Linux Audio

Check our new training course

Loading...
v4.17
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called COPYING.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <linuxwifi@intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *
  62 *****************************************************************************/
  63/*
  64 * Please use this file (commands.h) only for uCode API definitions.
  65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
  66 * Please use dev.h for driver implementation definitions.
  67 */
  68
  69#ifndef __iwl_commands_h__
  70#define __iwl_commands_h__
  71
  72#include <linux/ieee80211.h>
  73#include <linux/types.h>
  74
  75
  76enum {
  77	REPLY_ALIVE = 0x1,
  78	REPLY_ERROR = 0x2,
  79	REPLY_ECHO = 0x3,		/* test command */
  80
  81	/* RXON and QOS commands */
  82	REPLY_RXON = 0x10,
  83	REPLY_RXON_ASSOC = 0x11,
  84	REPLY_QOS_PARAM = 0x13,
  85	REPLY_RXON_TIMING = 0x14,
  86
  87	/* Multi-Station support */
  88	REPLY_ADD_STA = 0x18,
  89	REPLY_REMOVE_STA = 0x19,
  90	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
  91	REPLY_TXFIFO_FLUSH = 0x1e,
  92
  93	/* Security */
  94	REPLY_WEPKEY = 0x20,
  95
  96	/* RX, TX, LEDs */
  97	REPLY_TX = 0x1c,
  98	REPLY_LEDS_CMD = 0x48,
  99	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
 100
 101	/* WiMAX coexistence */
 102	COEX_PRIORITY_TABLE_CMD = 0x5a,
 103	COEX_MEDIUM_NOTIFICATION = 0x5b,
 104	COEX_EVENT_CMD = 0x5c,
 105
 106	/* Calibration */
 107	TEMPERATURE_NOTIFICATION = 0x62,
 108	CALIBRATION_CFG_CMD = 0x65,
 109	CALIBRATION_RES_NOTIFICATION = 0x66,
 110	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
 111
 112	/* 802.11h related */
 113	REPLY_QUIET_CMD = 0x71,		/* not used */
 114	REPLY_CHANNEL_SWITCH = 0x72,
 115	CHANNEL_SWITCH_NOTIFICATION = 0x73,
 116	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
 117	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
 118
 119	/* Power Management */
 120	POWER_TABLE_CMD = 0x77,
 121	PM_SLEEP_NOTIFICATION = 0x7A,
 122	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
 123
 124	/* Scan commands and notifications */
 125	REPLY_SCAN_CMD = 0x80,
 126	REPLY_SCAN_ABORT_CMD = 0x81,
 127	SCAN_START_NOTIFICATION = 0x82,
 128	SCAN_RESULTS_NOTIFICATION = 0x83,
 129	SCAN_COMPLETE_NOTIFICATION = 0x84,
 130
 131	/* IBSS/AP commands */
 132	BEACON_NOTIFICATION = 0x90,
 133	REPLY_TX_BEACON = 0x91,
 134	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
 135
 136	/* Miscellaneous commands */
 137	REPLY_TX_POWER_DBM_CMD = 0x95,
 138	QUIET_NOTIFICATION = 0x96,		/* not used */
 139	REPLY_TX_PWR_TABLE_CMD = 0x97,
 140	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
 141	TX_ANT_CONFIGURATION_CMD = 0x98,
 142	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
 143
 144	/* Bluetooth device coexistence config command */
 145	REPLY_BT_CONFIG = 0x9b,
 146
 147	/* Statistics */
 148	REPLY_STATISTICS_CMD = 0x9c,
 149	STATISTICS_NOTIFICATION = 0x9d,
 150
 151	/* RF-KILL commands and notifications */
 152	REPLY_CARD_STATE_CMD = 0xa0,
 153	CARD_STATE_NOTIFICATION = 0xa1,
 154
 155	/* Missed beacons notification */
 156	MISSED_BEACONS_NOTIFICATION = 0xa2,
 157
 158	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 159	SENSITIVITY_CMD = 0xa8,
 160	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 161	REPLY_RX_PHY_CMD = 0xc0,
 162	REPLY_RX_MPDU_CMD = 0xc1,
 163	REPLY_RX = 0xc3,
 164	REPLY_COMPRESSED_BA = 0xc5,
 165
 166	/* BT Coex */
 167	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 168	REPLY_BT_COEX_PROT_ENV = 0xcd,
 169	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 170
 171	/* PAN commands */
 172	REPLY_WIPAN_PARAMS = 0xb2,
 173	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 174	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 175	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 176	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 177	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 178	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 179	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 180	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 181
 182	REPLY_WOWLAN_PATTERNS = 0xe0,
 183	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 184	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 185	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 186	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 187	REPLY_WOWLAN_GET_STATUS = 0xe5,
 188	REPLY_D3_CONFIG = 0xd3,
 189
 190	REPLY_MAX = 0xff
 191};
 192
 193/*
 194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
 195 * Set the minimum to accommodate
 196 *  - 4 standard TX queues
 197 *  - the command queue
 198 *  - 4 PAN TX queues
 199 *  - the PAN multicast queue, and
 200 *  - the AUX (TX during scan dwell) queue.
 201 */
 202#define IWL_MIN_NUM_QUEUES	11
 203
 204/*
 205 * Command queue depends on iPAN support.
 206 */
 207#define IWL_DEFAULT_CMD_QUEUE_NUM	4
 208#define IWL_IPAN_CMD_QUEUE_NUM		9
 209
 210#define IWL_TX_FIFO_BK		0	/* shared */
 211#define IWL_TX_FIFO_BE		1
 212#define IWL_TX_FIFO_VI		2	/* shared */
 213#define IWL_TX_FIFO_VO		3
 214#define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
 215#define IWL_TX_FIFO_BE_IPAN	4
 216#define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
 217#define IWL_TX_FIFO_VO_IPAN	5
 218/* re-uses the VO FIFO, uCode will properly flush/schedule */
 219#define IWL_TX_FIFO_AUX		5
 220#define IWL_TX_FIFO_UNUSED	255
 221
 222#define IWLAGN_CMD_FIFO_NUM	7
 223
 224/*
 225 * This queue number is required for proper operation
 226 * because the ucode will stop/start the scheduler as
 227 * required.
 228 */
 229#define IWL_IPAN_MCAST_QUEUE	8
 230
 231/******************************************************************************
 232 * (0)
 233 * Commonly used structures and definitions:
 234 * Command header, rate_n_flags, txpower
 235 *
 236 *****************************************************************************/
 237
 238/**
 239 * iwlagn rate_n_flags bit fields
 240 *
 241 * rate_n_flags format is used in following iwlagn commands:
 242 *  REPLY_RX (response only)
 243 *  REPLY_RX_MPDU (response only)
 244 *  REPLY_TX (both command and response)
 245 *  REPLY_TX_LINK_QUALITY_CMD
 246 *
 247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 248 *  2-0:  0)   6 Mbps
 249 *        1)  12 Mbps
 250 *        2)  18 Mbps
 251 *        3)  24 Mbps
 252 *        4)  36 Mbps
 253 *        5)  48 Mbps
 254 *        6)  54 Mbps
 255 *        7)  60 Mbps
 256 *
 257 *  4-3:  0)  Single stream (SISO)
 258 *        1)  Dual stream (MIMO)
 259 *        2)  Triple stream (MIMO)
 260 *
 261 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 262 *
 263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 264 *  3-0:  0xD)   6 Mbps
 265 *        0xF)   9 Mbps
 266 *        0x5)  12 Mbps
 267 *        0x7)  18 Mbps
 268 *        0x9)  24 Mbps
 269 *        0xB)  36 Mbps
 270 *        0x1)  48 Mbps
 271 *        0x3)  54 Mbps
 272 *
 273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 274 *  6-0:   10)  1 Mbps
 275 *         20)  2 Mbps
 276 *         55)  5.5 Mbps
 277 *        110)  11 Mbps
 278 */
 279#define RATE_MCS_CODE_MSK 0x7
 280#define RATE_MCS_SPATIAL_POS 3
 281#define RATE_MCS_SPATIAL_MSK 0x18
 282#define RATE_MCS_HT_DUP_POS 5
 283#define RATE_MCS_HT_DUP_MSK 0x20
 284/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 285#define RATE_MCS_RATE_MSK 0xff
 286
 287/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 288#define RATE_MCS_FLAGS_POS 8
 289#define RATE_MCS_HT_POS 8
 290#define RATE_MCS_HT_MSK 0x100
 291
 292/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 293#define RATE_MCS_CCK_POS 9
 294#define RATE_MCS_CCK_MSK 0x200
 295
 296/* Bit 10: (1) Use Green Field preamble */
 297#define RATE_MCS_GF_POS 10
 298#define RATE_MCS_GF_MSK 0x400
 299
 300/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 301#define RATE_MCS_HT40_POS 11
 302#define RATE_MCS_HT40_MSK 0x800
 303
 304/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 305#define RATE_MCS_DUP_POS 12
 306#define RATE_MCS_DUP_MSK 0x1000
 307
 308/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 309#define RATE_MCS_SGI_POS 13
 310#define RATE_MCS_SGI_MSK 0x2000
 311
 312/**
 313 * rate_n_flags Tx antenna masks
 314 * bit14:16
 315 */
 316#define RATE_MCS_ANT_POS	14
 317#define RATE_MCS_ANT_A_MSK	0x04000
 318#define RATE_MCS_ANT_B_MSK	0x08000
 319#define RATE_MCS_ANT_C_MSK	0x10000
 320#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 321#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 322#define RATE_ANT_NUM 3
 323
 324#define POWER_TABLE_NUM_ENTRIES			33
 325#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 326#define POWER_TABLE_CCK_ENTRY			32
 327
 328#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 329#define IWL_PWR_CCK_ENTRIES			2
 330
 331/**
 332 * struct tx_power_dual_stream
 333 *
 334 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 335 *
 336 * Same format as iwl_tx_power_dual_stream, but __le32
 337 */
 338struct tx_power_dual_stream {
 339	__le32 dw;
 340} __packed;
 341
 342/**
 343 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 344 * struct iwlagn_tx_power_dbm_cmd
 345 */
 346#define IWLAGN_TX_POWER_AUTO 0x7f
 347#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 348
 349struct iwlagn_tx_power_dbm_cmd {
 350	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 351	u8 flags;
 352	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 353	u8 reserved;
 354} __packed;
 355
 356/**
 357 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 358 * This command is used to configure valid Tx antenna.
 359 * By default uCode concludes the valid antenna according to the radio flavor.
 360 * This command enables the driver to override/modify this conclusion.
 361 */
 362struct iwl_tx_ant_config_cmd {
 363	__le32 valid;
 364} __packed;
 365
 366/******************************************************************************
 367 * (0a)
 368 * Alive and Error Commands & Responses:
 369 *
 370 *****************************************************************************/
 371
 372#define UCODE_VALID_OK	cpu_to_le32(0x1)
 373
 374/**
 375 * REPLY_ALIVE = 0x1 (response only, not a command)
 376 *
 377 * uCode issues this "alive" notification once the runtime image is ready
 378 * to receive commands from the driver.  This is the *second* "alive"
 379 * notification that the driver will receive after rebooting uCode;
 380 * this "alive" is indicated by subtype field != 9.
 381 *
 382 * See comments documenting "BSM" (bootstrap state machine).
 383 *
 384 * This response includes two pointers to structures within the device's
 385 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 386 *
 387 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 388 *     a 256-entry history of uCode execution within a circular buffer.
 389 *     Its header format is:
 390 *
 391 *	__le32 log_size;     log capacity (in number of entries)
 392 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 393 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 394 *      __le32 write_index;  next circular buffer entry that uCode would fill
 395 *
 396 *     The header is followed by the circular buffer of log entries.  Entries
 397 *     with timestamps have the following format:
 398 *
 399 *	__le32 event_id;     range 0 - 1500
 400 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 401 *	__le32 data;         event_id-specific data value
 402 *
 403 *     Entries without timestamps contain only event_id and data.
 404 *
 405 *
 406 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 407 *     information about any uCode error that occurs.  For agn, the format
 408 *     of the error log is defined by struct iwl_error_event_table.
 409 *
 410 * The Linux driver can print both logs to the system log when a uCode error
 411 * occurs.
 412 */
 413
 414/*
 415 * Note: This structure is read from the device with IO accesses,
 416 * and the reading already does the endian conversion. As it is
 417 * read with u32-sized accesses, any members with a different size
 418 * need to be ordered correctly though!
 419 */
 420struct iwl_error_event_table {
 421	u32 valid;		/* (nonzero) valid, (0) log is empty */
 422	u32 error_id;		/* type of error */
 423	u32 pc;			/* program counter */
 424	u32 blink1;		/* branch link */
 425	u32 blink2;		/* branch link */
 426	u32 ilink1;		/* interrupt link */
 427	u32 ilink2;		/* interrupt link */
 428	u32 data1;		/* error-specific data */
 429	u32 data2;		/* error-specific data */
 430	u32 line;		/* source code line of error */
 431	u32 bcon_time;		/* beacon timer */
 432	u32 tsf_low;		/* network timestamp function timer */
 433	u32 tsf_hi;		/* network timestamp function timer */
 434	u32 gp1;		/* GP1 timer register */
 435	u32 gp2;		/* GP2 timer register */
 436	u32 gp3;		/* GP3 timer register */
 437	u32 ucode_ver;		/* uCode version */
 438	u32 hw_ver;		/* HW Silicon version */
 439	u32 brd_ver;		/* HW board version */
 440	u32 log_pc;		/* log program counter */
 441	u32 frame_ptr;		/* frame pointer */
 442	u32 stack_ptr;		/* stack pointer */
 443	u32 hcmd;		/* last host command header */
 444	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
 445				 * rxtx_flag */
 446	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
 447				 * host_flag */
 448	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
 449				 * enc_flag */
 450	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
 451				 * time_flag */
 452	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
 453				 * wico interrupt */
 454	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 455	u32 wait_event;		/* wait event() caller address */
 456	u32 l2p_control;	/* L2pControlField */
 457	u32 l2p_duration;	/* L2pDurationField */
 458	u32 l2p_mhvalid;	/* L2pMhValidBits */
 459	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 460	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
 461				 * (LMPM_PMG_SEL) */
 462	u32 u_timestamp;	/* indicate when the date and time of the
 463				 * compilation */
 464	u32 flow_handler;	/* FH read/write pointers, RX credit */
 465} __packed;
 466
 467struct iwl_alive_resp {
 468	u8 ucode_minor;
 469	u8 ucode_major;
 470	__le16 reserved1;
 471	u8 sw_rev[8];
 472	u8 ver_type;
 473	u8 ver_subtype;			/* not "9" for runtime alive */
 474	__le16 reserved2;
 475	__le32 log_event_table_ptr;	/* SRAM address for event log */
 476	__le32 error_event_table_ptr;	/* SRAM address for error log */
 477	__le32 timestamp;
 478	__le32 is_valid;
 479} __packed;
 480
 481/*
 482 * REPLY_ERROR = 0x2 (response only, not a command)
 483 */
 484struct iwl_error_resp {
 485	__le32 error_type;
 486	u8 cmd_id;
 487	u8 reserved1;
 488	__le16 bad_cmd_seq_num;
 489	__le32 error_info;
 490	__le64 timestamp;
 491} __packed;
 492
 493/******************************************************************************
 494 * (1)
 495 * RXON Commands & Responses:
 496 *
 497 *****************************************************************************/
 498
 499/*
 500 * Rx config defines & structure
 501 */
 502/* rx_config device types  */
 503enum {
 504	RXON_DEV_TYPE_AP = 1,
 505	RXON_DEV_TYPE_ESS = 3,
 506	RXON_DEV_TYPE_IBSS = 4,
 507	RXON_DEV_TYPE_SNIFFER = 6,
 508	RXON_DEV_TYPE_CP = 7,
 509	RXON_DEV_TYPE_2STA = 8,
 510	RXON_DEV_TYPE_P2P = 9,
 511};
 512
 513
 514#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 515#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 516#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 517#define RXON_RX_CHAIN_VALID_POS			(1)
 518#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 519#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 520#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 521#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 522#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 523#define RXON_RX_CHAIN_CNT_POS			(10)
 524#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 525#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 526#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 527#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 528
 529/* rx_config flags */
 530/* band & modulation selection */
 531#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 532#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 533/* auto detection enable */
 534#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 535/* TGg protection when tx */
 536#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 537/* cck short slot & preamble */
 538#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 539#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 540/* antenna selection */
 541#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 542#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 543#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 544#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 545/* radar detection enable */
 546#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 547#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 548/* rx response to host with 8-byte TSF
 549* (according to ON_AIR deassertion) */
 550#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 551
 552
 553/* HT flags */
 554#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 555#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 556
 557#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 558
 559#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 560#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 561
 562#define RXON_FLG_CHANNEL_MODE_POS		(25)
 563#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 564
 565/* channel mode */
 566enum {
 567	CHANNEL_MODE_LEGACY = 0,
 568	CHANNEL_MODE_PURE_40 = 1,
 569	CHANNEL_MODE_MIXED = 2,
 570	CHANNEL_MODE_RESERVED = 3,
 571};
 572#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 573#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 574#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 575
 576/* CTS to self (if spec allows) flag */
 577#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 578
 579/* rx_config filter flags */
 580/* accept all data frames */
 581#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 582/* pass control & management to host */
 583#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 584/* accept multi-cast */
 585#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 586/* don't decrypt uni-cast frames */
 587#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 588/* don't decrypt multi-cast frames */
 589#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 590/* STA is associated */
 591#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 592/* transfer to host non bssid beacons in associated state */
 593#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 594
 595/**
 596 * REPLY_RXON = 0x10 (command, has simple generic response)
 597 *
 598 * RXON tunes the radio tuner to a service channel, and sets up a number
 599 * of parameters that are used primarily for Rx, but also for Tx operations.
 600 *
 601 * NOTE:  When tuning to a new channel, driver must set the
 602 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 603 *        info within the device, including the station tables, tx retry
 604 *        rate tables, and txpower tables.  Driver must build a new station
 605 *        table and txpower table before transmitting anything on the RXON
 606 *        channel.
 607 *
 608 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 609 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 610 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 611 */
 612
 613struct iwl_rxon_cmd {
 614	u8 node_addr[6];
 615	__le16 reserved1;
 616	u8 bssid_addr[6];
 617	__le16 reserved2;
 618	u8 wlap_bssid_addr[6];
 619	__le16 reserved3;
 620	u8 dev_type;
 621	u8 air_propagation;
 622	__le16 rx_chain;
 623	u8 ofdm_basic_rates;
 624	u8 cck_basic_rates;
 625	__le16 assoc_id;
 626	__le32 flags;
 627	__le32 filter_flags;
 628	__le16 channel;
 629	u8 ofdm_ht_single_stream_basic_rates;
 630	u8 ofdm_ht_dual_stream_basic_rates;
 631	u8 ofdm_ht_triple_stream_basic_rates;
 632	u8 reserved5;
 633	__le16 acquisition_data;
 634	__le16 reserved6;
 635} __packed;
 636
 637/*
 638 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 639 */
 640struct iwl_rxon_assoc_cmd {
 641	__le32 flags;
 642	__le32 filter_flags;
 643	u8 ofdm_basic_rates;
 644	u8 cck_basic_rates;
 645	__le16 reserved1;
 646	u8 ofdm_ht_single_stream_basic_rates;
 647	u8 ofdm_ht_dual_stream_basic_rates;
 648	u8 ofdm_ht_triple_stream_basic_rates;
 649	u8 reserved2;
 650	__le16 rx_chain_select_flags;
 651	__le16 acquisition_data;
 652	__le32 reserved3;
 653} __packed;
 654
 655#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 656#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 657
 658/*
 659 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 660 */
 661struct iwl_rxon_time_cmd {
 662	__le64 timestamp;
 663	__le16 beacon_interval;
 664	__le16 atim_window;
 665	__le32 beacon_init_val;
 666	__le16 listen_interval;
 667	u8 dtim_period;
 668	u8 delta_cp_bss_tbtts;
 669} __packed;
 670
 671/*
 672 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 673 */
 674/**
 675 * struct iwl5000_channel_switch_cmd
 676 * @band: 0- 5.2GHz, 1- 2.4GHz
 677 * @expect_beacon: 0- resume transmits after channel switch
 678 *		   1- wait for beacon to resume transmits
 679 * @channel: new channel number
 680 * @rxon_flags: Rx on flags
 681 * @rxon_filter_flags: filtering parameters
 682 * @switch_time: switch time in extended beacon format
 683 * @reserved: reserved bytes
 684 */
 685struct iwl5000_channel_switch_cmd {
 686	u8 band;
 687	u8 expect_beacon;
 688	__le16 channel;
 689	__le32 rxon_flags;
 690	__le32 rxon_filter_flags;
 691	__le32 switch_time;
 692	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 693} __packed;
 694
 695/**
 696 * struct iwl6000_channel_switch_cmd
 697 * @band: 0- 5.2GHz, 1- 2.4GHz
 698 * @expect_beacon: 0- resume transmits after channel switch
 699 *		   1- wait for beacon to resume transmits
 700 * @channel: new channel number
 701 * @rxon_flags: Rx on flags
 702 * @rxon_filter_flags: filtering parameters
 703 * @switch_time: switch time in extended beacon format
 704 * @reserved: reserved bytes
 705 */
 706struct iwl6000_channel_switch_cmd {
 707	u8 band;
 708	u8 expect_beacon;
 709	__le16 channel;
 710	__le32 rxon_flags;
 711	__le32 rxon_filter_flags;
 712	__le32 switch_time;
 713	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 714} __packed;
 715
 716/*
 717 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 718 */
 719struct iwl_csa_notification {
 720	__le16 band;
 721	__le16 channel;
 722	__le32 status;		/* 0 - OK, 1 - fail */
 723} __packed;
 724
 725/******************************************************************************
 726 * (2)
 727 * Quality-of-Service (QOS) Commands & Responses:
 728 *
 729 *****************************************************************************/
 730
 731/**
 732 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 733 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 734 *
 735 * @cw_min: Contention window, start value in numbers of slots.
 736 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 737 * @cw_max: Contention window, max value in numbers of slots.
 738 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 739 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 740 *          performing random backoff timing prior to Tx).  Device default 1.
 741 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 742 *
 743 * Device will automatically increase contention window by (2*CW) + 1 for each
 744 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 745 * value, to cap the CW value.
 746 */
 747struct iwl_ac_qos {
 748	__le16 cw_min;
 749	__le16 cw_max;
 750	u8 aifsn;
 751	u8 reserved1;
 752	__le16 edca_txop;
 753} __packed;
 754
 755/* QoS flags defines */
 756#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 757#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 758#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 759
 760/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 761#define AC_NUM                4
 762
 763/*
 764 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 765 *
 766 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 767 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 768 */
 769struct iwl_qosparam_cmd {
 770	__le32 qos_flags;
 771	struct iwl_ac_qos ac[AC_NUM];
 772} __packed;
 773
 774/******************************************************************************
 775 * (3)
 776 * Add/Modify Stations Commands & Responses:
 777 *
 778 *****************************************************************************/
 779/*
 780 * Multi station support
 781 */
 782
 783/* Special, dedicated locations within device's station table */
 784#define	IWL_AP_ID		0
 785#define	IWL_AP_ID_PAN		1
 786#define	IWL_STA_ID		2
 787#define IWLAGN_PAN_BCAST_ID	14
 788#define IWLAGN_BROADCAST_ID	15
 789#define	IWLAGN_STATION_COUNT	16
 790
 791#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
 792
 793#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 794#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 795#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 796#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 797#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 798#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 799#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 800#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 801#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 802#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 803#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 804
 805/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 806#define STA_CONTROL_MODIFY_MSK		0x01
 807
 808/* key flags __le16*/
 809#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 810#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 811#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 812#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 813#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 814
 815#define STA_KEY_FLG_KEYID_POS	8
 816#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 817/* wep key is either from global key (0) or from station info array (1) */
 818#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 819
 820/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 821#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 822#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 823#define STA_KEY_MAX_NUM		8
 824#define STA_KEY_MAX_NUM_PAN	16
 825/* must not match WEP_INVALID_OFFSET */
 826#define IWLAGN_HW_KEY_DEFAULT	0xfe
 827
 828/* Flags indicate whether to modify vs. don't change various station params */
 829#define	STA_MODIFY_KEY_MASK		0x01
 830#define	STA_MODIFY_TID_DISABLE_TX	0x02
 831#define	STA_MODIFY_TX_RATE_MSK		0x04
 832#define STA_MODIFY_ADDBA_TID_MSK	0x08
 833#define STA_MODIFY_DELBA_TID_MSK	0x10
 834#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 835
 836/* agn */
 837struct iwl_keyinfo {
 838	__le16 key_flags;
 839	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 840	u8 reserved1;
 841	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 842	u8 key_offset;
 843	u8 reserved2;
 844	u8 key[16];		/* 16-byte unicast decryption key */
 845	__le64 tx_secur_seq_cnt;
 846	__le64 hw_tkip_mic_rx_key;
 847	__le64 hw_tkip_mic_tx_key;
 848} __packed;
 849
 850/**
 851 * struct sta_id_modify
 852 * @addr[ETH_ALEN]: station's MAC address
 853 * @sta_id: index of station in uCode's station table
 854 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 855 *
 856 * Driver selects unused table index when adding new station,
 857 * or the index to a pre-existing station entry when modifying that station.
 858 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 859 *
 860 * modify_mask flags select which parameters to modify vs. leave alone.
 861 */
 862struct sta_id_modify {
 863	u8 addr[ETH_ALEN];
 864	__le16 reserved1;
 865	u8 sta_id;
 866	u8 modify_mask;
 867	__le16 reserved2;
 868} __packed;
 869
 870/*
 871 * REPLY_ADD_STA = 0x18 (command)
 872 *
 873 * The device contains an internal table of per-station information,
 874 * with info on security keys, aggregation parameters, and Tx rates for
 875 * initial Tx attempt and any retries (agn devices uses
 876 * REPLY_TX_LINK_QUALITY_CMD,
 877 *
 878 * REPLY_ADD_STA sets up the table entry for one station, either creating
 879 * a new entry, or modifying a pre-existing one.
 880 *
 881 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 882 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 883 *        new station table before transmitting anything on the RXON channel
 884 *        (except active scans or active measurements; those commands carry
 885 *        their own txpower/rate setup data).
 886 *
 887 *        When getting started on a new channel, driver must set up the
 888 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 889 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 890 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 891 *        are all that are needed for a BSS client station.  If the device is
 892 *        used as AP, or in an IBSS network, driver must set up station table
 893 *        entries for all STAs in network, starting with index IWL_STA_ID.
 894 */
 895
 896struct iwl_addsta_cmd {
 897	u8 mode;		/* 1: modify existing, 0: add new station */
 898	u8 reserved[3];
 899	struct sta_id_modify sta;
 900	struct iwl_keyinfo key;
 901	__le32 station_flags;		/* STA_FLG_* */
 902	__le32 station_flags_msk;	/* STA_FLG_* */
 903
 904	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 905	 * corresponding to bit (e.g. bit 5 controls TID 5).
 906	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 907	__le16 tid_disable_tx;
 908	__le16 legacy_reserved;
 909
 910	/* TID for which to add block-ack support.
 911	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 912	u8 add_immediate_ba_tid;
 913
 914	/* TID for which to remove block-ack support.
 915	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 916	u8 remove_immediate_ba_tid;
 917
 918	/* Starting Sequence Number for added block-ack support.
 919	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 920	__le16 add_immediate_ba_ssn;
 921
 922	/*
 923	 * Number of packets OK to transmit to station even though
 924	 * it is asleep -- used to synchronise PS-poll and u-APSD
 925	 * responses while ucode keeps track of STA sleep state.
 926	 */
 927	__le16 sleep_tx_count;
 928
 929	__le16 reserved2;
 930} __packed;
 931
 932
 933#define ADD_STA_SUCCESS_MSK		0x1
 934#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 935#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 936#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 937/*
 938 * REPLY_ADD_STA = 0x18 (response)
 939 */
 940struct iwl_add_sta_resp {
 941	u8 status;	/* ADD_STA_* */
 942} __packed;
 943
 944#define REM_STA_SUCCESS_MSK              0x1
 945/*
 946 *  REPLY_REM_STA = 0x19 (response)
 947 */
 948struct iwl_rem_sta_resp {
 949	u8 status;
 950} __packed;
 951
 952/*
 953 *  REPLY_REM_STA = 0x19 (command)
 954 */
 955struct iwl_rem_sta_cmd {
 956	u8 num_sta;     /* number of removed stations */
 957	u8 reserved[3];
 958	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 959	u8 reserved2[2];
 960} __packed;
 961
 962
 963/* WiFi queues mask */
 964#define IWL_SCD_BK_MSK			BIT(0)
 965#define IWL_SCD_BE_MSK			BIT(1)
 966#define IWL_SCD_VI_MSK			BIT(2)
 967#define IWL_SCD_VO_MSK			BIT(3)
 968#define IWL_SCD_MGMT_MSK		BIT(3)
 969
 970/* PAN queues mask */
 971#define IWL_PAN_SCD_BK_MSK		BIT(4)
 972#define IWL_PAN_SCD_BE_MSK		BIT(5)
 973#define IWL_PAN_SCD_VI_MSK		BIT(6)
 974#define IWL_PAN_SCD_VO_MSK		BIT(7)
 975#define IWL_PAN_SCD_MGMT_MSK		BIT(7)
 976#define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
 977
 978#define IWL_AGG_TX_QUEUE_MSK		0xffc00
 979
 980#define IWL_DROP_ALL			BIT(1)
 981
 982/*
 983 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 984 *
 985 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 986 * pointers to check if all the frames were transferred by DMA into the
 987 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 988 * empty the command can finish.
 989 * This command is used to flush the TXFIFO from transmit commands, it may
 990 * operate on single or multiple queues, the command queue can't be flushed by
 991 * this command. The command response is returned when all the queue flush
 992 * operations are done. Each TX command flushed return response with the FLUSH
 993 * status set in the TX response status. When FIFO flush operation is used,
 994 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 995 * are set.
 996 *
 997 * @queue_control: bit mask for which queues to flush
 998 * @flush_control: flush controls
 999 *	0: Dump single MSDU
1000 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1001 *	2: Dump all FIFO
1002 */
1003struct iwl_txfifo_flush_cmd_v3 {
1004	__le32 queue_control;
1005	__le16 flush_control;
1006	__le16 reserved;
1007} __packed;
1008
1009struct iwl_txfifo_flush_cmd_v2 {
1010	__le16 queue_control;
1011	__le16 flush_control;
1012} __packed;
1013
1014/*
1015 * REPLY_WEP_KEY = 0x20
1016 */
1017struct iwl_wep_key {
1018	u8 key_index;
1019	u8 key_offset;
1020	u8 reserved1[2];
1021	u8 key_size;
1022	u8 reserved2[3];
1023	u8 key[16];
1024} __packed;
1025
1026struct iwl_wep_cmd {
1027	u8 num_keys;
1028	u8 global_key_type;
1029	u8 flags;
1030	u8 reserved;
1031	struct iwl_wep_key key[0];
1032} __packed;
1033
1034#define WEP_KEY_WEP_TYPE 1
1035#define WEP_KEYS_MAX 4
1036#define WEP_INVALID_OFFSET 0xff
1037#define WEP_KEY_LEN_64 5
1038#define WEP_KEY_LEN_128 13
1039
1040/******************************************************************************
1041 * (4)
1042 * Rx Responses:
1043 *
1044 *****************************************************************************/
1045
1046#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1047#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1048
1049#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1050#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1051#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1052#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1053#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1054#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1055#define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1056
1057#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1058#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1059#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1060#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1061#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1062#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1063
1064#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1065#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1066
1067#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1068#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1069#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1070#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1071#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1072
1073#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1074#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1075#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1076#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1077
1078
1079#define IWLAGN_RX_RES_PHY_CNT 8
1080#define IWLAGN_RX_RES_AGC_IDX     1
1081#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1082#define IWLAGN_RX_RES_RSSI_C_IDX  3
1083#define IWLAGN_OFDM_AGC_MSK 0xfe00
1084#define IWLAGN_OFDM_AGC_BIT_POS 9
1085#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1086#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1087#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1088#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1089#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1090#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1091#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1092#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1093#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1094
1095struct iwlagn_non_cfg_phy {
1096	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1097} __packed;
1098
1099
1100/*
1101 * REPLY_RX = 0xc3 (response only, not a command)
1102 * Used only for legacy (non 11n) frames.
1103 */
1104struct iwl_rx_phy_res {
1105	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1106	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1107	u8 stat_id;		/* configurable DSP phy data set ID */
1108	u8 reserved1;
1109	__le64 timestamp;	/* TSF at on air rise */
1110	__le32 beacon_time_stamp; /* beacon at on-air rise */
1111	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1112	__le16 channel;		/* channel number */
1113	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1114	__le32 rate_n_flags;	/* RATE_MCS_* */
1115	__le16 byte_count;	/* frame's byte-count */
1116	__le16 frame_time;	/* frame's time on the air */
1117} __packed;
1118
1119struct iwl_rx_mpdu_res_start {
1120	__le16 byte_count;
1121	__le16 reserved;
1122} __packed;
1123
1124
1125/******************************************************************************
1126 * (5)
1127 * Tx Commands & Responses:
1128 *
1129 * Driver must place each REPLY_TX command into one of the prioritized Tx
1130 * queues in host DRAM, shared between driver and device (see comments for
1131 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1132 * are preparing to transmit, the device pulls the Tx command over the PCI
1133 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1134 * from which data will be transmitted.
1135 *
1136 * uCode handles all timing and protocol related to control frames
1137 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1138 * handle reception of block-acks; uCode updates the host driver via
1139 * REPLY_COMPRESSED_BA.
1140 *
1141 * uCode handles retrying Tx when an ACK is expected but not received.
1142 * This includes trying lower data rates than the one requested in the Tx
1143 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1144 *
1145 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1146 * This command must be executed after every RXON command, before Tx can occur.
1147 *****************************************************************************/
1148
1149/* REPLY_TX Tx flags field */
1150
1151/*
1152 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1153 * before this frame. if CTS-to-self required check
1154 * RXON_FLG_SELF_CTS_EN status.
1155 */
1156#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1157
1158/* 1: Expect ACK from receiving station
1159 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1160 * Set this for unicast frames, but not broadcast/multicast. */
1161#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1162
1163/* For agn devices:
1164 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1165 *    Tx command's initial_rate_index indicates first rate to try;
1166 *    uCode walks through table for additional Tx attempts.
1167 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1168 *    This rate will be used for all Tx attempts; it will not be scaled. */
1169#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1170
1171/* 1: Expect immediate block-ack.
1172 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1173#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1174
1175/* Tx antenna selection field; reserved (0) for agn devices. */
1176#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1177
1178/* 1: Ignore Bluetooth priority for this frame.
1179 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1180#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1181
1182/* 1: uCode overrides sequence control field in MAC header.
1183 * 0: Driver provides sequence control field in MAC header.
1184 * Set this for management frames, non-QOS data frames, non-unicast frames,
1185 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1186#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1187
1188/* 1: This frame is non-last MPDU; more fragments are coming.
1189 * 0: Last fragment, or not using fragmentation. */
1190#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1191
1192/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1193 * 0: No TSF required in outgoing frame.
1194 * Set this for transmitting beacons and probe responses. */
1195#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1196
1197/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1198 *    alignment of frame's payload data field.
1199 * 0: No pad
1200 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1201 * field (but not both).  Driver must align frame data (i.e. data following
1202 * MAC header) to DWORD boundary. */
1203#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1204
1205/* accelerate aggregation support
1206 * 0 - no CCMP encryption; 1 - CCMP encryption */
1207#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1208
1209/* HCCA-AP - disable duration overwriting. */
1210#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1211
1212
1213/*
1214 * TX command security control
1215 */
1216#define TX_CMD_SEC_WEP  	0x01
1217#define TX_CMD_SEC_CCM  	0x02
1218#define TX_CMD_SEC_TKIP		0x03
1219#define TX_CMD_SEC_MSK		0x03
1220#define TX_CMD_SEC_SHIFT	6
1221#define TX_CMD_SEC_KEY128	0x08
1222
1223/*
1224 * REPLY_TX = 0x1c (command)
1225 */
1226
1227/*
1228 * Used for managing Tx retries when expecting block-acks.
1229 * Driver should set these fields to 0.
1230 */
1231struct iwl_dram_scratch {
1232	u8 try_cnt;		/* Tx attempts */
1233	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1234	__le16 reserved;
1235} __packed;
1236
1237struct iwl_tx_cmd {
1238	/*
1239	 * MPDU byte count:
1240	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1241	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1242	 * + Data payload
1243	 * + 8-byte MIC (not used for CCM/WEP)
1244	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1245	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1246	 * Range: 14-2342 bytes.
1247	 */
1248	__le16 len;
1249
1250	/*
1251	 * MPDU or MSDU byte count for next frame.
1252	 * Used for fragmentation and bursting, but not 11n aggregation.
1253	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1254	 */
1255	__le16 next_frame_len;
1256
1257	__le32 tx_flags;	/* TX_CMD_FLG_* */
1258
1259	/* uCode may modify this field of the Tx command (in host DRAM!).
1260	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1261	struct iwl_dram_scratch scratch;
1262
1263	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1264	__le32 rate_n_flags;	/* RATE_MCS_* */
1265
1266	/* Index of destination station in uCode's station table */
1267	u8 sta_id;
1268
1269	/* Type of security encryption:  CCM or TKIP */
1270	u8 sec_ctl;		/* TX_CMD_SEC_* */
1271
1272	/*
1273	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1274	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1275	 * data frames, this field may be used to selectively reduce initial
1276	 * rate (via non-0 value) for special frames (e.g. management), while
1277	 * still supporting rate scaling for all frames.
1278	 */
1279	u8 initial_rate_index;
1280	u8 reserved;
1281	u8 key[16];
1282	__le16 next_frame_flags;
1283	__le16 reserved2;
1284	union {
1285		__le32 life_time;
1286		__le32 attempt;
1287	} stop_time;
1288
1289	/* Host DRAM physical address pointer to "scratch" in this command.
1290	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1291	__le32 dram_lsb_ptr;
1292	u8 dram_msb_ptr;
1293
1294	u8 rts_retry_limit;	/*byte 50 */
1295	u8 data_retry_limit;	/*byte 51 */
1296	u8 tid_tspec;
1297	union {
1298		__le16 pm_frame_timeout;
1299		__le16 attempt_duration;
1300	} timeout;
1301
1302	/*
1303	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1304	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1305	 */
1306	__le16 driver_txop;
1307
1308	/*
1309	 * MAC header goes here, followed by 2 bytes padding if MAC header
1310	 * length is 26 or 30 bytes, followed by payload data
1311	 */
1312	u8 payload[0];
1313	struct ieee80211_hdr hdr[0];
1314} __packed;
1315
1316/*
1317 * TX command response is sent after *agn* transmission attempts.
1318 *
1319 * both postpone and abort status are expected behavior from uCode. there is
1320 * no special operation required from driver; except for RFKILL_FLUSH,
1321 * which required tx flush host command to flush all the tx frames in queues
1322 */
1323enum {
1324	TX_STATUS_SUCCESS = 0x01,
1325	TX_STATUS_DIRECT_DONE = 0x02,
1326	/* postpone TX */
1327	TX_STATUS_POSTPONE_DELAY = 0x40,
1328	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1329	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1330	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1331	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1332	/* abort TX */
1333	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1334	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1335	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1336	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1337	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1338	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1339	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1340	TX_STATUS_FAIL_DEST_PS = 0x88,
1341	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1342	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1343	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1344	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1345	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1346	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1347	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1348	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1349	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1350};
1351
1352#define	TX_PACKET_MODE_REGULAR		0x0000
1353#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1354#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1355
1356enum {
1357	TX_POWER_PA_NOT_ACTIVE = 0x0,
1358};
1359
1360enum {
1361	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1362	TX_STATUS_DELAY_MSK = 0x00000040,
1363	TX_STATUS_ABORT_MSK = 0x00000080,
1364	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1365	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1366	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1367	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1368	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1369};
1370
1371/* *******************************
1372 * TX aggregation status
1373 ******************************* */
1374
1375enum {
1376	AGG_TX_STATE_TRANSMITTED = 0x00,
1377	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1378	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1379	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1380	AGG_TX_STATE_ABORT_MSK = 0x08,
1381	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1382	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1383	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1384	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1385	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1386	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1387	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1388	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1389};
1390
1391#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1392#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1393#define AGG_TX_TRY_POS		12
1394
1395#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1396				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1397				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1398
1399/* # tx attempts for first frame in aggregation */
1400#define AGG_TX_STATE_TRY_CNT_POS 12
1401#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1402
1403/* Command ID and sequence number of Tx command for this frame */
1404#define AGG_TX_STATE_SEQ_NUM_POS 16
1405#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1406
1407/*
1408 * REPLY_TX = 0x1c (response)
1409 *
1410 * This response may be in one of two slightly different formats, indicated
1411 * by the frame_count field:
1412 *
1413 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1414 *     a single frame.  Multiple attempts, at various bit rates, may have
1415 *     been made for this frame.
1416 *
1417 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1418 *     2 or more frames that used block-acknowledge.  All frames were
1419 *     transmitted at same rate.  Rate scaling may have been used if first
1420 *     frame in this new agg block failed in previous agg block(s).
1421 *
1422 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1423 *     block-ack has not been received by the time the agn device records
1424 *     this status.
1425 *     This status relates to reasons the tx might have been blocked or aborted
1426 *     within the sending station (this agn device), rather than whether it was
1427 *     received successfully by the destination station.
1428 */
1429struct agg_tx_status {
1430	__le16 status;
1431	__le16 sequence;
1432} __packed;
1433
1434/* refer to ra_tid */
1435#define IWLAGN_TX_RES_TID_POS	0
1436#define IWLAGN_TX_RES_TID_MSK	0x0f
1437#define IWLAGN_TX_RES_RA_POS	4
1438#define IWLAGN_TX_RES_RA_MSK	0xf0
1439
1440struct iwlagn_tx_resp {
1441	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1442	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1443	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1444	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1445
1446	/* For non-agg:  Rate at which frame was successful.
1447	 * For agg:  Rate at which all frames were transmitted. */
1448	__le32 rate_n_flags;	/* RATE_MCS_*  */
1449
1450	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1451	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1452	__le16 wireless_media_time;	/* uSecs */
1453
1454	u8 pa_status;		/* RF power amplifier measurement (not used) */
1455	u8 pa_integ_res_a[3];
1456	u8 pa_integ_res_b[3];
1457	u8 pa_integ_res_C[3];
1458
1459	__le32 tfd_info;
1460	__le16 seq_ctl;
1461	__le16 byte_cnt;
1462	u8 tlc_info;
1463	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1464	__le16 frame_ctrl;
1465	/*
1466	 * For non-agg:  frame status TX_STATUS_*
1467	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1468	 *           fields follow this one, up to frame_count.
1469	 *           Bit fields:
1470	 *           11- 0:  AGG_TX_STATE_* status code
1471	 *           15-12:  Retry count for 1st frame in aggregation (retries
1472	 *                   occur if tx failed for this frame when it was a
1473	 *                   member of a previous aggregation block).  If rate
1474	 *                   scaling is used, retry count indicates the rate
1475	 *                   table entry used for all frames in the new agg.
1476	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1477	 */
1478	struct agg_tx_status status;	/* TX status (in aggregation -
1479					 * status of 1st frame) */
1480} __packed;
1481/*
1482 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1483 *
1484 * Reports Block-Acknowledge from recipient station
1485 */
1486struct iwl_compressed_ba_resp {
1487	__le32 sta_addr_lo32;
1488	__le16 sta_addr_hi16;
1489	__le16 reserved;
1490
1491	/* Index of recipient (BA-sending) station in uCode's station table */
1492	u8 sta_id;
1493	u8 tid;
1494	__le16 seq_ctl;
1495	__le64 bitmap;
1496	__le16 scd_flow;
1497	__le16 scd_ssn;
1498	u8 txed;	/* number of frames sent */
1499	u8 txed_2_done; /* number of frames acked */
1500	__le16 reserved1;
1501} __packed;
1502
1503/*
1504 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1505 *
1506 */
1507
1508/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1509#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1510
1511/* # of EDCA prioritized tx fifos */
1512#define  LINK_QUAL_AC_NUM AC_NUM
1513
1514/* # entries in rate scale table to support Tx retries */
1515#define  LINK_QUAL_MAX_RETRY_NUM 16
1516
1517/* Tx antenna selection values */
1518#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1519#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1520#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1521
1522
1523/**
1524 * struct iwl_link_qual_general_params
1525 *
1526 * Used in REPLY_TX_LINK_QUALITY_CMD
1527 */
1528struct iwl_link_qual_general_params {
1529	u8 flags;
1530
1531	/* No entries at or above this (driver chosen) index contain MIMO */
1532	u8 mimo_delimiter;
1533
1534	/* Best single antenna to use for single stream (legacy, SISO). */
1535	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1536
1537	/* Best antennas to use for MIMO */
1538	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1539
1540	/*
1541	 * If driver needs to use different initial rates for different
1542	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1543	 * this table will set that up, by indicating the indexes in the
1544	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1545	 * Otherwise, driver should set all entries to 0.
1546	 *
1547	 * Entry usage:
1548	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1549	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1550	 */
1551	u8 start_rate_index[LINK_QUAL_AC_NUM];
1552} __packed;
1553
1554#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1555#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1556#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1557
1558#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1559#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1560#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1561
1562#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1563#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1564#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1565
1566/**
1567 * struct iwl_link_qual_agg_params
1568 *
1569 * Used in REPLY_TX_LINK_QUALITY_CMD
1570 */
1571struct iwl_link_qual_agg_params {
1572
1573	/*
1574	 *Maximum number of uSec in aggregation.
1575	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1576	 */
1577	__le16 agg_time_limit;
1578
1579	/*
1580	 * Number of Tx retries allowed for a frame, before that frame will
1581	 * no longer be considered for the start of an aggregation sequence
1582	 * (scheduler will then try to tx it as single frame).
1583	 * Driver should set this to 3.
1584	 */
1585	u8 agg_dis_start_th;
1586
1587	/*
1588	 * Maximum number of frames in aggregation.
1589	 * 0 = no limit (default).  1 = no aggregation.
1590	 * Other values = max # frames in aggregation.
1591	 */
1592	u8 agg_frame_cnt_limit;
1593
1594	__le32 reserved;
1595} __packed;
1596
1597/*
1598 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1599 *
1600 * For agn devices
1601 *
1602 * Each station in the agn device's internal station table has its own table
1603 * of 16
1604 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1605 * an ACK is not received.  This command replaces the entire table for
1606 * one station.
1607 *
1608 * NOTE:  Station must already be in agn device's station table.
1609 *	  Use REPLY_ADD_STA.
1610 *
1611 * The rate scaling procedures described below work well.  Of course, other
1612 * procedures are possible, and may work better for particular environments.
1613 *
1614 *
1615 * FILLING THE RATE TABLE
1616 *
1617 * Given a particular initial rate and mode, as determined by the rate
1618 * scaling algorithm described below, the Linux driver uses the following
1619 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1620 * Link Quality command:
1621 *
1622 *
1623 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1624 *     a) Use this same initial rate for first 3 entries.
1625 *     b) Find next lower available rate using same mode (SISO or MIMO),
1626 *        use for next 3 entries.  If no lower rate available, switch to
1627 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1628 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1629 *        using MIMO (3 or 6).
1630 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1631 *        no MIMO, no short guard interval), at the next lower bit rate
1632 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1633 *        legacy procedure for remaining table entries.
1634 *
1635 * 2)  If using legacy initial rate:
1636 *     a) Use the initial rate for only one entry.
1637 *     b) For each following entry, reduce the rate to next lower available
1638 *        rate, until reaching the lowest available rate.
1639 *     c) When reducing rate, also switch antenna selection.
1640 *     d) Once lowest available rate is reached, repeat this rate until
1641 *        rate table is filled (16 entries), switching antenna each entry.
1642 *
1643 *
1644 * ACCUMULATING HISTORY
1645 *
1646 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1647 * uses two sets of frame Tx success history:  One for the current/active
1648 * modulation mode, and one for a speculative/search mode that is being
1649 * attempted. If the speculative mode turns out to be more effective (i.e.
1650 * actual transfer rate is better), then the driver continues to use the
1651 * speculative mode as the new current active mode.
1652 *
1653 * Each history set contains, separately for each possible rate, data for a
1654 * sliding window of the 62 most recent tx attempts at that rate.  The data
1655 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1656 * and attempted frames, from which the driver can additionally calculate a
1657 * success ratio (success / attempted) and number of failures
1658 * (attempted - success), and control the size of the window (attempted).
1659 * The driver uses the bit map to remove successes from the success sum, as
1660 * the oldest tx attempts fall out of the window.
1661 *
1662 * When the agn device makes multiple tx attempts for a given frame, each
1663 * attempt might be at a different rate, and have different modulation
1664 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1665 * up in the rate scaling table in the Link Quality command.  The driver must
1666 * determine which rate table entry was used for each tx attempt, to determine
1667 * which rate-specific history to update, and record only those attempts that
1668 * match the modulation characteristics of the history set.
1669 *
1670 * When using block-ack (aggregation), all frames are transmitted at the same
1671 * rate, since there is no per-attempt acknowledgment from the destination
1672 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1673 * rate_n_flags field.  After receiving a block-ack, the driver can update
1674 * history for the entire block all at once.
1675 *
1676 *
1677 * FINDING BEST STARTING RATE:
1678 *
1679 * When working with a selected initial modulation mode (see below), the
1680 * driver attempts to find a best initial rate.  The initial rate is the
1681 * first entry in the Link Quality command's rate table.
1682 *
1683 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1684 *     table below) for current initial rate.  Do this only if enough frames
1685 *     have been attempted to make the value meaningful:  at least 6 failed
1686 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1687 *     scaling yet.
1688 *
1689 * 2)  Find available rates adjacent to current initial rate.  Available means:
1690 *     a)  supported by hardware &&
1691 *     b)  supported by association &&
1692 *     c)  within any constraints selected by user
1693 *
1694 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1695 *     enough history to calculate a throughput.  That's okay, we might try
1696 *     using one of them anyway!
1697 *
1698 * 4)  Try decreasing rate if, for current rate:
1699 *     a)  success ratio is < 15% ||
1700 *     b)  lower adjacent rate has better measured throughput ||
1701 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1702 *
1703 *     As a sanity check, if decrease was determined above, leave rate
1704 *     unchanged if:
1705 *     a)  lower rate unavailable
1706 *     b)  success ratio at current rate > 85% (very good)
1707 *     c)  current measured throughput is better than expected throughput
1708 *         of lower rate (under perfect 100% tx conditions, see table below)
1709 *
1710 * 5)  Try increasing rate if, for current rate:
1711 *     a)  success ratio is < 15% ||
1712 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1713 *     b)  higher adjacent rate has better measured throughput ||
1714 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1715 *
1716 *     As a sanity check, if increase was determined above, leave rate
1717 *     unchanged if:
1718 *     a)  success ratio at current rate < 70%.  This is not particularly
1719 *         good performance; higher rate is sure to have poorer success.
1720 *
1721 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1722 *     acknowledge, history and statistics may be calculated for the entire
1723 *     block (including prior history that fits within the history windows),
1724 *     before re-evaluation.
1725 *
1726 * FINDING BEST STARTING MODULATION MODE:
1727 *
1728 * After working with a modulation mode for a "while" (and doing rate scaling),
1729 * the driver searches for a new initial mode in an attempt to improve
1730 * throughput.  The "while" is measured by numbers of attempted frames:
1731 *
1732 * For legacy mode, search for new mode after:
1733 *   480 successful frames, or 160 failed frames
1734 * For high-throughput modes (SISO or MIMO), search for new mode after:
1735 *   4500 successful frames, or 400 failed frames
1736 *
1737 * Mode switch possibilities are (3 for each mode):
1738 *
1739 * For legacy:
1740 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1741 * For SISO:
1742 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1743 * For MIMO:
1744 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1745 *
1746 * When trying a new mode, use the same bit rate as the old/current mode when
1747 * trying antenna switches and shortened guard interval.  When switching to
1748 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1749 * for which the expected throughput (under perfect conditions) is about the
1750 * same or slightly better than the actual measured throughput delivered by
1751 * the old/current mode.
1752 *
1753 * Actual throughput can be estimated by multiplying the expected throughput
1754 * by the success ratio (successful / attempted tx frames).  Frame size is
1755 * not considered in this calculation; it assumes that frame size will average
1756 * out to be fairly consistent over several samples.  The following are
1757 * metric values for expected throughput assuming 100% success ratio.
1758 * Only G band has support for CCK rates:
1759 *
1760 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1761 *
1762 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1763 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1764 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1765 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1766 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1767 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1768 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1769 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1770 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1771 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1772 *
1773 * After the new mode has been tried for a short while (minimum of 6 failed
1774 * frames or 8 successful frames), compare success ratio and actual throughput
1775 * estimate of the new mode with the old.  If either is better with the new
1776 * mode, continue to use the new mode.
1777 *
1778 * Continue comparing modes until all 3 possibilities have been tried.
1779 * If moving from legacy to HT, try all 3 possibilities from the new HT
1780 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1781 * for the longer "while" described above (e.g. 480 successful frames for
1782 * legacy), and then repeat the search process.
1783 *
1784 */
1785struct iwl_link_quality_cmd {
1786
1787	/* Index of destination/recipient station in uCode's station table */
1788	u8 sta_id;
1789	u8 reserved1;
1790	__le16 control;		/* not used */
1791	struct iwl_link_qual_general_params general_params;
1792	struct iwl_link_qual_agg_params agg_params;
1793
1794	/*
1795	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1796	 * specifies 1st Tx rate attempted, via index into this table.
1797	 * agn devices works its way through table when retrying Tx.
1798	 */
1799	struct {
1800		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1801	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1802	__le32 reserved2;
1803} __packed;
1804
1805/*
1806 * BT configuration enable flags:
1807 *   bit 0 - 1: BT channel announcement enabled
1808 *           0: disable
1809 *   bit 1 - 1: priority of BT device enabled
1810 *           0: disable
1811 *   bit 2 - 1: BT 2 wire support enabled
1812 *           0: disable
1813 */
1814#define BT_COEX_DISABLE (0x0)
1815#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1816#define BT_ENABLE_PRIORITY	   BIT(1)
1817#define BT_ENABLE_2_WIRE	   BIT(2)
1818
1819#define BT_COEX_DISABLE (0x0)
1820#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1821
1822#define BT_LEAD_TIME_MIN (0x0)
1823#define BT_LEAD_TIME_DEF (0x1E)
1824#define BT_LEAD_TIME_MAX (0xFF)
1825
1826#define BT_MAX_KILL_MIN (0x1)
1827#define BT_MAX_KILL_DEF (0x5)
1828#define BT_MAX_KILL_MAX (0xFF)
1829
1830#define BT_DURATION_LIMIT_DEF	625
1831#define BT_DURATION_LIMIT_MAX	1250
1832#define BT_DURATION_LIMIT_MIN	625
1833
1834#define BT_ON_THRESHOLD_DEF	4
1835#define BT_ON_THRESHOLD_MAX	1000
1836#define BT_ON_THRESHOLD_MIN	1
1837
1838#define BT_FRAG_THRESHOLD_DEF	0
1839#define BT_FRAG_THRESHOLD_MAX	0
1840#define BT_FRAG_THRESHOLD_MIN	0
1841
1842#define BT_AGG_THRESHOLD_DEF	1200
1843#define BT_AGG_THRESHOLD_MAX	8000
1844#define BT_AGG_THRESHOLD_MIN	400
1845
1846/*
1847 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1848 *
1849 * agn devices support hardware handshake with Bluetooth device on
1850 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1851 * wireless device can delay or kill its own Tx to accommodate.
1852 */
1853struct iwl_bt_cmd {
1854	u8 flags;
1855	u8 lead_time;
1856	u8 max_kill;
1857	u8 reserved;
1858	__le32 kill_ack_mask;
1859	__le32 kill_cts_mask;
1860} __packed;
1861
1862#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1863
1864#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1865#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1866#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1867#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1868#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1869#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1870
1871#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1872/* Disable Sync PSPoll on SCO/eSCO */
1873#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1874
1875#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1876#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1877
1878#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1879#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1880#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1881#define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1882
1883#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1884
1885#define IWLAGN_BT3_T7_DEFAULT		1
1886
1887enum iwl_bt_kill_idx {
1888	IWL_BT_KILL_DEFAULT = 0,
1889	IWL_BT_KILL_OVERRIDE = 1,
1890	IWL_BT_KILL_REDUCE = 2,
1891};
1892
1893#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1894#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1895#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1896#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1897
1898#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1899
1900#define IWLAGN_BT3_T2_DEFAULT		0xc
1901
1902#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1903#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1904#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1905#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1906#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1907#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1908#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1909#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1910
1911#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1912					IWLAGN_BT_VALID_BOOST | \
1913					IWLAGN_BT_VALID_MAX_KILL | \
1914					IWLAGN_BT_VALID_3W_TIMERS | \
1915					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1916					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1917					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1918					IWLAGN_BT_VALID_3W_LUT)
1919
1920#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1921
1922#define IWLAGN_BT_DECISION_LUT_SIZE	12
1923
1924struct iwl_basic_bt_cmd {
1925	u8 flags;
1926	u8 ledtime; /* unused */
1927	u8 max_kill;
1928	u8 bt3_timer_t7_value;
1929	__le32 kill_ack_mask;
1930	__le32 kill_cts_mask;
1931	u8 bt3_prio_sample_time;
1932	u8 bt3_timer_t2_value;
1933	__le16 bt4_reaction_time; /* unused */
1934	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1935	/*
1936	 * bit 0: use reduced tx power for control frame
1937	 * bit 1 - 7: reserved
1938	 */
1939	u8 reduce_txpower;
1940	u8 reserved;
1941	__le16 valid;
1942};
1943
1944struct iwl_bt_cmd_v1 {
1945	struct iwl_basic_bt_cmd basic;
1946	u8 prio_boost;
1947	/*
1948	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1949	 * if configure the following patterns
1950	 */
1951	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1952	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1953};
1954
1955struct iwl_bt_cmd_v2 {
1956	struct iwl_basic_bt_cmd basic;
1957	__le32 prio_boost;
1958	/*
1959	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1960	 * if configure the following patterns
1961	 */
1962	u8 reserved;
1963	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1964	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1965};
1966
1967#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1968
1969struct iwlagn_bt_sco_cmd {
1970	__le32 flags;
1971};
1972
1973/******************************************************************************
1974 * (6)
1975 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1976 *
1977 *****************************************************************************/
1978
1979/*
1980 * Spectrum Management
1981 */
1982#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1983				 RXON_FILTER_CTL2HOST_MSK        | \
1984				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1985				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1986				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1987				 RXON_FILTER_ASSOC_MSK           | \
1988				 RXON_FILTER_BCON_AWARE_MSK)
1989
1990struct iwl_measure_channel {
1991	__le32 duration;	/* measurement duration in extended beacon
1992				 * format */
1993	u8 channel;		/* channel to measure */
1994	u8 type;		/* see enum iwl_measure_type */
1995	__le16 reserved;
1996} __packed;
1997
1998/*
1999 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2000 */
2001struct iwl_spectrum_cmd {
2002	__le16 len;		/* number of bytes starting from token */
2003	u8 token;		/* token id */
2004	u8 id;			/* measurement id -- 0 or 1 */
2005	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2006	u8 periodic;		/* 1 = periodic */
2007	__le16 path_loss_timeout;
2008	__le32 start_time;	/* start time in extended beacon format */
2009	__le32 reserved2;
2010	__le32 flags;		/* rxon flags */
2011	__le32 filter_flags;	/* rxon filter flags */
2012	__le16 channel_count;	/* minimum 1, maximum 10 */
2013	__le16 reserved3;
2014	struct iwl_measure_channel channels[10];
2015} __packed;
2016
2017/*
2018 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2019 */
2020struct iwl_spectrum_resp {
2021	u8 token;
2022	u8 id;			/* id of the prior command replaced, or 0xff */
2023	__le16 status;		/* 0 - command will be handled
2024				 * 1 - cannot handle (conflicts with another
2025				 *     measurement) */
2026} __packed;
2027
2028enum iwl_measurement_state {
2029	IWL_MEASUREMENT_START = 0,
2030	IWL_MEASUREMENT_STOP = 1,
2031};
2032
2033enum iwl_measurement_status {
2034	IWL_MEASUREMENT_OK = 0,
2035	IWL_MEASUREMENT_CONCURRENT = 1,
2036	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2037	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2038	/* 4-5 reserved */
2039	IWL_MEASUREMENT_STOPPED = 6,
2040	IWL_MEASUREMENT_TIMEOUT = 7,
2041	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2042};
2043
2044#define NUM_ELEMENTS_IN_HISTOGRAM 8
2045
2046struct iwl_measurement_histogram {
2047	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2048	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2049} __packed;
2050
2051/* clear channel availability counters */
2052struct iwl_measurement_cca_counters {
2053	__le32 ofdm;
2054	__le32 cck;
2055} __packed;
2056
2057enum iwl_measure_type {
2058	IWL_MEASURE_BASIC = (1 << 0),
2059	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2060	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2061	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2062	IWL_MEASURE_FRAME = (1 << 4),
2063	/* bits 5:6 are reserved */
2064	IWL_MEASURE_IDLE = (1 << 7),
2065};
2066
2067/*
2068 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2069 */
2070struct iwl_spectrum_notification {
2071	u8 id;			/* measurement id -- 0 or 1 */
2072	u8 token;
2073	u8 channel_index;	/* index in measurement channel list */
2074	u8 state;		/* 0 - start, 1 - stop */
2075	__le32 start_time;	/* lower 32-bits of TSF */
2076	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2077	u8 channel;
2078	u8 type;		/* see enum iwl_measurement_type */
2079	u8 reserved1;
2080	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2081	 * valid if applicable for measurement type requested. */
2082	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2083	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2084	__le32 cca_time;	/* channel load time in usecs */
2085	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2086				 * unidentified */
2087	u8 reserved2[3];
2088	struct iwl_measurement_histogram histogram;
2089	__le32 stop_time;	/* lower 32-bits of TSF */
2090	__le32 status;		/* see iwl_measurement_status */
2091} __packed;
2092
2093/******************************************************************************
2094 * (7)
2095 * Power Management Commands, Responses, Notifications:
2096 *
2097 *****************************************************************************/
2098
2099/**
2100 * struct iwl_powertable_cmd - Power Table Command
2101 * @flags: See below:
2102 *
2103 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2104 *
2105 * PM allow:
2106 *   bit 0 - '0' Driver not allow power management
2107 *           '1' Driver allow PM (use rest of parameters)
2108 *
2109 * uCode send sleep notifications:
2110 *   bit 1 - '0' Don't send sleep notification
2111 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2112 *
2113 * Sleep over DTIM
2114 *   bit 2 - '0' PM have to walk up every DTIM
2115 *           '1' PM could sleep over DTIM till listen Interval.
2116 *
2117 * PCI power managed
2118 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2119 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2120 *
2121 * Fast PD
2122 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2123 *
2124 * Force sleep Modes
2125 *   bit 31/30- '00' use both mac/xtal sleeps
2126 *              '01' force Mac sleep
2127 *              '10' force xtal sleep
2128 *              '11' Illegal set
2129 *
2130 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2131 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2132 * for every DTIM.
2133 */
2134#define IWL_POWER_VEC_SIZE 5
2135
2136#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2137#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2138#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2139#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2140#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2141#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2142#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2143#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2144#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2145#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2146#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2147
2148struct iwl_powertable_cmd {
2149	__le16 flags;
2150	u8 keep_alive_seconds;
2151	u8 debug_flags;
2152	__le32 rx_data_timeout;
2153	__le32 tx_data_timeout;
2154	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2155	__le32 keep_alive_beacons;
2156} __packed;
2157
2158/*
2159 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2160 * all devices identical.
2161 */
2162struct iwl_sleep_notification {
2163	u8 pm_sleep_mode;
2164	u8 pm_wakeup_src;
2165	__le16 reserved;
2166	__le32 sleep_time;
2167	__le32 tsf_low;
2168	__le32 bcon_timer;
2169} __packed;
2170
2171/* Sleep states.  all devices identical. */
2172enum {
2173	IWL_PM_NO_SLEEP = 0,
2174	IWL_PM_SLP_MAC = 1,
2175	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2176	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2177	IWL_PM_SLP_PHY = 4,
2178	IWL_PM_SLP_REPENT = 5,
2179	IWL_PM_WAKEUP_BY_TIMER = 6,
2180	IWL_PM_WAKEUP_BY_DRIVER = 7,
2181	IWL_PM_WAKEUP_BY_RFKILL = 8,
2182	/* 3 reserved */
2183	IWL_PM_NUM_OF_MODES = 12,
2184};
2185
2186/*
2187 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2188 */
2189#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2190#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2191#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2192struct iwl_card_state_cmd {
2193	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2194} __packed;
2195
2196/*
2197 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2198 */
2199struct iwl_card_state_notif {
2200	__le32 flags;
2201} __packed;
2202
2203#define HW_CARD_DISABLED   0x01
2204#define SW_CARD_DISABLED   0x02
2205#define CT_CARD_DISABLED   0x04
2206#define RXON_CARD_DISABLED 0x10
2207
2208struct iwl_ct_kill_config {
2209	__le32   reserved;
2210	__le32   critical_temperature_M;
2211	__le32   critical_temperature_R;
2212}  __packed;
2213
2214/* 1000, and 6x00 */
2215struct iwl_ct_kill_throttling_config {
2216	__le32   critical_temperature_exit;
2217	__le32   reserved;
2218	__le32   critical_temperature_enter;
2219}  __packed;
2220
2221/******************************************************************************
2222 * (8)
2223 * Scan Commands, Responses, Notifications:
2224 *
2225 *****************************************************************************/
2226
2227#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2228#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2229
2230/**
2231 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2232 *
2233 * One for each channel in the scan list.
2234 * Each channel can independently select:
2235 * 1)  SSID for directed active scans
2236 * 2)  Txpower setting (for rate specified within Tx command)
2237 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2238 *     quiet_plcp_th, good_CRC_th)
2239 *
2240 * To avoid uCode errors, make sure the following are true (see comments
2241 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2242 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2243 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2244 * 2)  quiet_time <= active_dwell
2245 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2246 *     passive_dwell < max_out_time
2247 *     active_dwell < max_out_time
2248 */
2249
2250struct iwl_scan_channel {
2251	/*
2252	 * type is defined as:
2253	 * 0:0 1 = active, 0 = passive
2254	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2255	 *     SSID IE is transmitted in probe request.
2256	 * 21:31 reserved
2257	 */
2258	__le32 type;
2259	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2260	u8 tx_gain;		/* gain for analog radio */
2261	u8 dsp_atten;		/* gain for DSP */
2262	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2263	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2264} __packed;
2265
2266/* set number of direct probes __le32 type */
2267#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2268
2269/**
2270 * struct iwl_ssid_ie - directed scan network information element
2271 *
2272 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2273 * selected by "type" bit field in struct iwl_scan_channel;
2274 * each channel may select different ssids from among the 20 entries.
2275 * SSID IEs get transmitted in reverse order of entry.
2276 */
2277struct iwl_ssid_ie {
2278	u8 id;
2279	u8 len;
2280	u8 ssid[32];
2281} __packed;
2282
2283#define PROBE_OPTION_MAX		20
2284#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2285#define IWL_GOOD_CRC_TH_DISABLED	0
2286#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2287#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2288#define IWL_MAX_CMD_SIZE 4096
2289
2290/*
2291 * REPLY_SCAN_CMD = 0x80 (command)
2292 *
2293 * The hardware scan command is very powerful; the driver can set it up to
2294 * maintain (relatively) normal network traffic while doing a scan in the
2295 * background.  The max_out_time and suspend_time control the ratio of how
2296 * long the device stays on an associated network channel ("service channel")
2297 * vs. how long it's away from the service channel, i.e. tuned to other channels
2298 * for scanning.
2299 *
2300 * max_out_time is the max time off-channel (in usec), and suspend_time
2301 * is how long (in "extended beacon" format) that the scan is "suspended"
2302 * after returning to the service channel.  That is, suspend_time is the
2303 * time that we stay on the service channel, doing normal work, between
2304 * scan segments.  The driver may set these parameters differently to support
2305 * scanning when associated vs. not associated, and light vs. heavy traffic
2306 * loads when associated.
2307 *
2308 * After receiving this command, the device's scan engine does the following;
2309 *
2310 * 1)  Sends SCAN_START notification to driver
2311 * 2)  Checks to see if it has time to do scan for one channel
2312 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2313 *     to tell AP that we're going off-channel
2314 * 4)  Tunes to first channel in scan list, does active or passive scan
2315 * 5)  Sends SCAN_RESULT notification to driver
2316 * 6)  Checks to see if it has time to do scan on *next* channel in list
2317 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2318 *     before max_out_time expires
2319 * 8)  Returns to service channel
2320 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2321 * 10) Stays on service channel until suspend_time expires
2322 * 11) Repeats entire process 2-10 until list is complete
2323 * 12) Sends SCAN_COMPLETE notification
2324 *
2325 * For fast, efficient scans, the scan command also has support for staying on
2326 * a channel for just a short time, if doing active scanning and getting no
2327 * responses to the transmitted probe request.  This time is controlled by
2328 * quiet_time, and the number of received packets below which a channel is
2329 * considered "quiet" is controlled by quiet_plcp_threshold.
2330 *
2331 * For active scanning on channels that have regulatory restrictions against
2332 * blindly transmitting, the scan can listen before transmitting, to make sure
2333 * that there is already legitimate activity on the channel.  If enough
2334 * packets are cleanly received on the channel (controlled by good_CRC_th,
2335 * typical value 1), the scan engine starts transmitting probe requests.
2336 *
2337 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2338 *
2339 * To avoid uCode errors, see timing restrictions described under
2340 * struct iwl_scan_channel.
2341 */
2342
2343enum iwl_scan_flags {
2344	/* BIT(0) currently unused */
2345	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2346	/* bits 2-7 reserved */
2347};
2348
2349struct iwl_scan_cmd {
2350	__le16 len;
2351	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2352	u8 channel_count;	/* # channels in channel list */
2353	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2354				 * (only for active scan) */
2355	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2356	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2357	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2358	__le32 max_out_time;	/* max usec to be away from associated (service)
2359				 * channel */
2360	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2361				 * format") when returning to service chnl:
2362				 */
2363	__le32 flags;		/* RXON_FLG_* */
2364	__le32 filter_flags;	/* RXON_FILTER_* */
2365
2366	/* For active scans (set to all-0s for passive scans).
2367	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2368	struct iwl_tx_cmd tx_cmd;
2369
2370	/* For directed active scans (set to all-0s otherwise) */
2371	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2372
2373	/*
2374	 * Probe request frame, followed by channel list.
2375	 *
2376	 * Size of probe request frame is specified by byte count in tx_cmd.
2377	 * Channel list follows immediately after probe request frame.
2378	 * Number of channels in list is specified by channel_count.
2379	 * Each channel in list is of type:
2380	 *
2381	 * struct iwl_scan_channel channels[0];
2382	 *
2383	 * NOTE:  Only one band of channels can be scanned per pass.  You
2384	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2385	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2386	 * before requesting another scan.
2387	 */
2388	u8 data[0];
2389} __packed;
2390
2391/* Can abort will notify by complete notification with abort status. */
2392#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2393/* complete notification statuses */
2394#define ABORT_STATUS            0x2
2395
2396/*
2397 * REPLY_SCAN_CMD = 0x80 (response)
2398 */
2399struct iwl_scanreq_notification {
2400	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2401} __packed;
2402
2403/*
2404 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2405 */
2406struct iwl_scanstart_notification {
2407	__le32 tsf_low;
2408	__le32 tsf_high;
2409	__le32 beacon_timer;
2410	u8 channel;
2411	u8 band;
2412	u8 reserved[2];
2413	__le32 status;
2414} __packed;
2415
2416#define  SCAN_OWNER_STATUS 0x1
2417#define  MEASURE_OWNER_STATUS 0x2
2418
2419#define IWL_PROBE_STATUS_OK		0
2420#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2421/* error statuses combined with TX_FAILED */
2422#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2423#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2424
2425#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2426/*
2427 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2428 */
2429struct iwl_scanresults_notification {
2430	u8 channel;
2431	u8 band;
2432	u8 probe_status;
2433	u8 num_probe_not_sent; /* not enough time to send */
2434	__le32 tsf_low;
2435	__le32 tsf_high;
2436	__le32 statistics[NUMBER_OF_STATISTICS];
2437} __packed;
2438
2439/*
2440 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2441 */
2442struct iwl_scancomplete_notification {
2443	u8 scanned_channels;
2444	u8 status;
2445	u8 bt_status;	/* BT On/Off status */
2446	u8 last_channel;
2447	__le32 tsf_low;
2448	__le32 tsf_high;
2449} __packed;
2450
2451
2452/******************************************************************************
2453 * (9)
2454 * IBSS/AP Commands and Notifications:
2455 *
2456 *****************************************************************************/
2457
2458enum iwl_ibss_manager {
2459	IWL_NOT_IBSS_MANAGER = 0,
2460	IWL_IBSS_MANAGER = 1,
2461};
2462
2463/*
2464 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2465 */
2466
2467struct iwlagn_beacon_notif {
2468	struct iwlagn_tx_resp beacon_notify_hdr;
2469	__le32 low_tsf;
2470	__le32 high_tsf;
2471	__le32 ibss_mgr_status;
2472} __packed;
2473
2474/*
2475 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2476 */
2477
2478struct iwl_tx_beacon_cmd {
2479	struct iwl_tx_cmd tx;
2480	__le16 tim_idx;
2481	u8 tim_size;
2482	u8 reserved1;
2483	struct ieee80211_hdr frame[0];	/* beacon frame */
2484} __packed;
2485
2486/******************************************************************************
2487 * (10)
2488 * Statistics Commands and Notifications:
2489 *
2490 *****************************************************************************/
2491
2492#define IWL_TEMP_CONVERT 260
2493
2494#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2495#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2496#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2497
2498/* Used for passing to driver number of successes and failures per rate */
2499struct rate_histogram {
2500	union {
2501		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504	} success;
2505	union {
2506		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2507		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2508		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2509	} failed;
2510} __packed;
2511
2512/* statistics command response */
2513
2514struct statistics_dbg {
2515	__le32 burst_check;
2516	__le32 burst_count;
2517	__le32 wait_for_silence_timeout_cnt;
2518	__le32 reserved[3];
2519} __packed;
2520
2521struct statistics_rx_phy {
2522	__le32 ina_cnt;
2523	__le32 fina_cnt;
2524	__le32 plcp_err;
2525	__le32 crc32_err;
2526	__le32 overrun_err;
2527	__le32 early_overrun_err;
2528	__le32 crc32_good;
2529	__le32 false_alarm_cnt;
2530	__le32 fina_sync_err_cnt;
2531	__le32 sfd_timeout;
2532	__le32 fina_timeout;
2533	__le32 unresponded_rts;
2534	__le32 rxe_frame_limit_overrun;
2535	__le32 sent_ack_cnt;
2536	__le32 sent_cts_cnt;
2537	__le32 sent_ba_rsp_cnt;
2538	__le32 dsp_self_kill;
2539	__le32 mh_format_err;
2540	__le32 re_acq_main_rssi_sum;
2541	__le32 reserved3;
2542} __packed;
2543
2544struct statistics_rx_ht_phy {
2545	__le32 plcp_err;
2546	__le32 overrun_err;
2547	__le32 early_overrun_err;
2548	__le32 crc32_good;
2549	__le32 crc32_err;
2550	__le32 mh_format_err;
2551	__le32 agg_crc32_good;
2552	__le32 agg_mpdu_cnt;
2553	__le32 agg_cnt;
2554	__le32 unsupport_mcs;
2555} __packed;
2556
2557#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2558
2559struct statistics_rx_non_phy {
2560	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2561	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2562	__le32 non_bssid_frames;	/* number of frames with BSSID that
2563					 * doesn't belong to the STA BSSID */
2564	__le32 filtered_frames;	/* count frames that were dumped in the
2565				 * filtering process */
2566	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2567					 * our serving channel */
2568	__le32 channel_beacons;	/* beacons with our bss id and in our
2569				 * serving channel */
2570	__le32 num_missed_bcon;	/* number of missed beacons */
2571	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2572					 * ADC was in saturation */
2573	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2574					  * for INA */
2575	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2576	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2577	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2578	__le32 interference_data_flag;	/* flag for interference data
2579					 * availability. 1 when data is
2580					 * available. */
2581	__le32 channel_load;		/* counts RX Enable time in uSec */
2582	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2583					 * and CCK) counter */
2584	__le32 beacon_rssi_a;
2585	__le32 beacon_rssi_b;
2586	__le32 beacon_rssi_c;
2587	__le32 beacon_energy_a;
2588	__le32 beacon_energy_b;
2589	__le32 beacon_energy_c;
2590} __packed;
2591
2592struct statistics_rx_non_phy_bt {
2593	struct statistics_rx_non_phy common;
2594	/* additional stats for bt */
2595	__le32 num_bt_kills;
2596	__le32 reserved[2];
2597} __packed;
2598
2599struct statistics_rx {
2600	struct statistics_rx_phy ofdm;
2601	struct statistics_rx_phy cck;
2602	struct statistics_rx_non_phy general;
2603	struct statistics_rx_ht_phy ofdm_ht;
2604} __packed;
2605
2606struct statistics_rx_bt {
2607	struct statistics_rx_phy ofdm;
2608	struct statistics_rx_phy cck;
2609	struct statistics_rx_non_phy_bt general;
2610	struct statistics_rx_ht_phy ofdm_ht;
2611} __packed;
2612
2613/**
2614 * struct statistics_tx_power - current tx power
2615 *
2616 * @ant_a: current tx power on chain a in 1/2 dB step
2617 * @ant_b: current tx power on chain b in 1/2 dB step
2618 * @ant_c: current tx power on chain c in 1/2 dB step
2619 */
2620struct statistics_tx_power {
2621	u8 ant_a;
2622	u8 ant_b;
2623	u8 ant_c;
2624	u8 reserved;
2625} __packed;
2626
2627struct statistics_tx_non_phy_agg {
2628	__le32 ba_timeout;
2629	__le32 ba_reschedule_frames;
2630	__le32 scd_query_agg_frame_cnt;
2631	__le32 scd_query_no_agg;
2632	__le32 scd_query_agg;
2633	__le32 scd_query_mismatch;
2634	__le32 frame_not_ready;
2635	__le32 underrun;
2636	__le32 bt_prio_kill;
2637	__le32 rx_ba_rsp_cnt;
2638} __packed;
2639
2640struct statistics_tx {
2641	__le32 preamble_cnt;
2642	__le32 rx_detected_cnt;
2643	__le32 bt_prio_defer_cnt;
2644	__le32 bt_prio_kill_cnt;
2645	__le32 few_bytes_cnt;
2646	__le32 cts_timeout;
2647	__le32 ack_timeout;
2648	__le32 expected_ack_cnt;
2649	__le32 actual_ack_cnt;
2650	__le32 dump_msdu_cnt;
2651	__le32 burst_abort_next_frame_mismatch_cnt;
2652	__le32 burst_abort_missing_next_frame_cnt;
2653	__le32 cts_timeout_collision;
2654	__le32 ack_or_ba_timeout_collision;
2655	struct statistics_tx_non_phy_agg agg;
2656	/*
2657	 * "tx_power" are optional parameters provided by uCode,
2658	 * 6000 series is the only device provide the information,
2659	 * Those are reserved fields for all the other devices
2660	 */
2661	struct statistics_tx_power tx_power;
2662	__le32 reserved1;
2663} __packed;
2664
2665
2666struct statistics_div {
2667	__le32 tx_on_a;
2668	__le32 tx_on_b;
2669	__le32 exec_time;
2670	__le32 probe_time;
2671	__le32 reserved1;
2672	__le32 reserved2;
2673} __packed;
2674
2675struct statistics_general_common {
2676	__le32 temperature;   /* radio temperature */
2677	__le32 temperature_m; /* radio voltage */
2678	struct statistics_dbg dbg;
2679	__le32 sleep_time;
2680	__le32 slots_out;
2681	__le32 slots_idle;
2682	__le32 ttl_timestamp;
2683	struct statistics_div div;
2684	__le32 rx_enable_counter;
2685	/*
2686	 * num_of_sos_states:
2687	 *  count the number of times we have to re-tune
2688	 *  in order to get out of bad PHY status
2689	 */
2690	__le32 num_of_sos_states;
2691} __packed;
2692
2693struct statistics_bt_activity {
2694	/* Tx statistics */
2695	__le32 hi_priority_tx_req_cnt;
2696	__le32 hi_priority_tx_denied_cnt;
2697	__le32 lo_priority_tx_req_cnt;
2698	__le32 lo_priority_tx_denied_cnt;
2699	/* Rx statistics */
2700	__le32 hi_priority_rx_req_cnt;
2701	__le32 hi_priority_rx_denied_cnt;
2702	__le32 lo_priority_rx_req_cnt;
2703	__le32 lo_priority_rx_denied_cnt;
2704} __packed;
2705
2706struct statistics_general {
2707	struct statistics_general_common common;
2708	__le32 reserved2;
2709	__le32 reserved3;
2710} __packed;
2711
2712struct statistics_general_bt {
2713	struct statistics_general_common common;
2714	struct statistics_bt_activity activity;
2715	__le32 reserved2;
2716	__le32 reserved3;
2717} __packed;
2718
2719#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2720#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2721#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2722
2723/*
2724 * REPLY_STATISTICS_CMD = 0x9c,
2725 * all devices identical.
2726 *
2727 * This command triggers an immediate response containing uCode statistics.
2728 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2729 *
2730 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2731 * internal copy of the statistics (counters) after issuing the response.
2732 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2733 *
2734 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2735 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2736 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2737 */
2738#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2739#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2740struct iwl_statistics_cmd {
2741	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2742} __packed;
2743
2744/*
2745 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2746 *
2747 * By default, uCode issues this notification after receiving a beacon
2748 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2749 * REPLY_STATISTICS_CMD 0x9c, above.
2750 *
2751 * Statistics counters continue to increment beacon after beacon, but are
2752 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2753 * 0x9c with CLEAR_STATS bit set (see above).
2754 *
2755 * uCode also issues this notification during scans.  uCode clears statistics
2756 * appropriately so that each notification contains statistics for only the
2757 * one channel that has just been scanned.
2758 */
2759#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2760#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2761
2762struct iwl_notif_statistics {
2763	__le32 flag;
2764	struct statistics_rx rx;
2765	struct statistics_tx tx;
2766	struct statistics_general general;
2767} __packed;
2768
2769struct iwl_bt_notif_statistics {
2770	__le32 flag;
2771	struct statistics_rx_bt rx;
2772	struct statistics_tx tx;
2773	struct statistics_general_bt general;
2774} __packed;
2775
2776/*
2777 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2778 *
2779 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2780 * in regardless of how many missed beacons, which mean when driver receive the
2781 * notification, inside the command, it can find all the beacons information
2782 * which include number of total missed beacons, number of consecutive missed
2783 * beacons, number of beacons received and number of beacons expected to
2784 * receive.
2785 *
2786 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2787 * in order to bring the radio/PHY back to working state; which has no relation
2788 * to when driver will perform sensitivity calibration.
2789 *
2790 * Driver should set it own missed_beacon_threshold to decide when to perform
2791 * sensitivity calibration based on number of consecutive missed beacons in
2792 * order to improve overall performance, especially in noisy environment.
2793 *
2794 */
2795
2796#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2797#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2798#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2799
2800struct iwl_missed_beacon_notif {
2801	__le32 consecutive_missed_beacons;
2802	__le32 total_missed_becons;
2803	__le32 num_expected_beacons;
2804	__le32 num_recvd_beacons;
2805} __packed;
2806
2807
2808/******************************************************************************
2809 * (11)
2810 * Rx Calibration Commands:
2811 *
2812 * With the uCode used for open source drivers, most Tx calibration (except
2813 * for Tx Power) and most Rx calibration is done by uCode during the
2814 * "initialize" phase of uCode boot.  Driver must calibrate only:
2815 *
2816 * 1)  Tx power (depends on temperature), described elsewhere
2817 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2818 * 3)  Receiver sensitivity (to optimize signal detection)
2819 *
2820 *****************************************************************************/
2821
2822/**
2823 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2824 *
2825 * This command sets up the Rx signal detector for a sensitivity level that
2826 * is high enough to lock onto all signals within the associated network,
2827 * but low enough to ignore signals that are below a certain threshold, so as
2828 * not to have too many "false alarms".  False alarms are signals that the
2829 * Rx DSP tries to lock onto, but then discards after determining that they
2830 * are noise.
2831 *
2832 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2833 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2834 * time listening, not transmitting).  Driver must adjust sensitivity so that
2835 * the ratio of actual false alarms to actual Rx time falls within this range.
2836 *
2837 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2838 * received beacon.  These provide information to the driver to analyze the
2839 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2840 * other non-associated-network source.  Pertinent statistics include:
2841 *
2842 * From "general" statistics (struct statistics_rx_non_phy):
2843 *
2844 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2845 *   Measure of energy of desired signal.  Used for establishing a level
2846 *   below which the device does not detect signals.
2847 *
2848 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2849 *   Measure of background noise in silent period after beacon.
2850 *
2851 * channel_load
2852 *   uSecs of actual Rx time during beacon period (varies according to
2853 *   how much time was spent transmitting).
2854 *
2855 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2856 *
2857 * false_alarm_cnt
2858 *   Signal locks abandoned early (before phy-level header).
2859 *
2860 * plcp_err
2861 *   Signal locks abandoned late (during phy-level header).
2862 *
2863 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2864 *        beacon to beacon, i.e. each value is an accumulation of all errors
2865 *        before and including the latest beacon.  Values will wrap around to 0
2866 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2867 *        previous beacon's values to determine # false alarms in the current
2868 *        beacon period.
2869 *
2870 * Total number of false alarms = false_alarms + plcp_errs
2871 *
2872 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2873 * (notice that the start points for OFDM are at or close to settings for
2874 * maximum sensitivity):
2875 *
2876 *                                             START  /  MIN  /  MAX
2877 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2878 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2879 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2880 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2881 *
2882 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2883 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2884 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2885 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2886 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2887 *   increase sensitivity.
2888 *
2889 * For CCK sensitivity, keep track of the following:
2890 *
2891 *   1).  20-beacon history of maximum background noise, indicated by
2892 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2893 *        3 receivers.  For any given beacon, the "silence reference" is
2894 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2895 *
2896 *   2).  10-beacon history of strongest signal level, as indicated
2897 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2898 *        i.e. the strength of the signal through the best receiver at the
2899 *        moment.  These measurements are "upside down", with lower values
2900 *        for stronger signals, so max energy will be *minimum* value.
2901 *
2902 *        Then for any given beacon, the driver must determine the *weakest*
2903 *        of the strongest signals; this is the minimum level that needs to be
2904 *        successfully detected, when using the best receiver at the moment.
2905 *        "Max cck energy" is the maximum (higher value means lower energy!)
2906 *        of the last 10 minima.  Once this is determined, driver must add
2907 *        a little margin by adding "6" to it.
2908 *
2909 *   3).  Number of consecutive beacon periods with too few false alarms.
2910 *        Reset this to 0 at the first beacon period that falls within the
2911 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2912 *
2913 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2914 * (notice that the start points for CCK are at maximum sensitivity):
2915 *
2916 *                                             START  /  MIN  /  MAX
2917 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2918 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2919 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2920 *
2921 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2922 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2923 *   sensitivity is:
2924 *
2925 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2926 *       up to max 400.
2927 *
2928 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2929 *       sensitivity has been reduced a significant amount; bring it up to
2930 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2931 *
2932 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2933 *       sensitivity has been reduced only a moderate or small amount;
2934 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2935 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2936 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2937 *
2938 *       b)  Save a snapshot of the "silence reference".
2939 *
2940 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2941 *   (less than 5 for each 204.8 msecs listening), method for increasing
2942 *   sensitivity is used only if:
2943 *
2944 *   1a)  Previous beacon did not have too many false alarms
2945 *   1b)  AND difference between previous "silence reference" and current
2946 *        "silence reference" (prev - current) is 2 or more,
2947 *   OR 2)  100 or more consecutive beacon periods have had rate of
2948 *          less than 5 false alarms per 204.8 milliseconds rx time.
2949 *
2950 *   Method for increasing sensitivity:
2951 *
2952 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2953 *       down to min 125.
2954 *
2955 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2956 *       down to min 200.
2957 *
2958 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2959 *
2960 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2961 *   (between 5 and 50 for each 204.8 msecs listening):
2962 *
2963 *   1)  Save a snapshot of the silence reference.
2964 *
2965 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2966 *       give some extra margin to energy threshold by *subtracting* 8
2967 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2968 *
2969 *   For all cases (too few, too many, good range), make sure that the CCK
2970 *   detection threshold (energy) is below the energy level for robust
2971 *   detection over the past 10 beacon periods, the "Max cck energy".
2972 *   Lower values mean higher energy; this means making sure that the value
2973 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2974 *
2975 */
2976
2977/*
2978 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2979 */
2980#define HD_TABLE_SIZE  (11)	/* number of entries */
2981#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2982#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2983#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2984#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2985#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2986#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2987#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2988#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2989#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2990#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2991#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2992
2993/*
2994 * Additional table entries in enhance SENSITIVITY_CMD
2995 */
2996#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2997#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2998#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2999#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3000#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3001#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3002#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3003#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3004#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3005#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3006#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3007#define HD_RESERVED					(22)
3008
3009/* number of entries for enhanced tbl */
3010#define ENHANCE_HD_TABLE_SIZE  (23)
3011
3012/* number of additional entries for enhanced tbl */
3013#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3014
3015#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3016#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3017#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3018#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3019#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3020#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3021#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3022#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3023#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3024#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3025#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3026
3027#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3028#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3029#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3030#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3031#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3032#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3033#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3034#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3035#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3036#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3037#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3038
3039
3040/* Control field in struct iwl_sensitivity_cmd */
3041#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3042#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3043
3044/**
3045 * struct iwl_sensitivity_cmd
3046 * @control:  (1) updates working table, (0) updates default table
3047 * @table:  energy threshold values, use HD_* as index into table
3048 *
3049 * Always use "1" in "control" to update uCode's working table and DSP.
3050 */
3051struct iwl_sensitivity_cmd {
3052	__le16 control;			/* always use "1" */
3053	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3054} __packed;
3055
3056/*
3057 *
3058 */
3059struct iwl_enhance_sensitivity_cmd {
3060	__le16 control;			/* always use "1" */
3061	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3062} __packed;
3063
3064
3065/**
3066 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3067 *
3068 * This command sets the relative gains of agn device's 3 radio receiver chains.
3069 *
3070 * After the first association, driver should accumulate signal and noise
3071 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3072 * beacons from the associated network (don't collect statistics that come
3073 * in from scanning, or any other non-network source).
3074 *
3075 * DISCONNECTED ANTENNA:
3076 *
3077 * Driver should determine which antennas are actually connected, by comparing
3078 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3079 * following values over 20 beacons, one accumulator for each of the chains
3080 * a/b/c, from struct statistics_rx_non_phy:
3081 *
3082 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3083 *
3084 * Find the strongest signal from among a/b/c.  Compare the other two to the
3085 * strongest.  If any signal is more than 15 dB (times 20, unless you
3086 * divide the accumulated values by 20) below the strongest, the driver
3087 * considers that antenna to be disconnected, and should not try to use that
3088 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3089 * driver should declare the stronger one as connected, and attempt to use it
3090 * (A and B are the only 2 Tx chains!).
3091 *
3092 *
3093 * RX BALANCE:
3094 *
3095 * Driver should balance the 3 receivers (but just the ones that are connected
3096 * to antennas, see above) for gain, by comparing the average signal levels
3097 * detected during the silence after each beacon (background noise).
3098 * Accumulate (add) the following values over 20 beacons, one accumulator for
3099 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3100 *
3101 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3102 *
3103 * Find the weakest background noise level from among a/b/c.  This Rx chain
3104 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3105 * finding noise difference:
3106 *
3107 * (accum_noise[i] - accum_noise[reference]) / 30
3108 *
3109 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3110 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3111 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3112 * and set bit 2 to indicate "reduce gain".  The value for the reference
3113 * (weakest) chain should be "0".
3114 *
3115 * diff_gain_[abc] bit fields:
3116 *   2: (1) reduce gain, (0) increase gain
3117 * 1-0: amount of gain, units of 1.5 dB
3118 */
3119
3120/* Phy calibration command for series */
3121enum {
3122	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3123	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3124	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3125	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3126	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3127	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3128	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3129};
3130
3131/* This enum defines the bitmap of various calibrations to enable in both
3132 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3133 */
3134enum iwl_ucode_calib_cfg {
3135	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3136	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3137	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3138	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3139	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3140	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3141	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3142	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3143	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3144	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3145	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3146};
3147
3148#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3149					IWL_CALIB_CFG_DC_IDX |		\
3150					IWL_CALIB_CFG_LO_IDX |		\
3151					IWL_CALIB_CFG_TX_IQ_IDX |	\
3152					IWL_CALIB_CFG_RX_IQ_IDX |	\
3153					IWL_CALIB_CFG_CRYSTAL_IDX)
3154
3155#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3156					IWL_CALIB_CFG_DC_IDX |		\
3157					IWL_CALIB_CFG_LO_IDX |		\
3158					IWL_CALIB_CFG_TX_IQ_IDX |	\
3159					IWL_CALIB_CFG_RX_IQ_IDX |	\
3160					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3161					IWL_CALIB_CFG_PAPD_IDX |	\
3162					IWL_CALIB_CFG_TX_PWR_IDX |	\
3163					IWL_CALIB_CFG_CRYSTAL_IDX)
3164
3165#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3166
3167struct iwl_calib_cfg_elmnt_s {
3168	__le32 is_enable;
3169	__le32 start;
3170	__le32 send_res;
3171	__le32 apply_res;
3172	__le32 reserved;
3173} __packed;
3174
3175struct iwl_calib_cfg_status_s {
3176	struct iwl_calib_cfg_elmnt_s once;
3177	struct iwl_calib_cfg_elmnt_s perd;
3178	__le32 flags;
3179} __packed;
3180
3181struct iwl_calib_cfg_cmd {
3182	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3183	struct iwl_calib_cfg_status_s drv_calib_cfg;
3184	__le32 reserved1;
3185} __packed;
3186
3187struct iwl_calib_hdr {
3188	u8 op_code;
3189	u8 first_group;
3190	u8 groups_num;
3191	u8 data_valid;
3192} __packed;
3193
3194struct iwl_calib_cmd {
3195	struct iwl_calib_hdr hdr;
3196	u8 data[0];
3197} __packed;
3198
3199struct iwl_calib_xtal_freq_cmd {
3200	struct iwl_calib_hdr hdr;
3201	u8 cap_pin1;
3202	u8 cap_pin2;
3203	u8 pad[2];
3204} __packed;
3205
3206#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3207struct iwl_calib_temperature_offset_cmd {
3208	struct iwl_calib_hdr hdr;
3209	__le16 radio_sensor_offset;
3210	__le16 reserved;
3211} __packed;
3212
3213struct iwl_calib_temperature_offset_v2_cmd {
3214	struct iwl_calib_hdr hdr;
3215	__le16 radio_sensor_offset_high;
3216	__le16 radio_sensor_offset_low;
3217	__le16 burntVoltageRef;
3218	__le16 reserved;
3219} __packed;
3220
3221/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3222struct iwl_calib_chain_noise_reset_cmd {
3223	struct iwl_calib_hdr hdr;
3224	u8 data[0];
3225};
3226
3227/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3228struct iwl_calib_chain_noise_gain_cmd {
3229	struct iwl_calib_hdr hdr;
3230	u8 delta_gain_1;
3231	u8 delta_gain_2;
3232	u8 pad[2];
3233} __packed;
3234
3235/******************************************************************************
3236 * (12)
3237 * Miscellaneous Commands:
3238 *
3239 *****************************************************************************/
3240
3241/*
3242 * LEDs Command & Response
3243 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3244 *
3245 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3246 * this command turns it on or off, or sets up a periodic blinking cycle.
3247 */
3248struct iwl_led_cmd {
3249	__le32 interval;	/* "interval" in uSec */
3250	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3251	u8 off;			/* # intervals off while blinking;
3252				 * "0", with >0 "on" value, turns LED on */
3253	u8 on;			/* # intervals on while blinking;
3254				 * "0", regardless of "off", turns LED off */
3255	u8 reserved;
3256} __packed;
3257
3258/*
3259 * station priority table entries
3260 * also used as potential "events" value for both
3261 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3262 */
3263
3264/*
3265 * COEX events entry flag masks
3266 * RP - Requested Priority
3267 * WP - Win Medium Priority: priority assigned when the contention has been won
3268 */
3269#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3270#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3271#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3272
3273#define COEX_CU_UNASSOC_IDLE_RP               4
3274#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3275#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3276#define COEX_CU_CALIBRATION_RP                4
3277#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3278#define COEX_CU_CONNECTION_ESTAB_RP           4
3279#define COEX_CU_ASSOCIATED_IDLE_RP            4
3280#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3281#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3282#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3283#define COEX_CU_RF_ON_RP                      6
3284#define COEX_CU_RF_OFF_RP                     4
3285#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3286#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3287#define COEX_CU_RSRVD1_RP                     4
3288#define COEX_CU_RSRVD2_RP                     4
3289
3290#define COEX_CU_UNASSOC_IDLE_WP               3
3291#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3292#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3293#define COEX_CU_CALIBRATION_WP                3
3294#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3295#define COEX_CU_CONNECTION_ESTAB_WP           3
3296#define COEX_CU_ASSOCIATED_IDLE_WP            3
3297#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3298#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3299#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3300#define COEX_CU_RF_ON_WP                      3
3301#define COEX_CU_RF_OFF_WP                     3
3302#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3303#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3304#define COEX_CU_RSRVD1_WP                     3
3305#define COEX_CU_RSRVD2_WP                     3
3306
3307#define COEX_UNASSOC_IDLE_FLAGS                     0
3308#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3309	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3310	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3312	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3313	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3314#define COEX_CALIBRATION_FLAGS			\
3315	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3316	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3318/*
3319 * COEX_CONNECTION_ESTAB:
3320 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3321 */
3322#define COEX_CONNECTION_ESTAB_FLAGS		\
3323	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3324	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3325	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3326#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3327#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3328	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3329	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3330#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3331	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3332	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3334#define COEX_RF_ON_FLAGS                            0
3335#define COEX_RF_OFF_FLAGS                           0
3336#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3337	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3338	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3340	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3341	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3342	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343#define COEX_RSRVD1_FLAGS                           0
3344#define COEX_RSRVD2_FLAGS                           0
3345/*
3346 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3347 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348 */
3349#define COEX_CU_RF_ON_FLAGS			\
3350	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3352	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353
3354
3355enum {
3356	/* un-association part */
3357	COEX_UNASSOC_IDLE		= 0,
3358	COEX_UNASSOC_MANUAL_SCAN	= 1,
3359	COEX_UNASSOC_AUTO_SCAN		= 2,
3360	/* calibration */
3361	COEX_CALIBRATION		= 3,
3362	COEX_PERIODIC_CALIBRATION	= 4,
3363	/* connection */
3364	COEX_CONNECTION_ESTAB		= 5,
3365	/* association part */
3366	COEX_ASSOCIATED_IDLE		= 6,
3367	COEX_ASSOC_MANUAL_SCAN		= 7,
3368	COEX_ASSOC_AUTO_SCAN		= 8,
3369	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3370	/* RF ON/OFF */
3371	COEX_RF_ON			= 10,
3372	COEX_RF_OFF			= 11,
3373	COEX_STAND_ALONE_DEBUG		= 12,
3374	/* IPAN */
3375	COEX_IPAN_ASSOC_LEVEL		= 13,
3376	/* reserved */
3377	COEX_RSRVD1			= 14,
3378	COEX_RSRVD2			= 15,
3379	COEX_NUM_OF_EVENTS		= 16
3380};
3381
3382/*
3383 * Coexistence WIFI/WIMAX  Command
3384 * COEX_PRIORITY_TABLE_CMD = 0x5a
3385 *
3386 */
3387struct iwl_wimax_coex_event_entry {
3388	u8 request_prio;
3389	u8 win_medium_prio;
3390	u8 reserved;
3391	u8 flags;
3392} __packed;
3393
3394/* COEX flag masks */
3395
3396/* Station table is valid */
3397#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3398/* UnMask wake up src at unassociated sleep */
3399#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3400/* UnMask wake up src at associated sleep */
3401#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3402/* Enable CoEx feature. */
3403#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3404
3405struct iwl_wimax_coex_cmd {
3406	u8 flags;
3407	u8 reserved[3];
3408	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3409} __packed;
3410
3411/*
3412 * Coexistence MEDIUM NOTIFICATION
3413 * COEX_MEDIUM_NOTIFICATION = 0x5b
3414 *
3415 * notification from uCode to host to indicate medium changes
3416 *
3417 */
3418/*
3419 * status field
3420 * bit 0 - 2: medium status
3421 * bit 3: medium change indication
3422 * bit 4 - 31: reserved
3423 */
3424/* status option values, (0 - 2 bits) */
3425#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3426#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3427#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3428#define COEX_MEDIUM_MSK		(0x7)
3429
3430/* send notification status (1 bit) */
3431#define COEX_MEDIUM_CHANGED	(0x8)
3432#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3433#define COEX_MEDIUM_SHIFT	(3)
3434
3435struct iwl_coex_medium_notification {
3436	__le32 status;
3437	__le32 events;
3438} __packed;
3439
3440/*
3441 * Coexistence EVENT  Command
3442 * COEX_EVENT_CMD = 0x5c
3443 *
3444 * send from host to uCode for coex event request.
3445 */
3446/* flags options */
3447#define COEX_EVENT_REQUEST_MSK	(0x1)
3448
3449struct iwl_coex_event_cmd {
3450	u8 flags;
3451	u8 event;
3452	__le16 reserved;
3453} __packed;
3454
3455struct iwl_coex_event_resp {
3456	__le32 status;
3457} __packed;
3458
3459
3460/******************************************************************************
3461 * Bluetooth Coexistence commands
3462 *
3463 *****************************************************************************/
3464
3465/*
3466 * BT Status notification
3467 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3468 */
3469enum iwl_bt_coex_profile_traffic_load {
3470	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3471	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3472	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3473	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3474/*
3475 * There are no more even though below is a u8, the
3476 * indication from the BT device only has two bits.
3477 */
3478};
3479
3480#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3481#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3482
3483/* BT UART message - Share Part (BT -> WiFi) */
3484#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3485#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3486		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3487#define BT_UART_MSG_FRAME1SSN_POS		(3)
3488#define BT_UART_MSG_FRAME1SSN_MSK		\
3489		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3490#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3491#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3492		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3493#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3494#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3495		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3496
3497#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3498#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3499		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3500#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3501#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3502		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3503#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3504#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3505		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3506#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3507#define BT_UART_MSG_FRAME2INBAND_MSK		\
3508		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3509#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3510#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3511		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3512
3513#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3514#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3515		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3516#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3517#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3518		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3519#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3520#define BT_UART_MSG_FRAME3A2DP_MSK		\
3521		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3522#define BT_UART_MSG_FRAME3ACL_POS		(3)
3523#define BT_UART_MSG_FRAME3ACL_MSK		\
3524		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3525#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3526#define BT_UART_MSG_FRAME3MASTER_MSK		\
3527		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3528#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3529#define BT_UART_MSG_FRAME3OBEX_MSK		\
3530		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3531#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3532#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3533		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3536#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3537		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3538#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3539#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3540		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3541
3542#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3543#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3544		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3545#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3546#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3547		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3548#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3549#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3550		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3551#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3552#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3553		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3554
3555#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3556#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3557		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3558#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3559#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3560		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3561#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3562#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3563		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3564
3565#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3566#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3567		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3568#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3569#define BT_UART_MSG_FRAME7PAGE_MSK		\
3570		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3571#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3572#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3573		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3574#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3575#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3576		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3577#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3578#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3579		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3580
3581/* BT Session Activity 2 UART message (BT -> WiFi) */
3582#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3583#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3584		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3585#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3586#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3587		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3588
3589#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3590#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3591		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3592#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3593#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3594		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3595
3596#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3597#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3598		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3599#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3600#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3601		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3602#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3603#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3604		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3605#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3606#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3607		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3608
3609#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3610#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3611		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3612#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3613#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3614		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3615#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3616#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3617		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3618
3619#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3620#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3621		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3622#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3623#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3624		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3625#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3626#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3627		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3628#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3629#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3630		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3631
3632#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3633#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3634		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3635#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3636#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3637		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3638#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3639#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3640		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3641
3642#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3643#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3644		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3645#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3646#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3647		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3648#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3649#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3650		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3651#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3652#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3653		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3654#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3655#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3656		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3657
3658
3659#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3660#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3661
3662struct iwl_bt_uart_msg {
3663	u8 header;
3664	u8 frame1;
3665	u8 frame2;
3666	u8 frame3;
3667	u8 frame4;
3668	u8 frame5;
3669	u8 frame6;
3670	u8 frame7;
3671} __packed;
3672
3673struct iwl_bt_coex_profile_notif {
3674	struct iwl_bt_uart_msg last_bt_uart_msg;
3675	u8 bt_status; /* 0 - off, 1 - on */
3676	u8 bt_traffic_load; /* 0 .. 3? */
3677	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3678	u8 reserved;
3679} __packed;
3680
3681#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3682#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3683#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3684#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3685#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3686#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3687#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3688
3689/*
3690 * BT Coexistence Priority table
3691 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3692 */
3693enum bt_coex_prio_table_events {
3694	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3695	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3696	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3697	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3698	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3699	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3700	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3701	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3702	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3703	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3704	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3705	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3706	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3707	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3708	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3709	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3710	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3711	BT_COEX_PRIO_TBL_EVT_MAX,
3712};
3713
3714enum bt_coex_prio_table_priorities {
3715	BT_COEX_PRIO_TBL_DISABLED = 0,
3716	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3717	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3718	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3719	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3720	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3721	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3722	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3723	BT_COEX_PRIO_TBL_MAX,
3724};
3725
3726struct iwl_bt_coex_prio_table_cmd {
3727	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3728} __packed;
3729
3730#define IWL_BT_COEX_ENV_CLOSE	0
3731#define IWL_BT_COEX_ENV_OPEN	1
3732/*
3733 * BT Protection Envelope
3734 * REPLY_BT_COEX_PROT_ENV = 0xcd
3735 */
3736struct iwl_bt_coex_prot_env_cmd {
3737	u8 action; /* 0 = closed, 1 = open */
3738	u8 type; /* 0 .. 15 */
3739	u8 reserved[2];
3740} __packed;
3741
3742/*
3743 * REPLY_D3_CONFIG
3744 */
3745enum iwlagn_d3_wakeup_filters {
3746	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3747	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3748};
3749
3750struct iwlagn_d3_config_cmd {
3751	__le32 min_sleep_time;
3752	__le32 wakeup_flags;
3753} __packed;
3754
3755/*
3756 * REPLY_WOWLAN_PATTERNS
3757 */
3758#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3759#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3760
3761struct iwlagn_wowlan_pattern {
3762	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3763	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3764	u8 mask_size;
3765	u8 pattern_size;
3766	__le16 reserved;
3767} __packed;
3768
3769#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3770
3771struct iwlagn_wowlan_patterns_cmd {
3772	__le32 n_patterns;
3773	struct iwlagn_wowlan_pattern patterns[];
3774} __packed;
3775
3776/*
3777 * REPLY_WOWLAN_WAKEUP_FILTER
3778 */
3779enum iwlagn_wowlan_wakeup_filters {
3780	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3781	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3782	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3783	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3784	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3785	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3786	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3787	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3788	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3789};
3790
3791struct iwlagn_wowlan_wakeup_filter_cmd {
3792	__le32 enabled;
3793	__le16 non_qos_seq;
3794	__le16 reserved;
3795	__le16 qos_seq[8];
3796};
3797
3798/*
3799 * REPLY_WOWLAN_TSC_RSC_PARAMS
3800 */
3801#define IWLAGN_NUM_RSC	16
3802
3803struct tkip_sc {
3804	__le16 iv16;
3805	__le16 pad;
3806	__le32 iv32;
3807} __packed;
3808
3809struct iwlagn_tkip_rsc_tsc {
3810	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3811	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3812	struct tkip_sc tsc;
3813} __packed;
3814
3815struct aes_sc {
3816	__le64 pn;
3817} __packed;
3818
3819struct iwlagn_aes_rsc_tsc {
3820	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3821	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3822	struct aes_sc tsc;
3823} __packed;
3824
3825union iwlagn_all_tsc_rsc {
3826	struct iwlagn_tkip_rsc_tsc tkip;
3827	struct iwlagn_aes_rsc_tsc aes;
3828};
3829
3830struct iwlagn_wowlan_rsc_tsc_params_cmd {
3831	union iwlagn_all_tsc_rsc all_tsc_rsc;
3832} __packed;
3833
3834/*
3835 * REPLY_WOWLAN_TKIP_PARAMS
3836 */
3837#define IWLAGN_MIC_KEY_SIZE	8
3838#define IWLAGN_P1K_SIZE		5
3839struct iwlagn_mic_keys {
3840	u8 tx[IWLAGN_MIC_KEY_SIZE];
3841	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3842	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3843} __packed;
3844
3845struct iwlagn_p1k_cache {
3846	__le16 p1k[IWLAGN_P1K_SIZE];
3847} __packed;
3848
3849#define IWLAGN_NUM_RX_P1K_CACHE	2
3850
3851struct iwlagn_wowlan_tkip_params_cmd {
3852	struct iwlagn_mic_keys mic_keys;
3853	struct iwlagn_p1k_cache tx;
3854	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3855	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3856} __packed;
3857
3858/*
3859 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3860 */
3861
3862#define IWLAGN_KCK_MAX_SIZE	32
3863#define IWLAGN_KEK_MAX_SIZE	32
3864
3865struct iwlagn_wowlan_kek_kck_material_cmd {
3866	u8	kck[IWLAGN_KCK_MAX_SIZE];
3867	u8	kek[IWLAGN_KEK_MAX_SIZE];
3868	__le16	kck_len;
3869	__le16	kek_len;
3870	__le64	replay_ctr;
3871} __packed;
3872
3873#define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3874
3875/*
3876 * REPLY_WOWLAN_GET_STATUS = 0xe5
3877 */
3878struct iwlagn_wowlan_status {
3879	__le64 replay_ctr;
3880	__le32 rekey_status;
3881	__le32 wakeup_reason;
3882	u8 pattern_number;
3883	u8 reserved1;
3884	__le16 qos_seq_ctr[8];
3885	__le16 non_qos_seq_ctr;
3886	__le16 reserved2;
3887	union iwlagn_all_tsc_rsc tsc_rsc;
3888	__le16 reserved3;
3889} __packed;
3890
3891/*
3892 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3893 */
3894
3895/*
3896 * Minimum slot time in TU
3897 */
3898#define IWL_MIN_SLOT_TIME	20
3899
3900/**
3901 * struct iwl_wipan_slot
3902 * @width: Time in TU
3903 * @type:
3904 *   0 - BSS
3905 *   1 - PAN
3906 */
3907struct iwl_wipan_slot {
3908	__le16 width;
3909	u8 type;
3910	u8 reserved;
3911} __packed;
3912
3913#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3914#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3915#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3916#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3917#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3918
3919/**
3920 * struct iwl_wipan_params_cmd
3921 * @flags:
3922 *   bit0: reserved
3923 *   bit1: CP leave channel with CTS
3924 *   bit2: CP leave channel qith Quiet
3925 *   bit3: slotted mode
3926 *     1 - work in slotted mode
3927 *     0 - work in non slotted mode
3928 *   bit4: filter beacon notification
3929 *   bit5: full tx slotted mode. if this flag is set,
3930 *         uCode will perform leaving channel methods in context switch
3931 *         also when working in same channel mode
3932 * @num_slots: 1 - 10
3933 */
3934struct iwl_wipan_params_cmd {
3935	__le16 flags;
3936	u8 reserved;
3937	u8 num_slots;
3938	struct iwl_wipan_slot slots[10];
3939} __packed;
3940
3941/*
3942 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3943 *
3944 * TODO: Figure out what this is used for,
3945 *	 it can only switch between 2.4 GHz
3946 *	 channels!!
3947 */
3948
3949struct iwl_wipan_p2p_channel_switch_cmd {
3950	__le16 channel;
3951	__le16 reserved;
3952};
3953
3954/*
3955 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3956 *
3957 * This is used by the device to notify us of the
3958 * NoA schedule it determined so we can forward it
3959 * to userspace for inclusion in probe responses.
3960 *
3961 * In beacons, the NoA schedule is simply appended
3962 * to the frame we give the device.
3963 */
3964
3965struct iwl_wipan_noa_descriptor {
3966	u8 count;
3967	__le32 duration;
3968	__le32 interval;
3969	__le32 starttime;
3970} __packed;
3971
3972struct iwl_wipan_noa_attribute {
3973	u8 id;
3974	__le16 length;
3975	u8 index;
3976	u8 ct_window;
3977	struct iwl_wipan_noa_descriptor descr0, descr1;
3978	u8 reserved;
3979} __packed;
3980
3981struct iwl_wipan_noa_notification {
3982	u32 noa_active;
3983	struct iwl_wipan_noa_attribute noa_attribute;
3984} __packed;
3985
3986#endif				/* __iwl_commands_h__ */
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright (C) 2005-2014 Intel Corporation
   4 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5/*
   6 * Please use this file (commands.h) only for uCode API definitions.
   7 * Please use iwl-xxxx-hw.h for hardware-related definitions.
   8 * Please use dev.h for driver implementation definitions.
   9 */
  10
  11#ifndef __iwl_commands_h__
  12#define __iwl_commands_h__
  13
  14#include <linux/ieee80211.h>
  15#include <linux/types.h>
  16
  17
  18enum {
  19	REPLY_ALIVE = 0x1,
  20	REPLY_ERROR = 0x2,
  21	REPLY_ECHO = 0x3,		/* test command */
  22
  23	/* RXON and QOS commands */
  24	REPLY_RXON = 0x10,
  25	REPLY_RXON_ASSOC = 0x11,
  26	REPLY_QOS_PARAM = 0x13,
  27	REPLY_RXON_TIMING = 0x14,
  28
  29	/* Multi-Station support */
  30	REPLY_ADD_STA = 0x18,
  31	REPLY_REMOVE_STA = 0x19,
  32	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
  33	REPLY_TXFIFO_FLUSH = 0x1e,
  34
  35	/* Security */
  36	REPLY_WEPKEY = 0x20,
  37
  38	/* RX, TX, LEDs */
  39	REPLY_TX = 0x1c,
  40	REPLY_LEDS_CMD = 0x48,
  41	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
  42
  43	/* WiMAX coexistence */
  44	COEX_PRIORITY_TABLE_CMD = 0x5a,
  45	COEX_MEDIUM_NOTIFICATION = 0x5b,
  46	COEX_EVENT_CMD = 0x5c,
  47
  48	/* Calibration */
  49	TEMPERATURE_NOTIFICATION = 0x62,
  50	CALIBRATION_CFG_CMD = 0x65,
  51	CALIBRATION_RES_NOTIFICATION = 0x66,
  52	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
  53
  54	/* 802.11h related */
  55	REPLY_QUIET_CMD = 0x71,		/* not used */
  56	REPLY_CHANNEL_SWITCH = 0x72,
  57	CHANNEL_SWITCH_NOTIFICATION = 0x73,
  58	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
  59	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
  60
  61	/* Power Management */
  62	POWER_TABLE_CMD = 0x77,
  63	PM_SLEEP_NOTIFICATION = 0x7A,
  64	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
  65
  66	/* Scan commands and notifications */
  67	REPLY_SCAN_CMD = 0x80,
  68	REPLY_SCAN_ABORT_CMD = 0x81,
  69	SCAN_START_NOTIFICATION = 0x82,
  70	SCAN_RESULTS_NOTIFICATION = 0x83,
  71	SCAN_COMPLETE_NOTIFICATION = 0x84,
  72
  73	/* IBSS/AP commands */
  74	BEACON_NOTIFICATION = 0x90,
  75	REPLY_TX_BEACON = 0x91,
  76	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
  77
  78	/* Miscellaneous commands */
  79	REPLY_TX_POWER_DBM_CMD = 0x95,
  80	QUIET_NOTIFICATION = 0x96,		/* not used */
  81	REPLY_TX_PWR_TABLE_CMD = 0x97,
  82	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
  83	TX_ANT_CONFIGURATION_CMD = 0x98,
  84	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
  85
  86	/* Bluetooth device coexistence config command */
  87	REPLY_BT_CONFIG = 0x9b,
  88
  89	/* Statistics */
  90	REPLY_STATISTICS_CMD = 0x9c,
  91	STATISTICS_NOTIFICATION = 0x9d,
  92
  93	/* RF-KILL commands and notifications */
  94	REPLY_CARD_STATE_CMD = 0xa0,
  95	CARD_STATE_NOTIFICATION = 0xa1,
  96
  97	/* Missed beacons notification */
  98	MISSED_BEACONS_NOTIFICATION = 0xa2,
  99
 100	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 101	SENSITIVITY_CMD = 0xa8,
 102	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 103	REPLY_RX_PHY_CMD = 0xc0,
 104	REPLY_RX_MPDU_CMD = 0xc1,
 105	REPLY_RX = 0xc3,
 106	REPLY_COMPRESSED_BA = 0xc5,
 107
 108	/* BT Coex */
 109	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 110	REPLY_BT_COEX_PROT_ENV = 0xcd,
 111	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 112
 113	/* PAN commands */
 114	REPLY_WIPAN_PARAMS = 0xb2,
 115	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 116	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 117	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 118	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 119	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 120	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 121	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 122	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 123
 124	REPLY_WOWLAN_PATTERNS = 0xe0,
 125	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 126	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 127	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 128	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 129	REPLY_WOWLAN_GET_STATUS = 0xe5,
 130	REPLY_D3_CONFIG = 0xd3,
 131
 132	REPLY_MAX = 0xff
 133};
 134
 135/*
 136 * Minimum number of queues. MAX_NUM is defined in hw specific files.
 137 * Set the minimum to accommodate
 138 *  - 4 standard TX queues
 139 *  - the command queue
 140 *  - 4 PAN TX queues
 141 *  - the PAN multicast queue, and
 142 *  - the AUX (TX during scan dwell) queue.
 143 */
 144#define IWL_MIN_NUM_QUEUES	11
 145
 146/*
 147 * Command queue depends on iPAN support.
 148 */
 149#define IWL_DEFAULT_CMD_QUEUE_NUM	4
 150#define IWL_IPAN_CMD_QUEUE_NUM		9
 151
 152#define IWL_TX_FIFO_BK		0	/* shared */
 153#define IWL_TX_FIFO_BE		1
 154#define IWL_TX_FIFO_VI		2	/* shared */
 155#define IWL_TX_FIFO_VO		3
 156#define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
 157#define IWL_TX_FIFO_BE_IPAN	4
 158#define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
 159#define IWL_TX_FIFO_VO_IPAN	5
 160/* re-uses the VO FIFO, uCode will properly flush/schedule */
 161#define IWL_TX_FIFO_AUX		5
 162#define IWL_TX_FIFO_UNUSED	255
 163
 164#define IWLAGN_CMD_FIFO_NUM	7
 165
 166/*
 167 * This queue number is required for proper operation
 168 * because the ucode will stop/start the scheduler as
 169 * required.
 170 */
 171#define IWL_IPAN_MCAST_QUEUE	8
 172
 173/******************************************************************************
 174 * (0)
 175 * Commonly used structures and definitions:
 176 * Command header, rate_n_flags, txpower
 177 *
 178 *****************************************************************************/
 179
 180/**
 181 * iwlagn rate_n_flags bit fields
 182 *
 183 * rate_n_flags format is used in following iwlagn commands:
 184 *  REPLY_RX (response only)
 185 *  REPLY_RX_MPDU (response only)
 186 *  REPLY_TX (both command and response)
 187 *  REPLY_TX_LINK_QUALITY_CMD
 188 *
 189 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 190 *  2-0:  0)   6 Mbps
 191 *        1)  12 Mbps
 192 *        2)  18 Mbps
 193 *        3)  24 Mbps
 194 *        4)  36 Mbps
 195 *        5)  48 Mbps
 196 *        6)  54 Mbps
 197 *        7)  60 Mbps
 198 *
 199 *  4-3:  0)  Single stream (SISO)
 200 *        1)  Dual stream (MIMO)
 201 *        2)  Triple stream (MIMO)
 202 *
 203 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 204 *
 205 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 206 *  3-0:  0xD)   6 Mbps
 207 *        0xF)   9 Mbps
 208 *        0x5)  12 Mbps
 209 *        0x7)  18 Mbps
 210 *        0x9)  24 Mbps
 211 *        0xB)  36 Mbps
 212 *        0x1)  48 Mbps
 213 *        0x3)  54 Mbps
 214 *
 215 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 216 *  6-0:   10)  1 Mbps
 217 *         20)  2 Mbps
 218 *         55)  5.5 Mbps
 219 *        110)  11 Mbps
 220 */
 221#define RATE_MCS_CODE_MSK 0x7
 222#define RATE_MCS_SPATIAL_POS 3
 223#define RATE_MCS_SPATIAL_MSK 0x18
 224#define RATE_MCS_HT_DUP_POS 5
 225#define RATE_MCS_HT_DUP_MSK 0x20
 226/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 227#define RATE_MCS_RATE_MSK 0xff
 228
 229/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 230#define RATE_MCS_FLAGS_POS 8
 231#define RATE_MCS_HT_POS 8
 232#define RATE_MCS_HT_MSK 0x100
 233
 234/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 235#define RATE_MCS_CCK_POS 9
 236#define RATE_MCS_CCK_MSK 0x200
 237
 238/* Bit 10: (1) Use Green Field preamble */
 239#define RATE_MCS_GF_POS 10
 240#define RATE_MCS_GF_MSK 0x400
 241
 242/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 243#define RATE_MCS_HT40_POS 11
 244#define RATE_MCS_HT40_MSK 0x800
 245
 246/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 247#define RATE_MCS_DUP_POS 12
 248#define RATE_MCS_DUP_MSK 0x1000
 249
 250/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 251#define RATE_MCS_SGI_POS 13
 252#define RATE_MCS_SGI_MSK 0x2000
 253
 254/**
 255 * rate_n_flags Tx antenna masks
 256 * bit14:16
 257 */
 258#define RATE_MCS_ANT_POS	14
 259#define RATE_MCS_ANT_A_MSK	0x04000
 260#define RATE_MCS_ANT_B_MSK	0x08000
 261#define RATE_MCS_ANT_C_MSK	0x10000
 262#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 263#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 264#define RATE_ANT_NUM 3
 265
 266#define POWER_TABLE_NUM_ENTRIES			33
 267#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 268#define POWER_TABLE_CCK_ENTRY			32
 269
 270#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 271#define IWL_PWR_CCK_ENTRIES			2
 272
 273/**
 274 * struct tx_power_dual_stream
 275 *
 276 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 277 *
 278 * Same format as iwl_tx_power_dual_stream, but __le32
 279 */
 280struct tx_power_dual_stream {
 281	__le32 dw;
 282} __packed;
 283
 284/**
 285 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 286 * struct iwlagn_tx_power_dbm_cmd
 287 */
 288#define IWLAGN_TX_POWER_AUTO 0x7f
 289#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 290
 291struct iwlagn_tx_power_dbm_cmd {
 292	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 293	u8 flags;
 294	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 295	u8 reserved;
 296} __packed;
 297
 298/**
 299 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 300 * This command is used to configure valid Tx antenna.
 301 * By default uCode concludes the valid antenna according to the radio flavor.
 302 * This command enables the driver to override/modify this conclusion.
 303 */
 304struct iwl_tx_ant_config_cmd {
 305	__le32 valid;
 306} __packed;
 307
 308/******************************************************************************
 309 * (0a)
 310 * Alive and Error Commands & Responses:
 311 *
 312 *****************************************************************************/
 313
 314#define UCODE_VALID_OK	cpu_to_le32(0x1)
 315
 316/**
 317 * REPLY_ALIVE = 0x1 (response only, not a command)
 318 *
 319 * uCode issues this "alive" notification once the runtime image is ready
 320 * to receive commands from the driver.  This is the *second* "alive"
 321 * notification that the driver will receive after rebooting uCode;
 322 * this "alive" is indicated by subtype field != 9.
 323 *
 324 * See comments documenting "BSM" (bootstrap state machine).
 325 *
 326 * This response includes two pointers to structures within the device's
 327 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 328 *
 329 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 330 *     a 256-entry history of uCode execution within a circular buffer.
 331 *     Its header format is:
 332 *
 333 *	__le32 log_size;     log capacity (in number of entries)
 334 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 335 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 336 *      __le32 write_index;  next circular buffer entry that uCode would fill
 337 *
 338 *     The header is followed by the circular buffer of log entries.  Entries
 339 *     with timestamps have the following format:
 340 *
 341 *	__le32 event_id;     range 0 - 1500
 342 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 343 *	__le32 data;         event_id-specific data value
 344 *
 345 *     Entries without timestamps contain only event_id and data.
 346 *
 347 *
 348 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 349 *     information about any uCode error that occurs.  For agn, the format
 350 *     of the error log is defined by struct iwl_error_event_table.
 351 *
 352 * The Linux driver can print both logs to the system log when a uCode error
 353 * occurs.
 354 */
 355
 356/*
 357 * Note: This structure is read from the device with IO accesses,
 358 * and the reading already does the endian conversion. As it is
 359 * read with u32-sized accesses, any members with a different size
 360 * need to be ordered correctly though!
 361 */
 362struct iwl_error_event_table {
 363	u32 valid;		/* (nonzero) valid, (0) log is empty */
 364	u32 error_id;		/* type of error */
 365	u32 pc;			/* program counter */
 366	u32 blink1;		/* branch link */
 367	u32 blink2;		/* branch link */
 368	u32 ilink1;		/* interrupt link */
 369	u32 ilink2;		/* interrupt link */
 370	u32 data1;		/* error-specific data */
 371	u32 data2;		/* error-specific data */
 372	u32 line;		/* source code line of error */
 373	u32 bcon_time;		/* beacon timer */
 374	u32 tsf_low;		/* network timestamp function timer */
 375	u32 tsf_hi;		/* network timestamp function timer */
 376	u32 gp1;		/* GP1 timer register */
 377	u32 gp2;		/* GP2 timer register */
 378	u32 gp3;		/* GP3 timer register */
 379	u32 ucode_ver;		/* uCode version */
 380	u32 hw_ver;		/* HW Silicon version */
 381	u32 brd_ver;		/* HW board version */
 382	u32 log_pc;		/* log program counter */
 383	u32 frame_ptr;		/* frame pointer */
 384	u32 stack_ptr;		/* stack pointer */
 385	u32 hcmd;		/* last host command header */
 386	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
 387				 * rxtx_flag */
 388	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
 389				 * host_flag */
 390	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
 391				 * enc_flag */
 392	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
 393				 * time_flag */
 394	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
 395				 * wico interrupt */
 396	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 397	u32 wait_event;		/* wait event() caller address */
 398	u32 l2p_control;	/* L2pControlField */
 399	u32 l2p_duration;	/* L2pDurationField */
 400	u32 l2p_mhvalid;	/* L2pMhValidBits */
 401	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 402	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
 403				 * (LMPM_PMG_SEL) */
 404	u32 u_timestamp;	/* indicate when the date and time of the
 405				 * compilation */
 406	u32 flow_handler;	/* FH read/write pointers, RX credit */
 407} __packed;
 408
 409struct iwl_alive_resp {
 410	u8 ucode_minor;
 411	u8 ucode_major;
 412	__le16 reserved1;
 413	u8 sw_rev[8];
 414	u8 ver_type;
 415	u8 ver_subtype;			/* not "9" for runtime alive */
 416	__le16 reserved2;
 417	__le32 log_event_table_ptr;	/* SRAM address for event log */
 418	__le32 error_event_table_ptr;	/* SRAM address for error log */
 419	__le32 timestamp;
 420	__le32 is_valid;
 421} __packed;
 422
 423/*
 424 * REPLY_ERROR = 0x2 (response only, not a command)
 425 */
 426struct iwl_error_resp {
 427	__le32 error_type;
 428	u8 cmd_id;
 429	u8 reserved1;
 430	__le16 bad_cmd_seq_num;
 431	__le32 error_info;
 432	__le64 timestamp;
 433} __packed;
 434
 435/******************************************************************************
 436 * (1)
 437 * RXON Commands & Responses:
 438 *
 439 *****************************************************************************/
 440
 441/*
 442 * Rx config defines & structure
 443 */
 444/* rx_config device types  */
 445enum {
 446	RXON_DEV_TYPE_AP = 1,
 447	RXON_DEV_TYPE_ESS = 3,
 448	RXON_DEV_TYPE_IBSS = 4,
 449	RXON_DEV_TYPE_SNIFFER = 6,
 450	RXON_DEV_TYPE_CP = 7,
 451	RXON_DEV_TYPE_2STA = 8,
 452	RXON_DEV_TYPE_P2P = 9,
 453};
 454
 455
 456#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 457#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 458#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 459#define RXON_RX_CHAIN_VALID_POS			(1)
 460#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 461#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 462#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 463#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 464#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 465#define RXON_RX_CHAIN_CNT_POS			(10)
 466#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 467#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 468#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 469#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 470
 471/* rx_config flags */
 472/* band & modulation selection */
 473#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 474#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 475/* auto detection enable */
 476#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 477/* TGg protection when tx */
 478#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 479/* cck short slot & preamble */
 480#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 481#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 482/* antenna selection */
 483#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 484#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 485#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 486#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 487/* radar detection enable */
 488#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 489#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 490/* rx response to host with 8-byte TSF
 491* (according to ON_AIR deassertion) */
 492#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 493
 494
 495/* HT flags */
 496#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 497#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 498
 499#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 500
 501#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 502#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 503
 504#define RXON_FLG_CHANNEL_MODE_POS		(25)
 505#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 506
 507/* channel mode */
 508enum {
 509	CHANNEL_MODE_LEGACY = 0,
 510	CHANNEL_MODE_PURE_40 = 1,
 511	CHANNEL_MODE_MIXED = 2,
 512	CHANNEL_MODE_RESERVED = 3,
 513};
 514#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 515#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 516#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 517
 518/* CTS to self (if spec allows) flag */
 519#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 520
 521/* rx_config filter flags */
 522/* accept all data frames */
 523#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 524/* pass control & management to host */
 525#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 526/* accept multi-cast */
 527#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 528/* don't decrypt uni-cast frames */
 529#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 530/* don't decrypt multi-cast frames */
 531#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 532/* STA is associated */
 533#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 534/* transfer to host non bssid beacons in associated state */
 535#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 536
 537/**
 538 * REPLY_RXON = 0x10 (command, has simple generic response)
 539 *
 540 * RXON tunes the radio tuner to a service channel, and sets up a number
 541 * of parameters that are used primarily for Rx, but also for Tx operations.
 542 *
 543 * NOTE:  When tuning to a new channel, driver must set the
 544 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 545 *        info within the device, including the station tables, tx retry
 546 *        rate tables, and txpower tables.  Driver must build a new station
 547 *        table and txpower table before transmitting anything on the RXON
 548 *        channel.
 549 *
 550 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 551 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 552 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 553 */
 554
 555struct iwl_rxon_cmd {
 556	u8 node_addr[6];
 557	__le16 reserved1;
 558	u8 bssid_addr[6];
 559	__le16 reserved2;
 560	u8 wlap_bssid_addr[6];
 561	__le16 reserved3;
 562	u8 dev_type;
 563	u8 air_propagation;
 564	__le16 rx_chain;
 565	u8 ofdm_basic_rates;
 566	u8 cck_basic_rates;
 567	__le16 assoc_id;
 568	__le32 flags;
 569	__le32 filter_flags;
 570	__le16 channel;
 571	u8 ofdm_ht_single_stream_basic_rates;
 572	u8 ofdm_ht_dual_stream_basic_rates;
 573	u8 ofdm_ht_triple_stream_basic_rates;
 574	u8 reserved5;
 575	__le16 acquisition_data;
 576	__le16 reserved6;
 577} __packed;
 578
 579/*
 580 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 581 */
 582struct iwl_rxon_assoc_cmd {
 583	__le32 flags;
 584	__le32 filter_flags;
 585	u8 ofdm_basic_rates;
 586	u8 cck_basic_rates;
 587	__le16 reserved1;
 588	u8 ofdm_ht_single_stream_basic_rates;
 589	u8 ofdm_ht_dual_stream_basic_rates;
 590	u8 ofdm_ht_triple_stream_basic_rates;
 591	u8 reserved2;
 592	__le16 rx_chain_select_flags;
 593	__le16 acquisition_data;
 594	__le32 reserved3;
 595} __packed;
 596
 597#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 598#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 599
 600/*
 601 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 602 */
 603struct iwl_rxon_time_cmd {
 604	__le64 timestamp;
 605	__le16 beacon_interval;
 606	__le16 atim_window;
 607	__le32 beacon_init_val;
 608	__le16 listen_interval;
 609	u8 dtim_period;
 610	u8 delta_cp_bss_tbtts;
 611} __packed;
 612
 613/*
 614 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 615 */
 616/**
 617 * struct iwl5000_channel_switch_cmd
 618 * @band: 0- 5.2GHz, 1- 2.4GHz
 619 * @expect_beacon: 0- resume transmits after channel switch
 620 *		   1- wait for beacon to resume transmits
 621 * @channel: new channel number
 622 * @rxon_flags: Rx on flags
 623 * @rxon_filter_flags: filtering parameters
 624 * @switch_time: switch time in extended beacon format
 625 * @reserved: reserved bytes
 626 */
 627struct iwl5000_channel_switch_cmd {
 628	u8 band;
 629	u8 expect_beacon;
 630	__le16 channel;
 631	__le32 rxon_flags;
 632	__le32 rxon_filter_flags;
 633	__le32 switch_time;
 634	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 635} __packed;
 636
 637/**
 638 * struct iwl6000_channel_switch_cmd
 639 * @band: 0- 5.2GHz, 1- 2.4GHz
 640 * @expect_beacon: 0- resume transmits after channel switch
 641 *		   1- wait for beacon to resume transmits
 642 * @channel: new channel number
 643 * @rxon_flags: Rx on flags
 644 * @rxon_filter_flags: filtering parameters
 645 * @switch_time: switch time in extended beacon format
 646 * @reserved: reserved bytes
 647 */
 648struct iwl6000_channel_switch_cmd {
 649	u8 band;
 650	u8 expect_beacon;
 651	__le16 channel;
 652	__le32 rxon_flags;
 653	__le32 rxon_filter_flags;
 654	__le32 switch_time;
 655	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 656} __packed;
 657
 658/*
 659 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 660 */
 661struct iwl_csa_notification {
 662	__le16 band;
 663	__le16 channel;
 664	__le32 status;		/* 0 - OK, 1 - fail */
 665} __packed;
 666
 667/******************************************************************************
 668 * (2)
 669 * Quality-of-Service (QOS) Commands & Responses:
 670 *
 671 *****************************************************************************/
 672
 673/**
 674 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 675 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 676 *
 677 * @cw_min: Contention window, start value in numbers of slots.
 678 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 679 * @cw_max: Contention window, max value in numbers of slots.
 680 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 681 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 682 *          performing random backoff timing prior to Tx).  Device default 1.
 683 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 684 *
 685 * Device will automatically increase contention window by (2*CW) + 1 for each
 686 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 687 * value, to cap the CW value.
 688 */
 689struct iwl_ac_qos {
 690	__le16 cw_min;
 691	__le16 cw_max;
 692	u8 aifsn;
 693	u8 reserved1;
 694	__le16 edca_txop;
 695} __packed;
 696
 697/* QoS flags defines */
 698#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 699#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 700#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 701
 702/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 703#define AC_NUM                4
 704
 705/*
 706 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 707 *
 708 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 709 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 710 */
 711struct iwl_qosparam_cmd {
 712	__le32 qos_flags;
 713	struct iwl_ac_qos ac[AC_NUM];
 714} __packed;
 715
 716/******************************************************************************
 717 * (3)
 718 * Add/Modify Stations Commands & Responses:
 719 *
 720 *****************************************************************************/
 721/*
 722 * Multi station support
 723 */
 724
 725/* Special, dedicated locations within device's station table */
 726#define	IWL_AP_ID		0
 727#define	IWL_AP_ID_PAN		1
 728#define	IWL_STA_ID		2
 729#define IWLAGN_PAN_BCAST_ID	14
 730#define IWLAGN_BROADCAST_ID	15
 731#define	IWLAGN_STATION_COUNT	16
 732
 733#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
 734
 735#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 736#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 737#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 738#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 739#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 740#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 741#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 742#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 743#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 744#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 745#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 746
 747/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 748#define STA_CONTROL_MODIFY_MSK		0x01
 749
 750/* key flags __le16*/
 751#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 752#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 753#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 754#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 755#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 756
 757#define STA_KEY_FLG_KEYID_POS	8
 758#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 759/* wep key is either from global key (0) or from station info array (1) */
 760#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 761
 762/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 763#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 764#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 765#define STA_KEY_MAX_NUM		8
 766#define STA_KEY_MAX_NUM_PAN	16
 767/* must not match WEP_INVALID_OFFSET */
 768#define IWLAGN_HW_KEY_DEFAULT	0xfe
 769
 770/* Flags indicate whether to modify vs. don't change various station params */
 771#define	STA_MODIFY_KEY_MASK		0x01
 772#define	STA_MODIFY_TID_DISABLE_TX	0x02
 773#define	STA_MODIFY_TX_RATE_MSK		0x04
 774#define STA_MODIFY_ADDBA_TID_MSK	0x08
 775#define STA_MODIFY_DELBA_TID_MSK	0x10
 776#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 777
 778/* agn */
 779struct iwl_keyinfo {
 780	__le16 key_flags;
 781	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 782	u8 reserved1;
 783	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 784	u8 key_offset;
 785	u8 reserved2;
 786	u8 key[16];		/* 16-byte unicast decryption key */
 787	__le64 tx_secur_seq_cnt;
 788	__le64 hw_tkip_mic_rx_key;
 789	__le64 hw_tkip_mic_tx_key;
 790} __packed;
 791
 792/**
 793 * struct sta_id_modify
 794 * @addr[ETH_ALEN]: station's MAC address
 795 * @sta_id: index of station in uCode's station table
 796 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 797 *
 798 * Driver selects unused table index when adding new station,
 799 * or the index to a pre-existing station entry when modifying that station.
 800 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 801 *
 802 * modify_mask flags select which parameters to modify vs. leave alone.
 803 */
 804struct sta_id_modify {
 805	u8 addr[ETH_ALEN];
 806	__le16 reserved1;
 807	u8 sta_id;
 808	u8 modify_mask;
 809	__le16 reserved2;
 810} __packed;
 811
 812/*
 813 * REPLY_ADD_STA = 0x18 (command)
 814 *
 815 * The device contains an internal table of per-station information,
 816 * with info on security keys, aggregation parameters, and Tx rates for
 817 * initial Tx attempt and any retries (agn devices uses
 818 * REPLY_TX_LINK_QUALITY_CMD,
 819 *
 820 * REPLY_ADD_STA sets up the table entry for one station, either creating
 821 * a new entry, or modifying a pre-existing one.
 822 *
 823 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 824 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 825 *        new station table before transmitting anything on the RXON channel
 826 *        (except active scans or active measurements; those commands carry
 827 *        their own txpower/rate setup data).
 828 *
 829 *        When getting started on a new channel, driver must set up the
 830 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 831 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 832 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 833 *        are all that are needed for a BSS client station.  If the device is
 834 *        used as AP, or in an IBSS network, driver must set up station table
 835 *        entries for all STAs in network, starting with index IWL_STA_ID.
 836 */
 837
 838struct iwl_addsta_cmd {
 839	u8 mode;		/* 1: modify existing, 0: add new station */
 840	u8 reserved[3];
 841	struct sta_id_modify sta;
 842	struct iwl_keyinfo key;
 843	__le32 station_flags;		/* STA_FLG_* */
 844	__le32 station_flags_msk;	/* STA_FLG_* */
 845
 846	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 847	 * corresponding to bit (e.g. bit 5 controls TID 5).
 848	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 849	__le16 tid_disable_tx;
 850	__le16 legacy_reserved;
 851
 852	/* TID for which to add block-ack support.
 853	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 854	u8 add_immediate_ba_tid;
 855
 856	/* TID for which to remove block-ack support.
 857	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 858	u8 remove_immediate_ba_tid;
 859
 860	/* Starting Sequence Number for added block-ack support.
 861	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 862	__le16 add_immediate_ba_ssn;
 863
 864	/*
 865	 * Number of packets OK to transmit to station even though
 866	 * it is asleep -- used to synchronise PS-poll and u-APSD
 867	 * responses while ucode keeps track of STA sleep state.
 868	 */
 869	__le16 sleep_tx_count;
 870
 871	__le16 reserved2;
 872} __packed;
 873
 874
 875#define ADD_STA_SUCCESS_MSK		0x1
 876#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 877#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 878#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 879/*
 880 * REPLY_ADD_STA = 0x18 (response)
 881 */
 882struct iwl_add_sta_resp {
 883	u8 status;	/* ADD_STA_* */
 884} __packed;
 885
 886#define REM_STA_SUCCESS_MSK              0x1
 887/*
 888 *  REPLY_REM_STA = 0x19 (response)
 889 */
 890struct iwl_rem_sta_resp {
 891	u8 status;
 892} __packed;
 893
 894/*
 895 *  REPLY_REM_STA = 0x19 (command)
 896 */
 897struct iwl_rem_sta_cmd {
 898	u8 num_sta;     /* number of removed stations */
 899	u8 reserved[3];
 900	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 901	u8 reserved2[2];
 902} __packed;
 903
 904
 905/* WiFi queues mask */
 906#define IWL_SCD_BK_MSK			BIT(0)
 907#define IWL_SCD_BE_MSK			BIT(1)
 908#define IWL_SCD_VI_MSK			BIT(2)
 909#define IWL_SCD_VO_MSK			BIT(3)
 910#define IWL_SCD_MGMT_MSK		BIT(3)
 911
 912/* PAN queues mask */
 913#define IWL_PAN_SCD_BK_MSK		BIT(4)
 914#define IWL_PAN_SCD_BE_MSK		BIT(5)
 915#define IWL_PAN_SCD_VI_MSK		BIT(6)
 916#define IWL_PAN_SCD_VO_MSK		BIT(7)
 917#define IWL_PAN_SCD_MGMT_MSK		BIT(7)
 918#define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
 919
 920#define IWL_AGG_TX_QUEUE_MSK		0xffc00
 921
 922#define IWL_DROP_ALL			BIT(1)
 923
 924/*
 925 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 926 *
 927 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 928 * pointers to check if all the frames were transferred by DMA into the
 929 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 930 * empty the command can finish.
 931 * This command is used to flush the TXFIFO from transmit commands, it may
 932 * operate on single or multiple queues, the command queue can't be flushed by
 933 * this command. The command response is returned when all the queue flush
 934 * operations are done. Each TX command flushed return response with the FLUSH
 935 * status set in the TX response status. When FIFO flush operation is used,
 936 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 937 * are set.
 938 *
 939 * @queue_control: bit mask for which queues to flush
 940 * @flush_control: flush controls
 941 *	0: Dump single MSDU
 942 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
 943 *	2: Dump all FIFO
 944 */
 945struct iwl_txfifo_flush_cmd_v3 {
 946	__le32 queue_control;
 947	__le16 flush_control;
 948	__le16 reserved;
 949} __packed;
 950
 951struct iwl_txfifo_flush_cmd_v2 {
 952	__le16 queue_control;
 953	__le16 flush_control;
 954} __packed;
 955
 956/*
 957 * REPLY_WEP_KEY = 0x20
 958 */
 959struct iwl_wep_key {
 960	u8 key_index;
 961	u8 key_offset;
 962	u8 reserved1[2];
 963	u8 key_size;
 964	u8 reserved2[3];
 965	u8 key[16];
 966} __packed;
 967
 968struct iwl_wep_cmd {
 969	u8 num_keys;
 970	u8 global_key_type;
 971	u8 flags;
 972	u8 reserved;
 973	struct iwl_wep_key key[];
 974} __packed;
 975
 976#define WEP_KEY_WEP_TYPE 1
 977#define WEP_KEYS_MAX 4
 978#define WEP_INVALID_OFFSET 0xff
 979#define WEP_KEY_LEN_64 5
 980#define WEP_KEY_LEN_128 13
 981
 982/******************************************************************************
 983 * (4)
 984 * Rx Responses:
 985 *
 986 *****************************************************************************/
 987
 988#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
 989#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
 990
 991#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
 992#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
 993#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
 994#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
 995#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
 996#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
 997#define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
 998
 999#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1000#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1001#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1002#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1003#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1004#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1005
1006#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1007#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1008
1009#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1010#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1011#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1012#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1013#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1014
1015#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1016#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1017#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1018#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1019
1020
1021#define IWLAGN_RX_RES_PHY_CNT 8
1022#define IWLAGN_RX_RES_AGC_IDX     1
1023#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1024#define IWLAGN_RX_RES_RSSI_C_IDX  3
1025#define IWLAGN_OFDM_AGC_MSK 0xfe00
1026#define IWLAGN_OFDM_AGC_BIT_POS 9
1027#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1028#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1029#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1030#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1031#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1032#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1033#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1034#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1035#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1036
1037struct iwlagn_non_cfg_phy {
1038	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1039} __packed;
1040
1041
1042/*
1043 * REPLY_RX = 0xc3 (response only, not a command)
1044 * Used only for legacy (non 11n) frames.
1045 */
1046struct iwl_rx_phy_res {
1047	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1048	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1049	u8 stat_id;		/* configurable DSP phy data set ID */
1050	u8 reserved1;
1051	__le64 timestamp;	/* TSF at on air rise */
1052	__le32 beacon_time_stamp; /* beacon at on-air rise */
1053	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1054	__le16 channel;		/* channel number */
1055	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1056	__le32 rate_n_flags;	/* RATE_MCS_* */
1057	__le16 byte_count;	/* frame's byte-count */
1058	__le16 frame_time;	/* frame's time on the air */
1059} __packed;
1060
1061struct iwl_rx_mpdu_res_start {
1062	__le16 byte_count;
1063	__le16 reserved;
1064} __packed;
1065
1066
1067/******************************************************************************
1068 * (5)
1069 * Tx Commands & Responses:
1070 *
1071 * Driver must place each REPLY_TX command into one of the prioritized Tx
1072 * queues in host DRAM, shared between driver and device (see comments for
1073 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1074 * are preparing to transmit, the device pulls the Tx command over the PCI
1075 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1076 * from which data will be transmitted.
1077 *
1078 * uCode handles all timing and protocol related to control frames
1079 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1080 * handle reception of block-acks; uCode updates the host driver via
1081 * REPLY_COMPRESSED_BA.
1082 *
1083 * uCode handles retrying Tx when an ACK is expected but not received.
1084 * This includes trying lower data rates than the one requested in the Tx
1085 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1086 *
1087 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1088 * This command must be executed after every RXON command, before Tx can occur.
1089 *****************************************************************************/
1090
1091/* REPLY_TX Tx flags field */
1092
1093/*
1094 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1095 * before this frame. if CTS-to-self required check
1096 * RXON_FLG_SELF_CTS_EN status.
1097 */
1098#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1099
1100/* 1: Expect ACK from receiving station
1101 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1102 * Set this for unicast frames, but not broadcast/multicast. */
1103#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1104
1105/* For agn devices:
1106 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1107 *    Tx command's initial_rate_index indicates first rate to try;
1108 *    uCode walks through table for additional Tx attempts.
1109 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1110 *    This rate will be used for all Tx attempts; it will not be scaled. */
1111#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1112
1113/* 1: Expect immediate block-ack.
1114 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1115#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1116
1117/* Tx antenna selection field; reserved (0) for agn devices. */
1118#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1119
1120/* 1: Ignore Bluetooth priority for this frame.
1121 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1122#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1123
1124/* 1: uCode overrides sequence control field in MAC header.
1125 * 0: Driver provides sequence control field in MAC header.
1126 * Set this for management frames, non-QOS data frames, non-unicast frames,
1127 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1128#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1129
1130/* 1: This frame is non-last MPDU; more fragments are coming.
1131 * 0: Last fragment, or not using fragmentation. */
1132#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1133
1134/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1135 * 0: No TSF required in outgoing frame.
1136 * Set this for transmitting beacons and probe responses. */
1137#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1138
1139/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1140 *    alignment of frame's payload data field.
1141 * 0: No pad
1142 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1143 * field (but not both).  Driver must align frame data (i.e. data following
1144 * MAC header) to DWORD boundary. */
1145#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1146
1147/* accelerate aggregation support
1148 * 0 - no CCMP encryption; 1 - CCMP encryption */
1149#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1150
1151/* HCCA-AP - disable duration overwriting. */
1152#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1153
1154
1155/*
1156 * TX command security control
1157 */
1158#define TX_CMD_SEC_WEP  	0x01
1159#define TX_CMD_SEC_CCM  	0x02
1160#define TX_CMD_SEC_TKIP		0x03
1161#define TX_CMD_SEC_MSK		0x03
1162#define TX_CMD_SEC_SHIFT	6
1163#define TX_CMD_SEC_KEY128	0x08
1164
1165/*
1166 * REPLY_TX = 0x1c (command)
1167 */
1168
1169/*
1170 * Used for managing Tx retries when expecting block-acks.
1171 * Driver should set these fields to 0.
1172 */
1173struct iwl_dram_scratch {
1174	u8 try_cnt;		/* Tx attempts */
1175	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1176	__le16 reserved;
1177} __packed;
1178
1179struct iwl_tx_cmd {
1180	/*
1181	 * MPDU byte count:
1182	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1183	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1184	 * + Data payload
1185	 * + 8-byte MIC (not used for CCM/WEP)
1186	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1187	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1188	 * Range: 14-2342 bytes.
1189	 */
1190	__le16 len;
1191
1192	/*
1193	 * MPDU or MSDU byte count for next frame.
1194	 * Used for fragmentation and bursting, but not 11n aggregation.
1195	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1196	 */
1197	__le16 next_frame_len;
1198
1199	__le32 tx_flags;	/* TX_CMD_FLG_* */
1200
1201	/* uCode may modify this field of the Tx command (in host DRAM!).
1202	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1203	struct iwl_dram_scratch scratch;
1204
1205	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1206	__le32 rate_n_flags;	/* RATE_MCS_* */
1207
1208	/* Index of destination station in uCode's station table */
1209	u8 sta_id;
1210
1211	/* Type of security encryption:  CCM or TKIP */
1212	u8 sec_ctl;		/* TX_CMD_SEC_* */
1213
1214	/*
1215	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1216	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1217	 * data frames, this field may be used to selectively reduce initial
1218	 * rate (via non-0 value) for special frames (e.g. management), while
1219	 * still supporting rate scaling for all frames.
1220	 */
1221	u8 initial_rate_index;
1222	u8 reserved;
1223	u8 key[16];
1224	__le16 next_frame_flags;
1225	__le16 reserved2;
1226	union {
1227		__le32 life_time;
1228		__le32 attempt;
1229	} stop_time;
1230
1231	/* Host DRAM physical address pointer to "scratch" in this command.
1232	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1233	__le32 dram_lsb_ptr;
1234	u8 dram_msb_ptr;
1235
1236	u8 rts_retry_limit;	/*byte 50 */
1237	u8 data_retry_limit;	/*byte 51 */
1238	u8 tid_tspec;
1239	union {
1240		__le16 pm_frame_timeout;
1241		__le16 attempt_duration;
1242	} timeout;
1243
1244	/*
1245	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1246	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1247	 */
1248	__le16 driver_txop;
1249
1250	/*
1251	 * MAC header goes here, followed by 2 bytes padding if MAC header
1252	 * length is 26 or 30 bytes, followed by payload data
1253	 */
1254	u8 payload[0];
1255	struct ieee80211_hdr hdr[];
1256} __packed;
1257
1258/*
1259 * TX command response is sent after *agn* transmission attempts.
1260 *
1261 * both postpone and abort status are expected behavior from uCode. there is
1262 * no special operation required from driver; except for RFKILL_FLUSH,
1263 * which required tx flush host command to flush all the tx frames in queues
1264 */
1265enum {
1266	TX_STATUS_SUCCESS = 0x01,
1267	TX_STATUS_DIRECT_DONE = 0x02,
1268	/* postpone TX */
1269	TX_STATUS_POSTPONE_DELAY = 0x40,
1270	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1271	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1272	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1273	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1274	/* abort TX */
1275	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1276	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1277	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1278	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1279	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1280	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1281	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1282	TX_STATUS_FAIL_DEST_PS = 0x88,
1283	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1284	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1285	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1286	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1287	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1288	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1289	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1290	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1291	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1292};
1293
1294#define	TX_PACKET_MODE_REGULAR		0x0000
1295#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1296#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1297
1298enum {
1299	TX_POWER_PA_NOT_ACTIVE = 0x0,
1300};
1301
1302enum {
1303	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1304	TX_STATUS_DELAY_MSK = 0x00000040,
1305	TX_STATUS_ABORT_MSK = 0x00000080,
1306	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1307	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1308	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1309	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1310	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1311};
1312
1313/* *******************************
1314 * TX aggregation status
1315 ******************************* */
1316
1317enum {
1318	AGG_TX_STATE_TRANSMITTED = 0x00,
1319	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1320	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1321	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1322	AGG_TX_STATE_ABORT_MSK = 0x08,
1323	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1324	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1325	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1326	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1327	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1328	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1329	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1330	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1331};
1332
1333#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1334#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1335#define AGG_TX_TRY_POS		12
1336
1337#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1338				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1339				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1340
1341/* # tx attempts for first frame in aggregation */
1342#define AGG_TX_STATE_TRY_CNT_POS 12
1343#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1344
1345/* Command ID and sequence number of Tx command for this frame */
1346#define AGG_TX_STATE_SEQ_NUM_POS 16
1347#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1348
1349/*
1350 * REPLY_TX = 0x1c (response)
1351 *
1352 * This response may be in one of two slightly different formats, indicated
1353 * by the frame_count field:
1354 *
1355 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1356 *     a single frame.  Multiple attempts, at various bit rates, may have
1357 *     been made for this frame.
1358 *
1359 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1360 *     2 or more frames that used block-acknowledge.  All frames were
1361 *     transmitted at same rate.  Rate scaling may have been used if first
1362 *     frame in this new agg block failed in previous agg block(s).
1363 *
1364 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1365 *     block-ack has not been received by the time the agn device records
1366 *     this status.
1367 *     This status relates to reasons the tx might have been blocked or aborted
1368 *     within the sending station (this agn device), rather than whether it was
1369 *     received successfully by the destination station.
1370 */
1371struct agg_tx_status {
1372	__le16 status;
1373	__le16 sequence;
1374} __packed;
1375
1376/* refer to ra_tid */
1377#define IWLAGN_TX_RES_TID_POS	0
1378#define IWLAGN_TX_RES_TID_MSK	0x0f
1379#define IWLAGN_TX_RES_RA_POS	4
1380#define IWLAGN_TX_RES_RA_MSK	0xf0
1381
1382struct iwlagn_tx_resp {
1383	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1384	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1385	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1386	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1387
1388	/* For non-agg:  Rate at which frame was successful.
1389	 * For agg:  Rate at which all frames were transmitted. */
1390	__le32 rate_n_flags;	/* RATE_MCS_*  */
1391
1392	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1393	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1394	__le16 wireless_media_time;	/* uSecs */
1395
1396	u8 pa_status;		/* RF power amplifier measurement (not used) */
1397	u8 pa_integ_res_a[3];
1398	u8 pa_integ_res_b[3];
1399	u8 pa_integ_res_C[3];
1400
1401	__le32 tfd_info;
1402	__le16 seq_ctl;
1403	__le16 byte_cnt;
1404	u8 tlc_info;
1405	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1406	__le16 frame_ctrl;
1407	/*
1408	 * For non-agg:  frame status TX_STATUS_*
1409	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1410	 *           fields follow this one, up to frame_count.
1411	 *           Bit fields:
1412	 *           11- 0:  AGG_TX_STATE_* status code
1413	 *           15-12:  Retry count for 1st frame in aggregation (retries
1414	 *                   occur if tx failed for this frame when it was a
1415	 *                   member of a previous aggregation block).  If rate
1416	 *                   scaling is used, retry count indicates the rate
1417	 *                   table entry used for all frames in the new agg.
1418	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1419	 */
1420	struct agg_tx_status status;	/* TX status (in aggregation -
1421					 * status of 1st frame) */
1422} __packed;
1423/*
1424 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1425 *
1426 * Reports Block-Acknowledge from recipient station
1427 */
1428struct iwl_compressed_ba_resp {
1429	__le32 sta_addr_lo32;
1430	__le16 sta_addr_hi16;
1431	__le16 reserved;
1432
1433	/* Index of recipient (BA-sending) station in uCode's station table */
1434	u8 sta_id;
1435	u8 tid;
1436	__le16 seq_ctl;
1437	__le64 bitmap;
1438	__le16 scd_flow;
1439	__le16 scd_ssn;
1440	u8 txed;	/* number of frames sent */
1441	u8 txed_2_done; /* number of frames acked */
1442	__le16 reserved1;
1443} __packed;
1444
1445/*
1446 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1447 *
1448 */
1449
1450/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1451#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1452
1453/* # of EDCA prioritized tx fifos */
1454#define  LINK_QUAL_AC_NUM AC_NUM
1455
1456/* # entries in rate scale table to support Tx retries */
1457#define  LINK_QUAL_MAX_RETRY_NUM 16
1458
1459/* Tx antenna selection values */
1460#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1461#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1462#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1463
1464
1465/**
1466 * struct iwl_link_qual_general_params
1467 *
1468 * Used in REPLY_TX_LINK_QUALITY_CMD
1469 */
1470struct iwl_link_qual_general_params {
1471	u8 flags;
1472
1473	/* No entries at or above this (driver chosen) index contain MIMO */
1474	u8 mimo_delimiter;
1475
1476	/* Best single antenna to use for single stream (legacy, SISO). */
1477	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1478
1479	/* Best antennas to use for MIMO */
1480	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1481
1482	/*
1483	 * If driver needs to use different initial rates for different
1484	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1485	 * this table will set that up, by indicating the indexes in the
1486	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1487	 * Otherwise, driver should set all entries to 0.
1488	 *
1489	 * Entry usage:
1490	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1491	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1492	 */
1493	u8 start_rate_index[LINK_QUAL_AC_NUM];
1494} __packed;
1495
1496#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1497#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1498#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1499
1500#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1501#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1502#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1503
1504#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1505#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1506#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1507
1508/**
1509 * struct iwl_link_qual_agg_params
1510 *
1511 * Used in REPLY_TX_LINK_QUALITY_CMD
1512 */
1513struct iwl_link_qual_agg_params {
1514
1515	/*
1516	 *Maximum number of uSec in aggregation.
1517	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1518	 */
1519	__le16 agg_time_limit;
1520
1521	/*
1522	 * Number of Tx retries allowed for a frame, before that frame will
1523	 * no longer be considered for the start of an aggregation sequence
1524	 * (scheduler will then try to tx it as single frame).
1525	 * Driver should set this to 3.
1526	 */
1527	u8 agg_dis_start_th;
1528
1529	/*
1530	 * Maximum number of frames in aggregation.
1531	 * 0 = no limit (default).  1 = no aggregation.
1532	 * Other values = max # frames in aggregation.
1533	 */
1534	u8 agg_frame_cnt_limit;
1535
1536	__le32 reserved;
1537} __packed;
1538
1539/*
1540 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1541 *
1542 * For agn devices
1543 *
1544 * Each station in the agn device's internal station table has its own table
1545 * of 16
1546 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1547 * an ACK is not received.  This command replaces the entire table for
1548 * one station.
1549 *
1550 * NOTE:  Station must already be in agn device's station table.
1551 *	  Use REPLY_ADD_STA.
1552 *
1553 * The rate scaling procedures described below work well.  Of course, other
1554 * procedures are possible, and may work better for particular environments.
1555 *
1556 *
1557 * FILLING THE RATE TABLE
1558 *
1559 * Given a particular initial rate and mode, as determined by the rate
1560 * scaling algorithm described below, the Linux driver uses the following
1561 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1562 * Link Quality command:
1563 *
1564 *
1565 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1566 *     a) Use this same initial rate for first 3 entries.
1567 *     b) Find next lower available rate using same mode (SISO or MIMO),
1568 *        use for next 3 entries.  If no lower rate available, switch to
1569 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1570 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1571 *        using MIMO (3 or 6).
1572 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1573 *        no MIMO, no short guard interval), at the next lower bit rate
1574 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1575 *        legacy procedure for remaining table entries.
1576 *
1577 * 2)  If using legacy initial rate:
1578 *     a) Use the initial rate for only one entry.
1579 *     b) For each following entry, reduce the rate to next lower available
1580 *        rate, until reaching the lowest available rate.
1581 *     c) When reducing rate, also switch antenna selection.
1582 *     d) Once lowest available rate is reached, repeat this rate until
1583 *        rate table is filled (16 entries), switching antenna each entry.
1584 *
1585 *
1586 * ACCUMULATING HISTORY
1587 *
1588 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1589 * uses two sets of frame Tx success history:  One for the current/active
1590 * modulation mode, and one for a speculative/search mode that is being
1591 * attempted. If the speculative mode turns out to be more effective (i.e.
1592 * actual transfer rate is better), then the driver continues to use the
1593 * speculative mode as the new current active mode.
1594 *
1595 * Each history set contains, separately for each possible rate, data for a
1596 * sliding window of the 62 most recent tx attempts at that rate.  The data
1597 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1598 * and attempted frames, from which the driver can additionally calculate a
1599 * success ratio (success / attempted) and number of failures
1600 * (attempted - success), and control the size of the window (attempted).
1601 * The driver uses the bit map to remove successes from the success sum, as
1602 * the oldest tx attempts fall out of the window.
1603 *
1604 * When the agn device makes multiple tx attempts for a given frame, each
1605 * attempt might be at a different rate, and have different modulation
1606 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1607 * up in the rate scaling table in the Link Quality command.  The driver must
1608 * determine which rate table entry was used for each tx attempt, to determine
1609 * which rate-specific history to update, and record only those attempts that
1610 * match the modulation characteristics of the history set.
1611 *
1612 * When using block-ack (aggregation), all frames are transmitted at the same
1613 * rate, since there is no per-attempt acknowledgment from the destination
1614 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1615 * rate_n_flags field.  After receiving a block-ack, the driver can update
1616 * history for the entire block all at once.
1617 *
1618 *
1619 * FINDING BEST STARTING RATE:
1620 *
1621 * When working with a selected initial modulation mode (see below), the
1622 * driver attempts to find a best initial rate.  The initial rate is the
1623 * first entry in the Link Quality command's rate table.
1624 *
1625 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1626 *     table below) for current initial rate.  Do this only if enough frames
1627 *     have been attempted to make the value meaningful:  at least 6 failed
1628 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1629 *     scaling yet.
1630 *
1631 * 2)  Find available rates adjacent to current initial rate.  Available means:
1632 *     a)  supported by hardware &&
1633 *     b)  supported by association &&
1634 *     c)  within any constraints selected by user
1635 *
1636 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1637 *     enough history to calculate a throughput.  That's okay, we might try
1638 *     using one of them anyway!
1639 *
1640 * 4)  Try decreasing rate if, for current rate:
1641 *     a)  success ratio is < 15% ||
1642 *     b)  lower adjacent rate has better measured throughput ||
1643 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1644 *
1645 *     As a sanity check, if decrease was determined above, leave rate
1646 *     unchanged if:
1647 *     a)  lower rate unavailable
1648 *     b)  success ratio at current rate > 85% (very good)
1649 *     c)  current measured throughput is better than expected throughput
1650 *         of lower rate (under perfect 100% tx conditions, see table below)
1651 *
1652 * 5)  Try increasing rate if, for current rate:
1653 *     a)  success ratio is < 15% ||
1654 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1655 *     b)  higher adjacent rate has better measured throughput ||
1656 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1657 *
1658 *     As a sanity check, if increase was determined above, leave rate
1659 *     unchanged if:
1660 *     a)  success ratio at current rate < 70%.  This is not particularly
1661 *         good performance; higher rate is sure to have poorer success.
1662 *
1663 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1664 *     acknowledge, history and statistics may be calculated for the entire
1665 *     block (including prior history that fits within the history windows),
1666 *     before re-evaluation.
1667 *
1668 * FINDING BEST STARTING MODULATION MODE:
1669 *
1670 * After working with a modulation mode for a "while" (and doing rate scaling),
1671 * the driver searches for a new initial mode in an attempt to improve
1672 * throughput.  The "while" is measured by numbers of attempted frames:
1673 *
1674 * For legacy mode, search for new mode after:
1675 *   480 successful frames, or 160 failed frames
1676 * For high-throughput modes (SISO or MIMO), search for new mode after:
1677 *   4500 successful frames, or 400 failed frames
1678 *
1679 * Mode switch possibilities are (3 for each mode):
1680 *
1681 * For legacy:
1682 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1683 * For SISO:
1684 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1685 * For MIMO:
1686 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1687 *
1688 * When trying a new mode, use the same bit rate as the old/current mode when
1689 * trying antenna switches and shortened guard interval.  When switching to
1690 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1691 * for which the expected throughput (under perfect conditions) is about the
1692 * same or slightly better than the actual measured throughput delivered by
1693 * the old/current mode.
1694 *
1695 * Actual throughput can be estimated by multiplying the expected throughput
1696 * by the success ratio (successful / attempted tx frames).  Frame size is
1697 * not considered in this calculation; it assumes that frame size will average
1698 * out to be fairly consistent over several samples.  The following are
1699 * metric values for expected throughput assuming 100% success ratio.
1700 * Only G band has support for CCK rates:
1701 *
1702 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1703 *
1704 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1705 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1706 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1707 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1708 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1709 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1710 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1711 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1712 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1713 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1714 *
1715 * After the new mode has been tried for a short while (minimum of 6 failed
1716 * frames or 8 successful frames), compare success ratio and actual throughput
1717 * estimate of the new mode with the old.  If either is better with the new
1718 * mode, continue to use the new mode.
1719 *
1720 * Continue comparing modes until all 3 possibilities have been tried.
1721 * If moving from legacy to HT, try all 3 possibilities from the new HT
1722 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1723 * for the longer "while" described above (e.g. 480 successful frames for
1724 * legacy), and then repeat the search process.
1725 *
1726 */
1727struct iwl_link_quality_cmd {
1728
1729	/* Index of destination/recipient station in uCode's station table */
1730	u8 sta_id;
1731	u8 reserved1;
1732	__le16 control;		/* not used */
1733	struct iwl_link_qual_general_params general_params;
1734	struct iwl_link_qual_agg_params agg_params;
1735
1736	/*
1737	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1738	 * specifies 1st Tx rate attempted, via index into this table.
1739	 * agn devices works its way through table when retrying Tx.
1740	 */
1741	struct {
1742		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1743	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1744	__le32 reserved2;
1745} __packed;
1746
1747/*
1748 * BT configuration enable flags:
1749 *   bit 0 - 1: BT channel announcement enabled
1750 *           0: disable
1751 *   bit 1 - 1: priority of BT device enabled
1752 *           0: disable
1753 *   bit 2 - 1: BT 2 wire support enabled
1754 *           0: disable
1755 */
1756#define BT_COEX_DISABLE (0x0)
1757#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1758#define BT_ENABLE_PRIORITY	   BIT(1)
1759#define BT_ENABLE_2_WIRE	   BIT(2)
1760
1761#define BT_COEX_DISABLE (0x0)
1762#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1763
1764#define BT_LEAD_TIME_MIN (0x0)
1765#define BT_LEAD_TIME_DEF (0x1E)
1766#define BT_LEAD_TIME_MAX (0xFF)
1767
1768#define BT_MAX_KILL_MIN (0x1)
1769#define BT_MAX_KILL_DEF (0x5)
1770#define BT_MAX_KILL_MAX (0xFF)
1771
1772#define BT_DURATION_LIMIT_DEF	625
1773#define BT_DURATION_LIMIT_MAX	1250
1774#define BT_DURATION_LIMIT_MIN	625
1775
1776#define BT_ON_THRESHOLD_DEF	4
1777#define BT_ON_THRESHOLD_MAX	1000
1778#define BT_ON_THRESHOLD_MIN	1
1779
1780#define BT_FRAG_THRESHOLD_DEF	0
1781#define BT_FRAG_THRESHOLD_MAX	0
1782#define BT_FRAG_THRESHOLD_MIN	0
1783
1784#define BT_AGG_THRESHOLD_DEF	1200
1785#define BT_AGG_THRESHOLD_MAX	8000
1786#define BT_AGG_THRESHOLD_MIN	400
1787
1788/*
1789 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1790 *
1791 * agn devices support hardware handshake with Bluetooth device on
1792 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1793 * wireless device can delay or kill its own Tx to accommodate.
1794 */
1795struct iwl_bt_cmd {
1796	u8 flags;
1797	u8 lead_time;
1798	u8 max_kill;
1799	u8 reserved;
1800	__le32 kill_ack_mask;
1801	__le32 kill_cts_mask;
1802} __packed;
1803
1804#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1805
1806#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1807#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1808#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1809#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1810#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1811#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1812
1813#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1814/* Disable Sync PSPoll on SCO/eSCO */
1815#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1816
1817#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1818#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1819
1820#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1821#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1822#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1823#define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1824
1825#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1826
1827#define IWLAGN_BT3_T7_DEFAULT		1
1828
1829enum iwl_bt_kill_idx {
1830	IWL_BT_KILL_DEFAULT = 0,
1831	IWL_BT_KILL_OVERRIDE = 1,
1832	IWL_BT_KILL_REDUCE = 2,
1833};
1834
1835#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1836#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1837#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1838#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1839
1840#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1841
1842#define IWLAGN_BT3_T2_DEFAULT		0xc
1843
1844#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1845#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1846#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1847#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1848#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1849#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1850#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1851#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1852
1853#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1854					IWLAGN_BT_VALID_BOOST | \
1855					IWLAGN_BT_VALID_MAX_KILL | \
1856					IWLAGN_BT_VALID_3W_TIMERS | \
1857					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1858					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1859					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1860					IWLAGN_BT_VALID_3W_LUT)
1861
1862#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1863
1864#define IWLAGN_BT_DECISION_LUT_SIZE	12
1865
1866struct iwl_basic_bt_cmd {
1867	u8 flags;
1868	u8 ledtime; /* unused */
1869	u8 max_kill;
1870	u8 bt3_timer_t7_value;
1871	__le32 kill_ack_mask;
1872	__le32 kill_cts_mask;
1873	u8 bt3_prio_sample_time;
1874	u8 bt3_timer_t2_value;
1875	__le16 bt4_reaction_time; /* unused */
1876	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1877	/*
1878	 * bit 0: use reduced tx power for control frame
1879	 * bit 1 - 7: reserved
1880	 */
1881	u8 reduce_txpower;
1882	u8 reserved;
1883	__le16 valid;
1884};
1885
1886struct iwl_bt_cmd_v1 {
1887	struct iwl_basic_bt_cmd basic;
1888	u8 prio_boost;
1889	/*
1890	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1891	 * if configure the following patterns
1892	 */
1893	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1894	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1895};
1896
1897struct iwl_bt_cmd_v2 {
1898	struct iwl_basic_bt_cmd basic;
1899	__le32 prio_boost;
1900	/*
1901	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1902	 * if configure the following patterns
1903	 */
1904	u8 reserved;
1905	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1906	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1907};
1908
1909#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1910
1911struct iwlagn_bt_sco_cmd {
1912	__le32 flags;
1913};
1914
1915/******************************************************************************
1916 * (6)
1917 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1918 *
1919 *****************************************************************************/
1920
1921/*
1922 * Spectrum Management
1923 */
1924#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1925				 RXON_FILTER_CTL2HOST_MSK        | \
1926				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1927				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1928				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1929				 RXON_FILTER_ASSOC_MSK           | \
1930				 RXON_FILTER_BCON_AWARE_MSK)
1931
1932struct iwl_measure_channel {
1933	__le32 duration;	/* measurement duration in extended beacon
1934				 * format */
1935	u8 channel;		/* channel to measure */
1936	u8 type;		/* see enum iwl_measure_type */
1937	__le16 reserved;
1938} __packed;
1939
1940/*
1941 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1942 */
1943struct iwl_spectrum_cmd {
1944	__le16 len;		/* number of bytes starting from token */
1945	u8 token;		/* token id */
1946	u8 id;			/* measurement id -- 0 or 1 */
1947	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
1948	u8 periodic;		/* 1 = periodic */
1949	__le16 path_loss_timeout;
1950	__le32 start_time;	/* start time in extended beacon format */
1951	__le32 reserved2;
1952	__le32 flags;		/* rxon flags */
1953	__le32 filter_flags;	/* rxon filter flags */
1954	__le16 channel_count;	/* minimum 1, maximum 10 */
1955	__le16 reserved3;
1956	struct iwl_measure_channel channels[10];
1957} __packed;
1958
1959/*
1960 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1961 */
1962struct iwl_spectrum_resp {
1963	u8 token;
1964	u8 id;			/* id of the prior command replaced, or 0xff */
1965	__le16 status;		/* 0 - command will be handled
1966				 * 1 - cannot handle (conflicts with another
1967				 *     measurement) */
1968} __packed;
1969
1970enum iwl_measurement_state {
1971	IWL_MEASUREMENT_START = 0,
1972	IWL_MEASUREMENT_STOP = 1,
1973};
1974
1975enum iwl_measurement_status {
1976	IWL_MEASUREMENT_OK = 0,
1977	IWL_MEASUREMENT_CONCURRENT = 1,
1978	IWL_MEASUREMENT_CSA_CONFLICT = 2,
1979	IWL_MEASUREMENT_TGH_CONFLICT = 3,
1980	/* 4-5 reserved */
1981	IWL_MEASUREMENT_STOPPED = 6,
1982	IWL_MEASUREMENT_TIMEOUT = 7,
1983	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1984};
1985
1986#define NUM_ELEMENTS_IN_HISTOGRAM 8
1987
1988struct iwl_measurement_histogram {
1989	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
1990	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
1991} __packed;
1992
1993/* clear channel availability counters */
1994struct iwl_measurement_cca_counters {
1995	__le32 ofdm;
1996	__le32 cck;
1997} __packed;
1998
1999enum iwl_measure_type {
2000	IWL_MEASURE_BASIC = (1 << 0),
2001	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2002	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2003	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2004	IWL_MEASURE_FRAME = (1 << 4),
2005	/* bits 5:6 are reserved */
2006	IWL_MEASURE_IDLE = (1 << 7),
2007};
2008
2009/*
2010 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2011 */
2012struct iwl_spectrum_notification {
2013	u8 id;			/* measurement id -- 0 or 1 */
2014	u8 token;
2015	u8 channel_index;	/* index in measurement channel list */
2016	u8 state;		/* 0 - start, 1 - stop */
2017	__le32 start_time;	/* lower 32-bits of TSF */
2018	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2019	u8 channel;
2020	u8 type;		/* see enum iwl_measurement_type */
2021	u8 reserved1;
2022	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2023	 * valid if applicable for measurement type requested. */
2024	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2025	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2026	__le32 cca_time;	/* channel load time in usecs */
2027	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2028				 * unidentified */
2029	u8 reserved2[3];
2030	struct iwl_measurement_histogram histogram;
2031	__le32 stop_time;	/* lower 32-bits of TSF */
2032	__le32 status;		/* see iwl_measurement_status */
2033} __packed;
2034
2035/******************************************************************************
2036 * (7)
2037 * Power Management Commands, Responses, Notifications:
2038 *
2039 *****************************************************************************/
2040
2041/**
2042 * struct iwl_powertable_cmd - Power Table Command
2043 * @flags: See below:
2044 *
2045 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2046 *
2047 * PM allow:
2048 *   bit 0 - '0' Driver not allow power management
2049 *           '1' Driver allow PM (use rest of parameters)
2050 *
2051 * uCode send sleep notifications:
2052 *   bit 1 - '0' Don't send sleep notification
2053 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2054 *
2055 * Sleep over DTIM
2056 *   bit 2 - '0' PM have to walk up every DTIM
2057 *           '1' PM could sleep over DTIM till listen Interval.
2058 *
2059 * PCI power managed
2060 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2061 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2062 *
2063 * Fast PD
2064 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2065 *
2066 * Force sleep Modes
2067 *   bit 31/30- '00' use both mac/xtal sleeps
2068 *              '01' force Mac sleep
2069 *              '10' force xtal sleep
2070 *              '11' Illegal set
2071 *
2072 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2073 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2074 * for every DTIM.
2075 */
2076#define IWL_POWER_VEC_SIZE 5
2077
2078#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2079#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2080#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2081#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2082#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2083#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2084#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2085#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2086#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2087#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2088#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2089
2090struct iwl_powertable_cmd {
2091	__le16 flags;
2092	u8 keep_alive_seconds;
2093	u8 debug_flags;
2094	__le32 rx_data_timeout;
2095	__le32 tx_data_timeout;
2096	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2097	__le32 keep_alive_beacons;
2098} __packed;
2099
2100/*
2101 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2102 * all devices identical.
2103 */
2104struct iwl_sleep_notification {
2105	u8 pm_sleep_mode;
2106	u8 pm_wakeup_src;
2107	__le16 reserved;
2108	__le32 sleep_time;
2109	__le32 tsf_low;
2110	__le32 bcon_timer;
2111} __packed;
2112
2113/* Sleep states.  all devices identical. */
2114enum {
2115	IWL_PM_NO_SLEEP = 0,
2116	IWL_PM_SLP_MAC = 1,
2117	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2118	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2119	IWL_PM_SLP_PHY = 4,
2120	IWL_PM_SLP_REPENT = 5,
2121	IWL_PM_WAKEUP_BY_TIMER = 6,
2122	IWL_PM_WAKEUP_BY_DRIVER = 7,
2123	IWL_PM_WAKEUP_BY_RFKILL = 8,
2124	/* 3 reserved */
2125	IWL_PM_NUM_OF_MODES = 12,
2126};
2127
2128/*
2129 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2130 */
2131#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2132#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2133#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2134struct iwl_card_state_cmd {
2135	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2136} __packed;
2137
2138/*
2139 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2140 */
2141struct iwl_card_state_notif {
2142	__le32 flags;
2143} __packed;
2144
2145#define HW_CARD_DISABLED   0x01
2146#define SW_CARD_DISABLED   0x02
2147#define CT_CARD_DISABLED   0x04
2148#define RXON_CARD_DISABLED 0x10
2149
2150struct iwl_ct_kill_config {
2151	__le32   reserved;
2152	__le32   critical_temperature_M;
2153	__le32   critical_temperature_R;
2154}  __packed;
2155
2156/* 1000, and 6x00 */
2157struct iwl_ct_kill_throttling_config {
2158	__le32   critical_temperature_exit;
2159	__le32   reserved;
2160	__le32   critical_temperature_enter;
2161}  __packed;
2162
2163/******************************************************************************
2164 * (8)
2165 * Scan Commands, Responses, Notifications:
2166 *
2167 *****************************************************************************/
2168
2169#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2170#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2171
2172/**
2173 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2174 *
2175 * One for each channel in the scan list.
2176 * Each channel can independently select:
2177 * 1)  SSID for directed active scans
2178 * 2)  Txpower setting (for rate specified within Tx command)
2179 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2180 *     quiet_plcp_th, good_CRC_th)
2181 *
2182 * To avoid uCode errors, make sure the following are true (see comments
2183 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2184 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2185 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2186 * 2)  quiet_time <= active_dwell
2187 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2188 *     passive_dwell < max_out_time
2189 *     active_dwell < max_out_time
2190 */
2191
2192struct iwl_scan_channel {
2193	/*
2194	 * type is defined as:
2195	 * 0:0 1 = active, 0 = passive
2196	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2197	 *     SSID IE is transmitted in probe request.
2198	 * 21:31 reserved
2199	 */
2200	__le32 type;
2201	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2202	u8 tx_gain;		/* gain for analog radio */
2203	u8 dsp_atten;		/* gain for DSP */
2204	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2205	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2206} __packed;
2207
2208/* set number of direct probes __le32 type */
2209#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2210
2211/**
2212 * struct iwl_ssid_ie - directed scan network information element
2213 *
2214 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2215 * selected by "type" bit field in struct iwl_scan_channel;
2216 * each channel may select different ssids from among the 20 entries.
2217 * SSID IEs get transmitted in reverse order of entry.
2218 */
2219struct iwl_ssid_ie {
2220	u8 id;
2221	u8 len;
2222	u8 ssid[32];
2223} __packed;
2224
2225#define PROBE_OPTION_MAX		20
2226#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2227#define IWL_GOOD_CRC_TH_DISABLED	0
2228#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2229#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2230#define IWL_MAX_CMD_SIZE 4096
2231
2232/*
2233 * REPLY_SCAN_CMD = 0x80 (command)
2234 *
2235 * The hardware scan command is very powerful; the driver can set it up to
2236 * maintain (relatively) normal network traffic while doing a scan in the
2237 * background.  The max_out_time and suspend_time control the ratio of how
2238 * long the device stays on an associated network channel ("service channel")
2239 * vs. how long it's away from the service channel, i.e. tuned to other channels
2240 * for scanning.
2241 *
2242 * max_out_time is the max time off-channel (in usec), and suspend_time
2243 * is how long (in "extended beacon" format) that the scan is "suspended"
2244 * after returning to the service channel.  That is, suspend_time is the
2245 * time that we stay on the service channel, doing normal work, between
2246 * scan segments.  The driver may set these parameters differently to support
2247 * scanning when associated vs. not associated, and light vs. heavy traffic
2248 * loads when associated.
2249 *
2250 * After receiving this command, the device's scan engine does the following;
2251 *
2252 * 1)  Sends SCAN_START notification to driver
2253 * 2)  Checks to see if it has time to do scan for one channel
2254 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2255 *     to tell AP that we're going off-channel
2256 * 4)  Tunes to first channel in scan list, does active or passive scan
2257 * 5)  Sends SCAN_RESULT notification to driver
2258 * 6)  Checks to see if it has time to do scan on *next* channel in list
2259 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2260 *     before max_out_time expires
2261 * 8)  Returns to service channel
2262 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2263 * 10) Stays on service channel until suspend_time expires
2264 * 11) Repeats entire process 2-10 until list is complete
2265 * 12) Sends SCAN_COMPLETE notification
2266 *
2267 * For fast, efficient scans, the scan command also has support for staying on
2268 * a channel for just a short time, if doing active scanning and getting no
2269 * responses to the transmitted probe request.  This time is controlled by
2270 * quiet_time, and the number of received packets below which a channel is
2271 * considered "quiet" is controlled by quiet_plcp_threshold.
2272 *
2273 * For active scanning on channels that have regulatory restrictions against
2274 * blindly transmitting, the scan can listen before transmitting, to make sure
2275 * that there is already legitimate activity on the channel.  If enough
2276 * packets are cleanly received on the channel (controlled by good_CRC_th,
2277 * typical value 1), the scan engine starts transmitting probe requests.
2278 *
2279 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2280 *
2281 * To avoid uCode errors, see timing restrictions described under
2282 * struct iwl_scan_channel.
2283 */
2284
2285enum iwl_scan_flags {
2286	/* BIT(0) currently unused */
2287	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2288	/* bits 2-7 reserved */
2289};
2290
2291struct iwl_scan_cmd {
2292	__le16 len;
2293	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2294	u8 channel_count;	/* # channels in channel list */
2295	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2296				 * (only for active scan) */
2297	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2298	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2299	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2300	__le32 max_out_time;	/* max usec to be away from associated (service)
2301				 * channel */
2302	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2303				 * format") when returning to service chnl:
2304				 */
2305	__le32 flags;		/* RXON_FLG_* */
2306	__le32 filter_flags;	/* RXON_FILTER_* */
2307
2308	/* For active scans (set to all-0s for passive scans).
2309	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2310	struct iwl_tx_cmd tx_cmd;
2311
2312	/* For directed active scans (set to all-0s otherwise) */
2313	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2314
2315	/*
2316	 * Probe request frame, followed by channel list.
2317	 *
2318	 * Size of probe request frame is specified by byte count in tx_cmd.
2319	 * Channel list follows immediately after probe request frame.
2320	 * Number of channels in list is specified by channel_count.
2321	 * Each channel in list is of type:
2322	 *
2323	 * struct iwl_scan_channel channels[0];
2324	 *
2325	 * NOTE:  Only one band of channels can be scanned per pass.  You
2326	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2327	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2328	 * before requesting another scan.
2329	 */
2330	u8 data[];
2331} __packed;
2332
2333/* Can abort will notify by complete notification with abort status. */
2334#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2335/* complete notification statuses */
2336#define ABORT_STATUS            0x2
2337
2338/*
2339 * REPLY_SCAN_CMD = 0x80 (response)
2340 */
2341struct iwl_scanreq_notification {
2342	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2343} __packed;
2344
2345/*
2346 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2347 */
2348struct iwl_scanstart_notification {
2349	__le32 tsf_low;
2350	__le32 tsf_high;
2351	__le32 beacon_timer;
2352	u8 channel;
2353	u8 band;
2354	u8 reserved[2];
2355	__le32 status;
2356} __packed;
2357
2358#define  SCAN_OWNER_STATUS 0x1
2359#define  MEASURE_OWNER_STATUS 0x2
2360
2361#define IWL_PROBE_STATUS_OK		0
2362#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2363/* error statuses combined with TX_FAILED */
2364#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2365#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2366
2367#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2368/*
2369 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2370 */
2371struct iwl_scanresults_notification {
2372	u8 channel;
2373	u8 band;
2374	u8 probe_status;
2375	u8 num_probe_not_sent; /* not enough time to send */
2376	__le32 tsf_low;
2377	__le32 tsf_high;
2378	__le32 statistics[NUMBER_OF_STATISTICS];
2379} __packed;
2380
2381/*
2382 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2383 */
2384struct iwl_scancomplete_notification {
2385	u8 scanned_channels;
2386	u8 status;
2387	u8 bt_status;	/* BT On/Off status */
2388	u8 last_channel;
2389	__le32 tsf_low;
2390	__le32 tsf_high;
2391} __packed;
2392
2393
2394/******************************************************************************
2395 * (9)
2396 * IBSS/AP Commands and Notifications:
2397 *
2398 *****************************************************************************/
2399
2400enum iwl_ibss_manager {
2401	IWL_NOT_IBSS_MANAGER = 0,
2402	IWL_IBSS_MANAGER = 1,
2403};
2404
2405/*
2406 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2407 */
2408
2409struct iwlagn_beacon_notif {
2410	struct iwlagn_tx_resp beacon_notify_hdr;
2411	__le32 low_tsf;
2412	__le32 high_tsf;
2413	__le32 ibss_mgr_status;
2414} __packed;
2415
2416/*
2417 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2418 */
2419
2420struct iwl_tx_beacon_cmd {
2421	struct iwl_tx_cmd tx;
2422	__le16 tim_idx;
2423	u8 tim_size;
2424	u8 reserved1;
2425	struct ieee80211_hdr frame[];	/* beacon frame */
2426} __packed;
2427
2428/******************************************************************************
2429 * (10)
2430 * Statistics Commands and Notifications:
2431 *
2432 *****************************************************************************/
2433
2434#define IWL_TEMP_CONVERT 260
2435
2436#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2437#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2438#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2439
2440/* Used for passing to driver number of successes and failures per rate */
2441struct rate_histogram {
2442	union {
2443		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2444		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2445		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2446	} success;
2447	union {
2448		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2449		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2450		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2451	} failed;
2452} __packed;
2453
2454/* statistics command response */
2455
2456struct statistics_dbg {
2457	__le32 burst_check;
2458	__le32 burst_count;
2459	__le32 wait_for_silence_timeout_cnt;
2460	__le32 reserved[3];
2461} __packed;
2462
2463struct statistics_rx_phy {
2464	__le32 ina_cnt;
2465	__le32 fina_cnt;
2466	__le32 plcp_err;
2467	__le32 crc32_err;
2468	__le32 overrun_err;
2469	__le32 early_overrun_err;
2470	__le32 crc32_good;
2471	__le32 false_alarm_cnt;
2472	__le32 fina_sync_err_cnt;
2473	__le32 sfd_timeout;
2474	__le32 fina_timeout;
2475	__le32 unresponded_rts;
2476	__le32 rxe_frame_limit_overrun;
2477	__le32 sent_ack_cnt;
2478	__le32 sent_cts_cnt;
2479	__le32 sent_ba_rsp_cnt;
2480	__le32 dsp_self_kill;
2481	__le32 mh_format_err;
2482	__le32 re_acq_main_rssi_sum;
2483	__le32 reserved3;
2484} __packed;
2485
2486struct statistics_rx_ht_phy {
2487	__le32 plcp_err;
2488	__le32 overrun_err;
2489	__le32 early_overrun_err;
2490	__le32 crc32_good;
2491	__le32 crc32_err;
2492	__le32 mh_format_err;
2493	__le32 agg_crc32_good;
2494	__le32 agg_mpdu_cnt;
2495	__le32 agg_cnt;
2496	__le32 unsupport_mcs;
2497} __packed;
2498
2499#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2500
2501struct statistics_rx_non_phy {
2502	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2503	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2504	__le32 non_bssid_frames;	/* number of frames with BSSID that
2505					 * doesn't belong to the STA BSSID */
2506	__le32 filtered_frames;	/* count frames that were dumped in the
2507				 * filtering process */
2508	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2509					 * our serving channel */
2510	__le32 channel_beacons;	/* beacons with our bss id and in our
2511				 * serving channel */
2512	__le32 num_missed_bcon;	/* number of missed beacons */
2513	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2514					 * ADC was in saturation */
2515	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2516					  * for INA */
2517	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2518	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2519	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2520	__le32 interference_data_flag;	/* flag for interference data
2521					 * availability. 1 when data is
2522					 * available. */
2523	__le32 channel_load;		/* counts RX Enable time in uSec */
2524	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2525					 * and CCK) counter */
2526	__le32 beacon_rssi_a;
2527	__le32 beacon_rssi_b;
2528	__le32 beacon_rssi_c;
2529	__le32 beacon_energy_a;
2530	__le32 beacon_energy_b;
2531	__le32 beacon_energy_c;
2532} __packed;
2533
2534struct statistics_rx_non_phy_bt {
2535	struct statistics_rx_non_phy common;
2536	/* additional stats for bt */
2537	__le32 num_bt_kills;
2538	__le32 reserved[2];
2539} __packed;
2540
2541struct statistics_rx {
2542	struct statistics_rx_phy ofdm;
2543	struct statistics_rx_phy cck;
2544	struct statistics_rx_non_phy general;
2545	struct statistics_rx_ht_phy ofdm_ht;
2546} __packed;
2547
2548struct statistics_rx_bt {
2549	struct statistics_rx_phy ofdm;
2550	struct statistics_rx_phy cck;
2551	struct statistics_rx_non_phy_bt general;
2552	struct statistics_rx_ht_phy ofdm_ht;
2553} __packed;
2554
2555/**
2556 * struct statistics_tx_power - current tx power
2557 *
2558 * @ant_a: current tx power on chain a in 1/2 dB step
2559 * @ant_b: current tx power on chain b in 1/2 dB step
2560 * @ant_c: current tx power on chain c in 1/2 dB step
2561 */
2562struct statistics_tx_power {
2563	u8 ant_a;
2564	u8 ant_b;
2565	u8 ant_c;
2566	u8 reserved;
2567} __packed;
2568
2569struct statistics_tx_non_phy_agg {
2570	__le32 ba_timeout;
2571	__le32 ba_reschedule_frames;
2572	__le32 scd_query_agg_frame_cnt;
2573	__le32 scd_query_no_agg;
2574	__le32 scd_query_agg;
2575	__le32 scd_query_mismatch;
2576	__le32 frame_not_ready;
2577	__le32 underrun;
2578	__le32 bt_prio_kill;
2579	__le32 rx_ba_rsp_cnt;
2580} __packed;
2581
2582struct statistics_tx {
2583	__le32 preamble_cnt;
2584	__le32 rx_detected_cnt;
2585	__le32 bt_prio_defer_cnt;
2586	__le32 bt_prio_kill_cnt;
2587	__le32 few_bytes_cnt;
2588	__le32 cts_timeout;
2589	__le32 ack_timeout;
2590	__le32 expected_ack_cnt;
2591	__le32 actual_ack_cnt;
2592	__le32 dump_msdu_cnt;
2593	__le32 burst_abort_next_frame_mismatch_cnt;
2594	__le32 burst_abort_missing_next_frame_cnt;
2595	__le32 cts_timeout_collision;
2596	__le32 ack_or_ba_timeout_collision;
2597	struct statistics_tx_non_phy_agg agg;
2598	/*
2599	 * "tx_power" are optional parameters provided by uCode,
2600	 * 6000 series is the only device provide the information,
2601	 * Those are reserved fields for all the other devices
2602	 */
2603	struct statistics_tx_power tx_power;
2604	__le32 reserved1;
2605} __packed;
2606
2607
2608struct statistics_div {
2609	__le32 tx_on_a;
2610	__le32 tx_on_b;
2611	__le32 exec_time;
2612	__le32 probe_time;
2613	__le32 reserved1;
2614	__le32 reserved2;
2615} __packed;
2616
2617struct statistics_general_common {
2618	__le32 temperature;   /* radio temperature */
2619	__le32 temperature_m; /* radio voltage */
2620	struct statistics_dbg dbg;
2621	__le32 sleep_time;
2622	__le32 slots_out;
2623	__le32 slots_idle;
2624	__le32 ttl_timestamp;
2625	struct statistics_div div;
2626	__le32 rx_enable_counter;
2627	/*
2628	 * num_of_sos_states:
2629	 *  count the number of times we have to re-tune
2630	 *  in order to get out of bad PHY status
2631	 */
2632	__le32 num_of_sos_states;
2633} __packed;
2634
2635struct statistics_bt_activity {
2636	/* Tx statistics */
2637	__le32 hi_priority_tx_req_cnt;
2638	__le32 hi_priority_tx_denied_cnt;
2639	__le32 lo_priority_tx_req_cnt;
2640	__le32 lo_priority_tx_denied_cnt;
2641	/* Rx statistics */
2642	__le32 hi_priority_rx_req_cnt;
2643	__le32 hi_priority_rx_denied_cnt;
2644	__le32 lo_priority_rx_req_cnt;
2645	__le32 lo_priority_rx_denied_cnt;
2646} __packed;
2647
2648struct statistics_general {
2649	struct statistics_general_common common;
2650	__le32 reserved2;
2651	__le32 reserved3;
2652} __packed;
2653
2654struct statistics_general_bt {
2655	struct statistics_general_common common;
2656	struct statistics_bt_activity activity;
2657	__le32 reserved2;
2658	__le32 reserved3;
2659} __packed;
2660
2661#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2662#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2663#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2664
2665/*
2666 * REPLY_STATISTICS_CMD = 0x9c,
2667 * all devices identical.
2668 *
2669 * This command triggers an immediate response containing uCode statistics.
2670 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2671 *
2672 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2673 * internal copy of the statistics (counters) after issuing the response.
2674 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2675 *
2676 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2677 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2678 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2679 */
2680#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2681#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2682struct iwl_statistics_cmd {
2683	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2684} __packed;
2685
2686/*
2687 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2688 *
2689 * By default, uCode issues this notification after receiving a beacon
2690 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2691 * REPLY_STATISTICS_CMD 0x9c, above.
2692 *
2693 * Statistics counters continue to increment beacon after beacon, but are
2694 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2695 * 0x9c with CLEAR_STATS bit set (see above).
2696 *
2697 * uCode also issues this notification during scans.  uCode clears statistics
2698 * appropriately so that each notification contains statistics for only the
2699 * one channel that has just been scanned.
2700 */
2701#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2702#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2703
2704struct iwl_notif_statistics {
2705	__le32 flag;
2706	struct statistics_rx rx;
2707	struct statistics_tx tx;
2708	struct statistics_general general;
2709} __packed;
2710
2711struct iwl_bt_notif_statistics {
2712	__le32 flag;
2713	struct statistics_rx_bt rx;
2714	struct statistics_tx tx;
2715	struct statistics_general_bt general;
2716} __packed;
2717
2718/*
2719 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2720 *
2721 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2722 * in regardless of how many missed beacons, which mean when driver receive the
2723 * notification, inside the command, it can find all the beacons information
2724 * which include number of total missed beacons, number of consecutive missed
2725 * beacons, number of beacons received and number of beacons expected to
2726 * receive.
2727 *
2728 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2729 * in order to bring the radio/PHY back to working state; which has no relation
2730 * to when driver will perform sensitivity calibration.
2731 *
2732 * Driver should set it own missed_beacon_threshold to decide when to perform
2733 * sensitivity calibration based on number of consecutive missed beacons in
2734 * order to improve overall performance, especially in noisy environment.
2735 *
2736 */
2737
2738#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2739#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2740#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2741
2742struct iwl_missed_beacon_notif {
2743	__le32 consecutive_missed_beacons;
2744	__le32 total_missed_becons;
2745	__le32 num_expected_beacons;
2746	__le32 num_recvd_beacons;
2747} __packed;
2748
2749
2750/******************************************************************************
2751 * (11)
2752 * Rx Calibration Commands:
2753 *
2754 * With the uCode used for open source drivers, most Tx calibration (except
2755 * for Tx Power) and most Rx calibration is done by uCode during the
2756 * "initialize" phase of uCode boot.  Driver must calibrate only:
2757 *
2758 * 1)  Tx power (depends on temperature), described elsewhere
2759 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2760 * 3)  Receiver sensitivity (to optimize signal detection)
2761 *
2762 *****************************************************************************/
2763
2764/**
2765 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2766 *
2767 * This command sets up the Rx signal detector for a sensitivity level that
2768 * is high enough to lock onto all signals within the associated network,
2769 * but low enough to ignore signals that are below a certain threshold, so as
2770 * not to have too many "false alarms".  False alarms are signals that the
2771 * Rx DSP tries to lock onto, but then discards after determining that they
2772 * are noise.
2773 *
2774 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2775 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2776 * time listening, not transmitting).  Driver must adjust sensitivity so that
2777 * the ratio of actual false alarms to actual Rx time falls within this range.
2778 *
2779 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2780 * received beacon.  These provide information to the driver to analyze the
2781 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2782 * other non-associated-network source.  Pertinent statistics include:
2783 *
2784 * From "general" statistics (struct statistics_rx_non_phy):
2785 *
2786 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2787 *   Measure of energy of desired signal.  Used for establishing a level
2788 *   below which the device does not detect signals.
2789 *
2790 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2791 *   Measure of background noise in silent period after beacon.
2792 *
2793 * channel_load
2794 *   uSecs of actual Rx time during beacon period (varies according to
2795 *   how much time was spent transmitting).
2796 *
2797 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2798 *
2799 * false_alarm_cnt
2800 *   Signal locks abandoned early (before phy-level header).
2801 *
2802 * plcp_err
2803 *   Signal locks abandoned late (during phy-level header).
2804 *
2805 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2806 *        beacon to beacon, i.e. each value is an accumulation of all errors
2807 *        before and including the latest beacon.  Values will wrap around to 0
2808 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2809 *        previous beacon's values to determine # false alarms in the current
2810 *        beacon period.
2811 *
2812 * Total number of false alarms = false_alarms + plcp_errs
2813 *
2814 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2815 * (notice that the start points for OFDM are at or close to settings for
2816 * maximum sensitivity):
2817 *
2818 *                                             START  /  MIN  /  MAX
2819 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2820 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2821 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2822 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2823 *
2824 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2825 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2826 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2827 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2828 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2829 *   increase sensitivity.
2830 *
2831 * For CCK sensitivity, keep track of the following:
2832 *
2833 *   1).  20-beacon history of maximum background noise, indicated by
2834 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2835 *        3 receivers.  For any given beacon, the "silence reference" is
2836 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2837 *
2838 *   2).  10-beacon history of strongest signal level, as indicated
2839 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2840 *        i.e. the strength of the signal through the best receiver at the
2841 *        moment.  These measurements are "upside down", with lower values
2842 *        for stronger signals, so max energy will be *minimum* value.
2843 *
2844 *        Then for any given beacon, the driver must determine the *weakest*
2845 *        of the strongest signals; this is the minimum level that needs to be
2846 *        successfully detected, when using the best receiver at the moment.
2847 *        "Max cck energy" is the maximum (higher value means lower energy!)
2848 *        of the last 10 minima.  Once this is determined, driver must add
2849 *        a little margin by adding "6" to it.
2850 *
2851 *   3).  Number of consecutive beacon periods with too few false alarms.
2852 *        Reset this to 0 at the first beacon period that falls within the
2853 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2854 *
2855 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2856 * (notice that the start points for CCK are at maximum sensitivity):
2857 *
2858 *                                             START  /  MIN  /  MAX
2859 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2860 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2861 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2862 *
2863 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2864 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2865 *   sensitivity is:
2866 *
2867 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2868 *       up to max 400.
2869 *
2870 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2871 *       sensitivity has been reduced a significant amount; bring it up to
2872 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2873 *
2874 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2875 *       sensitivity has been reduced only a moderate or small amount;
2876 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2877 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2878 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2879 *
2880 *       b)  Save a snapshot of the "silence reference".
2881 *
2882 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2883 *   (less than 5 for each 204.8 msecs listening), method for increasing
2884 *   sensitivity is used only if:
2885 *
2886 *   1a)  Previous beacon did not have too many false alarms
2887 *   1b)  AND difference between previous "silence reference" and current
2888 *        "silence reference" (prev - current) is 2 or more,
2889 *   OR 2)  100 or more consecutive beacon periods have had rate of
2890 *          less than 5 false alarms per 204.8 milliseconds rx time.
2891 *
2892 *   Method for increasing sensitivity:
2893 *
2894 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2895 *       down to min 125.
2896 *
2897 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2898 *       down to min 200.
2899 *
2900 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2901 *
2902 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2903 *   (between 5 and 50 for each 204.8 msecs listening):
2904 *
2905 *   1)  Save a snapshot of the silence reference.
2906 *
2907 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2908 *       give some extra margin to energy threshold by *subtracting* 8
2909 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2910 *
2911 *   For all cases (too few, too many, good range), make sure that the CCK
2912 *   detection threshold (energy) is below the energy level for robust
2913 *   detection over the past 10 beacon periods, the "Max cck energy".
2914 *   Lower values mean higher energy; this means making sure that the value
2915 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2916 *
2917 */
2918
2919/*
2920 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2921 */
2922#define HD_TABLE_SIZE  (11)	/* number of entries */
2923#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2924#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2925#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2926#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2927#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2928#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2929#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2930#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2931#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2932#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2933#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2934
2935/*
2936 * Additional table entries in enhance SENSITIVITY_CMD
2937 */
2938#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2939#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2940#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2941#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2942#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2943#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2944#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2945#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2946#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
2947#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
2948#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
2949#define HD_RESERVED					(22)
2950
2951/* number of entries for enhanced tbl */
2952#define ENHANCE_HD_TABLE_SIZE  (23)
2953
2954/* number of additional entries for enhanced tbl */
2955#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
2956
2957#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
2958#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
2959#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
2960#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
2961#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2962#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
2963#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
2964#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
2965#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2966#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
2967#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
2968
2969#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
2970#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
2971#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
2972#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
2973#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
2974#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
2975#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
2976#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
2977#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
2978#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
2979#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
2980
2981
2982/* Control field in struct iwl_sensitivity_cmd */
2983#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
2984#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
2985
2986/**
2987 * struct iwl_sensitivity_cmd
2988 * @control:  (1) updates working table, (0) updates default table
2989 * @table:  energy threshold values, use HD_* as index into table
2990 *
2991 * Always use "1" in "control" to update uCode's working table and DSP.
2992 */
2993struct iwl_sensitivity_cmd {
2994	__le16 control;			/* always use "1" */
2995	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
2996} __packed;
2997
2998/*
2999 *
3000 */
3001struct iwl_enhance_sensitivity_cmd {
3002	__le16 control;			/* always use "1" */
3003	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3004} __packed;
3005
3006
3007/**
3008 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3009 *
3010 * This command sets the relative gains of agn device's 3 radio receiver chains.
3011 *
3012 * After the first association, driver should accumulate signal and noise
3013 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3014 * beacons from the associated network (don't collect statistics that come
3015 * in from scanning, or any other non-network source).
3016 *
3017 * DISCONNECTED ANTENNA:
3018 *
3019 * Driver should determine which antennas are actually connected, by comparing
3020 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3021 * following values over 20 beacons, one accumulator for each of the chains
3022 * a/b/c, from struct statistics_rx_non_phy:
3023 *
3024 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3025 *
3026 * Find the strongest signal from among a/b/c.  Compare the other two to the
3027 * strongest.  If any signal is more than 15 dB (times 20, unless you
3028 * divide the accumulated values by 20) below the strongest, the driver
3029 * considers that antenna to be disconnected, and should not try to use that
3030 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3031 * driver should declare the stronger one as connected, and attempt to use it
3032 * (A and B are the only 2 Tx chains!).
3033 *
3034 *
3035 * RX BALANCE:
3036 *
3037 * Driver should balance the 3 receivers (but just the ones that are connected
3038 * to antennas, see above) for gain, by comparing the average signal levels
3039 * detected during the silence after each beacon (background noise).
3040 * Accumulate (add) the following values over 20 beacons, one accumulator for
3041 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3042 *
3043 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3044 *
3045 * Find the weakest background noise level from among a/b/c.  This Rx chain
3046 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3047 * finding noise difference:
3048 *
3049 * (accum_noise[i] - accum_noise[reference]) / 30
3050 *
3051 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3052 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3053 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3054 * and set bit 2 to indicate "reduce gain".  The value for the reference
3055 * (weakest) chain should be "0".
3056 *
3057 * diff_gain_[abc] bit fields:
3058 *   2: (1) reduce gain, (0) increase gain
3059 * 1-0: amount of gain, units of 1.5 dB
3060 */
3061
3062/* Phy calibration command for series */
3063enum {
3064	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3065	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3066	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3067	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3068	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3069	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3070	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3071};
3072
3073/* This enum defines the bitmap of various calibrations to enable in both
3074 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3075 */
3076enum iwl_ucode_calib_cfg {
3077	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3078	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3079	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3080	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3081	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3082	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3083	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3084	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3085	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3086	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3087	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3088};
3089
3090#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3091					IWL_CALIB_CFG_DC_IDX |		\
3092					IWL_CALIB_CFG_LO_IDX |		\
3093					IWL_CALIB_CFG_TX_IQ_IDX |	\
3094					IWL_CALIB_CFG_RX_IQ_IDX |	\
3095					IWL_CALIB_CFG_CRYSTAL_IDX)
3096
3097#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3098					IWL_CALIB_CFG_DC_IDX |		\
3099					IWL_CALIB_CFG_LO_IDX |		\
3100					IWL_CALIB_CFG_TX_IQ_IDX |	\
3101					IWL_CALIB_CFG_RX_IQ_IDX |	\
3102					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3103					IWL_CALIB_CFG_PAPD_IDX |	\
3104					IWL_CALIB_CFG_TX_PWR_IDX |	\
3105					IWL_CALIB_CFG_CRYSTAL_IDX)
3106
3107#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3108
3109struct iwl_calib_cfg_elmnt_s {
3110	__le32 is_enable;
3111	__le32 start;
3112	__le32 send_res;
3113	__le32 apply_res;
3114	__le32 reserved;
3115} __packed;
3116
3117struct iwl_calib_cfg_status_s {
3118	struct iwl_calib_cfg_elmnt_s once;
3119	struct iwl_calib_cfg_elmnt_s perd;
3120	__le32 flags;
3121} __packed;
3122
3123struct iwl_calib_cfg_cmd {
3124	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3125	struct iwl_calib_cfg_status_s drv_calib_cfg;
3126	__le32 reserved1;
3127} __packed;
3128
3129struct iwl_calib_hdr {
3130	u8 op_code;
3131	u8 first_group;
3132	u8 groups_num;
3133	u8 data_valid;
3134} __packed;
3135
3136struct iwl_calib_cmd {
3137	struct iwl_calib_hdr hdr;
3138	u8 data[];
3139} __packed;
3140
3141struct iwl_calib_xtal_freq_cmd {
3142	struct iwl_calib_hdr hdr;
3143	u8 cap_pin1;
3144	u8 cap_pin2;
3145	u8 pad[2];
3146} __packed;
3147
3148#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3149struct iwl_calib_temperature_offset_cmd {
3150	struct iwl_calib_hdr hdr;
3151	__le16 radio_sensor_offset;
3152	__le16 reserved;
3153} __packed;
3154
3155struct iwl_calib_temperature_offset_v2_cmd {
3156	struct iwl_calib_hdr hdr;
3157	__le16 radio_sensor_offset_high;
3158	__le16 radio_sensor_offset_low;
3159	__le16 burntVoltageRef;
3160	__le16 reserved;
3161} __packed;
3162
3163/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3164struct iwl_calib_chain_noise_reset_cmd {
3165	struct iwl_calib_hdr hdr;
3166	u8 data[];
3167};
3168
3169/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3170struct iwl_calib_chain_noise_gain_cmd {
3171	struct iwl_calib_hdr hdr;
3172	u8 delta_gain_1;
3173	u8 delta_gain_2;
3174	u8 pad[2];
3175} __packed;
3176
3177/******************************************************************************
3178 * (12)
3179 * Miscellaneous Commands:
3180 *
3181 *****************************************************************************/
3182
3183/*
3184 * LEDs Command & Response
3185 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3186 *
3187 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3188 * this command turns it on or off, or sets up a periodic blinking cycle.
3189 */
3190struct iwl_led_cmd {
3191	__le32 interval;	/* "interval" in uSec */
3192	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3193	u8 off;			/* # intervals off while blinking;
3194				 * "0", with >0 "on" value, turns LED on */
3195	u8 on;			/* # intervals on while blinking;
3196				 * "0", regardless of "off", turns LED off */
3197	u8 reserved;
3198} __packed;
3199
3200/*
3201 * station priority table entries
3202 * also used as potential "events" value for both
3203 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3204 */
3205
3206/*
3207 * COEX events entry flag masks
3208 * RP - Requested Priority
3209 * WP - Win Medium Priority: priority assigned when the contention has been won
3210 */
3211#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3212#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3213#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3214
3215#define COEX_CU_UNASSOC_IDLE_RP               4
3216#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3217#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3218#define COEX_CU_CALIBRATION_RP                4
3219#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3220#define COEX_CU_CONNECTION_ESTAB_RP           4
3221#define COEX_CU_ASSOCIATED_IDLE_RP            4
3222#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3223#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3224#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3225#define COEX_CU_RF_ON_RP                      6
3226#define COEX_CU_RF_OFF_RP                     4
3227#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3228#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3229#define COEX_CU_RSRVD1_RP                     4
3230#define COEX_CU_RSRVD2_RP                     4
3231
3232#define COEX_CU_UNASSOC_IDLE_WP               3
3233#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3234#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3235#define COEX_CU_CALIBRATION_WP                3
3236#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3237#define COEX_CU_CONNECTION_ESTAB_WP           3
3238#define COEX_CU_ASSOCIATED_IDLE_WP            3
3239#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3240#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3241#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3242#define COEX_CU_RF_ON_WP                      3
3243#define COEX_CU_RF_OFF_WP                     3
3244#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3245#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3246#define COEX_CU_RSRVD1_WP                     3
3247#define COEX_CU_RSRVD2_WP                     3
3248
3249#define COEX_UNASSOC_IDLE_FLAGS                     0
3250#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3251	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3252	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3253#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3254	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3255	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3256#define COEX_CALIBRATION_FLAGS			\
3257	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3258	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3259#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3260/*
3261 * COEX_CONNECTION_ESTAB:
3262 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3263 */
3264#define COEX_CONNECTION_ESTAB_FLAGS		\
3265	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3266	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3267	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3268#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3269#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3270	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3271	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3272#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3273	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3274	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3275#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3276#define COEX_RF_ON_FLAGS                            0
3277#define COEX_RF_OFF_FLAGS                           0
3278#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3279	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3280	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3281#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3282	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3283	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3284	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3285#define COEX_RSRVD1_FLAGS                           0
3286#define COEX_RSRVD2_FLAGS                           0
3287/*
3288 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3289 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3290 */
3291#define COEX_CU_RF_ON_FLAGS			\
3292	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3293	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3294	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3295
3296
3297enum {
3298	/* un-association part */
3299	COEX_UNASSOC_IDLE		= 0,
3300	COEX_UNASSOC_MANUAL_SCAN	= 1,
3301	COEX_UNASSOC_AUTO_SCAN		= 2,
3302	/* calibration */
3303	COEX_CALIBRATION		= 3,
3304	COEX_PERIODIC_CALIBRATION	= 4,
3305	/* connection */
3306	COEX_CONNECTION_ESTAB		= 5,
3307	/* association part */
3308	COEX_ASSOCIATED_IDLE		= 6,
3309	COEX_ASSOC_MANUAL_SCAN		= 7,
3310	COEX_ASSOC_AUTO_SCAN		= 8,
3311	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3312	/* RF ON/OFF */
3313	COEX_RF_ON			= 10,
3314	COEX_RF_OFF			= 11,
3315	COEX_STAND_ALONE_DEBUG		= 12,
3316	/* IPAN */
3317	COEX_IPAN_ASSOC_LEVEL		= 13,
3318	/* reserved */
3319	COEX_RSRVD1			= 14,
3320	COEX_RSRVD2			= 15,
3321	COEX_NUM_OF_EVENTS		= 16
3322};
3323
3324/*
3325 * Coexistence WIFI/WIMAX  Command
3326 * COEX_PRIORITY_TABLE_CMD = 0x5a
3327 *
3328 */
3329struct iwl_wimax_coex_event_entry {
3330	u8 request_prio;
3331	u8 win_medium_prio;
3332	u8 reserved;
3333	u8 flags;
3334} __packed;
3335
3336/* COEX flag masks */
3337
3338/* Station table is valid */
3339#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3340/* UnMask wake up src at unassociated sleep */
3341#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3342/* UnMask wake up src at associated sleep */
3343#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3344/* Enable CoEx feature. */
3345#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3346
3347struct iwl_wimax_coex_cmd {
3348	u8 flags;
3349	u8 reserved[3];
3350	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3351} __packed;
3352
3353/*
3354 * Coexistence MEDIUM NOTIFICATION
3355 * COEX_MEDIUM_NOTIFICATION = 0x5b
3356 *
3357 * notification from uCode to host to indicate medium changes
3358 *
3359 */
3360/*
3361 * status field
3362 * bit 0 - 2: medium status
3363 * bit 3: medium change indication
3364 * bit 4 - 31: reserved
3365 */
3366/* status option values, (0 - 2 bits) */
3367#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3368#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3369#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3370#define COEX_MEDIUM_MSK		(0x7)
3371
3372/* send notification status (1 bit) */
3373#define COEX_MEDIUM_CHANGED	(0x8)
3374#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3375#define COEX_MEDIUM_SHIFT	(3)
3376
3377struct iwl_coex_medium_notification {
3378	__le32 status;
3379	__le32 events;
3380} __packed;
3381
3382/*
3383 * Coexistence EVENT  Command
3384 * COEX_EVENT_CMD = 0x5c
3385 *
3386 * send from host to uCode for coex event request.
3387 */
3388/* flags options */
3389#define COEX_EVENT_REQUEST_MSK	(0x1)
3390
3391struct iwl_coex_event_cmd {
3392	u8 flags;
3393	u8 event;
3394	__le16 reserved;
3395} __packed;
3396
3397struct iwl_coex_event_resp {
3398	__le32 status;
3399} __packed;
3400
3401
3402/******************************************************************************
3403 * Bluetooth Coexistence commands
3404 *
3405 *****************************************************************************/
3406
3407/*
3408 * BT Status notification
3409 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3410 */
3411enum iwl_bt_coex_profile_traffic_load {
3412	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3413	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3414	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3415	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3416/*
3417 * There are no more even though below is a u8, the
3418 * indication from the BT device only has two bits.
3419 */
3420};
3421
3422#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3423#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3424
3425/* BT UART message - Share Part (BT -> WiFi) */
3426#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3427#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3428		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3429#define BT_UART_MSG_FRAME1SSN_POS		(3)
3430#define BT_UART_MSG_FRAME1SSN_MSK		\
3431		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3432#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3433#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3434		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3435#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3436#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3437		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3438
3439#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3440#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3441		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3442#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3443#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3444		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3445#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3446#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3447		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3448#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3449#define BT_UART_MSG_FRAME2INBAND_MSK		\
3450		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3451#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3452#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3453		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3454
3455#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3456#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3457		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3458#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3459#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3460		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3461#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3462#define BT_UART_MSG_FRAME3A2DP_MSK		\
3463		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3464#define BT_UART_MSG_FRAME3ACL_POS		(3)
3465#define BT_UART_MSG_FRAME3ACL_MSK		\
3466		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3467#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3468#define BT_UART_MSG_FRAME3MASTER_MSK		\
3469		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3470#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3471#define BT_UART_MSG_FRAME3OBEX_MSK		\
3472		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3473#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3474#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3475		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3476
3477#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3478#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3479		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3480#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3481#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3482		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3483
3484#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3485#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3486		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3487#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3488#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3489		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3490#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3491#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3492		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3493#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3494#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3495		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3496
3497#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3498#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3499		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3500#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3501#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3502		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3503#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3504#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3505		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3506
3507#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3508#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3509		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3510#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3511#define BT_UART_MSG_FRAME7PAGE_MSK		\
3512		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3513#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3514#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3515		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3516#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3517#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3518		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3519#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3520#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3521		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3522
3523/* BT Session Activity 2 UART message (BT -> WiFi) */
3524#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3525#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3526		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3527#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3528#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3529		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3530
3531#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3532#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3533		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3534#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3535#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3536		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3537
3538#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3539#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3540		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3541#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3542#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3543		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3544#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3545#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3546		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3547#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3548#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3549		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3550
3551#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3552#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3553		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3554#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3555#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3556		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3557#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3558#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3559		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3560
3561#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3562#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3563		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3564#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3565#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3566		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3567#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3568#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3569		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3570#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3571#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3572		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3573
3574#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3575#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3576		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3577#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3578#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3579		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3580#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3581#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3582		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3583
3584#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3585#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3586		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3587#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3588#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3589		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3590#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3591#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3592		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3593#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3594#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3595		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3596#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3597#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3598		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3599
3600
3601#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3602#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3603
3604struct iwl_bt_uart_msg {
3605	u8 header;
3606	u8 frame1;
3607	u8 frame2;
3608	u8 frame3;
3609	u8 frame4;
3610	u8 frame5;
3611	u8 frame6;
3612	u8 frame7;
3613} __packed;
3614
3615struct iwl_bt_coex_profile_notif {
3616	struct iwl_bt_uart_msg last_bt_uart_msg;
3617	u8 bt_status; /* 0 - off, 1 - on */
3618	u8 bt_traffic_load; /* 0 .. 3? */
3619	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3620	u8 reserved;
3621} __packed;
3622
3623#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3624#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3625#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3626#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3627#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3628#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3629#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3630
3631/*
3632 * BT Coexistence Priority table
3633 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3634 */
3635enum bt_coex_prio_table_events {
3636	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3637	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3638	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3639	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3640	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3641	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3642	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3643	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3644	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3645	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3646	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3647	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3648	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3649	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3650	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3651	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3652	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3653	BT_COEX_PRIO_TBL_EVT_MAX,
3654};
3655
3656enum bt_coex_prio_table_priorities {
3657	BT_COEX_PRIO_TBL_DISABLED = 0,
3658	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3659	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3660	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3661	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3662	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3663	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3664	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3665	BT_COEX_PRIO_TBL_MAX,
3666};
3667
3668struct iwl_bt_coex_prio_table_cmd {
3669	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3670} __packed;
3671
3672#define IWL_BT_COEX_ENV_CLOSE	0
3673#define IWL_BT_COEX_ENV_OPEN	1
3674/*
3675 * BT Protection Envelope
3676 * REPLY_BT_COEX_PROT_ENV = 0xcd
3677 */
3678struct iwl_bt_coex_prot_env_cmd {
3679	u8 action; /* 0 = closed, 1 = open */
3680	u8 type; /* 0 .. 15 */
3681	u8 reserved[2];
3682} __packed;
3683
3684/*
3685 * REPLY_D3_CONFIG
3686 */
3687enum iwlagn_d3_wakeup_filters {
3688	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3689	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3690};
3691
3692struct iwlagn_d3_config_cmd {
3693	__le32 min_sleep_time;
3694	__le32 wakeup_flags;
3695} __packed;
3696
3697/*
3698 * REPLY_WOWLAN_PATTERNS
3699 */
3700#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3701#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3702
3703struct iwlagn_wowlan_pattern {
3704	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3705	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3706	u8 mask_size;
3707	u8 pattern_size;
3708	__le16 reserved;
3709} __packed;
3710
3711#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3712
3713struct iwlagn_wowlan_patterns_cmd {
3714	__le32 n_patterns;
3715	struct iwlagn_wowlan_pattern patterns[];
3716} __packed;
3717
3718/*
3719 * REPLY_WOWLAN_WAKEUP_FILTER
3720 */
3721enum iwlagn_wowlan_wakeup_filters {
3722	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3723	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3724	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3725	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3726	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3727	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3728	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3729	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3730	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3731};
3732
3733struct iwlagn_wowlan_wakeup_filter_cmd {
3734	__le32 enabled;
3735	__le16 non_qos_seq;
3736	__le16 reserved;
3737	__le16 qos_seq[8];
3738};
3739
3740/*
3741 * REPLY_WOWLAN_TSC_RSC_PARAMS
3742 */
3743#define IWLAGN_NUM_RSC	16
3744
3745struct tkip_sc {
3746	__le16 iv16;
3747	__le16 pad;
3748	__le32 iv32;
3749} __packed;
3750
3751struct iwlagn_tkip_rsc_tsc {
3752	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3753	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3754	struct tkip_sc tsc;
3755} __packed;
3756
3757struct aes_sc {
3758	__le64 pn;
3759} __packed;
3760
3761struct iwlagn_aes_rsc_tsc {
3762	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3763	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3764	struct aes_sc tsc;
3765} __packed;
3766
3767union iwlagn_all_tsc_rsc {
3768	struct iwlagn_tkip_rsc_tsc tkip;
3769	struct iwlagn_aes_rsc_tsc aes;
3770};
3771
3772struct iwlagn_wowlan_rsc_tsc_params_cmd {
3773	union iwlagn_all_tsc_rsc all_tsc_rsc;
3774} __packed;
3775
3776/*
3777 * REPLY_WOWLAN_TKIP_PARAMS
3778 */
3779#define IWLAGN_MIC_KEY_SIZE	8
3780#define IWLAGN_P1K_SIZE		5
3781struct iwlagn_mic_keys {
3782	u8 tx[IWLAGN_MIC_KEY_SIZE];
3783	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3784	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3785} __packed;
3786
3787struct iwlagn_p1k_cache {
3788	__le16 p1k[IWLAGN_P1K_SIZE];
3789} __packed;
3790
3791#define IWLAGN_NUM_RX_P1K_CACHE	2
3792
3793struct iwlagn_wowlan_tkip_params_cmd {
3794	struct iwlagn_mic_keys mic_keys;
3795	struct iwlagn_p1k_cache tx;
3796	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3797	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3798} __packed;
3799
3800/*
3801 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3802 */
3803
3804#define IWLAGN_KCK_MAX_SIZE	32
3805#define IWLAGN_KEK_MAX_SIZE	32
3806
3807struct iwlagn_wowlan_kek_kck_material_cmd {
3808	u8	kck[IWLAGN_KCK_MAX_SIZE];
3809	u8	kek[IWLAGN_KEK_MAX_SIZE];
3810	__le16	kck_len;
3811	__le16	kek_len;
3812	__le64	replay_ctr;
3813} __packed;
3814
3815#define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3816
3817/*
3818 * REPLY_WOWLAN_GET_STATUS = 0xe5
3819 */
3820struct iwlagn_wowlan_status {
3821	__le64 replay_ctr;
3822	__le32 rekey_status;
3823	__le32 wakeup_reason;
3824	u8 pattern_number;
3825	u8 reserved1;
3826	__le16 qos_seq_ctr[8];
3827	__le16 non_qos_seq_ctr;
3828	__le16 reserved2;
3829	union iwlagn_all_tsc_rsc tsc_rsc;
3830	__le16 reserved3;
3831} __packed;
3832
3833/*
3834 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3835 */
3836
3837/*
3838 * Minimum slot time in TU
3839 */
3840#define IWL_MIN_SLOT_TIME	20
3841
3842/**
3843 * struct iwl_wipan_slot
3844 * @width: Time in TU
3845 * @type:
3846 *   0 - BSS
3847 *   1 - PAN
3848 */
3849struct iwl_wipan_slot {
3850	__le16 width;
3851	u8 type;
3852	u8 reserved;
3853} __packed;
3854
3855#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3856#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3857#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3858#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3859#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3860
3861/**
3862 * struct iwl_wipan_params_cmd
3863 * @flags:
3864 *   bit0: reserved
3865 *   bit1: CP leave channel with CTS
3866 *   bit2: CP leave channel qith Quiet
3867 *   bit3: slotted mode
3868 *     1 - work in slotted mode
3869 *     0 - work in non slotted mode
3870 *   bit4: filter beacon notification
3871 *   bit5: full tx slotted mode. if this flag is set,
3872 *         uCode will perform leaving channel methods in context switch
3873 *         also when working in same channel mode
3874 * @num_slots: 1 - 10
3875 */
3876struct iwl_wipan_params_cmd {
3877	__le16 flags;
3878	u8 reserved;
3879	u8 num_slots;
3880	struct iwl_wipan_slot slots[10];
3881} __packed;
3882
3883/*
3884 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3885 *
3886 * TODO: Figure out what this is used for,
3887 *	 it can only switch between 2.4 GHz
3888 *	 channels!!
3889 */
3890
3891struct iwl_wipan_p2p_channel_switch_cmd {
3892	__le16 channel;
3893	__le16 reserved;
3894};
3895
3896/*
3897 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3898 *
3899 * This is used by the device to notify us of the
3900 * NoA schedule it determined so we can forward it
3901 * to userspace for inclusion in probe responses.
3902 *
3903 * In beacons, the NoA schedule is simply appended
3904 * to the frame we give the device.
3905 */
3906
3907struct iwl_wipan_noa_descriptor {
3908	u8 count;
3909	__le32 duration;
3910	__le32 interval;
3911	__le32 starttime;
3912} __packed;
3913
3914struct iwl_wipan_noa_attribute {
3915	u8 id;
3916	__le16 length;
3917	u8 index;
3918	u8 ct_window;
3919	struct iwl_wipan_noa_descriptor descr0, descr1;
3920	u8 reserved;
3921} __packed;
3922
3923struct iwl_wipan_noa_notification {
3924	u32 noa_active;
3925	struct iwl_wipan_noa_attribute noa_attribute;
3926} __packed;
3927
3928#endif				/* __iwl_commands_h__ */