Loading...
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <linuxwifi@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63/*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69#ifndef __iwl_commands_h__
70#define __iwl_commands_h__
71
72#include <linux/ieee80211.h>
73#include <linux/types.h>
74
75
76enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
80
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
86
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
105
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
135
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
143
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
146
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
150
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
154
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
165
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
189
190 REPLY_MAX = 0xff
191};
192
193/*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
201 */
202#define IWL_MIN_NUM_QUEUES 11
203
204/*
205 * Command queue depends on iPAN support.
206 */
207#define IWL_DEFAULT_CMD_QUEUE_NUM 4
208#define IWL_IPAN_CMD_QUEUE_NUM 9
209
210#define IWL_TX_FIFO_BK 0 /* shared */
211#define IWL_TX_FIFO_BE 1
212#define IWL_TX_FIFO_VI 2 /* shared */
213#define IWL_TX_FIFO_VO 3
214#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215#define IWL_TX_FIFO_BE_IPAN 4
216#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217#define IWL_TX_FIFO_VO_IPAN 5
218/* re-uses the VO FIFO, uCode will properly flush/schedule */
219#define IWL_TX_FIFO_AUX 5
220#define IWL_TX_FIFO_UNUSED 255
221
222#define IWLAGN_CMD_FIFO_NUM 7
223
224/*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229#define IWL_IPAN_MCAST_QUEUE 8
230
231/******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238/**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
256 *
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
260 *
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
278 */
279#define RATE_MCS_CODE_MSK 0x7
280#define RATE_MCS_SPATIAL_POS 3
281#define RATE_MCS_SPATIAL_MSK 0x18
282#define RATE_MCS_HT_DUP_POS 5
283#define RATE_MCS_HT_DUP_MSK 0x20
284/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285#define RATE_MCS_RATE_MSK 0xff
286
287/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288#define RATE_MCS_FLAGS_POS 8
289#define RATE_MCS_HT_POS 8
290#define RATE_MCS_HT_MSK 0x100
291
292/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293#define RATE_MCS_CCK_POS 9
294#define RATE_MCS_CCK_MSK 0x200
295
296/* Bit 10: (1) Use Green Field preamble */
297#define RATE_MCS_GF_POS 10
298#define RATE_MCS_GF_MSK 0x400
299
300/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301#define RATE_MCS_HT40_POS 11
302#define RATE_MCS_HT40_MSK 0x800
303
304/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305#define RATE_MCS_DUP_POS 12
306#define RATE_MCS_DUP_MSK 0x1000
307
308/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309#define RATE_MCS_SGI_POS 13
310#define RATE_MCS_SGI_MSK 0x2000
311
312/**
313 * rate_n_flags Tx antenna masks
314 * bit14:16
315 */
316#define RATE_MCS_ANT_POS 14
317#define RATE_MCS_ANT_A_MSK 0x04000
318#define RATE_MCS_ANT_B_MSK 0x08000
319#define RATE_MCS_ANT_C_MSK 0x10000
320#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
321#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
322#define RATE_ANT_NUM 3
323
324#define POWER_TABLE_NUM_ENTRIES 33
325#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
326#define POWER_TABLE_CCK_ENTRY 32
327
328#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
329#define IWL_PWR_CCK_ENTRIES 2
330
331/**
332 * struct tx_power_dual_stream
333 *
334 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
335 *
336 * Same format as iwl_tx_power_dual_stream, but __le32
337 */
338struct tx_power_dual_stream {
339 __le32 dw;
340} __packed;
341
342/**
343 * Command REPLY_TX_POWER_DBM_CMD = 0x98
344 * struct iwlagn_tx_power_dbm_cmd
345 */
346#define IWLAGN_TX_POWER_AUTO 0x7f
347#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
348
349struct iwlagn_tx_power_dbm_cmd {
350 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
351 u8 flags;
352 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
353 u8 reserved;
354} __packed;
355
356/**
357 * Command TX_ANT_CONFIGURATION_CMD = 0x98
358 * This command is used to configure valid Tx antenna.
359 * By default uCode concludes the valid antenna according to the radio flavor.
360 * This command enables the driver to override/modify this conclusion.
361 */
362struct iwl_tx_ant_config_cmd {
363 __le32 valid;
364} __packed;
365
366/******************************************************************************
367 * (0a)
368 * Alive and Error Commands & Responses:
369 *
370 *****************************************************************************/
371
372#define UCODE_VALID_OK cpu_to_le32(0x1)
373
374/**
375 * REPLY_ALIVE = 0x1 (response only, not a command)
376 *
377 * uCode issues this "alive" notification once the runtime image is ready
378 * to receive commands from the driver. This is the *second* "alive"
379 * notification that the driver will receive after rebooting uCode;
380 * this "alive" is indicated by subtype field != 9.
381 *
382 * See comments documenting "BSM" (bootstrap state machine).
383 *
384 * This response includes two pointers to structures within the device's
385 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
386 *
387 * 1) log_event_table_ptr indicates base of the event log. This traces
388 * a 256-entry history of uCode execution within a circular buffer.
389 * Its header format is:
390 *
391 * __le32 log_size; log capacity (in number of entries)
392 * __le32 type; (1) timestamp with each entry, (0) no timestamp
393 * __le32 wraps; # times uCode has wrapped to top of circular buffer
394 * __le32 write_index; next circular buffer entry that uCode would fill
395 *
396 * The header is followed by the circular buffer of log entries. Entries
397 * with timestamps have the following format:
398 *
399 * __le32 event_id; range 0 - 1500
400 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
401 * __le32 data; event_id-specific data value
402 *
403 * Entries without timestamps contain only event_id and data.
404 *
405 *
406 * 2) error_event_table_ptr indicates base of the error log. This contains
407 * information about any uCode error that occurs. For agn, the format
408 * of the error log is defined by struct iwl_error_event_table.
409 *
410 * The Linux driver can print both logs to the system log when a uCode error
411 * occurs.
412 */
413
414/*
415 * Note: This structure is read from the device with IO accesses,
416 * and the reading already does the endian conversion. As it is
417 * read with u32-sized accesses, any members with a different size
418 * need to be ordered correctly though!
419 */
420struct iwl_error_event_table {
421 u32 valid; /* (nonzero) valid, (0) log is empty */
422 u32 error_id; /* type of error */
423 u32 pc; /* program counter */
424 u32 blink1; /* branch link */
425 u32 blink2; /* branch link */
426 u32 ilink1; /* interrupt link */
427 u32 ilink2; /* interrupt link */
428 u32 data1; /* error-specific data */
429 u32 data2; /* error-specific data */
430 u32 line; /* source code line of error */
431 u32 bcon_time; /* beacon timer */
432 u32 tsf_low; /* network timestamp function timer */
433 u32 tsf_hi; /* network timestamp function timer */
434 u32 gp1; /* GP1 timer register */
435 u32 gp2; /* GP2 timer register */
436 u32 gp3; /* GP3 timer register */
437 u32 ucode_ver; /* uCode version */
438 u32 hw_ver; /* HW Silicon version */
439 u32 brd_ver; /* HW board version */
440 u32 log_pc; /* log program counter */
441 u32 frame_ptr; /* frame pointer */
442 u32 stack_ptr; /* stack pointer */
443 u32 hcmd; /* last host command header */
444 u32 isr0; /* isr status register LMPM_NIC_ISR0:
445 * rxtx_flag */
446 u32 isr1; /* isr status register LMPM_NIC_ISR1:
447 * host_flag */
448 u32 isr2; /* isr status register LMPM_NIC_ISR2:
449 * enc_flag */
450 u32 isr3; /* isr status register LMPM_NIC_ISR3:
451 * time_flag */
452 u32 isr4; /* isr status register LMPM_NIC_ISR4:
453 * wico interrupt */
454 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
455 u32 wait_event; /* wait event() caller address */
456 u32 l2p_control; /* L2pControlField */
457 u32 l2p_duration; /* L2pDurationField */
458 u32 l2p_mhvalid; /* L2pMhValidBits */
459 u32 l2p_addr_match; /* L2pAddrMatchStat */
460 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
461 * (LMPM_PMG_SEL) */
462 u32 u_timestamp; /* indicate when the date and time of the
463 * compilation */
464 u32 flow_handler; /* FH read/write pointers, RX credit */
465} __packed;
466
467struct iwl_alive_resp {
468 u8 ucode_minor;
469 u8 ucode_major;
470 __le16 reserved1;
471 u8 sw_rev[8];
472 u8 ver_type;
473 u8 ver_subtype; /* not "9" for runtime alive */
474 __le16 reserved2;
475 __le32 log_event_table_ptr; /* SRAM address for event log */
476 __le32 error_event_table_ptr; /* SRAM address for error log */
477 __le32 timestamp;
478 __le32 is_valid;
479} __packed;
480
481/*
482 * REPLY_ERROR = 0x2 (response only, not a command)
483 */
484struct iwl_error_resp {
485 __le32 error_type;
486 u8 cmd_id;
487 u8 reserved1;
488 __le16 bad_cmd_seq_num;
489 __le32 error_info;
490 __le64 timestamp;
491} __packed;
492
493/******************************************************************************
494 * (1)
495 * RXON Commands & Responses:
496 *
497 *****************************************************************************/
498
499/*
500 * Rx config defines & structure
501 */
502/* rx_config device types */
503enum {
504 RXON_DEV_TYPE_AP = 1,
505 RXON_DEV_TYPE_ESS = 3,
506 RXON_DEV_TYPE_IBSS = 4,
507 RXON_DEV_TYPE_SNIFFER = 6,
508 RXON_DEV_TYPE_CP = 7,
509 RXON_DEV_TYPE_2STA = 8,
510 RXON_DEV_TYPE_P2P = 9,
511};
512
513
514#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
515#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
516#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
517#define RXON_RX_CHAIN_VALID_POS (1)
518#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
519#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
520#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
521#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
522#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
523#define RXON_RX_CHAIN_CNT_POS (10)
524#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
525#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
526#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
527#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
528
529/* rx_config flags */
530/* band & modulation selection */
531#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
532#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
533/* auto detection enable */
534#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
535/* TGg protection when tx */
536#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
537/* cck short slot & preamble */
538#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
539#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
540/* antenna selection */
541#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
542#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
543#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
544#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
545/* radar detection enable */
546#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
547#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
548/* rx response to host with 8-byte TSF
549* (according to ON_AIR deassertion) */
550#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
551
552
553/* HT flags */
554#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
555#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
556
557#define RXON_FLG_HT_OPERATING_MODE_POS (23)
558
559#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
560#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
561
562#define RXON_FLG_CHANNEL_MODE_POS (25)
563#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
564
565/* channel mode */
566enum {
567 CHANNEL_MODE_LEGACY = 0,
568 CHANNEL_MODE_PURE_40 = 1,
569 CHANNEL_MODE_MIXED = 2,
570 CHANNEL_MODE_RESERVED = 3,
571};
572#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
573#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
574#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
575
576/* CTS to self (if spec allows) flag */
577#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
578
579/* rx_config filter flags */
580/* accept all data frames */
581#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
582/* pass control & management to host */
583#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
584/* accept multi-cast */
585#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
586/* don't decrypt uni-cast frames */
587#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
588/* don't decrypt multi-cast frames */
589#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
590/* STA is associated */
591#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
592/* transfer to host non bssid beacons in associated state */
593#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
594
595/**
596 * REPLY_RXON = 0x10 (command, has simple generic response)
597 *
598 * RXON tunes the radio tuner to a service channel, and sets up a number
599 * of parameters that are used primarily for Rx, but also for Tx operations.
600 *
601 * NOTE: When tuning to a new channel, driver must set the
602 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
603 * info within the device, including the station tables, tx retry
604 * rate tables, and txpower tables. Driver must build a new station
605 * table and txpower table before transmitting anything on the RXON
606 * channel.
607 *
608 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
609 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
610 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
611 */
612
613struct iwl_rxon_cmd {
614 u8 node_addr[6];
615 __le16 reserved1;
616 u8 bssid_addr[6];
617 __le16 reserved2;
618 u8 wlap_bssid_addr[6];
619 __le16 reserved3;
620 u8 dev_type;
621 u8 air_propagation;
622 __le16 rx_chain;
623 u8 ofdm_basic_rates;
624 u8 cck_basic_rates;
625 __le16 assoc_id;
626 __le32 flags;
627 __le32 filter_flags;
628 __le16 channel;
629 u8 ofdm_ht_single_stream_basic_rates;
630 u8 ofdm_ht_dual_stream_basic_rates;
631 u8 ofdm_ht_triple_stream_basic_rates;
632 u8 reserved5;
633 __le16 acquisition_data;
634 __le16 reserved6;
635} __packed;
636
637/*
638 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
639 */
640struct iwl_rxon_assoc_cmd {
641 __le32 flags;
642 __le32 filter_flags;
643 u8 ofdm_basic_rates;
644 u8 cck_basic_rates;
645 __le16 reserved1;
646 u8 ofdm_ht_single_stream_basic_rates;
647 u8 ofdm_ht_dual_stream_basic_rates;
648 u8 ofdm_ht_triple_stream_basic_rates;
649 u8 reserved2;
650 __le16 rx_chain_select_flags;
651 __le16 acquisition_data;
652 __le32 reserved3;
653} __packed;
654
655#define IWL_CONN_MAX_LISTEN_INTERVAL 10
656#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
657
658/*
659 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
660 */
661struct iwl_rxon_time_cmd {
662 __le64 timestamp;
663 __le16 beacon_interval;
664 __le16 atim_window;
665 __le32 beacon_init_val;
666 __le16 listen_interval;
667 u8 dtim_period;
668 u8 delta_cp_bss_tbtts;
669} __packed;
670
671/*
672 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
673 */
674/**
675 * struct iwl5000_channel_switch_cmd
676 * @band: 0- 5.2GHz, 1- 2.4GHz
677 * @expect_beacon: 0- resume transmits after channel switch
678 * 1- wait for beacon to resume transmits
679 * @channel: new channel number
680 * @rxon_flags: Rx on flags
681 * @rxon_filter_flags: filtering parameters
682 * @switch_time: switch time in extended beacon format
683 * @reserved: reserved bytes
684 */
685struct iwl5000_channel_switch_cmd {
686 u8 band;
687 u8 expect_beacon;
688 __le16 channel;
689 __le32 rxon_flags;
690 __le32 rxon_filter_flags;
691 __le32 switch_time;
692 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
693} __packed;
694
695/**
696 * struct iwl6000_channel_switch_cmd
697 * @band: 0- 5.2GHz, 1- 2.4GHz
698 * @expect_beacon: 0- resume transmits after channel switch
699 * 1- wait for beacon to resume transmits
700 * @channel: new channel number
701 * @rxon_flags: Rx on flags
702 * @rxon_filter_flags: filtering parameters
703 * @switch_time: switch time in extended beacon format
704 * @reserved: reserved bytes
705 */
706struct iwl6000_channel_switch_cmd {
707 u8 band;
708 u8 expect_beacon;
709 __le16 channel;
710 __le32 rxon_flags;
711 __le32 rxon_filter_flags;
712 __le32 switch_time;
713 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
714} __packed;
715
716/*
717 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
718 */
719struct iwl_csa_notification {
720 __le16 band;
721 __le16 channel;
722 __le32 status; /* 0 - OK, 1 - fail */
723} __packed;
724
725/******************************************************************************
726 * (2)
727 * Quality-of-Service (QOS) Commands & Responses:
728 *
729 *****************************************************************************/
730
731/**
732 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
733 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
734 *
735 * @cw_min: Contention window, start value in numbers of slots.
736 * Should be a power-of-2, minus 1. Device's default is 0x0f.
737 * @cw_max: Contention window, max value in numbers of slots.
738 * Should be a power-of-2, minus 1. Device's default is 0x3f.
739 * @aifsn: Number of slots in Arbitration Interframe Space (before
740 * performing random backoff timing prior to Tx). Device default 1.
741 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
742 *
743 * Device will automatically increase contention window by (2*CW) + 1 for each
744 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
745 * value, to cap the CW value.
746 */
747struct iwl_ac_qos {
748 __le16 cw_min;
749 __le16 cw_max;
750 u8 aifsn;
751 u8 reserved1;
752 __le16 edca_txop;
753} __packed;
754
755/* QoS flags defines */
756#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
757#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
758#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
759
760/* Number of Access Categories (AC) (EDCA), queues 0..3 */
761#define AC_NUM 4
762
763/*
764 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
765 *
766 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
767 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
768 */
769struct iwl_qosparam_cmd {
770 __le32 qos_flags;
771 struct iwl_ac_qos ac[AC_NUM];
772} __packed;
773
774/******************************************************************************
775 * (3)
776 * Add/Modify Stations Commands & Responses:
777 *
778 *****************************************************************************/
779/*
780 * Multi station support
781 */
782
783/* Special, dedicated locations within device's station table */
784#define IWL_AP_ID 0
785#define IWL_AP_ID_PAN 1
786#define IWL_STA_ID 2
787#define IWLAGN_PAN_BCAST_ID 14
788#define IWLAGN_BROADCAST_ID 15
789#define IWLAGN_STATION_COUNT 16
790
791#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
792
793#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
794#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
795#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
796#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
797#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
798#define STA_FLG_MAX_AGG_SIZE_POS (19)
799#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
800#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
801#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
802#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
803#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
804
805/* Use in mode field. 1: modify existing entry, 0: add new station entry */
806#define STA_CONTROL_MODIFY_MSK 0x01
807
808/* key flags __le16*/
809#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
810#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
811#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
812#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
813#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
814
815#define STA_KEY_FLG_KEYID_POS 8
816#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
817/* wep key is either from global key (0) or from station info array (1) */
818#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
819
820/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
821#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
822#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
823#define STA_KEY_MAX_NUM 8
824#define STA_KEY_MAX_NUM_PAN 16
825/* must not match WEP_INVALID_OFFSET */
826#define IWLAGN_HW_KEY_DEFAULT 0xfe
827
828/* Flags indicate whether to modify vs. don't change various station params */
829#define STA_MODIFY_KEY_MASK 0x01
830#define STA_MODIFY_TID_DISABLE_TX 0x02
831#define STA_MODIFY_TX_RATE_MSK 0x04
832#define STA_MODIFY_ADDBA_TID_MSK 0x08
833#define STA_MODIFY_DELBA_TID_MSK 0x10
834#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
835
836/* agn */
837struct iwl_keyinfo {
838 __le16 key_flags;
839 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
840 u8 reserved1;
841 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
842 u8 key_offset;
843 u8 reserved2;
844 u8 key[16]; /* 16-byte unicast decryption key */
845 __le64 tx_secur_seq_cnt;
846 __le64 hw_tkip_mic_rx_key;
847 __le64 hw_tkip_mic_tx_key;
848} __packed;
849
850/**
851 * struct sta_id_modify
852 * @addr[ETH_ALEN]: station's MAC address
853 * @sta_id: index of station in uCode's station table
854 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
855 *
856 * Driver selects unused table index when adding new station,
857 * or the index to a pre-existing station entry when modifying that station.
858 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
859 *
860 * modify_mask flags select which parameters to modify vs. leave alone.
861 */
862struct sta_id_modify {
863 u8 addr[ETH_ALEN];
864 __le16 reserved1;
865 u8 sta_id;
866 u8 modify_mask;
867 __le16 reserved2;
868} __packed;
869
870/*
871 * REPLY_ADD_STA = 0x18 (command)
872 *
873 * The device contains an internal table of per-station information,
874 * with info on security keys, aggregation parameters, and Tx rates for
875 * initial Tx attempt and any retries (agn devices uses
876 * REPLY_TX_LINK_QUALITY_CMD,
877 *
878 * REPLY_ADD_STA sets up the table entry for one station, either creating
879 * a new entry, or modifying a pre-existing one.
880 *
881 * NOTE: RXON command (without "associated" bit set) wipes the station table
882 * clean. Moving into RF_KILL state does this also. Driver must set up
883 * new station table before transmitting anything on the RXON channel
884 * (except active scans or active measurements; those commands carry
885 * their own txpower/rate setup data).
886 *
887 * When getting started on a new channel, driver must set up the
888 * IWL_BROADCAST_ID entry (last entry in the table). For a client
889 * station in a BSS, once an AP is selected, driver sets up the AP STA
890 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
891 * are all that are needed for a BSS client station. If the device is
892 * used as AP, or in an IBSS network, driver must set up station table
893 * entries for all STAs in network, starting with index IWL_STA_ID.
894 */
895
896struct iwl_addsta_cmd {
897 u8 mode; /* 1: modify existing, 0: add new station */
898 u8 reserved[3];
899 struct sta_id_modify sta;
900 struct iwl_keyinfo key;
901 __le32 station_flags; /* STA_FLG_* */
902 __le32 station_flags_msk; /* STA_FLG_* */
903
904 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
905 * corresponding to bit (e.g. bit 5 controls TID 5).
906 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
907 __le16 tid_disable_tx;
908 __le16 legacy_reserved;
909
910 /* TID for which to add block-ack support.
911 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
912 u8 add_immediate_ba_tid;
913
914 /* TID for which to remove block-ack support.
915 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
916 u8 remove_immediate_ba_tid;
917
918 /* Starting Sequence Number for added block-ack support.
919 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
920 __le16 add_immediate_ba_ssn;
921
922 /*
923 * Number of packets OK to transmit to station even though
924 * it is asleep -- used to synchronise PS-poll and u-APSD
925 * responses while ucode keeps track of STA sleep state.
926 */
927 __le16 sleep_tx_count;
928
929 __le16 reserved2;
930} __packed;
931
932
933#define ADD_STA_SUCCESS_MSK 0x1
934#define ADD_STA_NO_ROOM_IN_TABLE 0x2
935#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
936#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
937/*
938 * REPLY_ADD_STA = 0x18 (response)
939 */
940struct iwl_add_sta_resp {
941 u8 status; /* ADD_STA_* */
942} __packed;
943
944#define REM_STA_SUCCESS_MSK 0x1
945/*
946 * REPLY_REM_STA = 0x19 (response)
947 */
948struct iwl_rem_sta_resp {
949 u8 status;
950} __packed;
951
952/*
953 * REPLY_REM_STA = 0x19 (command)
954 */
955struct iwl_rem_sta_cmd {
956 u8 num_sta; /* number of removed stations */
957 u8 reserved[3];
958 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
959 u8 reserved2[2];
960} __packed;
961
962
963/* WiFi queues mask */
964#define IWL_SCD_BK_MSK BIT(0)
965#define IWL_SCD_BE_MSK BIT(1)
966#define IWL_SCD_VI_MSK BIT(2)
967#define IWL_SCD_VO_MSK BIT(3)
968#define IWL_SCD_MGMT_MSK BIT(3)
969
970/* PAN queues mask */
971#define IWL_PAN_SCD_BK_MSK BIT(4)
972#define IWL_PAN_SCD_BE_MSK BIT(5)
973#define IWL_PAN_SCD_VI_MSK BIT(6)
974#define IWL_PAN_SCD_VO_MSK BIT(7)
975#define IWL_PAN_SCD_MGMT_MSK BIT(7)
976#define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
977
978#define IWL_AGG_TX_QUEUE_MSK 0xffc00
979
980#define IWL_DROP_ALL BIT(1)
981
982/*
983 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
984 *
985 * When using full FIFO flush this command checks the scheduler HW block WR/RD
986 * pointers to check if all the frames were transferred by DMA into the
987 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
988 * empty the command can finish.
989 * This command is used to flush the TXFIFO from transmit commands, it may
990 * operate on single or multiple queues, the command queue can't be flushed by
991 * this command. The command response is returned when all the queue flush
992 * operations are done. Each TX command flushed return response with the FLUSH
993 * status set in the TX response status. When FIFO flush operation is used,
994 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
995 * are set.
996 *
997 * @queue_control: bit mask for which queues to flush
998 * @flush_control: flush controls
999 * 0: Dump single MSDU
1000 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1001 * 2: Dump all FIFO
1002 */
1003struct iwl_txfifo_flush_cmd_v3 {
1004 __le32 queue_control;
1005 __le16 flush_control;
1006 __le16 reserved;
1007} __packed;
1008
1009struct iwl_txfifo_flush_cmd_v2 {
1010 __le16 queue_control;
1011 __le16 flush_control;
1012} __packed;
1013
1014/*
1015 * REPLY_WEP_KEY = 0x20
1016 */
1017struct iwl_wep_key {
1018 u8 key_index;
1019 u8 key_offset;
1020 u8 reserved1[2];
1021 u8 key_size;
1022 u8 reserved2[3];
1023 u8 key[16];
1024} __packed;
1025
1026struct iwl_wep_cmd {
1027 u8 num_keys;
1028 u8 global_key_type;
1029 u8 flags;
1030 u8 reserved;
1031 struct iwl_wep_key key[0];
1032} __packed;
1033
1034#define WEP_KEY_WEP_TYPE 1
1035#define WEP_KEYS_MAX 4
1036#define WEP_INVALID_OFFSET 0xff
1037#define WEP_KEY_LEN_64 5
1038#define WEP_KEY_LEN_128 13
1039
1040/******************************************************************************
1041 * (4)
1042 * Rx Responses:
1043 *
1044 *****************************************************************************/
1045
1046#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1047#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1048
1049#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1050#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1051#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1052#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1053#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1054#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1055#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1056
1057#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1058#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1059#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1060#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1061#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1062#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1063
1064#define RX_RES_STATUS_STATION_FOUND (1<<6)
1065#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1066
1067#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1068#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1069#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1070#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1071#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1072
1073#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1074#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1075#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1076#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1077
1078
1079#define IWLAGN_RX_RES_PHY_CNT 8
1080#define IWLAGN_RX_RES_AGC_IDX 1
1081#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1082#define IWLAGN_RX_RES_RSSI_C_IDX 3
1083#define IWLAGN_OFDM_AGC_MSK 0xfe00
1084#define IWLAGN_OFDM_AGC_BIT_POS 9
1085#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1086#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1087#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1088#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1089#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1090#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1091#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1092#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1093#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1094
1095struct iwlagn_non_cfg_phy {
1096 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1097} __packed;
1098
1099
1100/*
1101 * REPLY_RX = 0xc3 (response only, not a command)
1102 * Used only for legacy (non 11n) frames.
1103 */
1104struct iwl_rx_phy_res {
1105 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1106 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1107 u8 stat_id; /* configurable DSP phy data set ID */
1108 u8 reserved1;
1109 __le64 timestamp; /* TSF at on air rise */
1110 __le32 beacon_time_stamp; /* beacon at on-air rise */
1111 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1112 __le16 channel; /* channel number */
1113 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1114 __le32 rate_n_flags; /* RATE_MCS_* */
1115 __le16 byte_count; /* frame's byte-count */
1116 __le16 frame_time; /* frame's time on the air */
1117} __packed;
1118
1119struct iwl_rx_mpdu_res_start {
1120 __le16 byte_count;
1121 __le16 reserved;
1122} __packed;
1123
1124
1125/******************************************************************************
1126 * (5)
1127 * Tx Commands & Responses:
1128 *
1129 * Driver must place each REPLY_TX command into one of the prioritized Tx
1130 * queues in host DRAM, shared between driver and device (see comments for
1131 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1132 * are preparing to transmit, the device pulls the Tx command over the PCI
1133 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1134 * from which data will be transmitted.
1135 *
1136 * uCode handles all timing and protocol related to control frames
1137 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1138 * handle reception of block-acks; uCode updates the host driver via
1139 * REPLY_COMPRESSED_BA.
1140 *
1141 * uCode handles retrying Tx when an ACK is expected but not received.
1142 * This includes trying lower data rates than the one requested in the Tx
1143 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1144 *
1145 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1146 * This command must be executed after every RXON command, before Tx can occur.
1147 *****************************************************************************/
1148
1149/* REPLY_TX Tx flags field */
1150
1151/*
1152 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1153 * before this frame. if CTS-to-self required check
1154 * RXON_FLG_SELF_CTS_EN status.
1155 */
1156#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1157
1158/* 1: Expect ACK from receiving station
1159 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1160 * Set this for unicast frames, but not broadcast/multicast. */
1161#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1162
1163/* For agn devices:
1164 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1165 * Tx command's initial_rate_index indicates first rate to try;
1166 * uCode walks through table for additional Tx attempts.
1167 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1168 * This rate will be used for all Tx attempts; it will not be scaled. */
1169#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1170
1171/* 1: Expect immediate block-ack.
1172 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1173#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1174
1175/* Tx antenna selection field; reserved (0) for agn devices. */
1176#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1177
1178/* 1: Ignore Bluetooth priority for this frame.
1179 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1180#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1181
1182/* 1: uCode overrides sequence control field in MAC header.
1183 * 0: Driver provides sequence control field in MAC header.
1184 * Set this for management frames, non-QOS data frames, non-unicast frames,
1185 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1186#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1187
1188/* 1: This frame is non-last MPDU; more fragments are coming.
1189 * 0: Last fragment, or not using fragmentation. */
1190#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1191
1192/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1193 * 0: No TSF required in outgoing frame.
1194 * Set this for transmitting beacons and probe responses. */
1195#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1196
1197/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1198 * alignment of frame's payload data field.
1199 * 0: No pad
1200 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1201 * field (but not both). Driver must align frame data (i.e. data following
1202 * MAC header) to DWORD boundary. */
1203#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1204
1205/* accelerate aggregation support
1206 * 0 - no CCMP encryption; 1 - CCMP encryption */
1207#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1208
1209/* HCCA-AP - disable duration overwriting. */
1210#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1211
1212
1213/*
1214 * TX command security control
1215 */
1216#define TX_CMD_SEC_WEP 0x01
1217#define TX_CMD_SEC_CCM 0x02
1218#define TX_CMD_SEC_TKIP 0x03
1219#define TX_CMD_SEC_MSK 0x03
1220#define TX_CMD_SEC_SHIFT 6
1221#define TX_CMD_SEC_KEY128 0x08
1222
1223/*
1224 * REPLY_TX = 0x1c (command)
1225 */
1226
1227/*
1228 * Used for managing Tx retries when expecting block-acks.
1229 * Driver should set these fields to 0.
1230 */
1231struct iwl_dram_scratch {
1232 u8 try_cnt; /* Tx attempts */
1233 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1234 __le16 reserved;
1235} __packed;
1236
1237struct iwl_tx_cmd {
1238 /*
1239 * MPDU byte count:
1240 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1241 * + 8 byte IV for CCM or TKIP (not used for WEP)
1242 * + Data payload
1243 * + 8-byte MIC (not used for CCM/WEP)
1244 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1245 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1246 * Range: 14-2342 bytes.
1247 */
1248 __le16 len;
1249
1250 /*
1251 * MPDU or MSDU byte count for next frame.
1252 * Used for fragmentation and bursting, but not 11n aggregation.
1253 * Same as "len", but for next frame. Set to 0 if not applicable.
1254 */
1255 __le16 next_frame_len;
1256
1257 __le32 tx_flags; /* TX_CMD_FLG_* */
1258
1259 /* uCode may modify this field of the Tx command (in host DRAM!).
1260 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1261 struct iwl_dram_scratch scratch;
1262
1263 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1264 __le32 rate_n_flags; /* RATE_MCS_* */
1265
1266 /* Index of destination station in uCode's station table */
1267 u8 sta_id;
1268
1269 /* Type of security encryption: CCM or TKIP */
1270 u8 sec_ctl; /* TX_CMD_SEC_* */
1271
1272 /*
1273 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1274 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1275 * data frames, this field may be used to selectively reduce initial
1276 * rate (via non-0 value) for special frames (e.g. management), while
1277 * still supporting rate scaling for all frames.
1278 */
1279 u8 initial_rate_index;
1280 u8 reserved;
1281 u8 key[16];
1282 __le16 next_frame_flags;
1283 __le16 reserved2;
1284 union {
1285 __le32 life_time;
1286 __le32 attempt;
1287 } stop_time;
1288
1289 /* Host DRAM physical address pointer to "scratch" in this command.
1290 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1291 __le32 dram_lsb_ptr;
1292 u8 dram_msb_ptr;
1293
1294 u8 rts_retry_limit; /*byte 50 */
1295 u8 data_retry_limit; /*byte 51 */
1296 u8 tid_tspec;
1297 union {
1298 __le16 pm_frame_timeout;
1299 __le16 attempt_duration;
1300 } timeout;
1301
1302 /*
1303 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1304 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1305 */
1306 __le16 driver_txop;
1307
1308 /*
1309 * MAC header goes here, followed by 2 bytes padding if MAC header
1310 * length is 26 or 30 bytes, followed by payload data
1311 */
1312 u8 payload[0];
1313 struct ieee80211_hdr hdr[0];
1314} __packed;
1315
1316/*
1317 * TX command response is sent after *agn* transmission attempts.
1318 *
1319 * both postpone and abort status are expected behavior from uCode. there is
1320 * no special operation required from driver; except for RFKILL_FLUSH,
1321 * which required tx flush host command to flush all the tx frames in queues
1322 */
1323enum {
1324 TX_STATUS_SUCCESS = 0x01,
1325 TX_STATUS_DIRECT_DONE = 0x02,
1326 /* postpone TX */
1327 TX_STATUS_POSTPONE_DELAY = 0x40,
1328 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1329 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1330 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1331 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1332 /* abort TX */
1333 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1334 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1335 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1336 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1337 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1338 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1339 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1340 TX_STATUS_FAIL_DEST_PS = 0x88,
1341 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1342 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1343 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1344 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1345 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1346 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1347 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1348 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1349 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1350};
1351
1352#define TX_PACKET_MODE_REGULAR 0x0000
1353#define TX_PACKET_MODE_BURST_SEQ 0x0100
1354#define TX_PACKET_MODE_BURST_FIRST 0x0200
1355
1356enum {
1357 TX_POWER_PA_NOT_ACTIVE = 0x0,
1358};
1359
1360enum {
1361 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1362 TX_STATUS_DELAY_MSK = 0x00000040,
1363 TX_STATUS_ABORT_MSK = 0x00000080,
1364 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1365 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1366 TX_RESERVED = 0x00780000, /* bits 19:22 */
1367 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1368 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1369};
1370
1371/* *******************************
1372 * TX aggregation status
1373 ******************************* */
1374
1375enum {
1376 AGG_TX_STATE_TRANSMITTED = 0x00,
1377 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1378 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1379 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1380 AGG_TX_STATE_ABORT_MSK = 0x08,
1381 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1382 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1383 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1384 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1385 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1386 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1387 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1388 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1389};
1390
1391#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1392#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1393#define AGG_TX_TRY_POS 12
1394
1395#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1396 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1397 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1398
1399/* # tx attempts for first frame in aggregation */
1400#define AGG_TX_STATE_TRY_CNT_POS 12
1401#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1402
1403/* Command ID and sequence number of Tx command for this frame */
1404#define AGG_TX_STATE_SEQ_NUM_POS 16
1405#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1406
1407/*
1408 * REPLY_TX = 0x1c (response)
1409 *
1410 * This response may be in one of two slightly different formats, indicated
1411 * by the frame_count field:
1412 *
1413 * 1) No aggregation (frame_count == 1). This reports Tx results for
1414 * a single frame. Multiple attempts, at various bit rates, may have
1415 * been made for this frame.
1416 *
1417 * 2) Aggregation (frame_count > 1). This reports Tx results for
1418 * 2 or more frames that used block-acknowledge. All frames were
1419 * transmitted at same rate. Rate scaling may have been used if first
1420 * frame in this new agg block failed in previous agg block(s).
1421 *
1422 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1423 * block-ack has not been received by the time the agn device records
1424 * this status.
1425 * This status relates to reasons the tx might have been blocked or aborted
1426 * within the sending station (this agn device), rather than whether it was
1427 * received successfully by the destination station.
1428 */
1429struct agg_tx_status {
1430 __le16 status;
1431 __le16 sequence;
1432} __packed;
1433
1434/* refer to ra_tid */
1435#define IWLAGN_TX_RES_TID_POS 0
1436#define IWLAGN_TX_RES_TID_MSK 0x0f
1437#define IWLAGN_TX_RES_RA_POS 4
1438#define IWLAGN_TX_RES_RA_MSK 0xf0
1439
1440struct iwlagn_tx_resp {
1441 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1442 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1443 u8 failure_rts; /* # failures due to unsuccessful RTS */
1444 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1445
1446 /* For non-agg: Rate at which frame was successful.
1447 * For agg: Rate at which all frames were transmitted. */
1448 __le32 rate_n_flags; /* RATE_MCS_* */
1449
1450 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1451 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1452 __le16 wireless_media_time; /* uSecs */
1453
1454 u8 pa_status; /* RF power amplifier measurement (not used) */
1455 u8 pa_integ_res_a[3];
1456 u8 pa_integ_res_b[3];
1457 u8 pa_integ_res_C[3];
1458
1459 __le32 tfd_info;
1460 __le16 seq_ctl;
1461 __le16 byte_cnt;
1462 u8 tlc_info;
1463 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1464 __le16 frame_ctrl;
1465 /*
1466 * For non-agg: frame status TX_STATUS_*
1467 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1468 * fields follow this one, up to frame_count.
1469 * Bit fields:
1470 * 11- 0: AGG_TX_STATE_* status code
1471 * 15-12: Retry count for 1st frame in aggregation (retries
1472 * occur if tx failed for this frame when it was a
1473 * member of a previous aggregation block). If rate
1474 * scaling is used, retry count indicates the rate
1475 * table entry used for all frames in the new agg.
1476 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1477 */
1478 struct agg_tx_status status; /* TX status (in aggregation -
1479 * status of 1st frame) */
1480} __packed;
1481/*
1482 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1483 *
1484 * Reports Block-Acknowledge from recipient station
1485 */
1486struct iwl_compressed_ba_resp {
1487 __le32 sta_addr_lo32;
1488 __le16 sta_addr_hi16;
1489 __le16 reserved;
1490
1491 /* Index of recipient (BA-sending) station in uCode's station table */
1492 u8 sta_id;
1493 u8 tid;
1494 __le16 seq_ctl;
1495 __le64 bitmap;
1496 __le16 scd_flow;
1497 __le16 scd_ssn;
1498 u8 txed; /* number of frames sent */
1499 u8 txed_2_done; /* number of frames acked */
1500 __le16 reserved1;
1501} __packed;
1502
1503/*
1504 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1505 *
1506 */
1507
1508/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1509#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1510
1511/* # of EDCA prioritized tx fifos */
1512#define LINK_QUAL_AC_NUM AC_NUM
1513
1514/* # entries in rate scale table to support Tx retries */
1515#define LINK_QUAL_MAX_RETRY_NUM 16
1516
1517/* Tx antenna selection values */
1518#define LINK_QUAL_ANT_A_MSK (1 << 0)
1519#define LINK_QUAL_ANT_B_MSK (1 << 1)
1520#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1521
1522
1523/**
1524 * struct iwl_link_qual_general_params
1525 *
1526 * Used in REPLY_TX_LINK_QUALITY_CMD
1527 */
1528struct iwl_link_qual_general_params {
1529 u8 flags;
1530
1531 /* No entries at or above this (driver chosen) index contain MIMO */
1532 u8 mimo_delimiter;
1533
1534 /* Best single antenna to use for single stream (legacy, SISO). */
1535 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1536
1537 /* Best antennas to use for MIMO */
1538 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1539
1540 /*
1541 * If driver needs to use different initial rates for different
1542 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1543 * this table will set that up, by indicating the indexes in the
1544 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1545 * Otherwise, driver should set all entries to 0.
1546 *
1547 * Entry usage:
1548 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1549 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1550 */
1551 u8 start_rate_index[LINK_QUAL_AC_NUM];
1552} __packed;
1553
1554#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1555#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1556#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1557
1558#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1559#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1560#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1561
1562#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1563#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1564#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1565
1566/**
1567 * struct iwl_link_qual_agg_params
1568 *
1569 * Used in REPLY_TX_LINK_QUALITY_CMD
1570 */
1571struct iwl_link_qual_agg_params {
1572
1573 /*
1574 *Maximum number of uSec in aggregation.
1575 * default set to 4000 (4 milliseconds) if not configured in .cfg
1576 */
1577 __le16 agg_time_limit;
1578
1579 /*
1580 * Number of Tx retries allowed for a frame, before that frame will
1581 * no longer be considered for the start of an aggregation sequence
1582 * (scheduler will then try to tx it as single frame).
1583 * Driver should set this to 3.
1584 */
1585 u8 agg_dis_start_th;
1586
1587 /*
1588 * Maximum number of frames in aggregation.
1589 * 0 = no limit (default). 1 = no aggregation.
1590 * Other values = max # frames in aggregation.
1591 */
1592 u8 agg_frame_cnt_limit;
1593
1594 __le32 reserved;
1595} __packed;
1596
1597/*
1598 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1599 *
1600 * For agn devices
1601 *
1602 * Each station in the agn device's internal station table has its own table
1603 * of 16
1604 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1605 * an ACK is not received. This command replaces the entire table for
1606 * one station.
1607 *
1608 * NOTE: Station must already be in agn device's station table.
1609 * Use REPLY_ADD_STA.
1610 *
1611 * The rate scaling procedures described below work well. Of course, other
1612 * procedures are possible, and may work better for particular environments.
1613 *
1614 *
1615 * FILLING THE RATE TABLE
1616 *
1617 * Given a particular initial rate and mode, as determined by the rate
1618 * scaling algorithm described below, the Linux driver uses the following
1619 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1620 * Link Quality command:
1621 *
1622 *
1623 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1624 * a) Use this same initial rate for first 3 entries.
1625 * b) Find next lower available rate using same mode (SISO or MIMO),
1626 * use for next 3 entries. If no lower rate available, switch to
1627 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1628 * c) If using MIMO, set command's mimo_delimiter to number of entries
1629 * using MIMO (3 or 6).
1630 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1631 * no MIMO, no short guard interval), at the next lower bit rate
1632 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1633 * legacy procedure for remaining table entries.
1634 *
1635 * 2) If using legacy initial rate:
1636 * a) Use the initial rate for only one entry.
1637 * b) For each following entry, reduce the rate to next lower available
1638 * rate, until reaching the lowest available rate.
1639 * c) When reducing rate, also switch antenna selection.
1640 * d) Once lowest available rate is reached, repeat this rate until
1641 * rate table is filled (16 entries), switching antenna each entry.
1642 *
1643 *
1644 * ACCUMULATING HISTORY
1645 *
1646 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1647 * uses two sets of frame Tx success history: One for the current/active
1648 * modulation mode, and one for a speculative/search mode that is being
1649 * attempted. If the speculative mode turns out to be more effective (i.e.
1650 * actual transfer rate is better), then the driver continues to use the
1651 * speculative mode as the new current active mode.
1652 *
1653 * Each history set contains, separately for each possible rate, data for a
1654 * sliding window of the 62 most recent tx attempts at that rate. The data
1655 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1656 * and attempted frames, from which the driver can additionally calculate a
1657 * success ratio (success / attempted) and number of failures
1658 * (attempted - success), and control the size of the window (attempted).
1659 * The driver uses the bit map to remove successes from the success sum, as
1660 * the oldest tx attempts fall out of the window.
1661 *
1662 * When the agn device makes multiple tx attempts for a given frame, each
1663 * attempt might be at a different rate, and have different modulation
1664 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1665 * up in the rate scaling table in the Link Quality command. The driver must
1666 * determine which rate table entry was used for each tx attempt, to determine
1667 * which rate-specific history to update, and record only those attempts that
1668 * match the modulation characteristics of the history set.
1669 *
1670 * When using block-ack (aggregation), all frames are transmitted at the same
1671 * rate, since there is no per-attempt acknowledgment from the destination
1672 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1673 * rate_n_flags field. After receiving a block-ack, the driver can update
1674 * history for the entire block all at once.
1675 *
1676 *
1677 * FINDING BEST STARTING RATE:
1678 *
1679 * When working with a selected initial modulation mode (see below), the
1680 * driver attempts to find a best initial rate. The initial rate is the
1681 * first entry in the Link Quality command's rate table.
1682 *
1683 * 1) Calculate actual throughput (success ratio * expected throughput, see
1684 * table below) for current initial rate. Do this only if enough frames
1685 * have been attempted to make the value meaningful: at least 6 failed
1686 * tx attempts, or at least 8 successes. If not enough, don't try rate
1687 * scaling yet.
1688 *
1689 * 2) Find available rates adjacent to current initial rate. Available means:
1690 * a) supported by hardware &&
1691 * b) supported by association &&
1692 * c) within any constraints selected by user
1693 *
1694 * 3) Gather measured throughputs for adjacent rates. These might not have
1695 * enough history to calculate a throughput. That's okay, we might try
1696 * using one of them anyway!
1697 *
1698 * 4) Try decreasing rate if, for current rate:
1699 * a) success ratio is < 15% ||
1700 * b) lower adjacent rate has better measured throughput ||
1701 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1702 *
1703 * As a sanity check, if decrease was determined above, leave rate
1704 * unchanged if:
1705 * a) lower rate unavailable
1706 * b) success ratio at current rate > 85% (very good)
1707 * c) current measured throughput is better than expected throughput
1708 * of lower rate (under perfect 100% tx conditions, see table below)
1709 *
1710 * 5) Try increasing rate if, for current rate:
1711 * a) success ratio is < 15% ||
1712 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1713 * b) higher adjacent rate has better measured throughput ||
1714 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1715 *
1716 * As a sanity check, if increase was determined above, leave rate
1717 * unchanged if:
1718 * a) success ratio at current rate < 70%. This is not particularly
1719 * good performance; higher rate is sure to have poorer success.
1720 *
1721 * 6) Re-evaluate the rate after each tx frame. If working with block-
1722 * acknowledge, history and statistics may be calculated for the entire
1723 * block (including prior history that fits within the history windows),
1724 * before re-evaluation.
1725 *
1726 * FINDING BEST STARTING MODULATION MODE:
1727 *
1728 * After working with a modulation mode for a "while" (and doing rate scaling),
1729 * the driver searches for a new initial mode in an attempt to improve
1730 * throughput. The "while" is measured by numbers of attempted frames:
1731 *
1732 * For legacy mode, search for new mode after:
1733 * 480 successful frames, or 160 failed frames
1734 * For high-throughput modes (SISO or MIMO), search for new mode after:
1735 * 4500 successful frames, or 400 failed frames
1736 *
1737 * Mode switch possibilities are (3 for each mode):
1738 *
1739 * For legacy:
1740 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1741 * For SISO:
1742 * Change antenna, try MIMO, try shortened guard interval (SGI)
1743 * For MIMO:
1744 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1745 *
1746 * When trying a new mode, use the same bit rate as the old/current mode when
1747 * trying antenna switches and shortened guard interval. When switching to
1748 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1749 * for which the expected throughput (under perfect conditions) is about the
1750 * same or slightly better than the actual measured throughput delivered by
1751 * the old/current mode.
1752 *
1753 * Actual throughput can be estimated by multiplying the expected throughput
1754 * by the success ratio (successful / attempted tx frames). Frame size is
1755 * not considered in this calculation; it assumes that frame size will average
1756 * out to be fairly consistent over several samples. The following are
1757 * metric values for expected throughput assuming 100% success ratio.
1758 * Only G band has support for CCK rates:
1759 *
1760 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1761 *
1762 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1763 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1764 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1765 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1766 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1767 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1768 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1769 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1770 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1771 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1772 *
1773 * After the new mode has been tried for a short while (minimum of 6 failed
1774 * frames or 8 successful frames), compare success ratio and actual throughput
1775 * estimate of the new mode with the old. If either is better with the new
1776 * mode, continue to use the new mode.
1777 *
1778 * Continue comparing modes until all 3 possibilities have been tried.
1779 * If moving from legacy to HT, try all 3 possibilities from the new HT
1780 * mode. After trying all 3, a best mode is found. Continue to use this mode
1781 * for the longer "while" described above (e.g. 480 successful frames for
1782 * legacy), and then repeat the search process.
1783 *
1784 */
1785struct iwl_link_quality_cmd {
1786
1787 /* Index of destination/recipient station in uCode's station table */
1788 u8 sta_id;
1789 u8 reserved1;
1790 __le16 control; /* not used */
1791 struct iwl_link_qual_general_params general_params;
1792 struct iwl_link_qual_agg_params agg_params;
1793
1794 /*
1795 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1796 * specifies 1st Tx rate attempted, via index into this table.
1797 * agn devices works its way through table when retrying Tx.
1798 */
1799 struct {
1800 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1801 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1802 __le32 reserved2;
1803} __packed;
1804
1805/*
1806 * BT configuration enable flags:
1807 * bit 0 - 1: BT channel announcement enabled
1808 * 0: disable
1809 * bit 1 - 1: priority of BT device enabled
1810 * 0: disable
1811 * bit 2 - 1: BT 2 wire support enabled
1812 * 0: disable
1813 */
1814#define BT_COEX_DISABLE (0x0)
1815#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1816#define BT_ENABLE_PRIORITY BIT(1)
1817#define BT_ENABLE_2_WIRE BIT(2)
1818
1819#define BT_COEX_DISABLE (0x0)
1820#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1821
1822#define BT_LEAD_TIME_MIN (0x0)
1823#define BT_LEAD_TIME_DEF (0x1E)
1824#define BT_LEAD_TIME_MAX (0xFF)
1825
1826#define BT_MAX_KILL_MIN (0x1)
1827#define BT_MAX_KILL_DEF (0x5)
1828#define BT_MAX_KILL_MAX (0xFF)
1829
1830#define BT_DURATION_LIMIT_DEF 625
1831#define BT_DURATION_LIMIT_MAX 1250
1832#define BT_DURATION_LIMIT_MIN 625
1833
1834#define BT_ON_THRESHOLD_DEF 4
1835#define BT_ON_THRESHOLD_MAX 1000
1836#define BT_ON_THRESHOLD_MIN 1
1837
1838#define BT_FRAG_THRESHOLD_DEF 0
1839#define BT_FRAG_THRESHOLD_MAX 0
1840#define BT_FRAG_THRESHOLD_MIN 0
1841
1842#define BT_AGG_THRESHOLD_DEF 1200
1843#define BT_AGG_THRESHOLD_MAX 8000
1844#define BT_AGG_THRESHOLD_MIN 400
1845
1846/*
1847 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1848 *
1849 * agn devices support hardware handshake with Bluetooth device on
1850 * same platform. Bluetooth device alerts wireless device when it will Tx;
1851 * wireless device can delay or kill its own Tx to accommodate.
1852 */
1853struct iwl_bt_cmd {
1854 u8 flags;
1855 u8 lead_time;
1856 u8 max_kill;
1857 u8 reserved;
1858 __le32 kill_ack_mask;
1859 __le32 kill_cts_mask;
1860} __packed;
1861
1862#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1863
1864#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1865#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1866#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1867#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1868#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1869#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1870
1871#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1872/* Disable Sync PSPoll on SCO/eSCO */
1873#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1874
1875#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1876#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1877
1878#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1879#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1880#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1881#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1882
1883#define IWLAGN_BT_MAX_KILL_DEFAULT 5
1884
1885#define IWLAGN_BT3_T7_DEFAULT 1
1886
1887enum iwl_bt_kill_idx {
1888 IWL_BT_KILL_DEFAULT = 0,
1889 IWL_BT_KILL_OVERRIDE = 1,
1890 IWL_BT_KILL_REDUCE = 2,
1891};
1892
1893#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1894#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1895#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1896#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1897
1898#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1899
1900#define IWLAGN_BT3_T2_DEFAULT 0xc
1901
1902#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1903#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1904#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1905#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1906#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1907#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1908#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1909#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1910
1911#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1912 IWLAGN_BT_VALID_BOOST | \
1913 IWLAGN_BT_VALID_MAX_KILL | \
1914 IWLAGN_BT_VALID_3W_TIMERS | \
1915 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1916 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1917 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1918 IWLAGN_BT_VALID_3W_LUT)
1919
1920#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1921
1922#define IWLAGN_BT_DECISION_LUT_SIZE 12
1923
1924struct iwl_basic_bt_cmd {
1925 u8 flags;
1926 u8 ledtime; /* unused */
1927 u8 max_kill;
1928 u8 bt3_timer_t7_value;
1929 __le32 kill_ack_mask;
1930 __le32 kill_cts_mask;
1931 u8 bt3_prio_sample_time;
1932 u8 bt3_timer_t2_value;
1933 __le16 bt4_reaction_time; /* unused */
1934 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1935 /*
1936 * bit 0: use reduced tx power for control frame
1937 * bit 1 - 7: reserved
1938 */
1939 u8 reduce_txpower;
1940 u8 reserved;
1941 __le16 valid;
1942};
1943
1944struct iwl_bt_cmd_v1 {
1945 struct iwl_basic_bt_cmd basic;
1946 u8 prio_boost;
1947 /*
1948 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1949 * if configure the following patterns
1950 */
1951 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1952 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1953};
1954
1955struct iwl_bt_cmd_v2 {
1956 struct iwl_basic_bt_cmd basic;
1957 __le32 prio_boost;
1958 /*
1959 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1960 * if configure the following patterns
1961 */
1962 u8 reserved;
1963 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1964 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1965};
1966
1967#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1968
1969struct iwlagn_bt_sco_cmd {
1970 __le32 flags;
1971};
1972
1973/******************************************************************************
1974 * (6)
1975 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1976 *
1977 *****************************************************************************/
1978
1979/*
1980 * Spectrum Management
1981 */
1982#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1983 RXON_FILTER_CTL2HOST_MSK | \
1984 RXON_FILTER_ACCEPT_GRP_MSK | \
1985 RXON_FILTER_DIS_DECRYPT_MSK | \
1986 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1987 RXON_FILTER_ASSOC_MSK | \
1988 RXON_FILTER_BCON_AWARE_MSK)
1989
1990struct iwl_measure_channel {
1991 __le32 duration; /* measurement duration in extended beacon
1992 * format */
1993 u8 channel; /* channel to measure */
1994 u8 type; /* see enum iwl_measure_type */
1995 __le16 reserved;
1996} __packed;
1997
1998/*
1999 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2000 */
2001struct iwl_spectrum_cmd {
2002 __le16 len; /* number of bytes starting from token */
2003 u8 token; /* token id */
2004 u8 id; /* measurement id -- 0 or 1 */
2005 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2006 u8 periodic; /* 1 = periodic */
2007 __le16 path_loss_timeout;
2008 __le32 start_time; /* start time in extended beacon format */
2009 __le32 reserved2;
2010 __le32 flags; /* rxon flags */
2011 __le32 filter_flags; /* rxon filter flags */
2012 __le16 channel_count; /* minimum 1, maximum 10 */
2013 __le16 reserved3;
2014 struct iwl_measure_channel channels[10];
2015} __packed;
2016
2017/*
2018 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2019 */
2020struct iwl_spectrum_resp {
2021 u8 token;
2022 u8 id; /* id of the prior command replaced, or 0xff */
2023 __le16 status; /* 0 - command will be handled
2024 * 1 - cannot handle (conflicts with another
2025 * measurement) */
2026} __packed;
2027
2028enum iwl_measurement_state {
2029 IWL_MEASUREMENT_START = 0,
2030 IWL_MEASUREMENT_STOP = 1,
2031};
2032
2033enum iwl_measurement_status {
2034 IWL_MEASUREMENT_OK = 0,
2035 IWL_MEASUREMENT_CONCURRENT = 1,
2036 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2037 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2038 /* 4-5 reserved */
2039 IWL_MEASUREMENT_STOPPED = 6,
2040 IWL_MEASUREMENT_TIMEOUT = 7,
2041 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2042};
2043
2044#define NUM_ELEMENTS_IN_HISTOGRAM 8
2045
2046struct iwl_measurement_histogram {
2047 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2048 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2049} __packed;
2050
2051/* clear channel availability counters */
2052struct iwl_measurement_cca_counters {
2053 __le32 ofdm;
2054 __le32 cck;
2055} __packed;
2056
2057enum iwl_measure_type {
2058 IWL_MEASURE_BASIC = (1 << 0),
2059 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2060 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2061 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2062 IWL_MEASURE_FRAME = (1 << 4),
2063 /* bits 5:6 are reserved */
2064 IWL_MEASURE_IDLE = (1 << 7),
2065};
2066
2067/*
2068 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2069 */
2070struct iwl_spectrum_notification {
2071 u8 id; /* measurement id -- 0 or 1 */
2072 u8 token;
2073 u8 channel_index; /* index in measurement channel list */
2074 u8 state; /* 0 - start, 1 - stop */
2075 __le32 start_time; /* lower 32-bits of TSF */
2076 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2077 u8 channel;
2078 u8 type; /* see enum iwl_measurement_type */
2079 u8 reserved1;
2080 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2081 * valid if applicable for measurement type requested. */
2082 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2083 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2084 __le32 cca_time; /* channel load time in usecs */
2085 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2086 * unidentified */
2087 u8 reserved2[3];
2088 struct iwl_measurement_histogram histogram;
2089 __le32 stop_time; /* lower 32-bits of TSF */
2090 __le32 status; /* see iwl_measurement_status */
2091} __packed;
2092
2093/******************************************************************************
2094 * (7)
2095 * Power Management Commands, Responses, Notifications:
2096 *
2097 *****************************************************************************/
2098
2099/**
2100 * struct iwl_powertable_cmd - Power Table Command
2101 * @flags: See below:
2102 *
2103 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2104 *
2105 * PM allow:
2106 * bit 0 - '0' Driver not allow power management
2107 * '1' Driver allow PM (use rest of parameters)
2108 *
2109 * uCode send sleep notifications:
2110 * bit 1 - '0' Don't send sleep notification
2111 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2112 *
2113 * Sleep over DTIM
2114 * bit 2 - '0' PM have to walk up every DTIM
2115 * '1' PM could sleep over DTIM till listen Interval.
2116 *
2117 * PCI power managed
2118 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2119 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2120 *
2121 * Fast PD
2122 * bit 4 - '1' Put radio to sleep when receiving frame for others
2123 *
2124 * Force sleep Modes
2125 * bit 31/30- '00' use both mac/xtal sleeps
2126 * '01' force Mac sleep
2127 * '10' force xtal sleep
2128 * '11' Illegal set
2129 *
2130 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2131 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2132 * for every DTIM.
2133 */
2134#define IWL_POWER_VEC_SIZE 5
2135
2136#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2137#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2138#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2139#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2140#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2141#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2142#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2143#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2144#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2145#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2146#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2147
2148struct iwl_powertable_cmd {
2149 __le16 flags;
2150 u8 keep_alive_seconds;
2151 u8 debug_flags;
2152 __le32 rx_data_timeout;
2153 __le32 tx_data_timeout;
2154 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2155 __le32 keep_alive_beacons;
2156} __packed;
2157
2158/*
2159 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2160 * all devices identical.
2161 */
2162struct iwl_sleep_notification {
2163 u8 pm_sleep_mode;
2164 u8 pm_wakeup_src;
2165 __le16 reserved;
2166 __le32 sleep_time;
2167 __le32 tsf_low;
2168 __le32 bcon_timer;
2169} __packed;
2170
2171/* Sleep states. all devices identical. */
2172enum {
2173 IWL_PM_NO_SLEEP = 0,
2174 IWL_PM_SLP_MAC = 1,
2175 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2176 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2177 IWL_PM_SLP_PHY = 4,
2178 IWL_PM_SLP_REPENT = 5,
2179 IWL_PM_WAKEUP_BY_TIMER = 6,
2180 IWL_PM_WAKEUP_BY_DRIVER = 7,
2181 IWL_PM_WAKEUP_BY_RFKILL = 8,
2182 /* 3 reserved */
2183 IWL_PM_NUM_OF_MODES = 12,
2184};
2185
2186/*
2187 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2188 */
2189#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2190#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2191#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2192struct iwl_card_state_cmd {
2193 __le32 status; /* CARD_STATE_CMD_* request new power state */
2194} __packed;
2195
2196/*
2197 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2198 */
2199struct iwl_card_state_notif {
2200 __le32 flags;
2201} __packed;
2202
2203#define HW_CARD_DISABLED 0x01
2204#define SW_CARD_DISABLED 0x02
2205#define CT_CARD_DISABLED 0x04
2206#define RXON_CARD_DISABLED 0x10
2207
2208struct iwl_ct_kill_config {
2209 __le32 reserved;
2210 __le32 critical_temperature_M;
2211 __le32 critical_temperature_R;
2212} __packed;
2213
2214/* 1000, and 6x00 */
2215struct iwl_ct_kill_throttling_config {
2216 __le32 critical_temperature_exit;
2217 __le32 reserved;
2218 __le32 critical_temperature_enter;
2219} __packed;
2220
2221/******************************************************************************
2222 * (8)
2223 * Scan Commands, Responses, Notifications:
2224 *
2225 *****************************************************************************/
2226
2227#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2228#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2229
2230/**
2231 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2232 *
2233 * One for each channel in the scan list.
2234 * Each channel can independently select:
2235 * 1) SSID for directed active scans
2236 * 2) Txpower setting (for rate specified within Tx command)
2237 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2238 * quiet_plcp_th, good_CRC_th)
2239 *
2240 * To avoid uCode errors, make sure the following are true (see comments
2241 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2242 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2243 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2244 * 2) quiet_time <= active_dwell
2245 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2246 * passive_dwell < max_out_time
2247 * active_dwell < max_out_time
2248 */
2249
2250struct iwl_scan_channel {
2251 /*
2252 * type is defined as:
2253 * 0:0 1 = active, 0 = passive
2254 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2255 * SSID IE is transmitted in probe request.
2256 * 21:31 reserved
2257 */
2258 __le32 type;
2259 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2260 u8 tx_gain; /* gain for analog radio */
2261 u8 dsp_atten; /* gain for DSP */
2262 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2263 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2264} __packed;
2265
2266/* set number of direct probes __le32 type */
2267#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2268
2269/**
2270 * struct iwl_ssid_ie - directed scan network information element
2271 *
2272 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2273 * selected by "type" bit field in struct iwl_scan_channel;
2274 * each channel may select different ssids from among the 20 entries.
2275 * SSID IEs get transmitted in reverse order of entry.
2276 */
2277struct iwl_ssid_ie {
2278 u8 id;
2279 u8 len;
2280 u8 ssid[32];
2281} __packed;
2282
2283#define PROBE_OPTION_MAX 20
2284#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2285#define IWL_GOOD_CRC_TH_DISABLED 0
2286#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2287#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2288#define IWL_MAX_CMD_SIZE 4096
2289
2290/*
2291 * REPLY_SCAN_CMD = 0x80 (command)
2292 *
2293 * The hardware scan command is very powerful; the driver can set it up to
2294 * maintain (relatively) normal network traffic while doing a scan in the
2295 * background. The max_out_time and suspend_time control the ratio of how
2296 * long the device stays on an associated network channel ("service channel")
2297 * vs. how long it's away from the service channel, i.e. tuned to other channels
2298 * for scanning.
2299 *
2300 * max_out_time is the max time off-channel (in usec), and suspend_time
2301 * is how long (in "extended beacon" format) that the scan is "suspended"
2302 * after returning to the service channel. That is, suspend_time is the
2303 * time that we stay on the service channel, doing normal work, between
2304 * scan segments. The driver may set these parameters differently to support
2305 * scanning when associated vs. not associated, and light vs. heavy traffic
2306 * loads when associated.
2307 *
2308 * After receiving this command, the device's scan engine does the following;
2309 *
2310 * 1) Sends SCAN_START notification to driver
2311 * 2) Checks to see if it has time to do scan for one channel
2312 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2313 * to tell AP that we're going off-channel
2314 * 4) Tunes to first channel in scan list, does active or passive scan
2315 * 5) Sends SCAN_RESULT notification to driver
2316 * 6) Checks to see if it has time to do scan on *next* channel in list
2317 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2318 * before max_out_time expires
2319 * 8) Returns to service channel
2320 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2321 * 10) Stays on service channel until suspend_time expires
2322 * 11) Repeats entire process 2-10 until list is complete
2323 * 12) Sends SCAN_COMPLETE notification
2324 *
2325 * For fast, efficient scans, the scan command also has support for staying on
2326 * a channel for just a short time, if doing active scanning and getting no
2327 * responses to the transmitted probe request. This time is controlled by
2328 * quiet_time, and the number of received packets below which a channel is
2329 * considered "quiet" is controlled by quiet_plcp_threshold.
2330 *
2331 * For active scanning on channels that have regulatory restrictions against
2332 * blindly transmitting, the scan can listen before transmitting, to make sure
2333 * that there is already legitimate activity on the channel. If enough
2334 * packets are cleanly received on the channel (controlled by good_CRC_th,
2335 * typical value 1), the scan engine starts transmitting probe requests.
2336 *
2337 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2338 *
2339 * To avoid uCode errors, see timing restrictions described under
2340 * struct iwl_scan_channel.
2341 */
2342
2343enum iwl_scan_flags {
2344 /* BIT(0) currently unused */
2345 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2346 /* bits 2-7 reserved */
2347};
2348
2349struct iwl_scan_cmd {
2350 __le16 len;
2351 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2352 u8 channel_count; /* # channels in channel list */
2353 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2354 * (only for active scan) */
2355 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2356 __le16 good_CRC_th; /* passive -> active promotion threshold */
2357 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2358 __le32 max_out_time; /* max usec to be away from associated (service)
2359 * channel */
2360 __le32 suspend_time; /* pause scan this long (in "extended beacon
2361 * format") when returning to service chnl:
2362 */
2363 __le32 flags; /* RXON_FLG_* */
2364 __le32 filter_flags; /* RXON_FILTER_* */
2365
2366 /* For active scans (set to all-0s for passive scans).
2367 * Does not include payload. Must specify Tx rate; no rate scaling. */
2368 struct iwl_tx_cmd tx_cmd;
2369
2370 /* For directed active scans (set to all-0s otherwise) */
2371 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2372
2373 /*
2374 * Probe request frame, followed by channel list.
2375 *
2376 * Size of probe request frame is specified by byte count in tx_cmd.
2377 * Channel list follows immediately after probe request frame.
2378 * Number of channels in list is specified by channel_count.
2379 * Each channel in list is of type:
2380 *
2381 * struct iwl_scan_channel channels[0];
2382 *
2383 * NOTE: Only one band of channels can be scanned per pass. You
2384 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2385 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2386 * before requesting another scan.
2387 */
2388 u8 data[0];
2389} __packed;
2390
2391/* Can abort will notify by complete notification with abort status. */
2392#define CAN_ABORT_STATUS cpu_to_le32(0x1)
2393/* complete notification statuses */
2394#define ABORT_STATUS 0x2
2395
2396/*
2397 * REPLY_SCAN_CMD = 0x80 (response)
2398 */
2399struct iwl_scanreq_notification {
2400 __le32 status; /* 1: okay, 2: cannot fulfill request */
2401} __packed;
2402
2403/*
2404 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2405 */
2406struct iwl_scanstart_notification {
2407 __le32 tsf_low;
2408 __le32 tsf_high;
2409 __le32 beacon_timer;
2410 u8 channel;
2411 u8 band;
2412 u8 reserved[2];
2413 __le32 status;
2414} __packed;
2415
2416#define SCAN_OWNER_STATUS 0x1
2417#define MEASURE_OWNER_STATUS 0x2
2418
2419#define IWL_PROBE_STATUS_OK 0
2420#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2421/* error statuses combined with TX_FAILED */
2422#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2423#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2424
2425#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2426/*
2427 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2428 */
2429struct iwl_scanresults_notification {
2430 u8 channel;
2431 u8 band;
2432 u8 probe_status;
2433 u8 num_probe_not_sent; /* not enough time to send */
2434 __le32 tsf_low;
2435 __le32 tsf_high;
2436 __le32 statistics[NUMBER_OF_STATISTICS];
2437} __packed;
2438
2439/*
2440 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2441 */
2442struct iwl_scancomplete_notification {
2443 u8 scanned_channels;
2444 u8 status;
2445 u8 bt_status; /* BT On/Off status */
2446 u8 last_channel;
2447 __le32 tsf_low;
2448 __le32 tsf_high;
2449} __packed;
2450
2451
2452/******************************************************************************
2453 * (9)
2454 * IBSS/AP Commands and Notifications:
2455 *
2456 *****************************************************************************/
2457
2458enum iwl_ibss_manager {
2459 IWL_NOT_IBSS_MANAGER = 0,
2460 IWL_IBSS_MANAGER = 1,
2461};
2462
2463/*
2464 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2465 */
2466
2467struct iwlagn_beacon_notif {
2468 struct iwlagn_tx_resp beacon_notify_hdr;
2469 __le32 low_tsf;
2470 __le32 high_tsf;
2471 __le32 ibss_mgr_status;
2472} __packed;
2473
2474/*
2475 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2476 */
2477
2478struct iwl_tx_beacon_cmd {
2479 struct iwl_tx_cmd tx;
2480 __le16 tim_idx;
2481 u8 tim_size;
2482 u8 reserved1;
2483 struct ieee80211_hdr frame[0]; /* beacon frame */
2484} __packed;
2485
2486/******************************************************************************
2487 * (10)
2488 * Statistics Commands and Notifications:
2489 *
2490 *****************************************************************************/
2491
2492#define IWL_TEMP_CONVERT 260
2493
2494#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2495#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2496#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2497
2498/* Used for passing to driver number of successes and failures per rate */
2499struct rate_histogram {
2500 union {
2501 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 } success;
2505 union {
2506 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2507 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2508 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2509 } failed;
2510} __packed;
2511
2512/* statistics command response */
2513
2514struct statistics_dbg {
2515 __le32 burst_check;
2516 __le32 burst_count;
2517 __le32 wait_for_silence_timeout_cnt;
2518 __le32 reserved[3];
2519} __packed;
2520
2521struct statistics_rx_phy {
2522 __le32 ina_cnt;
2523 __le32 fina_cnt;
2524 __le32 plcp_err;
2525 __le32 crc32_err;
2526 __le32 overrun_err;
2527 __le32 early_overrun_err;
2528 __le32 crc32_good;
2529 __le32 false_alarm_cnt;
2530 __le32 fina_sync_err_cnt;
2531 __le32 sfd_timeout;
2532 __le32 fina_timeout;
2533 __le32 unresponded_rts;
2534 __le32 rxe_frame_limit_overrun;
2535 __le32 sent_ack_cnt;
2536 __le32 sent_cts_cnt;
2537 __le32 sent_ba_rsp_cnt;
2538 __le32 dsp_self_kill;
2539 __le32 mh_format_err;
2540 __le32 re_acq_main_rssi_sum;
2541 __le32 reserved3;
2542} __packed;
2543
2544struct statistics_rx_ht_phy {
2545 __le32 plcp_err;
2546 __le32 overrun_err;
2547 __le32 early_overrun_err;
2548 __le32 crc32_good;
2549 __le32 crc32_err;
2550 __le32 mh_format_err;
2551 __le32 agg_crc32_good;
2552 __le32 agg_mpdu_cnt;
2553 __le32 agg_cnt;
2554 __le32 unsupport_mcs;
2555} __packed;
2556
2557#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2558
2559struct statistics_rx_non_phy {
2560 __le32 bogus_cts; /* CTS received when not expecting CTS */
2561 __le32 bogus_ack; /* ACK received when not expecting ACK */
2562 __le32 non_bssid_frames; /* number of frames with BSSID that
2563 * doesn't belong to the STA BSSID */
2564 __le32 filtered_frames; /* count frames that were dumped in the
2565 * filtering process */
2566 __le32 non_channel_beacons; /* beacons with our bss id but not on
2567 * our serving channel */
2568 __le32 channel_beacons; /* beacons with our bss id and in our
2569 * serving channel */
2570 __le32 num_missed_bcon; /* number of missed beacons */
2571 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2572 * ADC was in saturation */
2573 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2574 * for INA */
2575 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2576 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2577 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2578 __le32 interference_data_flag; /* flag for interference data
2579 * availability. 1 when data is
2580 * available. */
2581 __le32 channel_load; /* counts RX Enable time in uSec */
2582 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2583 * and CCK) counter */
2584 __le32 beacon_rssi_a;
2585 __le32 beacon_rssi_b;
2586 __le32 beacon_rssi_c;
2587 __le32 beacon_energy_a;
2588 __le32 beacon_energy_b;
2589 __le32 beacon_energy_c;
2590} __packed;
2591
2592struct statistics_rx_non_phy_bt {
2593 struct statistics_rx_non_phy common;
2594 /* additional stats for bt */
2595 __le32 num_bt_kills;
2596 __le32 reserved[2];
2597} __packed;
2598
2599struct statistics_rx {
2600 struct statistics_rx_phy ofdm;
2601 struct statistics_rx_phy cck;
2602 struct statistics_rx_non_phy general;
2603 struct statistics_rx_ht_phy ofdm_ht;
2604} __packed;
2605
2606struct statistics_rx_bt {
2607 struct statistics_rx_phy ofdm;
2608 struct statistics_rx_phy cck;
2609 struct statistics_rx_non_phy_bt general;
2610 struct statistics_rx_ht_phy ofdm_ht;
2611} __packed;
2612
2613/**
2614 * struct statistics_tx_power - current tx power
2615 *
2616 * @ant_a: current tx power on chain a in 1/2 dB step
2617 * @ant_b: current tx power on chain b in 1/2 dB step
2618 * @ant_c: current tx power on chain c in 1/2 dB step
2619 */
2620struct statistics_tx_power {
2621 u8 ant_a;
2622 u8 ant_b;
2623 u8 ant_c;
2624 u8 reserved;
2625} __packed;
2626
2627struct statistics_tx_non_phy_agg {
2628 __le32 ba_timeout;
2629 __le32 ba_reschedule_frames;
2630 __le32 scd_query_agg_frame_cnt;
2631 __le32 scd_query_no_agg;
2632 __le32 scd_query_agg;
2633 __le32 scd_query_mismatch;
2634 __le32 frame_not_ready;
2635 __le32 underrun;
2636 __le32 bt_prio_kill;
2637 __le32 rx_ba_rsp_cnt;
2638} __packed;
2639
2640struct statistics_tx {
2641 __le32 preamble_cnt;
2642 __le32 rx_detected_cnt;
2643 __le32 bt_prio_defer_cnt;
2644 __le32 bt_prio_kill_cnt;
2645 __le32 few_bytes_cnt;
2646 __le32 cts_timeout;
2647 __le32 ack_timeout;
2648 __le32 expected_ack_cnt;
2649 __le32 actual_ack_cnt;
2650 __le32 dump_msdu_cnt;
2651 __le32 burst_abort_next_frame_mismatch_cnt;
2652 __le32 burst_abort_missing_next_frame_cnt;
2653 __le32 cts_timeout_collision;
2654 __le32 ack_or_ba_timeout_collision;
2655 struct statistics_tx_non_phy_agg agg;
2656 /*
2657 * "tx_power" are optional parameters provided by uCode,
2658 * 6000 series is the only device provide the information,
2659 * Those are reserved fields for all the other devices
2660 */
2661 struct statistics_tx_power tx_power;
2662 __le32 reserved1;
2663} __packed;
2664
2665
2666struct statistics_div {
2667 __le32 tx_on_a;
2668 __le32 tx_on_b;
2669 __le32 exec_time;
2670 __le32 probe_time;
2671 __le32 reserved1;
2672 __le32 reserved2;
2673} __packed;
2674
2675struct statistics_general_common {
2676 __le32 temperature; /* radio temperature */
2677 __le32 temperature_m; /* radio voltage */
2678 struct statistics_dbg dbg;
2679 __le32 sleep_time;
2680 __le32 slots_out;
2681 __le32 slots_idle;
2682 __le32 ttl_timestamp;
2683 struct statistics_div div;
2684 __le32 rx_enable_counter;
2685 /*
2686 * num_of_sos_states:
2687 * count the number of times we have to re-tune
2688 * in order to get out of bad PHY status
2689 */
2690 __le32 num_of_sos_states;
2691} __packed;
2692
2693struct statistics_bt_activity {
2694 /* Tx statistics */
2695 __le32 hi_priority_tx_req_cnt;
2696 __le32 hi_priority_tx_denied_cnt;
2697 __le32 lo_priority_tx_req_cnt;
2698 __le32 lo_priority_tx_denied_cnt;
2699 /* Rx statistics */
2700 __le32 hi_priority_rx_req_cnt;
2701 __le32 hi_priority_rx_denied_cnt;
2702 __le32 lo_priority_rx_req_cnt;
2703 __le32 lo_priority_rx_denied_cnt;
2704} __packed;
2705
2706struct statistics_general {
2707 struct statistics_general_common common;
2708 __le32 reserved2;
2709 __le32 reserved3;
2710} __packed;
2711
2712struct statistics_general_bt {
2713 struct statistics_general_common common;
2714 struct statistics_bt_activity activity;
2715 __le32 reserved2;
2716 __le32 reserved3;
2717} __packed;
2718
2719#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2720#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2721#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2722
2723/*
2724 * REPLY_STATISTICS_CMD = 0x9c,
2725 * all devices identical.
2726 *
2727 * This command triggers an immediate response containing uCode statistics.
2728 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2729 *
2730 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2731 * internal copy of the statistics (counters) after issuing the response.
2732 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2733 *
2734 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2735 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2736 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2737 */
2738#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2739#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2740struct iwl_statistics_cmd {
2741 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2742} __packed;
2743
2744/*
2745 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2746 *
2747 * By default, uCode issues this notification after receiving a beacon
2748 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2749 * REPLY_STATISTICS_CMD 0x9c, above.
2750 *
2751 * Statistics counters continue to increment beacon after beacon, but are
2752 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2753 * 0x9c with CLEAR_STATS bit set (see above).
2754 *
2755 * uCode also issues this notification during scans. uCode clears statistics
2756 * appropriately so that each notification contains statistics for only the
2757 * one channel that has just been scanned.
2758 */
2759#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2760#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2761
2762struct iwl_notif_statistics {
2763 __le32 flag;
2764 struct statistics_rx rx;
2765 struct statistics_tx tx;
2766 struct statistics_general general;
2767} __packed;
2768
2769struct iwl_bt_notif_statistics {
2770 __le32 flag;
2771 struct statistics_rx_bt rx;
2772 struct statistics_tx tx;
2773 struct statistics_general_bt general;
2774} __packed;
2775
2776/*
2777 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2778 *
2779 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2780 * in regardless of how many missed beacons, which mean when driver receive the
2781 * notification, inside the command, it can find all the beacons information
2782 * which include number of total missed beacons, number of consecutive missed
2783 * beacons, number of beacons received and number of beacons expected to
2784 * receive.
2785 *
2786 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2787 * in order to bring the radio/PHY back to working state; which has no relation
2788 * to when driver will perform sensitivity calibration.
2789 *
2790 * Driver should set it own missed_beacon_threshold to decide when to perform
2791 * sensitivity calibration based on number of consecutive missed beacons in
2792 * order to improve overall performance, especially in noisy environment.
2793 *
2794 */
2795
2796#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2797#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2798#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2799
2800struct iwl_missed_beacon_notif {
2801 __le32 consecutive_missed_beacons;
2802 __le32 total_missed_becons;
2803 __le32 num_expected_beacons;
2804 __le32 num_recvd_beacons;
2805} __packed;
2806
2807
2808/******************************************************************************
2809 * (11)
2810 * Rx Calibration Commands:
2811 *
2812 * With the uCode used for open source drivers, most Tx calibration (except
2813 * for Tx Power) and most Rx calibration is done by uCode during the
2814 * "initialize" phase of uCode boot. Driver must calibrate only:
2815 *
2816 * 1) Tx power (depends on temperature), described elsewhere
2817 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2818 * 3) Receiver sensitivity (to optimize signal detection)
2819 *
2820 *****************************************************************************/
2821
2822/**
2823 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2824 *
2825 * This command sets up the Rx signal detector for a sensitivity level that
2826 * is high enough to lock onto all signals within the associated network,
2827 * but low enough to ignore signals that are below a certain threshold, so as
2828 * not to have too many "false alarms". False alarms are signals that the
2829 * Rx DSP tries to lock onto, but then discards after determining that they
2830 * are noise.
2831 *
2832 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2833 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2834 * time listening, not transmitting). Driver must adjust sensitivity so that
2835 * the ratio of actual false alarms to actual Rx time falls within this range.
2836 *
2837 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2838 * received beacon. These provide information to the driver to analyze the
2839 * sensitivity. Don't analyze statistics that come in from scanning, or any
2840 * other non-associated-network source. Pertinent statistics include:
2841 *
2842 * From "general" statistics (struct statistics_rx_non_phy):
2843 *
2844 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2845 * Measure of energy of desired signal. Used for establishing a level
2846 * below which the device does not detect signals.
2847 *
2848 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2849 * Measure of background noise in silent period after beacon.
2850 *
2851 * channel_load
2852 * uSecs of actual Rx time during beacon period (varies according to
2853 * how much time was spent transmitting).
2854 *
2855 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2856 *
2857 * false_alarm_cnt
2858 * Signal locks abandoned early (before phy-level header).
2859 *
2860 * plcp_err
2861 * Signal locks abandoned late (during phy-level header).
2862 *
2863 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2864 * beacon to beacon, i.e. each value is an accumulation of all errors
2865 * before and including the latest beacon. Values will wrap around to 0
2866 * after counting up to 2^32 - 1. Driver must differentiate vs.
2867 * previous beacon's values to determine # false alarms in the current
2868 * beacon period.
2869 *
2870 * Total number of false alarms = false_alarms + plcp_errs
2871 *
2872 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2873 * (notice that the start points for OFDM are at or close to settings for
2874 * maximum sensitivity):
2875 *
2876 * START / MIN / MAX
2877 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2878 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2879 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2880 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2881 *
2882 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2883 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2884 * by *adding* 1 to all 4 of the table entries above, up to the max for
2885 * each entry. Conversely, if false alarm rate is too low (less than 5
2886 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2887 * increase sensitivity.
2888 *
2889 * For CCK sensitivity, keep track of the following:
2890 *
2891 * 1). 20-beacon history of maximum background noise, indicated by
2892 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2893 * 3 receivers. For any given beacon, the "silence reference" is
2894 * the maximum of last 60 samples (20 beacons * 3 receivers).
2895 *
2896 * 2). 10-beacon history of strongest signal level, as indicated
2897 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2898 * i.e. the strength of the signal through the best receiver at the
2899 * moment. These measurements are "upside down", with lower values
2900 * for stronger signals, so max energy will be *minimum* value.
2901 *
2902 * Then for any given beacon, the driver must determine the *weakest*
2903 * of the strongest signals; this is the minimum level that needs to be
2904 * successfully detected, when using the best receiver at the moment.
2905 * "Max cck energy" is the maximum (higher value means lower energy!)
2906 * of the last 10 minima. Once this is determined, driver must add
2907 * a little margin by adding "6" to it.
2908 *
2909 * 3). Number of consecutive beacon periods with too few false alarms.
2910 * Reset this to 0 at the first beacon period that falls within the
2911 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2912 *
2913 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2914 * (notice that the start points for CCK are at maximum sensitivity):
2915 *
2916 * START / MIN / MAX
2917 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2918 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2919 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2920 *
2921 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2922 * (greater than 50 for each 204.8 msecs listening), method for reducing
2923 * sensitivity is:
2924 *
2925 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2926 * up to max 400.
2927 *
2928 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2929 * sensitivity has been reduced a significant amount; bring it up to
2930 * a moderate 161. Otherwise, *add* 3, up to max 200.
2931 *
2932 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2933 * sensitivity has been reduced only a moderate or small amount;
2934 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2935 * down to min 0. Otherwise (if gain has been significantly reduced),
2936 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2937 *
2938 * b) Save a snapshot of the "silence reference".
2939 *
2940 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2941 * (less than 5 for each 204.8 msecs listening), method for increasing
2942 * sensitivity is used only if:
2943 *
2944 * 1a) Previous beacon did not have too many false alarms
2945 * 1b) AND difference between previous "silence reference" and current
2946 * "silence reference" (prev - current) is 2 or more,
2947 * OR 2) 100 or more consecutive beacon periods have had rate of
2948 * less than 5 false alarms per 204.8 milliseconds rx time.
2949 *
2950 * Method for increasing sensitivity:
2951 *
2952 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2953 * down to min 125.
2954 *
2955 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2956 * down to min 200.
2957 *
2958 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2959 *
2960 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2961 * (between 5 and 50 for each 204.8 msecs listening):
2962 *
2963 * 1) Save a snapshot of the silence reference.
2964 *
2965 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2966 * give some extra margin to energy threshold by *subtracting* 8
2967 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2968 *
2969 * For all cases (too few, too many, good range), make sure that the CCK
2970 * detection threshold (energy) is below the energy level for robust
2971 * detection over the past 10 beacon periods, the "Max cck energy".
2972 * Lower values mean higher energy; this means making sure that the value
2973 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2974 *
2975 */
2976
2977/*
2978 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2979 */
2980#define HD_TABLE_SIZE (11) /* number of entries */
2981#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2982#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2983#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2984#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2985#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2986#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2987#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2988#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2989#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2990#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2991#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2992
2993/*
2994 * Additional table entries in enhance SENSITIVITY_CMD
2995 */
2996#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
2997#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
2998#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
2999#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3000#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3001#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3002#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3003#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3004#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3005#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3006#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3007#define HD_RESERVED (22)
3008
3009/* number of entries for enhanced tbl */
3010#define ENHANCE_HD_TABLE_SIZE (23)
3011
3012/* number of additional entries for enhanced tbl */
3013#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3014
3015#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3016#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3017#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3018#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3019#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3020#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3021#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3022#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3023#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3024#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3025#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3026
3027#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3028#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3029#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3030#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3031#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3032#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3033#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3034#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3035#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3036#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3037#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3038
3039
3040/* Control field in struct iwl_sensitivity_cmd */
3041#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3042#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3043
3044/**
3045 * struct iwl_sensitivity_cmd
3046 * @control: (1) updates working table, (0) updates default table
3047 * @table: energy threshold values, use HD_* as index into table
3048 *
3049 * Always use "1" in "control" to update uCode's working table and DSP.
3050 */
3051struct iwl_sensitivity_cmd {
3052 __le16 control; /* always use "1" */
3053 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3054} __packed;
3055
3056/*
3057 *
3058 */
3059struct iwl_enhance_sensitivity_cmd {
3060 __le16 control; /* always use "1" */
3061 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3062} __packed;
3063
3064
3065/**
3066 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3067 *
3068 * This command sets the relative gains of agn device's 3 radio receiver chains.
3069 *
3070 * After the first association, driver should accumulate signal and noise
3071 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3072 * beacons from the associated network (don't collect statistics that come
3073 * in from scanning, or any other non-network source).
3074 *
3075 * DISCONNECTED ANTENNA:
3076 *
3077 * Driver should determine which antennas are actually connected, by comparing
3078 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3079 * following values over 20 beacons, one accumulator for each of the chains
3080 * a/b/c, from struct statistics_rx_non_phy:
3081 *
3082 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3083 *
3084 * Find the strongest signal from among a/b/c. Compare the other two to the
3085 * strongest. If any signal is more than 15 dB (times 20, unless you
3086 * divide the accumulated values by 20) below the strongest, the driver
3087 * considers that antenna to be disconnected, and should not try to use that
3088 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3089 * driver should declare the stronger one as connected, and attempt to use it
3090 * (A and B are the only 2 Tx chains!).
3091 *
3092 *
3093 * RX BALANCE:
3094 *
3095 * Driver should balance the 3 receivers (but just the ones that are connected
3096 * to antennas, see above) for gain, by comparing the average signal levels
3097 * detected during the silence after each beacon (background noise).
3098 * Accumulate (add) the following values over 20 beacons, one accumulator for
3099 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3100 *
3101 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3102 *
3103 * Find the weakest background noise level from among a/b/c. This Rx chain
3104 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3105 * finding noise difference:
3106 *
3107 * (accum_noise[i] - accum_noise[reference]) / 30
3108 *
3109 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3110 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3111 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3112 * and set bit 2 to indicate "reduce gain". The value for the reference
3113 * (weakest) chain should be "0".
3114 *
3115 * diff_gain_[abc] bit fields:
3116 * 2: (1) reduce gain, (0) increase gain
3117 * 1-0: amount of gain, units of 1.5 dB
3118 */
3119
3120/* Phy calibration command for series */
3121enum {
3122 IWL_PHY_CALIBRATE_DC_CMD = 8,
3123 IWL_PHY_CALIBRATE_LO_CMD = 9,
3124 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3125 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3126 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3127 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3128 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3129};
3130
3131/* This enum defines the bitmap of various calibrations to enable in both
3132 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3133 */
3134enum iwl_ucode_calib_cfg {
3135 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3136 IWL_CALIB_CFG_DC_IDX = BIT(1),
3137 IWL_CALIB_CFG_LO_IDX = BIT(2),
3138 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3139 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3140 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3141 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3142 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3143 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3144 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3145 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3146};
3147
3148#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3149 IWL_CALIB_CFG_DC_IDX | \
3150 IWL_CALIB_CFG_LO_IDX | \
3151 IWL_CALIB_CFG_TX_IQ_IDX | \
3152 IWL_CALIB_CFG_RX_IQ_IDX | \
3153 IWL_CALIB_CFG_CRYSTAL_IDX)
3154
3155#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3156 IWL_CALIB_CFG_DC_IDX | \
3157 IWL_CALIB_CFG_LO_IDX | \
3158 IWL_CALIB_CFG_TX_IQ_IDX | \
3159 IWL_CALIB_CFG_RX_IQ_IDX | \
3160 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3161 IWL_CALIB_CFG_PAPD_IDX | \
3162 IWL_CALIB_CFG_TX_PWR_IDX | \
3163 IWL_CALIB_CFG_CRYSTAL_IDX)
3164
3165#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3166
3167struct iwl_calib_cfg_elmnt_s {
3168 __le32 is_enable;
3169 __le32 start;
3170 __le32 send_res;
3171 __le32 apply_res;
3172 __le32 reserved;
3173} __packed;
3174
3175struct iwl_calib_cfg_status_s {
3176 struct iwl_calib_cfg_elmnt_s once;
3177 struct iwl_calib_cfg_elmnt_s perd;
3178 __le32 flags;
3179} __packed;
3180
3181struct iwl_calib_cfg_cmd {
3182 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3183 struct iwl_calib_cfg_status_s drv_calib_cfg;
3184 __le32 reserved1;
3185} __packed;
3186
3187struct iwl_calib_hdr {
3188 u8 op_code;
3189 u8 first_group;
3190 u8 groups_num;
3191 u8 data_valid;
3192} __packed;
3193
3194struct iwl_calib_cmd {
3195 struct iwl_calib_hdr hdr;
3196 u8 data[0];
3197} __packed;
3198
3199struct iwl_calib_xtal_freq_cmd {
3200 struct iwl_calib_hdr hdr;
3201 u8 cap_pin1;
3202 u8 cap_pin2;
3203 u8 pad[2];
3204} __packed;
3205
3206#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3207struct iwl_calib_temperature_offset_cmd {
3208 struct iwl_calib_hdr hdr;
3209 __le16 radio_sensor_offset;
3210 __le16 reserved;
3211} __packed;
3212
3213struct iwl_calib_temperature_offset_v2_cmd {
3214 struct iwl_calib_hdr hdr;
3215 __le16 radio_sensor_offset_high;
3216 __le16 radio_sensor_offset_low;
3217 __le16 burntVoltageRef;
3218 __le16 reserved;
3219} __packed;
3220
3221/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3222struct iwl_calib_chain_noise_reset_cmd {
3223 struct iwl_calib_hdr hdr;
3224 u8 data[0];
3225};
3226
3227/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3228struct iwl_calib_chain_noise_gain_cmd {
3229 struct iwl_calib_hdr hdr;
3230 u8 delta_gain_1;
3231 u8 delta_gain_2;
3232 u8 pad[2];
3233} __packed;
3234
3235/******************************************************************************
3236 * (12)
3237 * Miscellaneous Commands:
3238 *
3239 *****************************************************************************/
3240
3241/*
3242 * LEDs Command & Response
3243 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3244 *
3245 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3246 * this command turns it on or off, or sets up a periodic blinking cycle.
3247 */
3248struct iwl_led_cmd {
3249 __le32 interval; /* "interval" in uSec */
3250 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3251 u8 off; /* # intervals off while blinking;
3252 * "0", with >0 "on" value, turns LED on */
3253 u8 on; /* # intervals on while blinking;
3254 * "0", regardless of "off", turns LED off */
3255 u8 reserved;
3256} __packed;
3257
3258/*
3259 * station priority table entries
3260 * also used as potential "events" value for both
3261 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3262 */
3263
3264/*
3265 * COEX events entry flag masks
3266 * RP - Requested Priority
3267 * WP - Win Medium Priority: priority assigned when the contention has been won
3268 */
3269#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3270#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3271#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3272
3273#define COEX_CU_UNASSOC_IDLE_RP 4
3274#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3275#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3276#define COEX_CU_CALIBRATION_RP 4
3277#define COEX_CU_PERIODIC_CALIBRATION_RP 4
3278#define COEX_CU_CONNECTION_ESTAB_RP 4
3279#define COEX_CU_ASSOCIATED_IDLE_RP 4
3280#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3281#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3282#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3283#define COEX_CU_RF_ON_RP 6
3284#define COEX_CU_RF_OFF_RP 4
3285#define COEX_CU_STAND_ALONE_DEBUG_RP 6
3286#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3287#define COEX_CU_RSRVD1_RP 4
3288#define COEX_CU_RSRVD2_RP 4
3289
3290#define COEX_CU_UNASSOC_IDLE_WP 3
3291#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3292#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3293#define COEX_CU_CALIBRATION_WP 3
3294#define COEX_CU_PERIODIC_CALIBRATION_WP 3
3295#define COEX_CU_CONNECTION_ESTAB_WP 3
3296#define COEX_CU_ASSOCIATED_IDLE_WP 3
3297#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3298#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3299#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3300#define COEX_CU_RF_ON_WP 3
3301#define COEX_CU_RF_OFF_WP 3
3302#define COEX_CU_STAND_ALONE_DEBUG_WP 6
3303#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3304#define COEX_CU_RSRVD1_WP 3
3305#define COEX_CU_RSRVD2_WP 3
3306
3307#define COEX_UNASSOC_IDLE_FLAGS 0
3308#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3309 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3310 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3312 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3313 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3314#define COEX_CALIBRATION_FLAGS \
3315 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3316 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317#define COEX_PERIODIC_CALIBRATION_FLAGS 0
3318/*
3319 * COEX_CONNECTION_ESTAB:
3320 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3321 */
3322#define COEX_CONNECTION_ESTAB_FLAGS \
3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3325 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3326#define COEX_ASSOCIATED_IDLE_FLAGS 0
3327#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3328 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3329 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3330#define COEX_ASSOC_AUTO_SCAN_FLAGS \
3331 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3332 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3334#define COEX_RF_ON_FLAGS 0
3335#define COEX_RF_OFF_FLAGS 0
3336#define COEX_STAND_ALONE_DEBUG_FLAGS \
3337 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3338 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3340 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3341 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3342 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343#define COEX_RSRVD1_FLAGS 0
3344#define COEX_RSRVD2_FLAGS 0
3345/*
3346 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3347 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348 */
3349#define COEX_CU_RF_ON_FLAGS \
3350 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3351 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3352 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353
3354
3355enum {
3356 /* un-association part */
3357 COEX_UNASSOC_IDLE = 0,
3358 COEX_UNASSOC_MANUAL_SCAN = 1,
3359 COEX_UNASSOC_AUTO_SCAN = 2,
3360 /* calibration */
3361 COEX_CALIBRATION = 3,
3362 COEX_PERIODIC_CALIBRATION = 4,
3363 /* connection */
3364 COEX_CONNECTION_ESTAB = 5,
3365 /* association part */
3366 COEX_ASSOCIATED_IDLE = 6,
3367 COEX_ASSOC_MANUAL_SCAN = 7,
3368 COEX_ASSOC_AUTO_SCAN = 8,
3369 COEX_ASSOC_ACTIVE_LEVEL = 9,
3370 /* RF ON/OFF */
3371 COEX_RF_ON = 10,
3372 COEX_RF_OFF = 11,
3373 COEX_STAND_ALONE_DEBUG = 12,
3374 /* IPAN */
3375 COEX_IPAN_ASSOC_LEVEL = 13,
3376 /* reserved */
3377 COEX_RSRVD1 = 14,
3378 COEX_RSRVD2 = 15,
3379 COEX_NUM_OF_EVENTS = 16
3380};
3381
3382/*
3383 * Coexistence WIFI/WIMAX Command
3384 * COEX_PRIORITY_TABLE_CMD = 0x5a
3385 *
3386 */
3387struct iwl_wimax_coex_event_entry {
3388 u8 request_prio;
3389 u8 win_medium_prio;
3390 u8 reserved;
3391 u8 flags;
3392} __packed;
3393
3394/* COEX flag masks */
3395
3396/* Station table is valid */
3397#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3398/* UnMask wake up src at unassociated sleep */
3399#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3400/* UnMask wake up src at associated sleep */
3401#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3402/* Enable CoEx feature. */
3403#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3404
3405struct iwl_wimax_coex_cmd {
3406 u8 flags;
3407 u8 reserved[3];
3408 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3409} __packed;
3410
3411/*
3412 * Coexistence MEDIUM NOTIFICATION
3413 * COEX_MEDIUM_NOTIFICATION = 0x5b
3414 *
3415 * notification from uCode to host to indicate medium changes
3416 *
3417 */
3418/*
3419 * status field
3420 * bit 0 - 2: medium status
3421 * bit 3: medium change indication
3422 * bit 4 - 31: reserved
3423 */
3424/* status option values, (0 - 2 bits) */
3425#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3426#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3427#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3428#define COEX_MEDIUM_MSK (0x7)
3429
3430/* send notification status (1 bit) */
3431#define COEX_MEDIUM_CHANGED (0x8)
3432#define COEX_MEDIUM_CHANGED_MSK (0x8)
3433#define COEX_MEDIUM_SHIFT (3)
3434
3435struct iwl_coex_medium_notification {
3436 __le32 status;
3437 __le32 events;
3438} __packed;
3439
3440/*
3441 * Coexistence EVENT Command
3442 * COEX_EVENT_CMD = 0x5c
3443 *
3444 * send from host to uCode for coex event request.
3445 */
3446/* flags options */
3447#define COEX_EVENT_REQUEST_MSK (0x1)
3448
3449struct iwl_coex_event_cmd {
3450 u8 flags;
3451 u8 event;
3452 __le16 reserved;
3453} __packed;
3454
3455struct iwl_coex_event_resp {
3456 __le32 status;
3457} __packed;
3458
3459
3460/******************************************************************************
3461 * Bluetooth Coexistence commands
3462 *
3463 *****************************************************************************/
3464
3465/*
3466 * BT Status notification
3467 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3468 */
3469enum iwl_bt_coex_profile_traffic_load {
3470 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3471 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3472 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3473 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3474/*
3475 * There are no more even though below is a u8, the
3476 * indication from the BT device only has two bits.
3477 */
3478};
3479
3480#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3481#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3482
3483/* BT UART message - Share Part (BT -> WiFi) */
3484#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3485#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3486 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3487#define BT_UART_MSG_FRAME1SSN_POS (3)
3488#define BT_UART_MSG_FRAME1SSN_MSK \
3489 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3490#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3491#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3492 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3493#define BT_UART_MSG_FRAME1RESERVED_POS (6)
3494#define BT_UART_MSG_FRAME1RESERVED_MSK \
3495 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3496
3497#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3498#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3499 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3500#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3501#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3502 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3503#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3504#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3505 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3506#define BT_UART_MSG_FRAME2INBAND_POS (5)
3507#define BT_UART_MSG_FRAME2INBAND_MSK \
3508 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3509#define BT_UART_MSG_FRAME2RESERVED_POS (6)
3510#define BT_UART_MSG_FRAME2RESERVED_MSK \
3511 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3512
3513#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3514#define BT_UART_MSG_FRAME3SCOESCO_MSK \
3515 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3516#define BT_UART_MSG_FRAME3SNIFF_POS (1)
3517#define BT_UART_MSG_FRAME3SNIFF_MSK \
3518 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3519#define BT_UART_MSG_FRAME3A2DP_POS (2)
3520#define BT_UART_MSG_FRAME3A2DP_MSK \
3521 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3522#define BT_UART_MSG_FRAME3ACL_POS (3)
3523#define BT_UART_MSG_FRAME3ACL_MSK \
3524 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3525#define BT_UART_MSG_FRAME3MASTER_POS (4)
3526#define BT_UART_MSG_FRAME3MASTER_MSK \
3527 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3528#define BT_UART_MSG_FRAME3OBEX_POS (5)
3529#define BT_UART_MSG_FRAME3OBEX_MSK \
3530 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3531#define BT_UART_MSG_FRAME3RESERVED_POS (6)
3532#define BT_UART_MSG_FRAME3RESERVED_MSK \
3533 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3536#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3537 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3538#define BT_UART_MSG_FRAME4RESERVED_POS (6)
3539#define BT_UART_MSG_FRAME4RESERVED_MSK \
3540 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3541
3542#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3543#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3544 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3545#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3546#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3547 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3548#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3549#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3550 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3551#define BT_UART_MSG_FRAME5RESERVED_POS (6)
3552#define BT_UART_MSG_FRAME5RESERVED_MSK \
3553 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3554
3555#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3556#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3557 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3558#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3559#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3560 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3561#define BT_UART_MSG_FRAME6RESERVED_POS (6)
3562#define BT_UART_MSG_FRAME6RESERVED_MSK \
3563 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3564
3565#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3566#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3567 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3568#define BT_UART_MSG_FRAME7PAGE_POS (3)
3569#define BT_UART_MSG_FRAME7PAGE_MSK \
3570 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3571#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3572#define BT_UART_MSG_FRAME7INQUIRY_MSK \
3573 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3574#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3575#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3576 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3577#define BT_UART_MSG_FRAME7RESERVED_POS (6)
3578#define BT_UART_MSG_FRAME7RESERVED_MSK \
3579 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3580
3581/* BT Session Activity 2 UART message (BT -> WiFi) */
3582#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3583#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3584 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3585#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3586#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3587 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3588
3589#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3590#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3591 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3592#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3593#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3594 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3595
3596#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3597#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3598 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3599#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3600#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3601 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3602#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3603#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3604 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3605#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3606#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3607 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3608
3609#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3610#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3611 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3612#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3613#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3614 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3615#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3616#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3617 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3618
3619#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3620#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3621 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3622#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3623#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3624 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3625#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3626#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3627 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3628#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3629#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3630 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3631
3632#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3633#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3634 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3635#define BT_UART_MSG_2_FRAME6RFU_POS (5)
3636#define BT_UART_MSG_2_FRAME6RFU_MSK \
3637 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3638#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3639#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3640 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3641
3642#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3643#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3644 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3645#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3646#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3647 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3648#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3649#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3650 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3651#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3652#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3653 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3654#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3655#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3656 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3657
3658
3659#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3660#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3661
3662struct iwl_bt_uart_msg {
3663 u8 header;
3664 u8 frame1;
3665 u8 frame2;
3666 u8 frame3;
3667 u8 frame4;
3668 u8 frame5;
3669 u8 frame6;
3670 u8 frame7;
3671} __packed;
3672
3673struct iwl_bt_coex_profile_notif {
3674 struct iwl_bt_uart_msg last_bt_uart_msg;
3675 u8 bt_status; /* 0 - off, 1 - on */
3676 u8 bt_traffic_load; /* 0 .. 3? */
3677 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3678 u8 reserved;
3679} __packed;
3680
3681#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3682#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3683#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3684#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3685#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3686#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3687#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3688
3689/*
3690 * BT Coexistence Priority table
3691 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3692 */
3693enum bt_coex_prio_table_events {
3694 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3695 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3696 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3697 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3698 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3699 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3700 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3701 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3702 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3703 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3704 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3705 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3706 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3707 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3708 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3709 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3710 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3711 BT_COEX_PRIO_TBL_EVT_MAX,
3712};
3713
3714enum bt_coex_prio_table_priorities {
3715 BT_COEX_PRIO_TBL_DISABLED = 0,
3716 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3717 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3718 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3719 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3720 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3721 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3722 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3723 BT_COEX_PRIO_TBL_MAX,
3724};
3725
3726struct iwl_bt_coex_prio_table_cmd {
3727 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3728} __packed;
3729
3730#define IWL_BT_COEX_ENV_CLOSE 0
3731#define IWL_BT_COEX_ENV_OPEN 1
3732/*
3733 * BT Protection Envelope
3734 * REPLY_BT_COEX_PROT_ENV = 0xcd
3735 */
3736struct iwl_bt_coex_prot_env_cmd {
3737 u8 action; /* 0 = closed, 1 = open */
3738 u8 type; /* 0 .. 15 */
3739 u8 reserved[2];
3740} __packed;
3741
3742/*
3743 * REPLY_D3_CONFIG
3744 */
3745enum iwlagn_d3_wakeup_filters {
3746 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3747 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3748};
3749
3750struct iwlagn_d3_config_cmd {
3751 __le32 min_sleep_time;
3752 __le32 wakeup_flags;
3753} __packed;
3754
3755/*
3756 * REPLY_WOWLAN_PATTERNS
3757 */
3758#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3759#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3760
3761struct iwlagn_wowlan_pattern {
3762 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3763 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3764 u8 mask_size;
3765 u8 pattern_size;
3766 __le16 reserved;
3767} __packed;
3768
3769#define IWLAGN_WOWLAN_MAX_PATTERNS 20
3770
3771struct iwlagn_wowlan_patterns_cmd {
3772 __le32 n_patterns;
3773 struct iwlagn_wowlan_pattern patterns[];
3774} __packed;
3775
3776/*
3777 * REPLY_WOWLAN_WAKEUP_FILTER
3778 */
3779enum iwlagn_wowlan_wakeup_filters {
3780 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3781 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3782 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3783 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3784 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3785 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3786 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3787 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3788 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3789};
3790
3791struct iwlagn_wowlan_wakeup_filter_cmd {
3792 __le32 enabled;
3793 __le16 non_qos_seq;
3794 __le16 reserved;
3795 __le16 qos_seq[8];
3796};
3797
3798/*
3799 * REPLY_WOWLAN_TSC_RSC_PARAMS
3800 */
3801#define IWLAGN_NUM_RSC 16
3802
3803struct tkip_sc {
3804 __le16 iv16;
3805 __le16 pad;
3806 __le32 iv32;
3807} __packed;
3808
3809struct iwlagn_tkip_rsc_tsc {
3810 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3811 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3812 struct tkip_sc tsc;
3813} __packed;
3814
3815struct aes_sc {
3816 __le64 pn;
3817} __packed;
3818
3819struct iwlagn_aes_rsc_tsc {
3820 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3821 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3822 struct aes_sc tsc;
3823} __packed;
3824
3825union iwlagn_all_tsc_rsc {
3826 struct iwlagn_tkip_rsc_tsc tkip;
3827 struct iwlagn_aes_rsc_tsc aes;
3828};
3829
3830struct iwlagn_wowlan_rsc_tsc_params_cmd {
3831 union iwlagn_all_tsc_rsc all_tsc_rsc;
3832} __packed;
3833
3834/*
3835 * REPLY_WOWLAN_TKIP_PARAMS
3836 */
3837#define IWLAGN_MIC_KEY_SIZE 8
3838#define IWLAGN_P1K_SIZE 5
3839struct iwlagn_mic_keys {
3840 u8 tx[IWLAGN_MIC_KEY_SIZE];
3841 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3842 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3843} __packed;
3844
3845struct iwlagn_p1k_cache {
3846 __le16 p1k[IWLAGN_P1K_SIZE];
3847} __packed;
3848
3849#define IWLAGN_NUM_RX_P1K_CACHE 2
3850
3851struct iwlagn_wowlan_tkip_params_cmd {
3852 struct iwlagn_mic_keys mic_keys;
3853 struct iwlagn_p1k_cache tx;
3854 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3855 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3856} __packed;
3857
3858/*
3859 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3860 */
3861
3862#define IWLAGN_KCK_MAX_SIZE 32
3863#define IWLAGN_KEK_MAX_SIZE 32
3864
3865struct iwlagn_wowlan_kek_kck_material_cmd {
3866 u8 kck[IWLAGN_KCK_MAX_SIZE];
3867 u8 kek[IWLAGN_KEK_MAX_SIZE];
3868 __le16 kck_len;
3869 __le16 kek_len;
3870 __le64 replay_ctr;
3871} __packed;
3872
3873#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3874
3875/*
3876 * REPLY_WOWLAN_GET_STATUS = 0xe5
3877 */
3878struct iwlagn_wowlan_status {
3879 __le64 replay_ctr;
3880 __le32 rekey_status;
3881 __le32 wakeup_reason;
3882 u8 pattern_number;
3883 u8 reserved1;
3884 __le16 qos_seq_ctr[8];
3885 __le16 non_qos_seq_ctr;
3886 __le16 reserved2;
3887 union iwlagn_all_tsc_rsc tsc_rsc;
3888 __le16 reserved3;
3889} __packed;
3890
3891/*
3892 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3893 */
3894
3895/*
3896 * Minimum slot time in TU
3897 */
3898#define IWL_MIN_SLOT_TIME 20
3899
3900/**
3901 * struct iwl_wipan_slot
3902 * @width: Time in TU
3903 * @type:
3904 * 0 - BSS
3905 * 1 - PAN
3906 */
3907struct iwl_wipan_slot {
3908 __le16 width;
3909 u8 type;
3910 u8 reserved;
3911} __packed;
3912
3913#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3914#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3915#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3916#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3917#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3918
3919/**
3920 * struct iwl_wipan_params_cmd
3921 * @flags:
3922 * bit0: reserved
3923 * bit1: CP leave channel with CTS
3924 * bit2: CP leave channel qith Quiet
3925 * bit3: slotted mode
3926 * 1 - work in slotted mode
3927 * 0 - work in non slotted mode
3928 * bit4: filter beacon notification
3929 * bit5: full tx slotted mode. if this flag is set,
3930 * uCode will perform leaving channel methods in context switch
3931 * also when working in same channel mode
3932 * @num_slots: 1 - 10
3933 */
3934struct iwl_wipan_params_cmd {
3935 __le16 flags;
3936 u8 reserved;
3937 u8 num_slots;
3938 struct iwl_wipan_slot slots[10];
3939} __packed;
3940
3941/*
3942 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3943 *
3944 * TODO: Figure out what this is used for,
3945 * it can only switch between 2.4 GHz
3946 * channels!!
3947 */
3948
3949struct iwl_wipan_p2p_channel_switch_cmd {
3950 __le16 channel;
3951 __le16 reserved;
3952};
3953
3954/*
3955 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3956 *
3957 * This is used by the device to notify us of the
3958 * NoA schedule it determined so we can forward it
3959 * to userspace for inclusion in probe responses.
3960 *
3961 * In beacons, the NoA schedule is simply appended
3962 * to the frame we give the device.
3963 */
3964
3965struct iwl_wipan_noa_descriptor {
3966 u8 count;
3967 __le32 duration;
3968 __le32 interval;
3969 __le32 starttime;
3970} __packed;
3971
3972struct iwl_wipan_noa_attribute {
3973 u8 id;
3974 __le16 length;
3975 u8 index;
3976 u8 ct_window;
3977 struct iwl_wipan_noa_descriptor descr0, descr1;
3978 u8 reserved;
3979} __packed;
3980
3981struct iwl_wipan_noa_notification {
3982 u32 noa_active;
3983 struct iwl_wipan_noa_attribute noa_attribute;
3984} __packed;
3985
3986#endif /* __iwl_commands_h__ */
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2005-2014 Intel Corporation
4 */
5/*
6 * Please use this file (commands.h) only for uCode API definitions.
7 * Please use iwl-xxxx-hw.h for hardware-related definitions.
8 * Please use dev.h for driver implementation definitions.
9 */
10
11#ifndef __iwl_commands_h__
12#define __iwl_commands_h__
13
14#include <linux/ieee80211.h>
15#include <linux/types.h>
16
17
18enum {
19 REPLY_ALIVE = 0x1,
20 REPLY_ERROR = 0x2,
21 REPLY_ECHO = 0x3, /* test command */
22
23 /* RXON and QOS commands */
24 REPLY_RXON = 0x10,
25 REPLY_RXON_ASSOC = 0x11,
26 REPLY_QOS_PARAM = 0x13,
27 REPLY_RXON_TIMING = 0x14,
28
29 /* Multi-Station support */
30 REPLY_ADD_STA = 0x18,
31 REPLY_REMOVE_STA = 0x19,
32 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
33 REPLY_TXFIFO_FLUSH = 0x1e,
34
35 /* Security */
36 REPLY_WEPKEY = 0x20,
37
38 /* RX, TX, LEDs */
39 REPLY_TX = 0x1c,
40 REPLY_LEDS_CMD = 0x48,
41 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
42
43 /* WiMAX coexistence */
44 COEX_PRIORITY_TABLE_CMD = 0x5a,
45 COEX_MEDIUM_NOTIFICATION = 0x5b,
46 COEX_EVENT_CMD = 0x5c,
47
48 /* Calibration */
49 TEMPERATURE_NOTIFICATION = 0x62,
50 CALIBRATION_CFG_CMD = 0x65,
51 CALIBRATION_RES_NOTIFICATION = 0x66,
52 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
53
54 /* 802.11h related */
55 REPLY_QUIET_CMD = 0x71, /* not used */
56 REPLY_CHANNEL_SWITCH = 0x72,
57 CHANNEL_SWITCH_NOTIFICATION = 0x73,
58 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
59 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
60
61 /* Power Management */
62 POWER_TABLE_CMD = 0x77,
63 PM_SLEEP_NOTIFICATION = 0x7A,
64 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
65
66 /* Scan commands and notifications */
67 REPLY_SCAN_CMD = 0x80,
68 REPLY_SCAN_ABORT_CMD = 0x81,
69 SCAN_START_NOTIFICATION = 0x82,
70 SCAN_RESULTS_NOTIFICATION = 0x83,
71 SCAN_COMPLETE_NOTIFICATION = 0x84,
72
73 /* IBSS/AP commands */
74 BEACON_NOTIFICATION = 0x90,
75 REPLY_TX_BEACON = 0x91,
76 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
77
78 /* Miscellaneous commands */
79 REPLY_TX_POWER_DBM_CMD = 0x95,
80 QUIET_NOTIFICATION = 0x96, /* not used */
81 REPLY_TX_PWR_TABLE_CMD = 0x97,
82 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
83 TX_ANT_CONFIGURATION_CMD = 0x98,
84 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
85
86 /* Bluetooth device coexistence config command */
87 REPLY_BT_CONFIG = 0x9b,
88
89 /* Statistics */
90 REPLY_STATISTICS_CMD = 0x9c,
91 STATISTICS_NOTIFICATION = 0x9d,
92
93 /* RF-KILL commands and notifications */
94 REPLY_CARD_STATE_CMD = 0xa0,
95 CARD_STATE_NOTIFICATION = 0xa1,
96
97 /* Missed beacons notification */
98 MISSED_BEACONS_NOTIFICATION = 0xa2,
99
100 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
101 SENSITIVITY_CMD = 0xa8,
102 REPLY_PHY_CALIBRATION_CMD = 0xb0,
103 REPLY_RX_PHY_CMD = 0xc0,
104 REPLY_RX_MPDU_CMD = 0xc1,
105 REPLY_RX = 0xc3,
106 REPLY_COMPRESSED_BA = 0xc5,
107
108 /* BT Coex */
109 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
110 REPLY_BT_COEX_PROT_ENV = 0xcd,
111 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
112
113 /* PAN commands */
114 REPLY_WIPAN_PARAMS = 0xb2,
115 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
116 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
117 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
118 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
119 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
120 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
121 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
122 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
123
124 REPLY_WOWLAN_PATTERNS = 0xe0,
125 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
126 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
127 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
128 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
129 REPLY_WOWLAN_GET_STATUS = 0xe5,
130 REPLY_D3_CONFIG = 0xd3,
131
132 REPLY_MAX = 0xff
133};
134
135/*
136 * Minimum number of queues. MAX_NUM is defined in hw specific files.
137 * Set the minimum to accommodate
138 * - 4 standard TX queues
139 * - the command queue
140 * - 4 PAN TX queues
141 * - the PAN multicast queue, and
142 * - the AUX (TX during scan dwell) queue.
143 */
144#define IWL_MIN_NUM_QUEUES 11
145
146/*
147 * Command queue depends on iPAN support.
148 */
149#define IWL_DEFAULT_CMD_QUEUE_NUM 4
150#define IWL_IPAN_CMD_QUEUE_NUM 9
151
152#define IWL_TX_FIFO_BK 0 /* shared */
153#define IWL_TX_FIFO_BE 1
154#define IWL_TX_FIFO_VI 2 /* shared */
155#define IWL_TX_FIFO_VO 3
156#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
157#define IWL_TX_FIFO_BE_IPAN 4
158#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
159#define IWL_TX_FIFO_VO_IPAN 5
160/* re-uses the VO FIFO, uCode will properly flush/schedule */
161#define IWL_TX_FIFO_AUX 5
162#define IWL_TX_FIFO_UNUSED 255
163
164#define IWLAGN_CMD_FIFO_NUM 7
165
166/*
167 * This queue number is required for proper operation
168 * because the ucode will stop/start the scheduler as
169 * required.
170 */
171#define IWL_IPAN_MCAST_QUEUE 8
172
173/******************************************************************************
174 * (0)
175 * Commonly used structures and definitions:
176 * Command header, rate_n_flags, txpower
177 *
178 *****************************************************************************/
179
180/**
181 * iwlagn rate_n_flags bit fields
182 *
183 * rate_n_flags format is used in following iwlagn commands:
184 * REPLY_RX (response only)
185 * REPLY_RX_MPDU (response only)
186 * REPLY_TX (both command and response)
187 * REPLY_TX_LINK_QUALITY_CMD
188 *
189 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
190 * 2-0: 0) 6 Mbps
191 * 1) 12 Mbps
192 * 2) 18 Mbps
193 * 3) 24 Mbps
194 * 4) 36 Mbps
195 * 5) 48 Mbps
196 * 6) 54 Mbps
197 * 7) 60 Mbps
198 *
199 * 4-3: 0) Single stream (SISO)
200 * 1) Dual stream (MIMO)
201 * 2) Triple stream (MIMO)
202 *
203 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
204 *
205 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
206 * 3-0: 0xD) 6 Mbps
207 * 0xF) 9 Mbps
208 * 0x5) 12 Mbps
209 * 0x7) 18 Mbps
210 * 0x9) 24 Mbps
211 * 0xB) 36 Mbps
212 * 0x1) 48 Mbps
213 * 0x3) 54 Mbps
214 *
215 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
216 * 6-0: 10) 1 Mbps
217 * 20) 2 Mbps
218 * 55) 5.5 Mbps
219 * 110) 11 Mbps
220 */
221#define RATE_MCS_CODE_MSK 0x7
222#define RATE_MCS_SPATIAL_POS 3
223#define RATE_MCS_SPATIAL_MSK 0x18
224#define RATE_MCS_HT_DUP_POS 5
225#define RATE_MCS_HT_DUP_MSK 0x20
226/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
227#define RATE_MCS_RATE_MSK 0xff
228
229/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
230#define RATE_MCS_FLAGS_POS 8
231#define RATE_MCS_HT_POS 8
232#define RATE_MCS_HT_MSK 0x100
233
234/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
235#define RATE_MCS_CCK_POS 9
236#define RATE_MCS_CCK_MSK 0x200
237
238/* Bit 10: (1) Use Green Field preamble */
239#define RATE_MCS_GF_POS 10
240#define RATE_MCS_GF_MSK 0x400
241
242/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
243#define RATE_MCS_HT40_POS 11
244#define RATE_MCS_HT40_MSK 0x800
245
246/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
247#define RATE_MCS_DUP_POS 12
248#define RATE_MCS_DUP_MSK 0x1000
249
250/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
251#define RATE_MCS_SGI_POS 13
252#define RATE_MCS_SGI_MSK 0x2000
253
254/**
255 * rate_n_flags Tx antenna masks
256 * bit14:16
257 */
258#define RATE_MCS_ANT_POS 14
259#define RATE_MCS_ANT_A_MSK 0x04000
260#define RATE_MCS_ANT_B_MSK 0x08000
261#define RATE_MCS_ANT_C_MSK 0x10000
262#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
263#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
264#define RATE_ANT_NUM 3
265
266#define POWER_TABLE_NUM_ENTRIES 33
267#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
268#define POWER_TABLE_CCK_ENTRY 32
269
270#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
271#define IWL_PWR_CCK_ENTRIES 2
272
273/**
274 * struct tx_power_dual_stream
275 *
276 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
277 *
278 * Same format as iwl_tx_power_dual_stream, but __le32
279 */
280struct tx_power_dual_stream {
281 __le32 dw;
282} __packed;
283
284/**
285 * Command REPLY_TX_POWER_DBM_CMD = 0x98
286 * struct iwlagn_tx_power_dbm_cmd
287 */
288#define IWLAGN_TX_POWER_AUTO 0x7f
289#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
290
291struct iwlagn_tx_power_dbm_cmd {
292 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
293 u8 flags;
294 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
295 u8 reserved;
296} __packed;
297
298/**
299 * Command TX_ANT_CONFIGURATION_CMD = 0x98
300 * This command is used to configure valid Tx antenna.
301 * By default uCode concludes the valid antenna according to the radio flavor.
302 * This command enables the driver to override/modify this conclusion.
303 */
304struct iwl_tx_ant_config_cmd {
305 __le32 valid;
306} __packed;
307
308/******************************************************************************
309 * (0a)
310 * Alive and Error Commands & Responses:
311 *
312 *****************************************************************************/
313
314#define UCODE_VALID_OK cpu_to_le32(0x1)
315
316/**
317 * REPLY_ALIVE = 0x1 (response only, not a command)
318 *
319 * uCode issues this "alive" notification once the runtime image is ready
320 * to receive commands from the driver. This is the *second* "alive"
321 * notification that the driver will receive after rebooting uCode;
322 * this "alive" is indicated by subtype field != 9.
323 *
324 * See comments documenting "BSM" (bootstrap state machine).
325 *
326 * This response includes two pointers to structures within the device's
327 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
328 *
329 * 1) log_event_table_ptr indicates base of the event log. This traces
330 * a 256-entry history of uCode execution within a circular buffer.
331 * Its header format is:
332 *
333 * __le32 log_size; log capacity (in number of entries)
334 * __le32 type; (1) timestamp with each entry, (0) no timestamp
335 * __le32 wraps; # times uCode has wrapped to top of circular buffer
336 * __le32 write_index; next circular buffer entry that uCode would fill
337 *
338 * The header is followed by the circular buffer of log entries. Entries
339 * with timestamps have the following format:
340 *
341 * __le32 event_id; range 0 - 1500
342 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
343 * __le32 data; event_id-specific data value
344 *
345 * Entries without timestamps contain only event_id and data.
346 *
347 *
348 * 2) error_event_table_ptr indicates base of the error log. This contains
349 * information about any uCode error that occurs. For agn, the format
350 * of the error log is defined by struct iwl_error_event_table.
351 *
352 * The Linux driver can print both logs to the system log when a uCode error
353 * occurs.
354 */
355
356/*
357 * Note: This structure is read from the device with IO accesses,
358 * and the reading already does the endian conversion. As it is
359 * read with u32-sized accesses, any members with a different size
360 * need to be ordered correctly though!
361 */
362struct iwl_error_event_table {
363 u32 valid; /* (nonzero) valid, (0) log is empty */
364 u32 error_id; /* type of error */
365 u32 pc; /* program counter */
366 u32 blink1; /* branch link */
367 u32 blink2; /* branch link */
368 u32 ilink1; /* interrupt link */
369 u32 ilink2; /* interrupt link */
370 u32 data1; /* error-specific data */
371 u32 data2; /* error-specific data */
372 u32 line; /* source code line of error */
373 u32 bcon_time; /* beacon timer */
374 u32 tsf_low; /* network timestamp function timer */
375 u32 tsf_hi; /* network timestamp function timer */
376 u32 gp1; /* GP1 timer register */
377 u32 gp2; /* GP2 timer register */
378 u32 gp3; /* GP3 timer register */
379 u32 ucode_ver; /* uCode version */
380 u32 hw_ver; /* HW Silicon version */
381 u32 brd_ver; /* HW board version */
382 u32 log_pc; /* log program counter */
383 u32 frame_ptr; /* frame pointer */
384 u32 stack_ptr; /* stack pointer */
385 u32 hcmd; /* last host command header */
386 u32 isr0; /* isr status register LMPM_NIC_ISR0:
387 * rxtx_flag */
388 u32 isr1; /* isr status register LMPM_NIC_ISR1:
389 * host_flag */
390 u32 isr2; /* isr status register LMPM_NIC_ISR2:
391 * enc_flag */
392 u32 isr3; /* isr status register LMPM_NIC_ISR3:
393 * time_flag */
394 u32 isr4; /* isr status register LMPM_NIC_ISR4:
395 * wico interrupt */
396 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
397 u32 wait_event; /* wait event() caller address */
398 u32 l2p_control; /* L2pControlField */
399 u32 l2p_duration; /* L2pDurationField */
400 u32 l2p_mhvalid; /* L2pMhValidBits */
401 u32 l2p_addr_match; /* L2pAddrMatchStat */
402 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
403 * (LMPM_PMG_SEL) */
404 u32 u_timestamp; /* indicate when the date and time of the
405 * compilation */
406 u32 flow_handler; /* FH read/write pointers, RX credit */
407} __packed;
408
409struct iwl_alive_resp {
410 u8 ucode_minor;
411 u8 ucode_major;
412 __le16 reserved1;
413 u8 sw_rev[8];
414 u8 ver_type;
415 u8 ver_subtype; /* not "9" for runtime alive */
416 __le16 reserved2;
417 __le32 log_event_table_ptr; /* SRAM address for event log */
418 __le32 error_event_table_ptr; /* SRAM address for error log */
419 __le32 timestamp;
420 __le32 is_valid;
421} __packed;
422
423/*
424 * REPLY_ERROR = 0x2 (response only, not a command)
425 */
426struct iwl_error_resp {
427 __le32 error_type;
428 u8 cmd_id;
429 u8 reserved1;
430 __le16 bad_cmd_seq_num;
431 __le32 error_info;
432 __le64 timestamp;
433} __packed;
434
435/******************************************************************************
436 * (1)
437 * RXON Commands & Responses:
438 *
439 *****************************************************************************/
440
441/*
442 * Rx config defines & structure
443 */
444/* rx_config device types */
445enum {
446 RXON_DEV_TYPE_AP = 1,
447 RXON_DEV_TYPE_ESS = 3,
448 RXON_DEV_TYPE_IBSS = 4,
449 RXON_DEV_TYPE_SNIFFER = 6,
450 RXON_DEV_TYPE_CP = 7,
451 RXON_DEV_TYPE_2STA = 8,
452 RXON_DEV_TYPE_P2P = 9,
453};
454
455
456#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
457#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
458#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
459#define RXON_RX_CHAIN_VALID_POS (1)
460#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
461#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
462#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
463#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
464#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
465#define RXON_RX_CHAIN_CNT_POS (10)
466#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
467#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
468#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
469#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
470
471/* rx_config flags */
472/* band & modulation selection */
473#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
474#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
475/* auto detection enable */
476#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
477/* TGg protection when tx */
478#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
479/* cck short slot & preamble */
480#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
481#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
482/* antenna selection */
483#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
484#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
485#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
486#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
487/* radar detection enable */
488#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
489#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
490/* rx response to host with 8-byte TSF
491* (according to ON_AIR deassertion) */
492#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
493
494
495/* HT flags */
496#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
497#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
498
499#define RXON_FLG_HT_OPERATING_MODE_POS (23)
500
501#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
502#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
503
504#define RXON_FLG_CHANNEL_MODE_POS (25)
505#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
506
507/* channel mode */
508enum {
509 CHANNEL_MODE_LEGACY = 0,
510 CHANNEL_MODE_PURE_40 = 1,
511 CHANNEL_MODE_MIXED = 2,
512 CHANNEL_MODE_RESERVED = 3,
513};
514#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
515#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
516#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
517
518/* CTS to self (if spec allows) flag */
519#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
520
521/* rx_config filter flags */
522/* accept all data frames */
523#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
524/* pass control & management to host */
525#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
526/* accept multi-cast */
527#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
528/* don't decrypt uni-cast frames */
529#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
530/* don't decrypt multi-cast frames */
531#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
532/* STA is associated */
533#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
534/* transfer to host non bssid beacons in associated state */
535#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
536
537/**
538 * REPLY_RXON = 0x10 (command, has simple generic response)
539 *
540 * RXON tunes the radio tuner to a service channel, and sets up a number
541 * of parameters that are used primarily for Rx, but also for Tx operations.
542 *
543 * NOTE: When tuning to a new channel, driver must set the
544 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
545 * info within the device, including the station tables, tx retry
546 * rate tables, and txpower tables. Driver must build a new station
547 * table and txpower table before transmitting anything on the RXON
548 * channel.
549 *
550 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
551 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
552 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
553 */
554
555struct iwl_rxon_cmd {
556 u8 node_addr[6];
557 __le16 reserved1;
558 u8 bssid_addr[6];
559 __le16 reserved2;
560 u8 wlap_bssid_addr[6];
561 __le16 reserved3;
562 u8 dev_type;
563 u8 air_propagation;
564 __le16 rx_chain;
565 u8 ofdm_basic_rates;
566 u8 cck_basic_rates;
567 __le16 assoc_id;
568 __le32 flags;
569 __le32 filter_flags;
570 __le16 channel;
571 u8 ofdm_ht_single_stream_basic_rates;
572 u8 ofdm_ht_dual_stream_basic_rates;
573 u8 ofdm_ht_triple_stream_basic_rates;
574 u8 reserved5;
575 __le16 acquisition_data;
576 __le16 reserved6;
577} __packed;
578
579/*
580 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
581 */
582struct iwl_rxon_assoc_cmd {
583 __le32 flags;
584 __le32 filter_flags;
585 u8 ofdm_basic_rates;
586 u8 cck_basic_rates;
587 __le16 reserved1;
588 u8 ofdm_ht_single_stream_basic_rates;
589 u8 ofdm_ht_dual_stream_basic_rates;
590 u8 ofdm_ht_triple_stream_basic_rates;
591 u8 reserved2;
592 __le16 rx_chain_select_flags;
593 __le16 acquisition_data;
594 __le32 reserved3;
595} __packed;
596
597#define IWL_CONN_MAX_LISTEN_INTERVAL 10
598#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
599
600/*
601 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
602 */
603struct iwl_rxon_time_cmd {
604 __le64 timestamp;
605 __le16 beacon_interval;
606 __le16 atim_window;
607 __le32 beacon_init_val;
608 __le16 listen_interval;
609 u8 dtim_period;
610 u8 delta_cp_bss_tbtts;
611} __packed;
612
613/*
614 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
615 */
616/**
617 * struct iwl5000_channel_switch_cmd
618 * @band: 0- 5.2GHz, 1- 2.4GHz
619 * @expect_beacon: 0- resume transmits after channel switch
620 * 1- wait for beacon to resume transmits
621 * @channel: new channel number
622 * @rxon_flags: Rx on flags
623 * @rxon_filter_flags: filtering parameters
624 * @switch_time: switch time in extended beacon format
625 * @reserved: reserved bytes
626 */
627struct iwl5000_channel_switch_cmd {
628 u8 band;
629 u8 expect_beacon;
630 __le16 channel;
631 __le32 rxon_flags;
632 __le32 rxon_filter_flags;
633 __le32 switch_time;
634 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
635} __packed;
636
637/**
638 * struct iwl6000_channel_switch_cmd
639 * @band: 0- 5.2GHz, 1- 2.4GHz
640 * @expect_beacon: 0- resume transmits after channel switch
641 * 1- wait for beacon to resume transmits
642 * @channel: new channel number
643 * @rxon_flags: Rx on flags
644 * @rxon_filter_flags: filtering parameters
645 * @switch_time: switch time in extended beacon format
646 * @reserved: reserved bytes
647 */
648struct iwl6000_channel_switch_cmd {
649 u8 band;
650 u8 expect_beacon;
651 __le16 channel;
652 __le32 rxon_flags;
653 __le32 rxon_filter_flags;
654 __le32 switch_time;
655 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
656} __packed;
657
658/*
659 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
660 */
661struct iwl_csa_notification {
662 __le16 band;
663 __le16 channel;
664 __le32 status; /* 0 - OK, 1 - fail */
665} __packed;
666
667/******************************************************************************
668 * (2)
669 * Quality-of-Service (QOS) Commands & Responses:
670 *
671 *****************************************************************************/
672
673/**
674 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
675 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
676 *
677 * @cw_min: Contention window, start value in numbers of slots.
678 * Should be a power-of-2, minus 1. Device's default is 0x0f.
679 * @cw_max: Contention window, max value in numbers of slots.
680 * Should be a power-of-2, minus 1. Device's default is 0x3f.
681 * @aifsn: Number of slots in Arbitration Interframe Space (before
682 * performing random backoff timing prior to Tx). Device default 1.
683 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
684 *
685 * Device will automatically increase contention window by (2*CW) + 1 for each
686 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
687 * value, to cap the CW value.
688 */
689struct iwl_ac_qos {
690 __le16 cw_min;
691 __le16 cw_max;
692 u8 aifsn;
693 u8 reserved1;
694 __le16 edca_txop;
695} __packed;
696
697/* QoS flags defines */
698#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
699#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
700#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
701
702/* Number of Access Categories (AC) (EDCA), queues 0..3 */
703#define AC_NUM 4
704
705/*
706 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
707 *
708 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
709 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
710 */
711struct iwl_qosparam_cmd {
712 __le32 qos_flags;
713 struct iwl_ac_qos ac[AC_NUM];
714} __packed;
715
716/******************************************************************************
717 * (3)
718 * Add/Modify Stations Commands & Responses:
719 *
720 *****************************************************************************/
721/*
722 * Multi station support
723 */
724
725/* Special, dedicated locations within device's station table */
726#define IWL_AP_ID 0
727#define IWL_AP_ID_PAN 1
728#define IWL_STA_ID 2
729#define IWLAGN_PAN_BCAST_ID 14
730#define IWLAGN_BROADCAST_ID 15
731#define IWLAGN_STATION_COUNT 16
732
733#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
734
735#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
736#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
737#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
738#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
739#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
740#define STA_FLG_MAX_AGG_SIZE_POS (19)
741#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
742#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
743#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
744#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
745#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
746
747/* Use in mode field. 1: modify existing entry, 0: add new station entry */
748#define STA_CONTROL_MODIFY_MSK 0x01
749
750/* key flags __le16*/
751#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
752#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
753#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
754#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
755#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
756
757#define STA_KEY_FLG_KEYID_POS 8
758#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
759/* wep key is either from global key (0) or from station info array (1) */
760#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
761
762/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
763#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
764#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
765#define STA_KEY_MAX_NUM 8
766#define STA_KEY_MAX_NUM_PAN 16
767/* must not match WEP_INVALID_OFFSET */
768#define IWLAGN_HW_KEY_DEFAULT 0xfe
769
770/* Flags indicate whether to modify vs. don't change various station params */
771#define STA_MODIFY_KEY_MASK 0x01
772#define STA_MODIFY_TID_DISABLE_TX 0x02
773#define STA_MODIFY_TX_RATE_MSK 0x04
774#define STA_MODIFY_ADDBA_TID_MSK 0x08
775#define STA_MODIFY_DELBA_TID_MSK 0x10
776#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
777
778/* agn */
779struct iwl_keyinfo {
780 __le16 key_flags;
781 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
782 u8 reserved1;
783 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
784 u8 key_offset;
785 u8 reserved2;
786 u8 key[16]; /* 16-byte unicast decryption key */
787 __le64 tx_secur_seq_cnt;
788 __le64 hw_tkip_mic_rx_key;
789 __le64 hw_tkip_mic_tx_key;
790} __packed;
791
792/**
793 * struct sta_id_modify
794 * @addr[ETH_ALEN]: station's MAC address
795 * @sta_id: index of station in uCode's station table
796 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
797 *
798 * Driver selects unused table index when adding new station,
799 * or the index to a pre-existing station entry when modifying that station.
800 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
801 *
802 * modify_mask flags select which parameters to modify vs. leave alone.
803 */
804struct sta_id_modify {
805 u8 addr[ETH_ALEN];
806 __le16 reserved1;
807 u8 sta_id;
808 u8 modify_mask;
809 __le16 reserved2;
810} __packed;
811
812/*
813 * REPLY_ADD_STA = 0x18 (command)
814 *
815 * The device contains an internal table of per-station information,
816 * with info on security keys, aggregation parameters, and Tx rates for
817 * initial Tx attempt and any retries (agn devices uses
818 * REPLY_TX_LINK_QUALITY_CMD,
819 *
820 * REPLY_ADD_STA sets up the table entry for one station, either creating
821 * a new entry, or modifying a pre-existing one.
822 *
823 * NOTE: RXON command (without "associated" bit set) wipes the station table
824 * clean. Moving into RF_KILL state does this also. Driver must set up
825 * new station table before transmitting anything on the RXON channel
826 * (except active scans or active measurements; those commands carry
827 * their own txpower/rate setup data).
828 *
829 * When getting started on a new channel, driver must set up the
830 * IWL_BROADCAST_ID entry (last entry in the table). For a client
831 * station in a BSS, once an AP is selected, driver sets up the AP STA
832 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
833 * are all that are needed for a BSS client station. If the device is
834 * used as AP, or in an IBSS network, driver must set up station table
835 * entries for all STAs in network, starting with index IWL_STA_ID.
836 */
837
838struct iwl_addsta_cmd {
839 u8 mode; /* 1: modify existing, 0: add new station */
840 u8 reserved[3];
841 struct sta_id_modify sta;
842 struct iwl_keyinfo key;
843 __le32 station_flags; /* STA_FLG_* */
844 __le32 station_flags_msk; /* STA_FLG_* */
845
846 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
847 * corresponding to bit (e.g. bit 5 controls TID 5).
848 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
849 __le16 tid_disable_tx;
850 __le16 legacy_reserved;
851
852 /* TID for which to add block-ack support.
853 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
854 u8 add_immediate_ba_tid;
855
856 /* TID for which to remove block-ack support.
857 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
858 u8 remove_immediate_ba_tid;
859
860 /* Starting Sequence Number for added block-ack support.
861 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
862 __le16 add_immediate_ba_ssn;
863
864 /*
865 * Number of packets OK to transmit to station even though
866 * it is asleep -- used to synchronise PS-poll and u-APSD
867 * responses while ucode keeps track of STA sleep state.
868 */
869 __le16 sleep_tx_count;
870
871 __le16 reserved2;
872} __packed;
873
874
875#define ADD_STA_SUCCESS_MSK 0x1
876#define ADD_STA_NO_ROOM_IN_TABLE 0x2
877#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
878#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
879/*
880 * REPLY_ADD_STA = 0x18 (response)
881 */
882struct iwl_add_sta_resp {
883 u8 status; /* ADD_STA_* */
884} __packed;
885
886#define REM_STA_SUCCESS_MSK 0x1
887/*
888 * REPLY_REM_STA = 0x19 (response)
889 */
890struct iwl_rem_sta_resp {
891 u8 status;
892} __packed;
893
894/*
895 * REPLY_REM_STA = 0x19 (command)
896 */
897struct iwl_rem_sta_cmd {
898 u8 num_sta; /* number of removed stations */
899 u8 reserved[3];
900 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
901 u8 reserved2[2];
902} __packed;
903
904
905/* WiFi queues mask */
906#define IWL_SCD_BK_MSK BIT(0)
907#define IWL_SCD_BE_MSK BIT(1)
908#define IWL_SCD_VI_MSK BIT(2)
909#define IWL_SCD_VO_MSK BIT(3)
910#define IWL_SCD_MGMT_MSK BIT(3)
911
912/* PAN queues mask */
913#define IWL_PAN_SCD_BK_MSK BIT(4)
914#define IWL_PAN_SCD_BE_MSK BIT(5)
915#define IWL_PAN_SCD_VI_MSK BIT(6)
916#define IWL_PAN_SCD_VO_MSK BIT(7)
917#define IWL_PAN_SCD_MGMT_MSK BIT(7)
918#define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
919
920#define IWL_AGG_TX_QUEUE_MSK 0xffc00
921
922#define IWL_DROP_ALL BIT(1)
923
924/*
925 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
926 *
927 * When using full FIFO flush this command checks the scheduler HW block WR/RD
928 * pointers to check if all the frames were transferred by DMA into the
929 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
930 * empty the command can finish.
931 * This command is used to flush the TXFIFO from transmit commands, it may
932 * operate on single or multiple queues, the command queue can't be flushed by
933 * this command. The command response is returned when all the queue flush
934 * operations are done. Each TX command flushed return response with the FLUSH
935 * status set in the TX response status. When FIFO flush operation is used,
936 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
937 * are set.
938 *
939 * @queue_control: bit mask for which queues to flush
940 * @flush_control: flush controls
941 * 0: Dump single MSDU
942 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
943 * 2: Dump all FIFO
944 */
945struct iwl_txfifo_flush_cmd_v3 {
946 __le32 queue_control;
947 __le16 flush_control;
948 __le16 reserved;
949} __packed;
950
951struct iwl_txfifo_flush_cmd_v2 {
952 __le16 queue_control;
953 __le16 flush_control;
954} __packed;
955
956/*
957 * REPLY_WEP_KEY = 0x20
958 */
959struct iwl_wep_key {
960 u8 key_index;
961 u8 key_offset;
962 u8 reserved1[2];
963 u8 key_size;
964 u8 reserved2[3];
965 u8 key[16];
966} __packed;
967
968struct iwl_wep_cmd {
969 u8 num_keys;
970 u8 global_key_type;
971 u8 flags;
972 u8 reserved;
973 struct iwl_wep_key key[];
974} __packed;
975
976#define WEP_KEY_WEP_TYPE 1
977#define WEP_KEYS_MAX 4
978#define WEP_INVALID_OFFSET 0xff
979#define WEP_KEY_LEN_64 5
980#define WEP_KEY_LEN_128 13
981
982/******************************************************************************
983 * (4)
984 * Rx Responses:
985 *
986 *****************************************************************************/
987
988#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
989#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
990
991#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
992#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
993#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
994#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
995#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
996#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
997#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
998
999#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1000#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1001#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1002#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1003#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1004#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1005
1006#define RX_RES_STATUS_STATION_FOUND (1<<6)
1007#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1008
1009#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1010#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1011#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1012#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1013#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1014
1015#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1016#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1017#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1018#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1019
1020
1021#define IWLAGN_RX_RES_PHY_CNT 8
1022#define IWLAGN_RX_RES_AGC_IDX 1
1023#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1024#define IWLAGN_RX_RES_RSSI_C_IDX 3
1025#define IWLAGN_OFDM_AGC_MSK 0xfe00
1026#define IWLAGN_OFDM_AGC_BIT_POS 9
1027#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1028#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1029#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1030#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1031#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1032#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1033#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1034#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1035#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1036
1037struct iwlagn_non_cfg_phy {
1038 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1039} __packed;
1040
1041
1042/*
1043 * REPLY_RX = 0xc3 (response only, not a command)
1044 * Used only for legacy (non 11n) frames.
1045 */
1046struct iwl_rx_phy_res {
1047 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1048 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1049 u8 stat_id; /* configurable DSP phy data set ID */
1050 u8 reserved1;
1051 __le64 timestamp; /* TSF at on air rise */
1052 __le32 beacon_time_stamp; /* beacon at on-air rise */
1053 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1054 __le16 channel; /* channel number */
1055 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1056 __le32 rate_n_flags; /* RATE_MCS_* */
1057 __le16 byte_count; /* frame's byte-count */
1058 __le16 frame_time; /* frame's time on the air */
1059} __packed;
1060
1061struct iwl_rx_mpdu_res_start {
1062 __le16 byte_count;
1063 __le16 reserved;
1064} __packed;
1065
1066
1067/******************************************************************************
1068 * (5)
1069 * Tx Commands & Responses:
1070 *
1071 * Driver must place each REPLY_TX command into one of the prioritized Tx
1072 * queues in host DRAM, shared between driver and device (see comments for
1073 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1074 * are preparing to transmit, the device pulls the Tx command over the PCI
1075 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1076 * from which data will be transmitted.
1077 *
1078 * uCode handles all timing and protocol related to control frames
1079 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1080 * handle reception of block-acks; uCode updates the host driver via
1081 * REPLY_COMPRESSED_BA.
1082 *
1083 * uCode handles retrying Tx when an ACK is expected but not received.
1084 * This includes trying lower data rates than the one requested in the Tx
1085 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1086 *
1087 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1088 * This command must be executed after every RXON command, before Tx can occur.
1089 *****************************************************************************/
1090
1091/* REPLY_TX Tx flags field */
1092
1093/*
1094 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1095 * before this frame. if CTS-to-self required check
1096 * RXON_FLG_SELF_CTS_EN status.
1097 */
1098#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1099
1100/* 1: Expect ACK from receiving station
1101 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1102 * Set this for unicast frames, but not broadcast/multicast. */
1103#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1104
1105/* For agn devices:
1106 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1107 * Tx command's initial_rate_index indicates first rate to try;
1108 * uCode walks through table for additional Tx attempts.
1109 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1110 * This rate will be used for all Tx attempts; it will not be scaled. */
1111#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1112
1113/* 1: Expect immediate block-ack.
1114 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1115#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1116
1117/* Tx antenna selection field; reserved (0) for agn devices. */
1118#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1119
1120/* 1: Ignore Bluetooth priority for this frame.
1121 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1122#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1123
1124/* 1: uCode overrides sequence control field in MAC header.
1125 * 0: Driver provides sequence control field in MAC header.
1126 * Set this for management frames, non-QOS data frames, non-unicast frames,
1127 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1128#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1129
1130/* 1: This frame is non-last MPDU; more fragments are coming.
1131 * 0: Last fragment, or not using fragmentation. */
1132#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1133
1134/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1135 * 0: No TSF required in outgoing frame.
1136 * Set this for transmitting beacons and probe responses. */
1137#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1138
1139/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1140 * alignment of frame's payload data field.
1141 * 0: No pad
1142 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1143 * field (but not both). Driver must align frame data (i.e. data following
1144 * MAC header) to DWORD boundary. */
1145#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1146
1147/* accelerate aggregation support
1148 * 0 - no CCMP encryption; 1 - CCMP encryption */
1149#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1150
1151/* HCCA-AP - disable duration overwriting. */
1152#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1153
1154
1155/*
1156 * TX command security control
1157 */
1158#define TX_CMD_SEC_WEP 0x01
1159#define TX_CMD_SEC_CCM 0x02
1160#define TX_CMD_SEC_TKIP 0x03
1161#define TX_CMD_SEC_MSK 0x03
1162#define TX_CMD_SEC_SHIFT 6
1163#define TX_CMD_SEC_KEY128 0x08
1164
1165/*
1166 * REPLY_TX = 0x1c (command)
1167 */
1168
1169/*
1170 * Used for managing Tx retries when expecting block-acks.
1171 * Driver should set these fields to 0.
1172 */
1173struct iwl_dram_scratch {
1174 u8 try_cnt; /* Tx attempts */
1175 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1176 __le16 reserved;
1177} __packed;
1178
1179struct iwl_tx_cmd {
1180 /*
1181 * MPDU byte count:
1182 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1183 * + 8 byte IV for CCM or TKIP (not used for WEP)
1184 * + Data payload
1185 * + 8-byte MIC (not used for CCM/WEP)
1186 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1187 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1188 * Range: 14-2342 bytes.
1189 */
1190 __le16 len;
1191
1192 /*
1193 * MPDU or MSDU byte count for next frame.
1194 * Used for fragmentation and bursting, but not 11n aggregation.
1195 * Same as "len", but for next frame. Set to 0 if not applicable.
1196 */
1197 __le16 next_frame_len;
1198
1199 __le32 tx_flags; /* TX_CMD_FLG_* */
1200
1201 /* uCode may modify this field of the Tx command (in host DRAM!).
1202 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1203 struct iwl_dram_scratch scratch;
1204
1205 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1206 __le32 rate_n_flags; /* RATE_MCS_* */
1207
1208 /* Index of destination station in uCode's station table */
1209 u8 sta_id;
1210
1211 /* Type of security encryption: CCM or TKIP */
1212 u8 sec_ctl; /* TX_CMD_SEC_* */
1213
1214 /*
1215 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1216 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1217 * data frames, this field may be used to selectively reduce initial
1218 * rate (via non-0 value) for special frames (e.g. management), while
1219 * still supporting rate scaling for all frames.
1220 */
1221 u8 initial_rate_index;
1222 u8 reserved;
1223 u8 key[16];
1224 __le16 next_frame_flags;
1225 __le16 reserved2;
1226 union {
1227 __le32 life_time;
1228 __le32 attempt;
1229 } stop_time;
1230
1231 /* Host DRAM physical address pointer to "scratch" in this command.
1232 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1233 __le32 dram_lsb_ptr;
1234 u8 dram_msb_ptr;
1235
1236 u8 rts_retry_limit; /*byte 50 */
1237 u8 data_retry_limit; /*byte 51 */
1238 u8 tid_tspec;
1239 union {
1240 __le16 pm_frame_timeout;
1241 __le16 attempt_duration;
1242 } timeout;
1243
1244 /*
1245 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1246 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1247 */
1248 __le16 driver_txop;
1249
1250 /*
1251 * MAC header goes here, followed by 2 bytes padding if MAC header
1252 * length is 26 or 30 bytes, followed by payload data
1253 */
1254 u8 payload[0];
1255 struct ieee80211_hdr hdr[];
1256} __packed;
1257
1258/*
1259 * TX command response is sent after *agn* transmission attempts.
1260 *
1261 * both postpone and abort status are expected behavior from uCode. there is
1262 * no special operation required from driver; except for RFKILL_FLUSH,
1263 * which required tx flush host command to flush all the tx frames in queues
1264 */
1265enum {
1266 TX_STATUS_SUCCESS = 0x01,
1267 TX_STATUS_DIRECT_DONE = 0x02,
1268 /* postpone TX */
1269 TX_STATUS_POSTPONE_DELAY = 0x40,
1270 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1271 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1272 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1273 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1274 /* abort TX */
1275 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1276 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1277 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1278 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1279 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1280 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1281 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1282 TX_STATUS_FAIL_DEST_PS = 0x88,
1283 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1284 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1285 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1286 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1287 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1288 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1289 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1290 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1291 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1292};
1293
1294#define TX_PACKET_MODE_REGULAR 0x0000
1295#define TX_PACKET_MODE_BURST_SEQ 0x0100
1296#define TX_PACKET_MODE_BURST_FIRST 0x0200
1297
1298enum {
1299 TX_POWER_PA_NOT_ACTIVE = 0x0,
1300};
1301
1302enum {
1303 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1304 TX_STATUS_DELAY_MSK = 0x00000040,
1305 TX_STATUS_ABORT_MSK = 0x00000080,
1306 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1307 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1308 TX_RESERVED = 0x00780000, /* bits 19:22 */
1309 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1310 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1311};
1312
1313/* *******************************
1314 * TX aggregation status
1315 ******************************* */
1316
1317enum {
1318 AGG_TX_STATE_TRANSMITTED = 0x00,
1319 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1320 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1321 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1322 AGG_TX_STATE_ABORT_MSK = 0x08,
1323 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1324 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1325 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1326 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1327 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1328 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1329 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1330 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1331};
1332
1333#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1334#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1335#define AGG_TX_TRY_POS 12
1336
1337#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1338 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1339 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1340
1341/* # tx attempts for first frame in aggregation */
1342#define AGG_TX_STATE_TRY_CNT_POS 12
1343#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1344
1345/* Command ID and sequence number of Tx command for this frame */
1346#define AGG_TX_STATE_SEQ_NUM_POS 16
1347#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1348
1349/*
1350 * REPLY_TX = 0x1c (response)
1351 *
1352 * This response may be in one of two slightly different formats, indicated
1353 * by the frame_count field:
1354 *
1355 * 1) No aggregation (frame_count == 1). This reports Tx results for
1356 * a single frame. Multiple attempts, at various bit rates, may have
1357 * been made for this frame.
1358 *
1359 * 2) Aggregation (frame_count > 1). This reports Tx results for
1360 * 2 or more frames that used block-acknowledge. All frames were
1361 * transmitted at same rate. Rate scaling may have been used if first
1362 * frame in this new agg block failed in previous agg block(s).
1363 *
1364 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1365 * block-ack has not been received by the time the agn device records
1366 * this status.
1367 * This status relates to reasons the tx might have been blocked or aborted
1368 * within the sending station (this agn device), rather than whether it was
1369 * received successfully by the destination station.
1370 */
1371struct agg_tx_status {
1372 __le16 status;
1373 __le16 sequence;
1374} __packed;
1375
1376/* refer to ra_tid */
1377#define IWLAGN_TX_RES_TID_POS 0
1378#define IWLAGN_TX_RES_TID_MSK 0x0f
1379#define IWLAGN_TX_RES_RA_POS 4
1380#define IWLAGN_TX_RES_RA_MSK 0xf0
1381
1382struct iwlagn_tx_resp {
1383 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1384 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1385 u8 failure_rts; /* # failures due to unsuccessful RTS */
1386 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1387
1388 /* For non-agg: Rate at which frame was successful.
1389 * For agg: Rate at which all frames were transmitted. */
1390 __le32 rate_n_flags; /* RATE_MCS_* */
1391
1392 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1393 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1394 __le16 wireless_media_time; /* uSecs */
1395
1396 u8 pa_status; /* RF power amplifier measurement (not used) */
1397 u8 pa_integ_res_a[3];
1398 u8 pa_integ_res_b[3];
1399 u8 pa_integ_res_C[3];
1400
1401 __le32 tfd_info;
1402 __le16 seq_ctl;
1403 __le16 byte_cnt;
1404 u8 tlc_info;
1405 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1406 __le16 frame_ctrl;
1407 /*
1408 * For non-agg: frame status TX_STATUS_*
1409 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1410 * fields follow this one, up to frame_count.
1411 * Bit fields:
1412 * 11- 0: AGG_TX_STATE_* status code
1413 * 15-12: Retry count for 1st frame in aggregation (retries
1414 * occur if tx failed for this frame when it was a
1415 * member of a previous aggregation block). If rate
1416 * scaling is used, retry count indicates the rate
1417 * table entry used for all frames in the new agg.
1418 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1419 */
1420 struct agg_tx_status status; /* TX status (in aggregation -
1421 * status of 1st frame) */
1422} __packed;
1423/*
1424 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1425 *
1426 * Reports Block-Acknowledge from recipient station
1427 */
1428struct iwl_compressed_ba_resp {
1429 __le32 sta_addr_lo32;
1430 __le16 sta_addr_hi16;
1431 __le16 reserved;
1432
1433 /* Index of recipient (BA-sending) station in uCode's station table */
1434 u8 sta_id;
1435 u8 tid;
1436 __le16 seq_ctl;
1437 __le64 bitmap;
1438 __le16 scd_flow;
1439 __le16 scd_ssn;
1440 u8 txed; /* number of frames sent */
1441 u8 txed_2_done; /* number of frames acked */
1442 __le16 reserved1;
1443} __packed;
1444
1445/*
1446 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1447 *
1448 */
1449
1450/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1451#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1452
1453/* # of EDCA prioritized tx fifos */
1454#define LINK_QUAL_AC_NUM AC_NUM
1455
1456/* # entries in rate scale table to support Tx retries */
1457#define LINK_QUAL_MAX_RETRY_NUM 16
1458
1459/* Tx antenna selection values */
1460#define LINK_QUAL_ANT_A_MSK (1 << 0)
1461#define LINK_QUAL_ANT_B_MSK (1 << 1)
1462#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1463
1464
1465/**
1466 * struct iwl_link_qual_general_params
1467 *
1468 * Used in REPLY_TX_LINK_QUALITY_CMD
1469 */
1470struct iwl_link_qual_general_params {
1471 u8 flags;
1472
1473 /* No entries at or above this (driver chosen) index contain MIMO */
1474 u8 mimo_delimiter;
1475
1476 /* Best single antenna to use for single stream (legacy, SISO). */
1477 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1478
1479 /* Best antennas to use for MIMO */
1480 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1481
1482 /*
1483 * If driver needs to use different initial rates for different
1484 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1485 * this table will set that up, by indicating the indexes in the
1486 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1487 * Otherwise, driver should set all entries to 0.
1488 *
1489 * Entry usage:
1490 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1491 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1492 */
1493 u8 start_rate_index[LINK_QUAL_AC_NUM];
1494} __packed;
1495
1496#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1497#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1498#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1499
1500#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1501#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1502#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1503
1504#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1505#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1506#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1507
1508/**
1509 * struct iwl_link_qual_agg_params
1510 *
1511 * Used in REPLY_TX_LINK_QUALITY_CMD
1512 */
1513struct iwl_link_qual_agg_params {
1514
1515 /*
1516 *Maximum number of uSec in aggregation.
1517 * default set to 4000 (4 milliseconds) if not configured in .cfg
1518 */
1519 __le16 agg_time_limit;
1520
1521 /*
1522 * Number of Tx retries allowed for a frame, before that frame will
1523 * no longer be considered for the start of an aggregation sequence
1524 * (scheduler will then try to tx it as single frame).
1525 * Driver should set this to 3.
1526 */
1527 u8 agg_dis_start_th;
1528
1529 /*
1530 * Maximum number of frames in aggregation.
1531 * 0 = no limit (default). 1 = no aggregation.
1532 * Other values = max # frames in aggregation.
1533 */
1534 u8 agg_frame_cnt_limit;
1535
1536 __le32 reserved;
1537} __packed;
1538
1539/*
1540 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1541 *
1542 * For agn devices
1543 *
1544 * Each station in the agn device's internal station table has its own table
1545 * of 16
1546 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1547 * an ACK is not received. This command replaces the entire table for
1548 * one station.
1549 *
1550 * NOTE: Station must already be in agn device's station table.
1551 * Use REPLY_ADD_STA.
1552 *
1553 * The rate scaling procedures described below work well. Of course, other
1554 * procedures are possible, and may work better for particular environments.
1555 *
1556 *
1557 * FILLING THE RATE TABLE
1558 *
1559 * Given a particular initial rate and mode, as determined by the rate
1560 * scaling algorithm described below, the Linux driver uses the following
1561 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1562 * Link Quality command:
1563 *
1564 *
1565 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1566 * a) Use this same initial rate for first 3 entries.
1567 * b) Find next lower available rate using same mode (SISO or MIMO),
1568 * use for next 3 entries. If no lower rate available, switch to
1569 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1570 * c) If using MIMO, set command's mimo_delimiter to number of entries
1571 * using MIMO (3 or 6).
1572 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1573 * no MIMO, no short guard interval), at the next lower bit rate
1574 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1575 * legacy procedure for remaining table entries.
1576 *
1577 * 2) If using legacy initial rate:
1578 * a) Use the initial rate for only one entry.
1579 * b) For each following entry, reduce the rate to next lower available
1580 * rate, until reaching the lowest available rate.
1581 * c) When reducing rate, also switch antenna selection.
1582 * d) Once lowest available rate is reached, repeat this rate until
1583 * rate table is filled (16 entries), switching antenna each entry.
1584 *
1585 *
1586 * ACCUMULATING HISTORY
1587 *
1588 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1589 * uses two sets of frame Tx success history: One for the current/active
1590 * modulation mode, and one for a speculative/search mode that is being
1591 * attempted. If the speculative mode turns out to be more effective (i.e.
1592 * actual transfer rate is better), then the driver continues to use the
1593 * speculative mode as the new current active mode.
1594 *
1595 * Each history set contains, separately for each possible rate, data for a
1596 * sliding window of the 62 most recent tx attempts at that rate. The data
1597 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1598 * and attempted frames, from which the driver can additionally calculate a
1599 * success ratio (success / attempted) and number of failures
1600 * (attempted - success), and control the size of the window (attempted).
1601 * The driver uses the bit map to remove successes from the success sum, as
1602 * the oldest tx attempts fall out of the window.
1603 *
1604 * When the agn device makes multiple tx attempts for a given frame, each
1605 * attempt might be at a different rate, and have different modulation
1606 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1607 * up in the rate scaling table in the Link Quality command. The driver must
1608 * determine which rate table entry was used for each tx attempt, to determine
1609 * which rate-specific history to update, and record only those attempts that
1610 * match the modulation characteristics of the history set.
1611 *
1612 * When using block-ack (aggregation), all frames are transmitted at the same
1613 * rate, since there is no per-attempt acknowledgment from the destination
1614 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1615 * rate_n_flags field. After receiving a block-ack, the driver can update
1616 * history for the entire block all at once.
1617 *
1618 *
1619 * FINDING BEST STARTING RATE:
1620 *
1621 * When working with a selected initial modulation mode (see below), the
1622 * driver attempts to find a best initial rate. The initial rate is the
1623 * first entry in the Link Quality command's rate table.
1624 *
1625 * 1) Calculate actual throughput (success ratio * expected throughput, see
1626 * table below) for current initial rate. Do this only if enough frames
1627 * have been attempted to make the value meaningful: at least 6 failed
1628 * tx attempts, or at least 8 successes. If not enough, don't try rate
1629 * scaling yet.
1630 *
1631 * 2) Find available rates adjacent to current initial rate. Available means:
1632 * a) supported by hardware &&
1633 * b) supported by association &&
1634 * c) within any constraints selected by user
1635 *
1636 * 3) Gather measured throughputs for adjacent rates. These might not have
1637 * enough history to calculate a throughput. That's okay, we might try
1638 * using one of them anyway!
1639 *
1640 * 4) Try decreasing rate if, for current rate:
1641 * a) success ratio is < 15% ||
1642 * b) lower adjacent rate has better measured throughput ||
1643 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1644 *
1645 * As a sanity check, if decrease was determined above, leave rate
1646 * unchanged if:
1647 * a) lower rate unavailable
1648 * b) success ratio at current rate > 85% (very good)
1649 * c) current measured throughput is better than expected throughput
1650 * of lower rate (under perfect 100% tx conditions, see table below)
1651 *
1652 * 5) Try increasing rate if, for current rate:
1653 * a) success ratio is < 15% ||
1654 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1655 * b) higher adjacent rate has better measured throughput ||
1656 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1657 *
1658 * As a sanity check, if increase was determined above, leave rate
1659 * unchanged if:
1660 * a) success ratio at current rate < 70%. This is not particularly
1661 * good performance; higher rate is sure to have poorer success.
1662 *
1663 * 6) Re-evaluate the rate after each tx frame. If working with block-
1664 * acknowledge, history and statistics may be calculated for the entire
1665 * block (including prior history that fits within the history windows),
1666 * before re-evaluation.
1667 *
1668 * FINDING BEST STARTING MODULATION MODE:
1669 *
1670 * After working with a modulation mode for a "while" (and doing rate scaling),
1671 * the driver searches for a new initial mode in an attempt to improve
1672 * throughput. The "while" is measured by numbers of attempted frames:
1673 *
1674 * For legacy mode, search for new mode after:
1675 * 480 successful frames, or 160 failed frames
1676 * For high-throughput modes (SISO or MIMO), search for new mode after:
1677 * 4500 successful frames, or 400 failed frames
1678 *
1679 * Mode switch possibilities are (3 for each mode):
1680 *
1681 * For legacy:
1682 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1683 * For SISO:
1684 * Change antenna, try MIMO, try shortened guard interval (SGI)
1685 * For MIMO:
1686 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1687 *
1688 * When trying a new mode, use the same bit rate as the old/current mode when
1689 * trying antenna switches and shortened guard interval. When switching to
1690 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1691 * for which the expected throughput (under perfect conditions) is about the
1692 * same or slightly better than the actual measured throughput delivered by
1693 * the old/current mode.
1694 *
1695 * Actual throughput can be estimated by multiplying the expected throughput
1696 * by the success ratio (successful / attempted tx frames). Frame size is
1697 * not considered in this calculation; it assumes that frame size will average
1698 * out to be fairly consistent over several samples. The following are
1699 * metric values for expected throughput assuming 100% success ratio.
1700 * Only G band has support for CCK rates:
1701 *
1702 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1703 *
1704 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1705 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1706 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1707 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1708 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1709 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1710 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1711 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1712 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1713 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1714 *
1715 * After the new mode has been tried for a short while (minimum of 6 failed
1716 * frames or 8 successful frames), compare success ratio and actual throughput
1717 * estimate of the new mode with the old. If either is better with the new
1718 * mode, continue to use the new mode.
1719 *
1720 * Continue comparing modes until all 3 possibilities have been tried.
1721 * If moving from legacy to HT, try all 3 possibilities from the new HT
1722 * mode. After trying all 3, a best mode is found. Continue to use this mode
1723 * for the longer "while" described above (e.g. 480 successful frames for
1724 * legacy), and then repeat the search process.
1725 *
1726 */
1727struct iwl_link_quality_cmd {
1728
1729 /* Index of destination/recipient station in uCode's station table */
1730 u8 sta_id;
1731 u8 reserved1;
1732 __le16 control; /* not used */
1733 struct iwl_link_qual_general_params general_params;
1734 struct iwl_link_qual_agg_params agg_params;
1735
1736 /*
1737 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1738 * specifies 1st Tx rate attempted, via index into this table.
1739 * agn devices works its way through table when retrying Tx.
1740 */
1741 struct {
1742 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1743 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1744 __le32 reserved2;
1745} __packed;
1746
1747/*
1748 * BT configuration enable flags:
1749 * bit 0 - 1: BT channel announcement enabled
1750 * 0: disable
1751 * bit 1 - 1: priority of BT device enabled
1752 * 0: disable
1753 * bit 2 - 1: BT 2 wire support enabled
1754 * 0: disable
1755 */
1756#define BT_COEX_DISABLE (0x0)
1757#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1758#define BT_ENABLE_PRIORITY BIT(1)
1759#define BT_ENABLE_2_WIRE BIT(2)
1760
1761#define BT_COEX_DISABLE (0x0)
1762#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1763
1764#define BT_LEAD_TIME_MIN (0x0)
1765#define BT_LEAD_TIME_DEF (0x1E)
1766#define BT_LEAD_TIME_MAX (0xFF)
1767
1768#define BT_MAX_KILL_MIN (0x1)
1769#define BT_MAX_KILL_DEF (0x5)
1770#define BT_MAX_KILL_MAX (0xFF)
1771
1772#define BT_DURATION_LIMIT_DEF 625
1773#define BT_DURATION_LIMIT_MAX 1250
1774#define BT_DURATION_LIMIT_MIN 625
1775
1776#define BT_ON_THRESHOLD_DEF 4
1777#define BT_ON_THRESHOLD_MAX 1000
1778#define BT_ON_THRESHOLD_MIN 1
1779
1780#define BT_FRAG_THRESHOLD_DEF 0
1781#define BT_FRAG_THRESHOLD_MAX 0
1782#define BT_FRAG_THRESHOLD_MIN 0
1783
1784#define BT_AGG_THRESHOLD_DEF 1200
1785#define BT_AGG_THRESHOLD_MAX 8000
1786#define BT_AGG_THRESHOLD_MIN 400
1787
1788/*
1789 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1790 *
1791 * agn devices support hardware handshake with Bluetooth device on
1792 * same platform. Bluetooth device alerts wireless device when it will Tx;
1793 * wireless device can delay or kill its own Tx to accommodate.
1794 */
1795struct iwl_bt_cmd {
1796 u8 flags;
1797 u8 lead_time;
1798 u8 max_kill;
1799 u8 reserved;
1800 __le32 kill_ack_mask;
1801 __le32 kill_cts_mask;
1802} __packed;
1803
1804#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1805
1806#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1807#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1808#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1809#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1810#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1811#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1812
1813#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1814/* Disable Sync PSPoll on SCO/eSCO */
1815#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1816
1817#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1818#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1819
1820#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1821#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1822#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1823#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1824
1825#define IWLAGN_BT_MAX_KILL_DEFAULT 5
1826
1827#define IWLAGN_BT3_T7_DEFAULT 1
1828
1829enum iwl_bt_kill_idx {
1830 IWL_BT_KILL_DEFAULT = 0,
1831 IWL_BT_KILL_OVERRIDE = 1,
1832 IWL_BT_KILL_REDUCE = 2,
1833};
1834
1835#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1836#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1837#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1838#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1839
1840#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1841
1842#define IWLAGN_BT3_T2_DEFAULT 0xc
1843
1844#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1845#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1846#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1847#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1848#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1849#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1850#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1851#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1852
1853#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1854 IWLAGN_BT_VALID_BOOST | \
1855 IWLAGN_BT_VALID_MAX_KILL | \
1856 IWLAGN_BT_VALID_3W_TIMERS | \
1857 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1858 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1859 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1860 IWLAGN_BT_VALID_3W_LUT)
1861
1862#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1863
1864#define IWLAGN_BT_DECISION_LUT_SIZE 12
1865
1866struct iwl_basic_bt_cmd {
1867 u8 flags;
1868 u8 ledtime; /* unused */
1869 u8 max_kill;
1870 u8 bt3_timer_t7_value;
1871 __le32 kill_ack_mask;
1872 __le32 kill_cts_mask;
1873 u8 bt3_prio_sample_time;
1874 u8 bt3_timer_t2_value;
1875 __le16 bt4_reaction_time; /* unused */
1876 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1877 /*
1878 * bit 0: use reduced tx power for control frame
1879 * bit 1 - 7: reserved
1880 */
1881 u8 reduce_txpower;
1882 u8 reserved;
1883 __le16 valid;
1884};
1885
1886struct iwl_bt_cmd_v1 {
1887 struct iwl_basic_bt_cmd basic;
1888 u8 prio_boost;
1889 /*
1890 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1891 * if configure the following patterns
1892 */
1893 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1894 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1895};
1896
1897struct iwl_bt_cmd_v2 {
1898 struct iwl_basic_bt_cmd basic;
1899 __le32 prio_boost;
1900 /*
1901 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1902 * if configure the following patterns
1903 */
1904 u8 reserved;
1905 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1906 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1907};
1908
1909#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1910
1911struct iwlagn_bt_sco_cmd {
1912 __le32 flags;
1913};
1914
1915/******************************************************************************
1916 * (6)
1917 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1918 *
1919 *****************************************************************************/
1920
1921/*
1922 * Spectrum Management
1923 */
1924#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1925 RXON_FILTER_CTL2HOST_MSK | \
1926 RXON_FILTER_ACCEPT_GRP_MSK | \
1927 RXON_FILTER_DIS_DECRYPT_MSK | \
1928 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1929 RXON_FILTER_ASSOC_MSK | \
1930 RXON_FILTER_BCON_AWARE_MSK)
1931
1932struct iwl_measure_channel {
1933 __le32 duration; /* measurement duration in extended beacon
1934 * format */
1935 u8 channel; /* channel to measure */
1936 u8 type; /* see enum iwl_measure_type */
1937 __le16 reserved;
1938} __packed;
1939
1940/*
1941 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1942 */
1943struct iwl_spectrum_cmd {
1944 __le16 len; /* number of bytes starting from token */
1945 u8 token; /* token id */
1946 u8 id; /* measurement id -- 0 or 1 */
1947 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
1948 u8 periodic; /* 1 = periodic */
1949 __le16 path_loss_timeout;
1950 __le32 start_time; /* start time in extended beacon format */
1951 __le32 reserved2;
1952 __le32 flags; /* rxon flags */
1953 __le32 filter_flags; /* rxon filter flags */
1954 __le16 channel_count; /* minimum 1, maximum 10 */
1955 __le16 reserved3;
1956 struct iwl_measure_channel channels[10];
1957} __packed;
1958
1959/*
1960 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1961 */
1962struct iwl_spectrum_resp {
1963 u8 token;
1964 u8 id; /* id of the prior command replaced, or 0xff */
1965 __le16 status; /* 0 - command will be handled
1966 * 1 - cannot handle (conflicts with another
1967 * measurement) */
1968} __packed;
1969
1970enum iwl_measurement_state {
1971 IWL_MEASUREMENT_START = 0,
1972 IWL_MEASUREMENT_STOP = 1,
1973};
1974
1975enum iwl_measurement_status {
1976 IWL_MEASUREMENT_OK = 0,
1977 IWL_MEASUREMENT_CONCURRENT = 1,
1978 IWL_MEASUREMENT_CSA_CONFLICT = 2,
1979 IWL_MEASUREMENT_TGH_CONFLICT = 3,
1980 /* 4-5 reserved */
1981 IWL_MEASUREMENT_STOPPED = 6,
1982 IWL_MEASUREMENT_TIMEOUT = 7,
1983 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1984};
1985
1986#define NUM_ELEMENTS_IN_HISTOGRAM 8
1987
1988struct iwl_measurement_histogram {
1989 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
1990 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
1991} __packed;
1992
1993/* clear channel availability counters */
1994struct iwl_measurement_cca_counters {
1995 __le32 ofdm;
1996 __le32 cck;
1997} __packed;
1998
1999enum iwl_measure_type {
2000 IWL_MEASURE_BASIC = (1 << 0),
2001 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2002 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2003 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2004 IWL_MEASURE_FRAME = (1 << 4),
2005 /* bits 5:6 are reserved */
2006 IWL_MEASURE_IDLE = (1 << 7),
2007};
2008
2009/*
2010 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2011 */
2012struct iwl_spectrum_notification {
2013 u8 id; /* measurement id -- 0 or 1 */
2014 u8 token;
2015 u8 channel_index; /* index in measurement channel list */
2016 u8 state; /* 0 - start, 1 - stop */
2017 __le32 start_time; /* lower 32-bits of TSF */
2018 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2019 u8 channel;
2020 u8 type; /* see enum iwl_measurement_type */
2021 u8 reserved1;
2022 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2023 * valid if applicable for measurement type requested. */
2024 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2025 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2026 __le32 cca_time; /* channel load time in usecs */
2027 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2028 * unidentified */
2029 u8 reserved2[3];
2030 struct iwl_measurement_histogram histogram;
2031 __le32 stop_time; /* lower 32-bits of TSF */
2032 __le32 status; /* see iwl_measurement_status */
2033} __packed;
2034
2035/******************************************************************************
2036 * (7)
2037 * Power Management Commands, Responses, Notifications:
2038 *
2039 *****************************************************************************/
2040
2041/**
2042 * struct iwl_powertable_cmd - Power Table Command
2043 * @flags: See below:
2044 *
2045 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2046 *
2047 * PM allow:
2048 * bit 0 - '0' Driver not allow power management
2049 * '1' Driver allow PM (use rest of parameters)
2050 *
2051 * uCode send sleep notifications:
2052 * bit 1 - '0' Don't send sleep notification
2053 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2054 *
2055 * Sleep over DTIM
2056 * bit 2 - '0' PM have to walk up every DTIM
2057 * '1' PM could sleep over DTIM till listen Interval.
2058 *
2059 * PCI power managed
2060 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2061 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2062 *
2063 * Fast PD
2064 * bit 4 - '1' Put radio to sleep when receiving frame for others
2065 *
2066 * Force sleep Modes
2067 * bit 31/30- '00' use both mac/xtal sleeps
2068 * '01' force Mac sleep
2069 * '10' force xtal sleep
2070 * '11' Illegal set
2071 *
2072 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2073 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2074 * for every DTIM.
2075 */
2076#define IWL_POWER_VEC_SIZE 5
2077
2078#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2079#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2080#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2081#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2082#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2083#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2084#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2085#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2086#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2087#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2088#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2089
2090struct iwl_powertable_cmd {
2091 __le16 flags;
2092 u8 keep_alive_seconds;
2093 u8 debug_flags;
2094 __le32 rx_data_timeout;
2095 __le32 tx_data_timeout;
2096 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2097 __le32 keep_alive_beacons;
2098} __packed;
2099
2100/*
2101 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2102 * all devices identical.
2103 */
2104struct iwl_sleep_notification {
2105 u8 pm_sleep_mode;
2106 u8 pm_wakeup_src;
2107 __le16 reserved;
2108 __le32 sleep_time;
2109 __le32 tsf_low;
2110 __le32 bcon_timer;
2111} __packed;
2112
2113/* Sleep states. all devices identical. */
2114enum {
2115 IWL_PM_NO_SLEEP = 0,
2116 IWL_PM_SLP_MAC = 1,
2117 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2118 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2119 IWL_PM_SLP_PHY = 4,
2120 IWL_PM_SLP_REPENT = 5,
2121 IWL_PM_WAKEUP_BY_TIMER = 6,
2122 IWL_PM_WAKEUP_BY_DRIVER = 7,
2123 IWL_PM_WAKEUP_BY_RFKILL = 8,
2124 /* 3 reserved */
2125 IWL_PM_NUM_OF_MODES = 12,
2126};
2127
2128/*
2129 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2130 */
2131#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2132#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2133#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2134struct iwl_card_state_cmd {
2135 __le32 status; /* CARD_STATE_CMD_* request new power state */
2136} __packed;
2137
2138/*
2139 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2140 */
2141struct iwl_card_state_notif {
2142 __le32 flags;
2143} __packed;
2144
2145#define HW_CARD_DISABLED 0x01
2146#define SW_CARD_DISABLED 0x02
2147#define CT_CARD_DISABLED 0x04
2148#define RXON_CARD_DISABLED 0x10
2149
2150struct iwl_ct_kill_config {
2151 __le32 reserved;
2152 __le32 critical_temperature_M;
2153 __le32 critical_temperature_R;
2154} __packed;
2155
2156/* 1000, and 6x00 */
2157struct iwl_ct_kill_throttling_config {
2158 __le32 critical_temperature_exit;
2159 __le32 reserved;
2160 __le32 critical_temperature_enter;
2161} __packed;
2162
2163/******************************************************************************
2164 * (8)
2165 * Scan Commands, Responses, Notifications:
2166 *
2167 *****************************************************************************/
2168
2169#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2170#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2171
2172/**
2173 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2174 *
2175 * One for each channel in the scan list.
2176 * Each channel can independently select:
2177 * 1) SSID for directed active scans
2178 * 2) Txpower setting (for rate specified within Tx command)
2179 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2180 * quiet_plcp_th, good_CRC_th)
2181 *
2182 * To avoid uCode errors, make sure the following are true (see comments
2183 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2184 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2185 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2186 * 2) quiet_time <= active_dwell
2187 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2188 * passive_dwell < max_out_time
2189 * active_dwell < max_out_time
2190 */
2191
2192struct iwl_scan_channel {
2193 /*
2194 * type is defined as:
2195 * 0:0 1 = active, 0 = passive
2196 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2197 * SSID IE is transmitted in probe request.
2198 * 21:31 reserved
2199 */
2200 __le32 type;
2201 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2202 u8 tx_gain; /* gain for analog radio */
2203 u8 dsp_atten; /* gain for DSP */
2204 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2205 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2206} __packed;
2207
2208/* set number of direct probes __le32 type */
2209#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2210
2211/**
2212 * struct iwl_ssid_ie - directed scan network information element
2213 *
2214 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2215 * selected by "type" bit field in struct iwl_scan_channel;
2216 * each channel may select different ssids from among the 20 entries.
2217 * SSID IEs get transmitted in reverse order of entry.
2218 */
2219struct iwl_ssid_ie {
2220 u8 id;
2221 u8 len;
2222 u8 ssid[32];
2223} __packed;
2224
2225#define PROBE_OPTION_MAX 20
2226#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2227#define IWL_GOOD_CRC_TH_DISABLED 0
2228#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2229#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2230#define IWL_MAX_CMD_SIZE 4096
2231
2232/*
2233 * REPLY_SCAN_CMD = 0x80 (command)
2234 *
2235 * The hardware scan command is very powerful; the driver can set it up to
2236 * maintain (relatively) normal network traffic while doing a scan in the
2237 * background. The max_out_time and suspend_time control the ratio of how
2238 * long the device stays on an associated network channel ("service channel")
2239 * vs. how long it's away from the service channel, i.e. tuned to other channels
2240 * for scanning.
2241 *
2242 * max_out_time is the max time off-channel (in usec), and suspend_time
2243 * is how long (in "extended beacon" format) that the scan is "suspended"
2244 * after returning to the service channel. That is, suspend_time is the
2245 * time that we stay on the service channel, doing normal work, between
2246 * scan segments. The driver may set these parameters differently to support
2247 * scanning when associated vs. not associated, and light vs. heavy traffic
2248 * loads when associated.
2249 *
2250 * After receiving this command, the device's scan engine does the following;
2251 *
2252 * 1) Sends SCAN_START notification to driver
2253 * 2) Checks to see if it has time to do scan for one channel
2254 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2255 * to tell AP that we're going off-channel
2256 * 4) Tunes to first channel in scan list, does active or passive scan
2257 * 5) Sends SCAN_RESULT notification to driver
2258 * 6) Checks to see if it has time to do scan on *next* channel in list
2259 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2260 * before max_out_time expires
2261 * 8) Returns to service channel
2262 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2263 * 10) Stays on service channel until suspend_time expires
2264 * 11) Repeats entire process 2-10 until list is complete
2265 * 12) Sends SCAN_COMPLETE notification
2266 *
2267 * For fast, efficient scans, the scan command also has support for staying on
2268 * a channel for just a short time, if doing active scanning and getting no
2269 * responses to the transmitted probe request. This time is controlled by
2270 * quiet_time, and the number of received packets below which a channel is
2271 * considered "quiet" is controlled by quiet_plcp_threshold.
2272 *
2273 * For active scanning on channels that have regulatory restrictions against
2274 * blindly transmitting, the scan can listen before transmitting, to make sure
2275 * that there is already legitimate activity on the channel. If enough
2276 * packets are cleanly received on the channel (controlled by good_CRC_th,
2277 * typical value 1), the scan engine starts transmitting probe requests.
2278 *
2279 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2280 *
2281 * To avoid uCode errors, see timing restrictions described under
2282 * struct iwl_scan_channel.
2283 */
2284
2285enum iwl_scan_flags {
2286 /* BIT(0) currently unused */
2287 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2288 /* bits 2-7 reserved */
2289};
2290
2291struct iwl_scan_cmd {
2292 __le16 len;
2293 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2294 u8 channel_count; /* # channels in channel list */
2295 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2296 * (only for active scan) */
2297 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2298 __le16 good_CRC_th; /* passive -> active promotion threshold */
2299 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2300 __le32 max_out_time; /* max usec to be away from associated (service)
2301 * channel */
2302 __le32 suspend_time; /* pause scan this long (in "extended beacon
2303 * format") when returning to service chnl:
2304 */
2305 __le32 flags; /* RXON_FLG_* */
2306 __le32 filter_flags; /* RXON_FILTER_* */
2307
2308 /* For active scans (set to all-0s for passive scans).
2309 * Does not include payload. Must specify Tx rate; no rate scaling. */
2310 struct iwl_tx_cmd tx_cmd;
2311
2312 /* For directed active scans (set to all-0s otherwise) */
2313 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2314
2315 /*
2316 * Probe request frame, followed by channel list.
2317 *
2318 * Size of probe request frame is specified by byte count in tx_cmd.
2319 * Channel list follows immediately after probe request frame.
2320 * Number of channels in list is specified by channel_count.
2321 * Each channel in list is of type:
2322 *
2323 * struct iwl_scan_channel channels[0];
2324 *
2325 * NOTE: Only one band of channels can be scanned per pass. You
2326 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2327 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2328 * before requesting another scan.
2329 */
2330 u8 data[];
2331} __packed;
2332
2333/* Can abort will notify by complete notification with abort status. */
2334#define CAN_ABORT_STATUS cpu_to_le32(0x1)
2335/* complete notification statuses */
2336#define ABORT_STATUS 0x2
2337
2338/*
2339 * REPLY_SCAN_CMD = 0x80 (response)
2340 */
2341struct iwl_scanreq_notification {
2342 __le32 status; /* 1: okay, 2: cannot fulfill request */
2343} __packed;
2344
2345/*
2346 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2347 */
2348struct iwl_scanstart_notification {
2349 __le32 tsf_low;
2350 __le32 tsf_high;
2351 __le32 beacon_timer;
2352 u8 channel;
2353 u8 band;
2354 u8 reserved[2];
2355 __le32 status;
2356} __packed;
2357
2358#define SCAN_OWNER_STATUS 0x1
2359#define MEASURE_OWNER_STATUS 0x2
2360
2361#define IWL_PROBE_STATUS_OK 0
2362#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2363/* error statuses combined with TX_FAILED */
2364#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2365#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2366
2367#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2368/*
2369 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2370 */
2371struct iwl_scanresults_notification {
2372 u8 channel;
2373 u8 band;
2374 u8 probe_status;
2375 u8 num_probe_not_sent; /* not enough time to send */
2376 __le32 tsf_low;
2377 __le32 tsf_high;
2378 __le32 statistics[NUMBER_OF_STATISTICS];
2379} __packed;
2380
2381/*
2382 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2383 */
2384struct iwl_scancomplete_notification {
2385 u8 scanned_channels;
2386 u8 status;
2387 u8 bt_status; /* BT On/Off status */
2388 u8 last_channel;
2389 __le32 tsf_low;
2390 __le32 tsf_high;
2391} __packed;
2392
2393
2394/******************************************************************************
2395 * (9)
2396 * IBSS/AP Commands and Notifications:
2397 *
2398 *****************************************************************************/
2399
2400enum iwl_ibss_manager {
2401 IWL_NOT_IBSS_MANAGER = 0,
2402 IWL_IBSS_MANAGER = 1,
2403};
2404
2405/*
2406 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2407 */
2408
2409struct iwlagn_beacon_notif {
2410 struct iwlagn_tx_resp beacon_notify_hdr;
2411 __le32 low_tsf;
2412 __le32 high_tsf;
2413 __le32 ibss_mgr_status;
2414} __packed;
2415
2416/*
2417 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2418 */
2419
2420struct iwl_tx_beacon_cmd {
2421 struct iwl_tx_cmd tx;
2422 __le16 tim_idx;
2423 u8 tim_size;
2424 u8 reserved1;
2425 struct ieee80211_hdr frame[]; /* beacon frame */
2426} __packed;
2427
2428/******************************************************************************
2429 * (10)
2430 * Statistics Commands and Notifications:
2431 *
2432 *****************************************************************************/
2433
2434#define IWL_TEMP_CONVERT 260
2435
2436#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2437#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2438#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2439
2440/* Used for passing to driver number of successes and failures per rate */
2441struct rate_histogram {
2442 union {
2443 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2444 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2445 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2446 } success;
2447 union {
2448 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2449 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2450 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2451 } failed;
2452} __packed;
2453
2454/* statistics command response */
2455
2456struct statistics_dbg {
2457 __le32 burst_check;
2458 __le32 burst_count;
2459 __le32 wait_for_silence_timeout_cnt;
2460 __le32 reserved[3];
2461} __packed;
2462
2463struct statistics_rx_phy {
2464 __le32 ina_cnt;
2465 __le32 fina_cnt;
2466 __le32 plcp_err;
2467 __le32 crc32_err;
2468 __le32 overrun_err;
2469 __le32 early_overrun_err;
2470 __le32 crc32_good;
2471 __le32 false_alarm_cnt;
2472 __le32 fina_sync_err_cnt;
2473 __le32 sfd_timeout;
2474 __le32 fina_timeout;
2475 __le32 unresponded_rts;
2476 __le32 rxe_frame_limit_overrun;
2477 __le32 sent_ack_cnt;
2478 __le32 sent_cts_cnt;
2479 __le32 sent_ba_rsp_cnt;
2480 __le32 dsp_self_kill;
2481 __le32 mh_format_err;
2482 __le32 re_acq_main_rssi_sum;
2483 __le32 reserved3;
2484} __packed;
2485
2486struct statistics_rx_ht_phy {
2487 __le32 plcp_err;
2488 __le32 overrun_err;
2489 __le32 early_overrun_err;
2490 __le32 crc32_good;
2491 __le32 crc32_err;
2492 __le32 mh_format_err;
2493 __le32 agg_crc32_good;
2494 __le32 agg_mpdu_cnt;
2495 __le32 agg_cnt;
2496 __le32 unsupport_mcs;
2497} __packed;
2498
2499#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2500
2501struct statistics_rx_non_phy {
2502 __le32 bogus_cts; /* CTS received when not expecting CTS */
2503 __le32 bogus_ack; /* ACK received when not expecting ACK */
2504 __le32 non_bssid_frames; /* number of frames with BSSID that
2505 * doesn't belong to the STA BSSID */
2506 __le32 filtered_frames; /* count frames that were dumped in the
2507 * filtering process */
2508 __le32 non_channel_beacons; /* beacons with our bss id but not on
2509 * our serving channel */
2510 __le32 channel_beacons; /* beacons with our bss id and in our
2511 * serving channel */
2512 __le32 num_missed_bcon; /* number of missed beacons */
2513 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2514 * ADC was in saturation */
2515 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2516 * for INA */
2517 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2518 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2519 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2520 __le32 interference_data_flag; /* flag for interference data
2521 * availability. 1 when data is
2522 * available. */
2523 __le32 channel_load; /* counts RX Enable time in uSec */
2524 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2525 * and CCK) counter */
2526 __le32 beacon_rssi_a;
2527 __le32 beacon_rssi_b;
2528 __le32 beacon_rssi_c;
2529 __le32 beacon_energy_a;
2530 __le32 beacon_energy_b;
2531 __le32 beacon_energy_c;
2532} __packed;
2533
2534struct statistics_rx_non_phy_bt {
2535 struct statistics_rx_non_phy common;
2536 /* additional stats for bt */
2537 __le32 num_bt_kills;
2538 __le32 reserved[2];
2539} __packed;
2540
2541struct statistics_rx {
2542 struct statistics_rx_phy ofdm;
2543 struct statistics_rx_phy cck;
2544 struct statistics_rx_non_phy general;
2545 struct statistics_rx_ht_phy ofdm_ht;
2546} __packed;
2547
2548struct statistics_rx_bt {
2549 struct statistics_rx_phy ofdm;
2550 struct statistics_rx_phy cck;
2551 struct statistics_rx_non_phy_bt general;
2552 struct statistics_rx_ht_phy ofdm_ht;
2553} __packed;
2554
2555/**
2556 * struct statistics_tx_power - current tx power
2557 *
2558 * @ant_a: current tx power on chain a in 1/2 dB step
2559 * @ant_b: current tx power on chain b in 1/2 dB step
2560 * @ant_c: current tx power on chain c in 1/2 dB step
2561 */
2562struct statistics_tx_power {
2563 u8 ant_a;
2564 u8 ant_b;
2565 u8 ant_c;
2566 u8 reserved;
2567} __packed;
2568
2569struct statistics_tx_non_phy_agg {
2570 __le32 ba_timeout;
2571 __le32 ba_reschedule_frames;
2572 __le32 scd_query_agg_frame_cnt;
2573 __le32 scd_query_no_agg;
2574 __le32 scd_query_agg;
2575 __le32 scd_query_mismatch;
2576 __le32 frame_not_ready;
2577 __le32 underrun;
2578 __le32 bt_prio_kill;
2579 __le32 rx_ba_rsp_cnt;
2580} __packed;
2581
2582struct statistics_tx {
2583 __le32 preamble_cnt;
2584 __le32 rx_detected_cnt;
2585 __le32 bt_prio_defer_cnt;
2586 __le32 bt_prio_kill_cnt;
2587 __le32 few_bytes_cnt;
2588 __le32 cts_timeout;
2589 __le32 ack_timeout;
2590 __le32 expected_ack_cnt;
2591 __le32 actual_ack_cnt;
2592 __le32 dump_msdu_cnt;
2593 __le32 burst_abort_next_frame_mismatch_cnt;
2594 __le32 burst_abort_missing_next_frame_cnt;
2595 __le32 cts_timeout_collision;
2596 __le32 ack_or_ba_timeout_collision;
2597 struct statistics_tx_non_phy_agg agg;
2598 /*
2599 * "tx_power" are optional parameters provided by uCode,
2600 * 6000 series is the only device provide the information,
2601 * Those are reserved fields for all the other devices
2602 */
2603 struct statistics_tx_power tx_power;
2604 __le32 reserved1;
2605} __packed;
2606
2607
2608struct statistics_div {
2609 __le32 tx_on_a;
2610 __le32 tx_on_b;
2611 __le32 exec_time;
2612 __le32 probe_time;
2613 __le32 reserved1;
2614 __le32 reserved2;
2615} __packed;
2616
2617struct statistics_general_common {
2618 __le32 temperature; /* radio temperature */
2619 __le32 temperature_m; /* radio voltage */
2620 struct statistics_dbg dbg;
2621 __le32 sleep_time;
2622 __le32 slots_out;
2623 __le32 slots_idle;
2624 __le32 ttl_timestamp;
2625 struct statistics_div div;
2626 __le32 rx_enable_counter;
2627 /*
2628 * num_of_sos_states:
2629 * count the number of times we have to re-tune
2630 * in order to get out of bad PHY status
2631 */
2632 __le32 num_of_sos_states;
2633} __packed;
2634
2635struct statistics_bt_activity {
2636 /* Tx statistics */
2637 __le32 hi_priority_tx_req_cnt;
2638 __le32 hi_priority_tx_denied_cnt;
2639 __le32 lo_priority_tx_req_cnt;
2640 __le32 lo_priority_tx_denied_cnt;
2641 /* Rx statistics */
2642 __le32 hi_priority_rx_req_cnt;
2643 __le32 hi_priority_rx_denied_cnt;
2644 __le32 lo_priority_rx_req_cnt;
2645 __le32 lo_priority_rx_denied_cnt;
2646} __packed;
2647
2648struct statistics_general {
2649 struct statistics_general_common common;
2650 __le32 reserved2;
2651 __le32 reserved3;
2652} __packed;
2653
2654struct statistics_general_bt {
2655 struct statistics_general_common common;
2656 struct statistics_bt_activity activity;
2657 __le32 reserved2;
2658 __le32 reserved3;
2659} __packed;
2660
2661#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2662#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2663#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2664
2665/*
2666 * REPLY_STATISTICS_CMD = 0x9c,
2667 * all devices identical.
2668 *
2669 * This command triggers an immediate response containing uCode statistics.
2670 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2671 *
2672 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2673 * internal copy of the statistics (counters) after issuing the response.
2674 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2675 *
2676 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2677 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2678 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2679 */
2680#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2681#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2682struct iwl_statistics_cmd {
2683 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2684} __packed;
2685
2686/*
2687 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2688 *
2689 * By default, uCode issues this notification after receiving a beacon
2690 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2691 * REPLY_STATISTICS_CMD 0x9c, above.
2692 *
2693 * Statistics counters continue to increment beacon after beacon, but are
2694 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2695 * 0x9c with CLEAR_STATS bit set (see above).
2696 *
2697 * uCode also issues this notification during scans. uCode clears statistics
2698 * appropriately so that each notification contains statistics for only the
2699 * one channel that has just been scanned.
2700 */
2701#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2702#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2703
2704struct iwl_notif_statistics {
2705 __le32 flag;
2706 struct statistics_rx rx;
2707 struct statistics_tx tx;
2708 struct statistics_general general;
2709} __packed;
2710
2711struct iwl_bt_notif_statistics {
2712 __le32 flag;
2713 struct statistics_rx_bt rx;
2714 struct statistics_tx tx;
2715 struct statistics_general_bt general;
2716} __packed;
2717
2718/*
2719 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2720 *
2721 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2722 * in regardless of how many missed beacons, which mean when driver receive the
2723 * notification, inside the command, it can find all the beacons information
2724 * which include number of total missed beacons, number of consecutive missed
2725 * beacons, number of beacons received and number of beacons expected to
2726 * receive.
2727 *
2728 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2729 * in order to bring the radio/PHY back to working state; which has no relation
2730 * to when driver will perform sensitivity calibration.
2731 *
2732 * Driver should set it own missed_beacon_threshold to decide when to perform
2733 * sensitivity calibration based on number of consecutive missed beacons in
2734 * order to improve overall performance, especially in noisy environment.
2735 *
2736 */
2737
2738#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2739#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2740#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2741
2742struct iwl_missed_beacon_notif {
2743 __le32 consecutive_missed_beacons;
2744 __le32 total_missed_becons;
2745 __le32 num_expected_beacons;
2746 __le32 num_recvd_beacons;
2747} __packed;
2748
2749
2750/******************************************************************************
2751 * (11)
2752 * Rx Calibration Commands:
2753 *
2754 * With the uCode used for open source drivers, most Tx calibration (except
2755 * for Tx Power) and most Rx calibration is done by uCode during the
2756 * "initialize" phase of uCode boot. Driver must calibrate only:
2757 *
2758 * 1) Tx power (depends on temperature), described elsewhere
2759 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2760 * 3) Receiver sensitivity (to optimize signal detection)
2761 *
2762 *****************************************************************************/
2763
2764/**
2765 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2766 *
2767 * This command sets up the Rx signal detector for a sensitivity level that
2768 * is high enough to lock onto all signals within the associated network,
2769 * but low enough to ignore signals that are below a certain threshold, so as
2770 * not to have too many "false alarms". False alarms are signals that the
2771 * Rx DSP tries to lock onto, but then discards after determining that they
2772 * are noise.
2773 *
2774 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2775 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2776 * time listening, not transmitting). Driver must adjust sensitivity so that
2777 * the ratio of actual false alarms to actual Rx time falls within this range.
2778 *
2779 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2780 * received beacon. These provide information to the driver to analyze the
2781 * sensitivity. Don't analyze statistics that come in from scanning, or any
2782 * other non-associated-network source. Pertinent statistics include:
2783 *
2784 * From "general" statistics (struct statistics_rx_non_phy):
2785 *
2786 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2787 * Measure of energy of desired signal. Used for establishing a level
2788 * below which the device does not detect signals.
2789 *
2790 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2791 * Measure of background noise in silent period after beacon.
2792 *
2793 * channel_load
2794 * uSecs of actual Rx time during beacon period (varies according to
2795 * how much time was spent transmitting).
2796 *
2797 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2798 *
2799 * false_alarm_cnt
2800 * Signal locks abandoned early (before phy-level header).
2801 *
2802 * plcp_err
2803 * Signal locks abandoned late (during phy-level header).
2804 *
2805 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2806 * beacon to beacon, i.e. each value is an accumulation of all errors
2807 * before and including the latest beacon. Values will wrap around to 0
2808 * after counting up to 2^32 - 1. Driver must differentiate vs.
2809 * previous beacon's values to determine # false alarms in the current
2810 * beacon period.
2811 *
2812 * Total number of false alarms = false_alarms + plcp_errs
2813 *
2814 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2815 * (notice that the start points for OFDM are at or close to settings for
2816 * maximum sensitivity):
2817 *
2818 * START / MIN / MAX
2819 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2820 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2821 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2822 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2823 *
2824 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2825 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2826 * by *adding* 1 to all 4 of the table entries above, up to the max for
2827 * each entry. Conversely, if false alarm rate is too low (less than 5
2828 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2829 * increase sensitivity.
2830 *
2831 * For CCK sensitivity, keep track of the following:
2832 *
2833 * 1). 20-beacon history of maximum background noise, indicated by
2834 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2835 * 3 receivers. For any given beacon, the "silence reference" is
2836 * the maximum of last 60 samples (20 beacons * 3 receivers).
2837 *
2838 * 2). 10-beacon history of strongest signal level, as indicated
2839 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2840 * i.e. the strength of the signal through the best receiver at the
2841 * moment. These measurements are "upside down", with lower values
2842 * for stronger signals, so max energy will be *minimum* value.
2843 *
2844 * Then for any given beacon, the driver must determine the *weakest*
2845 * of the strongest signals; this is the minimum level that needs to be
2846 * successfully detected, when using the best receiver at the moment.
2847 * "Max cck energy" is the maximum (higher value means lower energy!)
2848 * of the last 10 minima. Once this is determined, driver must add
2849 * a little margin by adding "6" to it.
2850 *
2851 * 3). Number of consecutive beacon periods with too few false alarms.
2852 * Reset this to 0 at the first beacon period that falls within the
2853 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2854 *
2855 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2856 * (notice that the start points for CCK are at maximum sensitivity):
2857 *
2858 * START / MIN / MAX
2859 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2860 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2861 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2862 *
2863 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2864 * (greater than 50 for each 204.8 msecs listening), method for reducing
2865 * sensitivity is:
2866 *
2867 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2868 * up to max 400.
2869 *
2870 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2871 * sensitivity has been reduced a significant amount; bring it up to
2872 * a moderate 161. Otherwise, *add* 3, up to max 200.
2873 *
2874 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2875 * sensitivity has been reduced only a moderate or small amount;
2876 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2877 * down to min 0. Otherwise (if gain has been significantly reduced),
2878 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2879 *
2880 * b) Save a snapshot of the "silence reference".
2881 *
2882 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2883 * (less than 5 for each 204.8 msecs listening), method for increasing
2884 * sensitivity is used only if:
2885 *
2886 * 1a) Previous beacon did not have too many false alarms
2887 * 1b) AND difference between previous "silence reference" and current
2888 * "silence reference" (prev - current) is 2 or more,
2889 * OR 2) 100 or more consecutive beacon periods have had rate of
2890 * less than 5 false alarms per 204.8 milliseconds rx time.
2891 *
2892 * Method for increasing sensitivity:
2893 *
2894 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2895 * down to min 125.
2896 *
2897 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2898 * down to min 200.
2899 *
2900 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2901 *
2902 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2903 * (between 5 and 50 for each 204.8 msecs listening):
2904 *
2905 * 1) Save a snapshot of the silence reference.
2906 *
2907 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2908 * give some extra margin to energy threshold by *subtracting* 8
2909 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2910 *
2911 * For all cases (too few, too many, good range), make sure that the CCK
2912 * detection threshold (energy) is below the energy level for robust
2913 * detection over the past 10 beacon periods, the "Max cck energy".
2914 * Lower values mean higher energy; this means making sure that the value
2915 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2916 *
2917 */
2918
2919/*
2920 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2921 */
2922#define HD_TABLE_SIZE (11) /* number of entries */
2923#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2924#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2925#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2926#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2927#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2928#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2929#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2930#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2931#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2932#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2933#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2934
2935/*
2936 * Additional table entries in enhance SENSITIVITY_CMD
2937 */
2938#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
2939#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
2940#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
2941#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
2942#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
2943#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
2944#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
2945#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
2946#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
2947#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
2948#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
2949#define HD_RESERVED (22)
2950
2951/* number of entries for enhanced tbl */
2952#define ENHANCE_HD_TABLE_SIZE (23)
2953
2954/* number of additional entries for enhanced tbl */
2955#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
2956
2957#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
2958#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
2959#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
2960#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
2961#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
2962#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
2963#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
2964#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
2965#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
2966#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
2967#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
2968
2969#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
2970#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
2971#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
2972#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
2973#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
2974#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
2975#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
2976#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
2977#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
2978#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
2979#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
2980
2981
2982/* Control field in struct iwl_sensitivity_cmd */
2983#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
2984#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
2985
2986/**
2987 * struct iwl_sensitivity_cmd
2988 * @control: (1) updates working table, (0) updates default table
2989 * @table: energy threshold values, use HD_* as index into table
2990 *
2991 * Always use "1" in "control" to update uCode's working table and DSP.
2992 */
2993struct iwl_sensitivity_cmd {
2994 __le16 control; /* always use "1" */
2995 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
2996} __packed;
2997
2998/*
2999 *
3000 */
3001struct iwl_enhance_sensitivity_cmd {
3002 __le16 control; /* always use "1" */
3003 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3004} __packed;
3005
3006
3007/**
3008 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3009 *
3010 * This command sets the relative gains of agn device's 3 radio receiver chains.
3011 *
3012 * After the first association, driver should accumulate signal and noise
3013 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3014 * beacons from the associated network (don't collect statistics that come
3015 * in from scanning, or any other non-network source).
3016 *
3017 * DISCONNECTED ANTENNA:
3018 *
3019 * Driver should determine which antennas are actually connected, by comparing
3020 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3021 * following values over 20 beacons, one accumulator for each of the chains
3022 * a/b/c, from struct statistics_rx_non_phy:
3023 *
3024 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3025 *
3026 * Find the strongest signal from among a/b/c. Compare the other two to the
3027 * strongest. If any signal is more than 15 dB (times 20, unless you
3028 * divide the accumulated values by 20) below the strongest, the driver
3029 * considers that antenna to be disconnected, and should not try to use that
3030 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3031 * driver should declare the stronger one as connected, and attempt to use it
3032 * (A and B are the only 2 Tx chains!).
3033 *
3034 *
3035 * RX BALANCE:
3036 *
3037 * Driver should balance the 3 receivers (but just the ones that are connected
3038 * to antennas, see above) for gain, by comparing the average signal levels
3039 * detected during the silence after each beacon (background noise).
3040 * Accumulate (add) the following values over 20 beacons, one accumulator for
3041 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3042 *
3043 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3044 *
3045 * Find the weakest background noise level from among a/b/c. This Rx chain
3046 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3047 * finding noise difference:
3048 *
3049 * (accum_noise[i] - accum_noise[reference]) / 30
3050 *
3051 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3052 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3053 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3054 * and set bit 2 to indicate "reduce gain". The value for the reference
3055 * (weakest) chain should be "0".
3056 *
3057 * diff_gain_[abc] bit fields:
3058 * 2: (1) reduce gain, (0) increase gain
3059 * 1-0: amount of gain, units of 1.5 dB
3060 */
3061
3062/* Phy calibration command for series */
3063enum {
3064 IWL_PHY_CALIBRATE_DC_CMD = 8,
3065 IWL_PHY_CALIBRATE_LO_CMD = 9,
3066 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3067 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3068 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3069 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3070 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3071};
3072
3073/* This enum defines the bitmap of various calibrations to enable in both
3074 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3075 */
3076enum iwl_ucode_calib_cfg {
3077 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3078 IWL_CALIB_CFG_DC_IDX = BIT(1),
3079 IWL_CALIB_CFG_LO_IDX = BIT(2),
3080 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3081 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3082 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3083 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3084 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3085 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3086 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3087 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3088};
3089
3090#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3091 IWL_CALIB_CFG_DC_IDX | \
3092 IWL_CALIB_CFG_LO_IDX | \
3093 IWL_CALIB_CFG_TX_IQ_IDX | \
3094 IWL_CALIB_CFG_RX_IQ_IDX | \
3095 IWL_CALIB_CFG_CRYSTAL_IDX)
3096
3097#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3098 IWL_CALIB_CFG_DC_IDX | \
3099 IWL_CALIB_CFG_LO_IDX | \
3100 IWL_CALIB_CFG_TX_IQ_IDX | \
3101 IWL_CALIB_CFG_RX_IQ_IDX | \
3102 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3103 IWL_CALIB_CFG_PAPD_IDX | \
3104 IWL_CALIB_CFG_TX_PWR_IDX | \
3105 IWL_CALIB_CFG_CRYSTAL_IDX)
3106
3107#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3108
3109struct iwl_calib_cfg_elmnt_s {
3110 __le32 is_enable;
3111 __le32 start;
3112 __le32 send_res;
3113 __le32 apply_res;
3114 __le32 reserved;
3115} __packed;
3116
3117struct iwl_calib_cfg_status_s {
3118 struct iwl_calib_cfg_elmnt_s once;
3119 struct iwl_calib_cfg_elmnt_s perd;
3120 __le32 flags;
3121} __packed;
3122
3123struct iwl_calib_cfg_cmd {
3124 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3125 struct iwl_calib_cfg_status_s drv_calib_cfg;
3126 __le32 reserved1;
3127} __packed;
3128
3129struct iwl_calib_hdr {
3130 u8 op_code;
3131 u8 first_group;
3132 u8 groups_num;
3133 u8 data_valid;
3134} __packed;
3135
3136struct iwl_calib_cmd {
3137 struct iwl_calib_hdr hdr;
3138 u8 data[];
3139} __packed;
3140
3141struct iwl_calib_xtal_freq_cmd {
3142 struct iwl_calib_hdr hdr;
3143 u8 cap_pin1;
3144 u8 cap_pin2;
3145 u8 pad[2];
3146} __packed;
3147
3148#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3149struct iwl_calib_temperature_offset_cmd {
3150 struct iwl_calib_hdr hdr;
3151 __le16 radio_sensor_offset;
3152 __le16 reserved;
3153} __packed;
3154
3155struct iwl_calib_temperature_offset_v2_cmd {
3156 struct iwl_calib_hdr hdr;
3157 __le16 radio_sensor_offset_high;
3158 __le16 radio_sensor_offset_low;
3159 __le16 burntVoltageRef;
3160 __le16 reserved;
3161} __packed;
3162
3163/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3164struct iwl_calib_chain_noise_reset_cmd {
3165 struct iwl_calib_hdr hdr;
3166 u8 data[];
3167};
3168
3169/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3170struct iwl_calib_chain_noise_gain_cmd {
3171 struct iwl_calib_hdr hdr;
3172 u8 delta_gain_1;
3173 u8 delta_gain_2;
3174 u8 pad[2];
3175} __packed;
3176
3177/******************************************************************************
3178 * (12)
3179 * Miscellaneous Commands:
3180 *
3181 *****************************************************************************/
3182
3183/*
3184 * LEDs Command & Response
3185 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3186 *
3187 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3188 * this command turns it on or off, or sets up a periodic blinking cycle.
3189 */
3190struct iwl_led_cmd {
3191 __le32 interval; /* "interval" in uSec */
3192 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3193 u8 off; /* # intervals off while blinking;
3194 * "0", with >0 "on" value, turns LED on */
3195 u8 on; /* # intervals on while blinking;
3196 * "0", regardless of "off", turns LED off */
3197 u8 reserved;
3198} __packed;
3199
3200/*
3201 * station priority table entries
3202 * also used as potential "events" value for both
3203 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3204 */
3205
3206/*
3207 * COEX events entry flag masks
3208 * RP - Requested Priority
3209 * WP - Win Medium Priority: priority assigned when the contention has been won
3210 */
3211#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3212#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3213#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3214
3215#define COEX_CU_UNASSOC_IDLE_RP 4
3216#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3217#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3218#define COEX_CU_CALIBRATION_RP 4
3219#define COEX_CU_PERIODIC_CALIBRATION_RP 4
3220#define COEX_CU_CONNECTION_ESTAB_RP 4
3221#define COEX_CU_ASSOCIATED_IDLE_RP 4
3222#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3223#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3224#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3225#define COEX_CU_RF_ON_RP 6
3226#define COEX_CU_RF_OFF_RP 4
3227#define COEX_CU_STAND_ALONE_DEBUG_RP 6
3228#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3229#define COEX_CU_RSRVD1_RP 4
3230#define COEX_CU_RSRVD2_RP 4
3231
3232#define COEX_CU_UNASSOC_IDLE_WP 3
3233#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3234#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3235#define COEX_CU_CALIBRATION_WP 3
3236#define COEX_CU_PERIODIC_CALIBRATION_WP 3
3237#define COEX_CU_CONNECTION_ESTAB_WP 3
3238#define COEX_CU_ASSOCIATED_IDLE_WP 3
3239#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3240#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3241#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3242#define COEX_CU_RF_ON_WP 3
3243#define COEX_CU_RF_OFF_WP 3
3244#define COEX_CU_STAND_ALONE_DEBUG_WP 6
3245#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3246#define COEX_CU_RSRVD1_WP 3
3247#define COEX_CU_RSRVD2_WP 3
3248
3249#define COEX_UNASSOC_IDLE_FLAGS 0
3250#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3251 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3252 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3253#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3254 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3255 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3256#define COEX_CALIBRATION_FLAGS \
3257 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3258 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3259#define COEX_PERIODIC_CALIBRATION_FLAGS 0
3260/*
3261 * COEX_CONNECTION_ESTAB:
3262 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3263 */
3264#define COEX_CONNECTION_ESTAB_FLAGS \
3265 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3266 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3267 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3268#define COEX_ASSOCIATED_IDLE_FLAGS 0
3269#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3270 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3271 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3272#define COEX_ASSOC_AUTO_SCAN_FLAGS \
3273 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3274 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3275#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3276#define COEX_RF_ON_FLAGS 0
3277#define COEX_RF_OFF_FLAGS 0
3278#define COEX_STAND_ALONE_DEBUG_FLAGS \
3279 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3280 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3281#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3282 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3283 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3284 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3285#define COEX_RSRVD1_FLAGS 0
3286#define COEX_RSRVD2_FLAGS 0
3287/*
3288 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3289 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3290 */
3291#define COEX_CU_RF_ON_FLAGS \
3292 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3293 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3294 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3295
3296
3297enum {
3298 /* un-association part */
3299 COEX_UNASSOC_IDLE = 0,
3300 COEX_UNASSOC_MANUAL_SCAN = 1,
3301 COEX_UNASSOC_AUTO_SCAN = 2,
3302 /* calibration */
3303 COEX_CALIBRATION = 3,
3304 COEX_PERIODIC_CALIBRATION = 4,
3305 /* connection */
3306 COEX_CONNECTION_ESTAB = 5,
3307 /* association part */
3308 COEX_ASSOCIATED_IDLE = 6,
3309 COEX_ASSOC_MANUAL_SCAN = 7,
3310 COEX_ASSOC_AUTO_SCAN = 8,
3311 COEX_ASSOC_ACTIVE_LEVEL = 9,
3312 /* RF ON/OFF */
3313 COEX_RF_ON = 10,
3314 COEX_RF_OFF = 11,
3315 COEX_STAND_ALONE_DEBUG = 12,
3316 /* IPAN */
3317 COEX_IPAN_ASSOC_LEVEL = 13,
3318 /* reserved */
3319 COEX_RSRVD1 = 14,
3320 COEX_RSRVD2 = 15,
3321 COEX_NUM_OF_EVENTS = 16
3322};
3323
3324/*
3325 * Coexistence WIFI/WIMAX Command
3326 * COEX_PRIORITY_TABLE_CMD = 0x5a
3327 *
3328 */
3329struct iwl_wimax_coex_event_entry {
3330 u8 request_prio;
3331 u8 win_medium_prio;
3332 u8 reserved;
3333 u8 flags;
3334} __packed;
3335
3336/* COEX flag masks */
3337
3338/* Station table is valid */
3339#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3340/* UnMask wake up src at unassociated sleep */
3341#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3342/* UnMask wake up src at associated sleep */
3343#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3344/* Enable CoEx feature. */
3345#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3346
3347struct iwl_wimax_coex_cmd {
3348 u8 flags;
3349 u8 reserved[3];
3350 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3351} __packed;
3352
3353/*
3354 * Coexistence MEDIUM NOTIFICATION
3355 * COEX_MEDIUM_NOTIFICATION = 0x5b
3356 *
3357 * notification from uCode to host to indicate medium changes
3358 *
3359 */
3360/*
3361 * status field
3362 * bit 0 - 2: medium status
3363 * bit 3: medium change indication
3364 * bit 4 - 31: reserved
3365 */
3366/* status option values, (0 - 2 bits) */
3367#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3368#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3369#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3370#define COEX_MEDIUM_MSK (0x7)
3371
3372/* send notification status (1 bit) */
3373#define COEX_MEDIUM_CHANGED (0x8)
3374#define COEX_MEDIUM_CHANGED_MSK (0x8)
3375#define COEX_MEDIUM_SHIFT (3)
3376
3377struct iwl_coex_medium_notification {
3378 __le32 status;
3379 __le32 events;
3380} __packed;
3381
3382/*
3383 * Coexistence EVENT Command
3384 * COEX_EVENT_CMD = 0x5c
3385 *
3386 * send from host to uCode for coex event request.
3387 */
3388/* flags options */
3389#define COEX_EVENT_REQUEST_MSK (0x1)
3390
3391struct iwl_coex_event_cmd {
3392 u8 flags;
3393 u8 event;
3394 __le16 reserved;
3395} __packed;
3396
3397struct iwl_coex_event_resp {
3398 __le32 status;
3399} __packed;
3400
3401
3402/******************************************************************************
3403 * Bluetooth Coexistence commands
3404 *
3405 *****************************************************************************/
3406
3407/*
3408 * BT Status notification
3409 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3410 */
3411enum iwl_bt_coex_profile_traffic_load {
3412 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3413 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3414 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3415 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3416/*
3417 * There are no more even though below is a u8, the
3418 * indication from the BT device only has two bits.
3419 */
3420};
3421
3422#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3423#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3424
3425/* BT UART message - Share Part (BT -> WiFi) */
3426#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3427#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3428 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3429#define BT_UART_MSG_FRAME1SSN_POS (3)
3430#define BT_UART_MSG_FRAME1SSN_MSK \
3431 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3432#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3433#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3434 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3435#define BT_UART_MSG_FRAME1RESERVED_POS (6)
3436#define BT_UART_MSG_FRAME1RESERVED_MSK \
3437 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3438
3439#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3440#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3441 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3442#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3443#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3444 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3445#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3446#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3447 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3448#define BT_UART_MSG_FRAME2INBAND_POS (5)
3449#define BT_UART_MSG_FRAME2INBAND_MSK \
3450 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3451#define BT_UART_MSG_FRAME2RESERVED_POS (6)
3452#define BT_UART_MSG_FRAME2RESERVED_MSK \
3453 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3454
3455#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3456#define BT_UART_MSG_FRAME3SCOESCO_MSK \
3457 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3458#define BT_UART_MSG_FRAME3SNIFF_POS (1)
3459#define BT_UART_MSG_FRAME3SNIFF_MSK \
3460 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3461#define BT_UART_MSG_FRAME3A2DP_POS (2)
3462#define BT_UART_MSG_FRAME3A2DP_MSK \
3463 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3464#define BT_UART_MSG_FRAME3ACL_POS (3)
3465#define BT_UART_MSG_FRAME3ACL_MSK \
3466 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3467#define BT_UART_MSG_FRAME3MASTER_POS (4)
3468#define BT_UART_MSG_FRAME3MASTER_MSK \
3469 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3470#define BT_UART_MSG_FRAME3OBEX_POS (5)
3471#define BT_UART_MSG_FRAME3OBEX_MSK \
3472 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3473#define BT_UART_MSG_FRAME3RESERVED_POS (6)
3474#define BT_UART_MSG_FRAME3RESERVED_MSK \
3475 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3476
3477#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3478#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3479 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3480#define BT_UART_MSG_FRAME4RESERVED_POS (6)
3481#define BT_UART_MSG_FRAME4RESERVED_MSK \
3482 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3483
3484#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3485#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3486 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3487#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3488#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3489 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3490#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3491#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3492 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3493#define BT_UART_MSG_FRAME5RESERVED_POS (6)
3494#define BT_UART_MSG_FRAME5RESERVED_MSK \
3495 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3496
3497#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3498#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3499 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3500#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3501#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3502 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3503#define BT_UART_MSG_FRAME6RESERVED_POS (6)
3504#define BT_UART_MSG_FRAME6RESERVED_MSK \
3505 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3506
3507#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3508#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3509 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3510#define BT_UART_MSG_FRAME7PAGE_POS (3)
3511#define BT_UART_MSG_FRAME7PAGE_MSK \
3512 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3513#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3514#define BT_UART_MSG_FRAME7INQUIRY_MSK \
3515 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3516#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3517#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3518 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3519#define BT_UART_MSG_FRAME7RESERVED_POS (6)
3520#define BT_UART_MSG_FRAME7RESERVED_MSK \
3521 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3522
3523/* BT Session Activity 2 UART message (BT -> WiFi) */
3524#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3525#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3526 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3527#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3528#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3529 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3530
3531#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3532#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3533 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3534#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3535#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3536 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3537
3538#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3539#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3540 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3541#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3542#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3543 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3544#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3545#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3546 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3547#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3548#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3549 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3550
3551#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3552#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3553 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3554#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3555#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3556 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3557#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3558#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3559 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3560
3561#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3562#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3563 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3564#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3565#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3566 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3567#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3568#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3569 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3570#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3571#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3572 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3573
3574#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3575#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3576 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3577#define BT_UART_MSG_2_FRAME6RFU_POS (5)
3578#define BT_UART_MSG_2_FRAME6RFU_MSK \
3579 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3580#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3581#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3582 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3583
3584#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3585#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3586 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3587#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3588#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3589 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3590#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3591#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3592 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3593#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3594#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3595 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3596#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3597#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3598 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3599
3600
3601#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3602#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3603
3604struct iwl_bt_uart_msg {
3605 u8 header;
3606 u8 frame1;
3607 u8 frame2;
3608 u8 frame3;
3609 u8 frame4;
3610 u8 frame5;
3611 u8 frame6;
3612 u8 frame7;
3613} __packed;
3614
3615struct iwl_bt_coex_profile_notif {
3616 struct iwl_bt_uart_msg last_bt_uart_msg;
3617 u8 bt_status; /* 0 - off, 1 - on */
3618 u8 bt_traffic_load; /* 0 .. 3? */
3619 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3620 u8 reserved;
3621} __packed;
3622
3623#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3624#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3625#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3626#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3627#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3628#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3629#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3630
3631/*
3632 * BT Coexistence Priority table
3633 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3634 */
3635enum bt_coex_prio_table_events {
3636 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3637 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3638 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3639 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3640 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3641 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3642 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3643 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3644 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3645 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3646 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3647 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3648 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3649 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3650 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3651 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3652 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3653 BT_COEX_PRIO_TBL_EVT_MAX,
3654};
3655
3656enum bt_coex_prio_table_priorities {
3657 BT_COEX_PRIO_TBL_DISABLED = 0,
3658 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3659 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3660 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3661 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3662 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3663 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3664 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3665 BT_COEX_PRIO_TBL_MAX,
3666};
3667
3668struct iwl_bt_coex_prio_table_cmd {
3669 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3670} __packed;
3671
3672#define IWL_BT_COEX_ENV_CLOSE 0
3673#define IWL_BT_COEX_ENV_OPEN 1
3674/*
3675 * BT Protection Envelope
3676 * REPLY_BT_COEX_PROT_ENV = 0xcd
3677 */
3678struct iwl_bt_coex_prot_env_cmd {
3679 u8 action; /* 0 = closed, 1 = open */
3680 u8 type; /* 0 .. 15 */
3681 u8 reserved[2];
3682} __packed;
3683
3684/*
3685 * REPLY_D3_CONFIG
3686 */
3687enum iwlagn_d3_wakeup_filters {
3688 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3689 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3690};
3691
3692struct iwlagn_d3_config_cmd {
3693 __le32 min_sleep_time;
3694 __le32 wakeup_flags;
3695} __packed;
3696
3697/*
3698 * REPLY_WOWLAN_PATTERNS
3699 */
3700#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3701#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3702
3703struct iwlagn_wowlan_pattern {
3704 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3705 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3706 u8 mask_size;
3707 u8 pattern_size;
3708 __le16 reserved;
3709} __packed;
3710
3711#define IWLAGN_WOWLAN_MAX_PATTERNS 20
3712
3713struct iwlagn_wowlan_patterns_cmd {
3714 __le32 n_patterns;
3715 struct iwlagn_wowlan_pattern patterns[];
3716} __packed;
3717
3718/*
3719 * REPLY_WOWLAN_WAKEUP_FILTER
3720 */
3721enum iwlagn_wowlan_wakeup_filters {
3722 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3723 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3724 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3725 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3726 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3727 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3728 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3729 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3730 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3731};
3732
3733struct iwlagn_wowlan_wakeup_filter_cmd {
3734 __le32 enabled;
3735 __le16 non_qos_seq;
3736 __le16 reserved;
3737 __le16 qos_seq[8];
3738};
3739
3740/*
3741 * REPLY_WOWLAN_TSC_RSC_PARAMS
3742 */
3743#define IWLAGN_NUM_RSC 16
3744
3745struct tkip_sc {
3746 __le16 iv16;
3747 __le16 pad;
3748 __le32 iv32;
3749} __packed;
3750
3751struct iwlagn_tkip_rsc_tsc {
3752 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3753 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3754 struct tkip_sc tsc;
3755} __packed;
3756
3757struct aes_sc {
3758 __le64 pn;
3759} __packed;
3760
3761struct iwlagn_aes_rsc_tsc {
3762 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3763 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3764 struct aes_sc tsc;
3765} __packed;
3766
3767union iwlagn_all_tsc_rsc {
3768 struct iwlagn_tkip_rsc_tsc tkip;
3769 struct iwlagn_aes_rsc_tsc aes;
3770};
3771
3772struct iwlagn_wowlan_rsc_tsc_params_cmd {
3773 union iwlagn_all_tsc_rsc all_tsc_rsc;
3774} __packed;
3775
3776/*
3777 * REPLY_WOWLAN_TKIP_PARAMS
3778 */
3779#define IWLAGN_MIC_KEY_SIZE 8
3780#define IWLAGN_P1K_SIZE 5
3781struct iwlagn_mic_keys {
3782 u8 tx[IWLAGN_MIC_KEY_SIZE];
3783 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3784 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3785} __packed;
3786
3787struct iwlagn_p1k_cache {
3788 __le16 p1k[IWLAGN_P1K_SIZE];
3789} __packed;
3790
3791#define IWLAGN_NUM_RX_P1K_CACHE 2
3792
3793struct iwlagn_wowlan_tkip_params_cmd {
3794 struct iwlagn_mic_keys mic_keys;
3795 struct iwlagn_p1k_cache tx;
3796 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3797 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3798} __packed;
3799
3800/*
3801 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3802 */
3803
3804#define IWLAGN_KCK_MAX_SIZE 32
3805#define IWLAGN_KEK_MAX_SIZE 32
3806
3807struct iwlagn_wowlan_kek_kck_material_cmd {
3808 u8 kck[IWLAGN_KCK_MAX_SIZE];
3809 u8 kek[IWLAGN_KEK_MAX_SIZE];
3810 __le16 kck_len;
3811 __le16 kek_len;
3812 __le64 replay_ctr;
3813} __packed;
3814
3815#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3816
3817/*
3818 * REPLY_WOWLAN_GET_STATUS = 0xe5
3819 */
3820struct iwlagn_wowlan_status {
3821 __le64 replay_ctr;
3822 __le32 rekey_status;
3823 __le32 wakeup_reason;
3824 u8 pattern_number;
3825 u8 reserved1;
3826 __le16 qos_seq_ctr[8];
3827 __le16 non_qos_seq_ctr;
3828 __le16 reserved2;
3829 union iwlagn_all_tsc_rsc tsc_rsc;
3830 __le16 reserved3;
3831} __packed;
3832
3833/*
3834 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3835 */
3836
3837/*
3838 * Minimum slot time in TU
3839 */
3840#define IWL_MIN_SLOT_TIME 20
3841
3842/**
3843 * struct iwl_wipan_slot
3844 * @width: Time in TU
3845 * @type:
3846 * 0 - BSS
3847 * 1 - PAN
3848 */
3849struct iwl_wipan_slot {
3850 __le16 width;
3851 u8 type;
3852 u8 reserved;
3853} __packed;
3854
3855#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3856#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3857#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3858#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3859#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3860
3861/**
3862 * struct iwl_wipan_params_cmd
3863 * @flags:
3864 * bit0: reserved
3865 * bit1: CP leave channel with CTS
3866 * bit2: CP leave channel qith Quiet
3867 * bit3: slotted mode
3868 * 1 - work in slotted mode
3869 * 0 - work in non slotted mode
3870 * bit4: filter beacon notification
3871 * bit5: full tx slotted mode. if this flag is set,
3872 * uCode will perform leaving channel methods in context switch
3873 * also when working in same channel mode
3874 * @num_slots: 1 - 10
3875 */
3876struct iwl_wipan_params_cmd {
3877 __le16 flags;
3878 u8 reserved;
3879 u8 num_slots;
3880 struct iwl_wipan_slot slots[10];
3881} __packed;
3882
3883/*
3884 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3885 *
3886 * TODO: Figure out what this is used for,
3887 * it can only switch between 2.4 GHz
3888 * channels!!
3889 */
3890
3891struct iwl_wipan_p2p_channel_switch_cmd {
3892 __le16 channel;
3893 __le16 reserved;
3894};
3895
3896/*
3897 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3898 *
3899 * This is used by the device to notify us of the
3900 * NoA schedule it determined so we can forward it
3901 * to userspace for inclusion in probe responses.
3902 *
3903 * In beacons, the NoA schedule is simply appended
3904 * to the frame we give the device.
3905 */
3906
3907struct iwl_wipan_noa_descriptor {
3908 u8 count;
3909 __le32 duration;
3910 __le32 interval;
3911 __le32 starttime;
3912} __packed;
3913
3914struct iwl_wipan_noa_attribute {
3915 u8 id;
3916 __le16 length;
3917 u8 index;
3918 u8 ct_window;
3919 struct iwl_wipan_noa_descriptor descr0, descr1;
3920 u8 reserved;
3921} __packed;
3922
3923struct iwl_wipan_noa_notification {
3924 u32 noa_active;
3925 struct iwl_wipan_noa_attribute noa_attribute;
3926} __packed;
3927
3928#endif /* __iwl_commands_h__ */