fs_info->ordered_roots);
4603
4604		spin_unlock(&fs_info->ordered_root_lock);
4605		btrfs_destroy_ordered_extents(root);
4606
4607		cond_resched();
4608		spin_lock(&fs_info->ordered_root_lock);
4609	}
4610	spin_unlock(&fs_info->ordered_root_lock);
4611
4612	/*
4613	 * We need this here because if we've been flipped read-only we won't
4614	 * get sync() from the umount, so we need to make sure any ordered
4615	 * extents that haven't had their dirty pages IO start writeout yet
4616	 * actually get run and error out properly.
4617	 */
4618	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4619}
4620
4621static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4622				      struct btrfs_fs_info *fs_info)
4623{
4624	struct rb_node *node;
4625	struct btrfs_delayed_ref_root *delayed_refs;
4626	struct btrfs_delayed_ref_node *ref;
4627	int ret = 0;
4628
4629	delayed_refs = &trans->delayed_refs;
4630
4631	spin_lock(&delayed_refs->lock);
4632	if (atomic_read(&delayed_refs->num_entries) == 0) {
4633		spin_unlock(&delayed_refs->lock);
4634		btrfs_debug(fs_info, "delayed_refs has NO entry");
4635		return ret;
4636	}
4637
4638	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4639		struct btrfs_delayed_ref_head *head;
4640		struct rb_node *n;
4641		bool pin_bytes = false;
4642
4643		head = rb_entry(node, struct btrfs_delayed_ref_head,
4644				href_node);
4645		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4646			continue;
4647
4648		spin_lock(&head->lock);
4649		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4650			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4651				       ref_node);
4652			ref->in_tree = 0;
4653			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4654			RB_CLEAR_NODE(&ref->ref_node);
4655			if (!list_empty(&ref->add_list))
4656				list_del(&ref->add_list);
4657			atomic_dec(&delayed_refs->num_entries);
4658			btrfs_put_delayed_ref(ref);
4659		}
4660		if (head->must_insert_reserved)
4661			pin_bytes = true;
4662		btrfs_free_delayed_extent_op(head->extent_op);
4663		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4664		spin_unlock(&head->lock);
4665		spin_unlock(&delayed_refs->lock);
4666		mutex_unlock(&head->mutex);
4667
4668		if (pin_bytes) {
4669			struct btrfs_block_group *cache;
4670
4671			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4672			BUG_ON(!cache);
4673
4674			spin_lock(&cache->space_info->lock);
4675			spin_lock(&cache->lock);
4676			cache->pinned += head->num_bytes;
4677			btrfs_space_info_update_bytes_pinned(fs_info,
4678				cache->space_info, head->num_bytes);
4679			cache->reserved -= head->num_bytes;
4680			cache->space_info->bytes_reserved -= head->num_bytes;
4681			spin_unlock(&cache->lock);
4682			spin_unlock(&cache->space_info->lock);
4683
4684			btrfs_put_block_group(cache);
4685
4686			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4687				head->bytenr + head->num_bytes - 1);
4688		}
4689		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4690		btrfs_put_delayed_ref_head(head);
4691		cond_resched();
4692		spin_lock(&delayed_refs->lock);
4693	}
4694	btrfs_qgroup_destroy_extent_records(trans);
4695
4696	spin_unlock(&delayed_refs->lock);
4697
4698	return ret;
4699}
4700
4701static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4702{
4703	struct btrfs_inode *btrfs_inode;
4704	struct list_head splice;
4705
4706	INIT_LIST_HEAD(&splice);
4707
4708	spin_lock(&root->delalloc_lock);
4709	list_splice_init(&root->delalloc_inodes, &splice);
4710
4711	while (!list_empty(&splice)) {
4712		struct inode *inode = NULL;
4713		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4714					       delalloc_inodes);
4715		__btrfs_del_delalloc_inode(root, btrfs_inode);
4716		spin_unlock(&root->delalloc_lock);
4717
4718		/*
4719		 * Make sure we get a live inode and that it'll not disappear
4720		 * meanwhile.
4721		 */
4722		inode = igrab(&btrfs_inode->vfs_inode);
4723		if (inode) {
4724			invalidate_inode_pages2(inode->i_mapping);
4725			iput(inode);
4726		}
4727		spin_lock(&root->delalloc_lock);
4728	}
4729	spin_unlock(&root->delalloc_lock);
4730}
4731
4732static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4733{
4734	struct btrfs_root *root;
4735	struct list_head splice;
4736
4737	INIT_LIST_HEAD(&splice);
4738
4739	spin_lock(&fs_info->delalloc_root_lock);
4740	list_splice_init(&fs_info->delalloc_roots, &splice);
4741	while (!list_empty(&splice)) {
4742		root = list_first_entry(&splice, struct btrfs_root,
4743					 delalloc_root);
4744		root = btrfs_grab_root(root);
4745		BUG_ON(!root);
4746		spin_unlock(&fs_info->delalloc_root_lock);
4747
4748		btrfs_destroy_delalloc_inodes(root);
4749		btrfs_put_root(root);
4750
4751		spin_lock(&fs_info->delalloc_root_lock);
4752	}
4753	spin_unlock(&fs_info->delalloc_root_lock);
4754}
4755
4756static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4757					struct extent_io_tree *dirty_pages,
4758					int mark)
4759{
4760	int ret;
4761	struct extent_buffer *eb;
4762	u64 start = 0;
4763	u64 end;
4764
4765	while (1) {
4766		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4767					    mark, NULL);
4768		if (ret)
4769			break;
4770
4771		clear_extent_bits(dirty_pages, start, end, mark);
4772		while (start <= end) {
4773			eb = find_extent_buffer(fs_info, start);
4774			start += fs_info->nodesize;
4775			if (!eb)
4776				continue;
4777			wait_on_extent_buffer_writeback(eb);
4778
4779			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4780					       &eb->bflags))
4781				clear_extent_buffer_dirty(eb);
4782			free_extent_buffer_stale(eb);
4783		}
4784	}
4785
4786	return ret;
4787}
4788
4789static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4790				       struct extent_io_tree *unpin)
4791{
 
4792	u64 start;
4793	u64 end;
4794	int ret;
 
4795
 
 
4796	while (1) {
4797		struct extent_state *cached_state = NULL;
4798
4799		/*
4800		 * The btrfs_finish_extent_commit() may get the same range as
4801		 * ours between find_first_extent_bit and clear_extent_dirty.
4802		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4803		 * the same extent range.
4804		 */
4805		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4806		ret = find_first_extent_bit(unpin, 0, &start, &end,
4807					    EXTENT_DIRTY, &cached_state);
4808		if (ret) {
4809			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4810			break;
4811		}
4812
4813		clear_extent_dirty(unpin, start, end, &cached_state);
4814		free_extent_state(cached_state);
4815		btrfs_error_unpin_extent_range(fs_info, start, end);
4816		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4817		cond_resched();
4818	}
4819
 
 
 
 
 
 
 
 
 
4820	return 0;
4821}
4822
4823static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4824{
4825	struct inode *inode;
4826
4827	inode = cache->io_ctl.inode;
4828	if (inode) {
4829		invalidate_inode_pages2(inode->i_mapping);
4830		BTRFS_I(inode)->generation = 0;
4831		cache->io_ctl.inode = NULL;
4832		iput(inode);
4833	}
4834	ASSERT(cache->io_ctl.pages == NULL);
4835	btrfs_put_block_group(cache);
4836}
4837
4838void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4839			     struct btrfs_fs_info *fs_info)
4840{
4841	struct btrfs_block_group *cache;
4842
4843	spin_lock(&cur_trans->dirty_bgs_lock);
4844	while (!list_empty(&cur_trans->dirty_bgs)) {
4845		cache = list_first_entry(&cur_trans->dirty_bgs,
4846					 struct btrfs_block_group,
4847					 dirty_list);
4848
4849		if (!list_empty(&cache->io_list)) {
4850			spin_unlock(&cur_trans->dirty_bgs_lock);
4851			list_del_init(&cache->io_list);
4852			btrfs_cleanup_bg_io(cache);
4853			spin_lock(&cur_trans->dirty_bgs_lock);
4854		}
4855
4856		list_del_init(&cache->dirty_list);
4857		spin_lock(&cache->lock);
4858		cache->disk_cache_state = BTRFS_DC_ERROR;
4859		spin_unlock(&cache->lock);
4860
4861		spin_unlock(&cur_trans->dirty_bgs_lock);
4862		btrfs_put_block_group(cache);
4863		btrfs_delayed_refs_rsv_release(fs_info, 1);
4864		spin_lock(&cur_trans->dirty_bgs_lock);
4865	}
4866	spin_unlock(&cur_trans->dirty_bgs_lock);
4867
4868	/*
4869	 * Refer to the definition of io_bgs member for details why it's safe
4870	 * to use it without any locking
4871	 */
4872	while (!list_empty(&cur_trans->io_bgs)) {
4873		cache = list_first_entry(&cur_trans->io_bgs,
4874					 struct btrfs_block_group,
4875					 io_list);
4876
4877		list_del_init(&cache->io_list);
4878		spin_lock(&cache->lock);
4879		cache->disk_cache_state = BTRFS_DC_ERROR;
4880		spin_unlock(&cache->lock);
4881		btrfs_cleanup_bg_io(cache);
4882	}
4883}
4884
4885void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4886				   struct btrfs_fs_info *fs_info)
4887{
4888	struct btrfs_device *dev, *tmp;
4889
4890	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4891	ASSERT(list_empty(&cur_trans->dirty_bgs));
4892	ASSERT(list_empty(&cur_trans->io_bgs));
4893
4894	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4895				 post_commit_list) {
4896		list_del_init(&dev->post_commit_list);
4897	}
4898
4899	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4900
4901	cur_trans->state = TRANS_STATE_COMMIT_START;
4902	wake_up(&fs_info->transaction_blocked_wait);
4903
4904	cur_trans->state = TRANS_STATE_UNBLOCKED;
4905	wake_up(&fs_info->transaction_wait);
4906
4907	btrfs_destroy_delayed_inodes(fs_info);
 
4908
4909	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4910				     EXTENT_DIRTY);
4911	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4912
4913	btrfs_free_redirty_list(cur_trans);
4914
4915	cur_trans->state =TRANS_STATE_COMPLETED;
4916	wake_up(&cur_trans->commit_wait);
4917}
4918
4919static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4920{
4921	struct btrfs_transaction *t;
4922
4923	mutex_lock(&fs_info->transaction_kthread_mutex);
4924
4925	spin_lock(&fs_info->trans_lock);
4926	while (!list_empty(&fs_info->trans_list)) {
4927		t = list_first_entry(&fs_info->trans_list,
4928				     struct btrfs_transaction, list);
4929		if (t->state >= TRANS_STATE_COMMIT_START) {
4930			refcount_inc(&t->use_count);
4931			spin_unlock(&fs_info->trans_lock);
4932			btrfs_wait_for_commit(fs_info, t->transid);
4933			btrfs_put_transaction(t);
4934			spin_lock(&fs_info->trans_lock);
4935			continue;
4936		}
4937		if (t == fs_info->running_transaction) {
4938			t->state = TRANS_STATE_COMMIT_DOING;
4939			spin_unlock(&fs_info->trans_lock);
4940			/*
4941			 * We wait for 0 num_writers since we don't hold a trans
4942			 * handle open currently for this transaction.
4943			 */
4944			wait_event(t->writer_wait,
4945				   atomic_read(&t->num_writers) == 0);
4946		} else {
4947			spin_unlock(&fs_info->trans_lock);
4948		}
4949		btrfs_cleanup_one_transaction(t, fs_info);
4950
4951		spin_lock(&fs_info->trans_lock);
4952		if (t == fs_info->running_transaction)
4953			fs_info->running_transaction = NULL;
4954		list_del_init(&t->list);
4955		spin_unlock(&fs_info->trans_lock);
4956
4957		btrfs_put_transaction(t);
4958		trace_btrfs_transaction_commit(fs_info->tree_root);
4959		spin_lock(&fs_info->trans_lock);
4960	}
4961	spin_unlock(&fs_info->trans_lock);
4962	btrfs_destroy_all_ordered_extents(fs_info);
4963	btrfs_destroy_delayed_inodes(fs_info);
4964	btrfs_assert_delayed_root_empty(fs_info);
 
4965	btrfs_destroy_all_delalloc_inodes(fs_info);
4966	btrfs_drop_all_logs(fs_info);
4967	mutex_unlock(&fs_info->transaction_kthread_mutex);
4968
4969	return 0;
4970}
4971
4972int btrfs_init_root_free_objectid(struct btrfs_root *root)
4973{
4974	struct btrfs_path *path;
4975	int ret;
4976	struct extent_buffer *l;
4977	struct btrfs_key search_key;
4978	struct btrfs_key found_key;
4979	int slot;
4980
4981	path = btrfs_alloc_path();
4982	if (!path)
4983		return -ENOMEM;
4984
4985	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4986	search_key.type = -1;
4987	search_key.offset = (u64)-1;
4988	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4989	if (ret < 0)
4990		goto error;
4991	BUG_ON(ret == 0); /* Corruption */
4992	if (path->slots[0] > 0) {
4993		slot = path->slots[0] - 1;
4994		l = path->nodes[0];
4995		btrfs_item_key_to_cpu(l, &found_key, slot);
4996		root->free_objectid = max_t(u64, found_key.objectid + 1,
4997					    BTRFS_FIRST_FREE_OBJECTID);
4998	} else {
4999		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5000	}
5001	ret = 0;
5002error:
5003	btrfs_free_path(path);
5004	return ret;
5005}
5006
5007int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5008{
5009	int ret;
5010	mutex_lock(&root->objectid_mutex);
 
 
 
 
 
5011
5012	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5013		btrfs_warn(root->fs_info,
5014			   "the objectid of root %llu reaches its highest value",
5015			   root->root_key.objectid);
5016		ret = -ENOSPC;
5017		goto out;
5018	}
5019
5020	*objectid = root->free_objectid++;
5021	ret = 0;
5022out:
5023	mutex_unlock(&root->objectid_mutex);
5024	return ret;
5025}