Loading...
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <linuxwifi@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63/*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69#ifndef __iwl_commands_h__
70#define __iwl_commands_h__
71
72#include <linux/ieee80211.h>
73#include <linux/types.h>
74
75
76enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
80
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
86
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
105
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
135
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
143
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
146
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
150
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
154
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
165
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
189
190 REPLY_MAX = 0xff
191};
192
193/*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
201 */
202#define IWL_MIN_NUM_QUEUES 11
203
204/*
205 * Command queue depends on iPAN support.
206 */
207#define IWL_DEFAULT_CMD_QUEUE_NUM 4
208#define IWL_IPAN_CMD_QUEUE_NUM 9
209
210#define IWL_TX_FIFO_BK 0 /* shared */
211#define IWL_TX_FIFO_BE 1
212#define IWL_TX_FIFO_VI 2 /* shared */
213#define IWL_TX_FIFO_VO 3
214#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215#define IWL_TX_FIFO_BE_IPAN 4
216#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217#define IWL_TX_FIFO_VO_IPAN 5
218/* re-uses the VO FIFO, uCode will properly flush/schedule */
219#define IWL_TX_FIFO_AUX 5
220#define IWL_TX_FIFO_UNUSED 255
221
222#define IWLAGN_CMD_FIFO_NUM 7
223
224/*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229#define IWL_IPAN_MCAST_QUEUE 8
230
231/******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238/**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
256 *
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
260 *
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
278 */
279#define RATE_MCS_CODE_MSK 0x7
280#define RATE_MCS_SPATIAL_POS 3
281#define RATE_MCS_SPATIAL_MSK 0x18
282#define RATE_MCS_HT_DUP_POS 5
283#define RATE_MCS_HT_DUP_MSK 0x20
284/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285#define RATE_MCS_RATE_MSK 0xff
286
287/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288#define RATE_MCS_FLAGS_POS 8
289#define RATE_MCS_HT_POS 8
290#define RATE_MCS_HT_MSK 0x100
291
292/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293#define RATE_MCS_CCK_POS 9
294#define RATE_MCS_CCK_MSK 0x200
295
296/* Bit 10: (1) Use Green Field preamble */
297#define RATE_MCS_GF_POS 10
298#define RATE_MCS_GF_MSK 0x400
299
300/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301#define RATE_MCS_HT40_POS 11
302#define RATE_MCS_HT40_MSK 0x800
303
304/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305#define RATE_MCS_DUP_POS 12
306#define RATE_MCS_DUP_MSK 0x1000
307
308/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309#define RATE_MCS_SGI_POS 13
310#define RATE_MCS_SGI_MSK 0x2000
311
312/**
313 * rate_n_flags Tx antenna masks
314 * bit14:16
315 */
316#define RATE_MCS_ANT_POS 14
317#define RATE_MCS_ANT_A_MSK 0x04000
318#define RATE_MCS_ANT_B_MSK 0x08000
319#define RATE_MCS_ANT_C_MSK 0x10000
320#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
321#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
322#define RATE_ANT_NUM 3
323
324#define POWER_TABLE_NUM_ENTRIES 33
325#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
326#define POWER_TABLE_CCK_ENTRY 32
327
328#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
329#define IWL_PWR_CCK_ENTRIES 2
330
331/**
332 * struct tx_power_dual_stream
333 *
334 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
335 *
336 * Same format as iwl_tx_power_dual_stream, but __le32
337 */
338struct tx_power_dual_stream {
339 __le32 dw;
340} __packed;
341
342/**
343 * Command REPLY_TX_POWER_DBM_CMD = 0x98
344 * struct iwlagn_tx_power_dbm_cmd
345 */
346#define IWLAGN_TX_POWER_AUTO 0x7f
347#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
348
349struct iwlagn_tx_power_dbm_cmd {
350 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
351 u8 flags;
352 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
353 u8 reserved;
354} __packed;
355
356/**
357 * Command TX_ANT_CONFIGURATION_CMD = 0x98
358 * This command is used to configure valid Tx antenna.
359 * By default uCode concludes the valid antenna according to the radio flavor.
360 * This command enables the driver to override/modify this conclusion.
361 */
362struct iwl_tx_ant_config_cmd {
363 __le32 valid;
364} __packed;
365
366/******************************************************************************
367 * (0a)
368 * Alive and Error Commands & Responses:
369 *
370 *****************************************************************************/
371
372#define UCODE_VALID_OK cpu_to_le32(0x1)
373
374/**
375 * REPLY_ALIVE = 0x1 (response only, not a command)
376 *
377 * uCode issues this "alive" notification once the runtime image is ready
378 * to receive commands from the driver. This is the *second* "alive"
379 * notification that the driver will receive after rebooting uCode;
380 * this "alive" is indicated by subtype field != 9.
381 *
382 * See comments documenting "BSM" (bootstrap state machine).
383 *
384 * This response includes two pointers to structures within the device's
385 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
386 *
387 * 1) log_event_table_ptr indicates base of the event log. This traces
388 * a 256-entry history of uCode execution within a circular buffer.
389 * Its header format is:
390 *
391 * __le32 log_size; log capacity (in number of entries)
392 * __le32 type; (1) timestamp with each entry, (0) no timestamp
393 * __le32 wraps; # times uCode has wrapped to top of circular buffer
394 * __le32 write_index; next circular buffer entry that uCode would fill
395 *
396 * The header is followed by the circular buffer of log entries. Entries
397 * with timestamps have the following format:
398 *
399 * __le32 event_id; range 0 - 1500
400 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
401 * __le32 data; event_id-specific data value
402 *
403 * Entries without timestamps contain only event_id and data.
404 *
405 *
406 * 2) error_event_table_ptr indicates base of the error log. This contains
407 * information about any uCode error that occurs. For agn, the format
408 * of the error log is defined by struct iwl_error_event_table.
409 *
410 * The Linux driver can print both logs to the system log when a uCode error
411 * occurs.
412 */
413
414/*
415 * Note: This structure is read from the device with IO accesses,
416 * and the reading already does the endian conversion. As it is
417 * read with u32-sized accesses, any members with a different size
418 * need to be ordered correctly though!
419 */
420struct iwl_error_event_table {
421 u32 valid; /* (nonzero) valid, (0) log is empty */
422 u32 error_id; /* type of error */
423 u32 pc; /* program counter */
424 u32 blink1; /* branch link */
425 u32 blink2; /* branch link */
426 u32 ilink1; /* interrupt link */
427 u32 ilink2; /* interrupt link */
428 u32 data1; /* error-specific data */
429 u32 data2; /* error-specific data */
430 u32 line; /* source code line of error */
431 u32 bcon_time; /* beacon timer */
432 u32 tsf_low; /* network timestamp function timer */
433 u32 tsf_hi; /* network timestamp function timer */
434 u32 gp1; /* GP1 timer register */
435 u32 gp2; /* GP2 timer register */
436 u32 gp3; /* GP3 timer register */
437 u32 ucode_ver; /* uCode version */
438 u32 hw_ver; /* HW Silicon version */
439 u32 brd_ver; /* HW board version */
440 u32 log_pc; /* log program counter */
441 u32 frame_ptr; /* frame pointer */
442 u32 stack_ptr; /* stack pointer */
443 u32 hcmd; /* last host command header */
444 u32 isr0; /* isr status register LMPM_NIC_ISR0:
445 * rxtx_flag */
446 u32 isr1; /* isr status register LMPM_NIC_ISR1:
447 * host_flag */
448 u32 isr2; /* isr status register LMPM_NIC_ISR2:
449 * enc_flag */
450 u32 isr3; /* isr status register LMPM_NIC_ISR3:
451 * time_flag */
452 u32 isr4; /* isr status register LMPM_NIC_ISR4:
453 * wico interrupt */
454 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
455 u32 wait_event; /* wait event() caller address */
456 u32 l2p_control; /* L2pControlField */
457 u32 l2p_duration; /* L2pDurationField */
458 u32 l2p_mhvalid; /* L2pMhValidBits */
459 u32 l2p_addr_match; /* L2pAddrMatchStat */
460 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
461 * (LMPM_PMG_SEL) */
462 u32 u_timestamp; /* indicate when the date and time of the
463 * compilation */
464 u32 flow_handler; /* FH read/write pointers, RX credit */
465} __packed;
466
467struct iwl_alive_resp {
468 u8 ucode_minor;
469 u8 ucode_major;
470 __le16 reserved1;
471 u8 sw_rev[8];
472 u8 ver_type;
473 u8 ver_subtype; /* not "9" for runtime alive */
474 __le16 reserved2;
475 __le32 log_event_table_ptr; /* SRAM address for event log */
476 __le32 error_event_table_ptr; /* SRAM address for error log */
477 __le32 timestamp;
478 __le32 is_valid;
479} __packed;
480
481/*
482 * REPLY_ERROR = 0x2 (response only, not a command)
483 */
484struct iwl_error_resp {
485 __le32 error_type;
486 u8 cmd_id;
487 u8 reserved1;
488 __le16 bad_cmd_seq_num;
489 __le32 error_info;
490 __le64 timestamp;
491} __packed;
492
493/******************************************************************************
494 * (1)
495 * RXON Commands & Responses:
496 *
497 *****************************************************************************/
498
499/*
500 * Rx config defines & structure
501 */
502/* rx_config device types */
503enum {
504 RXON_DEV_TYPE_AP = 1,
505 RXON_DEV_TYPE_ESS = 3,
506 RXON_DEV_TYPE_IBSS = 4,
507 RXON_DEV_TYPE_SNIFFER = 6,
508 RXON_DEV_TYPE_CP = 7,
509 RXON_DEV_TYPE_2STA = 8,
510 RXON_DEV_TYPE_P2P = 9,
511};
512
513
514#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
515#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
516#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
517#define RXON_RX_CHAIN_VALID_POS (1)
518#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
519#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
520#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
521#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
522#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
523#define RXON_RX_CHAIN_CNT_POS (10)
524#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
525#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
526#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
527#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
528
529/* rx_config flags */
530/* band & modulation selection */
531#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
532#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
533/* auto detection enable */
534#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
535/* TGg protection when tx */
536#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
537/* cck short slot & preamble */
538#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
539#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
540/* antenna selection */
541#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
542#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
543#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
544#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
545/* radar detection enable */
546#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
547#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
548/* rx response to host with 8-byte TSF
549* (according to ON_AIR deassertion) */
550#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
551
552
553/* HT flags */
554#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
555#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
556
557#define RXON_FLG_HT_OPERATING_MODE_POS (23)
558
559#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
560#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
561
562#define RXON_FLG_CHANNEL_MODE_POS (25)
563#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
564
565/* channel mode */
566enum {
567 CHANNEL_MODE_LEGACY = 0,
568 CHANNEL_MODE_PURE_40 = 1,
569 CHANNEL_MODE_MIXED = 2,
570 CHANNEL_MODE_RESERVED = 3,
571};
572#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
573#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
574#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
575
576/* CTS to self (if spec allows) flag */
577#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
578
579/* rx_config filter flags */
580/* accept all data frames */
581#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
582/* pass control & management to host */
583#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
584/* accept multi-cast */
585#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
586/* don't decrypt uni-cast frames */
587#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
588/* don't decrypt multi-cast frames */
589#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
590/* STA is associated */
591#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
592/* transfer to host non bssid beacons in associated state */
593#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
594
595/**
596 * REPLY_RXON = 0x10 (command, has simple generic response)
597 *
598 * RXON tunes the radio tuner to a service channel, and sets up a number
599 * of parameters that are used primarily for Rx, but also for Tx operations.
600 *
601 * NOTE: When tuning to a new channel, driver must set the
602 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
603 * info within the device, including the station tables, tx retry
604 * rate tables, and txpower tables. Driver must build a new station
605 * table and txpower table before transmitting anything on the RXON
606 * channel.
607 *
608 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
609 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
610 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
611 */
612
613struct iwl_rxon_cmd {
614 u8 node_addr[6];
615 __le16 reserved1;
616 u8 bssid_addr[6];
617 __le16 reserved2;
618 u8 wlap_bssid_addr[6];
619 __le16 reserved3;
620 u8 dev_type;
621 u8 air_propagation;
622 __le16 rx_chain;
623 u8 ofdm_basic_rates;
624 u8 cck_basic_rates;
625 __le16 assoc_id;
626 __le32 flags;
627 __le32 filter_flags;
628 __le16 channel;
629 u8 ofdm_ht_single_stream_basic_rates;
630 u8 ofdm_ht_dual_stream_basic_rates;
631 u8 ofdm_ht_triple_stream_basic_rates;
632 u8 reserved5;
633 __le16 acquisition_data;
634 __le16 reserved6;
635} __packed;
636
637/*
638 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
639 */
640struct iwl_rxon_assoc_cmd {
641 __le32 flags;
642 __le32 filter_flags;
643 u8 ofdm_basic_rates;
644 u8 cck_basic_rates;
645 __le16 reserved1;
646 u8 ofdm_ht_single_stream_basic_rates;
647 u8 ofdm_ht_dual_stream_basic_rates;
648 u8 ofdm_ht_triple_stream_basic_rates;
649 u8 reserved2;
650 __le16 rx_chain_select_flags;
651 __le16 acquisition_data;
652 __le32 reserved3;
653} __packed;
654
655#define IWL_CONN_MAX_LISTEN_INTERVAL 10
656#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
657
658/*
659 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
660 */
661struct iwl_rxon_time_cmd {
662 __le64 timestamp;
663 __le16 beacon_interval;
664 __le16 atim_window;
665 __le32 beacon_init_val;
666 __le16 listen_interval;
667 u8 dtim_period;
668 u8 delta_cp_bss_tbtts;
669} __packed;
670
671/*
672 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
673 */
674/**
675 * struct iwl5000_channel_switch_cmd
676 * @band: 0- 5.2GHz, 1- 2.4GHz
677 * @expect_beacon: 0- resume transmits after channel switch
678 * 1- wait for beacon to resume transmits
679 * @channel: new channel number
680 * @rxon_flags: Rx on flags
681 * @rxon_filter_flags: filtering parameters
682 * @switch_time: switch time in extended beacon format
683 * @reserved: reserved bytes
684 */
685struct iwl5000_channel_switch_cmd {
686 u8 band;
687 u8 expect_beacon;
688 __le16 channel;
689 __le32 rxon_flags;
690 __le32 rxon_filter_flags;
691 __le32 switch_time;
692 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
693} __packed;
694
695/**
696 * struct iwl6000_channel_switch_cmd
697 * @band: 0- 5.2GHz, 1- 2.4GHz
698 * @expect_beacon: 0- resume transmits after channel switch
699 * 1- wait for beacon to resume transmits
700 * @channel: new channel number
701 * @rxon_flags: Rx on flags
702 * @rxon_filter_flags: filtering parameters
703 * @switch_time: switch time in extended beacon format
704 * @reserved: reserved bytes
705 */
706struct iwl6000_channel_switch_cmd {
707 u8 band;
708 u8 expect_beacon;
709 __le16 channel;
710 __le32 rxon_flags;
711 __le32 rxon_filter_flags;
712 __le32 switch_time;
713 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
714} __packed;
715
716/*
717 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
718 */
719struct iwl_csa_notification {
720 __le16 band;
721 __le16 channel;
722 __le32 status; /* 0 - OK, 1 - fail */
723} __packed;
724
725/******************************************************************************
726 * (2)
727 * Quality-of-Service (QOS) Commands & Responses:
728 *
729 *****************************************************************************/
730
731/**
732 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
733 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
734 *
735 * @cw_min: Contention window, start value in numbers of slots.
736 * Should be a power-of-2, minus 1. Device's default is 0x0f.
737 * @cw_max: Contention window, max value in numbers of slots.
738 * Should be a power-of-2, minus 1. Device's default is 0x3f.
739 * @aifsn: Number of slots in Arbitration Interframe Space (before
740 * performing random backoff timing prior to Tx). Device default 1.
741 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
742 *
743 * Device will automatically increase contention window by (2*CW) + 1 for each
744 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
745 * value, to cap the CW value.
746 */
747struct iwl_ac_qos {
748 __le16 cw_min;
749 __le16 cw_max;
750 u8 aifsn;
751 u8 reserved1;
752 __le16 edca_txop;
753} __packed;
754
755/* QoS flags defines */
756#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
757#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
758#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
759
760/* Number of Access Categories (AC) (EDCA), queues 0..3 */
761#define AC_NUM 4
762
763/*
764 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
765 *
766 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
767 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
768 */
769struct iwl_qosparam_cmd {
770 __le32 qos_flags;
771 struct iwl_ac_qos ac[AC_NUM];
772} __packed;
773
774/******************************************************************************
775 * (3)
776 * Add/Modify Stations Commands & Responses:
777 *
778 *****************************************************************************/
779/*
780 * Multi station support
781 */
782
783/* Special, dedicated locations within device's station table */
784#define IWL_AP_ID 0
785#define IWL_AP_ID_PAN 1
786#define IWL_STA_ID 2
787#define IWLAGN_PAN_BCAST_ID 14
788#define IWLAGN_BROADCAST_ID 15
789#define IWLAGN_STATION_COUNT 16
790
791#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
792
793#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
794#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
795#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
796#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
797#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
798#define STA_FLG_MAX_AGG_SIZE_POS (19)
799#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
800#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
801#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
802#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
803#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
804
805/* Use in mode field. 1: modify existing entry, 0: add new station entry */
806#define STA_CONTROL_MODIFY_MSK 0x01
807
808/* key flags __le16*/
809#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
810#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
811#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
812#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
813#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
814
815#define STA_KEY_FLG_KEYID_POS 8
816#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
817/* wep key is either from global key (0) or from station info array (1) */
818#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
819
820/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
821#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
822#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
823#define STA_KEY_MAX_NUM 8
824#define STA_KEY_MAX_NUM_PAN 16
825/* must not match WEP_INVALID_OFFSET */
826#define IWLAGN_HW_KEY_DEFAULT 0xfe
827
828/* Flags indicate whether to modify vs. don't change various station params */
829#define STA_MODIFY_KEY_MASK 0x01
830#define STA_MODIFY_TID_DISABLE_TX 0x02
831#define STA_MODIFY_TX_RATE_MSK 0x04
832#define STA_MODIFY_ADDBA_TID_MSK 0x08
833#define STA_MODIFY_DELBA_TID_MSK 0x10
834#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
835
836/* agn */
837struct iwl_keyinfo {
838 __le16 key_flags;
839 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
840 u8 reserved1;
841 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
842 u8 key_offset;
843 u8 reserved2;
844 u8 key[16]; /* 16-byte unicast decryption key */
845 __le64 tx_secur_seq_cnt;
846 __le64 hw_tkip_mic_rx_key;
847 __le64 hw_tkip_mic_tx_key;
848} __packed;
849
850/**
851 * struct sta_id_modify
852 * @addr[ETH_ALEN]: station's MAC address
853 * @sta_id: index of station in uCode's station table
854 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
855 *
856 * Driver selects unused table index when adding new station,
857 * or the index to a pre-existing station entry when modifying that station.
858 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
859 *
860 * modify_mask flags select which parameters to modify vs. leave alone.
861 */
862struct sta_id_modify {
863 u8 addr[ETH_ALEN];
864 __le16 reserved1;
865 u8 sta_id;
866 u8 modify_mask;
867 __le16 reserved2;
868} __packed;
869
870/*
871 * REPLY_ADD_STA = 0x18 (command)
872 *
873 * The device contains an internal table of per-station information,
874 * with info on security keys, aggregation parameters, and Tx rates for
875 * initial Tx attempt and any retries (agn devices uses
876 * REPLY_TX_LINK_QUALITY_CMD,
877 *
878 * REPLY_ADD_STA sets up the table entry for one station, either creating
879 * a new entry, or modifying a pre-existing one.
880 *
881 * NOTE: RXON command (without "associated" bit set) wipes the station table
882 * clean. Moving into RF_KILL state does this also. Driver must set up
883 * new station table before transmitting anything on the RXON channel
884 * (except active scans or active measurements; those commands carry
885 * their own txpower/rate setup data).
886 *
887 * When getting started on a new channel, driver must set up the
888 * IWL_BROADCAST_ID entry (last entry in the table). For a client
889 * station in a BSS, once an AP is selected, driver sets up the AP STA
890 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
891 * are all that are needed for a BSS client station. If the device is
892 * used as AP, or in an IBSS network, driver must set up station table
893 * entries for all STAs in network, starting with index IWL_STA_ID.
894 */
895
896struct iwl_addsta_cmd {
897 u8 mode; /* 1: modify existing, 0: add new station */
898 u8 reserved[3];
899 struct sta_id_modify sta;
900 struct iwl_keyinfo key;
901 __le32 station_flags; /* STA_FLG_* */
902 __le32 station_flags_msk; /* STA_FLG_* */
903
904 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
905 * corresponding to bit (e.g. bit 5 controls TID 5).
906 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
907 __le16 tid_disable_tx;
908 __le16 legacy_reserved;
909
910 /* TID for which to add block-ack support.
911 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
912 u8 add_immediate_ba_tid;
913
914 /* TID for which to remove block-ack support.
915 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
916 u8 remove_immediate_ba_tid;
917
918 /* Starting Sequence Number for added block-ack support.
919 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
920 __le16 add_immediate_ba_ssn;
921
922 /*
923 * Number of packets OK to transmit to station even though
924 * it is asleep -- used to synchronise PS-poll and u-APSD
925 * responses while ucode keeps track of STA sleep state.
926 */
927 __le16 sleep_tx_count;
928
929 __le16 reserved2;
930} __packed;
931
932
933#define ADD_STA_SUCCESS_MSK 0x1
934#define ADD_STA_NO_ROOM_IN_TABLE 0x2
935#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
936#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
937/*
938 * REPLY_ADD_STA = 0x18 (response)
939 */
940struct iwl_add_sta_resp {
941 u8 status; /* ADD_STA_* */
942} __packed;
943
944#define REM_STA_SUCCESS_MSK 0x1
945/*
946 * REPLY_REM_STA = 0x19 (response)
947 */
948struct iwl_rem_sta_resp {
949 u8 status;
950} __packed;
951
952/*
953 * REPLY_REM_STA = 0x19 (command)
954 */
955struct iwl_rem_sta_cmd {
956 u8 num_sta; /* number of removed stations */
957 u8 reserved[3];
958 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
959 u8 reserved2[2];
960} __packed;
961
962
963/* WiFi queues mask */
964#define IWL_SCD_BK_MSK BIT(0)
965#define IWL_SCD_BE_MSK BIT(1)
966#define IWL_SCD_VI_MSK BIT(2)
967#define IWL_SCD_VO_MSK BIT(3)
968#define IWL_SCD_MGMT_MSK BIT(3)
969
970/* PAN queues mask */
971#define IWL_PAN_SCD_BK_MSK BIT(4)
972#define IWL_PAN_SCD_BE_MSK BIT(5)
973#define IWL_PAN_SCD_VI_MSK BIT(6)
974#define IWL_PAN_SCD_VO_MSK BIT(7)
975#define IWL_PAN_SCD_MGMT_MSK BIT(7)
976#define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
977
978#define IWL_AGG_TX_QUEUE_MSK 0xffc00
979
980#define IWL_DROP_ALL BIT(1)
981
982/*
983 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
984 *
985 * When using full FIFO flush this command checks the scheduler HW block WR/RD
986 * pointers to check if all the frames were transferred by DMA into the
987 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
988 * empty the command can finish.
989 * This command is used to flush the TXFIFO from transmit commands, it may
990 * operate on single or multiple queues, the command queue can't be flushed by
991 * this command. The command response is returned when all the queue flush
992 * operations are done. Each TX command flushed return response with the FLUSH
993 * status set in the TX response status. When FIFO flush operation is used,
994 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
995 * are set.
996 *
997 * @queue_control: bit mask for which queues to flush
998 * @flush_control: flush controls
999 * 0: Dump single MSDU
1000 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1001 * 2: Dump all FIFO
1002 */
1003struct iwl_txfifo_flush_cmd_v3 {
1004 __le32 queue_control;
1005 __le16 flush_control;
1006 __le16 reserved;
1007} __packed;
1008
1009struct iwl_txfifo_flush_cmd_v2 {
1010 __le16 queue_control;
1011 __le16 flush_control;
1012} __packed;
1013
1014/*
1015 * REPLY_WEP_KEY = 0x20
1016 */
1017struct iwl_wep_key {
1018 u8 key_index;
1019 u8 key_offset;
1020 u8 reserved1[2];
1021 u8 key_size;
1022 u8 reserved2[3];
1023 u8 key[16];
1024} __packed;
1025
1026struct iwl_wep_cmd {
1027 u8 num_keys;
1028 u8 global_key_type;
1029 u8 flags;
1030 u8 reserved;
1031 struct iwl_wep_key key[0];
1032} __packed;
1033
1034#define WEP_KEY_WEP_TYPE 1
1035#define WEP_KEYS_MAX 4
1036#define WEP_INVALID_OFFSET 0xff
1037#define WEP_KEY_LEN_64 5
1038#define WEP_KEY_LEN_128 13
1039
1040/******************************************************************************
1041 * (4)
1042 * Rx Responses:
1043 *
1044 *****************************************************************************/
1045
1046#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1047#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1048
1049#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1050#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1051#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1052#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1053#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1054#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1055#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1056
1057#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1058#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1059#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1060#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1061#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1062#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1063
1064#define RX_RES_STATUS_STATION_FOUND (1<<6)
1065#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1066
1067#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1068#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1069#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1070#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1071#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1072
1073#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1074#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1075#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1076#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1077
1078
1079#define IWLAGN_RX_RES_PHY_CNT 8
1080#define IWLAGN_RX_RES_AGC_IDX 1
1081#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1082#define IWLAGN_RX_RES_RSSI_C_IDX 3
1083#define IWLAGN_OFDM_AGC_MSK 0xfe00
1084#define IWLAGN_OFDM_AGC_BIT_POS 9
1085#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1086#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1087#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1088#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1089#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1090#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1091#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1092#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1093#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1094
1095struct iwlagn_non_cfg_phy {
1096 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1097} __packed;
1098
1099
1100/*
1101 * REPLY_RX = 0xc3 (response only, not a command)
1102 * Used only for legacy (non 11n) frames.
1103 */
1104struct iwl_rx_phy_res {
1105 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1106 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1107 u8 stat_id; /* configurable DSP phy data set ID */
1108 u8 reserved1;
1109 __le64 timestamp; /* TSF at on air rise */
1110 __le32 beacon_time_stamp; /* beacon at on-air rise */
1111 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1112 __le16 channel; /* channel number */
1113 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1114 __le32 rate_n_flags; /* RATE_MCS_* */
1115 __le16 byte_count; /* frame's byte-count */
1116 __le16 frame_time; /* frame's time on the air */
1117} __packed;
1118
1119struct iwl_rx_mpdu_res_start {
1120 __le16 byte_count;
1121 __le16 reserved;
1122} __packed;
1123
1124
1125/******************************************************************************
1126 * (5)
1127 * Tx Commands & Responses:
1128 *
1129 * Driver must place each REPLY_TX command into one of the prioritized Tx
1130 * queues in host DRAM, shared between driver and device (see comments for
1131 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1132 * are preparing to transmit, the device pulls the Tx command over the PCI
1133 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1134 * from which data will be transmitted.
1135 *
1136 * uCode handles all timing and protocol related to control frames
1137 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1138 * handle reception of block-acks; uCode updates the host driver via
1139 * REPLY_COMPRESSED_BA.
1140 *
1141 * uCode handles retrying Tx when an ACK is expected but not received.
1142 * This includes trying lower data rates than the one requested in the Tx
1143 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1144 *
1145 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1146 * This command must be executed after every RXON command, before Tx can occur.
1147 *****************************************************************************/
1148
1149/* REPLY_TX Tx flags field */
1150
1151/*
1152 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1153 * before this frame. if CTS-to-self required check
1154 * RXON_FLG_SELF_CTS_EN status.
1155 */
1156#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1157
1158/* 1: Expect ACK from receiving station
1159 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1160 * Set this for unicast frames, but not broadcast/multicast. */
1161#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1162
1163/* For agn devices:
1164 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1165 * Tx command's initial_rate_index indicates first rate to try;
1166 * uCode walks through table for additional Tx attempts.
1167 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1168 * This rate will be used for all Tx attempts; it will not be scaled. */
1169#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1170
1171/* 1: Expect immediate block-ack.
1172 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1173#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1174
1175/* Tx antenna selection field; reserved (0) for agn devices. */
1176#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1177
1178/* 1: Ignore Bluetooth priority for this frame.
1179 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1180#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1181
1182/* 1: uCode overrides sequence control field in MAC header.
1183 * 0: Driver provides sequence control field in MAC header.
1184 * Set this for management frames, non-QOS data frames, non-unicast frames,
1185 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1186#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1187
1188/* 1: This frame is non-last MPDU; more fragments are coming.
1189 * 0: Last fragment, or not using fragmentation. */
1190#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1191
1192/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1193 * 0: No TSF required in outgoing frame.
1194 * Set this for transmitting beacons and probe responses. */
1195#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1196
1197/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1198 * alignment of frame's payload data field.
1199 * 0: No pad
1200 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1201 * field (but not both). Driver must align frame data (i.e. data following
1202 * MAC header) to DWORD boundary. */
1203#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1204
1205/* accelerate aggregation support
1206 * 0 - no CCMP encryption; 1 - CCMP encryption */
1207#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1208
1209/* HCCA-AP - disable duration overwriting. */
1210#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1211
1212
1213/*
1214 * TX command security control
1215 */
1216#define TX_CMD_SEC_WEP 0x01
1217#define TX_CMD_SEC_CCM 0x02
1218#define TX_CMD_SEC_TKIP 0x03
1219#define TX_CMD_SEC_MSK 0x03
1220#define TX_CMD_SEC_SHIFT 6
1221#define TX_CMD_SEC_KEY128 0x08
1222
1223/*
1224 * REPLY_TX = 0x1c (command)
1225 */
1226
1227/*
1228 * Used for managing Tx retries when expecting block-acks.
1229 * Driver should set these fields to 0.
1230 */
1231struct iwl_dram_scratch {
1232 u8 try_cnt; /* Tx attempts */
1233 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1234 __le16 reserved;
1235} __packed;
1236
1237struct iwl_tx_cmd {
1238 /*
1239 * MPDU byte count:
1240 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1241 * + 8 byte IV for CCM or TKIP (not used for WEP)
1242 * + Data payload
1243 * + 8-byte MIC (not used for CCM/WEP)
1244 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1245 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1246 * Range: 14-2342 bytes.
1247 */
1248 __le16 len;
1249
1250 /*
1251 * MPDU or MSDU byte count for next frame.
1252 * Used for fragmentation and bursting, but not 11n aggregation.
1253 * Same as "len", but for next frame. Set to 0 if not applicable.
1254 */
1255 __le16 next_frame_len;
1256
1257 __le32 tx_flags; /* TX_CMD_FLG_* */
1258
1259 /* uCode may modify this field of the Tx command (in host DRAM!).
1260 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1261 struct iwl_dram_scratch scratch;
1262
1263 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1264 __le32 rate_n_flags; /* RATE_MCS_* */
1265
1266 /* Index of destination station in uCode's station table */
1267 u8 sta_id;
1268
1269 /* Type of security encryption: CCM or TKIP */
1270 u8 sec_ctl; /* TX_CMD_SEC_* */
1271
1272 /*
1273 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1274 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1275 * data frames, this field may be used to selectively reduce initial
1276 * rate (via non-0 value) for special frames (e.g. management), while
1277 * still supporting rate scaling for all frames.
1278 */
1279 u8 initial_rate_index;
1280 u8 reserved;
1281 u8 key[16];
1282 __le16 next_frame_flags;
1283 __le16 reserved2;
1284 union {
1285 __le32 life_time;
1286 __le32 attempt;
1287 } stop_time;
1288
1289 /* Host DRAM physical address pointer to "scratch" in this command.
1290 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1291 __le32 dram_lsb_ptr;
1292 u8 dram_msb_ptr;
1293
1294 u8 rts_retry_limit; /*byte 50 */
1295 u8 data_retry_limit; /*byte 51 */
1296 u8 tid_tspec;
1297 union {
1298 __le16 pm_frame_timeout;
1299 __le16 attempt_duration;
1300 } timeout;
1301
1302 /*
1303 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1304 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1305 */
1306 __le16 driver_txop;
1307
1308 /*
1309 * MAC header goes here, followed by 2 bytes padding if MAC header
1310 * length is 26 or 30 bytes, followed by payload data
1311 */
1312 u8 payload[0];
1313 struct ieee80211_hdr hdr[0];
1314} __packed;
1315
1316/*
1317 * TX command response is sent after *agn* transmission attempts.
1318 *
1319 * both postpone and abort status are expected behavior from uCode. there is
1320 * no special operation required from driver; except for RFKILL_FLUSH,
1321 * which required tx flush host command to flush all the tx frames in queues
1322 */
1323enum {
1324 TX_STATUS_SUCCESS = 0x01,
1325 TX_STATUS_DIRECT_DONE = 0x02,
1326 /* postpone TX */
1327 TX_STATUS_POSTPONE_DELAY = 0x40,
1328 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1329 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1330 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1331 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1332 /* abort TX */
1333 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1334 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1335 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1336 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1337 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1338 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1339 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1340 TX_STATUS_FAIL_DEST_PS = 0x88,
1341 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1342 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1343 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1344 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1345 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1346 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1347 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1348 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1349 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1350};
1351
1352#define TX_PACKET_MODE_REGULAR 0x0000
1353#define TX_PACKET_MODE_BURST_SEQ 0x0100
1354#define TX_PACKET_MODE_BURST_FIRST 0x0200
1355
1356enum {
1357 TX_POWER_PA_NOT_ACTIVE = 0x0,
1358};
1359
1360enum {
1361 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1362 TX_STATUS_DELAY_MSK = 0x00000040,
1363 TX_STATUS_ABORT_MSK = 0x00000080,
1364 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1365 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1366 TX_RESERVED = 0x00780000, /* bits 19:22 */
1367 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1368 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1369};
1370
1371/* *******************************
1372 * TX aggregation status
1373 ******************************* */
1374
1375enum {
1376 AGG_TX_STATE_TRANSMITTED = 0x00,
1377 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1378 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1379 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1380 AGG_TX_STATE_ABORT_MSK = 0x08,
1381 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1382 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1383 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1384 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1385 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1386 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1387 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1388 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1389};
1390
1391#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1392#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1393#define AGG_TX_TRY_POS 12
1394
1395#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1396 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1397 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1398
1399/* # tx attempts for first frame in aggregation */
1400#define AGG_TX_STATE_TRY_CNT_POS 12
1401#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1402
1403/* Command ID and sequence number of Tx command for this frame */
1404#define AGG_TX_STATE_SEQ_NUM_POS 16
1405#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1406
1407/*
1408 * REPLY_TX = 0x1c (response)
1409 *
1410 * This response may be in one of two slightly different formats, indicated
1411 * by the frame_count field:
1412 *
1413 * 1) No aggregation (frame_count == 1). This reports Tx results for
1414 * a single frame. Multiple attempts, at various bit rates, may have
1415 * been made for this frame.
1416 *
1417 * 2) Aggregation (frame_count > 1). This reports Tx results for
1418 * 2 or more frames that used block-acknowledge. All frames were
1419 * transmitted at same rate. Rate scaling may have been used if first
1420 * frame in this new agg block failed in previous agg block(s).
1421 *
1422 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1423 * block-ack has not been received by the time the agn device records
1424 * this status.
1425 * This status relates to reasons the tx might have been blocked or aborted
1426 * within the sending station (this agn device), rather than whether it was
1427 * received successfully by the destination station.
1428 */
1429struct agg_tx_status {
1430 __le16 status;
1431 __le16 sequence;
1432} __packed;
1433
1434/* refer to ra_tid */
1435#define IWLAGN_TX_RES_TID_POS 0
1436#define IWLAGN_TX_RES_TID_MSK 0x0f
1437#define IWLAGN_TX_RES_RA_POS 4
1438#define IWLAGN_TX_RES_RA_MSK 0xf0
1439
1440struct iwlagn_tx_resp {
1441 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1442 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1443 u8 failure_rts; /* # failures due to unsuccessful RTS */
1444 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1445
1446 /* For non-agg: Rate at which frame was successful.
1447 * For agg: Rate at which all frames were transmitted. */
1448 __le32 rate_n_flags; /* RATE_MCS_* */
1449
1450 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1451 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1452 __le16 wireless_media_time; /* uSecs */
1453
1454 u8 pa_status; /* RF power amplifier measurement (not used) */
1455 u8 pa_integ_res_a[3];
1456 u8 pa_integ_res_b[3];
1457 u8 pa_integ_res_C[3];
1458
1459 __le32 tfd_info;
1460 __le16 seq_ctl;
1461 __le16 byte_cnt;
1462 u8 tlc_info;
1463 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1464 __le16 frame_ctrl;
1465 /*
1466 * For non-agg: frame status TX_STATUS_*
1467 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1468 * fields follow this one, up to frame_count.
1469 * Bit fields:
1470 * 11- 0: AGG_TX_STATE_* status code
1471 * 15-12: Retry count for 1st frame in aggregation (retries
1472 * occur if tx failed for this frame when it was a
1473 * member of a previous aggregation block). If rate
1474 * scaling is used, retry count indicates the rate
1475 * table entry used for all frames in the new agg.
1476 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1477 */
1478 struct agg_tx_status status; /* TX status (in aggregation -
1479 * status of 1st frame) */
1480} __packed;
1481/*
1482 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1483 *
1484 * Reports Block-Acknowledge from recipient station
1485 */
1486struct iwl_compressed_ba_resp {
1487 __le32 sta_addr_lo32;
1488 __le16 sta_addr_hi16;
1489 __le16 reserved;
1490
1491 /* Index of recipient (BA-sending) station in uCode's station table */
1492 u8 sta_id;
1493 u8 tid;
1494 __le16 seq_ctl;
1495 __le64 bitmap;
1496 __le16 scd_flow;
1497 __le16 scd_ssn;
1498 u8 txed; /* number of frames sent */
1499 u8 txed_2_done; /* number of frames acked */
1500 __le16 reserved1;
1501} __packed;
1502
1503/*
1504 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1505 *
1506 */
1507
1508/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1509#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1510
1511/* # of EDCA prioritized tx fifos */
1512#define LINK_QUAL_AC_NUM AC_NUM
1513
1514/* # entries in rate scale table to support Tx retries */
1515#define LINK_QUAL_MAX_RETRY_NUM 16
1516
1517/* Tx antenna selection values */
1518#define LINK_QUAL_ANT_A_MSK (1 << 0)
1519#define LINK_QUAL_ANT_B_MSK (1 << 1)
1520#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1521
1522
1523/**
1524 * struct iwl_link_qual_general_params
1525 *
1526 * Used in REPLY_TX_LINK_QUALITY_CMD
1527 */
1528struct iwl_link_qual_general_params {
1529 u8 flags;
1530
1531 /* No entries at or above this (driver chosen) index contain MIMO */
1532 u8 mimo_delimiter;
1533
1534 /* Best single antenna to use for single stream (legacy, SISO). */
1535 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1536
1537 /* Best antennas to use for MIMO */
1538 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1539
1540 /*
1541 * If driver needs to use different initial rates for different
1542 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1543 * this table will set that up, by indicating the indexes in the
1544 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1545 * Otherwise, driver should set all entries to 0.
1546 *
1547 * Entry usage:
1548 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1549 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1550 */
1551 u8 start_rate_index[LINK_QUAL_AC_NUM];
1552} __packed;
1553
1554#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1555#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1556#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1557
1558#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1559#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1560#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1561
1562#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1563#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1564#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1565
1566/**
1567 * struct iwl_link_qual_agg_params
1568 *
1569 * Used in REPLY_TX_LINK_QUALITY_CMD
1570 */
1571struct iwl_link_qual_agg_params {
1572
1573 /*
1574 *Maximum number of uSec in aggregation.
1575 * default set to 4000 (4 milliseconds) if not configured in .cfg
1576 */
1577 __le16 agg_time_limit;
1578
1579 /*
1580 * Number of Tx retries allowed for a frame, before that frame will
1581 * no longer be considered for the start of an aggregation sequence
1582 * (scheduler will then try to tx it as single frame).
1583 * Driver should set this to 3.
1584 */
1585 u8 agg_dis_start_th;
1586
1587 /*
1588 * Maximum number of frames in aggregation.
1589 * 0 = no limit (default). 1 = no aggregation.
1590 * Other values = max # frames in aggregation.
1591 */
1592 u8 agg_frame_cnt_limit;
1593
1594 __le32 reserved;
1595} __packed;
1596
1597/*
1598 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1599 *
1600 * For agn devices
1601 *
1602 * Each station in the agn device's internal station table has its own table
1603 * of 16
1604 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1605 * an ACK is not received. This command replaces the entire table for
1606 * one station.
1607 *
1608 * NOTE: Station must already be in agn device's station table.
1609 * Use REPLY_ADD_STA.
1610 *
1611 * The rate scaling procedures described below work well. Of course, other
1612 * procedures are possible, and may work better for particular environments.
1613 *
1614 *
1615 * FILLING THE RATE TABLE
1616 *
1617 * Given a particular initial rate and mode, as determined by the rate
1618 * scaling algorithm described below, the Linux driver uses the following
1619 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1620 * Link Quality command:
1621 *
1622 *
1623 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1624 * a) Use this same initial rate for first 3 entries.
1625 * b) Find next lower available rate using same mode (SISO or MIMO),
1626 * use for next 3 entries. If no lower rate available, switch to
1627 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1628 * c) If using MIMO, set command's mimo_delimiter to number of entries
1629 * using MIMO (3 or 6).
1630 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1631 * no MIMO, no short guard interval), at the next lower bit rate
1632 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1633 * legacy procedure for remaining table entries.
1634 *
1635 * 2) If using legacy initial rate:
1636 * a) Use the initial rate for only one entry.
1637 * b) For each following entry, reduce the rate to next lower available
1638 * rate, until reaching the lowest available rate.
1639 * c) When reducing rate, also switch antenna selection.
1640 * d) Once lowest available rate is reached, repeat this rate until
1641 * rate table is filled (16 entries), switching antenna each entry.
1642 *
1643 *
1644 * ACCUMULATING HISTORY
1645 *
1646 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1647 * uses two sets of frame Tx success history: One for the current/active
1648 * modulation mode, and one for a speculative/search mode that is being
1649 * attempted. If the speculative mode turns out to be more effective (i.e.
1650 * actual transfer rate is better), then the driver continues to use the
1651 * speculative mode as the new current active mode.
1652 *
1653 * Each history set contains, separately for each possible rate, data for a
1654 * sliding window of the 62 most recent tx attempts at that rate. The data
1655 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1656 * and attempted frames, from which the driver can additionally calculate a
1657 * success ratio (success / attempted) and number of failures
1658 * (attempted - success), and control the size of the window (attempted).
1659 * The driver uses the bit map to remove successes from the success sum, as
1660 * the oldest tx attempts fall out of the window.
1661 *
1662 * When the agn device makes multiple tx attempts for a given frame, each
1663 * attempt might be at a different rate, and have different modulation
1664 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1665 * up in the rate scaling table in the Link Quality command. The driver must
1666 * determine which rate table entry was used for each tx attempt, to determine
1667 * which rate-specific history to update, and record only those attempts that
1668 * match the modulation characteristics of the history set.
1669 *
1670 * When using block-ack (aggregation), all frames are transmitted at the same
1671 * rate, since there is no per-attempt acknowledgment from the destination
1672 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1673 * rate_n_flags field. After receiving a block-ack, the driver can update
1674 * history for the entire block all at once.
1675 *
1676 *
1677 * FINDING BEST STARTING RATE:
1678 *
1679 * When working with a selected initial modulation mode (see below), the
1680 * driver attempts to find a best initial rate. The initial rate is the
1681 * first entry in the Link Quality command's rate table.
1682 *
1683 * 1) Calculate actual throughput (success ratio * expected throughput, see
1684 * table below) for current initial rate. Do this only if enough frames
1685 * have been attempted to make the value meaningful: at least 6 failed
1686 * tx attempts, or at least 8 successes. If not enough, don't try rate
1687 * scaling yet.
1688 *
1689 * 2) Find available rates adjacent to current initial rate. Available means:
1690 * a) supported by hardware &&
1691 * b) supported by association &&
1692 * c) within any constraints selected by user
1693 *
1694 * 3) Gather measured throughputs for adjacent rates. These might not have
1695 * enough history to calculate a throughput. That's okay, we might try
1696 * using one of them anyway!
1697 *
1698 * 4) Try decreasing rate if, for current rate:
1699 * a) success ratio is < 15% ||
1700 * b) lower adjacent rate has better measured throughput ||
1701 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1702 *
1703 * As a sanity check, if decrease was determined above, leave rate
1704 * unchanged if:
1705 * a) lower rate unavailable
1706 * b) success ratio at current rate > 85% (very good)
1707 * c) current measured throughput is better than expected throughput
1708 * of lower rate (under perfect 100% tx conditions, see table below)
1709 *
1710 * 5) Try increasing rate if, for current rate:
1711 * a) success ratio is < 15% ||
1712 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1713 * b) higher adjacent rate has better measured throughput ||
1714 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1715 *
1716 * As a sanity check, if increase was determined above, leave rate
1717 * unchanged if:
1718 * a) success ratio at current rate < 70%. This is not particularly
1719 * good performance; higher rate is sure to have poorer success.
1720 *
1721 * 6) Re-evaluate the rate after each tx frame. If working with block-
1722 * acknowledge, history and statistics may be calculated for the entire
1723 * block (including prior history that fits within the history windows),
1724 * before re-evaluation.
1725 *
1726 * FINDING BEST STARTING MODULATION MODE:
1727 *
1728 * After working with a modulation mode for a "while" (and doing rate scaling),
1729 * the driver searches for a new initial mode in an attempt to improve
1730 * throughput. The "while" is measured by numbers of attempted frames:
1731 *
1732 * For legacy mode, search for new mode after:
1733 * 480 successful frames, or 160 failed frames
1734 * For high-throughput modes (SISO or MIMO), search for new mode after:
1735 * 4500 successful frames, or 400 failed frames
1736 *
1737 * Mode switch possibilities are (3 for each mode):
1738 *
1739 * For legacy:
1740 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1741 * For SISO:
1742 * Change antenna, try MIMO, try shortened guard interval (SGI)
1743 * For MIMO:
1744 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1745 *
1746 * When trying a new mode, use the same bit rate as the old/current mode when
1747 * trying antenna switches and shortened guard interval. When switching to
1748 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1749 * for which the expected throughput (under perfect conditions) is about the
1750 * same or slightly better than the actual measured throughput delivered by
1751 * the old/current mode.
1752 *
1753 * Actual throughput can be estimated by multiplying the expected throughput
1754 * by the success ratio (successful / attempted tx frames). Frame size is
1755 * not considered in this calculation; it assumes that frame size will average
1756 * out to be fairly consistent over several samples. The following are
1757 * metric values for expected throughput assuming 100% success ratio.
1758 * Only G band has support for CCK rates:
1759 *
1760 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1761 *
1762 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1763 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1764 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1765 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1766 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1767 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1768 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1769 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1770 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1771 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1772 *
1773 * After the new mode has been tried for a short while (minimum of 6 failed
1774 * frames or 8 successful frames), compare success ratio and actual throughput
1775 * estimate of the new mode with the old. If either is better with the new
1776 * mode, continue to use the new mode.
1777 *
1778 * Continue comparing modes until all 3 possibilities have been tried.
1779 * If moving from legacy to HT, try all 3 possibilities from the new HT
1780 * mode. After trying all 3, a best mode is found. Continue to use this mode
1781 * for the longer "while" described above (e.g. 480 successful frames for
1782 * legacy), and then repeat the search process.
1783 *
1784 */
1785struct iwl_link_quality_cmd {
1786
1787 /* Index of destination/recipient station in uCode's station table */
1788 u8 sta_id;
1789 u8 reserved1;
1790 __le16 control; /* not used */
1791 struct iwl_link_qual_general_params general_params;
1792 struct iwl_link_qual_agg_params agg_params;
1793
1794 /*
1795 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1796 * specifies 1st Tx rate attempted, via index into this table.
1797 * agn devices works its way through table when retrying Tx.
1798 */
1799 struct {
1800 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1801 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1802 __le32 reserved2;
1803} __packed;
1804
1805/*
1806 * BT configuration enable flags:
1807 * bit 0 - 1: BT channel announcement enabled
1808 * 0: disable
1809 * bit 1 - 1: priority of BT device enabled
1810 * 0: disable
1811 * bit 2 - 1: BT 2 wire support enabled
1812 * 0: disable
1813 */
1814#define BT_COEX_DISABLE (0x0)
1815#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1816#define BT_ENABLE_PRIORITY BIT(1)
1817#define BT_ENABLE_2_WIRE BIT(2)
1818
1819#define BT_COEX_DISABLE (0x0)
1820#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1821
1822#define BT_LEAD_TIME_MIN (0x0)
1823#define BT_LEAD_TIME_DEF (0x1E)
1824#define BT_LEAD_TIME_MAX (0xFF)
1825
1826#define BT_MAX_KILL_MIN (0x1)
1827#define BT_MAX_KILL_DEF (0x5)
1828#define BT_MAX_KILL_MAX (0xFF)
1829
1830#define BT_DURATION_LIMIT_DEF 625
1831#define BT_DURATION_LIMIT_MAX 1250
1832#define BT_DURATION_LIMIT_MIN 625
1833
1834#define BT_ON_THRESHOLD_DEF 4
1835#define BT_ON_THRESHOLD_MAX 1000
1836#define BT_ON_THRESHOLD_MIN 1
1837
1838#define BT_FRAG_THRESHOLD_DEF 0
1839#define BT_FRAG_THRESHOLD_MAX 0
1840#define BT_FRAG_THRESHOLD_MIN 0
1841
1842#define BT_AGG_THRESHOLD_DEF 1200
1843#define BT_AGG_THRESHOLD_MAX 8000
1844#define BT_AGG_THRESHOLD_MIN 400
1845
1846/*
1847 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1848 *
1849 * agn devices support hardware handshake with Bluetooth device on
1850 * same platform. Bluetooth device alerts wireless device when it will Tx;
1851 * wireless device can delay or kill its own Tx to accommodate.
1852 */
1853struct iwl_bt_cmd {
1854 u8 flags;
1855 u8 lead_time;
1856 u8 max_kill;
1857 u8 reserved;
1858 __le32 kill_ack_mask;
1859 __le32 kill_cts_mask;
1860} __packed;
1861
1862#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1863
1864#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1865#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1866#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1867#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1868#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1869#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1870
1871#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1872/* Disable Sync PSPoll on SCO/eSCO */
1873#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1874
1875#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1876#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1877
1878#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1879#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1880#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1881#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1882
1883#define IWLAGN_BT_MAX_KILL_DEFAULT 5
1884
1885#define IWLAGN_BT3_T7_DEFAULT 1
1886
1887enum iwl_bt_kill_idx {
1888 IWL_BT_KILL_DEFAULT = 0,
1889 IWL_BT_KILL_OVERRIDE = 1,
1890 IWL_BT_KILL_REDUCE = 2,
1891};
1892
1893#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1894#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1895#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1896#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1897
1898#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1899
1900#define IWLAGN_BT3_T2_DEFAULT 0xc
1901
1902#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1903#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1904#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1905#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1906#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1907#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1908#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1909#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1910
1911#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1912 IWLAGN_BT_VALID_BOOST | \
1913 IWLAGN_BT_VALID_MAX_KILL | \
1914 IWLAGN_BT_VALID_3W_TIMERS | \
1915 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1916 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1917 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1918 IWLAGN_BT_VALID_3W_LUT)
1919
1920#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1921
1922#define IWLAGN_BT_DECISION_LUT_SIZE 12
1923
1924struct iwl_basic_bt_cmd {
1925 u8 flags;
1926 u8 ledtime; /* unused */
1927 u8 max_kill;
1928 u8 bt3_timer_t7_value;
1929 __le32 kill_ack_mask;
1930 __le32 kill_cts_mask;
1931 u8 bt3_prio_sample_time;
1932 u8 bt3_timer_t2_value;
1933 __le16 bt4_reaction_time; /* unused */
1934 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1935 /*
1936 * bit 0: use reduced tx power for control frame
1937 * bit 1 - 7: reserved
1938 */
1939 u8 reduce_txpower;
1940 u8 reserved;
1941 __le16 valid;
1942};
1943
1944struct iwl_bt_cmd_v1 {
1945 struct iwl_basic_bt_cmd basic;
1946 u8 prio_boost;
1947 /*
1948 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1949 * if configure the following patterns
1950 */
1951 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1952 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1953};
1954
1955struct iwl_bt_cmd_v2 {
1956 struct iwl_basic_bt_cmd basic;
1957 __le32 prio_boost;
1958 /*
1959 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1960 * if configure the following patterns
1961 */
1962 u8 reserved;
1963 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1964 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1965};
1966
1967#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1968
1969struct iwlagn_bt_sco_cmd {
1970 __le32 flags;
1971};
1972
1973/******************************************************************************
1974 * (6)
1975 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1976 *
1977 *****************************************************************************/
1978
1979/*
1980 * Spectrum Management
1981 */
1982#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1983 RXON_FILTER_CTL2HOST_MSK | \
1984 RXON_FILTER_ACCEPT_GRP_MSK | \
1985 RXON_FILTER_DIS_DECRYPT_MSK | \
1986 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1987 RXON_FILTER_ASSOC_MSK | \
1988 RXON_FILTER_BCON_AWARE_MSK)
1989
1990struct iwl_measure_channel {
1991 __le32 duration; /* measurement duration in extended beacon
1992 * format */
1993 u8 channel; /* channel to measure */
1994 u8 type; /* see enum iwl_measure_type */
1995 __le16 reserved;
1996} __packed;
1997
1998/*
1999 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2000 */
2001struct iwl_spectrum_cmd {
2002 __le16 len; /* number of bytes starting from token */
2003 u8 token; /* token id */
2004 u8 id; /* measurement id -- 0 or 1 */
2005 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2006 u8 periodic; /* 1 = periodic */
2007 __le16 path_loss_timeout;
2008 __le32 start_time; /* start time in extended beacon format */
2009 __le32 reserved2;
2010 __le32 flags; /* rxon flags */
2011 __le32 filter_flags; /* rxon filter flags */
2012 __le16 channel_count; /* minimum 1, maximum 10 */
2013 __le16 reserved3;
2014 struct iwl_measure_channel channels[10];
2015} __packed;
2016
2017/*
2018 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2019 */
2020struct iwl_spectrum_resp {
2021 u8 token;
2022 u8 id; /* id of the prior command replaced, or 0xff */
2023 __le16 status; /* 0 - command will be handled
2024 * 1 - cannot handle (conflicts with another
2025 * measurement) */
2026} __packed;
2027
2028enum iwl_measurement_state {
2029 IWL_MEASUREMENT_START = 0,
2030 IWL_MEASUREMENT_STOP = 1,
2031};
2032
2033enum iwl_measurement_status {
2034 IWL_MEASUREMENT_OK = 0,
2035 IWL_MEASUREMENT_CONCURRENT = 1,
2036 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2037 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2038 /* 4-5 reserved */
2039 IWL_MEASUREMENT_STOPPED = 6,
2040 IWL_MEASUREMENT_TIMEOUT = 7,
2041 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2042};
2043
2044#define NUM_ELEMENTS_IN_HISTOGRAM 8
2045
2046struct iwl_measurement_histogram {
2047 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2048 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2049} __packed;
2050
2051/* clear channel availability counters */
2052struct iwl_measurement_cca_counters {
2053 __le32 ofdm;
2054 __le32 cck;
2055} __packed;
2056
2057enum iwl_measure_type {
2058 IWL_MEASURE_BASIC = (1 << 0),
2059 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2060 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2061 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2062 IWL_MEASURE_FRAME = (1 << 4),
2063 /* bits 5:6 are reserved */
2064 IWL_MEASURE_IDLE = (1 << 7),
2065};
2066
2067/*
2068 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2069 */
2070struct iwl_spectrum_notification {
2071 u8 id; /* measurement id -- 0 or 1 */
2072 u8 token;
2073 u8 channel_index; /* index in measurement channel list */
2074 u8 state; /* 0 - start, 1 - stop */
2075 __le32 start_time; /* lower 32-bits of TSF */
2076 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2077 u8 channel;
2078 u8 type; /* see enum iwl_measurement_type */
2079 u8 reserved1;
2080 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2081 * valid if applicable for measurement type requested. */
2082 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2083 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2084 __le32 cca_time; /* channel load time in usecs */
2085 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2086 * unidentified */
2087 u8 reserved2[3];
2088 struct iwl_measurement_histogram histogram;
2089 __le32 stop_time; /* lower 32-bits of TSF */
2090 __le32 status; /* see iwl_measurement_status */
2091} __packed;
2092
2093/******************************************************************************
2094 * (7)
2095 * Power Management Commands, Responses, Notifications:
2096 *
2097 *****************************************************************************/
2098
2099/**
2100 * struct iwl_powertable_cmd - Power Table Command
2101 * @flags: See below:
2102 *
2103 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2104 *
2105 * PM allow:
2106 * bit 0 - '0' Driver not allow power management
2107 * '1' Driver allow PM (use rest of parameters)
2108 *
2109 * uCode send sleep notifications:
2110 * bit 1 - '0' Don't send sleep notification
2111 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2112 *
2113 * Sleep over DTIM
2114 * bit 2 - '0' PM have to walk up every DTIM
2115 * '1' PM could sleep over DTIM till listen Interval.
2116 *
2117 * PCI power managed
2118 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2119 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2120 *
2121 * Fast PD
2122 * bit 4 - '1' Put radio to sleep when receiving frame for others
2123 *
2124 * Force sleep Modes
2125 * bit 31/30- '00' use both mac/xtal sleeps
2126 * '01' force Mac sleep
2127 * '10' force xtal sleep
2128 * '11' Illegal set
2129 *
2130 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2131 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2132 * for every DTIM.
2133 */
2134#define IWL_POWER_VEC_SIZE 5
2135
2136#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2137#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2138#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2139#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2140#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2141#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2142#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2143#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2144#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2145#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2146#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2147
2148struct iwl_powertable_cmd {
2149 __le16 flags;
2150 u8 keep_alive_seconds;
2151 u8 debug_flags;
2152 __le32 rx_data_timeout;
2153 __le32 tx_data_timeout;
2154 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2155 __le32 keep_alive_beacons;
2156} __packed;
2157
2158/*
2159 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2160 * all devices identical.
2161 */
2162struct iwl_sleep_notification {
2163 u8 pm_sleep_mode;
2164 u8 pm_wakeup_src;
2165 __le16 reserved;
2166 __le32 sleep_time;
2167 __le32 tsf_low;
2168 __le32 bcon_timer;
2169} __packed;
2170
2171/* Sleep states. all devices identical. */
2172enum {
2173 IWL_PM_NO_SLEEP = 0,
2174 IWL_PM_SLP_MAC = 1,
2175 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2176 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2177 IWL_PM_SLP_PHY = 4,
2178 IWL_PM_SLP_REPENT = 5,
2179 IWL_PM_WAKEUP_BY_TIMER = 6,
2180 IWL_PM_WAKEUP_BY_DRIVER = 7,
2181 IWL_PM_WAKEUP_BY_RFKILL = 8,
2182 /* 3 reserved */
2183 IWL_PM_NUM_OF_MODES = 12,
2184};
2185
2186/*
2187 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2188 */
2189#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2190#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2191#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2192struct iwl_card_state_cmd {
2193 __le32 status; /* CARD_STATE_CMD_* request new power state */
2194} __packed;
2195
2196/*
2197 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2198 */
2199struct iwl_card_state_notif {
2200 __le32 flags;
2201} __packed;
2202
2203#define HW_CARD_DISABLED 0x01
2204#define SW_CARD_DISABLED 0x02
2205#define CT_CARD_DISABLED 0x04
2206#define RXON_CARD_DISABLED 0x10
2207
2208struct iwl_ct_kill_config {
2209 __le32 reserved;
2210 __le32 critical_temperature_M;
2211 __le32 critical_temperature_R;
2212} __packed;
2213
2214/* 1000, and 6x00 */
2215struct iwl_ct_kill_throttling_config {
2216 __le32 critical_temperature_exit;
2217 __le32 reserved;
2218 __le32 critical_temperature_enter;
2219} __packed;
2220
2221/******************************************************************************
2222 * (8)
2223 * Scan Commands, Responses, Notifications:
2224 *
2225 *****************************************************************************/
2226
2227#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2228#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2229
2230/**
2231 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2232 *
2233 * One for each channel in the scan list.
2234 * Each channel can independently select:
2235 * 1) SSID for directed active scans
2236 * 2) Txpower setting (for rate specified within Tx command)
2237 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2238 * quiet_plcp_th, good_CRC_th)
2239 *
2240 * To avoid uCode errors, make sure the following are true (see comments
2241 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2242 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2243 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2244 * 2) quiet_time <= active_dwell
2245 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2246 * passive_dwell < max_out_time
2247 * active_dwell < max_out_time
2248 */
2249
2250struct iwl_scan_channel {
2251 /*
2252 * type is defined as:
2253 * 0:0 1 = active, 0 = passive
2254 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2255 * SSID IE is transmitted in probe request.
2256 * 21:31 reserved
2257 */
2258 __le32 type;
2259 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2260 u8 tx_gain; /* gain for analog radio */
2261 u8 dsp_atten; /* gain for DSP */
2262 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2263 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2264} __packed;
2265
2266/* set number of direct probes __le32 type */
2267#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2268
2269/**
2270 * struct iwl_ssid_ie - directed scan network information element
2271 *
2272 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2273 * selected by "type" bit field in struct iwl_scan_channel;
2274 * each channel may select different ssids from among the 20 entries.
2275 * SSID IEs get transmitted in reverse order of entry.
2276 */
2277struct iwl_ssid_ie {
2278 u8 id;
2279 u8 len;
2280 u8 ssid[32];
2281} __packed;
2282
2283#define PROBE_OPTION_MAX 20
2284#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2285#define IWL_GOOD_CRC_TH_DISABLED 0
2286#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2287#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2288#define IWL_MAX_CMD_SIZE 4096
2289
2290/*
2291 * REPLY_SCAN_CMD = 0x80 (command)
2292 *
2293 * The hardware scan command is very powerful; the driver can set it up to
2294 * maintain (relatively) normal network traffic while doing a scan in the
2295 * background. The max_out_time and suspend_time control the ratio of how
2296 * long the device stays on an associated network channel ("service channel")
2297 * vs. how long it's away from the service channel, i.e. tuned to other channels
2298 * for scanning.
2299 *
2300 * max_out_time is the max time off-channel (in usec), and suspend_time
2301 * is how long (in "extended beacon" format) that the scan is "suspended"
2302 * after returning to the service channel. That is, suspend_time is the
2303 * time that we stay on the service channel, doing normal work, between
2304 * scan segments. The driver may set these parameters differently to support
2305 * scanning when associated vs. not associated, and light vs. heavy traffic
2306 * loads when associated.
2307 *
2308 * After receiving this command, the device's scan engine does the following;
2309 *
2310 * 1) Sends SCAN_START notification to driver
2311 * 2) Checks to see if it has time to do scan for one channel
2312 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2313 * to tell AP that we're going off-channel
2314 * 4) Tunes to first channel in scan list, does active or passive scan
2315 * 5) Sends SCAN_RESULT notification to driver
2316 * 6) Checks to see if it has time to do scan on *next* channel in list
2317 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2318 * before max_out_time expires
2319 * 8) Returns to service channel
2320 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2321 * 10) Stays on service channel until suspend_time expires
2322 * 11) Repeats entire process 2-10 until list is complete
2323 * 12) Sends SCAN_COMPLETE notification
2324 *
2325 * For fast, efficient scans, the scan command also has support for staying on
2326 * a channel for just a short time, if doing active scanning and getting no
2327 * responses to the transmitted probe request. This time is controlled by
2328 * quiet_time, and the number of received packets below which a channel is
2329 * considered "quiet" is controlled by quiet_plcp_threshold.
2330 *
2331 * For active scanning on channels that have regulatory restrictions against
2332 * blindly transmitting, the scan can listen before transmitting, to make sure
2333 * that there is already legitimate activity on the channel. If enough
2334 * packets are cleanly received on the channel (controlled by good_CRC_th,
2335 * typical value 1), the scan engine starts transmitting probe requests.
2336 *
2337 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2338 *
2339 * To avoid uCode errors, see timing restrictions described under
2340 * struct iwl_scan_channel.
2341 */
2342
2343enum iwl_scan_flags {
2344 /* BIT(0) currently unused */
2345 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2346 /* bits 2-7 reserved */
2347};
2348
2349struct iwl_scan_cmd {
2350 __le16 len;
2351 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2352 u8 channel_count; /* # channels in channel list */
2353 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2354 * (only for active scan) */
2355 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2356 __le16 good_CRC_th; /* passive -> active promotion threshold */
2357 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2358 __le32 max_out_time; /* max usec to be away from associated (service)
2359 * channel */
2360 __le32 suspend_time; /* pause scan this long (in "extended beacon
2361 * format") when returning to service chnl:
2362 */
2363 __le32 flags; /* RXON_FLG_* */
2364 __le32 filter_flags; /* RXON_FILTER_* */
2365
2366 /* For active scans (set to all-0s for passive scans).
2367 * Does not include payload. Must specify Tx rate; no rate scaling. */
2368 struct iwl_tx_cmd tx_cmd;
2369
2370 /* For directed active scans (set to all-0s otherwise) */
2371 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2372
2373 /*
2374 * Probe request frame, followed by channel list.
2375 *
2376 * Size of probe request frame is specified by byte count in tx_cmd.
2377 * Channel list follows immediately after probe request frame.
2378 * Number of channels in list is specified by channel_count.
2379 * Each channel in list is of type:
2380 *
2381 * struct iwl_scan_channel channels[0];
2382 *
2383 * NOTE: Only one band of channels can be scanned per pass. You
2384 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2385 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2386 * before requesting another scan.
2387 */
2388 u8 data[0];
2389} __packed;
2390
2391/* Can abort will notify by complete notification with abort status. */
2392#define CAN_ABORT_STATUS cpu_to_le32(0x1)
2393/* complete notification statuses */
2394#define ABORT_STATUS 0x2
2395
2396/*
2397 * REPLY_SCAN_CMD = 0x80 (response)
2398 */
2399struct iwl_scanreq_notification {
2400 __le32 status; /* 1: okay, 2: cannot fulfill request */
2401} __packed;
2402
2403/*
2404 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2405 */
2406struct iwl_scanstart_notification {
2407 __le32 tsf_low;
2408 __le32 tsf_high;
2409 __le32 beacon_timer;
2410 u8 channel;
2411 u8 band;
2412 u8 reserved[2];
2413 __le32 status;
2414} __packed;
2415
2416#define SCAN_OWNER_STATUS 0x1
2417#define MEASURE_OWNER_STATUS 0x2
2418
2419#define IWL_PROBE_STATUS_OK 0
2420#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2421/* error statuses combined with TX_FAILED */
2422#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2423#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2424
2425#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2426/*
2427 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2428 */
2429struct iwl_scanresults_notification {
2430 u8 channel;
2431 u8 band;
2432 u8 probe_status;
2433 u8 num_probe_not_sent; /* not enough time to send */
2434 __le32 tsf_low;
2435 __le32 tsf_high;
2436 __le32 statistics[NUMBER_OF_STATISTICS];
2437} __packed;
2438
2439/*
2440 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2441 */
2442struct iwl_scancomplete_notification {
2443 u8 scanned_channels;
2444 u8 status;
2445 u8 bt_status; /* BT On/Off status */
2446 u8 last_channel;
2447 __le32 tsf_low;
2448 __le32 tsf_high;
2449} __packed;
2450
2451
2452/******************************************************************************
2453 * (9)
2454 * IBSS/AP Commands and Notifications:
2455 *
2456 *****************************************************************************/
2457
2458enum iwl_ibss_manager {
2459 IWL_NOT_IBSS_MANAGER = 0,
2460 IWL_IBSS_MANAGER = 1,
2461};
2462
2463/*
2464 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2465 */
2466
2467struct iwlagn_beacon_notif {
2468 struct iwlagn_tx_resp beacon_notify_hdr;
2469 __le32 low_tsf;
2470 __le32 high_tsf;
2471 __le32 ibss_mgr_status;
2472} __packed;
2473
2474/*
2475 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2476 */
2477
2478struct iwl_tx_beacon_cmd {
2479 struct iwl_tx_cmd tx;
2480 __le16 tim_idx;
2481 u8 tim_size;
2482 u8 reserved1;
2483 struct ieee80211_hdr frame[0]; /* beacon frame */
2484} __packed;
2485
2486/******************************************************************************
2487 * (10)
2488 * Statistics Commands and Notifications:
2489 *
2490 *****************************************************************************/
2491
2492#define IWL_TEMP_CONVERT 260
2493
2494#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2495#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2496#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2497
2498/* Used for passing to driver number of successes and failures per rate */
2499struct rate_histogram {
2500 union {
2501 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 } success;
2505 union {
2506 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2507 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2508 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2509 } failed;
2510} __packed;
2511
2512/* statistics command response */
2513
2514struct statistics_dbg {
2515 __le32 burst_check;
2516 __le32 burst_count;
2517 __le32 wait_for_silence_timeout_cnt;
2518 __le32 reserved[3];
2519} __packed;
2520
2521struct statistics_rx_phy {
2522 __le32 ina_cnt;
2523 __le32 fina_cnt;
2524 __le32 plcp_err;
2525 __le32 crc32_err;
2526 __le32 overrun_err;
2527 __le32 early_overrun_err;
2528 __le32 crc32_good;
2529 __le32 false_alarm_cnt;
2530 __le32 fina_sync_err_cnt;
2531 __le32 sfd_timeout;
2532 __le32 fina_timeout;
2533 __le32 unresponded_rts;
2534 __le32 rxe_frame_limit_overrun;
2535 __le32 sent_ack_cnt;
2536 __le32 sent_cts_cnt;
2537 __le32 sent_ba_rsp_cnt;
2538 __le32 dsp_self_kill;
2539 __le32 mh_format_err;
2540 __le32 re_acq_main_rssi_sum;
2541 __le32 reserved3;
2542} __packed;
2543
2544struct statistics_rx_ht_phy {
2545 __le32 plcp_err;
2546 __le32 overrun_err;
2547 __le32 early_overrun_err;
2548 __le32 crc32_good;
2549 __le32 crc32_err;
2550 __le32 mh_format_err;
2551 __le32 agg_crc32_good;
2552 __le32 agg_mpdu_cnt;
2553 __le32 agg_cnt;
2554 __le32 unsupport_mcs;
2555} __packed;
2556
2557#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2558
2559struct statistics_rx_non_phy {
2560 __le32 bogus_cts; /* CTS received when not expecting CTS */
2561 __le32 bogus_ack; /* ACK received when not expecting ACK */
2562 __le32 non_bssid_frames; /* number of frames with BSSID that
2563 * doesn't belong to the STA BSSID */
2564 __le32 filtered_frames; /* count frames that were dumped in the
2565 * filtering process */
2566 __le32 non_channel_beacons; /* beacons with our bss id but not on
2567 * our serving channel */
2568 __le32 channel_beacons; /* beacons with our bss id and in our
2569 * serving channel */
2570 __le32 num_missed_bcon; /* number of missed beacons */
2571 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2572 * ADC was in saturation */
2573 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2574 * for INA */
2575 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2576 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2577 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2578 __le32 interference_data_flag; /* flag for interference data
2579 * availability. 1 when data is
2580 * available. */
2581 __le32 channel_load; /* counts RX Enable time in uSec */
2582 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2583 * and CCK) counter */
2584 __le32 beacon_rssi_a;
2585 __le32 beacon_rssi_b;
2586 __le32 beacon_rssi_c;
2587 __le32 beacon_energy_a;
2588 __le32 beacon_energy_b;
2589 __le32 beacon_energy_c;
2590} __packed;
2591
2592struct statistics_rx_non_phy_bt {
2593 struct statistics_rx_non_phy common;
2594 /* additional stats for bt */
2595 __le32 num_bt_kills;
2596 __le32 reserved[2];
2597} __packed;
2598
2599struct statistics_rx {
2600 struct statistics_rx_phy ofdm;
2601 struct statistics_rx_phy cck;
2602 struct statistics_rx_non_phy general;
2603 struct statistics_rx_ht_phy ofdm_ht;
2604} __packed;
2605
2606struct statistics_rx_bt {
2607 struct statistics_rx_phy ofdm;
2608 struct statistics_rx_phy cck;
2609 struct statistics_rx_non_phy_bt general;
2610 struct statistics_rx_ht_phy ofdm_ht;
2611} __packed;
2612
2613/**
2614 * struct statistics_tx_power - current tx power
2615 *
2616 * @ant_a: current tx power on chain a in 1/2 dB step
2617 * @ant_b: current tx power on chain b in 1/2 dB step
2618 * @ant_c: current tx power on chain c in 1/2 dB step
2619 */
2620struct statistics_tx_power {
2621 u8 ant_a;
2622 u8 ant_b;
2623 u8 ant_c;
2624 u8 reserved;
2625} __packed;
2626
2627struct statistics_tx_non_phy_agg {
2628 __le32 ba_timeout;
2629 __le32 ba_reschedule_frames;
2630 __le32 scd_query_agg_frame_cnt;
2631 __le32 scd_query_no_agg;
2632 __le32 scd_query_agg;
2633 __le32 scd_query_mismatch;
2634 __le32 frame_not_ready;
2635 __le32 underrun;
2636 __le32 bt_prio_kill;
2637 __le32 rx_ba_rsp_cnt;
2638} __packed;
2639
2640struct statistics_tx {
2641 __le32 preamble_cnt;
2642 __le32 rx_detected_cnt;
2643 __le32 bt_prio_defer_cnt;
2644 __le32 bt_prio_kill_cnt;
2645 __le32 few_bytes_cnt;
2646 __le32 cts_timeout;
2647 __le32 ack_timeout;
2648 __le32 expected_ack_cnt;
2649 __le32 actual_ack_cnt;
2650 __le32 dump_msdu_cnt;
2651 __le32 burst_abort_next_frame_mismatch_cnt;
2652 __le32 burst_abort_missing_next_frame_cnt;
2653 __le32 cts_timeout_collision;
2654 __le32 ack_or_ba_timeout_collision;
2655 struct statistics_tx_non_phy_agg agg;
2656 /*
2657 * "tx_power" are optional parameters provided by uCode,
2658 * 6000 series is the only device provide the information,
2659 * Those are reserved fields for all the other devices
2660 */
2661 struct statistics_tx_power tx_power;
2662 __le32 reserved1;
2663} __packed;
2664
2665
2666struct statistics_div {
2667 __le32 tx_on_a;
2668 __le32 tx_on_b;
2669 __le32 exec_time;
2670 __le32 probe_time;
2671 __le32 reserved1;
2672 __le32 reserved2;
2673} __packed;
2674
2675struct statistics_general_common {
2676 __le32 temperature; /* radio temperature */
2677 __le32 temperature_m; /* radio voltage */
2678 struct statistics_dbg dbg;
2679 __le32 sleep_time;
2680 __le32 slots_out;
2681 __le32 slots_idle;
2682 __le32 ttl_timestamp;
2683 struct statistics_div div;
2684 __le32 rx_enable_counter;
2685 /*
2686 * num_of_sos_states:
2687 * count the number of times we have to re-tune
2688 * in order to get out of bad PHY status
2689 */
2690 __le32 num_of_sos_states;
2691} __packed;
2692
2693struct statistics_bt_activity {
2694 /* Tx statistics */
2695 __le32 hi_priority_tx_req_cnt;
2696 __le32 hi_priority_tx_denied_cnt;
2697 __le32 lo_priority_tx_req_cnt;
2698 __le32 lo_priority_tx_denied_cnt;
2699 /* Rx statistics */
2700 __le32 hi_priority_rx_req_cnt;
2701 __le32 hi_priority_rx_denied_cnt;
2702 __le32 lo_priority_rx_req_cnt;
2703 __le32 lo_priority_rx_denied_cnt;
2704} __packed;
2705
2706struct statistics_general {
2707 struct statistics_general_common common;
2708 __le32 reserved2;
2709 __le32 reserved3;
2710} __packed;
2711
2712struct statistics_general_bt {
2713 struct statistics_general_common common;
2714 struct statistics_bt_activity activity;
2715 __le32 reserved2;
2716 __le32 reserved3;
2717} __packed;
2718
2719#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2720#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2721#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2722
2723/*
2724 * REPLY_STATISTICS_CMD = 0x9c,
2725 * all devices identical.
2726 *
2727 * This command triggers an immediate response containing uCode statistics.
2728 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2729 *
2730 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2731 * internal copy of the statistics (counters) after issuing the response.
2732 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2733 *
2734 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2735 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2736 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2737 */
2738#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2739#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2740struct iwl_statistics_cmd {
2741 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2742} __packed;
2743
2744/*
2745 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2746 *
2747 * By default, uCode issues this notification after receiving a beacon
2748 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2749 * REPLY_STATISTICS_CMD 0x9c, above.
2750 *
2751 * Statistics counters continue to increment beacon after beacon, but are
2752 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2753 * 0x9c with CLEAR_STATS bit set (see above).
2754 *
2755 * uCode also issues this notification during scans. uCode clears statistics
2756 * appropriately so that each notification contains statistics for only the
2757 * one channel that has just been scanned.
2758 */
2759#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2760#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2761
2762struct iwl_notif_statistics {
2763 __le32 flag;
2764 struct statistics_rx rx;
2765 struct statistics_tx tx;
2766 struct statistics_general general;
2767} __packed;
2768
2769struct iwl_bt_notif_statistics {
2770 __le32 flag;
2771 struct statistics_rx_bt rx;
2772 struct statistics_tx tx;
2773 struct statistics_general_bt general;
2774} __packed;
2775
2776/*
2777 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2778 *
2779 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2780 * in regardless of how many missed beacons, which mean when driver receive the
2781 * notification, inside the command, it can find all the beacons information
2782 * which include number of total missed beacons, number of consecutive missed
2783 * beacons, number of beacons received and number of beacons expected to
2784 * receive.
2785 *
2786 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2787 * in order to bring the radio/PHY back to working state; which has no relation
2788 * to when driver will perform sensitivity calibration.
2789 *
2790 * Driver should set it own missed_beacon_threshold to decide when to perform
2791 * sensitivity calibration based on number of consecutive missed beacons in
2792 * order to improve overall performance, especially in noisy environment.
2793 *
2794 */
2795
2796#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2797#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2798#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2799
2800struct iwl_missed_beacon_notif {
2801 __le32 consecutive_missed_beacons;
2802 __le32 total_missed_becons;
2803 __le32 num_expected_beacons;
2804 __le32 num_recvd_beacons;
2805} __packed;
2806
2807
2808/******************************************************************************
2809 * (11)
2810 * Rx Calibration Commands:
2811 *
2812 * With the uCode used for open source drivers, most Tx calibration (except
2813 * for Tx Power) and most Rx calibration is done by uCode during the
2814 * "initialize" phase of uCode boot. Driver must calibrate only:
2815 *
2816 * 1) Tx power (depends on temperature), described elsewhere
2817 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2818 * 3) Receiver sensitivity (to optimize signal detection)
2819 *
2820 *****************************************************************************/
2821
2822/**
2823 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2824 *
2825 * This command sets up the Rx signal detector for a sensitivity level that
2826 * is high enough to lock onto all signals within the associated network,
2827 * but low enough to ignore signals that are below a certain threshold, so as
2828 * not to have too many "false alarms". False alarms are signals that the
2829 * Rx DSP tries to lock onto, but then discards after determining that they
2830 * are noise.
2831 *
2832 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2833 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2834 * time listening, not transmitting). Driver must adjust sensitivity so that
2835 * the ratio of actual false alarms to actual Rx time falls within this range.
2836 *
2837 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2838 * received beacon. These provide information to the driver to analyze the
2839 * sensitivity. Don't analyze statistics that come in from scanning, or any
2840 * other non-associated-network source. Pertinent statistics include:
2841 *
2842 * From "general" statistics (struct statistics_rx_non_phy):
2843 *
2844 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2845 * Measure of energy of desired signal. Used for establishing a level
2846 * below which the device does not detect signals.
2847 *
2848 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2849 * Measure of background noise in silent period after beacon.
2850 *
2851 * channel_load
2852 * uSecs of actual Rx time during beacon period (varies according to
2853 * how much time was spent transmitting).
2854 *
2855 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2856 *
2857 * false_alarm_cnt
2858 * Signal locks abandoned early (before phy-level header).
2859 *
2860 * plcp_err
2861 * Signal locks abandoned late (during phy-level header).
2862 *
2863 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2864 * beacon to beacon, i.e. each value is an accumulation of all errors
2865 * before and including the latest beacon. Values will wrap around to 0
2866 * after counting up to 2^32 - 1. Driver must differentiate vs.
2867 * previous beacon's values to determine # false alarms in the current
2868 * beacon period.
2869 *
2870 * Total number of false alarms = false_alarms + plcp_errs
2871 *
2872 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2873 * (notice that the start points for OFDM are at or close to settings for
2874 * maximum sensitivity):
2875 *
2876 * START / MIN / MAX
2877 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2878 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2879 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2880 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2881 *
2882 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2883 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2884 * by *adding* 1 to all 4 of the table entries above, up to the max for
2885 * each entry. Conversely, if false alarm rate is too low (less than 5
2886 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2887 * increase sensitivity.
2888 *
2889 * For CCK sensitivity, keep track of the following:
2890 *
2891 * 1). 20-beacon history of maximum background noise, indicated by
2892 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2893 * 3 receivers. For any given beacon, the "silence reference" is
2894 * the maximum of last 60 samples (20 beacons * 3 receivers).
2895 *
2896 * 2). 10-beacon history of strongest signal level, as indicated
2897 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2898 * i.e. the strength of the signal through the best receiver at the
2899 * moment. These measurements are "upside down", with lower values
2900 * for stronger signals, so max energy will be *minimum* value.
2901 *
2902 * Then for any given beacon, the driver must determine the *weakest*
2903 * of the strongest signals; this is the minimum level that needs to be
2904 * successfully detected, when using the best receiver at the moment.
2905 * "Max cck energy" is the maximum (higher value means lower energy!)
2906 * of the last 10 minima. Once this is determined, driver must add
2907 * a little margin by adding "6" to it.
2908 *
2909 * 3). Number of consecutive beacon periods with too few false alarms.
2910 * Reset this to 0 at the first beacon period that falls within the
2911 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2912 *
2913 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2914 * (notice that the start points for CCK are at maximum sensitivity):
2915 *
2916 * START / MIN / MAX
2917 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2918 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2919 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2920 *
2921 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2922 * (greater than 50 for each 204.8 msecs listening), method for reducing
2923 * sensitivity is:
2924 *
2925 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2926 * up to max 400.
2927 *
2928 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2929 * sensitivity has been reduced a significant amount; bring it up to
2930 * a moderate 161. Otherwise, *add* 3, up to max 200.
2931 *
2932 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2933 * sensitivity has been reduced only a moderate or small amount;
2934 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2935 * down to min 0. Otherwise (if gain has been significantly reduced),
2936 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2937 *
2938 * b) Save a snapshot of the "silence reference".
2939 *
2940 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2941 * (less than 5 for each 204.8 msecs listening), method for increasing
2942 * sensitivity is used only if:
2943 *
2944 * 1a) Previous beacon did not have too many false alarms
2945 * 1b) AND difference between previous "silence reference" and current
2946 * "silence reference" (prev - current) is 2 or more,
2947 * OR 2) 100 or more consecutive beacon periods have had rate of
2948 * less than 5 false alarms per 204.8 milliseconds rx time.
2949 *
2950 * Method for increasing sensitivity:
2951 *
2952 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2953 * down to min 125.
2954 *
2955 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2956 * down to min 200.
2957 *
2958 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2959 *
2960 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2961 * (between 5 and 50 for each 204.8 msecs listening):
2962 *
2963 * 1) Save a snapshot of the silence reference.
2964 *
2965 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2966 * give some extra margin to energy threshold by *subtracting* 8
2967 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2968 *
2969 * For all cases (too few, too many, good range), make sure that the CCK
2970 * detection threshold (energy) is below the energy level for robust
2971 * detection over the past 10 beacon periods, the "Max cck energy".
2972 * Lower values mean higher energy; this means making sure that the value
2973 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2974 *
2975 */
2976
2977/*
2978 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2979 */
2980#define HD_TABLE_SIZE (11) /* number of entries */
2981#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2982#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2983#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2984#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2985#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2986#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2987#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2988#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2989#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2990#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2991#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2992
2993/*
2994 * Additional table entries in enhance SENSITIVITY_CMD
2995 */
2996#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
2997#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
2998#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
2999#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3000#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3001#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3002#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3003#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3004#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3005#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3006#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3007#define HD_RESERVED (22)
3008
3009/* number of entries for enhanced tbl */
3010#define ENHANCE_HD_TABLE_SIZE (23)
3011
3012/* number of additional entries for enhanced tbl */
3013#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3014
3015#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3016#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3017#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3018#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3019#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3020#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3021#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3022#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3023#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3024#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3025#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3026
3027#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3028#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3029#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3030#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3031#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3032#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3033#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3034#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3035#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3036#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3037#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3038
3039
3040/* Control field in struct iwl_sensitivity_cmd */
3041#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3042#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3043
3044/**
3045 * struct iwl_sensitivity_cmd
3046 * @control: (1) updates working table, (0) updates default table
3047 * @table: energy threshold values, use HD_* as index into table
3048 *
3049 * Always use "1" in "control" to update uCode's working table and DSP.
3050 */
3051struct iwl_sensitivity_cmd {
3052 __le16 control; /* always use "1" */
3053 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3054} __packed;
3055
3056/*
3057 *
3058 */
3059struct iwl_enhance_sensitivity_cmd {
3060 __le16 control; /* always use "1" */
3061 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3062} __packed;
3063
3064
3065/**
3066 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3067 *
3068 * This command sets the relative gains of agn device's 3 radio receiver chains.
3069 *
3070 * After the first association, driver should accumulate signal and noise
3071 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3072 * beacons from the associated network (don't collect statistics that come
3073 * in from scanning, or any other non-network source).
3074 *
3075 * DISCONNECTED ANTENNA:
3076 *
3077 * Driver should determine which antennas are actually connected, by comparing
3078 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3079 * following values over 20 beacons, one accumulator for each of the chains
3080 * a/b/c, from struct statistics_rx_non_phy:
3081 *
3082 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3083 *
3084 * Find the strongest signal from among a/b/c. Compare the other two to the
3085 * strongest. If any signal is more than 15 dB (times 20, unless you
3086 * divide the accumulated values by 20) below the strongest, the driver
3087 * considers that antenna to be disconnected, and should not try to use that
3088 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3089 * driver should declare the stronger one as connected, and attempt to use it
3090 * (A and B are the only 2 Tx chains!).
3091 *
3092 *
3093 * RX BALANCE:
3094 *
3095 * Driver should balance the 3 receivers (but just the ones that are connected
3096 * to antennas, see above) for gain, by comparing the average signal levels
3097 * detected during the silence after each beacon (background noise).
3098 * Accumulate (add) the following values over 20 beacons, one accumulator for
3099 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3100 *
3101 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3102 *
3103 * Find the weakest background noise level from among a/b/c. This Rx chain
3104 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3105 * finding noise difference:
3106 *
3107 * (accum_noise[i] - accum_noise[reference]) / 30
3108 *
3109 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3110 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3111 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3112 * and set bit 2 to indicate "reduce gain". The value for the reference
3113 * (weakest) chain should be "0".
3114 *
3115 * diff_gain_[abc] bit fields:
3116 * 2: (1) reduce gain, (0) increase gain
3117 * 1-0: amount of gain, units of 1.5 dB
3118 */
3119
3120/* Phy calibration command for series */
3121enum {
3122 IWL_PHY_CALIBRATE_DC_CMD = 8,
3123 IWL_PHY_CALIBRATE_LO_CMD = 9,
3124 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3125 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3126 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3127 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3128 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3129};
3130
3131/* This enum defines the bitmap of various calibrations to enable in both
3132 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3133 */
3134enum iwl_ucode_calib_cfg {
3135 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3136 IWL_CALIB_CFG_DC_IDX = BIT(1),
3137 IWL_CALIB_CFG_LO_IDX = BIT(2),
3138 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3139 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3140 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3141 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3142 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3143 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3144 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3145 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3146};
3147
3148#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3149 IWL_CALIB_CFG_DC_IDX | \
3150 IWL_CALIB_CFG_LO_IDX | \
3151 IWL_CALIB_CFG_TX_IQ_IDX | \
3152 IWL_CALIB_CFG_RX_IQ_IDX | \
3153 IWL_CALIB_CFG_CRYSTAL_IDX)
3154
3155#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3156 IWL_CALIB_CFG_DC_IDX | \
3157 IWL_CALIB_CFG_LO_IDX | \
3158 IWL_CALIB_CFG_TX_IQ_IDX | \
3159 IWL_CALIB_CFG_RX_IQ_IDX | \
3160 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3161 IWL_CALIB_CFG_PAPD_IDX | \
3162 IWL_CALIB_CFG_TX_PWR_IDX | \
3163 IWL_CALIB_CFG_CRYSTAL_IDX)
3164
3165#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3166
3167struct iwl_calib_cfg_elmnt_s {
3168 __le32 is_enable;
3169 __le32 start;
3170 __le32 send_res;
3171 __le32 apply_res;
3172 __le32 reserved;
3173} __packed;
3174
3175struct iwl_calib_cfg_status_s {
3176 struct iwl_calib_cfg_elmnt_s once;
3177 struct iwl_calib_cfg_elmnt_s perd;
3178 __le32 flags;
3179} __packed;
3180
3181struct iwl_calib_cfg_cmd {
3182 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3183 struct iwl_calib_cfg_status_s drv_calib_cfg;
3184 __le32 reserved1;
3185} __packed;
3186
3187struct iwl_calib_hdr {
3188 u8 op_code;
3189 u8 first_group;
3190 u8 groups_num;
3191 u8 data_valid;
3192} __packed;
3193
3194struct iwl_calib_cmd {
3195 struct iwl_calib_hdr hdr;
3196 u8 data[0];
3197} __packed;
3198
3199struct iwl_calib_xtal_freq_cmd {
3200 struct iwl_calib_hdr hdr;
3201 u8 cap_pin1;
3202 u8 cap_pin2;
3203 u8 pad[2];
3204} __packed;
3205
3206#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3207struct iwl_calib_temperature_offset_cmd {
3208 struct iwl_calib_hdr hdr;
3209 __le16 radio_sensor_offset;
3210 __le16 reserved;
3211} __packed;
3212
3213struct iwl_calib_temperature_offset_v2_cmd {
3214 struct iwl_calib_hdr hdr;
3215 __le16 radio_sensor_offset_high;
3216 __le16 radio_sensor_offset_low;
3217 __le16 burntVoltageRef;
3218 __le16 reserved;
3219} __packed;
3220
3221/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3222struct iwl_calib_chain_noise_reset_cmd {
3223 struct iwl_calib_hdr hdr;
3224 u8 data[0];
3225};
3226
3227/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3228struct iwl_calib_chain_noise_gain_cmd {
3229 struct iwl_calib_hdr hdr;
3230 u8 delta_gain_1;
3231 u8 delta_gain_2;
3232 u8 pad[2];
3233} __packed;
3234
3235/******************************************************************************
3236 * (12)
3237 * Miscellaneous Commands:
3238 *
3239 *****************************************************************************/
3240
3241/*
3242 * LEDs Command & Response
3243 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3244 *
3245 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3246 * this command turns it on or off, or sets up a periodic blinking cycle.
3247 */
3248struct iwl_led_cmd {
3249 __le32 interval; /* "interval" in uSec */
3250 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3251 u8 off; /* # intervals off while blinking;
3252 * "0", with >0 "on" value, turns LED on */
3253 u8 on; /* # intervals on while blinking;
3254 * "0", regardless of "off", turns LED off */
3255 u8 reserved;
3256} __packed;
3257
3258/*
3259 * station priority table entries
3260 * also used as potential "events" value for both
3261 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3262 */
3263
3264/*
3265 * COEX events entry flag masks
3266 * RP - Requested Priority
3267 * WP - Win Medium Priority: priority assigned when the contention has been won
3268 */
3269#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3270#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3271#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3272
3273#define COEX_CU_UNASSOC_IDLE_RP 4
3274#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3275#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3276#define COEX_CU_CALIBRATION_RP 4
3277#define COEX_CU_PERIODIC_CALIBRATION_RP 4
3278#define COEX_CU_CONNECTION_ESTAB_RP 4
3279#define COEX_CU_ASSOCIATED_IDLE_RP 4
3280#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3281#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3282#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3283#define COEX_CU_RF_ON_RP 6
3284#define COEX_CU_RF_OFF_RP 4
3285#define COEX_CU_STAND_ALONE_DEBUG_RP 6
3286#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3287#define COEX_CU_RSRVD1_RP 4
3288#define COEX_CU_RSRVD2_RP 4
3289
3290#define COEX_CU_UNASSOC_IDLE_WP 3
3291#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3292#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3293#define COEX_CU_CALIBRATION_WP 3
3294#define COEX_CU_PERIODIC_CALIBRATION_WP 3
3295#define COEX_CU_CONNECTION_ESTAB_WP 3
3296#define COEX_CU_ASSOCIATED_IDLE_WP 3
3297#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3298#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3299#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3300#define COEX_CU_RF_ON_WP 3
3301#define COEX_CU_RF_OFF_WP 3
3302#define COEX_CU_STAND_ALONE_DEBUG_WP 6
3303#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3304#define COEX_CU_RSRVD1_WP 3
3305#define COEX_CU_RSRVD2_WP 3
3306
3307#define COEX_UNASSOC_IDLE_FLAGS 0
3308#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3309 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3310 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3312 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3313 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3314#define COEX_CALIBRATION_FLAGS \
3315 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3316 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317#define COEX_PERIODIC_CALIBRATION_FLAGS 0
3318/*
3319 * COEX_CONNECTION_ESTAB:
3320 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3321 */
3322#define COEX_CONNECTION_ESTAB_FLAGS \
3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3325 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3326#define COEX_ASSOCIATED_IDLE_FLAGS 0
3327#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3328 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3329 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3330#define COEX_ASSOC_AUTO_SCAN_FLAGS \
3331 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3332 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3334#define COEX_RF_ON_FLAGS 0
3335#define COEX_RF_OFF_FLAGS 0
3336#define COEX_STAND_ALONE_DEBUG_FLAGS \
3337 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3338 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3340 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3341 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3342 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343#define COEX_RSRVD1_FLAGS 0
3344#define COEX_RSRVD2_FLAGS 0
3345/*
3346 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3347 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348 */
3349#define COEX_CU_RF_ON_FLAGS \
3350 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3351 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3352 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353
3354
3355enum {
3356 /* un-association part */
3357 COEX_UNASSOC_IDLE = 0,
3358 COEX_UNASSOC_MANUAL_SCAN = 1,
3359 COEX_UNASSOC_AUTO_SCAN = 2,
3360 /* calibration */
3361 COEX_CALIBRATION = 3,
3362 COEX_PERIODIC_CALIBRATION = 4,
3363 /* connection */
3364 COEX_CONNECTION_ESTAB = 5,
3365 /* association part */
3366 COEX_ASSOCIATED_IDLE = 6,
3367 COEX_ASSOC_MANUAL_SCAN = 7,
3368 COEX_ASSOC_AUTO_SCAN = 8,
3369 COEX_ASSOC_ACTIVE_LEVEL = 9,
3370 /* RF ON/OFF */
3371 COEX_RF_ON = 10,
3372 COEX_RF_OFF = 11,
3373 COEX_STAND_ALONE_DEBUG = 12,
3374 /* IPAN */
3375 COEX_IPAN_ASSOC_LEVEL = 13,
3376 /* reserved */
3377 COEX_RSRVD1 = 14,
3378 COEX_RSRVD2 = 15,
3379 COEX_NUM_OF_EVENTS = 16
3380};
3381
3382/*
3383 * Coexistence WIFI/WIMAX Command
3384 * COEX_PRIORITY_TABLE_CMD = 0x5a
3385 *
3386 */
3387struct iwl_wimax_coex_event_entry {
3388 u8 request_prio;
3389 u8 win_medium_prio;
3390 u8 reserved;
3391 u8 flags;
3392} __packed;
3393
3394/* COEX flag masks */
3395
3396/* Station table is valid */
3397#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3398/* UnMask wake up src at unassociated sleep */
3399#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3400/* UnMask wake up src at associated sleep */
3401#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3402/* Enable CoEx feature. */
3403#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3404
3405struct iwl_wimax_coex_cmd {
3406 u8 flags;
3407 u8 reserved[3];
3408 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3409} __packed;
3410
3411/*
3412 * Coexistence MEDIUM NOTIFICATION
3413 * COEX_MEDIUM_NOTIFICATION = 0x5b
3414 *
3415 * notification from uCode to host to indicate medium changes
3416 *
3417 */
3418/*
3419 * status field
3420 * bit 0 - 2: medium status
3421 * bit 3: medium change indication
3422 * bit 4 - 31: reserved
3423 */
3424/* status option values, (0 - 2 bits) */
3425#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3426#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3427#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3428#define COEX_MEDIUM_MSK (0x7)
3429
3430/* send notification status (1 bit) */
3431#define COEX_MEDIUM_CHANGED (0x8)
3432#define COEX_MEDIUM_CHANGED_MSK (0x8)
3433#define COEX_MEDIUM_SHIFT (3)
3434
3435struct iwl_coex_medium_notification {
3436 __le32 status;
3437 __le32 events;
3438} __packed;
3439
3440/*
3441 * Coexistence EVENT Command
3442 * COEX_EVENT_CMD = 0x5c
3443 *
3444 * send from host to uCode for coex event request.
3445 */
3446/* flags options */
3447#define COEX_EVENT_REQUEST_MSK (0x1)
3448
3449struct iwl_coex_event_cmd {
3450 u8 flags;
3451 u8 event;
3452 __le16 reserved;
3453} __packed;
3454
3455struct iwl_coex_event_resp {
3456 __le32 status;
3457} __packed;
3458
3459
3460/******************************************************************************
3461 * Bluetooth Coexistence commands
3462 *
3463 *****************************************************************************/
3464
3465/*
3466 * BT Status notification
3467 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3468 */
3469enum iwl_bt_coex_profile_traffic_load {
3470 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3471 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3472 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3473 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3474/*
3475 * There are no more even though below is a u8, the
3476 * indication from the BT device only has two bits.
3477 */
3478};
3479
3480#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3481#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3482
3483/* BT UART message - Share Part (BT -> WiFi) */
3484#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3485#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3486 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3487#define BT_UART_MSG_FRAME1SSN_POS (3)
3488#define BT_UART_MSG_FRAME1SSN_MSK \
3489 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3490#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3491#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3492 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3493#define BT_UART_MSG_FRAME1RESERVED_POS (6)
3494#define BT_UART_MSG_FRAME1RESERVED_MSK \
3495 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3496
3497#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3498#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3499 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3500#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3501#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3502 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3503#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3504#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3505 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3506#define BT_UART_MSG_FRAME2INBAND_POS (5)
3507#define BT_UART_MSG_FRAME2INBAND_MSK \
3508 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3509#define BT_UART_MSG_FRAME2RESERVED_POS (6)
3510#define BT_UART_MSG_FRAME2RESERVED_MSK \
3511 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3512
3513#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3514#define BT_UART_MSG_FRAME3SCOESCO_MSK \
3515 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3516#define BT_UART_MSG_FRAME3SNIFF_POS (1)
3517#define BT_UART_MSG_FRAME3SNIFF_MSK \
3518 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3519#define BT_UART_MSG_FRAME3A2DP_POS (2)
3520#define BT_UART_MSG_FRAME3A2DP_MSK \
3521 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3522#define BT_UART_MSG_FRAME3ACL_POS (3)
3523#define BT_UART_MSG_FRAME3ACL_MSK \
3524 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3525#define BT_UART_MSG_FRAME3MASTER_POS (4)
3526#define BT_UART_MSG_FRAME3MASTER_MSK \
3527 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3528#define BT_UART_MSG_FRAME3OBEX_POS (5)
3529#define BT_UART_MSG_FRAME3OBEX_MSK \
3530 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3531#define BT_UART_MSG_FRAME3RESERVED_POS (6)
3532#define BT_UART_MSG_FRAME3RESERVED_MSK \
3533 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3536#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3537 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3538#define BT_UART_MSG_FRAME4RESERVED_POS (6)
3539#define BT_UART_MSG_FRAME4RESERVED_MSK \
3540 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3541
3542#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3543#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3544 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3545#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3546#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3547 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3548#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3549#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3550 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3551#define BT_UART_MSG_FRAME5RESERVED_POS (6)
3552#define BT_UART_MSG_FRAME5RESERVED_MSK \
3553 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3554
3555#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3556#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3557 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3558#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3559#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3560 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3561#define BT_UART_MSG_FRAME6RESERVED_POS (6)
3562#define BT_UART_MSG_FRAME6RESERVED_MSK \
3563 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3564
3565#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3566#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3567 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3568#define BT_UART_MSG_FRAME7PAGE_POS (3)
3569#define BT_UART_MSG_FRAME7PAGE_MSK \
3570 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3571#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3572#define BT_UART_MSG_FRAME7INQUIRY_MSK \
3573 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3574#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3575#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3576 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3577#define BT_UART_MSG_FRAME7RESERVED_POS (6)
3578#define BT_UART_MSG_FRAME7RESERVED_MSK \
3579 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3580
3581/* BT Session Activity 2 UART message (BT -> WiFi) */
3582#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3583#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3584 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3585#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3586#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3587 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3588
3589#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3590#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3591 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3592#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3593#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3594 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3595
3596#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3597#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3598 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3599#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3600#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3601 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3602#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3603#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3604 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3605#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3606#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3607 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3608
3609#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3610#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3611 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3612#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3613#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3614 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3615#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3616#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3617 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3618
3619#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3620#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3621 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3622#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3623#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3624 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3625#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3626#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3627 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3628#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3629#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3630 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3631
3632#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3633#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3634 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3635#define BT_UART_MSG_2_FRAME6RFU_POS (5)
3636#define BT_UART_MSG_2_FRAME6RFU_MSK \
3637 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3638#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3639#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3640 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3641
3642#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3643#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3644 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3645#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3646#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3647 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3648#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3649#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3650 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3651#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3652#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3653 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3654#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3655#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3656 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3657
3658
3659#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3660#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3661
3662struct iwl_bt_uart_msg {
3663 u8 header;
3664 u8 frame1;
3665 u8 frame2;
3666 u8 frame3;
3667 u8 frame4;
3668 u8 frame5;
3669 u8 frame6;
3670 u8 frame7;
3671} __packed;
3672
3673struct iwl_bt_coex_profile_notif {
3674 struct iwl_bt_uart_msg last_bt_uart_msg;
3675 u8 bt_status; /* 0 - off, 1 - on */
3676 u8 bt_traffic_load; /* 0 .. 3? */
3677 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3678 u8 reserved;
3679} __packed;
3680
3681#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3682#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3683#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3684#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3685#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3686#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3687#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3688
3689/*
3690 * BT Coexistence Priority table
3691 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3692 */
3693enum bt_coex_prio_table_events {
3694 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3695 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3696 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3697 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3698 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3699 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3700 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3701 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3702 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3703 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3704 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3705 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3706 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3707 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3708 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3709 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3710 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3711 BT_COEX_PRIO_TBL_EVT_MAX,
3712};
3713
3714enum bt_coex_prio_table_priorities {
3715 BT_COEX_PRIO_TBL_DISABLED = 0,
3716 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3717 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3718 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3719 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3720 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3721 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3722 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3723 BT_COEX_PRIO_TBL_MAX,
3724};
3725
3726struct iwl_bt_coex_prio_table_cmd {
3727 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3728} __packed;
3729
3730#define IWL_BT_COEX_ENV_CLOSE 0
3731#define IWL_BT_COEX_ENV_OPEN 1
3732/*
3733 * BT Protection Envelope
3734 * REPLY_BT_COEX_PROT_ENV = 0xcd
3735 */
3736struct iwl_bt_coex_prot_env_cmd {
3737 u8 action; /* 0 = closed, 1 = open */
3738 u8 type; /* 0 .. 15 */
3739 u8 reserved[2];
3740} __packed;
3741
3742/*
3743 * REPLY_D3_CONFIG
3744 */
3745enum iwlagn_d3_wakeup_filters {
3746 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3747 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3748};
3749
3750struct iwlagn_d3_config_cmd {
3751 __le32 min_sleep_time;
3752 __le32 wakeup_flags;
3753} __packed;
3754
3755/*
3756 * REPLY_WOWLAN_PATTERNS
3757 */
3758#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3759#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3760
3761struct iwlagn_wowlan_pattern {
3762 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3763 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3764 u8 mask_size;
3765 u8 pattern_size;
3766 __le16 reserved;
3767} __packed;
3768
3769#define IWLAGN_WOWLAN_MAX_PATTERNS 20
3770
3771struct iwlagn_wowlan_patterns_cmd {
3772 __le32 n_patterns;
3773 struct iwlagn_wowlan_pattern patterns[];
3774} __packed;
3775
3776/*
3777 * REPLY_WOWLAN_WAKEUP_FILTER
3778 */
3779enum iwlagn_wowlan_wakeup_filters {
3780 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3781 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3782 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3783 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3784 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3785 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3786 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3787 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3788 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3789};
3790
3791struct iwlagn_wowlan_wakeup_filter_cmd {
3792 __le32 enabled;
3793 __le16 non_qos_seq;
3794 __le16 reserved;
3795 __le16 qos_seq[8];
3796};
3797
3798/*
3799 * REPLY_WOWLAN_TSC_RSC_PARAMS
3800 */
3801#define IWLAGN_NUM_RSC 16
3802
3803struct tkip_sc {
3804 __le16 iv16;
3805 __le16 pad;
3806 __le32 iv32;
3807} __packed;
3808
3809struct iwlagn_tkip_rsc_tsc {
3810 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3811 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3812 struct tkip_sc tsc;
3813} __packed;
3814
3815struct aes_sc {
3816 __le64 pn;
3817} __packed;
3818
3819struct iwlagn_aes_rsc_tsc {
3820 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3821 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3822 struct aes_sc tsc;
3823} __packed;
3824
3825union iwlagn_all_tsc_rsc {
3826 struct iwlagn_tkip_rsc_tsc tkip;
3827 struct iwlagn_aes_rsc_tsc aes;
3828};
3829
3830struct iwlagn_wowlan_rsc_tsc_params_cmd {
3831 union iwlagn_all_tsc_rsc all_tsc_rsc;
3832} __packed;
3833
3834/*
3835 * REPLY_WOWLAN_TKIP_PARAMS
3836 */
3837#define IWLAGN_MIC_KEY_SIZE 8
3838#define IWLAGN_P1K_SIZE 5
3839struct iwlagn_mic_keys {
3840 u8 tx[IWLAGN_MIC_KEY_SIZE];
3841 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3842 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3843} __packed;
3844
3845struct iwlagn_p1k_cache {
3846 __le16 p1k[IWLAGN_P1K_SIZE];
3847} __packed;
3848
3849#define IWLAGN_NUM_RX_P1K_CACHE 2
3850
3851struct iwlagn_wowlan_tkip_params_cmd {
3852 struct iwlagn_mic_keys mic_keys;
3853 struct iwlagn_p1k_cache tx;
3854 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3855 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3856} __packed;
3857
3858/*
3859 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3860 */
3861
3862#define IWLAGN_KCK_MAX_SIZE 32
3863#define IWLAGN_KEK_MAX_SIZE 32
3864
3865struct iwlagn_wowlan_kek_kck_material_cmd {
3866 u8 kck[IWLAGN_KCK_MAX_SIZE];
3867 u8 kek[IWLAGN_KEK_MAX_SIZE];
3868 __le16 kck_len;
3869 __le16 kek_len;
3870 __le64 replay_ctr;
3871} __packed;
3872
3873#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3874
3875/*
3876 * REPLY_WOWLAN_GET_STATUS = 0xe5
3877 */
3878struct iwlagn_wowlan_status {
3879 __le64 replay_ctr;
3880 __le32 rekey_status;
3881 __le32 wakeup_reason;
3882 u8 pattern_number;
3883 u8 reserved1;
3884 __le16 qos_seq_ctr[8];
3885 __le16 non_qos_seq_ctr;
3886 __le16 reserved2;
3887 union iwlagn_all_tsc_rsc tsc_rsc;
3888 __le16 reserved3;
3889} __packed;
3890
3891/*
3892 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3893 */
3894
3895/*
3896 * Minimum slot time in TU
3897 */
3898#define IWL_MIN_SLOT_TIME 20
3899
3900/**
3901 * struct iwl_wipan_slot
3902 * @width: Time in TU
3903 * @type:
3904 * 0 - BSS
3905 * 1 - PAN
3906 */
3907struct iwl_wipan_slot {
3908 __le16 width;
3909 u8 type;
3910 u8 reserved;
3911} __packed;
3912
3913#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3914#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3915#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3916#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3917#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3918
3919/**
3920 * struct iwl_wipan_params_cmd
3921 * @flags:
3922 * bit0: reserved
3923 * bit1: CP leave channel with CTS
3924 * bit2: CP leave channel qith Quiet
3925 * bit3: slotted mode
3926 * 1 - work in slotted mode
3927 * 0 - work in non slotted mode
3928 * bit4: filter beacon notification
3929 * bit5: full tx slotted mode. if this flag is set,
3930 * uCode will perform leaving channel methods in context switch
3931 * also when working in same channel mode
3932 * @num_slots: 1 - 10
3933 */
3934struct iwl_wipan_params_cmd {
3935 __le16 flags;
3936 u8 reserved;
3937 u8 num_slots;
3938 struct iwl_wipan_slot slots[10];
3939} __packed;
3940
3941/*
3942 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3943 *
3944 * TODO: Figure out what this is used for,
3945 * it can only switch between 2.4 GHz
3946 * channels!!
3947 */
3948
3949struct iwl_wipan_p2p_channel_switch_cmd {
3950 __le16 channel;
3951 __le16 reserved;
3952};
3953
3954/*
3955 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3956 *
3957 * This is used by the device to notify us of the
3958 * NoA schedule it determined so we can forward it
3959 * to userspace for inclusion in probe responses.
3960 *
3961 * In beacons, the NoA schedule is simply appended
3962 * to the frame we give the device.
3963 */
3964
3965struct iwl_wipan_noa_descriptor {
3966 u8 count;
3967 __le32 duration;
3968 __le32 interval;
3969 __le32 starttime;
3970} __packed;
3971
3972struct iwl_wipan_noa_attribute {
3973 u8 id;
3974 __le16 length;
3975 u8 index;
3976 u8 ct_window;
3977 struct iwl_wipan_noa_descriptor descr0, descr1;
3978 u8 reserved;
3979} __packed;
3980
3981struct iwl_wipan_noa_notification {
3982 u32 noa_active;
3983 struct iwl_wipan_noa_attribute noa_attribute;
3984} __packed;
3985
3986#endif /* __iwl_commands_h__ */
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * The full GNU General Public License is included in this distribution
20 * in the file called COPYING.
21 *
22 * Contact Information:
23 * Intel Linux Wireless <linuxwifi@intel.com>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 * BSD LICENSE
27 *
28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 *
35 * * Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * * Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in
39 * the documentation and/or other materials provided with the
40 * distribution.
41 * * Neither the name Intel Corporation nor the names of its
42 * contributors may be used to endorse or promote products derived
43 * from this software without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 *
57 *****************************************************************************/
58/*
59 * Please use this file (commands.h) only for uCode API definitions.
60 * Please use iwl-xxxx-hw.h for hardware-related definitions.
61 * Please use dev.h for driver implementation definitions.
62 */
63
64#ifndef __iwl_commands_h__
65#define __iwl_commands_h__
66
67#include <linux/ieee80211.h>
68#include <linux/types.h>
69
70
71enum {
72 REPLY_ALIVE = 0x1,
73 REPLY_ERROR = 0x2,
74 REPLY_ECHO = 0x3, /* test command */
75
76 /* RXON and QOS commands */
77 REPLY_RXON = 0x10,
78 REPLY_RXON_ASSOC = 0x11,
79 REPLY_QOS_PARAM = 0x13,
80 REPLY_RXON_TIMING = 0x14,
81
82 /* Multi-Station support */
83 REPLY_ADD_STA = 0x18,
84 REPLY_REMOVE_STA = 0x19,
85 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
86 REPLY_TXFIFO_FLUSH = 0x1e,
87
88 /* Security */
89 REPLY_WEPKEY = 0x20,
90
91 /* RX, TX, LEDs */
92 REPLY_TX = 0x1c,
93 REPLY_LEDS_CMD = 0x48,
94 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
95
96 /* WiMAX coexistence */
97 COEX_PRIORITY_TABLE_CMD = 0x5a,
98 COEX_MEDIUM_NOTIFICATION = 0x5b,
99 COEX_EVENT_CMD = 0x5c,
100
101 /* Calibration */
102 TEMPERATURE_NOTIFICATION = 0x62,
103 CALIBRATION_CFG_CMD = 0x65,
104 CALIBRATION_RES_NOTIFICATION = 0x66,
105 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
106
107 /* 802.11h related */
108 REPLY_QUIET_CMD = 0x71, /* not used */
109 REPLY_CHANNEL_SWITCH = 0x72,
110 CHANNEL_SWITCH_NOTIFICATION = 0x73,
111 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
112 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
113
114 /* Power Management */
115 POWER_TABLE_CMD = 0x77,
116 PM_SLEEP_NOTIFICATION = 0x7A,
117 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
118
119 /* Scan commands and notifications */
120 REPLY_SCAN_CMD = 0x80,
121 REPLY_SCAN_ABORT_CMD = 0x81,
122 SCAN_START_NOTIFICATION = 0x82,
123 SCAN_RESULTS_NOTIFICATION = 0x83,
124 SCAN_COMPLETE_NOTIFICATION = 0x84,
125
126 /* IBSS/AP commands */
127 BEACON_NOTIFICATION = 0x90,
128 REPLY_TX_BEACON = 0x91,
129 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
130
131 /* Miscellaneous commands */
132 REPLY_TX_POWER_DBM_CMD = 0x95,
133 QUIET_NOTIFICATION = 0x96, /* not used */
134 REPLY_TX_PWR_TABLE_CMD = 0x97,
135 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
136 TX_ANT_CONFIGURATION_CMD = 0x98,
137 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
138
139 /* Bluetooth device coexistence config command */
140 REPLY_BT_CONFIG = 0x9b,
141
142 /* Statistics */
143 REPLY_STATISTICS_CMD = 0x9c,
144 STATISTICS_NOTIFICATION = 0x9d,
145
146 /* RF-KILL commands and notifications */
147 REPLY_CARD_STATE_CMD = 0xa0,
148 CARD_STATE_NOTIFICATION = 0xa1,
149
150 /* Missed beacons notification */
151 MISSED_BEACONS_NOTIFICATION = 0xa2,
152
153 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
154 SENSITIVITY_CMD = 0xa8,
155 REPLY_PHY_CALIBRATION_CMD = 0xb0,
156 REPLY_RX_PHY_CMD = 0xc0,
157 REPLY_RX_MPDU_CMD = 0xc1,
158 REPLY_RX = 0xc3,
159 REPLY_COMPRESSED_BA = 0xc5,
160
161 /* BT Coex */
162 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
163 REPLY_BT_COEX_PROT_ENV = 0xcd,
164 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
165
166 /* PAN commands */
167 REPLY_WIPAN_PARAMS = 0xb2,
168 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
169 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
170 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
171 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
172 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
173 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
174 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
175 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
176
177 REPLY_WOWLAN_PATTERNS = 0xe0,
178 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
179 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
180 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
181 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
182 REPLY_WOWLAN_GET_STATUS = 0xe5,
183 REPLY_D3_CONFIG = 0xd3,
184
185 REPLY_MAX = 0xff
186};
187
188/*
189 * Minimum number of queues. MAX_NUM is defined in hw specific files.
190 * Set the minimum to accommodate
191 * - 4 standard TX queues
192 * - the command queue
193 * - 4 PAN TX queues
194 * - the PAN multicast queue, and
195 * - the AUX (TX during scan dwell) queue.
196 */
197#define IWL_MIN_NUM_QUEUES 11
198
199/*
200 * Command queue depends on iPAN support.
201 */
202#define IWL_DEFAULT_CMD_QUEUE_NUM 4
203#define IWL_IPAN_CMD_QUEUE_NUM 9
204
205#define IWL_TX_FIFO_BK 0 /* shared */
206#define IWL_TX_FIFO_BE 1
207#define IWL_TX_FIFO_VI 2 /* shared */
208#define IWL_TX_FIFO_VO 3
209#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
210#define IWL_TX_FIFO_BE_IPAN 4
211#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
212#define IWL_TX_FIFO_VO_IPAN 5
213/* re-uses the VO FIFO, uCode will properly flush/schedule */
214#define IWL_TX_FIFO_AUX 5
215#define IWL_TX_FIFO_UNUSED 255
216
217#define IWLAGN_CMD_FIFO_NUM 7
218
219/*
220 * This queue number is required for proper operation
221 * because the ucode will stop/start the scheduler as
222 * required.
223 */
224#define IWL_IPAN_MCAST_QUEUE 8
225
226/******************************************************************************
227 * (0)
228 * Commonly used structures and definitions:
229 * Command header, rate_n_flags, txpower
230 *
231 *****************************************************************************/
232
233/**
234 * iwlagn rate_n_flags bit fields
235 *
236 * rate_n_flags format is used in following iwlagn commands:
237 * REPLY_RX (response only)
238 * REPLY_RX_MPDU (response only)
239 * REPLY_TX (both command and response)
240 * REPLY_TX_LINK_QUALITY_CMD
241 *
242 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
243 * 2-0: 0) 6 Mbps
244 * 1) 12 Mbps
245 * 2) 18 Mbps
246 * 3) 24 Mbps
247 * 4) 36 Mbps
248 * 5) 48 Mbps
249 * 6) 54 Mbps
250 * 7) 60 Mbps
251 *
252 * 4-3: 0) Single stream (SISO)
253 * 1) Dual stream (MIMO)
254 * 2) Triple stream (MIMO)
255 *
256 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
257 *
258 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
259 * 3-0: 0xD) 6 Mbps
260 * 0xF) 9 Mbps
261 * 0x5) 12 Mbps
262 * 0x7) 18 Mbps
263 * 0x9) 24 Mbps
264 * 0xB) 36 Mbps
265 * 0x1) 48 Mbps
266 * 0x3) 54 Mbps
267 *
268 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
269 * 6-0: 10) 1 Mbps
270 * 20) 2 Mbps
271 * 55) 5.5 Mbps
272 * 110) 11 Mbps
273 */
274#define RATE_MCS_CODE_MSK 0x7
275#define RATE_MCS_SPATIAL_POS 3
276#define RATE_MCS_SPATIAL_MSK 0x18
277#define RATE_MCS_HT_DUP_POS 5
278#define RATE_MCS_HT_DUP_MSK 0x20
279/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
280#define RATE_MCS_RATE_MSK 0xff
281
282/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
283#define RATE_MCS_FLAGS_POS 8
284#define RATE_MCS_HT_POS 8
285#define RATE_MCS_HT_MSK 0x100
286
287/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
288#define RATE_MCS_CCK_POS 9
289#define RATE_MCS_CCK_MSK 0x200
290
291/* Bit 10: (1) Use Green Field preamble */
292#define RATE_MCS_GF_POS 10
293#define RATE_MCS_GF_MSK 0x400
294
295/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
296#define RATE_MCS_HT40_POS 11
297#define RATE_MCS_HT40_MSK 0x800
298
299/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
300#define RATE_MCS_DUP_POS 12
301#define RATE_MCS_DUP_MSK 0x1000
302
303/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
304#define RATE_MCS_SGI_POS 13
305#define RATE_MCS_SGI_MSK 0x2000
306
307/**
308 * rate_n_flags Tx antenna masks
309 * bit14:16
310 */
311#define RATE_MCS_ANT_POS 14
312#define RATE_MCS_ANT_A_MSK 0x04000
313#define RATE_MCS_ANT_B_MSK 0x08000
314#define RATE_MCS_ANT_C_MSK 0x10000
315#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
316#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
317#define RATE_ANT_NUM 3
318
319#define POWER_TABLE_NUM_ENTRIES 33
320#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
321#define POWER_TABLE_CCK_ENTRY 32
322
323#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
324#define IWL_PWR_CCK_ENTRIES 2
325
326/**
327 * struct tx_power_dual_stream
328 *
329 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
330 *
331 * Same format as iwl_tx_power_dual_stream, but __le32
332 */
333struct tx_power_dual_stream {
334 __le32 dw;
335} __packed;
336
337/**
338 * Command REPLY_TX_POWER_DBM_CMD = 0x98
339 * struct iwlagn_tx_power_dbm_cmd
340 */
341#define IWLAGN_TX_POWER_AUTO 0x7f
342#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
343
344struct iwlagn_tx_power_dbm_cmd {
345 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
346 u8 flags;
347 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
348 u8 reserved;
349} __packed;
350
351/**
352 * Command TX_ANT_CONFIGURATION_CMD = 0x98
353 * This command is used to configure valid Tx antenna.
354 * By default uCode concludes the valid antenna according to the radio flavor.
355 * This command enables the driver to override/modify this conclusion.
356 */
357struct iwl_tx_ant_config_cmd {
358 __le32 valid;
359} __packed;
360
361/******************************************************************************
362 * (0a)
363 * Alive and Error Commands & Responses:
364 *
365 *****************************************************************************/
366
367#define UCODE_VALID_OK cpu_to_le32(0x1)
368
369/**
370 * REPLY_ALIVE = 0x1 (response only, not a command)
371 *
372 * uCode issues this "alive" notification once the runtime image is ready
373 * to receive commands from the driver. This is the *second* "alive"
374 * notification that the driver will receive after rebooting uCode;
375 * this "alive" is indicated by subtype field != 9.
376 *
377 * See comments documenting "BSM" (bootstrap state machine).
378 *
379 * This response includes two pointers to structures within the device's
380 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
381 *
382 * 1) log_event_table_ptr indicates base of the event log. This traces
383 * a 256-entry history of uCode execution within a circular buffer.
384 * Its header format is:
385 *
386 * __le32 log_size; log capacity (in number of entries)
387 * __le32 type; (1) timestamp with each entry, (0) no timestamp
388 * __le32 wraps; # times uCode has wrapped to top of circular buffer
389 * __le32 write_index; next circular buffer entry that uCode would fill
390 *
391 * The header is followed by the circular buffer of log entries. Entries
392 * with timestamps have the following format:
393 *
394 * __le32 event_id; range 0 - 1500
395 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
396 * __le32 data; event_id-specific data value
397 *
398 * Entries without timestamps contain only event_id and data.
399 *
400 *
401 * 2) error_event_table_ptr indicates base of the error log. This contains
402 * information about any uCode error that occurs. For agn, the format
403 * of the error log is defined by struct iwl_error_event_table.
404 *
405 * The Linux driver can print both logs to the system log when a uCode error
406 * occurs.
407 */
408
409/*
410 * Note: This structure is read from the device with IO accesses,
411 * and the reading already does the endian conversion. As it is
412 * read with u32-sized accesses, any members with a different size
413 * need to be ordered correctly though!
414 */
415struct iwl_error_event_table {
416 u32 valid; /* (nonzero) valid, (0) log is empty */
417 u32 error_id; /* type of error */
418 u32 pc; /* program counter */
419 u32 blink1; /* branch link */
420 u32 blink2; /* branch link */
421 u32 ilink1; /* interrupt link */
422 u32 ilink2; /* interrupt link */
423 u32 data1; /* error-specific data */
424 u32 data2; /* error-specific data */
425 u32 line; /* source code line of error */
426 u32 bcon_time; /* beacon timer */
427 u32 tsf_low; /* network timestamp function timer */
428 u32 tsf_hi; /* network timestamp function timer */
429 u32 gp1; /* GP1 timer register */
430 u32 gp2; /* GP2 timer register */
431 u32 gp3; /* GP3 timer register */
432 u32 ucode_ver; /* uCode version */
433 u32 hw_ver; /* HW Silicon version */
434 u32 brd_ver; /* HW board version */
435 u32 log_pc; /* log program counter */
436 u32 frame_ptr; /* frame pointer */
437 u32 stack_ptr; /* stack pointer */
438 u32 hcmd; /* last host command header */
439 u32 isr0; /* isr status register LMPM_NIC_ISR0:
440 * rxtx_flag */
441 u32 isr1; /* isr status register LMPM_NIC_ISR1:
442 * host_flag */
443 u32 isr2; /* isr status register LMPM_NIC_ISR2:
444 * enc_flag */
445 u32 isr3; /* isr status register LMPM_NIC_ISR3:
446 * time_flag */
447 u32 isr4; /* isr status register LMPM_NIC_ISR4:
448 * wico interrupt */
449 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
450 u32 wait_event; /* wait event() caller address */
451 u32 l2p_control; /* L2pControlField */
452 u32 l2p_duration; /* L2pDurationField */
453 u32 l2p_mhvalid; /* L2pMhValidBits */
454 u32 l2p_addr_match; /* L2pAddrMatchStat */
455 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
456 * (LMPM_PMG_SEL) */
457 u32 u_timestamp; /* indicate when the date and time of the
458 * compilation */
459 u32 flow_handler; /* FH read/write pointers, RX credit */
460} __packed;
461
462struct iwl_alive_resp {
463 u8 ucode_minor;
464 u8 ucode_major;
465 __le16 reserved1;
466 u8 sw_rev[8];
467 u8 ver_type;
468 u8 ver_subtype; /* not "9" for runtime alive */
469 __le16 reserved2;
470 __le32 log_event_table_ptr; /* SRAM address for event log */
471 __le32 error_event_table_ptr; /* SRAM address for error log */
472 __le32 timestamp;
473 __le32 is_valid;
474} __packed;
475
476/*
477 * REPLY_ERROR = 0x2 (response only, not a command)
478 */
479struct iwl_error_resp {
480 __le32 error_type;
481 u8 cmd_id;
482 u8 reserved1;
483 __le16 bad_cmd_seq_num;
484 __le32 error_info;
485 __le64 timestamp;
486} __packed;
487
488/******************************************************************************
489 * (1)
490 * RXON Commands & Responses:
491 *
492 *****************************************************************************/
493
494/*
495 * Rx config defines & structure
496 */
497/* rx_config device types */
498enum {
499 RXON_DEV_TYPE_AP = 1,
500 RXON_DEV_TYPE_ESS = 3,
501 RXON_DEV_TYPE_IBSS = 4,
502 RXON_DEV_TYPE_SNIFFER = 6,
503 RXON_DEV_TYPE_CP = 7,
504 RXON_DEV_TYPE_2STA = 8,
505 RXON_DEV_TYPE_P2P = 9,
506};
507
508
509#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
510#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
511#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
512#define RXON_RX_CHAIN_VALID_POS (1)
513#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
514#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
515#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
516#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
517#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
518#define RXON_RX_CHAIN_CNT_POS (10)
519#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
520#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
521#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
522#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
523
524/* rx_config flags */
525/* band & modulation selection */
526#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
527#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
528/* auto detection enable */
529#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
530/* TGg protection when tx */
531#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
532/* cck short slot & preamble */
533#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
534#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
535/* antenna selection */
536#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
537#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
538#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
539#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
540/* radar detection enable */
541#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
542#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
543/* rx response to host with 8-byte TSF
544* (according to ON_AIR deassertion) */
545#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
546
547
548/* HT flags */
549#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
550#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
551
552#define RXON_FLG_HT_OPERATING_MODE_POS (23)
553
554#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
555#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
556
557#define RXON_FLG_CHANNEL_MODE_POS (25)
558#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
559
560/* channel mode */
561enum {
562 CHANNEL_MODE_LEGACY = 0,
563 CHANNEL_MODE_PURE_40 = 1,
564 CHANNEL_MODE_MIXED = 2,
565 CHANNEL_MODE_RESERVED = 3,
566};
567#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
568#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
569#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
570
571/* CTS to self (if spec allows) flag */
572#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
573
574/* rx_config filter flags */
575/* accept all data frames */
576#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
577/* pass control & management to host */
578#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
579/* accept multi-cast */
580#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
581/* don't decrypt uni-cast frames */
582#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
583/* don't decrypt multi-cast frames */
584#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
585/* STA is associated */
586#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
587/* transfer to host non bssid beacons in associated state */
588#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
589
590/**
591 * REPLY_RXON = 0x10 (command, has simple generic response)
592 *
593 * RXON tunes the radio tuner to a service channel, and sets up a number
594 * of parameters that are used primarily for Rx, but also for Tx operations.
595 *
596 * NOTE: When tuning to a new channel, driver must set the
597 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
598 * info within the device, including the station tables, tx retry
599 * rate tables, and txpower tables. Driver must build a new station
600 * table and txpower table before transmitting anything on the RXON
601 * channel.
602 *
603 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
604 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
605 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
606 */
607
608struct iwl_rxon_cmd {
609 u8 node_addr[6];
610 __le16 reserved1;
611 u8 bssid_addr[6];
612 __le16 reserved2;
613 u8 wlap_bssid_addr[6];
614 __le16 reserved3;
615 u8 dev_type;
616 u8 air_propagation;
617 __le16 rx_chain;
618 u8 ofdm_basic_rates;
619 u8 cck_basic_rates;
620 __le16 assoc_id;
621 __le32 flags;
622 __le32 filter_flags;
623 __le16 channel;
624 u8 ofdm_ht_single_stream_basic_rates;
625 u8 ofdm_ht_dual_stream_basic_rates;
626 u8 ofdm_ht_triple_stream_basic_rates;
627 u8 reserved5;
628 __le16 acquisition_data;
629 __le16 reserved6;
630} __packed;
631
632/*
633 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
634 */
635struct iwl_rxon_assoc_cmd {
636 __le32 flags;
637 __le32 filter_flags;
638 u8 ofdm_basic_rates;
639 u8 cck_basic_rates;
640 __le16 reserved1;
641 u8 ofdm_ht_single_stream_basic_rates;
642 u8 ofdm_ht_dual_stream_basic_rates;
643 u8 ofdm_ht_triple_stream_basic_rates;
644 u8 reserved2;
645 __le16 rx_chain_select_flags;
646 __le16 acquisition_data;
647 __le32 reserved3;
648} __packed;
649
650#define IWL_CONN_MAX_LISTEN_INTERVAL 10
651#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
652
653/*
654 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
655 */
656struct iwl_rxon_time_cmd {
657 __le64 timestamp;
658 __le16 beacon_interval;
659 __le16 atim_window;
660 __le32 beacon_init_val;
661 __le16 listen_interval;
662 u8 dtim_period;
663 u8 delta_cp_bss_tbtts;
664} __packed;
665
666/*
667 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
668 */
669/**
670 * struct iwl5000_channel_switch_cmd
671 * @band: 0- 5.2GHz, 1- 2.4GHz
672 * @expect_beacon: 0- resume transmits after channel switch
673 * 1- wait for beacon to resume transmits
674 * @channel: new channel number
675 * @rxon_flags: Rx on flags
676 * @rxon_filter_flags: filtering parameters
677 * @switch_time: switch time in extended beacon format
678 * @reserved: reserved bytes
679 */
680struct iwl5000_channel_switch_cmd {
681 u8 band;
682 u8 expect_beacon;
683 __le16 channel;
684 __le32 rxon_flags;
685 __le32 rxon_filter_flags;
686 __le32 switch_time;
687 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
688} __packed;
689
690/**
691 * struct iwl6000_channel_switch_cmd
692 * @band: 0- 5.2GHz, 1- 2.4GHz
693 * @expect_beacon: 0- resume transmits after channel switch
694 * 1- wait for beacon to resume transmits
695 * @channel: new channel number
696 * @rxon_flags: Rx on flags
697 * @rxon_filter_flags: filtering parameters
698 * @switch_time: switch time in extended beacon format
699 * @reserved: reserved bytes
700 */
701struct iwl6000_channel_switch_cmd {
702 u8 band;
703 u8 expect_beacon;
704 __le16 channel;
705 __le32 rxon_flags;
706 __le32 rxon_filter_flags;
707 __le32 switch_time;
708 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
709} __packed;
710
711/*
712 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
713 */
714struct iwl_csa_notification {
715 __le16 band;
716 __le16 channel;
717 __le32 status; /* 0 - OK, 1 - fail */
718} __packed;
719
720/******************************************************************************
721 * (2)
722 * Quality-of-Service (QOS) Commands & Responses:
723 *
724 *****************************************************************************/
725
726/**
727 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
728 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
729 *
730 * @cw_min: Contention window, start value in numbers of slots.
731 * Should be a power-of-2, minus 1. Device's default is 0x0f.
732 * @cw_max: Contention window, max value in numbers of slots.
733 * Should be a power-of-2, minus 1. Device's default is 0x3f.
734 * @aifsn: Number of slots in Arbitration Interframe Space (before
735 * performing random backoff timing prior to Tx). Device default 1.
736 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
737 *
738 * Device will automatically increase contention window by (2*CW) + 1 for each
739 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
740 * value, to cap the CW value.
741 */
742struct iwl_ac_qos {
743 __le16 cw_min;
744 __le16 cw_max;
745 u8 aifsn;
746 u8 reserved1;
747 __le16 edca_txop;
748} __packed;
749
750/* QoS flags defines */
751#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
752#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
753#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
754
755/* Number of Access Categories (AC) (EDCA), queues 0..3 */
756#define AC_NUM 4
757
758/*
759 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
760 *
761 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
762 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
763 */
764struct iwl_qosparam_cmd {
765 __le32 qos_flags;
766 struct iwl_ac_qos ac[AC_NUM];
767} __packed;
768
769/******************************************************************************
770 * (3)
771 * Add/Modify Stations Commands & Responses:
772 *
773 *****************************************************************************/
774/*
775 * Multi station support
776 */
777
778/* Special, dedicated locations within device's station table */
779#define IWL_AP_ID 0
780#define IWL_AP_ID_PAN 1
781#define IWL_STA_ID 2
782#define IWLAGN_PAN_BCAST_ID 14
783#define IWLAGN_BROADCAST_ID 15
784#define IWLAGN_STATION_COUNT 16
785
786#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
787
788#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
789#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
790#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
791#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
792#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
793#define STA_FLG_MAX_AGG_SIZE_POS (19)
794#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
795#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
796#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
797#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
798#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
799
800/* Use in mode field. 1: modify existing entry, 0: add new station entry */
801#define STA_CONTROL_MODIFY_MSK 0x01
802
803/* key flags __le16*/
804#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
805#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
806#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
807#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
808#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
809
810#define STA_KEY_FLG_KEYID_POS 8
811#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
812/* wep key is either from global key (0) or from station info array (1) */
813#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
814
815/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
816#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
817#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
818#define STA_KEY_MAX_NUM 8
819#define STA_KEY_MAX_NUM_PAN 16
820/* must not match WEP_INVALID_OFFSET */
821#define IWLAGN_HW_KEY_DEFAULT 0xfe
822
823/* Flags indicate whether to modify vs. don't change various station params */
824#define STA_MODIFY_KEY_MASK 0x01
825#define STA_MODIFY_TID_DISABLE_TX 0x02
826#define STA_MODIFY_TX_RATE_MSK 0x04
827#define STA_MODIFY_ADDBA_TID_MSK 0x08
828#define STA_MODIFY_DELBA_TID_MSK 0x10
829#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
830
831/* agn */
832struct iwl_keyinfo {
833 __le16 key_flags;
834 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
835 u8 reserved1;
836 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
837 u8 key_offset;
838 u8 reserved2;
839 u8 key[16]; /* 16-byte unicast decryption key */
840 __le64 tx_secur_seq_cnt;
841 __le64 hw_tkip_mic_rx_key;
842 __le64 hw_tkip_mic_tx_key;
843} __packed;
844
845/**
846 * struct sta_id_modify
847 * @addr[ETH_ALEN]: station's MAC address
848 * @sta_id: index of station in uCode's station table
849 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
850 *
851 * Driver selects unused table index when adding new station,
852 * or the index to a pre-existing station entry when modifying that station.
853 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
854 *
855 * modify_mask flags select which parameters to modify vs. leave alone.
856 */
857struct sta_id_modify {
858 u8 addr[ETH_ALEN];
859 __le16 reserved1;
860 u8 sta_id;
861 u8 modify_mask;
862 __le16 reserved2;
863} __packed;
864
865/*
866 * REPLY_ADD_STA = 0x18 (command)
867 *
868 * The device contains an internal table of per-station information,
869 * with info on security keys, aggregation parameters, and Tx rates for
870 * initial Tx attempt and any retries (agn devices uses
871 * REPLY_TX_LINK_QUALITY_CMD,
872 *
873 * REPLY_ADD_STA sets up the table entry for one station, either creating
874 * a new entry, or modifying a pre-existing one.
875 *
876 * NOTE: RXON command (without "associated" bit set) wipes the station table
877 * clean. Moving into RF_KILL state does this also. Driver must set up
878 * new station table before transmitting anything on the RXON channel
879 * (except active scans or active measurements; those commands carry
880 * their own txpower/rate setup data).
881 *
882 * When getting started on a new channel, driver must set up the
883 * IWL_BROADCAST_ID entry (last entry in the table). For a client
884 * station in a BSS, once an AP is selected, driver sets up the AP STA
885 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
886 * are all that are needed for a BSS client station. If the device is
887 * used as AP, or in an IBSS network, driver must set up station table
888 * entries for all STAs in network, starting with index IWL_STA_ID.
889 */
890
891struct iwl_addsta_cmd {
892 u8 mode; /* 1: modify existing, 0: add new station */
893 u8 reserved[3];
894 struct sta_id_modify sta;
895 struct iwl_keyinfo key;
896 __le32 station_flags; /* STA_FLG_* */
897 __le32 station_flags_msk; /* STA_FLG_* */
898
899 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
900 * corresponding to bit (e.g. bit 5 controls TID 5).
901 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
902 __le16 tid_disable_tx;
903 __le16 legacy_reserved;
904
905 /* TID for which to add block-ack support.
906 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
907 u8 add_immediate_ba_tid;
908
909 /* TID for which to remove block-ack support.
910 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
911 u8 remove_immediate_ba_tid;
912
913 /* Starting Sequence Number for added block-ack support.
914 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
915 __le16 add_immediate_ba_ssn;
916
917 /*
918 * Number of packets OK to transmit to station even though
919 * it is asleep -- used to synchronise PS-poll and u-APSD
920 * responses while ucode keeps track of STA sleep state.
921 */
922 __le16 sleep_tx_count;
923
924 __le16 reserved2;
925} __packed;
926
927
928#define ADD_STA_SUCCESS_MSK 0x1
929#define ADD_STA_NO_ROOM_IN_TABLE 0x2
930#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
931#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
932/*
933 * REPLY_ADD_STA = 0x18 (response)
934 */
935struct iwl_add_sta_resp {
936 u8 status; /* ADD_STA_* */
937} __packed;
938
939#define REM_STA_SUCCESS_MSK 0x1
940/*
941 * REPLY_REM_STA = 0x19 (response)
942 */
943struct iwl_rem_sta_resp {
944 u8 status;
945} __packed;
946
947/*
948 * REPLY_REM_STA = 0x19 (command)
949 */
950struct iwl_rem_sta_cmd {
951 u8 num_sta; /* number of removed stations */
952 u8 reserved[3];
953 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
954 u8 reserved2[2];
955} __packed;
956
957
958/* WiFi queues mask */
959#define IWL_SCD_BK_MSK BIT(0)
960#define IWL_SCD_BE_MSK BIT(1)
961#define IWL_SCD_VI_MSK BIT(2)
962#define IWL_SCD_VO_MSK BIT(3)
963#define IWL_SCD_MGMT_MSK BIT(3)
964
965/* PAN queues mask */
966#define IWL_PAN_SCD_BK_MSK BIT(4)
967#define IWL_PAN_SCD_BE_MSK BIT(5)
968#define IWL_PAN_SCD_VI_MSK BIT(6)
969#define IWL_PAN_SCD_VO_MSK BIT(7)
970#define IWL_PAN_SCD_MGMT_MSK BIT(7)
971#define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
972
973#define IWL_AGG_TX_QUEUE_MSK 0xffc00
974
975#define IWL_DROP_ALL BIT(1)
976
977/*
978 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
979 *
980 * When using full FIFO flush this command checks the scheduler HW block WR/RD
981 * pointers to check if all the frames were transferred by DMA into the
982 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
983 * empty the command can finish.
984 * This command is used to flush the TXFIFO from transmit commands, it may
985 * operate on single or multiple queues, the command queue can't be flushed by
986 * this command. The command response is returned when all the queue flush
987 * operations are done. Each TX command flushed return response with the FLUSH
988 * status set in the TX response status. When FIFO flush operation is used,
989 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
990 * are set.
991 *
992 * @queue_control: bit mask for which queues to flush
993 * @flush_control: flush controls
994 * 0: Dump single MSDU
995 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
996 * 2: Dump all FIFO
997 */
998struct iwl_txfifo_flush_cmd_v3 {
999 __le32 queue_control;
1000 __le16 flush_control;
1001 __le16 reserved;
1002} __packed;
1003
1004struct iwl_txfifo_flush_cmd_v2 {
1005 __le16 queue_control;
1006 __le16 flush_control;
1007} __packed;
1008
1009/*
1010 * REPLY_WEP_KEY = 0x20
1011 */
1012struct iwl_wep_key {
1013 u8 key_index;
1014 u8 key_offset;
1015 u8 reserved1[2];
1016 u8 key_size;
1017 u8 reserved2[3];
1018 u8 key[16];
1019} __packed;
1020
1021struct iwl_wep_cmd {
1022 u8 num_keys;
1023 u8 global_key_type;
1024 u8 flags;
1025 u8 reserved;
1026 struct iwl_wep_key key[];
1027} __packed;
1028
1029#define WEP_KEY_WEP_TYPE 1
1030#define WEP_KEYS_MAX 4
1031#define WEP_INVALID_OFFSET 0xff
1032#define WEP_KEY_LEN_64 5
1033#define WEP_KEY_LEN_128 13
1034
1035/******************************************************************************
1036 * (4)
1037 * Rx Responses:
1038 *
1039 *****************************************************************************/
1040
1041#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1042#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1043
1044#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1045#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1046#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1047#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1048#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1049#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1050#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1051
1052#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1053#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1054#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1055#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1056#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1057#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1058
1059#define RX_RES_STATUS_STATION_FOUND (1<<6)
1060#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1061
1062#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1063#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1064#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1065#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1066#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1067
1068#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1069#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1070#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1071#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1072
1073
1074#define IWLAGN_RX_RES_PHY_CNT 8
1075#define IWLAGN_RX_RES_AGC_IDX 1
1076#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1077#define IWLAGN_RX_RES_RSSI_C_IDX 3
1078#define IWLAGN_OFDM_AGC_MSK 0xfe00
1079#define IWLAGN_OFDM_AGC_BIT_POS 9
1080#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1081#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1082#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1083#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1084#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1085#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1086#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1087#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1088#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1089
1090struct iwlagn_non_cfg_phy {
1091 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1092} __packed;
1093
1094
1095/*
1096 * REPLY_RX = 0xc3 (response only, not a command)
1097 * Used only for legacy (non 11n) frames.
1098 */
1099struct iwl_rx_phy_res {
1100 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1101 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1102 u8 stat_id; /* configurable DSP phy data set ID */
1103 u8 reserved1;
1104 __le64 timestamp; /* TSF at on air rise */
1105 __le32 beacon_time_stamp; /* beacon at on-air rise */
1106 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1107 __le16 channel; /* channel number */
1108 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1109 __le32 rate_n_flags; /* RATE_MCS_* */
1110 __le16 byte_count; /* frame's byte-count */
1111 __le16 frame_time; /* frame's time on the air */
1112} __packed;
1113
1114struct iwl_rx_mpdu_res_start {
1115 __le16 byte_count;
1116 __le16 reserved;
1117} __packed;
1118
1119
1120/******************************************************************************
1121 * (5)
1122 * Tx Commands & Responses:
1123 *
1124 * Driver must place each REPLY_TX command into one of the prioritized Tx
1125 * queues in host DRAM, shared between driver and device (see comments for
1126 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1127 * are preparing to transmit, the device pulls the Tx command over the PCI
1128 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1129 * from which data will be transmitted.
1130 *
1131 * uCode handles all timing and protocol related to control frames
1132 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1133 * handle reception of block-acks; uCode updates the host driver via
1134 * REPLY_COMPRESSED_BA.
1135 *
1136 * uCode handles retrying Tx when an ACK is expected but not received.
1137 * This includes trying lower data rates than the one requested in the Tx
1138 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1139 *
1140 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1141 * This command must be executed after every RXON command, before Tx can occur.
1142 *****************************************************************************/
1143
1144/* REPLY_TX Tx flags field */
1145
1146/*
1147 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1148 * before this frame. if CTS-to-self required check
1149 * RXON_FLG_SELF_CTS_EN status.
1150 */
1151#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1152
1153/* 1: Expect ACK from receiving station
1154 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1155 * Set this for unicast frames, but not broadcast/multicast. */
1156#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1157
1158/* For agn devices:
1159 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1160 * Tx command's initial_rate_index indicates first rate to try;
1161 * uCode walks through table for additional Tx attempts.
1162 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1163 * This rate will be used for all Tx attempts; it will not be scaled. */
1164#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1165
1166/* 1: Expect immediate block-ack.
1167 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1168#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1169
1170/* Tx antenna selection field; reserved (0) for agn devices. */
1171#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1172
1173/* 1: Ignore Bluetooth priority for this frame.
1174 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1175#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1176
1177/* 1: uCode overrides sequence control field in MAC header.
1178 * 0: Driver provides sequence control field in MAC header.
1179 * Set this for management frames, non-QOS data frames, non-unicast frames,
1180 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1181#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1182
1183/* 1: This frame is non-last MPDU; more fragments are coming.
1184 * 0: Last fragment, or not using fragmentation. */
1185#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1186
1187/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1188 * 0: No TSF required in outgoing frame.
1189 * Set this for transmitting beacons and probe responses. */
1190#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1191
1192/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1193 * alignment of frame's payload data field.
1194 * 0: No pad
1195 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1196 * field (but not both). Driver must align frame data (i.e. data following
1197 * MAC header) to DWORD boundary. */
1198#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1199
1200/* accelerate aggregation support
1201 * 0 - no CCMP encryption; 1 - CCMP encryption */
1202#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1203
1204/* HCCA-AP - disable duration overwriting. */
1205#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1206
1207
1208/*
1209 * TX command security control
1210 */
1211#define TX_CMD_SEC_WEP 0x01
1212#define TX_CMD_SEC_CCM 0x02
1213#define TX_CMD_SEC_TKIP 0x03
1214#define TX_CMD_SEC_MSK 0x03
1215#define TX_CMD_SEC_SHIFT 6
1216#define TX_CMD_SEC_KEY128 0x08
1217
1218/*
1219 * REPLY_TX = 0x1c (command)
1220 */
1221
1222/*
1223 * Used for managing Tx retries when expecting block-acks.
1224 * Driver should set these fields to 0.
1225 */
1226struct iwl_dram_scratch {
1227 u8 try_cnt; /* Tx attempts */
1228 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1229 __le16 reserved;
1230} __packed;
1231
1232struct iwl_tx_cmd {
1233 /*
1234 * MPDU byte count:
1235 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1236 * + 8 byte IV for CCM or TKIP (not used for WEP)
1237 * + Data payload
1238 * + 8-byte MIC (not used for CCM/WEP)
1239 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1240 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1241 * Range: 14-2342 bytes.
1242 */
1243 __le16 len;
1244
1245 /*
1246 * MPDU or MSDU byte count for next frame.
1247 * Used for fragmentation and bursting, but not 11n aggregation.
1248 * Same as "len", but for next frame. Set to 0 if not applicable.
1249 */
1250 __le16 next_frame_len;
1251
1252 __le32 tx_flags; /* TX_CMD_FLG_* */
1253
1254 /* uCode may modify this field of the Tx command (in host DRAM!).
1255 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1256 struct iwl_dram_scratch scratch;
1257
1258 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1259 __le32 rate_n_flags; /* RATE_MCS_* */
1260
1261 /* Index of destination station in uCode's station table */
1262 u8 sta_id;
1263
1264 /* Type of security encryption: CCM or TKIP */
1265 u8 sec_ctl; /* TX_CMD_SEC_* */
1266
1267 /*
1268 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1269 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1270 * data frames, this field may be used to selectively reduce initial
1271 * rate (via non-0 value) for special frames (e.g. management), while
1272 * still supporting rate scaling for all frames.
1273 */
1274 u8 initial_rate_index;
1275 u8 reserved;
1276 u8 key[16];
1277 __le16 next_frame_flags;
1278 __le16 reserved2;
1279 union {
1280 __le32 life_time;
1281 __le32 attempt;
1282 } stop_time;
1283
1284 /* Host DRAM physical address pointer to "scratch" in this command.
1285 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1286 __le32 dram_lsb_ptr;
1287 u8 dram_msb_ptr;
1288
1289 u8 rts_retry_limit; /*byte 50 */
1290 u8 data_retry_limit; /*byte 51 */
1291 u8 tid_tspec;
1292 union {
1293 __le16 pm_frame_timeout;
1294 __le16 attempt_duration;
1295 } timeout;
1296
1297 /*
1298 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1299 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1300 */
1301 __le16 driver_txop;
1302
1303 /*
1304 * MAC header goes here, followed by 2 bytes padding if MAC header
1305 * length is 26 or 30 bytes, followed by payload data
1306 */
1307 u8 payload[0];
1308 struct ieee80211_hdr hdr[];
1309} __packed;
1310
1311/*
1312 * TX command response is sent after *agn* transmission attempts.
1313 *
1314 * both postpone and abort status are expected behavior from uCode. there is
1315 * no special operation required from driver; except for RFKILL_FLUSH,
1316 * which required tx flush host command to flush all the tx frames in queues
1317 */
1318enum {
1319 TX_STATUS_SUCCESS = 0x01,
1320 TX_STATUS_DIRECT_DONE = 0x02,
1321 /* postpone TX */
1322 TX_STATUS_POSTPONE_DELAY = 0x40,
1323 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1324 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1325 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1326 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1327 /* abort TX */
1328 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1329 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1330 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1331 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1332 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1333 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1334 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1335 TX_STATUS_FAIL_DEST_PS = 0x88,
1336 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1337 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1338 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1339 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1340 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1341 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1342 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1343 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1344 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1345};
1346
1347#define TX_PACKET_MODE_REGULAR 0x0000
1348#define TX_PACKET_MODE_BURST_SEQ 0x0100
1349#define TX_PACKET_MODE_BURST_FIRST 0x0200
1350
1351enum {
1352 TX_POWER_PA_NOT_ACTIVE = 0x0,
1353};
1354
1355enum {
1356 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1357 TX_STATUS_DELAY_MSK = 0x00000040,
1358 TX_STATUS_ABORT_MSK = 0x00000080,
1359 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1360 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1361 TX_RESERVED = 0x00780000, /* bits 19:22 */
1362 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1363 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1364};
1365
1366/* *******************************
1367 * TX aggregation status
1368 ******************************* */
1369
1370enum {
1371 AGG_TX_STATE_TRANSMITTED = 0x00,
1372 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1373 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1374 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1375 AGG_TX_STATE_ABORT_MSK = 0x08,
1376 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1377 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1378 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1379 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1380 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1381 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1382 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1383 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1384};
1385
1386#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1387#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1388#define AGG_TX_TRY_POS 12
1389
1390#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1391 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1392 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1393
1394/* # tx attempts for first frame in aggregation */
1395#define AGG_TX_STATE_TRY_CNT_POS 12
1396#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1397
1398/* Command ID and sequence number of Tx command for this frame */
1399#define AGG_TX_STATE_SEQ_NUM_POS 16
1400#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1401
1402/*
1403 * REPLY_TX = 0x1c (response)
1404 *
1405 * This response may be in one of two slightly different formats, indicated
1406 * by the frame_count field:
1407 *
1408 * 1) No aggregation (frame_count == 1). This reports Tx results for
1409 * a single frame. Multiple attempts, at various bit rates, may have
1410 * been made for this frame.
1411 *
1412 * 2) Aggregation (frame_count > 1). This reports Tx results for
1413 * 2 or more frames that used block-acknowledge. All frames were
1414 * transmitted at same rate. Rate scaling may have been used if first
1415 * frame in this new agg block failed in previous agg block(s).
1416 *
1417 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1418 * block-ack has not been received by the time the agn device records
1419 * this status.
1420 * This status relates to reasons the tx might have been blocked or aborted
1421 * within the sending station (this agn device), rather than whether it was
1422 * received successfully by the destination station.
1423 */
1424struct agg_tx_status {
1425 __le16 status;
1426 __le16 sequence;
1427} __packed;
1428
1429/* refer to ra_tid */
1430#define IWLAGN_TX_RES_TID_POS 0
1431#define IWLAGN_TX_RES_TID_MSK 0x0f
1432#define IWLAGN_TX_RES_RA_POS 4
1433#define IWLAGN_TX_RES_RA_MSK 0xf0
1434
1435struct iwlagn_tx_resp {
1436 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1437 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1438 u8 failure_rts; /* # failures due to unsuccessful RTS */
1439 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1440
1441 /* For non-agg: Rate at which frame was successful.
1442 * For agg: Rate at which all frames were transmitted. */
1443 __le32 rate_n_flags; /* RATE_MCS_* */
1444
1445 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1446 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1447 __le16 wireless_media_time; /* uSecs */
1448
1449 u8 pa_status; /* RF power amplifier measurement (not used) */
1450 u8 pa_integ_res_a[3];
1451 u8 pa_integ_res_b[3];
1452 u8 pa_integ_res_C[3];
1453
1454 __le32 tfd_info;
1455 __le16 seq_ctl;
1456 __le16 byte_cnt;
1457 u8 tlc_info;
1458 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1459 __le16 frame_ctrl;
1460 /*
1461 * For non-agg: frame status TX_STATUS_*
1462 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1463 * fields follow this one, up to frame_count.
1464 * Bit fields:
1465 * 11- 0: AGG_TX_STATE_* status code
1466 * 15-12: Retry count for 1st frame in aggregation (retries
1467 * occur if tx failed for this frame when it was a
1468 * member of a previous aggregation block). If rate
1469 * scaling is used, retry count indicates the rate
1470 * table entry used for all frames in the new agg.
1471 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1472 */
1473 struct agg_tx_status status; /* TX status (in aggregation -
1474 * status of 1st frame) */
1475} __packed;
1476/*
1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1478 *
1479 * Reports Block-Acknowledge from recipient station
1480 */
1481struct iwl_compressed_ba_resp {
1482 __le32 sta_addr_lo32;
1483 __le16 sta_addr_hi16;
1484 __le16 reserved;
1485
1486 /* Index of recipient (BA-sending) station in uCode's station table */
1487 u8 sta_id;
1488 u8 tid;
1489 __le16 seq_ctl;
1490 __le64 bitmap;
1491 __le16 scd_flow;
1492 __le16 scd_ssn;
1493 u8 txed; /* number of frames sent */
1494 u8 txed_2_done; /* number of frames acked */
1495 __le16 reserved1;
1496} __packed;
1497
1498/*
1499 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1500 *
1501 */
1502
1503/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1504#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1505
1506/* # of EDCA prioritized tx fifos */
1507#define LINK_QUAL_AC_NUM AC_NUM
1508
1509/* # entries in rate scale table to support Tx retries */
1510#define LINK_QUAL_MAX_RETRY_NUM 16
1511
1512/* Tx antenna selection values */
1513#define LINK_QUAL_ANT_A_MSK (1 << 0)
1514#define LINK_QUAL_ANT_B_MSK (1 << 1)
1515#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1516
1517
1518/**
1519 * struct iwl_link_qual_general_params
1520 *
1521 * Used in REPLY_TX_LINK_QUALITY_CMD
1522 */
1523struct iwl_link_qual_general_params {
1524 u8 flags;
1525
1526 /* No entries at or above this (driver chosen) index contain MIMO */
1527 u8 mimo_delimiter;
1528
1529 /* Best single antenna to use for single stream (legacy, SISO). */
1530 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1531
1532 /* Best antennas to use for MIMO */
1533 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1534
1535 /*
1536 * If driver needs to use different initial rates for different
1537 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1538 * this table will set that up, by indicating the indexes in the
1539 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1540 * Otherwise, driver should set all entries to 0.
1541 *
1542 * Entry usage:
1543 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1544 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1545 */
1546 u8 start_rate_index[LINK_QUAL_AC_NUM];
1547} __packed;
1548
1549#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1550#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1551#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1552
1553#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1554#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1555#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1556
1557#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1558#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1559#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1560
1561/**
1562 * struct iwl_link_qual_agg_params
1563 *
1564 * Used in REPLY_TX_LINK_QUALITY_CMD
1565 */
1566struct iwl_link_qual_agg_params {
1567
1568 /*
1569 *Maximum number of uSec in aggregation.
1570 * default set to 4000 (4 milliseconds) if not configured in .cfg
1571 */
1572 __le16 agg_time_limit;
1573
1574 /*
1575 * Number of Tx retries allowed for a frame, before that frame will
1576 * no longer be considered for the start of an aggregation sequence
1577 * (scheduler will then try to tx it as single frame).
1578 * Driver should set this to 3.
1579 */
1580 u8 agg_dis_start_th;
1581
1582 /*
1583 * Maximum number of frames in aggregation.
1584 * 0 = no limit (default). 1 = no aggregation.
1585 * Other values = max # frames in aggregation.
1586 */
1587 u8 agg_frame_cnt_limit;
1588
1589 __le32 reserved;
1590} __packed;
1591
1592/*
1593 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1594 *
1595 * For agn devices
1596 *
1597 * Each station in the agn device's internal station table has its own table
1598 * of 16
1599 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1600 * an ACK is not received. This command replaces the entire table for
1601 * one station.
1602 *
1603 * NOTE: Station must already be in agn device's station table.
1604 * Use REPLY_ADD_STA.
1605 *
1606 * The rate scaling procedures described below work well. Of course, other
1607 * procedures are possible, and may work better for particular environments.
1608 *
1609 *
1610 * FILLING THE RATE TABLE
1611 *
1612 * Given a particular initial rate and mode, as determined by the rate
1613 * scaling algorithm described below, the Linux driver uses the following
1614 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1615 * Link Quality command:
1616 *
1617 *
1618 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1619 * a) Use this same initial rate for first 3 entries.
1620 * b) Find next lower available rate using same mode (SISO or MIMO),
1621 * use for next 3 entries. If no lower rate available, switch to
1622 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1623 * c) If using MIMO, set command's mimo_delimiter to number of entries
1624 * using MIMO (3 or 6).
1625 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1626 * no MIMO, no short guard interval), at the next lower bit rate
1627 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1628 * legacy procedure for remaining table entries.
1629 *
1630 * 2) If using legacy initial rate:
1631 * a) Use the initial rate for only one entry.
1632 * b) For each following entry, reduce the rate to next lower available
1633 * rate, until reaching the lowest available rate.
1634 * c) When reducing rate, also switch antenna selection.
1635 * d) Once lowest available rate is reached, repeat this rate until
1636 * rate table is filled (16 entries), switching antenna each entry.
1637 *
1638 *
1639 * ACCUMULATING HISTORY
1640 *
1641 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1642 * uses two sets of frame Tx success history: One for the current/active
1643 * modulation mode, and one for a speculative/search mode that is being
1644 * attempted. If the speculative mode turns out to be more effective (i.e.
1645 * actual transfer rate is better), then the driver continues to use the
1646 * speculative mode as the new current active mode.
1647 *
1648 * Each history set contains, separately for each possible rate, data for a
1649 * sliding window of the 62 most recent tx attempts at that rate. The data
1650 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1651 * and attempted frames, from which the driver can additionally calculate a
1652 * success ratio (success / attempted) and number of failures
1653 * (attempted - success), and control the size of the window (attempted).
1654 * The driver uses the bit map to remove successes from the success sum, as
1655 * the oldest tx attempts fall out of the window.
1656 *
1657 * When the agn device makes multiple tx attempts for a given frame, each
1658 * attempt might be at a different rate, and have different modulation
1659 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1660 * up in the rate scaling table in the Link Quality command. The driver must
1661 * determine which rate table entry was used for each tx attempt, to determine
1662 * which rate-specific history to update, and record only those attempts that
1663 * match the modulation characteristics of the history set.
1664 *
1665 * When using block-ack (aggregation), all frames are transmitted at the same
1666 * rate, since there is no per-attempt acknowledgment from the destination
1667 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1668 * rate_n_flags field. After receiving a block-ack, the driver can update
1669 * history for the entire block all at once.
1670 *
1671 *
1672 * FINDING BEST STARTING RATE:
1673 *
1674 * When working with a selected initial modulation mode (see below), the
1675 * driver attempts to find a best initial rate. The initial rate is the
1676 * first entry in the Link Quality command's rate table.
1677 *
1678 * 1) Calculate actual throughput (success ratio * expected throughput, see
1679 * table below) for current initial rate. Do this only if enough frames
1680 * have been attempted to make the value meaningful: at least 6 failed
1681 * tx attempts, or at least 8 successes. If not enough, don't try rate
1682 * scaling yet.
1683 *
1684 * 2) Find available rates adjacent to current initial rate. Available means:
1685 * a) supported by hardware &&
1686 * b) supported by association &&
1687 * c) within any constraints selected by user
1688 *
1689 * 3) Gather measured throughputs for adjacent rates. These might not have
1690 * enough history to calculate a throughput. That's okay, we might try
1691 * using one of them anyway!
1692 *
1693 * 4) Try decreasing rate if, for current rate:
1694 * a) success ratio is < 15% ||
1695 * b) lower adjacent rate has better measured throughput ||
1696 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1697 *
1698 * As a sanity check, if decrease was determined above, leave rate
1699 * unchanged if:
1700 * a) lower rate unavailable
1701 * b) success ratio at current rate > 85% (very good)
1702 * c) current measured throughput is better than expected throughput
1703 * of lower rate (under perfect 100% tx conditions, see table below)
1704 *
1705 * 5) Try increasing rate if, for current rate:
1706 * a) success ratio is < 15% ||
1707 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1708 * b) higher adjacent rate has better measured throughput ||
1709 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1710 *
1711 * As a sanity check, if increase was determined above, leave rate
1712 * unchanged if:
1713 * a) success ratio at current rate < 70%. This is not particularly
1714 * good performance; higher rate is sure to have poorer success.
1715 *
1716 * 6) Re-evaluate the rate after each tx frame. If working with block-
1717 * acknowledge, history and statistics may be calculated for the entire
1718 * block (including prior history that fits within the history windows),
1719 * before re-evaluation.
1720 *
1721 * FINDING BEST STARTING MODULATION MODE:
1722 *
1723 * After working with a modulation mode for a "while" (and doing rate scaling),
1724 * the driver searches for a new initial mode in an attempt to improve
1725 * throughput. The "while" is measured by numbers of attempted frames:
1726 *
1727 * For legacy mode, search for new mode after:
1728 * 480 successful frames, or 160 failed frames
1729 * For high-throughput modes (SISO or MIMO), search for new mode after:
1730 * 4500 successful frames, or 400 failed frames
1731 *
1732 * Mode switch possibilities are (3 for each mode):
1733 *
1734 * For legacy:
1735 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1736 * For SISO:
1737 * Change antenna, try MIMO, try shortened guard interval (SGI)
1738 * For MIMO:
1739 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1740 *
1741 * When trying a new mode, use the same bit rate as the old/current mode when
1742 * trying antenna switches and shortened guard interval. When switching to
1743 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1744 * for which the expected throughput (under perfect conditions) is about the
1745 * same or slightly better than the actual measured throughput delivered by
1746 * the old/current mode.
1747 *
1748 * Actual throughput can be estimated by multiplying the expected throughput
1749 * by the success ratio (successful / attempted tx frames). Frame size is
1750 * not considered in this calculation; it assumes that frame size will average
1751 * out to be fairly consistent over several samples. The following are
1752 * metric values for expected throughput assuming 100% success ratio.
1753 * Only G band has support for CCK rates:
1754 *
1755 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1756 *
1757 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1758 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1759 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1760 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1761 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1762 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1763 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1764 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1765 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1766 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1767 *
1768 * After the new mode has been tried for a short while (minimum of 6 failed
1769 * frames or 8 successful frames), compare success ratio and actual throughput
1770 * estimate of the new mode with the old. If either is better with the new
1771 * mode, continue to use the new mode.
1772 *
1773 * Continue comparing modes until all 3 possibilities have been tried.
1774 * If moving from legacy to HT, try all 3 possibilities from the new HT
1775 * mode. After trying all 3, a best mode is found. Continue to use this mode
1776 * for the longer "while" described above (e.g. 480 successful frames for
1777 * legacy), and then repeat the search process.
1778 *
1779 */
1780struct iwl_link_quality_cmd {
1781
1782 /* Index of destination/recipient station in uCode's station table */
1783 u8 sta_id;
1784 u8 reserved1;
1785 __le16 control; /* not used */
1786 struct iwl_link_qual_general_params general_params;
1787 struct iwl_link_qual_agg_params agg_params;
1788
1789 /*
1790 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1791 * specifies 1st Tx rate attempted, via index into this table.
1792 * agn devices works its way through table when retrying Tx.
1793 */
1794 struct {
1795 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1796 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1797 __le32 reserved2;
1798} __packed;
1799
1800/*
1801 * BT configuration enable flags:
1802 * bit 0 - 1: BT channel announcement enabled
1803 * 0: disable
1804 * bit 1 - 1: priority of BT device enabled
1805 * 0: disable
1806 * bit 2 - 1: BT 2 wire support enabled
1807 * 0: disable
1808 */
1809#define BT_COEX_DISABLE (0x0)
1810#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1811#define BT_ENABLE_PRIORITY BIT(1)
1812#define BT_ENABLE_2_WIRE BIT(2)
1813
1814#define BT_COEX_DISABLE (0x0)
1815#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1816
1817#define BT_LEAD_TIME_MIN (0x0)
1818#define BT_LEAD_TIME_DEF (0x1E)
1819#define BT_LEAD_TIME_MAX (0xFF)
1820
1821#define BT_MAX_KILL_MIN (0x1)
1822#define BT_MAX_KILL_DEF (0x5)
1823#define BT_MAX_KILL_MAX (0xFF)
1824
1825#define BT_DURATION_LIMIT_DEF 625
1826#define BT_DURATION_LIMIT_MAX 1250
1827#define BT_DURATION_LIMIT_MIN 625
1828
1829#define BT_ON_THRESHOLD_DEF 4
1830#define BT_ON_THRESHOLD_MAX 1000
1831#define BT_ON_THRESHOLD_MIN 1
1832
1833#define BT_FRAG_THRESHOLD_DEF 0
1834#define BT_FRAG_THRESHOLD_MAX 0
1835#define BT_FRAG_THRESHOLD_MIN 0
1836
1837#define BT_AGG_THRESHOLD_DEF 1200
1838#define BT_AGG_THRESHOLD_MAX 8000
1839#define BT_AGG_THRESHOLD_MIN 400
1840
1841/*
1842 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1843 *
1844 * agn devices support hardware handshake with Bluetooth device on
1845 * same platform. Bluetooth device alerts wireless device when it will Tx;
1846 * wireless device can delay or kill its own Tx to accommodate.
1847 */
1848struct iwl_bt_cmd {
1849 u8 flags;
1850 u8 lead_time;
1851 u8 max_kill;
1852 u8 reserved;
1853 __le32 kill_ack_mask;
1854 __le32 kill_cts_mask;
1855} __packed;
1856
1857#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1858
1859#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1860#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1861#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1862#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1863#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1864#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1865
1866#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1867/* Disable Sync PSPoll on SCO/eSCO */
1868#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1869
1870#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1871#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1872
1873#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1874#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1875#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1876#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1877
1878#define IWLAGN_BT_MAX_KILL_DEFAULT 5
1879
1880#define IWLAGN_BT3_T7_DEFAULT 1
1881
1882enum iwl_bt_kill_idx {
1883 IWL_BT_KILL_DEFAULT = 0,
1884 IWL_BT_KILL_OVERRIDE = 1,
1885 IWL_BT_KILL_REDUCE = 2,
1886};
1887
1888#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1889#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1890#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1891#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1892
1893#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1894
1895#define IWLAGN_BT3_T2_DEFAULT 0xc
1896
1897#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1898#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1899#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1900#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1901#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1902#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1903#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1904#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1905
1906#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1907 IWLAGN_BT_VALID_BOOST | \
1908 IWLAGN_BT_VALID_MAX_KILL | \
1909 IWLAGN_BT_VALID_3W_TIMERS | \
1910 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1911 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1912 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1913 IWLAGN_BT_VALID_3W_LUT)
1914
1915#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1916
1917#define IWLAGN_BT_DECISION_LUT_SIZE 12
1918
1919struct iwl_basic_bt_cmd {
1920 u8 flags;
1921 u8 ledtime; /* unused */
1922 u8 max_kill;
1923 u8 bt3_timer_t7_value;
1924 __le32 kill_ack_mask;
1925 __le32 kill_cts_mask;
1926 u8 bt3_prio_sample_time;
1927 u8 bt3_timer_t2_value;
1928 __le16 bt4_reaction_time; /* unused */
1929 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1930 /*
1931 * bit 0: use reduced tx power for control frame
1932 * bit 1 - 7: reserved
1933 */
1934 u8 reduce_txpower;
1935 u8 reserved;
1936 __le16 valid;
1937};
1938
1939struct iwl_bt_cmd_v1 {
1940 struct iwl_basic_bt_cmd basic;
1941 u8 prio_boost;
1942 /*
1943 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1944 * if configure the following patterns
1945 */
1946 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1947 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1948};
1949
1950struct iwl_bt_cmd_v2 {
1951 struct iwl_basic_bt_cmd basic;
1952 __le32 prio_boost;
1953 /*
1954 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1955 * if configure the following patterns
1956 */
1957 u8 reserved;
1958 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1959 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1960};
1961
1962#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1963
1964struct iwlagn_bt_sco_cmd {
1965 __le32 flags;
1966};
1967
1968/******************************************************************************
1969 * (6)
1970 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1971 *
1972 *****************************************************************************/
1973
1974/*
1975 * Spectrum Management
1976 */
1977#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1978 RXON_FILTER_CTL2HOST_MSK | \
1979 RXON_FILTER_ACCEPT_GRP_MSK | \
1980 RXON_FILTER_DIS_DECRYPT_MSK | \
1981 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1982 RXON_FILTER_ASSOC_MSK | \
1983 RXON_FILTER_BCON_AWARE_MSK)
1984
1985struct iwl_measure_channel {
1986 __le32 duration; /* measurement duration in extended beacon
1987 * format */
1988 u8 channel; /* channel to measure */
1989 u8 type; /* see enum iwl_measure_type */
1990 __le16 reserved;
1991} __packed;
1992
1993/*
1994 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1995 */
1996struct iwl_spectrum_cmd {
1997 __le16 len; /* number of bytes starting from token */
1998 u8 token; /* token id */
1999 u8 id; /* measurement id -- 0 or 1 */
2000 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2001 u8 periodic; /* 1 = periodic */
2002 __le16 path_loss_timeout;
2003 __le32 start_time; /* start time in extended beacon format */
2004 __le32 reserved2;
2005 __le32 flags; /* rxon flags */
2006 __le32 filter_flags; /* rxon filter flags */
2007 __le16 channel_count; /* minimum 1, maximum 10 */
2008 __le16 reserved3;
2009 struct iwl_measure_channel channels[10];
2010} __packed;
2011
2012/*
2013 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2014 */
2015struct iwl_spectrum_resp {
2016 u8 token;
2017 u8 id; /* id of the prior command replaced, or 0xff */
2018 __le16 status; /* 0 - command will be handled
2019 * 1 - cannot handle (conflicts with another
2020 * measurement) */
2021} __packed;
2022
2023enum iwl_measurement_state {
2024 IWL_MEASUREMENT_START = 0,
2025 IWL_MEASUREMENT_STOP = 1,
2026};
2027
2028enum iwl_measurement_status {
2029 IWL_MEASUREMENT_OK = 0,
2030 IWL_MEASUREMENT_CONCURRENT = 1,
2031 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2032 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2033 /* 4-5 reserved */
2034 IWL_MEASUREMENT_STOPPED = 6,
2035 IWL_MEASUREMENT_TIMEOUT = 7,
2036 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2037};
2038
2039#define NUM_ELEMENTS_IN_HISTOGRAM 8
2040
2041struct iwl_measurement_histogram {
2042 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2043 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2044} __packed;
2045
2046/* clear channel availability counters */
2047struct iwl_measurement_cca_counters {
2048 __le32 ofdm;
2049 __le32 cck;
2050} __packed;
2051
2052enum iwl_measure_type {
2053 IWL_MEASURE_BASIC = (1 << 0),
2054 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2055 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2056 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2057 IWL_MEASURE_FRAME = (1 << 4),
2058 /* bits 5:6 are reserved */
2059 IWL_MEASURE_IDLE = (1 << 7),
2060};
2061
2062/*
2063 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2064 */
2065struct iwl_spectrum_notification {
2066 u8 id; /* measurement id -- 0 or 1 */
2067 u8 token;
2068 u8 channel_index; /* index in measurement channel list */
2069 u8 state; /* 0 - start, 1 - stop */
2070 __le32 start_time; /* lower 32-bits of TSF */
2071 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2072 u8 channel;
2073 u8 type; /* see enum iwl_measurement_type */
2074 u8 reserved1;
2075 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2076 * valid if applicable for measurement type requested. */
2077 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2078 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2079 __le32 cca_time; /* channel load time in usecs */
2080 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2081 * unidentified */
2082 u8 reserved2[3];
2083 struct iwl_measurement_histogram histogram;
2084 __le32 stop_time; /* lower 32-bits of TSF */
2085 __le32 status; /* see iwl_measurement_status */
2086} __packed;
2087
2088/******************************************************************************
2089 * (7)
2090 * Power Management Commands, Responses, Notifications:
2091 *
2092 *****************************************************************************/
2093
2094/**
2095 * struct iwl_powertable_cmd - Power Table Command
2096 * @flags: See below:
2097 *
2098 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2099 *
2100 * PM allow:
2101 * bit 0 - '0' Driver not allow power management
2102 * '1' Driver allow PM (use rest of parameters)
2103 *
2104 * uCode send sleep notifications:
2105 * bit 1 - '0' Don't send sleep notification
2106 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2107 *
2108 * Sleep over DTIM
2109 * bit 2 - '0' PM have to walk up every DTIM
2110 * '1' PM could sleep over DTIM till listen Interval.
2111 *
2112 * PCI power managed
2113 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2114 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2115 *
2116 * Fast PD
2117 * bit 4 - '1' Put radio to sleep when receiving frame for others
2118 *
2119 * Force sleep Modes
2120 * bit 31/30- '00' use both mac/xtal sleeps
2121 * '01' force Mac sleep
2122 * '10' force xtal sleep
2123 * '11' Illegal set
2124 *
2125 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2126 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2127 * for every DTIM.
2128 */
2129#define IWL_POWER_VEC_SIZE 5
2130
2131#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2132#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2133#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2134#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2135#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2136#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2137#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2138#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2139#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2140#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2141#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2142
2143struct iwl_powertable_cmd {
2144 __le16 flags;
2145 u8 keep_alive_seconds;
2146 u8 debug_flags;
2147 __le32 rx_data_timeout;
2148 __le32 tx_data_timeout;
2149 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2150 __le32 keep_alive_beacons;
2151} __packed;
2152
2153/*
2154 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2155 * all devices identical.
2156 */
2157struct iwl_sleep_notification {
2158 u8 pm_sleep_mode;
2159 u8 pm_wakeup_src;
2160 __le16 reserved;
2161 __le32 sleep_time;
2162 __le32 tsf_low;
2163 __le32 bcon_timer;
2164} __packed;
2165
2166/* Sleep states. all devices identical. */
2167enum {
2168 IWL_PM_NO_SLEEP = 0,
2169 IWL_PM_SLP_MAC = 1,
2170 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2171 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2172 IWL_PM_SLP_PHY = 4,
2173 IWL_PM_SLP_REPENT = 5,
2174 IWL_PM_WAKEUP_BY_TIMER = 6,
2175 IWL_PM_WAKEUP_BY_DRIVER = 7,
2176 IWL_PM_WAKEUP_BY_RFKILL = 8,
2177 /* 3 reserved */
2178 IWL_PM_NUM_OF_MODES = 12,
2179};
2180
2181/*
2182 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2183 */
2184#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2185#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2186#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2187struct iwl_card_state_cmd {
2188 __le32 status; /* CARD_STATE_CMD_* request new power state */
2189} __packed;
2190
2191/*
2192 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2193 */
2194struct iwl_card_state_notif {
2195 __le32 flags;
2196} __packed;
2197
2198#define HW_CARD_DISABLED 0x01
2199#define SW_CARD_DISABLED 0x02
2200#define CT_CARD_DISABLED 0x04
2201#define RXON_CARD_DISABLED 0x10
2202
2203struct iwl_ct_kill_config {
2204 __le32 reserved;
2205 __le32 critical_temperature_M;
2206 __le32 critical_temperature_R;
2207} __packed;
2208
2209/* 1000, and 6x00 */
2210struct iwl_ct_kill_throttling_config {
2211 __le32 critical_temperature_exit;
2212 __le32 reserved;
2213 __le32 critical_temperature_enter;
2214} __packed;
2215
2216/******************************************************************************
2217 * (8)
2218 * Scan Commands, Responses, Notifications:
2219 *
2220 *****************************************************************************/
2221
2222#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2223#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2224
2225/**
2226 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2227 *
2228 * One for each channel in the scan list.
2229 * Each channel can independently select:
2230 * 1) SSID for directed active scans
2231 * 2) Txpower setting (for rate specified within Tx command)
2232 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2233 * quiet_plcp_th, good_CRC_th)
2234 *
2235 * To avoid uCode errors, make sure the following are true (see comments
2236 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2237 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2238 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2239 * 2) quiet_time <= active_dwell
2240 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2241 * passive_dwell < max_out_time
2242 * active_dwell < max_out_time
2243 */
2244
2245struct iwl_scan_channel {
2246 /*
2247 * type is defined as:
2248 * 0:0 1 = active, 0 = passive
2249 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2250 * SSID IE is transmitted in probe request.
2251 * 21:31 reserved
2252 */
2253 __le32 type;
2254 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2255 u8 tx_gain; /* gain for analog radio */
2256 u8 dsp_atten; /* gain for DSP */
2257 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2258 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2259} __packed;
2260
2261/* set number of direct probes __le32 type */
2262#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2263
2264/**
2265 * struct iwl_ssid_ie - directed scan network information element
2266 *
2267 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2268 * selected by "type" bit field in struct iwl_scan_channel;
2269 * each channel may select different ssids from among the 20 entries.
2270 * SSID IEs get transmitted in reverse order of entry.
2271 */
2272struct iwl_ssid_ie {
2273 u8 id;
2274 u8 len;
2275 u8 ssid[32];
2276} __packed;
2277
2278#define PROBE_OPTION_MAX 20
2279#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2280#define IWL_GOOD_CRC_TH_DISABLED 0
2281#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2282#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2283#define IWL_MAX_CMD_SIZE 4096
2284
2285/*
2286 * REPLY_SCAN_CMD = 0x80 (command)
2287 *
2288 * The hardware scan command is very powerful; the driver can set it up to
2289 * maintain (relatively) normal network traffic while doing a scan in the
2290 * background. The max_out_time and suspend_time control the ratio of how
2291 * long the device stays on an associated network channel ("service channel")
2292 * vs. how long it's away from the service channel, i.e. tuned to other channels
2293 * for scanning.
2294 *
2295 * max_out_time is the max time off-channel (in usec), and suspend_time
2296 * is how long (in "extended beacon" format) that the scan is "suspended"
2297 * after returning to the service channel. That is, suspend_time is the
2298 * time that we stay on the service channel, doing normal work, between
2299 * scan segments. The driver may set these parameters differently to support
2300 * scanning when associated vs. not associated, and light vs. heavy traffic
2301 * loads when associated.
2302 *
2303 * After receiving this command, the device's scan engine does the following;
2304 *
2305 * 1) Sends SCAN_START notification to driver
2306 * 2) Checks to see if it has time to do scan for one channel
2307 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2308 * to tell AP that we're going off-channel
2309 * 4) Tunes to first channel in scan list, does active or passive scan
2310 * 5) Sends SCAN_RESULT notification to driver
2311 * 6) Checks to see if it has time to do scan on *next* channel in list
2312 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2313 * before max_out_time expires
2314 * 8) Returns to service channel
2315 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2316 * 10) Stays on service channel until suspend_time expires
2317 * 11) Repeats entire process 2-10 until list is complete
2318 * 12) Sends SCAN_COMPLETE notification
2319 *
2320 * For fast, efficient scans, the scan command also has support for staying on
2321 * a channel for just a short time, if doing active scanning and getting no
2322 * responses to the transmitted probe request. This time is controlled by
2323 * quiet_time, and the number of received packets below which a channel is
2324 * considered "quiet" is controlled by quiet_plcp_threshold.
2325 *
2326 * For active scanning on channels that have regulatory restrictions against
2327 * blindly transmitting, the scan can listen before transmitting, to make sure
2328 * that there is already legitimate activity on the channel. If enough
2329 * packets are cleanly received on the channel (controlled by good_CRC_th,
2330 * typical value 1), the scan engine starts transmitting probe requests.
2331 *
2332 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2333 *
2334 * To avoid uCode errors, see timing restrictions described under
2335 * struct iwl_scan_channel.
2336 */
2337
2338enum iwl_scan_flags {
2339 /* BIT(0) currently unused */
2340 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2341 /* bits 2-7 reserved */
2342};
2343
2344struct iwl_scan_cmd {
2345 __le16 len;
2346 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2347 u8 channel_count; /* # channels in channel list */
2348 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2349 * (only for active scan) */
2350 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2351 __le16 good_CRC_th; /* passive -> active promotion threshold */
2352 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2353 __le32 max_out_time; /* max usec to be away from associated (service)
2354 * channel */
2355 __le32 suspend_time; /* pause scan this long (in "extended beacon
2356 * format") when returning to service chnl:
2357 */
2358 __le32 flags; /* RXON_FLG_* */
2359 __le32 filter_flags; /* RXON_FILTER_* */
2360
2361 /* For active scans (set to all-0s for passive scans).
2362 * Does not include payload. Must specify Tx rate; no rate scaling. */
2363 struct iwl_tx_cmd tx_cmd;
2364
2365 /* For directed active scans (set to all-0s otherwise) */
2366 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2367
2368 /*
2369 * Probe request frame, followed by channel list.
2370 *
2371 * Size of probe request frame is specified by byte count in tx_cmd.
2372 * Channel list follows immediately after probe request frame.
2373 * Number of channels in list is specified by channel_count.
2374 * Each channel in list is of type:
2375 *
2376 * struct iwl_scan_channel channels[0];
2377 *
2378 * NOTE: Only one band of channels can be scanned per pass. You
2379 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2380 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2381 * before requesting another scan.
2382 */
2383 u8 data[];
2384} __packed;
2385
2386/* Can abort will notify by complete notification with abort status. */
2387#define CAN_ABORT_STATUS cpu_to_le32(0x1)
2388/* complete notification statuses */
2389#define ABORT_STATUS 0x2
2390
2391/*
2392 * REPLY_SCAN_CMD = 0x80 (response)
2393 */
2394struct iwl_scanreq_notification {
2395 __le32 status; /* 1: okay, 2: cannot fulfill request */
2396} __packed;
2397
2398/*
2399 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2400 */
2401struct iwl_scanstart_notification {
2402 __le32 tsf_low;
2403 __le32 tsf_high;
2404 __le32 beacon_timer;
2405 u8 channel;
2406 u8 band;
2407 u8 reserved[2];
2408 __le32 status;
2409} __packed;
2410
2411#define SCAN_OWNER_STATUS 0x1
2412#define MEASURE_OWNER_STATUS 0x2
2413
2414#define IWL_PROBE_STATUS_OK 0
2415#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2416/* error statuses combined with TX_FAILED */
2417#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2418#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2419
2420#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2421/*
2422 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2423 */
2424struct iwl_scanresults_notification {
2425 u8 channel;
2426 u8 band;
2427 u8 probe_status;
2428 u8 num_probe_not_sent; /* not enough time to send */
2429 __le32 tsf_low;
2430 __le32 tsf_high;
2431 __le32 statistics[NUMBER_OF_STATISTICS];
2432} __packed;
2433
2434/*
2435 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2436 */
2437struct iwl_scancomplete_notification {
2438 u8 scanned_channels;
2439 u8 status;
2440 u8 bt_status; /* BT On/Off status */
2441 u8 last_channel;
2442 __le32 tsf_low;
2443 __le32 tsf_high;
2444} __packed;
2445
2446
2447/******************************************************************************
2448 * (9)
2449 * IBSS/AP Commands and Notifications:
2450 *
2451 *****************************************************************************/
2452
2453enum iwl_ibss_manager {
2454 IWL_NOT_IBSS_MANAGER = 0,
2455 IWL_IBSS_MANAGER = 1,
2456};
2457
2458/*
2459 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2460 */
2461
2462struct iwlagn_beacon_notif {
2463 struct iwlagn_tx_resp beacon_notify_hdr;
2464 __le32 low_tsf;
2465 __le32 high_tsf;
2466 __le32 ibss_mgr_status;
2467} __packed;
2468
2469/*
2470 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2471 */
2472
2473struct iwl_tx_beacon_cmd {
2474 struct iwl_tx_cmd tx;
2475 __le16 tim_idx;
2476 u8 tim_size;
2477 u8 reserved1;
2478 struct ieee80211_hdr frame[]; /* beacon frame */
2479} __packed;
2480
2481/******************************************************************************
2482 * (10)
2483 * Statistics Commands and Notifications:
2484 *
2485 *****************************************************************************/
2486
2487#define IWL_TEMP_CONVERT 260
2488
2489#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2490#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2491#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2492
2493/* Used for passing to driver number of successes and failures per rate */
2494struct rate_histogram {
2495 union {
2496 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2497 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2498 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2499 } success;
2500 union {
2501 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 } failed;
2505} __packed;
2506
2507/* statistics command response */
2508
2509struct statistics_dbg {
2510 __le32 burst_check;
2511 __le32 burst_count;
2512 __le32 wait_for_silence_timeout_cnt;
2513 __le32 reserved[3];
2514} __packed;
2515
2516struct statistics_rx_phy {
2517 __le32 ina_cnt;
2518 __le32 fina_cnt;
2519 __le32 plcp_err;
2520 __le32 crc32_err;
2521 __le32 overrun_err;
2522 __le32 early_overrun_err;
2523 __le32 crc32_good;
2524 __le32 false_alarm_cnt;
2525 __le32 fina_sync_err_cnt;
2526 __le32 sfd_timeout;
2527 __le32 fina_timeout;
2528 __le32 unresponded_rts;
2529 __le32 rxe_frame_limit_overrun;
2530 __le32 sent_ack_cnt;
2531 __le32 sent_cts_cnt;
2532 __le32 sent_ba_rsp_cnt;
2533 __le32 dsp_self_kill;
2534 __le32 mh_format_err;
2535 __le32 re_acq_main_rssi_sum;
2536 __le32 reserved3;
2537} __packed;
2538
2539struct statistics_rx_ht_phy {
2540 __le32 plcp_err;
2541 __le32 overrun_err;
2542 __le32 early_overrun_err;
2543 __le32 crc32_good;
2544 __le32 crc32_err;
2545 __le32 mh_format_err;
2546 __le32 agg_crc32_good;
2547 __le32 agg_mpdu_cnt;
2548 __le32 agg_cnt;
2549 __le32 unsupport_mcs;
2550} __packed;
2551
2552#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2553
2554struct statistics_rx_non_phy {
2555 __le32 bogus_cts; /* CTS received when not expecting CTS */
2556 __le32 bogus_ack; /* ACK received when not expecting ACK */
2557 __le32 non_bssid_frames; /* number of frames with BSSID that
2558 * doesn't belong to the STA BSSID */
2559 __le32 filtered_frames; /* count frames that were dumped in the
2560 * filtering process */
2561 __le32 non_channel_beacons; /* beacons with our bss id but not on
2562 * our serving channel */
2563 __le32 channel_beacons; /* beacons with our bss id and in our
2564 * serving channel */
2565 __le32 num_missed_bcon; /* number of missed beacons */
2566 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2567 * ADC was in saturation */
2568 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2569 * for INA */
2570 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2571 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2572 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2573 __le32 interference_data_flag; /* flag for interference data
2574 * availability. 1 when data is
2575 * available. */
2576 __le32 channel_load; /* counts RX Enable time in uSec */
2577 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2578 * and CCK) counter */
2579 __le32 beacon_rssi_a;
2580 __le32 beacon_rssi_b;
2581 __le32 beacon_rssi_c;
2582 __le32 beacon_energy_a;
2583 __le32 beacon_energy_b;
2584 __le32 beacon_energy_c;
2585} __packed;
2586
2587struct statistics_rx_non_phy_bt {
2588 struct statistics_rx_non_phy common;
2589 /* additional stats for bt */
2590 __le32 num_bt_kills;
2591 __le32 reserved[2];
2592} __packed;
2593
2594struct statistics_rx {
2595 struct statistics_rx_phy ofdm;
2596 struct statistics_rx_phy cck;
2597 struct statistics_rx_non_phy general;
2598 struct statistics_rx_ht_phy ofdm_ht;
2599} __packed;
2600
2601struct statistics_rx_bt {
2602 struct statistics_rx_phy ofdm;
2603 struct statistics_rx_phy cck;
2604 struct statistics_rx_non_phy_bt general;
2605 struct statistics_rx_ht_phy ofdm_ht;
2606} __packed;
2607
2608/**
2609 * struct statistics_tx_power - current tx power
2610 *
2611 * @ant_a: current tx power on chain a in 1/2 dB step
2612 * @ant_b: current tx power on chain b in 1/2 dB step
2613 * @ant_c: current tx power on chain c in 1/2 dB step
2614 */
2615struct statistics_tx_power {
2616 u8 ant_a;
2617 u8 ant_b;
2618 u8 ant_c;
2619 u8 reserved;
2620} __packed;
2621
2622struct statistics_tx_non_phy_agg {
2623 __le32 ba_timeout;
2624 __le32 ba_reschedule_frames;
2625 __le32 scd_query_agg_frame_cnt;
2626 __le32 scd_query_no_agg;
2627 __le32 scd_query_agg;
2628 __le32 scd_query_mismatch;
2629 __le32 frame_not_ready;
2630 __le32 underrun;
2631 __le32 bt_prio_kill;
2632 __le32 rx_ba_rsp_cnt;
2633} __packed;
2634
2635struct statistics_tx {
2636 __le32 preamble_cnt;
2637 __le32 rx_detected_cnt;
2638 __le32 bt_prio_defer_cnt;
2639 __le32 bt_prio_kill_cnt;
2640 __le32 few_bytes_cnt;
2641 __le32 cts_timeout;
2642 __le32 ack_timeout;
2643 __le32 expected_ack_cnt;
2644 __le32 actual_ack_cnt;
2645 __le32 dump_msdu_cnt;
2646 __le32 burst_abort_next_frame_mismatch_cnt;
2647 __le32 burst_abort_missing_next_frame_cnt;
2648 __le32 cts_timeout_collision;
2649 __le32 ack_or_ba_timeout_collision;
2650 struct statistics_tx_non_phy_agg agg;
2651 /*
2652 * "tx_power" are optional parameters provided by uCode,
2653 * 6000 series is the only device provide the information,
2654 * Those are reserved fields for all the other devices
2655 */
2656 struct statistics_tx_power tx_power;
2657 __le32 reserved1;
2658} __packed;
2659
2660
2661struct statistics_div {
2662 __le32 tx_on_a;
2663 __le32 tx_on_b;
2664 __le32 exec_time;
2665 __le32 probe_time;
2666 __le32 reserved1;
2667 __le32 reserved2;
2668} __packed;
2669
2670struct statistics_general_common {
2671 __le32 temperature; /* radio temperature */
2672 __le32 temperature_m; /* radio voltage */
2673 struct statistics_dbg dbg;
2674 __le32 sleep_time;
2675 __le32 slots_out;
2676 __le32 slots_idle;
2677 __le32 ttl_timestamp;
2678 struct statistics_div div;
2679 __le32 rx_enable_counter;
2680 /*
2681 * num_of_sos_states:
2682 * count the number of times we have to re-tune
2683 * in order to get out of bad PHY status
2684 */
2685 __le32 num_of_sos_states;
2686} __packed;
2687
2688struct statistics_bt_activity {
2689 /* Tx statistics */
2690 __le32 hi_priority_tx_req_cnt;
2691 __le32 hi_priority_tx_denied_cnt;
2692 __le32 lo_priority_tx_req_cnt;
2693 __le32 lo_priority_tx_denied_cnt;
2694 /* Rx statistics */
2695 __le32 hi_priority_rx_req_cnt;
2696 __le32 hi_priority_rx_denied_cnt;
2697 __le32 lo_priority_rx_req_cnt;
2698 __le32 lo_priority_rx_denied_cnt;
2699} __packed;
2700
2701struct statistics_general {
2702 struct statistics_general_common common;
2703 __le32 reserved2;
2704 __le32 reserved3;
2705} __packed;
2706
2707struct statistics_general_bt {
2708 struct statistics_general_common common;
2709 struct statistics_bt_activity activity;
2710 __le32 reserved2;
2711 __le32 reserved3;
2712} __packed;
2713
2714#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2715#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2716#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2717
2718/*
2719 * REPLY_STATISTICS_CMD = 0x9c,
2720 * all devices identical.
2721 *
2722 * This command triggers an immediate response containing uCode statistics.
2723 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2724 *
2725 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2726 * internal copy of the statistics (counters) after issuing the response.
2727 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2728 *
2729 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2730 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2731 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2732 */
2733#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2734#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2735struct iwl_statistics_cmd {
2736 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2737} __packed;
2738
2739/*
2740 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2741 *
2742 * By default, uCode issues this notification after receiving a beacon
2743 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2744 * REPLY_STATISTICS_CMD 0x9c, above.
2745 *
2746 * Statistics counters continue to increment beacon after beacon, but are
2747 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2748 * 0x9c with CLEAR_STATS bit set (see above).
2749 *
2750 * uCode also issues this notification during scans. uCode clears statistics
2751 * appropriately so that each notification contains statistics for only the
2752 * one channel that has just been scanned.
2753 */
2754#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2755#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2756
2757struct iwl_notif_statistics {
2758 __le32 flag;
2759 struct statistics_rx rx;
2760 struct statistics_tx tx;
2761 struct statistics_general general;
2762} __packed;
2763
2764struct iwl_bt_notif_statistics {
2765 __le32 flag;
2766 struct statistics_rx_bt rx;
2767 struct statistics_tx tx;
2768 struct statistics_general_bt general;
2769} __packed;
2770
2771/*
2772 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2773 *
2774 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2775 * in regardless of how many missed beacons, which mean when driver receive the
2776 * notification, inside the command, it can find all the beacons information
2777 * which include number of total missed beacons, number of consecutive missed
2778 * beacons, number of beacons received and number of beacons expected to
2779 * receive.
2780 *
2781 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2782 * in order to bring the radio/PHY back to working state; which has no relation
2783 * to when driver will perform sensitivity calibration.
2784 *
2785 * Driver should set it own missed_beacon_threshold to decide when to perform
2786 * sensitivity calibration based on number of consecutive missed beacons in
2787 * order to improve overall performance, especially in noisy environment.
2788 *
2789 */
2790
2791#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2792#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2793#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2794
2795struct iwl_missed_beacon_notif {
2796 __le32 consecutive_missed_beacons;
2797 __le32 total_missed_becons;
2798 __le32 num_expected_beacons;
2799 __le32 num_recvd_beacons;
2800} __packed;
2801
2802
2803/******************************************************************************
2804 * (11)
2805 * Rx Calibration Commands:
2806 *
2807 * With the uCode used for open source drivers, most Tx calibration (except
2808 * for Tx Power) and most Rx calibration is done by uCode during the
2809 * "initialize" phase of uCode boot. Driver must calibrate only:
2810 *
2811 * 1) Tx power (depends on temperature), described elsewhere
2812 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2813 * 3) Receiver sensitivity (to optimize signal detection)
2814 *
2815 *****************************************************************************/
2816
2817/**
2818 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2819 *
2820 * This command sets up the Rx signal detector for a sensitivity level that
2821 * is high enough to lock onto all signals within the associated network,
2822 * but low enough to ignore signals that are below a certain threshold, so as
2823 * not to have too many "false alarms". False alarms are signals that the
2824 * Rx DSP tries to lock onto, but then discards after determining that they
2825 * are noise.
2826 *
2827 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2828 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2829 * time listening, not transmitting). Driver must adjust sensitivity so that
2830 * the ratio of actual false alarms to actual Rx time falls within this range.
2831 *
2832 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2833 * received beacon. These provide information to the driver to analyze the
2834 * sensitivity. Don't analyze statistics that come in from scanning, or any
2835 * other non-associated-network source. Pertinent statistics include:
2836 *
2837 * From "general" statistics (struct statistics_rx_non_phy):
2838 *
2839 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2840 * Measure of energy of desired signal. Used for establishing a level
2841 * below which the device does not detect signals.
2842 *
2843 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2844 * Measure of background noise in silent period after beacon.
2845 *
2846 * channel_load
2847 * uSecs of actual Rx time during beacon period (varies according to
2848 * how much time was spent transmitting).
2849 *
2850 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2851 *
2852 * false_alarm_cnt
2853 * Signal locks abandoned early (before phy-level header).
2854 *
2855 * plcp_err
2856 * Signal locks abandoned late (during phy-level header).
2857 *
2858 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2859 * beacon to beacon, i.e. each value is an accumulation of all errors
2860 * before and including the latest beacon. Values will wrap around to 0
2861 * after counting up to 2^32 - 1. Driver must differentiate vs.
2862 * previous beacon's values to determine # false alarms in the current
2863 * beacon period.
2864 *
2865 * Total number of false alarms = false_alarms + plcp_errs
2866 *
2867 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2868 * (notice that the start points for OFDM are at or close to settings for
2869 * maximum sensitivity):
2870 *
2871 * START / MIN / MAX
2872 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2873 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2874 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2875 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2876 *
2877 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2878 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2879 * by *adding* 1 to all 4 of the table entries above, up to the max for
2880 * each entry. Conversely, if false alarm rate is too low (less than 5
2881 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2882 * increase sensitivity.
2883 *
2884 * For CCK sensitivity, keep track of the following:
2885 *
2886 * 1). 20-beacon history of maximum background noise, indicated by
2887 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2888 * 3 receivers. For any given beacon, the "silence reference" is
2889 * the maximum of last 60 samples (20 beacons * 3 receivers).
2890 *
2891 * 2). 10-beacon history of strongest signal level, as indicated
2892 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2893 * i.e. the strength of the signal through the best receiver at the
2894 * moment. These measurements are "upside down", with lower values
2895 * for stronger signals, so max energy will be *minimum* value.
2896 *
2897 * Then for any given beacon, the driver must determine the *weakest*
2898 * of the strongest signals; this is the minimum level that needs to be
2899 * successfully detected, when using the best receiver at the moment.
2900 * "Max cck energy" is the maximum (higher value means lower energy!)
2901 * of the last 10 minima. Once this is determined, driver must add
2902 * a little margin by adding "6" to it.
2903 *
2904 * 3). Number of consecutive beacon periods with too few false alarms.
2905 * Reset this to 0 at the first beacon period that falls within the
2906 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2907 *
2908 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2909 * (notice that the start points for CCK are at maximum sensitivity):
2910 *
2911 * START / MIN / MAX
2912 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2913 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2914 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2915 *
2916 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2917 * (greater than 50 for each 204.8 msecs listening), method for reducing
2918 * sensitivity is:
2919 *
2920 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2921 * up to max 400.
2922 *
2923 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2924 * sensitivity has been reduced a significant amount; bring it up to
2925 * a moderate 161. Otherwise, *add* 3, up to max 200.
2926 *
2927 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2928 * sensitivity has been reduced only a moderate or small amount;
2929 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2930 * down to min 0. Otherwise (if gain has been significantly reduced),
2931 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2932 *
2933 * b) Save a snapshot of the "silence reference".
2934 *
2935 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2936 * (less than 5 for each 204.8 msecs listening), method for increasing
2937 * sensitivity is used only if:
2938 *
2939 * 1a) Previous beacon did not have too many false alarms
2940 * 1b) AND difference between previous "silence reference" and current
2941 * "silence reference" (prev - current) is 2 or more,
2942 * OR 2) 100 or more consecutive beacon periods have had rate of
2943 * less than 5 false alarms per 204.8 milliseconds rx time.
2944 *
2945 * Method for increasing sensitivity:
2946 *
2947 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2948 * down to min 125.
2949 *
2950 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2951 * down to min 200.
2952 *
2953 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2954 *
2955 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2956 * (between 5 and 50 for each 204.8 msecs listening):
2957 *
2958 * 1) Save a snapshot of the silence reference.
2959 *
2960 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2961 * give some extra margin to energy threshold by *subtracting* 8
2962 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2963 *
2964 * For all cases (too few, too many, good range), make sure that the CCK
2965 * detection threshold (energy) is below the energy level for robust
2966 * detection over the past 10 beacon periods, the "Max cck energy".
2967 * Lower values mean higher energy; this means making sure that the value
2968 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2969 *
2970 */
2971
2972/*
2973 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2974 */
2975#define HD_TABLE_SIZE (11) /* number of entries */
2976#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2977#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2978#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2979#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2980#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2981#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2982#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2983#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2984#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2985#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2986#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2987
2988/*
2989 * Additional table entries in enhance SENSITIVITY_CMD
2990 */
2991#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
2992#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
2993#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
2994#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
2995#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
2996#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
2997#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
2998#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
2999#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3000#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3001#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3002#define HD_RESERVED (22)
3003
3004/* number of entries for enhanced tbl */
3005#define ENHANCE_HD_TABLE_SIZE (23)
3006
3007/* number of additional entries for enhanced tbl */
3008#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3009
3010#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3011#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3012#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3013#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3014#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3015#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3016#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3017#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3018#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3019#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3020#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3021
3022#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3023#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3024#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3025#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3026#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3027#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3028#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3029#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3030#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3031#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3032#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3033
3034
3035/* Control field in struct iwl_sensitivity_cmd */
3036#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3037#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3038
3039/**
3040 * struct iwl_sensitivity_cmd
3041 * @control: (1) updates working table, (0) updates default table
3042 * @table: energy threshold values, use HD_* as index into table
3043 *
3044 * Always use "1" in "control" to update uCode's working table and DSP.
3045 */
3046struct iwl_sensitivity_cmd {
3047 __le16 control; /* always use "1" */
3048 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3049} __packed;
3050
3051/*
3052 *
3053 */
3054struct iwl_enhance_sensitivity_cmd {
3055 __le16 control; /* always use "1" */
3056 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3057} __packed;
3058
3059
3060/**
3061 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3062 *
3063 * This command sets the relative gains of agn device's 3 radio receiver chains.
3064 *
3065 * After the first association, driver should accumulate signal and noise
3066 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3067 * beacons from the associated network (don't collect statistics that come
3068 * in from scanning, or any other non-network source).
3069 *
3070 * DISCONNECTED ANTENNA:
3071 *
3072 * Driver should determine which antennas are actually connected, by comparing
3073 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3074 * following values over 20 beacons, one accumulator for each of the chains
3075 * a/b/c, from struct statistics_rx_non_phy:
3076 *
3077 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3078 *
3079 * Find the strongest signal from among a/b/c. Compare the other two to the
3080 * strongest. If any signal is more than 15 dB (times 20, unless you
3081 * divide the accumulated values by 20) below the strongest, the driver
3082 * considers that antenna to be disconnected, and should not try to use that
3083 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3084 * driver should declare the stronger one as connected, and attempt to use it
3085 * (A and B are the only 2 Tx chains!).
3086 *
3087 *
3088 * RX BALANCE:
3089 *
3090 * Driver should balance the 3 receivers (but just the ones that are connected
3091 * to antennas, see above) for gain, by comparing the average signal levels
3092 * detected during the silence after each beacon (background noise).
3093 * Accumulate (add) the following values over 20 beacons, one accumulator for
3094 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3095 *
3096 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3097 *
3098 * Find the weakest background noise level from among a/b/c. This Rx chain
3099 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3100 * finding noise difference:
3101 *
3102 * (accum_noise[i] - accum_noise[reference]) / 30
3103 *
3104 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3105 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3106 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3107 * and set bit 2 to indicate "reduce gain". The value for the reference
3108 * (weakest) chain should be "0".
3109 *
3110 * diff_gain_[abc] bit fields:
3111 * 2: (1) reduce gain, (0) increase gain
3112 * 1-0: amount of gain, units of 1.5 dB
3113 */
3114
3115/* Phy calibration command for series */
3116enum {
3117 IWL_PHY_CALIBRATE_DC_CMD = 8,
3118 IWL_PHY_CALIBRATE_LO_CMD = 9,
3119 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3120 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3121 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3122 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3123 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3124};
3125
3126/* This enum defines the bitmap of various calibrations to enable in both
3127 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3128 */
3129enum iwl_ucode_calib_cfg {
3130 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3131 IWL_CALIB_CFG_DC_IDX = BIT(1),
3132 IWL_CALIB_CFG_LO_IDX = BIT(2),
3133 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3134 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3135 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3136 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3137 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3138 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3139 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3140 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3141};
3142
3143#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3144 IWL_CALIB_CFG_DC_IDX | \
3145 IWL_CALIB_CFG_LO_IDX | \
3146 IWL_CALIB_CFG_TX_IQ_IDX | \
3147 IWL_CALIB_CFG_RX_IQ_IDX | \
3148 IWL_CALIB_CFG_CRYSTAL_IDX)
3149
3150#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3151 IWL_CALIB_CFG_DC_IDX | \
3152 IWL_CALIB_CFG_LO_IDX | \
3153 IWL_CALIB_CFG_TX_IQ_IDX | \
3154 IWL_CALIB_CFG_RX_IQ_IDX | \
3155 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3156 IWL_CALIB_CFG_PAPD_IDX | \
3157 IWL_CALIB_CFG_TX_PWR_IDX | \
3158 IWL_CALIB_CFG_CRYSTAL_IDX)
3159
3160#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3161
3162struct iwl_calib_cfg_elmnt_s {
3163 __le32 is_enable;
3164 __le32 start;
3165 __le32 send_res;
3166 __le32 apply_res;
3167 __le32 reserved;
3168} __packed;
3169
3170struct iwl_calib_cfg_status_s {
3171 struct iwl_calib_cfg_elmnt_s once;
3172 struct iwl_calib_cfg_elmnt_s perd;
3173 __le32 flags;
3174} __packed;
3175
3176struct iwl_calib_cfg_cmd {
3177 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3178 struct iwl_calib_cfg_status_s drv_calib_cfg;
3179 __le32 reserved1;
3180} __packed;
3181
3182struct iwl_calib_hdr {
3183 u8 op_code;
3184 u8 first_group;
3185 u8 groups_num;
3186 u8 data_valid;
3187} __packed;
3188
3189struct iwl_calib_cmd {
3190 struct iwl_calib_hdr hdr;
3191 u8 data[];
3192} __packed;
3193
3194struct iwl_calib_xtal_freq_cmd {
3195 struct iwl_calib_hdr hdr;
3196 u8 cap_pin1;
3197 u8 cap_pin2;
3198 u8 pad[2];
3199} __packed;
3200
3201#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3202struct iwl_calib_temperature_offset_cmd {
3203 struct iwl_calib_hdr hdr;
3204 __le16 radio_sensor_offset;
3205 __le16 reserved;
3206} __packed;
3207
3208struct iwl_calib_temperature_offset_v2_cmd {
3209 struct iwl_calib_hdr hdr;
3210 __le16 radio_sensor_offset_high;
3211 __le16 radio_sensor_offset_low;
3212 __le16 burntVoltageRef;
3213 __le16 reserved;
3214} __packed;
3215
3216/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3217struct iwl_calib_chain_noise_reset_cmd {
3218 struct iwl_calib_hdr hdr;
3219 u8 data[];
3220};
3221
3222/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3223struct iwl_calib_chain_noise_gain_cmd {
3224 struct iwl_calib_hdr hdr;
3225 u8 delta_gain_1;
3226 u8 delta_gain_2;
3227 u8 pad[2];
3228} __packed;
3229
3230/******************************************************************************
3231 * (12)
3232 * Miscellaneous Commands:
3233 *
3234 *****************************************************************************/
3235
3236/*
3237 * LEDs Command & Response
3238 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3239 *
3240 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3241 * this command turns it on or off, or sets up a periodic blinking cycle.
3242 */
3243struct iwl_led_cmd {
3244 __le32 interval; /* "interval" in uSec */
3245 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3246 u8 off; /* # intervals off while blinking;
3247 * "0", with >0 "on" value, turns LED on */
3248 u8 on; /* # intervals on while blinking;
3249 * "0", regardless of "off", turns LED off */
3250 u8 reserved;
3251} __packed;
3252
3253/*
3254 * station priority table entries
3255 * also used as potential "events" value for both
3256 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3257 */
3258
3259/*
3260 * COEX events entry flag masks
3261 * RP - Requested Priority
3262 * WP - Win Medium Priority: priority assigned when the contention has been won
3263 */
3264#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3265#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3266#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3267
3268#define COEX_CU_UNASSOC_IDLE_RP 4
3269#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3270#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3271#define COEX_CU_CALIBRATION_RP 4
3272#define COEX_CU_PERIODIC_CALIBRATION_RP 4
3273#define COEX_CU_CONNECTION_ESTAB_RP 4
3274#define COEX_CU_ASSOCIATED_IDLE_RP 4
3275#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3276#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3277#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3278#define COEX_CU_RF_ON_RP 6
3279#define COEX_CU_RF_OFF_RP 4
3280#define COEX_CU_STAND_ALONE_DEBUG_RP 6
3281#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3282#define COEX_CU_RSRVD1_RP 4
3283#define COEX_CU_RSRVD2_RP 4
3284
3285#define COEX_CU_UNASSOC_IDLE_WP 3
3286#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3287#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3288#define COEX_CU_CALIBRATION_WP 3
3289#define COEX_CU_PERIODIC_CALIBRATION_WP 3
3290#define COEX_CU_CONNECTION_ESTAB_WP 3
3291#define COEX_CU_ASSOCIATED_IDLE_WP 3
3292#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3293#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3294#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3295#define COEX_CU_RF_ON_WP 3
3296#define COEX_CU_RF_OFF_WP 3
3297#define COEX_CU_STAND_ALONE_DEBUG_WP 6
3298#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3299#define COEX_CU_RSRVD1_WP 3
3300#define COEX_CU_RSRVD2_WP 3
3301
3302#define COEX_UNASSOC_IDLE_FLAGS 0
3303#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3304 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3305 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3306#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3307 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3308 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3309#define COEX_CALIBRATION_FLAGS \
3310 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3311 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3312#define COEX_PERIODIC_CALIBRATION_FLAGS 0
3313/*
3314 * COEX_CONNECTION_ESTAB:
3315 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3316 */
3317#define COEX_CONNECTION_ESTAB_FLAGS \
3318 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3319 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3320 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3321#define COEX_ASSOCIATED_IDLE_FLAGS 0
3322#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3325#define COEX_ASSOC_AUTO_SCAN_FLAGS \
3326 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3327 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3328#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3329#define COEX_RF_ON_FLAGS 0
3330#define COEX_RF_OFF_FLAGS 0
3331#define COEX_STAND_ALONE_DEBUG_FLAGS \
3332 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3333 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3334#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3335 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3336 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3337 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3338#define COEX_RSRVD1_FLAGS 0
3339#define COEX_RSRVD2_FLAGS 0
3340/*
3341 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3342 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343 */
3344#define COEX_CU_RF_ON_FLAGS \
3345 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3346 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3347 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348
3349
3350enum {
3351 /* un-association part */
3352 COEX_UNASSOC_IDLE = 0,
3353 COEX_UNASSOC_MANUAL_SCAN = 1,
3354 COEX_UNASSOC_AUTO_SCAN = 2,
3355 /* calibration */
3356 COEX_CALIBRATION = 3,
3357 COEX_PERIODIC_CALIBRATION = 4,
3358 /* connection */
3359 COEX_CONNECTION_ESTAB = 5,
3360 /* association part */
3361 COEX_ASSOCIATED_IDLE = 6,
3362 COEX_ASSOC_MANUAL_SCAN = 7,
3363 COEX_ASSOC_AUTO_SCAN = 8,
3364 COEX_ASSOC_ACTIVE_LEVEL = 9,
3365 /* RF ON/OFF */
3366 COEX_RF_ON = 10,
3367 COEX_RF_OFF = 11,
3368 COEX_STAND_ALONE_DEBUG = 12,
3369 /* IPAN */
3370 COEX_IPAN_ASSOC_LEVEL = 13,
3371 /* reserved */
3372 COEX_RSRVD1 = 14,
3373 COEX_RSRVD2 = 15,
3374 COEX_NUM_OF_EVENTS = 16
3375};
3376
3377/*
3378 * Coexistence WIFI/WIMAX Command
3379 * COEX_PRIORITY_TABLE_CMD = 0x5a
3380 *
3381 */
3382struct iwl_wimax_coex_event_entry {
3383 u8 request_prio;
3384 u8 win_medium_prio;
3385 u8 reserved;
3386 u8 flags;
3387} __packed;
3388
3389/* COEX flag masks */
3390
3391/* Station table is valid */
3392#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3393/* UnMask wake up src at unassociated sleep */
3394#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3395/* UnMask wake up src at associated sleep */
3396#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3397/* Enable CoEx feature. */
3398#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3399
3400struct iwl_wimax_coex_cmd {
3401 u8 flags;
3402 u8 reserved[3];
3403 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3404} __packed;
3405
3406/*
3407 * Coexistence MEDIUM NOTIFICATION
3408 * COEX_MEDIUM_NOTIFICATION = 0x5b
3409 *
3410 * notification from uCode to host to indicate medium changes
3411 *
3412 */
3413/*
3414 * status field
3415 * bit 0 - 2: medium status
3416 * bit 3: medium change indication
3417 * bit 4 - 31: reserved
3418 */
3419/* status option values, (0 - 2 bits) */
3420#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3421#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3422#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3423#define COEX_MEDIUM_MSK (0x7)
3424
3425/* send notification status (1 bit) */
3426#define COEX_MEDIUM_CHANGED (0x8)
3427#define COEX_MEDIUM_CHANGED_MSK (0x8)
3428#define COEX_MEDIUM_SHIFT (3)
3429
3430struct iwl_coex_medium_notification {
3431 __le32 status;
3432 __le32 events;
3433} __packed;
3434
3435/*
3436 * Coexistence EVENT Command
3437 * COEX_EVENT_CMD = 0x5c
3438 *
3439 * send from host to uCode for coex event request.
3440 */
3441/* flags options */
3442#define COEX_EVENT_REQUEST_MSK (0x1)
3443
3444struct iwl_coex_event_cmd {
3445 u8 flags;
3446 u8 event;
3447 __le16 reserved;
3448} __packed;
3449
3450struct iwl_coex_event_resp {
3451 __le32 status;
3452} __packed;
3453
3454
3455/******************************************************************************
3456 * Bluetooth Coexistence commands
3457 *
3458 *****************************************************************************/
3459
3460/*
3461 * BT Status notification
3462 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3463 */
3464enum iwl_bt_coex_profile_traffic_load {
3465 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3466 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3467 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3468 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3469/*
3470 * There are no more even though below is a u8, the
3471 * indication from the BT device only has two bits.
3472 */
3473};
3474
3475#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3476#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3477
3478/* BT UART message - Share Part (BT -> WiFi) */
3479#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3480#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3481 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3482#define BT_UART_MSG_FRAME1SSN_POS (3)
3483#define BT_UART_MSG_FRAME1SSN_MSK \
3484 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3485#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3486#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3487 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3488#define BT_UART_MSG_FRAME1RESERVED_POS (6)
3489#define BT_UART_MSG_FRAME1RESERVED_MSK \
3490 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3491
3492#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3493#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3494 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3495#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3496#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3497 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3498#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3499#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3500 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3501#define BT_UART_MSG_FRAME2INBAND_POS (5)
3502#define BT_UART_MSG_FRAME2INBAND_MSK \
3503 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3504#define BT_UART_MSG_FRAME2RESERVED_POS (6)
3505#define BT_UART_MSG_FRAME2RESERVED_MSK \
3506 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3507
3508#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3509#define BT_UART_MSG_FRAME3SCOESCO_MSK \
3510 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3511#define BT_UART_MSG_FRAME3SNIFF_POS (1)
3512#define BT_UART_MSG_FRAME3SNIFF_MSK \
3513 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3514#define BT_UART_MSG_FRAME3A2DP_POS (2)
3515#define BT_UART_MSG_FRAME3A2DP_MSK \
3516 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3517#define BT_UART_MSG_FRAME3ACL_POS (3)
3518#define BT_UART_MSG_FRAME3ACL_MSK \
3519 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3520#define BT_UART_MSG_FRAME3MASTER_POS (4)
3521#define BT_UART_MSG_FRAME3MASTER_MSK \
3522 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3523#define BT_UART_MSG_FRAME3OBEX_POS (5)
3524#define BT_UART_MSG_FRAME3OBEX_MSK \
3525 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3526#define BT_UART_MSG_FRAME3RESERVED_POS (6)
3527#define BT_UART_MSG_FRAME3RESERVED_MSK \
3528 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3529
3530#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3531#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3532 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3533#define BT_UART_MSG_FRAME4RESERVED_POS (6)
3534#define BT_UART_MSG_FRAME4RESERVED_MSK \
3535 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3536
3537#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3538#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3539 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3540#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3541#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3542 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3543#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3544#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3545 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3546#define BT_UART_MSG_FRAME5RESERVED_POS (6)
3547#define BT_UART_MSG_FRAME5RESERVED_MSK \
3548 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3549
3550#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3551#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3552 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3553#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3554#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3555 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3556#define BT_UART_MSG_FRAME6RESERVED_POS (6)
3557#define BT_UART_MSG_FRAME6RESERVED_MSK \
3558 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3559
3560#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3561#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3562 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3563#define BT_UART_MSG_FRAME7PAGE_POS (3)
3564#define BT_UART_MSG_FRAME7PAGE_MSK \
3565 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3566#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3567#define BT_UART_MSG_FRAME7INQUIRY_MSK \
3568 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3569#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3570#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3571 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3572#define BT_UART_MSG_FRAME7RESERVED_POS (6)
3573#define BT_UART_MSG_FRAME7RESERVED_MSK \
3574 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3575
3576/* BT Session Activity 2 UART message (BT -> WiFi) */
3577#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3578#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3579 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3580#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3581#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3582 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3583
3584#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3585#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3586 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3587#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3588#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3589 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3590
3591#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3592#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3593 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3594#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3595#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3596 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3597#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3598#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3599 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3600#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3601#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3602 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3603
3604#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3605#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3606 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3607#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3608#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3609 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3610#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3611#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3612 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3613
3614#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3615#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3616 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3617#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3618#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3619 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3620#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3621#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3622 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3623#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3624#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3625 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3626
3627#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3628#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3629 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3630#define BT_UART_MSG_2_FRAME6RFU_POS (5)
3631#define BT_UART_MSG_2_FRAME6RFU_MSK \
3632 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3633#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3634#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3635 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3636
3637#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3638#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3639 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3640#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3641#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3642 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3643#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3644#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3645 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3646#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3647#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3648 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3649#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3650#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3651 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3652
3653
3654#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3655#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3656
3657struct iwl_bt_uart_msg {
3658 u8 header;
3659 u8 frame1;
3660 u8 frame2;
3661 u8 frame3;
3662 u8 frame4;
3663 u8 frame5;
3664 u8 frame6;
3665 u8 frame7;
3666} __packed;
3667
3668struct iwl_bt_coex_profile_notif {
3669 struct iwl_bt_uart_msg last_bt_uart_msg;
3670 u8 bt_status; /* 0 - off, 1 - on */
3671 u8 bt_traffic_load; /* 0 .. 3? */
3672 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3673 u8 reserved;
3674} __packed;
3675
3676#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3677#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3678#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3679#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3680#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3681#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3682#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3683
3684/*
3685 * BT Coexistence Priority table
3686 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3687 */
3688enum bt_coex_prio_table_events {
3689 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3690 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3691 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3692 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3693 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3694 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3695 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3696 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3697 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3698 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3699 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3700 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3701 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3702 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3703 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3704 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3705 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3706 BT_COEX_PRIO_TBL_EVT_MAX,
3707};
3708
3709enum bt_coex_prio_table_priorities {
3710 BT_COEX_PRIO_TBL_DISABLED = 0,
3711 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3712 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3713 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3714 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3715 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3716 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3717 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3718 BT_COEX_PRIO_TBL_MAX,
3719};
3720
3721struct iwl_bt_coex_prio_table_cmd {
3722 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3723} __packed;
3724
3725#define IWL_BT_COEX_ENV_CLOSE 0
3726#define IWL_BT_COEX_ENV_OPEN 1
3727/*
3728 * BT Protection Envelope
3729 * REPLY_BT_COEX_PROT_ENV = 0xcd
3730 */
3731struct iwl_bt_coex_prot_env_cmd {
3732 u8 action; /* 0 = closed, 1 = open */
3733 u8 type; /* 0 .. 15 */
3734 u8 reserved[2];
3735} __packed;
3736
3737/*
3738 * REPLY_D3_CONFIG
3739 */
3740enum iwlagn_d3_wakeup_filters {
3741 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3742 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3743};
3744
3745struct iwlagn_d3_config_cmd {
3746 __le32 min_sleep_time;
3747 __le32 wakeup_flags;
3748} __packed;
3749
3750/*
3751 * REPLY_WOWLAN_PATTERNS
3752 */
3753#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3754#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3755
3756struct iwlagn_wowlan_pattern {
3757 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3758 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3759 u8 mask_size;
3760 u8 pattern_size;
3761 __le16 reserved;
3762} __packed;
3763
3764#define IWLAGN_WOWLAN_MAX_PATTERNS 20
3765
3766struct iwlagn_wowlan_patterns_cmd {
3767 __le32 n_patterns;
3768 struct iwlagn_wowlan_pattern patterns[];
3769} __packed;
3770
3771/*
3772 * REPLY_WOWLAN_WAKEUP_FILTER
3773 */
3774enum iwlagn_wowlan_wakeup_filters {
3775 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3776 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3777 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3778 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3779 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3780 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3781 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3782 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3783 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3784};
3785
3786struct iwlagn_wowlan_wakeup_filter_cmd {
3787 __le32 enabled;
3788 __le16 non_qos_seq;
3789 __le16 reserved;
3790 __le16 qos_seq[8];
3791};
3792
3793/*
3794 * REPLY_WOWLAN_TSC_RSC_PARAMS
3795 */
3796#define IWLAGN_NUM_RSC 16
3797
3798struct tkip_sc {
3799 __le16 iv16;
3800 __le16 pad;
3801 __le32 iv32;
3802} __packed;
3803
3804struct iwlagn_tkip_rsc_tsc {
3805 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3806 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3807 struct tkip_sc tsc;
3808} __packed;
3809
3810struct aes_sc {
3811 __le64 pn;
3812} __packed;
3813
3814struct iwlagn_aes_rsc_tsc {
3815 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3816 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3817 struct aes_sc tsc;
3818} __packed;
3819
3820union iwlagn_all_tsc_rsc {
3821 struct iwlagn_tkip_rsc_tsc tkip;
3822 struct iwlagn_aes_rsc_tsc aes;
3823};
3824
3825struct iwlagn_wowlan_rsc_tsc_params_cmd {
3826 union iwlagn_all_tsc_rsc all_tsc_rsc;
3827} __packed;
3828
3829/*
3830 * REPLY_WOWLAN_TKIP_PARAMS
3831 */
3832#define IWLAGN_MIC_KEY_SIZE 8
3833#define IWLAGN_P1K_SIZE 5
3834struct iwlagn_mic_keys {
3835 u8 tx[IWLAGN_MIC_KEY_SIZE];
3836 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3837 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3838} __packed;
3839
3840struct iwlagn_p1k_cache {
3841 __le16 p1k[IWLAGN_P1K_SIZE];
3842} __packed;
3843
3844#define IWLAGN_NUM_RX_P1K_CACHE 2
3845
3846struct iwlagn_wowlan_tkip_params_cmd {
3847 struct iwlagn_mic_keys mic_keys;
3848 struct iwlagn_p1k_cache tx;
3849 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3850 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3851} __packed;
3852
3853/*
3854 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3855 */
3856
3857#define IWLAGN_KCK_MAX_SIZE 32
3858#define IWLAGN_KEK_MAX_SIZE 32
3859
3860struct iwlagn_wowlan_kek_kck_material_cmd {
3861 u8 kck[IWLAGN_KCK_MAX_SIZE];
3862 u8 kek[IWLAGN_KEK_MAX_SIZE];
3863 __le16 kck_len;
3864 __le16 kek_len;
3865 __le64 replay_ctr;
3866} __packed;
3867
3868#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3869
3870/*
3871 * REPLY_WOWLAN_GET_STATUS = 0xe5
3872 */
3873struct iwlagn_wowlan_status {
3874 __le64 replay_ctr;
3875 __le32 rekey_status;
3876 __le32 wakeup_reason;
3877 u8 pattern_number;
3878 u8 reserved1;
3879 __le16 qos_seq_ctr[8];
3880 __le16 non_qos_seq_ctr;
3881 __le16 reserved2;
3882 union iwlagn_all_tsc_rsc tsc_rsc;
3883 __le16 reserved3;
3884} __packed;
3885
3886/*
3887 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3888 */
3889
3890/*
3891 * Minimum slot time in TU
3892 */
3893#define IWL_MIN_SLOT_TIME 20
3894
3895/**
3896 * struct iwl_wipan_slot
3897 * @width: Time in TU
3898 * @type:
3899 * 0 - BSS
3900 * 1 - PAN
3901 */
3902struct iwl_wipan_slot {
3903 __le16 width;
3904 u8 type;
3905 u8 reserved;
3906} __packed;
3907
3908#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3909#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3910#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3911#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3912#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3913
3914/**
3915 * struct iwl_wipan_params_cmd
3916 * @flags:
3917 * bit0: reserved
3918 * bit1: CP leave channel with CTS
3919 * bit2: CP leave channel qith Quiet
3920 * bit3: slotted mode
3921 * 1 - work in slotted mode
3922 * 0 - work in non slotted mode
3923 * bit4: filter beacon notification
3924 * bit5: full tx slotted mode. if this flag is set,
3925 * uCode will perform leaving channel methods in context switch
3926 * also when working in same channel mode
3927 * @num_slots: 1 - 10
3928 */
3929struct iwl_wipan_params_cmd {
3930 __le16 flags;
3931 u8 reserved;
3932 u8 num_slots;
3933 struct iwl_wipan_slot slots[10];
3934} __packed;
3935
3936/*
3937 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3938 *
3939 * TODO: Figure out what this is used for,
3940 * it can only switch between 2.4 GHz
3941 * channels!!
3942 */
3943
3944struct iwl_wipan_p2p_channel_switch_cmd {
3945 __le16 channel;
3946 __le16 reserved;
3947};
3948
3949/*
3950 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3951 *
3952 * This is used by the device to notify us of the
3953 * NoA schedule it determined so we can forward it
3954 * to userspace for inclusion in probe responses.
3955 *
3956 * In beacons, the NoA schedule is simply appended
3957 * to the frame we give the device.
3958 */
3959
3960struct iwl_wipan_noa_descriptor {
3961 u8 count;
3962 __le32 duration;
3963 __le32 interval;
3964 __le32 starttime;
3965} __packed;
3966
3967struct iwl_wipan_noa_attribute {
3968 u8 id;
3969 __le16 length;
3970 u8 index;
3971 u8 ct_window;
3972 struct iwl_wipan_noa_descriptor descr0, descr1;
3973 u8 reserved;
3974} __packed;
3975
3976struct iwl_wipan_noa_notification {
3977 u32 noa_active;
3978 struct iwl_wipan_noa_attribute noa_attribute;
3979} __packed;
3980
3981#endif /* __iwl_commands_h__ */