Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/coredump.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/jhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42
  43#include <asm/tlbflush.h>
  44#include "internal.h"
  45
  46#ifdef CONFIG_NUMA
  47#define NUMA(x)		(x)
  48#define DO_NUMA(x)	do { (x); } while (0)
  49#else
  50#define NUMA(x)		(0)
  51#define DO_NUMA(x)	do { } while (0)
  52#endif
  53
  54/*
 
 
  55 * A few notes about the KSM scanning process,
  56 * to make it easier to understand the data structures below:
  57 *
  58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  59 * contents into a data structure that holds pointers to the pages' locations.
  60 *
  61 * Since the contents of the pages may change at any moment, KSM cannot just
  62 * insert the pages into a normal sorted tree and expect it to find anything.
  63 * Therefore KSM uses two data structures - the stable and the unstable tree.
  64 *
  65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  66 * by their contents.  Because each such page is write-protected, searching on
  67 * this tree is fully assured to be working (except when pages are unmapped),
  68 * and therefore this tree is called the stable tree.
  69 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70 * In addition to the stable tree, KSM uses a second data structure called the
  71 * unstable tree: this tree holds pointers to pages which have been found to
  72 * be "unchanged for a period of time".  The unstable tree sorts these pages
  73 * by their contents, but since they are not write-protected, KSM cannot rely
  74 * upon the unstable tree to work correctly - the unstable tree is liable to
  75 * be corrupted as its contents are modified, and so it is called unstable.
  76 *
  77 * KSM solves this problem by several techniques:
  78 *
  79 * 1) The unstable tree is flushed every time KSM completes scanning all
  80 *    memory areas, and then the tree is rebuilt again from the beginning.
  81 * 2) KSM will only insert into the unstable tree, pages whose hash value
  82 *    has not changed since the previous scan of all memory areas.
  83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  84 *    colors of the nodes and not on their contents, assuring that even when
  85 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  86 *    remains the same (also, searching and inserting nodes in an rbtree uses
  87 *    the same algorithm, so we have no overhead when we flush and rebuild).
  88 * 4) KSM never flushes the stable tree, which means that even if it were to
  89 *    take 10 attempts to find a page in the unstable tree, once it is found,
  90 *    it is secured in the stable tree.  (When we scan a new page, we first
  91 *    compare it against the stable tree, and then against the unstable tree.)
  92 *
  93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  94 * stable trees and multiple unstable trees: one of each for each NUMA node.
  95 */
  96
  97/**
  98 * struct mm_slot - ksm information per mm that is being scanned
  99 * @link: link to the mm_slots hash list
 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 102 * @mm: the mm that this information is valid for
 103 */
 104struct mm_slot {
 105	struct hlist_node link;
 106	struct list_head mm_list;
 107	struct rmap_item *rmap_list;
 108	struct mm_struct *mm;
 109};
 110
 111/**
 112 * struct ksm_scan - cursor for scanning
 113 * @mm_slot: the current mm_slot we are scanning
 114 * @address: the next address inside that to be scanned
 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 116 * @seqnr: count of completed full scans (needed when removing unstable node)
 117 *
 118 * There is only the one ksm_scan instance of this cursor structure.
 119 */
 120struct ksm_scan {
 121	struct mm_slot *mm_slot;
 122	unsigned long address;
 123	struct rmap_item **rmap_list;
 124	unsigned long seqnr;
 125};
 126
 127/**
 128 * struct stable_node - node of the stable rbtree
 129 * @node: rb node of this ksm page in the stable tree
 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
 133 * @hlist: hlist head of rmap_items using this ksm page
 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 135 * @chain_prune_time: time of the last full garbage collection
 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 138 */
 139struct stable_node {
 140	union {
 141		struct rb_node node;	/* when node of stable tree */
 142		struct {		/* when listed for migration */
 143			struct list_head *head;
 144			struct {
 145				struct hlist_node hlist_dup;
 146				struct list_head list;
 147			};
 148		};
 149	};
 150	struct hlist_head hlist;
 151	union {
 152		unsigned long kpfn;
 153		unsigned long chain_prune_time;
 154	};
 155	/*
 156	 * STABLE_NODE_CHAIN can be any negative number in
 157	 * rmap_hlist_len negative range, but better not -1 to be able
 158	 * to reliably detect underflows.
 159	 */
 160#define STABLE_NODE_CHAIN -1024
 161	int rmap_hlist_len;
 162#ifdef CONFIG_NUMA
 163	int nid;
 164#endif
 165};
 166
 167/**
 168 * struct rmap_item - reverse mapping item for virtual addresses
 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 172 * @mm: the memory structure this rmap_item is pointing into
 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 174 * @oldchecksum: previous checksum of the page at that virtual address
 175 * @node: rb node of this rmap_item in the unstable tree
 176 * @head: pointer to stable_node heading this list in the stable tree
 177 * @hlist: link into hlist of rmap_items hanging off that stable_node
 178 */
 179struct rmap_item {
 180	struct rmap_item *rmap_list;
 181	union {
 182		struct anon_vma *anon_vma;	/* when stable */
 183#ifdef CONFIG_NUMA
 184		int nid;		/* when node of unstable tree */
 185#endif
 186	};
 187	struct mm_struct *mm;
 188	unsigned long address;		/* + low bits used for flags below */
 189	unsigned int oldchecksum;	/* when unstable */
 190	union {
 191		struct rb_node node;	/* when node of unstable tree */
 192		struct {		/* when listed from stable tree */
 193			struct stable_node *head;
 194			struct hlist_node hlist;
 195		};
 196	};
 197};
 198
 199#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 200#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 201#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 202
 203/* The stable and unstable tree heads */
 204static struct rb_root one_stable_tree[1] = { RB_ROOT };
 205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 206static struct rb_root *root_stable_tree = one_stable_tree;
 207static struct rb_root *root_unstable_tree = one_unstable_tree;
 208
 209/* Recently migrated nodes of stable tree, pending proper placement */
 210static LIST_HEAD(migrate_nodes);
 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 212
 213#define MM_SLOTS_HASH_BITS 10
 214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 215
 216static struct mm_slot ksm_mm_head = {
 217	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 218};
 219static struct ksm_scan ksm_scan = {
 220	.mm_slot = &ksm_mm_head,
 221};
 222
 223static struct kmem_cache *rmap_item_cache;
 224static struct kmem_cache *stable_node_cache;
 225static struct kmem_cache *mm_slot_cache;
 226
 227/* The number of nodes in the stable tree */
 228static unsigned long ksm_pages_shared;
 229
 230/* The number of page slots additionally sharing those nodes */
 231static unsigned long ksm_pages_sharing;
 232
 233/* The number of nodes in the unstable tree */
 234static unsigned long ksm_pages_unshared;
 235
 236/* The number of rmap_items in use: to calculate pages_volatile */
 237static unsigned long ksm_rmap_items;
 238
 239/* The number of stable_node chains */
 240static unsigned long ksm_stable_node_chains;
 241
 242/* The number of stable_node dups linked to the stable_node chains */
 243static unsigned long ksm_stable_node_dups;
 244
 245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 246static int ksm_stable_node_chains_prune_millisecs = 2000;
 247
 248/* Maximum number of page slots sharing a stable node */
 249static int ksm_max_page_sharing = 256;
 250
 251/* Number of pages ksmd should scan in one batch */
 252static unsigned int ksm_thread_pages_to_scan = 100;
 253
 254/* Milliseconds ksmd should sleep between batches */
 255static unsigned int ksm_thread_sleep_millisecs = 20;
 256
 257/* Checksum of an empty (zeroed) page */
 258static unsigned int zero_checksum __read_mostly;
 259
 260/* Whether to merge empty (zeroed) pages with actual zero pages */
 261static bool ksm_use_zero_pages __read_mostly;
 262
 263#ifdef CONFIG_NUMA
 264/* Zeroed when merging across nodes is not allowed */
 265static unsigned int ksm_merge_across_nodes = 1;
 266static int ksm_nr_node_ids = 1;
 267#else
 268#define ksm_merge_across_nodes	1U
 269#define ksm_nr_node_ids		1
 270#endif
 271
 272#define KSM_RUN_STOP	0
 273#define KSM_RUN_MERGE	1
 274#define KSM_RUN_UNMERGE	2
 275#define KSM_RUN_OFFLINE	4
 276static unsigned long ksm_run = KSM_RUN_STOP;
 277static void wait_while_offlining(void);
 278
 279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 
 280static DEFINE_MUTEX(ksm_thread_mutex);
 281static DEFINE_SPINLOCK(ksm_mmlist_lock);
 282
 283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 284		sizeof(struct __struct), __alignof__(struct __struct),\
 285		(__flags), NULL)
 286
 287static int __init ksm_slab_init(void)
 288{
 289	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 290	if (!rmap_item_cache)
 291		goto out;
 292
 293	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 294	if (!stable_node_cache)
 295		goto out_free1;
 296
 297	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 298	if (!mm_slot_cache)
 299		goto out_free2;
 300
 301	return 0;
 302
 303out_free2:
 304	kmem_cache_destroy(stable_node_cache);
 305out_free1:
 306	kmem_cache_destroy(rmap_item_cache);
 307out:
 308	return -ENOMEM;
 309}
 310
 311static void __init ksm_slab_free(void)
 312{
 313	kmem_cache_destroy(mm_slot_cache);
 314	kmem_cache_destroy(stable_node_cache);
 315	kmem_cache_destroy(rmap_item_cache);
 316	mm_slot_cache = NULL;
 317}
 318
 319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 320{
 321	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 322}
 323
 324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 325{
 326	return dup->head == STABLE_NODE_DUP_HEAD;
 327}
 328
 329static inline void stable_node_chain_add_dup(struct stable_node *dup,
 330					     struct stable_node *chain)
 331{
 332	VM_BUG_ON(is_stable_node_dup(dup));
 333	dup->head = STABLE_NODE_DUP_HEAD;
 334	VM_BUG_ON(!is_stable_node_chain(chain));
 335	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 336	ksm_stable_node_dups++;
 337}
 338
 339static inline void __stable_node_dup_del(struct stable_node *dup)
 340{
 341	VM_BUG_ON(!is_stable_node_dup(dup));
 342	hlist_del(&dup->hlist_dup);
 343	ksm_stable_node_dups--;
 344}
 345
 346static inline void stable_node_dup_del(struct stable_node *dup)
 347{
 348	VM_BUG_ON(is_stable_node_chain(dup));
 349	if (is_stable_node_dup(dup))
 350		__stable_node_dup_del(dup);
 351	else
 352		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 353#ifdef CONFIG_DEBUG_VM
 354	dup->head = NULL;
 355#endif
 356}
 357
 358static inline struct rmap_item *alloc_rmap_item(void)
 359{
 360	struct rmap_item *rmap_item;
 361
 362	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 363						__GFP_NORETRY | __GFP_NOWARN);
 364	if (rmap_item)
 365		ksm_rmap_items++;
 366	return rmap_item;
 367}
 368
 369static inline void free_rmap_item(struct rmap_item *rmap_item)
 370{
 371	ksm_rmap_items--;
 372	rmap_item->mm = NULL;	/* debug safety */
 373	kmem_cache_free(rmap_item_cache, rmap_item);
 374}
 375
 376static inline struct stable_node *alloc_stable_node(void)
 377{
 378	/*
 379	 * The allocation can take too long with GFP_KERNEL when memory is under
 380	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 381	 * grants access to memory reserves, helping to avoid this problem.
 382	 */
 383	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 384}
 385
 386static inline void free_stable_node(struct stable_node *stable_node)
 387{
 388	VM_BUG_ON(stable_node->rmap_hlist_len &&
 389		  !is_stable_node_chain(stable_node));
 390	kmem_cache_free(stable_node_cache, stable_node);
 391}
 392
 393static inline struct mm_slot *alloc_mm_slot(void)
 394{
 395	if (!mm_slot_cache)	/* initialization failed */
 396		return NULL;
 397	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 398}
 399
 400static inline void free_mm_slot(struct mm_slot *mm_slot)
 401{
 402	kmem_cache_free(mm_slot_cache, mm_slot);
 403}
 404
 405static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 406{
 407	struct mm_slot *slot;
 408
 409	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 410		if (slot->mm == mm)
 411			return slot;
 412
 413	return NULL;
 414}
 415
 416static void insert_to_mm_slots_hash(struct mm_struct *mm,
 417				    struct mm_slot *mm_slot)
 418{
 419	mm_slot->mm = mm;
 420	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 421}
 422
 423/*
 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 425 * page tables after it has passed through ksm_exit() - which, if necessary,
 426 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 427 * a special flag: they can just back out as soon as mm_users goes to zero.
 428 * ksm_test_exit() is used throughout to make this test for exit: in some
 429 * places for correctness, in some places just to avoid unnecessary work.
 430 */
 431static inline bool ksm_test_exit(struct mm_struct *mm)
 432{
 433	return atomic_read(&mm->mm_users) == 0;
 434}
 435
 436/*
 437 * We use break_ksm to break COW on a ksm page: it's a stripped down
 438 *
 439 *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 440 *		put_page(page);
 441 *
 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 443 * in case the application has unmapped and remapped mm,addr meanwhile.
 444 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 446 *
 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 448 * of the process that owns 'vma'.  We also do not want to enforce
 449 * protection keys here anyway.
 450 */
 451static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 452{
 453	struct page *page;
 454	int ret = 0;
 455
 456	do {
 457		cond_resched();
 458		page = follow_page(vma, addr,
 459				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 460		if (IS_ERR_OR_NULL(page))
 461			break;
 462		if (PageKsm(page))
 463			ret = handle_mm_fault(vma, addr,
 464					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 
 465		else
 466			ret = VM_FAULT_WRITE;
 467		put_page(page);
 468	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 469	/*
 470	 * We must loop because handle_mm_fault() may back out if there's
 471	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 472	 *
 473	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 474	 * COW has been broken, even if the vma does not permit VM_WRITE;
 475	 * but note that a concurrent fault might break PageKsm for us.
 476	 *
 477	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 478	 * backing file, which also invalidates anonymous pages: that's
 479	 * okay, that truncation will have unmapped the PageKsm for us.
 480	 *
 481	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 482	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 483	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 484	 * to user; and ksmd, having no mm, would never be chosen for that.
 485	 *
 486	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 487	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 488	 * even ksmd can fail in this way - though it's usually breaking ksm
 489	 * just to undo a merge it made a moment before, so unlikely to oom.
 490	 *
 491	 * That's a pity: we might therefore have more kernel pages allocated
 492	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 493	 * will retry to break_cow on each pass, so should recover the page
 494	 * in due course.  The important thing is to not let VM_MERGEABLE
 495	 * be cleared while any such pages might remain in the area.
 496	 */
 497	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 498}
 499
 500static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 501		unsigned long addr)
 502{
 503	struct vm_area_struct *vma;
 504	if (ksm_test_exit(mm))
 505		return NULL;
 506	vma = find_vma(mm, addr);
 507	if (!vma || vma->vm_start > addr)
 508		return NULL;
 509	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 510		return NULL;
 511	return vma;
 512}
 513
 514static void break_cow(struct rmap_item *rmap_item)
 515{
 516	struct mm_struct *mm = rmap_item->mm;
 517	unsigned long addr = rmap_item->address;
 518	struct vm_area_struct *vma;
 519
 520	/*
 521	 * It is not an accident that whenever we want to break COW
 522	 * to undo, we also need to drop a reference to the anon_vma.
 523	 */
 524	put_anon_vma(rmap_item->anon_vma);
 525
 526	down_read(&mm->mmap_sem);
 527	vma = find_mergeable_vma(mm, addr);
 528	if (vma)
 529		break_ksm(vma, addr);
 530	up_read(&mm->mmap_sem);
 531}
 532
 533static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 534{
 535	struct mm_struct *mm = rmap_item->mm;
 536	unsigned long addr = rmap_item->address;
 537	struct vm_area_struct *vma;
 538	struct page *page;
 539
 540	down_read(&mm->mmap_sem);
 541	vma = find_mergeable_vma(mm, addr);
 542	if (!vma)
 543		goto out;
 544
 545	page = follow_page(vma, addr, FOLL_GET);
 546	if (IS_ERR_OR_NULL(page))
 547		goto out;
 548	if (PageAnon(page)) {
 549		flush_anon_page(vma, page, addr);
 550		flush_dcache_page(page);
 551	} else {
 552		put_page(page);
 553out:
 554		page = NULL;
 555	}
 556	up_read(&mm->mmap_sem);
 557	return page;
 558}
 559
 560/*
 561 * This helper is used for getting right index into array of tree roots.
 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 564 * every node has its own stable and unstable tree.
 565 */
 566static inline int get_kpfn_nid(unsigned long kpfn)
 567{
 568	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 569}
 570
 571static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 572						   struct rb_root *root)
 573{
 574	struct stable_node *chain = alloc_stable_node();
 575	VM_BUG_ON(is_stable_node_chain(dup));
 576	if (likely(chain)) {
 577		INIT_HLIST_HEAD(&chain->hlist);
 578		chain->chain_prune_time = jiffies;
 579		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 580#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 581		chain->nid = -1; /* debug */
 582#endif
 583		ksm_stable_node_chains++;
 584
 585		/*
 586		 * Put the stable node chain in the first dimension of
 587		 * the stable tree and at the same time remove the old
 588		 * stable node.
 589		 */
 590		rb_replace_node(&dup->node, &chain->node, root);
 591
 592		/*
 593		 * Move the old stable node to the second dimension
 594		 * queued in the hlist_dup. The invariant is that all
 595		 * dup stable_nodes in the chain->hlist point to pages
 596		 * that are wrprotected and have the exact same
 597		 * content.
 598		 */
 599		stable_node_chain_add_dup(dup, chain);
 600	}
 601	return chain;
 602}
 603
 604static inline void free_stable_node_chain(struct stable_node *chain,
 605					  struct rb_root *root)
 606{
 607	rb_erase(&chain->node, root);
 608	free_stable_node(chain);
 609	ksm_stable_node_chains--;
 610}
 611
 612static void remove_node_from_stable_tree(struct stable_node *stable_node)
 613{
 614	struct rmap_item *rmap_item;
 615
 616	/* check it's not STABLE_NODE_CHAIN or negative */
 617	BUG_ON(stable_node->rmap_hlist_len < 0);
 618
 619	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 620		if (rmap_item->hlist.next)
 621			ksm_pages_sharing--;
 622		else
 623			ksm_pages_shared--;
 624		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 625		stable_node->rmap_hlist_len--;
 626		put_anon_vma(rmap_item->anon_vma);
 627		rmap_item->address &= PAGE_MASK;
 628		cond_resched();
 629	}
 630
 631	/*
 632	 * We need the second aligned pointer of the migrate_nodes
 633	 * list_head to stay clear from the rb_parent_color union
 634	 * (aligned and different than any node) and also different
 635	 * from &migrate_nodes. This will verify that future list.h changes
 636	 * don't break STABLE_NODE_DUP_HEAD.
 637	 */
 638#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
 639	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 640	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 641#endif
 642
 643	if (stable_node->head == &migrate_nodes)
 644		list_del(&stable_node->list);
 645	else
 646		stable_node_dup_del(stable_node);
 647	free_stable_node(stable_node);
 648}
 649
 
 
 
 
 
 
 650/*
 651 * get_ksm_page: checks if the page indicated by the stable node
 652 * is still its ksm page, despite having held no reference to it.
 653 * In which case we can trust the content of the page, and it
 654 * returns the gotten page; but if the page has now been zapped,
 655 * remove the stale node from the stable tree and return NULL.
 656 * But beware, the stable node's page might be being migrated.
 657 *
 658 * You would expect the stable_node to hold a reference to the ksm page.
 659 * But if it increments the page's count, swapping out has to wait for
 660 * ksmd to come around again before it can free the page, which may take
 661 * seconds or even minutes: much too unresponsive.  So instead we use a
 662 * "keyhole reference": access to the ksm page from the stable node peeps
 663 * out through its keyhole to see if that page still holds the right key,
 664 * pointing back to this stable node.  This relies on freeing a PageAnon
 665 * page to reset its page->mapping to NULL, and relies on no other use of
 666 * a page to put something that might look like our key in page->mapping.
 667 * is on its way to being freed; but it is an anomaly to bear in mind.
 668 */
 669static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 
 670{
 671	struct page *page;
 672	void *expected_mapping;
 673	unsigned long kpfn;
 674
 675	expected_mapping = (void *)((unsigned long)stable_node |
 676					PAGE_MAPPING_KSM);
 677again:
 678	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 679	page = pfn_to_page(kpfn);
 680	if (READ_ONCE(page->mapping) != expected_mapping)
 681		goto stale;
 682
 683	/*
 684	 * We cannot do anything with the page while its refcount is 0.
 685	 * Usually 0 means free, or tail of a higher-order page: in which
 686	 * case this node is no longer referenced, and should be freed;
 687	 * however, it might mean that the page is under page_freeze_refs().
 688	 * The __remove_mapping() case is easy, again the node is now stale;
 689	 * but if page is swapcache in migrate_page_move_mapping(), it might
 690	 * still be our page, in which case it's essential to keep the node.
 
 691	 */
 692	while (!get_page_unless_zero(page)) {
 693		/*
 694		 * Another check for page->mapping != expected_mapping would
 695		 * work here too.  We have chosen the !PageSwapCache test to
 696		 * optimize the common case, when the page is or is about to
 697		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 698		 * in the freeze_refs section of __remove_mapping(); but Anon
 699		 * page->mapping reset to NULL later, in free_pages_prepare().
 700		 */
 701		if (!PageSwapCache(page))
 702			goto stale;
 703		cpu_relax();
 704	}
 705
 706	if (READ_ONCE(page->mapping) != expected_mapping) {
 707		put_page(page);
 708		goto stale;
 709	}
 710
 711	if (lock_it) {
 
 
 
 
 
 712		lock_page(page);
 
 
 713		if (READ_ONCE(page->mapping) != expected_mapping) {
 714			unlock_page(page);
 715			put_page(page);
 716			goto stale;
 717		}
 718	}
 719	return page;
 720
 721stale:
 722	/*
 723	 * We come here from above when page->mapping or !PageSwapCache
 724	 * suggests that the node is stale; but it might be under migration.
 725	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 726	 * before checking whether node->kpfn has been changed.
 727	 */
 728	smp_rmb();
 729	if (READ_ONCE(stable_node->kpfn) != kpfn)
 730		goto again;
 731	remove_node_from_stable_tree(stable_node);
 732	return NULL;
 733}
 734
 735/*
 736 * Removing rmap_item from stable or unstable tree.
 737 * This function will clean the information from the stable/unstable tree.
 738 */
 739static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 740{
 741	if (rmap_item->address & STABLE_FLAG) {
 742		struct stable_node *stable_node;
 743		struct page *page;
 744
 745		stable_node = rmap_item->head;
 746		page = get_ksm_page(stable_node, true);
 747		if (!page)
 748			goto out;
 749
 750		hlist_del(&rmap_item->hlist);
 751		unlock_page(page);
 752		put_page(page);
 753
 754		if (!hlist_empty(&stable_node->hlist))
 755			ksm_pages_sharing--;
 756		else
 757			ksm_pages_shared--;
 758		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 759		stable_node->rmap_hlist_len--;
 760
 761		put_anon_vma(rmap_item->anon_vma);
 
 762		rmap_item->address &= PAGE_MASK;
 763
 764	} else if (rmap_item->address & UNSTABLE_FLAG) {
 765		unsigned char age;
 766		/*
 767		 * Usually ksmd can and must skip the rb_erase, because
 768		 * root_unstable_tree was already reset to RB_ROOT.
 769		 * But be careful when an mm is exiting: do the rb_erase
 770		 * if this rmap_item was inserted by this scan, rather
 771		 * than left over from before.
 772		 */
 773		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 774		BUG_ON(age > 1);
 775		if (!age)
 776			rb_erase(&rmap_item->node,
 777				 root_unstable_tree + NUMA(rmap_item->nid));
 778		ksm_pages_unshared--;
 779		rmap_item->address &= PAGE_MASK;
 780	}
 781out:
 782	cond_resched();		/* we're called from many long loops */
 783}
 784
 785static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 786				       struct rmap_item **rmap_list)
 787{
 788	while (*rmap_list) {
 789		struct rmap_item *rmap_item = *rmap_list;
 790		*rmap_list = rmap_item->rmap_list;
 791		remove_rmap_item_from_tree(rmap_item);
 792		free_rmap_item(rmap_item);
 793	}
 794}
 795
 796/*
 797 * Though it's very tempting to unmerge rmap_items from stable tree rather
 798 * than check every pte of a given vma, the locking doesn't quite work for
 799 * that - an rmap_item is assigned to the stable tree after inserting ksm
 800 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 801 * rmap_items from parent to child at fork time (so as not to waste time
 802 * if exit comes before the next scan reaches it).
 803 *
 804 * Similarly, although we'd like to remove rmap_items (so updating counts
 805 * and freeing memory) when unmerging an area, it's easier to leave that
 806 * to the next pass of ksmd - consider, for example, how ksmd might be
 807 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 808 */
 809static int unmerge_ksm_pages(struct vm_area_struct *vma,
 810			     unsigned long start, unsigned long end)
 811{
 812	unsigned long addr;
 813	int err = 0;
 814
 815	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 816		if (ksm_test_exit(vma->vm_mm))
 817			break;
 818		if (signal_pending(current))
 819			err = -ERESTARTSYS;
 820		else
 821			err = break_ksm(vma, addr);
 822	}
 823	return err;
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 826#ifdef CONFIG_SYSFS
 827/*
 828 * Only called through the sysfs control interface:
 829 */
 830static int remove_stable_node(struct stable_node *stable_node)
 831{
 832	struct page *page;
 833	int err;
 834
 835	page = get_ksm_page(stable_node, true);
 836	if (!page) {
 837		/*
 838		 * get_ksm_page did remove_node_from_stable_tree itself.
 839		 */
 840		return 0;
 841	}
 842
 843	if (WARN_ON_ONCE(page_mapped(page))) {
 844		/*
 845		 * This should not happen: but if it does, just refuse to let
 846		 * merge_across_nodes be switched - there is no need to panic.
 847		 */
 848		err = -EBUSY;
 849	} else {
 850		/*
 851		 * The stable node did not yet appear stale to get_ksm_page(),
 852		 * since that allows for an unmapped ksm page to be recognized
 853		 * right up until it is freed; but the node is safe to remove.
 854		 * This page might be in a pagevec waiting to be freed,
 855		 * or it might be PageSwapCache (perhaps under writeback),
 856		 * or it might have been removed from swapcache a moment ago.
 857		 */
 858		set_page_stable_node(page, NULL);
 859		remove_node_from_stable_tree(stable_node);
 860		err = 0;
 861	}
 862
 863	unlock_page(page);
 864	put_page(page);
 865	return err;
 866}
 867
 868static int remove_stable_node_chain(struct stable_node *stable_node,
 869				    struct rb_root *root)
 870{
 871	struct stable_node *dup;
 872	struct hlist_node *hlist_safe;
 873
 874	if (!is_stable_node_chain(stable_node)) {
 875		VM_BUG_ON(is_stable_node_dup(stable_node));
 876		if (remove_stable_node(stable_node))
 877			return true;
 878		else
 879			return false;
 880	}
 881
 882	hlist_for_each_entry_safe(dup, hlist_safe,
 883				  &stable_node->hlist, hlist_dup) {
 884		VM_BUG_ON(!is_stable_node_dup(dup));
 885		if (remove_stable_node(dup))
 886			return true;
 887	}
 888	BUG_ON(!hlist_empty(&stable_node->hlist));
 889	free_stable_node_chain(stable_node, root);
 890	return false;
 891}
 892
 893static int remove_all_stable_nodes(void)
 894{
 895	struct stable_node *stable_node, *next;
 896	int nid;
 897	int err = 0;
 898
 899	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 900		while (root_stable_tree[nid].rb_node) {
 901			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 902						struct stable_node, node);
 903			if (remove_stable_node_chain(stable_node,
 904						     root_stable_tree + nid)) {
 905				err = -EBUSY;
 906				break;	/* proceed to next nid */
 907			}
 908			cond_resched();
 909		}
 910	}
 911	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 912		if (remove_stable_node(stable_node))
 913			err = -EBUSY;
 914		cond_resched();
 915	}
 916	return err;
 917}
 918
 919static int unmerge_and_remove_all_rmap_items(void)
 920{
 921	struct mm_slot *mm_slot;
 922	struct mm_struct *mm;
 923	struct vm_area_struct *vma;
 924	int err = 0;
 925
 926	spin_lock(&ksm_mmlist_lock);
 927	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 928						struct mm_slot, mm_list);
 929	spin_unlock(&ksm_mmlist_lock);
 930
 931	for (mm_slot = ksm_scan.mm_slot;
 932			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 933		mm = mm_slot->mm;
 934		down_read(&mm->mmap_sem);
 935		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 936			if (ksm_test_exit(mm))
 937				break;
 938			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 939				continue;
 940			err = unmerge_ksm_pages(vma,
 941						vma->vm_start, vma->vm_end);
 942			if (err)
 943				goto error;
 944		}
 945
 946		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 947		up_read(&mm->mmap_sem);
 948
 949		spin_lock(&ksm_mmlist_lock);
 950		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 951						struct mm_slot, mm_list);
 952		if (ksm_test_exit(mm)) {
 953			hash_del(&mm_slot->link);
 954			list_del(&mm_slot->mm_list);
 955			spin_unlock(&ksm_mmlist_lock);
 956
 957			free_mm_slot(mm_slot);
 958			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 959			mmdrop(mm);
 960		} else
 961			spin_unlock(&ksm_mmlist_lock);
 962	}
 963
 964	/* Clean up stable nodes, but don't worry if some are still busy */
 965	remove_all_stable_nodes();
 966	ksm_scan.seqnr = 0;
 967	return 0;
 968
 969error:
 970	up_read(&mm->mmap_sem);
 971	spin_lock(&ksm_mmlist_lock);
 972	ksm_scan.mm_slot = &ksm_mm_head;
 973	spin_unlock(&ksm_mmlist_lock);
 974	return err;
 975}
 976#endif /* CONFIG_SYSFS */
 977
 978static u32 calc_checksum(struct page *page)
 979{
 980	u32 checksum;
 981	void *addr = kmap_atomic(page);
 982	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 983	kunmap_atomic(addr);
 984	return checksum;
 985}
 986
 987static int memcmp_pages(struct page *page1, struct page *page2)
 988{
 989	char *addr1, *addr2;
 990	int ret;
 991
 992	addr1 = kmap_atomic(page1);
 993	addr2 = kmap_atomic(page2);
 994	ret = memcmp(addr1, addr2, PAGE_SIZE);
 995	kunmap_atomic(addr2);
 996	kunmap_atomic(addr1);
 997	return ret;
 998}
 999
1000static inline int pages_identical(struct page *page1, struct page *page2)
1001{
1002	return !memcmp_pages(page1, page2);
1003}
1004
1005static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006			      pte_t *orig_pte)
1007{
1008	struct mm_struct *mm = vma->vm_mm;
1009	struct page_vma_mapped_walk pvmw = {
1010		.page = page,
1011		.vma = vma,
1012	};
1013	int swapped;
1014	int err = -EFAULT;
1015	unsigned long mmun_start;	/* For mmu_notifiers */
1016	unsigned long mmun_end;		/* For mmu_notifiers */
1017
1018	pvmw.address = page_address_in_vma(page, vma);
1019	if (pvmw.address == -EFAULT)
1020		goto out;
1021
1022	BUG_ON(PageTransCompound(page));
1023
1024	mmun_start = pvmw.address;
1025	mmun_end   = pvmw.address + PAGE_SIZE;
1026	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
1027
1028	if (!page_vma_mapped_walk(&pvmw))
1029		goto out_mn;
1030	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031		goto out_unlock;
1032
1033	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1034	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035						mm_tlb_flush_pending(mm)) {
1036		pte_t entry;
1037
1038		swapped = PageSwapCache(page);
1039		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1040		/*
1041		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1042		 * take any lock, therefore the check that we are going to make
1043		 * with the pagecount against the mapcount is racey and
1044		 * O_DIRECT can happen right after the check.
1045		 * So we clear the pte and flush the tlb before the check
1046		 * this assure us that no O_DIRECT can happen after the check
1047		 * or in the middle of the check.
1048		 *
1049		 * No need to notify as we are downgrading page table to read
1050		 * only not changing it to point to a new page.
1051		 *
1052		 * See Documentation/vm/mmu_notifier.txt
1053		 */
1054		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1055		/*
1056		 * Check that no O_DIRECT or similar I/O is in progress on the
1057		 * page
1058		 */
1059		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1060			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1061			goto out_unlock;
1062		}
1063		if (pte_dirty(entry))
1064			set_page_dirty(page);
1065
1066		if (pte_protnone(entry))
1067			entry = pte_mkclean(pte_clear_savedwrite(entry));
1068		else
1069			entry = pte_mkclean(pte_wrprotect(entry));
1070		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1071	}
1072	*orig_pte = *pvmw.pte;
1073	err = 0;
1074
1075out_unlock:
1076	page_vma_mapped_walk_done(&pvmw);
1077out_mn:
1078	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1079out:
1080	return err;
1081}
1082
1083/**
1084 * replace_page - replace page in vma by new ksm page
1085 * @vma:      vma that holds the pte pointing to page
1086 * @page:     the page we are replacing by kpage
1087 * @kpage:    the ksm page we replace page by
1088 * @orig_pte: the original value of the pte
1089 *
1090 * Returns 0 on success, -EFAULT on failure.
1091 */
1092static int replace_page(struct vm_area_struct *vma, struct page *page,
1093			struct page *kpage, pte_t orig_pte)
1094{
1095	struct mm_struct *mm = vma->vm_mm;
1096	pmd_t *pmd;
1097	pte_t *ptep;
1098	pte_t newpte;
1099	spinlock_t *ptl;
1100	unsigned long addr;
1101	int err = -EFAULT;
1102	unsigned long mmun_start;	/* For mmu_notifiers */
1103	unsigned long mmun_end;		/* For mmu_notifiers */
1104
1105	addr = page_address_in_vma(page, vma);
1106	if (addr == -EFAULT)
1107		goto out;
1108
1109	pmd = mm_find_pmd(mm, addr);
1110	if (!pmd)
1111		goto out;
1112
1113	mmun_start = addr;
1114	mmun_end   = addr + PAGE_SIZE;
1115	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116
1117	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118	if (!pte_same(*ptep, orig_pte)) {
1119		pte_unmap_unlock(ptep, ptl);
1120		goto out_mn;
1121	}
1122
1123	/*
1124	 * No need to check ksm_use_zero_pages here: we can only have a
1125	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126	 */
1127	if (!is_zero_pfn(page_to_pfn(kpage))) {
1128		get_page(kpage);
1129		page_add_anon_rmap(kpage, vma, addr, false);
1130		newpte = mk_pte(kpage, vma->vm_page_prot);
1131	} else {
1132		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133					       vma->vm_page_prot));
1134		/*
1135		 * We're replacing an anonymous page with a zero page, which is
1136		 * not anonymous. We need to do proper accounting otherwise we
1137		 * will get wrong values in /proc, and a BUG message in dmesg
1138		 * when tearing down the mm.
1139		 */
1140		dec_mm_counter(mm, MM_ANONPAGES);
1141	}
1142
1143	flush_cache_page(vma, addr, pte_pfn(*ptep));
1144	/*
1145	 * No need to notify as we are replacing a read only page with another
1146	 * read only page with the same content.
1147	 *
1148	 * See Documentation/vm/mmu_notifier.txt
1149	 */
1150	ptep_clear_flush(vma, addr, ptep);
1151	set_pte_at_notify(mm, addr, ptep, newpte);
1152
1153	page_remove_rmap(page, false);
1154	if (!page_mapped(page))
1155		try_to_free_swap(page);
1156	put_page(page);
1157
1158	pte_unmap_unlock(ptep, ptl);
1159	err = 0;
1160out_mn:
1161	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162out:
1163	return err;
1164}
1165
1166/*
1167 * try_to_merge_one_page - take two pages and merge them into one
1168 * @vma: the vma that holds the pte pointing to page
1169 * @page: the PageAnon page that we want to replace with kpage
1170 * @kpage: the PageKsm page that we want to map instead of page,
1171 *         or NULL the first time when we want to use page as kpage.
1172 *
1173 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1174 */
1175static int try_to_merge_one_page(struct vm_area_struct *vma,
1176				 struct page *page, struct page *kpage)
1177{
1178	pte_t orig_pte = __pte(0);
1179	int err = -EFAULT;
1180
1181	if (page == kpage)			/* ksm page forked */
1182		return 0;
1183
1184	if (!PageAnon(page))
1185		goto out;
1186
1187	/*
1188	 * We need the page lock to read a stable PageSwapCache in
1189	 * write_protect_page().  We use trylock_page() instead of
1190	 * lock_page() because we don't want to wait here - we
1191	 * prefer to continue scanning and merging different pages,
1192	 * then come back to this page when it is unlocked.
1193	 */
1194	if (!trylock_page(page))
1195		goto out;
1196
1197	if (PageTransCompound(page)) {
1198		if (split_huge_page(page))
1199			goto out_unlock;
1200	}
1201
1202	/*
1203	 * If this anonymous page is mapped only here, its pte may need
1204	 * to be write-protected.  If it's mapped elsewhere, all of its
1205	 * ptes are necessarily already write-protected.  But in either
1206	 * case, we need to lock and check page_count is not raised.
1207	 */
1208	if (write_protect_page(vma, page, &orig_pte) == 0) {
1209		if (!kpage) {
1210			/*
1211			 * While we hold page lock, upgrade page from
1212			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213			 * stable_tree_insert() will update stable_node.
1214			 */
1215			set_page_stable_node(page, NULL);
1216			mark_page_accessed(page);
1217			/*
1218			 * Page reclaim just frees a clean page with no dirty
1219			 * ptes: make sure that the ksm page would be swapped.
1220			 */
1221			if (!PageDirty(page))
1222				SetPageDirty(page);
1223			err = 0;
1224		} else if (pages_identical(page, kpage))
1225			err = replace_page(vma, page, kpage, orig_pte);
1226	}
1227
1228	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1229		munlock_vma_page(page);
1230		if (!PageMlocked(kpage)) {
1231			unlock_page(page);
1232			lock_page(kpage);
1233			mlock_vma_page(kpage);
1234			page = kpage;		/* for final unlock */
1235		}
1236	}
1237
1238out_unlock:
1239	unlock_page(page);
1240out:
1241	return err;
1242}
1243
1244/*
1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246 * but no new kernel page is allocated: kpage must already be a ksm page.
1247 *
1248 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1249 */
1250static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251				      struct page *page, struct page *kpage)
1252{
1253	struct mm_struct *mm = rmap_item->mm;
1254	struct vm_area_struct *vma;
1255	int err = -EFAULT;
1256
1257	down_read(&mm->mmap_sem);
1258	vma = find_mergeable_vma(mm, rmap_item->address);
1259	if (!vma)
1260		goto out;
1261
1262	err = try_to_merge_one_page(vma, page, kpage);
1263	if (err)
1264		goto out;
1265
1266	/* Unstable nid is in union with stable anon_vma: remove first */
1267	remove_rmap_item_from_tree(rmap_item);
1268
1269	/* Must get reference to anon_vma while still holding mmap_sem */
1270	rmap_item->anon_vma = vma->anon_vma;
1271	get_anon_vma(vma->anon_vma);
1272out:
1273	up_read(&mm->mmap_sem);
1274	return err;
1275}
1276
1277/*
1278 * try_to_merge_two_pages - take two identical pages and prepare them
1279 * to be merged into one page.
1280 *
1281 * This function returns the kpage if we successfully merged two identical
1282 * pages into one ksm page, NULL otherwise.
1283 *
1284 * Note that this function upgrades page to ksm page: if one of the pages
1285 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1286 */
1287static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288					   struct page *page,
1289					   struct rmap_item *tree_rmap_item,
1290					   struct page *tree_page)
1291{
1292	int err;
1293
1294	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1295	if (!err) {
1296		err = try_to_merge_with_ksm_page(tree_rmap_item,
1297							tree_page, page);
1298		/*
1299		 * If that fails, we have a ksm page with only one pte
1300		 * pointing to it: so break it.
1301		 */
1302		if (err)
1303			break_cow(rmap_item);
1304	}
1305	return err ? NULL : page;
1306}
1307
1308static __always_inline
1309bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1310{
1311	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1312	/*
1313	 * Check that at least one mapping still exists, otherwise
1314	 * there's no much point to merge and share with this
1315	 * stable_node, as the underlying tree_page of the other
1316	 * sharer is going to be freed soon.
1317	 */
1318	return stable_node->rmap_hlist_len &&
1319		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1320}
1321
1322static __always_inline
1323bool is_page_sharing_candidate(struct stable_node *stable_node)
1324{
1325	return __is_page_sharing_candidate(stable_node, 0);
1326}
1327
1328static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329				    struct stable_node **_stable_node,
1330				    struct rb_root *root,
1331				    bool prune_stale_stable_nodes)
1332{
1333	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1334	struct hlist_node *hlist_safe;
1335	struct page *_tree_page, *tree_page = NULL;
1336	int nr = 0;
1337	int found_rmap_hlist_len;
1338
1339	if (!prune_stale_stable_nodes ||
1340	    time_before(jiffies, stable_node->chain_prune_time +
1341			msecs_to_jiffies(
1342				ksm_stable_node_chains_prune_millisecs)))
1343		prune_stale_stable_nodes = false;
1344	else
1345		stable_node->chain_prune_time = jiffies;
1346
1347	hlist_for_each_entry_safe(dup, hlist_safe,
1348				  &stable_node->hlist, hlist_dup) {
1349		cond_resched();
1350		/*
1351		 * We must walk all stable_node_dup to prune the stale
1352		 * stable nodes during lookup.
1353		 *
1354		 * get_ksm_page can drop the nodes from the
1355		 * stable_node->hlist if they point to freed pages
1356		 * (that's why we do a _safe walk). The "dup"
1357		 * stable_node parameter itself will be freed from
1358		 * under us if it returns NULL.
1359		 */
1360		_tree_page = get_ksm_page(dup, false);
1361		if (!_tree_page)
1362			continue;
1363		nr += 1;
1364		if (is_page_sharing_candidate(dup)) {
1365			if (!found ||
1366			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1367				if (found)
1368					put_page(tree_page);
1369				found = dup;
1370				found_rmap_hlist_len = found->rmap_hlist_len;
1371				tree_page = _tree_page;
1372
1373				/* skip put_page for found dup */
1374				if (!prune_stale_stable_nodes)
1375					break;
1376				continue;
1377			}
1378		}
1379		put_page(_tree_page);
1380	}
1381
1382	if (found) {
1383		/*
1384		 * nr is counting all dups in the chain only if
1385		 * prune_stale_stable_nodes is true, otherwise we may
1386		 * break the loop at nr == 1 even if there are
1387		 * multiple entries.
1388		 */
1389		if (prune_stale_stable_nodes && nr == 1) {
1390			/*
1391			 * If there's not just one entry it would
1392			 * corrupt memory, better BUG_ON. In KSM
1393			 * context with no lock held it's not even
1394			 * fatal.
1395			 */
1396			BUG_ON(stable_node->hlist.first->next);
1397
1398			/*
1399			 * There's just one entry and it is below the
1400			 * deduplication limit so drop the chain.
1401			 */
1402			rb_replace_node(&stable_node->node, &found->node,
1403					root);
1404			free_stable_node(stable_node);
1405			ksm_stable_node_chains--;
1406			ksm_stable_node_dups--;
1407			/*
1408			 * NOTE: the caller depends on the stable_node
1409			 * to be equal to stable_node_dup if the chain
1410			 * was collapsed.
1411			 */
1412			*_stable_node = found;
1413			/*
1414			 * Just for robustneess as stable_node is
1415			 * otherwise left as a stable pointer, the
1416			 * compiler shall optimize it away at build
1417			 * time.
1418			 */
1419			stable_node = NULL;
1420		} else if (stable_node->hlist.first != &found->hlist_dup &&
1421			   __is_page_sharing_candidate(found, 1)) {
1422			/*
1423			 * If the found stable_node dup can accept one
1424			 * more future merge (in addition to the one
1425			 * that is underway) and is not at the head of
1426			 * the chain, put it there so next search will
1427			 * be quicker in the !prune_stale_stable_nodes
1428			 * case.
1429			 *
1430			 * NOTE: it would be inaccurate to use nr > 1
1431			 * instead of checking the hlist.first pointer
1432			 * directly, because in the
1433			 * prune_stale_stable_nodes case "nr" isn't
1434			 * the position of the found dup in the chain,
1435			 * but the total number of dups in the chain.
1436			 */
1437			hlist_del(&found->hlist_dup);
1438			hlist_add_head(&found->hlist_dup,
1439				       &stable_node->hlist);
1440		}
1441	}
1442
1443	*_stable_node_dup = found;
1444	return tree_page;
1445}
1446
1447static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448					       struct rb_root *root)
1449{
1450	if (!is_stable_node_chain(stable_node))
1451		return stable_node;
1452	if (hlist_empty(&stable_node->hlist)) {
1453		free_stable_node_chain(stable_node, root);
1454		return NULL;
1455	}
1456	return hlist_entry(stable_node->hlist.first,
1457			   typeof(*stable_node), hlist_dup);
1458}
1459
1460/*
1461 * Like for get_ksm_page, this function can free the *_stable_node and
1462 * *_stable_node_dup if the returned tree_page is NULL.
1463 *
1464 * It can also free and overwrite *_stable_node with the found
1465 * stable_node_dup if the chain is collapsed (in which case
1466 * *_stable_node will be equal to *_stable_node_dup like if the chain
1467 * never existed). It's up to the caller to verify tree_page is not
1468 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1469 *
1470 * *_stable_node_dup is really a second output parameter of this
1471 * function and will be overwritten in all cases, the caller doesn't
1472 * need to initialize it.
1473 */
1474static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475					struct stable_node **_stable_node,
1476					struct rb_root *root,
1477					bool prune_stale_stable_nodes)
1478{
1479	struct stable_node *stable_node = *_stable_node;
1480	if (!is_stable_node_chain(stable_node)) {
1481		if (is_page_sharing_candidate(stable_node)) {
1482			*_stable_node_dup = stable_node;
1483			return get_ksm_page(stable_node, false);
1484		}
1485		/*
1486		 * _stable_node_dup set to NULL means the stable_node
1487		 * reached the ksm_max_page_sharing limit.
1488		 */
1489		*_stable_node_dup = NULL;
1490		return NULL;
1491	}
1492	return stable_node_dup(_stable_node_dup, _stable_node, root,
1493			       prune_stale_stable_nodes);
1494}
1495
1496static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497						struct stable_node **s_n,
1498						struct rb_root *root)
1499{
1500	return __stable_node_chain(s_n_d, s_n, root, true);
1501}
1502
1503static __always_inline struct page *chain(struct stable_node **s_n_d,
1504					  struct stable_node *s_n,
1505					  struct rb_root *root)
1506{
1507	struct stable_node *old_stable_node = s_n;
1508	struct page *tree_page;
1509
1510	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511	/* not pruning dups so s_n cannot have changed */
1512	VM_BUG_ON(s_n != old_stable_node);
1513	return tree_page;
1514}
1515
1516/*
1517 * stable_tree_search - search for page inside the stable tree
1518 *
1519 * This function checks if there is a page inside the stable tree
1520 * with identical content to the page that we are scanning right now.
1521 *
1522 * This function returns the stable tree node of identical content if found,
1523 * NULL otherwise.
1524 */
1525static struct page *stable_tree_search(struct page *page)
1526{
1527	int nid;
1528	struct rb_root *root;
1529	struct rb_node **new;
1530	struct rb_node *parent;
1531	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1532	struct stable_node *page_node;
1533
1534	page_node = page_stable_node(page);
1535	if (page_node && page_node->head != &migrate_nodes) {
1536		/* ksm page forked */
1537		get_page(page);
1538		return page;
1539	}
1540
1541	nid = get_kpfn_nid(page_to_pfn(page));
1542	root = root_stable_tree + nid;
1543again:
1544	new = &root->rb_node;
1545	parent = NULL;
1546
1547	while (*new) {
1548		struct page *tree_page;
1549		int ret;
1550
1551		cond_resched();
1552		stable_node = rb_entry(*new, struct stable_node, node);
1553		stable_node_any = NULL;
1554		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1555		/*
1556		 * NOTE: stable_node may have been freed by
1557		 * chain_prune() if the returned stable_node_dup is
1558		 * not NULL. stable_node_dup may have been inserted in
1559		 * the rbtree instead as a regular stable_node (in
1560		 * order to collapse the stable_node chain if a single
1561		 * stable_node dup was found in it). In such case the
1562		 * stable_node is overwritten by the calleee to point
1563		 * to the stable_node_dup that was collapsed in the
1564		 * stable rbtree and stable_node will be equal to
1565		 * stable_node_dup like if the chain never existed.
1566		 */
1567		if (!stable_node_dup) {
1568			/*
1569			 * Either all stable_node dups were full in
1570			 * this stable_node chain, or this chain was
1571			 * empty and should be rb_erased.
1572			 */
1573			stable_node_any = stable_node_dup_any(stable_node,
1574							      root);
1575			if (!stable_node_any) {
1576				/* rb_erase just run */
1577				goto again;
1578			}
1579			/*
1580			 * Take any of the stable_node dups page of
1581			 * this stable_node chain to let the tree walk
1582			 * continue. All KSM pages belonging to the
1583			 * stable_node dups in a stable_node chain
1584			 * have the same content and they're
1585			 * wrprotected at all times. Any will work
1586			 * fine to continue the walk.
1587			 */
1588			tree_page = get_ksm_page(stable_node_any, false);
 
1589		}
1590		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1591		if (!tree_page) {
1592			/*
1593			 * If we walked over a stale stable_node,
1594			 * get_ksm_page() will call rb_erase() and it
1595			 * may rebalance the tree from under us. So
1596			 * restart the search from scratch. Returning
1597			 * NULL would be safe too, but we'd generate
1598			 * false negative insertions just because some
1599			 * stable_node was stale.
1600			 */
1601			goto again;
1602		}
1603
1604		ret = memcmp_pages(page, tree_page);
1605		put_page(tree_page);
1606
1607		parent = *new;
1608		if (ret < 0)
1609			new = &parent->rb_left;
1610		else if (ret > 0)
1611			new = &parent->rb_right;
1612		else {
1613			if (page_node) {
1614				VM_BUG_ON(page_node->head != &migrate_nodes);
1615				/*
1616				 * Test if the migrated page should be merged
1617				 * into a stable node dup. If the mapcount is
1618				 * 1 we can migrate it with another KSM page
1619				 * without adding it to the chain.
1620				 */
1621				if (page_mapcount(page) > 1)
1622					goto chain_append;
1623			}
1624
1625			if (!stable_node_dup) {
1626				/*
1627				 * If the stable_node is a chain and
1628				 * we got a payload match in memcmp
1629				 * but we cannot merge the scanned
1630				 * page in any of the existing
1631				 * stable_node dups because they're
1632				 * all full, we need to wait the
1633				 * scanned page to find itself a match
1634				 * in the unstable tree to create a
1635				 * brand new KSM page to add later to
1636				 * the dups of this stable_node.
1637				 */
1638				return NULL;
1639			}
1640
1641			/*
1642			 * Lock and unlock the stable_node's page (which
1643			 * might already have been migrated) so that page
1644			 * migration is sure to notice its raised count.
1645			 * It would be more elegant to return stable_node
1646			 * than kpage, but that involves more changes.
1647			 */
1648			tree_page = get_ksm_page(stable_node_dup, true);
 
 
 
 
 
1649			if (unlikely(!tree_page))
1650				/*
1651				 * The tree may have been rebalanced,
1652				 * so re-evaluate parent and new.
1653				 */
1654				goto again;
1655			unlock_page(tree_page);
1656
1657			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658			    NUMA(stable_node_dup->nid)) {
1659				put_page(tree_page);
1660				goto replace;
1661			}
1662			return tree_page;
1663		}
1664	}
1665
1666	if (!page_node)
1667		return NULL;
1668
1669	list_del(&page_node->list);
1670	DO_NUMA(page_node->nid = nid);
1671	rb_link_node(&page_node->node, parent, new);
1672	rb_insert_color(&page_node->node, root);
1673out:
1674	if (is_page_sharing_candidate(page_node)) {
1675		get_page(page);
1676		return page;
1677	} else
1678		return NULL;
1679
1680replace:
1681	/*
1682	 * If stable_node was a chain and chain_prune collapsed it,
1683	 * stable_node has been updated to be the new regular
1684	 * stable_node. A collapse of the chain is indistinguishable
1685	 * from the case there was no chain in the stable
1686	 * rbtree. Otherwise stable_node is the chain and
1687	 * stable_node_dup is the dup to replace.
1688	 */
1689	if (stable_node_dup == stable_node) {
1690		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1692		/* there is no chain */
1693		if (page_node) {
1694			VM_BUG_ON(page_node->head != &migrate_nodes);
1695			list_del(&page_node->list);
1696			DO_NUMA(page_node->nid = nid);
1697			rb_replace_node(&stable_node_dup->node,
1698					&page_node->node,
1699					root);
1700			if (is_page_sharing_candidate(page_node))
1701				get_page(page);
1702			else
1703				page = NULL;
1704		} else {
1705			rb_erase(&stable_node_dup->node, root);
1706			page = NULL;
1707		}
1708	} else {
1709		VM_BUG_ON(!is_stable_node_chain(stable_node));
1710		__stable_node_dup_del(stable_node_dup);
1711		if (page_node) {
1712			VM_BUG_ON(page_node->head != &migrate_nodes);
1713			list_del(&page_node->list);
1714			DO_NUMA(page_node->nid = nid);
1715			stable_node_chain_add_dup(page_node, stable_node);
1716			if (is_page_sharing_candidate(page_node))
1717				get_page(page);
1718			else
1719				page = NULL;
1720		} else {
1721			page = NULL;
1722		}
1723	}
1724	stable_node_dup->head = &migrate_nodes;
1725	list_add(&stable_node_dup->list, stable_node_dup->head);
1726	return page;
1727
1728chain_append:
1729	/* stable_node_dup could be null if it reached the limit */
1730	if (!stable_node_dup)
1731		stable_node_dup = stable_node_any;
1732	/*
1733	 * If stable_node was a chain and chain_prune collapsed it,
1734	 * stable_node has been updated to be the new regular
1735	 * stable_node. A collapse of the chain is indistinguishable
1736	 * from the case there was no chain in the stable
1737	 * rbtree. Otherwise stable_node is the chain and
1738	 * stable_node_dup is the dup to replace.
1739	 */
1740	if (stable_node_dup == stable_node) {
1741		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743		/* chain is missing so create it */
1744		stable_node = alloc_stable_node_chain(stable_node_dup,
1745						      root);
1746		if (!stable_node)
1747			return NULL;
1748	}
1749	/*
1750	 * Add this stable_node dup that was
1751	 * migrated to the stable_node chain
1752	 * of the current nid for this page
1753	 * content.
1754	 */
1755	VM_BUG_ON(!is_stable_node_chain(stable_node));
1756	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1757	VM_BUG_ON(page_node->head != &migrate_nodes);
1758	list_del(&page_node->list);
1759	DO_NUMA(page_node->nid = nid);
1760	stable_node_chain_add_dup(page_node, stable_node);
1761	goto out;
1762}
1763
1764/*
1765 * stable_tree_insert - insert stable tree node pointing to new ksm page
1766 * into the stable tree.
1767 *
1768 * This function returns the stable tree node just allocated on success,
1769 * NULL otherwise.
1770 */
1771static struct stable_node *stable_tree_insert(struct page *kpage)
1772{
1773	int nid;
1774	unsigned long kpfn;
1775	struct rb_root *root;
1776	struct rb_node **new;
1777	struct rb_node *parent;
1778	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779	bool need_chain = false;
1780
1781	kpfn = page_to_pfn(kpage);
1782	nid = get_kpfn_nid(kpfn);
1783	root = root_stable_tree + nid;
1784again:
1785	parent = NULL;
1786	new = &root->rb_node;
1787
1788	while (*new) {
1789		struct page *tree_page;
1790		int ret;
1791
1792		cond_resched();
1793		stable_node = rb_entry(*new, struct stable_node, node);
1794		stable_node_any = NULL;
1795		tree_page = chain(&stable_node_dup, stable_node, root);
1796		if (!stable_node_dup) {
1797			/*
1798			 * Either all stable_node dups were full in
1799			 * this stable_node chain, or this chain was
1800			 * empty and should be rb_erased.
1801			 */
1802			stable_node_any = stable_node_dup_any(stable_node,
1803							      root);
1804			if (!stable_node_any) {
1805				/* rb_erase just run */
1806				goto again;
1807			}
1808			/*
1809			 * Take any of the stable_node dups page of
1810			 * this stable_node chain to let the tree walk
1811			 * continue. All KSM pages belonging to the
1812			 * stable_node dups in a stable_node chain
1813			 * have the same content and they're
1814			 * wrprotected at all times. Any will work
1815			 * fine to continue the walk.
1816			 */
1817			tree_page = get_ksm_page(stable_node_any, false);
 
1818		}
1819		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1820		if (!tree_page) {
1821			/*
1822			 * If we walked over a stale stable_node,
1823			 * get_ksm_page() will call rb_erase() and it
1824			 * may rebalance the tree from under us. So
1825			 * restart the search from scratch. Returning
1826			 * NULL would be safe too, but we'd generate
1827			 * false negative insertions just because some
1828			 * stable_node was stale.
1829			 */
1830			goto again;
1831		}
1832
1833		ret = memcmp_pages(kpage, tree_page);
1834		put_page(tree_page);
1835
1836		parent = *new;
1837		if (ret < 0)
1838			new = &parent->rb_left;
1839		else if (ret > 0)
1840			new = &parent->rb_right;
1841		else {
1842			need_chain = true;
1843			break;
1844		}
1845	}
1846
1847	stable_node_dup = alloc_stable_node();
1848	if (!stable_node_dup)
1849		return NULL;
1850
1851	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852	stable_node_dup->kpfn = kpfn;
1853	set_page_stable_node(kpage, stable_node_dup);
1854	stable_node_dup->rmap_hlist_len = 0;
1855	DO_NUMA(stable_node_dup->nid = nid);
1856	if (!need_chain) {
1857		rb_link_node(&stable_node_dup->node, parent, new);
1858		rb_insert_color(&stable_node_dup->node, root);
1859	} else {
1860		if (!is_stable_node_chain(stable_node)) {
1861			struct stable_node *orig = stable_node;
1862			/* chain is missing so create it */
1863			stable_node = alloc_stable_node_chain(orig, root);
1864			if (!stable_node) {
1865				free_stable_node(stable_node_dup);
1866				return NULL;
1867			}
1868		}
1869		stable_node_chain_add_dup(stable_node_dup, stable_node);
1870	}
1871
1872	return stable_node_dup;
1873}
1874
1875/*
1876 * unstable_tree_search_insert - search for identical page,
1877 * else insert rmap_item into the unstable tree.
1878 *
1879 * This function searches for a page in the unstable tree identical to the
1880 * page currently being scanned; and if no identical page is found in the
1881 * tree, we insert rmap_item as a new object into the unstable tree.
1882 *
1883 * This function returns pointer to rmap_item found to be identical
1884 * to the currently scanned page, NULL otherwise.
1885 *
1886 * This function does both searching and inserting, because they share
1887 * the same walking algorithm in an rbtree.
1888 */
1889static
1890struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891					      struct page *page,
1892					      struct page **tree_pagep)
1893{
1894	struct rb_node **new;
1895	struct rb_root *root;
1896	struct rb_node *parent = NULL;
1897	int nid;
1898
1899	nid = get_kpfn_nid(page_to_pfn(page));
1900	root = root_unstable_tree + nid;
1901	new = &root->rb_node;
1902
1903	while (*new) {
1904		struct rmap_item *tree_rmap_item;
1905		struct page *tree_page;
1906		int ret;
1907
1908		cond_resched();
1909		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1910		tree_page = get_mergeable_page(tree_rmap_item);
1911		if (!tree_page)
1912			return NULL;
1913
1914		/*
1915		 * Don't substitute a ksm page for a forked page.
1916		 */
1917		if (page == tree_page) {
1918			put_page(tree_page);
1919			return NULL;
1920		}
1921
1922		ret = memcmp_pages(page, tree_page);
1923
1924		parent = *new;
1925		if (ret < 0) {
1926			put_page(tree_page);
1927			new = &parent->rb_left;
1928		} else if (ret > 0) {
1929			put_page(tree_page);
1930			new = &parent->rb_right;
1931		} else if (!ksm_merge_across_nodes &&
1932			   page_to_nid(tree_page) != nid) {
1933			/*
1934			 * If tree_page has been migrated to another NUMA node,
1935			 * it will be flushed out and put in the right unstable
1936			 * tree next time: only merge with it when across_nodes.
1937			 */
1938			put_page(tree_page);
1939			return NULL;
1940		} else {
1941			*tree_pagep = tree_page;
1942			return tree_rmap_item;
1943		}
1944	}
1945
1946	rmap_item->address |= UNSTABLE_FLAG;
1947	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1948	DO_NUMA(rmap_item->nid = nid);
1949	rb_link_node(&rmap_item->node, parent, new);
1950	rb_insert_color(&rmap_item->node, root);
1951
1952	ksm_pages_unshared++;
1953	return NULL;
1954}
1955
1956/*
1957 * stable_tree_append - add another rmap_item to the linked list of
1958 * rmap_items hanging off a given node of the stable tree, all sharing
1959 * the same ksm page.
1960 */
1961static void stable_tree_append(struct rmap_item *rmap_item,
1962			       struct stable_node *stable_node,
1963			       bool max_page_sharing_bypass)
1964{
1965	/*
1966	 * rmap won't find this mapping if we don't insert the
1967	 * rmap_item in the right stable_node
1968	 * duplicate. page_migration could break later if rmap breaks,
1969	 * so we can as well crash here. We really need to check for
1970	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971	 * for other negative values as an undeflow if detected here
1972	 * for the first time (and not when decreasing rmap_hlist_len)
1973	 * would be sign of memory corruption in the stable_node.
1974	 */
1975	BUG_ON(stable_node->rmap_hlist_len < 0);
1976
1977	stable_node->rmap_hlist_len++;
1978	if (!max_page_sharing_bypass)
1979		/* possibly non fatal but unexpected overflow, only warn */
1980		WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981			     ksm_max_page_sharing);
1982
1983	rmap_item->head = stable_node;
1984	rmap_item->address |= STABLE_FLAG;
1985	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1986
1987	if (rmap_item->hlist.next)
1988		ksm_pages_sharing++;
1989	else
1990		ksm_pages_shared++;
1991}
1992
1993/*
1994 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995 * if not, compare checksum to previous and if it's the same, see if page can
1996 * be inserted into the unstable tree, or merged with a page already there and
1997 * both transferred to the stable tree.
1998 *
1999 * @page: the page that we are searching identical page to.
2000 * @rmap_item: the reverse mapping into the virtual address of this page
2001 */
2002static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2003{
2004	struct mm_struct *mm = rmap_item->mm;
2005	struct rmap_item *tree_rmap_item;
2006	struct page *tree_page = NULL;
2007	struct stable_node *stable_node;
2008	struct page *kpage;
2009	unsigned int checksum;
2010	int err;
2011	bool max_page_sharing_bypass = false;
2012
2013	stable_node = page_stable_node(page);
2014	if (stable_node) {
2015		if (stable_node->head != &migrate_nodes &&
2016		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017		    NUMA(stable_node->nid)) {
2018			stable_node_dup_del(stable_node);
2019			stable_node->head = &migrate_nodes;
2020			list_add(&stable_node->list, stable_node->head);
2021		}
2022		if (stable_node->head != &migrate_nodes &&
2023		    rmap_item->head == stable_node)
2024			return;
2025		/*
2026		 * If it's a KSM fork, allow it to go over the sharing limit
2027		 * without warnings.
2028		 */
2029		if (!is_page_sharing_candidate(stable_node))
2030			max_page_sharing_bypass = true;
2031	}
2032
2033	/* We first start with searching the page inside the stable tree */
2034	kpage = stable_tree_search(page);
2035	if (kpage == page && rmap_item->head == stable_node) {
2036		put_page(kpage);
2037		return;
2038	}
2039
2040	remove_rmap_item_from_tree(rmap_item);
2041
2042	if (kpage) {
 
 
 
2043		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2044		if (!err) {
2045			/*
2046			 * The page was successfully merged:
2047			 * add its rmap_item to the stable tree.
2048			 */
2049			lock_page(kpage);
2050			stable_tree_append(rmap_item, page_stable_node(kpage),
2051					   max_page_sharing_bypass);
2052			unlock_page(kpage);
2053		}
2054		put_page(kpage);
2055		return;
2056	}
2057
2058	/*
2059	 * If the hash value of the page has changed from the last time
2060	 * we calculated it, this page is changing frequently: therefore we
2061	 * don't want to insert it in the unstable tree, and we don't want
2062	 * to waste our time searching for something identical to it there.
2063	 */
2064	checksum = calc_checksum(page);
2065	if (rmap_item->oldchecksum != checksum) {
2066		rmap_item->oldchecksum = checksum;
2067		return;
2068	}
2069
2070	/*
2071	 * Same checksum as an empty page. We attempt to merge it with the
2072	 * appropriate zero page if the user enabled this via sysfs.
2073	 */
2074	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075		struct vm_area_struct *vma;
2076
2077		down_read(&mm->mmap_sem);
2078		vma = find_mergeable_vma(mm, rmap_item->address);
2079		err = try_to_merge_one_page(vma, page,
2080					    ZERO_PAGE(rmap_item->address));
2081		up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
2082		/*
2083		 * In case of failure, the page was not really empty, so we
2084		 * need to continue. Otherwise we're done.
2085		 */
2086		if (!err)
2087			return;
2088	}
2089	tree_rmap_item =
2090		unstable_tree_search_insert(rmap_item, page, &tree_page);
2091	if (tree_rmap_item) {
2092		bool split;
2093
2094		kpage = try_to_merge_two_pages(rmap_item, page,
2095						tree_rmap_item, tree_page);
2096		/*
2097		 * If both pages we tried to merge belong to the same compound
2098		 * page, then we actually ended up increasing the reference
2099		 * count of the same compound page twice, and split_huge_page
2100		 * failed.
2101		 * Here we set a flag if that happened, and we use it later to
2102		 * try split_huge_page again. Since we call put_page right
2103		 * afterwards, the reference count will be correct and
2104		 * split_huge_page should succeed.
2105		 */
2106		split = PageTransCompound(page)
2107			&& compound_head(page) == compound_head(tree_page);
2108		put_page(tree_page);
2109		if (kpage) {
2110			/*
2111			 * The pages were successfully merged: insert new
2112			 * node in the stable tree and add both rmap_items.
2113			 */
2114			lock_page(kpage);
2115			stable_node = stable_tree_insert(kpage);
2116			if (stable_node) {
2117				stable_tree_append(tree_rmap_item, stable_node,
2118						   false);
2119				stable_tree_append(rmap_item, stable_node,
2120						   false);
2121			}
2122			unlock_page(kpage);
2123
2124			/*
2125			 * If we fail to insert the page into the stable tree,
2126			 * we will have 2 virtual addresses that are pointing
2127			 * to a ksm page left outside the stable tree,
2128			 * in which case we need to break_cow on both.
2129			 */
2130			if (!stable_node) {
2131				break_cow(tree_rmap_item);
2132				break_cow(rmap_item);
2133			}
2134		} else if (split) {
2135			/*
2136			 * We are here if we tried to merge two pages and
2137			 * failed because they both belonged to the same
2138			 * compound page. We will split the page now, but no
2139			 * merging will take place.
2140			 * We do not want to add the cost of a full lock; if
2141			 * the page is locked, it is better to skip it and
2142			 * perhaps try again later.
2143			 */
2144			if (!trylock_page(page))
2145				return;
2146			split_huge_page(page);
2147			unlock_page(page);
2148		}
2149	}
2150}
2151
2152static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2153					    struct rmap_item **rmap_list,
2154					    unsigned long addr)
2155{
2156	struct rmap_item *rmap_item;
2157
2158	while (*rmap_list) {
2159		rmap_item = *rmap_list;
2160		if ((rmap_item->address & PAGE_MASK) == addr)
2161			return rmap_item;
2162		if (rmap_item->address > addr)
2163			break;
2164		*rmap_list = rmap_item->rmap_list;
2165		remove_rmap_item_from_tree(rmap_item);
2166		free_rmap_item(rmap_item);
2167	}
2168
2169	rmap_item = alloc_rmap_item();
2170	if (rmap_item) {
2171		/* It has already been zeroed */
2172		rmap_item->mm = mm_slot->mm;
2173		rmap_item->address = addr;
2174		rmap_item->rmap_list = *rmap_list;
2175		*rmap_list = rmap_item;
2176	}
2177	return rmap_item;
2178}
2179
2180static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2181{
2182	struct mm_struct *mm;
2183	struct mm_slot *slot;
2184	struct vm_area_struct *vma;
2185	struct rmap_item *rmap_item;
2186	int nid;
2187
2188	if (list_empty(&ksm_mm_head.mm_list))
2189		return NULL;
2190
2191	slot = ksm_scan.mm_slot;
2192	if (slot == &ksm_mm_head) {
2193		/*
2194		 * A number of pages can hang around indefinitely on per-cpu
2195		 * pagevecs, raised page count preventing write_protect_page
2196		 * from merging them.  Though it doesn't really matter much,
2197		 * it is puzzling to see some stuck in pages_volatile until
2198		 * other activity jostles them out, and they also prevented
2199		 * LTP's KSM test from succeeding deterministically; so drain
2200		 * them here (here rather than on entry to ksm_do_scan(),
2201		 * so we don't IPI too often when pages_to_scan is set low).
2202		 */
2203		lru_add_drain_all();
2204
2205		/*
2206		 * Whereas stale stable_nodes on the stable_tree itself
2207		 * get pruned in the regular course of stable_tree_search(),
2208		 * those moved out to the migrate_nodes list can accumulate:
2209		 * so prune them once before each full scan.
2210		 */
2211		if (!ksm_merge_across_nodes) {
2212			struct stable_node *stable_node, *next;
2213			struct page *page;
2214
2215			list_for_each_entry_safe(stable_node, next,
2216						 &migrate_nodes, list) {
2217				page = get_ksm_page(stable_node, false);
 
2218				if (page)
2219					put_page(page);
2220				cond_resched();
2221			}
2222		}
2223
2224		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2225			root_unstable_tree[nid] = RB_ROOT;
2226
2227		spin_lock(&ksm_mmlist_lock);
2228		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2229		ksm_scan.mm_slot = slot;
2230		spin_unlock(&ksm_mmlist_lock);
2231		/*
2232		 * Although we tested list_empty() above, a racing __ksm_exit
2233		 * of the last mm on the list may have removed it since then.
2234		 */
2235		if (slot == &ksm_mm_head)
2236			return NULL;
2237next_mm:
2238		ksm_scan.address = 0;
2239		ksm_scan.rmap_list = &slot->rmap_list;
2240	}
2241
2242	mm = slot->mm;
2243	down_read(&mm->mmap_sem);
2244	if (ksm_test_exit(mm))
2245		vma = NULL;
2246	else
2247		vma = find_vma(mm, ksm_scan.address);
2248
2249	for (; vma; vma = vma->vm_next) {
2250		if (!(vma->vm_flags & VM_MERGEABLE))
2251			continue;
2252		if (ksm_scan.address < vma->vm_start)
2253			ksm_scan.address = vma->vm_start;
2254		if (!vma->anon_vma)
2255			ksm_scan.address = vma->vm_end;
2256
2257		while (ksm_scan.address < vma->vm_end) {
2258			if (ksm_test_exit(mm))
2259				break;
2260			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2261			if (IS_ERR_OR_NULL(*page)) {
2262				ksm_scan.address += PAGE_SIZE;
2263				cond_resched();
2264				continue;
2265			}
2266			if (PageAnon(*page)) {
2267				flush_anon_page(vma, *page, ksm_scan.address);
2268				flush_dcache_page(*page);
2269				rmap_item = get_next_rmap_item(slot,
2270					ksm_scan.rmap_list, ksm_scan.address);
2271				if (rmap_item) {
2272					ksm_scan.rmap_list =
2273							&rmap_item->rmap_list;
2274					ksm_scan.address += PAGE_SIZE;
2275				} else
2276					put_page(*page);
2277				up_read(&mm->mmap_sem);
2278				return rmap_item;
2279			}
2280			put_page(*page);
2281			ksm_scan.address += PAGE_SIZE;
2282			cond_resched();
2283		}
2284	}
2285
2286	if (ksm_test_exit(mm)) {
2287		ksm_scan.address = 0;
2288		ksm_scan.rmap_list = &slot->rmap_list;
2289	}
2290	/*
2291	 * Nuke all the rmap_items that are above this current rmap:
2292	 * because there were no VM_MERGEABLE vmas with such addresses.
2293	 */
2294	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2295
2296	spin_lock(&ksm_mmlist_lock);
2297	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2298						struct mm_slot, mm_list);
2299	if (ksm_scan.address == 0) {
2300		/*
2301		 * We've completed a full scan of all vmas, holding mmap_sem
2302		 * throughout, and found no VM_MERGEABLE: so do the same as
2303		 * __ksm_exit does to remove this mm from all our lists now.
2304		 * This applies either when cleaning up after __ksm_exit
2305		 * (but beware: we can reach here even before __ksm_exit),
2306		 * or when all VM_MERGEABLE areas have been unmapped (and
2307		 * mmap_sem then protects against race with MADV_MERGEABLE).
2308		 */
2309		hash_del(&slot->link);
2310		list_del(&slot->mm_list);
2311		spin_unlock(&ksm_mmlist_lock);
2312
2313		free_mm_slot(slot);
2314		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2315		up_read(&mm->mmap_sem);
2316		mmdrop(mm);
2317	} else {
2318		up_read(&mm->mmap_sem);
2319		/*
2320		 * up_read(&mm->mmap_sem) first because after
2321		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2322		 * already have been freed under us by __ksm_exit()
2323		 * because the "mm_slot" is still hashed and
2324		 * ksm_scan.mm_slot doesn't point to it anymore.
2325		 */
2326		spin_unlock(&ksm_mmlist_lock);
2327	}
2328
2329	/* Repeat until we've completed scanning the whole list */
2330	slot = ksm_scan.mm_slot;
2331	if (slot != &ksm_mm_head)
2332		goto next_mm;
2333
2334	ksm_scan.seqnr++;
2335	return NULL;
2336}
2337
2338/**
2339 * ksm_do_scan  - the ksm scanner main worker function.
2340 * @scan_npages:  number of pages we want to scan before we return.
2341 */
2342static void ksm_do_scan(unsigned int scan_npages)
2343{
2344	struct rmap_item *rmap_item;
2345	struct page *uninitialized_var(page);
2346
2347	while (scan_npages-- && likely(!freezing(current))) {
2348		cond_resched();
2349		rmap_item = scan_get_next_rmap_item(&page);
2350		if (!rmap_item)
2351			return;
2352		cmp_and_merge_page(page, rmap_item);
2353		put_page(page);
2354	}
2355}
2356
2357static int ksmd_should_run(void)
2358{
2359	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2360}
2361
2362static int ksm_scan_thread(void *nothing)
2363{
 
 
2364	set_freezable();
2365	set_user_nice(current, 5);
2366
2367	while (!kthread_should_stop()) {
2368		mutex_lock(&ksm_thread_mutex);
2369		wait_while_offlining();
2370		if (ksmd_should_run())
2371			ksm_do_scan(ksm_thread_pages_to_scan);
2372		mutex_unlock(&ksm_thread_mutex);
2373
2374		try_to_freeze();
2375
2376		if (ksmd_should_run()) {
2377			schedule_timeout_interruptible(
2378				msecs_to_jiffies(ksm_thread_sleep_millisecs));
 
 
2379		} else {
2380			wait_event_freezable(ksm_thread_wait,
2381				ksmd_should_run() || kthread_should_stop());
2382		}
2383	}
2384	return 0;
2385}
2386
2387int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2388		unsigned long end, int advice, unsigned long *vm_flags)
2389{
2390	struct mm_struct *mm = vma->vm_mm;
2391	int err;
2392
2393	switch (advice) {
2394	case MADV_MERGEABLE:
2395		/*
2396		 * Be somewhat over-protective for now!
2397		 */
2398		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2399				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2400				 VM_HUGETLB | VM_MIXEDMAP))
2401			return 0;		/* just ignore the advice */
2402
 
 
 
2403#ifdef VM_SAO
2404		if (*vm_flags & VM_SAO)
2405			return 0;
2406#endif
2407#ifdef VM_SPARC_ADI
2408		if (*vm_flags & VM_SPARC_ADI)
2409			return 0;
2410#endif
2411
2412		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2413			err = __ksm_enter(mm);
2414			if (err)
2415				return err;
2416		}
2417
2418		*vm_flags |= VM_MERGEABLE;
2419		break;
2420
2421	case MADV_UNMERGEABLE:
2422		if (!(*vm_flags & VM_MERGEABLE))
2423			return 0;		/* just ignore the advice */
2424
2425		if (vma->anon_vma) {
2426			err = unmerge_ksm_pages(vma, start, end);
2427			if (err)
2428				return err;
2429		}
2430
2431		*vm_flags &= ~VM_MERGEABLE;
2432		break;
2433	}
2434
2435	return 0;
2436}
 
2437
2438int __ksm_enter(struct mm_struct *mm)
2439{
2440	struct mm_slot *mm_slot;
2441	int needs_wakeup;
2442
2443	mm_slot = alloc_mm_slot();
2444	if (!mm_slot)
2445		return -ENOMEM;
2446
2447	/* Check ksm_run too?  Would need tighter locking */
2448	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2449
2450	spin_lock(&ksm_mmlist_lock);
2451	insert_to_mm_slots_hash(mm, mm_slot);
2452	/*
2453	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2454	 * insert just behind the scanning cursor, to let the area settle
2455	 * down a little; when fork is followed by immediate exec, we don't
2456	 * want ksmd to waste time setting up and tearing down an rmap_list.
2457	 *
2458	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2459	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2460	 * missed: then we might as well insert at the end of the list.
2461	 */
2462	if (ksm_run & KSM_RUN_UNMERGE)
2463		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2464	else
2465		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2466	spin_unlock(&ksm_mmlist_lock);
2467
2468	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2469	mmgrab(mm);
2470
2471	if (needs_wakeup)
2472		wake_up_interruptible(&ksm_thread_wait);
2473
2474	return 0;
2475}
2476
2477void __ksm_exit(struct mm_struct *mm)
2478{
2479	struct mm_slot *mm_slot;
2480	int easy_to_free = 0;
2481
2482	/*
2483	 * This process is exiting: if it's straightforward (as is the
2484	 * case when ksmd was never running), free mm_slot immediately.
2485	 * But if it's at the cursor or has rmap_items linked to it, use
2486	 * mmap_sem to synchronize with any break_cows before pagetables
2487	 * are freed, and leave the mm_slot on the list for ksmd to free.
2488	 * Beware: ksm may already have noticed it exiting and freed the slot.
2489	 */
2490
2491	spin_lock(&ksm_mmlist_lock);
2492	mm_slot = get_mm_slot(mm);
2493	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2494		if (!mm_slot->rmap_list) {
2495			hash_del(&mm_slot->link);
2496			list_del(&mm_slot->mm_list);
2497			easy_to_free = 1;
2498		} else {
2499			list_move(&mm_slot->mm_list,
2500				  &ksm_scan.mm_slot->mm_list);
2501		}
2502	}
2503	spin_unlock(&ksm_mmlist_lock);
2504
2505	if (easy_to_free) {
2506		free_mm_slot(mm_slot);
2507		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2508		mmdrop(mm);
2509	} else if (mm_slot) {
2510		down_write(&mm->mmap_sem);
2511		up_write(&mm->mmap_sem);
2512	}
2513}
2514
2515struct page *ksm_might_need_to_copy(struct page *page,
2516			struct vm_area_struct *vma, unsigned long address)
2517{
2518	struct anon_vma *anon_vma = page_anon_vma(page);
2519	struct page *new_page;
2520
2521	if (PageKsm(page)) {
2522		if (page_stable_node(page) &&
2523		    !(ksm_run & KSM_RUN_UNMERGE))
2524			return page;	/* no need to copy it */
2525	} else if (!anon_vma) {
2526		return page;		/* no need to copy it */
2527	} else if (anon_vma->root == vma->anon_vma->root &&
2528		 page->index == linear_page_index(vma, address)) {
2529		return page;		/* still no need to copy it */
2530	}
2531	if (!PageUptodate(page))
2532		return page;		/* let do_swap_page report the error */
2533
2534	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
2535	if (new_page) {
2536		copy_user_highpage(new_page, page, address, vma);
2537
2538		SetPageDirty(new_page);
2539		__SetPageUptodate(new_page);
2540		__SetPageLocked(new_page);
2541	}
2542
2543	return new_page;
2544}
2545
2546void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2547{
2548	struct stable_node *stable_node;
2549	struct rmap_item *rmap_item;
2550	int search_new_forks = 0;
2551
2552	VM_BUG_ON_PAGE(!PageKsm(page), page);
2553
2554	/*
2555	 * Rely on the page lock to protect against concurrent modifications
2556	 * to that page's node of the stable tree.
2557	 */
2558	VM_BUG_ON_PAGE(!PageLocked(page), page);
2559
2560	stable_node = page_stable_node(page);
2561	if (!stable_node)
2562		return;
2563again:
2564	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2565		struct anon_vma *anon_vma = rmap_item->anon_vma;
2566		struct anon_vma_chain *vmac;
2567		struct vm_area_struct *vma;
2568
2569		cond_resched();
2570		anon_vma_lock_read(anon_vma);
2571		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2572					       0, ULONG_MAX) {
 
 
2573			cond_resched();
2574			vma = vmac->vma;
2575			if (rmap_item->address < vma->vm_start ||
2576			    rmap_item->address >= vma->vm_end)
 
 
 
2577				continue;
2578			/*
2579			 * Initially we examine only the vma which covers this
2580			 * rmap_item; but later, if there is still work to do,
2581			 * we examine covering vmas in other mms: in case they
2582			 * were forked from the original since ksmd passed.
2583			 */
2584			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2585				continue;
2586
2587			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2588				continue;
2589
2590			if (!rwc->rmap_one(page, vma,
2591					rmap_item->address, rwc->arg)) {
2592				anon_vma_unlock_read(anon_vma);
2593				return;
2594			}
2595			if (rwc->done && rwc->done(page)) {
2596				anon_vma_unlock_read(anon_vma);
2597				return;
2598			}
2599		}
2600		anon_vma_unlock_read(anon_vma);
2601	}
2602	if (!search_new_forks++)
2603		goto again;
2604}
2605
2606#ifdef CONFIG_MIGRATION
2607void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2608{
2609	struct stable_node *stable_node;
2610
2611	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2612	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2613	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2614
2615	stable_node = page_stable_node(newpage);
2616	if (stable_node) {
2617		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2618		stable_node->kpfn = page_to_pfn(newpage);
2619		/*
2620		 * newpage->mapping was set in advance; now we need smp_wmb()
2621		 * to make sure that the new stable_node->kpfn is visible
2622		 * to get_ksm_page() before it can see that oldpage->mapping
2623		 * has gone stale (or that PageSwapCache has been cleared).
2624		 */
2625		smp_wmb();
2626		set_page_stable_node(oldpage, NULL);
2627	}
2628}
2629#endif /* CONFIG_MIGRATION */
2630
2631#ifdef CONFIG_MEMORY_HOTREMOVE
2632static void wait_while_offlining(void)
2633{
2634	while (ksm_run & KSM_RUN_OFFLINE) {
2635		mutex_unlock(&ksm_thread_mutex);
2636		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2637			    TASK_UNINTERRUPTIBLE);
2638		mutex_lock(&ksm_thread_mutex);
2639	}
2640}
2641
2642static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2643					 unsigned long start_pfn,
2644					 unsigned long end_pfn)
2645{
2646	if (stable_node->kpfn >= start_pfn &&
2647	    stable_node->kpfn < end_pfn) {
2648		/*
2649		 * Don't get_ksm_page, page has already gone:
2650		 * which is why we keep kpfn instead of page*
2651		 */
2652		remove_node_from_stable_tree(stable_node);
2653		return true;
2654	}
2655	return false;
2656}
2657
2658static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2659					   unsigned long start_pfn,
2660					   unsigned long end_pfn,
2661					   struct rb_root *root)
2662{
2663	struct stable_node *dup;
2664	struct hlist_node *hlist_safe;
2665
2666	if (!is_stable_node_chain(stable_node)) {
2667		VM_BUG_ON(is_stable_node_dup(stable_node));
2668		return stable_node_dup_remove_range(stable_node, start_pfn,
2669						    end_pfn);
2670	}
2671
2672	hlist_for_each_entry_safe(dup, hlist_safe,
2673				  &stable_node->hlist, hlist_dup) {
2674		VM_BUG_ON(!is_stable_node_dup(dup));
2675		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2676	}
2677	if (hlist_empty(&stable_node->hlist)) {
2678		free_stable_node_chain(stable_node, root);
2679		return true; /* notify caller that tree was rebalanced */
2680	} else
2681		return false;
2682}
2683
2684static void ksm_check_stable_tree(unsigned long start_pfn,
2685				  unsigned long end_pfn)
2686{
2687	struct stable_node *stable_node, *next;
2688	struct rb_node *node;
2689	int nid;
2690
2691	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2692		node = rb_first(root_stable_tree + nid);
2693		while (node) {
2694			stable_node = rb_entry(node, struct stable_node, node);
2695			if (stable_node_chain_remove_range(stable_node,
2696							   start_pfn, end_pfn,
2697							   root_stable_tree +
2698							   nid))
2699				node = rb_first(root_stable_tree + nid);
2700			else
2701				node = rb_next(node);
2702			cond_resched();
2703		}
2704	}
2705	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2706		if (stable_node->kpfn >= start_pfn &&
2707		    stable_node->kpfn < end_pfn)
2708			remove_node_from_stable_tree(stable_node);
2709		cond_resched();
2710	}
2711}
2712
2713static int ksm_memory_callback(struct notifier_block *self,
2714			       unsigned long action, void *arg)
2715{
2716	struct memory_notify *mn = arg;
2717
2718	switch (action) {
2719	case MEM_GOING_OFFLINE:
2720		/*
2721		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2722		 * and remove_all_stable_nodes() while memory is going offline:
2723		 * it is unsafe for them to touch the stable tree at this time.
2724		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2725		 * which do not need the ksm_thread_mutex are all safe.
2726		 */
2727		mutex_lock(&ksm_thread_mutex);
2728		ksm_run |= KSM_RUN_OFFLINE;
2729		mutex_unlock(&ksm_thread_mutex);
2730		break;
2731
2732	case MEM_OFFLINE:
2733		/*
2734		 * Most of the work is done by page migration; but there might
2735		 * be a few stable_nodes left over, still pointing to struct
2736		 * pages which have been offlined: prune those from the tree,
2737		 * otherwise get_ksm_page() might later try to access a
2738		 * non-existent struct page.
2739		 */
2740		ksm_check_stable_tree(mn->start_pfn,
2741				      mn->start_pfn + mn->nr_pages);
2742		/* fallthrough */
2743
2744	case MEM_CANCEL_OFFLINE:
2745		mutex_lock(&ksm_thread_mutex);
2746		ksm_run &= ~KSM_RUN_OFFLINE;
2747		mutex_unlock(&ksm_thread_mutex);
2748
2749		smp_mb();	/* wake_up_bit advises this */
2750		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2751		break;
2752	}
2753	return NOTIFY_OK;
2754}
2755#else
2756static void wait_while_offlining(void)
2757{
2758}
2759#endif /* CONFIG_MEMORY_HOTREMOVE */
2760
2761#ifdef CONFIG_SYSFS
2762/*
2763 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2764 */
2765
2766#define KSM_ATTR_RO(_name) \
2767	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2768#define KSM_ATTR(_name) \
2769	static struct kobj_attribute _name##_attr = \
2770		__ATTR(_name, 0644, _name##_show, _name##_store)
2771
2772static ssize_t sleep_millisecs_show(struct kobject *kobj,
2773				    struct kobj_attribute *attr, char *buf)
2774{
2775	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2776}
2777
2778static ssize_t sleep_millisecs_store(struct kobject *kobj,
2779				     struct kobj_attribute *attr,
2780				     const char *buf, size_t count)
2781{
2782	unsigned long msecs;
2783	int err;
2784
2785	err = kstrtoul(buf, 10, &msecs);
2786	if (err || msecs > UINT_MAX)
2787		return -EINVAL;
2788
2789	ksm_thread_sleep_millisecs = msecs;
 
2790
2791	return count;
2792}
2793KSM_ATTR(sleep_millisecs);
2794
2795static ssize_t pages_to_scan_show(struct kobject *kobj,
2796				  struct kobj_attribute *attr, char *buf)
2797{
2798	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2799}
2800
2801static ssize_t pages_to_scan_store(struct kobject *kobj,
2802				   struct kobj_attribute *attr,
2803				   const char *buf, size_t count)
2804{
 
2805	int err;
2806	unsigned long nr_pages;
2807
2808	err = kstrtoul(buf, 10, &nr_pages);
2809	if (err || nr_pages > UINT_MAX)
2810		return -EINVAL;
2811
2812	ksm_thread_pages_to_scan = nr_pages;
2813
2814	return count;
2815}
2816KSM_ATTR(pages_to_scan);
2817
2818static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2819			char *buf)
2820{
2821	return sprintf(buf, "%lu\n", ksm_run);
2822}
2823
2824static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2825			 const char *buf, size_t count)
2826{
 
2827	int err;
2828	unsigned long flags;
2829
2830	err = kstrtoul(buf, 10, &flags);
2831	if (err || flags > UINT_MAX)
2832		return -EINVAL;
2833	if (flags > KSM_RUN_UNMERGE)
2834		return -EINVAL;
2835
2836	/*
2837	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2838	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2839	 * breaking COW to free the pages_shared (but leaves mm_slots
2840	 * on the list for when ksmd may be set running again).
2841	 */
2842
2843	mutex_lock(&ksm_thread_mutex);
2844	wait_while_offlining();
2845	if (ksm_run != flags) {
2846		ksm_run = flags;
2847		if (flags & KSM_RUN_UNMERGE) {
2848			set_current_oom_origin();
2849			err = unmerge_and_remove_all_rmap_items();
2850			clear_current_oom_origin();
2851			if (err) {
2852				ksm_run = KSM_RUN_STOP;
2853				count = err;
2854			}
2855		}
2856	}
2857	mutex_unlock(&ksm_thread_mutex);
2858
2859	if (flags & KSM_RUN_MERGE)
2860		wake_up_interruptible(&ksm_thread_wait);
2861
2862	return count;
2863}
2864KSM_ATTR(run);
2865
2866#ifdef CONFIG_NUMA
2867static ssize_t merge_across_nodes_show(struct kobject *kobj,
2868				struct kobj_attribute *attr, char *buf)
2869{
2870	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2871}
2872
2873static ssize_t merge_across_nodes_store(struct kobject *kobj,
2874				   struct kobj_attribute *attr,
2875				   const char *buf, size_t count)
2876{
2877	int err;
2878	unsigned long knob;
2879
2880	err = kstrtoul(buf, 10, &knob);
2881	if (err)
2882		return err;
2883	if (knob > 1)
2884		return -EINVAL;
2885
2886	mutex_lock(&ksm_thread_mutex);
2887	wait_while_offlining();
2888	if (ksm_merge_across_nodes != knob) {
2889		if (ksm_pages_shared || remove_all_stable_nodes())
2890			err = -EBUSY;
2891		else if (root_stable_tree == one_stable_tree) {
2892			struct rb_root *buf;
2893			/*
2894			 * This is the first time that we switch away from the
2895			 * default of merging across nodes: must now allocate
2896			 * a buffer to hold as many roots as may be needed.
2897			 * Allocate stable and unstable together:
2898			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2899			 */
2900			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2901				      GFP_KERNEL);
2902			/* Let us assume that RB_ROOT is NULL is zero */
2903			if (!buf)
2904				err = -ENOMEM;
2905			else {
2906				root_stable_tree = buf;
2907				root_unstable_tree = buf + nr_node_ids;
2908				/* Stable tree is empty but not the unstable */
2909				root_unstable_tree[0] = one_unstable_tree[0];
2910			}
2911		}
2912		if (!err) {
2913			ksm_merge_across_nodes = knob;
2914			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2915		}
2916	}
2917	mutex_unlock(&ksm_thread_mutex);
2918
2919	return err ? err : count;
2920}
2921KSM_ATTR(merge_across_nodes);
2922#endif
2923
2924static ssize_t use_zero_pages_show(struct kobject *kobj,
2925				struct kobj_attribute *attr, char *buf)
2926{
2927	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2928}
2929static ssize_t use_zero_pages_store(struct kobject *kobj,
2930				   struct kobj_attribute *attr,
2931				   const char *buf, size_t count)
2932{
2933	int err;
2934	bool value;
2935
2936	err = kstrtobool(buf, &value);
2937	if (err)
2938		return -EINVAL;
2939
2940	ksm_use_zero_pages = value;
2941
2942	return count;
2943}
2944KSM_ATTR(use_zero_pages);
2945
2946static ssize_t max_page_sharing_show(struct kobject *kobj,
2947				     struct kobj_attribute *attr, char *buf)
2948{
2949	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2950}
2951
2952static ssize_t max_page_sharing_store(struct kobject *kobj,
2953				      struct kobj_attribute *attr,
2954				      const char *buf, size_t count)
2955{
2956	int err;
2957	int knob;
2958
2959	err = kstrtoint(buf, 10, &knob);
2960	if (err)
2961		return err;
2962	/*
2963	 * When a KSM page is created it is shared by 2 mappings. This
2964	 * being a signed comparison, it implicitly verifies it's not
2965	 * negative.
2966	 */
2967	if (knob < 2)
2968		return -EINVAL;
2969
2970	if (READ_ONCE(ksm_max_page_sharing) == knob)
2971		return count;
2972
2973	mutex_lock(&ksm_thread_mutex);
2974	wait_while_offlining();
2975	if (ksm_max_page_sharing != knob) {
2976		if (ksm_pages_shared || remove_all_stable_nodes())
2977			err = -EBUSY;
2978		else
2979			ksm_max_page_sharing = knob;
2980	}
2981	mutex_unlock(&ksm_thread_mutex);
2982
2983	return err ? err : count;
2984}
2985KSM_ATTR(max_page_sharing);
2986
2987static ssize_t pages_shared_show(struct kobject *kobj,
2988				 struct kobj_attribute *attr, char *buf)
2989{
2990	return sprintf(buf, "%lu\n", ksm_pages_shared);
2991}
2992KSM_ATTR_RO(pages_shared);
2993
2994static ssize_t pages_sharing_show(struct kobject *kobj,
2995				  struct kobj_attribute *attr, char *buf)
2996{
2997	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2998}
2999KSM_ATTR_RO(pages_sharing);
3000
3001static ssize_t pages_unshared_show(struct kobject *kobj,
3002				   struct kobj_attribute *attr, char *buf)
3003{
3004	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3005}
3006KSM_ATTR_RO(pages_unshared);
3007
3008static ssize_t pages_volatile_show(struct kobject *kobj,
3009				   struct kobj_attribute *attr, char *buf)
3010{
3011	long ksm_pages_volatile;
3012
3013	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3014				- ksm_pages_sharing - ksm_pages_unshared;
3015	/*
3016	 * It was not worth any locking to calculate that statistic,
3017	 * but it might therefore sometimes be negative: conceal that.
3018	 */
3019	if (ksm_pages_volatile < 0)
3020		ksm_pages_volatile = 0;
3021	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3022}
3023KSM_ATTR_RO(pages_volatile);
3024
3025static ssize_t stable_node_dups_show(struct kobject *kobj,
3026				     struct kobj_attribute *attr, char *buf)
3027{
3028	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3029}
3030KSM_ATTR_RO(stable_node_dups);
3031
3032static ssize_t stable_node_chains_show(struct kobject *kobj,
3033				       struct kobj_attribute *attr, char *buf)
3034{
3035	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3036}
3037KSM_ATTR_RO(stable_node_chains);
3038
3039static ssize_t
3040stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3041					struct kobj_attribute *attr,
3042					char *buf)
3043{
3044	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3045}
3046
3047static ssize_t
3048stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3049					 struct kobj_attribute *attr,
3050					 const char *buf, size_t count)
3051{
3052	unsigned long msecs;
3053	int err;
3054
3055	err = kstrtoul(buf, 10, &msecs);
3056	if (err || msecs > UINT_MAX)
3057		return -EINVAL;
3058
3059	ksm_stable_node_chains_prune_millisecs = msecs;
3060
3061	return count;
3062}
3063KSM_ATTR(stable_node_chains_prune_millisecs);
3064
3065static ssize_t full_scans_show(struct kobject *kobj,
3066			       struct kobj_attribute *attr, char *buf)
3067{
3068	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3069}
3070KSM_ATTR_RO(full_scans);
3071
3072static struct attribute *ksm_attrs[] = {
3073	&sleep_millisecs_attr.attr,
3074	&pages_to_scan_attr.attr,
3075	&run_attr.attr,
3076	&pages_shared_attr.attr,
3077	&pages_sharing_attr.attr,
3078	&pages_unshared_attr.attr,
3079	&pages_volatile_attr.attr,
3080	&full_scans_attr.attr,
3081#ifdef CONFIG_NUMA
3082	&merge_across_nodes_attr.attr,
3083#endif
3084	&max_page_sharing_attr.attr,
3085	&stable_node_chains_attr.attr,
3086	&stable_node_dups_attr.attr,
3087	&stable_node_chains_prune_millisecs_attr.attr,
3088	&use_zero_pages_attr.attr,
3089	NULL,
3090};
3091
3092static const struct attribute_group ksm_attr_group = {
3093	.attrs = ksm_attrs,
3094	.name = "ksm",
3095};
3096#endif /* CONFIG_SYSFS */
3097
3098static int __init ksm_init(void)
3099{
3100	struct task_struct *ksm_thread;
3101	int err;
3102
3103	/* The correct value depends on page size and endianness */
3104	zero_checksum = calc_checksum(ZERO_PAGE(0));
3105	/* Default to false for backwards compatibility */
3106	ksm_use_zero_pages = false;
3107
3108	err = ksm_slab_init();
3109	if (err)
3110		goto out;
3111
3112	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3113	if (IS_ERR(ksm_thread)) {
3114		pr_err("ksm: creating kthread failed\n");
3115		err = PTR_ERR(ksm_thread);
3116		goto out_free;
3117	}
3118
3119#ifdef CONFIG_SYSFS
3120	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3121	if (err) {
3122		pr_err("ksm: register sysfs failed\n");
3123		kthread_stop(ksm_thread);
3124		goto out_free;
3125	}
3126#else
3127	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3128
3129#endif /* CONFIG_SYSFS */
3130
3131#ifdef CONFIG_MEMORY_HOTREMOVE
3132	/* There is no significance to this priority 100 */
3133	hotplug_memory_notifier(ksm_memory_callback, 100);
3134#endif
3135	return 0;
3136
3137out_free:
3138	ksm_slab_free();
3139out:
3140	return err;
3141}
3142subsys_initcall(ksm_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *	Izik Eidus
  11 *	Andrea Arcangeli
  12 *	Chris Wright
  13 *	Hugh Dickins
 
 
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)		(x)
  47#define DO_NUMA(x)	do { (x); } while (0)
  48#else
  49#define NUMA(x)		(0)
  50#define DO_NUMA(x)	do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same struct stable_node structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121	struct hlist_node link;
 122	struct list_head mm_list;
 123	struct rmap_item *rmap_list;
 124	struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137	struct mm_slot *mm_slot;
 138	unsigned long address;
 139	struct rmap_item **rmap_list;
 140	unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156	union {
 157		struct rb_node node;	/* when node of stable tree */
 158		struct {		/* when listed for migration */
 159			struct list_head *head;
 160			struct {
 161				struct hlist_node hlist_dup;
 162				struct list_head list;
 163			};
 164		};
 165	};
 166	struct hlist_head hlist;
 167	union {
 168		unsigned long kpfn;
 169		unsigned long chain_prune_time;
 170	};
 171	/*
 172	 * STABLE_NODE_CHAIN can be any negative number in
 173	 * rmap_hlist_len negative range, but better not -1 to be able
 174	 * to reliably detect underflows.
 175	 */
 176#define STABLE_NODE_CHAIN -1024
 177	int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179	int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196	struct rmap_item *rmap_list;
 197	union {
 198		struct anon_vma *anon_vma;	/* when stable */
 199#ifdef CONFIG_NUMA
 200		int nid;		/* when node of unstable tree */
 201#endif
 202	};
 203	struct mm_struct *mm;
 204	unsigned long address;		/* + low bits used for flags below */
 205	unsigned int oldchecksum;	/* when unstable */
 206	union {
 207		struct rb_node node;	/* when node of unstable tree */
 208		struct {		/* when listed from stable tree */
 209			struct stable_node *head;
 210			struct hlist_node hlist;
 211		};
 212	};
 213};
 214
 215#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 217#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 218
 219/* The stable and unstable tree heads */
 220static struct rb_root one_stable_tree[1] = { RB_ROOT };
 221static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 222static struct rb_root *root_stable_tree = one_stable_tree;
 223static struct rb_root *root_unstable_tree = one_unstable_tree;
 224
 225/* Recently migrated nodes of stable tree, pending proper placement */
 226static LIST_HEAD(migrate_nodes);
 227#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 228
 229#define MM_SLOTS_HASH_BITS 10
 230static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 231
 232static struct mm_slot ksm_mm_head = {
 233	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 234};
 235static struct ksm_scan ksm_scan = {
 236	.mm_slot = &ksm_mm_head,
 237};
 238
 239static struct kmem_cache *rmap_item_cache;
 240static struct kmem_cache *stable_node_cache;
 241static struct kmem_cache *mm_slot_cache;
 242
 243/* The number of nodes in the stable tree */
 244static unsigned long ksm_pages_shared;
 245
 246/* The number of page slots additionally sharing those nodes */
 247static unsigned long ksm_pages_sharing;
 248
 249/* The number of nodes in the unstable tree */
 250static unsigned long ksm_pages_unshared;
 251
 252/* The number of rmap_items in use: to calculate pages_volatile */
 253static unsigned long ksm_rmap_items;
 254
 255/* The number of stable_node chains */
 256static unsigned long ksm_stable_node_chains;
 257
 258/* The number of stable_node dups linked to the stable_node chains */
 259static unsigned long ksm_stable_node_dups;
 260
 261/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 262static int ksm_stable_node_chains_prune_millisecs = 2000;
 263
 264/* Maximum number of page slots sharing a stable node */
 265static int ksm_max_page_sharing = 256;
 266
 267/* Number of pages ksmd should scan in one batch */
 268static unsigned int ksm_thread_pages_to_scan = 100;
 269
 270/* Milliseconds ksmd should sleep between batches */
 271static unsigned int ksm_thread_sleep_millisecs = 20;
 272
 273/* Checksum of an empty (zeroed) page */
 274static unsigned int zero_checksum __read_mostly;
 275
 276/* Whether to merge empty (zeroed) pages with actual zero pages */
 277static bool ksm_use_zero_pages __read_mostly;
 278
 279#ifdef CONFIG_NUMA
 280/* Zeroed when merging across nodes is not allowed */
 281static unsigned int ksm_merge_across_nodes = 1;
 282static int ksm_nr_node_ids = 1;
 283#else
 284#define ksm_merge_across_nodes	1U
 285#define ksm_nr_node_ids		1
 286#endif
 287
 288#define KSM_RUN_STOP	0
 289#define KSM_RUN_MERGE	1
 290#define KSM_RUN_UNMERGE	2
 291#define KSM_RUN_OFFLINE	4
 292static unsigned long ksm_run = KSM_RUN_STOP;
 293static void wait_while_offlining(void);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 296static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 297static DEFINE_MUTEX(ksm_thread_mutex);
 298static DEFINE_SPINLOCK(ksm_mmlist_lock);
 299
 300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 301		sizeof(struct __struct), __alignof__(struct __struct),\
 302		(__flags), NULL)
 303
 304static int __init ksm_slab_init(void)
 305{
 306	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 307	if (!rmap_item_cache)
 308		goto out;
 309
 310	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 311	if (!stable_node_cache)
 312		goto out_free1;
 313
 314	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 315	if (!mm_slot_cache)
 316		goto out_free2;
 317
 318	return 0;
 319
 320out_free2:
 321	kmem_cache_destroy(stable_node_cache);
 322out_free1:
 323	kmem_cache_destroy(rmap_item_cache);
 324out:
 325	return -ENOMEM;
 326}
 327
 328static void __init ksm_slab_free(void)
 329{
 330	kmem_cache_destroy(mm_slot_cache);
 331	kmem_cache_destroy(stable_node_cache);
 332	kmem_cache_destroy(rmap_item_cache);
 333	mm_slot_cache = NULL;
 334}
 335
 336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 337{
 338	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 339}
 340
 341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 342{
 343	return dup->head == STABLE_NODE_DUP_HEAD;
 344}
 345
 346static inline void stable_node_chain_add_dup(struct stable_node *dup,
 347					     struct stable_node *chain)
 348{
 349	VM_BUG_ON(is_stable_node_dup(dup));
 350	dup->head = STABLE_NODE_DUP_HEAD;
 351	VM_BUG_ON(!is_stable_node_chain(chain));
 352	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 353	ksm_stable_node_dups++;
 354}
 355
 356static inline void __stable_node_dup_del(struct stable_node *dup)
 357{
 358	VM_BUG_ON(!is_stable_node_dup(dup));
 359	hlist_del(&dup->hlist_dup);
 360	ksm_stable_node_dups--;
 361}
 362
 363static inline void stable_node_dup_del(struct stable_node *dup)
 364{
 365	VM_BUG_ON(is_stable_node_chain(dup));
 366	if (is_stable_node_dup(dup))
 367		__stable_node_dup_del(dup);
 368	else
 369		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 370#ifdef CONFIG_DEBUG_VM
 371	dup->head = NULL;
 372#endif
 373}
 374
 375static inline struct rmap_item *alloc_rmap_item(void)
 376{
 377	struct rmap_item *rmap_item;
 378
 379	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 380						__GFP_NORETRY | __GFP_NOWARN);
 381	if (rmap_item)
 382		ksm_rmap_items++;
 383	return rmap_item;
 384}
 385
 386static inline void free_rmap_item(struct rmap_item *rmap_item)
 387{
 388	ksm_rmap_items--;
 389	rmap_item->mm = NULL;	/* debug safety */
 390	kmem_cache_free(rmap_item_cache, rmap_item);
 391}
 392
 393static inline struct stable_node *alloc_stable_node(void)
 394{
 395	/*
 396	 * The allocation can take too long with GFP_KERNEL when memory is under
 397	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 398	 * grants access to memory reserves, helping to avoid this problem.
 399	 */
 400	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 401}
 402
 403static inline void free_stable_node(struct stable_node *stable_node)
 404{
 405	VM_BUG_ON(stable_node->rmap_hlist_len &&
 406		  !is_stable_node_chain(stable_node));
 407	kmem_cache_free(stable_node_cache, stable_node);
 408}
 409
 410static inline struct mm_slot *alloc_mm_slot(void)
 411{
 412	if (!mm_slot_cache)	/* initialization failed */
 413		return NULL;
 414	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 415}
 416
 417static inline void free_mm_slot(struct mm_slot *mm_slot)
 418{
 419	kmem_cache_free(mm_slot_cache, mm_slot);
 420}
 421
 422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 423{
 424	struct mm_slot *slot;
 425
 426	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 427		if (slot->mm == mm)
 428			return slot;
 429
 430	return NULL;
 431}
 432
 433static void insert_to_mm_slots_hash(struct mm_struct *mm,
 434				    struct mm_slot *mm_slot)
 435{
 436	mm_slot->mm = mm;
 437	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 438}
 439
 440/*
 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 442 * page tables after it has passed through ksm_exit() - which, if necessary,
 443 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 444 * a special flag: they can just back out as soon as mm_users goes to zero.
 445 * ksm_test_exit() is used throughout to make this test for exit: in some
 446 * places for correctness, in some places just to avoid unnecessary work.
 447 */
 448static inline bool ksm_test_exit(struct mm_struct *mm)
 449{
 450	return atomic_read(&mm->mm_users) == 0;
 451}
 452
 453/*
 454 * We use break_ksm to break COW on a ksm page: it's a stripped down
 455 *
 456 *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
 457 *		put_page(page);
 458 *
 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 460 * in case the application has unmapped and remapped mm,addr meanwhile.
 461 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 462 * mmap of /dev/mem, where we would not want to touch it.
 463 *
 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 465 * of the process that owns 'vma'.  We also do not want to enforce
 466 * protection keys here anyway.
 467 */
 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 469{
 470	struct page *page;
 471	vm_fault_t ret = 0;
 472
 473	do {
 474		cond_resched();
 475		page = follow_page(vma, addr,
 476				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 477		if (IS_ERR_OR_NULL(page))
 478			break;
 479		if (PageKsm(page))
 480			ret = handle_mm_fault(vma, addr,
 481					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
 482					      NULL);
 483		else
 484			ret = VM_FAULT_WRITE;
 485		put_page(page);
 486	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 487	/*
 488	 * We must loop because handle_mm_fault() may back out if there's
 489	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 490	 *
 491	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 492	 * COW has been broken, even if the vma does not permit VM_WRITE;
 493	 * but note that a concurrent fault might break PageKsm for us.
 494	 *
 495	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 496	 * backing file, which also invalidates anonymous pages: that's
 497	 * okay, that truncation will have unmapped the PageKsm for us.
 498	 *
 499	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 500	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 501	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 502	 * to user; and ksmd, having no mm, would never be chosen for that.
 503	 *
 504	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 505	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 506	 * even ksmd can fail in this way - though it's usually breaking ksm
 507	 * just to undo a merge it made a moment before, so unlikely to oom.
 508	 *
 509	 * That's a pity: we might therefore have more kernel pages allocated
 510	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 511	 * will retry to break_cow on each pass, so should recover the page
 512	 * in due course.  The important thing is to not let VM_MERGEABLE
 513	 * be cleared while any such pages might remain in the area.
 514	 */
 515	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 516}
 517
 518static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 519		unsigned long addr)
 520{
 521	struct vm_area_struct *vma;
 522	if (ksm_test_exit(mm))
 523		return NULL;
 524	vma = vma_lookup(mm, addr);
 525	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 
 
 526		return NULL;
 527	return vma;
 528}
 529
 530static void break_cow(struct rmap_item *rmap_item)
 531{
 532	struct mm_struct *mm = rmap_item->mm;
 533	unsigned long addr = rmap_item->address;
 534	struct vm_area_struct *vma;
 535
 536	/*
 537	 * It is not an accident that whenever we want to break COW
 538	 * to undo, we also need to drop a reference to the anon_vma.
 539	 */
 540	put_anon_vma(rmap_item->anon_vma);
 541
 542	mmap_read_lock(mm);
 543	vma = find_mergeable_vma(mm, addr);
 544	if (vma)
 545		break_ksm(vma, addr);
 546	mmap_read_unlock(mm);
 547}
 548
 549static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 550{
 551	struct mm_struct *mm = rmap_item->mm;
 552	unsigned long addr = rmap_item->address;
 553	struct vm_area_struct *vma;
 554	struct page *page;
 555
 556	mmap_read_lock(mm);
 557	vma = find_mergeable_vma(mm, addr);
 558	if (!vma)
 559		goto out;
 560
 561	page = follow_page(vma, addr, FOLL_GET);
 562	if (IS_ERR_OR_NULL(page))
 563		goto out;
 564	if (PageAnon(page)) {
 565		flush_anon_page(vma, page, addr);
 566		flush_dcache_page(page);
 567	} else {
 568		put_page(page);
 569out:
 570		page = NULL;
 571	}
 572	mmap_read_unlock(mm);
 573	return page;
 574}
 575
 576/*
 577 * This helper is used for getting right index into array of tree roots.
 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 580 * every node has its own stable and unstable tree.
 581 */
 582static inline int get_kpfn_nid(unsigned long kpfn)
 583{
 584	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 585}
 586
 587static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 588						   struct rb_root *root)
 589{
 590	struct stable_node *chain = alloc_stable_node();
 591	VM_BUG_ON(is_stable_node_chain(dup));
 592	if (likely(chain)) {
 593		INIT_HLIST_HEAD(&chain->hlist);
 594		chain->chain_prune_time = jiffies;
 595		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 597		chain->nid = NUMA_NO_NODE; /* debug */
 598#endif
 599		ksm_stable_node_chains++;
 600
 601		/*
 602		 * Put the stable node chain in the first dimension of
 603		 * the stable tree and at the same time remove the old
 604		 * stable node.
 605		 */
 606		rb_replace_node(&dup->node, &chain->node, root);
 607
 608		/*
 609		 * Move the old stable node to the second dimension
 610		 * queued in the hlist_dup. The invariant is that all
 611		 * dup stable_nodes in the chain->hlist point to pages
 612		 * that are write protected and have the exact same
 613		 * content.
 614		 */
 615		stable_node_chain_add_dup(dup, chain);
 616	}
 617	return chain;
 618}
 619
 620static inline void free_stable_node_chain(struct stable_node *chain,
 621					  struct rb_root *root)
 622{
 623	rb_erase(&chain->node, root);
 624	free_stable_node(chain);
 625	ksm_stable_node_chains--;
 626}
 627
 628static void remove_node_from_stable_tree(struct stable_node *stable_node)
 629{
 630	struct rmap_item *rmap_item;
 631
 632	/* check it's not STABLE_NODE_CHAIN or negative */
 633	BUG_ON(stable_node->rmap_hlist_len < 0);
 634
 635	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 636		if (rmap_item->hlist.next)
 637			ksm_pages_sharing--;
 638		else
 639			ksm_pages_shared--;
 640		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 641		stable_node->rmap_hlist_len--;
 642		put_anon_vma(rmap_item->anon_vma);
 643		rmap_item->address &= PAGE_MASK;
 644		cond_resched();
 645	}
 646
 647	/*
 648	 * We need the second aligned pointer of the migrate_nodes
 649	 * list_head to stay clear from the rb_parent_color union
 650	 * (aligned and different than any node) and also different
 651	 * from &migrate_nodes. This will verify that future list.h changes
 652	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 653	 */
 654#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 655	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 656	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 657#endif
 658
 659	if (stable_node->head == &migrate_nodes)
 660		list_del(&stable_node->list);
 661	else
 662		stable_node_dup_del(stable_node);
 663	free_stable_node(stable_node);
 664}
 665
 666enum get_ksm_page_flags {
 667	GET_KSM_PAGE_NOLOCK,
 668	GET_KSM_PAGE_LOCK,
 669	GET_KSM_PAGE_TRYLOCK
 670};
 671
 672/*
 673 * get_ksm_page: checks if the page indicated by the stable node
 674 * is still its ksm page, despite having held no reference to it.
 675 * In which case we can trust the content of the page, and it
 676 * returns the gotten page; but if the page has now been zapped,
 677 * remove the stale node from the stable tree and return NULL.
 678 * But beware, the stable node's page might be being migrated.
 679 *
 680 * You would expect the stable_node to hold a reference to the ksm page.
 681 * But if it increments the page's count, swapping out has to wait for
 682 * ksmd to come around again before it can free the page, which may take
 683 * seconds or even minutes: much too unresponsive.  So instead we use a
 684 * "keyhole reference": access to the ksm page from the stable node peeps
 685 * out through its keyhole to see if that page still holds the right key,
 686 * pointing back to this stable node.  This relies on freeing a PageAnon
 687 * page to reset its page->mapping to NULL, and relies on no other use of
 688 * a page to put something that might look like our key in page->mapping.
 689 * is on its way to being freed; but it is an anomaly to bear in mind.
 690 */
 691static struct page *get_ksm_page(struct stable_node *stable_node,
 692				 enum get_ksm_page_flags flags)
 693{
 694	struct page *page;
 695	void *expected_mapping;
 696	unsigned long kpfn;
 697
 698	expected_mapping = (void *)((unsigned long)stable_node |
 699					PAGE_MAPPING_KSM);
 700again:
 701	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 702	page = pfn_to_page(kpfn);
 703	if (READ_ONCE(page->mapping) != expected_mapping)
 704		goto stale;
 705
 706	/*
 707	 * We cannot do anything with the page while its refcount is 0.
 708	 * Usually 0 means free, or tail of a higher-order page: in which
 709	 * case this node is no longer referenced, and should be freed;
 710	 * however, it might mean that the page is under page_ref_freeze().
 711	 * The __remove_mapping() case is easy, again the node is now stale;
 712	 * the same is in reuse_ksm_page() case; but if page is swapcache
 713	 * in migrate_page_move_mapping(), it might still be our page,
 714	 * in which case it's essential to keep the node.
 715	 */
 716	while (!get_page_unless_zero(page)) {
 717		/*
 718		 * Another check for page->mapping != expected_mapping would
 719		 * work here too.  We have chosen the !PageSwapCache test to
 720		 * optimize the common case, when the page is or is about to
 721		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 722		 * in the ref_freeze section of __remove_mapping(); but Anon
 723		 * page->mapping reset to NULL later, in free_pages_prepare().
 724		 */
 725		if (!PageSwapCache(page))
 726			goto stale;
 727		cpu_relax();
 728	}
 729
 730	if (READ_ONCE(page->mapping) != expected_mapping) {
 731		put_page(page);
 732		goto stale;
 733	}
 734
 735	if (flags == GET_KSM_PAGE_TRYLOCK) {
 736		if (!trylock_page(page)) {
 737			put_page(page);
 738			return ERR_PTR(-EBUSY);
 739		}
 740	} else if (flags == GET_KSM_PAGE_LOCK)
 741		lock_page(page);
 742
 743	if (flags != GET_KSM_PAGE_NOLOCK) {
 744		if (READ_ONCE(page->mapping) != expected_mapping) {
 745			unlock_page(page);
 746			put_page(page);
 747			goto stale;
 748		}
 749	}
 750	return page;
 751
 752stale:
 753	/*
 754	 * We come here from above when page->mapping or !PageSwapCache
 755	 * suggests that the node is stale; but it might be under migration.
 756	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 757	 * before checking whether node->kpfn has been changed.
 758	 */
 759	smp_rmb();
 760	if (READ_ONCE(stable_node->kpfn) != kpfn)
 761		goto again;
 762	remove_node_from_stable_tree(stable_node);
 763	return NULL;
 764}
 765
 766/*
 767 * Removing rmap_item from stable or unstable tree.
 768 * This function will clean the information from the stable/unstable tree.
 769 */
 770static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 771{
 772	if (rmap_item->address & STABLE_FLAG) {
 773		struct stable_node *stable_node;
 774		struct page *page;
 775
 776		stable_node = rmap_item->head;
 777		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 778		if (!page)
 779			goto out;
 780
 781		hlist_del(&rmap_item->hlist);
 782		unlock_page(page);
 783		put_page(page);
 784
 785		if (!hlist_empty(&stable_node->hlist))
 786			ksm_pages_sharing--;
 787		else
 788			ksm_pages_shared--;
 789		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 790		stable_node->rmap_hlist_len--;
 791
 792		put_anon_vma(rmap_item->anon_vma);
 793		rmap_item->head = NULL;
 794		rmap_item->address &= PAGE_MASK;
 795
 796	} else if (rmap_item->address & UNSTABLE_FLAG) {
 797		unsigned char age;
 798		/*
 799		 * Usually ksmd can and must skip the rb_erase, because
 800		 * root_unstable_tree was already reset to RB_ROOT.
 801		 * But be careful when an mm is exiting: do the rb_erase
 802		 * if this rmap_item was inserted by this scan, rather
 803		 * than left over from before.
 804		 */
 805		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 806		BUG_ON(age > 1);
 807		if (!age)
 808			rb_erase(&rmap_item->node,
 809				 root_unstable_tree + NUMA(rmap_item->nid));
 810		ksm_pages_unshared--;
 811		rmap_item->address &= PAGE_MASK;
 812	}
 813out:
 814	cond_resched();		/* we're called from many long loops */
 815}
 816
 817static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
 
 818{
 819	while (*rmap_list) {
 820		struct rmap_item *rmap_item = *rmap_list;
 821		*rmap_list = rmap_item->rmap_list;
 822		remove_rmap_item_from_tree(rmap_item);
 823		free_rmap_item(rmap_item);
 824	}
 825}
 826
 827/*
 828 * Though it's very tempting to unmerge rmap_items from stable tree rather
 829 * than check every pte of a given vma, the locking doesn't quite work for
 830 * that - an rmap_item is assigned to the stable tree after inserting ksm
 831 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
 832 * rmap_items from parent to child at fork time (so as not to waste time
 833 * if exit comes before the next scan reaches it).
 834 *
 835 * Similarly, although we'd like to remove rmap_items (so updating counts
 836 * and freeing memory) when unmerging an area, it's easier to leave that
 837 * to the next pass of ksmd - consider, for example, how ksmd might be
 838 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 839 */
 840static int unmerge_ksm_pages(struct vm_area_struct *vma,
 841			     unsigned long start, unsigned long end)
 842{
 843	unsigned long addr;
 844	int err = 0;
 845
 846	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 847		if (ksm_test_exit(vma->vm_mm))
 848			break;
 849		if (signal_pending(current))
 850			err = -ERESTARTSYS;
 851		else
 852			err = break_ksm(vma, addr);
 853	}
 854	return err;
 855}
 856
 857static inline struct stable_node *page_stable_node(struct page *page)
 858{
 859	return PageKsm(page) ? page_rmapping(page) : NULL;
 860}
 861
 862static inline void set_page_stable_node(struct page *page,
 863					struct stable_node *stable_node)
 864{
 865	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 866}
 867
 868#ifdef CONFIG_SYSFS
 869/*
 870 * Only called through the sysfs control interface:
 871 */
 872static int remove_stable_node(struct stable_node *stable_node)
 873{
 874	struct page *page;
 875	int err;
 876
 877	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 878	if (!page) {
 879		/*
 880		 * get_ksm_page did remove_node_from_stable_tree itself.
 881		 */
 882		return 0;
 883	}
 884
 885	/*
 886	 * Page could be still mapped if this races with __mmput() running in
 887	 * between ksm_exit() and exit_mmap(). Just refuse to let
 888	 * merge_across_nodes/max_page_sharing be switched.
 889	 */
 890	err = -EBUSY;
 891	if (!page_mapped(page)) {
 892		/*
 893		 * The stable node did not yet appear stale to get_ksm_page(),
 894		 * since that allows for an unmapped ksm page to be recognized
 895		 * right up until it is freed; but the node is safe to remove.
 896		 * This page might be in a pagevec waiting to be freed,
 897		 * or it might be PageSwapCache (perhaps under writeback),
 898		 * or it might have been removed from swapcache a moment ago.
 899		 */
 900		set_page_stable_node(page, NULL);
 901		remove_node_from_stable_tree(stable_node);
 902		err = 0;
 903	}
 904
 905	unlock_page(page);
 906	put_page(page);
 907	return err;
 908}
 909
 910static int remove_stable_node_chain(struct stable_node *stable_node,
 911				    struct rb_root *root)
 912{
 913	struct stable_node *dup;
 914	struct hlist_node *hlist_safe;
 915
 916	if (!is_stable_node_chain(stable_node)) {
 917		VM_BUG_ON(is_stable_node_dup(stable_node));
 918		if (remove_stable_node(stable_node))
 919			return true;
 920		else
 921			return false;
 922	}
 923
 924	hlist_for_each_entry_safe(dup, hlist_safe,
 925				  &stable_node->hlist, hlist_dup) {
 926		VM_BUG_ON(!is_stable_node_dup(dup));
 927		if (remove_stable_node(dup))
 928			return true;
 929	}
 930	BUG_ON(!hlist_empty(&stable_node->hlist));
 931	free_stable_node_chain(stable_node, root);
 932	return false;
 933}
 934
 935static int remove_all_stable_nodes(void)
 936{
 937	struct stable_node *stable_node, *next;
 938	int nid;
 939	int err = 0;
 940
 941	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 942		while (root_stable_tree[nid].rb_node) {
 943			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 944						struct stable_node, node);
 945			if (remove_stable_node_chain(stable_node,
 946						     root_stable_tree + nid)) {
 947				err = -EBUSY;
 948				break;	/* proceed to next nid */
 949			}
 950			cond_resched();
 951		}
 952	}
 953	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 954		if (remove_stable_node(stable_node))
 955			err = -EBUSY;
 956		cond_resched();
 957	}
 958	return err;
 959}
 960
 961static int unmerge_and_remove_all_rmap_items(void)
 962{
 963	struct mm_slot *mm_slot;
 964	struct mm_struct *mm;
 965	struct vm_area_struct *vma;
 966	int err = 0;
 967
 968	spin_lock(&ksm_mmlist_lock);
 969	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 970						struct mm_slot, mm_list);
 971	spin_unlock(&ksm_mmlist_lock);
 972
 973	for (mm_slot = ksm_scan.mm_slot;
 974			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 975		mm = mm_slot->mm;
 976		mmap_read_lock(mm);
 977		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 978			if (ksm_test_exit(mm))
 979				break;
 980			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 981				continue;
 982			err = unmerge_ksm_pages(vma,
 983						vma->vm_start, vma->vm_end);
 984			if (err)
 985				goto error;
 986		}
 987
 988		remove_trailing_rmap_items(&mm_slot->rmap_list);
 989		mmap_read_unlock(mm);
 990
 991		spin_lock(&ksm_mmlist_lock);
 992		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 993						struct mm_slot, mm_list);
 994		if (ksm_test_exit(mm)) {
 995			hash_del(&mm_slot->link);
 996			list_del(&mm_slot->mm_list);
 997			spin_unlock(&ksm_mmlist_lock);
 998
 999			free_mm_slot(mm_slot);
1000			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1001			mmdrop(mm);
1002		} else
1003			spin_unlock(&ksm_mmlist_lock);
1004	}
1005
1006	/* Clean up stable nodes, but don't worry if some are still busy */
1007	remove_all_stable_nodes();
1008	ksm_scan.seqnr = 0;
1009	return 0;
1010
1011error:
1012	mmap_read_unlock(mm);
1013	spin_lock(&ksm_mmlist_lock);
1014	ksm_scan.mm_slot = &ksm_mm_head;
1015	spin_unlock(&ksm_mmlist_lock);
1016	return err;
1017}
1018#endif /* CONFIG_SYSFS */
1019
1020static u32 calc_checksum(struct page *page)
1021{
1022	u32 checksum;
1023	void *addr = kmap_atomic(page);
1024	checksum = xxhash(addr, PAGE_SIZE, 0);
1025	kunmap_atomic(addr);
1026	return checksum;
1027}
1028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1030			      pte_t *orig_pte)
1031{
1032	struct mm_struct *mm = vma->vm_mm;
1033	struct page_vma_mapped_walk pvmw = {
1034		.page = page,
1035		.vma = vma,
1036	};
1037	int swapped;
1038	int err = -EFAULT;
1039	struct mmu_notifier_range range;
 
1040
1041	pvmw.address = page_address_in_vma(page, vma);
1042	if (pvmw.address == -EFAULT)
1043		goto out;
1044
1045	BUG_ON(PageTransCompound(page));
1046
1047	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048				pvmw.address,
1049				pvmw.address + PAGE_SIZE);
1050	mmu_notifier_invalidate_range_start(&range);
1051
1052	if (!page_vma_mapped_walk(&pvmw))
1053		goto out_mn;
1054	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1055		goto out_unlock;
1056
1057	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1058	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1059						mm_tlb_flush_pending(mm)) {
1060		pte_t entry;
1061
1062		swapped = PageSwapCache(page);
1063		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064		/*
1065		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1066		 * take any lock, therefore the check that we are going to make
1067		 * with the pagecount against the mapcount is racy and
1068		 * O_DIRECT can happen right after the check.
1069		 * So we clear the pte and flush the tlb before the check
1070		 * this assure us that no O_DIRECT can happen after the check
1071		 * or in the middle of the check.
1072		 *
1073		 * No need to notify as we are downgrading page table to read
1074		 * only not changing it to point to a new page.
1075		 *
1076		 * See Documentation/vm/mmu_notifier.rst
1077		 */
1078		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079		/*
1080		 * Check that no O_DIRECT or similar I/O is in progress on the
1081		 * page
1082		 */
1083		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1084			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1085			goto out_unlock;
1086		}
1087		if (pte_dirty(entry))
1088			set_page_dirty(page);
1089
1090		if (pte_protnone(entry))
1091			entry = pte_mkclean(pte_clear_savedwrite(entry));
1092		else
1093			entry = pte_mkclean(pte_wrprotect(entry));
1094		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095	}
1096	*orig_pte = *pvmw.pte;
1097	err = 0;
1098
1099out_unlock:
1100	page_vma_mapped_walk_done(&pvmw);
1101out_mn:
1102	mmu_notifier_invalidate_range_end(&range);
1103out:
1104	return err;
1105}
1106
1107/**
1108 * replace_page - replace page in vma by new ksm page
1109 * @vma:      vma that holds the pte pointing to page
1110 * @page:     the page we are replacing by kpage
1111 * @kpage:    the ksm page we replace page by
1112 * @orig_pte: the original value of the pte
1113 *
1114 * Returns 0 on success, -EFAULT on failure.
1115 */
1116static int replace_page(struct vm_area_struct *vma, struct page *page,
1117			struct page *kpage, pte_t orig_pte)
1118{
1119	struct mm_struct *mm = vma->vm_mm;
1120	pmd_t *pmd;
1121	pte_t *ptep;
1122	pte_t newpte;
1123	spinlock_t *ptl;
1124	unsigned long addr;
1125	int err = -EFAULT;
1126	struct mmu_notifier_range range;
 
1127
1128	addr = page_address_in_vma(page, vma);
1129	if (addr == -EFAULT)
1130		goto out;
1131
1132	pmd = mm_find_pmd(mm, addr);
1133	if (!pmd)
1134		goto out;
1135
1136	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137				addr + PAGE_SIZE);
1138	mmu_notifier_invalidate_range_start(&range);
1139
1140	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141	if (!pte_same(*ptep, orig_pte)) {
1142		pte_unmap_unlock(ptep, ptl);
1143		goto out_mn;
1144	}
1145
1146	/*
1147	 * No need to check ksm_use_zero_pages here: we can only have a
1148	 * zero_page here if ksm_use_zero_pages was enabled already.
1149	 */
1150	if (!is_zero_pfn(page_to_pfn(kpage))) {
1151		get_page(kpage);
1152		page_add_anon_rmap(kpage, vma, addr, false);
1153		newpte = mk_pte(kpage, vma->vm_page_prot);
1154	} else {
1155		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1156					       vma->vm_page_prot));
1157		/*
1158		 * We're replacing an anonymous page with a zero page, which is
1159		 * not anonymous. We need to do proper accounting otherwise we
1160		 * will get wrong values in /proc, and a BUG message in dmesg
1161		 * when tearing down the mm.
1162		 */
1163		dec_mm_counter(mm, MM_ANONPAGES);
1164	}
1165
1166	flush_cache_page(vma, addr, pte_pfn(*ptep));
1167	/*
1168	 * No need to notify as we are replacing a read only page with another
1169	 * read only page with the same content.
1170	 *
1171	 * See Documentation/vm/mmu_notifier.rst
1172	 */
1173	ptep_clear_flush(vma, addr, ptep);
1174	set_pte_at_notify(mm, addr, ptep, newpte);
1175
1176	page_remove_rmap(page, false);
1177	if (!page_mapped(page))
1178		try_to_free_swap(page);
1179	put_page(page);
1180
1181	pte_unmap_unlock(ptep, ptl);
1182	err = 0;
1183out_mn:
1184	mmu_notifier_invalidate_range_end(&range);
1185out:
1186	return err;
1187}
1188
1189/*
1190 * try_to_merge_one_page - take two pages and merge them into one
1191 * @vma: the vma that holds the pte pointing to page
1192 * @page: the PageAnon page that we want to replace with kpage
1193 * @kpage: the PageKsm page that we want to map instead of page,
1194 *         or NULL the first time when we want to use page as kpage.
1195 *
1196 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197 */
1198static int try_to_merge_one_page(struct vm_area_struct *vma,
1199				 struct page *page, struct page *kpage)
1200{
1201	pte_t orig_pte = __pte(0);
1202	int err = -EFAULT;
1203
1204	if (page == kpage)			/* ksm page forked */
1205		return 0;
1206
1207	if (!PageAnon(page))
1208		goto out;
1209
1210	/*
1211	 * We need the page lock to read a stable PageSwapCache in
1212	 * write_protect_page().  We use trylock_page() instead of
1213	 * lock_page() because we don't want to wait here - we
1214	 * prefer to continue scanning and merging different pages,
1215	 * then come back to this page when it is unlocked.
1216	 */
1217	if (!trylock_page(page))
1218		goto out;
1219
1220	if (PageTransCompound(page)) {
1221		if (split_huge_page(page))
1222			goto out_unlock;
1223	}
1224
1225	/*
1226	 * If this anonymous page is mapped only here, its pte may need
1227	 * to be write-protected.  If it's mapped elsewhere, all of its
1228	 * ptes are necessarily already write-protected.  But in either
1229	 * case, we need to lock and check page_count is not raised.
1230	 */
1231	if (write_protect_page(vma, page, &orig_pte) == 0) {
1232		if (!kpage) {
1233			/*
1234			 * While we hold page lock, upgrade page from
1235			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1236			 * stable_tree_insert() will update stable_node.
1237			 */
1238			set_page_stable_node(page, NULL);
1239			mark_page_accessed(page);
1240			/*
1241			 * Page reclaim just frees a clean page with no dirty
1242			 * ptes: make sure that the ksm page would be swapped.
1243			 */
1244			if (!PageDirty(page))
1245				SetPageDirty(page);
1246			err = 0;
1247		} else if (pages_identical(page, kpage))
1248			err = replace_page(vma, page, kpage, orig_pte);
1249	}
1250
1251	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1252		munlock_vma_page(page);
1253		if (!PageMlocked(kpage)) {
1254			unlock_page(page);
1255			lock_page(kpage);
1256			mlock_vma_page(kpage);
1257			page = kpage;		/* for final unlock */
1258		}
1259	}
1260
1261out_unlock:
1262	unlock_page(page);
1263out:
1264	return err;
1265}
1266
1267/*
1268 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1269 * but no new kernel page is allocated: kpage must already be a ksm page.
1270 *
1271 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272 */
1273static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1274				      struct page *page, struct page *kpage)
1275{
1276	struct mm_struct *mm = rmap_item->mm;
1277	struct vm_area_struct *vma;
1278	int err = -EFAULT;
1279
1280	mmap_read_lock(mm);
1281	vma = find_mergeable_vma(mm, rmap_item->address);
1282	if (!vma)
1283		goto out;
1284
1285	err = try_to_merge_one_page(vma, page, kpage);
1286	if (err)
1287		goto out;
1288
1289	/* Unstable nid is in union with stable anon_vma: remove first */
1290	remove_rmap_item_from_tree(rmap_item);
1291
1292	/* Must get reference to anon_vma while still holding mmap_lock */
1293	rmap_item->anon_vma = vma->anon_vma;
1294	get_anon_vma(vma->anon_vma);
1295out:
1296	mmap_read_unlock(mm);
1297	return err;
1298}
1299
1300/*
1301 * try_to_merge_two_pages - take two identical pages and prepare them
1302 * to be merged into one page.
1303 *
1304 * This function returns the kpage if we successfully merged two identical
1305 * pages into one ksm page, NULL otherwise.
1306 *
1307 * Note that this function upgrades page to ksm page: if one of the pages
1308 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309 */
1310static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311					   struct page *page,
1312					   struct rmap_item *tree_rmap_item,
1313					   struct page *tree_page)
1314{
1315	int err;
1316
1317	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318	if (!err) {
1319		err = try_to_merge_with_ksm_page(tree_rmap_item,
1320							tree_page, page);
1321		/*
1322		 * If that fails, we have a ksm page with only one pte
1323		 * pointing to it: so break it.
1324		 */
1325		if (err)
1326			break_cow(rmap_item);
1327	}
1328	return err ? NULL : page;
1329}
1330
1331static __always_inline
1332bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333{
1334	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335	/*
1336	 * Check that at least one mapping still exists, otherwise
1337	 * there's no much point to merge and share with this
1338	 * stable_node, as the underlying tree_page of the other
1339	 * sharer is going to be freed soon.
1340	 */
1341	return stable_node->rmap_hlist_len &&
1342		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1343}
1344
1345static __always_inline
1346bool is_page_sharing_candidate(struct stable_node *stable_node)
1347{
1348	return __is_page_sharing_candidate(stable_node, 0);
1349}
1350
1351static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1352				    struct stable_node **_stable_node,
1353				    struct rb_root *root,
1354				    bool prune_stale_stable_nodes)
1355{
1356	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1357	struct hlist_node *hlist_safe;
1358	struct page *_tree_page, *tree_page = NULL;
1359	int nr = 0;
1360	int found_rmap_hlist_len;
1361
1362	if (!prune_stale_stable_nodes ||
1363	    time_before(jiffies, stable_node->chain_prune_time +
1364			msecs_to_jiffies(
1365				ksm_stable_node_chains_prune_millisecs)))
1366		prune_stale_stable_nodes = false;
1367	else
1368		stable_node->chain_prune_time = jiffies;
1369
1370	hlist_for_each_entry_safe(dup, hlist_safe,
1371				  &stable_node->hlist, hlist_dup) {
1372		cond_resched();
1373		/*
1374		 * We must walk all stable_node_dup to prune the stale
1375		 * stable nodes during lookup.
1376		 *
1377		 * get_ksm_page can drop the nodes from the
1378		 * stable_node->hlist if they point to freed pages
1379		 * (that's why we do a _safe walk). The "dup"
1380		 * stable_node parameter itself will be freed from
1381		 * under us if it returns NULL.
1382		 */
1383		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1384		if (!_tree_page)
1385			continue;
1386		nr += 1;
1387		if (is_page_sharing_candidate(dup)) {
1388			if (!found ||
1389			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1390				if (found)
1391					put_page(tree_page);
1392				found = dup;
1393				found_rmap_hlist_len = found->rmap_hlist_len;
1394				tree_page = _tree_page;
1395
1396				/* skip put_page for found dup */
1397				if (!prune_stale_stable_nodes)
1398					break;
1399				continue;
1400			}
1401		}
1402		put_page(_tree_page);
1403	}
1404
1405	if (found) {
1406		/*
1407		 * nr is counting all dups in the chain only if
1408		 * prune_stale_stable_nodes is true, otherwise we may
1409		 * break the loop at nr == 1 even if there are
1410		 * multiple entries.
1411		 */
1412		if (prune_stale_stable_nodes && nr == 1) {
1413			/*
1414			 * If there's not just one entry it would
1415			 * corrupt memory, better BUG_ON. In KSM
1416			 * context with no lock held it's not even
1417			 * fatal.
1418			 */
1419			BUG_ON(stable_node->hlist.first->next);
1420
1421			/*
1422			 * There's just one entry and it is below the
1423			 * deduplication limit so drop the chain.
1424			 */
1425			rb_replace_node(&stable_node->node, &found->node,
1426					root);
1427			free_stable_node(stable_node);
1428			ksm_stable_node_chains--;
1429			ksm_stable_node_dups--;
1430			/*
1431			 * NOTE: the caller depends on the stable_node
1432			 * to be equal to stable_node_dup if the chain
1433			 * was collapsed.
1434			 */
1435			*_stable_node = found;
1436			/*
1437			 * Just for robustness, as stable_node is
1438			 * otherwise left as a stable pointer, the
1439			 * compiler shall optimize it away at build
1440			 * time.
1441			 */
1442			stable_node = NULL;
1443		} else if (stable_node->hlist.first != &found->hlist_dup &&
1444			   __is_page_sharing_candidate(found, 1)) {
1445			/*
1446			 * If the found stable_node dup can accept one
1447			 * more future merge (in addition to the one
1448			 * that is underway) and is not at the head of
1449			 * the chain, put it there so next search will
1450			 * be quicker in the !prune_stale_stable_nodes
1451			 * case.
1452			 *
1453			 * NOTE: it would be inaccurate to use nr > 1
1454			 * instead of checking the hlist.first pointer
1455			 * directly, because in the
1456			 * prune_stale_stable_nodes case "nr" isn't
1457			 * the position of the found dup in the chain,
1458			 * but the total number of dups in the chain.
1459			 */
1460			hlist_del(&found->hlist_dup);
1461			hlist_add_head(&found->hlist_dup,
1462				       &stable_node->hlist);
1463		}
1464	}
1465
1466	*_stable_node_dup = found;
1467	return tree_page;
1468}
1469
1470static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1471					       struct rb_root *root)
1472{
1473	if (!is_stable_node_chain(stable_node))
1474		return stable_node;
1475	if (hlist_empty(&stable_node->hlist)) {
1476		free_stable_node_chain(stable_node, root);
1477		return NULL;
1478	}
1479	return hlist_entry(stable_node->hlist.first,
1480			   typeof(*stable_node), hlist_dup);
1481}
1482
1483/*
1484 * Like for get_ksm_page, this function can free the *_stable_node and
1485 * *_stable_node_dup if the returned tree_page is NULL.
1486 *
1487 * It can also free and overwrite *_stable_node with the found
1488 * stable_node_dup if the chain is collapsed (in which case
1489 * *_stable_node will be equal to *_stable_node_dup like if the chain
1490 * never existed). It's up to the caller to verify tree_page is not
1491 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492 *
1493 * *_stable_node_dup is really a second output parameter of this
1494 * function and will be overwritten in all cases, the caller doesn't
1495 * need to initialize it.
1496 */
1497static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1498					struct stable_node **_stable_node,
1499					struct rb_root *root,
1500					bool prune_stale_stable_nodes)
1501{
1502	struct stable_node *stable_node = *_stable_node;
1503	if (!is_stable_node_chain(stable_node)) {
1504		if (is_page_sharing_candidate(stable_node)) {
1505			*_stable_node_dup = stable_node;
1506			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1507		}
1508		/*
1509		 * _stable_node_dup set to NULL means the stable_node
1510		 * reached the ksm_max_page_sharing limit.
1511		 */
1512		*_stable_node_dup = NULL;
1513		return NULL;
1514	}
1515	return stable_node_dup(_stable_node_dup, _stable_node, root,
1516			       prune_stale_stable_nodes);
1517}
1518
1519static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1520						struct stable_node **s_n,
1521						struct rb_root *root)
1522{
1523	return __stable_node_chain(s_n_d, s_n, root, true);
1524}
1525
1526static __always_inline struct page *chain(struct stable_node **s_n_d,
1527					  struct stable_node *s_n,
1528					  struct rb_root *root)
1529{
1530	struct stable_node *old_stable_node = s_n;
1531	struct page *tree_page;
1532
1533	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1534	/* not pruning dups so s_n cannot have changed */
1535	VM_BUG_ON(s_n != old_stable_node);
1536	return tree_page;
1537}
1538
1539/*
1540 * stable_tree_search - search for page inside the stable tree
1541 *
1542 * This function checks if there is a page inside the stable tree
1543 * with identical content to the page that we are scanning right now.
1544 *
1545 * This function returns the stable tree node of identical content if found,
1546 * NULL otherwise.
1547 */
1548static struct page *stable_tree_search(struct page *page)
1549{
1550	int nid;
1551	struct rb_root *root;
1552	struct rb_node **new;
1553	struct rb_node *parent;
1554	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1555	struct stable_node *page_node;
1556
1557	page_node = page_stable_node(page);
1558	if (page_node && page_node->head != &migrate_nodes) {
1559		/* ksm page forked */
1560		get_page(page);
1561		return page;
1562	}
1563
1564	nid = get_kpfn_nid(page_to_pfn(page));
1565	root = root_stable_tree + nid;
1566again:
1567	new = &root->rb_node;
1568	parent = NULL;
1569
1570	while (*new) {
1571		struct page *tree_page;
1572		int ret;
1573
1574		cond_resched();
1575		stable_node = rb_entry(*new, struct stable_node, node);
1576		stable_node_any = NULL;
1577		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1578		/*
1579		 * NOTE: stable_node may have been freed by
1580		 * chain_prune() if the returned stable_node_dup is
1581		 * not NULL. stable_node_dup may have been inserted in
1582		 * the rbtree instead as a regular stable_node (in
1583		 * order to collapse the stable_node chain if a single
1584		 * stable_node dup was found in it). In such case the
1585		 * stable_node is overwritten by the calleee to point
1586		 * to the stable_node_dup that was collapsed in the
1587		 * stable rbtree and stable_node will be equal to
1588		 * stable_node_dup like if the chain never existed.
1589		 */
1590		if (!stable_node_dup) {
1591			/*
1592			 * Either all stable_node dups were full in
1593			 * this stable_node chain, or this chain was
1594			 * empty and should be rb_erased.
1595			 */
1596			stable_node_any = stable_node_dup_any(stable_node,
1597							      root);
1598			if (!stable_node_any) {
1599				/* rb_erase just run */
1600				goto again;
1601			}
1602			/*
1603			 * Take any of the stable_node dups page of
1604			 * this stable_node chain to let the tree walk
1605			 * continue. All KSM pages belonging to the
1606			 * stable_node dups in a stable_node chain
1607			 * have the same content and they're
1608			 * write protected at all times. Any will work
1609			 * fine to continue the walk.
1610			 */
1611			tree_page = get_ksm_page(stable_node_any,
1612						 GET_KSM_PAGE_NOLOCK);
1613		}
1614		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1615		if (!tree_page) {
1616			/*
1617			 * If we walked over a stale stable_node,
1618			 * get_ksm_page() will call rb_erase() and it
1619			 * may rebalance the tree from under us. So
1620			 * restart the search from scratch. Returning
1621			 * NULL would be safe too, but we'd generate
1622			 * false negative insertions just because some
1623			 * stable_node was stale.
1624			 */
1625			goto again;
1626		}
1627
1628		ret = memcmp_pages(page, tree_page);
1629		put_page(tree_page);
1630
1631		parent = *new;
1632		if (ret < 0)
1633			new = &parent->rb_left;
1634		else if (ret > 0)
1635			new = &parent->rb_right;
1636		else {
1637			if (page_node) {
1638				VM_BUG_ON(page_node->head != &migrate_nodes);
1639				/*
1640				 * Test if the migrated page should be merged
1641				 * into a stable node dup. If the mapcount is
1642				 * 1 we can migrate it with another KSM page
1643				 * without adding it to the chain.
1644				 */
1645				if (page_mapcount(page) > 1)
1646					goto chain_append;
1647			}
1648
1649			if (!stable_node_dup) {
1650				/*
1651				 * If the stable_node is a chain and
1652				 * we got a payload match in memcmp
1653				 * but we cannot merge the scanned
1654				 * page in any of the existing
1655				 * stable_node dups because they're
1656				 * all full, we need to wait the
1657				 * scanned page to find itself a match
1658				 * in the unstable tree to create a
1659				 * brand new KSM page to add later to
1660				 * the dups of this stable_node.
1661				 */
1662				return NULL;
1663			}
1664
1665			/*
1666			 * Lock and unlock the stable_node's page (which
1667			 * might already have been migrated) so that page
1668			 * migration is sure to notice its raised count.
1669			 * It would be more elegant to return stable_node
1670			 * than kpage, but that involves more changes.
1671			 */
1672			tree_page = get_ksm_page(stable_node_dup,
1673						 GET_KSM_PAGE_TRYLOCK);
1674
1675			if (PTR_ERR(tree_page) == -EBUSY)
1676				return ERR_PTR(-EBUSY);
1677
1678			if (unlikely(!tree_page))
1679				/*
1680				 * The tree may have been rebalanced,
1681				 * so re-evaluate parent and new.
1682				 */
1683				goto again;
1684			unlock_page(tree_page);
1685
1686			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687			    NUMA(stable_node_dup->nid)) {
1688				put_page(tree_page);
1689				goto replace;
1690			}
1691			return tree_page;
1692		}
1693	}
1694
1695	if (!page_node)
1696		return NULL;
1697
1698	list_del(&page_node->list);
1699	DO_NUMA(page_node->nid = nid);
1700	rb_link_node(&page_node->node, parent, new);
1701	rb_insert_color(&page_node->node, root);
1702out:
1703	if (is_page_sharing_candidate(page_node)) {
1704		get_page(page);
1705		return page;
1706	} else
1707		return NULL;
1708
1709replace:
1710	/*
1711	 * If stable_node was a chain and chain_prune collapsed it,
1712	 * stable_node has been updated to be the new regular
1713	 * stable_node. A collapse of the chain is indistinguishable
1714	 * from the case there was no chain in the stable
1715	 * rbtree. Otherwise stable_node is the chain and
1716	 * stable_node_dup is the dup to replace.
1717	 */
1718	if (stable_node_dup == stable_node) {
1719		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721		/* there is no chain */
1722		if (page_node) {
1723			VM_BUG_ON(page_node->head != &migrate_nodes);
1724			list_del(&page_node->list);
1725			DO_NUMA(page_node->nid = nid);
1726			rb_replace_node(&stable_node_dup->node,
1727					&page_node->node,
1728					root);
1729			if (is_page_sharing_candidate(page_node))
1730				get_page(page);
1731			else
1732				page = NULL;
1733		} else {
1734			rb_erase(&stable_node_dup->node, root);
1735			page = NULL;
1736		}
1737	} else {
1738		VM_BUG_ON(!is_stable_node_chain(stable_node));
1739		__stable_node_dup_del(stable_node_dup);
1740		if (page_node) {
1741			VM_BUG_ON(page_node->head != &migrate_nodes);
1742			list_del(&page_node->list);
1743			DO_NUMA(page_node->nid = nid);
1744			stable_node_chain_add_dup(page_node, stable_node);
1745			if (is_page_sharing_candidate(page_node))
1746				get_page(page);
1747			else
1748				page = NULL;
1749		} else {
1750			page = NULL;
1751		}
1752	}
1753	stable_node_dup->head = &migrate_nodes;
1754	list_add(&stable_node_dup->list, stable_node_dup->head);
1755	return page;
1756
1757chain_append:
1758	/* stable_node_dup could be null if it reached the limit */
1759	if (!stable_node_dup)
1760		stable_node_dup = stable_node_any;
1761	/*
1762	 * If stable_node was a chain and chain_prune collapsed it,
1763	 * stable_node has been updated to be the new regular
1764	 * stable_node. A collapse of the chain is indistinguishable
1765	 * from the case there was no chain in the stable
1766	 * rbtree. Otherwise stable_node is the chain and
1767	 * stable_node_dup is the dup to replace.
1768	 */
1769	if (stable_node_dup == stable_node) {
 
1770		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771		/* chain is missing so create it */
1772		stable_node = alloc_stable_node_chain(stable_node_dup,
1773						      root);
1774		if (!stable_node)
1775			return NULL;
1776	}
1777	/*
1778	 * Add this stable_node dup that was
1779	 * migrated to the stable_node chain
1780	 * of the current nid for this page
1781	 * content.
1782	 */
 
1783	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1784	VM_BUG_ON(page_node->head != &migrate_nodes);
1785	list_del(&page_node->list);
1786	DO_NUMA(page_node->nid = nid);
1787	stable_node_chain_add_dup(page_node, stable_node);
1788	goto out;
1789}
1790
1791/*
1792 * stable_tree_insert - insert stable tree node pointing to new ksm page
1793 * into the stable tree.
1794 *
1795 * This function returns the stable tree node just allocated on success,
1796 * NULL otherwise.
1797 */
1798static struct stable_node *stable_tree_insert(struct page *kpage)
1799{
1800	int nid;
1801	unsigned long kpfn;
1802	struct rb_root *root;
1803	struct rb_node **new;
1804	struct rb_node *parent;
1805	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1806	bool need_chain = false;
1807
1808	kpfn = page_to_pfn(kpage);
1809	nid = get_kpfn_nid(kpfn);
1810	root = root_stable_tree + nid;
1811again:
1812	parent = NULL;
1813	new = &root->rb_node;
1814
1815	while (*new) {
1816		struct page *tree_page;
1817		int ret;
1818
1819		cond_resched();
1820		stable_node = rb_entry(*new, struct stable_node, node);
1821		stable_node_any = NULL;
1822		tree_page = chain(&stable_node_dup, stable_node, root);
1823		if (!stable_node_dup) {
1824			/*
1825			 * Either all stable_node dups were full in
1826			 * this stable_node chain, or this chain was
1827			 * empty and should be rb_erased.
1828			 */
1829			stable_node_any = stable_node_dup_any(stable_node,
1830							      root);
1831			if (!stable_node_any) {
1832				/* rb_erase just run */
1833				goto again;
1834			}
1835			/*
1836			 * Take any of the stable_node dups page of
1837			 * this stable_node chain to let the tree walk
1838			 * continue. All KSM pages belonging to the
1839			 * stable_node dups in a stable_node chain
1840			 * have the same content and they're
1841			 * write protected at all times. Any will work
1842			 * fine to continue the walk.
1843			 */
1844			tree_page = get_ksm_page(stable_node_any,
1845						 GET_KSM_PAGE_NOLOCK);
1846		}
1847		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848		if (!tree_page) {
1849			/*
1850			 * If we walked over a stale stable_node,
1851			 * get_ksm_page() will call rb_erase() and it
1852			 * may rebalance the tree from under us. So
1853			 * restart the search from scratch. Returning
1854			 * NULL would be safe too, but we'd generate
1855			 * false negative insertions just because some
1856			 * stable_node was stale.
1857			 */
1858			goto again;
1859		}
1860
1861		ret = memcmp_pages(kpage, tree_page);
1862		put_page(tree_page);
1863
1864		parent = *new;
1865		if (ret < 0)
1866			new = &parent->rb_left;
1867		else if (ret > 0)
1868			new = &parent->rb_right;
1869		else {
1870			need_chain = true;
1871			break;
1872		}
1873	}
1874
1875	stable_node_dup = alloc_stable_node();
1876	if (!stable_node_dup)
1877		return NULL;
1878
1879	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880	stable_node_dup->kpfn = kpfn;
1881	set_page_stable_node(kpage, stable_node_dup);
1882	stable_node_dup->rmap_hlist_len = 0;
1883	DO_NUMA(stable_node_dup->nid = nid);
1884	if (!need_chain) {
1885		rb_link_node(&stable_node_dup->node, parent, new);
1886		rb_insert_color(&stable_node_dup->node, root);
1887	} else {
1888		if (!is_stable_node_chain(stable_node)) {
1889			struct stable_node *orig = stable_node;
1890			/* chain is missing so create it */
1891			stable_node = alloc_stable_node_chain(orig, root);
1892			if (!stable_node) {
1893				free_stable_node(stable_node_dup);
1894				return NULL;
1895			}
1896		}
1897		stable_node_chain_add_dup(stable_node_dup, stable_node);
1898	}
1899
1900	return stable_node_dup;
1901}
1902
1903/*
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
1917static
1918struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919					      struct page *page,
1920					      struct page **tree_pagep)
1921{
1922	struct rb_node **new;
1923	struct rb_root *root;
1924	struct rb_node *parent = NULL;
1925	int nid;
1926
1927	nid = get_kpfn_nid(page_to_pfn(page));
1928	root = root_unstable_tree + nid;
1929	new = &root->rb_node;
1930
1931	while (*new) {
1932		struct rmap_item *tree_rmap_item;
1933		struct page *tree_page;
1934		int ret;
1935
1936		cond_resched();
1937		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938		tree_page = get_mergeable_page(tree_rmap_item);
1939		if (!tree_page)
1940			return NULL;
1941
1942		/*
1943		 * Don't substitute a ksm page for a forked page.
1944		 */
1945		if (page == tree_page) {
1946			put_page(tree_page);
1947			return NULL;
1948		}
1949
1950		ret = memcmp_pages(page, tree_page);
1951
1952		parent = *new;
1953		if (ret < 0) {
1954			put_page(tree_page);
1955			new = &parent->rb_left;
1956		} else if (ret > 0) {
1957			put_page(tree_page);
1958			new = &parent->rb_right;
1959		} else if (!ksm_merge_across_nodes &&
1960			   page_to_nid(tree_page) != nid) {
1961			/*
1962			 * If tree_page has been migrated to another NUMA node,
1963			 * it will be flushed out and put in the right unstable
1964			 * tree next time: only merge with it when across_nodes.
1965			 */
1966			put_page(tree_page);
1967			return NULL;
1968		} else {
1969			*tree_pagep = tree_page;
1970			return tree_rmap_item;
1971		}
1972	}
1973
1974	rmap_item->address |= UNSTABLE_FLAG;
1975	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976	DO_NUMA(rmap_item->nid = nid);
1977	rb_link_node(&rmap_item->node, parent, new);
1978	rb_insert_color(&rmap_item->node, root);
1979
1980	ksm_pages_unshared++;
1981	return NULL;
1982}
1983
1984/*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989static void stable_tree_append(struct rmap_item *rmap_item,
1990			       struct stable_node *stable_node,
1991			       bool max_page_sharing_bypass)
1992{
1993	/*
1994	 * rmap won't find this mapping if we don't insert the
1995	 * rmap_item in the right stable_node
1996	 * duplicate. page_migration could break later if rmap breaks,
1997	 * so we can as well crash here. We really need to check for
1998	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999	 * for other negative values as an underflow if detected here
2000	 * for the first time (and not when decreasing rmap_hlist_len)
2001	 * would be sign of memory corruption in the stable_node.
2002	 */
2003	BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005	stable_node->rmap_hlist_len++;
2006	if (!max_page_sharing_bypass)
2007		/* possibly non fatal but unexpected overflow, only warn */
2008		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009			     ksm_max_page_sharing);
2010
2011	rmap_item->head = stable_node;
2012	rmap_item->address |= STABLE_FLAG;
2013	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014
2015	if (rmap_item->hlist.next)
2016		ksm_pages_sharing++;
2017	else
2018		ksm_pages_shared++;
2019}
2020
2021/*
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031{
2032	struct mm_struct *mm = rmap_item->mm;
2033	struct rmap_item *tree_rmap_item;
2034	struct page *tree_page = NULL;
2035	struct stable_node *stable_node;
2036	struct page *kpage;
2037	unsigned int checksum;
2038	int err;
2039	bool max_page_sharing_bypass = false;
2040
2041	stable_node = page_stable_node(page);
2042	if (stable_node) {
2043		if (stable_node->head != &migrate_nodes &&
2044		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045		    NUMA(stable_node->nid)) {
2046			stable_node_dup_del(stable_node);
2047			stable_node->head = &migrate_nodes;
2048			list_add(&stable_node->list, stable_node->head);
2049		}
2050		if (stable_node->head != &migrate_nodes &&
2051		    rmap_item->head == stable_node)
2052			return;
2053		/*
2054		 * If it's a KSM fork, allow it to go over the sharing limit
2055		 * without warnings.
2056		 */
2057		if (!is_page_sharing_candidate(stable_node))
2058			max_page_sharing_bypass = true;
2059	}
2060
2061	/* We first start with searching the page inside the stable tree */
2062	kpage = stable_tree_search(page);
2063	if (kpage == page && rmap_item->head == stable_node) {
2064		put_page(kpage);
2065		return;
2066	}
2067
2068	remove_rmap_item_from_tree(rmap_item);
2069
2070	if (kpage) {
2071		if (PTR_ERR(kpage) == -EBUSY)
2072			return;
2073
2074		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075		if (!err) {
2076			/*
2077			 * The page was successfully merged:
2078			 * add its rmap_item to the stable tree.
2079			 */
2080			lock_page(kpage);
2081			stable_tree_append(rmap_item, page_stable_node(kpage),
2082					   max_page_sharing_bypass);
2083			unlock_page(kpage);
2084		}
2085		put_page(kpage);
2086		return;
2087	}
2088
2089	/*
2090	 * If the hash value of the page has changed from the last time
2091	 * we calculated it, this page is changing frequently: therefore we
2092	 * don't want to insert it in the unstable tree, and we don't want
2093	 * to waste our time searching for something identical to it there.
2094	 */
2095	checksum = calc_checksum(page);
2096	if (rmap_item->oldchecksum != checksum) {
2097		rmap_item->oldchecksum = checksum;
2098		return;
2099	}
2100
2101	/*
2102	 * Same checksum as an empty page. We attempt to merge it with the
2103	 * appropriate zero page if the user enabled this via sysfs.
2104	 */
2105	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106		struct vm_area_struct *vma;
2107
2108		mmap_read_lock(mm);
2109		vma = find_mergeable_vma(mm, rmap_item->address);
2110		if (vma) {
2111			err = try_to_merge_one_page(vma, page,
2112					ZERO_PAGE(rmap_item->address));
2113		} else {
2114			/*
2115			 * If the vma is out of date, we do not need to
2116			 * continue.
2117			 */
2118			err = 0;
2119		}
2120		mmap_read_unlock(mm);
2121		/*
2122		 * In case of failure, the page was not really empty, so we
2123		 * need to continue. Otherwise we're done.
2124		 */
2125		if (!err)
2126			return;
2127	}
2128	tree_rmap_item =
2129		unstable_tree_search_insert(rmap_item, page, &tree_page);
2130	if (tree_rmap_item) {
2131		bool split;
2132
2133		kpage = try_to_merge_two_pages(rmap_item, page,
2134						tree_rmap_item, tree_page);
2135		/*
2136		 * If both pages we tried to merge belong to the same compound
2137		 * page, then we actually ended up increasing the reference
2138		 * count of the same compound page twice, and split_huge_page
2139		 * failed.
2140		 * Here we set a flag if that happened, and we use it later to
2141		 * try split_huge_page again. Since we call put_page right
2142		 * afterwards, the reference count will be correct and
2143		 * split_huge_page should succeed.
2144		 */
2145		split = PageTransCompound(page)
2146			&& compound_head(page) == compound_head(tree_page);
2147		put_page(tree_page);
2148		if (kpage) {
2149			/*
2150			 * The pages were successfully merged: insert new
2151			 * node in the stable tree and add both rmap_items.
2152			 */
2153			lock_page(kpage);
2154			stable_node = stable_tree_insert(kpage);
2155			if (stable_node) {
2156				stable_tree_append(tree_rmap_item, stable_node,
2157						   false);
2158				stable_tree_append(rmap_item, stable_node,
2159						   false);
2160			}
2161			unlock_page(kpage);
2162
2163			/*
2164			 * If we fail to insert the page into the stable tree,
2165			 * we will have 2 virtual addresses that are pointing
2166			 * to a ksm page left outside the stable tree,
2167			 * in which case we need to break_cow on both.
2168			 */
2169			if (!stable_node) {
2170				break_cow(tree_rmap_item);
2171				break_cow(rmap_item);
2172			}
2173		} else if (split) {
2174			/*
2175			 * We are here if we tried to merge two pages and
2176			 * failed because they both belonged to the same
2177			 * compound page. We will split the page now, but no
2178			 * merging will take place.
2179			 * We do not want to add the cost of a full lock; if
2180			 * the page is locked, it is better to skip it and
2181			 * perhaps try again later.
2182			 */
2183			if (!trylock_page(page))
2184				return;
2185			split_huge_page(page);
2186			unlock_page(page);
2187		}
2188	}
2189}
2190
2191static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192					    struct rmap_item **rmap_list,
2193					    unsigned long addr)
2194{
2195	struct rmap_item *rmap_item;
2196
2197	while (*rmap_list) {
2198		rmap_item = *rmap_list;
2199		if ((rmap_item->address & PAGE_MASK) == addr)
2200			return rmap_item;
2201		if (rmap_item->address > addr)
2202			break;
2203		*rmap_list = rmap_item->rmap_list;
2204		remove_rmap_item_from_tree(rmap_item);
2205		free_rmap_item(rmap_item);
2206	}
2207
2208	rmap_item = alloc_rmap_item();
2209	if (rmap_item) {
2210		/* It has already been zeroed */
2211		rmap_item->mm = mm_slot->mm;
2212		rmap_item->address = addr;
2213		rmap_item->rmap_list = *rmap_list;
2214		*rmap_list = rmap_item;
2215	}
2216	return rmap_item;
2217}
2218
2219static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220{
2221	struct mm_struct *mm;
2222	struct mm_slot *slot;
2223	struct vm_area_struct *vma;
2224	struct rmap_item *rmap_item;
2225	int nid;
2226
2227	if (list_empty(&ksm_mm_head.mm_list))
2228		return NULL;
2229
2230	slot = ksm_scan.mm_slot;
2231	if (slot == &ksm_mm_head) {
2232		/*
2233		 * A number of pages can hang around indefinitely on per-cpu
2234		 * pagevecs, raised page count preventing write_protect_page
2235		 * from merging them.  Though it doesn't really matter much,
2236		 * it is puzzling to see some stuck in pages_volatile until
2237		 * other activity jostles them out, and they also prevented
2238		 * LTP's KSM test from succeeding deterministically; so drain
2239		 * them here (here rather than on entry to ksm_do_scan(),
2240		 * so we don't IPI too often when pages_to_scan is set low).
2241		 */
2242		lru_add_drain_all();
2243
2244		/*
2245		 * Whereas stale stable_nodes on the stable_tree itself
2246		 * get pruned in the regular course of stable_tree_search(),
2247		 * those moved out to the migrate_nodes list can accumulate:
2248		 * so prune them once before each full scan.
2249		 */
2250		if (!ksm_merge_across_nodes) {
2251			struct stable_node *stable_node, *next;
2252			struct page *page;
2253
2254			list_for_each_entry_safe(stable_node, next,
2255						 &migrate_nodes, list) {
2256				page = get_ksm_page(stable_node,
2257						    GET_KSM_PAGE_NOLOCK);
2258				if (page)
2259					put_page(page);
2260				cond_resched();
2261			}
2262		}
2263
2264		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2265			root_unstable_tree[nid] = RB_ROOT;
2266
2267		spin_lock(&ksm_mmlist_lock);
2268		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2269		ksm_scan.mm_slot = slot;
2270		spin_unlock(&ksm_mmlist_lock);
2271		/*
2272		 * Although we tested list_empty() above, a racing __ksm_exit
2273		 * of the last mm on the list may have removed it since then.
2274		 */
2275		if (slot == &ksm_mm_head)
2276			return NULL;
2277next_mm:
2278		ksm_scan.address = 0;
2279		ksm_scan.rmap_list = &slot->rmap_list;
2280	}
2281
2282	mm = slot->mm;
2283	mmap_read_lock(mm);
2284	if (ksm_test_exit(mm))
2285		vma = NULL;
2286	else
2287		vma = find_vma(mm, ksm_scan.address);
2288
2289	for (; vma; vma = vma->vm_next) {
2290		if (!(vma->vm_flags & VM_MERGEABLE))
2291			continue;
2292		if (ksm_scan.address < vma->vm_start)
2293			ksm_scan.address = vma->vm_start;
2294		if (!vma->anon_vma)
2295			ksm_scan.address = vma->vm_end;
2296
2297		while (ksm_scan.address < vma->vm_end) {
2298			if (ksm_test_exit(mm))
2299				break;
2300			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2301			if (IS_ERR_OR_NULL(*page)) {
2302				ksm_scan.address += PAGE_SIZE;
2303				cond_resched();
2304				continue;
2305			}
2306			if (PageAnon(*page)) {
2307				flush_anon_page(vma, *page, ksm_scan.address);
2308				flush_dcache_page(*page);
2309				rmap_item = get_next_rmap_item(slot,
2310					ksm_scan.rmap_list, ksm_scan.address);
2311				if (rmap_item) {
2312					ksm_scan.rmap_list =
2313							&rmap_item->rmap_list;
2314					ksm_scan.address += PAGE_SIZE;
2315				} else
2316					put_page(*page);
2317				mmap_read_unlock(mm);
2318				return rmap_item;
2319			}
2320			put_page(*page);
2321			ksm_scan.address += PAGE_SIZE;
2322			cond_resched();
2323		}
2324	}
2325
2326	if (ksm_test_exit(mm)) {
2327		ksm_scan.address = 0;
2328		ksm_scan.rmap_list = &slot->rmap_list;
2329	}
2330	/*
2331	 * Nuke all the rmap_items that are above this current rmap:
2332	 * because there were no VM_MERGEABLE vmas with such addresses.
2333	 */
2334	remove_trailing_rmap_items(ksm_scan.rmap_list);
2335
2336	spin_lock(&ksm_mmlist_lock);
2337	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2338						struct mm_slot, mm_list);
2339	if (ksm_scan.address == 0) {
2340		/*
2341		 * We've completed a full scan of all vmas, holding mmap_lock
2342		 * throughout, and found no VM_MERGEABLE: so do the same as
2343		 * __ksm_exit does to remove this mm from all our lists now.
2344		 * This applies either when cleaning up after __ksm_exit
2345		 * (but beware: we can reach here even before __ksm_exit),
2346		 * or when all VM_MERGEABLE areas have been unmapped (and
2347		 * mmap_lock then protects against race with MADV_MERGEABLE).
2348		 */
2349		hash_del(&slot->link);
2350		list_del(&slot->mm_list);
2351		spin_unlock(&ksm_mmlist_lock);
2352
2353		free_mm_slot(slot);
2354		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2355		mmap_read_unlock(mm);
2356		mmdrop(mm);
2357	} else {
2358		mmap_read_unlock(mm);
2359		/*
2360		 * mmap_read_unlock(mm) first because after
2361		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2362		 * already have been freed under us by __ksm_exit()
2363		 * because the "mm_slot" is still hashed and
2364		 * ksm_scan.mm_slot doesn't point to it anymore.
2365		 */
2366		spin_unlock(&ksm_mmlist_lock);
2367	}
2368
2369	/* Repeat until we've completed scanning the whole list */
2370	slot = ksm_scan.mm_slot;
2371	if (slot != &ksm_mm_head)
2372		goto next_mm;
2373
2374	ksm_scan.seqnr++;
2375	return NULL;
2376}
2377
2378/**
2379 * ksm_do_scan  - the ksm scanner main worker function.
2380 * @scan_npages:  number of pages we want to scan before we return.
2381 */
2382static void ksm_do_scan(unsigned int scan_npages)
2383{
2384	struct rmap_item *rmap_item;
2385	struct page *page;
2386
2387	while (scan_npages-- && likely(!freezing(current))) {
2388		cond_resched();
2389		rmap_item = scan_get_next_rmap_item(&page);
2390		if (!rmap_item)
2391			return;
2392		cmp_and_merge_page(page, rmap_item);
2393		put_page(page);
2394	}
2395}
2396
2397static int ksmd_should_run(void)
2398{
2399	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2400}
2401
2402static int ksm_scan_thread(void *nothing)
2403{
2404	unsigned int sleep_ms;
2405
2406	set_freezable();
2407	set_user_nice(current, 5);
2408
2409	while (!kthread_should_stop()) {
2410		mutex_lock(&ksm_thread_mutex);
2411		wait_while_offlining();
2412		if (ksmd_should_run())
2413			ksm_do_scan(ksm_thread_pages_to_scan);
2414		mutex_unlock(&ksm_thread_mutex);
2415
2416		try_to_freeze();
2417
2418		if (ksmd_should_run()) {
2419			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2420			wait_event_interruptible_timeout(ksm_iter_wait,
2421				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2422				msecs_to_jiffies(sleep_ms));
2423		} else {
2424			wait_event_freezable(ksm_thread_wait,
2425				ksmd_should_run() || kthread_should_stop());
2426		}
2427	}
2428	return 0;
2429}
2430
2431int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2432		unsigned long end, int advice, unsigned long *vm_flags)
2433{
2434	struct mm_struct *mm = vma->vm_mm;
2435	int err;
2436
2437	switch (advice) {
2438	case MADV_MERGEABLE:
2439		/*
2440		 * Be somewhat over-protective for now!
2441		 */
2442		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2443				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2444				 VM_HUGETLB | VM_MIXEDMAP))
2445			return 0;		/* just ignore the advice */
2446
2447		if (vma_is_dax(vma))
2448			return 0;
2449
2450#ifdef VM_SAO
2451		if (*vm_flags & VM_SAO)
2452			return 0;
2453#endif
2454#ifdef VM_SPARC_ADI
2455		if (*vm_flags & VM_SPARC_ADI)
2456			return 0;
2457#endif
2458
2459		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2460			err = __ksm_enter(mm);
2461			if (err)
2462				return err;
2463		}
2464
2465		*vm_flags |= VM_MERGEABLE;
2466		break;
2467
2468	case MADV_UNMERGEABLE:
2469		if (!(*vm_flags & VM_MERGEABLE))
2470			return 0;		/* just ignore the advice */
2471
2472		if (vma->anon_vma) {
2473			err = unmerge_ksm_pages(vma, start, end);
2474			if (err)
2475				return err;
2476		}
2477
2478		*vm_flags &= ~VM_MERGEABLE;
2479		break;
2480	}
2481
2482	return 0;
2483}
2484EXPORT_SYMBOL_GPL(ksm_madvise);
2485
2486int __ksm_enter(struct mm_struct *mm)
2487{
2488	struct mm_slot *mm_slot;
2489	int needs_wakeup;
2490
2491	mm_slot = alloc_mm_slot();
2492	if (!mm_slot)
2493		return -ENOMEM;
2494
2495	/* Check ksm_run too?  Would need tighter locking */
2496	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497
2498	spin_lock(&ksm_mmlist_lock);
2499	insert_to_mm_slots_hash(mm, mm_slot);
2500	/*
2501	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2502	 * insert just behind the scanning cursor, to let the area settle
2503	 * down a little; when fork is followed by immediate exec, we don't
2504	 * want ksmd to waste time setting up and tearing down an rmap_list.
2505	 *
2506	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2507	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2508	 * missed: then we might as well insert at the end of the list.
2509	 */
2510	if (ksm_run & KSM_RUN_UNMERGE)
2511		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512	else
2513		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2514	spin_unlock(&ksm_mmlist_lock);
2515
2516	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2517	mmgrab(mm);
2518
2519	if (needs_wakeup)
2520		wake_up_interruptible(&ksm_thread_wait);
2521
2522	return 0;
2523}
2524
2525void __ksm_exit(struct mm_struct *mm)
2526{
2527	struct mm_slot *mm_slot;
2528	int easy_to_free = 0;
2529
2530	/*
2531	 * This process is exiting: if it's straightforward (as is the
2532	 * case when ksmd was never running), free mm_slot immediately.
2533	 * But if it's at the cursor or has rmap_items linked to it, use
2534	 * mmap_lock to synchronize with any break_cows before pagetables
2535	 * are freed, and leave the mm_slot on the list for ksmd to free.
2536	 * Beware: ksm may already have noticed it exiting and freed the slot.
2537	 */
2538
2539	spin_lock(&ksm_mmlist_lock);
2540	mm_slot = get_mm_slot(mm);
2541	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2542		if (!mm_slot->rmap_list) {
2543			hash_del(&mm_slot->link);
2544			list_del(&mm_slot->mm_list);
2545			easy_to_free = 1;
2546		} else {
2547			list_move(&mm_slot->mm_list,
2548				  &ksm_scan.mm_slot->mm_list);
2549		}
2550	}
2551	spin_unlock(&ksm_mmlist_lock);
2552
2553	if (easy_to_free) {
2554		free_mm_slot(mm_slot);
2555		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556		mmdrop(mm);
2557	} else if (mm_slot) {
2558		mmap_write_lock(mm);
2559		mmap_write_unlock(mm);
2560	}
2561}
2562
2563struct page *ksm_might_need_to_copy(struct page *page,
2564			struct vm_area_struct *vma, unsigned long address)
2565{
2566	struct anon_vma *anon_vma = page_anon_vma(page);
2567	struct page *new_page;
2568
2569	if (PageKsm(page)) {
2570		if (page_stable_node(page) &&
2571		    !(ksm_run & KSM_RUN_UNMERGE))
2572			return page;	/* no need to copy it */
2573	} else if (!anon_vma) {
2574		return page;		/* no need to copy it */
2575	} else if (anon_vma->root == vma->anon_vma->root &&
2576		 page->index == linear_page_index(vma, address)) {
2577		return page;		/* still no need to copy it */
2578	}
2579	if (!PageUptodate(page))
2580		return page;		/* let do_swap_page report the error */
2581
2582	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2583	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2584		put_page(new_page);
2585		new_page = NULL;
2586	}
2587	if (new_page) {
2588		copy_user_highpage(new_page, page, address, vma);
2589
2590		SetPageDirty(new_page);
2591		__SetPageUptodate(new_page);
2592		__SetPageLocked(new_page);
2593	}
2594
2595	return new_page;
2596}
2597
2598void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2599{
2600	struct stable_node *stable_node;
2601	struct rmap_item *rmap_item;
2602	int search_new_forks = 0;
2603
2604	VM_BUG_ON_PAGE(!PageKsm(page), page);
2605
2606	/*
2607	 * Rely on the page lock to protect against concurrent modifications
2608	 * to that page's node of the stable tree.
2609	 */
2610	VM_BUG_ON_PAGE(!PageLocked(page), page);
2611
2612	stable_node = page_stable_node(page);
2613	if (!stable_node)
2614		return;
2615again:
2616	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2617		struct anon_vma *anon_vma = rmap_item->anon_vma;
2618		struct anon_vma_chain *vmac;
2619		struct vm_area_struct *vma;
2620
2621		cond_resched();
2622		anon_vma_lock_read(anon_vma);
2623		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2624					       0, ULONG_MAX) {
2625			unsigned long addr;
2626
2627			cond_resched();
2628			vma = vmac->vma;
2629
2630			/* Ignore the stable/unstable/sqnr flags */
2631			addr = rmap_item->address & PAGE_MASK;
2632
2633			if (addr < vma->vm_start || addr >= vma->vm_end)
2634				continue;
2635			/*
2636			 * Initially we examine only the vma which covers this
2637			 * rmap_item; but later, if there is still work to do,
2638			 * we examine covering vmas in other mms: in case they
2639			 * were forked from the original since ksmd passed.
2640			 */
2641			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2642				continue;
2643
2644			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2645				continue;
2646
2647			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
 
2648				anon_vma_unlock_read(anon_vma);
2649				return;
2650			}
2651			if (rwc->done && rwc->done(page)) {
2652				anon_vma_unlock_read(anon_vma);
2653				return;
2654			}
2655		}
2656		anon_vma_unlock_read(anon_vma);
2657	}
2658	if (!search_new_forks++)
2659		goto again;
2660}
2661
2662#ifdef CONFIG_MIGRATION
2663void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664{
2665	struct stable_node *stable_node;
2666
2667	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670
2671	stable_node = page_stable_node(newpage);
2672	if (stable_node) {
2673		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674		stable_node->kpfn = page_to_pfn(newpage);
2675		/*
2676		 * newpage->mapping was set in advance; now we need smp_wmb()
2677		 * to make sure that the new stable_node->kpfn is visible
2678		 * to get_ksm_page() before it can see that oldpage->mapping
2679		 * has gone stale (or that PageSwapCache has been cleared).
2680		 */
2681		smp_wmb();
2682		set_page_stable_node(oldpage, NULL);
2683	}
2684}
2685#endif /* CONFIG_MIGRATION */
2686
2687#ifdef CONFIG_MEMORY_HOTREMOVE
2688static void wait_while_offlining(void)
2689{
2690	while (ksm_run & KSM_RUN_OFFLINE) {
2691		mutex_unlock(&ksm_thread_mutex);
2692		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693			    TASK_UNINTERRUPTIBLE);
2694		mutex_lock(&ksm_thread_mutex);
2695	}
2696}
2697
2698static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699					 unsigned long start_pfn,
2700					 unsigned long end_pfn)
2701{
2702	if (stable_node->kpfn >= start_pfn &&
2703	    stable_node->kpfn < end_pfn) {
2704		/*
2705		 * Don't get_ksm_page, page has already gone:
2706		 * which is why we keep kpfn instead of page*
2707		 */
2708		remove_node_from_stable_tree(stable_node);
2709		return true;
2710	}
2711	return false;
2712}
2713
2714static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715					   unsigned long start_pfn,
2716					   unsigned long end_pfn,
2717					   struct rb_root *root)
2718{
2719	struct stable_node *dup;
2720	struct hlist_node *hlist_safe;
2721
2722	if (!is_stable_node_chain(stable_node)) {
2723		VM_BUG_ON(is_stable_node_dup(stable_node));
2724		return stable_node_dup_remove_range(stable_node, start_pfn,
2725						    end_pfn);
2726	}
2727
2728	hlist_for_each_entry_safe(dup, hlist_safe,
2729				  &stable_node->hlist, hlist_dup) {
2730		VM_BUG_ON(!is_stable_node_dup(dup));
2731		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732	}
2733	if (hlist_empty(&stable_node->hlist)) {
2734		free_stable_node_chain(stable_node, root);
2735		return true; /* notify caller that tree was rebalanced */
2736	} else
2737		return false;
2738}
2739
2740static void ksm_check_stable_tree(unsigned long start_pfn,
2741				  unsigned long end_pfn)
2742{
2743	struct stable_node *stable_node, *next;
2744	struct rb_node *node;
2745	int nid;
2746
2747	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748		node = rb_first(root_stable_tree + nid);
2749		while (node) {
2750			stable_node = rb_entry(node, struct stable_node, node);
2751			if (stable_node_chain_remove_range(stable_node,
2752							   start_pfn, end_pfn,
2753							   root_stable_tree +
2754							   nid))
2755				node = rb_first(root_stable_tree + nid);
2756			else
2757				node = rb_next(node);
2758			cond_resched();
2759		}
2760	}
2761	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762		if (stable_node->kpfn >= start_pfn &&
2763		    stable_node->kpfn < end_pfn)
2764			remove_node_from_stable_tree(stable_node);
2765		cond_resched();
2766	}
2767}
2768
2769static int ksm_memory_callback(struct notifier_block *self,
2770			       unsigned long action, void *arg)
2771{
2772	struct memory_notify *mn = arg;
2773
2774	switch (action) {
2775	case MEM_GOING_OFFLINE:
2776		/*
2777		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778		 * and remove_all_stable_nodes() while memory is going offline:
2779		 * it is unsafe for them to touch the stable tree at this time.
2780		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2781		 * which do not need the ksm_thread_mutex are all safe.
2782		 */
2783		mutex_lock(&ksm_thread_mutex);
2784		ksm_run |= KSM_RUN_OFFLINE;
2785		mutex_unlock(&ksm_thread_mutex);
2786		break;
2787
2788	case MEM_OFFLINE:
2789		/*
2790		 * Most of the work is done by page migration; but there might
2791		 * be a few stable_nodes left over, still pointing to struct
2792		 * pages which have been offlined: prune those from the tree,
2793		 * otherwise get_ksm_page() might later try to access a
2794		 * non-existent struct page.
2795		 */
2796		ksm_check_stable_tree(mn->start_pfn,
2797				      mn->start_pfn + mn->nr_pages);
2798		fallthrough;
 
2799	case MEM_CANCEL_OFFLINE:
2800		mutex_lock(&ksm_thread_mutex);
2801		ksm_run &= ~KSM_RUN_OFFLINE;
2802		mutex_unlock(&ksm_thread_mutex);
2803
2804		smp_mb();	/* wake_up_bit advises this */
2805		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2806		break;
2807	}
2808	return NOTIFY_OK;
2809}
2810#else
2811static void wait_while_offlining(void)
2812{
2813}
2814#endif /* CONFIG_MEMORY_HOTREMOVE */
2815
2816#ifdef CONFIG_SYSFS
2817/*
2818 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2819 */
2820
2821#define KSM_ATTR_RO(_name) \
2822	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2823#define KSM_ATTR(_name) \
2824	static struct kobj_attribute _name##_attr = \
2825		__ATTR(_name, 0644, _name##_show, _name##_store)
2826
2827static ssize_t sleep_millisecs_show(struct kobject *kobj,
2828				    struct kobj_attribute *attr, char *buf)
2829{
2830	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2831}
2832
2833static ssize_t sleep_millisecs_store(struct kobject *kobj,
2834				     struct kobj_attribute *attr,
2835				     const char *buf, size_t count)
2836{
2837	unsigned int msecs;
2838	int err;
2839
2840	err = kstrtouint(buf, 10, &msecs);
2841	if (err)
2842		return -EINVAL;
2843
2844	ksm_thread_sleep_millisecs = msecs;
2845	wake_up_interruptible(&ksm_iter_wait);
2846
2847	return count;
2848}
2849KSM_ATTR(sleep_millisecs);
2850
2851static ssize_t pages_to_scan_show(struct kobject *kobj,
2852				  struct kobj_attribute *attr, char *buf)
2853{
2854	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2855}
2856
2857static ssize_t pages_to_scan_store(struct kobject *kobj,
2858				   struct kobj_attribute *attr,
2859				   const char *buf, size_t count)
2860{
2861	unsigned int nr_pages;
2862	int err;
 
2863
2864	err = kstrtouint(buf, 10, &nr_pages);
2865	if (err)
2866		return -EINVAL;
2867
2868	ksm_thread_pages_to_scan = nr_pages;
2869
2870	return count;
2871}
2872KSM_ATTR(pages_to_scan);
2873
2874static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875			char *buf)
2876{
2877	return sysfs_emit(buf, "%lu\n", ksm_run);
2878}
2879
2880static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881			 const char *buf, size_t count)
2882{
2883	unsigned int flags;
2884	int err;
 
2885
2886	err = kstrtouint(buf, 10, &flags);
2887	if (err)
2888		return -EINVAL;
2889	if (flags > KSM_RUN_UNMERGE)
2890		return -EINVAL;
2891
2892	/*
2893	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895	 * breaking COW to free the pages_shared (but leaves mm_slots
2896	 * on the list for when ksmd may be set running again).
2897	 */
2898
2899	mutex_lock(&ksm_thread_mutex);
2900	wait_while_offlining();
2901	if (ksm_run != flags) {
2902		ksm_run = flags;
2903		if (flags & KSM_RUN_UNMERGE) {
2904			set_current_oom_origin();
2905			err = unmerge_and_remove_all_rmap_items();
2906			clear_current_oom_origin();
2907			if (err) {
2908				ksm_run = KSM_RUN_STOP;
2909				count = err;
2910			}
2911		}
2912	}
2913	mutex_unlock(&ksm_thread_mutex);
2914
2915	if (flags & KSM_RUN_MERGE)
2916		wake_up_interruptible(&ksm_thread_wait);
2917
2918	return count;
2919}
2920KSM_ATTR(run);
2921
2922#ifdef CONFIG_NUMA
2923static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924				       struct kobj_attribute *attr, char *buf)
2925{
2926	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2927}
2928
2929static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930				   struct kobj_attribute *attr,
2931				   const char *buf, size_t count)
2932{
2933	int err;
2934	unsigned long knob;
2935
2936	err = kstrtoul(buf, 10, &knob);
2937	if (err)
2938		return err;
2939	if (knob > 1)
2940		return -EINVAL;
2941
2942	mutex_lock(&ksm_thread_mutex);
2943	wait_while_offlining();
2944	if (ksm_merge_across_nodes != knob) {
2945		if (ksm_pages_shared || remove_all_stable_nodes())
2946			err = -EBUSY;
2947		else if (root_stable_tree == one_stable_tree) {
2948			struct rb_root *buf;
2949			/*
2950			 * This is the first time that we switch away from the
2951			 * default of merging across nodes: must now allocate
2952			 * a buffer to hold as many roots as may be needed.
2953			 * Allocate stable and unstable together:
2954			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2955			 */
2956			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957				      GFP_KERNEL);
2958			/* Let us assume that RB_ROOT is NULL is zero */
2959			if (!buf)
2960				err = -ENOMEM;
2961			else {
2962				root_stable_tree = buf;
2963				root_unstable_tree = buf + nr_node_ids;
2964				/* Stable tree is empty but not the unstable */
2965				root_unstable_tree[0] = one_unstable_tree[0];
2966			}
2967		}
2968		if (!err) {
2969			ksm_merge_across_nodes = knob;
2970			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971		}
2972	}
2973	mutex_unlock(&ksm_thread_mutex);
2974
2975	return err ? err : count;
2976}
2977KSM_ATTR(merge_across_nodes);
2978#endif
2979
2980static ssize_t use_zero_pages_show(struct kobject *kobj,
2981				   struct kobj_attribute *attr, char *buf)
2982{
2983	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984}
2985static ssize_t use_zero_pages_store(struct kobject *kobj,
2986				   struct kobj_attribute *attr,
2987				   const char *buf, size_t count)
2988{
2989	int err;
2990	bool value;
2991
2992	err = kstrtobool(buf, &value);
2993	if (err)
2994		return -EINVAL;
2995
2996	ksm_use_zero_pages = value;
2997
2998	return count;
2999}
3000KSM_ATTR(use_zero_pages);
3001
3002static ssize_t max_page_sharing_show(struct kobject *kobj,
3003				     struct kobj_attribute *attr, char *buf)
3004{
3005	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3006}
3007
3008static ssize_t max_page_sharing_store(struct kobject *kobj,
3009				      struct kobj_attribute *attr,
3010				      const char *buf, size_t count)
3011{
3012	int err;
3013	int knob;
3014
3015	err = kstrtoint(buf, 10, &knob);
3016	if (err)
3017		return err;
3018	/*
3019	 * When a KSM page is created it is shared by 2 mappings. This
3020	 * being a signed comparison, it implicitly verifies it's not
3021	 * negative.
3022	 */
3023	if (knob < 2)
3024		return -EINVAL;
3025
3026	if (READ_ONCE(ksm_max_page_sharing) == knob)
3027		return count;
3028
3029	mutex_lock(&ksm_thread_mutex);
3030	wait_while_offlining();
3031	if (ksm_max_page_sharing != knob) {
3032		if (ksm_pages_shared || remove_all_stable_nodes())
3033			err = -EBUSY;
3034		else
3035			ksm_max_page_sharing = knob;
3036	}
3037	mutex_unlock(&ksm_thread_mutex);
3038
3039	return err ? err : count;
3040}
3041KSM_ATTR(max_page_sharing);
3042
3043static ssize_t pages_shared_show(struct kobject *kobj,
3044				 struct kobj_attribute *attr, char *buf)
3045{
3046	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047}
3048KSM_ATTR_RO(pages_shared);
3049
3050static ssize_t pages_sharing_show(struct kobject *kobj,
3051				  struct kobj_attribute *attr, char *buf)
3052{
3053	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054}
3055KSM_ATTR_RO(pages_sharing);
3056
3057static ssize_t pages_unshared_show(struct kobject *kobj,
3058				   struct kobj_attribute *attr, char *buf)
3059{
3060	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061}
3062KSM_ATTR_RO(pages_unshared);
3063
3064static ssize_t pages_volatile_show(struct kobject *kobj,
3065				   struct kobj_attribute *attr, char *buf)
3066{
3067	long ksm_pages_volatile;
3068
3069	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070				- ksm_pages_sharing - ksm_pages_unshared;
3071	/*
3072	 * It was not worth any locking to calculate that statistic,
3073	 * but it might therefore sometimes be negative: conceal that.
3074	 */
3075	if (ksm_pages_volatile < 0)
3076		ksm_pages_volatile = 0;
3077	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078}
3079KSM_ATTR_RO(pages_volatile);
3080
3081static ssize_t stable_node_dups_show(struct kobject *kobj,
3082				     struct kobj_attribute *attr, char *buf)
3083{
3084	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085}
3086KSM_ATTR_RO(stable_node_dups);
3087
3088static ssize_t stable_node_chains_show(struct kobject *kobj,
3089				       struct kobj_attribute *attr, char *buf)
3090{
3091	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092}
3093KSM_ATTR_RO(stable_node_chains);
3094
3095static ssize_t
3096stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097					struct kobj_attribute *attr,
3098					char *buf)
3099{
3100	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101}
3102
3103static ssize_t
3104stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105					 struct kobj_attribute *attr,
3106					 const char *buf, size_t count)
3107{
3108	unsigned long msecs;
3109	int err;
3110
3111	err = kstrtoul(buf, 10, &msecs);
3112	if (err || msecs > UINT_MAX)
3113		return -EINVAL;
3114
3115	ksm_stable_node_chains_prune_millisecs = msecs;
3116
3117	return count;
3118}
3119KSM_ATTR(stable_node_chains_prune_millisecs);
3120
3121static ssize_t full_scans_show(struct kobject *kobj,
3122			       struct kobj_attribute *attr, char *buf)
3123{
3124	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125}
3126KSM_ATTR_RO(full_scans);
3127
3128static struct attribute *ksm_attrs[] = {
3129	&sleep_millisecs_attr.attr,
3130	&pages_to_scan_attr.attr,
3131	&run_attr.attr,
3132	&pages_shared_attr.attr,
3133	&pages_sharing_attr.attr,
3134	&pages_unshared_attr.attr,
3135	&pages_volatile_attr.attr,
3136	&full_scans_attr.attr,
3137#ifdef CONFIG_NUMA
3138	&merge_across_nodes_attr.attr,
3139#endif
3140	&max_page_sharing_attr.attr,
3141	&stable_node_chains_attr.attr,
3142	&stable_node_dups_attr.attr,
3143	&stable_node_chains_prune_millisecs_attr.attr,
3144	&use_zero_pages_attr.attr,
3145	NULL,
3146};
3147
3148static const struct attribute_group ksm_attr_group = {
3149	.attrs = ksm_attrs,
3150	.name = "ksm",
3151};
3152#endif /* CONFIG_SYSFS */
3153
3154static int __init ksm_init(void)
3155{
3156	struct task_struct *ksm_thread;
3157	int err;
3158
3159	/* The correct value depends on page size and endianness */
3160	zero_checksum = calc_checksum(ZERO_PAGE(0));
3161	/* Default to false for backwards compatibility */
3162	ksm_use_zero_pages = false;
3163
3164	err = ksm_slab_init();
3165	if (err)
3166		goto out;
3167
3168	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169	if (IS_ERR(ksm_thread)) {
3170		pr_err("ksm: creating kthread failed\n");
3171		err = PTR_ERR(ksm_thread);
3172		goto out_free;
3173	}
3174
3175#ifdef CONFIG_SYSFS
3176	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177	if (err) {
3178		pr_err("ksm: register sysfs failed\n");
3179		kthread_stop(ksm_thread);
3180		goto out_free;
3181	}
3182#else
3183	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3184
3185#endif /* CONFIG_SYSFS */
3186
3187#ifdef CONFIG_MEMORY_HOTREMOVE
3188	/* There is no significance to this priority 100 */
3189	hotplug_memory_notifier(ksm_memory_callback, 100);
3190#endif
3191	return 0;
3192
3193out_free:
3194	ksm_slab_free();
3195out:
3196	return err;
3197}
3198subsys_initcall(ksm_init);