Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/coredump.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/jhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42
  43#include <asm/tlbflush.h>
  44#include "internal.h"
  45
  46#ifdef CONFIG_NUMA
  47#define NUMA(x)		(x)
  48#define DO_NUMA(x)	do { (x); } while (0)
  49#else
  50#define NUMA(x)		(0)
  51#define DO_NUMA(x)	do { } while (0)
  52#endif
  53
  54/*
  55 * A few notes about the KSM scanning process,
  56 * to make it easier to understand the data structures below:
  57 *
  58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  59 * contents into a data structure that holds pointers to the pages' locations.
  60 *
  61 * Since the contents of the pages may change at any moment, KSM cannot just
  62 * insert the pages into a normal sorted tree and expect it to find anything.
  63 * Therefore KSM uses two data structures - the stable and the unstable tree.
  64 *
  65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  66 * by their contents.  Because each such page is write-protected, searching on
  67 * this tree is fully assured to be working (except when pages are unmapped),
  68 * and therefore this tree is called the stable tree.
  69 *
  70 * In addition to the stable tree, KSM uses a second data structure called the
  71 * unstable tree: this tree holds pointers to pages which have been found to
  72 * be "unchanged for a period of time".  The unstable tree sorts these pages
  73 * by their contents, but since they are not write-protected, KSM cannot rely
  74 * upon the unstable tree to work correctly - the unstable tree is liable to
  75 * be corrupted as its contents are modified, and so it is called unstable.
  76 *
  77 * KSM solves this problem by several techniques:
  78 *
  79 * 1) The unstable tree is flushed every time KSM completes scanning all
  80 *    memory areas, and then the tree is rebuilt again from the beginning.
  81 * 2) KSM will only insert into the unstable tree, pages whose hash value
  82 *    has not changed since the previous scan of all memory areas.
  83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  84 *    colors of the nodes and not on their contents, assuring that even when
  85 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  86 *    remains the same (also, searching and inserting nodes in an rbtree uses
  87 *    the same algorithm, so we have no overhead when we flush and rebuild).
  88 * 4) KSM never flushes the stable tree, which means that even if it were to
  89 *    take 10 attempts to find a page in the unstable tree, once it is found,
  90 *    it is secured in the stable tree.  (When we scan a new page, we first
  91 *    compare it against the stable tree, and then against the unstable tree.)
  92 *
  93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  94 * stable trees and multiple unstable trees: one of each for each NUMA node.
  95 */
  96
  97/**
  98 * struct mm_slot - ksm information per mm that is being scanned
  99 * @link: link to the mm_slots hash list
 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 102 * @mm: the mm that this information is valid for
 103 */
 104struct mm_slot {
 105	struct hlist_node link;
 106	struct list_head mm_list;
 107	struct rmap_item *rmap_list;
 108	struct mm_struct *mm;
 109};
 110
 111/**
 112 * struct ksm_scan - cursor for scanning
 113 * @mm_slot: the current mm_slot we are scanning
 114 * @address: the next address inside that to be scanned
 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 116 * @seqnr: count of completed full scans (needed when removing unstable node)
 117 *
 118 * There is only the one ksm_scan instance of this cursor structure.
 119 */
 120struct ksm_scan {
 121	struct mm_slot *mm_slot;
 122	unsigned long address;
 123	struct rmap_item **rmap_list;
 124	unsigned long seqnr;
 125};
 126
 127/**
 128 * struct stable_node - node of the stable rbtree
 129 * @node: rb node of this ksm page in the stable tree
 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
 133 * @hlist: hlist head of rmap_items using this ksm page
 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 135 * @chain_prune_time: time of the last full garbage collection
 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 138 */
 139struct stable_node {
 140	union {
 141		struct rb_node node;	/* when node of stable tree */
 142		struct {		/* when listed for migration */
 143			struct list_head *head;
 144			struct {
 145				struct hlist_node hlist_dup;
 146				struct list_head list;
 147			};
 148		};
 149	};
 150	struct hlist_head hlist;
 151	union {
 152		unsigned long kpfn;
 153		unsigned long chain_prune_time;
 154	};
 155	/*
 156	 * STABLE_NODE_CHAIN can be any negative number in
 157	 * rmap_hlist_len negative range, but better not -1 to be able
 158	 * to reliably detect underflows.
 159	 */
 160#define STABLE_NODE_CHAIN -1024
 161	int rmap_hlist_len;
 162#ifdef CONFIG_NUMA
 163	int nid;
 164#endif
 165};
 166
 167/**
 168 * struct rmap_item - reverse mapping item for virtual addresses
 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 172 * @mm: the memory structure this rmap_item is pointing into
 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 174 * @oldchecksum: previous checksum of the page at that virtual address
 175 * @node: rb node of this rmap_item in the unstable tree
 176 * @head: pointer to stable_node heading this list in the stable tree
 177 * @hlist: link into hlist of rmap_items hanging off that stable_node
 178 */
 179struct rmap_item {
 180	struct rmap_item *rmap_list;
 181	union {
 182		struct anon_vma *anon_vma;	/* when stable */
 183#ifdef CONFIG_NUMA
 184		int nid;		/* when node of unstable tree */
 185#endif
 186	};
 187	struct mm_struct *mm;
 188	unsigned long address;		/* + low bits used for flags below */
 189	unsigned int oldchecksum;	/* when unstable */
 190	union {
 191		struct rb_node node;	/* when node of unstable tree */
 192		struct {		/* when listed from stable tree */
 193			struct stable_node *head;
 194			struct hlist_node hlist;
 195		};
 196	};
 197};
 198
 199#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 200#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 201#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 202
 203/* The stable and unstable tree heads */
 204static struct rb_root one_stable_tree[1] = { RB_ROOT };
 205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 206static struct rb_root *root_stable_tree = one_stable_tree;
 207static struct rb_root *root_unstable_tree = one_unstable_tree;
 208
 209/* Recently migrated nodes of stable tree, pending proper placement */
 210static LIST_HEAD(migrate_nodes);
 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 212
 213#define MM_SLOTS_HASH_BITS 10
 214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 215
 216static struct mm_slot ksm_mm_head = {
 217	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 218};
 219static struct ksm_scan ksm_scan = {
 220	.mm_slot = &ksm_mm_head,
 221};
 222
 223static struct kmem_cache *rmap_item_cache;
 224static struct kmem_cache *stable_node_cache;
 225static struct kmem_cache *mm_slot_cache;
 226
 227/* The number of nodes in the stable tree */
 228static unsigned long ksm_pages_shared;
 229
 230/* The number of page slots additionally sharing those nodes */
 231static unsigned long ksm_pages_sharing;
 232
 233/* The number of nodes in the unstable tree */
 234static unsigned long ksm_pages_unshared;
 235
 236/* The number of rmap_items in use: to calculate pages_volatile */
 237static unsigned long ksm_rmap_items;
 238
 239/* The number of stable_node chains */
 240static unsigned long ksm_stable_node_chains;
 241
 242/* The number of stable_node dups linked to the stable_node chains */
 243static unsigned long ksm_stable_node_dups;
 244
 245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 246static int ksm_stable_node_chains_prune_millisecs = 2000;
 247
 248/* Maximum number of page slots sharing a stable node */
 249static int ksm_max_page_sharing = 256;
 250
 251/* Number of pages ksmd should scan in one batch */
 252static unsigned int ksm_thread_pages_to_scan = 100;
 253
 254/* Milliseconds ksmd should sleep between batches */
 255static unsigned int ksm_thread_sleep_millisecs = 20;
 256
 257/* Checksum of an empty (zeroed) page */
 258static unsigned int zero_checksum __read_mostly;
 259
 260/* Whether to merge empty (zeroed) pages with actual zero pages */
 261static bool ksm_use_zero_pages __read_mostly;
 262
 263#ifdef CONFIG_NUMA
 264/* Zeroed when merging across nodes is not allowed */
 265static unsigned int ksm_merge_across_nodes = 1;
 266static int ksm_nr_node_ids = 1;
 267#else
 268#define ksm_merge_across_nodes	1U
 269#define ksm_nr_node_ids		1
 270#endif
 271
 272#define KSM_RUN_STOP	0
 273#define KSM_RUN_MERGE	1
 274#define KSM_RUN_UNMERGE	2
 275#define KSM_RUN_OFFLINE	4
 276static unsigned long ksm_run = KSM_RUN_STOP;
 277static void wait_while_offlining(void);
 278
 279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 280static DEFINE_MUTEX(ksm_thread_mutex);
 281static DEFINE_SPINLOCK(ksm_mmlist_lock);
 282
 283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 284		sizeof(struct __struct), __alignof__(struct __struct),\
 285		(__flags), NULL)
 286
 287static int __init ksm_slab_init(void)
 288{
 289	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 290	if (!rmap_item_cache)
 291		goto out;
 292
 293	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 294	if (!stable_node_cache)
 295		goto out_free1;
 296
 297	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 298	if (!mm_slot_cache)
 299		goto out_free2;
 300
 301	return 0;
 302
 303out_free2:
 304	kmem_cache_destroy(stable_node_cache);
 305out_free1:
 306	kmem_cache_destroy(rmap_item_cache);
 307out:
 308	return -ENOMEM;
 309}
 310
 311static void __init ksm_slab_free(void)
 312{
 313	kmem_cache_destroy(mm_slot_cache);
 314	kmem_cache_destroy(stable_node_cache);
 315	kmem_cache_destroy(rmap_item_cache);
 316	mm_slot_cache = NULL;
 317}
 318
 319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 320{
 321	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 322}
 323
 324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 325{
 326	return dup->head == STABLE_NODE_DUP_HEAD;
 327}
 328
 329static inline void stable_node_chain_add_dup(struct stable_node *dup,
 330					     struct stable_node *chain)
 331{
 332	VM_BUG_ON(is_stable_node_dup(dup));
 333	dup->head = STABLE_NODE_DUP_HEAD;
 334	VM_BUG_ON(!is_stable_node_chain(chain));
 335	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 336	ksm_stable_node_dups++;
 337}
 338
 339static inline void __stable_node_dup_del(struct stable_node *dup)
 340{
 341	VM_BUG_ON(!is_stable_node_dup(dup));
 342	hlist_del(&dup->hlist_dup);
 343	ksm_stable_node_dups--;
 344}
 345
 346static inline void stable_node_dup_del(struct stable_node *dup)
 347{
 348	VM_BUG_ON(is_stable_node_chain(dup));
 349	if (is_stable_node_dup(dup))
 350		__stable_node_dup_del(dup);
 351	else
 352		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 353#ifdef CONFIG_DEBUG_VM
 354	dup->head = NULL;
 355#endif
 356}
 357
 358static inline struct rmap_item *alloc_rmap_item(void)
 359{
 360	struct rmap_item *rmap_item;
 361
 362	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 363						__GFP_NORETRY | __GFP_NOWARN);
 364	if (rmap_item)
 365		ksm_rmap_items++;
 366	return rmap_item;
 367}
 368
 369static inline void free_rmap_item(struct rmap_item *rmap_item)
 370{
 371	ksm_rmap_items--;
 372	rmap_item->mm = NULL;	/* debug safety */
 373	kmem_cache_free(rmap_item_cache, rmap_item);
 374}
 375
 376static inline struct stable_node *alloc_stable_node(void)
 377{
 378	/*
 379	 * The allocation can take too long with GFP_KERNEL when memory is under
 380	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 381	 * grants access to memory reserves, helping to avoid this problem.
 382	 */
 383	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 384}
 385
 386static inline void free_stable_node(struct stable_node *stable_node)
 387{
 388	VM_BUG_ON(stable_node->rmap_hlist_len &&
 389		  !is_stable_node_chain(stable_node));
 390	kmem_cache_free(stable_node_cache, stable_node);
 391}
 392
 393static inline struct mm_slot *alloc_mm_slot(void)
 394{
 395	if (!mm_slot_cache)	/* initialization failed */
 396		return NULL;
 397	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 398}
 399
 400static inline void free_mm_slot(struct mm_slot *mm_slot)
 401{
 402	kmem_cache_free(mm_slot_cache, mm_slot);
 403}
 404
 405static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 406{
 407	struct mm_slot *slot;
 408
 409	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 410		if (slot->mm == mm)
 411			return slot;
 412
 413	return NULL;
 414}
 415
 416static void insert_to_mm_slots_hash(struct mm_struct *mm,
 417				    struct mm_slot *mm_slot)
 418{
 419	mm_slot->mm = mm;
 420	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 421}
 422
 423/*
 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 425 * page tables after it has passed through ksm_exit() - which, if necessary,
 426 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 427 * a special flag: they can just back out as soon as mm_users goes to zero.
 428 * ksm_test_exit() is used throughout to make this test for exit: in some
 429 * places for correctness, in some places just to avoid unnecessary work.
 430 */
 431static inline bool ksm_test_exit(struct mm_struct *mm)
 432{
 433	return atomic_read(&mm->mm_users) == 0;
 434}
 435
 436/*
 437 * We use break_ksm to break COW on a ksm page: it's a stripped down
 438 *
 439 *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 440 *		put_page(page);
 441 *
 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 443 * in case the application has unmapped and remapped mm,addr meanwhile.
 444 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 446 *
 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 448 * of the process that owns 'vma'.  We also do not want to enforce
 449 * protection keys here anyway.
 450 */
 451static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 452{
 453	struct page *page;
 454	int ret = 0;
 455
 456	do {
 457		cond_resched();
 458		page = follow_page(vma, addr,
 459				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 460		if (IS_ERR_OR_NULL(page))
 461			break;
 462		if (PageKsm(page))
 463			ret = handle_mm_fault(vma, addr,
 464					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 465		else
 466			ret = VM_FAULT_WRITE;
 467		put_page(page);
 468	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 469	/*
 470	 * We must loop because handle_mm_fault() may back out if there's
 471	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 472	 *
 473	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 474	 * COW has been broken, even if the vma does not permit VM_WRITE;
 475	 * but note that a concurrent fault might break PageKsm for us.
 476	 *
 477	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 478	 * backing file, which also invalidates anonymous pages: that's
 479	 * okay, that truncation will have unmapped the PageKsm for us.
 480	 *
 481	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 482	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 483	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 484	 * to user; and ksmd, having no mm, would never be chosen for that.
 485	 *
 486	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 487	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 488	 * even ksmd can fail in this way - though it's usually breaking ksm
 489	 * just to undo a merge it made a moment before, so unlikely to oom.
 490	 *
 491	 * That's a pity: we might therefore have more kernel pages allocated
 492	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 493	 * will retry to break_cow on each pass, so should recover the page
 494	 * in due course.  The important thing is to not let VM_MERGEABLE
 495	 * be cleared while any such pages might remain in the area.
 496	 */
 497	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 498}
 499
 500static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 501		unsigned long addr)
 502{
 503	struct vm_area_struct *vma;
 504	if (ksm_test_exit(mm))
 505		return NULL;
 506	vma = find_vma(mm, addr);
 507	if (!vma || vma->vm_start > addr)
 508		return NULL;
 509	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 510		return NULL;
 511	return vma;
 512}
 513
 514static void break_cow(struct rmap_item *rmap_item)
 515{
 516	struct mm_struct *mm = rmap_item->mm;
 517	unsigned long addr = rmap_item->address;
 518	struct vm_area_struct *vma;
 519
 520	/*
 521	 * It is not an accident that whenever we want to break COW
 522	 * to undo, we also need to drop a reference to the anon_vma.
 523	 */
 524	put_anon_vma(rmap_item->anon_vma);
 525
 526	down_read(&mm->mmap_sem);
 527	vma = find_mergeable_vma(mm, addr);
 528	if (vma)
 529		break_ksm(vma, addr);
 530	up_read(&mm->mmap_sem);
 531}
 532
 533static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 534{
 535	struct mm_struct *mm = rmap_item->mm;
 536	unsigned long addr = rmap_item->address;
 537	struct vm_area_struct *vma;
 538	struct page *page;
 539
 540	down_read(&mm->mmap_sem);
 541	vma = find_mergeable_vma(mm, addr);
 542	if (!vma)
 543		goto out;
 544
 545	page = follow_page(vma, addr, FOLL_GET);
 546	if (IS_ERR_OR_NULL(page))
 547		goto out;
 548	if (PageAnon(page)) {
 549		flush_anon_page(vma, page, addr);
 550		flush_dcache_page(page);
 551	} else {
 552		put_page(page);
 553out:
 554		page = NULL;
 555	}
 556	up_read(&mm->mmap_sem);
 557	return page;
 558}
 559
 560/*
 561 * This helper is used for getting right index into array of tree roots.
 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 564 * every node has its own stable and unstable tree.
 565 */
 566static inline int get_kpfn_nid(unsigned long kpfn)
 567{
 568	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 569}
 570
 571static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 572						   struct rb_root *root)
 573{
 574	struct stable_node *chain = alloc_stable_node();
 575	VM_BUG_ON(is_stable_node_chain(dup));
 576	if (likely(chain)) {
 577		INIT_HLIST_HEAD(&chain->hlist);
 578		chain->chain_prune_time = jiffies;
 579		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 580#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 581		chain->nid = -1; /* debug */
 582#endif
 583		ksm_stable_node_chains++;
 584
 585		/*
 586		 * Put the stable node chain in the first dimension of
 587		 * the stable tree and at the same time remove the old
 588		 * stable node.
 589		 */
 590		rb_replace_node(&dup->node, &chain->node, root);
 591
 592		/*
 593		 * Move the old stable node to the second dimension
 594		 * queued in the hlist_dup. The invariant is that all
 595		 * dup stable_nodes in the chain->hlist point to pages
 596		 * that are wrprotected and have the exact same
 597		 * content.
 598		 */
 599		stable_node_chain_add_dup(dup, chain);
 600	}
 601	return chain;
 602}
 603
 604static inline void free_stable_node_chain(struct stable_node *chain,
 605					  struct rb_root *root)
 606{
 607	rb_erase(&chain->node, root);
 608	free_stable_node(chain);
 609	ksm_stable_node_chains--;
 610}
 611
 612static void remove_node_from_stable_tree(struct stable_node *stable_node)
 613{
 614	struct rmap_item *rmap_item;
 615
 616	/* check it's not STABLE_NODE_CHAIN or negative */
 617	BUG_ON(stable_node->rmap_hlist_len < 0);
 618
 619	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 620		if (rmap_item->hlist.next)
 621			ksm_pages_sharing--;
 622		else
 623			ksm_pages_shared--;
 624		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 625		stable_node->rmap_hlist_len--;
 626		put_anon_vma(rmap_item->anon_vma);
 627		rmap_item->address &= PAGE_MASK;
 628		cond_resched();
 629	}
 630
 631	/*
 632	 * We need the second aligned pointer of the migrate_nodes
 633	 * list_head to stay clear from the rb_parent_color union
 634	 * (aligned and different than any node) and also different
 635	 * from &migrate_nodes. This will verify that future list.h changes
 636	 * don't break STABLE_NODE_DUP_HEAD.
 637	 */
 638#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
 639	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 640	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 641#endif
 642
 643	if (stable_node->head == &migrate_nodes)
 644		list_del(&stable_node->list);
 645	else
 646		stable_node_dup_del(stable_node);
 
 647	free_stable_node(stable_node);
 648}
 649
 650/*
 651 * get_ksm_page: checks if the page indicated by the stable node
 652 * is still its ksm page, despite having held no reference to it.
 653 * In which case we can trust the content of the page, and it
 654 * returns the gotten page; but if the page has now been zapped,
 655 * remove the stale node from the stable tree and return NULL.
 656 * But beware, the stable node's page might be being migrated.
 657 *
 658 * You would expect the stable_node to hold a reference to the ksm page.
 659 * But if it increments the page's count, swapping out has to wait for
 660 * ksmd to come around again before it can free the page, which may take
 661 * seconds or even minutes: much too unresponsive.  So instead we use a
 662 * "keyhole reference": access to the ksm page from the stable node peeps
 663 * out through its keyhole to see if that page still holds the right key,
 664 * pointing back to this stable node.  This relies on freeing a PageAnon
 665 * page to reset its page->mapping to NULL, and relies on no other use of
 666 * a page to put something that might look like our key in page->mapping.
 667 * is on its way to being freed; but it is an anomaly to bear in mind.
 668 */
 669static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 670{
 671	struct page *page;
 672	void *expected_mapping;
 673	unsigned long kpfn;
 674
 675	expected_mapping = (void *)((unsigned long)stable_node |
 676					PAGE_MAPPING_KSM);
 677again:
 678	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 679	page = pfn_to_page(kpfn);
 
 
 
 
 
 
 
 680	if (READ_ONCE(page->mapping) != expected_mapping)
 681		goto stale;
 682
 683	/*
 684	 * We cannot do anything with the page while its refcount is 0.
 685	 * Usually 0 means free, or tail of a higher-order page: in which
 686	 * case this node is no longer referenced, and should be freed;
 687	 * however, it might mean that the page is under page_freeze_refs().
 688	 * The __remove_mapping() case is easy, again the node is now stale;
 689	 * but if page is swapcache in migrate_page_move_mapping(), it might
 690	 * still be our page, in which case it's essential to keep the node.
 691	 */
 692	while (!get_page_unless_zero(page)) {
 693		/*
 694		 * Another check for page->mapping != expected_mapping would
 695		 * work here too.  We have chosen the !PageSwapCache test to
 696		 * optimize the common case, when the page is or is about to
 697		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 698		 * in the freeze_refs section of __remove_mapping(); but Anon
 699		 * page->mapping reset to NULL later, in free_pages_prepare().
 700		 */
 701		if (!PageSwapCache(page))
 702			goto stale;
 703		cpu_relax();
 704	}
 705
 706	if (READ_ONCE(page->mapping) != expected_mapping) {
 707		put_page(page);
 708		goto stale;
 709	}
 710
 711	if (lock_it) {
 712		lock_page(page);
 713		if (READ_ONCE(page->mapping) != expected_mapping) {
 714			unlock_page(page);
 715			put_page(page);
 716			goto stale;
 717		}
 718	}
 719	return page;
 720
 721stale:
 722	/*
 723	 * We come here from above when page->mapping or !PageSwapCache
 724	 * suggests that the node is stale; but it might be under migration.
 725	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 726	 * before checking whether node->kpfn has been changed.
 727	 */
 728	smp_rmb();
 729	if (READ_ONCE(stable_node->kpfn) != kpfn)
 730		goto again;
 731	remove_node_from_stable_tree(stable_node);
 732	return NULL;
 733}
 734
 735/*
 736 * Removing rmap_item from stable or unstable tree.
 737 * This function will clean the information from the stable/unstable tree.
 738 */
 739static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 740{
 741	if (rmap_item->address & STABLE_FLAG) {
 742		struct stable_node *stable_node;
 743		struct page *page;
 744
 745		stable_node = rmap_item->head;
 746		page = get_ksm_page(stable_node, true);
 747		if (!page)
 748			goto out;
 749
 750		hlist_del(&rmap_item->hlist);
 751		unlock_page(page);
 752		put_page(page);
 753
 754		if (!hlist_empty(&stable_node->hlist))
 755			ksm_pages_sharing--;
 756		else
 757			ksm_pages_shared--;
 758		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 759		stable_node->rmap_hlist_len--;
 760
 761		put_anon_vma(rmap_item->anon_vma);
 762		rmap_item->address &= PAGE_MASK;
 763
 764	} else if (rmap_item->address & UNSTABLE_FLAG) {
 765		unsigned char age;
 766		/*
 767		 * Usually ksmd can and must skip the rb_erase, because
 768		 * root_unstable_tree was already reset to RB_ROOT.
 769		 * But be careful when an mm is exiting: do the rb_erase
 770		 * if this rmap_item was inserted by this scan, rather
 771		 * than left over from before.
 772		 */
 773		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 774		BUG_ON(age > 1);
 775		if (!age)
 776			rb_erase(&rmap_item->node,
 777				 root_unstable_tree + NUMA(rmap_item->nid));
 778		ksm_pages_unshared--;
 779		rmap_item->address &= PAGE_MASK;
 780	}
 781out:
 782	cond_resched();		/* we're called from many long loops */
 783}
 784
 785static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 786				       struct rmap_item **rmap_list)
 787{
 788	while (*rmap_list) {
 789		struct rmap_item *rmap_item = *rmap_list;
 790		*rmap_list = rmap_item->rmap_list;
 791		remove_rmap_item_from_tree(rmap_item);
 792		free_rmap_item(rmap_item);
 793	}
 794}
 795
 796/*
 797 * Though it's very tempting to unmerge rmap_items from stable tree rather
 798 * than check every pte of a given vma, the locking doesn't quite work for
 799 * that - an rmap_item is assigned to the stable tree after inserting ksm
 800 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 801 * rmap_items from parent to child at fork time (so as not to waste time
 802 * if exit comes before the next scan reaches it).
 803 *
 804 * Similarly, although we'd like to remove rmap_items (so updating counts
 805 * and freeing memory) when unmerging an area, it's easier to leave that
 806 * to the next pass of ksmd - consider, for example, how ksmd might be
 807 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 808 */
 809static int unmerge_ksm_pages(struct vm_area_struct *vma,
 810			     unsigned long start, unsigned long end)
 811{
 812	unsigned long addr;
 813	int err = 0;
 814
 815	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 816		if (ksm_test_exit(vma->vm_mm))
 817			break;
 818		if (signal_pending(current))
 819			err = -ERESTARTSYS;
 820		else
 821			err = break_ksm(vma, addr);
 822	}
 823	return err;
 824}
 825
 826#ifdef CONFIG_SYSFS
 827/*
 828 * Only called through the sysfs control interface:
 829 */
 830static int remove_stable_node(struct stable_node *stable_node)
 831{
 832	struct page *page;
 833	int err;
 834
 835	page = get_ksm_page(stable_node, true);
 836	if (!page) {
 837		/*
 838		 * get_ksm_page did remove_node_from_stable_tree itself.
 839		 */
 840		return 0;
 841	}
 842
 843	if (WARN_ON_ONCE(page_mapped(page))) {
 844		/*
 845		 * This should not happen: but if it does, just refuse to let
 846		 * merge_across_nodes be switched - there is no need to panic.
 847		 */
 848		err = -EBUSY;
 849	} else {
 850		/*
 851		 * The stable node did not yet appear stale to get_ksm_page(),
 852		 * since that allows for an unmapped ksm page to be recognized
 853		 * right up until it is freed; but the node is safe to remove.
 854		 * This page might be in a pagevec waiting to be freed,
 855		 * or it might be PageSwapCache (perhaps under writeback),
 856		 * or it might have been removed from swapcache a moment ago.
 857		 */
 858		set_page_stable_node(page, NULL);
 859		remove_node_from_stable_tree(stable_node);
 860		err = 0;
 861	}
 862
 863	unlock_page(page);
 864	put_page(page);
 865	return err;
 866}
 867
 868static int remove_stable_node_chain(struct stable_node *stable_node,
 869				    struct rb_root *root)
 870{
 871	struct stable_node *dup;
 872	struct hlist_node *hlist_safe;
 873
 874	if (!is_stable_node_chain(stable_node)) {
 875		VM_BUG_ON(is_stable_node_dup(stable_node));
 876		if (remove_stable_node(stable_node))
 877			return true;
 878		else
 879			return false;
 880	}
 881
 882	hlist_for_each_entry_safe(dup, hlist_safe,
 883				  &stable_node->hlist, hlist_dup) {
 884		VM_BUG_ON(!is_stable_node_dup(dup));
 885		if (remove_stable_node(dup))
 886			return true;
 887	}
 888	BUG_ON(!hlist_empty(&stable_node->hlist));
 889	free_stable_node_chain(stable_node, root);
 890	return false;
 891}
 892
 893static int remove_all_stable_nodes(void)
 894{
 895	struct stable_node *stable_node, *next;
 896	int nid;
 897	int err = 0;
 898
 899	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 900		while (root_stable_tree[nid].rb_node) {
 901			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 902						struct stable_node, node);
 903			if (remove_stable_node_chain(stable_node,
 904						     root_stable_tree + nid)) {
 905				err = -EBUSY;
 906				break;	/* proceed to next nid */
 907			}
 908			cond_resched();
 909		}
 910	}
 911	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 912		if (remove_stable_node(stable_node))
 913			err = -EBUSY;
 914		cond_resched();
 915	}
 916	return err;
 917}
 918
 919static int unmerge_and_remove_all_rmap_items(void)
 920{
 921	struct mm_slot *mm_slot;
 922	struct mm_struct *mm;
 923	struct vm_area_struct *vma;
 924	int err = 0;
 925
 926	spin_lock(&ksm_mmlist_lock);
 927	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 928						struct mm_slot, mm_list);
 929	spin_unlock(&ksm_mmlist_lock);
 930
 931	for (mm_slot = ksm_scan.mm_slot;
 932			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 933		mm = mm_slot->mm;
 934		down_read(&mm->mmap_sem);
 935		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 936			if (ksm_test_exit(mm))
 937				break;
 938			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 939				continue;
 940			err = unmerge_ksm_pages(vma,
 941						vma->vm_start, vma->vm_end);
 942			if (err)
 943				goto error;
 944		}
 945
 946		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 947		up_read(&mm->mmap_sem);
 948
 949		spin_lock(&ksm_mmlist_lock);
 950		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 951						struct mm_slot, mm_list);
 952		if (ksm_test_exit(mm)) {
 953			hash_del(&mm_slot->link);
 954			list_del(&mm_slot->mm_list);
 955			spin_unlock(&ksm_mmlist_lock);
 956
 957			free_mm_slot(mm_slot);
 958			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 959			mmdrop(mm);
 960		} else
 961			spin_unlock(&ksm_mmlist_lock);
 962	}
 963
 964	/* Clean up stable nodes, but don't worry if some are still busy */
 965	remove_all_stable_nodes();
 966	ksm_scan.seqnr = 0;
 967	return 0;
 968
 969error:
 970	up_read(&mm->mmap_sem);
 971	spin_lock(&ksm_mmlist_lock);
 972	ksm_scan.mm_slot = &ksm_mm_head;
 973	spin_unlock(&ksm_mmlist_lock);
 974	return err;
 975}
 976#endif /* CONFIG_SYSFS */
 977
 978static u32 calc_checksum(struct page *page)
 979{
 980	u32 checksum;
 981	void *addr = kmap_atomic(page);
 982	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 983	kunmap_atomic(addr);
 984	return checksum;
 985}
 986
 987static int memcmp_pages(struct page *page1, struct page *page2)
 988{
 989	char *addr1, *addr2;
 990	int ret;
 991
 992	addr1 = kmap_atomic(page1);
 993	addr2 = kmap_atomic(page2);
 994	ret = memcmp(addr1, addr2, PAGE_SIZE);
 995	kunmap_atomic(addr2);
 996	kunmap_atomic(addr1);
 997	return ret;
 998}
 999
1000static inline int pages_identical(struct page *page1, struct page *page2)
1001{
1002	return !memcmp_pages(page1, page2);
1003}
1004
1005static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006			      pte_t *orig_pte)
1007{
1008	struct mm_struct *mm = vma->vm_mm;
1009	struct page_vma_mapped_walk pvmw = {
1010		.page = page,
1011		.vma = vma,
1012	};
1013	int swapped;
1014	int err = -EFAULT;
1015	unsigned long mmun_start;	/* For mmu_notifiers */
1016	unsigned long mmun_end;		/* For mmu_notifiers */
1017
1018	pvmw.address = page_address_in_vma(page, vma);
1019	if (pvmw.address == -EFAULT)
1020		goto out;
1021
1022	BUG_ON(PageTransCompound(page));
1023
1024	mmun_start = pvmw.address;
1025	mmun_end   = pvmw.address + PAGE_SIZE;
1026	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027
1028	if (!page_vma_mapped_walk(&pvmw))
 
1029		goto out_mn;
1030	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031		goto out_unlock;
1032
1033	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1034	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035						mm_tlb_flush_pending(mm)) {
1036		pte_t entry;
1037
1038		swapped = PageSwapCache(page);
1039		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1040		/*
1041		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1042		 * take any lock, therefore the check that we are going to make
1043		 * with the pagecount against the mapcount is racey and
1044		 * O_DIRECT can happen right after the check.
1045		 * So we clear the pte and flush the tlb before the check
1046		 * this assure us that no O_DIRECT can happen after the check
1047		 * or in the middle of the check.
1048		 *
1049		 * No need to notify as we are downgrading page table to read
1050		 * only not changing it to point to a new page.
1051		 *
1052		 * See Documentation/vm/mmu_notifier.txt
1053		 */
1054		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1055		/*
1056		 * Check that no O_DIRECT or similar I/O is in progress on the
1057		 * page
1058		 */
1059		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1060			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1061			goto out_unlock;
1062		}
1063		if (pte_dirty(entry))
1064			set_page_dirty(page);
1065
1066		if (pte_protnone(entry))
1067			entry = pte_mkclean(pte_clear_savedwrite(entry));
1068		else
1069			entry = pte_mkclean(pte_wrprotect(entry));
1070		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1071	}
1072	*orig_pte = *pvmw.pte;
1073	err = 0;
1074
1075out_unlock:
1076	page_vma_mapped_walk_done(&pvmw);
1077out_mn:
1078	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1079out:
1080	return err;
1081}
1082
1083/**
1084 * replace_page - replace page in vma by new ksm page
1085 * @vma:      vma that holds the pte pointing to page
1086 * @page:     the page we are replacing by kpage
1087 * @kpage:    the ksm page we replace page by
1088 * @orig_pte: the original value of the pte
1089 *
1090 * Returns 0 on success, -EFAULT on failure.
1091 */
1092static int replace_page(struct vm_area_struct *vma, struct page *page,
1093			struct page *kpage, pte_t orig_pte)
1094{
1095	struct mm_struct *mm = vma->vm_mm;
1096	pmd_t *pmd;
1097	pte_t *ptep;
1098	pte_t newpte;
1099	spinlock_t *ptl;
1100	unsigned long addr;
1101	int err = -EFAULT;
1102	unsigned long mmun_start;	/* For mmu_notifiers */
1103	unsigned long mmun_end;		/* For mmu_notifiers */
1104
1105	addr = page_address_in_vma(page, vma);
1106	if (addr == -EFAULT)
1107		goto out;
1108
1109	pmd = mm_find_pmd(mm, addr);
1110	if (!pmd)
1111		goto out;
1112
1113	mmun_start = addr;
1114	mmun_end   = addr + PAGE_SIZE;
1115	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116
1117	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118	if (!pte_same(*ptep, orig_pte)) {
1119		pte_unmap_unlock(ptep, ptl);
1120		goto out_mn;
1121	}
1122
1123	/*
1124	 * No need to check ksm_use_zero_pages here: we can only have a
1125	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126	 */
1127	if (!is_zero_pfn(page_to_pfn(kpage))) {
1128		get_page(kpage);
1129		page_add_anon_rmap(kpage, vma, addr, false);
1130		newpte = mk_pte(kpage, vma->vm_page_prot);
1131	} else {
1132		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133					       vma->vm_page_prot));
1134		/*
1135		 * We're replacing an anonymous page with a zero page, which is
1136		 * not anonymous. We need to do proper accounting otherwise we
1137		 * will get wrong values in /proc, and a BUG message in dmesg
1138		 * when tearing down the mm.
1139		 */
1140		dec_mm_counter(mm, MM_ANONPAGES);
1141	}
1142
1143	flush_cache_page(vma, addr, pte_pfn(*ptep));
1144	/*
1145	 * No need to notify as we are replacing a read only page with another
1146	 * read only page with the same content.
1147	 *
1148	 * See Documentation/vm/mmu_notifier.txt
1149	 */
1150	ptep_clear_flush(vma, addr, ptep);
1151	set_pte_at_notify(mm, addr, ptep, newpte);
1152
1153	page_remove_rmap(page, false);
1154	if (!page_mapped(page))
1155		try_to_free_swap(page);
1156	put_page(page);
1157
1158	pte_unmap_unlock(ptep, ptl);
1159	err = 0;
1160out_mn:
1161	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162out:
1163	return err;
1164}
1165
1166/*
1167 * try_to_merge_one_page - take two pages and merge them into one
1168 * @vma: the vma that holds the pte pointing to page
1169 * @page: the PageAnon page that we want to replace with kpage
1170 * @kpage: the PageKsm page that we want to map instead of page,
1171 *         or NULL the first time when we want to use page as kpage.
1172 *
1173 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1174 */
1175static int try_to_merge_one_page(struct vm_area_struct *vma,
1176				 struct page *page, struct page *kpage)
1177{
1178	pte_t orig_pte = __pte(0);
1179	int err = -EFAULT;
1180
1181	if (page == kpage)			/* ksm page forked */
1182		return 0;
1183
1184	if (!PageAnon(page))
1185		goto out;
1186
1187	/*
1188	 * We need the page lock to read a stable PageSwapCache in
1189	 * write_protect_page().  We use trylock_page() instead of
1190	 * lock_page() because we don't want to wait here - we
1191	 * prefer to continue scanning and merging different pages,
1192	 * then come back to this page when it is unlocked.
1193	 */
1194	if (!trylock_page(page))
1195		goto out;
1196
1197	if (PageTransCompound(page)) {
1198		if (split_huge_page(page))
 
1199			goto out_unlock;
1200	}
1201
1202	/*
1203	 * If this anonymous page is mapped only here, its pte may need
1204	 * to be write-protected.  If it's mapped elsewhere, all of its
1205	 * ptes are necessarily already write-protected.  But in either
1206	 * case, we need to lock and check page_count is not raised.
1207	 */
1208	if (write_protect_page(vma, page, &orig_pte) == 0) {
1209		if (!kpage) {
1210			/*
1211			 * While we hold page lock, upgrade page from
1212			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213			 * stable_tree_insert() will update stable_node.
1214			 */
1215			set_page_stable_node(page, NULL);
1216			mark_page_accessed(page);
1217			/*
1218			 * Page reclaim just frees a clean page with no dirty
1219			 * ptes: make sure that the ksm page would be swapped.
1220			 */
1221			if (!PageDirty(page))
1222				SetPageDirty(page);
1223			err = 0;
1224		} else if (pages_identical(page, kpage))
1225			err = replace_page(vma, page, kpage, orig_pte);
1226	}
1227
1228	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1229		munlock_vma_page(page);
1230		if (!PageMlocked(kpage)) {
1231			unlock_page(page);
1232			lock_page(kpage);
1233			mlock_vma_page(kpage);
1234			page = kpage;		/* for final unlock */
1235		}
1236	}
1237
1238out_unlock:
1239	unlock_page(page);
1240out:
1241	return err;
1242}
1243
1244/*
1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246 * but no new kernel page is allocated: kpage must already be a ksm page.
1247 *
1248 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1249 */
1250static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251				      struct page *page, struct page *kpage)
1252{
1253	struct mm_struct *mm = rmap_item->mm;
1254	struct vm_area_struct *vma;
1255	int err = -EFAULT;
1256
1257	down_read(&mm->mmap_sem);
1258	vma = find_mergeable_vma(mm, rmap_item->address);
1259	if (!vma)
1260		goto out;
1261
1262	err = try_to_merge_one_page(vma, page, kpage);
1263	if (err)
1264		goto out;
1265
1266	/* Unstable nid is in union with stable anon_vma: remove first */
1267	remove_rmap_item_from_tree(rmap_item);
1268
1269	/* Must get reference to anon_vma while still holding mmap_sem */
1270	rmap_item->anon_vma = vma->anon_vma;
1271	get_anon_vma(vma->anon_vma);
1272out:
1273	up_read(&mm->mmap_sem);
1274	return err;
1275}
1276
1277/*
1278 * try_to_merge_two_pages - take two identical pages and prepare them
1279 * to be merged into one page.
1280 *
1281 * This function returns the kpage if we successfully merged two identical
1282 * pages into one ksm page, NULL otherwise.
1283 *
1284 * Note that this function upgrades page to ksm page: if one of the pages
1285 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1286 */
1287static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288					   struct page *page,
1289					   struct rmap_item *tree_rmap_item,
1290					   struct page *tree_page)
1291{
1292	int err;
1293
1294	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1295	if (!err) {
1296		err = try_to_merge_with_ksm_page(tree_rmap_item,
1297							tree_page, page);
1298		/*
1299		 * If that fails, we have a ksm page with only one pte
1300		 * pointing to it: so break it.
1301		 */
1302		if (err)
1303			break_cow(rmap_item);
1304	}
1305	return err ? NULL : page;
1306}
1307
1308static __always_inline
1309bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1310{
1311	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1312	/*
1313	 * Check that at least one mapping still exists, otherwise
1314	 * there's no much point to merge and share with this
1315	 * stable_node, as the underlying tree_page of the other
1316	 * sharer is going to be freed soon.
1317	 */
1318	return stable_node->rmap_hlist_len &&
1319		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1320}
1321
1322static __always_inline
1323bool is_page_sharing_candidate(struct stable_node *stable_node)
1324{
1325	return __is_page_sharing_candidate(stable_node, 0);
1326}
1327
1328static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329				    struct stable_node **_stable_node,
1330				    struct rb_root *root,
1331				    bool prune_stale_stable_nodes)
1332{
1333	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1334	struct hlist_node *hlist_safe;
1335	struct page *_tree_page, *tree_page = NULL;
1336	int nr = 0;
1337	int found_rmap_hlist_len;
1338
1339	if (!prune_stale_stable_nodes ||
1340	    time_before(jiffies, stable_node->chain_prune_time +
1341			msecs_to_jiffies(
1342				ksm_stable_node_chains_prune_millisecs)))
1343		prune_stale_stable_nodes = false;
1344	else
1345		stable_node->chain_prune_time = jiffies;
1346
1347	hlist_for_each_entry_safe(dup, hlist_safe,
1348				  &stable_node->hlist, hlist_dup) {
1349		cond_resched();
1350		/*
1351		 * We must walk all stable_node_dup to prune the stale
1352		 * stable nodes during lookup.
1353		 *
1354		 * get_ksm_page can drop the nodes from the
1355		 * stable_node->hlist if they point to freed pages
1356		 * (that's why we do a _safe walk). The "dup"
1357		 * stable_node parameter itself will be freed from
1358		 * under us if it returns NULL.
1359		 */
1360		_tree_page = get_ksm_page(dup, false);
1361		if (!_tree_page)
1362			continue;
1363		nr += 1;
1364		if (is_page_sharing_candidate(dup)) {
1365			if (!found ||
1366			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1367				if (found)
1368					put_page(tree_page);
1369				found = dup;
1370				found_rmap_hlist_len = found->rmap_hlist_len;
1371				tree_page = _tree_page;
1372
1373				/* skip put_page for found dup */
1374				if (!prune_stale_stable_nodes)
1375					break;
1376				continue;
1377			}
1378		}
1379		put_page(_tree_page);
1380	}
1381
1382	if (found) {
1383		/*
1384		 * nr is counting all dups in the chain only if
1385		 * prune_stale_stable_nodes is true, otherwise we may
1386		 * break the loop at nr == 1 even if there are
1387		 * multiple entries.
1388		 */
1389		if (prune_stale_stable_nodes && nr == 1) {
1390			/*
1391			 * If there's not just one entry it would
1392			 * corrupt memory, better BUG_ON. In KSM
1393			 * context with no lock held it's not even
1394			 * fatal.
1395			 */
1396			BUG_ON(stable_node->hlist.first->next);
1397
1398			/*
1399			 * There's just one entry and it is below the
1400			 * deduplication limit so drop the chain.
1401			 */
1402			rb_replace_node(&stable_node->node, &found->node,
1403					root);
1404			free_stable_node(stable_node);
1405			ksm_stable_node_chains--;
1406			ksm_stable_node_dups--;
1407			/*
1408			 * NOTE: the caller depends on the stable_node
1409			 * to be equal to stable_node_dup if the chain
1410			 * was collapsed.
1411			 */
1412			*_stable_node = found;
1413			/*
1414			 * Just for robustneess as stable_node is
1415			 * otherwise left as a stable pointer, the
1416			 * compiler shall optimize it away at build
1417			 * time.
1418			 */
1419			stable_node = NULL;
1420		} else if (stable_node->hlist.first != &found->hlist_dup &&
1421			   __is_page_sharing_candidate(found, 1)) {
1422			/*
1423			 * If the found stable_node dup can accept one
1424			 * more future merge (in addition to the one
1425			 * that is underway) and is not at the head of
1426			 * the chain, put it there so next search will
1427			 * be quicker in the !prune_stale_stable_nodes
1428			 * case.
1429			 *
1430			 * NOTE: it would be inaccurate to use nr > 1
1431			 * instead of checking the hlist.first pointer
1432			 * directly, because in the
1433			 * prune_stale_stable_nodes case "nr" isn't
1434			 * the position of the found dup in the chain,
1435			 * but the total number of dups in the chain.
1436			 */
1437			hlist_del(&found->hlist_dup);
1438			hlist_add_head(&found->hlist_dup,
1439				       &stable_node->hlist);
1440		}
1441	}
1442
1443	*_stable_node_dup = found;
1444	return tree_page;
1445}
1446
1447static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448					       struct rb_root *root)
1449{
1450	if (!is_stable_node_chain(stable_node))
1451		return stable_node;
1452	if (hlist_empty(&stable_node->hlist)) {
1453		free_stable_node_chain(stable_node, root);
1454		return NULL;
1455	}
1456	return hlist_entry(stable_node->hlist.first,
1457			   typeof(*stable_node), hlist_dup);
1458}
1459
1460/*
1461 * Like for get_ksm_page, this function can free the *_stable_node and
1462 * *_stable_node_dup if the returned tree_page is NULL.
1463 *
1464 * It can also free and overwrite *_stable_node with the found
1465 * stable_node_dup if the chain is collapsed (in which case
1466 * *_stable_node will be equal to *_stable_node_dup like if the chain
1467 * never existed). It's up to the caller to verify tree_page is not
1468 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1469 *
1470 * *_stable_node_dup is really a second output parameter of this
1471 * function and will be overwritten in all cases, the caller doesn't
1472 * need to initialize it.
1473 */
1474static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475					struct stable_node **_stable_node,
1476					struct rb_root *root,
1477					bool prune_stale_stable_nodes)
1478{
1479	struct stable_node *stable_node = *_stable_node;
1480	if (!is_stable_node_chain(stable_node)) {
1481		if (is_page_sharing_candidate(stable_node)) {
1482			*_stable_node_dup = stable_node;
1483			return get_ksm_page(stable_node, false);
1484		}
1485		/*
1486		 * _stable_node_dup set to NULL means the stable_node
1487		 * reached the ksm_max_page_sharing limit.
1488		 */
1489		*_stable_node_dup = NULL;
1490		return NULL;
1491	}
1492	return stable_node_dup(_stable_node_dup, _stable_node, root,
1493			       prune_stale_stable_nodes);
1494}
1495
1496static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497						struct stable_node **s_n,
1498						struct rb_root *root)
1499{
1500	return __stable_node_chain(s_n_d, s_n, root, true);
1501}
1502
1503static __always_inline struct page *chain(struct stable_node **s_n_d,
1504					  struct stable_node *s_n,
1505					  struct rb_root *root)
1506{
1507	struct stable_node *old_stable_node = s_n;
1508	struct page *tree_page;
1509
1510	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511	/* not pruning dups so s_n cannot have changed */
1512	VM_BUG_ON(s_n != old_stable_node);
1513	return tree_page;
1514}
1515
1516/*
1517 * stable_tree_search - search for page inside the stable tree
1518 *
1519 * This function checks if there is a page inside the stable tree
1520 * with identical content to the page that we are scanning right now.
1521 *
1522 * This function returns the stable tree node of identical content if found,
1523 * NULL otherwise.
1524 */
1525static struct page *stable_tree_search(struct page *page)
1526{
1527	int nid;
1528	struct rb_root *root;
1529	struct rb_node **new;
1530	struct rb_node *parent;
1531	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1532	struct stable_node *page_node;
1533
1534	page_node = page_stable_node(page);
1535	if (page_node && page_node->head != &migrate_nodes) {
1536		/* ksm page forked */
1537		get_page(page);
1538		return page;
1539	}
1540
1541	nid = get_kpfn_nid(page_to_pfn(page));
1542	root = root_stable_tree + nid;
1543again:
1544	new = &root->rb_node;
1545	parent = NULL;
1546
1547	while (*new) {
1548		struct page *tree_page;
1549		int ret;
1550
1551		cond_resched();
1552		stable_node = rb_entry(*new, struct stable_node, node);
1553		stable_node_any = NULL;
1554		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1555		/*
1556		 * NOTE: stable_node may have been freed by
1557		 * chain_prune() if the returned stable_node_dup is
1558		 * not NULL. stable_node_dup may have been inserted in
1559		 * the rbtree instead as a regular stable_node (in
1560		 * order to collapse the stable_node chain if a single
1561		 * stable_node dup was found in it). In such case the
1562		 * stable_node is overwritten by the calleee to point
1563		 * to the stable_node_dup that was collapsed in the
1564		 * stable rbtree and stable_node will be equal to
1565		 * stable_node_dup like if the chain never existed.
1566		 */
1567		if (!stable_node_dup) {
1568			/*
1569			 * Either all stable_node dups were full in
1570			 * this stable_node chain, or this chain was
1571			 * empty and should be rb_erased.
1572			 */
1573			stable_node_any = stable_node_dup_any(stable_node,
1574							      root);
1575			if (!stable_node_any) {
1576				/* rb_erase just run */
1577				goto again;
1578			}
1579			/*
1580			 * Take any of the stable_node dups page of
1581			 * this stable_node chain to let the tree walk
1582			 * continue. All KSM pages belonging to the
1583			 * stable_node dups in a stable_node chain
1584			 * have the same content and they're
1585			 * wrprotected at all times. Any will work
1586			 * fine to continue the walk.
1587			 */
1588			tree_page = get_ksm_page(stable_node_any, false);
1589		}
1590		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1591		if (!tree_page) {
1592			/*
1593			 * If we walked over a stale stable_node,
1594			 * get_ksm_page() will call rb_erase() and it
1595			 * may rebalance the tree from under us. So
1596			 * restart the search from scratch. Returning
1597			 * NULL would be safe too, but we'd generate
1598			 * false negative insertions just because some
1599			 * stable_node was stale.
1600			 */
1601			goto again;
1602		}
1603
1604		ret = memcmp_pages(page, tree_page);
1605		put_page(tree_page);
1606
1607		parent = *new;
1608		if (ret < 0)
1609			new = &parent->rb_left;
1610		else if (ret > 0)
1611			new = &parent->rb_right;
1612		else {
1613			if (page_node) {
1614				VM_BUG_ON(page_node->head != &migrate_nodes);
1615				/*
1616				 * Test if the migrated page should be merged
1617				 * into a stable node dup. If the mapcount is
1618				 * 1 we can migrate it with another KSM page
1619				 * without adding it to the chain.
1620				 */
1621				if (page_mapcount(page) > 1)
1622					goto chain_append;
1623			}
1624
1625			if (!stable_node_dup) {
1626				/*
1627				 * If the stable_node is a chain and
1628				 * we got a payload match in memcmp
1629				 * but we cannot merge the scanned
1630				 * page in any of the existing
1631				 * stable_node dups because they're
1632				 * all full, we need to wait the
1633				 * scanned page to find itself a match
1634				 * in the unstable tree to create a
1635				 * brand new KSM page to add later to
1636				 * the dups of this stable_node.
1637				 */
1638				return NULL;
1639			}
1640
1641			/*
1642			 * Lock and unlock the stable_node's page (which
1643			 * might already have been migrated) so that page
1644			 * migration is sure to notice its raised count.
1645			 * It would be more elegant to return stable_node
1646			 * than kpage, but that involves more changes.
1647			 */
1648			tree_page = get_ksm_page(stable_node_dup, true);
1649			if (unlikely(!tree_page))
1650				/*
1651				 * The tree may have been rebalanced,
1652				 * so re-evaluate parent and new.
1653				 */
1654				goto again;
1655			unlock_page(tree_page);
1656
1657			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658			    NUMA(stable_node_dup->nid)) {
1659				put_page(tree_page);
1660				goto replace;
1661			}
1662			return tree_page;
 
 
 
 
 
 
1663		}
1664	}
1665
1666	if (!page_node)
1667		return NULL;
1668
1669	list_del(&page_node->list);
1670	DO_NUMA(page_node->nid = nid);
1671	rb_link_node(&page_node->node, parent, new);
1672	rb_insert_color(&page_node->node, root);
1673out:
1674	if (is_page_sharing_candidate(page_node)) {
1675		get_page(page);
1676		return page;
1677	} else
1678		return NULL;
1679
1680replace:
1681	/*
1682	 * If stable_node was a chain and chain_prune collapsed it,
1683	 * stable_node has been updated to be the new regular
1684	 * stable_node. A collapse of the chain is indistinguishable
1685	 * from the case there was no chain in the stable
1686	 * rbtree. Otherwise stable_node is the chain and
1687	 * stable_node_dup is the dup to replace.
1688	 */
1689	if (stable_node_dup == stable_node) {
1690		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1692		/* there is no chain */
1693		if (page_node) {
1694			VM_BUG_ON(page_node->head != &migrate_nodes);
1695			list_del(&page_node->list);
1696			DO_NUMA(page_node->nid = nid);
1697			rb_replace_node(&stable_node_dup->node,
1698					&page_node->node,
1699					root);
1700			if (is_page_sharing_candidate(page_node))
1701				get_page(page);
1702			else
1703				page = NULL;
1704		} else {
1705			rb_erase(&stable_node_dup->node, root);
1706			page = NULL;
1707		}
1708	} else {
1709		VM_BUG_ON(!is_stable_node_chain(stable_node));
1710		__stable_node_dup_del(stable_node_dup);
1711		if (page_node) {
1712			VM_BUG_ON(page_node->head != &migrate_nodes);
1713			list_del(&page_node->list);
1714			DO_NUMA(page_node->nid = nid);
1715			stable_node_chain_add_dup(page_node, stable_node);
1716			if (is_page_sharing_candidate(page_node))
1717				get_page(page);
1718			else
1719				page = NULL;
1720		} else {
1721			page = NULL;
1722		}
1723	}
1724	stable_node_dup->head = &migrate_nodes;
1725	list_add(&stable_node_dup->list, stable_node_dup->head);
1726	return page;
1727
1728chain_append:
1729	/* stable_node_dup could be null if it reached the limit */
1730	if (!stable_node_dup)
1731		stable_node_dup = stable_node_any;
1732	/*
1733	 * If stable_node was a chain and chain_prune collapsed it,
1734	 * stable_node has been updated to be the new regular
1735	 * stable_node. A collapse of the chain is indistinguishable
1736	 * from the case there was no chain in the stable
1737	 * rbtree. Otherwise stable_node is the chain and
1738	 * stable_node_dup is the dup to replace.
1739	 */
1740	if (stable_node_dup == stable_node) {
1741		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743		/* chain is missing so create it */
1744		stable_node = alloc_stable_node_chain(stable_node_dup,
1745						      root);
1746		if (!stable_node)
1747			return NULL;
1748	}
1749	/*
1750	 * Add this stable_node dup that was
1751	 * migrated to the stable_node chain
1752	 * of the current nid for this page
1753	 * content.
1754	 */
1755	VM_BUG_ON(!is_stable_node_chain(stable_node));
1756	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1757	VM_BUG_ON(page_node->head != &migrate_nodes);
1758	list_del(&page_node->list);
1759	DO_NUMA(page_node->nid = nid);
1760	stable_node_chain_add_dup(page_node, stable_node);
1761	goto out;
1762}
1763
1764/*
1765 * stable_tree_insert - insert stable tree node pointing to new ksm page
1766 * into the stable tree.
1767 *
1768 * This function returns the stable tree node just allocated on success,
1769 * NULL otherwise.
1770 */
1771static struct stable_node *stable_tree_insert(struct page *kpage)
1772{
1773	int nid;
1774	unsigned long kpfn;
1775	struct rb_root *root;
1776	struct rb_node **new;
1777	struct rb_node *parent;
1778	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779	bool need_chain = false;
1780
1781	kpfn = page_to_pfn(kpage);
1782	nid = get_kpfn_nid(kpfn);
1783	root = root_stable_tree + nid;
1784again:
1785	parent = NULL;
1786	new = &root->rb_node;
1787
1788	while (*new) {
1789		struct page *tree_page;
1790		int ret;
1791
1792		cond_resched();
1793		stable_node = rb_entry(*new, struct stable_node, node);
1794		stable_node_any = NULL;
1795		tree_page = chain(&stable_node_dup, stable_node, root);
1796		if (!stable_node_dup) {
1797			/*
1798			 * Either all stable_node dups were full in
1799			 * this stable_node chain, or this chain was
1800			 * empty and should be rb_erased.
1801			 */
1802			stable_node_any = stable_node_dup_any(stable_node,
1803							      root);
1804			if (!stable_node_any) {
1805				/* rb_erase just run */
1806				goto again;
1807			}
1808			/*
1809			 * Take any of the stable_node dups page of
1810			 * this stable_node chain to let the tree walk
1811			 * continue. All KSM pages belonging to the
1812			 * stable_node dups in a stable_node chain
1813			 * have the same content and they're
1814			 * wrprotected at all times. Any will work
1815			 * fine to continue the walk.
1816			 */
1817			tree_page = get_ksm_page(stable_node_any, false);
1818		}
1819		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1820		if (!tree_page) {
1821			/*
1822			 * If we walked over a stale stable_node,
1823			 * get_ksm_page() will call rb_erase() and it
1824			 * may rebalance the tree from under us. So
1825			 * restart the search from scratch. Returning
1826			 * NULL would be safe too, but we'd generate
1827			 * false negative insertions just because some
1828			 * stable_node was stale.
1829			 */
1830			goto again;
1831		}
1832
1833		ret = memcmp_pages(kpage, tree_page);
1834		put_page(tree_page);
1835
1836		parent = *new;
1837		if (ret < 0)
1838			new = &parent->rb_left;
1839		else if (ret > 0)
1840			new = &parent->rb_right;
1841		else {
1842			need_chain = true;
1843			break;
 
 
 
 
1844		}
1845	}
1846
1847	stable_node_dup = alloc_stable_node();
1848	if (!stable_node_dup)
1849		return NULL;
1850
1851	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852	stable_node_dup->kpfn = kpfn;
1853	set_page_stable_node(kpage, stable_node_dup);
1854	stable_node_dup->rmap_hlist_len = 0;
1855	DO_NUMA(stable_node_dup->nid = nid);
1856	if (!need_chain) {
1857		rb_link_node(&stable_node_dup->node, parent, new);
1858		rb_insert_color(&stable_node_dup->node, root);
1859	} else {
1860		if (!is_stable_node_chain(stable_node)) {
1861			struct stable_node *orig = stable_node;
1862			/* chain is missing so create it */
1863			stable_node = alloc_stable_node_chain(orig, root);
1864			if (!stable_node) {
1865				free_stable_node(stable_node_dup);
1866				return NULL;
1867			}
1868		}
1869		stable_node_chain_add_dup(stable_node_dup, stable_node);
1870	}
1871
1872	return stable_node_dup;
1873}
1874
1875/*
1876 * unstable_tree_search_insert - search for identical page,
1877 * else insert rmap_item into the unstable tree.
1878 *
1879 * This function searches for a page in the unstable tree identical to the
1880 * page currently being scanned; and if no identical page is found in the
1881 * tree, we insert rmap_item as a new object into the unstable tree.
1882 *
1883 * This function returns pointer to rmap_item found to be identical
1884 * to the currently scanned page, NULL otherwise.
1885 *
1886 * This function does both searching and inserting, because they share
1887 * the same walking algorithm in an rbtree.
1888 */
1889static
1890struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891					      struct page *page,
1892					      struct page **tree_pagep)
1893{
1894	struct rb_node **new;
1895	struct rb_root *root;
1896	struct rb_node *parent = NULL;
1897	int nid;
1898
1899	nid = get_kpfn_nid(page_to_pfn(page));
1900	root = root_unstable_tree + nid;
1901	new = &root->rb_node;
1902
1903	while (*new) {
1904		struct rmap_item *tree_rmap_item;
1905		struct page *tree_page;
1906		int ret;
1907
1908		cond_resched();
1909		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1910		tree_page = get_mergeable_page(tree_rmap_item);
1911		if (!tree_page)
1912			return NULL;
1913
1914		/*
1915		 * Don't substitute a ksm page for a forked page.
1916		 */
1917		if (page == tree_page) {
1918			put_page(tree_page);
1919			return NULL;
1920		}
1921
1922		ret = memcmp_pages(page, tree_page);
1923
1924		parent = *new;
1925		if (ret < 0) {
1926			put_page(tree_page);
1927			new = &parent->rb_left;
1928		} else if (ret > 0) {
1929			put_page(tree_page);
1930			new = &parent->rb_right;
1931		} else if (!ksm_merge_across_nodes &&
1932			   page_to_nid(tree_page) != nid) {
1933			/*
1934			 * If tree_page has been migrated to another NUMA node,
1935			 * it will be flushed out and put in the right unstable
1936			 * tree next time: only merge with it when across_nodes.
1937			 */
1938			put_page(tree_page);
1939			return NULL;
1940		} else {
1941			*tree_pagep = tree_page;
1942			return tree_rmap_item;
1943		}
1944	}
1945
1946	rmap_item->address |= UNSTABLE_FLAG;
1947	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1948	DO_NUMA(rmap_item->nid = nid);
1949	rb_link_node(&rmap_item->node, parent, new);
1950	rb_insert_color(&rmap_item->node, root);
1951
1952	ksm_pages_unshared++;
1953	return NULL;
1954}
1955
1956/*
1957 * stable_tree_append - add another rmap_item to the linked list of
1958 * rmap_items hanging off a given node of the stable tree, all sharing
1959 * the same ksm page.
1960 */
1961static void stable_tree_append(struct rmap_item *rmap_item,
1962			       struct stable_node *stable_node,
1963			       bool max_page_sharing_bypass)
1964{
1965	/*
1966	 * rmap won't find this mapping if we don't insert the
1967	 * rmap_item in the right stable_node
1968	 * duplicate. page_migration could break later if rmap breaks,
1969	 * so we can as well crash here. We really need to check for
1970	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971	 * for other negative values as an undeflow if detected here
1972	 * for the first time (and not when decreasing rmap_hlist_len)
1973	 * would be sign of memory corruption in the stable_node.
1974	 */
1975	BUG_ON(stable_node->rmap_hlist_len < 0);
1976
1977	stable_node->rmap_hlist_len++;
1978	if (!max_page_sharing_bypass)
1979		/* possibly non fatal but unexpected overflow, only warn */
1980		WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981			     ksm_max_page_sharing);
1982
1983	rmap_item->head = stable_node;
1984	rmap_item->address |= STABLE_FLAG;
1985	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1986
1987	if (rmap_item->hlist.next)
1988		ksm_pages_sharing++;
1989	else
1990		ksm_pages_shared++;
1991}
1992
1993/*
1994 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995 * if not, compare checksum to previous and if it's the same, see if page can
1996 * be inserted into the unstable tree, or merged with a page already there and
1997 * both transferred to the stable tree.
1998 *
1999 * @page: the page that we are searching identical page to.
2000 * @rmap_item: the reverse mapping into the virtual address of this page
2001 */
2002static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2003{
2004	struct mm_struct *mm = rmap_item->mm;
2005	struct rmap_item *tree_rmap_item;
2006	struct page *tree_page = NULL;
2007	struct stable_node *stable_node;
2008	struct page *kpage;
2009	unsigned int checksum;
2010	int err;
2011	bool max_page_sharing_bypass = false;
2012
2013	stable_node = page_stable_node(page);
2014	if (stable_node) {
2015		if (stable_node->head != &migrate_nodes &&
2016		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017		    NUMA(stable_node->nid)) {
2018			stable_node_dup_del(stable_node);
2019			stable_node->head = &migrate_nodes;
2020			list_add(&stable_node->list, stable_node->head);
2021		}
2022		if (stable_node->head != &migrate_nodes &&
2023		    rmap_item->head == stable_node)
2024			return;
2025		/*
2026		 * If it's a KSM fork, allow it to go over the sharing limit
2027		 * without warnings.
2028		 */
2029		if (!is_page_sharing_candidate(stable_node))
2030			max_page_sharing_bypass = true;
2031	}
2032
2033	/* We first start with searching the page inside the stable tree */
2034	kpage = stable_tree_search(page);
2035	if (kpage == page && rmap_item->head == stable_node) {
2036		put_page(kpage);
2037		return;
2038	}
2039
2040	remove_rmap_item_from_tree(rmap_item);
2041
2042	if (kpage) {
2043		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2044		if (!err) {
2045			/*
2046			 * The page was successfully merged:
2047			 * add its rmap_item to the stable tree.
2048			 */
2049			lock_page(kpage);
2050			stable_tree_append(rmap_item, page_stable_node(kpage),
2051					   max_page_sharing_bypass);
2052			unlock_page(kpage);
2053		}
2054		put_page(kpage);
2055		return;
2056	}
2057
2058	/*
2059	 * If the hash value of the page has changed from the last time
2060	 * we calculated it, this page is changing frequently: therefore we
2061	 * don't want to insert it in the unstable tree, and we don't want
2062	 * to waste our time searching for something identical to it there.
2063	 */
2064	checksum = calc_checksum(page);
2065	if (rmap_item->oldchecksum != checksum) {
2066		rmap_item->oldchecksum = checksum;
2067		return;
2068	}
2069
2070	/*
2071	 * Same checksum as an empty page. We attempt to merge it with the
2072	 * appropriate zero page if the user enabled this via sysfs.
2073	 */
2074	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075		struct vm_area_struct *vma;
2076
2077		down_read(&mm->mmap_sem);
2078		vma = find_mergeable_vma(mm, rmap_item->address);
2079		err = try_to_merge_one_page(vma, page,
2080					    ZERO_PAGE(rmap_item->address));
2081		up_read(&mm->mmap_sem);
2082		/*
2083		 * In case of failure, the page was not really empty, so we
2084		 * need to continue. Otherwise we're done.
2085		 */
2086		if (!err)
2087			return;
2088	}
2089	tree_rmap_item =
2090		unstable_tree_search_insert(rmap_item, page, &tree_page);
2091	if (tree_rmap_item) {
2092		bool split;
2093
2094		kpage = try_to_merge_two_pages(rmap_item, page,
2095						tree_rmap_item, tree_page);
2096		/*
2097		 * If both pages we tried to merge belong to the same compound
2098		 * page, then we actually ended up increasing the reference
2099		 * count of the same compound page twice, and split_huge_page
2100		 * failed.
2101		 * Here we set a flag if that happened, and we use it later to
2102		 * try split_huge_page again. Since we call put_page right
2103		 * afterwards, the reference count will be correct and
2104		 * split_huge_page should succeed.
2105		 */
2106		split = PageTransCompound(page)
2107			&& compound_head(page) == compound_head(tree_page);
2108		put_page(tree_page);
2109		if (kpage) {
2110			/*
2111			 * The pages were successfully merged: insert new
2112			 * node in the stable tree and add both rmap_items.
2113			 */
2114			lock_page(kpage);
2115			stable_node = stable_tree_insert(kpage);
2116			if (stable_node) {
2117				stable_tree_append(tree_rmap_item, stable_node,
2118						   false);
2119				stable_tree_append(rmap_item, stable_node,
2120						   false);
2121			}
2122			unlock_page(kpage);
2123
2124			/*
2125			 * If we fail to insert the page into the stable tree,
2126			 * we will have 2 virtual addresses that are pointing
2127			 * to a ksm page left outside the stable tree,
2128			 * in which case we need to break_cow on both.
2129			 */
2130			if (!stable_node) {
2131				break_cow(tree_rmap_item);
2132				break_cow(rmap_item);
2133			}
2134		} else if (split) {
2135			/*
2136			 * We are here if we tried to merge two pages and
2137			 * failed because they both belonged to the same
2138			 * compound page. We will split the page now, but no
2139			 * merging will take place.
2140			 * We do not want to add the cost of a full lock; if
2141			 * the page is locked, it is better to skip it and
2142			 * perhaps try again later.
2143			 */
2144			if (!trylock_page(page))
2145				return;
2146			split_huge_page(page);
2147			unlock_page(page);
2148		}
2149	}
2150}
2151
2152static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2153					    struct rmap_item **rmap_list,
2154					    unsigned long addr)
2155{
2156	struct rmap_item *rmap_item;
2157
2158	while (*rmap_list) {
2159		rmap_item = *rmap_list;
2160		if ((rmap_item->address & PAGE_MASK) == addr)
2161			return rmap_item;
2162		if (rmap_item->address > addr)
2163			break;
2164		*rmap_list = rmap_item->rmap_list;
2165		remove_rmap_item_from_tree(rmap_item);
2166		free_rmap_item(rmap_item);
2167	}
2168
2169	rmap_item = alloc_rmap_item();
2170	if (rmap_item) {
2171		/* It has already been zeroed */
2172		rmap_item->mm = mm_slot->mm;
2173		rmap_item->address = addr;
2174		rmap_item->rmap_list = *rmap_list;
2175		*rmap_list = rmap_item;
2176	}
2177	return rmap_item;
2178}
2179
2180static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2181{
2182	struct mm_struct *mm;
2183	struct mm_slot *slot;
2184	struct vm_area_struct *vma;
2185	struct rmap_item *rmap_item;
2186	int nid;
2187
2188	if (list_empty(&ksm_mm_head.mm_list))
2189		return NULL;
2190
2191	slot = ksm_scan.mm_slot;
2192	if (slot == &ksm_mm_head) {
2193		/*
2194		 * A number of pages can hang around indefinitely on per-cpu
2195		 * pagevecs, raised page count preventing write_protect_page
2196		 * from merging them.  Though it doesn't really matter much,
2197		 * it is puzzling to see some stuck in pages_volatile until
2198		 * other activity jostles them out, and they also prevented
2199		 * LTP's KSM test from succeeding deterministically; so drain
2200		 * them here (here rather than on entry to ksm_do_scan(),
2201		 * so we don't IPI too often when pages_to_scan is set low).
2202		 */
2203		lru_add_drain_all();
2204
2205		/*
2206		 * Whereas stale stable_nodes on the stable_tree itself
2207		 * get pruned in the regular course of stable_tree_search(),
2208		 * those moved out to the migrate_nodes list can accumulate:
2209		 * so prune them once before each full scan.
2210		 */
2211		if (!ksm_merge_across_nodes) {
2212			struct stable_node *stable_node, *next;
2213			struct page *page;
2214
2215			list_for_each_entry_safe(stable_node, next,
2216						 &migrate_nodes, list) {
2217				page = get_ksm_page(stable_node, false);
2218				if (page)
2219					put_page(page);
2220				cond_resched();
2221			}
2222		}
2223
2224		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2225			root_unstable_tree[nid] = RB_ROOT;
2226
2227		spin_lock(&ksm_mmlist_lock);
2228		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2229		ksm_scan.mm_slot = slot;
2230		spin_unlock(&ksm_mmlist_lock);
2231		/*
2232		 * Although we tested list_empty() above, a racing __ksm_exit
2233		 * of the last mm on the list may have removed it since then.
2234		 */
2235		if (slot == &ksm_mm_head)
2236			return NULL;
2237next_mm:
2238		ksm_scan.address = 0;
2239		ksm_scan.rmap_list = &slot->rmap_list;
2240	}
2241
2242	mm = slot->mm;
2243	down_read(&mm->mmap_sem);
2244	if (ksm_test_exit(mm))
2245		vma = NULL;
2246	else
2247		vma = find_vma(mm, ksm_scan.address);
2248
2249	for (; vma; vma = vma->vm_next) {
2250		if (!(vma->vm_flags & VM_MERGEABLE))
2251			continue;
2252		if (ksm_scan.address < vma->vm_start)
2253			ksm_scan.address = vma->vm_start;
2254		if (!vma->anon_vma)
2255			ksm_scan.address = vma->vm_end;
2256
2257		while (ksm_scan.address < vma->vm_end) {
2258			if (ksm_test_exit(mm))
2259				break;
2260			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2261			if (IS_ERR_OR_NULL(*page)) {
2262				ksm_scan.address += PAGE_SIZE;
2263				cond_resched();
2264				continue;
2265			}
2266			if (PageAnon(*page)) {
2267				flush_anon_page(vma, *page, ksm_scan.address);
2268				flush_dcache_page(*page);
2269				rmap_item = get_next_rmap_item(slot,
2270					ksm_scan.rmap_list, ksm_scan.address);
2271				if (rmap_item) {
2272					ksm_scan.rmap_list =
2273							&rmap_item->rmap_list;
2274					ksm_scan.address += PAGE_SIZE;
2275				} else
2276					put_page(*page);
2277				up_read(&mm->mmap_sem);
2278				return rmap_item;
2279			}
2280			put_page(*page);
2281			ksm_scan.address += PAGE_SIZE;
2282			cond_resched();
2283		}
2284	}
2285
2286	if (ksm_test_exit(mm)) {
2287		ksm_scan.address = 0;
2288		ksm_scan.rmap_list = &slot->rmap_list;
2289	}
2290	/*
2291	 * Nuke all the rmap_items that are above this current rmap:
2292	 * because there were no VM_MERGEABLE vmas with such addresses.
2293	 */
2294	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2295
2296	spin_lock(&ksm_mmlist_lock);
2297	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2298						struct mm_slot, mm_list);
2299	if (ksm_scan.address == 0) {
2300		/*
2301		 * We've completed a full scan of all vmas, holding mmap_sem
2302		 * throughout, and found no VM_MERGEABLE: so do the same as
2303		 * __ksm_exit does to remove this mm from all our lists now.
2304		 * This applies either when cleaning up after __ksm_exit
2305		 * (but beware: we can reach here even before __ksm_exit),
2306		 * or when all VM_MERGEABLE areas have been unmapped (and
2307		 * mmap_sem then protects against race with MADV_MERGEABLE).
2308		 */
2309		hash_del(&slot->link);
2310		list_del(&slot->mm_list);
2311		spin_unlock(&ksm_mmlist_lock);
2312
2313		free_mm_slot(slot);
2314		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2315		up_read(&mm->mmap_sem);
2316		mmdrop(mm);
2317	} else {
2318		up_read(&mm->mmap_sem);
2319		/*
2320		 * up_read(&mm->mmap_sem) first because after
2321		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2322		 * already have been freed under us by __ksm_exit()
2323		 * because the "mm_slot" is still hashed and
2324		 * ksm_scan.mm_slot doesn't point to it anymore.
2325		 */
2326		spin_unlock(&ksm_mmlist_lock);
2327	}
2328
2329	/* Repeat until we've completed scanning the whole list */
2330	slot = ksm_scan.mm_slot;
2331	if (slot != &ksm_mm_head)
2332		goto next_mm;
2333
2334	ksm_scan.seqnr++;
2335	return NULL;
2336}
2337
2338/**
2339 * ksm_do_scan  - the ksm scanner main worker function.
2340 * @scan_npages:  number of pages we want to scan before we return.
2341 */
2342static void ksm_do_scan(unsigned int scan_npages)
2343{
2344	struct rmap_item *rmap_item;
2345	struct page *uninitialized_var(page);
2346
2347	while (scan_npages-- && likely(!freezing(current))) {
2348		cond_resched();
2349		rmap_item = scan_get_next_rmap_item(&page);
2350		if (!rmap_item)
2351			return;
2352		cmp_and_merge_page(page, rmap_item);
2353		put_page(page);
2354	}
2355}
2356
2357static int ksmd_should_run(void)
2358{
2359	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2360}
2361
2362static int ksm_scan_thread(void *nothing)
2363{
2364	set_freezable();
2365	set_user_nice(current, 5);
2366
2367	while (!kthread_should_stop()) {
2368		mutex_lock(&ksm_thread_mutex);
2369		wait_while_offlining();
2370		if (ksmd_should_run())
2371			ksm_do_scan(ksm_thread_pages_to_scan);
2372		mutex_unlock(&ksm_thread_mutex);
2373
2374		try_to_freeze();
2375
2376		if (ksmd_should_run()) {
2377			schedule_timeout_interruptible(
2378				msecs_to_jiffies(ksm_thread_sleep_millisecs));
2379		} else {
2380			wait_event_freezable(ksm_thread_wait,
2381				ksmd_should_run() || kthread_should_stop());
2382		}
2383	}
2384	return 0;
2385}
2386
2387int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2388		unsigned long end, int advice, unsigned long *vm_flags)
2389{
2390	struct mm_struct *mm = vma->vm_mm;
2391	int err;
2392
2393	switch (advice) {
2394	case MADV_MERGEABLE:
2395		/*
2396		 * Be somewhat over-protective for now!
2397		 */
2398		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2399				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2400				 VM_HUGETLB | VM_MIXEDMAP))
2401			return 0;		/* just ignore the advice */
2402
2403#ifdef VM_SAO
2404		if (*vm_flags & VM_SAO)
2405			return 0;
2406#endif
2407#ifdef VM_SPARC_ADI
2408		if (*vm_flags & VM_SPARC_ADI)
2409			return 0;
2410#endif
2411
2412		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2413			err = __ksm_enter(mm);
2414			if (err)
2415				return err;
2416		}
2417
2418		*vm_flags |= VM_MERGEABLE;
2419		break;
2420
2421	case MADV_UNMERGEABLE:
2422		if (!(*vm_flags & VM_MERGEABLE))
2423			return 0;		/* just ignore the advice */
2424
2425		if (vma->anon_vma) {
2426			err = unmerge_ksm_pages(vma, start, end);
2427			if (err)
2428				return err;
2429		}
2430
2431		*vm_flags &= ~VM_MERGEABLE;
2432		break;
2433	}
2434
2435	return 0;
2436}
2437
2438int __ksm_enter(struct mm_struct *mm)
2439{
2440	struct mm_slot *mm_slot;
2441	int needs_wakeup;
2442
2443	mm_slot = alloc_mm_slot();
2444	if (!mm_slot)
2445		return -ENOMEM;
2446
2447	/* Check ksm_run too?  Would need tighter locking */
2448	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2449
2450	spin_lock(&ksm_mmlist_lock);
2451	insert_to_mm_slots_hash(mm, mm_slot);
2452	/*
2453	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2454	 * insert just behind the scanning cursor, to let the area settle
2455	 * down a little; when fork is followed by immediate exec, we don't
2456	 * want ksmd to waste time setting up and tearing down an rmap_list.
2457	 *
2458	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2459	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2460	 * missed: then we might as well insert at the end of the list.
2461	 */
2462	if (ksm_run & KSM_RUN_UNMERGE)
2463		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2464	else
2465		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2466	spin_unlock(&ksm_mmlist_lock);
2467
2468	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2469	mmgrab(mm);
2470
2471	if (needs_wakeup)
2472		wake_up_interruptible(&ksm_thread_wait);
2473
2474	return 0;
2475}
2476
2477void __ksm_exit(struct mm_struct *mm)
2478{
2479	struct mm_slot *mm_slot;
2480	int easy_to_free = 0;
2481
2482	/*
2483	 * This process is exiting: if it's straightforward (as is the
2484	 * case when ksmd was never running), free mm_slot immediately.
2485	 * But if it's at the cursor or has rmap_items linked to it, use
2486	 * mmap_sem to synchronize with any break_cows before pagetables
2487	 * are freed, and leave the mm_slot on the list for ksmd to free.
2488	 * Beware: ksm may already have noticed it exiting and freed the slot.
2489	 */
2490
2491	spin_lock(&ksm_mmlist_lock);
2492	mm_slot = get_mm_slot(mm);
2493	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2494		if (!mm_slot->rmap_list) {
2495			hash_del(&mm_slot->link);
2496			list_del(&mm_slot->mm_list);
2497			easy_to_free = 1;
2498		} else {
2499			list_move(&mm_slot->mm_list,
2500				  &ksm_scan.mm_slot->mm_list);
2501		}
2502	}
2503	spin_unlock(&ksm_mmlist_lock);
2504
2505	if (easy_to_free) {
2506		free_mm_slot(mm_slot);
2507		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2508		mmdrop(mm);
2509	} else if (mm_slot) {
2510		down_write(&mm->mmap_sem);
2511		up_write(&mm->mmap_sem);
2512	}
2513}
2514
2515struct page *ksm_might_need_to_copy(struct page *page,
2516			struct vm_area_struct *vma, unsigned long address)
2517{
2518	struct anon_vma *anon_vma = page_anon_vma(page);
2519	struct page *new_page;
2520
2521	if (PageKsm(page)) {
2522		if (page_stable_node(page) &&
2523		    !(ksm_run & KSM_RUN_UNMERGE))
2524			return page;	/* no need to copy it */
2525	} else if (!anon_vma) {
2526		return page;		/* no need to copy it */
2527	} else if (anon_vma->root == vma->anon_vma->root &&
2528		 page->index == linear_page_index(vma, address)) {
2529		return page;		/* still no need to copy it */
2530	}
2531	if (!PageUptodate(page))
2532		return page;		/* let do_swap_page report the error */
2533
2534	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2535	if (new_page) {
2536		copy_user_highpage(new_page, page, address, vma);
2537
2538		SetPageDirty(new_page);
2539		__SetPageUptodate(new_page);
2540		__SetPageLocked(new_page);
2541	}
2542
2543	return new_page;
2544}
2545
2546void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2547{
2548	struct stable_node *stable_node;
2549	struct rmap_item *rmap_item;
 
2550	int search_new_forks = 0;
2551
2552	VM_BUG_ON_PAGE(!PageKsm(page), page);
2553
2554	/*
2555	 * Rely on the page lock to protect against concurrent modifications
2556	 * to that page's node of the stable tree.
2557	 */
2558	VM_BUG_ON_PAGE(!PageLocked(page), page);
2559
2560	stable_node = page_stable_node(page);
2561	if (!stable_node)
2562		return;
2563again:
2564	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2565		struct anon_vma *anon_vma = rmap_item->anon_vma;
2566		struct anon_vma_chain *vmac;
2567		struct vm_area_struct *vma;
2568
2569		cond_resched();
2570		anon_vma_lock_read(anon_vma);
2571		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2572					       0, ULONG_MAX) {
2573			cond_resched();
2574			vma = vmac->vma;
2575			if (rmap_item->address < vma->vm_start ||
2576			    rmap_item->address >= vma->vm_end)
2577				continue;
2578			/*
2579			 * Initially we examine only the vma which covers this
2580			 * rmap_item; but later, if there is still work to do,
2581			 * we examine covering vmas in other mms: in case they
2582			 * were forked from the original since ksmd passed.
2583			 */
2584			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2585				continue;
2586
2587			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2588				continue;
2589
2590			if (!rwc->rmap_one(page, vma,
2591					rmap_item->address, rwc->arg)) {
 
2592				anon_vma_unlock_read(anon_vma);
2593				return;
2594			}
2595			if (rwc->done && rwc->done(page)) {
2596				anon_vma_unlock_read(anon_vma);
2597				return;
2598			}
2599		}
2600		anon_vma_unlock_read(anon_vma);
2601	}
2602	if (!search_new_forks++)
2603		goto again;
 
 
2604}
2605
2606#ifdef CONFIG_MIGRATION
2607void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2608{
2609	struct stable_node *stable_node;
2610
2611	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2612	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2613	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2614
2615	stable_node = page_stable_node(newpage);
2616	if (stable_node) {
2617		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2618		stable_node->kpfn = page_to_pfn(newpage);
2619		/*
2620		 * newpage->mapping was set in advance; now we need smp_wmb()
2621		 * to make sure that the new stable_node->kpfn is visible
2622		 * to get_ksm_page() before it can see that oldpage->mapping
2623		 * has gone stale (or that PageSwapCache has been cleared).
2624		 */
2625		smp_wmb();
2626		set_page_stable_node(oldpage, NULL);
2627	}
2628}
2629#endif /* CONFIG_MIGRATION */
2630
2631#ifdef CONFIG_MEMORY_HOTREMOVE
2632static void wait_while_offlining(void)
2633{
2634	while (ksm_run & KSM_RUN_OFFLINE) {
2635		mutex_unlock(&ksm_thread_mutex);
2636		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2637			    TASK_UNINTERRUPTIBLE);
2638		mutex_lock(&ksm_thread_mutex);
2639	}
2640}
2641
2642static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2643					 unsigned long start_pfn,
2644					 unsigned long end_pfn)
2645{
2646	if (stable_node->kpfn >= start_pfn &&
2647	    stable_node->kpfn < end_pfn) {
2648		/*
2649		 * Don't get_ksm_page, page has already gone:
2650		 * which is why we keep kpfn instead of page*
2651		 */
2652		remove_node_from_stable_tree(stable_node);
2653		return true;
2654	}
2655	return false;
2656}
2657
2658static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2659					   unsigned long start_pfn,
2660					   unsigned long end_pfn,
2661					   struct rb_root *root)
2662{
2663	struct stable_node *dup;
2664	struct hlist_node *hlist_safe;
2665
2666	if (!is_stable_node_chain(stable_node)) {
2667		VM_BUG_ON(is_stable_node_dup(stable_node));
2668		return stable_node_dup_remove_range(stable_node, start_pfn,
2669						    end_pfn);
2670	}
2671
2672	hlist_for_each_entry_safe(dup, hlist_safe,
2673				  &stable_node->hlist, hlist_dup) {
2674		VM_BUG_ON(!is_stable_node_dup(dup));
2675		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2676	}
2677	if (hlist_empty(&stable_node->hlist)) {
2678		free_stable_node_chain(stable_node, root);
2679		return true; /* notify caller that tree was rebalanced */
2680	} else
2681		return false;
2682}
2683
2684static void ksm_check_stable_tree(unsigned long start_pfn,
2685				  unsigned long end_pfn)
2686{
2687	struct stable_node *stable_node, *next;
2688	struct rb_node *node;
2689	int nid;
2690
2691	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2692		node = rb_first(root_stable_tree + nid);
2693		while (node) {
2694			stable_node = rb_entry(node, struct stable_node, node);
2695			if (stable_node_chain_remove_range(stable_node,
2696							   start_pfn, end_pfn,
2697							   root_stable_tree +
2698							   nid))
 
 
 
2699				node = rb_first(root_stable_tree + nid);
2700			else
2701				node = rb_next(node);
2702			cond_resched();
2703		}
2704	}
2705	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2706		if (stable_node->kpfn >= start_pfn &&
2707		    stable_node->kpfn < end_pfn)
2708			remove_node_from_stable_tree(stable_node);
2709		cond_resched();
2710	}
2711}
2712
2713static int ksm_memory_callback(struct notifier_block *self,
2714			       unsigned long action, void *arg)
2715{
2716	struct memory_notify *mn = arg;
2717
2718	switch (action) {
2719	case MEM_GOING_OFFLINE:
2720		/*
2721		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2722		 * and remove_all_stable_nodes() while memory is going offline:
2723		 * it is unsafe for them to touch the stable tree at this time.
2724		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2725		 * which do not need the ksm_thread_mutex are all safe.
2726		 */
2727		mutex_lock(&ksm_thread_mutex);
2728		ksm_run |= KSM_RUN_OFFLINE;
2729		mutex_unlock(&ksm_thread_mutex);
2730		break;
2731
2732	case MEM_OFFLINE:
2733		/*
2734		 * Most of the work is done by page migration; but there might
2735		 * be a few stable_nodes left over, still pointing to struct
2736		 * pages which have been offlined: prune those from the tree,
2737		 * otherwise get_ksm_page() might later try to access a
2738		 * non-existent struct page.
2739		 */
2740		ksm_check_stable_tree(mn->start_pfn,
2741				      mn->start_pfn + mn->nr_pages);
2742		/* fallthrough */
2743
2744	case MEM_CANCEL_OFFLINE:
2745		mutex_lock(&ksm_thread_mutex);
2746		ksm_run &= ~KSM_RUN_OFFLINE;
2747		mutex_unlock(&ksm_thread_mutex);
2748
2749		smp_mb();	/* wake_up_bit advises this */
2750		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2751		break;
2752	}
2753	return NOTIFY_OK;
2754}
2755#else
2756static void wait_while_offlining(void)
2757{
2758}
2759#endif /* CONFIG_MEMORY_HOTREMOVE */
2760
2761#ifdef CONFIG_SYSFS
2762/*
2763 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2764 */
2765
2766#define KSM_ATTR_RO(_name) \
2767	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2768#define KSM_ATTR(_name) \
2769	static struct kobj_attribute _name##_attr = \
2770		__ATTR(_name, 0644, _name##_show, _name##_store)
2771
2772static ssize_t sleep_millisecs_show(struct kobject *kobj,
2773				    struct kobj_attribute *attr, char *buf)
2774{
2775	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2776}
2777
2778static ssize_t sleep_millisecs_store(struct kobject *kobj,
2779				     struct kobj_attribute *attr,
2780				     const char *buf, size_t count)
2781{
2782	unsigned long msecs;
2783	int err;
2784
2785	err = kstrtoul(buf, 10, &msecs);
2786	if (err || msecs > UINT_MAX)
2787		return -EINVAL;
2788
2789	ksm_thread_sleep_millisecs = msecs;
2790
2791	return count;
2792}
2793KSM_ATTR(sleep_millisecs);
2794
2795static ssize_t pages_to_scan_show(struct kobject *kobj,
2796				  struct kobj_attribute *attr, char *buf)
2797{
2798	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2799}
2800
2801static ssize_t pages_to_scan_store(struct kobject *kobj,
2802				   struct kobj_attribute *attr,
2803				   const char *buf, size_t count)
2804{
2805	int err;
2806	unsigned long nr_pages;
2807
2808	err = kstrtoul(buf, 10, &nr_pages);
2809	if (err || nr_pages > UINT_MAX)
2810		return -EINVAL;
2811
2812	ksm_thread_pages_to_scan = nr_pages;
2813
2814	return count;
2815}
2816KSM_ATTR(pages_to_scan);
2817
2818static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2819			char *buf)
2820{
2821	return sprintf(buf, "%lu\n", ksm_run);
2822}
2823
2824static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2825			 const char *buf, size_t count)
2826{
2827	int err;
2828	unsigned long flags;
2829
2830	err = kstrtoul(buf, 10, &flags);
2831	if (err || flags > UINT_MAX)
2832		return -EINVAL;
2833	if (flags > KSM_RUN_UNMERGE)
2834		return -EINVAL;
2835
2836	/*
2837	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2838	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2839	 * breaking COW to free the pages_shared (but leaves mm_slots
2840	 * on the list for when ksmd may be set running again).
2841	 */
2842
2843	mutex_lock(&ksm_thread_mutex);
2844	wait_while_offlining();
2845	if (ksm_run != flags) {
2846		ksm_run = flags;
2847		if (flags & KSM_RUN_UNMERGE) {
2848			set_current_oom_origin();
2849			err = unmerge_and_remove_all_rmap_items();
2850			clear_current_oom_origin();
2851			if (err) {
2852				ksm_run = KSM_RUN_STOP;
2853				count = err;
2854			}
2855		}
2856	}
2857	mutex_unlock(&ksm_thread_mutex);
2858
2859	if (flags & KSM_RUN_MERGE)
2860		wake_up_interruptible(&ksm_thread_wait);
2861
2862	return count;
2863}
2864KSM_ATTR(run);
2865
2866#ifdef CONFIG_NUMA
2867static ssize_t merge_across_nodes_show(struct kobject *kobj,
2868				struct kobj_attribute *attr, char *buf)
2869{
2870	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2871}
2872
2873static ssize_t merge_across_nodes_store(struct kobject *kobj,
2874				   struct kobj_attribute *attr,
2875				   const char *buf, size_t count)
2876{
2877	int err;
2878	unsigned long knob;
2879
2880	err = kstrtoul(buf, 10, &knob);
2881	if (err)
2882		return err;
2883	if (knob > 1)
2884		return -EINVAL;
2885
2886	mutex_lock(&ksm_thread_mutex);
2887	wait_while_offlining();
2888	if (ksm_merge_across_nodes != knob) {
2889		if (ksm_pages_shared || remove_all_stable_nodes())
2890			err = -EBUSY;
2891		else if (root_stable_tree == one_stable_tree) {
2892			struct rb_root *buf;
2893			/*
2894			 * This is the first time that we switch away from the
2895			 * default of merging across nodes: must now allocate
2896			 * a buffer to hold as many roots as may be needed.
2897			 * Allocate stable and unstable together:
2898			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2899			 */
2900			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2901				      GFP_KERNEL);
2902			/* Let us assume that RB_ROOT is NULL is zero */
2903			if (!buf)
2904				err = -ENOMEM;
2905			else {
2906				root_stable_tree = buf;
2907				root_unstable_tree = buf + nr_node_ids;
2908				/* Stable tree is empty but not the unstable */
2909				root_unstable_tree[0] = one_unstable_tree[0];
2910			}
2911		}
2912		if (!err) {
2913			ksm_merge_across_nodes = knob;
2914			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2915		}
2916	}
2917	mutex_unlock(&ksm_thread_mutex);
2918
2919	return err ? err : count;
2920}
2921KSM_ATTR(merge_across_nodes);
2922#endif
2923
2924static ssize_t use_zero_pages_show(struct kobject *kobj,
2925				struct kobj_attribute *attr, char *buf)
2926{
2927	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2928}
2929static ssize_t use_zero_pages_store(struct kobject *kobj,
2930				   struct kobj_attribute *attr,
2931				   const char *buf, size_t count)
2932{
2933	int err;
2934	bool value;
2935
2936	err = kstrtobool(buf, &value);
2937	if (err)
2938		return -EINVAL;
2939
2940	ksm_use_zero_pages = value;
2941
2942	return count;
2943}
2944KSM_ATTR(use_zero_pages);
2945
2946static ssize_t max_page_sharing_show(struct kobject *kobj,
2947				     struct kobj_attribute *attr, char *buf)
2948{
2949	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2950}
2951
2952static ssize_t max_page_sharing_store(struct kobject *kobj,
2953				      struct kobj_attribute *attr,
2954				      const char *buf, size_t count)
2955{
2956	int err;
2957	int knob;
2958
2959	err = kstrtoint(buf, 10, &knob);
2960	if (err)
2961		return err;
2962	/*
2963	 * When a KSM page is created it is shared by 2 mappings. This
2964	 * being a signed comparison, it implicitly verifies it's not
2965	 * negative.
2966	 */
2967	if (knob < 2)
2968		return -EINVAL;
2969
2970	if (READ_ONCE(ksm_max_page_sharing) == knob)
2971		return count;
2972
2973	mutex_lock(&ksm_thread_mutex);
2974	wait_while_offlining();
2975	if (ksm_max_page_sharing != knob) {
2976		if (ksm_pages_shared || remove_all_stable_nodes())
2977			err = -EBUSY;
2978		else
2979			ksm_max_page_sharing = knob;
2980	}
2981	mutex_unlock(&ksm_thread_mutex);
2982
2983	return err ? err : count;
2984}
2985KSM_ATTR(max_page_sharing);
2986
2987static ssize_t pages_shared_show(struct kobject *kobj,
2988				 struct kobj_attribute *attr, char *buf)
2989{
2990	return sprintf(buf, "%lu\n", ksm_pages_shared);
2991}
2992KSM_ATTR_RO(pages_shared);
2993
2994static ssize_t pages_sharing_show(struct kobject *kobj,
2995				  struct kobj_attribute *attr, char *buf)
2996{
2997	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2998}
2999KSM_ATTR_RO(pages_sharing);
3000
3001static ssize_t pages_unshared_show(struct kobject *kobj,
3002				   struct kobj_attribute *attr, char *buf)
3003{
3004	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3005}
3006KSM_ATTR_RO(pages_unshared);
3007
3008static ssize_t pages_volatile_show(struct kobject *kobj,
3009				   struct kobj_attribute *attr, char *buf)
3010{
3011	long ksm_pages_volatile;
3012
3013	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3014				- ksm_pages_sharing - ksm_pages_unshared;
3015	/*
3016	 * It was not worth any locking to calculate that statistic,
3017	 * but it might therefore sometimes be negative: conceal that.
3018	 */
3019	if (ksm_pages_volatile < 0)
3020		ksm_pages_volatile = 0;
3021	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3022}
3023KSM_ATTR_RO(pages_volatile);
3024
3025static ssize_t stable_node_dups_show(struct kobject *kobj,
3026				     struct kobj_attribute *attr, char *buf)
3027{
3028	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3029}
3030KSM_ATTR_RO(stable_node_dups);
3031
3032static ssize_t stable_node_chains_show(struct kobject *kobj,
3033				       struct kobj_attribute *attr, char *buf)
3034{
3035	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3036}
3037KSM_ATTR_RO(stable_node_chains);
3038
3039static ssize_t
3040stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3041					struct kobj_attribute *attr,
3042					char *buf)
3043{
3044	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3045}
3046
3047static ssize_t
3048stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3049					 struct kobj_attribute *attr,
3050					 const char *buf, size_t count)
3051{
3052	unsigned long msecs;
3053	int err;
3054
3055	err = kstrtoul(buf, 10, &msecs);
3056	if (err || msecs > UINT_MAX)
3057		return -EINVAL;
3058
3059	ksm_stable_node_chains_prune_millisecs = msecs;
3060
3061	return count;
3062}
3063KSM_ATTR(stable_node_chains_prune_millisecs);
3064
3065static ssize_t full_scans_show(struct kobject *kobj,
3066			       struct kobj_attribute *attr, char *buf)
3067{
3068	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3069}
3070KSM_ATTR_RO(full_scans);
3071
3072static struct attribute *ksm_attrs[] = {
3073	&sleep_millisecs_attr.attr,
3074	&pages_to_scan_attr.attr,
3075	&run_attr.attr,
3076	&pages_shared_attr.attr,
3077	&pages_sharing_attr.attr,
3078	&pages_unshared_attr.attr,
3079	&pages_volatile_attr.attr,
3080	&full_scans_attr.attr,
3081#ifdef CONFIG_NUMA
3082	&merge_across_nodes_attr.attr,
3083#endif
3084	&max_page_sharing_attr.attr,
3085	&stable_node_chains_attr.attr,
3086	&stable_node_dups_attr.attr,
3087	&stable_node_chains_prune_millisecs_attr.attr,
3088	&use_zero_pages_attr.attr,
3089	NULL,
3090};
3091
3092static const struct attribute_group ksm_attr_group = {
3093	.attrs = ksm_attrs,
3094	.name = "ksm",
3095};
3096#endif /* CONFIG_SYSFS */
3097
3098static int __init ksm_init(void)
3099{
3100	struct task_struct *ksm_thread;
3101	int err;
3102
3103	/* The correct value depends on page size and endianness */
3104	zero_checksum = calc_checksum(ZERO_PAGE(0));
3105	/* Default to false for backwards compatibility */
3106	ksm_use_zero_pages = false;
3107
3108	err = ksm_slab_init();
3109	if (err)
3110		goto out;
3111
3112	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3113	if (IS_ERR(ksm_thread)) {
3114		pr_err("ksm: creating kthread failed\n");
3115		err = PTR_ERR(ksm_thread);
3116		goto out_free;
3117	}
3118
3119#ifdef CONFIG_SYSFS
3120	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3121	if (err) {
3122		pr_err("ksm: register sysfs failed\n");
3123		kthread_stop(ksm_thread);
3124		goto out_free;
3125	}
3126#else
3127	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3128
3129#endif /* CONFIG_SYSFS */
3130
3131#ifdef CONFIG_MEMORY_HOTREMOVE
3132	/* There is no significance to this priority 100 */
3133	hotplug_memory_notifier(ksm_memory_callback, 100);
3134#endif
3135	return 0;
3136
3137out_free:
3138	ksm_slab_free();
3139out:
3140	return err;
3141}
3142subsys_initcall(ksm_init);
v4.10.11
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
 
 
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hashtable.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
  39#include <linux/numa.h>
  40
  41#include <asm/tlbflush.h>
  42#include "internal.h"
  43
  44#ifdef CONFIG_NUMA
  45#define NUMA(x)		(x)
  46#define DO_NUMA(x)	do { (x); } while (0)
  47#else
  48#define NUMA(x)		(0)
  49#define DO_NUMA(x)	do { } while (0)
  50#endif
  51
  52/*
  53 * A few notes about the KSM scanning process,
  54 * to make it easier to understand the data structures below:
  55 *
  56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  57 * contents into a data structure that holds pointers to the pages' locations.
  58 *
  59 * Since the contents of the pages may change at any moment, KSM cannot just
  60 * insert the pages into a normal sorted tree and expect it to find anything.
  61 * Therefore KSM uses two data structures - the stable and the unstable tree.
  62 *
  63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  64 * by their contents.  Because each such page is write-protected, searching on
  65 * this tree is fully assured to be working (except when pages are unmapped),
  66 * and therefore this tree is called the stable tree.
  67 *
  68 * In addition to the stable tree, KSM uses a second data structure called the
  69 * unstable tree: this tree holds pointers to pages which have been found to
  70 * be "unchanged for a period of time".  The unstable tree sorts these pages
  71 * by their contents, but since they are not write-protected, KSM cannot rely
  72 * upon the unstable tree to work correctly - the unstable tree is liable to
  73 * be corrupted as its contents are modified, and so it is called unstable.
  74 *
  75 * KSM solves this problem by several techniques:
  76 *
  77 * 1) The unstable tree is flushed every time KSM completes scanning all
  78 *    memory areas, and then the tree is rebuilt again from the beginning.
  79 * 2) KSM will only insert into the unstable tree, pages whose hash value
  80 *    has not changed since the previous scan of all memory areas.
  81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  82 *    colors of the nodes and not on their contents, assuring that even when
  83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  84 *    remains the same (also, searching and inserting nodes in an rbtree uses
  85 *    the same algorithm, so we have no overhead when we flush and rebuild).
  86 * 4) KSM never flushes the stable tree, which means that even if it were to
  87 *    take 10 attempts to find a page in the unstable tree, once it is found,
  88 *    it is secured in the stable tree.  (When we scan a new page, we first
  89 *    compare it against the stable tree, and then against the unstable tree.)
  90 *
  91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  92 * stable trees and multiple unstable trees: one of each for each NUMA node.
  93 */
  94
  95/**
  96 * struct mm_slot - ksm information per mm that is being scanned
  97 * @link: link to the mm_slots hash list
  98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 100 * @mm: the mm that this information is valid for
 101 */
 102struct mm_slot {
 103	struct hlist_node link;
 104	struct list_head mm_list;
 105	struct rmap_item *rmap_list;
 106	struct mm_struct *mm;
 107};
 108
 109/**
 110 * struct ksm_scan - cursor for scanning
 111 * @mm_slot: the current mm_slot we are scanning
 112 * @address: the next address inside that to be scanned
 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 114 * @seqnr: count of completed full scans (needed when removing unstable node)
 115 *
 116 * There is only the one ksm_scan instance of this cursor structure.
 117 */
 118struct ksm_scan {
 119	struct mm_slot *mm_slot;
 120	unsigned long address;
 121	struct rmap_item **rmap_list;
 122	unsigned long seqnr;
 123};
 124
 125/**
 126 * struct stable_node - node of the stable rbtree
 127 * @node: rb node of this ksm page in the stable tree
 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 
 129 * @list: linked into migrate_nodes, pending placement in the proper node tree
 130 * @hlist: hlist head of rmap_items using this ksm page
 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 
 
 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 133 */
 134struct stable_node {
 135	union {
 136		struct rb_node node;	/* when node of stable tree */
 137		struct {		/* when listed for migration */
 138			struct list_head *head;
 139			struct list_head list;
 
 
 
 140		};
 141	};
 142	struct hlist_head hlist;
 143	unsigned long kpfn;
 
 
 
 
 
 
 
 
 
 
 144#ifdef CONFIG_NUMA
 145	int nid;
 146#endif
 147};
 148
 149/**
 150 * struct rmap_item - reverse mapping item for virtual addresses
 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 154 * @mm: the memory structure this rmap_item is pointing into
 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 156 * @oldchecksum: previous checksum of the page at that virtual address
 157 * @node: rb node of this rmap_item in the unstable tree
 158 * @head: pointer to stable_node heading this list in the stable tree
 159 * @hlist: link into hlist of rmap_items hanging off that stable_node
 160 */
 161struct rmap_item {
 162	struct rmap_item *rmap_list;
 163	union {
 164		struct anon_vma *anon_vma;	/* when stable */
 165#ifdef CONFIG_NUMA
 166		int nid;		/* when node of unstable tree */
 167#endif
 168	};
 169	struct mm_struct *mm;
 170	unsigned long address;		/* + low bits used for flags below */
 171	unsigned int oldchecksum;	/* when unstable */
 172	union {
 173		struct rb_node node;	/* when node of unstable tree */
 174		struct {		/* when listed from stable tree */
 175			struct stable_node *head;
 176			struct hlist_node hlist;
 177		};
 178	};
 179};
 180
 181#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 182#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 183#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 184
 185/* The stable and unstable tree heads */
 186static struct rb_root one_stable_tree[1] = { RB_ROOT };
 187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 188static struct rb_root *root_stable_tree = one_stable_tree;
 189static struct rb_root *root_unstable_tree = one_unstable_tree;
 190
 191/* Recently migrated nodes of stable tree, pending proper placement */
 192static LIST_HEAD(migrate_nodes);
 
 193
 194#define MM_SLOTS_HASH_BITS 10
 195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 196
 197static struct mm_slot ksm_mm_head = {
 198	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 199};
 200static struct ksm_scan ksm_scan = {
 201	.mm_slot = &ksm_mm_head,
 202};
 203
 204static struct kmem_cache *rmap_item_cache;
 205static struct kmem_cache *stable_node_cache;
 206static struct kmem_cache *mm_slot_cache;
 207
 208/* The number of nodes in the stable tree */
 209static unsigned long ksm_pages_shared;
 210
 211/* The number of page slots additionally sharing those nodes */
 212static unsigned long ksm_pages_sharing;
 213
 214/* The number of nodes in the unstable tree */
 215static unsigned long ksm_pages_unshared;
 216
 217/* The number of rmap_items in use: to calculate pages_volatile */
 218static unsigned long ksm_rmap_items;
 219
 
 
 
 
 
 
 
 
 
 
 
 
 220/* Number of pages ksmd should scan in one batch */
 221static unsigned int ksm_thread_pages_to_scan = 100;
 222
 223/* Milliseconds ksmd should sleep between batches */
 224static unsigned int ksm_thread_sleep_millisecs = 20;
 225
 
 
 
 
 
 
 226#ifdef CONFIG_NUMA
 227/* Zeroed when merging across nodes is not allowed */
 228static unsigned int ksm_merge_across_nodes = 1;
 229static int ksm_nr_node_ids = 1;
 230#else
 231#define ksm_merge_across_nodes	1U
 232#define ksm_nr_node_ids		1
 233#endif
 234
 235#define KSM_RUN_STOP	0
 236#define KSM_RUN_MERGE	1
 237#define KSM_RUN_UNMERGE	2
 238#define KSM_RUN_OFFLINE	4
 239static unsigned long ksm_run = KSM_RUN_STOP;
 240static void wait_while_offlining(void);
 241
 242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 243static DEFINE_MUTEX(ksm_thread_mutex);
 244static DEFINE_SPINLOCK(ksm_mmlist_lock);
 245
 246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 247		sizeof(struct __struct), __alignof__(struct __struct),\
 248		(__flags), NULL)
 249
 250static int __init ksm_slab_init(void)
 251{
 252	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 253	if (!rmap_item_cache)
 254		goto out;
 255
 256	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 257	if (!stable_node_cache)
 258		goto out_free1;
 259
 260	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 261	if (!mm_slot_cache)
 262		goto out_free2;
 263
 264	return 0;
 265
 266out_free2:
 267	kmem_cache_destroy(stable_node_cache);
 268out_free1:
 269	kmem_cache_destroy(rmap_item_cache);
 270out:
 271	return -ENOMEM;
 272}
 273
 274static void __init ksm_slab_free(void)
 275{
 276	kmem_cache_destroy(mm_slot_cache);
 277	kmem_cache_destroy(stable_node_cache);
 278	kmem_cache_destroy(rmap_item_cache);
 279	mm_slot_cache = NULL;
 280}
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282static inline struct rmap_item *alloc_rmap_item(void)
 283{
 284	struct rmap_item *rmap_item;
 285
 286	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 287						__GFP_NORETRY | __GFP_NOWARN);
 288	if (rmap_item)
 289		ksm_rmap_items++;
 290	return rmap_item;
 291}
 292
 293static inline void free_rmap_item(struct rmap_item *rmap_item)
 294{
 295	ksm_rmap_items--;
 296	rmap_item->mm = NULL;	/* debug safety */
 297	kmem_cache_free(rmap_item_cache, rmap_item);
 298}
 299
 300static inline struct stable_node *alloc_stable_node(void)
 301{
 302	/*
 303	 * The allocation can take too long with GFP_KERNEL when memory is under
 304	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 305	 * grants access to memory reserves, helping to avoid this problem.
 306	 */
 307	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 308}
 309
 310static inline void free_stable_node(struct stable_node *stable_node)
 311{
 
 
 312	kmem_cache_free(stable_node_cache, stable_node);
 313}
 314
 315static inline struct mm_slot *alloc_mm_slot(void)
 316{
 317	if (!mm_slot_cache)	/* initialization failed */
 318		return NULL;
 319	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 320}
 321
 322static inline void free_mm_slot(struct mm_slot *mm_slot)
 323{
 324	kmem_cache_free(mm_slot_cache, mm_slot);
 325}
 326
 327static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 328{
 329	struct mm_slot *slot;
 330
 331	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 332		if (slot->mm == mm)
 333			return slot;
 334
 335	return NULL;
 336}
 337
 338static void insert_to_mm_slots_hash(struct mm_struct *mm,
 339				    struct mm_slot *mm_slot)
 340{
 341	mm_slot->mm = mm;
 342	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 343}
 344
 345/*
 346 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 347 * page tables after it has passed through ksm_exit() - which, if necessary,
 348 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 349 * a special flag: they can just back out as soon as mm_users goes to zero.
 350 * ksm_test_exit() is used throughout to make this test for exit: in some
 351 * places for correctness, in some places just to avoid unnecessary work.
 352 */
 353static inline bool ksm_test_exit(struct mm_struct *mm)
 354{
 355	return atomic_read(&mm->mm_users) == 0;
 356}
 357
 358/*
 359 * We use break_ksm to break COW on a ksm page: it's a stripped down
 360 *
 361 *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 362 *		put_page(page);
 363 *
 364 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 365 * in case the application has unmapped and remapped mm,addr meanwhile.
 366 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 367 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 368 *
 369 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 370 * of the process that owns 'vma'.  We also do not want to enforce
 371 * protection keys here anyway.
 372 */
 373static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 374{
 375	struct page *page;
 376	int ret = 0;
 377
 378	do {
 379		cond_resched();
 380		page = follow_page(vma, addr,
 381				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 382		if (IS_ERR_OR_NULL(page))
 383			break;
 384		if (PageKsm(page))
 385			ret = handle_mm_fault(vma, addr,
 386					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 387		else
 388			ret = VM_FAULT_WRITE;
 389		put_page(page);
 390	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 391	/*
 392	 * We must loop because handle_mm_fault() may back out if there's
 393	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 394	 *
 395	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 396	 * COW has been broken, even if the vma does not permit VM_WRITE;
 397	 * but note that a concurrent fault might break PageKsm for us.
 398	 *
 399	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 400	 * backing file, which also invalidates anonymous pages: that's
 401	 * okay, that truncation will have unmapped the PageKsm for us.
 402	 *
 403	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 404	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 405	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 406	 * to user; and ksmd, having no mm, would never be chosen for that.
 407	 *
 408	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 409	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 410	 * even ksmd can fail in this way - though it's usually breaking ksm
 411	 * just to undo a merge it made a moment before, so unlikely to oom.
 412	 *
 413	 * That's a pity: we might therefore have more kernel pages allocated
 414	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 415	 * will retry to break_cow on each pass, so should recover the page
 416	 * in due course.  The important thing is to not let VM_MERGEABLE
 417	 * be cleared while any such pages might remain in the area.
 418	 */
 419	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 420}
 421
 422static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 423		unsigned long addr)
 424{
 425	struct vm_area_struct *vma;
 426	if (ksm_test_exit(mm))
 427		return NULL;
 428	vma = find_vma(mm, addr);
 429	if (!vma || vma->vm_start > addr)
 430		return NULL;
 431	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 432		return NULL;
 433	return vma;
 434}
 435
 436static void break_cow(struct rmap_item *rmap_item)
 437{
 438	struct mm_struct *mm = rmap_item->mm;
 439	unsigned long addr = rmap_item->address;
 440	struct vm_area_struct *vma;
 441
 442	/*
 443	 * It is not an accident that whenever we want to break COW
 444	 * to undo, we also need to drop a reference to the anon_vma.
 445	 */
 446	put_anon_vma(rmap_item->anon_vma);
 447
 448	down_read(&mm->mmap_sem);
 449	vma = find_mergeable_vma(mm, addr);
 450	if (vma)
 451		break_ksm(vma, addr);
 452	up_read(&mm->mmap_sem);
 453}
 454
 455static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 456{
 457	struct mm_struct *mm = rmap_item->mm;
 458	unsigned long addr = rmap_item->address;
 459	struct vm_area_struct *vma;
 460	struct page *page;
 461
 462	down_read(&mm->mmap_sem);
 463	vma = find_mergeable_vma(mm, addr);
 464	if (!vma)
 465		goto out;
 466
 467	page = follow_page(vma, addr, FOLL_GET);
 468	if (IS_ERR_OR_NULL(page))
 469		goto out;
 470	if (PageAnon(page)) {
 471		flush_anon_page(vma, page, addr);
 472		flush_dcache_page(page);
 473	} else {
 474		put_page(page);
 475out:
 476		page = NULL;
 477	}
 478	up_read(&mm->mmap_sem);
 479	return page;
 480}
 481
 482/*
 483 * This helper is used for getting right index into array of tree roots.
 484 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 485 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 486 * every node has its own stable and unstable tree.
 487 */
 488static inline int get_kpfn_nid(unsigned long kpfn)
 489{
 490	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 491}
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493static void remove_node_from_stable_tree(struct stable_node *stable_node)
 494{
 495	struct rmap_item *rmap_item;
 496
 
 
 
 497	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 498		if (rmap_item->hlist.next)
 499			ksm_pages_sharing--;
 500		else
 501			ksm_pages_shared--;
 
 
 502		put_anon_vma(rmap_item->anon_vma);
 503		rmap_item->address &= PAGE_MASK;
 504		cond_resched();
 505	}
 506
 
 
 
 
 
 
 
 
 
 
 
 
 507	if (stable_node->head == &migrate_nodes)
 508		list_del(&stable_node->list);
 509	else
 510		rb_erase(&stable_node->node,
 511			 root_stable_tree + NUMA(stable_node->nid));
 512	free_stable_node(stable_node);
 513}
 514
 515/*
 516 * get_ksm_page: checks if the page indicated by the stable node
 517 * is still its ksm page, despite having held no reference to it.
 518 * In which case we can trust the content of the page, and it
 519 * returns the gotten page; but if the page has now been zapped,
 520 * remove the stale node from the stable tree and return NULL.
 521 * But beware, the stable node's page might be being migrated.
 522 *
 523 * You would expect the stable_node to hold a reference to the ksm page.
 524 * But if it increments the page's count, swapping out has to wait for
 525 * ksmd to come around again before it can free the page, which may take
 526 * seconds or even minutes: much too unresponsive.  So instead we use a
 527 * "keyhole reference": access to the ksm page from the stable node peeps
 528 * out through its keyhole to see if that page still holds the right key,
 529 * pointing back to this stable node.  This relies on freeing a PageAnon
 530 * page to reset its page->mapping to NULL, and relies on no other use of
 531 * a page to put something that might look like our key in page->mapping.
 532 * is on its way to being freed; but it is an anomaly to bear in mind.
 533 */
 534static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 535{
 536	struct page *page;
 537	void *expected_mapping;
 538	unsigned long kpfn;
 539
 540	expected_mapping = (void *)((unsigned long)stable_node |
 541					PAGE_MAPPING_KSM);
 542again:
 543	kpfn = READ_ONCE(stable_node->kpfn);
 544	page = pfn_to_page(kpfn);
 545
 546	/*
 547	 * page is computed from kpfn, so on most architectures reading
 548	 * page->mapping is naturally ordered after reading node->kpfn,
 549	 * but on Alpha we need to be more careful.
 550	 */
 551	smp_read_barrier_depends();
 552	if (READ_ONCE(page->mapping) != expected_mapping)
 553		goto stale;
 554
 555	/*
 556	 * We cannot do anything with the page while its refcount is 0.
 557	 * Usually 0 means free, or tail of a higher-order page: in which
 558	 * case this node is no longer referenced, and should be freed;
 559	 * however, it might mean that the page is under page_freeze_refs().
 560	 * The __remove_mapping() case is easy, again the node is now stale;
 561	 * but if page is swapcache in migrate_page_move_mapping(), it might
 562	 * still be our page, in which case it's essential to keep the node.
 563	 */
 564	while (!get_page_unless_zero(page)) {
 565		/*
 566		 * Another check for page->mapping != expected_mapping would
 567		 * work here too.  We have chosen the !PageSwapCache test to
 568		 * optimize the common case, when the page is or is about to
 569		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 570		 * in the freeze_refs section of __remove_mapping(); but Anon
 571		 * page->mapping reset to NULL later, in free_pages_prepare().
 572		 */
 573		if (!PageSwapCache(page))
 574			goto stale;
 575		cpu_relax();
 576	}
 577
 578	if (READ_ONCE(page->mapping) != expected_mapping) {
 579		put_page(page);
 580		goto stale;
 581	}
 582
 583	if (lock_it) {
 584		lock_page(page);
 585		if (READ_ONCE(page->mapping) != expected_mapping) {
 586			unlock_page(page);
 587			put_page(page);
 588			goto stale;
 589		}
 590	}
 591	return page;
 592
 593stale:
 594	/*
 595	 * We come here from above when page->mapping or !PageSwapCache
 596	 * suggests that the node is stale; but it might be under migration.
 597	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 598	 * before checking whether node->kpfn has been changed.
 599	 */
 600	smp_rmb();
 601	if (READ_ONCE(stable_node->kpfn) != kpfn)
 602		goto again;
 603	remove_node_from_stable_tree(stable_node);
 604	return NULL;
 605}
 606
 607/*
 608 * Removing rmap_item from stable or unstable tree.
 609 * This function will clean the information from the stable/unstable tree.
 610 */
 611static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 612{
 613	if (rmap_item->address & STABLE_FLAG) {
 614		struct stable_node *stable_node;
 615		struct page *page;
 616
 617		stable_node = rmap_item->head;
 618		page = get_ksm_page(stable_node, true);
 619		if (!page)
 620			goto out;
 621
 622		hlist_del(&rmap_item->hlist);
 623		unlock_page(page);
 624		put_page(page);
 625
 626		if (!hlist_empty(&stable_node->hlist))
 627			ksm_pages_sharing--;
 628		else
 629			ksm_pages_shared--;
 
 
 630
 631		put_anon_vma(rmap_item->anon_vma);
 632		rmap_item->address &= PAGE_MASK;
 633
 634	} else if (rmap_item->address & UNSTABLE_FLAG) {
 635		unsigned char age;
 636		/*
 637		 * Usually ksmd can and must skip the rb_erase, because
 638		 * root_unstable_tree was already reset to RB_ROOT.
 639		 * But be careful when an mm is exiting: do the rb_erase
 640		 * if this rmap_item was inserted by this scan, rather
 641		 * than left over from before.
 642		 */
 643		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 644		BUG_ON(age > 1);
 645		if (!age)
 646			rb_erase(&rmap_item->node,
 647				 root_unstable_tree + NUMA(rmap_item->nid));
 648		ksm_pages_unshared--;
 649		rmap_item->address &= PAGE_MASK;
 650	}
 651out:
 652	cond_resched();		/* we're called from many long loops */
 653}
 654
 655static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 656				       struct rmap_item **rmap_list)
 657{
 658	while (*rmap_list) {
 659		struct rmap_item *rmap_item = *rmap_list;
 660		*rmap_list = rmap_item->rmap_list;
 661		remove_rmap_item_from_tree(rmap_item);
 662		free_rmap_item(rmap_item);
 663	}
 664}
 665
 666/*
 667 * Though it's very tempting to unmerge rmap_items from stable tree rather
 668 * than check every pte of a given vma, the locking doesn't quite work for
 669 * that - an rmap_item is assigned to the stable tree after inserting ksm
 670 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 671 * rmap_items from parent to child at fork time (so as not to waste time
 672 * if exit comes before the next scan reaches it).
 673 *
 674 * Similarly, although we'd like to remove rmap_items (so updating counts
 675 * and freeing memory) when unmerging an area, it's easier to leave that
 676 * to the next pass of ksmd - consider, for example, how ksmd might be
 677 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 678 */
 679static int unmerge_ksm_pages(struct vm_area_struct *vma,
 680			     unsigned long start, unsigned long end)
 681{
 682	unsigned long addr;
 683	int err = 0;
 684
 685	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 686		if (ksm_test_exit(vma->vm_mm))
 687			break;
 688		if (signal_pending(current))
 689			err = -ERESTARTSYS;
 690		else
 691			err = break_ksm(vma, addr);
 692	}
 693	return err;
 694}
 695
 696#ifdef CONFIG_SYSFS
 697/*
 698 * Only called through the sysfs control interface:
 699 */
 700static int remove_stable_node(struct stable_node *stable_node)
 701{
 702	struct page *page;
 703	int err;
 704
 705	page = get_ksm_page(stable_node, true);
 706	if (!page) {
 707		/*
 708		 * get_ksm_page did remove_node_from_stable_tree itself.
 709		 */
 710		return 0;
 711	}
 712
 713	if (WARN_ON_ONCE(page_mapped(page))) {
 714		/*
 715		 * This should not happen: but if it does, just refuse to let
 716		 * merge_across_nodes be switched - there is no need to panic.
 717		 */
 718		err = -EBUSY;
 719	} else {
 720		/*
 721		 * The stable node did not yet appear stale to get_ksm_page(),
 722		 * since that allows for an unmapped ksm page to be recognized
 723		 * right up until it is freed; but the node is safe to remove.
 724		 * This page might be in a pagevec waiting to be freed,
 725		 * or it might be PageSwapCache (perhaps under writeback),
 726		 * or it might have been removed from swapcache a moment ago.
 727		 */
 728		set_page_stable_node(page, NULL);
 729		remove_node_from_stable_tree(stable_node);
 730		err = 0;
 731	}
 732
 733	unlock_page(page);
 734	put_page(page);
 735	return err;
 736}
 737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738static int remove_all_stable_nodes(void)
 739{
 740	struct stable_node *stable_node, *next;
 741	int nid;
 742	int err = 0;
 743
 744	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 745		while (root_stable_tree[nid].rb_node) {
 746			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 747						struct stable_node, node);
 748			if (remove_stable_node(stable_node)) {
 
 749				err = -EBUSY;
 750				break;	/* proceed to next nid */
 751			}
 752			cond_resched();
 753		}
 754	}
 755	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 756		if (remove_stable_node(stable_node))
 757			err = -EBUSY;
 758		cond_resched();
 759	}
 760	return err;
 761}
 762
 763static int unmerge_and_remove_all_rmap_items(void)
 764{
 765	struct mm_slot *mm_slot;
 766	struct mm_struct *mm;
 767	struct vm_area_struct *vma;
 768	int err = 0;
 769
 770	spin_lock(&ksm_mmlist_lock);
 771	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 772						struct mm_slot, mm_list);
 773	spin_unlock(&ksm_mmlist_lock);
 774
 775	for (mm_slot = ksm_scan.mm_slot;
 776			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 777		mm = mm_slot->mm;
 778		down_read(&mm->mmap_sem);
 779		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 780			if (ksm_test_exit(mm))
 781				break;
 782			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 783				continue;
 784			err = unmerge_ksm_pages(vma,
 785						vma->vm_start, vma->vm_end);
 786			if (err)
 787				goto error;
 788		}
 789
 790		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 791		up_read(&mm->mmap_sem);
 792
 793		spin_lock(&ksm_mmlist_lock);
 794		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 795						struct mm_slot, mm_list);
 796		if (ksm_test_exit(mm)) {
 797			hash_del(&mm_slot->link);
 798			list_del(&mm_slot->mm_list);
 799			spin_unlock(&ksm_mmlist_lock);
 800
 801			free_mm_slot(mm_slot);
 802			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 803			mmdrop(mm);
 804		} else
 805			spin_unlock(&ksm_mmlist_lock);
 806	}
 807
 808	/* Clean up stable nodes, but don't worry if some are still busy */
 809	remove_all_stable_nodes();
 810	ksm_scan.seqnr = 0;
 811	return 0;
 812
 813error:
 814	up_read(&mm->mmap_sem);
 815	spin_lock(&ksm_mmlist_lock);
 816	ksm_scan.mm_slot = &ksm_mm_head;
 817	spin_unlock(&ksm_mmlist_lock);
 818	return err;
 819}
 820#endif /* CONFIG_SYSFS */
 821
 822static u32 calc_checksum(struct page *page)
 823{
 824	u32 checksum;
 825	void *addr = kmap_atomic(page);
 826	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 827	kunmap_atomic(addr);
 828	return checksum;
 829}
 830
 831static int memcmp_pages(struct page *page1, struct page *page2)
 832{
 833	char *addr1, *addr2;
 834	int ret;
 835
 836	addr1 = kmap_atomic(page1);
 837	addr2 = kmap_atomic(page2);
 838	ret = memcmp(addr1, addr2, PAGE_SIZE);
 839	kunmap_atomic(addr2);
 840	kunmap_atomic(addr1);
 841	return ret;
 842}
 843
 844static inline int pages_identical(struct page *page1, struct page *page2)
 845{
 846	return !memcmp_pages(page1, page2);
 847}
 848
 849static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 850			      pte_t *orig_pte)
 851{
 852	struct mm_struct *mm = vma->vm_mm;
 853	unsigned long addr;
 854	pte_t *ptep;
 855	spinlock_t *ptl;
 
 856	int swapped;
 857	int err = -EFAULT;
 858	unsigned long mmun_start;	/* For mmu_notifiers */
 859	unsigned long mmun_end;		/* For mmu_notifiers */
 860
 861	addr = page_address_in_vma(page, vma);
 862	if (addr == -EFAULT)
 863		goto out;
 864
 865	BUG_ON(PageTransCompound(page));
 866
 867	mmun_start = addr;
 868	mmun_end   = addr + PAGE_SIZE;
 869	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 870
 871	ptep = page_check_address(page, mm, addr, &ptl, 0);
 872	if (!ptep)
 873		goto out_mn;
 
 
 874
 875	if (pte_write(*ptep) || pte_dirty(*ptep)) {
 
 
 876		pte_t entry;
 877
 878		swapped = PageSwapCache(page);
 879		flush_cache_page(vma, addr, page_to_pfn(page));
 880		/*
 881		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 882		 * take any lock, therefore the check that we are going to make
 883		 * with the pagecount against the mapcount is racey and
 884		 * O_DIRECT can happen right after the check.
 885		 * So we clear the pte and flush the tlb before the check
 886		 * this assure us that no O_DIRECT can happen after the check
 887		 * or in the middle of the check.
 
 
 
 
 
 888		 */
 889		entry = ptep_clear_flush_notify(vma, addr, ptep);
 890		/*
 891		 * Check that no O_DIRECT or similar I/O is in progress on the
 892		 * page
 893		 */
 894		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 895			set_pte_at(mm, addr, ptep, entry);
 896			goto out_unlock;
 897		}
 898		if (pte_dirty(entry))
 899			set_page_dirty(page);
 900		entry = pte_mkclean(pte_wrprotect(entry));
 901		set_pte_at_notify(mm, addr, ptep, entry);
 
 
 
 
 902	}
 903	*orig_pte = *ptep;
 904	err = 0;
 905
 906out_unlock:
 907	pte_unmap_unlock(ptep, ptl);
 908out_mn:
 909	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 910out:
 911	return err;
 912}
 913
 914/**
 915 * replace_page - replace page in vma by new ksm page
 916 * @vma:      vma that holds the pte pointing to page
 917 * @page:     the page we are replacing by kpage
 918 * @kpage:    the ksm page we replace page by
 919 * @orig_pte: the original value of the pte
 920 *
 921 * Returns 0 on success, -EFAULT on failure.
 922 */
 923static int replace_page(struct vm_area_struct *vma, struct page *page,
 924			struct page *kpage, pte_t orig_pte)
 925{
 926	struct mm_struct *mm = vma->vm_mm;
 927	pmd_t *pmd;
 928	pte_t *ptep;
 
 929	spinlock_t *ptl;
 930	unsigned long addr;
 931	int err = -EFAULT;
 932	unsigned long mmun_start;	/* For mmu_notifiers */
 933	unsigned long mmun_end;		/* For mmu_notifiers */
 934
 935	addr = page_address_in_vma(page, vma);
 936	if (addr == -EFAULT)
 937		goto out;
 938
 939	pmd = mm_find_pmd(mm, addr);
 940	if (!pmd)
 941		goto out;
 942
 943	mmun_start = addr;
 944	mmun_end   = addr + PAGE_SIZE;
 945	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 946
 947	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 948	if (!pte_same(*ptep, orig_pte)) {
 949		pte_unmap_unlock(ptep, ptl);
 950		goto out_mn;
 951	}
 952
 953	get_page(kpage);
 954	page_add_anon_rmap(kpage, vma, addr, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955
 956	flush_cache_page(vma, addr, pte_pfn(*ptep));
 957	ptep_clear_flush_notify(vma, addr, ptep);
 958	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 
 
 
 
 
 
 959
 960	page_remove_rmap(page, false);
 961	if (!page_mapped(page))
 962		try_to_free_swap(page);
 963	put_page(page);
 964
 965	pte_unmap_unlock(ptep, ptl);
 966	err = 0;
 967out_mn:
 968	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 969out:
 970	return err;
 971}
 972
 973/*
 974 * try_to_merge_one_page - take two pages and merge them into one
 975 * @vma: the vma that holds the pte pointing to page
 976 * @page: the PageAnon page that we want to replace with kpage
 977 * @kpage: the PageKsm page that we want to map instead of page,
 978 *         or NULL the first time when we want to use page as kpage.
 979 *
 980 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 981 */
 982static int try_to_merge_one_page(struct vm_area_struct *vma,
 983				 struct page *page, struct page *kpage)
 984{
 985	pte_t orig_pte = __pte(0);
 986	int err = -EFAULT;
 987
 988	if (page == kpage)			/* ksm page forked */
 989		return 0;
 990
 991	if (!PageAnon(page))
 992		goto out;
 993
 994	/*
 995	 * We need the page lock to read a stable PageSwapCache in
 996	 * write_protect_page().  We use trylock_page() instead of
 997	 * lock_page() because we don't want to wait here - we
 998	 * prefer to continue scanning and merging different pages,
 999	 * then come back to this page when it is unlocked.
1000	 */
1001	if (!trylock_page(page))
1002		goto out;
1003
1004	if (PageTransCompound(page)) {
1005		err = split_huge_page(page);
1006		if (err)
1007			goto out_unlock;
1008	}
1009
1010	/*
1011	 * If this anonymous page is mapped only here, its pte may need
1012	 * to be write-protected.  If it's mapped elsewhere, all of its
1013	 * ptes are necessarily already write-protected.  But in either
1014	 * case, we need to lock and check page_count is not raised.
1015	 */
1016	if (write_protect_page(vma, page, &orig_pte) == 0) {
1017		if (!kpage) {
1018			/*
1019			 * While we hold page lock, upgrade page from
1020			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1021			 * stable_tree_insert() will update stable_node.
1022			 */
1023			set_page_stable_node(page, NULL);
1024			mark_page_accessed(page);
1025			/*
1026			 * Page reclaim just frees a clean page with no dirty
1027			 * ptes: make sure that the ksm page would be swapped.
1028			 */
1029			if (!PageDirty(page))
1030				SetPageDirty(page);
1031			err = 0;
1032		} else if (pages_identical(page, kpage))
1033			err = replace_page(vma, page, kpage, orig_pte);
1034	}
1035
1036	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1037		munlock_vma_page(page);
1038		if (!PageMlocked(kpage)) {
1039			unlock_page(page);
1040			lock_page(kpage);
1041			mlock_vma_page(kpage);
1042			page = kpage;		/* for final unlock */
1043		}
1044	}
1045
1046out_unlock:
1047	unlock_page(page);
1048out:
1049	return err;
1050}
1051
1052/*
1053 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1054 * but no new kernel page is allocated: kpage must already be a ksm page.
1055 *
1056 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1057 */
1058static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1059				      struct page *page, struct page *kpage)
1060{
1061	struct mm_struct *mm = rmap_item->mm;
1062	struct vm_area_struct *vma;
1063	int err = -EFAULT;
1064
1065	down_read(&mm->mmap_sem);
1066	vma = find_mergeable_vma(mm, rmap_item->address);
1067	if (!vma)
1068		goto out;
1069
1070	err = try_to_merge_one_page(vma, page, kpage);
1071	if (err)
1072		goto out;
1073
1074	/* Unstable nid is in union with stable anon_vma: remove first */
1075	remove_rmap_item_from_tree(rmap_item);
1076
1077	/* Must get reference to anon_vma while still holding mmap_sem */
1078	rmap_item->anon_vma = vma->anon_vma;
1079	get_anon_vma(vma->anon_vma);
1080out:
1081	up_read(&mm->mmap_sem);
1082	return err;
1083}
1084
1085/*
1086 * try_to_merge_two_pages - take two identical pages and prepare them
1087 * to be merged into one page.
1088 *
1089 * This function returns the kpage if we successfully merged two identical
1090 * pages into one ksm page, NULL otherwise.
1091 *
1092 * Note that this function upgrades page to ksm page: if one of the pages
1093 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1094 */
1095static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1096					   struct page *page,
1097					   struct rmap_item *tree_rmap_item,
1098					   struct page *tree_page)
1099{
1100	int err;
1101
1102	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1103	if (!err) {
1104		err = try_to_merge_with_ksm_page(tree_rmap_item,
1105							tree_page, page);
1106		/*
1107		 * If that fails, we have a ksm page with only one pte
1108		 * pointing to it: so break it.
1109		 */
1110		if (err)
1111			break_cow(rmap_item);
1112	}
1113	return err ? NULL : page;
1114}
1115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116/*
1117 * stable_tree_search - search for page inside the stable tree
1118 *
1119 * This function checks if there is a page inside the stable tree
1120 * with identical content to the page that we are scanning right now.
1121 *
1122 * This function returns the stable tree node of identical content if found,
1123 * NULL otherwise.
1124 */
1125static struct page *stable_tree_search(struct page *page)
1126{
1127	int nid;
1128	struct rb_root *root;
1129	struct rb_node **new;
1130	struct rb_node *parent;
1131	struct stable_node *stable_node;
1132	struct stable_node *page_node;
1133
1134	page_node = page_stable_node(page);
1135	if (page_node && page_node->head != &migrate_nodes) {
1136		/* ksm page forked */
1137		get_page(page);
1138		return page;
1139	}
1140
1141	nid = get_kpfn_nid(page_to_pfn(page));
1142	root = root_stable_tree + nid;
1143again:
1144	new = &root->rb_node;
1145	parent = NULL;
1146
1147	while (*new) {
1148		struct page *tree_page;
1149		int ret;
1150
1151		cond_resched();
1152		stable_node = rb_entry(*new, struct stable_node, node);
1153		tree_page = get_ksm_page(stable_node, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154		if (!tree_page) {
1155			/*
1156			 * If we walked over a stale stable_node,
1157			 * get_ksm_page() will call rb_erase() and it
1158			 * may rebalance the tree from under us. So
1159			 * restart the search from scratch. Returning
1160			 * NULL would be safe too, but we'd generate
1161			 * false negative insertions just because some
1162			 * stable_node was stale.
1163			 */
1164			goto again;
1165		}
1166
1167		ret = memcmp_pages(page, tree_page);
1168		put_page(tree_page);
1169
1170		parent = *new;
1171		if (ret < 0)
1172			new = &parent->rb_left;
1173		else if (ret > 0)
1174			new = &parent->rb_right;
1175		else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176			/*
1177			 * Lock and unlock the stable_node's page (which
1178			 * might already have been migrated) so that page
1179			 * migration is sure to notice its raised count.
1180			 * It would be more elegant to return stable_node
1181			 * than kpage, but that involves more changes.
1182			 */
1183			tree_page = get_ksm_page(stable_node, true);
1184			if (tree_page) {
1185				unlock_page(tree_page);
1186				if (get_kpfn_nid(stable_node->kpfn) !=
1187						NUMA(stable_node->nid)) {
1188					put_page(tree_page);
1189					goto replace;
1190				}
1191				return tree_page;
 
 
 
 
1192			}
1193			/*
1194			 * There is now a place for page_node, but the tree may
1195			 * have been rebalanced, so re-evaluate parent and new.
1196			 */
1197			if (page_node)
1198				goto again;
1199			return NULL;
1200		}
1201	}
1202
1203	if (!page_node)
1204		return NULL;
1205
1206	list_del(&page_node->list);
1207	DO_NUMA(page_node->nid = nid);
1208	rb_link_node(&page_node->node, parent, new);
1209	rb_insert_color(&page_node->node, root);
1210	get_page(page);
1211	return page;
 
 
 
 
1212
1213replace:
1214	if (page_node) {
1215		list_del(&page_node->list);
1216		DO_NUMA(page_node->nid = nid);
1217		rb_replace_node(&stable_node->node, &page_node->node, root);
1218		get_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219	} else {
1220		rb_erase(&stable_node->node, root);
1221		page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1222	}
1223	stable_node->head = &migrate_nodes;
1224	list_add(&stable_node->list, stable_node->head);
1225	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228/*
1229 * stable_tree_insert - insert stable tree node pointing to new ksm page
1230 * into the stable tree.
1231 *
1232 * This function returns the stable tree node just allocated on success,
1233 * NULL otherwise.
1234 */
1235static struct stable_node *stable_tree_insert(struct page *kpage)
1236{
1237	int nid;
1238	unsigned long kpfn;
1239	struct rb_root *root;
1240	struct rb_node **new;
1241	struct rb_node *parent;
1242	struct stable_node *stable_node;
 
1243
1244	kpfn = page_to_pfn(kpage);
1245	nid = get_kpfn_nid(kpfn);
1246	root = root_stable_tree + nid;
1247again:
1248	parent = NULL;
1249	new = &root->rb_node;
1250
1251	while (*new) {
1252		struct page *tree_page;
1253		int ret;
1254
1255		cond_resched();
1256		stable_node = rb_entry(*new, struct stable_node, node);
1257		tree_page = get_ksm_page(stable_node, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258		if (!tree_page) {
1259			/*
1260			 * If we walked over a stale stable_node,
1261			 * get_ksm_page() will call rb_erase() and it
1262			 * may rebalance the tree from under us. So
1263			 * restart the search from scratch. Returning
1264			 * NULL would be safe too, but we'd generate
1265			 * false negative insertions just because some
1266			 * stable_node was stale.
1267			 */
1268			goto again;
1269		}
1270
1271		ret = memcmp_pages(kpage, tree_page);
1272		put_page(tree_page);
1273
1274		parent = *new;
1275		if (ret < 0)
1276			new = &parent->rb_left;
1277		else if (ret > 0)
1278			new = &parent->rb_right;
1279		else {
1280			/*
1281			 * It is not a bug that stable_tree_search() didn't
1282			 * find this node: because at that time our page was
1283			 * not yet write-protected, so may have changed since.
1284			 */
1285			return NULL;
1286		}
1287	}
1288
1289	stable_node = alloc_stable_node();
1290	if (!stable_node)
1291		return NULL;
1292
1293	INIT_HLIST_HEAD(&stable_node->hlist);
1294	stable_node->kpfn = kpfn;
1295	set_page_stable_node(kpage, stable_node);
1296	DO_NUMA(stable_node->nid = nid);
1297	rb_link_node(&stable_node->node, parent, new);
1298	rb_insert_color(&stable_node->node, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300	return stable_node;
1301}
1302
1303/*
1304 * unstable_tree_search_insert - search for identical page,
1305 * else insert rmap_item into the unstable tree.
1306 *
1307 * This function searches for a page in the unstable tree identical to the
1308 * page currently being scanned; and if no identical page is found in the
1309 * tree, we insert rmap_item as a new object into the unstable tree.
1310 *
1311 * This function returns pointer to rmap_item found to be identical
1312 * to the currently scanned page, NULL otherwise.
1313 *
1314 * This function does both searching and inserting, because they share
1315 * the same walking algorithm in an rbtree.
1316 */
1317static
1318struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1319					      struct page *page,
1320					      struct page **tree_pagep)
1321{
1322	struct rb_node **new;
1323	struct rb_root *root;
1324	struct rb_node *parent = NULL;
1325	int nid;
1326
1327	nid = get_kpfn_nid(page_to_pfn(page));
1328	root = root_unstable_tree + nid;
1329	new = &root->rb_node;
1330
1331	while (*new) {
1332		struct rmap_item *tree_rmap_item;
1333		struct page *tree_page;
1334		int ret;
1335
1336		cond_resched();
1337		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1338		tree_page = get_mergeable_page(tree_rmap_item);
1339		if (!tree_page)
1340			return NULL;
1341
1342		/*
1343		 * Don't substitute a ksm page for a forked page.
1344		 */
1345		if (page == tree_page) {
1346			put_page(tree_page);
1347			return NULL;
1348		}
1349
1350		ret = memcmp_pages(page, tree_page);
1351
1352		parent = *new;
1353		if (ret < 0) {
1354			put_page(tree_page);
1355			new = &parent->rb_left;
1356		} else if (ret > 0) {
1357			put_page(tree_page);
1358			new = &parent->rb_right;
1359		} else if (!ksm_merge_across_nodes &&
1360			   page_to_nid(tree_page) != nid) {
1361			/*
1362			 * If tree_page has been migrated to another NUMA node,
1363			 * it will be flushed out and put in the right unstable
1364			 * tree next time: only merge with it when across_nodes.
1365			 */
1366			put_page(tree_page);
1367			return NULL;
1368		} else {
1369			*tree_pagep = tree_page;
1370			return tree_rmap_item;
1371		}
1372	}
1373
1374	rmap_item->address |= UNSTABLE_FLAG;
1375	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1376	DO_NUMA(rmap_item->nid = nid);
1377	rb_link_node(&rmap_item->node, parent, new);
1378	rb_insert_color(&rmap_item->node, root);
1379
1380	ksm_pages_unshared++;
1381	return NULL;
1382}
1383
1384/*
1385 * stable_tree_append - add another rmap_item to the linked list of
1386 * rmap_items hanging off a given node of the stable tree, all sharing
1387 * the same ksm page.
1388 */
1389static void stable_tree_append(struct rmap_item *rmap_item,
1390			       struct stable_node *stable_node)
 
1391{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	rmap_item->head = stable_node;
1393	rmap_item->address |= STABLE_FLAG;
1394	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1395
1396	if (rmap_item->hlist.next)
1397		ksm_pages_sharing++;
1398	else
1399		ksm_pages_shared++;
1400}
1401
1402/*
1403 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1404 * if not, compare checksum to previous and if it's the same, see if page can
1405 * be inserted into the unstable tree, or merged with a page already there and
1406 * both transferred to the stable tree.
1407 *
1408 * @page: the page that we are searching identical page to.
1409 * @rmap_item: the reverse mapping into the virtual address of this page
1410 */
1411static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1412{
 
1413	struct rmap_item *tree_rmap_item;
1414	struct page *tree_page = NULL;
1415	struct stable_node *stable_node;
1416	struct page *kpage;
1417	unsigned int checksum;
1418	int err;
 
1419
1420	stable_node = page_stable_node(page);
1421	if (stable_node) {
1422		if (stable_node->head != &migrate_nodes &&
1423		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1424			rb_erase(&stable_node->node,
1425				 root_stable_tree + NUMA(stable_node->nid));
1426			stable_node->head = &migrate_nodes;
1427			list_add(&stable_node->list, stable_node->head);
1428		}
1429		if (stable_node->head != &migrate_nodes &&
1430		    rmap_item->head == stable_node)
1431			return;
 
 
 
 
 
 
1432	}
1433
1434	/* We first start with searching the page inside the stable tree */
1435	kpage = stable_tree_search(page);
1436	if (kpage == page && rmap_item->head == stable_node) {
1437		put_page(kpage);
1438		return;
1439	}
1440
1441	remove_rmap_item_from_tree(rmap_item);
1442
1443	if (kpage) {
1444		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1445		if (!err) {
1446			/*
1447			 * The page was successfully merged:
1448			 * add its rmap_item to the stable tree.
1449			 */
1450			lock_page(kpage);
1451			stable_tree_append(rmap_item, page_stable_node(kpage));
 
1452			unlock_page(kpage);
1453		}
1454		put_page(kpage);
1455		return;
1456	}
1457
1458	/*
1459	 * If the hash value of the page has changed from the last time
1460	 * we calculated it, this page is changing frequently: therefore we
1461	 * don't want to insert it in the unstable tree, and we don't want
1462	 * to waste our time searching for something identical to it there.
1463	 */
1464	checksum = calc_checksum(page);
1465	if (rmap_item->oldchecksum != checksum) {
1466		rmap_item->oldchecksum = checksum;
1467		return;
1468	}
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	tree_rmap_item =
1471		unstable_tree_search_insert(rmap_item, page, &tree_page);
1472	if (tree_rmap_item) {
 
 
1473		kpage = try_to_merge_two_pages(rmap_item, page,
1474						tree_rmap_item, tree_page);
 
 
 
 
 
 
 
 
 
 
 
 
1475		put_page(tree_page);
1476		if (kpage) {
1477			/*
1478			 * The pages were successfully merged: insert new
1479			 * node in the stable tree and add both rmap_items.
1480			 */
1481			lock_page(kpage);
1482			stable_node = stable_tree_insert(kpage);
1483			if (stable_node) {
1484				stable_tree_append(tree_rmap_item, stable_node);
1485				stable_tree_append(rmap_item, stable_node);
 
 
1486			}
1487			unlock_page(kpage);
1488
1489			/*
1490			 * If we fail to insert the page into the stable tree,
1491			 * we will have 2 virtual addresses that are pointing
1492			 * to a ksm page left outside the stable tree,
1493			 * in which case we need to break_cow on both.
1494			 */
1495			if (!stable_node) {
1496				break_cow(tree_rmap_item);
1497				break_cow(rmap_item);
1498			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499		}
1500	}
1501}
1502
1503static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1504					    struct rmap_item **rmap_list,
1505					    unsigned long addr)
1506{
1507	struct rmap_item *rmap_item;
1508
1509	while (*rmap_list) {
1510		rmap_item = *rmap_list;
1511		if ((rmap_item->address & PAGE_MASK) == addr)
1512			return rmap_item;
1513		if (rmap_item->address > addr)
1514			break;
1515		*rmap_list = rmap_item->rmap_list;
1516		remove_rmap_item_from_tree(rmap_item);
1517		free_rmap_item(rmap_item);
1518	}
1519
1520	rmap_item = alloc_rmap_item();
1521	if (rmap_item) {
1522		/* It has already been zeroed */
1523		rmap_item->mm = mm_slot->mm;
1524		rmap_item->address = addr;
1525		rmap_item->rmap_list = *rmap_list;
1526		*rmap_list = rmap_item;
1527	}
1528	return rmap_item;
1529}
1530
1531static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1532{
1533	struct mm_struct *mm;
1534	struct mm_slot *slot;
1535	struct vm_area_struct *vma;
1536	struct rmap_item *rmap_item;
1537	int nid;
1538
1539	if (list_empty(&ksm_mm_head.mm_list))
1540		return NULL;
1541
1542	slot = ksm_scan.mm_slot;
1543	if (slot == &ksm_mm_head) {
1544		/*
1545		 * A number of pages can hang around indefinitely on per-cpu
1546		 * pagevecs, raised page count preventing write_protect_page
1547		 * from merging them.  Though it doesn't really matter much,
1548		 * it is puzzling to see some stuck in pages_volatile until
1549		 * other activity jostles them out, and they also prevented
1550		 * LTP's KSM test from succeeding deterministically; so drain
1551		 * them here (here rather than on entry to ksm_do_scan(),
1552		 * so we don't IPI too often when pages_to_scan is set low).
1553		 */
1554		lru_add_drain_all();
1555
1556		/*
1557		 * Whereas stale stable_nodes on the stable_tree itself
1558		 * get pruned in the regular course of stable_tree_search(),
1559		 * those moved out to the migrate_nodes list can accumulate:
1560		 * so prune them once before each full scan.
1561		 */
1562		if (!ksm_merge_across_nodes) {
1563			struct stable_node *stable_node, *next;
1564			struct page *page;
1565
1566			list_for_each_entry_safe(stable_node, next,
1567						 &migrate_nodes, list) {
1568				page = get_ksm_page(stable_node, false);
1569				if (page)
1570					put_page(page);
1571				cond_resched();
1572			}
1573		}
1574
1575		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1576			root_unstable_tree[nid] = RB_ROOT;
1577
1578		spin_lock(&ksm_mmlist_lock);
1579		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1580		ksm_scan.mm_slot = slot;
1581		spin_unlock(&ksm_mmlist_lock);
1582		/*
1583		 * Although we tested list_empty() above, a racing __ksm_exit
1584		 * of the last mm on the list may have removed it since then.
1585		 */
1586		if (slot == &ksm_mm_head)
1587			return NULL;
1588next_mm:
1589		ksm_scan.address = 0;
1590		ksm_scan.rmap_list = &slot->rmap_list;
1591	}
1592
1593	mm = slot->mm;
1594	down_read(&mm->mmap_sem);
1595	if (ksm_test_exit(mm))
1596		vma = NULL;
1597	else
1598		vma = find_vma(mm, ksm_scan.address);
1599
1600	for (; vma; vma = vma->vm_next) {
1601		if (!(vma->vm_flags & VM_MERGEABLE))
1602			continue;
1603		if (ksm_scan.address < vma->vm_start)
1604			ksm_scan.address = vma->vm_start;
1605		if (!vma->anon_vma)
1606			ksm_scan.address = vma->vm_end;
1607
1608		while (ksm_scan.address < vma->vm_end) {
1609			if (ksm_test_exit(mm))
1610				break;
1611			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1612			if (IS_ERR_OR_NULL(*page)) {
1613				ksm_scan.address += PAGE_SIZE;
1614				cond_resched();
1615				continue;
1616			}
1617			if (PageAnon(*page)) {
1618				flush_anon_page(vma, *page, ksm_scan.address);
1619				flush_dcache_page(*page);
1620				rmap_item = get_next_rmap_item(slot,
1621					ksm_scan.rmap_list, ksm_scan.address);
1622				if (rmap_item) {
1623					ksm_scan.rmap_list =
1624							&rmap_item->rmap_list;
1625					ksm_scan.address += PAGE_SIZE;
1626				} else
1627					put_page(*page);
1628				up_read(&mm->mmap_sem);
1629				return rmap_item;
1630			}
1631			put_page(*page);
1632			ksm_scan.address += PAGE_SIZE;
1633			cond_resched();
1634		}
1635	}
1636
1637	if (ksm_test_exit(mm)) {
1638		ksm_scan.address = 0;
1639		ksm_scan.rmap_list = &slot->rmap_list;
1640	}
1641	/*
1642	 * Nuke all the rmap_items that are above this current rmap:
1643	 * because there were no VM_MERGEABLE vmas with such addresses.
1644	 */
1645	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1646
1647	spin_lock(&ksm_mmlist_lock);
1648	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1649						struct mm_slot, mm_list);
1650	if (ksm_scan.address == 0) {
1651		/*
1652		 * We've completed a full scan of all vmas, holding mmap_sem
1653		 * throughout, and found no VM_MERGEABLE: so do the same as
1654		 * __ksm_exit does to remove this mm from all our lists now.
1655		 * This applies either when cleaning up after __ksm_exit
1656		 * (but beware: we can reach here even before __ksm_exit),
1657		 * or when all VM_MERGEABLE areas have been unmapped (and
1658		 * mmap_sem then protects against race with MADV_MERGEABLE).
1659		 */
1660		hash_del(&slot->link);
1661		list_del(&slot->mm_list);
1662		spin_unlock(&ksm_mmlist_lock);
1663
1664		free_mm_slot(slot);
1665		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1666		up_read(&mm->mmap_sem);
1667		mmdrop(mm);
1668	} else {
1669		up_read(&mm->mmap_sem);
1670		/*
1671		 * up_read(&mm->mmap_sem) first because after
1672		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1673		 * already have been freed under us by __ksm_exit()
1674		 * because the "mm_slot" is still hashed and
1675		 * ksm_scan.mm_slot doesn't point to it anymore.
1676		 */
1677		spin_unlock(&ksm_mmlist_lock);
1678	}
1679
1680	/* Repeat until we've completed scanning the whole list */
1681	slot = ksm_scan.mm_slot;
1682	if (slot != &ksm_mm_head)
1683		goto next_mm;
1684
1685	ksm_scan.seqnr++;
1686	return NULL;
1687}
1688
1689/**
1690 * ksm_do_scan  - the ksm scanner main worker function.
1691 * @scan_npages - number of pages we want to scan before we return.
1692 */
1693static void ksm_do_scan(unsigned int scan_npages)
1694{
1695	struct rmap_item *rmap_item;
1696	struct page *uninitialized_var(page);
1697
1698	while (scan_npages-- && likely(!freezing(current))) {
1699		cond_resched();
1700		rmap_item = scan_get_next_rmap_item(&page);
1701		if (!rmap_item)
1702			return;
1703		cmp_and_merge_page(page, rmap_item);
1704		put_page(page);
1705	}
1706}
1707
1708static int ksmd_should_run(void)
1709{
1710	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1711}
1712
1713static int ksm_scan_thread(void *nothing)
1714{
1715	set_freezable();
1716	set_user_nice(current, 5);
1717
1718	while (!kthread_should_stop()) {
1719		mutex_lock(&ksm_thread_mutex);
1720		wait_while_offlining();
1721		if (ksmd_should_run())
1722			ksm_do_scan(ksm_thread_pages_to_scan);
1723		mutex_unlock(&ksm_thread_mutex);
1724
1725		try_to_freeze();
1726
1727		if (ksmd_should_run()) {
1728			schedule_timeout_interruptible(
1729				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1730		} else {
1731			wait_event_freezable(ksm_thread_wait,
1732				ksmd_should_run() || kthread_should_stop());
1733		}
1734	}
1735	return 0;
1736}
1737
1738int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1739		unsigned long end, int advice, unsigned long *vm_flags)
1740{
1741	struct mm_struct *mm = vma->vm_mm;
1742	int err;
1743
1744	switch (advice) {
1745	case MADV_MERGEABLE:
1746		/*
1747		 * Be somewhat over-protective for now!
1748		 */
1749		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1750				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1751				 VM_HUGETLB | VM_MIXEDMAP))
1752			return 0;		/* just ignore the advice */
1753
1754#ifdef VM_SAO
1755		if (*vm_flags & VM_SAO)
1756			return 0;
1757#endif
 
 
 
 
1758
1759		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1760			err = __ksm_enter(mm);
1761			if (err)
1762				return err;
1763		}
1764
1765		*vm_flags |= VM_MERGEABLE;
1766		break;
1767
1768	case MADV_UNMERGEABLE:
1769		if (!(*vm_flags & VM_MERGEABLE))
1770			return 0;		/* just ignore the advice */
1771
1772		if (vma->anon_vma) {
1773			err = unmerge_ksm_pages(vma, start, end);
1774			if (err)
1775				return err;
1776		}
1777
1778		*vm_flags &= ~VM_MERGEABLE;
1779		break;
1780	}
1781
1782	return 0;
1783}
1784
1785int __ksm_enter(struct mm_struct *mm)
1786{
1787	struct mm_slot *mm_slot;
1788	int needs_wakeup;
1789
1790	mm_slot = alloc_mm_slot();
1791	if (!mm_slot)
1792		return -ENOMEM;
1793
1794	/* Check ksm_run too?  Would need tighter locking */
1795	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1796
1797	spin_lock(&ksm_mmlist_lock);
1798	insert_to_mm_slots_hash(mm, mm_slot);
1799	/*
1800	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1801	 * insert just behind the scanning cursor, to let the area settle
1802	 * down a little; when fork is followed by immediate exec, we don't
1803	 * want ksmd to waste time setting up and tearing down an rmap_list.
1804	 *
1805	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1806	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1807	 * missed: then we might as well insert at the end of the list.
1808	 */
1809	if (ksm_run & KSM_RUN_UNMERGE)
1810		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1811	else
1812		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1813	spin_unlock(&ksm_mmlist_lock);
1814
1815	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1816	atomic_inc(&mm->mm_count);
1817
1818	if (needs_wakeup)
1819		wake_up_interruptible(&ksm_thread_wait);
1820
1821	return 0;
1822}
1823
1824void __ksm_exit(struct mm_struct *mm)
1825{
1826	struct mm_slot *mm_slot;
1827	int easy_to_free = 0;
1828
1829	/*
1830	 * This process is exiting: if it's straightforward (as is the
1831	 * case when ksmd was never running), free mm_slot immediately.
1832	 * But if it's at the cursor or has rmap_items linked to it, use
1833	 * mmap_sem to synchronize with any break_cows before pagetables
1834	 * are freed, and leave the mm_slot on the list for ksmd to free.
1835	 * Beware: ksm may already have noticed it exiting and freed the slot.
1836	 */
1837
1838	spin_lock(&ksm_mmlist_lock);
1839	mm_slot = get_mm_slot(mm);
1840	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1841		if (!mm_slot->rmap_list) {
1842			hash_del(&mm_slot->link);
1843			list_del(&mm_slot->mm_list);
1844			easy_to_free = 1;
1845		} else {
1846			list_move(&mm_slot->mm_list,
1847				  &ksm_scan.mm_slot->mm_list);
1848		}
1849	}
1850	spin_unlock(&ksm_mmlist_lock);
1851
1852	if (easy_to_free) {
1853		free_mm_slot(mm_slot);
1854		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1855		mmdrop(mm);
1856	} else if (mm_slot) {
1857		down_write(&mm->mmap_sem);
1858		up_write(&mm->mmap_sem);
1859	}
1860}
1861
1862struct page *ksm_might_need_to_copy(struct page *page,
1863			struct vm_area_struct *vma, unsigned long address)
1864{
1865	struct anon_vma *anon_vma = page_anon_vma(page);
1866	struct page *new_page;
1867
1868	if (PageKsm(page)) {
1869		if (page_stable_node(page) &&
1870		    !(ksm_run & KSM_RUN_UNMERGE))
1871			return page;	/* no need to copy it */
1872	} else if (!anon_vma) {
1873		return page;		/* no need to copy it */
1874	} else if (anon_vma->root == vma->anon_vma->root &&
1875		 page->index == linear_page_index(vma, address)) {
1876		return page;		/* still no need to copy it */
1877	}
1878	if (!PageUptodate(page))
1879		return page;		/* let do_swap_page report the error */
1880
1881	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1882	if (new_page) {
1883		copy_user_highpage(new_page, page, address, vma);
1884
1885		SetPageDirty(new_page);
1886		__SetPageUptodate(new_page);
1887		__SetPageLocked(new_page);
1888	}
1889
1890	return new_page;
1891}
1892
1893int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1894{
1895	struct stable_node *stable_node;
1896	struct rmap_item *rmap_item;
1897	int ret = SWAP_AGAIN;
1898	int search_new_forks = 0;
1899
1900	VM_BUG_ON_PAGE(!PageKsm(page), page);
1901
1902	/*
1903	 * Rely on the page lock to protect against concurrent modifications
1904	 * to that page's node of the stable tree.
1905	 */
1906	VM_BUG_ON_PAGE(!PageLocked(page), page);
1907
1908	stable_node = page_stable_node(page);
1909	if (!stable_node)
1910		return ret;
1911again:
1912	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1913		struct anon_vma *anon_vma = rmap_item->anon_vma;
1914		struct anon_vma_chain *vmac;
1915		struct vm_area_struct *vma;
1916
1917		cond_resched();
1918		anon_vma_lock_read(anon_vma);
1919		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920					       0, ULONG_MAX) {
1921			cond_resched();
1922			vma = vmac->vma;
1923			if (rmap_item->address < vma->vm_start ||
1924			    rmap_item->address >= vma->vm_end)
1925				continue;
1926			/*
1927			 * Initially we examine only the vma which covers this
1928			 * rmap_item; but later, if there is still work to do,
1929			 * we examine covering vmas in other mms: in case they
1930			 * were forked from the original since ksmd passed.
1931			 */
1932			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1933				continue;
1934
1935			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1936				continue;
1937
1938			ret = rwc->rmap_one(page, vma,
1939					rmap_item->address, rwc->arg);
1940			if (ret != SWAP_AGAIN) {
1941				anon_vma_unlock_read(anon_vma);
1942				goto out;
1943			}
1944			if (rwc->done && rwc->done(page)) {
1945				anon_vma_unlock_read(anon_vma);
1946				goto out;
1947			}
1948		}
1949		anon_vma_unlock_read(anon_vma);
1950	}
1951	if (!search_new_forks++)
1952		goto again;
1953out:
1954	return ret;
1955}
1956
1957#ifdef CONFIG_MIGRATION
1958void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1959{
1960	struct stable_node *stable_node;
1961
1962	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1963	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1964	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1965
1966	stable_node = page_stable_node(newpage);
1967	if (stable_node) {
1968		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1969		stable_node->kpfn = page_to_pfn(newpage);
1970		/*
1971		 * newpage->mapping was set in advance; now we need smp_wmb()
1972		 * to make sure that the new stable_node->kpfn is visible
1973		 * to get_ksm_page() before it can see that oldpage->mapping
1974		 * has gone stale (or that PageSwapCache has been cleared).
1975		 */
1976		smp_wmb();
1977		set_page_stable_node(oldpage, NULL);
1978	}
1979}
1980#endif /* CONFIG_MIGRATION */
1981
1982#ifdef CONFIG_MEMORY_HOTREMOVE
1983static void wait_while_offlining(void)
1984{
1985	while (ksm_run & KSM_RUN_OFFLINE) {
1986		mutex_unlock(&ksm_thread_mutex);
1987		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1988			    TASK_UNINTERRUPTIBLE);
1989		mutex_lock(&ksm_thread_mutex);
1990	}
1991}
1992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993static void ksm_check_stable_tree(unsigned long start_pfn,
1994				  unsigned long end_pfn)
1995{
1996	struct stable_node *stable_node, *next;
1997	struct rb_node *node;
1998	int nid;
1999
2000	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2001		node = rb_first(root_stable_tree + nid);
2002		while (node) {
2003			stable_node = rb_entry(node, struct stable_node, node);
2004			if (stable_node->kpfn >= start_pfn &&
2005			    stable_node->kpfn < end_pfn) {
2006				/*
2007				 * Don't get_ksm_page, page has already gone:
2008				 * which is why we keep kpfn instead of page*
2009				 */
2010				remove_node_from_stable_tree(stable_node);
2011				node = rb_first(root_stable_tree + nid);
2012			} else
2013				node = rb_next(node);
2014			cond_resched();
2015		}
2016	}
2017	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2018		if (stable_node->kpfn >= start_pfn &&
2019		    stable_node->kpfn < end_pfn)
2020			remove_node_from_stable_tree(stable_node);
2021		cond_resched();
2022	}
2023}
2024
2025static int ksm_memory_callback(struct notifier_block *self,
2026			       unsigned long action, void *arg)
2027{
2028	struct memory_notify *mn = arg;
2029
2030	switch (action) {
2031	case MEM_GOING_OFFLINE:
2032		/*
2033		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2034		 * and remove_all_stable_nodes() while memory is going offline:
2035		 * it is unsafe for them to touch the stable tree at this time.
2036		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2037		 * which do not need the ksm_thread_mutex are all safe.
2038		 */
2039		mutex_lock(&ksm_thread_mutex);
2040		ksm_run |= KSM_RUN_OFFLINE;
2041		mutex_unlock(&ksm_thread_mutex);
2042		break;
2043
2044	case MEM_OFFLINE:
2045		/*
2046		 * Most of the work is done by page migration; but there might
2047		 * be a few stable_nodes left over, still pointing to struct
2048		 * pages which have been offlined: prune those from the tree,
2049		 * otherwise get_ksm_page() might later try to access a
2050		 * non-existent struct page.
2051		 */
2052		ksm_check_stable_tree(mn->start_pfn,
2053				      mn->start_pfn + mn->nr_pages);
2054		/* fallthrough */
2055
2056	case MEM_CANCEL_OFFLINE:
2057		mutex_lock(&ksm_thread_mutex);
2058		ksm_run &= ~KSM_RUN_OFFLINE;
2059		mutex_unlock(&ksm_thread_mutex);
2060
2061		smp_mb();	/* wake_up_bit advises this */
2062		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2063		break;
2064	}
2065	return NOTIFY_OK;
2066}
2067#else
2068static void wait_while_offlining(void)
2069{
2070}
2071#endif /* CONFIG_MEMORY_HOTREMOVE */
2072
2073#ifdef CONFIG_SYSFS
2074/*
2075 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2076 */
2077
2078#define KSM_ATTR_RO(_name) \
2079	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2080#define KSM_ATTR(_name) \
2081	static struct kobj_attribute _name##_attr = \
2082		__ATTR(_name, 0644, _name##_show, _name##_store)
2083
2084static ssize_t sleep_millisecs_show(struct kobject *kobj,
2085				    struct kobj_attribute *attr, char *buf)
2086{
2087	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2088}
2089
2090static ssize_t sleep_millisecs_store(struct kobject *kobj,
2091				     struct kobj_attribute *attr,
2092				     const char *buf, size_t count)
2093{
2094	unsigned long msecs;
2095	int err;
2096
2097	err = kstrtoul(buf, 10, &msecs);
2098	if (err || msecs > UINT_MAX)
2099		return -EINVAL;
2100
2101	ksm_thread_sleep_millisecs = msecs;
2102
2103	return count;
2104}
2105KSM_ATTR(sleep_millisecs);
2106
2107static ssize_t pages_to_scan_show(struct kobject *kobj,
2108				  struct kobj_attribute *attr, char *buf)
2109{
2110	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2111}
2112
2113static ssize_t pages_to_scan_store(struct kobject *kobj,
2114				   struct kobj_attribute *attr,
2115				   const char *buf, size_t count)
2116{
2117	int err;
2118	unsigned long nr_pages;
2119
2120	err = kstrtoul(buf, 10, &nr_pages);
2121	if (err || nr_pages > UINT_MAX)
2122		return -EINVAL;
2123
2124	ksm_thread_pages_to_scan = nr_pages;
2125
2126	return count;
2127}
2128KSM_ATTR(pages_to_scan);
2129
2130static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2131			char *buf)
2132{
2133	return sprintf(buf, "%lu\n", ksm_run);
2134}
2135
2136static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2137			 const char *buf, size_t count)
2138{
2139	int err;
2140	unsigned long flags;
2141
2142	err = kstrtoul(buf, 10, &flags);
2143	if (err || flags > UINT_MAX)
2144		return -EINVAL;
2145	if (flags > KSM_RUN_UNMERGE)
2146		return -EINVAL;
2147
2148	/*
2149	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2150	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2151	 * breaking COW to free the pages_shared (but leaves mm_slots
2152	 * on the list for when ksmd may be set running again).
2153	 */
2154
2155	mutex_lock(&ksm_thread_mutex);
2156	wait_while_offlining();
2157	if (ksm_run != flags) {
2158		ksm_run = flags;
2159		if (flags & KSM_RUN_UNMERGE) {
2160			set_current_oom_origin();
2161			err = unmerge_and_remove_all_rmap_items();
2162			clear_current_oom_origin();
2163			if (err) {
2164				ksm_run = KSM_RUN_STOP;
2165				count = err;
2166			}
2167		}
2168	}
2169	mutex_unlock(&ksm_thread_mutex);
2170
2171	if (flags & KSM_RUN_MERGE)
2172		wake_up_interruptible(&ksm_thread_wait);
2173
2174	return count;
2175}
2176KSM_ATTR(run);
2177
2178#ifdef CONFIG_NUMA
2179static ssize_t merge_across_nodes_show(struct kobject *kobj,
2180				struct kobj_attribute *attr, char *buf)
2181{
2182	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2183}
2184
2185static ssize_t merge_across_nodes_store(struct kobject *kobj,
2186				   struct kobj_attribute *attr,
2187				   const char *buf, size_t count)
2188{
2189	int err;
2190	unsigned long knob;
2191
2192	err = kstrtoul(buf, 10, &knob);
2193	if (err)
2194		return err;
2195	if (knob > 1)
2196		return -EINVAL;
2197
2198	mutex_lock(&ksm_thread_mutex);
2199	wait_while_offlining();
2200	if (ksm_merge_across_nodes != knob) {
2201		if (ksm_pages_shared || remove_all_stable_nodes())
2202			err = -EBUSY;
2203		else if (root_stable_tree == one_stable_tree) {
2204			struct rb_root *buf;
2205			/*
2206			 * This is the first time that we switch away from the
2207			 * default of merging across nodes: must now allocate
2208			 * a buffer to hold as many roots as may be needed.
2209			 * Allocate stable and unstable together:
2210			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2211			 */
2212			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2213				      GFP_KERNEL);
2214			/* Let us assume that RB_ROOT is NULL is zero */
2215			if (!buf)
2216				err = -ENOMEM;
2217			else {
2218				root_stable_tree = buf;
2219				root_unstable_tree = buf + nr_node_ids;
2220				/* Stable tree is empty but not the unstable */
2221				root_unstable_tree[0] = one_unstable_tree[0];
2222			}
2223		}
2224		if (!err) {
2225			ksm_merge_across_nodes = knob;
2226			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2227		}
2228	}
2229	mutex_unlock(&ksm_thread_mutex);
2230
2231	return err ? err : count;
2232}
2233KSM_ATTR(merge_across_nodes);
2234#endif
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236static ssize_t pages_shared_show(struct kobject *kobj,
2237				 struct kobj_attribute *attr, char *buf)
2238{
2239	return sprintf(buf, "%lu\n", ksm_pages_shared);
2240}
2241KSM_ATTR_RO(pages_shared);
2242
2243static ssize_t pages_sharing_show(struct kobject *kobj,
2244				  struct kobj_attribute *attr, char *buf)
2245{
2246	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2247}
2248KSM_ATTR_RO(pages_sharing);
2249
2250static ssize_t pages_unshared_show(struct kobject *kobj,
2251				   struct kobj_attribute *attr, char *buf)
2252{
2253	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2254}
2255KSM_ATTR_RO(pages_unshared);
2256
2257static ssize_t pages_volatile_show(struct kobject *kobj,
2258				   struct kobj_attribute *attr, char *buf)
2259{
2260	long ksm_pages_volatile;
2261
2262	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2263				- ksm_pages_sharing - ksm_pages_unshared;
2264	/*
2265	 * It was not worth any locking to calculate that statistic,
2266	 * but it might therefore sometimes be negative: conceal that.
2267	 */
2268	if (ksm_pages_volatile < 0)
2269		ksm_pages_volatile = 0;
2270	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2271}
2272KSM_ATTR_RO(pages_volatile);
2273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274static ssize_t full_scans_show(struct kobject *kobj,
2275			       struct kobj_attribute *attr, char *buf)
2276{
2277	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2278}
2279KSM_ATTR_RO(full_scans);
2280
2281static struct attribute *ksm_attrs[] = {
2282	&sleep_millisecs_attr.attr,
2283	&pages_to_scan_attr.attr,
2284	&run_attr.attr,
2285	&pages_shared_attr.attr,
2286	&pages_sharing_attr.attr,
2287	&pages_unshared_attr.attr,
2288	&pages_volatile_attr.attr,
2289	&full_scans_attr.attr,
2290#ifdef CONFIG_NUMA
2291	&merge_across_nodes_attr.attr,
2292#endif
 
 
 
 
 
2293	NULL,
2294};
2295
2296static struct attribute_group ksm_attr_group = {
2297	.attrs = ksm_attrs,
2298	.name = "ksm",
2299};
2300#endif /* CONFIG_SYSFS */
2301
2302static int __init ksm_init(void)
2303{
2304	struct task_struct *ksm_thread;
2305	int err;
 
 
 
 
 
2306
2307	err = ksm_slab_init();
2308	if (err)
2309		goto out;
2310
2311	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2312	if (IS_ERR(ksm_thread)) {
2313		pr_err("ksm: creating kthread failed\n");
2314		err = PTR_ERR(ksm_thread);
2315		goto out_free;
2316	}
2317
2318#ifdef CONFIG_SYSFS
2319	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2320	if (err) {
2321		pr_err("ksm: register sysfs failed\n");
2322		kthread_stop(ksm_thread);
2323		goto out_free;
2324	}
2325#else
2326	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2327
2328#endif /* CONFIG_SYSFS */
2329
2330#ifdef CONFIG_MEMORY_HOTREMOVE
2331	/* There is no significance to this priority 100 */
2332	hotplug_memory_notifier(ksm_memory_callback, 100);
2333#endif
2334	return 0;
2335
2336out_free:
2337	ksm_slab_free();
2338out:
2339	return err;
2340}
2341subsys_initcall(ksm_init);