Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.17
   1/**
 
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
 
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overridden MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overridden.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
 
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
 
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
 
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325	if (!(hw->overrides & FAST_AGING)) {
2326		sw_cfg_fast_aging(hw, 1);
2327		mdelay(1);
2328		sw_cfg_fast_aging(hw, 0);
2329	}
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336	port_cfg(hw, p,
2337		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348	return port_chk(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360	port_cfg(hw, p,
2361		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372	return port_chk(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386	port_cfg(hw, p,
2387		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409	int port;
2410
2411	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412		port_cfg_mirror_sniffer(hw, port, 0);
2413		port_cfg_mirror_rx(hw, port, 0);
2414		port_cfg_mirror_tx(hw, port, 0);
2415	}
2416	sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445	port_cfg(hw, p,
2446		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469	return port_chk(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: 	The hardware instance.
2494 * @port:	The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500	port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: 	The hardware instance.
2506 * @port:	The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512	port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: 	The hardware instance.
2518 * @set:	The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: 	The hardware instance.
2529 * @port:	The port index.
2530 * @set:	The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539	port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: 	The hardware instance.
2545 * @port:	The port index.
2546 * @prio:	The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552	u16 data;
2553
2554	if (prio > PORT_BASED_PRIORITY_BASE)
2555		prio = PORT_BASED_PRIORITY_BASE;
2556
2557	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560	data &= ~PORT_BASED_PRIORITY_MASK;
2561	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: 	The hardware instance.
2568 * @port:	The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port.  Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575	port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: 	The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586	int port;
2587	int tos;
2588	struct ksz_switch *sw = hw->ksz_switch;
2589
2590	/*
2591	 * Init all the 802.1p tag priority value to be assigned to different
2592	 * priority queue.
2593	 */
2594	sw->p_802_1p[0] = 0;
2595	sw->p_802_1p[1] = 0;
2596	sw->p_802_1p[2] = 1;
2597	sw->p_802_1p[3] = 1;
2598	sw->p_802_1p[4] = 2;
2599	sw->p_802_1p[5] = 2;
2600	sw->p_802_1p[6] = 3;
2601	sw->p_802_1p[7] = 3;
2602
2603	/*
2604	 * Init all the DiffServ priority value to be assigned to priority
2605	 * queue 0.
2606	 */
2607	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608		sw->diffserv[tos] = 0;
2609
2610	/* All QoS functions disabled. */
2611	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612		sw_dis_multi_queue(hw, port);
2613		sw_dis_diffserv(hw, port);
2614		sw_dis_802_1p(hw, port);
2615		sw_cfg_replace_vid(hw, port, 0);
2616
2617		sw->port_cfg[port].port_prio = 0;
2618		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619	}
2620	sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: 	The hardware instance.
2626 * @port:	The port index.
2627 * @vid:	Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633	u32 addr;
2634
2635	PORT_CTRL_ADDR(port, addr);
2636	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637	*vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: 	The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648	int port;
2649	int entry;
2650	struct ksz_switch *sw = hw->ksz_switch;
2651
2652	/* Read 16 VLAN entries from device's VLAN table. */
2653	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654		sw_r_vlan_table(hw, entry,
2655			&sw->vlan_table[entry].vid,
2656			&sw->vlan_table[entry].fid,
2657			&sw->vlan_table[entry].member);
2658	}
2659
2660	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662		sw->port_cfg[port].member = PORT_MASK;
2663	}
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: 	The hardware instance.
2669 * @port:	The port index.
2670 * @member:	The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676	u32 addr;
2677	u8 data;
2678
2679	PORT_CTRL_ADDR(port, addr);
2680	addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682	data = readb(hw->io + addr);
2683	data &= ~PORT_VLAN_MEMBERSHIP;
2684	data |= (member & PORT_MASK);
2685	writeb(data, hw->io + addr);
2686
2687	hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: 	The hardware instance.
2693 * @mac_addr:	Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699	int i;
2700
2701	for (i = 0; i < 6; i += 2) {
2702		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704	}
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: 	The hardware instance.
2710 * @mac_addr:	The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716	int i;
2717
2718	for (i = 0; i < 6; i += 2) {
2719		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721	}
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: 	The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732	u16 data;
2733
2734	/* Enable switch MII flow control. */
2735	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736	data |= SWITCH_FLOW_CTRL;
2737	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741	/* Enable aggressive back off algorithm in half duplex mode. */
2742	data |= SWITCH_AGGR_BACKOFF;
2743
2744	/* Enable automatic fast aging when link changed detected. */
2745	data |= SWITCH_AGING_ENABLE;
2746	data |= SWITCH_LINK_AUTO_AGING;
2747
2748	if (hw->overrides & FAST_AGING)
2749		data |= SWITCH_FAST_AGING;
2750	else
2751		data &= ~SWITCH_FAST_AGING;
2752	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756	/* Enable no excessive collision drop. */
2757	data |= NO_EXC_COLLISION_DROP;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762	STP_STATE_DISABLED = 0,
2763	STP_STATE_LISTENING,
2764	STP_STATE_LEARNING,
2765	STP_STATE_FORWARDING,
2766	STP_STATE_BLOCKED,
2767	STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: 	The hardware instance.
2773 * @port:	The port index.
2774 * @state:	The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780	u16 data;
2781
2782	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783	switch (state) {
2784	case STP_STATE_DISABLED:
2785		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786		data |= PORT_LEARN_DISABLE;
2787		break;
2788	case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793		data &= ~PORT_TX_ENABLE;
2794		data |= PORT_RX_ENABLE;
2795		data |= PORT_LEARN_DISABLE;
2796		break;
2797	case STP_STATE_LEARNING:
2798		data &= ~PORT_TX_ENABLE;
2799		data |= PORT_RX_ENABLE;
2800		data &= ~PORT_LEARN_DISABLE;
2801		break;
2802	case STP_STATE_FORWARDING:
2803		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804		data &= ~PORT_LEARN_DISABLE;
2805		break;
2806	case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages.  See sw_init_stp routine.
2810 */
2811		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812		data |= PORT_LEARN_DISABLE;
2813		break;
2814	case STP_STATE_SIMPLE:
2815		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816		data |= PORT_LEARN_DISABLE;
2817		break;
2818	}
2819	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820	hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY			0
2824#define BROADCAST_ENTRY			1
2825#define BRIDGE_ADDR_ENTRY		2
2826#define IPV6_ADDR_ENTRY			3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: 	The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836	struct ksz_mac_table *entry;
2837	int i;
2838
2839	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840		entry = &hw->ksz_switch->mac_table[i];
2841		sw_w_sta_mac_table(hw, i,
2842			entry->mac_addr, entry->ports,
2843			entry->override, 0,
2844			entry->use_fid, entry->fid);
2845	}
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: 	The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856	struct ksz_mac_table *entry;
2857
2858	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859	entry->mac_addr[0] = 0x01;
2860	entry->mac_addr[1] = 0x80;
2861	entry->mac_addr[2] = 0xC2;
2862	entry->mac_addr[3] = 0x00;
2863	entry->mac_addr[4] = 0x00;
2864	entry->mac_addr[5] = 0x00;
2865	entry->ports = HOST_MASK;
2866	entry->override = 1;
2867	entry->valid = 1;
2868	sw_w_sta_mac_table(hw, STP_ENTRY,
2869		entry->mac_addr, entry->ports,
2870		entry->override, entry->valid,
2871		entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: 	The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882	struct ksz_mac_table *entry;
2883	int i;
2884
2885	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886		entry = &hw->ksz_switch->mac_table[i];
2887		entry->valid = 0;
2888		sw_w_sta_mac_table(hw, i,
2889			entry->mac_addr, entry->ports,
2890			entry->override, entry->valid,
2891			entry->use_fid, entry->fid);
2892	}
2893}
2894
2895#define PHY_LINK_SUPPORT		\
2896	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897	PHY_AUTO_NEG_SYM_PAUSE |	\
2898	PHY_AUTO_NEG_100BT4 |		\
2899	PHY_AUTO_NEG_100BTX_FD |	\
2900	PHY_AUTO_NEG_100BTX |		\
2901	PHY_AUTO_NEG_10BT_FD |		\
2902	PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: 	The hardware instance.
2967 * @port:	Port to read.
2968 * @reg:	PHY register to read.
2969 * @val:	Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975	int phy;
2976
2977	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978	*val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: 	The hardware instance.
2984 * @port:	Port to write.
2985 * @reg:	PHY register to write.
2986 * @val:	Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992	int phy;
2993
2994	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995	writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE			0
3003#define AT93C_WR_OFF			0x00
3004#define AT93C_WR_ALL			0x10
3005#define AT93C_ER_ALL			0x20
3006#define AT93C_WR_ON			0x30
3007
3008#define AT93C_WRITE			1
3009#define AT93C_READ			2
3010#define AT93C_ERASE			3
3011
3012#define EEPROM_DELAY			4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016	u16 data;
3017
3018	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019	data &= ~gpio;
3020	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025	u16 data;
3026
3027	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028	data |= gpio;
3029	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034	u16 data;
3035
3036	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037	return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043	udelay(EEPROM_DELAY);
3044	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045	udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050	int i;
3051	u16 temp = 0;
3052
3053	for (i = 15; i >= 0; i--) {
3054		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055		udelay(EEPROM_DELAY);
3056
3057		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060		udelay(EEPROM_DELAY);
3061	}
3062	return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067	int i;
3068
3069	for (i = 15; i >= 0; i--) {
3070		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071			drop_gpio(hw, EEPROM_DATA_OUT);
3072		eeprom_clk(hw);
3073	}
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078	int i;
3079
3080	/* Initial start bit */
3081	raise_gpio(hw, EEPROM_DATA_OUT);
3082	eeprom_clk(hw);
3083
3084	/* AT93C operation */
3085	for (i = 1; i >= 0; i--) {
3086		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087			drop_gpio(hw, EEPROM_DATA_OUT);
3088		eeprom_clk(hw);
3089	}
3090
3091	/* Address location */
3092	for (i = 5; i >= 0; i--) {
3093		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094			drop_gpio(hw, EEPROM_DATA_OUT);
3095		eeprom_clk(hw);
3096	}
3097}
3098
3099#define EEPROM_DATA_RESERVED		0
3100#define EEPROM_DATA_MAC_ADDR_0		1
3101#define EEPROM_DATA_MAC_ADDR_1		2
3102#define EEPROM_DATA_MAC_ADDR_2		3
3103#define EEPROM_DATA_SUBSYS_ID		4
3104#define EEPROM_DATA_SUBSYS_VEN_ID	5
3105#define EEPROM_DATA_PM_CAP		6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR	9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: 	The hardware instance.
3113 * @reg:	The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121	u16 data;
3122
3123	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125	spi_reg(hw, AT93C_READ, reg);
3126	data = spi_r(hw);
3127
3128	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130	return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: 	The hardware instance.
3136 * @reg:	The register offset.
3137 * @data:	The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143	int timeout;
3144
3145	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147	/* Enable write. */
3148	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150	udelay(1);
3151
3152	/* Erase the register. */
3153	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154	spi_reg(hw, AT93C_ERASE, reg);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Check operation complete. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	timeout = 8;
3161	mdelay(2);
3162	do {
3163		mdelay(1);
3164	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166	udelay(1);
3167
3168	/* Write the register. */
3169	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170	spi_reg(hw, AT93C_WRITE, reg);
3171	spi_w(hw, data);
3172	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173	udelay(1);
3174
3175	/* Check operation complete. */
3176	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177	timeout = 8;
3178	mdelay(2);
3179	do {
3180		mdelay(1);
3181	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183	udelay(1);
3184
3185	/* Disable write. */
3186	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199	switch (port->flow_ctrl) {
3200	case PHY_FLOW_CTRL:
3201		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202		break;
3203	/* Not supported. */
3204	case PHY_TX_ONLY:
3205	case PHY_RX_ONLY:
3206	default:
3207		break;
3208	}
3209	return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214	u32 rx_cfg;
3215	u32 tx_cfg;
3216
3217	rx_cfg = hw->rx_cfg;
3218	tx_cfg = hw->tx_cfg;
3219	if (rx)
3220		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221	else
3222		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223	if (tx)
3224		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225	else
3226		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227	if (hw->enabled) {
3228		if (rx_cfg != hw->rx_cfg)
3229			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230		if (tx_cfg != hw->tx_cfg)
3231			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232	}
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236	u16 local, u16 remote)
3237{
3238	int rx;
3239	int tx;
3240
3241	if (hw->overrides & PAUSE_FLOW_CTRL)
3242		return;
3243
3244	rx = tx = 0;
3245	if (port->force_link)
3246		rx = tx = 1;
3247	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249			rx = tx = 1;
3250		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251				(local & PHY_AUTO_NEG_PAUSE) ==
3252				PHY_AUTO_NEG_ASYM_PAUSE) {
 
3253			tx = 1;
3254		}
3255	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
 
3257			rx = 1;
3258	}
3259	if (!hw->ksz_switch)
3260		set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264	struct ksz_port_info *info, u16 link_status)
3265{
3266	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268		u32 cfg = hw->tx_cfg;
3269
3270		/* Disable flow control in the half duplex mode. */
3271		if (1 == info->duplex)
3272			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273		if (hw->enabled && cfg != hw->tx_cfg)
3274			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275	}
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: 	The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287	uint interrupt;
3288	struct ksz_port_info *info;
3289	struct ksz_port_info *linked = NULL;
3290	struct ksz_hw *hw = port->hw;
3291	u16 data;
3292	u16 status;
3293	u8 local;
3294	u8 remote;
3295	int i;
3296	int p;
3297	int change = 0;
3298
3299	interrupt = hw_block_intr(hw);
3300
3301	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302		info = &hw->port_info[p];
3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306		/*
3307		 * Link status is changing all the time even when there is no
3308		 * cable connection!
3309		 */
3310		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311			PORT_STATUS_LINK_GOOD);
3312		local = (u8) data;
3313
3314		/* No change to status. */
3315		if (local == info->advertised && remote == info->partner)
3316			continue;
3317
3318		info->advertised = local;
3319		info->partner = remote;
3320		if (status & PORT_STATUS_LINK_GOOD) {
3321
3322			/* Remember the first linked port. */
3323			if (!linked)
3324				linked = info;
3325
3326			info->tx_rate = 10 * TX_RATE_UNIT;
3327			if (status & PORT_STATUS_SPEED_100MBIT)
3328				info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330			info->duplex = 1;
3331			if (status & PORT_STATUS_FULL_DUPLEX)
3332				info->duplex = 2;
3333
3334			if (media_connected != info->state) {
3335				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336					&data);
3337				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338					&status);
3339				determine_flow_ctrl(hw, port, data, status);
3340				if (hw->ksz_switch) {
3341					port_cfg_back_pressure(hw, p,
3342						(1 == info->duplex));
3343				}
3344				change |= 1 << i;
3345				port_cfg_change(hw, port, info, status);
3346			}
3347			info->state = media_connected;
3348		} else {
3349			if (media_disconnected != info->state) {
3350				change |= 1 << i;
3351
3352				/* Indicate the link just goes down. */
3353				hw->port_mib[p].link_down = 1;
3354			}
3355			info->state = media_disconnected;
3356		}
3357		hw->port_mib[p].state = (u8) info->state;
3358	}
3359
3360	if (linked && media_disconnected == port->linked->state)
3361		port->linked = linked;
3362
3363	hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT		10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: 	The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376	struct ksz_port_info *info;
3377	struct ksz_hw *hw = port->hw;
3378	u16 data;
3379	u16 cfg;
3380	u8 status;
3381	int i;
3382	int p;
3383
3384	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385		info = &hw->port_info[p];
3386
3387		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390		cfg = 0;
3391		if (status & PORT_STATUS_LINK_GOOD)
3392			cfg = data;
3393
3394		data |= PORT_AUTO_NEG_ENABLE;
3395		data = advertised_flow_ctrl(port, data);
3396
3397		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400		/* Check if manual configuration is specified by the user. */
3401		if (port->speed || port->duplex) {
3402			if (10 == port->speed)
3403				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404					PORT_AUTO_NEG_100BTX);
3405			else if (100 == port->speed)
3406				data &= ~(PORT_AUTO_NEG_10BT_FD |
3407					PORT_AUTO_NEG_10BT);
3408			if (1 == port->duplex)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_10BT_FD);
3411			else if (2 == port->duplex)
3412				data &= ~(PORT_AUTO_NEG_100BTX |
3413					PORT_AUTO_NEG_10BT);
3414		}
3415		if (data != cfg) {
3416			data |= PORT_AUTO_NEG_RESTART;
3417			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418		}
3419	}
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port: 	The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430	struct ksz_hw *hw = port->hw;
3431	u16 data;
3432	int i;
3433	int phy;
3434	int p;
3435
3436	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438		hw_r_phy_ctrl(hw, phy, &data);
3439
3440		data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442		if (10 == port->speed)
3443			data &= ~PHY_SPEED_100MBIT;
3444		else if (100 == port->speed)
3445			data |= PHY_SPEED_100MBIT;
3446		if (1 == port->duplex)
3447			data &= ~PHY_FULL_DUPLEX;
3448		else if (2 == port->duplex)
3449			data |= PHY_FULL_DUPLEX;
3450		hw_w_phy_ctrl(hw, phy, data);
3451	}
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456	struct ksz_hw *hw = port->hw;
3457	int i;
3458	int p;
3459
3460	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461		port_cfg(hw, p,
3462			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw: 	The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480	struct pci_dev *pdev = hw_priv->pdev;
3481	u16 data;
3482
3483	if (!pdev->pm_cap)
3484		return 0;
3485	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw: 	The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498	struct pci_dev *pdev = hw_priv->pdev;
3499	u16 data;
3500
3501	if (!pdev->pm_cap)
3502		return;
3503
3504	/* Clear PME_Status to deassert PMEN pin. */
3505	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506	data |= PCI_PM_CTRL_PME_STATUS;
3507	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw: 	The hardware instance.
3513 * @set:	The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520	struct pci_dev *pdev = hw_priv->pdev;
3521	u16 data;
3522
3523	if (!pdev->pm_cap)
3524		return;
3525	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526	data &= ~PCI_PM_CTRL_STATE_MASK;
3527	if (set)
3528		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529	else
3530		data &= ~PCI_PM_CTRL_PME_ENABLE;
3531	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw: 	The hardware instance.
3537 * @frame:	The pattern frame bit.
3538 * @set:	The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544	u16 data;
3545
3546	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547	if (set)
3548		data |= frame;
3549	else
3550		data &= ~frame;
3551	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw: 	The hardware instance.
3557 * @i:		The frame index.
3558 * @mask_size:	The size of the mask.
3559 * @mask:	Mask to ignore certain bytes in the pattern.
3560 * @frame_size:	The size of the frame.
3561 * @pattern:	The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566	const u8 *mask, uint frame_size, const u8 *pattern)
3567{
3568	int bits;
3569	int from;
3570	int len;
3571	int to;
3572	u32 crc;
3573	u8 data[64];
3574	u8 val = 0;
3575
3576	if (frame_size > mask_size * 8)
3577		frame_size = mask_size * 8;
3578	if (frame_size > 64)
3579		frame_size = 64;
3580
3581	i *= 0x10;
3582	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585	bits = len = from = to = 0;
3586	do {
3587		if (bits) {
3588			if ((val & 1))
3589				data[to++] = pattern[from];
3590			val >>= 1;
3591			++from;
3592			--bits;
3593		} else {
3594			val = mask[len];
3595			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596				+ len);
3597			++len;
3598			if (val)
3599				bits = 8;
3600			else
3601				from += 8;
3602		}
3603	} while (from < (int) frame_size);
3604	if (val) {
3605		bits = mask[len - 1];
3606		val <<= (from % 8);
3607		bits &= ~val;
3608		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609			1);
3610	}
3611	crc = ether_crc(to, data);
3612	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw: 	The hardware instance.
3618 * @ip_addr:	The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623{
3624	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625	u8 pattern[42] = {
3626		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628		0x08, 0x06,
3629		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631		0x00, 0x00, 0x00, 0x00,
3632		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633		0x00, 0x00, 0x00, 0x00 };
3634
3635	memcpy(&pattern[38], ip_addr, 4);
3636	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw: 	The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
3647	static const u8 mask[] = { 0x3F };
3648	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649
3650	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw: 	The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command.  Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
3665	static const u8 mask[] = { 0x3F };
3666	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668	memcpy(&pattern[3], &hw->override_addr[3], 3);
3669	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw: 	The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
3683	static const u8 mask[] = { 0x3F };
3684
3685	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw: 	The hardware instance.
3691 * @wol_enable:	The Wake-on-LAN settings.
3692 * @net_addr:	The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697{
3698	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700	hw_add_wol_ucast(hw);
3701	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702	hw_add_wol_mcast(hw);
3703	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705	hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw: 	The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719	int rc = 0;
3720	u16 data;
3721	u16 revision;
3722
3723	/* Set bus speed to 125MHz. */
3724	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726	/* Check KSZ884x chip ID. */
3727	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730	data &= KS884X_CHIP_ID_MASK_41;
3731	if (REG_CHIP_ID_41 == data)
3732		rc = 1;
3733	else if (REG_CHIP_ID_42 == data)
3734		rc = 2;
3735	else
3736		return 0;
3737
3738	/* Setup hardware features or bug workarounds. */
3739	if (revision <= 1) {
3740		hw->features |= SMALL_PACKET_TX_BUG;
3741		if (1 == rc)
3742			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743	}
3744	return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw: 	The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757	/* Wait for device to reset. */
3758	mdelay(10);
3759
3760	/* Write 0 to clear device reset. */
3761	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw: 	The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773	u16 data;
3774
3775	/* Change default LED mode. */
3776	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777	data &= ~LED_MODE;
3778	data |= SET_DEFAULT_LED;
3779	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782	/* Setup transmit control. */
3783	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786	/* Setup receive control. */
3787	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791	/* Hardware cannot handle UDP packet in IP fragments. */
3792	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794	if (hw->all_multi)
3795		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796	if (hw->promiscuous)
3797		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw: 	The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT  2
3814
3815	int alloc = info->alloc;
3816	int shift;
3817
3818	shift = 0;
3819	while (!(alloc & 1)) {
3820		shift++;
3821		alloc >>= 1;
3822	}
3823	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824		pr_alert("Hardware descriptor numbers not right!\n");
3825		while (alloc) {
3826			shift++;
3827			alloc >>= 1;
3828		}
3829		if (shift < MIN_DESC_SHIFT)
3830			shift = MIN_DESC_SHIFT;
3831		alloc = 1 << shift;
3832		info->alloc = alloc;
3833	}
3834	info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839	int i;
3840	u32 phys = desc_info->ring_phys;
3841	struct ksz_hw_desc *desc = desc_info->ring_virt;
3842	struct ksz_desc *cur = desc_info->ring;
3843	struct ksz_desc *previous = NULL;
3844
3845	for (i = 0; i < desc_info->alloc; i++) {
3846		cur->phw = desc++;
3847		phys += desc_info->size;
3848		previous = cur++;
3849		previous->phw->next = cpu_to_le32(phys);
3850	}
3851	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852	previous->sw.buf.rx.end_of_ring = 1;
3853	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855	desc_info->avail = desc_info->alloc;
3856	desc_info->last = desc_info->next = 0;
3857
3858	desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw: 	The hardware instance.
3864 * @tx_addr:	The transmit descriptor base.
3865 * @rx_addr:	The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871	/* Set base address of Tx/Rx descriptors. */
3872	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878	info->cur = info->ring;
3879	info->avail = info->alloc;
3880	info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885	writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw: 	The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898	/* Notify when the receive stops. */
3899	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901	writel(DMA_START, hw->io + KS_DMA_RX_START);
3902	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903	hw->rx_stop++;
3904
3905	/* Variable overflows. */
3906	if (0 == hw->rx_stop)
3907		hw->rx_stop = 2;
3908}
3909
3910/**
3911 * hw_stop_rx - stop receiving
3912 * @hw: 	The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918	hw->rx_stop = 0;
3919	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw: 	The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw: 	The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw: 	The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953	hw_stop_rx(hw);
3954	hw_stop_tx(hw);
3955	hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw: 	The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966	hw_start_tx(hw);
3967	hw_start_rx(hw);
3968	hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw: 	The hardware instance.
3974 * @length:	The length of the packet.
3975 * @physical:	Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983	/* Always leave one descriptor free. */
3984	if (hw->tx_desc_info.avail <= 1)
3985		return 0;
3986
3987	/* Allocate a descriptor for transmission and mark it current. */
3988	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991	/* Keep track of number of transmit descriptors used so far. */
3992	++hw->tx_int_cnt;
3993	hw->tx_size += length;
3994
3995	/* Cannot hold on too much data. */
3996	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997		hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999	if (physical > hw->tx_desc_info.avail)
4000		return 1;
4001
4002	return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw: 	The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013	struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015	cur->sw.buf.tx.last_seg = 1;
4016
4017	/* Interrupt only after specified number of descriptors used. */
4018	if (hw->tx_int_cnt > hw->tx_int_mask) {
4019		cur->sw.buf.tx.intr = 1;
4020		hw->tx_int_cnt = 0;
4021		hw->tx_size = 0;
4022	}
4023
4024	/* KSZ8842 supports port directed transmission. */
4025	cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027	release_desc(cur);
4028
4029	writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034	u32 *addr1 = (u32 *) addr;
4035	u16 *addr2 = (u16 *) &addr[4];
4036
4037	return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw: 	The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overridden.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049	int i;
4050
4051	for (i = 0; i < ETH_ALEN; i++)
4052		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053			hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055	sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw: 	The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066	int i;
4067
4068	for (i = 0; i < ETH_ALEN; i++)
4069		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070			KS884X_ADDR_0_OFFSET + i);
4071
4072	if (!hw->mac_override) {
4073		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074		if (empty_addr(hw->override_addr)) {
4075			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077			       ETH_ALEN);
4078			hw->override_addr[5] += hw->id;
4079			hw_set_addr(hw);
4080		}
4081	}
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086	int i;
4087	u32 mac_addr_lo;
4088	u32 mac_addr_hi;
4089
4090	mac_addr_hi = 0;
4091	for (i = 0; i < 2; i++) {
4092		mac_addr_hi <<= 8;
4093		mac_addr_hi |= mac_addr[i];
4094	}
4095	mac_addr_hi |= ADD_ADDR_ENABLE;
4096	mac_addr_lo = 0;
4097	for (i = 2; i < 6; i++) {
4098		mac_addr_lo <<= 8;
4099		mac_addr_lo |= mac_addr[i];
4100	}
4101	index *= ADD_ADDR_INCR;
4102
4103	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109	int i;
4110
4111	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112		if (empty_addr(hw->address[i]))
4113			writel(0, hw->io + ADD_ADDR_INCR * i +
4114				KS_ADD_ADDR_0_HI);
4115		else
4116			hw_ena_add_addr(hw, i, hw->address[i]);
4117	}
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122	int i;
4123	int j = ADDITIONAL_ENTRIES;
4124
4125	if (ether_addr_equal(hw->override_addr, mac_addr))
4126		return 0;
4127	for (i = 0; i < hw->addr_list_size; i++) {
4128		if (ether_addr_equal(hw->address[i], mac_addr))
4129			return 0;
4130		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131			j = i;
4132	}
4133	if (j < ADDITIONAL_ENTRIES) {
4134		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135		hw_ena_add_addr(hw, j, hw->address[j]);
4136		return 0;
4137	}
4138	return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143	int i;
4144
4145	for (i = 0; i < hw->addr_list_size; i++) {
4146		if (ether_addr_equal(hw->address[i], mac_addr)) {
4147			eth_zero_addr(hw->address[i]);
4148			writel(0, hw->io + ADD_ADDR_INCR * i +
4149				KS_ADD_ADDR_0_HI);
4150			return 0;
4151		}
4152	}
4153	return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw: 	The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164	int i;
4165
4166	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167		hw->multi_bits[i] = 0;
4168
4169		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170	}
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw: 	The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182	int i;
4183	int index;
4184	int position;
4185	int value;
4186
4187	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189	for (i = 0; i < hw->multi_list_size; i++) {
4190		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191		index = position >> 3;
4192		value = 1 << (position & 7);
4193		hw->multi_bits[index] |= (u8) value;
4194	}
4195
4196	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198			i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw: 	The hardware instance.
4204 * @multicast:	To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210	/* Stop receiving for reconfiguration. */
4211	hw_stop_rx(hw);
4212
4213	if (multicast)
4214		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215	else
4216		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218	if (hw->enabled)
4219		hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw: 	The hardware instance.
4225 * @prom:	To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231	/* Stop receiving for reconfiguration. */
4232	hw_stop_rx(hw);
4233
4234	if (prom)
4235		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236	else
4237		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239	if (hw->enabled)
4240		hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw: 	The hardware instance.
4246 * @enable:	The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252	int port;
4253
4254	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255		if (hw->dev_count > 1) {
4256			/* Set port-base vlan membership with host port. */
4257			sw_cfg_port_base_vlan(hw, port,
4258				HOST_MASK | (1 << port));
4259			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260		} else {
4261			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263		}
4264	}
4265	if (hw->dev_count > 1)
4266		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267	else
4268		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270	if (enable)
4271		enable = KS8842_START;
4272	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw: 	The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283	int port;
4284
4285	sw_set_global_ctrl(hw);
4286
4287	/* Enable switch broadcast storm protection at 10% percent rate. */
4288	sw_init_broad_storm(hw);
4289	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290	for (port = 0; port < SWITCH_PORT_NUM; port++)
4291		sw_ena_broad_storm(hw, port);
4292
4293	sw_init_prio(hw);
4294
4295	sw_init_mirror(hw);
4296
4297	sw_init_prio_rate(hw);
4298
4299	sw_init_vlan(hw);
4300
4301	if (hw->features & STP_SUPPORT)
4302		sw_init_stp(hw);
4303	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305		hw->overrides |= PAUSE_FLOW_CTRL;
4306	sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info:	Kernel timer information.
4312 * @time:	The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318	info->cnt = 0;
4319	info->timer.expires = jiffies + time;
4320	add_timer(&info->timer);
4321
4322	/* infinity */
4323	info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info:	Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334	if (info->max) {
4335		info->max = 0;
4336		del_timer_sync(&info->timer);
4337	}
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341	void (*function)(struct timer_list *))
4342{
4343	info->max = 0;
4344	info->period = period;
4345	timer_setup(&info->timer, function, 0);
4346}
4347
4348static void ksz_update_timer(struct ksz_timer_info *info)
4349{
4350	++info->cnt;
4351	if (info->max > 0) {
4352		if (info->cnt < info->max) {
4353			info->timer.expires = jiffies + info->period;
4354			add_timer(&info->timer);
4355		} else
4356			info->max = 0;
4357	} else if (info->max < 0) {
4358		info->timer.expires = jiffies + info->period;
4359		add_timer(&info->timer);
4360	}
4361}
4362
4363/**
4364 * ksz_alloc_soft_desc - allocate software descriptors
4365 * @desc_info:	Descriptor information structure.
4366 * @transmit:	Indication that descriptors are for transmit.
4367 *
4368 * This local function allocates software descriptors for manipulation in
4369 * memory.
4370 *
4371 * Return 0 if successful.
4372 */
4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374{
4375	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376				  GFP_KERNEL);
4377	if (!desc_info->ring)
4378		return 1;
4379	hw_init_desc(desc_info, transmit);
4380	return 0;
4381}
4382
4383/**
4384 * ksz_alloc_desc - allocate hardware descriptors
4385 * @adapter:	Adapter information structure.
4386 *
4387 * This local function allocates hardware descriptors for receiving and
4388 * transmitting.
4389 *
4390 * Return 0 if successful.
4391 */
4392static int ksz_alloc_desc(struct dev_info *adapter)
4393{
4394	struct ksz_hw *hw = &adapter->hw;
4395	int offset;
4396
4397	/* Allocate memory for RX & TX descriptors. */
4398	adapter->desc_pool.alloc_size =
4399		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401		DESC_ALIGNMENT;
4402
4403	adapter->desc_pool.alloc_virt =
4404		pci_zalloc_consistent(adapter->pdev,
4405				      adapter->desc_pool.alloc_size,
4406				      &adapter->desc_pool.dma_addr);
4407	if (adapter->desc_pool.alloc_virt == NULL) {
4408		adapter->desc_pool.alloc_size = 0;
4409		return 1;
4410	}
4411
4412	/* Align to the next cache line boundary. */
4413	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414		(DESC_ALIGNMENT -
4415		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418
4419	/* Allocate receive/transmit descriptors. */
4420	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421		adapter->desc_pool.virt;
4422	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425		(adapter->desc_pool.virt + offset);
4426	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427
4428	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429		return 1;
4430	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431		return 1;
4432
4433	return 0;
4434}
4435
4436/**
4437 * free_dma_buf - release DMA buffer resources
4438 * @adapter:	Adapter information structure.
 
 
4439 *
4440 * This routine is just a helper function to release the DMA buffer resources.
4441 */
4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443	int direction)
4444{
4445	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
 
4446	dev_kfree_skb(dma_buf->skb);
4447	dma_buf->skb = NULL;
4448	dma_buf->dma = 0;
4449}
4450
4451/**
4452 * ksz_init_rx_buffers - initialize receive descriptors
4453 * @adapter:	Adapter information structure.
4454 *
4455 * This routine initializes DMA buffers for receiving.
4456 */
4457static void ksz_init_rx_buffers(struct dev_info *adapter)
4458{
4459	int i;
4460	struct ksz_desc *desc;
4461	struct ksz_dma_buf *dma_buf;
4462	struct ksz_hw *hw = &adapter->hw;
4463	struct ksz_desc_info *info = &hw->rx_desc_info;
4464
4465	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466		get_rx_pkt(info, &desc);
4467
4468		dma_buf = DMA_BUFFER(desc);
4469		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471		dma_buf->len = adapter->mtu;
4472		if (!dma_buf->skb)
4473			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474		if (dma_buf->skb && !dma_buf->dma)
4475			dma_buf->dma = pci_map_single(
4476				adapter->pdev,
4477				skb_tail_pointer(dma_buf->skb),
4478				dma_buf->len,
4479				PCI_DMA_FROMDEVICE);
4480
4481		/* Set descriptor. */
4482		set_rx_buf(desc, dma_buf->dma);
4483		set_rx_len(desc, dma_buf->len);
4484		release_desc(desc);
4485	}
4486}
4487
4488/**
4489 * ksz_alloc_mem - allocate memory for hardware descriptors
4490 * @adapter:	Adapter information structure.
4491 *
4492 * This function allocates memory for use by hardware descriptors for receiving
4493 * and transmitting.
4494 *
4495 * Return 0 if successful.
4496 */
4497static int ksz_alloc_mem(struct dev_info *adapter)
4498{
4499	struct ksz_hw *hw = &adapter->hw;
4500
4501	/* Determine the number of receive and transmit descriptors. */
4502	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504
4505	/* Determine how many descriptors to skip transmit interrupt. */
4506	hw->tx_int_cnt = 0;
4507	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508	if (hw->tx_int_mask > 8)
4509		hw->tx_int_mask = 8;
4510	while (hw->tx_int_mask) {
4511		hw->tx_int_cnt++;
4512		hw->tx_int_mask >>= 1;
4513	}
4514	if (hw->tx_int_cnt) {
4515		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516		hw->tx_int_cnt = 0;
4517	}
4518
4519	/* Determine the descriptor size. */
4520	hw->rx_desc_info.size =
4521		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523	hw->tx_desc_info.size =
4524		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527		pr_alert("Hardware descriptor size not right!\n");
4528	ksz_check_desc_num(&hw->rx_desc_info);
4529	ksz_check_desc_num(&hw->tx_desc_info);
4530
4531	/* Allocate descriptors. */
4532	if (ksz_alloc_desc(adapter))
4533		return 1;
4534
4535	return 0;
4536}
4537
4538/**
4539 * ksz_free_desc - free software and hardware descriptors
4540 * @adapter:	Adapter information structure.
4541 *
4542 * This local routine frees the software and hardware descriptors allocated by
4543 * ksz_alloc_desc().
4544 */
4545static void ksz_free_desc(struct dev_info *adapter)
4546{
4547	struct ksz_hw *hw = &adapter->hw;
4548
4549	/* Reset descriptor. */
4550	hw->rx_desc_info.ring_virt = NULL;
4551	hw->tx_desc_info.ring_virt = NULL;
4552	hw->rx_desc_info.ring_phys = 0;
4553	hw->tx_desc_info.ring_phys = 0;
4554
4555	/* Free memory. */
4556	if (adapter->desc_pool.alloc_virt)
4557		pci_free_consistent(
4558			adapter->pdev,
4559			adapter->desc_pool.alloc_size,
4560			adapter->desc_pool.alloc_virt,
4561			adapter->desc_pool.dma_addr);
4562
4563	/* Reset resource pool. */
4564	adapter->desc_pool.alloc_size = 0;
4565	adapter->desc_pool.alloc_virt = NULL;
4566
4567	kfree(hw->rx_desc_info.ring);
4568	hw->rx_desc_info.ring = NULL;
4569	kfree(hw->tx_desc_info.ring);
4570	hw->tx_desc_info.ring = NULL;
4571}
4572
4573/**
4574 * ksz_free_buffers - free buffers used in the descriptors
4575 * @adapter:	Adapter information structure.
4576 * @desc_info:	Descriptor information structure.
 
4577 *
4578 * This local routine frees buffers used in the DMA buffers.
4579 */
4580static void ksz_free_buffers(struct dev_info *adapter,
4581	struct ksz_desc_info *desc_info, int direction)
4582{
4583	int i;
4584	struct ksz_dma_buf *dma_buf;
4585	struct ksz_desc *desc = desc_info->ring;
4586
4587	for (i = 0; i < desc_info->alloc; i++) {
4588		dma_buf = DMA_BUFFER(desc);
4589		if (dma_buf->skb)
4590			free_dma_buf(adapter, dma_buf, direction);
4591		desc++;
4592	}
4593}
4594
4595/**
4596 * ksz_free_mem - free all resources used by descriptors
4597 * @adapter:	Adapter information structure.
4598 *
4599 * This local routine frees all the resources allocated by ksz_alloc_mem().
4600 */
4601static void ksz_free_mem(struct dev_info *adapter)
4602{
4603	/* Free transmit buffers. */
4604	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605		PCI_DMA_TODEVICE);
4606
4607	/* Free receive buffers. */
4608	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609		PCI_DMA_FROMDEVICE);
4610
4611	/* Free descriptors. */
4612	ksz_free_desc(adapter);
4613}
4614
4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616	u64 *counter)
4617{
4618	int i;
4619	int mib;
4620	int port;
4621	struct ksz_port_mib *port_mib;
4622
4623	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624	for (i = 0, port = first; i < cnt; i++, port++) {
4625		port_mib = &hw->port_mib[port];
4626		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627			counter[mib] += port_mib->counter[mib];
4628	}
4629}
4630
4631/**
4632 * send_packet - send packet
4633 * @skb:	Socket buffer.
4634 * @dev:	Network device.
4635 *
4636 * This routine is used to send a packet out to the network.
4637 */
4638static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639{
4640	struct ksz_desc *desc;
4641	struct ksz_desc *first;
4642	struct dev_priv *priv = netdev_priv(dev);
4643	struct dev_info *hw_priv = priv->adapter;
4644	struct ksz_hw *hw = &hw_priv->hw;
4645	struct ksz_desc_info *info = &hw->tx_desc_info;
4646	struct ksz_dma_buf *dma_buf;
4647	int len;
4648	int last_frag = skb_shinfo(skb)->nr_frags;
4649
4650	/*
4651	 * KSZ8842 with multiple device interfaces needs to be told which port
4652	 * to send.
4653	 */
4654	if (hw->dev_count > 1)
4655		hw->dst_ports = 1 << priv->port.first_port;
4656
4657	/* Hardware will pad the length to 60. */
4658	len = skb->len;
4659
4660	/* Remember the very first descriptor. */
4661	first = info->cur;
4662	desc = first;
4663
4664	dma_buf = DMA_BUFFER(desc);
4665	if (last_frag) {
4666		int frag;
4667		skb_frag_t *this_frag;
4668
4669		dma_buf->len = skb_headlen(skb);
4670
4671		dma_buf->dma = pci_map_single(
4672			hw_priv->pdev, skb->data, dma_buf->len,
4673			PCI_DMA_TODEVICE);
4674		set_tx_buf(desc, dma_buf->dma);
4675		set_tx_len(desc, dma_buf->len);
4676
4677		frag = 0;
4678		do {
4679			this_frag = &skb_shinfo(skb)->frags[frag];
4680
4681			/* Get a new descriptor. */
4682			get_tx_pkt(info, &desc);
4683
4684			/* Keep track of descriptors used so far. */
4685			++hw->tx_int_cnt;
4686
4687			dma_buf = DMA_BUFFER(desc);
4688			dma_buf->len = skb_frag_size(this_frag);
4689
4690			dma_buf->dma = pci_map_single(
4691				hw_priv->pdev,
4692				skb_frag_address(this_frag),
4693				dma_buf->len,
4694				PCI_DMA_TODEVICE);
4695			set_tx_buf(desc, dma_buf->dma);
4696			set_tx_len(desc, dma_buf->len);
4697
4698			frag++;
4699			if (frag == last_frag)
4700				break;
4701
4702			/* Do not release the last descriptor here. */
4703			release_desc(desc);
4704		} while (1);
4705
4706		/* current points to the last descriptor. */
4707		info->cur = desc;
4708
4709		/* Release the first descriptor. */
4710		release_desc(first);
4711	} else {
4712		dma_buf->len = len;
4713
4714		dma_buf->dma = pci_map_single(
4715			hw_priv->pdev, skb->data, dma_buf->len,
4716			PCI_DMA_TODEVICE);
4717		set_tx_buf(desc, dma_buf->dma);
4718		set_tx_len(desc, dma_buf->len);
4719	}
4720
4721	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4723		(desc)->sw.buf.tx.csum_gen_udp = 1;
4724	}
4725
4726	/*
4727	 * The last descriptor holds the packet so that it can be returned to
4728	 * network subsystem after all descriptors are transmitted.
4729	 */
4730	dma_buf->skb = skb;
4731
4732	hw_send_pkt(hw);
4733
4734	/* Update transmit statistics. */
4735	dev->stats.tx_packets++;
4736	dev->stats.tx_bytes += len;
4737}
4738
4739/**
4740 * transmit_cleanup - clean up transmit descriptors
4741 * @dev:	Network device.
 
4742 *
4743 * This routine is called to clean up the transmitted buffers.
4744 */
4745static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746{
4747	int last;
4748	union desc_stat status;
4749	struct ksz_hw *hw = &hw_priv->hw;
4750	struct ksz_desc_info *info = &hw->tx_desc_info;
4751	struct ksz_desc *desc;
4752	struct ksz_dma_buf *dma_buf;
4753	struct net_device *dev = NULL;
4754
4755	spin_lock_irq(&hw_priv->hwlock);
4756	last = info->last;
4757
4758	while (info->avail < info->alloc) {
4759		/* Get next descriptor which is not hardware owned. */
4760		desc = &info->ring[last];
4761		status.data = le32_to_cpu(desc->phw->ctrl.data);
4762		if (status.tx.hw_owned) {
4763			if (normal)
4764				break;
4765			else
4766				reset_desc(desc, status);
4767		}
4768
4769		dma_buf = DMA_BUFFER(desc);
4770		pci_unmap_single(
4771			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772			PCI_DMA_TODEVICE);
4773
4774		/* This descriptor contains the last buffer in the packet. */
4775		if (dma_buf->skb) {
4776			dev = dma_buf->skb->dev;
4777
4778			/* Release the packet back to network subsystem. */
4779			dev_kfree_skb_irq(dma_buf->skb);
4780			dma_buf->skb = NULL;
4781		}
4782
4783		/* Free the transmitted descriptor. */
4784		last++;
4785		last &= info->mask;
4786		info->avail++;
4787	}
4788	info->last = last;
4789	spin_unlock_irq(&hw_priv->hwlock);
4790
4791	/* Notify the network subsystem that the packet has been sent. */
4792	if (dev)
4793		netif_trans_update(dev);
4794}
4795
4796/**
4797 * transmit_done - transmit done processing
4798 * @dev:	Network device.
4799 *
4800 * This routine is called when the transmit interrupt is triggered, indicating
4801 * either a packet is sent successfully or there are transmit errors.
4802 */
4803static void tx_done(struct dev_info *hw_priv)
4804{
4805	struct ksz_hw *hw = &hw_priv->hw;
4806	int port;
4807
4808	transmit_cleanup(hw_priv, 1);
4809
4810	for (port = 0; port < hw->dev_count; port++) {
4811		struct net_device *dev = hw->port_info[port].pdev;
4812
4813		if (netif_running(dev) && netif_queue_stopped(dev))
4814			netif_wake_queue(dev);
4815	}
4816}
4817
4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819{
4820	skb->dev = old->dev;
4821	skb->protocol = old->protocol;
4822	skb->ip_summed = old->ip_summed;
4823	skb->csum = old->csum;
4824	skb_set_network_header(skb, ETH_HLEN);
4825
4826	dev_consume_skb_any(old);
4827}
4828
4829/**
4830 * netdev_tx - send out packet
4831 * @skb:	Socket buffer.
4832 * @dev:	Network device.
4833 *
4834 * This function is used by the upper network layer to send out a packet.
4835 *
4836 * Return 0 if successful; otherwise an error code indicating failure.
4837 */
4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839{
4840	struct dev_priv *priv = netdev_priv(dev);
4841	struct dev_info *hw_priv = priv->adapter;
4842	struct ksz_hw *hw = &hw_priv->hw;
4843	int left;
4844	int num = 1;
4845	int rc = 0;
4846
4847	if (hw->features & SMALL_PACKET_TX_BUG) {
4848		struct sk_buff *org_skb = skb;
4849
4850		if (skb->len <= 48) {
4851			if (skb_end_pointer(skb) - skb->data >= 50) {
4852				memset(&skb->data[skb->len], 0, 50 - skb->len);
4853				skb->len = 50;
4854			} else {
4855				skb = netdev_alloc_skb(dev, 50);
4856				if (!skb)
4857					return NETDEV_TX_BUSY;
4858				memcpy(skb->data, org_skb->data, org_skb->len);
4859				memset(&skb->data[org_skb->len], 0,
4860					50 - org_skb->len);
4861				skb->len = 50;
4862				copy_old_skb(org_skb, skb);
4863			}
4864		}
4865	}
4866
4867	spin_lock_irq(&hw_priv->hwlock);
4868
4869	num = skb_shinfo(skb)->nr_frags + 1;
4870	left = hw_alloc_pkt(hw, skb->len, num);
4871	if (left) {
4872		if (left < num ||
4873		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4874		     skb->protocol == htons(ETH_P_IPV6))) {
4875			struct sk_buff *org_skb = skb;
4876
4877			skb = netdev_alloc_skb(dev, org_skb->len);
4878			if (!skb) {
4879				rc = NETDEV_TX_BUSY;
4880				goto unlock;
4881			}
4882			skb_copy_and_csum_dev(org_skb, skb->data);
4883			org_skb->ip_summed = CHECKSUM_NONE;
4884			skb->len = org_skb->len;
4885			copy_old_skb(org_skb, skb);
4886		}
4887		send_packet(skb, dev);
4888		if (left <= num)
4889			netif_stop_queue(dev);
4890	} else {
4891		/* Stop the transmit queue until packet is allocated. */
4892		netif_stop_queue(dev);
4893		rc = NETDEV_TX_BUSY;
4894	}
4895unlock:
4896	spin_unlock_irq(&hw_priv->hwlock);
4897
4898	return rc;
4899}
4900
4901/**
4902 * netdev_tx_timeout - transmit timeout processing
4903 * @dev:	Network device.
 
4904 *
4905 * This routine is called when the transmit timer expires.  That indicates the
4906 * hardware is not running correctly because transmit interrupts are not
4907 * triggered to free up resources so that the transmit routine can continue
4908 * sending out packets.  The hardware is reset to correct the problem.
4909 */
4910static void netdev_tx_timeout(struct net_device *dev)
4911{
4912	static unsigned long last_reset;
4913
4914	struct dev_priv *priv = netdev_priv(dev);
4915	struct dev_info *hw_priv = priv->adapter;
4916	struct ksz_hw *hw = &hw_priv->hw;
4917	int port;
4918
4919	if (hw->dev_count > 1) {
4920		/*
4921		 * Only reset the hardware if time between calls is long
4922		 * enough.
4923		 */
4924		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925			hw_priv = NULL;
4926	}
4927
4928	last_reset = jiffies;
4929	if (hw_priv) {
4930		hw_dis_intr(hw);
4931		hw_disable(hw);
4932
4933		transmit_cleanup(hw_priv, 0);
4934		hw_reset_pkts(&hw->rx_desc_info);
4935		hw_reset_pkts(&hw->tx_desc_info);
4936		ksz_init_rx_buffers(hw_priv);
4937
4938		hw_reset(hw);
4939
4940		hw_set_desc_base(hw,
4941			hw->tx_desc_info.ring_phys,
4942			hw->rx_desc_info.ring_phys);
4943		hw_set_addr(hw);
4944		if (hw->all_multi)
4945			hw_set_multicast(hw, hw->all_multi);
4946		else if (hw->multi_list_size)
4947			hw_set_grp_addr(hw);
4948
4949		if (hw->dev_count > 1) {
4950			hw_set_add_addr(hw);
4951			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952				struct net_device *port_dev;
4953
4954				port_set_stp_state(hw, port,
4955					STP_STATE_DISABLED);
4956
4957				port_dev = hw->port_info[port].pdev;
4958				if (netif_running(port_dev))
4959					port_set_stp_state(hw, port,
4960						STP_STATE_SIMPLE);
4961			}
4962		}
4963
4964		hw_enable(hw);
4965		hw_ena_intr(hw);
4966	}
4967
4968	netif_trans_update(dev);
4969	netif_wake_queue(dev);
4970}
4971
4972static inline void csum_verified(struct sk_buff *skb)
4973{
4974	unsigned short protocol;
4975	struct iphdr *iph;
4976
4977	protocol = skb->protocol;
4978	skb_reset_network_header(skb);
4979	iph = (struct iphdr *) skb_network_header(skb);
4980	if (protocol == htons(ETH_P_8021Q)) {
4981		protocol = iph->tot_len;
4982		skb_set_network_header(skb, VLAN_HLEN);
4983		iph = (struct iphdr *) skb_network_header(skb);
4984	}
4985	if (protocol == htons(ETH_P_IP)) {
4986		if (iph->protocol == IPPROTO_TCP)
4987			skb->ip_summed = CHECKSUM_UNNECESSARY;
4988	}
4989}
4990
4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992	struct ksz_desc *desc, union desc_stat status)
4993{
4994	int packet_len;
4995	struct dev_priv *priv = netdev_priv(dev);
4996	struct dev_info *hw_priv = priv->adapter;
4997	struct ksz_dma_buf *dma_buf;
4998	struct sk_buff *skb;
4999	int rx_status;
5000
5001	/* Received length includes 4-byte CRC. */
5002	packet_len = status.rx.frame_len - 4;
5003
5004	dma_buf = DMA_BUFFER(desc);
5005	pci_dma_sync_single_for_cpu(
5006		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007		PCI_DMA_FROMDEVICE);
5008
5009	do {
5010		/* skb->data != skb->head */
5011		skb = netdev_alloc_skb(dev, packet_len + 2);
5012		if (!skb) {
5013			dev->stats.rx_dropped++;
5014			return -ENOMEM;
5015		}
5016
5017		/*
5018		 * Align socket buffer in 4-byte boundary for better
5019		 * performance.
5020		 */
5021		skb_reserve(skb, 2);
5022
5023		skb_put_data(skb, dma_buf->skb->data, packet_len);
5024	} while (0);
5025
5026	skb->protocol = eth_type_trans(skb, dev);
5027
5028	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5029		csum_verified(skb);
5030
5031	/* Update receive statistics. */
5032	dev->stats.rx_packets++;
5033	dev->stats.rx_bytes += packet_len;
5034
5035	/* Notify upper layer for received packet. */
5036	rx_status = netif_rx(skb);
5037
5038	return 0;
5039}
5040
5041static int dev_rcv_packets(struct dev_info *hw_priv)
5042{
5043	int next;
5044	union desc_stat status;
5045	struct ksz_hw *hw = &hw_priv->hw;
5046	struct net_device *dev = hw->port_info[0].pdev;
5047	struct ksz_desc_info *info = &hw->rx_desc_info;
5048	int left = info->alloc;
5049	struct ksz_desc *desc;
5050	int received = 0;
5051
5052	next = info->next;
5053	while (left--) {
5054		/* Get next descriptor which is not hardware owned. */
5055		desc = &info->ring[next];
5056		status.data = le32_to_cpu(desc->phw->ctrl.data);
5057		if (status.rx.hw_owned)
5058			break;
5059
5060		/* Status valid only when last descriptor bit is set. */
5061		if (status.rx.last_desc && status.rx.first_desc) {
5062			if (rx_proc(dev, hw, desc, status))
5063				goto release_packet;
5064			received++;
5065		}
5066
5067release_packet:
5068		release_desc(desc);
5069		next++;
5070		next &= info->mask;
5071	}
5072	info->next = next;
5073
5074	return received;
5075}
5076
5077static int port_rcv_packets(struct dev_info *hw_priv)
5078{
5079	int next;
5080	union desc_stat status;
5081	struct ksz_hw *hw = &hw_priv->hw;
5082	struct net_device *dev = hw->port_info[0].pdev;
5083	struct ksz_desc_info *info = &hw->rx_desc_info;
5084	int left = info->alloc;
5085	struct ksz_desc *desc;
5086	int received = 0;
5087
5088	next = info->next;
5089	while (left--) {
5090		/* Get next descriptor which is not hardware owned. */
5091		desc = &info->ring[next];
5092		status.data = le32_to_cpu(desc->phw->ctrl.data);
5093		if (status.rx.hw_owned)
5094			break;
5095
5096		if (hw->dev_count > 1) {
5097			/* Get received port number. */
5098			int p = HW_TO_DEV_PORT(status.rx.src_port);
5099
5100			dev = hw->port_info[p].pdev;
5101			if (!netif_running(dev))
5102				goto release_packet;
5103		}
5104
5105		/* Status valid only when last descriptor bit is set. */
5106		if (status.rx.last_desc && status.rx.first_desc) {
5107			if (rx_proc(dev, hw, desc, status))
5108				goto release_packet;
5109			received++;
5110		}
5111
5112release_packet:
5113		release_desc(desc);
5114		next++;
5115		next &= info->mask;
5116	}
5117	info->next = next;
5118
5119	return received;
5120}
5121
5122static int dev_rcv_special(struct dev_info *hw_priv)
5123{
5124	int next;
5125	union desc_stat status;
5126	struct ksz_hw *hw = &hw_priv->hw;
5127	struct net_device *dev = hw->port_info[0].pdev;
5128	struct ksz_desc_info *info = &hw->rx_desc_info;
5129	int left = info->alloc;
5130	struct ksz_desc *desc;
5131	int received = 0;
5132
5133	next = info->next;
5134	while (left--) {
5135		/* Get next descriptor which is not hardware owned. */
5136		desc = &info->ring[next];
5137		status.data = le32_to_cpu(desc->phw->ctrl.data);
5138		if (status.rx.hw_owned)
5139			break;
5140
5141		if (hw->dev_count > 1) {
5142			/* Get received port number. */
5143			int p = HW_TO_DEV_PORT(status.rx.src_port);
5144
5145			dev = hw->port_info[p].pdev;
5146			if (!netif_running(dev))
5147				goto release_packet;
5148		}
5149
5150		/* Status valid only when last descriptor bit is set. */
5151		if (status.rx.last_desc && status.rx.first_desc) {
5152			/*
5153			 * Receive without error.  With receive errors
5154			 * disabled, packets with receive errors will be
5155			 * dropped, so no need to check the error bit.
5156			 */
5157			if (!status.rx.error || (status.data &
5158					KS_DESC_RX_ERROR_COND) ==
5159					KS_DESC_RX_ERROR_TOO_LONG) {
5160				if (rx_proc(dev, hw, desc, status))
5161					goto release_packet;
5162				received++;
5163			} else {
5164				struct dev_priv *priv = netdev_priv(dev);
5165
5166				/* Update receive error statistics. */
5167				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5168			}
5169		}
5170
5171release_packet:
5172		release_desc(desc);
5173		next++;
5174		next &= info->mask;
5175	}
5176	info->next = next;
5177
5178	return received;
5179}
5180
5181static void rx_proc_task(unsigned long data)
5182{
5183	struct dev_info *hw_priv = (struct dev_info *) data;
5184	struct ksz_hw *hw = &hw_priv->hw;
5185
5186	if (!hw->enabled)
5187		return;
5188	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5189
5190		/* In case receive process is suspended because of overrun. */
5191		hw_resume_rx(hw);
5192
5193		/* tasklets are interruptible. */
5194		spin_lock_irq(&hw_priv->hwlock);
5195		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5196		spin_unlock_irq(&hw_priv->hwlock);
5197	} else {
5198		hw_ack_intr(hw, KS884X_INT_RX);
5199		tasklet_schedule(&hw_priv->rx_tasklet);
5200	}
5201}
5202
5203static void tx_proc_task(unsigned long data)
5204{
5205	struct dev_info *hw_priv = (struct dev_info *) data;
5206	struct ksz_hw *hw = &hw_priv->hw;
5207
5208	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5209
5210	tx_done(hw_priv);
5211
5212	/* tasklets are interruptible. */
5213	spin_lock_irq(&hw_priv->hwlock);
5214	hw_turn_on_intr(hw, KS884X_INT_TX);
5215	spin_unlock_irq(&hw_priv->hwlock);
5216}
5217
5218static inline void handle_rx_stop(struct ksz_hw *hw)
5219{
5220	/* Receive just has been stopped. */
5221	if (0 == hw->rx_stop)
5222		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5223	else if (hw->rx_stop > 1) {
5224		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5225			hw_start_rx(hw);
5226		} else {
5227			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5228			hw->rx_stop = 0;
5229		}
5230	} else
5231		/* Receive just has been started. */
5232		hw->rx_stop++;
5233}
5234
5235/**
5236 * netdev_intr - interrupt handling
5237 * @irq:	Interrupt number.
5238 * @dev_id:	Network device.
5239 *
5240 * This function is called by upper network layer to signal interrupt.
5241 *
5242 * Return IRQ_HANDLED if interrupt is handled.
5243 */
5244static irqreturn_t netdev_intr(int irq, void *dev_id)
5245{
5246	uint int_enable = 0;
5247	struct net_device *dev = (struct net_device *) dev_id;
5248	struct dev_priv *priv = netdev_priv(dev);
5249	struct dev_info *hw_priv = priv->adapter;
5250	struct ksz_hw *hw = &hw_priv->hw;
5251
5252	spin_lock(&hw_priv->hwlock);
5253
5254	hw_read_intr(hw, &int_enable);
5255
5256	/* Not our interrupt! */
5257	if (!int_enable) {
5258		spin_unlock(&hw_priv->hwlock);
5259		return IRQ_NONE;
5260	}
5261
5262	do {
5263		hw_ack_intr(hw, int_enable);
5264		int_enable &= hw->intr_mask;
5265
5266		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5267			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5268			tasklet_schedule(&hw_priv->tx_tasklet);
5269		}
5270
5271		if (likely(int_enable & KS884X_INT_RX)) {
5272			hw_dis_intr_bit(hw, KS884X_INT_RX);
5273			tasklet_schedule(&hw_priv->rx_tasklet);
5274		}
5275
5276		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5277			dev->stats.rx_fifo_errors++;
5278			hw_resume_rx(hw);
5279		}
5280
5281		if (unlikely(int_enable & KS884X_INT_PHY)) {
5282			struct ksz_port *port = &priv->port;
5283
5284			hw->features |= LINK_INT_WORKING;
5285			port_get_link_speed(port);
5286		}
5287
5288		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5289			handle_rx_stop(hw);
5290			break;
5291		}
5292
5293		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5294			u32 data;
5295
5296			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5297			pr_info("Tx stopped\n");
5298			data = readl(hw->io + KS_DMA_TX_CTRL);
5299			if (!(data & DMA_TX_ENABLE))
5300				pr_info("Tx disabled\n");
5301			break;
5302		}
5303	} while (0);
5304
5305	hw_ena_intr(hw);
5306
5307	spin_unlock(&hw_priv->hwlock);
5308
5309	return IRQ_HANDLED;
5310}
5311
5312/*
5313 * Linux network device functions
5314 */
5315
5316static unsigned long next_jiffies;
5317
5318#ifdef CONFIG_NET_POLL_CONTROLLER
5319static void netdev_netpoll(struct net_device *dev)
5320{
5321	struct dev_priv *priv = netdev_priv(dev);
5322	struct dev_info *hw_priv = priv->adapter;
5323
5324	hw_dis_intr(&hw_priv->hw);
5325	netdev_intr(dev->irq, dev);
5326}
5327#endif
5328
5329static void bridge_change(struct ksz_hw *hw)
5330{
5331	int port;
5332	u8  member;
5333	struct ksz_switch *sw = hw->ksz_switch;
5334
5335	/* No ports in forwarding state. */
5336	if (!sw->member) {
5337		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5338		sw_block_addr(hw);
5339	}
5340	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5341		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5342			member = HOST_MASK | sw->member;
5343		else
5344			member = HOST_MASK | (1 << port);
5345		if (member != sw->port_cfg[port].member)
5346			sw_cfg_port_base_vlan(hw, port, member);
5347	}
5348}
5349
5350/**
5351 * netdev_close - close network device
5352 * @dev:	Network device.
5353 *
5354 * This function process the close operation of network device.  This is caused
5355 * by the user command "ifconfig ethX down."
5356 *
5357 * Return 0 if successful; otherwise an error code indicating failure.
5358 */
5359static int netdev_close(struct net_device *dev)
5360{
5361	struct dev_priv *priv = netdev_priv(dev);
5362	struct dev_info *hw_priv = priv->adapter;
5363	struct ksz_port *port = &priv->port;
5364	struct ksz_hw *hw = &hw_priv->hw;
5365	int pi;
5366
5367	netif_stop_queue(dev);
5368
5369	ksz_stop_timer(&priv->monitor_timer_info);
5370
5371	/* Need to shut the port manually in multiple device interfaces mode. */
5372	if (hw->dev_count > 1) {
5373		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5374
5375		/* Port is closed.  Need to change bridge setting. */
5376		if (hw->features & STP_SUPPORT) {
5377			pi = 1 << port->first_port;
5378			if (hw->ksz_switch->member & pi) {
5379				hw->ksz_switch->member &= ~pi;
5380				bridge_change(hw);
5381			}
5382		}
5383	}
5384	if (port->first_port > 0)
5385		hw_del_addr(hw, dev->dev_addr);
5386	if (!hw_priv->wol_enable)
5387		port_set_power_saving(port, true);
5388
5389	if (priv->multicast)
5390		--hw->all_multi;
5391	if (priv->promiscuous)
5392		--hw->promiscuous;
5393
5394	hw_priv->opened--;
5395	if (!(hw_priv->opened)) {
5396		ksz_stop_timer(&hw_priv->mib_timer_info);
5397		flush_work(&hw_priv->mib_read);
5398
5399		hw_dis_intr(hw);
5400		hw_disable(hw);
5401		hw_clr_multicast(hw);
5402
5403		/* Delay for receive task to stop scheduling itself. */
5404		msleep(2000 / HZ);
5405
5406		tasklet_kill(&hw_priv->rx_tasklet);
5407		tasklet_kill(&hw_priv->tx_tasklet);
5408		free_irq(dev->irq, hw_priv->dev);
5409
5410		transmit_cleanup(hw_priv, 0);
5411		hw_reset_pkts(&hw->rx_desc_info);
5412		hw_reset_pkts(&hw->tx_desc_info);
5413
5414		/* Clean out static MAC table when the switch is shutdown. */
5415		if (hw->features & STP_SUPPORT)
5416			sw_clr_sta_mac_table(hw);
5417	}
5418
5419	return 0;
5420}
5421
5422static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5423{
5424	if (hw->ksz_switch) {
5425		u32 data;
5426
5427		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5428		if (hw->features & RX_HUGE_FRAME)
5429			data |= SWITCH_HUGE_PACKET;
5430		else
5431			data &= ~SWITCH_HUGE_PACKET;
5432		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5433	}
5434	if (hw->features & RX_HUGE_FRAME) {
5435		hw->rx_cfg |= DMA_RX_ERROR;
5436		hw_priv->dev_rcv = dev_rcv_special;
5437	} else {
5438		hw->rx_cfg &= ~DMA_RX_ERROR;
5439		if (hw->dev_count > 1)
5440			hw_priv->dev_rcv = port_rcv_packets;
5441		else
5442			hw_priv->dev_rcv = dev_rcv_packets;
5443	}
5444}
5445
5446static int prepare_hardware(struct net_device *dev)
5447{
5448	struct dev_priv *priv = netdev_priv(dev);
5449	struct dev_info *hw_priv = priv->adapter;
5450	struct ksz_hw *hw = &hw_priv->hw;
5451	int rc = 0;
5452
5453	/* Remember the network device that requests interrupts. */
5454	hw_priv->dev = dev;
5455	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5456	if (rc)
5457		return rc;
5458	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5459		     (unsigned long) hw_priv);
5460	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5461		     (unsigned long) hw_priv);
5462
5463	hw->promiscuous = 0;
5464	hw->all_multi = 0;
5465	hw->multi_list_size = 0;
5466
5467	hw_reset(hw);
5468
5469	hw_set_desc_base(hw,
5470		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5471	hw_set_addr(hw);
5472	hw_cfg_huge_frame(hw_priv, hw);
5473	ksz_init_rx_buffers(hw_priv);
5474	return 0;
5475}
5476
5477static void set_media_state(struct net_device *dev, int media_state)
5478{
5479	struct dev_priv *priv = netdev_priv(dev);
5480
5481	if (media_state == priv->media_state)
5482		netif_carrier_on(dev);
5483	else
5484		netif_carrier_off(dev);
5485	netif_info(priv, link, dev, "link %s\n",
5486		   media_state == priv->media_state ? "on" : "off");
5487}
5488
5489/**
5490 * netdev_open - open network device
5491 * @dev:	Network device.
5492 *
5493 * This function process the open operation of network device.  This is caused
5494 * by the user command "ifconfig ethX up."
5495 *
5496 * Return 0 if successful; otherwise an error code indicating failure.
5497 */
5498static int netdev_open(struct net_device *dev)
5499{
5500	struct dev_priv *priv = netdev_priv(dev);
5501	struct dev_info *hw_priv = priv->adapter;
5502	struct ksz_hw *hw = &hw_priv->hw;
5503	struct ksz_port *port = &priv->port;
5504	int i;
5505	int p;
5506	int rc = 0;
5507
5508	priv->multicast = 0;
5509	priv->promiscuous = 0;
5510
5511	/* Reset device statistics. */
5512	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5513	memset((void *) port->counter, 0,
5514		(sizeof(u64) * OID_COUNTER_LAST));
5515
5516	if (!(hw_priv->opened)) {
5517		rc = prepare_hardware(dev);
5518		if (rc)
5519			return rc;
5520		for (i = 0; i < hw->mib_port_cnt; i++) {
5521			if (next_jiffies < jiffies)
5522				next_jiffies = jiffies + HZ * 2;
5523			else
5524				next_jiffies += HZ * 1;
5525			hw_priv->counter[i].time = next_jiffies;
5526			hw->port_mib[i].state = media_disconnected;
5527			port_init_cnt(hw, i);
5528		}
5529		if (hw->ksz_switch)
5530			hw->port_mib[HOST_PORT].state = media_connected;
5531		else {
5532			hw_add_wol_bcast(hw);
5533			hw_cfg_wol_pme(hw, 0);
5534			hw_clr_wol_pme_status(&hw_priv->hw);
5535		}
5536	}
5537	port_set_power_saving(port, false);
5538
5539	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5540		/*
5541		 * Initialize to invalid value so that link detection
5542		 * is done.
5543		 */
5544		hw->port_info[p].partner = 0xFF;
5545		hw->port_info[p].state = media_disconnected;
5546	}
5547
5548	/* Need to open the port in multiple device interfaces mode. */
5549	if (hw->dev_count > 1) {
5550		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5551		if (port->first_port > 0)
5552			hw_add_addr(hw, dev->dev_addr);
5553	}
5554
5555	port_get_link_speed(port);
5556	if (port->force_link)
5557		port_force_link_speed(port);
5558	else
5559		port_set_link_speed(port);
5560
5561	if (!(hw_priv->opened)) {
5562		hw_setup_intr(hw);
5563		hw_enable(hw);
5564		hw_ena_intr(hw);
5565
5566		if (hw->mib_port_cnt)
5567			ksz_start_timer(&hw_priv->mib_timer_info,
5568				hw_priv->mib_timer_info.period);
5569	}
5570
5571	hw_priv->opened++;
5572
5573	ksz_start_timer(&priv->monitor_timer_info,
5574		priv->monitor_timer_info.period);
5575
5576	priv->media_state = port->linked->state;
5577
5578	set_media_state(dev, media_connected);
5579	netif_start_queue(dev);
5580
5581	return 0;
5582}
5583
5584/* RX errors = rx_errors */
5585/* RX dropped = rx_dropped */
5586/* RX overruns = rx_fifo_errors */
5587/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5588/* TX errors = tx_errors */
5589/* TX dropped = tx_dropped */
5590/* TX overruns = tx_fifo_errors */
5591/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5592/* collisions = collisions */
5593
5594/**
5595 * netdev_query_statistics - query network device statistics
5596 * @dev:	Network device.
5597 *
5598 * This function returns the statistics of the network device.  The device
5599 * needs not be opened.
5600 *
5601 * Return network device statistics.
5602 */
5603static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5604{
5605	struct dev_priv *priv = netdev_priv(dev);
5606	struct ksz_port *port = &priv->port;
5607	struct ksz_hw *hw = &priv->adapter->hw;
5608	struct ksz_port_mib *mib;
5609	int i;
5610	int p;
5611
5612	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5613	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5614
5615	/* Reset to zero to add count later. */
5616	dev->stats.multicast = 0;
5617	dev->stats.collisions = 0;
5618	dev->stats.rx_length_errors = 0;
5619	dev->stats.rx_crc_errors = 0;
5620	dev->stats.rx_frame_errors = 0;
5621	dev->stats.tx_window_errors = 0;
5622
5623	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5624		mib = &hw->port_mib[p];
5625
5626		dev->stats.multicast += (unsigned long)
5627			mib->counter[MIB_COUNTER_RX_MULTICAST];
5628
5629		dev->stats.collisions += (unsigned long)
5630			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5631
5632		dev->stats.rx_length_errors += (unsigned long)(
5633			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5634			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5635			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5636			mib->counter[MIB_COUNTER_RX_JABBER]);
5637		dev->stats.rx_crc_errors += (unsigned long)
5638			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5639		dev->stats.rx_frame_errors += (unsigned long)(
5640			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5641			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5642
5643		dev->stats.tx_window_errors += (unsigned long)
5644			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5645	}
5646
5647	return &dev->stats;
5648}
5649
5650/**
5651 * netdev_set_mac_address - set network device MAC address
5652 * @dev:	Network device.
5653 * @addr:	Buffer of MAC address.
5654 *
5655 * This function is used to set the MAC address of the network device.
5656 *
5657 * Return 0 to indicate success.
5658 */
5659static int netdev_set_mac_address(struct net_device *dev, void *addr)
5660{
5661	struct dev_priv *priv = netdev_priv(dev);
5662	struct dev_info *hw_priv = priv->adapter;
5663	struct ksz_hw *hw = &hw_priv->hw;
5664	struct sockaddr *mac = addr;
5665	uint interrupt;
5666
5667	if (priv->port.first_port > 0)
5668		hw_del_addr(hw, dev->dev_addr);
5669	else {
5670		hw->mac_override = 1;
5671		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5672	}
5673
5674	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5675
5676	interrupt = hw_block_intr(hw);
5677
5678	if (priv->port.first_port > 0)
5679		hw_add_addr(hw, dev->dev_addr);
5680	else
5681		hw_set_addr(hw);
5682	hw_restore_intr(hw, interrupt);
5683
5684	return 0;
5685}
5686
5687static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5688	struct ksz_hw *hw, int promiscuous)
5689{
5690	if (promiscuous != priv->promiscuous) {
5691		u8 prev_state = hw->promiscuous;
5692
5693		if (promiscuous)
5694			++hw->promiscuous;
5695		else
5696			--hw->promiscuous;
5697		priv->promiscuous = promiscuous;
5698
5699		/* Turn on/off promiscuous mode. */
5700		if (hw->promiscuous <= 1 && prev_state <= 1)
5701			hw_set_promiscuous(hw, hw->promiscuous);
5702
5703		/*
5704		 * Port is not in promiscuous mode, meaning it is released
5705		 * from the bridge.
5706		 */
5707		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5708		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5709			struct ksz_switch *sw = hw->ksz_switch;
5710			int port = priv->port.first_port;
5711
5712			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5713			port = 1 << port;
5714			if (sw->member & port) {
5715				sw->member &= ~port;
5716				bridge_change(hw);
5717			}
5718		}
5719	}
5720}
5721
5722static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5723	int multicast)
5724{
5725	if (multicast != priv->multicast) {
5726		u8 all_multi = hw->all_multi;
5727
5728		if (multicast)
5729			++hw->all_multi;
5730		else
5731			--hw->all_multi;
5732		priv->multicast = multicast;
5733
5734		/* Turn on/off all multicast mode. */
5735		if (hw->all_multi <= 1 && all_multi <= 1)
5736			hw_set_multicast(hw, hw->all_multi);
5737	}
5738}
5739
5740/**
5741 * netdev_set_rx_mode
5742 * @dev:	Network device.
5743 *
5744 * This routine is used to set multicast addresses or put the network device
5745 * into promiscuous mode.
5746 */
5747static void netdev_set_rx_mode(struct net_device *dev)
5748{
5749	struct dev_priv *priv = netdev_priv(dev);
5750	struct dev_info *hw_priv = priv->adapter;
5751	struct ksz_hw *hw = &hw_priv->hw;
5752	struct netdev_hw_addr *ha;
5753	int multicast = (dev->flags & IFF_ALLMULTI);
5754
5755	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5756
5757	if (hw_priv->hw.dev_count > 1)
5758		multicast |= (dev->flags & IFF_MULTICAST);
5759	dev_set_multicast(priv, hw, multicast);
5760
5761	/* Cannot use different hashes in multiple device interfaces mode. */
5762	if (hw_priv->hw.dev_count > 1)
5763		return;
5764
5765	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5766		int i = 0;
5767
5768		/* List too big to support so turn on all multicast mode. */
5769		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5770			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5771				hw->multi_list_size = MAX_MULTICAST_LIST;
5772				++hw->all_multi;
5773				hw_set_multicast(hw, hw->all_multi);
5774			}
5775			return;
5776		}
5777
5778		netdev_for_each_mc_addr(ha, dev) {
5779			if (i >= MAX_MULTICAST_LIST)
5780				break;
5781			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5782		}
5783		hw->multi_list_size = (u8) i;
5784		hw_set_grp_addr(hw);
5785	} else {
5786		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5787			--hw->all_multi;
5788			hw_set_multicast(hw, hw->all_multi);
5789		}
5790		hw->multi_list_size = 0;
5791		hw_clr_multicast(hw);
5792	}
5793}
5794
5795static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5796{
5797	struct dev_priv *priv = netdev_priv(dev);
5798	struct dev_info *hw_priv = priv->adapter;
5799	struct ksz_hw *hw = &hw_priv->hw;
5800	int hw_mtu;
5801
5802	if (netif_running(dev))
5803		return -EBUSY;
5804
5805	/* Cannot use different MTU in multiple device interfaces mode. */
5806	if (hw->dev_count > 1)
5807		if (dev != hw_priv->dev)
5808			return 0;
5809
5810	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5811	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5812		hw->features |= RX_HUGE_FRAME;
5813		hw_mtu = MAX_RX_BUF_SIZE;
5814	} else {
5815		hw->features &= ~RX_HUGE_FRAME;
5816		hw_mtu = REGULAR_RX_BUF_SIZE;
5817	}
5818	hw_mtu = (hw_mtu + 3) & ~3;
5819	hw_priv->mtu = hw_mtu;
5820	dev->mtu = new_mtu;
5821
5822	return 0;
5823}
5824
5825/**
5826 * netdev_ioctl - I/O control processing
5827 * @dev:	Network device.
5828 * @ifr:	Interface request structure.
5829 * @cmd:	I/O control code.
5830 *
5831 * This function is used to process I/O control calls.
5832 *
5833 * Return 0 to indicate success.
5834 */
5835static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5836{
5837	struct dev_priv *priv = netdev_priv(dev);
5838	struct dev_info *hw_priv = priv->adapter;
5839	struct ksz_hw *hw = &hw_priv->hw;
5840	struct ksz_port *port = &priv->port;
5841	int result = 0;
5842	struct mii_ioctl_data *data = if_mii(ifr);
5843
5844	if (down_interruptible(&priv->proc_sem))
5845		return -ERESTARTSYS;
5846
5847	switch (cmd) {
5848	/* Get address of MII PHY in use. */
5849	case SIOCGMIIPHY:
5850		data->phy_id = priv->id;
5851
5852		/* Fallthrough... */
5853
5854	/* Read MII PHY register. */
5855	case SIOCGMIIREG:
5856		if (data->phy_id != priv->id || data->reg_num >= 6)
5857			result = -EIO;
5858		else
5859			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5860				&data->val_out);
5861		break;
5862
5863	/* Write MII PHY register. */
5864	case SIOCSMIIREG:
5865		if (!capable(CAP_NET_ADMIN))
5866			result = -EPERM;
5867		else if (data->phy_id != priv->id || data->reg_num >= 6)
5868			result = -EIO;
5869		else
5870			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5871				data->val_in);
5872		break;
5873
5874	default:
5875		result = -EOPNOTSUPP;
5876	}
5877
5878	up(&priv->proc_sem);
5879
5880	return result;
5881}
5882
5883/*
5884 * MII support
5885 */
5886
5887/**
5888 * mdio_read - read PHY register
5889 * @dev:	Network device.
5890 * @phy_id:	The PHY id.
5891 * @reg_num:	The register number.
5892 *
5893 * This function returns the PHY register value.
5894 *
5895 * Return the register value.
5896 */
5897static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5898{
5899	struct dev_priv *priv = netdev_priv(dev);
5900	struct ksz_port *port = &priv->port;
5901	struct ksz_hw *hw = port->hw;
5902	u16 val_out;
5903
5904	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5905	return val_out;
5906}
5907
5908/**
5909 * mdio_write - set PHY register
5910 * @dev:	Network device.
5911 * @phy_id:	The PHY id.
5912 * @reg_num:	The register number.
5913 * @val:	The register value.
5914 *
5915 * This procedure sets the PHY register value.
5916 */
5917static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5918{
5919	struct dev_priv *priv = netdev_priv(dev);
5920	struct ksz_port *port = &priv->port;
5921	struct ksz_hw *hw = port->hw;
5922	int i;
5923	int pi;
5924
5925	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5926		hw_w_phy(hw, pi, reg_num << 1, val);
5927}
5928
5929/*
5930 * ethtool support
5931 */
5932
5933#define EEPROM_SIZE			0x40
5934
5935static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5936
5937#define ADVERTISED_ALL			\
5938	(ADVERTISED_10baseT_Half |	\
5939	ADVERTISED_10baseT_Full |	\
5940	ADVERTISED_100baseT_Half |	\
5941	ADVERTISED_100baseT_Full)
5942
5943/* These functions use the MII functions in mii.c. */
5944
5945/**
5946 * netdev_get_link_ksettings - get network device settings
5947 * @dev:	Network device.
5948 * @cmd:	Ethtool command.
5949 *
5950 * This function queries the PHY and returns its state in the ethtool command.
5951 *
5952 * Return 0 if successful; otherwise an error code.
5953 */
5954static int netdev_get_link_ksettings(struct net_device *dev,
5955				     struct ethtool_link_ksettings *cmd)
5956{
5957	struct dev_priv *priv = netdev_priv(dev);
5958	struct dev_info *hw_priv = priv->adapter;
5959
5960	mutex_lock(&hw_priv->lock);
5961	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5962	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5963	mutex_unlock(&hw_priv->lock);
5964
5965	/* Save advertised settings for workaround in next function. */
5966	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5967						cmd->link_modes.advertising);
5968
5969	return 0;
5970}
5971
5972/**
5973 * netdev_set_link_ksettings - set network device settings
5974 * @dev:	Network device.
5975 * @cmd:	Ethtool command.
5976 *
5977 * This function sets the PHY according to the ethtool command.
5978 *
5979 * Return 0 if successful; otherwise an error code.
5980 */
5981static int netdev_set_link_ksettings(struct net_device *dev,
5982				     const struct ethtool_link_ksettings *cmd)
5983{
5984	struct dev_priv *priv = netdev_priv(dev);
5985	struct dev_info *hw_priv = priv->adapter;
5986	struct ksz_port *port = &priv->port;
5987	struct ethtool_link_ksettings copy_cmd;
5988	u32 speed = cmd->base.speed;
5989	u32 advertising;
5990	int rc;
5991
5992	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5993						cmd->link_modes.advertising);
5994
5995	/*
5996	 * ethtool utility does not change advertised setting if auto
5997	 * negotiation is not specified explicitly.
5998	 */
5999	if (cmd->base.autoneg && priv->advertising == advertising) {
6000		advertising |= ADVERTISED_ALL;
6001		if (10 == speed)
6002			advertising &=
6003				~(ADVERTISED_100baseT_Full |
6004				ADVERTISED_100baseT_Half);
6005		else if (100 == speed)
6006			advertising &=
6007				~(ADVERTISED_10baseT_Full |
6008				ADVERTISED_10baseT_Half);
6009		if (0 == cmd->base.duplex)
6010			advertising &=
6011				~(ADVERTISED_100baseT_Full |
6012				ADVERTISED_10baseT_Full);
6013		else if (1 == cmd->base.duplex)
6014			advertising &=
6015				~(ADVERTISED_100baseT_Half |
6016				ADVERTISED_10baseT_Half);
6017	}
6018	mutex_lock(&hw_priv->lock);
6019	if (cmd->base.autoneg &&
6020	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6021		port->duplex = 0;
6022		port->speed = 0;
6023		port->force_link = 0;
6024	} else {
6025		port->duplex = cmd->base.duplex + 1;
6026		if (1000 != speed)
6027			port->speed = speed;
6028		if (cmd->base.autoneg)
6029			port->force_link = 0;
6030		else
6031			port->force_link = 1;
6032	}
6033
6034	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6035	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6036						advertising);
6037	rc = mii_ethtool_set_link_ksettings(
6038		&priv->mii_if,
6039		(const struct ethtool_link_ksettings *)&copy_cmd);
6040	mutex_unlock(&hw_priv->lock);
6041	return rc;
6042}
6043
6044/**
6045 * netdev_nway_reset - restart auto-negotiation
6046 * @dev:	Network device.
6047 *
6048 * This function restarts the PHY for auto-negotiation.
6049 *
6050 * Return 0 if successful; otherwise an error code.
6051 */
6052static int netdev_nway_reset(struct net_device *dev)
6053{
6054	struct dev_priv *priv = netdev_priv(dev);
6055	struct dev_info *hw_priv = priv->adapter;
6056	int rc;
6057
6058	mutex_lock(&hw_priv->lock);
6059	rc = mii_nway_restart(&priv->mii_if);
6060	mutex_unlock(&hw_priv->lock);
6061	return rc;
6062}
6063
6064/**
6065 * netdev_get_link - get network device link status
6066 * @dev:	Network device.
6067 *
6068 * This function gets the link status from the PHY.
6069 *
6070 * Return true if PHY is linked and false otherwise.
6071 */
6072static u32 netdev_get_link(struct net_device *dev)
6073{
6074	struct dev_priv *priv = netdev_priv(dev);
6075	int rc;
6076
6077	rc = mii_link_ok(&priv->mii_if);
6078	return rc;
6079}
6080
6081/**
6082 * netdev_get_drvinfo - get network driver information
6083 * @dev:	Network device.
6084 * @info:	Ethtool driver info data structure.
6085 *
6086 * This procedure returns the driver information.
6087 */
6088static void netdev_get_drvinfo(struct net_device *dev,
6089	struct ethtool_drvinfo *info)
6090{
6091	struct dev_priv *priv = netdev_priv(dev);
6092	struct dev_info *hw_priv = priv->adapter;
6093
6094	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6095	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6096	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6097		sizeof(info->bus_info));
6098}
6099
6100/**
6101 * netdev_get_regs_len - get length of register dump
6102 * @dev:	Network device.
6103 *
6104 * This function returns the length of the register dump.
6105 *
6106 * Return length of the register dump.
6107 */
6108static struct hw_regs {
6109	int start;
6110	int end;
6111} hw_regs_range[] = {
6112	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6113	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6114	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6115	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6116	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6117	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6118	{ 0, 0 }
6119};
6120
 
 
 
 
 
 
 
 
6121static int netdev_get_regs_len(struct net_device *dev)
6122{
6123	struct hw_regs *range = hw_regs_range;
6124	int regs_len = 0x10 * sizeof(u32);
6125
6126	while (range->end > range->start) {
6127		regs_len += (range->end - range->start + 3) / 4 * 4;
6128		range++;
6129	}
6130	return regs_len;
6131}
6132
6133/**
6134 * netdev_get_regs - get register dump
6135 * @dev:	Network device.
6136 * @regs:	Ethtool registers data structure.
6137 * @ptr:	Buffer to store the register values.
6138 *
6139 * This procedure dumps the register values in the provided buffer.
6140 */
6141static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6142	void *ptr)
6143{
6144	struct dev_priv *priv = netdev_priv(dev);
6145	struct dev_info *hw_priv = priv->adapter;
6146	struct ksz_hw *hw = &hw_priv->hw;
6147	int *buf = (int *) ptr;
6148	struct hw_regs *range = hw_regs_range;
6149	int len;
6150
6151	mutex_lock(&hw_priv->lock);
6152	regs->version = 0;
6153	for (len = 0; len < 0x40; len += 4) {
6154		pci_read_config_dword(hw_priv->pdev, len, buf);
6155		buf++;
6156	}
6157	while (range->end > range->start) {
6158		for (len = range->start; len < range->end; len += 4) {
6159			*buf = readl(hw->io + len);
6160			buf++;
6161		}
6162		range++;
6163	}
6164	mutex_unlock(&hw_priv->lock);
6165}
6166
6167#define WOL_SUPPORT			\
6168	(WAKE_PHY | WAKE_MAGIC |	\
6169	WAKE_UCAST | WAKE_MCAST |	\
6170	WAKE_BCAST | WAKE_ARP)
6171
6172/**
6173 * netdev_get_wol - get Wake-on-LAN support
6174 * @dev:	Network device.
6175 * @wol:	Ethtool Wake-on-LAN data structure.
6176 *
6177 * This procedure returns Wake-on-LAN support.
6178 */
6179static void netdev_get_wol(struct net_device *dev,
6180	struct ethtool_wolinfo *wol)
6181{
6182	struct dev_priv *priv = netdev_priv(dev);
6183	struct dev_info *hw_priv = priv->adapter;
6184
6185	wol->supported = hw_priv->wol_support;
6186	wol->wolopts = hw_priv->wol_enable;
6187	memset(&wol->sopass, 0, sizeof(wol->sopass));
6188}
6189
6190/**
6191 * netdev_set_wol - set Wake-on-LAN support
6192 * @dev:	Network device.
6193 * @wol:	Ethtool Wake-on-LAN data structure.
6194 *
6195 * This function sets Wake-on-LAN support.
6196 *
6197 * Return 0 if successful; otherwise an error code.
6198 */
6199static int netdev_set_wol(struct net_device *dev,
6200	struct ethtool_wolinfo *wol)
6201{
6202	struct dev_priv *priv = netdev_priv(dev);
6203	struct dev_info *hw_priv = priv->adapter;
6204
6205	/* Need to find a way to retrieve the device IP address. */
6206	static const u8 net_addr[] = { 192, 168, 1, 1 };
6207
6208	if (wol->wolopts & ~hw_priv->wol_support)
6209		return -EINVAL;
6210
6211	hw_priv->wol_enable = wol->wolopts;
6212
6213	/* Link wakeup cannot really be disabled. */
6214	if (wol->wolopts)
6215		hw_priv->wol_enable |= WAKE_PHY;
6216	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6217	return 0;
6218}
6219
6220/**
6221 * netdev_get_msglevel - get debug message level
6222 * @dev:	Network device.
6223 *
6224 * This function returns current debug message level.
6225 *
6226 * Return current debug message flags.
6227 */
6228static u32 netdev_get_msglevel(struct net_device *dev)
6229{
6230	struct dev_priv *priv = netdev_priv(dev);
6231
6232	return priv->msg_enable;
6233}
6234
6235/**
6236 * netdev_set_msglevel - set debug message level
6237 * @dev:	Network device.
6238 * @value:	Debug message flags.
6239 *
6240 * This procedure sets debug message level.
6241 */
6242static void netdev_set_msglevel(struct net_device *dev, u32 value)
6243{
6244	struct dev_priv *priv = netdev_priv(dev);
6245
6246	priv->msg_enable = value;
6247}
6248
6249/**
6250 * netdev_get_eeprom_len - get EEPROM length
6251 * @dev:	Network device.
6252 *
6253 * This function returns the length of the EEPROM.
6254 *
6255 * Return length of the EEPROM.
6256 */
6257static int netdev_get_eeprom_len(struct net_device *dev)
6258{
6259	return EEPROM_SIZE * 2;
6260}
6261
 
 
6262/**
6263 * netdev_get_eeprom - get EEPROM data
6264 * @dev:	Network device.
6265 * @eeprom:	Ethtool EEPROM data structure.
6266 * @data:	Buffer to store the EEPROM data.
6267 *
6268 * This function dumps the EEPROM data in the provided buffer.
6269 *
6270 * Return 0 if successful; otherwise an error code.
6271 */
6272#define EEPROM_MAGIC			0x10A18842
6273
6274static int netdev_get_eeprom(struct net_device *dev,
6275	struct ethtool_eeprom *eeprom, u8 *data)
6276{
6277	struct dev_priv *priv = netdev_priv(dev);
6278	struct dev_info *hw_priv = priv->adapter;
6279	u8 *eeprom_byte = (u8 *) eeprom_data;
6280	int i;
6281	int len;
6282
6283	len = (eeprom->offset + eeprom->len + 1) / 2;
6284	for (i = eeprom->offset / 2; i < len; i++)
6285		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6286	eeprom->magic = EEPROM_MAGIC;
6287	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6288
6289	return 0;
6290}
6291
6292/**
6293 * netdev_set_eeprom - write EEPROM data
6294 * @dev:	Network device.
6295 * @eeprom:	Ethtool EEPROM data structure.
6296 * @data:	Data buffer.
6297 *
6298 * This function modifies the EEPROM data one byte at a time.
6299 *
6300 * Return 0 if successful; otherwise an error code.
6301 */
6302static int netdev_set_eeprom(struct net_device *dev,
6303	struct ethtool_eeprom *eeprom, u8 *data)
6304{
6305	struct dev_priv *priv = netdev_priv(dev);
6306	struct dev_info *hw_priv = priv->adapter;
6307	u16 eeprom_word[EEPROM_SIZE];
6308	u8 *eeprom_byte = (u8 *) eeprom_word;
6309	int i;
6310	int len;
6311
6312	if (eeprom->magic != EEPROM_MAGIC)
6313		return -EINVAL;
6314
6315	len = (eeprom->offset + eeprom->len + 1) / 2;
6316	for (i = eeprom->offset / 2; i < len; i++)
6317		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6318	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6319	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6320	for (i = 0; i < EEPROM_SIZE; i++)
6321		if (eeprom_word[i] != eeprom_data[i]) {
6322			eeprom_data[i] = eeprom_word[i];
6323			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6324	}
6325
6326	return 0;
6327}
6328
6329/**
6330 * netdev_get_pauseparam - get flow control parameters
6331 * @dev:	Network device.
6332 * @pause:	Ethtool PAUSE settings data structure.
6333 *
6334 * This procedure returns the PAUSE control flow settings.
6335 */
6336static void netdev_get_pauseparam(struct net_device *dev,
6337	struct ethtool_pauseparam *pause)
6338{
6339	struct dev_priv *priv = netdev_priv(dev);
6340	struct dev_info *hw_priv = priv->adapter;
6341	struct ksz_hw *hw = &hw_priv->hw;
6342
6343	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6344	if (!hw->ksz_switch) {
6345		pause->rx_pause =
6346			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6347		pause->tx_pause =
6348			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6349	} else {
6350		pause->rx_pause =
6351			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6353		pause->tx_pause =
6354			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6355				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6356	}
6357}
6358
6359/**
6360 * netdev_set_pauseparam - set flow control parameters
6361 * @dev:	Network device.
6362 * @pause:	Ethtool PAUSE settings data structure.
6363 *
6364 * This function sets the PAUSE control flow settings.
6365 * Not implemented yet.
6366 *
6367 * Return 0 if successful; otherwise an error code.
6368 */
6369static int netdev_set_pauseparam(struct net_device *dev,
6370	struct ethtool_pauseparam *pause)
6371{
6372	struct dev_priv *priv = netdev_priv(dev);
6373	struct dev_info *hw_priv = priv->adapter;
6374	struct ksz_hw *hw = &hw_priv->hw;
6375	struct ksz_port *port = &priv->port;
6376
6377	mutex_lock(&hw_priv->lock);
6378	if (pause->autoneg) {
6379		if (!pause->rx_pause && !pause->tx_pause)
6380			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6381		else
6382			port->flow_ctrl = PHY_FLOW_CTRL;
6383		hw->overrides &= ~PAUSE_FLOW_CTRL;
6384		port->force_link = 0;
6385		if (hw->ksz_switch) {
6386			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387				SWITCH_RX_FLOW_CTRL, 1);
6388			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389				SWITCH_TX_FLOW_CTRL, 1);
6390		}
6391		port_set_link_speed(port);
6392	} else {
6393		hw->overrides |= PAUSE_FLOW_CTRL;
6394		if (hw->ksz_switch) {
6395			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6397			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6399		} else
6400			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6401	}
6402	mutex_unlock(&hw_priv->lock);
6403
6404	return 0;
6405}
6406
6407/**
6408 * netdev_get_ringparam - get tx/rx ring parameters
6409 * @dev:	Network device.
6410 * @pause:	Ethtool RING settings data structure.
6411 *
6412 * This procedure returns the TX/RX ring settings.
6413 */
6414static void netdev_get_ringparam(struct net_device *dev,
6415	struct ethtool_ringparam *ring)
6416{
6417	struct dev_priv *priv = netdev_priv(dev);
6418	struct dev_info *hw_priv = priv->adapter;
6419	struct ksz_hw *hw = &hw_priv->hw;
6420
6421	ring->tx_max_pending = (1 << 9);
6422	ring->tx_pending = hw->tx_desc_info.alloc;
6423	ring->rx_max_pending = (1 << 9);
6424	ring->rx_pending = hw->rx_desc_info.alloc;
6425}
6426
6427#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6428
6429static struct {
6430	char string[ETH_GSTRING_LEN];
6431} ethtool_stats_keys[STATS_LEN] = {
6432	{ "rx_lo_priority_octets" },
6433	{ "rx_hi_priority_octets" },
6434	{ "rx_undersize_packets" },
6435	{ "rx_fragments" },
6436	{ "rx_oversize_packets" },
6437	{ "rx_jabbers" },
6438	{ "rx_symbol_errors" },
6439	{ "rx_crc_errors" },
6440	{ "rx_align_errors" },
6441	{ "rx_mac_ctrl_packets" },
6442	{ "rx_pause_packets" },
6443	{ "rx_bcast_packets" },
6444	{ "rx_mcast_packets" },
6445	{ "rx_ucast_packets" },
6446	{ "rx_64_or_less_octet_packets" },
6447	{ "rx_65_to_127_octet_packets" },
6448	{ "rx_128_to_255_octet_packets" },
6449	{ "rx_256_to_511_octet_packets" },
6450	{ "rx_512_to_1023_octet_packets" },
6451	{ "rx_1024_to_1522_octet_packets" },
6452
6453	{ "tx_lo_priority_octets" },
6454	{ "tx_hi_priority_octets" },
6455	{ "tx_late_collisions" },
6456	{ "tx_pause_packets" },
6457	{ "tx_bcast_packets" },
6458	{ "tx_mcast_packets" },
6459	{ "tx_ucast_packets" },
6460	{ "tx_deferred" },
6461	{ "tx_total_collisions" },
6462	{ "tx_excessive_collisions" },
6463	{ "tx_single_collisions" },
6464	{ "tx_mult_collisions" },
6465
6466	{ "rx_discards" },
6467	{ "tx_discards" },
6468};
6469
6470/**
6471 * netdev_get_strings - get statistics identity strings
6472 * @dev:	Network device.
6473 * @stringset:	String set identifier.
6474 * @buf:	Buffer to store the strings.
6475 *
6476 * This procedure returns the strings used to identify the statistics.
6477 */
6478static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6479{
6480	struct dev_priv *priv = netdev_priv(dev);
6481	struct dev_info *hw_priv = priv->adapter;
6482	struct ksz_hw *hw = &hw_priv->hw;
6483
6484	if (ETH_SS_STATS == stringset)
6485		memcpy(buf, &ethtool_stats_keys,
6486			ETH_GSTRING_LEN * hw->mib_cnt);
6487}
6488
6489/**
6490 * netdev_get_sset_count - get statistics size
6491 * @dev:	Network device.
6492 * @sset:	The statistics set number.
6493 *
6494 * This function returns the size of the statistics to be reported.
6495 *
6496 * Return size of the statistics to be reported.
6497 */
6498static int netdev_get_sset_count(struct net_device *dev, int sset)
6499{
6500	struct dev_priv *priv = netdev_priv(dev);
6501	struct dev_info *hw_priv = priv->adapter;
6502	struct ksz_hw *hw = &hw_priv->hw;
6503
6504	switch (sset) {
6505	case ETH_SS_STATS:
6506		return hw->mib_cnt;
6507	default:
6508		return -EOPNOTSUPP;
6509	}
6510}
6511
6512/**
6513 * netdev_get_ethtool_stats - get network device statistics
6514 * @dev:	Network device.
6515 * @stats:	Ethtool statistics data structure.
6516 * @data:	Buffer to store the statistics.
6517 *
6518 * This procedure returns the statistics.
6519 */
6520static void netdev_get_ethtool_stats(struct net_device *dev,
6521	struct ethtool_stats *stats, u64 *data)
6522{
6523	struct dev_priv *priv = netdev_priv(dev);
6524	struct dev_info *hw_priv = priv->adapter;
6525	struct ksz_hw *hw = &hw_priv->hw;
6526	struct ksz_port *port = &priv->port;
6527	int n_stats = stats->n_stats;
6528	int i;
6529	int n;
6530	int p;
6531	int rc;
6532	u64 counter[TOTAL_PORT_COUNTER_NUM];
6533
6534	mutex_lock(&hw_priv->lock);
6535	n = SWITCH_PORT_NUM;
6536	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6537		if (media_connected == hw->port_mib[p].state) {
6538			hw_priv->counter[p].read = 1;
6539
6540			/* Remember first port that requests read. */
6541			if (n == SWITCH_PORT_NUM)
6542				n = p;
6543		}
6544	}
6545	mutex_unlock(&hw_priv->lock);
6546
6547	if (n < SWITCH_PORT_NUM)
6548		schedule_work(&hw_priv->mib_read);
6549
6550	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6551		p = n;
6552		rc = wait_event_interruptible_timeout(
6553			hw_priv->counter[p].counter,
6554			2 == hw_priv->counter[p].read,
6555			HZ * 1);
6556	} else
6557		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6558			if (0 == i) {
6559				rc = wait_event_interruptible_timeout(
6560					hw_priv->counter[p].counter,
6561					2 == hw_priv->counter[p].read,
6562					HZ * 2);
6563			} else if (hw->port_mib[p].cnt_ptr) {
6564				rc = wait_event_interruptible_timeout(
6565					hw_priv->counter[p].counter,
6566					2 == hw_priv->counter[p].read,
6567					HZ * 1);
6568			}
6569		}
6570
6571	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6572	n = hw->mib_cnt;
6573	if (n > n_stats)
6574		n = n_stats;
6575	n_stats -= n;
6576	for (i = 0; i < n; i++)
6577		*data++ = counter[i];
6578}
6579
6580/**
6581 * netdev_set_features - set receive checksum support
6582 * @dev:	Network device.
6583 * @features:	New device features (offloads).
6584 *
6585 * This function sets receive checksum support setting.
6586 *
6587 * Return 0 if successful; otherwise an error code.
6588 */
6589static int netdev_set_features(struct net_device *dev,
6590	netdev_features_t features)
6591{
6592	struct dev_priv *priv = netdev_priv(dev);
6593	struct dev_info *hw_priv = priv->adapter;
6594	struct ksz_hw *hw = &hw_priv->hw;
6595
6596	mutex_lock(&hw_priv->lock);
6597
6598	/* see note in hw_setup() */
6599	if (features & NETIF_F_RXCSUM)
6600		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601	else
6602		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603
6604	if (hw->enabled)
6605		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606
6607	mutex_unlock(&hw_priv->lock);
6608
6609	return 0;
6610}
6611
6612static const struct ethtool_ops netdev_ethtool_ops = {
6613	.nway_reset		= netdev_nway_reset,
6614	.get_link		= netdev_get_link,
6615	.get_drvinfo		= netdev_get_drvinfo,
6616	.get_regs_len		= netdev_get_regs_len,
6617	.get_regs		= netdev_get_regs,
6618	.get_wol		= netdev_get_wol,
6619	.set_wol		= netdev_set_wol,
6620	.get_msglevel		= netdev_get_msglevel,
6621	.set_msglevel		= netdev_set_msglevel,
6622	.get_eeprom_len		= netdev_get_eeprom_len,
6623	.get_eeprom		= netdev_get_eeprom,
6624	.set_eeprom		= netdev_set_eeprom,
6625	.get_pauseparam		= netdev_get_pauseparam,
6626	.set_pauseparam		= netdev_set_pauseparam,
6627	.get_ringparam		= netdev_get_ringparam,
6628	.get_strings		= netdev_get_strings,
6629	.get_sset_count		= netdev_get_sset_count,
6630	.get_ethtool_stats	= netdev_get_ethtool_stats,
6631	.get_link_ksettings	= netdev_get_link_ksettings,
6632	.set_link_ksettings	= netdev_set_link_ksettings,
6633};
6634
6635/*
6636 * Hardware monitoring
6637 */
6638
6639static void update_link(struct net_device *dev, struct dev_priv *priv,
6640	struct ksz_port *port)
6641{
6642	if (priv->media_state != port->linked->state) {
6643		priv->media_state = port->linked->state;
6644		if (netif_running(dev))
6645			set_media_state(dev, media_connected);
6646	}
6647}
6648
6649static void mib_read_work(struct work_struct *work)
6650{
6651	struct dev_info *hw_priv =
6652		container_of(work, struct dev_info, mib_read);
6653	struct ksz_hw *hw = &hw_priv->hw;
6654	struct ksz_port_mib *mib;
6655	int i;
6656
6657	next_jiffies = jiffies;
6658	for (i = 0; i < hw->mib_port_cnt; i++) {
6659		mib = &hw->port_mib[i];
6660
6661		/* Reading MIB counters or requested to read. */
6662		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663
6664			/* Need to process receive interrupt. */
6665			if (port_r_cnt(hw, i))
6666				break;
6667			hw_priv->counter[i].read = 0;
6668
6669			/* Finish reading counters. */
6670			if (0 == mib->cnt_ptr) {
6671				hw_priv->counter[i].read = 2;
6672				wake_up_interruptible(
6673					&hw_priv->counter[i].counter);
6674			}
6675		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6676			/* Only read MIB counters when the port is connected. */
6677			if (media_connected == mib->state)
6678				hw_priv->counter[i].read = 1;
6679			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680			hw_priv->counter[i].time = next_jiffies;
6681
6682		/* Port is just disconnected. */
6683		} else if (mib->link_down) {
6684			mib->link_down = 0;
6685
6686			/* Read counters one last time after link is lost. */
6687			hw_priv->counter[i].read = 1;
6688		}
6689	}
6690}
6691
6692static void mib_monitor(struct timer_list *t)
6693{
6694	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6695
6696	mib_read_work(&hw_priv->mib_read);
6697
6698	/* This is used to verify Wake-on-LAN is working. */
6699	if (hw_priv->pme_wait) {
6700		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6701			hw_clr_wol_pme_status(&hw_priv->hw);
6702			hw_priv->pme_wait = 0;
6703		}
6704	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705
6706		/* PME is asserted.  Wait 2 seconds to clear it. */
6707		hw_priv->pme_wait = jiffies + HZ * 2;
6708	}
6709
6710	ksz_update_timer(&hw_priv->mib_timer_info);
6711}
6712
6713/**
6714 * dev_monitor - periodic monitoring
6715 * @ptr:	Network device pointer.
6716 *
6717 * This routine is run in a kernel timer to monitor the network device.
6718 */
6719static void dev_monitor(struct timer_list *t)
6720{
6721	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6722	struct net_device *dev = priv->mii_if.dev;
6723	struct dev_info *hw_priv = priv->adapter;
6724	struct ksz_hw *hw = &hw_priv->hw;
6725	struct ksz_port *port = &priv->port;
6726
6727	if (!(hw->features & LINK_INT_WORKING))
6728		port_get_link_speed(port);
6729	update_link(dev, priv, port);
6730
6731	ksz_update_timer(&priv->monitor_timer_info);
6732}
6733
6734/*
6735 * Linux network device interface functions
6736 */
6737
6738/* Driver exported variables */
6739
6740static int msg_enable;
6741
6742static char *macaddr = ":";
6743static char *mac1addr = ":";
6744
6745/*
6746 * This enables multiple network device mode for KSZ8842, which contains a
6747 * switch with two physical ports.  Some users like to take control of the
6748 * ports for running Spanning Tree Protocol.  The driver will create an
6749 * additional eth? device for the other port.
6750 *
6751 * Some limitations are the network devices cannot have different MTU and
6752 * multicast hash tables.
6753 */
6754static int multi_dev;
6755
6756/*
6757 * As most users select multiple network device mode to use Spanning Tree
6758 * Protocol, this enables a feature in which most unicast and multicast packets
6759 * are forwarded inside the switch and not passed to the host.  Only packets
6760 * that need the host's attention are passed to it.  This prevents the host
6761 * wasting CPU time to examine each and every incoming packets and do the
6762 * forwarding itself.
6763 *
6764 * As the hack requires the private bridge header, the driver cannot compile
6765 * with just the kernel headers.
6766 *
6767 * Enabling STP support also turns on multiple network device mode.
6768 */
6769static int stp;
6770
6771/*
6772 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6773 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6774 * STP support is enabled.
6775 */
6776static int fast_aging;
6777
6778/**
6779 * netdev_init - initialize network device.
6780 * @dev:	Network device.
6781 *
6782 * This function initializes the network device.
6783 *
6784 * Return 0 if successful; otherwise an error code indicating failure.
6785 */
6786static int __init netdev_init(struct net_device *dev)
6787{
6788	struct dev_priv *priv = netdev_priv(dev);
6789
6790	/* 500 ms timeout */
6791	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792		dev_monitor);
6793
6794	/* 500 ms timeout */
6795	dev->watchdog_timeo = HZ / 2;
6796
6797	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798
6799	/*
6800	 * Hardware does not really support IPv6 checksum generation, but
6801	 * driver actually runs faster with this on.
6802	 */
6803	dev->hw_features |= NETIF_F_IPV6_CSUM;
6804
6805	dev->features |= dev->hw_features;
6806
6807	sema_init(&priv->proc_sem, 1);
6808
6809	priv->mii_if.phy_id_mask = 0x1;
6810	priv->mii_if.reg_num_mask = 0x7;
6811	priv->mii_if.dev = dev;
6812	priv->mii_if.mdio_read = mdio_read;
6813	priv->mii_if.mdio_write = mdio_write;
6814	priv->mii_if.phy_id = priv->port.first_port + 1;
6815
6816	priv->msg_enable = netif_msg_init(msg_enable,
6817		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818
6819	return 0;
6820}
6821
6822static const struct net_device_ops netdev_ops = {
6823	.ndo_init		= netdev_init,
6824	.ndo_open		= netdev_open,
6825	.ndo_stop		= netdev_close,
6826	.ndo_get_stats		= netdev_query_statistics,
6827	.ndo_start_xmit		= netdev_tx,
6828	.ndo_tx_timeout		= netdev_tx_timeout,
6829	.ndo_change_mtu		= netdev_change_mtu,
6830	.ndo_set_features	= netdev_set_features,
6831	.ndo_set_mac_address	= netdev_set_mac_address,
6832	.ndo_validate_addr	= eth_validate_addr,
6833	.ndo_do_ioctl		= netdev_ioctl,
6834	.ndo_set_rx_mode	= netdev_set_rx_mode,
6835#ifdef CONFIG_NET_POLL_CONTROLLER
6836	.ndo_poll_controller	= netdev_netpoll,
6837#endif
6838};
6839
6840static void netdev_free(struct net_device *dev)
6841{
6842	if (dev->watchdog_timeo)
6843		unregister_netdev(dev);
6844
6845	free_netdev(dev);
6846}
6847
6848struct platform_info {
6849	struct dev_info dev_info;
6850	struct net_device *netdev[SWITCH_PORT_NUM];
6851};
6852
6853static int net_device_present;
6854
6855static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856{
6857	int i;
6858	int j;
6859	int got_num;
6860	int num;
6861
6862	i = j = num = got_num = 0;
6863	while (j < ETH_ALEN) {
6864		if (macaddr[i]) {
6865			int digit;
6866
6867			got_num = 1;
6868			digit = hex_to_bin(macaddr[i]);
6869			if (digit >= 0)
6870				num = num * 16 + digit;
6871			else if (':' == macaddr[i])
6872				got_num = 2;
6873			else
6874				break;
6875		} else if (got_num)
6876			got_num = 2;
6877		else
6878			break;
6879		if (2 == got_num) {
6880			if (MAIN_PORT == port) {
6881				hw_priv->hw.override_addr[j++] = (u8) num;
6882				hw_priv->hw.override_addr[5] +=
6883					hw_priv->hw.id;
6884			} else {
6885				hw_priv->hw.ksz_switch->other_addr[j++] =
6886					(u8) num;
6887				hw_priv->hw.ksz_switch->other_addr[5] +=
6888					hw_priv->hw.id;
6889			}
6890			num = got_num = 0;
6891		}
6892		i++;
6893	}
6894	if (ETH_ALEN == j) {
6895		if (MAIN_PORT == port)
6896			hw_priv->hw.mac_override = 1;
6897	}
6898}
6899
6900#define KS884X_DMA_MASK			(~0x0UL)
6901
6902static void read_other_addr(struct ksz_hw *hw)
6903{
6904	int i;
6905	u16 data[3];
6906	struct ksz_switch *sw = hw->ksz_switch;
6907
6908	for (i = 0; i < 3; i++)
6909		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911		sw->other_addr[5] = (u8) data[0];
6912		sw->other_addr[4] = (u8)(data[0] >> 8);
6913		sw->other_addr[3] = (u8) data[1];
6914		sw->other_addr[2] = (u8)(data[1] >> 8);
6915		sw->other_addr[1] = (u8) data[2];
6916		sw->other_addr[0] = (u8)(data[2] >> 8);
6917	}
6918}
6919
6920#ifndef PCI_VENDOR_ID_MICREL_KS
6921#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6922#endif
6923
6924static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6925{
6926	struct net_device *dev;
6927	struct dev_priv *priv;
6928	struct dev_info *hw_priv;
6929	struct ksz_hw *hw;
6930	struct platform_info *info;
6931	struct ksz_port *port;
6932	unsigned long reg_base;
6933	unsigned long reg_len;
6934	int cnt;
6935	int i;
6936	int mib_port_count;
6937	int pi;
6938	int port_count;
6939	int result;
6940	char banner[sizeof(version)];
6941	struct ksz_switch *sw = NULL;
6942
6943	result = pci_enable_device(pdev);
6944	if (result)
6945		return result;
6946
6947	result = -ENODEV;
6948
6949	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6950			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6951		return result;
6952
6953	reg_base = pci_resource_start(pdev, 0);
6954	reg_len = pci_resource_len(pdev, 0);
6955	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6956		return result;
6957
6958	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6959		return result;
6960	pci_set_master(pdev);
6961
6962	result = -ENOMEM;
6963
6964	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6965	if (!info)
6966		goto pcidev_init_dev_err;
6967
6968	hw_priv = &info->dev_info;
6969	hw_priv->pdev = pdev;
6970
6971	hw = &hw_priv->hw;
6972
6973	hw->io = ioremap(reg_base, reg_len);
6974	if (!hw->io)
6975		goto pcidev_init_io_err;
6976
6977	cnt = hw_init(hw);
6978	if (!cnt) {
6979		if (msg_enable & NETIF_MSG_PROBE)
6980			pr_alert("chip not detected\n");
6981		result = -ENODEV;
6982		goto pcidev_init_alloc_err;
6983	}
6984
6985	snprintf(banner, sizeof(banner), "%s", version);
6986	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6987	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6988	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6989
6990	/* Assume device is KSZ8841. */
6991	hw->dev_count = 1;
6992	port_count = 1;
6993	mib_port_count = 1;
6994	hw->addr_list_size = 0;
6995	hw->mib_cnt = PORT_COUNTER_NUM;
6996	hw->mib_port_cnt = 1;
6997
6998	/* KSZ8842 has a switch with multiple ports. */
6999	if (2 == cnt) {
7000		if (fast_aging)
7001			hw->overrides |= FAST_AGING;
7002
7003		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7004
7005		/* Multiple network device interfaces are required. */
7006		if (multi_dev) {
7007			hw->dev_count = SWITCH_PORT_NUM;
7008			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7009		}
7010
7011		/* Single network device has multiple ports. */
7012		if (1 == hw->dev_count) {
7013			port_count = SWITCH_PORT_NUM;
7014			mib_port_count = SWITCH_PORT_NUM;
7015		}
7016		hw->mib_port_cnt = TOTAL_PORT_NUM;
7017		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7018		if (!hw->ksz_switch)
7019			goto pcidev_init_alloc_err;
7020
7021		sw = hw->ksz_switch;
7022	}
7023	for (i = 0; i < hw->mib_port_cnt; i++)
7024		hw->port_mib[i].mib_start = 0;
7025
7026	hw->parent = hw_priv;
7027
7028	/* Default MTU is 1500. */
7029	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7030
7031	if (ksz_alloc_mem(hw_priv))
7032		goto pcidev_init_mem_err;
7033
7034	hw_priv->hw.id = net_device_present;
7035
7036	spin_lock_init(&hw_priv->hwlock);
7037	mutex_init(&hw_priv->lock);
7038
7039	for (i = 0; i < TOTAL_PORT_NUM; i++)
7040		init_waitqueue_head(&hw_priv->counter[i].counter);
7041
7042	if (macaddr[0] != ':')
7043		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7044
7045	/* Read MAC address and initialize override address if not overridden. */
7046	hw_read_addr(hw);
7047
7048	/* Multiple device interfaces mode requires a second MAC address. */
7049	if (hw->dev_count > 1) {
7050		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7051		read_other_addr(hw);
7052		if (mac1addr[0] != ':')
7053			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7054	}
7055
7056	hw_setup(hw);
7057	if (hw->ksz_switch)
7058		sw_setup(hw);
7059	else {
7060		hw_priv->wol_support = WOL_SUPPORT;
7061		hw_priv->wol_enable = 0;
7062	}
7063
7064	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7065
7066	/* 500 ms timeout */
7067	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7068		mib_monitor);
7069
7070	for (i = 0; i < hw->dev_count; i++) {
7071		dev = alloc_etherdev(sizeof(struct dev_priv));
7072		if (!dev)
7073			goto pcidev_init_reg_err;
7074		SET_NETDEV_DEV(dev, &pdev->dev);
7075		info->netdev[i] = dev;
7076
7077		priv = netdev_priv(dev);
7078		priv->adapter = hw_priv;
7079		priv->id = net_device_present++;
7080
7081		port = &priv->port;
7082		port->port_cnt = port_count;
7083		port->mib_port_cnt = mib_port_count;
7084		port->first_port = i;
7085		port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087		port->hw = hw;
7088		port->linked = &hw->port_info[port->first_port];
7089
7090		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091			hw->port_info[pi].port_id = pi;
7092			hw->port_info[pi].pdev = dev;
7093			hw->port_info[pi].state = media_disconnected;
7094		}
7095
7096		dev->mem_start = (unsigned long) hw->io;
7097		dev->mem_end = dev->mem_start + reg_len - 1;
7098		dev->irq = pdev->irq;
7099		if (MAIN_PORT == i)
7100			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101			       ETH_ALEN);
7102		else {
7103			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7104			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7105				dev->dev_addr[5] += port->first_port;
7106		}
7107
7108		dev->netdev_ops = &netdev_ops;
7109		dev->ethtool_ops = &netdev_ethtool_ops;
7110
7111		/* MTU range: 60 - 1894 */
7112		dev->min_mtu = ETH_ZLEN;
7113		dev->max_mtu = MAX_RX_BUF_SIZE -
7114			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7115
7116		if (register_netdev(dev))
7117			goto pcidev_init_reg_err;
7118		port_set_power_saving(port, true);
7119	}
7120
7121	pci_dev_get(hw_priv->pdev);
7122	pci_set_drvdata(pdev, info);
7123	return 0;
7124
7125pcidev_init_reg_err:
7126	for (i = 0; i < hw->dev_count; i++) {
7127		if (info->netdev[i]) {
7128			netdev_free(info->netdev[i]);
7129			info->netdev[i] = NULL;
7130		}
7131	}
7132
7133pcidev_init_mem_err:
7134	ksz_free_mem(hw_priv);
7135	kfree(hw->ksz_switch);
7136
7137pcidev_init_alloc_err:
7138	iounmap(hw->io);
7139
7140pcidev_init_io_err:
7141	kfree(info);
7142
7143pcidev_init_dev_err:
7144	release_mem_region(reg_base, reg_len);
7145
7146	return result;
7147}
7148
7149static void pcidev_exit(struct pci_dev *pdev)
7150{
7151	int i;
7152	struct platform_info *info = pci_get_drvdata(pdev);
7153	struct dev_info *hw_priv = &info->dev_info;
7154
7155	release_mem_region(pci_resource_start(pdev, 0),
7156		pci_resource_len(pdev, 0));
7157	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7158		if (info->netdev[i])
7159			netdev_free(info->netdev[i]);
7160	}
7161	if (hw_priv->hw.io)
7162		iounmap(hw_priv->hw.io);
7163	ksz_free_mem(hw_priv);
7164	kfree(hw_priv->hw.ksz_switch);
7165	pci_dev_put(hw_priv->pdev);
7166	kfree(info);
7167}
7168
7169#ifdef CONFIG_PM
7170static int pcidev_resume(struct pci_dev *pdev)
7171{
7172	int i;
7173	struct platform_info *info = pci_get_drvdata(pdev);
7174	struct dev_info *hw_priv = &info->dev_info;
7175	struct ksz_hw *hw = &hw_priv->hw;
7176
7177	pci_set_power_state(pdev, PCI_D0);
7178	pci_restore_state(pdev);
7179	pci_enable_wake(pdev, PCI_D0, 0);
7180
7181	if (hw_priv->wol_enable)
7182		hw_cfg_wol_pme(hw, 0);
7183	for (i = 0; i < hw->dev_count; i++) {
7184		if (info->netdev[i]) {
7185			struct net_device *dev = info->netdev[i];
7186
7187			if (netif_running(dev)) {
7188				netdev_open(dev);
7189				netif_device_attach(dev);
7190			}
7191		}
7192	}
7193	return 0;
7194}
7195
7196static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7197{
7198	int i;
7199	struct platform_info *info = pci_get_drvdata(pdev);
7200	struct dev_info *hw_priv = &info->dev_info;
7201	struct ksz_hw *hw = &hw_priv->hw;
7202
7203	/* Need to find a way to retrieve the device IP address. */
7204	static const u8 net_addr[] = { 192, 168, 1, 1 };
7205
7206	for (i = 0; i < hw->dev_count; i++) {
7207		if (info->netdev[i]) {
7208			struct net_device *dev = info->netdev[i];
7209
7210			if (netif_running(dev)) {
7211				netif_device_detach(dev);
7212				netdev_close(dev);
7213			}
7214		}
7215	}
7216	if (hw_priv->wol_enable) {
7217		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7218		hw_cfg_wol_pme(hw, 1);
7219	}
7220
7221	pci_save_state(pdev);
7222	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7223	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7224	return 0;
7225}
7226#endif
7227
7228static char pcidev_name[] = "ksz884xp";
7229
7230static const struct pci_device_id pcidev_table[] = {
7231	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7232		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7233	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7234		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7235	{ 0 }
7236};
7237
7238MODULE_DEVICE_TABLE(pci, pcidev_table);
7239
 
 
7240static struct pci_driver pci_device_driver = {
7241#ifdef CONFIG_PM
7242	.suspend	= pcidev_suspend,
7243	.resume		= pcidev_resume,
7244#endif
7245	.name		= pcidev_name,
7246	.id_table	= pcidev_table,
7247	.probe		= pcidev_init,
7248	.remove		= pcidev_exit
7249};
7250
7251module_pci_driver(pci_device_driver);
7252
7253MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7254MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7255MODULE_LICENSE("GPL");
7256
7257module_param_named(message, msg_enable, int, 0);
7258MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7259
7260module_param(macaddr, charp, 0);
7261module_param(mac1addr, charp, 0);
7262module_param(fast_aging, int, 0);
7263module_param(multi_dev, int, 0);
7264module_param(stp, int, 0);
7265MODULE_PARM_DESC(macaddr, "MAC address");
7266MODULE_PARM_DESC(mac1addr, "Second MAC address");
7267MODULE_PARM_DESC(fast_aging, "Fast aging");
7268MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7269MODULE_PARM_DESC(stp, "STP support");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28#include <linux/micrel_phy.h>
  29
  30
  31/* DMA Registers */
  32
  33#define KS_DMA_TX_CTRL			0x0000
  34#define DMA_TX_ENABLE			0x00000001
  35#define DMA_TX_CRC_ENABLE		0x00000002
  36#define DMA_TX_PAD_ENABLE		0x00000004
  37#define DMA_TX_LOOPBACK			0x00000100
  38#define DMA_TX_FLOW_ENABLE		0x00000200
  39#define DMA_TX_CSUM_IP			0x00010000
  40#define DMA_TX_CSUM_TCP			0x00020000
  41#define DMA_TX_CSUM_UDP			0x00040000
  42#define DMA_TX_BURST_SIZE		0x3F000000
  43
  44#define KS_DMA_RX_CTRL			0x0004
  45#define DMA_RX_ENABLE			0x00000001
  46#define KS884X_DMA_RX_MULTICAST		0x00000002
  47#define DMA_RX_PROMISCUOUS		0x00000004
  48#define DMA_RX_ERROR			0x00000008
  49#define DMA_RX_UNICAST			0x00000010
  50#define DMA_RX_ALL_MULTICAST		0x00000020
  51#define DMA_RX_BROADCAST		0x00000040
  52#define DMA_RX_FLOW_ENABLE		0x00000200
  53#define DMA_RX_CSUM_IP			0x00010000
  54#define DMA_RX_CSUM_TCP			0x00020000
  55#define DMA_RX_CSUM_UDP			0x00040000
  56#define DMA_RX_BURST_SIZE		0x3F000000
  57
  58#define DMA_BURST_SHIFT			24
  59#define DMA_BURST_DEFAULT		8
  60
  61#define KS_DMA_TX_START			0x0008
  62#define KS_DMA_RX_START			0x000C
  63#define DMA_START			0x00000001
  64
  65#define KS_DMA_TX_ADDR			0x0010
  66#define KS_DMA_RX_ADDR			0x0014
  67
  68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  69#define DMA_ADDR_LIST_SHIFT		2
  70
  71/* MTR0 */
  72#define KS884X_MULTICAST_0_OFFSET	0x0020
  73#define KS884X_MULTICAST_1_OFFSET	0x0021
  74#define KS884X_MULTICAST_2_OFFSET	0x0022
  75#define KS884x_MULTICAST_3_OFFSET	0x0023
  76/* MTR1 */
  77#define KS884X_MULTICAST_4_OFFSET	0x0024
  78#define KS884X_MULTICAST_5_OFFSET	0x0025
  79#define KS884X_MULTICAST_6_OFFSET	0x0026
  80#define KS884X_MULTICAST_7_OFFSET	0x0027
  81
  82/* Interrupt Registers */
  83
  84/* INTEN */
  85#define KS884X_INTERRUPTS_ENABLE	0x0028
  86/* INTST */
  87#define KS884X_INTERRUPTS_STATUS	0x002C
  88
  89#define KS884X_INT_RX_STOPPED		0x02000000
  90#define KS884X_INT_TX_STOPPED		0x04000000
  91#define KS884X_INT_RX_OVERRUN		0x08000000
  92#define KS884X_INT_TX_EMPTY		0x10000000
  93#define KS884X_INT_RX			0x20000000
  94#define KS884X_INT_TX			0x40000000
  95#define KS884X_INT_PHY			0x80000000
  96
  97#define KS884X_INT_RX_MASK		\
  98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  99#define KS884X_INT_TX_MASK		\
 100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 102
 103/* MAC Additional Station Address */
 104
 105/* MAAL0 */
 106#define KS_ADD_ADDR_0_LO		0x0080
 107/* MAAH0 */
 108#define KS_ADD_ADDR_0_HI		0x0084
 109/* MAAL1 */
 110#define KS_ADD_ADDR_1_LO		0x0088
 111/* MAAH1 */
 112#define KS_ADD_ADDR_1_HI		0x008C
 113/* MAAL2 */
 114#define KS_ADD_ADDR_2_LO		0x0090
 115/* MAAH2 */
 116#define KS_ADD_ADDR_2_HI		0x0094
 117/* MAAL3 */
 118#define KS_ADD_ADDR_3_LO		0x0098
 119/* MAAH3 */
 120#define KS_ADD_ADDR_3_HI		0x009C
 121/* MAAL4 */
 122#define KS_ADD_ADDR_4_LO		0x00A0
 123/* MAAH4 */
 124#define KS_ADD_ADDR_4_HI		0x00A4
 125/* MAAL5 */
 126#define KS_ADD_ADDR_5_LO		0x00A8
 127/* MAAH5 */
 128#define KS_ADD_ADDR_5_HI		0x00AC
 129/* MAAL6 */
 130#define KS_ADD_ADDR_6_LO		0x00B0
 131/* MAAH6 */
 132#define KS_ADD_ADDR_6_HI		0x00B4
 133/* MAAL7 */
 134#define KS_ADD_ADDR_7_LO		0x00B8
 135/* MAAH7 */
 136#define KS_ADD_ADDR_7_HI		0x00BC
 137/* MAAL8 */
 138#define KS_ADD_ADDR_8_LO		0x00C0
 139/* MAAH8 */
 140#define KS_ADD_ADDR_8_HI		0x00C4
 141/* MAAL9 */
 142#define KS_ADD_ADDR_9_LO		0x00C8
 143/* MAAH9 */
 144#define KS_ADD_ADDR_9_HI		0x00CC
 145/* MAAL10 */
 146#define KS_ADD_ADDR_A_LO		0x00D0
 147/* MAAH10 */
 148#define KS_ADD_ADDR_A_HI		0x00D4
 149/* MAAL11 */
 150#define KS_ADD_ADDR_B_LO		0x00D8
 151/* MAAH11 */
 152#define KS_ADD_ADDR_B_HI		0x00DC
 153/* MAAL12 */
 154#define KS_ADD_ADDR_C_LO		0x00E0
 155/* MAAH12 */
 156#define KS_ADD_ADDR_C_HI		0x00E4
 157/* MAAL13 */
 158#define KS_ADD_ADDR_D_LO		0x00E8
 159/* MAAH13 */
 160#define KS_ADD_ADDR_D_HI		0x00EC
 161/* MAAL14 */
 162#define KS_ADD_ADDR_E_LO		0x00F0
 163/* MAAH14 */
 164#define KS_ADD_ADDR_E_HI		0x00F4
 165/* MAAL15 */
 166#define KS_ADD_ADDR_F_LO		0x00F8
 167/* MAAH15 */
 168#define KS_ADD_ADDR_F_HI		0x00FC
 169
 170#define ADD_ADDR_HI_MASK		0x0000FFFF
 171#define ADD_ADDR_ENABLE			0x80000000
 172#define ADD_ADDR_INCR			8
 173
 174/* Miscellaneous Registers */
 175
 176/* MARL */
 177#define KS884X_ADDR_0_OFFSET		0x0200
 178#define KS884X_ADDR_1_OFFSET		0x0201
 179/* MARM */
 180#define KS884X_ADDR_2_OFFSET		0x0202
 181#define KS884X_ADDR_3_OFFSET		0x0203
 182/* MARH */
 183#define KS884X_ADDR_4_OFFSET		0x0204
 184#define KS884X_ADDR_5_OFFSET		0x0205
 185
 186/* OBCR */
 187#define KS884X_BUS_CTRL_OFFSET		0x0210
 188
 189#define BUS_SPEED_125_MHZ		0x0000
 190#define BUS_SPEED_62_5_MHZ		0x0001
 191#define BUS_SPEED_41_66_MHZ		0x0002
 192#define BUS_SPEED_25_MHZ		0x0003
 193
 194/* EEPCR */
 195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 196
 197#define EEPROM_CHIP_SELECT		0x0001
 198#define EEPROM_SERIAL_CLOCK		0x0002
 199#define EEPROM_DATA_OUT			0x0004
 200#define EEPROM_DATA_IN			0x0008
 201#define EEPROM_ACCESS_ENABLE		0x0010
 202
 203/* MBIR */
 204#define KS884X_MEM_INFO_OFFSET		0x0214
 205
 206#define RX_MEM_TEST_FAILED		0x0008
 207#define RX_MEM_TEST_FINISHED		0x0010
 208#define TX_MEM_TEST_FAILED		0x0800
 209#define TX_MEM_TEST_FINISHED		0x1000
 210
 211/* GCR */
 212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 213#define GLOBAL_SOFTWARE_RESET		0x0001
 214
 215#define KS8841_POWER_MANAGE_OFFSET	0x0218
 216
 217/* WFCR */
 218#define KS8841_WOL_CTRL_OFFSET		0x021A
 219#define KS8841_WOL_MAGIC_ENABLE		0x0080
 220#define KS8841_WOL_FRAME3_ENABLE	0x0008
 221#define KS8841_WOL_FRAME2_ENABLE	0x0004
 222#define KS8841_WOL_FRAME1_ENABLE	0x0002
 223#define KS8841_WOL_FRAME0_ENABLE	0x0001
 224
 225/* WF0 */
 226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 229
 230/* IACR */
 231#define KS884X_IACR_P			0x04A0
 232#define KS884X_IACR_OFFSET		KS884X_IACR_P
 233
 234/* IADR1 */
 235#define KS884X_IADR1_P			0x04A2
 236#define KS884X_IADR2_P			0x04A4
 237#define KS884X_IADR3_P			0x04A6
 238#define KS884X_IADR4_P			0x04A8
 239#define KS884X_IADR5_P			0x04AA
 240
 241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 243
 244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 253
 254/* P1MBCR */
 255#define KS884X_P1MBCR_P			0x04D0
 256#define KS884X_P1MBSR_P			0x04D2
 257#define KS884X_PHY1ILR_P		0x04D4
 258#define KS884X_PHY1IHR_P		0x04D6
 259#define KS884X_P1ANAR_P			0x04D8
 260#define KS884X_P1ANLPR_P		0x04DA
 261
 262/* P2MBCR */
 263#define KS884X_P2MBCR_P			0x04E0
 264#define KS884X_P2MBSR_P			0x04E2
 265#define KS884X_PHY2ILR_P		0x04E4
 266#define KS884X_PHY2IHR_P		0x04E6
 267#define KS884X_P2ANAR_P			0x04E8
 268#define KS884X_P2ANLPR_P		0x04EA
 269
 270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 272
 273#define KS884X_PHY_CTRL_OFFSET		0x00
 274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275#define KS884X_PHY_STATUS_OFFSET	0x02
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277#define KS884X_PHY_ID_1_OFFSET		0x04
 278#define KS884X_PHY_ID_2_OFFSET		0x06
 279
 
 
 
 
 280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 283
 
 
 
 
 
 
 
 
 
 
 
 
 284/* P1VCT */
 285#define KS884X_P1VCT_P			0x04F0
 286#define KS884X_P1PHYCTRL_P		0x04F2
 287
 288/* P2VCT */
 289#define KS884X_P2VCT_P			0x04F4
 290#define KS884X_P2PHYCTRL_P		0x04F6
 291
 292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 294
 295#define KS884X_PHY_LINK_MD_OFFSET	0x00
 296
 297#define PHY_START_CABLE_DIAG		0x8000
 298#define PHY_CABLE_DIAG_RESULT		0x6000
 299#define PHY_CABLE_STAT_NORMAL		0x0000
 300#define PHY_CABLE_STAT_OPEN		0x2000
 301#define PHY_CABLE_STAT_SHORT		0x4000
 302#define PHY_CABLE_STAT_FAILED		0x6000
 303#define PHY_CABLE_10M_SHORT		0x1000
 304#define PHY_CABLE_FAULT_COUNTER		0x01FF
 305
 306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 307
 308#define PHY_STAT_REVERSED_POLARITY	0x0020
 309#define PHY_STAT_MDIX			0x0010
 310#define PHY_FORCE_LINK			0x0008
 311#define PHY_POWER_SAVING_DISABLE	0x0004
 312#define PHY_REMOTE_LOOPBACK		0x0002
 313
 314/* SIDER */
 315#define KS884X_SIDER_P			0x0400
 316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 318
 319#define REG_FAMILY_ID			0x88
 320
 321#define REG_CHIP_ID_41			0x8810
 322#define REG_CHIP_ID_42			0x8800
 323
 324#define KS884X_CHIP_ID_MASK_41		0xFF10
 325#define KS884X_CHIP_ID_MASK		0xFFF0
 326#define KS884X_CHIP_ID_SHIFT		4
 327#define KS884X_REVISION_MASK		0x000E
 328#define KS884X_REVISION_SHIFT		1
 329#define KS8842_START			0x0001
 330
 331#define CHIP_IP_41_M			0x8810
 332#define CHIP_IP_42_M			0x8800
 333#define CHIP_IP_61_M			0x8890
 334#define CHIP_IP_62_M			0x8880
 335
 336#define CHIP_IP_41_P			0x8850
 337#define CHIP_IP_42_P			0x8840
 338#define CHIP_IP_61_P			0x88D0
 339#define CHIP_IP_62_P			0x88C0
 340
 341/* SGCR1 */
 342#define KS8842_SGCR1_P			0x0402
 343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 344
 345#define SWITCH_PASS_ALL			0x8000
 346#define SWITCH_TX_FLOW_CTRL		0x2000
 347#define SWITCH_RX_FLOW_CTRL		0x1000
 348#define SWITCH_CHECK_LENGTH		0x0800
 349#define SWITCH_AGING_ENABLE		0x0400
 350#define SWITCH_FAST_AGING		0x0200
 351#define SWITCH_AGGR_BACKOFF		0x0100
 352#define SWITCH_PASS_PAUSE		0x0008
 353#define SWITCH_LINK_AUTO_AGING		0x0001
 354
 355/* SGCR2 */
 356#define KS8842_SGCR2_P			0x0404
 357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 358
 359#define SWITCH_VLAN_ENABLE		0x8000
 360#define SWITCH_IGMP_SNOOP		0x4000
 361#define IPV6_MLD_SNOOP_ENABLE		0x2000
 362#define IPV6_MLD_SNOOP_OPTION		0x1000
 363#define PRIORITY_SCHEME_SELECT		0x0800
 364#define SWITCH_MIRROR_RX_TX		0x0100
 365#define UNICAST_VLAN_BOUNDARY		0x0080
 366#define MULTICAST_STORM_DISABLE		0x0040
 367#define SWITCH_BACK_PRESSURE		0x0020
 368#define FAIR_FLOW_CTRL			0x0010
 369#define NO_EXC_COLLISION_DROP		0x0008
 370#define SWITCH_HUGE_PACKET		0x0004
 371#define SWITCH_LEGAL_PACKET		0x0002
 372#define SWITCH_BUF_RESERVE		0x0001
 373
 374/* SGCR3 */
 375#define KS8842_SGCR3_P			0x0406
 376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 377
 378#define BROADCAST_STORM_RATE_LO		0xFF00
 379#define SWITCH_REPEATER			0x0080
 380#define SWITCH_HALF_DUPLEX		0x0040
 381#define SWITCH_FLOW_CTRL		0x0020
 382#define SWITCH_10_MBIT			0x0010
 383#define SWITCH_REPLACE_NULL_VID		0x0008
 384#define BROADCAST_STORM_RATE_HI		0x0007
 385
 386#define BROADCAST_STORM_RATE		0x07FF
 387
 388/* SGCR4 */
 389#define KS8842_SGCR4_P			0x0408
 390
 391/* SGCR5 */
 392#define KS8842_SGCR5_P			0x040A
 393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 394
 395#define LED_MODE			0x8200
 396#define LED_SPEED_DUPLEX_ACT		0x0000
 397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 398#define LED_DUPLEX_10_100		0x0200
 399
 400/* SGCR6 */
 401#define KS8842_SGCR6_P			0x0410
 402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 403
 404#define KS8842_PRIORITY_MASK		3
 405#define KS8842_PRIORITY_SHIFT		2
 406
 407/* SGCR7 */
 408#define KS8842_SGCR7_P			0x0412
 409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 410
 411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 412#define SWITCH_UNK_DEF_PORT_3		0x0004
 413#define SWITCH_UNK_DEF_PORT_2		0x0002
 414#define SWITCH_UNK_DEF_PORT_1		0x0001
 415
 416/* MACAR1 */
 417#define KS8842_MACAR1_P			0x0470
 418#define KS8842_MACAR2_P			0x0472
 419#define KS8842_MACAR3_P			0x0474
 420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 426
 427/* TOSR1 */
 428#define KS8842_TOSR1_P			0x0480
 429#define KS8842_TOSR2_P			0x0482
 430#define KS8842_TOSR3_P			0x0484
 431#define KS8842_TOSR4_P			0x0486
 432#define KS8842_TOSR5_P			0x0488
 433#define KS8842_TOSR6_P			0x048A
 434#define KS8842_TOSR7_P			0x0490
 435#define KS8842_TOSR8_P			0x0492
 436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 442
 443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 445
 446/* P1CR1 */
 447#define KS8842_P1CR1_P			0x0500
 448#define KS8842_P1CR2_P			0x0502
 449#define KS8842_P1VIDR_P			0x0504
 450#define KS8842_P1CR3_P			0x0506
 451#define KS8842_P1IRCR_P			0x0508
 452#define KS8842_P1ERCR_P			0x050A
 453#define KS884X_P1SCSLMD_P		0x0510
 454#define KS884X_P1CR4_P			0x0512
 455#define KS884X_P1SR_P			0x0514
 456
 457/* P2CR1 */
 458#define KS8842_P2CR1_P			0x0520
 459#define KS8842_P2CR2_P			0x0522
 460#define KS8842_P2VIDR_P			0x0524
 461#define KS8842_P2CR3_P			0x0526
 462#define KS8842_P2IRCR_P			0x0528
 463#define KS8842_P2ERCR_P			0x052A
 464#define KS884X_P2SCSLMD_P		0x0530
 465#define KS884X_P2CR4_P			0x0532
 466#define KS884X_P2SR_P			0x0534
 467
 468/* P3CR1 */
 469#define KS8842_P3CR1_P			0x0540
 470#define KS8842_P3CR2_P			0x0542
 471#define KS8842_P3VIDR_P			0x0544
 472#define KS8842_P3CR3_P			0x0546
 473#define KS8842_P3IRCR_P			0x0548
 474#define KS8842_P3ERCR_P			0x054A
 475
 476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 479
 480#define PORT_CTRL_ADDR(port, addr)		\
 481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 483
 484#define KS8842_PORT_CTRL_1_OFFSET	0x00
 485
 486#define PORT_BROADCAST_STORM		0x0080
 487#define PORT_DIFFSERV_ENABLE		0x0040
 488#define PORT_802_1P_ENABLE		0x0020
 489#define PORT_BASED_PRIORITY_MASK	0x0018
 490#define PORT_BASED_PRIORITY_BASE	0x0003
 491#define PORT_BASED_PRIORITY_SHIFT	3
 492#define PORT_BASED_PRIORITY_0		0x0000
 493#define PORT_BASED_PRIORITY_1		0x0008
 494#define PORT_BASED_PRIORITY_2		0x0010
 495#define PORT_BASED_PRIORITY_3		0x0018
 496#define PORT_INSERT_TAG			0x0004
 497#define PORT_REMOVE_TAG			0x0002
 498#define PORT_PRIO_QUEUE_ENABLE		0x0001
 499
 500#define KS8842_PORT_CTRL_2_OFFSET	0x02
 501
 502#define PORT_INGRESS_VLAN_FILTER	0x4000
 503#define PORT_DISCARD_NON_VID		0x2000
 504#define PORT_FORCE_FLOW_CTRL		0x1000
 505#define PORT_BACK_PRESSURE		0x0800
 506#define PORT_TX_ENABLE			0x0400
 507#define PORT_RX_ENABLE			0x0200
 508#define PORT_LEARN_DISABLE		0x0100
 509#define PORT_MIRROR_SNIFFER		0x0080
 510#define PORT_MIRROR_RX			0x0040
 511#define PORT_MIRROR_TX			0x0020
 512#define PORT_USER_PRIORITY_CEILING	0x0008
 513#define PORT_VLAN_MEMBERSHIP		0x0007
 514
 515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 516
 517#define PORT_DEFAULT_VID		0x0001
 518
 519#define KS8842_PORT_CTRL_3_OFFSET	0x06
 520
 521#define PORT_INGRESS_LIMIT_MODE		0x000C
 522#define PORT_INGRESS_ALL		0x0000
 523#define PORT_INGRESS_UNICAST		0x0004
 524#define PORT_INGRESS_MULTICAST		0x0008
 525#define PORT_INGRESS_BROADCAST		0x000C
 526#define PORT_COUNT_IFG			0x0002
 527#define PORT_COUNT_PREAMBLE		0x0001
 528
 529#define KS8842_PORT_IN_RATE_OFFSET	0x08
 530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 531
 532#define PORT_PRIORITY_RATE		0x0F
 533#define PORT_PRIORITY_RATE_SHIFT	4
 534
 535#define KS884X_PORT_LINK_MD		0x10
 536
 537#define PORT_CABLE_10M_SHORT		0x8000
 538#define PORT_CABLE_DIAG_RESULT		0x6000
 539#define PORT_CABLE_STAT_NORMAL		0x0000
 540#define PORT_CABLE_STAT_OPEN		0x2000
 541#define PORT_CABLE_STAT_SHORT		0x4000
 542#define PORT_CABLE_STAT_FAILED		0x6000
 543#define PORT_START_CABLE_DIAG		0x1000
 544#define PORT_FORCE_LINK			0x0800
 545#define PORT_POWER_SAVING_DISABLE	0x0400
 546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 547#define PORT_CABLE_FAULT_COUNTER	0x01FF
 548
 549#define KS884X_PORT_CTRL_4_OFFSET	0x12
 550
 551#define PORT_LED_OFF			0x8000
 552#define PORT_TX_DISABLE			0x4000
 553#define PORT_AUTO_NEG_RESTART		0x2000
 554#define PORT_REMOTE_FAULT_DISABLE	0x1000
 555#define PORT_POWER_DOWN			0x0800
 556#define PORT_AUTO_MDIX_DISABLE		0x0400
 557#define PORT_FORCE_MDIX			0x0200
 558#define PORT_LOOPBACK			0x0100
 559#define PORT_AUTO_NEG_ENABLE		0x0080
 560#define PORT_FORCE_100_MBIT		0x0040
 561#define PORT_FORCE_FULL_DUPLEX		0x0020
 562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 563#define PORT_AUTO_NEG_100BTX_FD		0x0008
 564#define PORT_AUTO_NEG_100BTX		0x0004
 565#define PORT_AUTO_NEG_10BT_FD		0x0002
 566#define PORT_AUTO_NEG_10BT		0x0001
 567
 568#define KS884X_PORT_STATUS_OFFSET	0x14
 569
 570#define PORT_HP_MDIX			0x8000
 571#define PORT_REVERSED_POLARITY		0x2000
 572#define PORT_RX_FLOW_CTRL		0x0800
 573#define PORT_TX_FLOW_CTRL		0x1000
 574#define PORT_STATUS_SPEED_100MBIT	0x0400
 575#define PORT_STATUS_FULL_DUPLEX		0x0200
 576#define PORT_REMOTE_FAULT		0x0100
 577#define PORT_MDIX_STATUS		0x0080
 578#define PORT_AUTO_NEG_COMPLETE		0x0040
 579#define PORT_STATUS_LINK_GOOD		0x0020
 580#define PORT_REMOTE_SYM_PAUSE		0x0010
 581#define PORT_REMOTE_100BTX_FD		0x0008
 582#define PORT_REMOTE_100BTX		0x0004
 583#define PORT_REMOTE_10BT_FD		0x0002
 584#define PORT_REMOTE_10BT		0x0001
 585
 586/*
 587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 593*/
 594
 595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 597#define STATIC_MAC_TABLE_VALID		0x00080000
 598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 599#define STATIC_MAC_TABLE_USE_FID	0x00200000
 600#define STATIC_MAC_TABLE_FID		0x03C00000
 601
 602#define STATIC_MAC_FWD_PORTS_SHIFT	16
 603#define STATIC_MAC_FID_SHIFT		22
 604
 605/*
 606#define VLAN_TABLE_VID			00-00000000-00000FFF
 607#define VLAN_TABLE_FID			00-00000000-0000F000
 608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 609#define VLAN_TABLE_VALID		00-00000000-00080000
 610*/
 611
 612#define VLAN_TABLE_VID			0x00000FFF
 613#define VLAN_TABLE_FID			0x0000F000
 614#define VLAN_TABLE_MEMBERSHIP		0x00070000
 615#define VLAN_TABLE_VALID		0x00080000
 616
 617#define VLAN_TABLE_FID_SHIFT		12
 618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 619
 620/*
 621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 629*/
 630
 631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 636
 637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 641
 642#define DYNAMIC_MAC_FID_SHIFT		16
 643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 647
 648/*
 649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 650#define MIB_COUNTER_VALID		00-00000000-40000000
 651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 652*/
 653
 654#define MIB_COUNTER_VALUE		0x3FFFFFFF
 655#define MIB_COUNTER_VALID		0x40000000
 656#define MIB_COUNTER_OVERFLOW		0x80000000
 657
 658#define MIB_PACKET_DROPPED		0x0000FFFF
 659
 660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 662#define KS_MIB_PACKET_DROPPED_TX	0x102
 663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 665#define KS_MIB_PACKET_DROPPED_RX	0x105
 666
 667/* Change default LED mode. */
 668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 669
 670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 671
 672#define MAX_ETHERNET_BODY_SIZE		1500
 673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 674
 675#define MAX_ETHERNET_PACKET_SIZE	\
 676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 677
 678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 679#define MAX_RX_BUF_SIZE			(1912 + 4)
 680
 681#define ADDITIONAL_ENTRIES		16
 682#define MAX_MULTICAST_LIST		32
 683
 684#define HW_MULTICAST_SIZE		8
 685
 686#define HW_TO_DEV_PORT(port)		(port - 1)
 687
 688enum {
 689	media_connected,
 690	media_disconnected
 691};
 692
 693enum {
 694	OID_COUNTER_UNKOWN,
 695
 696	OID_COUNTER_FIRST,
 697
 698	/* total transmit errors */
 699	OID_COUNTER_XMIT_ERROR,
 700
 701	/* total receive errors */
 702	OID_COUNTER_RCV_ERROR,
 703
 704	OID_COUNTER_LAST
 705};
 706
 707/*
 708 * Hardware descriptor definitions
 709 */
 710
 711#define DESC_ALIGNMENT			16
 712#define BUFFER_ALIGNMENT		8
 713
 714#define NUM_OF_RX_DESC			64
 715#define NUM_OF_TX_DESC			64
 716
 717#define KS_DESC_RX_FRAME_LEN		0x000007FF
 718#define KS_DESC_RX_FRAME_TYPE		0x00008000
 719#define KS_DESC_RX_ERROR_CRC		0x00010000
 720#define KS_DESC_RX_ERROR_RUNT		0x00020000
 721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 722#define KS_DESC_RX_ERROR_PHY		0x00080000
 723#define KS884X_DESC_RX_PORT_MASK	0x00300000
 724#define KS_DESC_RX_MULTICAST		0x01000000
 725#define KS_DESC_RX_ERROR		0x02000000
 726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 729#define KS_DESC_RX_LAST			0x20000000
 730#define KS_DESC_RX_FIRST		0x40000000
 731#define KS_DESC_RX_ERROR_COND		\
 732	(KS_DESC_RX_ERROR_CRC |		\
 733	KS_DESC_RX_ERROR_RUNT |		\
 734	KS_DESC_RX_ERROR_PHY |		\
 735	KS_DESC_RX_ERROR_TOO_LONG)
 736
 737#define KS_DESC_HW_OWNED		0x80000000
 738
 739#define KS_DESC_BUF_SIZE		0x000007FF
 740#define KS884X_DESC_TX_PORT_MASK	0x00300000
 741#define KS_DESC_END_OF_RING		0x02000000
 742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 745#define KS_DESC_TX_LAST			0x20000000
 746#define KS_DESC_TX_FIRST		0x40000000
 747#define KS_DESC_TX_INTERRUPT		0x80000000
 748
 749#define KS_DESC_PORT_SHIFT		20
 750
 751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 752
 753#define KS_DESC_TX_MASK			\
 754	(KS_DESC_TX_INTERRUPT |		\
 755	KS_DESC_TX_FIRST |		\
 756	KS_DESC_TX_LAST |		\
 757	KS_DESC_TX_CSUM_GEN_IP |	\
 758	KS_DESC_TX_CSUM_GEN_TCP |	\
 759	KS_DESC_TX_CSUM_GEN_UDP |	\
 760	KS_DESC_BUF_SIZE)
 761
 762struct ksz_desc_rx_stat {
 763#ifdef __BIG_ENDIAN_BITFIELD
 764	u32 hw_owned:1;
 765	u32 first_desc:1;
 766	u32 last_desc:1;
 767	u32 csum_err_ip:1;
 768	u32 csum_err_tcp:1;
 769	u32 csum_err_udp:1;
 770	u32 error:1;
 771	u32 multicast:1;
 772	u32 src_port:4;
 773	u32 err_phy:1;
 774	u32 err_too_long:1;
 775	u32 err_runt:1;
 776	u32 err_crc:1;
 777	u32 frame_type:1;
 778	u32 reserved1:4;
 779	u32 frame_len:11;
 780#else
 781	u32 frame_len:11;
 782	u32 reserved1:4;
 783	u32 frame_type:1;
 784	u32 err_crc:1;
 785	u32 err_runt:1;
 786	u32 err_too_long:1;
 787	u32 err_phy:1;
 788	u32 src_port:4;
 789	u32 multicast:1;
 790	u32 error:1;
 791	u32 csum_err_udp:1;
 792	u32 csum_err_tcp:1;
 793	u32 csum_err_ip:1;
 794	u32 last_desc:1;
 795	u32 first_desc:1;
 796	u32 hw_owned:1;
 797#endif
 798};
 799
 800struct ksz_desc_tx_stat {
 801#ifdef __BIG_ENDIAN_BITFIELD
 802	u32 hw_owned:1;
 803	u32 reserved1:31;
 804#else
 805	u32 reserved1:31;
 806	u32 hw_owned:1;
 807#endif
 808};
 809
 810struct ksz_desc_rx_buf {
 811#ifdef __BIG_ENDIAN_BITFIELD
 812	u32 reserved4:6;
 813	u32 end_of_ring:1;
 814	u32 reserved3:14;
 815	u32 buf_size:11;
 816#else
 817	u32 buf_size:11;
 818	u32 reserved3:14;
 819	u32 end_of_ring:1;
 820	u32 reserved4:6;
 821#endif
 822};
 823
 824struct ksz_desc_tx_buf {
 825#ifdef __BIG_ENDIAN_BITFIELD
 826	u32 intr:1;
 827	u32 first_seg:1;
 828	u32 last_seg:1;
 829	u32 csum_gen_ip:1;
 830	u32 csum_gen_tcp:1;
 831	u32 csum_gen_udp:1;
 832	u32 end_of_ring:1;
 833	u32 reserved4:1;
 834	u32 dest_port:4;
 835	u32 reserved3:9;
 836	u32 buf_size:11;
 837#else
 838	u32 buf_size:11;
 839	u32 reserved3:9;
 840	u32 dest_port:4;
 841	u32 reserved4:1;
 842	u32 end_of_ring:1;
 843	u32 csum_gen_udp:1;
 844	u32 csum_gen_tcp:1;
 845	u32 csum_gen_ip:1;
 846	u32 last_seg:1;
 847	u32 first_seg:1;
 848	u32 intr:1;
 849#endif
 850};
 851
 852union desc_stat {
 853	struct ksz_desc_rx_stat rx;
 854	struct ksz_desc_tx_stat tx;
 855	u32 data;
 856};
 857
 858union desc_buf {
 859	struct ksz_desc_rx_buf rx;
 860	struct ksz_desc_tx_buf tx;
 861	u32 data;
 862};
 863
 864/**
 865 * struct ksz_hw_desc - Hardware descriptor data structure
 866 * @ctrl:	Descriptor control value.
 867 * @buf:	Descriptor buffer value.
 868 * @addr:	Physical address of memory buffer.
 869 * @next:	Pointer to next hardware descriptor.
 870 */
 871struct ksz_hw_desc {
 872	union desc_stat ctrl;
 873	union desc_buf buf;
 874	u32 addr;
 875	u32 next;
 876};
 877
 878/**
 879 * struct ksz_sw_desc - Software descriptor data structure
 880 * @ctrl:	Descriptor control value.
 881 * @buf:	Descriptor buffer value.
 882 * @buf_size:	Current buffers size value in hardware descriptor.
 883 */
 884struct ksz_sw_desc {
 885	union desc_stat ctrl;
 886	union desc_buf buf;
 887	u32 buf_size;
 888};
 889
 890/**
 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 892 * @skb:	Associated socket buffer.
 893 * @dma:	Associated physical DMA address.
 894 * @len:	Actual len used.
 895 */
 896struct ksz_dma_buf {
 897	struct sk_buff *skb;
 898	dma_addr_t dma;
 899	int len;
 900};
 901
 902/**
 903 * struct ksz_desc - Descriptor structure
 904 * @phw:	Hardware descriptor pointer to uncached physical memory.
 905 * @sw:		Cached memory to hold hardware descriptor values for
 906 * 		manipulation.
 907 * @dma_buf:	Operating system dependent data structure to hold physical
 908 * 		memory buffer allocation information.
 909 */
 910struct ksz_desc {
 911	struct ksz_hw_desc *phw;
 912	struct ksz_sw_desc sw;
 913	struct ksz_dma_buf dma_buf;
 914};
 915
 916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 917
 918/**
 919 * struct ksz_desc_info - Descriptor information data structure
 920 * @ring:	First descriptor in the ring.
 921 * @cur:	Current descriptor being manipulated.
 922 * @ring_virt:	First hardware descriptor in the ring.
 923 * @ring_phys:	The physical address of the first descriptor of the ring.
 924 * @size:	Size of hardware descriptor.
 925 * @alloc:	Number of descriptors allocated.
 926 * @avail:	Number of descriptors available for use.
 927 * @last:	Index for last descriptor released to hardware.
 928 * @next:	Index for next descriptor available for use.
 929 * @mask:	Mask for index wrapping.
 930 */
 931struct ksz_desc_info {
 932	struct ksz_desc *ring;
 933	struct ksz_desc *cur;
 934	struct ksz_hw_desc *ring_virt;
 935	u32 ring_phys;
 936	int size;
 937	int alloc;
 938	int avail;
 939	int last;
 940	int next;
 941	int mask;
 942};
 943
 944/*
 945 * KSZ8842 switch definitions
 946 */
 947
 948enum {
 949	TABLE_STATIC_MAC = 0,
 950	TABLE_VLAN,
 951	TABLE_DYNAMIC_MAC,
 952	TABLE_MIB
 953};
 954
 955#define LEARNED_MAC_TABLE_ENTRIES	1024
 956#define STATIC_MAC_TABLE_ENTRIES	8
 957
 958/**
 959 * struct ksz_mac_table - Static MAC table data structure
 960 * @mac_addr:	MAC address to filter.
 961 * @vid:	VID value.
 962 * @fid:	FID value.
 963 * @ports:	Port membership.
 964 * @override:	Override setting.
 965 * @use_fid:	FID use setting.
 966 * @valid:	Valid setting indicating the entry is being used.
 967 */
 968struct ksz_mac_table {
 969	u8 mac_addr[ETH_ALEN];
 970	u16 vid;
 971	u8 fid;
 972	u8 ports;
 973	u8 override:1;
 974	u8 use_fid:1;
 975	u8 valid:1;
 976};
 977
 978#define VLAN_TABLE_ENTRIES		16
 979
 980/**
 981 * struct ksz_vlan_table - VLAN table data structure
 982 * @vid:	VID value.
 983 * @fid:	FID value.
 984 * @member:	Port membership.
 985 */
 986struct ksz_vlan_table {
 987	u16 vid;
 988	u8 fid;
 989	u8 member;
 990};
 991
 992#define DIFFSERV_ENTRIES		64
 993#define PRIO_802_1P_ENTRIES		8
 994#define PRIO_QUEUES			4
 995
 996#define SWITCH_PORT_NUM			2
 997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
 998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
 999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
1479static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1480{
1481	u32 read_intr;
1482
1483	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1484	hw->intr_set = read_intr | interrupt;
1485	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1486}
1487
1488static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1489{
1490	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1491	*status = *status & hw->intr_set;
1492}
1493
1494static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1495{
1496	if (interrupt)
1497		hw_ena_intr(hw);
1498}
1499
1500/**
1501 * hw_block_intr - block hardware interrupts
1502 * @hw: The hardware instance.
1503 *
1504 * This function blocks all interrupts of the hardware and returns the current
1505 * interrupt enable mask so that interrupts can be restored later.
1506 *
1507 * Return the current interrupt enable mask.
1508 */
1509static uint hw_block_intr(struct ksz_hw *hw)
1510{
1511	uint interrupt = 0;
1512
1513	if (!hw->intr_blocked) {
1514		hw_dis_intr(hw);
1515		interrupt = hw->intr_blocked;
1516	}
1517	return interrupt;
1518}
1519
1520/*
1521 * Hardware descriptor routines
1522 */
1523
1524static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1525{
1526	status.rx.hw_owned = 0;
1527	desc->phw->ctrl.data = cpu_to_le32(status.data);
1528}
1529
1530static inline void release_desc(struct ksz_desc *desc)
1531{
1532	desc->sw.ctrl.tx.hw_owned = 1;
1533	if (desc->sw.buf_size != desc->sw.buf.data) {
1534		desc->sw.buf_size = desc->sw.buf.data;
1535		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1536	}
1537	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1538}
1539
1540static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1541{
1542	*desc = &info->ring[info->last];
1543	info->last++;
1544	info->last &= info->mask;
1545	info->avail--;
1546	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1547}
1548
1549static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1550{
1551	desc->phw->addr = cpu_to_le32(addr);
1552}
1553
1554static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1555{
1556	desc->sw.buf.rx.buf_size = len;
1557}
1558
1559static inline void get_tx_pkt(struct ksz_desc_info *info,
1560	struct ksz_desc **desc)
1561{
1562	*desc = &info->ring[info->next];
1563	info->next++;
1564	info->next &= info->mask;
1565	info->avail--;
1566	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1567}
1568
1569static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1570{
1571	desc->phw->addr = cpu_to_le32(addr);
1572}
1573
1574static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1575{
1576	desc->sw.buf.tx.buf_size = len;
1577}
1578
1579/* Switch functions */
1580
1581#define TABLE_READ			0x10
1582#define TABLE_SEL_SHIFT			2
1583
1584#define HW_DELAY(hw, reg)			\
1585	do {					\
1586		readw(hw->io + reg);		\
 
1587	} while (0)
1588
1589/**
1590 * sw_r_table - read 4 bytes of data from switch table
1591 * @hw:		The hardware instance.
1592 * @table:	The table selector.
1593 * @addr:	The address of the table entry.
1594 * @data:	Buffer to store the read data.
1595 *
1596 * This routine reads 4 bytes of data from the table of the switch.
1597 * Hardware interrupts are disabled to minimize corruption of read data.
1598 */
1599static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1600{
1601	u16 ctrl_addr;
1602	uint interrupt;
1603
1604	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1605
1606	interrupt = hw_block_intr(hw);
1607
1608	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1609	HW_DELAY(hw, KS884X_IACR_OFFSET);
1610	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1611
1612	hw_restore_intr(hw, interrupt);
1613}
1614
1615/**
1616 * sw_w_table_64 - write 8 bytes of data to the switch table
1617 * @hw:		The hardware instance.
1618 * @table:	The table selector.
1619 * @addr:	The address of the table entry.
1620 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1621 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1622 *
1623 * This routine writes 8 bytes of data to the table of the switch.
1624 * Hardware interrupts are disabled to minimize corruption of written data.
1625 */
1626static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1627	u32 data_lo)
1628{
1629	u16 ctrl_addr;
1630	uint interrupt;
1631
1632	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1633
1634	interrupt = hw_block_intr(hw);
1635
1636	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1637	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1638
1639	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1640	HW_DELAY(hw, KS884X_IACR_OFFSET);
1641
1642	hw_restore_intr(hw, interrupt);
1643}
1644
1645/**
1646 * sw_w_sta_mac_table - write to the static MAC table
1647 * @hw: 	The hardware instance.
1648 * @addr:	The address of the table entry.
1649 * @mac_addr:	The MAC address.
1650 * @ports:	The port members.
1651 * @override:	The flag to override the port receive/transmit settings.
1652 * @valid:	The flag to indicate entry is valid.
1653 * @use_fid:	The flag to indicate the FID is valid.
1654 * @fid:	The FID value.
1655 *
1656 * This routine writes an entry of the static MAC table of the switch.  It
1657 * calls sw_w_table_64() to write the data.
1658 */
1659static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1660	u8 ports, int override, int valid, int use_fid, u8 fid)
1661{
1662	u32 data_hi;
1663	u32 data_lo;
1664
1665	data_lo = ((u32) mac_addr[2] << 24) |
1666		((u32) mac_addr[3] << 16) |
1667		((u32) mac_addr[4] << 8) | mac_addr[5];
1668	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1669	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1670
1671	if (override)
1672		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1673	if (use_fid) {
1674		data_hi |= STATIC_MAC_TABLE_USE_FID;
1675		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1676	}
1677	if (valid)
1678		data_hi |= STATIC_MAC_TABLE_VALID;
1679
1680	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1681}
1682
1683/**
1684 * sw_r_vlan_table - read from the VLAN table
1685 * @hw: 	The hardware instance.
1686 * @addr:	The address of the table entry.
1687 * @vid:	Buffer to store the VID.
1688 * @fid:	Buffer to store the VID.
1689 * @member:	Buffer to store the port membership.
1690 *
1691 * This function reads an entry of the VLAN table of the switch.  It calls
1692 * sw_r_table() to get the data.
1693 *
1694 * Return 0 if the entry is valid; otherwise -1.
1695 */
1696static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1697	u8 *member)
1698{
1699	u32 data;
1700
1701	sw_r_table(hw, TABLE_VLAN, addr, &data);
1702	if (data & VLAN_TABLE_VALID) {
1703		*vid = (u16)(data & VLAN_TABLE_VID);
1704		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1705		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1706			VLAN_TABLE_MEMBERSHIP_SHIFT);
1707		return 0;
1708	}
1709	return -1;
1710}
1711
1712/**
1713 * port_r_mib_cnt - read MIB counter
1714 * @hw: 	The hardware instance.
1715 * @port:	The port index.
1716 * @addr:	The address of the counter.
1717 * @cnt:	Buffer to store the counter.
1718 *
1719 * This routine reads a MIB counter of the port.
1720 * Hardware interrupts are disabled to minimize corruption of read data.
1721 */
1722static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1723{
1724	u32 data;
1725	u16 ctrl_addr;
1726	uint interrupt;
1727	int timeout;
1728
1729	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1730
1731	interrupt = hw_block_intr(hw);
1732
1733	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1734	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1735	HW_DELAY(hw, KS884X_IACR_OFFSET);
1736
1737	for (timeout = 100; timeout > 0; timeout--) {
1738		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1739
1740		if (data & MIB_COUNTER_VALID) {
1741			if (data & MIB_COUNTER_OVERFLOW)
1742				*cnt += MIB_COUNTER_VALUE + 1;
1743			*cnt += data & MIB_COUNTER_VALUE;
1744			break;
1745		}
1746	}
1747
1748	hw_restore_intr(hw, interrupt);
1749}
1750
1751/**
1752 * port_r_mib_pkt - read dropped packet counts
1753 * @hw: 	The hardware instance.
1754 * @port:	The port index.
1755 * @last:	last one
1756 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1757 *
1758 * This routine reads the dropped packet counts of the port.
1759 * Hardware interrupts are disabled to minimize corruption of read data.
1760 */
1761static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1762{
1763	u32 cur;
1764	u32 data;
1765	u16 ctrl_addr;
1766	uint interrupt;
1767	int index;
1768
1769	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1770	do {
1771		interrupt = hw_block_intr(hw);
1772
1773		ctrl_addr = (u16) index;
1774		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1775			<< 8);
1776		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1777		HW_DELAY(hw, KS884X_IACR_OFFSET);
1778		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1779
1780		hw_restore_intr(hw, interrupt);
1781
1782		data &= MIB_PACKET_DROPPED;
1783		cur = *last;
1784		if (data != cur) {
1785			*last = data;
1786			if (data < cur)
1787				data += MIB_PACKET_DROPPED + 1;
1788			data -= cur;
1789			*cnt += data;
1790		}
1791		++last;
1792		++cnt;
1793		index -= KS_MIB_PACKET_DROPPED_TX -
1794			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1795	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1796}
1797
1798/**
1799 * port_r_cnt - read MIB counters periodically
1800 * @hw: 	The hardware instance.
1801 * @port:	The port index.
1802 *
1803 * This routine is used to read the counters of the port periodically to avoid
1804 * counter overflow.  The hardware should be acquired first before calling this
1805 * routine.
1806 *
1807 * Return non-zero when not all counters not read.
1808 */
1809static int port_r_cnt(struct ksz_hw *hw, int port)
1810{
1811	struct ksz_port_mib *mib = &hw->port_mib[port];
1812
1813	if (mib->mib_start < PORT_COUNTER_NUM)
1814		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1815			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1816				&mib->counter[mib->cnt_ptr]);
1817			++mib->cnt_ptr;
1818		}
1819	if (hw->mib_cnt > PORT_COUNTER_NUM)
1820		port_r_mib_pkt(hw, port, mib->dropped,
1821			&mib->counter[PORT_COUNTER_NUM]);
1822	mib->cnt_ptr = 0;
1823	return 0;
1824}
1825
1826/**
1827 * port_init_cnt - initialize MIB counter values
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 *
1831 * This routine is used to initialize all counters to zero if the hardware
1832 * cannot do it after reset.
1833 */
1834static void port_init_cnt(struct ksz_hw *hw, int port)
1835{
1836	struct ksz_port_mib *mib = &hw->port_mib[port];
1837
1838	mib->cnt_ptr = 0;
1839	if (mib->mib_start < PORT_COUNTER_NUM)
1840		do {
1841			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1842				&mib->counter[mib->cnt_ptr]);
1843			++mib->cnt_ptr;
1844		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1845	if (hw->mib_cnt > PORT_COUNTER_NUM)
1846		port_r_mib_pkt(hw, port, mib->dropped,
1847			&mib->counter[PORT_COUNTER_NUM]);
1848	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1849	mib->cnt_ptr = 0;
1850}
1851
1852/*
1853 * Port functions
1854 */
1855
1856/**
1857 * port_chk - check port register bits
1858 * @hw: 	The hardware instance.
1859 * @port:	The port index.
1860 * @offset:	The offset of the port register.
1861 * @bits:	The data bits to check.
1862 *
1863 * This function checks whether the specified bits of the port register are set
1864 * or not.
1865 *
1866 * Return 0 if the bits are not set.
1867 */
1868static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1869{
1870	u32 addr;
1871	u16 data;
1872
1873	PORT_CTRL_ADDR(port, addr);
1874	addr += offset;
1875	data = readw(hw->io + addr);
1876	return (data & bits) == bits;
1877}
1878
1879/**
1880 * port_cfg - set port register bits
1881 * @hw: 	The hardware instance.
1882 * @port:	The port index.
1883 * @offset:	The offset of the port register.
1884 * @bits:	The data bits to set.
1885 * @set:	The flag indicating whether the bits are to be set or not.
1886 *
1887 * This routine sets or resets the specified bits of the port register.
1888 */
1889static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1890	int set)
1891{
1892	u32 addr;
1893	u16 data;
1894
1895	PORT_CTRL_ADDR(port, addr);
1896	addr += offset;
1897	data = readw(hw->io + addr);
1898	if (set)
1899		data |= bits;
1900	else
1901		data &= ~bits;
1902	writew(data, hw->io + addr);
1903}
1904
1905/**
1906 * port_chk_shift - check port bit
1907 * @hw: 	The hardware instance.
1908 * @port:	The port index.
1909 * @addr:	The offset of the register.
1910 * @shift:	Number of bits to shift.
1911 *
1912 * This function checks whether the specified port is set in the register or
1913 * not.
1914 *
1915 * Return 0 if the port is not set.
1916 */
1917static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1918{
1919	u16 data;
1920	u16 bit = 1 << port;
1921
1922	data = readw(hw->io + addr);
1923	data >>= shift;
1924	return (data & bit) == bit;
1925}
1926
1927/**
1928 * port_cfg_shift - set port bit
1929 * @hw: 	The hardware instance.
1930 * @port:	The port index.
1931 * @addr:	The offset of the register.
1932 * @shift:	Number of bits to shift.
1933 * @set:	The flag indicating whether the port is to be set or not.
1934 *
1935 * This routine sets or resets the specified port in the register.
1936 */
1937static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
1938	int set)
1939{
1940	u16 data;
1941	u16 bits = 1 << port;
1942
1943	data = readw(hw->io + addr);
1944	bits <<= shift;
1945	if (set)
1946		data |= bits;
1947	else
1948		data &= ~bits;
1949	writew(data, hw->io + addr);
1950}
1951
1952/**
1953 * port_r8 - read byte from port register
1954 * @hw: 	The hardware instance.
1955 * @port:	The port index.
1956 * @offset:	The offset of the port register.
1957 * @data:	Buffer to store the data.
1958 *
1959 * This routine reads a byte from the port register.
1960 */
1961static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1962{
1963	u32 addr;
1964
1965	PORT_CTRL_ADDR(port, addr);
1966	addr += offset;
1967	*data = readb(hw->io + addr);
1968}
1969
1970/**
1971 * port_r16 - read word from port register.
1972 * @hw: 	The hardware instance.
1973 * @port:	The port index.
1974 * @offset:	The offset of the port register.
1975 * @data:	Buffer to store the data.
1976 *
1977 * This routine reads a word from the port register.
1978 */
1979static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1980{
1981	u32 addr;
1982
1983	PORT_CTRL_ADDR(port, addr);
1984	addr += offset;
1985	*data = readw(hw->io + addr);
1986}
1987
1988/**
1989 * port_w16 - write word to port register.
1990 * @hw: 	The hardware instance.
1991 * @port:	The port index.
1992 * @offset:	The offset of the port register.
1993 * @data:	Data to write.
1994 *
1995 * This routine writes a word to the port register.
1996 */
1997static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1998{
1999	u32 addr;
2000
2001	PORT_CTRL_ADDR(port, addr);
2002	addr += offset;
2003	writew(data, hw->io + addr);
2004}
2005
2006/**
2007 * sw_chk - check switch register bits
2008 * @hw: 	The hardware instance.
2009 * @addr:	The address of the switch register.
2010 * @bits:	The data bits to check.
2011 *
2012 * This function checks whether the specified bits of the switch register are
2013 * set or not.
2014 *
2015 * Return 0 if the bits are not set.
2016 */
2017static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2018{
2019	u16 data;
2020
2021	data = readw(hw->io + addr);
2022	return (data & bits) == bits;
2023}
2024
2025/**
2026 * sw_cfg - set switch register bits
2027 * @hw: 	The hardware instance.
2028 * @addr:	The address of the switch register.
2029 * @bits:	The data bits to set.
2030 * @set:	The flag indicating whether the bits are to be set or not.
2031 *
2032 * This function sets or resets the specified bits of the switch register.
2033 */
2034static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2035{
2036	u16 data;
2037
2038	data = readw(hw->io + addr);
2039	if (set)
2040		data |= bits;
2041	else
2042		data &= ~bits;
2043	writew(data, hw->io + addr);
2044}
2045
2046/* Bandwidth */
2047
2048static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2049{
2050	port_cfg(hw, p,
2051		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2052}
2053
2054static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2055{
2056	return port_chk(hw, p,
2057		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2058}
2059
2060/* Driver set switch broadcast storm protection at 10% rate. */
2061#define BROADCAST_STORM_PROTECTION_RATE	10
2062
2063/* 148,800 frames * 67 ms / 100 */
2064#define BROADCAST_STORM_VALUE		9969
2065
2066/**
2067 * sw_cfg_broad_storm - configure broadcast storm threshold
2068 * @hw: 	The hardware instance.
2069 * @percent:	Broadcast storm threshold in percent of transmit rate.
2070 *
2071 * This routine configures the broadcast storm threshold of the switch.
2072 */
2073static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2074{
2075	u16 data;
2076	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2077
2078	if (value > BROADCAST_STORM_RATE)
2079		value = BROADCAST_STORM_RATE;
2080
2081	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2082	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2083	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2084	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2085}
2086
2087/**
2088 * sw_get_broad_storm - get broadcast storm threshold
2089 * @hw: 	The hardware instance.
2090 * @percent:	Buffer to store the broadcast storm threshold percentage.
2091 *
2092 * This routine retrieves the broadcast storm threshold of the switch.
2093 */
2094static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2095{
2096	int num;
2097	u16 data;
2098
2099	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2100	num = (data & BROADCAST_STORM_RATE_HI);
2101	num <<= 8;
2102	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2103	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2104	*percent = (u8) num;
2105}
2106
2107/**
2108 * sw_dis_broad_storm - disable broadstorm
2109 * @hw: 	The hardware instance.
2110 * @port:	The port index.
2111 *
2112 * This routine disables the broadcast storm limit function of the switch.
2113 */
2114static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2115{
2116	port_cfg_broad_storm(hw, port, 0);
2117}
2118
2119/**
2120 * sw_ena_broad_storm - enable broadcast storm
2121 * @hw: 	The hardware instance.
2122 * @port:	The port index.
2123 *
2124 * This routine enables the broadcast storm limit function of the switch.
2125 */
2126static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2127{
2128	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2129	port_cfg_broad_storm(hw, port, 1);
2130}
2131
2132/**
2133 * sw_init_broad_storm - initialize broadcast storm
2134 * @hw: 	The hardware instance.
2135 *
2136 * This routine initializes the broadcast storm limit function of the switch.
2137 */
2138static void sw_init_broad_storm(struct ksz_hw *hw)
2139{
2140	int port;
2141
2142	hw->ksz_switch->broad_per = 1;
2143	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2144	for (port = 0; port < TOTAL_PORT_NUM; port++)
2145		sw_dis_broad_storm(hw, port);
2146	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2147}
2148
2149/**
2150 * hw_cfg_broad_storm - configure broadcast storm
2151 * @hw: 	The hardware instance.
2152 * @percent:	Broadcast storm threshold in percent of transmit rate.
2153 *
2154 * This routine configures the broadcast storm threshold of the switch.
2155 * It is called by user functions.  The hardware should be acquired first.
2156 */
2157static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2158{
2159	if (percent > 100)
2160		percent = 100;
2161
2162	sw_cfg_broad_storm(hw, percent);
2163	sw_get_broad_storm(hw, &percent);
2164	hw->ksz_switch->broad_per = percent;
2165}
2166
2167/**
2168 * sw_dis_prio_rate - disable switch priority rate
2169 * @hw: 	The hardware instance.
2170 * @port:	The port index.
2171 *
2172 * This routine disables the priority rate function of the switch.
2173 */
2174static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2175{
2176	u32 addr;
2177
2178	PORT_CTRL_ADDR(port, addr);
2179	addr += KS8842_PORT_IN_RATE_OFFSET;
2180	writel(0, hw->io + addr);
2181}
2182
2183/**
2184 * sw_init_prio_rate - initialize switch prioirty rate
2185 * @hw: 	The hardware instance.
2186 *
2187 * This routine initializes the priority rate function of the switch.
2188 */
2189static void sw_init_prio_rate(struct ksz_hw *hw)
2190{
2191	int port;
2192	int prio;
2193	struct ksz_switch *sw = hw->ksz_switch;
2194
2195	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2196		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2197			sw->port_cfg[port].rx_rate[prio] =
2198			sw->port_cfg[port].tx_rate[prio] = 0;
2199		}
2200		sw_dis_prio_rate(hw, port);
2201	}
2202}
2203
2204/* Communication */
2205
2206static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2207{
2208	port_cfg(hw, p,
2209		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2210}
2211
2212static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2213{
2214	port_cfg(hw, p,
2215		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2216}
2217
2218static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2219{
2220	return port_chk(hw, p,
2221		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2222}
2223
2224static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2225{
2226	return port_chk(hw, p,
2227		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2228}
2229
2230/* Spanning Tree */
2231
2232static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2233{
2234	port_cfg(hw, p,
2235		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2236}
2237
2238static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2239{
2240	port_cfg(hw, p,
2241		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2242}
2243
2244static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2245{
2246	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2247}
2248
2249static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2250{
2251	if (!(hw->overrides & FAST_AGING)) {
2252		sw_cfg_fast_aging(hw, 1);
2253		mdelay(1);
2254		sw_cfg_fast_aging(hw, 0);
2255	}
2256}
2257
2258/* VLAN */
2259
2260static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2261{
2262	port_cfg(hw, p,
2263		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2264}
2265
2266static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2267{
2268	port_cfg(hw, p,
2269		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2270}
2271
2272static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2273{
2274	return port_chk(hw, p,
2275		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2276}
2277
2278static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2279{
2280	return port_chk(hw, p,
2281		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2282}
2283
2284static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2285{
2286	port_cfg(hw, p,
2287		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2288}
2289
2290static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2291{
2292	port_cfg(hw, p,
2293		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2294}
2295
2296static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2297{
2298	return port_chk(hw, p,
2299		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2300}
2301
2302static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2303{
2304	return port_chk(hw, p,
2305		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2306}
2307
2308/* Mirroring */
2309
2310static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2311{
2312	port_cfg(hw, p,
2313		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2314}
2315
2316static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2317{
2318	port_cfg(hw, p,
2319		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2320}
2321
2322static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2323{
2324	port_cfg(hw, p,
2325		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2326}
2327
2328static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2329{
2330	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2331}
2332
2333static void sw_init_mirror(struct ksz_hw *hw)
2334{
2335	int port;
2336
2337	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2338		port_cfg_mirror_sniffer(hw, port, 0);
2339		port_cfg_mirror_rx(hw, port, 0);
2340		port_cfg_mirror_tx(hw, port, 0);
2341	}
2342	sw_cfg_mirror_rx_tx(hw, 0);
2343}
2344
2345static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2346{
2347	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2348		SWITCH_UNK_DEF_PORT_ENABLE, set);
2349}
2350
2351static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2352{
2353	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2354		SWITCH_UNK_DEF_PORT_ENABLE);
2355}
2356
2357static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2358{
2359	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2360}
2361
2362static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2363{
2364	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2365}
2366
2367/* Priority */
2368
2369static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2370{
2371	port_cfg(hw, p,
2372		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2373}
2374
2375static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2376{
2377	port_cfg(hw, p,
2378		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2379}
2380
2381static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2382{
2383	port_cfg(hw, p,
2384		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2385}
2386
2387static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2388{
2389	port_cfg(hw, p,
2390		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2391}
2392
2393static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2394{
2395	return port_chk(hw, p,
2396		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2397}
2398
2399static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2400{
2401	return port_chk(hw, p,
2402		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2403}
2404
2405static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2406{
2407	return port_chk(hw, p,
2408		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2409}
2410
2411static inline int port_chk_prio(struct ksz_hw *hw, int p)
2412{
2413	return port_chk(hw, p,
2414		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2415}
2416
2417/**
2418 * sw_dis_diffserv - disable switch DiffServ priority
2419 * @hw: 	The hardware instance.
2420 * @port:	The port index.
2421 *
2422 * This routine disables the DiffServ priority function of the switch.
2423 */
2424static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2425{
2426	port_cfg_diffserv(hw, port, 0);
2427}
2428
2429/**
2430 * sw_dis_802_1p - disable switch 802.1p priority
2431 * @hw: 	The hardware instance.
2432 * @port:	The port index.
2433 *
2434 * This routine disables the 802.1p priority function of the switch.
2435 */
2436static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2437{
2438	port_cfg_802_1p(hw, port, 0);
2439}
2440
2441/**
2442 * sw_cfg_replace_null_vid -
2443 * @hw: 	The hardware instance.
2444 * @set:	The flag to disable or enable.
2445 *
2446 */
2447static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2448{
2449	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2450}
2451
2452/**
2453 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @set:	The flag to disable or enable.
2457 *
2458 * This routine enables the 802.1p priority re-mapping function of the switch.
2459 * That allows 802.1p priority field to be replaced with the port's default
2460 * tag's priority value if the ingress packet's 802.1p priority has a higher
2461 * priority than port's default tag's priority.
2462 */
2463static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2464{
2465	port_cfg_replace_vid(hw, port, set);
2466}
2467
2468/**
2469 * sw_cfg_port_based - configure switch port based priority
2470 * @hw: 	The hardware instance.
2471 * @port:	The port index.
2472 * @prio:	The priority to set.
2473 *
2474 * This routine configures the port based priority of the switch.
2475 */
2476static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2477{
2478	u16 data;
2479
2480	if (prio > PORT_BASED_PRIORITY_BASE)
2481		prio = PORT_BASED_PRIORITY_BASE;
2482
2483	hw->ksz_switch->port_cfg[port].port_prio = prio;
2484
2485	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2486	data &= ~PORT_BASED_PRIORITY_MASK;
2487	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2488	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2489}
2490
2491/**
2492 * sw_dis_multi_queue - disable transmit multiple queues
2493 * @hw: 	The hardware instance.
2494 * @port:	The port index.
2495 *
2496 * This routine disables the transmit multiple queues selection of the switch
2497 * port.  Only single transmit queue on the port.
2498 */
2499static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2500{
2501	port_cfg_prio(hw, port, 0);
2502}
2503
2504/**
2505 * sw_init_prio - initialize switch priority
2506 * @hw: 	The hardware instance.
2507 *
2508 * This routine initializes the switch QoS priority functions.
2509 */
2510static void sw_init_prio(struct ksz_hw *hw)
2511{
2512	int port;
2513	int tos;
2514	struct ksz_switch *sw = hw->ksz_switch;
2515
2516	/*
2517	 * Init all the 802.1p tag priority value to be assigned to different
2518	 * priority queue.
2519	 */
2520	sw->p_802_1p[0] = 0;
2521	sw->p_802_1p[1] = 0;
2522	sw->p_802_1p[2] = 1;
2523	sw->p_802_1p[3] = 1;
2524	sw->p_802_1p[4] = 2;
2525	sw->p_802_1p[5] = 2;
2526	sw->p_802_1p[6] = 3;
2527	sw->p_802_1p[7] = 3;
2528
2529	/*
2530	 * Init all the DiffServ priority value to be assigned to priority
2531	 * queue 0.
2532	 */
2533	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2534		sw->diffserv[tos] = 0;
2535
2536	/* All QoS functions disabled. */
2537	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2538		sw_dis_multi_queue(hw, port);
2539		sw_dis_diffserv(hw, port);
2540		sw_dis_802_1p(hw, port);
2541		sw_cfg_replace_vid(hw, port, 0);
2542
2543		sw->port_cfg[port].port_prio = 0;
2544		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2545	}
2546	sw_cfg_replace_null_vid(hw, 0);
2547}
2548
2549/**
2550 * port_get_def_vid - get port default VID.
2551 * @hw: 	The hardware instance.
2552 * @port:	The port index.
2553 * @vid:	Buffer to store the VID.
2554 *
2555 * This routine retrieves the default VID of the port.
2556 */
2557static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2558{
2559	u32 addr;
2560
2561	PORT_CTRL_ADDR(port, addr);
2562	addr += KS8842_PORT_CTRL_VID_OFFSET;
2563	*vid = readw(hw->io + addr);
2564}
2565
2566/**
2567 * sw_init_vlan - initialize switch VLAN
2568 * @hw: 	The hardware instance.
2569 *
2570 * This routine initializes the VLAN function of the switch.
2571 */
2572static void sw_init_vlan(struct ksz_hw *hw)
2573{
2574	int port;
2575	int entry;
2576	struct ksz_switch *sw = hw->ksz_switch;
2577
2578	/* Read 16 VLAN entries from device's VLAN table. */
2579	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2580		sw_r_vlan_table(hw, entry,
2581			&sw->vlan_table[entry].vid,
2582			&sw->vlan_table[entry].fid,
2583			&sw->vlan_table[entry].member);
2584	}
2585
2586	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2587		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2588		sw->port_cfg[port].member = PORT_MASK;
2589	}
2590}
2591
2592/**
2593 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2594 * @hw: 	The hardware instance.
2595 * @port:	The port index.
2596 * @member:	The port-based VLAN membership.
2597 *
2598 * This routine configures the port-based VLAN membership of the port.
2599 */
2600static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2601{
2602	u32 addr;
2603	u8 data;
2604
2605	PORT_CTRL_ADDR(port, addr);
2606	addr += KS8842_PORT_CTRL_2_OFFSET;
2607
2608	data = readb(hw->io + addr);
2609	data &= ~PORT_VLAN_MEMBERSHIP;
2610	data |= (member & PORT_MASK);
2611	writeb(data, hw->io + addr);
2612
2613	hw->ksz_switch->port_cfg[port].member = member;
2614}
2615
2616/**
2617 * sw_get_addr - get the switch MAC address.
2618 * @hw: 	The hardware instance.
2619 * @mac_addr:	Buffer to store the MAC address.
2620 *
2621 * This function retrieves the MAC address of the switch.
2622 */
2623static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2624{
2625	int i;
2626
2627	for (i = 0; i < 6; i += 2) {
2628		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2629		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2630	}
2631}
2632
2633/**
2634 * sw_set_addr - configure switch MAC address
2635 * @hw: 	The hardware instance.
2636 * @mac_addr:	The MAC address.
2637 *
2638 * This function configures the MAC address of the switch.
2639 */
2640static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2641{
2642	int i;
2643
2644	for (i = 0; i < 6; i += 2) {
2645		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2646		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2647	}
2648}
2649
2650/**
2651 * sw_set_global_ctrl - set switch global control
2652 * @hw: 	The hardware instance.
2653 *
2654 * This routine sets the global control of the switch function.
2655 */
2656static void sw_set_global_ctrl(struct ksz_hw *hw)
2657{
2658	u16 data;
2659
2660	/* Enable switch MII flow control. */
2661	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2662	data |= SWITCH_FLOW_CTRL;
2663	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2664
2665	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2666
2667	/* Enable aggressive back off algorithm in half duplex mode. */
2668	data |= SWITCH_AGGR_BACKOFF;
2669
2670	/* Enable automatic fast aging when link changed detected. */
2671	data |= SWITCH_AGING_ENABLE;
2672	data |= SWITCH_LINK_AUTO_AGING;
2673
2674	if (hw->overrides & FAST_AGING)
2675		data |= SWITCH_FAST_AGING;
2676	else
2677		data &= ~SWITCH_FAST_AGING;
2678	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2679
2680	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2681
2682	/* Enable no excessive collision drop. */
2683	data |= NO_EXC_COLLISION_DROP;
2684	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2685}
2686
2687enum {
2688	STP_STATE_DISABLED = 0,
2689	STP_STATE_LISTENING,
2690	STP_STATE_LEARNING,
2691	STP_STATE_FORWARDING,
2692	STP_STATE_BLOCKED,
2693	STP_STATE_SIMPLE
2694};
2695
2696/**
2697 * port_set_stp_state - configure port spanning tree state
2698 * @hw: 	The hardware instance.
2699 * @port:	The port index.
2700 * @state:	The spanning tree state.
2701 *
2702 * This routine configures the spanning tree state of the port.
2703 */
2704static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2705{
2706	u16 data;
2707
2708	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2709	switch (state) {
2710	case STP_STATE_DISABLED:
2711		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2712		data |= PORT_LEARN_DISABLE;
2713		break;
2714	case STP_STATE_LISTENING:
2715/*
2716 * No need to turn on transmit because of port direct mode.
2717 * Turning on receive is required if static MAC table is not setup.
2718 */
2719		data &= ~PORT_TX_ENABLE;
2720		data |= PORT_RX_ENABLE;
2721		data |= PORT_LEARN_DISABLE;
2722		break;
2723	case STP_STATE_LEARNING:
2724		data &= ~PORT_TX_ENABLE;
2725		data |= PORT_RX_ENABLE;
2726		data &= ~PORT_LEARN_DISABLE;
2727		break;
2728	case STP_STATE_FORWARDING:
2729		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2730		data &= ~PORT_LEARN_DISABLE;
2731		break;
2732	case STP_STATE_BLOCKED:
2733/*
2734 * Need to setup static MAC table with override to keep receiving BPDU
2735 * messages.  See sw_init_stp routine.
2736 */
2737		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2738		data |= PORT_LEARN_DISABLE;
2739		break;
2740	case STP_STATE_SIMPLE:
2741		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2742		data |= PORT_LEARN_DISABLE;
2743		break;
2744	}
2745	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2746	hw->ksz_switch->port_cfg[port].stp_state = state;
2747}
2748
2749#define STP_ENTRY			0
2750#define BROADCAST_ENTRY			1
2751#define BRIDGE_ADDR_ENTRY		2
2752#define IPV6_ADDR_ENTRY			3
2753
2754/**
2755 * sw_clr_sta_mac_table - clear static MAC table
2756 * @hw: 	The hardware instance.
2757 *
2758 * This routine clears the static MAC table.
2759 */
2760static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2761{
2762	struct ksz_mac_table *entry;
2763	int i;
2764
2765	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2766		entry = &hw->ksz_switch->mac_table[i];
2767		sw_w_sta_mac_table(hw, i,
2768			entry->mac_addr, entry->ports,
2769			entry->override, 0,
2770			entry->use_fid, entry->fid);
2771	}
2772}
2773
2774/**
2775 * sw_init_stp - initialize switch spanning tree support
2776 * @hw: 	The hardware instance.
2777 *
2778 * This routine initializes the spanning tree support of the switch.
2779 */
2780static void sw_init_stp(struct ksz_hw *hw)
2781{
2782	struct ksz_mac_table *entry;
2783
2784	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2785	entry->mac_addr[0] = 0x01;
2786	entry->mac_addr[1] = 0x80;
2787	entry->mac_addr[2] = 0xC2;
2788	entry->mac_addr[3] = 0x00;
2789	entry->mac_addr[4] = 0x00;
2790	entry->mac_addr[5] = 0x00;
2791	entry->ports = HOST_MASK;
2792	entry->override = 1;
2793	entry->valid = 1;
2794	sw_w_sta_mac_table(hw, STP_ENTRY,
2795		entry->mac_addr, entry->ports,
2796		entry->override, entry->valid,
2797		entry->use_fid, entry->fid);
2798}
2799
2800/**
2801 * sw_block_addr - block certain packets from the host port
2802 * @hw: 	The hardware instance.
2803 *
2804 * This routine blocks certain packets from reaching to the host port.
2805 */
2806static void sw_block_addr(struct ksz_hw *hw)
2807{
2808	struct ksz_mac_table *entry;
2809	int i;
2810
2811	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2812		entry = &hw->ksz_switch->mac_table[i];
2813		entry->valid = 0;
2814		sw_w_sta_mac_table(hw, i,
2815			entry->mac_addr, entry->ports,
2816			entry->override, entry->valid,
2817			entry->use_fid, entry->fid);
2818	}
2819}
2820
 
 
 
 
 
 
 
 
 
2821static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2822{
2823	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2824}
2825
2826static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2827{
2828	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2829}
2830
2831static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2832{
2833	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2834}
2835
2836static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2837{
2838	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2839}
2840
2841static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2842{
2843	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2844}
2845
2846static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2847{
2848	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2849}
2850
2851static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2852{
2853	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2854}
2855
2856static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2857{
2858	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2859}
2860
2861static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2862{
2863	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2864}
2865
2866static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2867{
2868	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2869}
2870
2871static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2872{
2873	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2874}
2875
2876static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2877{
2878	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2879}
2880
2881/**
2882 * hw_r_phy - read data from PHY register
2883 * @hw: 	The hardware instance.
2884 * @port:	Port to read.
2885 * @reg:	PHY register to read.
2886 * @val:	Buffer to store the read data.
2887 *
2888 * This routine reads data from the PHY register.
2889 */
2890static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2891{
2892	int phy;
2893
2894	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2895	*val = readw(hw->io + phy);
2896}
2897
2898/**
2899 * hw_w_phy - write data to PHY register
2900 * @hw: 	The hardware instance.
2901 * @port:	Port to write.
2902 * @reg:	PHY register to write.
2903 * @val:	Word data to write.
2904 *
2905 * This routine writes data to the PHY register.
2906 */
2907static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2908{
2909	int phy;
2910
2911	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2912	writew(val, hw->io + phy);
2913}
2914
2915/*
2916 * EEPROM access functions
2917 */
2918
2919#define AT93C_CODE			0
2920#define AT93C_WR_OFF			0x00
2921#define AT93C_WR_ALL			0x10
2922#define AT93C_ER_ALL			0x20
2923#define AT93C_WR_ON			0x30
2924
2925#define AT93C_WRITE			1
2926#define AT93C_READ			2
2927#define AT93C_ERASE			3
2928
2929#define EEPROM_DELAY			4
2930
2931static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2932{
2933	u16 data;
2934
2935	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2936	data &= ~gpio;
2937	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2938}
2939
2940static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2941{
2942	u16 data;
2943
2944	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2945	data |= gpio;
2946	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2947}
2948
2949static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2950{
2951	u16 data;
2952
2953	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2954	return (u8)(data & gpio);
2955}
2956
2957static void eeprom_clk(struct ksz_hw *hw)
2958{
2959	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2960	udelay(EEPROM_DELAY);
2961	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2962	udelay(EEPROM_DELAY);
2963}
2964
2965static u16 spi_r(struct ksz_hw *hw)
2966{
2967	int i;
2968	u16 temp = 0;
2969
2970	for (i = 15; i >= 0; i--) {
2971		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2972		udelay(EEPROM_DELAY);
2973
2974		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2975
2976		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2977		udelay(EEPROM_DELAY);
2978	}
2979	return temp;
2980}
2981
2982static void spi_w(struct ksz_hw *hw, u16 data)
2983{
2984	int i;
2985
2986	for (i = 15; i >= 0; i--) {
2987		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2988			drop_gpio(hw, EEPROM_DATA_OUT);
2989		eeprom_clk(hw);
2990	}
2991}
2992
2993static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2994{
2995	int i;
2996
2997	/* Initial start bit */
2998	raise_gpio(hw, EEPROM_DATA_OUT);
2999	eeprom_clk(hw);
3000
3001	/* AT93C operation */
3002	for (i = 1; i >= 0; i--) {
3003		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3004			drop_gpio(hw, EEPROM_DATA_OUT);
3005		eeprom_clk(hw);
3006	}
3007
3008	/* Address location */
3009	for (i = 5; i >= 0; i--) {
3010		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3011			drop_gpio(hw, EEPROM_DATA_OUT);
3012		eeprom_clk(hw);
3013	}
3014}
3015
3016#define EEPROM_DATA_RESERVED		0
3017#define EEPROM_DATA_MAC_ADDR_0		1
3018#define EEPROM_DATA_MAC_ADDR_1		2
3019#define EEPROM_DATA_MAC_ADDR_2		3
3020#define EEPROM_DATA_SUBSYS_ID		4
3021#define EEPROM_DATA_SUBSYS_VEN_ID	5
3022#define EEPROM_DATA_PM_CAP		6
3023
3024/* User defined EEPROM data */
3025#define EEPROM_DATA_OTHER_MAC_ADDR	9
3026
3027/**
3028 * eeprom_read - read from AT93C46 EEPROM
3029 * @hw: 	The hardware instance.
3030 * @reg:	The register offset.
3031 *
3032 * This function reads a word from the AT93C46 EEPROM.
3033 *
3034 * Return the data value.
3035 */
3036static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3037{
3038	u16 data;
3039
3040	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3041
3042	spi_reg(hw, AT93C_READ, reg);
3043	data = spi_r(hw);
3044
3045	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3046
3047	return data;
3048}
3049
3050/**
3051 * eeprom_write - write to AT93C46 EEPROM
3052 * @hw: 	The hardware instance.
3053 * @reg:	The register offset.
3054 * @data:	The data value.
3055 *
3056 * This procedure writes a word to the AT93C46 EEPROM.
3057 */
3058static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3059{
3060	int timeout;
3061
3062	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3063
3064	/* Enable write. */
3065	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3066	drop_gpio(hw, EEPROM_CHIP_SELECT);
3067	udelay(1);
3068
3069	/* Erase the register. */
3070	raise_gpio(hw, EEPROM_CHIP_SELECT);
3071	spi_reg(hw, AT93C_ERASE, reg);
3072	drop_gpio(hw, EEPROM_CHIP_SELECT);
3073	udelay(1);
3074
3075	/* Check operation complete. */
3076	raise_gpio(hw, EEPROM_CHIP_SELECT);
3077	timeout = 8;
3078	mdelay(2);
3079	do {
3080		mdelay(1);
3081	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3082	drop_gpio(hw, EEPROM_CHIP_SELECT);
3083	udelay(1);
3084
3085	/* Write the register. */
3086	raise_gpio(hw, EEPROM_CHIP_SELECT);
3087	spi_reg(hw, AT93C_WRITE, reg);
3088	spi_w(hw, data);
3089	drop_gpio(hw, EEPROM_CHIP_SELECT);
3090	udelay(1);
3091
3092	/* Check operation complete. */
3093	raise_gpio(hw, EEPROM_CHIP_SELECT);
3094	timeout = 8;
3095	mdelay(2);
3096	do {
3097		mdelay(1);
3098	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3099	drop_gpio(hw, EEPROM_CHIP_SELECT);
3100	udelay(1);
3101
3102	/* Disable write. */
3103	raise_gpio(hw, EEPROM_CHIP_SELECT);
3104	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3105
3106	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3107}
3108
3109/*
3110 * Link detection routines
3111 */
3112
3113static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3114{
3115	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3116	switch (port->flow_ctrl) {
3117	case PHY_FLOW_CTRL:
3118		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3119		break;
3120	/* Not supported. */
3121	case PHY_TX_ONLY:
3122	case PHY_RX_ONLY:
3123	default:
3124		break;
3125	}
3126	return ctrl;
3127}
3128
3129static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3130{
3131	u32 rx_cfg;
3132	u32 tx_cfg;
3133
3134	rx_cfg = hw->rx_cfg;
3135	tx_cfg = hw->tx_cfg;
3136	if (rx)
3137		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3138	else
3139		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3140	if (tx)
3141		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3142	else
3143		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3144	if (hw->enabled) {
3145		if (rx_cfg != hw->rx_cfg)
3146			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3147		if (tx_cfg != hw->tx_cfg)
3148			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3149	}
3150}
3151
3152static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3153	u16 local, u16 remote)
3154{
3155	int rx;
3156	int tx;
3157
3158	if (hw->overrides & PAUSE_FLOW_CTRL)
3159		return;
3160
3161	rx = tx = 0;
3162	if (port->force_link)
3163		rx = tx = 1;
3164	if (remote & LPA_PAUSE_CAP) {
3165		if (local & ADVERTISE_PAUSE_CAP) {
3166			rx = tx = 1;
3167		} else if ((remote & LPA_PAUSE_ASYM) &&
3168			   (local &
3169			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
3170			   ADVERTISE_PAUSE_ASYM) {
3171			tx = 1;
3172		}
3173	} else if (remote & LPA_PAUSE_ASYM) {
3174		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3175		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3176			rx = 1;
3177	}
3178	if (!hw->ksz_switch)
3179		set_flow_ctrl(hw, rx, tx);
3180}
3181
3182static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3183	struct ksz_port_info *info, u16 link_status)
3184{
3185	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3186			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3187		u32 cfg = hw->tx_cfg;
3188
3189		/* Disable flow control in the half duplex mode. */
3190		if (1 == info->duplex)
3191			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3192		if (hw->enabled && cfg != hw->tx_cfg)
3193			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3194	}
3195}
3196
3197/**
3198 * port_get_link_speed - get current link status
3199 * @port: 	The port instance.
3200 *
3201 * This routine reads PHY registers to determine the current link status of the
3202 * switch ports.
3203 */
3204static void port_get_link_speed(struct ksz_port *port)
3205{
3206	uint interrupt;
3207	struct ksz_port_info *info;
3208	struct ksz_port_info *linked = NULL;
3209	struct ksz_hw *hw = port->hw;
3210	u16 data;
3211	u16 status;
3212	u8 local;
3213	u8 remote;
3214	int i;
3215	int p;
3216	int change = 0;
3217
3218	interrupt = hw_block_intr(hw);
3219
3220	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3221		info = &hw->port_info[p];
3222		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3223		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3224
3225		/*
3226		 * Link status is changing all the time even when there is no
3227		 * cable connection!
3228		 */
3229		remote = status & (PORT_AUTO_NEG_COMPLETE |
3230			PORT_STATUS_LINK_GOOD);
3231		local = (u8) data;
3232
3233		/* No change to status. */
3234		if (local == info->advertised && remote == info->partner)
3235			continue;
3236
3237		info->advertised = local;
3238		info->partner = remote;
3239		if (status & PORT_STATUS_LINK_GOOD) {
3240
3241			/* Remember the first linked port. */
3242			if (!linked)
3243				linked = info;
3244
3245			info->tx_rate = 10 * TX_RATE_UNIT;
3246			if (status & PORT_STATUS_SPEED_100MBIT)
3247				info->tx_rate = 100 * TX_RATE_UNIT;
3248
3249			info->duplex = 1;
3250			if (status & PORT_STATUS_FULL_DUPLEX)
3251				info->duplex = 2;
3252
3253			if (media_connected != info->state) {
3254				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3255					&data);
3256				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3257					&status);
3258				determine_flow_ctrl(hw, port, data, status);
3259				if (hw->ksz_switch) {
3260					port_cfg_back_pressure(hw, p,
3261						(1 == info->duplex));
3262				}
3263				change |= 1 << i;
3264				port_cfg_change(hw, port, info, status);
3265			}
3266			info->state = media_connected;
3267		} else {
3268			if (media_disconnected != info->state) {
3269				change |= 1 << i;
3270
3271				/* Indicate the link just goes down. */
3272				hw->port_mib[p].link_down = 1;
3273			}
3274			info->state = media_disconnected;
3275		}
3276		hw->port_mib[p].state = (u8) info->state;
3277	}
3278
3279	if (linked && media_disconnected == port->linked->state)
3280		port->linked = linked;
3281
3282	hw_restore_intr(hw, interrupt);
3283}
3284
3285#define PHY_RESET_TIMEOUT		10
3286
3287/**
3288 * port_set_link_speed - set port speed
3289 * @port: 	The port instance.
3290 *
3291 * This routine sets the link speed of the switch ports.
3292 */
3293static void port_set_link_speed(struct ksz_port *port)
3294{
 
3295	struct ksz_hw *hw = port->hw;
3296	u16 data;
3297	u16 cfg;
3298	u8 status;
3299	int i;
3300	int p;
3301
3302	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
 
 
3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306		cfg = 0;
3307		if (status & PORT_STATUS_LINK_GOOD)
3308			cfg = data;
3309
3310		data |= PORT_AUTO_NEG_ENABLE;
3311		data = advertised_flow_ctrl(port, data);
3312
3313		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3314			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3315
3316		/* Check if manual configuration is specified by the user. */
3317		if (port->speed || port->duplex) {
3318			if (10 == port->speed)
3319				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3320					PORT_AUTO_NEG_100BTX);
3321			else if (100 == port->speed)
3322				data &= ~(PORT_AUTO_NEG_10BT_FD |
3323					PORT_AUTO_NEG_10BT);
3324			if (1 == port->duplex)
3325				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3326					PORT_AUTO_NEG_10BT_FD);
3327			else if (2 == port->duplex)
3328				data &= ~(PORT_AUTO_NEG_100BTX |
3329					PORT_AUTO_NEG_10BT);
3330		}
3331		if (data != cfg) {
3332			data |= PORT_AUTO_NEG_RESTART;
3333			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3334		}
3335	}
3336}
3337
3338/**
3339 * port_force_link_speed - force port speed
3340 * @port: 	The port instance.
3341 *
3342 * This routine forces the link speed of the switch ports.
3343 */
3344static void port_force_link_speed(struct ksz_port *port)
3345{
3346	struct ksz_hw *hw = port->hw;
3347	u16 data;
3348	int i;
3349	int phy;
3350	int p;
3351
3352	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3353		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3354		hw_r_phy_ctrl(hw, phy, &data);
3355
3356		data &= ~BMCR_ANENABLE;
3357
3358		if (10 == port->speed)
3359			data &= ~BMCR_SPEED100;
3360		else if (100 == port->speed)
3361			data |= BMCR_SPEED100;
3362		if (1 == port->duplex)
3363			data &= ~BMCR_FULLDPLX;
3364		else if (2 == port->duplex)
3365			data |= BMCR_FULLDPLX;
3366		hw_w_phy_ctrl(hw, phy, data);
3367	}
3368}
3369
3370static void port_set_power_saving(struct ksz_port *port, int enable)
3371{
3372	struct ksz_hw *hw = port->hw;
3373	int i;
3374	int p;
3375
3376	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3377		port_cfg(hw, p,
3378			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3379}
3380
3381/*
3382 * KSZ8841 power management functions
3383 */
3384
3385/**
3386 * hw_chk_wol_pme_status - check PMEN pin
3387 * @hw: 	The hardware instance.
3388 *
3389 * This function is used to check PMEN pin is asserted.
3390 *
3391 * Return 1 if PMEN pin is asserted; otherwise, 0.
3392 */
3393static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3394{
3395	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3396	struct pci_dev *pdev = hw_priv->pdev;
3397	u16 data;
3398
3399	if (!pdev->pm_cap)
3400		return 0;
3401	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3402	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3403}
3404
3405/**
3406 * hw_clr_wol_pme_status - clear PMEN pin
3407 * @hw: 	The hardware instance.
3408 *
3409 * This routine is used to clear PME_Status to deassert PMEN pin.
3410 */
3411static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3412{
3413	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3414	struct pci_dev *pdev = hw_priv->pdev;
3415	u16 data;
3416
3417	if (!pdev->pm_cap)
3418		return;
3419
3420	/* Clear PME_Status to deassert PMEN pin. */
3421	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3422	data |= PCI_PM_CTRL_PME_STATUS;
3423	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3424}
3425
3426/**
3427 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3428 * @hw: 	The hardware instance.
3429 * @set:	The flag indicating whether to enable or disable.
3430 *
3431 * This routine is used to enable or disable Wake-on-LAN.
3432 */
3433static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3434{
3435	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3436	struct pci_dev *pdev = hw_priv->pdev;
3437	u16 data;
3438
3439	if (!pdev->pm_cap)
3440		return;
3441	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3442	data &= ~PCI_PM_CTRL_STATE_MASK;
3443	if (set)
3444		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3445	else
3446		data &= ~PCI_PM_CTRL_PME_ENABLE;
3447	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3448}
3449
3450/**
3451 * hw_cfg_wol - configure Wake-on-LAN features
3452 * @hw: 	The hardware instance.
3453 * @frame:	The pattern frame bit.
3454 * @set:	The flag indicating whether to enable or disable.
3455 *
3456 * This routine is used to enable or disable certain Wake-on-LAN features.
3457 */
3458static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3459{
3460	u16 data;
3461
3462	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3463	if (set)
3464		data |= frame;
3465	else
3466		data &= ~frame;
3467	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3468}
3469
3470/**
3471 * hw_set_wol_frame - program Wake-on-LAN pattern
3472 * @hw: 	The hardware instance.
3473 * @i:		The frame index.
3474 * @mask_size:	The size of the mask.
3475 * @mask:	Mask to ignore certain bytes in the pattern.
3476 * @frame_size:	The size of the frame.
3477 * @pattern:	The frame data.
3478 *
3479 * This routine is used to program Wake-on-LAN pattern.
3480 */
3481static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3482	const u8 *mask, uint frame_size, const u8 *pattern)
3483{
3484	int bits;
3485	int from;
3486	int len;
3487	int to;
3488	u32 crc;
3489	u8 data[64];
3490	u8 val = 0;
3491
3492	if (frame_size > mask_size * 8)
3493		frame_size = mask_size * 8;
3494	if (frame_size > 64)
3495		frame_size = 64;
3496
3497	i *= 0x10;
3498	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3499	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3500
3501	bits = len = from = to = 0;
3502	do {
3503		if (bits) {
3504			if ((val & 1))
3505				data[to++] = pattern[from];
3506			val >>= 1;
3507			++from;
3508			--bits;
3509		} else {
3510			val = mask[len];
3511			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3512				+ len);
3513			++len;
3514			if (val)
3515				bits = 8;
3516			else
3517				from += 8;
3518		}
3519	} while (from < (int) frame_size);
3520	if (val) {
3521		bits = mask[len - 1];
3522		val <<= (from % 8);
3523		bits &= ~val;
3524		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3525			1);
3526	}
3527	crc = ether_crc(to, data);
3528	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3529}
3530
3531/**
3532 * hw_add_wol_arp - add ARP pattern
3533 * @hw: 	The hardware instance.
3534 * @ip_addr:	The IPv4 address assigned to the device.
3535 *
3536 * This routine is used to add ARP pattern for waking up the host.
3537 */
3538static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3539{
3540	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3541	u8 pattern[42] = {
3542		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3543		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3544		0x08, 0x06,
3545		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3546		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3547		0x00, 0x00, 0x00, 0x00,
3548		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3549		0x00, 0x00, 0x00, 0x00 };
3550
3551	memcpy(&pattern[38], ip_addr, 4);
3552	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3553}
3554
3555/**
3556 * hw_add_wol_bcast - add broadcast pattern
3557 * @hw: 	The hardware instance.
3558 *
3559 * This routine is used to add broadcast pattern for waking up the host.
3560 */
3561static void hw_add_wol_bcast(struct ksz_hw *hw)
3562{
3563	static const u8 mask[] = { 0x3F };
3564	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3565
3566	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3567}
3568
3569/**
3570 * hw_add_wol_mcast - add multicast pattern
3571 * @hw: 	The hardware instance.
3572 *
3573 * This routine is used to add multicast pattern for waking up the host.
3574 *
3575 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3576 * by IPv6 ping command.  Note that multicast packets are filtred through the
3577 * multicast hash table, so not all multicast packets can wake up the host.
3578 */
3579static void hw_add_wol_mcast(struct ksz_hw *hw)
3580{
3581	static const u8 mask[] = { 0x3F };
3582	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3583
3584	memcpy(&pattern[3], &hw->override_addr[3], 3);
3585	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3586}
3587
3588/**
3589 * hw_add_wol_ucast - add unicast pattern
3590 * @hw: 	The hardware instance.
3591 *
3592 * This routine is used to add unicast pattern to wakeup the host.
3593 *
3594 * It is assumed the unicast packet is directed to the device, as the hardware
3595 * can only receive them in normal case.
3596 */
3597static void hw_add_wol_ucast(struct ksz_hw *hw)
3598{
3599	static const u8 mask[] = { 0x3F };
3600
3601	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3602}
3603
3604/**
3605 * hw_enable_wol - enable Wake-on-LAN
3606 * @hw: 	The hardware instance.
3607 * @wol_enable:	The Wake-on-LAN settings.
3608 * @net_addr:	The IPv4 address assigned to the device.
3609 *
3610 * This routine is used to enable Wake-on-LAN depending on driver settings.
3611 */
3612static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3613{
3614	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3615	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3616	hw_add_wol_ucast(hw);
3617	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3618	hw_add_wol_mcast(hw);
3619	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3620	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3621	hw_add_wol_arp(hw, net_addr);
3622}
3623
3624/**
3625 * hw_init - check driver is correct for the hardware
3626 * @hw: 	The hardware instance.
3627 *
3628 * This function checks the hardware is correct for this driver and sets the
3629 * hardware up for proper initialization.
3630 *
3631 * Return number of ports or 0 if not right.
3632 */
3633static int hw_init(struct ksz_hw *hw)
3634{
3635	int rc = 0;
3636	u16 data;
3637	u16 revision;
3638
3639	/* Set bus speed to 125MHz. */
3640	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3641
3642	/* Check KSZ884x chip ID. */
3643	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3644
3645	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3646	data &= KS884X_CHIP_ID_MASK_41;
3647	if (REG_CHIP_ID_41 == data)
3648		rc = 1;
3649	else if (REG_CHIP_ID_42 == data)
3650		rc = 2;
3651	else
3652		return 0;
3653
3654	/* Setup hardware features or bug workarounds. */
3655	if (revision <= 1) {
3656		hw->features |= SMALL_PACKET_TX_BUG;
3657		if (1 == rc)
3658			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3659	}
3660	return rc;
3661}
3662
3663/**
3664 * hw_reset - reset the hardware
3665 * @hw: 	The hardware instance.
3666 *
3667 * This routine resets the hardware.
3668 */
3669static void hw_reset(struct ksz_hw *hw)
3670{
3671	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3672
3673	/* Wait for device to reset. */
3674	mdelay(10);
3675
3676	/* Write 0 to clear device reset. */
3677	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3678}
3679
3680/**
3681 * hw_setup - setup the hardware
3682 * @hw: 	The hardware instance.
3683 *
3684 * This routine setup the hardware for proper operation.
3685 */
3686static void hw_setup(struct ksz_hw *hw)
3687{
3688#if SET_DEFAULT_LED
3689	u16 data;
3690
3691	/* Change default LED mode. */
3692	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3693	data &= ~LED_MODE;
3694	data |= SET_DEFAULT_LED;
3695	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3696#endif
3697
3698	/* Setup transmit control. */
3699	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3700		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3701
3702	/* Setup receive control. */
3703	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3704		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3705	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3706
3707	/* Hardware cannot handle UDP packet in IP fragments. */
3708	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3709
3710	if (hw->all_multi)
3711		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3712	if (hw->promiscuous)
3713		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3714}
3715
3716/**
3717 * hw_setup_intr - setup interrupt mask
3718 * @hw: 	The hardware instance.
3719 *
3720 * This routine setup the interrupt mask for proper operation.
3721 */
3722static void hw_setup_intr(struct ksz_hw *hw)
3723{
3724	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3725}
3726
3727static void ksz_check_desc_num(struct ksz_desc_info *info)
3728{
3729#define MIN_DESC_SHIFT  2
3730
3731	int alloc = info->alloc;
3732	int shift;
3733
3734	shift = 0;
3735	while (!(alloc & 1)) {
3736		shift++;
3737		alloc >>= 1;
3738	}
3739	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3740		pr_alert("Hardware descriptor numbers not right!\n");
3741		while (alloc) {
3742			shift++;
3743			alloc >>= 1;
3744		}
3745		if (shift < MIN_DESC_SHIFT)
3746			shift = MIN_DESC_SHIFT;
3747		alloc = 1 << shift;
3748		info->alloc = alloc;
3749	}
3750	info->mask = info->alloc - 1;
3751}
3752
3753static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3754{
3755	int i;
3756	u32 phys = desc_info->ring_phys;
3757	struct ksz_hw_desc *desc = desc_info->ring_virt;
3758	struct ksz_desc *cur = desc_info->ring;
3759	struct ksz_desc *previous = NULL;
3760
3761	for (i = 0; i < desc_info->alloc; i++) {
3762		cur->phw = desc++;
3763		phys += desc_info->size;
3764		previous = cur++;
3765		previous->phw->next = cpu_to_le32(phys);
3766	}
3767	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3768	previous->sw.buf.rx.end_of_ring = 1;
3769	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3770
3771	desc_info->avail = desc_info->alloc;
3772	desc_info->last = desc_info->next = 0;
3773
3774	desc_info->cur = desc_info->ring;
3775}
3776
3777/**
3778 * hw_set_desc_base - set descriptor base addresses
3779 * @hw: 	The hardware instance.
3780 * @tx_addr:	The transmit descriptor base.
3781 * @rx_addr:	The receive descriptor base.
3782 *
3783 * This routine programs the descriptor base addresses after reset.
3784 */
3785static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3786{
3787	/* Set base address of Tx/Rx descriptors. */
3788	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3789	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3790}
3791
3792static void hw_reset_pkts(struct ksz_desc_info *info)
3793{
3794	info->cur = info->ring;
3795	info->avail = info->alloc;
3796	info->last = info->next = 0;
3797}
3798
3799static inline void hw_resume_rx(struct ksz_hw *hw)
3800{
3801	writel(DMA_START, hw->io + KS_DMA_RX_START);
3802}
3803
3804/**
3805 * hw_start_rx - start receiving
3806 * @hw: 	The hardware instance.
3807 *
3808 * This routine starts the receive function of the hardware.
3809 */
3810static void hw_start_rx(struct ksz_hw *hw)
3811{
3812	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3813
3814	/* Notify when the receive stops. */
3815	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3816
3817	writel(DMA_START, hw->io + KS_DMA_RX_START);
3818	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3819	hw->rx_stop++;
3820
3821	/* Variable overflows. */
3822	if (0 == hw->rx_stop)
3823		hw->rx_stop = 2;
3824}
3825
3826/**
3827 * hw_stop_rx - stop receiving
3828 * @hw: 	The hardware instance.
3829 *
3830 * This routine stops the receive function of the hardware.
3831 */
3832static void hw_stop_rx(struct ksz_hw *hw)
3833{
3834	hw->rx_stop = 0;
3835	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3836	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3837}
3838
3839/**
3840 * hw_start_tx - start transmitting
3841 * @hw: 	The hardware instance.
3842 *
3843 * This routine starts the transmit function of the hardware.
3844 */
3845static void hw_start_tx(struct ksz_hw *hw)
3846{
3847	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3848}
3849
3850/**
3851 * hw_stop_tx - stop transmitting
3852 * @hw: 	The hardware instance.
3853 *
3854 * This routine stops the transmit function of the hardware.
3855 */
3856static void hw_stop_tx(struct ksz_hw *hw)
3857{
3858	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3859}
3860
3861/**
3862 * hw_disable - disable hardware
3863 * @hw: 	The hardware instance.
3864 *
3865 * This routine disables the hardware.
3866 */
3867static void hw_disable(struct ksz_hw *hw)
3868{
3869	hw_stop_rx(hw);
3870	hw_stop_tx(hw);
3871	hw->enabled = 0;
3872}
3873
3874/**
3875 * hw_enable - enable hardware
3876 * @hw: 	The hardware instance.
3877 *
3878 * This routine enables the hardware.
3879 */
3880static void hw_enable(struct ksz_hw *hw)
3881{
3882	hw_start_tx(hw);
3883	hw_start_rx(hw);
3884	hw->enabled = 1;
3885}
3886
3887/**
3888 * hw_alloc_pkt - allocate enough descriptors for transmission
3889 * @hw: 	The hardware instance.
3890 * @length:	The length of the packet.
3891 * @physical:	Number of descriptors required.
3892 *
3893 * This function allocates descriptors for transmission.
3894 *
3895 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3896 */
3897static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3898{
3899	/* Always leave one descriptor free. */
3900	if (hw->tx_desc_info.avail <= 1)
3901		return 0;
3902
3903	/* Allocate a descriptor for transmission and mark it current. */
3904	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3905	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3906
3907	/* Keep track of number of transmit descriptors used so far. */
3908	++hw->tx_int_cnt;
3909	hw->tx_size += length;
3910
3911	/* Cannot hold on too much data. */
3912	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3913		hw->tx_int_cnt = hw->tx_int_mask + 1;
3914
3915	if (physical > hw->tx_desc_info.avail)
3916		return 1;
3917
3918	return hw->tx_desc_info.avail;
3919}
3920
3921/**
3922 * hw_send_pkt - mark packet for transmission
3923 * @hw: 	The hardware instance.
3924 *
3925 * This routine marks the packet for transmission in PCI version.
3926 */
3927static void hw_send_pkt(struct ksz_hw *hw)
3928{
3929	struct ksz_desc *cur = hw->tx_desc_info.cur;
3930
3931	cur->sw.buf.tx.last_seg = 1;
3932
3933	/* Interrupt only after specified number of descriptors used. */
3934	if (hw->tx_int_cnt > hw->tx_int_mask) {
3935		cur->sw.buf.tx.intr = 1;
3936		hw->tx_int_cnt = 0;
3937		hw->tx_size = 0;
3938	}
3939
3940	/* KSZ8842 supports port directed transmission. */
3941	cur->sw.buf.tx.dest_port = hw->dst_ports;
3942
3943	release_desc(cur);
3944
3945	writel(0, hw->io + KS_DMA_TX_START);
3946}
3947
3948static int empty_addr(u8 *addr)
3949{
3950	u32 *addr1 = (u32 *) addr;
3951	u16 *addr2 = (u16 *) &addr[4];
3952
3953	return 0 == *addr1 && 0 == *addr2;
3954}
3955
3956/**
3957 * hw_set_addr - set MAC address
3958 * @hw: 	The hardware instance.
3959 *
3960 * This routine programs the MAC address of the hardware when the address is
3961 * overridden.
3962 */
3963static void hw_set_addr(struct ksz_hw *hw)
3964{
3965	int i;
3966
3967	for (i = 0; i < ETH_ALEN; i++)
3968		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3969			hw->io + KS884X_ADDR_0_OFFSET + i);
3970
3971	sw_set_addr(hw, hw->override_addr);
3972}
3973
3974/**
3975 * hw_read_addr - read MAC address
3976 * @hw: 	The hardware instance.
3977 *
3978 * This routine retrieves the MAC address of the hardware.
3979 */
3980static void hw_read_addr(struct ksz_hw *hw)
3981{
3982	int i;
3983
3984	for (i = 0; i < ETH_ALEN; i++)
3985		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3986			KS884X_ADDR_0_OFFSET + i);
3987
3988	if (!hw->mac_override) {
3989		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3990		if (empty_addr(hw->override_addr)) {
3991			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3992			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3993			       ETH_ALEN);
3994			hw->override_addr[5] += hw->id;
3995			hw_set_addr(hw);
3996		}
3997	}
3998}
3999
4000static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4001{
4002	int i;
4003	u32 mac_addr_lo;
4004	u32 mac_addr_hi;
4005
4006	mac_addr_hi = 0;
4007	for (i = 0; i < 2; i++) {
4008		mac_addr_hi <<= 8;
4009		mac_addr_hi |= mac_addr[i];
4010	}
4011	mac_addr_hi |= ADD_ADDR_ENABLE;
4012	mac_addr_lo = 0;
4013	for (i = 2; i < 6; i++) {
4014		mac_addr_lo <<= 8;
4015		mac_addr_lo |= mac_addr[i];
4016	}
4017	index *= ADD_ADDR_INCR;
4018
4019	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4020	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4021}
4022
4023static void hw_set_add_addr(struct ksz_hw *hw)
4024{
4025	int i;
4026
4027	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4028		if (empty_addr(hw->address[i]))
4029			writel(0, hw->io + ADD_ADDR_INCR * i +
4030				KS_ADD_ADDR_0_HI);
4031		else
4032			hw_ena_add_addr(hw, i, hw->address[i]);
4033	}
4034}
4035
4036static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4037{
4038	int i;
4039	int j = ADDITIONAL_ENTRIES;
4040
4041	if (ether_addr_equal(hw->override_addr, mac_addr))
4042		return 0;
4043	for (i = 0; i < hw->addr_list_size; i++) {
4044		if (ether_addr_equal(hw->address[i], mac_addr))
4045			return 0;
4046		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4047			j = i;
4048	}
4049	if (j < ADDITIONAL_ENTRIES) {
4050		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4051		hw_ena_add_addr(hw, j, hw->address[j]);
4052		return 0;
4053	}
4054	return -1;
4055}
4056
4057static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4058{
4059	int i;
4060
4061	for (i = 0; i < hw->addr_list_size; i++) {
4062		if (ether_addr_equal(hw->address[i], mac_addr)) {
4063			eth_zero_addr(hw->address[i]);
4064			writel(0, hw->io + ADD_ADDR_INCR * i +
4065				KS_ADD_ADDR_0_HI);
4066			return 0;
4067		}
4068	}
4069	return -1;
4070}
4071
4072/**
4073 * hw_clr_multicast - clear multicast addresses
4074 * @hw: 	The hardware instance.
4075 *
4076 * This routine removes all multicast addresses set in the hardware.
4077 */
4078static void hw_clr_multicast(struct ksz_hw *hw)
4079{
4080	int i;
4081
4082	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4083		hw->multi_bits[i] = 0;
4084
4085		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4086	}
4087}
4088
4089/**
4090 * hw_set_grp_addr - set multicast addresses
4091 * @hw: 	The hardware instance.
4092 *
4093 * This routine programs multicast addresses for the hardware to accept those
4094 * addresses.
4095 */
4096static void hw_set_grp_addr(struct ksz_hw *hw)
4097{
4098	int i;
4099	int index;
4100	int position;
4101	int value;
4102
4103	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4104
4105	for (i = 0; i < hw->multi_list_size; i++) {
4106		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4107		index = position >> 3;
4108		value = 1 << (position & 7);
4109		hw->multi_bits[index] |= (u8) value;
4110	}
4111
4112	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4113		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4114			i);
4115}
4116
4117/**
4118 * hw_set_multicast - enable or disable all multicast receiving
4119 * @hw: 	The hardware instance.
4120 * @multicast:	To turn on or off the all multicast feature.
4121 *
4122 * This routine enables/disables the hardware to accept all multicast packets.
4123 */
4124static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4125{
4126	/* Stop receiving for reconfiguration. */
4127	hw_stop_rx(hw);
4128
4129	if (multicast)
4130		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4131	else
4132		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4133
4134	if (hw->enabled)
4135		hw_start_rx(hw);
4136}
4137
4138/**
4139 * hw_set_promiscuous - enable or disable promiscuous receiving
4140 * @hw: 	The hardware instance.
4141 * @prom:	To turn on or off the promiscuous feature.
4142 *
4143 * This routine enables/disables the hardware to accept all packets.
4144 */
4145static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4146{
4147	/* Stop receiving for reconfiguration. */
4148	hw_stop_rx(hw);
4149
4150	if (prom)
4151		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4152	else
4153		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4154
4155	if (hw->enabled)
4156		hw_start_rx(hw);
4157}
4158
4159/**
4160 * sw_enable - enable the switch
4161 * @hw: 	The hardware instance.
4162 * @enable:	The flag to enable or disable the switch
4163 *
4164 * This routine is used to enable/disable the switch in KSZ8842.
4165 */
4166static void sw_enable(struct ksz_hw *hw, int enable)
4167{
4168	int port;
4169
4170	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4171		if (hw->dev_count > 1) {
4172			/* Set port-base vlan membership with host port. */
4173			sw_cfg_port_base_vlan(hw, port,
4174				HOST_MASK | (1 << port));
4175			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4176		} else {
4177			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4178			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4179		}
4180	}
4181	if (hw->dev_count > 1)
4182		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4183	else
4184		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4185
4186	if (enable)
4187		enable = KS8842_START;
4188	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4189}
4190
4191/**
4192 * sw_setup - setup the switch
4193 * @hw: 	The hardware instance.
4194 *
4195 * This routine setup the hardware switch engine for default operation.
4196 */
4197static void sw_setup(struct ksz_hw *hw)
4198{
4199	int port;
4200
4201	sw_set_global_ctrl(hw);
4202
4203	/* Enable switch broadcast storm protection at 10% percent rate. */
4204	sw_init_broad_storm(hw);
4205	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4206	for (port = 0; port < SWITCH_PORT_NUM; port++)
4207		sw_ena_broad_storm(hw, port);
4208
4209	sw_init_prio(hw);
4210
4211	sw_init_mirror(hw);
4212
4213	sw_init_prio_rate(hw);
4214
4215	sw_init_vlan(hw);
4216
4217	if (hw->features & STP_SUPPORT)
4218		sw_init_stp(hw);
4219	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4220			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4221		hw->overrides |= PAUSE_FLOW_CTRL;
4222	sw_enable(hw, 1);
4223}
4224
4225/**
4226 * ksz_start_timer - start kernel timer
4227 * @info:	Kernel timer information.
4228 * @time:	The time tick.
4229 *
4230 * This routine starts the kernel timer after the specified time tick.
4231 */
4232static void ksz_start_timer(struct ksz_timer_info *info, int time)
4233{
4234	info->cnt = 0;
4235	info->timer.expires = jiffies + time;
4236	add_timer(&info->timer);
4237
4238	/* infinity */
4239	info->max = -1;
4240}
4241
4242/**
4243 * ksz_stop_timer - stop kernel timer
4244 * @info:	Kernel timer information.
4245 *
4246 * This routine stops the kernel timer.
4247 */
4248static void ksz_stop_timer(struct ksz_timer_info *info)
4249{
4250	if (info->max) {
4251		info->max = 0;
4252		del_timer_sync(&info->timer);
4253	}
4254}
4255
4256static void ksz_init_timer(struct ksz_timer_info *info, int period,
4257	void (*function)(struct timer_list *))
4258{
4259	info->max = 0;
4260	info->period = period;
4261	timer_setup(&info->timer, function, 0);
4262}
4263
4264static void ksz_update_timer(struct ksz_timer_info *info)
4265{
4266	++info->cnt;
4267	if (info->max > 0) {
4268		if (info->cnt < info->max) {
4269			info->timer.expires = jiffies + info->period;
4270			add_timer(&info->timer);
4271		} else
4272			info->max = 0;
4273	} else if (info->max < 0) {
4274		info->timer.expires = jiffies + info->period;
4275		add_timer(&info->timer);
4276	}
4277}
4278
4279/**
4280 * ksz_alloc_soft_desc - allocate software descriptors
4281 * @desc_info:	Descriptor information structure.
4282 * @transmit:	Indication that descriptors are for transmit.
4283 *
4284 * This local function allocates software descriptors for manipulation in
4285 * memory.
4286 *
4287 * Return 0 if successful.
4288 */
4289static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4290{
4291	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4292				  GFP_KERNEL);
4293	if (!desc_info->ring)
4294		return 1;
4295	hw_init_desc(desc_info, transmit);
4296	return 0;
4297}
4298
4299/**
4300 * ksz_alloc_desc - allocate hardware descriptors
4301 * @adapter:	Adapter information structure.
4302 *
4303 * This local function allocates hardware descriptors for receiving and
4304 * transmitting.
4305 *
4306 * Return 0 if successful.
4307 */
4308static int ksz_alloc_desc(struct dev_info *adapter)
4309{
4310	struct ksz_hw *hw = &adapter->hw;
4311	int offset;
4312
4313	/* Allocate memory for RX & TX descriptors. */
4314	adapter->desc_pool.alloc_size =
4315		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4316		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4317		DESC_ALIGNMENT;
4318
4319	adapter->desc_pool.alloc_virt =
4320		dma_alloc_coherent(&adapter->pdev->dev,
4321				   adapter->desc_pool.alloc_size,
4322				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4323	if (adapter->desc_pool.alloc_virt == NULL) {
4324		adapter->desc_pool.alloc_size = 0;
4325		return 1;
4326	}
4327
4328	/* Align to the next cache line boundary. */
4329	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4330		(DESC_ALIGNMENT -
4331		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4332	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4333	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4334
4335	/* Allocate receive/transmit descriptors. */
4336	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4337		adapter->desc_pool.virt;
4338	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4339	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4340	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4341		(adapter->desc_pool.virt + offset);
4342	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4343
4344	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4345		return 1;
4346	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4347		return 1;
4348
4349	return 0;
4350}
4351
4352/**
4353 * free_dma_buf - release DMA buffer resources
4354 * @adapter:	Adapter information structure.
4355 * @dma_buf:	pointer to buf
4356 * @direction:	to or from device
4357 *
4358 * This routine is just a helper function to release the DMA buffer resources.
4359 */
4360static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4361	int direction)
4362{
4363	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4364			 direction);
4365	dev_kfree_skb(dma_buf->skb);
4366	dma_buf->skb = NULL;
4367	dma_buf->dma = 0;
4368}
4369
4370/**
4371 * ksz_init_rx_buffers - initialize receive descriptors
4372 * @adapter:	Adapter information structure.
4373 *
4374 * This routine initializes DMA buffers for receiving.
4375 */
4376static void ksz_init_rx_buffers(struct dev_info *adapter)
4377{
4378	int i;
4379	struct ksz_desc *desc;
4380	struct ksz_dma_buf *dma_buf;
4381	struct ksz_hw *hw = &adapter->hw;
4382	struct ksz_desc_info *info = &hw->rx_desc_info;
4383
4384	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4385		get_rx_pkt(info, &desc);
4386
4387		dma_buf = DMA_BUFFER(desc);
4388		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4389			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4390		dma_buf->len = adapter->mtu;
4391		if (!dma_buf->skb)
4392			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4393		if (dma_buf->skb && !dma_buf->dma)
4394			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4395						skb_tail_pointer(dma_buf->skb),
4396						dma_buf->len,
4397						DMA_FROM_DEVICE);
 
4398
4399		/* Set descriptor. */
4400		set_rx_buf(desc, dma_buf->dma);
4401		set_rx_len(desc, dma_buf->len);
4402		release_desc(desc);
4403	}
4404}
4405
4406/**
4407 * ksz_alloc_mem - allocate memory for hardware descriptors
4408 * @adapter:	Adapter information structure.
4409 *
4410 * This function allocates memory for use by hardware descriptors for receiving
4411 * and transmitting.
4412 *
4413 * Return 0 if successful.
4414 */
4415static int ksz_alloc_mem(struct dev_info *adapter)
4416{
4417	struct ksz_hw *hw = &adapter->hw;
4418
4419	/* Determine the number of receive and transmit descriptors. */
4420	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4421	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4422
4423	/* Determine how many descriptors to skip transmit interrupt. */
4424	hw->tx_int_cnt = 0;
4425	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4426	if (hw->tx_int_mask > 8)
4427		hw->tx_int_mask = 8;
4428	while (hw->tx_int_mask) {
4429		hw->tx_int_cnt++;
4430		hw->tx_int_mask >>= 1;
4431	}
4432	if (hw->tx_int_cnt) {
4433		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4434		hw->tx_int_cnt = 0;
4435	}
4436
4437	/* Determine the descriptor size. */
4438	hw->rx_desc_info.size =
4439		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4440		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4441	hw->tx_desc_info.size =
4442		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4443		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4444	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4445		pr_alert("Hardware descriptor size not right!\n");
4446	ksz_check_desc_num(&hw->rx_desc_info);
4447	ksz_check_desc_num(&hw->tx_desc_info);
4448
4449	/* Allocate descriptors. */
4450	if (ksz_alloc_desc(adapter))
4451		return 1;
4452
4453	return 0;
4454}
4455
4456/**
4457 * ksz_free_desc - free software and hardware descriptors
4458 * @adapter:	Adapter information structure.
4459 *
4460 * This local routine frees the software and hardware descriptors allocated by
4461 * ksz_alloc_desc().
4462 */
4463static void ksz_free_desc(struct dev_info *adapter)
4464{
4465	struct ksz_hw *hw = &adapter->hw;
4466
4467	/* Reset descriptor. */
4468	hw->rx_desc_info.ring_virt = NULL;
4469	hw->tx_desc_info.ring_virt = NULL;
4470	hw->rx_desc_info.ring_phys = 0;
4471	hw->tx_desc_info.ring_phys = 0;
4472
4473	/* Free memory. */
4474	if (adapter->desc_pool.alloc_virt)
4475		dma_free_coherent(&adapter->pdev->dev,
4476				  adapter->desc_pool.alloc_size,
4477				  adapter->desc_pool.alloc_virt,
4478				  adapter->desc_pool.dma_addr);
 
4479
4480	/* Reset resource pool. */
4481	adapter->desc_pool.alloc_size = 0;
4482	adapter->desc_pool.alloc_virt = NULL;
4483
4484	kfree(hw->rx_desc_info.ring);
4485	hw->rx_desc_info.ring = NULL;
4486	kfree(hw->tx_desc_info.ring);
4487	hw->tx_desc_info.ring = NULL;
4488}
4489
4490/**
4491 * ksz_free_buffers - free buffers used in the descriptors
4492 * @adapter:	Adapter information structure.
4493 * @desc_info:	Descriptor information structure.
4494 * @direction:	to or from device
4495 *
4496 * This local routine frees buffers used in the DMA buffers.
4497 */
4498static void ksz_free_buffers(struct dev_info *adapter,
4499	struct ksz_desc_info *desc_info, int direction)
4500{
4501	int i;
4502	struct ksz_dma_buf *dma_buf;
4503	struct ksz_desc *desc = desc_info->ring;
4504
4505	for (i = 0; i < desc_info->alloc; i++) {
4506		dma_buf = DMA_BUFFER(desc);
4507		if (dma_buf->skb)
4508			free_dma_buf(adapter, dma_buf, direction);
4509		desc++;
4510	}
4511}
4512
4513/**
4514 * ksz_free_mem - free all resources used by descriptors
4515 * @adapter:	Adapter information structure.
4516 *
4517 * This local routine frees all the resources allocated by ksz_alloc_mem().
4518 */
4519static void ksz_free_mem(struct dev_info *adapter)
4520{
4521	/* Free transmit buffers. */
4522	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
 
4523
4524	/* Free receive buffers. */
4525	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
 
4526
4527	/* Free descriptors. */
4528	ksz_free_desc(adapter);
4529}
4530
4531static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4532	u64 *counter)
4533{
4534	int i;
4535	int mib;
4536	int port;
4537	struct ksz_port_mib *port_mib;
4538
4539	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4540	for (i = 0, port = first; i < cnt; i++, port++) {
4541		port_mib = &hw->port_mib[port];
4542		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4543			counter[mib] += port_mib->counter[mib];
4544	}
4545}
4546
4547/**
4548 * send_packet - send packet
4549 * @skb:	Socket buffer.
4550 * @dev:	Network device.
4551 *
4552 * This routine is used to send a packet out to the network.
4553 */
4554static void send_packet(struct sk_buff *skb, struct net_device *dev)
4555{
4556	struct ksz_desc *desc;
4557	struct ksz_desc *first;
4558	struct dev_priv *priv = netdev_priv(dev);
4559	struct dev_info *hw_priv = priv->adapter;
4560	struct ksz_hw *hw = &hw_priv->hw;
4561	struct ksz_desc_info *info = &hw->tx_desc_info;
4562	struct ksz_dma_buf *dma_buf;
4563	int len;
4564	int last_frag = skb_shinfo(skb)->nr_frags;
4565
4566	/*
4567	 * KSZ8842 with multiple device interfaces needs to be told which port
4568	 * to send.
4569	 */
4570	if (hw->dev_count > 1)
4571		hw->dst_ports = 1 << priv->port.first_port;
4572
4573	/* Hardware will pad the length to 60. */
4574	len = skb->len;
4575
4576	/* Remember the very first descriptor. */
4577	first = info->cur;
4578	desc = first;
4579
4580	dma_buf = DMA_BUFFER(desc);
4581	if (last_frag) {
4582		int frag;
4583		skb_frag_t *this_frag;
4584
4585		dma_buf->len = skb_headlen(skb);
4586
4587		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4588					      dma_buf->len, DMA_TO_DEVICE);
 
4589		set_tx_buf(desc, dma_buf->dma);
4590		set_tx_len(desc, dma_buf->len);
4591
4592		frag = 0;
4593		do {
4594			this_frag = &skb_shinfo(skb)->frags[frag];
4595
4596			/* Get a new descriptor. */
4597			get_tx_pkt(info, &desc);
4598
4599			/* Keep track of descriptors used so far. */
4600			++hw->tx_int_cnt;
4601
4602			dma_buf = DMA_BUFFER(desc);
4603			dma_buf->len = skb_frag_size(this_frag);
4604
4605			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4606						      skb_frag_address(this_frag),
4607						      dma_buf->len,
4608						      DMA_TO_DEVICE);
 
4609			set_tx_buf(desc, dma_buf->dma);
4610			set_tx_len(desc, dma_buf->len);
4611
4612			frag++;
4613			if (frag == last_frag)
4614				break;
4615
4616			/* Do not release the last descriptor here. */
4617			release_desc(desc);
4618		} while (1);
4619
4620		/* current points to the last descriptor. */
4621		info->cur = desc;
4622
4623		/* Release the first descriptor. */
4624		release_desc(first);
4625	} else {
4626		dma_buf->len = len;
4627
4628		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4629					      dma_buf->len, DMA_TO_DEVICE);
 
4630		set_tx_buf(desc, dma_buf->dma);
4631		set_tx_len(desc, dma_buf->len);
4632	}
4633
4634	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4635		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4636		(desc)->sw.buf.tx.csum_gen_udp = 1;
4637	}
4638
4639	/*
4640	 * The last descriptor holds the packet so that it can be returned to
4641	 * network subsystem after all descriptors are transmitted.
4642	 */
4643	dma_buf->skb = skb;
4644
4645	hw_send_pkt(hw);
4646
4647	/* Update transmit statistics. */
4648	dev->stats.tx_packets++;
4649	dev->stats.tx_bytes += len;
4650}
4651
4652/**
4653 * transmit_cleanup - clean up transmit descriptors
4654 * @hw_priv:	Network device.
4655 * @normal:	break if owned
4656 *
4657 * This routine is called to clean up the transmitted buffers.
4658 */
4659static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4660{
4661	int last;
4662	union desc_stat status;
4663	struct ksz_hw *hw = &hw_priv->hw;
4664	struct ksz_desc_info *info = &hw->tx_desc_info;
4665	struct ksz_desc *desc;
4666	struct ksz_dma_buf *dma_buf;
4667	struct net_device *dev = NULL;
4668
4669	spin_lock_irq(&hw_priv->hwlock);
4670	last = info->last;
4671
4672	while (info->avail < info->alloc) {
4673		/* Get next descriptor which is not hardware owned. */
4674		desc = &info->ring[last];
4675		status.data = le32_to_cpu(desc->phw->ctrl.data);
4676		if (status.tx.hw_owned) {
4677			if (normal)
4678				break;
4679			else
4680				reset_desc(desc, status);
4681		}
4682
4683		dma_buf = DMA_BUFFER(desc);
4684		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4685				 dma_buf->len, DMA_TO_DEVICE);
 
4686
4687		/* This descriptor contains the last buffer in the packet. */
4688		if (dma_buf->skb) {
4689			dev = dma_buf->skb->dev;
4690
4691			/* Release the packet back to network subsystem. */
4692			dev_kfree_skb_irq(dma_buf->skb);
4693			dma_buf->skb = NULL;
4694		}
4695
4696		/* Free the transmitted descriptor. */
4697		last++;
4698		last &= info->mask;
4699		info->avail++;
4700	}
4701	info->last = last;
4702	spin_unlock_irq(&hw_priv->hwlock);
4703
4704	/* Notify the network subsystem that the packet has been sent. */
4705	if (dev)
4706		netif_trans_update(dev);
4707}
4708
4709/**
4710 * tx_done - transmit done processing
4711 * @hw_priv:	Network device.
4712 *
4713 * This routine is called when the transmit interrupt is triggered, indicating
4714 * either a packet is sent successfully or there are transmit errors.
4715 */
4716static void tx_done(struct dev_info *hw_priv)
4717{
4718	struct ksz_hw *hw = &hw_priv->hw;
4719	int port;
4720
4721	transmit_cleanup(hw_priv, 1);
4722
4723	for (port = 0; port < hw->dev_count; port++) {
4724		struct net_device *dev = hw->port_info[port].pdev;
4725
4726		if (netif_running(dev) && netif_queue_stopped(dev))
4727			netif_wake_queue(dev);
4728	}
4729}
4730
4731static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4732{
4733	skb->dev = old->dev;
4734	skb->protocol = old->protocol;
4735	skb->ip_summed = old->ip_summed;
4736	skb->csum = old->csum;
4737	skb_set_network_header(skb, ETH_HLEN);
4738
4739	dev_consume_skb_any(old);
4740}
4741
4742/**
4743 * netdev_tx - send out packet
4744 * @skb:	Socket buffer.
4745 * @dev:	Network device.
4746 *
4747 * This function is used by the upper network layer to send out a packet.
4748 *
4749 * Return 0 if successful; otherwise an error code indicating failure.
4750 */
4751static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4752{
4753	struct dev_priv *priv = netdev_priv(dev);
4754	struct dev_info *hw_priv = priv->adapter;
4755	struct ksz_hw *hw = &hw_priv->hw;
4756	int left;
4757	int num = 1;
4758	int rc = 0;
4759
4760	if (hw->features & SMALL_PACKET_TX_BUG) {
4761		struct sk_buff *org_skb = skb;
4762
4763		if (skb->len <= 48) {
4764			if (skb_end_pointer(skb) - skb->data >= 50) {
4765				memset(&skb->data[skb->len], 0, 50 - skb->len);
4766				skb->len = 50;
4767			} else {
4768				skb = netdev_alloc_skb(dev, 50);
4769				if (!skb)
4770					return NETDEV_TX_BUSY;
4771				memcpy(skb->data, org_skb->data, org_skb->len);
4772				memset(&skb->data[org_skb->len], 0,
4773					50 - org_skb->len);
4774				skb->len = 50;
4775				copy_old_skb(org_skb, skb);
4776			}
4777		}
4778	}
4779
4780	spin_lock_irq(&hw_priv->hwlock);
4781
4782	num = skb_shinfo(skb)->nr_frags + 1;
4783	left = hw_alloc_pkt(hw, skb->len, num);
4784	if (left) {
4785		if (left < num ||
4786		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4787		     skb->protocol == htons(ETH_P_IPV6))) {
4788			struct sk_buff *org_skb = skb;
4789
4790			skb = netdev_alloc_skb(dev, org_skb->len);
4791			if (!skb) {
4792				rc = NETDEV_TX_BUSY;
4793				goto unlock;
4794			}
4795			skb_copy_and_csum_dev(org_skb, skb->data);
4796			org_skb->ip_summed = CHECKSUM_NONE;
4797			skb->len = org_skb->len;
4798			copy_old_skb(org_skb, skb);
4799		}
4800		send_packet(skb, dev);
4801		if (left <= num)
4802			netif_stop_queue(dev);
4803	} else {
4804		/* Stop the transmit queue until packet is allocated. */
4805		netif_stop_queue(dev);
4806		rc = NETDEV_TX_BUSY;
4807	}
4808unlock:
4809	spin_unlock_irq(&hw_priv->hwlock);
4810
4811	return rc;
4812}
4813
4814/**
4815 * netdev_tx_timeout - transmit timeout processing
4816 * @dev:	Network device.
4817 * @txqueue:	index of hanging queue
4818 *
4819 * This routine is called when the transmit timer expires.  That indicates the
4820 * hardware is not running correctly because transmit interrupts are not
4821 * triggered to free up resources so that the transmit routine can continue
4822 * sending out packets.  The hardware is reset to correct the problem.
4823 */
4824static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4825{
4826	static unsigned long last_reset;
4827
4828	struct dev_priv *priv = netdev_priv(dev);
4829	struct dev_info *hw_priv = priv->adapter;
4830	struct ksz_hw *hw = &hw_priv->hw;
4831	int port;
4832
4833	if (hw->dev_count > 1) {
4834		/*
4835		 * Only reset the hardware if time between calls is long
4836		 * enough.
4837		 */
4838		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4839			hw_priv = NULL;
4840	}
4841
4842	last_reset = jiffies;
4843	if (hw_priv) {
4844		hw_dis_intr(hw);
4845		hw_disable(hw);
4846
4847		transmit_cleanup(hw_priv, 0);
4848		hw_reset_pkts(&hw->rx_desc_info);
4849		hw_reset_pkts(&hw->tx_desc_info);
4850		ksz_init_rx_buffers(hw_priv);
4851
4852		hw_reset(hw);
4853
4854		hw_set_desc_base(hw,
4855			hw->tx_desc_info.ring_phys,
4856			hw->rx_desc_info.ring_phys);
4857		hw_set_addr(hw);
4858		if (hw->all_multi)
4859			hw_set_multicast(hw, hw->all_multi);
4860		else if (hw->multi_list_size)
4861			hw_set_grp_addr(hw);
4862
4863		if (hw->dev_count > 1) {
4864			hw_set_add_addr(hw);
4865			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4866				struct net_device *port_dev;
4867
4868				port_set_stp_state(hw, port,
4869					STP_STATE_DISABLED);
4870
4871				port_dev = hw->port_info[port].pdev;
4872				if (netif_running(port_dev))
4873					port_set_stp_state(hw, port,
4874						STP_STATE_SIMPLE);
4875			}
4876		}
4877
4878		hw_enable(hw);
4879		hw_ena_intr(hw);
4880	}
4881
4882	netif_trans_update(dev);
4883	netif_wake_queue(dev);
4884}
4885
4886static inline void csum_verified(struct sk_buff *skb)
4887{
4888	unsigned short protocol;
4889	struct iphdr *iph;
4890
4891	protocol = skb->protocol;
4892	skb_reset_network_header(skb);
4893	iph = (struct iphdr *) skb_network_header(skb);
4894	if (protocol == htons(ETH_P_8021Q)) {
4895		protocol = iph->tot_len;
4896		skb_set_network_header(skb, VLAN_HLEN);
4897		iph = (struct iphdr *) skb_network_header(skb);
4898	}
4899	if (protocol == htons(ETH_P_IP)) {
4900		if (iph->protocol == IPPROTO_TCP)
4901			skb->ip_summed = CHECKSUM_UNNECESSARY;
4902	}
4903}
4904
4905static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4906	struct ksz_desc *desc, union desc_stat status)
4907{
4908	int packet_len;
4909	struct dev_priv *priv = netdev_priv(dev);
4910	struct dev_info *hw_priv = priv->adapter;
4911	struct ksz_dma_buf *dma_buf;
4912	struct sk_buff *skb;
 
4913
4914	/* Received length includes 4-byte CRC. */
4915	packet_len = status.rx.frame_len - 4;
4916
4917	dma_buf = DMA_BUFFER(desc);
4918	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4919				packet_len + 4, DMA_FROM_DEVICE);
 
4920
4921	do {
4922		/* skb->data != skb->head */
4923		skb = netdev_alloc_skb(dev, packet_len + 2);
4924		if (!skb) {
4925			dev->stats.rx_dropped++;
4926			return -ENOMEM;
4927		}
4928
4929		/*
4930		 * Align socket buffer in 4-byte boundary for better
4931		 * performance.
4932		 */
4933		skb_reserve(skb, 2);
4934
4935		skb_put_data(skb, dma_buf->skb->data, packet_len);
4936	} while (0);
4937
4938	skb->protocol = eth_type_trans(skb, dev);
4939
4940	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4941		csum_verified(skb);
4942
4943	/* Update receive statistics. */
4944	dev->stats.rx_packets++;
4945	dev->stats.rx_bytes += packet_len;
4946
4947	/* Notify upper layer for received packet. */
4948	netif_rx(skb);
4949
4950	return 0;
4951}
4952
4953static int dev_rcv_packets(struct dev_info *hw_priv)
4954{
4955	int next;
4956	union desc_stat status;
4957	struct ksz_hw *hw = &hw_priv->hw;
4958	struct net_device *dev = hw->port_info[0].pdev;
4959	struct ksz_desc_info *info = &hw->rx_desc_info;
4960	int left = info->alloc;
4961	struct ksz_desc *desc;
4962	int received = 0;
4963
4964	next = info->next;
4965	while (left--) {
4966		/* Get next descriptor which is not hardware owned. */
4967		desc = &info->ring[next];
4968		status.data = le32_to_cpu(desc->phw->ctrl.data);
4969		if (status.rx.hw_owned)
4970			break;
4971
4972		/* Status valid only when last descriptor bit is set. */
4973		if (status.rx.last_desc && status.rx.first_desc) {
4974			if (rx_proc(dev, hw, desc, status))
4975				goto release_packet;
4976			received++;
4977		}
4978
4979release_packet:
4980		release_desc(desc);
4981		next++;
4982		next &= info->mask;
4983	}
4984	info->next = next;
4985
4986	return received;
4987}
4988
4989static int port_rcv_packets(struct dev_info *hw_priv)
4990{
4991	int next;
4992	union desc_stat status;
4993	struct ksz_hw *hw = &hw_priv->hw;
4994	struct net_device *dev = hw->port_info[0].pdev;
4995	struct ksz_desc_info *info = &hw->rx_desc_info;
4996	int left = info->alloc;
4997	struct ksz_desc *desc;
4998	int received = 0;
4999
5000	next = info->next;
5001	while (left--) {
5002		/* Get next descriptor which is not hardware owned. */
5003		desc = &info->ring[next];
5004		status.data = le32_to_cpu(desc->phw->ctrl.data);
5005		if (status.rx.hw_owned)
5006			break;
5007
5008		if (hw->dev_count > 1) {
5009			/* Get received port number. */
5010			int p = HW_TO_DEV_PORT(status.rx.src_port);
5011
5012			dev = hw->port_info[p].pdev;
5013			if (!netif_running(dev))
5014				goto release_packet;
5015		}
5016
5017		/* Status valid only when last descriptor bit is set. */
5018		if (status.rx.last_desc && status.rx.first_desc) {
5019			if (rx_proc(dev, hw, desc, status))
5020				goto release_packet;
5021			received++;
5022		}
5023
5024release_packet:
5025		release_desc(desc);
5026		next++;
5027		next &= info->mask;
5028	}
5029	info->next = next;
5030
5031	return received;
5032}
5033
5034static int dev_rcv_special(struct dev_info *hw_priv)
5035{
5036	int next;
5037	union desc_stat status;
5038	struct ksz_hw *hw = &hw_priv->hw;
5039	struct net_device *dev = hw->port_info[0].pdev;
5040	struct ksz_desc_info *info = &hw->rx_desc_info;
5041	int left = info->alloc;
5042	struct ksz_desc *desc;
5043	int received = 0;
5044
5045	next = info->next;
5046	while (left--) {
5047		/* Get next descriptor which is not hardware owned. */
5048		desc = &info->ring[next];
5049		status.data = le32_to_cpu(desc->phw->ctrl.data);
5050		if (status.rx.hw_owned)
5051			break;
5052
5053		if (hw->dev_count > 1) {
5054			/* Get received port number. */
5055			int p = HW_TO_DEV_PORT(status.rx.src_port);
5056
5057			dev = hw->port_info[p].pdev;
5058			if (!netif_running(dev))
5059				goto release_packet;
5060		}
5061
5062		/* Status valid only when last descriptor bit is set. */
5063		if (status.rx.last_desc && status.rx.first_desc) {
5064			/*
5065			 * Receive without error.  With receive errors
5066			 * disabled, packets with receive errors will be
5067			 * dropped, so no need to check the error bit.
5068			 */
5069			if (!status.rx.error || (status.data &
5070					KS_DESC_RX_ERROR_COND) ==
5071					KS_DESC_RX_ERROR_TOO_LONG) {
5072				if (rx_proc(dev, hw, desc, status))
5073					goto release_packet;
5074				received++;
5075			} else {
5076				struct dev_priv *priv = netdev_priv(dev);
5077
5078				/* Update receive error statistics. */
5079				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5080			}
5081		}
5082
5083release_packet:
5084		release_desc(desc);
5085		next++;
5086		next &= info->mask;
5087	}
5088	info->next = next;
5089
5090	return received;
5091}
5092
5093static void rx_proc_task(struct tasklet_struct *t)
5094{
5095	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5096	struct ksz_hw *hw = &hw_priv->hw;
5097
5098	if (!hw->enabled)
5099		return;
5100	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5101
5102		/* In case receive process is suspended because of overrun. */
5103		hw_resume_rx(hw);
5104
5105		/* tasklets are interruptible. */
5106		spin_lock_irq(&hw_priv->hwlock);
5107		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5108		spin_unlock_irq(&hw_priv->hwlock);
5109	} else {
5110		hw_ack_intr(hw, KS884X_INT_RX);
5111		tasklet_schedule(&hw_priv->rx_tasklet);
5112	}
5113}
5114
5115static void tx_proc_task(struct tasklet_struct *t)
5116{
5117	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5118	struct ksz_hw *hw = &hw_priv->hw;
5119
5120	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5121
5122	tx_done(hw_priv);
5123
5124	/* tasklets are interruptible. */
5125	spin_lock_irq(&hw_priv->hwlock);
5126	hw_turn_on_intr(hw, KS884X_INT_TX);
5127	spin_unlock_irq(&hw_priv->hwlock);
5128}
5129
5130static inline void handle_rx_stop(struct ksz_hw *hw)
5131{
5132	/* Receive just has been stopped. */
5133	if (0 == hw->rx_stop)
5134		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5135	else if (hw->rx_stop > 1) {
5136		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5137			hw_start_rx(hw);
5138		} else {
5139			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5140			hw->rx_stop = 0;
5141		}
5142	} else
5143		/* Receive just has been started. */
5144		hw->rx_stop++;
5145}
5146
5147/**
5148 * netdev_intr - interrupt handling
5149 * @irq:	Interrupt number.
5150 * @dev_id:	Network device.
5151 *
5152 * This function is called by upper network layer to signal interrupt.
5153 *
5154 * Return IRQ_HANDLED if interrupt is handled.
5155 */
5156static irqreturn_t netdev_intr(int irq, void *dev_id)
5157{
5158	uint int_enable = 0;
5159	struct net_device *dev = (struct net_device *) dev_id;
5160	struct dev_priv *priv = netdev_priv(dev);
5161	struct dev_info *hw_priv = priv->adapter;
5162	struct ksz_hw *hw = &hw_priv->hw;
5163
5164	spin_lock(&hw_priv->hwlock);
5165
5166	hw_read_intr(hw, &int_enable);
5167
5168	/* Not our interrupt! */
5169	if (!int_enable) {
5170		spin_unlock(&hw_priv->hwlock);
5171		return IRQ_NONE;
5172	}
5173
5174	do {
5175		hw_ack_intr(hw, int_enable);
5176		int_enable &= hw->intr_mask;
5177
5178		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5179			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5180			tasklet_schedule(&hw_priv->tx_tasklet);
5181		}
5182
5183		if (likely(int_enable & KS884X_INT_RX)) {
5184			hw_dis_intr_bit(hw, KS884X_INT_RX);
5185			tasklet_schedule(&hw_priv->rx_tasklet);
5186		}
5187
5188		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5189			dev->stats.rx_fifo_errors++;
5190			hw_resume_rx(hw);
5191		}
5192
5193		if (unlikely(int_enable & KS884X_INT_PHY)) {
5194			struct ksz_port *port = &priv->port;
5195
5196			hw->features |= LINK_INT_WORKING;
5197			port_get_link_speed(port);
5198		}
5199
5200		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5201			handle_rx_stop(hw);
5202			break;
5203		}
5204
5205		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5206			u32 data;
5207
5208			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5209			pr_info("Tx stopped\n");
5210			data = readl(hw->io + KS_DMA_TX_CTRL);
5211			if (!(data & DMA_TX_ENABLE))
5212				pr_info("Tx disabled\n");
5213			break;
5214		}
5215	} while (0);
5216
5217	hw_ena_intr(hw);
5218
5219	spin_unlock(&hw_priv->hwlock);
5220
5221	return IRQ_HANDLED;
5222}
5223
5224/*
5225 * Linux network device functions
5226 */
5227
5228static unsigned long next_jiffies;
5229
5230#ifdef CONFIG_NET_POLL_CONTROLLER
5231static void netdev_netpoll(struct net_device *dev)
5232{
5233	struct dev_priv *priv = netdev_priv(dev);
5234	struct dev_info *hw_priv = priv->adapter;
5235
5236	hw_dis_intr(&hw_priv->hw);
5237	netdev_intr(dev->irq, dev);
5238}
5239#endif
5240
5241static void bridge_change(struct ksz_hw *hw)
5242{
5243	int port;
5244	u8  member;
5245	struct ksz_switch *sw = hw->ksz_switch;
5246
5247	/* No ports in forwarding state. */
5248	if (!sw->member) {
5249		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5250		sw_block_addr(hw);
5251	}
5252	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5253		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5254			member = HOST_MASK | sw->member;
5255		else
5256			member = HOST_MASK | (1 << port);
5257		if (member != sw->port_cfg[port].member)
5258			sw_cfg_port_base_vlan(hw, port, member);
5259	}
5260}
5261
5262/**
5263 * netdev_close - close network device
5264 * @dev:	Network device.
5265 *
5266 * This function process the close operation of network device.  This is caused
5267 * by the user command "ifconfig ethX down."
5268 *
5269 * Return 0 if successful; otherwise an error code indicating failure.
5270 */
5271static int netdev_close(struct net_device *dev)
5272{
5273	struct dev_priv *priv = netdev_priv(dev);
5274	struct dev_info *hw_priv = priv->adapter;
5275	struct ksz_port *port = &priv->port;
5276	struct ksz_hw *hw = &hw_priv->hw;
5277	int pi;
5278
5279	netif_stop_queue(dev);
5280
5281	ksz_stop_timer(&priv->monitor_timer_info);
5282
5283	/* Need to shut the port manually in multiple device interfaces mode. */
5284	if (hw->dev_count > 1) {
5285		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5286
5287		/* Port is closed.  Need to change bridge setting. */
5288		if (hw->features & STP_SUPPORT) {
5289			pi = 1 << port->first_port;
5290			if (hw->ksz_switch->member & pi) {
5291				hw->ksz_switch->member &= ~pi;
5292				bridge_change(hw);
5293			}
5294		}
5295	}
5296	if (port->first_port > 0)
5297		hw_del_addr(hw, dev->dev_addr);
5298	if (!hw_priv->wol_enable)
5299		port_set_power_saving(port, true);
5300
5301	if (priv->multicast)
5302		--hw->all_multi;
5303	if (priv->promiscuous)
5304		--hw->promiscuous;
5305
5306	hw_priv->opened--;
5307	if (!(hw_priv->opened)) {
5308		ksz_stop_timer(&hw_priv->mib_timer_info);
5309		flush_work(&hw_priv->mib_read);
5310
5311		hw_dis_intr(hw);
5312		hw_disable(hw);
5313		hw_clr_multicast(hw);
5314
5315		/* Delay for receive task to stop scheduling itself. */
5316		msleep(2000 / HZ);
5317
5318		tasklet_kill(&hw_priv->rx_tasklet);
5319		tasklet_kill(&hw_priv->tx_tasklet);
5320		free_irq(dev->irq, hw_priv->dev);
5321
5322		transmit_cleanup(hw_priv, 0);
5323		hw_reset_pkts(&hw->rx_desc_info);
5324		hw_reset_pkts(&hw->tx_desc_info);
5325
5326		/* Clean out static MAC table when the switch is shutdown. */
5327		if (hw->features & STP_SUPPORT)
5328			sw_clr_sta_mac_table(hw);
5329	}
5330
5331	return 0;
5332}
5333
5334static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5335{
5336	if (hw->ksz_switch) {
5337		u32 data;
5338
5339		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5340		if (hw->features & RX_HUGE_FRAME)
5341			data |= SWITCH_HUGE_PACKET;
5342		else
5343			data &= ~SWITCH_HUGE_PACKET;
5344		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5345	}
5346	if (hw->features & RX_HUGE_FRAME) {
5347		hw->rx_cfg |= DMA_RX_ERROR;
5348		hw_priv->dev_rcv = dev_rcv_special;
5349	} else {
5350		hw->rx_cfg &= ~DMA_RX_ERROR;
5351		if (hw->dev_count > 1)
5352			hw_priv->dev_rcv = port_rcv_packets;
5353		else
5354			hw_priv->dev_rcv = dev_rcv_packets;
5355	}
5356}
5357
5358static int prepare_hardware(struct net_device *dev)
5359{
5360	struct dev_priv *priv = netdev_priv(dev);
5361	struct dev_info *hw_priv = priv->adapter;
5362	struct ksz_hw *hw = &hw_priv->hw;
5363	int rc = 0;
5364
5365	/* Remember the network device that requests interrupts. */
5366	hw_priv->dev = dev;
5367	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5368	if (rc)
5369		return rc;
5370	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5371	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
 
 
5372
5373	hw->promiscuous = 0;
5374	hw->all_multi = 0;
5375	hw->multi_list_size = 0;
5376
5377	hw_reset(hw);
5378
5379	hw_set_desc_base(hw,
5380		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5381	hw_set_addr(hw);
5382	hw_cfg_huge_frame(hw_priv, hw);
5383	ksz_init_rx_buffers(hw_priv);
5384	return 0;
5385}
5386
5387static void set_media_state(struct net_device *dev, int media_state)
5388{
5389	struct dev_priv *priv = netdev_priv(dev);
5390
5391	if (media_state == priv->media_state)
5392		netif_carrier_on(dev);
5393	else
5394		netif_carrier_off(dev);
5395	netif_info(priv, link, dev, "link %s\n",
5396		   media_state == priv->media_state ? "on" : "off");
5397}
5398
5399/**
5400 * netdev_open - open network device
5401 * @dev:	Network device.
5402 *
5403 * This function process the open operation of network device.  This is caused
5404 * by the user command "ifconfig ethX up."
5405 *
5406 * Return 0 if successful; otherwise an error code indicating failure.
5407 */
5408static int netdev_open(struct net_device *dev)
5409{
5410	struct dev_priv *priv = netdev_priv(dev);
5411	struct dev_info *hw_priv = priv->adapter;
5412	struct ksz_hw *hw = &hw_priv->hw;
5413	struct ksz_port *port = &priv->port;
5414	int i;
5415	int p;
5416	int rc = 0;
5417
5418	priv->multicast = 0;
5419	priv->promiscuous = 0;
5420
5421	/* Reset device statistics. */
5422	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5423	memset((void *) port->counter, 0,
5424		(sizeof(u64) * OID_COUNTER_LAST));
5425
5426	if (!(hw_priv->opened)) {
5427		rc = prepare_hardware(dev);
5428		if (rc)
5429			return rc;
5430		for (i = 0; i < hw->mib_port_cnt; i++) {
5431			if (next_jiffies < jiffies)
5432				next_jiffies = jiffies + HZ * 2;
5433			else
5434				next_jiffies += HZ * 1;
5435			hw_priv->counter[i].time = next_jiffies;
5436			hw->port_mib[i].state = media_disconnected;
5437			port_init_cnt(hw, i);
5438		}
5439		if (hw->ksz_switch)
5440			hw->port_mib[HOST_PORT].state = media_connected;
5441		else {
5442			hw_add_wol_bcast(hw);
5443			hw_cfg_wol_pme(hw, 0);
5444			hw_clr_wol_pme_status(&hw_priv->hw);
5445		}
5446	}
5447	port_set_power_saving(port, false);
5448
5449	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5450		/*
5451		 * Initialize to invalid value so that link detection
5452		 * is done.
5453		 */
5454		hw->port_info[p].partner = 0xFF;
5455		hw->port_info[p].state = media_disconnected;
5456	}
5457
5458	/* Need to open the port in multiple device interfaces mode. */
5459	if (hw->dev_count > 1) {
5460		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5461		if (port->first_port > 0)
5462			hw_add_addr(hw, dev->dev_addr);
5463	}
5464
5465	port_get_link_speed(port);
5466	if (port->force_link)
5467		port_force_link_speed(port);
5468	else
5469		port_set_link_speed(port);
5470
5471	if (!(hw_priv->opened)) {
5472		hw_setup_intr(hw);
5473		hw_enable(hw);
5474		hw_ena_intr(hw);
5475
5476		if (hw->mib_port_cnt)
5477			ksz_start_timer(&hw_priv->mib_timer_info,
5478				hw_priv->mib_timer_info.period);
5479	}
5480
5481	hw_priv->opened++;
5482
5483	ksz_start_timer(&priv->monitor_timer_info,
5484		priv->monitor_timer_info.period);
5485
5486	priv->media_state = port->linked->state;
5487
5488	set_media_state(dev, media_connected);
5489	netif_start_queue(dev);
5490
5491	return 0;
5492}
5493
5494/* RX errors = rx_errors */
5495/* RX dropped = rx_dropped */
5496/* RX overruns = rx_fifo_errors */
5497/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5498/* TX errors = tx_errors */
5499/* TX dropped = tx_dropped */
5500/* TX overruns = tx_fifo_errors */
5501/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5502/* collisions = collisions */
5503
5504/**
5505 * netdev_query_statistics - query network device statistics
5506 * @dev:	Network device.
5507 *
5508 * This function returns the statistics of the network device.  The device
5509 * needs not be opened.
5510 *
5511 * Return network device statistics.
5512 */
5513static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5514{
5515	struct dev_priv *priv = netdev_priv(dev);
5516	struct ksz_port *port = &priv->port;
5517	struct ksz_hw *hw = &priv->adapter->hw;
5518	struct ksz_port_mib *mib;
5519	int i;
5520	int p;
5521
5522	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5523	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5524
5525	/* Reset to zero to add count later. */
5526	dev->stats.multicast = 0;
5527	dev->stats.collisions = 0;
5528	dev->stats.rx_length_errors = 0;
5529	dev->stats.rx_crc_errors = 0;
5530	dev->stats.rx_frame_errors = 0;
5531	dev->stats.tx_window_errors = 0;
5532
5533	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5534		mib = &hw->port_mib[p];
5535
5536		dev->stats.multicast += (unsigned long)
5537			mib->counter[MIB_COUNTER_RX_MULTICAST];
5538
5539		dev->stats.collisions += (unsigned long)
5540			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5541
5542		dev->stats.rx_length_errors += (unsigned long)(
5543			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5544			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5545			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5546			mib->counter[MIB_COUNTER_RX_JABBER]);
5547		dev->stats.rx_crc_errors += (unsigned long)
5548			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5549		dev->stats.rx_frame_errors += (unsigned long)(
5550			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5551			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5552
5553		dev->stats.tx_window_errors += (unsigned long)
5554			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5555	}
5556
5557	return &dev->stats;
5558}
5559
5560/**
5561 * netdev_set_mac_address - set network device MAC address
5562 * @dev:	Network device.
5563 * @addr:	Buffer of MAC address.
5564 *
5565 * This function is used to set the MAC address of the network device.
5566 *
5567 * Return 0 to indicate success.
5568 */
5569static int netdev_set_mac_address(struct net_device *dev, void *addr)
5570{
5571	struct dev_priv *priv = netdev_priv(dev);
5572	struct dev_info *hw_priv = priv->adapter;
5573	struct ksz_hw *hw = &hw_priv->hw;
5574	struct sockaddr *mac = addr;
5575	uint interrupt;
5576
5577	if (priv->port.first_port > 0)
5578		hw_del_addr(hw, dev->dev_addr);
5579	else {
5580		hw->mac_override = 1;
5581		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5582	}
5583
5584	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5585
5586	interrupt = hw_block_intr(hw);
5587
5588	if (priv->port.first_port > 0)
5589		hw_add_addr(hw, dev->dev_addr);
5590	else
5591		hw_set_addr(hw);
5592	hw_restore_intr(hw, interrupt);
5593
5594	return 0;
5595}
5596
5597static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5598	struct ksz_hw *hw, int promiscuous)
5599{
5600	if (promiscuous != priv->promiscuous) {
5601		u8 prev_state = hw->promiscuous;
5602
5603		if (promiscuous)
5604			++hw->promiscuous;
5605		else
5606			--hw->promiscuous;
5607		priv->promiscuous = promiscuous;
5608
5609		/* Turn on/off promiscuous mode. */
5610		if (hw->promiscuous <= 1 && prev_state <= 1)
5611			hw_set_promiscuous(hw, hw->promiscuous);
5612
5613		/*
5614		 * Port is not in promiscuous mode, meaning it is released
5615		 * from the bridge.
5616		 */
5617		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5618		    netif_is_bridge_port(dev)) {
5619			struct ksz_switch *sw = hw->ksz_switch;
5620			int port = priv->port.first_port;
5621
5622			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5623			port = 1 << port;
5624			if (sw->member & port) {
5625				sw->member &= ~port;
5626				bridge_change(hw);
5627			}
5628		}
5629	}
5630}
5631
5632static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5633	int multicast)
5634{
5635	if (multicast != priv->multicast) {
5636		u8 all_multi = hw->all_multi;
5637
5638		if (multicast)
5639			++hw->all_multi;
5640		else
5641			--hw->all_multi;
5642		priv->multicast = multicast;
5643
5644		/* Turn on/off all multicast mode. */
5645		if (hw->all_multi <= 1 && all_multi <= 1)
5646			hw_set_multicast(hw, hw->all_multi);
5647	}
5648}
5649
5650/**
5651 * netdev_set_rx_mode
5652 * @dev:	Network device.
5653 *
5654 * This routine is used to set multicast addresses or put the network device
5655 * into promiscuous mode.
5656 */
5657static void netdev_set_rx_mode(struct net_device *dev)
5658{
5659	struct dev_priv *priv = netdev_priv(dev);
5660	struct dev_info *hw_priv = priv->adapter;
5661	struct ksz_hw *hw = &hw_priv->hw;
5662	struct netdev_hw_addr *ha;
5663	int multicast = (dev->flags & IFF_ALLMULTI);
5664
5665	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5666
5667	if (hw_priv->hw.dev_count > 1)
5668		multicast |= (dev->flags & IFF_MULTICAST);
5669	dev_set_multicast(priv, hw, multicast);
5670
5671	/* Cannot use different hashes in multiple device interfaces mode. */
5672	if (hw_priv->hw.dev_count > 1)
5673		return;
5674
5675	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5676		int i = 0;
5677
5678		/* List too big to support so turn on all multicast mode. */
5679		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5680			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5681				hw->multi_list_size = MAX_MULTICAST_LIST;
5682				++hw->all_multi;
5683				hw_set_multicast(hw, hw->all_multi);
5684			}
5685			return;
5686		}
5687
5688		netdev_for_each_mc_addr(ha, dev) {
5689			if (i >= MAX_MULTICAST_LIST)
5690				break;
5691			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5692		}
5693		hw->multi_list_size = (u8) i;
5694		hw_set_grp_addr(hw);
5695	} else {
5696		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5697			--hw->all_multi;
5698			hw_set_multicast(hw, hw->all_multi);
5699		}
5700		hw->multi_list_size = 0;
5701		hw_clr_multicast(hw);
5702	}
5703}
5704
5705static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5706{
5707	struct dev_priv *priv = netdev_priv(dev);
5708	struct dev_info *hw_priv = priv->adapter;
5709	struct ksz_hw *hw = &hw_priv->hw;
5710	int hw_mtu;
5711
5712	if (netif_running(dev))
5713		return -EBUSY;
5714
5715	/* Cannot use different MTU in multiple device interfaces mode. */
5716	if (hw->dev_count > 1)
5717		if (dev != hw_priv->dev)
5718			return 0;
5719
5720	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5721	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5722		hw->features |= RX_HUGE_FRAME;
5723		hw_mtu = MAX_RX_BUF_SIZE;
5724	} else {
5725		hw->features &= ~RX_HUGE_FRAME;
5726		hw_mtu = REGULAR_RX_BUF_SIZE;
5727	}
5728	hw_mtu = (hw_mtu + 3) & ~3;
5729	hw_priv->mtu = hw_mtu;
5730	dev->mtu = new_mtu;
5731
5732	return 0;
5733}
5734
5735/**
5736 * netdev_ioctl - I/O control processing
5737 * @dev:	Network device.
5738 * @ifr:	Interface request structure.
5739 * @cmd:	I/O control code.
5740 *
5741 * This function is used to process I/O control calls.
5742 *
5743 * Return 0 to indicate success.
5744 */
5745static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5746{
5747	struct dev_priv *priv = netdev_priv(dev);
5748	struct dev_info *hw_priv = priv->adapter;
5749	struct ksz_hw *hw = &hw_priv->hw;
5750	struct ksz_port *port = &priv->port;
5751	int result = 0;
5752	struct mii_ioctl_data *data = if_mii(ifr);
5753
5754	if (down_interruptible(&priv->proc_sem))
5755		return -ERESTARTSYS;
5756
5757	switch (cmd) {
5758	/* Get address of MII PHY in use. */
5759	case SIOCGMIIPHY:
5760		data->phy_id = priv->id;
5761		fallthrough;
 
5762
5763	/* Read MII PHY register. */
5764	case SIOCGMIIREG:
5765		if (data->phy_id != priv->id || data->reg_num >= 6)
5766			result = -EIO;
5767		else
5768			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5769				&data->val_out);
5770		break;
5771
5772	/* Write MII PHY register. */
5773	case SIOCSMIIREG:
5774		if (!capable(CAP_NET_ADMIN))
5775			result = -EPERM;
5776		else if (data->phy_id != priv->id || data->reg_num >= 6)
5777			result = -EIO;
5778		else
5779			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5780				data->val_in);
5781		break;
5782
5783	default:
5784		result = -EOPNOTSUPP;
5785	}
5786
5787	up(&priv->proc_sem);
5788
5789	return result;
5790}
5791
5792/*
5793 * MII support
5794 */
5795
5796/**
5797 * mdio_read - read PHY register
5798 * @dev:	Network device.
5799 * @phy_id:	The PHY id.
5800 * @reg_num:	The register number.
5801 *
5802 * This function returns the PHY register value.
5803 *
5804 * Return the register value.
5805 */
5806static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5807{
5808	struct dev_priv *priv = netdev_priv(dev);
5809	struct ksz_port *port = &priv->port;
5810	struct ksz_hw *hw = port->hw;
5811	u16 val_out;
5812
5813	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5814	return val_out;
5815}
5816
5817/**
5818 * mdio_write - set PHY register
5819 * @dev:	Network device.
5820 * @phy_id:	The PHY id.
5821 * @reg_num:	The register number.
5822 * @val:	The register value.
5823 *
5824 * This procedure sets the PHY register value.
5825 */
5826static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5827{
5828	struct dev_priv *priv = netdev_priv(dev);
5829	struct ksz_port *port = &priv->port;
5830	struct ksz_hw *hw = port->hw;
5831	int i;
5832	int pi;
5833
5834	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5835		hw_w_phy(hw, pi, reg_num << 1, val);
5836}
5837
5838/*
5839 * ethtool support
5840 */
5841
5842#define EEPROM_SIZE			0x40
5843
5844static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5845
5846#define ADVERTISED_ALL			\
5847	(ADVERTISED_10baseT_Half |	\
5848	ADVERTISED_10baseT_Full |	\
5849	ADVERTISED_100baseT_Half |	\
5850	ADVERTISED_100baseT_Full)
5851
5852/* These functions use the MII functions in mii.c. */
5853
5854/**
5855 * netdev_get_link_ksettings - get network device settings
5856 * @dev:	Network device.
5857 * @cmd:	Ethtool command.
5858 *
5859 * This function queries the PHY and returns its state in the ethtool command.
5860 *
5861 * Return 0 if successful; otherwise an error code.
5862 */
5863static int netdev_get_link_ksettings(struct net_device *dev,
5864				     struct ethtool_link_ksettings *cmd)
5865{
5866	struct dev_priv *priv = netdev_priv(dev);
5867	struct dev_info *hw_priv = priv->adapter;
5868
5869	mutex_lock(&hw_priv->lock);
5870	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5871	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5872	mutex_unlock(&hw_priv->lock);
5873
5874	/* Save advertised settings for workaround in next function. */
5875	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5876						cmd->link_modes.advertising);
5877
5878	return 0;
5879}
5880
5881/**
5882 * netdev_set_link_ksettings - set network device settings
5883 * @dev:	Network device.
5884 * @cmd:	Ethtool command.
5885 *
5886 * This function sets the PHY according to the ethtool command.
5887 *
5888 * Return 0 if successful; otherwise an error code.
5889 */
5890static int netdev_set_link_ksettings(struct net_device *dev,
5891				     const struct ethtool_link_ksettings *cmd)
5892{
5893	struct dev_priv *priv = netdev_priv(dev);
5894	struct dev_info *hw_priv = priv->adapter;
5895	struct ksz_port *port = &priv->port;
5896	struct ethtool_link_ksettings copy_cmd;
5897	u32 speed = cmd->base.speed;
5898	u32 advertising;
5899	int rc;
5900
5901	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5902						cmd->link_modes.advertising);
5903
5904	/*
5905	 * ethtool utility does not change advertised setting if auto
5906	 * negotiation is not specified explicitly.
5907	 */
5908	if (cmd->base.autoneg && priv->advertising == advertising) {
5909		advertising |= ADVERTISED_ALL;
5910		if (10 == speed)
5911			advertising &=
5912				~(ADVERTISED_100baseT_Full |
5913				ADVERTISED_100baseT_Half);
5914		else if (100 == speed)
5915			advertising &=
5916				~(ADVERTISED_10baseT_Full |
5917				ADVERTISED_10baseT_Half);
5918		if (0 == cmd->base.duplex)
5919			advertising &=
5920				~(ADVERTISED_100baseT_Full |
5921				ADVERTISED_10baseT_Full);
5922		else if (1 == cmd->base.duplex)
5923			advertising &=
5924				~(ADVERTISED_100baseT_Half |
5925				ADVERTISED_10baseT_Half);
5926	}
5927	mutex_lock(&hw_priv->lock);
5928	if (cmd->base.autoneg &&
5929	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5930		port->duplex = 0;
5931		port->speed = 0;
5932		port->force_link = 0;
5933	} else {
5934		port->duplex = cmd->base.duplex + 1;
5935		if (1000 != speed)
5936			port->speed = speed;
5937		if (cmd->base.autoneg)
5938			port->force_link = 0;
5939		else
5940			port->force_link = 1;
5941	}
5942
5943	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5944	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5945						advertising);
5946	rc = mii_ethtool_set_link_ksettings(
5947		&priv->mii_if,
5948		(const struct ethtool_link_ksettings *)&copy_cmd);
5949	mutex_unlock(&hw_priv->lock);
5950	return rc;
5951}
5952
5953/**
5954 * netdev_nway_reset - restart auto-negotiation
5955 * @dev:	Network device.
5956 *
5957 * This function restarts the PHY for auto-negotiation.
5958 *
5959 * Return 0 if successful; otherwise an error code.
5960 */
5961static int netdev_nway_reset(struct net_device *dev)
5962{
5963	struct dev_priv *priv = netdev_priv(dev);
5964	struct dev_info *hw_priv = priv->adapter;
5965	int rc;
5966
5967	mutex_lock(&hw_priv->lock);
5968	rc = mii_nway_restart(&priv->mii_if);
5969	mutex_unlock(&hw_priv->lock);
5970	return rc;
5971}
5972
5973/**
5974 * netdev_get_link - get network device link status
5975 * @dev:	Network device.
5976 *
5977 * This function gets the link status from the PHY.
5978 *
5979 * Return true if PHY is linked and false otherwise.
5980 */
5981static u32 netdev_get_link(struct net_device *dev)
5982{
5983	struct dev_priv *priv = netdev_priv(dev);
5984	int rc;
5985
5986	rc = mii_link_ok(&priv->mii_if);
5987	return rc;
5988}
5989
5990/**
5991 * netdev_get_drvinfo - get network driver information
5992 * @dev:	Network device.
5993 * @info:	Ethtool driver info data structure.
5994 *
5995 * This procedure returns the driver information.
5996 */
5997static void netdev_get_drvinfo(struct net_device *dev,
5998	struct ethtool_drvinfo *info)
5999{
6000	struct dev_priv *priv = netdev_priv(dev);
6001	struct dev_info *hw_priv = priv->adapter;
6002
6003	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6004	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6005	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6006		sizeof(info->bus_info));
6007}
6008
 
 
 
 
 
 
 
 
6009static struct hw_regs {
6010	int start;
6011	int end;
6012} hw_regs_range[] = {
6013	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6014	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6015	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6016	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6017	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6018	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6019	{ 0, 0 }
6020};
6021
6022/**
6023 * netdev_get_regs_len - get length of register dump
6024 * @dev:	Network device.
6025 *
6026 * This function returns the length of the register dump.
6027 *
6028 * Return length of the register dump.
6029 */
6030static int netdev_get_regs_len(struct net_device *dev)
6031{
6032	struct hw_regs *range = hw_regs_range;
6033	int regs_len = 0x10 * sizeof(u32);
6034
6035	while (range->end > range->start) {
6036		regs_len += (range->end - range->start + 3) / 4 * 4;
6037		range++;
6038	}
6039	return regs_len;
6040}
6041
6042/**
6043 * netdev_get_regs - get register dump
6044 * @dev:	Network device.
6045 * @regs:	Ethtool registers data structure.
6046 * @ptr:	Buffer to store the register values.
6047 *
6048 * This procedure dumps the register values in the provided buffer.
6049 */
6050static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6051	void *ptr)
6052{
6053	struct dev_priv *priv = netdev_priv(dev);
6054	struct dev_info *hw_priv = priv->adapter;
6055	struct ksz_hw *hw = &hw_priv->hw;
6056	int *buf = (int *) ptr;
6057	struct hw_regs *range = hw_regs_range;
6058	int len;
6059
6060	mutex_lock(&hw_priv->lock);
6061	regs->version = 0;
6062	for (len = 0; len < 0x40; len += 4) {
6063		pci_read_config_dword(hw_priv->pdev, len, buf);
6064		buf++;
6065	}
6066	while (range->end > range->start) {
6067		for (len = range->start; len < range->end; len += 4) {
6068			*buf = readl(hw->io + len);
6069			buf++;
6070		}
6071		range++;
6072	}
6073	mutex_unlock(&hw_priv->lock);
6074}
6075
6076#define WOL_SUPPORT			\
6077	(WAKE_PHY | WAKE_MAGIC |	\
6078	WAKE_UCAST | WAKE_MCAST |	\
6079	WAKE_BCAST | WAKE_ARP)
6080
6081/**
6082 * netdev_get_wol - get Wake-on-LAN support
6083 * @dev:	Network device.
6084 * @wol:	Ethtool Wake-on-LAN data structure.
6085 *
6086 * This procedure returns Wake-on-LAN support.
6087 */
6088static void netdev_get_wol(struct net_device *dev,
6089	struct ethtool_wolinfo *wol)
6090{
6091	struct dev_priv *priv = netdev_priv(dev);
6092	struct dev_info *hw_priv = priv->adapter;
6093
6094	wol->supported = hw_priv->wol_support;
6095	wol->wolopts = hw_priv->wol_enable;
6096	memset(&wol->sopass, 0, sizeof(wol->sopass));
6097}
6098
6099/**
6100 * netdev_set_wol - set Wake-on-LAN support
6101 * @dev:	Network device.
6102 * @wol:	Ethtool Wake-on-LAN data structure.
6103 *
6104 * This function sets Wake-on-LAN support.
6105 *
6106 * Return 0 if successful; otherwise an error code.
6107 */
6108static int netdev_set_wol(struct net_device *dev,
6109	struct ethtool_wolinfo *wol)
6110{
6111	struct dev_priv *priv = netdev_priv(dev);
6112	struct dev_info *hw_priv = priv->adapter;
6113
6114	/* Need to find a way to retrieve the device IP address. */
6115	static const u8 net_addr[] = { 192, 168, 1, 1 };
6116
6117	if (wol->wolopts & ~hw_priv->wol_support)
6118		return -EINVAL;
6119
6120	hw_priv->wol_enable = wol->wolopts;
6121
6122	/* Link wakeup cannot really be disabled. */
6123	if (wol->wolopts)
6124		hw_priv->wol_enable |= WAKE_PHY;
6125	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6126	return 0;
6127}
6128
6129/**
6130 * netdev_get_msglevel - get debug message level
6131 * @dev:	Network device.
6132 *
6133 * This function returns current debug message level.
6134 *
6135 * Return current debug message flags.
6136 */
6137static u32 netdev_get_msglevel(struct net_device *dev)
6138{
6139	struct dev_priv *priv = netdev_priv(dev);
6140
6141	return priv->msg_enable;
6142}
6143
6144/**
6145 * netdev_set_msglevel - set debug message level
6146 * @dev:	Network device.
6147 * @value:	Debug message flags.
6148 *
6149 * This procedure sets debug message level.
6150 */
6151static void netdev_set_msglevel(struct net_device *dev, u32 value)
6152{
6153	struct dev_priv *priv = netdev_priv(dev);
6154
6155	priv->msg_enable = value;
6156}
6157
6158/**
6159 * netdev_get_eeprom_len - get EEPROM length
6160 * @dev:	Network device.
6161 *
6162 * This function returns the length of the EEPROM.
6163 *
6164 * Return length of the EEPROM.
6165 */
6166static int netdev_get_eeprom_len(struct net_device *dev)
6167{
6168	return EEPROM_SIZE * 2;
6169}
6170
6171#define EEPROM_MAGIC			0x10A18842
6172
6173/**
6174 * netdev_get_eeprom - get EEPROM data
6175 * @dev:	Network device.
6176 * @eeprom:	Ethtool EEPROM data structure.
6177 * @data:	Buffer to store the EEPROM data.
6178 *
6179 * This function dumps the EEPROM data in the provided buffer.
6180 *
6181 * Return 0 if successful; otherwise an error code.
6182 */
 
 
6183static int netdev_get_eeprom(struct net_device *dev,
6184	struct ethtool_eeprom *eeprom, u8 *data)
6185{
6186	struct dev_priv *priv = netdev_priv(dev);
6187	struct dev_info *hw_priv = priv->adapter;
6188	u8 *eeprom_byte = (u8 *) eeprom_data;
6189	int i;
6190	int len;
6191
6192	len = (eeprom->offset + eeprom->len + 1) / 2;
6193	for (i = eeprom->offset / 2; i < len; i++)
6194		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6195	eeprom->magic = EEPROM_MAGIC;
6196	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6197
6198	return 0;
6199}
6200
6201/**
6202 * netdev_set_eeprom - write EEPROM data
6203 * @dev:	Network device.
6204 * @eeprom:	Ethtool EEPROM data structure.
6205 * @data:	Data buffer.
6206 *
6207 * This function modifies the EEPROM data one byte at a time.
6208 *
6209 * Return 0 if successful; otherwise an error code.
6210 */
6211static int netdev_set_eeprom(struct net_device *dev,
6212	struct ethtool_eeprom *eeprom, u8 *data)
6213{
6214	struct dev_priv *priv = netdev_priv(dev);
6215	struct dev_info *hw_priv = priv->adapter;
6216	u16 eeprom_word[EEPROM_SIZE];
6217	u8 *eeprom_byte = (u8 *) eeprom_word;
6218	int i;
6219	int len;
6220
6221	if (eeprom->magic != EEPROM_MAGIC)
6222		return -EINVAL;
6223
6224	len = (eeprom->offset + eeprom->len + 1) / 2;
6225	for (i = eeprom->offset / 2; i < len; i++)
6226		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6227	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6228	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6229	for (i = 0; i < EEPROM_SIZE; i++)
6230		if (eeprom_word[i] != eeprom_data[i]) {
6231			eeprom_data[i] = eeprom_word[i];
6232			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6233	}
6234
6235	return 0;
6236}
6237
6238/**
6239 * netdev_get_pauseparam - get flow control parameters
6240 * @dev:	Network device.
6241 * @pause:	Ethtool PAUSE settings data structure.
6242 *
6243 * This procedure returns the PAUSE control flow settings.
6244 */
6245static void netdev_get_pauseparam(struct net_device *dev,
6246	struct ethtool_pauseparam *pause)
6247{
6248	struct dev_priv *priv = netdev_priv(dev);
6249	struct dev_info *hw_priv = priv->adapter;
6250	struct ksz_hw *hw = &hw_priv->hw;
6251
6252	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6253	if (!hw->ksz_switch) {
6254		pause->rx_pause =
6255			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6256		pause->tx_pause =
6257			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6258	} else {
6259		pause->rx_pause =
6260			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6261				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6262		pause->tx_pause =
6263			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6264				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6265	}
6266}
6267
6268/**
6269 * netdev_set_pauseparam - set flow control parameters
6270 * @dev:	Network device.
6271 * @pause:	Ethtool PAUSE settings data structure.
6272 *
6273 * This function sets the PAUSE control flow settings.
6274 * Not implemented yet.
6275 *
6276 * Return 0 if successful; otherwise an error code.
6277 */
6278static int netdev_set_pauseparam(struct net_device *dev,
6279	struct ethtool_pauseparam *pause)
6280{
6281	struct dev_priv *priv = netdev_priv(dev);
6282	struct dev_info *hw_priv = priv->adapter;
6283	struct ksz_hw *hw = &hw_priv->hw;
6284	struct ksz_port *port = &priv->port;
6285
6286	mutex_lock(&hw_priv->lock);
6287	if (pause->autoneg) {
6288		if (!pause->rx_pause && !pause->tx_pause)
6289			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6290		else
6291			port->flow_ctrl = PHY_FLOW_CTRL;
6292		hw->overrides &= ~PAUSE_FLOW_CTRL;
6293		port->force_link = 0;
6294		if (hw->ksz_switch) {
6295			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6296				SWITCH_RX_FLOW_CTRL, 1);
6297			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6298				SWITCH_TX_FLOW_CTRL, 1);
6299		}
6300		port_set_link_speed(port);
6301	} else {
6302		hw->overrides |= PAUSE_FLOW_CTRL;
6303		if (hw->ksz_switch) {
6304			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6305				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6306			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6307				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6308		} else
6309			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6310	}
6311	mutex_unlock(&hw_priv->lock);
6312
6313	return 0;
6314}
6315
6316/**
6317 * netdev_get_ringparam - get tx/rx ring parameters
6318 * @dev:	Network device.
6319 * @ring:	Ethtool RING settings data structure.
6320 *
6321 * This procedure returns the TX/RX ring settings.
6322 */
6323static void netdev_get_ringparam(struct net_device *dev,
6324	struct ethtool_ringparam *ring)
6325{
6326	struct dev_priv *priv = netdev_priv(dev);
6327	struct dev_info *hw_priv = priv->adapter;
6328	struct ksz_hw *hw = &hw_priv->hw;
6329
6330	ring->tx_max_pending = (1 << 9);
6331	ring->tx_pending = hw->tx_desc_info.alloc;
6332	ring->rx_max_pending = (1 << 9);
6333	ring->rx_pending = hw->rx_desc_info.alloc;
6334}
6335
6336#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6337
6338static struct {
6339	char string[ETH_GSTRING_LEN];
6340} ethtool_stats_keys[STATS_LEN] = {
6341	{ "rx_lo_priority_octets" },
6342	{ "rx_hi_priority_octets" },
6343	{ "rx_undersize_packets" },
6344	{ "rx_fragments" },
6345	{ "rx_oversize_packets" },
6346	{ "rx_jabbers" },
6347	{ "rx_symbol_errors" },
6348	{ "rx_crc_errors" },
6349	{ "rx_align_errors" },
6350	{ "rx_mac_ctrl_packets" },
6351	{ "rx_pause_packets" },
6352	{ "rx_bcast_packets" },
6353	{ "rx_mcast_packets" },
6354	{ "rx_ucast_packets" },
6355	{ "rx_64_or_less_octet_packets" },
6356	{ "rx_65_to_127_octet_packets" },
6357	{ "rx_128_to_255_octet_packets" },
6358	{ "rx_256_to_511_octet_packets" },
6359	{ "rx_512_to_1023_octet_packets" },
6360	{ "rx_1024_to_1522_octet_packets" },
6361
6362	{ "tx_lo_priority_octets" },
6363	{ "tx_hi_priority_octets" },
6364	{ "tx_late_collisions" },
6365	{ "tx_pause_packets" },
6366	{ "tx_bcast_packets" },
6367	{ "tx_mcast_packets" },
6368	{ "tx_ucast_packets" },
6369	{ "tx_deferred" },
6370	{ "tx_total_collisions" },
6371	{ "tx_excessive_collisions" },
6372	{ "tx_single_collisions" },
6373	{ "tx_mult_collisions" },
6374
6375	{ "rx_discards" },
6376	{ "tx_discards" },
6377};
6378
6379/**
6380 * netdev_get_strings - get statistics identity strings
6381 * @dev:	Network device.
6382 * @stringset:	String set identifier.
6383 * @buf:	Buffer to store the strings.
6384 *
6385 * This procedure returns the strings used to identify the statistics.
6386 */
6387static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6388{
6389	struct dev_priv *priv = netdev_priv(dev);
6390	struct dev_info *hw_priv = priv->adapter;
6391	struct ksz_hw *hw = &hw_priv->hw;
6392
6393	if (ETH_SS_STATS == stringset)
6394		memcpy(buf, &ethtool_stats_keys,
6395			ETH_GSTRING_LEN * hw->mib_cnt);
6396}
6397
6398/**
6399 * netdev_get_sset_count - get statistics size
6400 * @dev:	Network device.
6401 * @sset:	The statistics set number.
6402 *
6403 * This function returns the size of the statistics to be reported.
6404 *
6405 * Return size of the statistics to be reported.
6406 */
6407static int netdev_get_sset_count(struct net_device *dev, int sset)
6408{
6409	struct dev_priv *priv = netdev_priv(dev);
6410	struct dev_info *hw_priv = priv->adapter;
6411	struct ksz_hw *hw = &hw_priv->hw;
6412
6413	switch (sset) {
6414	case ETH_SS_STATS:
6415		return hw->mib_cnt;
6416	default:
6417		return -EOPNOTSUPP;
6418	}
6419}
6420
6421/**
6422 * netdev_get_ethtool_stats - get network device statistics
6423 * @dev:	Network device.
6424 * @stats:	Ethtool statistics data structure.
6425 * @data:	Buffer to store the statistics.
6426 *
6427 * This procedure returns the statistics.
6428 */
6429static void netdev_get_ethtool_stats(struct net_device *dev,
6430	struct ethtool_stats *stats, u64 *data)
6431{
6432	struct dev_priv *priv = netdev_priv(dev);
6433	struct dev_info *hw_priv = priv->adapter;
6434	struct ksz_hw *hw = &hw_priv->hw;
6435	struct ksz_port *port = &priv->port;
6436	int n_stats = stats->n_stats;
6437	int i;
6438	int n;
6439	int p;
 
6440	u64 counter[TOTAL_PORT_COUNTER_NUM];
6441
6442	mutex_lock(&hw_priv->lock);
6443	n = SWITCH_PORT_NUM;
6444	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6445		if (media_connected == hw->port_mib[p].state) {
6446			hw_priv->counter[p].read = 1;
6447
6448			/* Remember first port that requests read. */
6449			if (n == SWITCH_PORT_NUM)
6450				n = p;
6451		}
6452	}
6453	mutex_unlock(&hw_priv->lock);
6454
6455	if (n < SWITCH_PORT_NUM)
6456		schedule_work(&hw_priv->mib_read);
6457
6458	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6459		p = n;
6460		wait_event_interruptible_timeout(
6461			hw_priv->counter[p].counter,
6462			2 == hw_priv->counter[p].read,
6463			HZ * 1);
6464	} else
6465		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6466			if (0 == i) {
6467				wait_event_interruptible_timeout(
6468					hw_priv->counter[p].counter,
6469					2 == hw_priv->counter[p].read,
6470					HZ * 2);
6471			} else if (hw->port_mib[p].cnt_ptr) {
6472				wait_event_interruptible_timeout(
6473					hw_priv->counter[p].counter,
6474					2 == hw_priv->counter[p].read,
6475					HZ * 1);
6476			}
6477		}
6478
6479	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6480	n = hw->mib_cnt;
6481	if (n > n_stats)
6482		n = n_stats;
6483	n_stats -= n;
6484	for (i = 0; i < n; i++)
6485		*data++ = counter[i];
6486}
6487
6488/**
6489 * netdev_set_features - set receive checksum support
6490 * @dev:	Network device.
6491 * @features:	New device features (offloads).
6492 *
6493 * This function sets receive checksum support setting.
6494 *
6495 * Return 0 if successful; otherwise an error code.
6496 */
6497static int netdev_set_features(struct net_device *dev,
6498	netdev_features_t features)
6499{
6500	struct dev_priv *priv = netdev_priv(dev);
6501	struct dev_info *hw_priv = priv->adapter;
6502	struct ksz_hw *hw = &hw_priv->hw;
6503
6504	mutex_lock(&hw_priv->lock);
6505
6506	/* see note in hw_setup() */
6507	if (features & NETIF_F_RXCSUM)
6508		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6509	else
6510		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6511
6512	if (hw->enabled)
6513		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6514
6515	mutex_unlock(&hw_priv->lock);
6516
6517	return 0;
6518}
6519
6520static const struct ethtool_ops netdev_ethtool_ops = {
6521	.nway_reset		= netdev_nway_reset,
6522	.get_link		= netdev_get_link,
6523	.get_drvinfo		= netdev_get_drvinfo,
6524	.get_regs_len		= netdev_get_regs_len,
6525	.get_regs		= netdev_get_regs,
6526	.get_wol		= netdev_get_wol,
6527	.set_wol		= netdev_set_wol,
6528	.get_msglevel		= netdev_get_msglevel,
6529	.set_msglevel		= netdev_set_msglevel,
6530	.get_eeprom_len		= netdev_get_eeprom_len,
6531	.get_eeprom		= netdev_get_eeprom,
6532	.set_eeprom		= netdev_set_eeprom,
6533	.get_pauseparam		= netdev_get_pauseparam,
6534	.set_pauseparam		= netdev_set_pauseparam,
6535	.get_ringparam		= netdev_get_ringparam,
6536	.get_strings		= netdev_get_strings,
6537	.get_sset_count		= netdev_get_sset_count,
6538	.get_ethtool_stats	= netdev_get_ethtool_stats,
6539	.get_link_ksettings	= netdev_get_link_ksettings,
6540	.set_link_ksettings	= netdev_set_link_ksettings,
6541};
6542
6543/*
6544 * Hardware monitoring
6545 */
6546
6547static void update_link(struct net_device *dev, struct dev_priv *priv,
6548	struct ksz_port *port)
6549{
6550	if (priv->media_state != port->linked->state) {
6551		priv->media_state = port->linked->state;
6552		if (netif_running(dev))
6553			set_media_state(dev, media_connected);
6554	}
6555}
6556
6557static void mib_read_work(struct work_struct *work)
6558{
6559	struct dev_info *hw_priv =
6560		container_of(work, struct dev_info, mib_read);
6561	struct ksz_hw *hw = &hw_priv->hw;
6562	struct ksz_port_mib *mib;
6563	int i;
6564
6565	next_jiffies = jiffies;
6566	for (i = 0; i < hw->mib_port_cnt; i++) {
6567		mib = &hw->port_mib[i];
6568
6569		/* Reading MIB counters or requested to read. */
6570		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6571
6572			/* Need to process receive interrupt. */
6573			if (port_r_cnt(hw, i))
6574				break;
6575			hw_priv->counter[i].read = 0;
6576
6577			/* Finish reading counters. */
6578			if (0 == mib->cnt_ptr) {
6579				hw_priv->counter[i].read = 2;
6580				wake_up_interruptible(
6581					&hw_priv->counter[i].counter);
6582			}
6583		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6584			/* Only read MIB counters when the port is connected. */
6585			if (media_connected == mib->state)
6586				hw_priv->counter[i].read = 1;
6587			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6588			hw_priv->counter[i].time = next_jiffies;
6589
6590		/* Port is just disconnected. */
6591		} else if (mib->link_down) {
6592			mib->link_down = 0;
6593
6594			/* Read counters one last time after link is lost. */
6595			hw_priv->counter[i].read = 1;
6596		}
6597	}
6598}
6599
6600static void mib_monitor(struct timer_list *t)
6601{
6602	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6603
6604	mib_read_work(&hw_priv->mib_read);
6605
6606	/* This is used to verify Wake-on-LAN is working. */
6607	if (hw_priv->pme_wait) {
6608		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6609			hw_clr_wol_pme_status(&hw_priv->hw);
6610			hw_priv->pme_wait = 0;
6611		}
6612	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6613
6614		/* PME is asserted.  Wait 2 seconds to clear it. */
6615		hw_priv->pme_wait = jiffies + HZ * 2;
6616	}
6617
6618	ksz_update_timer(&hw_priv->mib_timer_info);
6619}
6620
6621/**
6622 * dev_monitor - periodic monitoring
6623 * @t:	timer list containing a network device pointer.
6624 *
6625 * This routine is run in a kernel timer to monitor the network device.
6626 */
6627static void dev_monitor(struct timer_list *t)
6628{
6629	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6630	struct net_device *dev = priv->mii_if.dev;
6631	struct dev_info *hw_priv = priv->adapter;
6632	struct ksz_hw *hw = &hw_priv->hw;
6633	struct ksz_port *port = &priv->port;
6634
6635	if (!(hw->features & LINK_INT_WORKING))
6636		port_get_link_speed(port);
6637	update_link(dev, priv, port);
6638
6639	ksz_update_timer(&priv->monitor_timer_info);
6640}
6641
6642/*
6643 * Linux network device interface functions
6644 */
6645
6646/* Driver exported variables */
6647
6648static int msg_enable;
6649
6650static char *macaddr = ":";
6651static char *mac1addr = ":";
6652
6653/*
6654 * This enables multiple network device mode for KSZ8842, which contains a
6655 * switch with two physical ports.  Some users like to take control of the
6656 * ports for running Spanning Tree Protocol.  The driver will create an
6657 * additional eth? device for the other port.
6658 *
6659 * Some limitations are the network devices cannot have different MTU and
6660 * multicast hash tables.
6661 */
6662static int multi_dev;
6663
6664/*
6665 * As most users select multiple network device mode to use Spanning Tree
6666 * Protocol, this enables a feature in which most unicast and multicast packets
6667 * are forwarded inside the switch and not passed to the host.  Only packets
6668 * that need the host's attention are passed to it.  This prevents the host
6669 * wasting CPU time to examine each and every incoming packets and do the
6670 * forwarding itself.
6671 *
6672 * As the hack requires the private bridge header, the driver cannot compile
6673 * with just the kernel headers.
6674 *
6675 * Enabling STP support also turns on multiple network device mode.
6676 */
6677static int stp;
6678
6679/*
6680 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6681 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6682 * STP support is enabled.
6683 */
6684static int fast_aging;
6685
6686/**
6687 * netdev_init - initialize network device.
6688 * @dev:	Network device.
6689 *
6690 * This function initializes the network device.
6691 *
6692 * Return 0 if successful; otherwise an error code indicating failure.
6693 */
6694static int __init netdev_init(struct net_device *dev)
6695{
6696	struct dev_priv *priv = netdev_priv(dev);
6697
6698	/* 500 ms timeout */
6699	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6700		dev_monitor);
6701
6702	/* 500 ms timeout */
6703	dev->watchdog_timeo = HZ / 2;
6704
6705	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6706
6707	/*
6708	 * Hardware does not really support IPv6 checksum generation, but
6709	 * driver actually runs faster with this on.
6710	 */
6711	dev->hw_features |= NETIF_F_IPV6_CSUM;
6712
6713	dev->features |= dev->hw_features;
6714
6715	sema_init(&priv->proc_sem, 1);
6716
6717	priv->mii_if.phy_id_mask = 0x1;
6718	priv->mii_if.reg_num_mask = 0x7;
6719	priv->mii_if.dev = dev;
6720	priv->mii_if.mdio_read = mdio_read;
6721	priv->mii_if.mdio_write = mdio_write;
6722	priv->mii_if.phy_id = priv->port.first_port + 1;
6723
6724	priv->msg_enable = netif_msg_init(msg_enable,
6725		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6726
6727	return 0;
6728}
6729
6730static const struct net_device_ops netdev_ops = {
6731	.ndo_init		= netdev_init,
6732	.ndo_open		= netdev_open,
6733	.ndo_stop		= netdev_close,
6734	.ndo_get_stats		= netdev_query_statistics,
6735	.ndo_start_xmit		= netdev_tx,
6736	.ndo_tx_timeout		= netdev_tx_timeout,
6737	.ndo_change_mtu		= netdev_change_mtu,
6738	.ndo_set_features	= netdev_set_features,
6739	.ndo_set_mac_address	= netdev_set_mac_address,
6740	.ndo_validate_addr	= eth_validate_addr,
6741	.ndo_do_ioctl		= netdev_ioctl,
6742	.ndo_set_rx_mode	= netdev_set_rx_mode,
6743#ifdef CONFIG_NET_POLL_CONTROLLER
6744	.ndo_poll_controller	= netdev_netpoll,
6745#endif
6746};
6747
6748static void netdev_free(struct net_device *dev)
6749{
6750	if (dev->watchdog_timeo)
6751		unregister_netdev(dev);
6752
6753	free_netdev(dev);
6754}
6755
6756struct platform_info {
6757	struct dev_info dev_info;
6758	struct net_device *netdev[SWITCH_PORT_NUM];
6759};
6760
6761static int net_device_present;
6762
6763static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6764{
6765	int i;
6766	int j;
6767	int got_num;
6768	int num;
6769
6770	i = j = num = got_num = 0;
6771	while (j < ETH_ALEN) {
6772		if (macaddr[i]) {
6773			int digit;
6774
6775			got_num = 1;
6776			digit = hex_to_bin(macaddr[i]);
6777			if (digit >= 0)
6778				num = num * 16 + digit;
6779			else if (':' == macaddr[i])
6780				got_num = 2;
6781			else
6782				break;
6783		} else if (got_num)
6784			got_num = 2;
6785		else
6786			break;
6787		if (2 == got_num) {
6788			if (MAIN_PORT == port) {
6789				hw_priv->hw.override_addr[j++] = (u8) num;
6790				hw_priv->hw.override_addr[5] +=
6791					hw_priv->hw.id;
6792			} else {
6793				hw_priv->hw.ksz_switch->other_addr[j++] =
6794					(u8) num;
6795				hw_priv->hw.ksz_switch->other_addr[5] +=
6796					hw_priv->hw.id;
6797			}
6798			num = got_num = 0;
6799		}
6800		i++;
6801	}
6802	if (ETH_ALEN == j) {
6803		if (MAIN_PORT == port)
6804			hw_priv->hw.mac_override = 1;
6805	}
6806}
6807
6808#define KS884X_DMA_MASK			(~0x0UL)
6809
6810static void read_other_addr(struct ksz_hw *hw)
6811{
6812	int i;
6813	u16 data[3];
6814	struct ksz_switch *sw = hw->ksz_switch;
6815
6816	for (i = 0; i < 3; i++)
6817		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6818	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6819		sw->other_addr[5] = (u8) data[0];
6820		sw->other_addr[4] = (u8)(data[0] >> 8);
6821		sw->other_addr[3] = (u8) data[1];
6822		sw->other_addr[2] = (u8)(data[1] >> 8);
6823		sw->other_addr[1] = (u8) data[2];
6824		sw->other_addr[0] = (u8)(data[2] >> 8);
6825	}
6826}
6827
6828#ifndef PCI_VENDOR_ID_MICREL_KS
6829#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6830#endif
6831
6832static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6833{
6834	struct net_device *dev;
6835	struct dev_priv *priv;
6836	struct dev_info *hw_priv;
6837	struct ksz_hw *hw;
6838	struct platform_info *info;
6839	struct ksz_port *port;
6840	unsigned long reg_base;
6841	unsigned long reg_len;
6842	int cnt;
6843	int i;
6844	int mib_port_count;
6845	int pi;
6846	int port_count;
6847	int result;
6848	char banner[sizeof(version)];
6849	struct ksz_switch *sw = NULL;
6850
6851	result = pci_enable_device(pdev);
6852	if (result)
6853		return result;
6854
6855	result = -ENODEV;
6856
6857	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6858	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6859		return result;
6860
6861	reg_base = pci_resource_start(pdev, 0);
6862	reg_len = pci_resource_len(pdev, 0);
6863	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6864		return result;
6865
6866	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6867		return result;
6868	pci_set_master(pdev);
6869
6870	result = -ENOMEM;
6871
6872	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6873	if (!info)
6874		goto pcidev_init_dev_err;
6875
6876	hw_priv = &info->dev_info;
6877	hw_priv->pdev = pdev;
6878
6879	hw = &hw_priv->hw;
6880
6881	hw->io = ioremap(reg_base, reg_len);
6882	if (!hw->io)
6883		goto pcidev_init_io_err;
6884
6885	cnt = hw_init(hw);
6886	if (!cnt) {
6887		if (msg_enable & NETIF_MSG_PROBE)
6888			pr_alert("chip not detected\n");
6889		result = -ENODEV;
6890		goto pcidev_init_alloc_err;
6891	}
6892
6893	snprintf(banner, sizeof(banner), "%s", version);
6894	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6895	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6896	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6897
6898	/* Assume device is KSZ8841. */
6899	hw->dev_count = 1;
6900	port_count = 1;
6901	mib_port_count = 1;
6902	hw->addr_list_size = 0;
6903	hw->mib_cnt = PORT_COUNTER_NUM;
6904	hw->mib_port_cnt = 1;
6905
6906	/* KSZ8842 has a switch with multiple ports. */
6907	if (2 == cnt) {
6908		if (fast_aging)
6909			hw->overrides |= FAST_AGING;
6910
6911		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6912
6913		/* Multiple network device interfaces are required. */
6914		if (multi_dev) {
6915			hw->dev_count = SWITCH_PORT_NUM;
6916			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6917		}
6918
6919		/* Single network device has multiple ports. */
6920		if (1 == hw->dev_count) {
6921			port_count = SWITCH_PORT_NUM;
6922			mib_port_count = SWITCH_PORT_NUM;
6923		}
6924		hw->mib_port_cnt = TOTAL_PORT_NUM;
6925		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6926		if (!hw->ksz_switch)
6927			goto pcidev_init_alloc_err;
6928
6929		sw = hw->ksz_switch;
6930	}
6931	for (i = 0; i < hw->mib_port_cnt; i++)
6932		hw->port_mib[i].mib_start = 0;
6933
6934	hw->parent = hw_priv;
6935
6936	/* Default MTU is 1500. */
6937	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6938
6939	if (ksz_alloc_mem(hw_priv))
6940		goto pcidev_init_mem_err;
6941
6942	hw_priv->hw.id = net_device_present;
6943
6944	spin_lock_init(&hw_priv->hwlock);
6945	mutex_init(&hw_priv->lock);
6946
6947	for (i = 0; i < TOTAL_PORT_NUM; i++)
6948		init_waitqueue_head(&hw_priv->counter[i].counter);
6949
6950	if (macaddr[0] != ':')
6951		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6952
6953	/* Read MAC address and initialize override address if not overridden. */
6954	hw_read_addr(hw);
6955
6956	/* Multiple device interfaces mode requires a second MAC address. */
6957	if (hw->dev_count > 1) {
6958		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6959		read_other_addr(hw);
6960		if (mac1addr[0] != ':')
6961			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6962	}
6963
6964	hw_setup(hw);
6965	if (hw->ksz_switch)
6966		sw_setup(hw);
6967	else {
6968		hw_priv->wol_support = WOL_SUPPORT;
6969		hw_priv->wol_enable = 0;
6970	}
6971
6972	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6973
6974	/* 500 ms timeout */
6975	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6976		mib_monitor);
6977
6978	for (i = 0; i < hw->dev_count; i++) {
6979		dev = alloc_etherdev(sizeof(struct dev_priv));
6980		if (!dev)
6981			goto pcidev_init_reg_err;
6982		SET_NETDEV_DEV(dev, &pdev->dev);
6983		info->netdev[i] = dev;
6984
6985		priv = netdev_priv(dev);
6986		priv->adapter = hw_priv;
6987		priv->id = net_device_present++;
6988
6989		port = &priv->port;
6990		port->port_cnt = port_count;
6991		port->mib_port_cnt = mib_port_count;
6992		port->first_port = i;
6993		port->flow_ctrl = PHY_FLOW_CTRL;
6994
6995		port->hw = hw;
6996		port->linked = &hw->port_info[port->first_port];
6997
6998		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6999			hw->port_info[pi].port_id = pi;
7000			hw->port_info[pi].pdev = dev;
7001			hw->port_info[pi].state = media_disconnected;
7002		}
7003
7004		dev->mem_start = (unsigned long) hw->io;
7005		dev->mem_end = dev->mem_start + reg_len - 1;
7006		dev->irq = pdev->irq;
7007		if (MAIN_PORT == i)
7008			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7009			       ETH_ALEN);
7010		else {
7011			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7012			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7013				dev->dev_addr[5] += port->first_port;
7014		}
7015
7016		dev->netdev_ops = &netdev_ops;
7017		dev->ethtool_ops = &netdev_ethtool_ops;
7018
7019		/* MTU range: 60 - 1894 */
7020		dev->min_mtu = ETH_ZLEN;
7021		dev->max_mtu = MAX_RX_BUF_SIZE -
7022			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7023
7024		if (register_netdev(dev))
7025			goto pcidev_init_reg_err;
7026		port_set_power_saving(port, true);
7027	}
7028
7029	pci_dev_get(hw_priv->pdev);
7030	pci_set_drvdata(pdev, info);
7031	return 0;
7032
7033pcidev_init_reg_err:
7034	for (i = 0; i < hw->dev_count; i++) {
7035		if (info->netdev[i]) {
7036			netdev_free(info->netdev[i]);
7037			info->netdev[i] = NULL;
7038		}
7039	}
7040
7041pcidev_init_mem_err:
7042	ksz_free_mem(hw_priv);
7043	kfree(hw->ksz_switch);
7044
7045pcidev_init_alloc_err:
7046	iounmap(hw->io);
7047
7048pcidev_init_io_err:
7049	kfree(info);
7050
7051pcidev_init_dev_err:
7052	release_mem_region(reg_base, reg_len);
7053
7054	return result;
7055}
7056
7057static void pcidev_exit(struct pci_dev *pdev)
7058{
7059	int i;
7060	struct platform_info *info = pci_get_drvdata(pdev);
7061	struct dev_info *hw_priv = &info->dev_info;
7062
7063	release_mem_region(pci_resource_start(pdev, 0),
7064		pci_resource_len(pdev, 0));
7065	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7066		if (info->netdev[i])
7067			netdev_free(info->netdev[i]);
7068	}
7069	if (hw_priv->hw.io)
7070		iounmap(hw_priv->hw.io);
7071	ksz_free_mem(hw_priv);
7072	kfree(hw_priv->hw.ksz_switch);
7073	pci_dev_put(hw_priv->pdev);
7074	kfree(info);
7075}
7076
7077static int __maybe_unused pcidev_resume(struct device *dev_d)
 
7078{
7079	int i;
7080	struct platform_info *info = dev_get_drvdata(dev_d);
7081	struct dev_info *hw_priv = &info->dev_info;
7082	struct ksz_hw *hw = &hw_priv->hw;
7083
7084	device_wakeup_disable(dev_d);
 
 
7085
7086	if (hw_priv->wol_enable)
7087		hw_cfg_wol_pme(hw, 0);
7088	for (i = 0; i < hw->dev_count; i++) {
7089		if (info->netdev[i]) {
7090			struct net_device *dev = info->netdev[i];
7091
7092			if (netif_running(dev)) {
7093				netdev_open(dev);
7094				netif_device_attach(dev);
7095			}
7096		}
7097	}
7098	return 0;
7099}
7100
7101static int __maybe_unused pcidev_suspend(struct device *dev_d)
7102{
7103	int i;
7104	struct platform_info *info = dev_get_drvdata(dev_d);
7105	struct dev_info *hw_priv = &info->dev_info;
7106	struct ksz_hw *hw = &hw_priv->hw;
7107
7108	/* Need to find a way to retrieve the device IP address. */
7109	static const u8 net_addr[] = { 192, 168, 1, 1 };
7110
7111	for (i = 0; i < hw->dev_count; i++) {
7112		if (info->netdev[i]) {
7113			struct net_device *dev = info->netdev[i];
7114
7115			if (netif_running(dev)) {
7116				netif_device_detach(dev);
7117				netdev_close(dev);
7118			}
7119		}
7120	}
7121	if (hw_priv->wol_enable) {
7122		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7123		hw_cfg_wol_pme(hw, 1);
7124	}
7125
7126	device_wakeup_enable(dev_d);
 
 
7127	return 0;
7128}
 
7129
7130static char pcidev_name[] = "ksz884xp";
7131
7132static const struct pci_device_id pcidev_table[] = {
7133	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7134		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7135	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7136		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7137	{ 0 }
7138};
7139
7140MODULE_DEVICE_TABLE(pci, pcidev_table);
7141
7142static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7143
7144static struct pci_driver pci_device_driver = {
7145	.driver.pm	= &pcidev_pm_ops,
 
 
 
7146	.name		= pcidev_name,
7147	.id_table	= pcidev_table,
7148	.probe		= pcidev_init,
7149	.remove		= pcidev_exit
7150};
7151
7152module_pci_driver(pci_device_driver);
7153
7154MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7155MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7156MODULE_LICENSE("GPL");
7157
7158module_param_named(message, msg_enable, int, 0);
7159MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7160
7161module_param(macaddr, charp, 0);
7162module_param(mac1addr, charp, 0);
7163module_param(fast_aging, int, 0);
7164module_param(multi_dev, int, 0);
7165module_param(stp, int, 0);
7166MODULE_PARM_DESC(macaddr, "MAC address");
7167MODULE_PARM_DESC(mac1addr, "Second MAC address");
7168MODULE_PARM_DESC(fast_aging, "Fast aging");
7169MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7170MODULE_PARM_DESC(stp, "STP support");