Loading...
1/**
2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/init.h>
20#include <linux/interrupt.h>
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/ioport.h>
24#include <linux/pci.h>
25#include <linux/proc_fs.h>
26#include <linux/mii.h>
27#include <linux/platform_device.h>
28#include <linux/ethtool.h>
29#include <linux/etherdevice.h>
30#include <linux/in.h>
31#include <linux/ip.h>
32#include <linux/if_vlan.h>
33#include <linux/crc32.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36
37
38/* DMA Registers */
39
40#define KS_DMA_TX_CTRL 0x0000
41#define DMA_TX_ENABLE 0x00000001
42#define DMA_TX_CRC_ENABLE 0x00000002
43#define DMA_TX_PAD_ENABLE 0x00000004
44#define DMA_TX_LOOPBACK 0x00000100
45#define DMA_TX_FLOW_ENABLE 0x00000200
46#define DMA_TX_CSUM_IP 0x00010000
47#define DMA_TX_CSUM_TCP 0x00020000
48#define DMA_TX_CSUM_UDP 0x00040000
49#define DMA_TX_BURST_SIZE 0x3F000000
50
51#define KS_DMA_RX_CTRL 0x0004
52#define DMA_RX_ENABLE 0x00000001
53#define KS884X_DMA_RX_MULTICAST 0x00000002
54#define DMA_RX_PROMISCUOUS 0x00000004
55#define DMA_RX_ERROR 0x00000008
56#define DMA_RX_UNICAST 0x00000010
57#define DMA_RX_ALL_MULTICAST 0x00000020
58#define DMA_RX_BROADCAST 0x00000040
59#define DMA_RX_FLOW_ENABLE 0x00000200
60#define DMA_RX_CSUM_IP 0x00010000
61#define DMA_RX_CSUM_TCP 0x00020000
62#define DMA_RX_CSUM_UDP 0x00040000
63#define DMA_RX_BURST_SIZE 0x3F000000
64
65#define DMA_BURST_SHIFT 24
66#define DMA_BURST_DEFAULT 8
67
68#define KS_DMA_TX_START 0x0008
69#define KS_DMA_RX_START 0x000C
70#define DMA_START 0x00000001
71
72#define KS_DMA_TX_ADDR 0x0010
73#define KS_DMA_RX_ADDR 0x0014
74
75#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
76#define DMA_ADDR_LIST_SHIFT 2
77
78/* MTR0 */
79#define KS884X_MULTICAST_0_OFFSET 0x0020
80#define KS884X_MULTICAST_1_OFFSET 0x0021
81#define KS884X_MULTICAST_2_OFFSET 0x0022
82#define KS884x_MULTICAST_3_OFFSET 0x0023
83/* MTR1 */
84#define KS884X_MULTICAST_4_OFFSET 0x0024
85#define KS884X_MULTICAST_5_OFFSET 0x0025
86#define KS884X_MULTICAST_6_OFFSET 0x0026
87#define KS884X_MULTICAST_7_OFFSET 0x0027
88
89/* Interrupt Registers */
90
91/* INTEN */
92#define KS884X_INTERRUPTS_ENABLE 0x0028
93/* INTST */
94#define KS884X_INTERRUPTS_STATUS 0x002C
95
96#define KS884X_INT_RX_STOPPED 0x02000000
97#define KS884X_INT_TX_STOPPED 0x04000000
98#define KS884X_INT_RX_OVERRUN 0x08000000
99#define KS884X_INT_TX_EMPTY 0x10000000
100#define KS884X_INT_RX 0x20000000
101#define KS884X_INT_TX 0x40000000
102#define KS884X_INT_PHY 0x80000000
103
104#define KS884X_INT_RX_MASK \
105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106#define KS884X_INT_TX_MASK \
107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109
110/* MAC Additional Station Address */
111
112/* MAAL0 */
113#define KS_ADD_ADDR_0_LO 0x0080
114/* MAAH0 */
115#define KS_ADD_ADDR_0_HI 0x0084
116/* MAAL1 */
117#define KS_ADD_ADDR_1_LO 0x0088
118/* MAAH1 */
119#define KS_ADD_ADDR_1_HI 0x008C
120/* MAAL2 */
121#define KS_ADD_ADDR_2_LO 0x0090
122/* MAAH2 */
123#define KS_ADD_ADDR_2_HI 0x0094
124/* MAAL3 */
125#define KS_ADD_ADDR_3_LO 0x0098
126/* MAAH3 */
127#define KS_ADD_ADDR_3_HI 0x009C
128/* MAAL4 */
129#define KS_ADD_ADDR_4_LO 0x00A0
130/* MAAH4 */
131#define KS_ADD_ADDR_4_HI 0x00A4
132/* MAAL5 */
133#define KS_ADD_ADDR_5_LO 0x00A8
134/* MAAH5 */
135#define KS_ADD_ADDR_5_HI 0x00AC
136/* MAAL6 */
137#define KS_ADD_ADDR_6_LO 0x00B0
138/* MAAH6 */
139#define KS_ADD_ADDR_6_HI 0x00B4
140/* MAAL7 */
141#define KS_ADD_ADDR_7_LO 0x00B8
142/* MAAH7 */
143#define KS_ADD_ADDR_7_HI 0x00BC
144/* MAAL8 */
145#define KS_ADD_ADDR_8_LO 0x00C0
146/* MAAH8 */
147#define KS_ADD_ADDR_8_HI 0x00C4
148/* MAAL9 */
149#define KS_ADD_ADDR_9_LO 0x00C8
150/* MAAH9 */
151#define KS_ADD_ADDR_9_HI 0x00CC
152/* MAAL10 */
153#define KS_ADD_ADDR_A_LO 0x00D0
154/* MAAH10 */
155#define KS_ADD_ADDR_A_HI 0x00D4
156/* MAAL11 */
157#define KS_ADD_ADDR_B_LO 0x00D8
158/* MAAH11 */
159#define KS_ADD_ADDR_B_HI 0x00DC
160/* MAAL12 */
161#define KS_ADD_ADDR_C_LO 0x00E0
162/* MAAH12 */
163#define KS_ADD_ADDR_C_HI 0x00E4
164/* MAAL13 */
165#define KS_ADD_ADDR_D_LO 0x00E8
166/* MAAH13 */
167#define KS_ADD_ADDR_D_HI 0x00EC
168/* MAAL14 */
169#define KS_ADD_ADDR_E_LO 0x00F0
170/* MAAH14 */
171#define KS_ADD_ADDR_E_HI 0x00F4
172/* MAAL15 */
173#define KS_ADD_ADDR_F_LO 0x00F8
174/* MAAH15 */
175#define KS_ADD_ADDR_F_HI 0x00FC
176
177#define ADD_ADDR_HI_MASK 0x0000FFFF
178#define ADD_ADDR_ENABLE 0x80000000
179#define ADD_ADDR_INCR 8
180
181/* Miscellaneous Registers */
182
183/* MARL */
184#define KS884X_ADDR_0_OFFSET 0x0200
185#define KS884X_ADDR_1_OFFSET 0x0201
186/* MARM */
187#define KS884X_ADDR_2_OFFSET 0x0202
188#define KS884X_ADDR_3_OFFSET 0x0203
189/* MARH */
190#define KS884X_ADDR_4_OFFSET 0x0204
191#define KS884X_ADDR_5_OFFSET 0x0205
192
193/* OBCR */
194#define KS884X_BUS_CTRL_OFFSET 0x0210
195
196#define BUS_SPEED_125_MHZ 0x0000
197#define BUS_SPEED_62_5_MHZ 0x0001
198#define BUS_SPEED_41_66_MHZ 0x0002
199#define BUS_SPEED_25_MHZ 0x0003
200
201/* EEPCR */
202#define KS884X_EEPROM_CTRL_OFFSET 0x0212
203
204#define EEPROM_CHIP_SELECT 0x0001
205#define EEPROM_SERIAL_CLOCK 0x0002
206#define EEPROM_DATA_OUT 0x0004
207#define EEPROM_DATA_IN 0x0008
208#define EEPROM_ACCESS_ENABLE 0x0010
209
210/* MBIR */
211#define KS884X_MEM_INFO_OFFSET 0x0214
212
213#define RX_MEM_TEST_FAILED 0x0008
214#define RX_MEM_TEST_FINISHED 0x0010
215#define TX_MEM_TEST_FAILED 0x0800
216#define TX_MEM_TEST_FINISHED 0x1000
217
218/* GCR */
219#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
220#define GLOBAL_SOFTWARE_RESET 0x0001
221
222#define KS8841_POWER_MANAGE_OFFSET 0x0218
223
224/* WFCR */
225#define KS8841_WOL_CTRL_OFFSET 0x021A
226#define KS8841_WOL_MAGIC_ENABLE 0x0080
227#define KS8841_WOL_FRAME3_ENABLE 0x0008
228#define KS8841_WOL_FRAME2_ENABLE 0x0004
229#define KS8841_WOL_FRAME1_ENABLE 0x0002
230#define KS8841_WOL_FRAME0_ENABLE 0x0001
231
232/* WF0 */
233#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
234#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
235#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
236
237/* IACR */
238#define KS884X_IACR_P 0x04A0
239#define KS884X_IACR_OFFSET KS884X_IACR_P
240
241/* IADR1 */
242#define KS884X_IADR1_P 0x04A2
243#define KS884X_IADR2_P 0x04A4
244#define KS884X_IADR3_P 0x04A6
245#define KS884X_IADR4_P 0x04A8
246#define KS884X_IADR5_P 0x04AA
247
248#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
249#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
250
251#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
252#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
253#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
254#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
255#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
256#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
257#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
258#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
259#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
260
261/* P1MBCR */
262#define KS884X_P1MBCR_P 0x04D0
263#define KS884X_P1MBSR_P 0x04D2
264#define KS884X_PHY1ILR_P 0x04D4
265#define KS884X_PHY1IHR_P 0x04D6
266#define KS884X_P1ANAR_P 0x04D8
267#define KS884X_P1ANLPR_P 0x04DA
268
269/* P2MBCR */
270#define KS884X_P2MBCR_P 0x04E0
271#define KS884X_P2MBSR_P 0x04E2
272#define KS884X_PHY2ILR_P 0x04E4
273#define KS884X_PHY2IHR_P 0x04E6
274#define KS884X_P2ANAR_P 0x04E8
275#define KS884X_P2ANLPR_P 0x04EA
276
277#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
278#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279
280#define KS884X_PHY_CTRL_OFFSET 0x00
281
282/* Mode Control Register */
283#define PHY_REG_CTRL 0
284
285#define PHY_RESET 0x8000
286#define PHY_LOOPBACK 0x4000
287#define PHY_SPEED_100MBIT 0x2000
288#define PHY_AUTO_NEG_ENABLE 0x1000
289#define PHY_POWER_DOWN 0x0800
290#define PHY_MII_DISABLE 0x0400
291#define PHY_AUTO_NEG_RESTART 0x0200
292#define PHY_FULL_DUPLEX 0x0100
293#define PHY_COLLISION_TEST 0x0080
294#define PHY_HP_MDIX 0x0020
295#define PHY_FORCE_MDIX 0x0010
296#define PHY_AUTO_MDIX_DISABLE 0x0008
297#define PHY_REMOTE_FAULT_DISABLE 0x0004
298#define PHY_TRANSMIT_DISABLE 0x0002
299#define PHY_LED_DISABLE 0x0001
300
301#define KS884X_PHY_STATUS_OFFSET 0x02
302
303/* Mode Status Register */
304#define PHY_REG_STATUS 1
305
306#define PHY_100BT4_CAPABLE 0x8000
307#define PHY_100BTX_FD_CAPABLE 0x4000
308#define PHY_100BTX_CAPABLE 0x2000
309#define PHY_10BT_FD_CAPABLE 0x1000
310#define PHY_10BT_CAPABLE 0x0800
311#define PHY_MII_SUPPRESS_CAPABLE 0x0040
312#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
313#define PHY_REMOTE_FAULT 0x0010
314#define PHY_AUTO_NEG_CAPABLE 0x0008
315#define PHY_LINK_STATUS 0x0004
316#define PHY_JABBER_DETECT 0x0002
317#define PHY_EXTENDED_CAPABILITY 0x0001
318
319#define KS884X_PHY_ID_1_OFFSET 0x04
320#define KS884X_PHY_ID_2_OFFSET 0x06
321
322/* PHY Identifier Registers */
323#define PHY_REG_ID_1 2
324#define PHY_REG_ID_2 3
325
326#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
327
328/* Auto-Negotiation Advertisement Register */
329#define PHY_REG_AUTO_NEGOTIATION 4
330
331#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
332#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
333/* Not supported. */
334#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
335#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
336#define PHY_AUTO_NEG_100BT4 0x0200
337#define PHY_AUTO_NEG_100BTX_FD 0x0100
338#define PHY_AUTO_NEG_100BTX 0x0080
339#define PHY_AUTO_NEG_10BT_FD 0x0040
340#define PHY_AUTO_NEG_10BT 0x0020
341#define PHY_AUTO_NEG_SELECTOR 0x001F
342#define PHY_AUTO_NEG_802_3 0x0001
343
344#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345
346#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
347
348/* Auto-Negotiation Link Partner Ability Register */
349#define PHY_REG_REMOTE_CAPABILITY 5
350
351#define PHY_REMOTE_NEXT_PAGE 0x8000
352#define PHY_REMOTE_ACKNOWLEDGE 0x4000
353#define PHY_REMOTE_REMOTE_FAULT 0x2000
354#define PHY_REMOTE_SYM_PAUSE 0x0400
355#define PHY_REMOTE_100BTX_FD 0x0100
356#define PHY_REMOTE_100BTX 0x0080
357#define PHY_REMOTE_10BT_FD 0x0040
358#define PHY_REMOTE_10BT 0x0020
359
360/* P1VCT */
361#define KS884X_P1VCT_P 0x04F0
362#define KS884X_P1PHYCTRL_P 0x04F2
363
364/* P2VCT */
365#define KS884X_P2VCT_P 0x04F4
366#define KS884X_P2PHYCTRL_P 0x04F6
367
368#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
369#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
370
371#define KS884X_PHY_LINK_MD_OFFSET 0x00
372
373#define PHY_START_CABLE_DIAG 0x8000
374#define PHY_CABLE_DIAG_RESULT 0x6000
375#define PHY_CABLE_STAT_NORMAL 0x0000
376#define PHY_CABLE_STAT_OPEN 0x2000
377#define PHY_CABLE_STAT_SHORT 0x4000
378#define PHY_CABLE_STAT_FAILED 0x6000
379#define PHY_CABLE_10M_SHORT 0x1000
380#define PHY_CABLE_FAULT_COUNTER 0x01FF
381
382#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
383
384#define PHY_STAT_REVERSED_POLARITY 0x0020
385#define PHY_STAT_MDIX 0x0010
386#define PHY_FORCE_LINK 0x0008
387#define PHY_POWER_SAVING_DISABLE 0x0004
388#define PHY_REMOTE_LOOPBACK 0x0002
389
390/* SIDER */
391#define KS884X_SIDER_P 0x0400
392#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
393#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
394
395#define REG_FAMILY_ID 0x88
396
397#define REG_CHIP_ID_41 0x8810
398#define REG_CHIP_ID_42 0x8800
399
400#define KS884X_CHIP_ID_MASK_41 0xFF10
401#define KS884X_CHIP_ID_MASK 0xFFF0
402#define KS884X_CHIP_ID_SHIFT 4
403#define KS884X_REVISION_MASK 0x000E
404#define KS884X_REVISION_SHIFT 1
405#define KS8842_START 0x0001
406
407#define CHIP_IP_41_M 0x8810
408#define CHIP_IP_42_M 0x8800
409#define CHIP_IP_61_M 0x8890
410#define CHIP_IP_62_M 0x8880
411
412#define CHIP_IP_41_P 0x8850
413#define CHIP_IP_42_P 0x8840
414#define CHIP_IP_61_P 0x88D0
415#define CHIP_IP_62_P 0x88C0
416
417/* SGCR1 */
418#define KS8842_SGCR1_P 0x0402
419#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
420
421#define SWITCH_PASS_ALL 0x8000
422#define SWITCH_TX_FLOW_CTRL 0x2000
423#define SWITCH_RX_FLOW_CTRL 0x1000
424#define SWITCH_CHECK_LENGTH 0x0800
425#define SWITCH_AGING_ENABLE 0x0400
426#define SWITCH_FAST_AGING 0x0200
427#define SWITCH_AGGR_BACKOFF 0x0100
428#define SWITCH_PASS_PAUSE 0x0008
429#define SWITCH_LINK_AUTO_AGING 0x0001
430
431/* SGCR2 */
432#define KS8842_SGCR2_P 0x0404
433#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
434
435#define SWITCH_VLAN_ENABLE 0x8000
436#define SWITCH_IGMP_SNOOP 0x4000
437#define IPV6_MLD_SNOOP_ENABLE 0x2000
438#define IPV6_MLD_SNOOP_OPTION 0x1000
439#define PRIORITY_SCHEME_SELECT 0x0800
440#define SWITCH_MIRROR_RX_TX 0x0100
441#define UNICAST_VLAN_BOUNDARY 0x0080
442#define MULTICAST_STORM_DISABLE 0x0040
443#define SWITCH_BACK_PRESSURE 0x0020
444#define FAIR_FLOW_CTRL 0x0010
445#define NO_EXC_COLLISION_DROP 0x0008
446#define SWITCH_HUGE_PACKET 0x0004
447#define SWITCH_LEGAL_PACKET 0x0002
448#define SWITCH_BUF_RESERVE 0x0001
449
450/* SGCR3 */
451#define KS8842_SGCR3_P 0x0406
452#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
453
454#define BROADCAST_STORM_RATE_LO 0xFF00
455#define SWITCH_REPEATER 0x0080
456#define SWITCH_HALF_DUPLEX 0x0040
457#define SWITCH_FLOW_CTRL 0x0020
458#define SWITCH_10_MBIT 0x0010
459#define SWITCH_REPLACE_NULL_VID 0x0008
460#define BROADCAST_STORM_RATE_HI 0x0007
461
462#define BROADCAST_STORM_RATE 0x07FF
463
464/* SGCR4 */
465#define KS8842_SGCR4_P 0x0408
466
467/* SGCR5 */
468#define KS8842_SGCR5_P 0x040A
469#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
470
471#define LED_MODE 0x8200
472#define LED_SPEED_DUPLEX_ACT 0x0000
473#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
474#define LED_DUPLEX_10_100 0x0200
475
476/* SGCR6 */
477#define KS8842_SGCR6_P 0x0410
478#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
479
480#define KS8842_PRIORITY_MASK 3
481#define KS8842_PRIORITY_SHIFT 2
482
483/* SGCR7 */
484#define KS8842_SGCR7_P 0x0412
485#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
486
487#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
488#define SWITCH_UNK_DEF_PORT_3 0x0004
489#define SWITCH_UNK_DEF_PORT_2 0x0002
490#define SWITCH_UNK_DEF_PORT_1 0x0001
491
492/* MACAR1 */
493#define KS8842_MACAR1_P 0x0470
494#define KS8842_MACAR2_P 0x0472
495#define KS8842_MACAR3_P 0x0474
496#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
497#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
498#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
499#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
500#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
501#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
502
503/* TOSR1 */
504#define KS8842_TOSR1_P 0x0480
505#define KS8842_TOSR2_P 0x0482
506#define KS8842_TOSR3_P 0x0484
507#define KS8842_TOSR4_P 0x0486
508#define KS8842_TOSR5_P 0x0488
509#define KS8842_TOSR6_P 0x048A
510#define KS8842_TOSR7_P 0x0490
511#define KS8842_TOSR8_P 0x0492
512#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
513#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
514#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
515#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
516#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
517#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
518
519#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
520#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
521
522/* P1CR1 */
523#define KS8842_P1CR1_P 0x0500
524#define KS8842_P1CR2_P 0x0502
525#define KS8842_P1VIDR_P 0x0504
526#define KS8842_P1CR3_P 0x0506
527#define KS8842_P1IRCR_P 0x0508
528#define KS8842_P1ERCR_P 0x050A
529#define KS884X_P1SCSLMD_P 0x0510
530#define KS884X_P1CR4_P 0x0512
531#define KS884X_P1SR_P 0x0514
532
533/* P2CR1 */
534#define KS8842_P2CR1_P 0x0520
535#define KS8842_P2CR2_P 0x0522
536#define KS8842_P2VIDR_P 0x0524
537#define KS8842_P2CR3_P 0x0526
538#define KS8842_P2IRCR_P 0x0528
539#define KS8842_P2ERCR_P 0x052A
540#define KS884X_P2SCSLMD_P 0x0530
541#define KS884X_P2CR4_P 0x0532
542#define KS884X_P2SR_P 0x0534
543
544/* P3CR1 */
545#define KS8842_P3CR1_P 0x0540
546#define KS8842_P3CR2_P 0x0542
547#define KS8842_P3VIDR_P 0x0544
548#define KS8842_P3CR3_P 0x0546
549#define KS8842_P3IRCR_P 0x0548
550#define KS8842_P3ERCR_P 0x054A
551
552#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
553#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
554#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
555
556#define PORT_CTRL_ADDR(port, addr) \
557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559
560#define KS8842_PORT_CTRL_1_OFFSET 0x00
561
562#define PORT_BROADCAST_STORM 0x0080
563#define PORT_DIFFSERV_ENABLE 0x0040
564#define PORT_802_1P_ENABLE 0x0020
565#define PORT_BASED_PRIORITY_MASK 0x0018
566#define PORT_BASED_PRIORITY_BASE 0x0003
567#define PORT_BASED_PRIORITY_SHIFT 3
568#define PORT_BASED_PRIORITY_0 0x0000
569#define PORT_BASED_PRIORITY_1 0x0008
570#define PORT_BASED_PRIORITY_2 0x0010
571#define PORT_BASED_PRIORITY_3 0x0018
572#define PORT_INSERT_TAG 0x0004
573#define PORT_REMOVE_TAG 0x0002
574#define PORT_PRIO_QUEUE_ENABLE 0x0001
575
576#define KS8842_PORT_CTRL_2_OFFSET 0x02
577
578#define PORT_INGRESS_VLAN_FILTER 0x4000
579#define PORT_DISCARD_NON_VID 0x2000
580#define PORT_FORCE_FLOW_CTRL 0x1000
581#define PORT_BACK_PRESSURE 0x0800
582#define PORT_TX_ENABLE 0x0400
583#define PORT_RX_ENABLE 0x0200
584#define PORT_LEARN_DISABLE 0x0100
585#define PORT_MIRROR_SNIFFER 0x0080
586#define PORT_MIRROR_RX 0x0040
587#define PORT_MIRROR_TX 0x0020
588#define PORT_USER_PRIORITY_CEILING 0x0008
589#define PORT_VLAN_MEMBERSHIP 0x0007
590
591#define KS8842_PORT_CTRL_VID_OFFSET 0x04
592
593#define PORT_DEFAULT_VID 0x0001
594
595#define KS8842_PORT_CTRL_3_OFFSET 0x06
596
597#define PORT_INGRESS_LIMIT_MODE 0x000C
598#define PORT_INGRESS_ALL 0x0000
599#define PORT_INGRESS_UNICAST 0x0004
600#define PORT_INGRESS_MULTICAST 0x0008
601#define PORT_INGRESS_BROADCAST 0x000C
602#define PORT_COUNT_IFG 0x0002
603#define PORT_COUNT_PREAMBLE 0x0001
604
605#define KS8842_PORT_IN_RATE_OFFSET 0x08
606#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
607
608#define PORT_PRIORITY_RATE 0x0F
609#define PORT_PRIORITY_RATE_SHIFT 4
610
611#define KS884X_PORT_LINK_MD 0x10
612
613#define PORT_CABLE_10M_SHORT 0x8000
614#define PORT_CABLE_DIAG_RESULT 0x6000
615#define PORT_CABLE_STAT_NORMAL 0x0000
616#define PORT_CABLE_STAT_OPEN 0x2000
617#define PORT_CABLE_STAT_SHORT 0x4000
618#define PORT_CABLE_STAT_FAILED 0x6000
619#define PORT_START_CABLE_DIAG 0x1000
620#define PORT_FORCE_LINK 0x0800
621#define PORT_POWER_SAVING_DISABLE 0x0400
622#define PORT_PHY_REMOTE_LOOPBACK 0x0200
623#define PORT_CABLE_FAULT_COUNTER 0x01FF
624
625#define KS884X_PORT_CTRL_4_OFFSET 0x12
626
627#define PORT_LED_OFF 0x8000
628#define PORT_TX_DISABLE 0x4000
629#define PORT_AUTO_NEG_RESTART 0x2000
630#define PORT_REMOTE_FAULT_DISABLE 0x1000
631#define PORT_POWER_DOWN 0x0800
632#define PORT_AUTO_MDIX_DISABLE 0x0400
633#define PORT_FORCE_MDIX 0x0200
634#define PORT_LOOPBACK 0x0100
635#define PORT_AUTO_NEG_ENABLE 0x0080
636#define PORT_FORCE_100_MBIT 0x0040
637#define PORT_FORCE_FULL_DUPLEX 0x0020
638#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
639#define PORT_AUTO_NEG_100BTX_FD 0x0008
640#define PORT_AUTO_NEG_100BTX 0x0004
641#define PORT_AUTO_NEG_10BT_FD 0x0002
642#define PORT_AUTO_NEG_10BT 0x0001
643
644#define KS884X_PORT_STATUS_OFFSET 0x14
645
646#define PORT_HP_MDIX 0x8000
647#define PORT_REVERSED_POLARITY 0x2000
648#define PORT_RX_FLOW_CTRL 0x0800
649#define PORT_TX_FLOW_CTRL 0x1000
650#define PORT_STATUS_SPEED_100MBIT 0x0400
651#define PORT_STATUS_FULL_DUPLEX 0x0200
652#define PORT_REMOTE_FAULT 0x0100
653#define PORT_MDIX_STATUS 0x0080
654#define PORT_AUTO_NEG_COMPLETE 0x0040
655#define PORT_STATUS_LINK_GOOD 0x0020
656#define PORT_REMOTE_SYM_PAUSE 0x0010
657#define PORT_REMOTE_100BTX_FD 0x0008
658#define PORT_REMOTE_100BTX 0x0004
659#define PORT_REMOTE_10BT_FD 0x0002
660#define PORT_REMOTE_10BT 0x0001
661
662/*
663#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
664#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
665#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
666#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
667#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
668#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
669*/
670
671#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
672#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
673#define STATIC_MAC_TABLE_VALID 0x00080000
674#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
675#define STATIC_MAC_TABLE_USE_FID 0x00200000
676#define STATIC_MAC_TABLE_FID 0x03C00000
677
678#define STATIC_MAC_FWD_PORTS_SHIFT 16
679#define STATIC_MAC_FID_SHIFT 22
680
681/*
682#define VLAN_TABLE_VID 00-00000000-00000FFF
683#define VLAN_TABLE_FID 00-00000000-0000F000
684#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
685#define VLAN_TABLE_VALID 00-00000000-00080000
686*/
687
688#define VLAN_TABLE_VID 0x00000FFF
689#define VLAN_TABLE_FID 0x0000F000
690#define VLAN_TABLE_MEMBERSHIP 0x00070000
691#define VLAN_TABLE_VALID 0x00080000
692
693#define VLAN_TABLE_FID_SHIFT 12
694#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
695
696/*
697#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
698#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
699#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
700#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
701#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
702#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
703#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
704#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
705*/
706
707#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
708#define DYNAMIC_MAC_TABLE_FID 0x000F0000
709#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
710#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
711#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
712
713#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
714#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
715#define DYNAMIC_MAC_TABLE_RESERVED 0x78
716#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
717
718#define DYNAMIC_MAC_FID_SHIFT 16
719#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
720#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
721#define DYNAMIC_MAC_ENTRIES_SHIFT 24
722#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
723
724/*
725#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
726#define MIB_COUNTER_VALID 00-00000000-40000000
727#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
728*/
729
730#define MIB_COUNTER_VALUE 0x3FFFFFFF
731#define MIB_COUNTER_VALID 0x40000000
732#define MIB_COUNTER_OVERFLOW 0x80000000
733
734#define MIB_PACKET_DROPPED 0x0000FFFF
735
736#define KS_MIB_PACKET_DROPPED_TX_0 0x100
737#define KS_MIB_PACKET_DROPPED_TX_1 0x101
738#define KS_MIB_PACKET_DROPPED_TX 0x102
739#define KS_MIB_PACKET_DROPPED_RX_0 0x103
740#define KS_MIB_PACKET_DROPPED_RX_1 0x104
741#define KS_MIB_PACKET_DROPPED_RX 0x105
742
743/* Change default LED mode. */
744#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
745
746#define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
747
748#define MAX_ETHERNET_BODY_SIZE 1500
749#define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
750
751#define MAX_ETHERNET_PACKET_SIZE \
752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
755#define MAX_RX_BUF_SIZE (1912 + 4)
756
757#define ADDITIONAL_ENTRIES 16
758#define MAX_MULTICAST_LIST 32
759
760#define HW_MULTICAST_SIZE 8
761
762#define HW_TO_DEV_PORT(port) (port - 1)
763
764enum {
765 media_connected,
766 media_disconnected
767};
768
769enum {
770 OID_COUNTER_UNKOWN,
771
772 OID_COUNTER_FIRST,
773
774 /* total transmit errors */
775 OID_COUNTER_XMIT_ERROR,
776
777 /* total receive errors */
778 OID_COUNTER_RCV_ERROR,
779
780 OID_COUNTER_LAST
781};
782
783/*
784 * Hardware descriptor definitions
785 */
786
787#define DESC_ALIGNMENT 16
788#define BUFFER_ALIGNMENT 8
789
790#define NUM_OF_RX_DESC 64
791#define NUM_OF_TX_DESC 64
792
793#define KS_DESC_RX_FRAME_LEN 0x000007FF
794#define KS_DESC_RX_FRAME_TYPE 0x00008000
795#define KS_DESC_RX_ERROR_CRC 0x00010000
796#define KS_DESC_RX_ERROR_RUNT 0x00020000
797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
798#define KS_DESC_RX_ERROR_PHY 0x00080000
799#define KS884X_DESC_RX_PORT_MASK 0x00300000
800#define KS_DESC_RX_MULTICAST 0x01000000
801#define KS_DESC_RX_ERROR 0x02000000
802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
805#define KS_DESC_RX_LAST 0x20000000
806#define KS_DESC_RX_FIRST 0x40000000
807#define KS_DESC_RX_ERROR_COND \
808 (KS_DESC_RX_ERROR_CRC | \
809 KS_DESC_RX_ERROR_RUNT | \
810 KS_DESC_RX_ERROR_PHY | \
811 KS_DESC_RX_ERROR_TOO_LONG)
812
813#define KS_DESC_HW_OWNED 0x80000000
814
815#define KS_DESC_BUF_SIZE 0x000007FF
816#define KS884X_DESC_TX_PORT_MASK 0x00300000
817#define KS_DESC_END_OF_RING 0x02000000
818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
821#define KS_DESC_TX_LAST 0x20000000
822#define KS_DESC_TX_FIRST 0x40000000
823#define KS_DESC_TX_INTERRUPT 0x80000000
824
825#define KS_DESC_PORT_SHIFT 20
826
827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
828
829#define KS_DESC_TX_MASK \
830 (KS_DESC_TX_INTERRUPT | \
831 KS_DESC_TX_FIRST | \
832 KS_DESC_TX_LAST | \
833 KS_DESC_TX_CSUM_GEN_IP | \
834 KS_DESC_TX_CSUM_GEN_TCP | \
835 KS_DESC_TX_CSUM_GEN_UDP | \
836 KS_DESC_BUF_SIZE)
837
838struct ksz_desc_rx_stat {
839#ifdef __BIG_ENDIAN_BITFIELD
840 u32 hw_owned:1;
841 u32 first_desc:1;
842 u32 last_desc:1;
843 u32 csum_err_ip:1;
844 u32 csum_err_tcp:1;
845 u32 csum_err_udp:1;
846 u32 error:1;
847 u32 multicast:1;
848 u32 src_port:4;
849 u32 err_phy:1;
850 u32 err_too_long:1;
851 u32 err_runt:1;
852 u32 err_crc:1;
853 u32 frame_type:1;
854 u32 reserved1:4;
855 u32 frame_len:11;
856#else
857 u32 frame_len:11;
858 u32 reserved1:4;
859 u32 frame_type:1;
860 u32 err_crc:1;
861 u32 err_runt:1;
862 u32 err_too_long:1;
863 u32 err_phy:1;
864 u32 src_port:4;
865 u32 multicast:1;
866 u32 error:1;
867 u32 csum_err_udp:1;
868 u32 csum_err_tcp:1;
869 u32 csum_err_ip:1;
870 u32 last_desc:1;
871 u32 first_desc:1;
872 u32 hw_owned:1;
873#endif
874};
875
876struct ksz_desc_tx_stat {
877#ifdef __BIG_ENDIAN_BITFIELD
878 u32 hw_owned:1;
879 u32 reserved1:31;
880#else
881 u32 reserved1:31;
882 u32 hw_owned:1;
883#endif
884};
885
886struct ksz_desc_rx_buf {
887#ifdef __BIG_ENDIAN_BITFIELD
888 u32 reserved4:6;
889 u32 end_of_ring:1;
890 u32 reserved3:14;
891 u32 buf_size:11;
892#else
893 u32 buf_size:11;
894 u32 reserved3:14;
895 u32 end_of_ring:1;
896 u32 reserved4:6;
897#endif
898};
899
900struct ksz_desc_tx_buf {
901#ifdef __BIG_ENDIAN_BITFIELD
902 u32 intr:1;
903 u32 first_seg:1;
904 u32 last_seg:1;
905 u32 csum_gen_ip:1;
906 u32 csum_gen_tcp:1;
907 u32 csum_gen_udp:1;
908 u32 end_of_ring:1;
909 u32 reserved4:1;
910 u32 dest_port:4;
911 u32 reserved3:9;
912 u32 buf_size:11;
913#else
914 u32 buf_size:11;
915 u32 reserved3:9;
916 u32 dest_port:4;
917 u32 reserved4:1;
918 u32 end_of_ring:1;
919 u32 csum_gen_udp:1;
920 u32 csum_gen_tcp:1;
921 u32 csum_gen_ip:1;
922 u32 last_seg:1;
923 u32 first_seg:1;
924 u32 intr:1;
925#endif
926};
927
928union desc_stat {
929 struct ksz_desc_rx_stat rx;
930 struct ksz_desc_tx_stat tx;
931 u32 data;
932};
933
934union desc_buf {
935 struct ksz_desc_rx_buf rx;
936 struct ksz_desc_tx_buf tx;
937 u32 data;
938};
939
940/**
941 * struct ksz_hw_desc - Hardware descriptor data structure
942 * @ctrl: Descriptor control value.
943 * @buf: Descriptor buffer value.
944 * @addr: Physical address of memory buffer.
945 * @next: Pointer to next hardware descriptor.
946 */
947struct ksz_hw_desc {
948 union desc_stat ctrl;
949 union desc_buf buf;
950 u32 addr;
951 u32 next;
952};
953
954/**
955 * struct ksz_sw_desc - Software descriptor data structure
956 * @ctrl: Descriptor control value.
957 * @buf: Descriptor buffer value.
958 * @buf_size: Current buffers size value in hardware descriptor.
959 */
960struct ksz_sw_desc {
961 union desc_stat ctrl;
962 union desc_buf buf;
963 u32 buf_size;
964};
965
966/**
967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
968 * @skb: Associated socket buffer.
969 * @dma: Associated physical DMA address.
970 * len: Actual len used.
971 */
972struct ksz_dma_buf {
973 struct sk_buff *skb;
974 dma_addr_t dma;
975 int len;
976};
977
978/**
979 * struct ksz_desc - Descriptor structure
980 * @phw: Hardware descriptor pointer to uncached physical memory.
981 * @sw: Cached memory to hold hardware descriptor values for
982 * manipulation.
983 * @dma_buf: Operating system dependent data structure to hold physical
984 * memory buffer allocation information.
985 */
986struct ksz_desc {
987 struct ksz_hw_desc *phw;
988 struct ksz_sw_desc sw;
989 struct ksz_dma_buf dma_buf;
990};
991
992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994/**
995 * struct ksz_desc_info - Descriptor information data structure
996 * @ring: First descriptor in the ring.
997 * @cur: Current descriptor being manipulated.
998 * @ring_virt: First hardware descriptor in the ring.
999 * @ring_phys: The physical address of the first descriptor of the ring.
1000 * @size: Size of hardware descriptor.
1001 * @alloc: Number of descriptors allocated.
1002 * @avail: Number of descriptors available for use.
1003 * @last: Index for last descriptor released to hardware.
1004 * @next: Index for next descriptor available for use.
1005 * @mask: Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008 struct ksz_desc *ring;
1009 struct ksz_desc *cur;
1010 struct ksz_hw_desc *ring_virt;
1011 u32 ring_phys;
1012 int size;
1013 int alloc;
1014 int avail;
1015 int last;
1016 int next;
1017 int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025 TABLE_STATIC_MAC = 0,
1026 TABLE_VLAN,
1027 TABLE_DYNAMIC_MAC,
1028 TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES 1024
1032#define STATIC_MAC_TABLE_ENTRIES 8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr: MAC address to filter.
1037 * @vid: VID value.
1038 * @fid: FID value.
1039 * @ports: Port membership.
1040 * @override: Override setting.
1041 * @use_fid: FID use setting.
1042 * @valid: Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045 u8 mac_addr[ETH_ALEN];
1046 u16 vid;
1047 u8 fid;
1048 u8 ports;
1049 u8 override:1;
1050 u8 use_fid:1;
1051 u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES 16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid: VID value.
1059 * @fid: FID value.
1060 * @member: Port membership.
1061 */
1062struct ksz_vlan_table {
1063 u16 vid;
1064 u8 fid;
1065 u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES 64
1069#define PRIO_802_1P_ENTRIES 8
1070#define PRIO_QUEUES 4
1071
1072#define SWITCH_PORT_NUM 2
1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK 7
1076
1077#define MAIN_PORT 0
1078#define OTHER_PORT 1
1079#define HOST_PORT SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM 0x20
1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1086#define MIB_COUNTER_RX_UNDERSIZE 0x02
1087#define MIB_COUNTER_RX_FRAGMENT 0x03
1088#define MIB_COUNTER_RX_OVERSIZE 0x04
1089#define MIB_COUNTER_RX_JABBER 0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1091#define MIB_COUNTER_RX_CRC_ERR 0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1093#define MIB_COUNTER_RX_CTRL_8808 0x09
1094#define MIB_COUNTER_RX_PAUSE 0x0A
1095#define MIB_COUNTER_RX_BROADCAST 0x0B
1096#define MIB_COUNTER_RX_MULTICAST 0x0C
1097#define MIB_COUNTER_RX_UNICAST 0x0D
1098#define MIB_COUNTER_RX_OCTET_64 0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255 0x10
1101#define MIB_COUNTER_RX_OCTET_256_511 0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1107#define MIB_COUNTER_TX_PAUSE 0x17
1108#define MIB_COUNTER_TX_BROADCAST 0x18
1109#define MIB_COUNTER_TX_MULTICAST 0x19
1110#define MIB_COUNTER_TX_UNICAST 0x1A
1111#define MIB_COUNTER_TX_DEFERRED 0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr: Current pointer to MIB counter index.
1123 * @link_down: Indication the link has just gone down.
1124 * @state: Connection status of the port.
1125 * @mib_start: The starting counter index. Some ports do not start at 0.
1126 * @counter: 64-bit MIB counter value.
1127 * @dropped: Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values. A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected. The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected. The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140 u8 cnt_ptr;
1141 u8 link_down;
1142 u8 state;
1143 u8 mib_start;
1144
1145 u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid: VID value.
1152 * @member: Port membership.
1153 * @port_prio: Port priority.
1154 * @rx_rate: Receive priority rate.
1155 * @tx_rate: Transmit priority rate.
1156 * @stp_state: Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159 u16 vid;
1160 u8 member;
1161 u8 port_prio;
1162 u32 rx_rate[PRIO_QUEUES];
1163 u32 tx_rate[PRIO_QUEUES];
1164 int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table: MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg: Port configuration information.
1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1173 * (bit7 ~ bit2) field.
1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1175 * Tag priority field.
1176 * @br_addr: Bridge address. Used for STP.
1177 * @other_addr: Other MAC address. Used for multiple network device mode.
1178 * @broad_per: Broadcast storm percentage.
1179 * @member: Current port membership. Used for STP.
1180 */
1181struct ksz_switch {
1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186 u8 diffserv[DIFFSERV_ENTRIES];
1187 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189 u8 br_addr[ETH_ALEN];
1190 u8 other_addr[ETH_ALEN];
1191
1192 u8 broad_per;
1193 u8 member;
1194};
1195
1196#define TX_RATE_UNIT 10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state: Connection status of the port.
1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1202 * @duplex: Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1204 * @partner: Auto-negotiation partner setting. Used to determine link.
1205 * @port_id: Port index to access actual hardware register.
1206 * @pdev: Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209 uint state;
1210 uint tx_rate;
1211 u8 duplex;
1212 u8 advertised;
1213 u8 partner;
1214 u8 port_id;
1215 void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE 52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING (1 << 0)
1222#define SMALL_PACKET_TX_BUG (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1224#define RX_HUGE_FRAME (1 << 4)
1225#define STP_SUPPORT (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL (1 << 0)
1229#define FAST_AGING (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io: Virtual address assigned.
1234 * @ksz_switch: Pointer to KSZ8842 switch.
1235 * @port_info: Port information.
1236 * @port_mib: Port MIB information.
1237 * @dev_count: Number of network devices this hardware supports.
1238 * @dst_ports: Destination ports in switch for transmission.
1239 * @id: Hardware ID. Used for display only.
1240 * @mib_cnt: Number of MIB counters this hardware has.
1241 * @mib_port_cnt: Number of ports with MIB counters.
1242 * @tx_cfg: Cached transmit control settings.
1243 * @rx_cfg: Cached receive control settings.
1244 * @intr_mask: Current interrupt mask.
1245 * @intr_set: Current interrup set.
1246 * @intr_blocked: Interrupt blocked.
1247 * @rx_desc_info: Receive descriptor information.
1248 * @tx_desc_info: Transmit descriptor information.
1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1251 * @tx_size: Transmit data size. Used for TX optimization.
1252 * The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr: Permanent MAC address.
1254 * @override_addr: Overridden MAC address.
1255 * @address: Additional MAC address entries.
1256 * @addr_list_size: Additional MAC address list size.
1257 * @mac_override: Indication of MAC address overridden.
1258 * @promiscuous: Counter to keep track of promiscuous mode set.
1259 * @all_multi: Counter to keep track of all multicast mode set.
1260 * @multi_list: Multicast address entries.
1261 * @multi_bits: Cached multicast hash table settings.
1262 * @multi_list_size: Multicast address list size.
1263 * @enabled: Indication of hardware enabled.
1264 * @rx_stop: Indication of receive process stop.
1265 * @features: Hardware features to enable.
1266 * @overrides: Hardware features to override.
1267 * @parent: Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270 void __iomem *io;
1271
1272 struct ksz_switch *ksz_switch;
1273 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 int dev_count;
1276 int dst_ports;
1277 int id;
1278 int mib_cnt;
1279 int mib_port_cnt;
1280
1281 u32 tx_cfg;
1282 u32 rx_cfg;
1283 u32 intr_mask;
1284 u32 intr_set;
1285 uint intr_blocked;
1286
1287 struct ksz_desc_info rx_desc_info;
1288 struct ksz_desc_info tx_desc_info;
1289
1290 int tx_int_cnt;
1291 int tx_int_mask;
1292 int tx_size;
1293
1294 u8 perm_addr[ETH_ALEN];
1295 u8 override_addr[ETH_ALEN];
1296 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 u8 addr_list_size;
1298 u8 mac_override;
1299 u8 promiscuous;
1300 u8 all_multi;
1301 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 u8 multi_bits[HW_MULTICAST_SIZE];
1303 u8 multi_list_size;
1304
1305 u8 enabled;
1306 u8 rx_stop;
1307 u8 reserved2[1];
1308
1309 uint features;
1310 uint overrides;
1311
1312 void *parent;
1313};
1314
1315enum {
1316 PHY_NO_FLOW_CTRL,
1317 PHY_FLOW_CTRL,
1318 PHY_TX_ONLY,
1319 PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1325 * duplex, and 0 for auto, which normally results in full
1326 * duplex.
1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 0 for auto, which normally results in 100 Mbit.
1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1330 * force.
1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1332 * control, and PHY_FLOW_CTRL for flow control.
1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * Mbit PHY.
1335 * @first_port: Index of first port this port supports.
1336 * @mib_port_cnt: Number of ports with MIB counters.
1337 * @port_cnt: Number of ports this port supports.
1338 * @counter: Port statistics counter.
1339 * @hw: Pointer to hardware structure.
1340 * @linked: Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343 u8 duplex;
1344 u8 speed;
1345 u8 force_link;
1346 u8 flow_ctrl;
1347
1348 int first_port;
1349 int mib_port_cnt;
1350 int port_cnt;
1351 u64 counter[OID_COUNTER_LAST];
1352
1353 struct ksz_hw *hw;
1354 struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer: Kernel timer.
1360 * @cnt: Running timer counter.
1361 * @max: Number of times to run timer; -1 for infinity.
1362 * @period: Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365 struct timer_list timer;
1366 int cnt;
1367 int max;
1368 int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr: Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys: Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt: Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380 dma_addr_t dma_addr;
1381 uint alloc_size;
1382 uint phys;
1383 u8 *alloc_virt;
1384 u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter: Wait queue to wakeup after counters are read.
1390 * @time: Next time in jiffies to read counter.
1391 * @read: Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394 wait_queue_head_t counter;
1395 unsigned long time;
1396 int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev: Pointer to network device.
1402 * @pdev: Pointer to PCI device.
1403 * @hw: Hardware structure.
1404 * @desc_pool: Physical memory used for descriptor pool.
1405 * @hwlock: Spinlock to prevent hardware from accessing.
1406 * @lock: Mutex lock to prevent device from accessing.
1407 * @dev_rcv: Receive process function used.
1408 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index: Buffer index for receiving fragments.
1410 * @skb_len: Buffer length for receiving fragments.
1411 * @mib_read: Workqueue to read MIB counters.
1412 * @mib_timer_info: Timer to read MIB counters.
1413 * @counter: Used for MIB reading.
1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1415 * the maximum is MAX_RX_BUF_SIZE.
1416 * @opened: Counter to keep track of device open.
1417 * @rx_tasklet: Receive processing tasklet.
1418 * @tx_tasklet: Transmit processing tasklet.
1419 * @wol_enable: Wake-on-LAN enable set by ethtool.
1420 * @wol_support: Wake-on-LAN support used by ethtool.
1421 * @pme_wait: Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424 struct net_device *dev;
1425 struct pci_dev *pdev;
1426
1427 struct ksz_hw hw;
1428 struct ksz_shared_mem desc_pool;
1429
1430 spinlock_t hwlock;
1431 struct mutex lock;
1432
1433 int (*dev_rcv)(struct dev_info *);
1434
1435 struct sk_buff *last_skb;
1436 int skb_index;
1437 int skb_len;
1438
1439 struct work_struct mib_read;
1440 struct ksz_timer_info mib_timer_info;
1441 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443 int mtu;
1444 int opened;
1445
1446 struct tasklet_struct rx_tasklet;
1447 struct tasklet_struct tx_tasklet;
1448
1449 int wol_enable;
1450 int wol_support;
1451 unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter: Adapter device information.
1457 * @port: Port information.
1458 * @monitor_time_info: Timer to monitor ports.
1459 * @proc_sem: Semaphore for proc accessing.
1460 * @id: Device ID.
1461 * @mii_if: MII interface information.
1462 * @advertising: Temporary variable to store advertised settings.
1463 * @msg_enable: The message flags controlling driver output.
1464 * @media_state: The connection status of the device.
1465 * @multicast: The all multicast state of the device.
1466 * @promiscuous: The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469 struct dev_info *adapter;
1470 struct ksz_port port;
1471 struct ksz_timer_info monitor_timer_info;
1472
1473 struct semaphore proc_sem;
1474 int id;
1475
1476 struct mii_if_info mii_if;
1477 u32 advertising;
1478
1479 u32 msg_enable;
1480 int media_state;
1481 int multicast;
1482 int promiscuous;
1483};
1484
1485#define DRV_NAME "KSZ884X PCI"
1486#define DEVICE_NAME "KSZ884x PCI"
1487#define DRV_VERSION "1.0.0"
1488#define DRV_RELDATE "Feb 8, 2010"
1489
1490static char version[] =
1491 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506 hw->intr_blocked = hw->intr_mask;
1507 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513 hw->intr_set = interrupt;
1514 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519 hw->intr_blocked = 0;
1520 hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525 hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530 u32 read_intr;
1531
1532 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 hw->intr_set = read_intr & ~interrupt;
1534 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: The hardware instance.
1541 * @bit: The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548 hw->intr_mask |= bit;
1549
1550 if (!hw->intr_blocked)
1551 hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556 u32 read_intr;
1557
1558 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 hw->intr_set = read_intr | interrupt;
1560 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 *status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571 if (interrupt)
1572 hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585 uint interrupt = 0;
1586
1587 if (!hw->intr_blocked) {
1588 hw_dis_intr(hw);
1589 interrupt = hw->intr_blocked;
1590 }
1591 return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600 status.rx.hw_owned = 0;
1601 desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606 desc->sw.ctrl.tx.hw_owned = 1;
1607 if (desc->sw.buf_size != desc->sw.buf.data) {
1608 desc->sw.buf_size = desc->sw.buf.data;
1609 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 }
1611 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616 *desc = &info->ring[info->last];
1617 info->last++;
1618 info->last &= info->mask;
1619 info->avail--;
1620 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625 desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630 desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 struct ksz_desc **desc)
1635{
1636 *desc = &info->ring[info->next];
1637 info->next++;
1638 info->next &= info->mask;
1639 info->avail--;
1640 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645 desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650 desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ 0x10
1656#define TABLE_SEL_SHIFT 2
1657
1658#define HW_DELAY(hw, reg) \
1659 do { \
1660 u16 dummy; \
1661 dummy = readw(hw->io + reg); \
1662 } while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw: The hardware instance.
1667 * @table: The table selector.
1668 * @addr: The address of the table entry.
1669 * @data: Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676 u16 ctrl_addr;
1677 uint interrupt;
1678
1679 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681 interrupt = hw_block_intr(hw);
1682
1683 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687 hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw: The hardware instance.
1693 * @table: The table selector.
1694 * @addr: The address of the table entry.
1695 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 u32 data_lo)
1703{
1704 u16 ctrl_addr;
1705 uint interrupt;
1706
1707 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709 interrupt = hw_block_intr(hw);
1710
1711 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717 hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: The hardware instance.
1723 * @addr: The address of the table entry.
1724 * @mac_addr: The MAC address.
1725 * @ports: The port members.
1726 * @override: The flag to override the port receive/transmit settings.
1727 * @valid: The flag to indicate entry is valid.
1728 * @use_fid: The flag to indicate the FID is valid.
1729 * @fid: The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch. It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737 u32 data_hi;
1738 u32 data_lo;
1739
1740 data_lo = ((u32) mac_addr[2] << 24) |
1741 ((u32) mac_addr[3] << 16) |
1742 ((u32) mac_addr[4] << 8) | mac_addr[5];
1743 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746 if (override)
1747 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 if (use_fid) {
1749 data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 }
1752 if (valid)
1753 data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: The hardware instance.
1761 * @addr: The address of the table entry.
1762 * @vid: Buffer to store the VID.
1763 * @fid: Buffer to store the VID.
1764 * @member: Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch. It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 u8 *member)
1773{
1774 u32 data;
1775
1776 sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 if (data & VLAN_TABLE_VALID) {
1778 *vid = (u16)(data & VLAN_TABLE_VID);
1779 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 return 0;
1783 }
1784 return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: The hardware instance.
1790 * @port: The port index.
1791 * @addr: The address of the counter.
1792 * @cnt: Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799 u32 data;
1800 u16 ctrl_addr;
1801 uint interrupt;
1802 int timeout;
1803
1804 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806 interrupt = hw_block_intr(hw);
1807
1808 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812 for (timeout = 100; timeout > 0; timeout--) {
1813 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815 if (data & MIB_COUNTER_VALID) {
1816 if (data & MIB_COUNTER_OVERFLOW)
1817 *cnt += MIB_COUNTER_VALUE + 1;
1818 *cnt += data & MIB_COUNTER_VALUE;
1819 break;
1820 }
1821 }
1822
1823 hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: The hardware instance.
1829 * @port: The port index.
1830 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837 u32 cur;
1838 u32 data;
1839 u16 ctrl_addr;
1840 uint interrupt;
1841 int index;
1842
1843 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 do {
1845 interrupt = hw_block_intr(hw);
1846
1847 ctrl_addr = (u16) index;
1848 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 << 8);
1850 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854 hw_restore_intr(hw, interrupt);
1855
1856 data &= MIB_PACKET_DROPPED;
1857 cur = *last;
1858 if (data != cur) {
1859 *last = data;
1860 if (data < cur)
1861 data += MIB_PACKET_DROPPED + 1;
1862 data -= cur;
1863 *cnt += data;
1864 }
1865 ++last;
1866 ++cnt;
1867 index -= KS_MIB_PACKET_DROPPED_TX -
1868 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: The hardware instance.
1875 * @port: The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow. The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885 struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887 if (mib->mib_start < PORT_COUNTER_NUM)
1888 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 &mib->counter[mib->cnt_ptr]);
1891 ++mib->cnt_ptr;
1892 }
1893 if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 port_r_mib_pkt(hw, port, mib->dropped,
1895 &mib->counter[PORT_COUNTER_NUM]);
1896 mib->cnt_ptr = 0;
1897 return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: The hardware instance.
1903 * @port: The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910 struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912 mib->cnt_ptr = 0;
1913 if (mib->mib_start < PORT_COUNTER_NUM)
1914 do {
1915 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 &mib->counter[mib->cnt_ptr]);
1917 ++mib->cnt_ptr;
1918 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 port_r_mib_pkt(hw, port, mib->dropped,
1921 &mib->counter[PORT_COUNTER_NUM]);
1922 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: The hardware instance.
1933 * @port: The port index.
1934 * @offset: The offset of the port register.
1935 * @bits: The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944 u32 addr;
1945 u16 data;
1946
1947 PORT_CTRL_ADDR(port, addr);
1948 addr += offset;
1949 data = readw(hw->io + addr);
1950 return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: The hardware instance.
1956 * @port: The port index.
1957 * @offset: The offset of the port register.
1958 * @bits: The data bits to set.
1959 * @set: The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 int set)
1965{
1966 u32 addr;
1967 u16 data;
1968
1969 PORT_CTRL_ADDR(port, addr);
1970 addr += offset;
1971 data = readw(hw->io + addr);
1972 if (set)
1973 data |= bits;
1974 else
1975 data &= ~bits;
1976 writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: The hardware instance.
1982 * @port: The port index.
1983 * @offset: The offset of the register.
1984 * @shift: Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993 u16 data;
1994 u16 bit = 1 << port;
1995
1996 data = readw(hw->io + addr);
1997 data >>= shift;
1998 return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: The hardware instance.
2004 * @port: The port index.
2005 * @offset: The offset of the register.
2006 * @shift: Number of bits to shift.
2007 * @set: The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 int set)
2013{
2014 u16 data;
2015 u16 bits = 1 << port;
2016
2017 data = readw(hw->io + addr);
2018 bits <<= shift;
2019 if (set)
2020 data |= bits;
2021 else
2022 data &= ~bits;
2023 writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: The hardware instance.
2029 * @port: The port index.
2030 * @offset: The offset of the port register.
2031 * @data: Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037 u32 addr;
2038
2039 PORT_CTRL_ADDR(port, addr);
2040 addr += offset;
2041 *data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: The hardware instance.
2047 * @port: The port index.
2048 * @offset: The offset of the port register.
2049 * @data: Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055 u32 addr;
2056
2057 PORT_CTRL_ADDR(port, addr);
2058 addr += offset;
2059 *data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: The hardware instance.
2065 * @port: The port index.
2066 * @offset: The offset of the port register.
2067 * @data: Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073 u32 addr;
2074
2075 PORT_CTRL_ADDR(port, addr);
2076 addr += offset;
2077 writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: The hardware instance.
2083 * @addr: The address of the switch register.
2084 * @bits: The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093 u16 data;
2094
2095 data = readw(hw->io + addr);
2096 return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: The hardware instance.
2102 * @addr: The address of the switch register.
2103 * @bits: The data bits to set.
2104 * @set: The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110 u16 data;
2111
2112 data = readw(hw->io + addr);
2113 if (set)
2114 data |= bits;
2115 else
2116 data &= ~bits;
2117 writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124 port_cfg(hw, p,
2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130 return port_chk(hw, p,
2131 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE 9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: The hardware instance.
2143 * @percent: Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149 u16 data;
2150 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152 if (value > BROADCAST_STORM_RATE)
2153 value = BROADCAST_STORM_RATE;
2154
2155 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: The hardware instance.
2164 * @percent: Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170 int num;
2171 u16 data;
2172
2173 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 num = (data & BROADCAST_STORM_RATE_HI);
2175 num <<= 8;
2176 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 *percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: The hardware instance.
2184 * @port: The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190 port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: The hardware instance.
2196 * @port: The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214 int port;
2215
2216 hw->ksz_switch->broad_per = 1;
2217 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 sw_dis_broad_storm(hw, port);
2220 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: The hardware instance.
2226 * @percent: Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions. The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233 if (percent > 100)
2234 percent = 100;
2235
2236 sw_cfg_broad_storm(hw, percent);
2237 sw_get_broad_storm(hw, &percent);
2238 hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: The hardware instance.
2244 * @port: The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250 u32 addr;
2251
2252 PORT_CTRL_ADDR(port, addr);
2253 addr += KS8842_PORT_IN_RATE_OFFSET;
2254 writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265 int port;
2266 int prio;
2267 struct ksz_switch *sw = hw->ksz_switch;
2268
2269 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 sw->port_cfg[port].rx_rate[prio] =
2272 sw->port_cfg[port].tx_rate[prio] = 0;
2273 }
2274 sw_dis_prio_rate(hw, port);
2275 }
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282 port_cfg(hw, p,
2283 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288 port_cfg(hw, p,
2289 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294 return port_chk(hw, p,
2295 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300 return port_chk(hw, p,
2301 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308 port_cfg(hw, p,
2309 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314 port_cfg(hw, p,
2315 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325 if (!(hw->overrides & FAST_AGING)) {
2326 sw_cfg_fast_aging(hw, 1);
2327 mdelay(1);
2328 sw_cfg_fast_aging(hw, 0);
2329 }
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336 port_cfg(hw, p,
2337 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342 port_cfg(hw, p,
2343 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348 return port_chk(hw, p,
2349 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354 return port_chk(hw, p,
2355 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360 port_cfg(hw, p,
2361 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366 port_cfg(hw, p,
2367 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372 return port_chk(hw, p,
2373 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378 return port_chk(hw, p,
2379 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386 port_cfg(hw, p,
2387 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392 port_cfg(hw, p,
2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398 port_cfg(hw, p,
2399 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409 int port;
2410
2411 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 port_cfg_mirror_sniffer(hw, port, 0);
2413 port_cfg_mirror_rx(hw, port, 0);
2414 port_cfg_mirror_tx(hw, port, 0);
2415 }
2416 sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445 port_cfg(hw, p,
2446 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451 port_cfg(hw, p,
2452 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457 port_cfg(hw, p,
2458 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463 port_cfg(hw, p,
2464 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469 return port_chk(hw, p,
2470 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475 return port_chk(hw, p,
2476 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481 return port_chk(hw, p,
2482 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487 return port_chk(hw, p,
2488 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: The hardware instance.
2494 * @port: The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500 port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: The hardware instance.
2506 * @port: The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512 port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: The hardware instance.
2518 * @set: The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: The hardware instance.
2529 * @port: The port index.
2530 * @set: The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539 port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: The hardware instance.
2545 * @port: The port index.
2546 * @prio: The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552 u16 data;
2553
2554 if (prio > PORT_BASED_PRIORITY_BASE)
2555 prio = PORT_BASED_PRIORITY_BASE;
2556
2557 hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 data &= ~PORT_BASED_PRIORITY_MASK;
2561 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: The hardware instance.
2568 * @port: The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port. Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575 port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586 int port;
2587 int tos;
2588 struct ksz_switch *sw = hw->ksz_switch;
2589
2590 /*
2591 * Init all the 802.1p tag priority value to be assigned to different
2592 * priority queue.
2593 */
2594 sw->p_802_1p[0] = 0;
2595 sw->p_802_1p[1] = 0;
2596 sw->p_802_1p[2] = 1;
2597 sw->p_802_1p[3] = 1;
2598 sw->p_802_1p[4] = 2;
2599 sw->p_802_1p[5] = 2;
2600 sw->p_802_1p[6] = 3;
2601 sw->p_802_1p[7] = 3;
2602
2603 /*
2604 * Init all the DiffServ priority value to be assigned to priority
2605 * queue 0.
2606 */
2607 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 sw->diffserv[tos] = 0;
2609
2610 /* All QoS functions disabled. */
2611 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 sw_dis_multi_queue(hw, port);
2613 sw_dis_diffserv(hw, port);
2614 sw_dis_802_1p(hw, port);
2615 sw_cfg_replace_vid(hw, port, 0);
2616
2617 sw->port_cfg[port].port_prio = 0;
2618 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 }
2620 sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: The hardware instance.
2626 * @port: The port index.
2627 * @vid: Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633 u32 addr;
2634
2635 PORT_CTRL_ADDR(port, addr);
2636 addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 *vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648 int port;
2649 int entry;
2650 struct ksz_switch *sw = hw->ksz_switch;
2651
2652 /* Read 16 VLAN entries from device's VLAN table. */
2653 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 sw_r_vlan_table(hw, entry,
2655 &sw->vlan_table[entry].vid,
2656 &sw->vlan_table[entry].fid,
2657 &sw->vlan_table[entry].member);
2658 }
2659
2660 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 sw->port_cfg[port].member = PORT_MASK;
2663 }
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: The hardware instance.
2669 * @port: The port index.
2670 * @member: The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676 u32 addr;
2677 u8 data;
2678
2679 PORT_CTRL_ADDR(port, addr);
2680 addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682 data = readb(hw->io + addr);
2683 data &= ~PORT_VLAN_MEMBERSHIP;
2684 data |= (member & PORT_MASK);
2685 writeb(data, hw->io + addr);
2686
2687 hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: The hardware instance.
2693 * @mac_addr: Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699 int i;
2700
2701 for (i = 0; i < 6; i += 2) {
2702 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 }
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: The hardware instance.
2710 * @mac_addr: The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716 int i;
2717
2718 for (i = 0; i < 6; i += 2) {
2719 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 }
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732 u16 data;
2733
2734 /* Enable switch MII flow control. */
2735 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 data |= SWITCH_FLOW_CTRL;
2737 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741 /* Enable aggressive back off algorithm in half duplex mode. */
2742 data |= SWITCH_AGGR_BACKOFF;
2743
2744 /* Enable automatic fast aging when link changed detected. */
2745 data |= SWITCH_AGING_ENABLE;
2746 data |= SWITCH_LINK_AUTO_AGING;
2747
2748 if (hw->overrides & FAST_AGING)
2749 data |= SWITCH_FAST_AGING;
2750 else
2751 data &= ~SWITCH_FAST_AGING;
2752 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756 /* Enable no excessive collision drop. */
2757 data |= NO_EXC_COLLISION_DROP;
2758 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762 STP_STATE_DISABLED = 0,
2763 STP_STATE_LISTENING,
2764 STP_STATE_LEARNING,
2765 STP_STATE_FORWARDING,
2766 STP_STATE_BLOCKED,
2767 STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: The hardware instance.
2773 * @port: The port index.
2774 * @state: The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780 u16 data;
2781
2782 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 switch (state) {
2784 case STP_STATE_DISABLED:
2785 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 data |= PORT_LEARN_DISABLE;
2787 break;
2788 case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793 data &= ~PORT_TX_ENABLE;
2794 data |= PORT_RX_ENABLE;
2795 data |= PORT_LEARN_DISABLE;
2796 break;
2797 case STP_STATE_LEARNING:
2798 data &= ~PORT_TX_ENABLE;
2799 data |= PORT_RX_ENABLE;
2800 data &= ~PORT_LEARN_DISABLE;
2801 break;
2802 case STP_STATE_FORWARDING:
2803 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 data &= ~PORT_LEARN_DISABLE;
2805 break;
2806 case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages. See sw_init_stp routine.
2810 */
2811 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 data |= PORT_LEARN_DISABLE;
2813 break;
2814 case STP_STATE_SIMPLE:
2815 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 data |= PORT_LEARN_DISABLE;
2817 break;
2818 }
2819 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY 0
2824#define BROADCAST_ENTRY 1
2825#define BRIDGE_ADDR_ENTRY 2
2826#define IPV6_ADDR_ENTRY 3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836 struct ksz_mac_table *entry;
2837 int i;
2838
2839 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 entry = &hw->ksz_switch->mac_table[i];
2841 sw_w_sta_mac_table(hw, i,
2842 entry->mac_addr, entry->ports,
2843 entry->override, 0,
2844 entry->use_fid, entry->fid);
2845 }
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856 struct ksz_mac_table *entry;
2857
2858 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 entry->mac_addr[0] = 0x01;
2860 entry->mac_addr[1] = 0x80;
2861 entry->mac_addr[2] = 0xC2;
2862 entry->mac_addr[3] = 0x00;
2863 entry->mac_addr[4] = 0x00;
2864 entry->mac_addr[5] = 0x00;
2865 entry->ports = HOST_MASK;
2866 entry->override = 1;
2867 entry->valid = 1;
2868 sw_w_sta_mac_table(hw, STP_ENTRY,
2869 entry->mac_addr, entry->ports,
2870 entry->override, entry->valid,
2871 entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882 struct ksz_mac_table *entry;
2883 int i;
2884
2885 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 entry = &hw->ksz_switch->mac_table[i];
2887 entry->valid = 0;
2888 sw_w_sta_mac_table(hw, i,
2889 entry->mac_addr, entry->ports,
2890 entry->override, entry->valid,
2891 entry->use_fid, entry->fid);
2892 }
2893}
2894
2895#define PHY_LINK_SUPPORT \
2896 (PHY_AUTO_NEG_ASYM_PAUSE | \
2897 PHY_AUTO_NEG_SYM_PAUSE | \
2898 PHY_AUTO_NEG_100BT4 | \
2899 PHY_AUTO_NEG_100BTX_FD | \
2900 PHY_AUTO_NEG_100BTX | \
2901 PHY_AUTO_NEG_10BT_FD | \
2902 PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: The hardware instance.
2967 * @port: Port to read.
2968 * @reg: PHY register to read.
2969 * @val: Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975 int phy;
2976
2977 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 *val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: The hardware instance.
2984 * @port: Port to write.
2985 * @reg: PHY register to write.
2986 * @val: Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992 int phy;
2993
2994 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE 0
3003#define AT93C_WR_OFF 0x00
3004#define AT93C_WR_ALL 0x10
3005#define AT93C_ER_ALL 0x20
3006#define AT93C_WR_ON 0x30
3007
3008#define AT93C_WRITE 1
3009#define AT93C_READ 2
3010#define AT93C_ERASE 3
3011
3012#define EEPROM_DELAY 4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016 u16 data;
3017
3018 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 data &= ~gpio;
3020 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025 u16 data;
3026
3027 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 data |= gpio;
3029 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034 u16 data;
3035
3036 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 udelay(EEPROM_DELAY);
3044 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050 int i;
3051 u16 temp = 0;
3052
3053 for (i = 15; i >= 0; i--) {
3054 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 udelay(EEPROM_DELAY);
3056
3057 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 udelay(EEPROM_DELAY);
3061 }
3062 return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067 int i;
3068
3069 for (i = 15; i >= 0; i--) {
3070 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 drop_gpio(hw, EEPROM_DATA_OUT);
3072 eeprom_clk(hw);
3073 }
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078 int i;
3079
3080 /* Initial start bit */
3081 raise_gpio(hw, EEPROM_DATA_OUT);
3082 eeprom_clk(hw);
3083
3084 /* AT93C operation */
3085 for (i = 1; i >= 0; i--) {
3086 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 drop_gpio(hw, EEPROM_DATA_OUT);
3088 eeprom_clk(hw);
3089 }
3090
3091 /* Address location */
3092 for (i = 5; i >= 0; i--) {
3093 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096 }
3097}
3098
3099#define EEPROM_DATA_RESERVED 0
3100#define EEPROM_DATA_MAC_ADDR_0 1
3101#define EEPROM_DATA_MAC_ADDR_1 2
3102#define EEPROM_DATA_MAC_ADDR_2 3
3103#define EEPROM_DATA_SUBSYS_ID 4
3104#define EEPROM_DATA_SUBSYS_VEN_ID 5
3105#define EEPROM_DATA_PM_CAP 6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR 9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: The hardware instance.
3113 * @reg: The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121 u16 data;
3122
3123 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125 spi_reg(hw, AT93C_READ, reg);
3126 data = spi_r(hw);
3127
3128 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130 return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: The hardware instance.
3136 * @reg: The register offset.
3137 * @data: The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143 int timeout;
3144
3145 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147 /* Enable write. */
3148 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 udelay(1);
3151
3152 /* Erase the register. */
3153 raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 spi_reg(hw, AT93C_ERASE, reg);
3155 drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 udelay(1);
3157
3158 /* Check operation complete. */
3159 raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 timeout = 8;
3161 mdelay(2);
3162 do {
3163 mdelay(1);
3164 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 udelay(1);
3167
3168 /* Write the register. */
3169 raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 spi_reg(hw, AT93C_WRITE, reg);
3171 spi_w(hw, data);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3174
3175 /* Check operation complete. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 timeout = 8;
3178 mdelay(2);
3179 do {
3180 mdelay(1);
3181 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 udelay(1);
3184
3185 /* Disable write. */
3186 raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 switch (port->flow_ctrl) {
3200 case PHY_FLOW_CTRL:
3201 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 break;
3203 /* Not supported. */
3204 case PHY_TX_ONLY:
3205 case PHY_RX_ONLY:
3206 default:
3207 break;
3208 }
3209 return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214 u32 rx_cfg;
3215 u32 tx_cfg;
3216
3217 rx_cfg = hw->rx_cfg;
3218 tx_cfg = hw->tx_cfg;
3219 if (rx)
3220 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 else
3222 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 if (tx)
3224 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 else
3226 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 if (hw->enabled) {
3228 if (rx_cfg != hw->rx_cfg)
3229 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 if (tx_cfg != hw->tx_cfg)
3231 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 }
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 u16 local, u16 remote)
3237{
3238 int rx;
3239 int tx;
3240
3241 if (hw->overrides & PAUSE_FLOW_CTRL)
3242 return;
3243
3244 rx = tx = 0;
3245 if (port->force_link)
3246 rx = tx = 1;
3247 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 rx = tx = 1;
3250 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 (local & PHY_AUTO_NEG_PAUSE) ==
3252 PHY_AUTO_NEG_ASYM_PAUSE) {
3253 tx = 1;
3254 }
3255 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 rx = 1;
3258 }
3259 if (!hw->ksz_switch)
3260 set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 struct ksz_port_info *info, u16 link_status)
3265{
3266 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 u32 cfg = hw->tx_cfg;
3269
3270 /* Disable flow control in the half duplex mode. */
3271 if (1 == info->duplex)
3272 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 if (hw->enabled && cfg != hw->tx_cfg)
3274 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 }
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287 uint interrupt;
3288 struct ksz_port_info *info;
3289 struct ksz_port_info *linked = NULL;
3290 struct ksz_hw *hw = port->hw;
3291 u16 data;
3292 u16 status;
3293 u8 local;
3294 u8 remote;
3295 int i;
3296 int p;
3297 int change = 0;
3298
3299 interrupt = hw_block_intr(hw);
3300
3301 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 info = &hw->port_info[p];
3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306 /*
3307 * Link status is changing all the time even when there is no
3308 * cable connection!
3309 */
3310 remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 PORT_STATUS_LINK_GOOD);
3312 local = (u8) data;
3313
3314 /* No change to status. */
3315 if (local == info->advertised && remote == info->partner)
3316 continue;
3317
3318 info->advertised = local;
3319 info->partner = remote;
3320 if (status & PORT_STATUS_LINK_GOOD) {
3321
3322 /* Remember the first linked port. */
3323 if (!linked)
3324 linked = info;
3325
3326 info->tx_rate = 10 * TX_RATE_UNIT;
3327 if (status & PORT_STATUS_SPEED_100MBIT)
3328 info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330 info->duplex = 1;
3331 if (status & PORT_STATUS_FULL_DUPLEX)
3332 info->duplex = 2;
3333
3334 if (media_connected != info->state) {
3335 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 &data);
3337 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 &status);
3339 determine_flow_ctrl(hw, port, data, status);
3340 if (hw->ksz_switch) {
3341 port_cfg_back_pressure(hw, p,
3342 (1 == info->duplex));
3343 }
3344 change |= 1 << i;
3345 port_cfg_change(hw, port, info, status);
3346 }
3347 info->state = media_connected;
3348 } else {
3349 if (media_disconnected != info->state) {
3350 change |= 1 << i;
3351
3352 /* Indicate the link just goes down. */
3353 hw->port_mib[p].link_down = 1;
3354 }
3355 info->state = media_disconnected;
3356 }
3357 hw->port_mib[p].state = (u8) info->state;
3358 }
3359
3360 if (linked && media_disconnected == port->linked->state)
3361 port->linked = linked;
3362
3363 hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT 10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376 struct ksz_port_info *info;
3377 struct ksz_hw *hw = port->hw;
3378 u16 data;
3379 u16 cfg;
3380 u8 status;
3381 int i;
3382 int p;
3383
3384 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385 info = &hw->port_info[p];
3386
3387 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390 cfg = 0;
3391 if (status & PORT_STATUS_LINK_GOOD)
3392 cfg = data;
3393
3394 data |= PORT_AUTO_NEG_ENABLE;
3395 data = advertised_flow_ctrl(port, data);
3396
3397 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400 /* Check if manual configuration is specified by the user. */
3401 if (port->speed || port->duplex) {
3402 if (10 == port->speed)
3403 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404 PORT_AUTO_NEG_100BTX);
3405 else if (100 == port->speed)
3406 data &= ~(PORT_AUTO_NEG_10BT_FD |
3407 PORT_AUTO_NEG_10BT);
3408 if (1 == port->duplex)
3409 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410 PORT_AUTO_NEG_10BT_FD);
3411 else if (2 == port->duplex)
3412 data &= ~(PORT_AUTO_NEG_100BTX |
3413 PORT_AUTO_NEG_10BT);
3414 }
3415 if (data != cfg) {
3416 data |= PORT_AUTO_NEG_RESTART;
3417 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418 }
3419 }
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port: The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430 struct ksz_hw *hw = port->hw;
3431 u16 data;
3432 int i;
3433 int phy;
3434 int p;
3435
3436 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438 hw_r_phy_ctrl(hw, phy, &data);
3439
3440 data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442 if (10 == port->speed)
3443 data &= ~PHY_SPEED_100MBIT;
3444 else if (100 == port->speed)
3445 data |= PHY_SPEED_100MBIT;
3446 if (1 == port->duplex)
3447 data &= ~PHY_FULL_DUPLEX;
3448 else if (2 == port->duplex)
3449 data |= PHY_FULL_DUPLEX;
3450 hw_w_phy_ctrl(hw, phy, data);
3451 }
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456 struct ksz_hw *hw = port->hw;
3457 int i;
3458 int p;
3459
3460 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461 port_cfg(hw, p,
3462 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw: The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480 struct pci_dev *pdev = hw_priv->pdev;
3481 u16 data;
3482
3483 if (!pdev->pm_cap)
3484 return 0;
3485 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw: The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498 struct pci_dev *pdev = hw_priv->pdev;
3499 u16 data;
3500
3501 if (!pdev->pm_cap)
3502 return;
3503
3504 /* Clear PME_Status to deassert PMEN pin. */
3505 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506 data |= PCI_PM_CTRL_PME_STATUS;
3507 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw: The hardware instance.
3513 * @set: The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520 struct pci_dev *pdev = hw_priv->pdev;
3521 u16 data;
3522
3523 if (!pdev->pm_cap)
3524 return;
3525 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526 data &= ~PCI_PM_CTRL_STATE_MASK;
3527 if (set)
3528 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529 else
3530 data &= ~PCI_PM_CTRL_PME_ENABLE;
3531 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw: The hardware instance.
3537 * @frame: The pattern frame bit.
3538 * @set: The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544 u16 data;
3545
3546 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547 if (set)
3548 data |= frame;
3549 else
3550 data &= ~frame;
3551 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw: The hardware instance.
3557 * @i: The frame index.
3558 * @mask_size: The size of the mask.
3559 * @mask: Mask to ignore certain bytes in the pattern.
3560 * @frame_size: The size of the frame.
3561 * @pattern: The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566 const u8 *mask, uint frame_size, const u8 *pattern)
3567{
3568 int bits;
3569 int from;
3570 int len;
3571 int to;
3572 u32 crc;
3573 u8 data[64];
3574 u8 val = 0;
3575
3576 if (frame_size > mask_size * 8)
3577 frame_size = mask_size * 8;
3578 if (frame_size > 64)
3579 frame_size = 64;
3580
3581 i *= 0x10;
3582 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585 bits = len = from = to = 0;
3586 do {
3587 if (bits) {
3588 if ((val & 1))
3589 data[to++] = pattern[from];
3590 val >>= 1;
3591 ++from;
3592 --bits;
3593 } else {
3594 val = mask[len];
3595 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596 + len);
3597 ++len;
3598 if (val)
3599 bits = 8;
3600 else
3601 from += 8;
3602 }
3603 } while (from < (int) frame_size);
3604 if (val) {
3605 bits = mask[len - 1];
3606 val <<= (from % 8);
3607 bits &= ~val;
3608 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609 1);
3610 }
3611 crc = ether_crc(to, data);
3612 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw: The hardware instance.
3618 * @ip_addr: The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623{
3624 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625 u8 pattern[42] = {
3626 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 0x08, 0x06,
3629 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631 0x00, 0x00, 0x00, 0x00,
3632 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633 0x00, 0x00, 0x00, 0x00 };
3634
3635 memcpy(&pattern[38], ip_addr, 4);
3636 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw: The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
3647 static const u8 mask[] = { 0x3F };
3648 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649
3650 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw: The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command. Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
3665 static const u8 mask[] = { 0x3F };
3666 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668 memcpy(&pattern[3], &hw->override_addr[3], 3);
3669 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw: The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
3683 static const u8 mask[] = { 0x3F };
3684
3685 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw: The hardware instance.
3691 * @wol_enable: The Wake-on-LAN settings.
3692 * @net_addr: The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697{
3698 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700 hw_add_wol_ucast(hw);
3701 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702 hw_add_wol_mcast(hw);
3703 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705 hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw: The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719 int rc = 0;
3720 u16 data;
3721 u16 revision;
3722
3723 /* Set bus speed to 125MHz. */
3724 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726 /* Check KSZ884x chip ID. */
3727 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730 data &= KS884X_CHIP_ID_MASK_41;
3731 if (REG_CHIP_ID_41 == data)
3732 rc = 1;
3733 else if (REG_CHIP_ID_42 == data)
3734 rc = 2;
3735 else
3736 return 0;
3737
3738 /* Setup hardware features or bug workarounds. */
3739 if (revision <= 1) {
3740 hw->features |= SMALL_PACKET_TX_BUG;
3741 if (1 == rc)
3742 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743 }
3744 return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw: The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757 /* Wait for device to reset. */
3758 mdelay(10);
3759
3760 /* Write 0 to clear device reset. */
3761 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw: The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773 u16 data;
3774
3775 /* Change default LED mode. */
3776 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777 data &= ~LED_MODE;
3778 data |= SET_DEFAULT_LED;
3779 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782 /* Setup transmit control. */
3783 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786 /* Setup receive control. */
3787 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791 /* Hardware cannot handle UDP packet in IP fragments. */
3792 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794 if (hw->all_multi)
3795 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796 if (hw->promiscuous)
3797 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw: The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT 2
3814
3815 int alloc = info->alloc;
3816 int shift;
3817
3818 shift = 0;
3819 while (!(alloc & 1)) {
3820 shift++;
3821 alloc >>= 1;
3822 }
3823 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824 pr_alert("Hardware descriptor numbers not right!\n");
3825 while (alloc) {
3826 shift++;
3827 alloc >>= 1;
3828 }
3829 if (shift < MIN_DESC_SHIFT)
3830 shift = MIN_DESC_SHIFT;
3831 alloc = 1 << shift;
3832 info->alloc = alloc;
3833 }
3834 info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839 int i;
3840 u32 phys = desc_info->ring_phys;
3841 struct ksz_hw_desc *desc = desc_info->ring_virt;
3842 struct ksz_desc *cur = desc_info->ring;
3843 struct ksz_desc *previous = NULL;
3844
3845 for (i = 0; i < desc_info->alloc; i++) {
3846 cur->phw = desc++;
3847 phys += desc_info->size;
3848 previous = cur++;
3849 previous->phw->next = cpu_to_le32(phys);
3850 }
3851 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852 previous->sw.buf.rx.end_of_ring = 1;
3853 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855 desc_info->avail = desc_info->alloc;
3856 desc_info->last = desc_info->next = 0;
3857
3858 desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw: The hardware instance.
3864 * @tx_addr: The transmit descriptor base.
3865 * @rx_addr: The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871 /* Set base address of Tx/Rx descriptors. */
3872 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878 info->cur = info->ring;
3879 info->avail = info->alloc;
3880 info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885 writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw: The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898 /* Notify when the receive stops. */
3899 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901 writel(DMA_START, hw->io + KS_DMA_RX_START);
3902 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903 hw->rx_stop++;
3904
3905 /* Variable overflows. */
3906 if (0 == hw->rx_stop)
3907 hw->rx_stop = 2;
3908}
3909
3910/**
3911 * hw_stop_rx - stop receiving
3912 * @hw: The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918 hw->rx_stop = 0;
3919 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw: The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw: The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw: The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953 hw_stop_rx(hw);
3954 hw_stop_tx(hw);
3955 hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw: The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966 hw_start_tx(hw);
3967 hw_start_rx(hw);
3968 hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw: The hardware instance.
3974 * @length: The length of the packet.
3975 * @physical: Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983 /* Always leave one descriptor free. */
3984 if (hw->tx_desc_info.avail <= 1)
3985 return 0;
3986
3987 /* Allocate a descriptor for transmission and mark it current. */
3988 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991 /* Keep track of number of transmit descriptors used so far. */
3992 ++hw->tx_int_cnt;
3993 hw->tx_size += length;
3994
3995 /* Cannot hold on too much data. */
3996 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997 hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999 if (physical > hw->tx_desc_info.avail)
4000 return 1;
4001
4002 return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw: The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013 struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015 cur->sw.buf.tx.last_seg = 1;
4016
4017 /* Interrupt only after specified number of descriptors used. */
4018 if (hw->tx_int_cnt > hw->tx_int_mask) {
4019 cur->sw.buf.tx.intr = 1;
4020 hw->tx_int_cnt = 0;
4021 hw->tx_size = 0;
4022 }
4023
4024 /* KSZ8842 supports port directed transmission. */
4025 cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027 release_desc(cur);
4028
4029 writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034 u32 *addr1 = (u32 *) addr;
4035 u16 *addr2 = (u16 *) &addr[4];
4036
4037 return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw: The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overridden.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049 int i;
4050
4051 for (i = 0; i < ETH_ALEN; i++)
4052 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053 hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055 sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw: The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066 int i;
4067
4068 for (i = 0; i < ETH_ALEN; i++)
4069 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070 KS884X_ADDR_0_OFFSET + i);
4071
4072 if (!hw->mac_override) {
4073 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074 if (empty_addr(hw->override_addr)) {
4075 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077 ETH_ALEN);
4078 hw->override_addr[5] += hw->id;
4079 hw_set_addr(hw);
4080 }
4081 }
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086 int i;
4087 u32 mac_addr_lo;
4088 u32 mac_addr_hi;
4089
4090 mac_addr_hi = 0;
4091 for (i = 0; i < 2; i++) {
4092 mac_addr_hi <<= 8;
4093 mac_addr_hi |= mac_addr[i];
4094 }
4095 mac_addr_hi |= ADD_ADDR_ENABLE;
4096 mac_addr_lo = 0;
4097 for (i = 2; i < 6; i++) {
4098 mac_addr_lo <<= 8;
4099 mac_addr_lo |= mac_addr[i];
4100 }
4101 index *= ADD_ADDR_INCR;
4102
4103 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109 int i;
4110
4111 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112 if (empty_addr(hw->address[i]))
4113 writel(0, hw->io + ADD_ADDR_INCR * i +
4114 KS_ADD_ADDR_0_HI);
4115 else
4116 hw_ena_add_addr(hw, i, hw->address[i]);
4117 }
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122 int i;
4123 int j = ADDITIONAL_ENTRIES;
4124
4125 if (ether_addr_equal(hw->override_addr, mac_addr))
4126 return 0;
4127 for (i = 0; i < hw->addr_list_size; i++) {
4128 if (ether_addr_equal(hw->address[i], mac_addr))
4129 return 0;
4130 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131 j = i;
4132 }
4133 if (j < ADDITIONAL_ENTRIES) {
4134 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135 hw_ena_add_addr(hw, j, hw->address[j]);
4136 return 0;
4137 }
4138 return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143 int i;
4144
4145 for (i = 0; i < hw->addr_list_size; i++) {
4146 if (ether_addr_equal(hw->address[i], mac_addr)) {
4147 eth_zero_addr(hw->address[i]);
4148 writel(0, hw->io + ADD_ADDR_INCR * i +
4149 KS_ADD_ADDR_0_HI);
4150 return 0;
4151 }
4152 }
4153 return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw: The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164 int i;
4165
4166 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167 hw->multi_bits[i] = 0;
4168
4169 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170 }
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw: The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182 int i;
4183 int index;
4184 int position;
4185 int value;
4186
4187 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189 for (i = 0; i < hw->multi_list_size; i++) {
4190 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191 index = position >> 3;
4192 value = 1 << (position & 7);
4193 hw->multi_bits[index] |= (u8) value;
4194 }
4195
4196 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198 i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw: The hardware instance.
4204 * @multicast: To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210 /* Stop receiving for reconfiguration. */
4211 hw_stop_rx(hw);
4212
4213 if (multicast)
4214 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215 else
4216 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218 if (hw->enabled)
4219 hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw: The hardware instance.
4225 * @prom: To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231 /* Stop receiving for reconfiguration. */
4232 hw_stop_rx(hw);
4233
4234 if (prom)
4235 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236 else
4237 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239 if (hw->enabled)
4240 hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw: The hardware instance.
4246 * @enable: The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252 int port;
4253
4254 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255 if (hw->dev_count > 1) {
4256 /* Set port-base vlan membership with host port. */
4257 sw_cfg_port_base_vlan(hw, port,
4258 HOST_MASK | (1 << port));
4259 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260 } else {
4261 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263 }
4264 }
4265 if (hw->dev_count > 1)
4266 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267 else
4268 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270 if (enable)
4271 enable = KS8842_START;
4272 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw: The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283 int port;
4284
4285 sw_set_global_ctrl(hw);
4286
4287 /* Enable switch broadcast storm protection at 10% percent rate. */
4288 sw_init_broad_storm(hw);
4289 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290 for (port = 0; port < SWITCH_PORT_NUM; port++)
4291 sw_ena_broad_storm(hw, port);
4292
4293 sw_init_prio(hw);
4294
4295 sw_init_mirror(hw);
4296
4297 sw_init_prio_rate(hw);
4298
4299 sw_init_vlan(hw);
4300
4301 if (hw->features & STP_SUPPORT)
4302 sw_init_stp(hw);
4303 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305 hw->overrides |= PAUSE_FLOW_CTRL;
4306 sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info: Kernel timer information.
4312 * @time: The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318 info->cnt = 0;
4319 info->timer.expires = jiffies + time;
4320 add_timer(&info->timer);
4321
4322 /* infinity */
4323 info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info: Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334 if (info->max) {
4335 info->max = 0;
4336 del_timer_sync(&info->timer);
4337 }
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341 void (*function)(struct timer_list *))
4342{
4343 info->max = 0;
4344 info->period = period;
4345 timer_setup(&info->timer, function, 0);
4346}
4347
4348static void ksz_update_timer(struct ksz_timer_info *info)
4349{
4350 ++info->cnt;
4351 if (info->max > 0) {
4352 if (info->cnt < info->max) {
4353 info->timer.expires = jiffies + info->period;
4354 add_timer(&info->timer);
4355 } else
4356 info->max = 0;
4357 } else if (info->max < 0) {
4358 info->timer.expires = jiffies + info->period;
4359 add_timer(&info->timer);
4360 }
4361}
4362
4363/**
4364 * ksz_alloc_soft_desc - allocate software descriptors
4365 * @desc_info: Descriptor information structure.
4366 * @transmit: Indication that descriptors are for transmit.
4367 *
4368 * This local function allocates software descriptors for manipulation in
4369 * memory.
4370 *
4371 * Return 0 if successful.
4372 */
4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374{
4375 desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376 GFP_KERNEL);
4377 if (!desc_info->ring)
4378 return 1;
4379 hw_init_desc(desc_info, transmit);
4380 return 0;
4381}
4382
4383/**
4384 * ksz_alloc_desc - allocate hardware descriptors
4385 * @adapter: Adapter information structure.
4386 *
4387 * This local function allocates hardware descriptors for receiving and
4388 * transmitting.
4389 *
4390 * Return 0 if successful.
4391 */
4392static int ksz_alloc_desc(struct dev_info *adapter)
4393{
4394 struct ksz_hw *hw = &adapter->hw;
4395 int offset;
4396
4397 /* Allocate memory for RX & TX descriptors. */
4398 adapter->desc_pool.alloc_size =
4399 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401 DESC_ALIGNMENT;
4402
4403 adapter->desc_pool.alloc_virt =
4404 pci_zalloc_consistent(adapter->pdev,
4405 adapter->desc_pool.alloc_size,
4406 &adapter->desc_pool.dma_addr);
4407 if (adapter->desc_pool.alloc_virt == NULL) {
4408 adapter->desc_pool.alloc_size = 0;
4409 return 1;
4410 }
4411
4412 /* Align to the next cache line boundary. */
4413 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414 (DESC_ALIGNMENT -
4415 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418
4419 /* Allocate receive/transmit descriptors. */
4420 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421 adapter->desc_pool.virt;
4422 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425 (adapter->desc_pool.virt + offset);
4426 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427
4428 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429 return 1;
4430 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431 return 1;
4432
4433 return 0;
4434}
4435
4436/**
4437 * free_dma_buf - release DMA buffer resources
4438 * @adapter: Adapter information structure.
4439 *
4440 * This routine is just a helper function to release the DMA buffer resources.
4441 */
4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443 int direction)
4444{
4445 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4446 dev_kfree_skb(dma_buf->skb);
4447 dma_buf->skb = NULL;
4448 dma_buf->dma = 0;
4449}
4450
4451/**
4452 * ksz_init_rx_buffers - initialize receive descriptors
4453 * @adapter: Adapter information structure.
4454 *
4455 * This routine initializes DMA buffers for receiving.
4456 */
4457static void ksz_init_rx_buffers(struct dev_info *adapter)
4458{
4459 int i;
4460 struct ksz_desc *desc;
4461 struct ksz_dma_buf *dma_buf;
4462 struct ksz_hw *hw = &adapter->hw;
4463 struct ksz_desc_info *info = &hw->rx_desc_info;
4464
4465 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466 get_rx_pkt(info, &desc);
4467
4468 dma_buf = DMA_BUFFER(desc);
4469 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471 dma_buf->len = adapter->mtu;
4472 if (!dma_buf->skb)
4473 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474 if (dma_buf->skb && !dma_buf->dma)
4475 dma_buf->dma = pci_map_single(
4476 adapter->pdev,
4477 skb_tail_pointer(dma_buf->skb),
4478 dma_buf->len,
4479 PCI_DMA_FROMDEVICE);
4480
4481 /* Set descriptor. */
4482 set_rx_buf(desc, dma_buf->dma);
4483 set_rx_len(desc, dma_buf->len);
4484 release_desc(desc);
4485 }
4486}
4487
4488/**
4489 * ksz_alloc_mem - allocate memory for hardware descriptors
4490 * @adapter: Adapter information structure.
4491 *
4492 * This function allocates memory for use by hardware descriptors for receiving
4493 * and transmitting.
4494 *
4495 * Return 0 if successful.
4496 */
4497static int ksz_alloc_mem(struct dev_info *adapter)
4498{
4499 struct ksz_hw *hw = &adapter->hw;
4500
4501 /* Determine the number of receive and transmit descriptors. */
4502 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504
4505 /* Determine how many descriptors to skip transmit interrupt. */
4506 hw->tx_int_cnt = 0;
4507 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508 if (hw->tx_int_mask > 8)
4509 hw->tx_int_mask = 8;
4510 while (hw->tx_int_mask) {
4511 hw->tx_int_cnt++;
4512 hw->tx_int_mask >>= 1;
4513 }
4514 if (hw->tx_int_cnt) {
4515 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516 hw->tx_int_cnt = 0;
4517 }
4518
4519 /* Determine the descriptor size. */
4520 hw->rx_desc_info.size =
4521 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523 hw->tx_desc_info.size =
4524 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527 pr_alert("Hardware descriptor size not right!\n");
4528 ksz_check_desc_num(&hw->rx_desc_info);
4529 ksz_check_desc_num(&hw->tx_desc_info);
4530
4531 /* Allocate descriptors. */
4532 if (ksz_alloc_desc(adapter))
4533 return 1;
4534
4535 return 0;
4536}
4537
4538/**
4539 * ksz_free_desc - free software and hardware descriptors
4540 * @adapter: Adapter information structure.
4541 *
4542 * This local routine frees the software and hardware descriptors allocated by
4543 * ksz_alloc_desc().
4544 */
4545static void ksz_free_desc(struct dev_info *adapter)
4546{
4547 struct ksz_hw *hw = &adapter->hw;
4548
4549 /* Reset descriptor. */
4550 hw->rx_desc_info.ring_virt = NULL;
4551 hw->tx_desc_info.ring_virt = NULL;
4552 hw->rx_desc_info.ring_phys = 0;
4553 hw->tx_desc_info.ring_phys = 0;
4554
4555 /* Free memory. */
4556 if (adapter->desc_pool.alloc_virt)
4557 pci_free_consistent(
4558 adapter->pdev,
4559 adapter->desc_pool.alloc_size,
4560 adapter->desc_pool.alloc_virt,
4561 adapter->desc_pool.dma_addr);
4562
4563 /* Reset resource pool. */
4564 adapter->desc_pool.alloc_size = 0;
4565 adapter->desc_pool.alloc_virt = NULL;
4566
4567 kfree(hw->rx_desc_info.ring);
4568 hw->rx_desc_info.ring = NULL;
4569 kfree(hw->tx_desc_info.ring);
4570 hw->tx_desc_info.ring = NULL;
4571}
4572
4573/**
4574 * ksz_free_buffers - free buffers used in the descriptors
4575 * @adapter: Adapter information structure.
4576 * @desc_info: Descriptor information structure.
4577 *
4578 * This local routine frees buffers used in the DMA buffers.
4579 */
4580static void ksz_free_buffers(struct dev_info *adapter,
4581 struct ksz_desc_info *desc_info, int direction)
4582{
4583 int i;
4584 struct ksz_dma_buf *dma_buf;
4585 struct ksz_desc *desc = desc_info->ring;
4586
4587 for (i = 0; i < desc_info->alloc; i++) {
4588 dma_buf = DMA_BUFFER(desc);
4589 if (dma_buf->skb)
4590 free_dma_buf(adapter, dma_buf, direction);
4591 desc++;
4592 }
4593}
4594
4595/**
4596 * ksz_free_mem - free all resources used by descriptors
4597 * @adapter: Adapter information structure.
4598 *
4599 * This local routine frees all the resources allocated by ksz_alloc_mem().
4600 */
4601static void ksz_free_mem(struct dev_info *adapter)
4602{
4603 /* Free transmit buffers. */
4604 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605 PCI_DMA_TODEVICE);
4606
4607 /* Free receive buffers. */
4608 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609 PCI_DMA_FROMDEVICE);
4610
4611 /* Free descriptors. */
4612 ksz_free_desc(adapter);
4613}
4614
4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616 u64 *counter)
4617{
4618 int i;
4619 int mib;
4620 int port;
4621 struct ksz_port_mib *port_mib;
4622
4623 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624 for (i = 0, port = first; i < cnt; i++, port++) {
4625 port_mib = &hw->port_mib[port];
4626 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627 counter[mib] += port_mib->counter[mib];
4628 }
4629}
4630
4631/**
4632 * send_packet - send packet
4633 * @skb: Socket buffer.
4634 * @dev: Network device.
4635 *
4636 * This routine is used to send a packet out to the network.
4637 */
4638static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639{
4640 struct ksz_desc *desc;
4641 struct ksz_desc *first;
4642 struct dev_priv *priv = netdev_priv(dev);
4643 struct dev_info *hw_priv = priv->adapter;
4644 struct ksz_hw *hw = &hw_priv->hw;
4645 struct ksz_desc_info *info = &hw->tx_desc_info;
4646 struct ksz_dma_buf *dma_buf;
4647 int len;
4648 int last_frag = skb_shinfo(skb)->nr_frags;
4649
4650 /*
4651 * KSZ8842 with multiple device interfaces needs to be told which port
4652 * to send.
4653 */
4654 if (hw->dev_count > 1)
4655 hw->dst_ports = 1 << priv->port.first_port;
4656
4657 /* Hardware will pad the length to 60. */
4658 len = skb->len;
4659
4660 /* Remember the very first descriptor. */
4661 first = info->cur;
4662 desc = first;
4663
4664 dma_buf = DMA_BUFFER(desc);
4665 if (last_frag) {
4666 int frag;
4667 skb_frag_t *this_frag;
4668
4669 dma_buf->len = skb_headlen(skb);
4670
4671 dma_buf->dma = pci_map_single(
4672 hw_priv->pdev, skb->data, dma_buf->len,
4673 PCI_DMA_TODEVICE);
4674 set_tx_buf(desc, dma_buf->dma);
4675 set_tx_len(desc, dma_buf->len);
4676
4677 frag = 0;
4678 do {
4679 this_frag = &skb_shinfo(skb)->frags[frag];
4680
4681 /* Get a new descriptor. */
4682 get_tx_pkt(info, &desc);
4683
4684 /* Keep track of descriptors used so far. */
4685 ++hw->tx_int_cnt;
4686
4687 dma_buf = DMA_BUFFER(desc);
4688 dma_buf->len = skb_frag_size(this_frag);
4689
4690 dma_buf->dma = pci_map_single(
4691 hw_priv->pdev,
4692 skb_frag_address(this_frag),
4693 dma_buf->len,
4694 PCI_DMA_TODEVICE);
4695 set_tx_buf(desc, dma_buf->dma);
4696 set_tx_len(desc, dma_buf->len);
4697
4698 frag++;
4699 if (frag == last_frag)
4700 break;
4701
4702 /* Do not release the last descriptor here. */
4703 release_desc(desc);
4704 } while (1);
4705
4706 /* current points to the last descriptor. */
4707 info->cur = desc;
4708
4709 /* Release the first descriptor. */
4710 release_desc(first);
4711 } else {
4712 dma_buf->len = len;
4713
4714 dma_buf->dma = pci_map_single(
4715 hw_priv->pdev, skb->data, dma_buf->len,
4716 PCI_DMA_TODEVICE);
4717 set_tx_buf(desc, dma_buf->dma);
4718 set_tx_len(desc, dma_buf->len);
4719 }
4720
4721 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4723 (desc)->sw.buf.tx.csum_gen_udp = 1;
4724 }
4725
4726 /*
4727 * The last descriptor holds the packet so that it can be returned to
4728 * network subsystem after all descriptors are transmitted.
4729 */
4730 dma_buf->skb = skb;
4731
4732 hw_send_pkt(hw);
4733
4734 /* Update transmit statistics. */
4735 dev->stats.tx_packets++;
4736 dev->stats.tx_bytes += len;
4737}
4738
4739/**
4740 * transmit_cleanup - clean up transmit descriptors
4741 * @dev: Network device.
4742 *
4743 * This routine is called to clean up the transmitted buffers.
4744 */
4745static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746{
4747 int last;
4748 union desc_stat status;
4749 struct ksz_hw *hw = &hw_priv->hw;
4750 struct ksz_desc_info *info = &hw->tx_desc_info;
4751 struct ksz_desc *desc;
4752 struct ksz_dma_buf *dma_buf;
4753 struct net_device *dev = NULL;
4754
4755 spin_lock_irq(&hw_priv->hwlock);
4756 last = info->last;
4757
4758 while (info->avail < info->alloc) {
4759 /* Get next descriptor which is not hardware owned. */
4760 desc = &info->ring[last];
4761 status.data = le32_to_cpu(desc->phw->ctrl.data);
4762 if (status.tx.hw_owned) {
4763 if (normal)
4764 break;
4765 else
4766 reset_desc(desc, status);
4767 }
4768
4769 dma_buf = DMA_BUFFER(desc);
4770 pci_unmap_single(
4771 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772 PCI_DMA_TODEVICE);
4773
4774 /* This descriptor contains the last buffer in the packet. */
4775 if (dma_buf->skb) {
4776 dev = dma_buf->skb->dev;
4777
4778 /* Release the packet back to network subsystem. */
4779 dev_kfree_skb_irq(dma_buf->skb);
4780 dma_buf->skb = NULL;
4781 }
4782
4783 /* Free the transmitted descriptor. */
4784 last++;
4785 last &= info->mask;
4786 info->avail++;
4787 }
4788 info->last = last;
4789 spin_unlock_irq(&hw_priv->hwlock);
4790
4791 /* Notify the network subsystem that the packet has been sent. */
4792 if (dev)
4793 netif_trans_update(dev);
4794}
4795
4796/**
4797 * transmit_done - transmit done processing
4798 * @dev: Network device.
4799 *
4800 * This routine is called when the transmit interrupt is triggered, indicating
4801 * either a packet is sent successfully or there are transmit errors.
4802 */
4803static void tx_done(struct dev_info *hw_priv)
4804{
4805 struct ksz_hw *hw = &hw_priv->hw;
4806 int port;
4807
4808 transmit_cleanup(hw_priv, 1);
4809
4810 for (port = 0; port < hw->dev_count; port++) {
4811 struct net_device *dev = hw->port_info[port].pdev;
4812
4813 if (netif_running(dev) && netif_queue_stopped(dev))
4814 netif_wake_queue(dev);
4815 }
4816}
4817
4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819{
4820 skb->dev = old->dev;
4821 skb->protocol = old->protocol;
4822 skb->ip_summed = old->ip_summed;
4823 skb->csum = old->csum;
4824 skb_set_network_header(skb, ETH_HLEN);
4825
4826 dev_consume_skb_any(old);
4827}
4828
4829/**
4830 * netdev_tx - send out packet
4831 * @skb: Socket buffer.
4832 * @dev: Network device.
4833 *
4834 * This function is used by the upper network layer to send out a packet.
4835 *
4836 * Return 0 if successful; otherwise an error code indicating failure.
4837 */
4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839{
4840 struct dev_priv *priv = netdev_priv(dev);
4841 struct dev_info *hw_priv = priv->adapter;
4842 struct ksz_hw *hw = &hw_priv->hw;
4843 int left;
4844 int num = 1;
4845 int rc = 0;
4846
4847 if (hw->features & SMALL_PACKET_TX_BUG) {
4848 struct sk_buff *org_skb = skb;
4849
4850 if (skb->len <= 48) {
4851 if (skb_end_pointer(skb) - skb->data >= 50) {
4852 memset(&skb->data[skb->len], 0, 50 - skb->len);
4853 skb->len = 50;
4854 } else {
4855 skb = netdev_alloc_skb(dev, 50);
4856 if (!skb)
4857 return NETDEV_TX_BUSY;
4858 memcpy(skb->data, org_skb->data, org_skb->len);
4859 memset(&skb->data[org_skb->len], 0,
4860 50 - org_skb->len);
4861 skb->len = 50;
4862 copy_old_skb(org_skb, skb);
4863 }
4864 }
4865 }
4866
4867 spin_lock_irq(&hw_priv->hwlock);
4868
4869 num = skb_shinfo(skb)->nr_frags + 1;
4870 left = hw_alloc_pkt(hw, skb->len, num);
4871 if (left) {
4872 if (left < num ||
4873 (CHECKSUM_PARTIAL == skb->ip_summed &&
4874 skb->protocol == htons(ETH_P_IPV6))) {
4875 struct sk_buff *org_skb = skb;
4876
4877 skb = netdev_alloc_skb(dev, org_skb->len);
4878 if (!skb) {
4879 rc = NETDEV_TX_BUSY;
4880 goto unlock;
4881 }
4882 skb_copy_and_csum_dev(org_skb, skb->data);
4883 org_skb->ip_summed = CHECKSUM_NONE;
4884 skb->len = org_skb->len;
4885 copy_old_skb(org_skb, skb);
4886 }
4887 send_packet(skb, dev);
4888 if (left <= num)
4889 netif_stop_queue(dev);
4890 } else {
4891 /* Stop the transmit queue until packet is allocated. */
4892 netif_stop_queue(dev);
4893 rc = NETDEV_TX_BUSY;
4894 }
4895unlock:
4896 spin_unlock_irq(&hw_priv->hwlock);
4897
4898 return rc;
4899}
4900
4901/**
4902 * netdev_tx_timeout - transmit timeout processing
4903 * @dev: Network device.
4904 *
4905 * This routine is called when the transmit timer expires. That indicates the
4906 * hardware is not running correctly because transmit interrupts are not
4907 * triggered to free up resources so that the transmit routine can continue
4908 * sending out packets. The hardware is reset to correct the problem.
4909 */
4910static void netdev_tx_timeout(struct net_device *dev)
4911{
4912 static unsigned long last_reset;
4913
4914 struct dev_priv *priv = netdev_priv(dev);
4915 struct dev_info *hw_priv = priv->adapter;
4916 struct ksz_hw *hw = &hw_priv->hw;
4917 int port;
4918
4919 if (hw->dev_count > 1) {
4920 /*
4921 * Only reset the hardware if time between calls is long
4922 * enough.
4923 */
4924 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925 hw_priv = NULL;
4926 }
4927
4928 last_reset = jiffies;
4929 if (hw_priv) {
4930 hw_dis_intr(hw);
4931 hw_disable(hw);
4932
4933 transmit_cleanup(hw_priv, 0);
4934 hw_reset_pkts(&hw->rx_desc_info);
4935 hw_reset_pkts(&hw->tx_desc_info);
4936 ksz_init_rx_buffers(hw_priv);
4937
4938 hw_reset(hw);
4939
4940 hw_set_desc_base(hw,
4941 hw->tx_desc_info.ring_phys,
4942 hw->rx_desc_info.ring_phys);
4943 hw_set_addr(hw);
4944 if (hw->all_multi)
4945 hw_set_multicast(hw, hw->all_multi);
4946 else if (hw->multi_list_size)
4947 hw_set_grp_addr(hw);
4948
4949 if (hw->dev_count > 1) {
4950 hw_set_add_addr(hw);
4951 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952 struct net_device *port_dev;
4953
4954 port_set_stp_state(hw, port,
4955 STP_STATE_DISABLED);
4956
4957 port_dev = hw->port_info[port].pdev;
4958 if (netif_running(port_dev))
4959 port_set_stp_state(hw, port,
4960 STP_STATE_SIMPLE);
4961 }
4962 }
4963
4964 hw_enable(hw);
4965 hw_ena_intr(hw);
4966 }
4967
4968 netif_trans_update(dev);
4969 netif_wake_queue(dev);
4970}
4971
4972static inline void csum_verified(struct sk_buff *skb)
4973{
4974 unsigned short protocol;
4975 struct iphdr *iph;
4976
4977 protocol = skb->protocol;
4978 skb_reset_network_header(skb);
4979 iph = (struct iphdr *) skb_network_header(skb);
4980 if (protocol == htons(ETH_P_8021Q)) {
4981 protocol = iph->tot_len;
4982 skb_set_network_header(skb, VLAN_HLEN);
4983 iph = (struct iphdr *) skb_network_header(skb);
4984 }
4985 if (protocol == htons(ETH_P_IP)) {
4986 if (iph->protocol == IPPROTO_TCP)
4987 skb->ip_summed = CHECKSUM_UNNECESSARY;
4988 }
4989}
4990
4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992 struct ksz_desc *desc, union desc_stat status)
4993{
4994 int packet_len;
4995 struct dev_priv *priv = netdev_priv(dev);
4996 struct dev_info *hw_priv = priv->adapter;
4997 struct ksz_dma_buf *dma_buf;
4998 struct sk_buff *skb;
4999 int rx_status;
5000
5001 /* Received length includes 4-byte CRC. */
5002 packet_len = status.rx.frame_len - 4;
5003
5004 dma_buf = DMA_BUFFER(desc);
5005 pci_dma_sync_single_for_cpu(
5006 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007 PCI_DMA_FROMDEVICE);
5008
5009 do {
5010 /* skb->data != skb->head */
5011 skb = netdev_alloc_skb(dev, packet_len + 2);
5012 if (!skb) {
5013 dev->stats.rx_dropped++;
5014 return -ENOMEM;
5015 }
5016
5017 /*
5018 * Align socket buffer in 4-byte boundary for better
5019 * performance.
5020 */
5021 skb_reserve(skb, 2);
5022
5023 skb_put_data(skb, dma_buf->skb->data, packet_len);
5024 } while (0);
5025
5026 skb->protocol = eth_type_trans(skb, dev);
5027
5028 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5029 csum_verified(skb);
5030
5031 /* Update receive statistics. */
5032 dev->stats.rx_packets++;
5033 dev->stats.rx_bytes += packet_len;
5034
5035 /* Notify upper layer for received packet. */
5036 rx_status = netif_rx(skb);
5037
5038 return 0;
5039}
5040
5041static int dev_rcv_packets(struct dev_info *hw_priv)
5042{
5043 int next;
5044 union desc_stat status;
5045 struct ksz_hw *hw = &hw_priv->hw;
5046 struct net_device *dev = hw->port_info[0].pdev;
5047 struct ksz_desc_info *info = &hw->rx_desc_info;
5048 int left = info->alloc;
5049 struct ksz_desc *desc;
5050 int received = 0;
5051
5052 next = info->next;
5053 while (left--) {
5054 /* Get next descriptor which is not hardware owned. */
5055 desc = &info->ring[next];
5056 status.data = le32_to_cpu(desc->phw->ctrl.data);
5057 if (status.rx.hw_owned)
5058 break;
5059
5060 /* Status valid only when last descriptor bit is set. */
5061 if (status.rx.last_desc && status.rx.first_desc) {
5062 if (rx_proc(dev, hw, desc, status))
5063 goto release_packet;
5064 received++;
5065 }
5066
5067release_packet:
5068 release_desc(desc);
5069 next++;
5070 next &= info->mask;
5071 }
5072 info->next = next;
5073
5074 return received;
5075}
5076
5077static int port_rcv_packets(struct dev_info *hw_priv)
5078{
5079 int next;
5080 union desc_stat status;
5081 struct ksz_hw *hw = &hw_priv->hw;
5082 struct net_device *dev = hw->port_info[0].pdev;
5083 struct ksz_desc_info *info = &hw->rx_desc_info;
5084 int left = info->alloc;
5085 struct ksz_desc *desc;
5086 int received = 0;
5087
5088 next = info->next;
5089 while (left--) {
5090 /* Get next descriptor which is not hardware owned. */
5091 desc = &info->ring[next];
5092 status.data = le32_to_cpu(desc->phw->ctrl.data);
5093 if (status.rx.hw_owned)
5094 break;
5095
5096 if (hw->dev_count > 1) {
5097 /* Get received port number. */
5098 int p = HW_TO_DEV_PORT(status.rx.src_port);
5099
5100 dev = hw->port_info[p].pdev;
5101 if (!netif_running(dev))
5102 goto release_packet;
5103 }
5104
5105 /* Status valid only when last descriptor bit is set. */
5106 if (status.rx.last_desc && status.rx.first_desc) {
5107 if (rx_proc(dev, hw, desc, status))
5108 goto release_packet;
5109 received++;
5110 }
5111
5112release_packet:
5113 release_desc(desc);
5114 next++;
5115 next &= info->mask;
5116 }
5117 info->next = next;
5118
5119 return received;
5120}
5121
5122static int dev_rcv_special(struct dev_info *hw_priv)
5123{
5124 int next;
5125 union desc_stat status;
5126 struct ksz_hw *hw = &hw_priv->hw;
5127 struct net_device *dev = hw->port_info[0].pdev;
5128 struct ksz_desc_info *info = &hw->rx_desc_info;
5129 int left = info->alloc;
5130 struct ksz_desc *desc;
5131 int received = 0;
5132
5133 next = info->next;
5134 while (left--) {
5135 /* Get next descriptor which is not hardware owned. */
5136 desc = &info->ring[next];
5137 status.data = le32_to_cpu(desc->phw->ctrl.data);
5138 if (status.rx.hw_owned)
5139 break;
5140
5141 if (hw->dev_count > 1) {
5142 /* Get received port number. */
5143 int p = HW_TO_DEV_PORT(status.rx.src_port);
5144
5145 dev = hw->port_info[p].pdev;
5146 if (!netif_running(dev))
5147 goto release_packet;
5148 }
5149
5150 /* Status valid only when last descriptor bit is set. */
5151 if (status.rx.last_desc && status.rx.first_desc) {
5152 /*
5153 * Receive without error. With receive errors
5154 * disabled, packets with receive errors will be
5155 * dropped, so no need to check the error bit.
5156 */
5157 if (!status.rx.error || (status.data &
5158 KS_DESC_RX_ERROR_COND) ==
5159 KS_DESC_RX_ERROR_TOO_LONG) {
5160 if (rx_proc(dev, hw, desc, status))
5161 goto release_packet;
5162 received++;
5163 } else {
5164 struct dev_priv *priv = netdev_priv(dev);
5165
5166 /* Update receive error statistics. */
5167 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5168 }
5169 }
5170
5171release_packet:
5172 release_desc(desc);
5173 next++;
5174 next &= info->mask;
5175 }
5176 info->next = next;
5177
5178 return received;
5179}
5180
5181static void rx_proc_task(unsigned long data)
5182{
5183 struct dev_info *hw_priv = (struct dev_info *) data;
5184 struct ksz_hw *hw = &hw_priv->hw;
5185
5186 if (!hw->enabled)
5187 return;
5188 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5189
5190 /* In case receive process is suspended because of overrun. */
5191 hw_resume_rx(hw);
5192
5193 /* tasklets are interruptible. */
5194 spin_lock_irq(&hw_priv->hwlock);
5195 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5196 spin_unlock_irq(&hw_priv->hwlock);
5197 } else {
5198 hw_ack_intr(hw, KS884X_INT_RX);
5199 tasklet_schedule(&hw_priv->rx_tasklet);
5200 }
5201}
5202
5203static void tx_proc_task(unsigned long data)
5204{
5205 struct dev_info *hw_priv = (struct dev_info *) data;
5206 struct ksz_hw *hw = &hw_priv->hw;
5207
5208 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5209
5210 tx_done(hw_priv);
5211
5212 /* tasklets are interruptible. */
5213 spin_lock_irq(&hw_priv->hwlock);
5214 hw_turn_on_intr(hw, KS884X_INT_TX);
5215 spin_unlock_irq(&hw_priv->hwlock);
5216}
5217
5218static inline void handle_rx_stop(struct ksz_hw *hw)
5219{
5220 /* Receive just has been stopped. */
5221 if (0 == hw->rx_stop)
5222 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5223 else if (hw->rx_stop > 1) {
5224 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5225 hw_start_rx(hw);
5226 } else {
5227 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5228 hw->rx_stop = 0;
5229 }
5230 } else
5231 /* Receive just has been started. */
5232 hw->rx_stop++;
5233}
5234
5235/**
5236 * netdev_intr - interrupt handling
5237 * @irq: Interrupt number.
5238 * @dev_id: Network device.
5239 *
5240 * This function is called by upper network layer to signal interrupt.
5241 *
5242 * Return IRQ_HANDLED if interrupt is handled.
5243 */
5244static irqreturn_t netdev_intr(int irq, void *dev_id)
5245{
5246 uint int_enable = 0;
5247 struct net_device *dev = (struct net_device *) dev_id;
5248 struct dev_priv *priv = netdev_priv(dev);
5249 struct dev_info *hw_priv = priv->adapter;
5250 struct ksz_hw *hw = &hw_priv->hw;
5251
5252 spin_lock(&hw_priv->hwlock);
5253
5254 hw_read_intr(hw, &int_enable);
5255
5256 /* Not our interrupt! */
5257 if (!int_enable) {
5258 spin_unlock(&hw_priv->hwlock);
5259 return IRQ_NONE;
5260 }
5261
5262 do {
5263 hw_ack_intr(hw, int_enable);
5264 int_enable &= hw->intr_mask;
5265
5266 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5267 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5268 tasklet_schedule(&hw_priv->tx_tasklet);
5269 }
5270
5271 if (likely(int_enable & KS884X_INT_RX)) {
5272 hw_dis_intr_bit(hw, KS884X_INT_RX);
5273 tasklet_schedule(&hw_priv->rx_tasklet);
5274 }
5275
5276 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5277 dev->stats.rx_fifo_errors++;
5278 hw_resume_rx(hw);
5279 }
5280
5281 if (unlikely(int_enable & KS884X_INT_PHY)) {
5282 struct ksz_port *port = &priv->port;
5283
5284 hw->features |= LINK_INT_WORKING;
5285 port_get_link_speed(port);
5286 }
5287
5288 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5289 handle_rx_stop(hw);
5290 break;
5291 }
5292
5293 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5294 u32 data;
5295
5296 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5297 pr_info("Tx stopped\n");
5298 data = readl(hw->io + KS_DMA_TX_CTRL);
5299 if (!(data & DMA_TX_ENABLE))
5300 pr_info("Tx disabled\n");
5301 break;
5302 }
5303 } while (0);
5304
5305 hw_ena_intr(hw);
5306
5307 spin_unlock(&hw_priv->hwlock);
5308
5309 return IRQ_HANDLED;
5310}
5311
5312/*
5313 * Linux network device functions
5314 */
5315
5316static unsigned long next_jiffies;
5317
5318#ifdef CONFIG_NET_POLL_CONTROLLER
5319static void netdev_netpoll(struct net_device *dev)
5320{
5321 struct dev_priv *priv = netdev_priv(dev);
5322 struct dev_info *hw_priv = priv->adapter;
5323
5324 hw_dis_intr(&hw_priv->hw);
5325 netdev_intr(dev->irq, dev);
5326}
5327#endif
5328
5329static void bridge_change(struct ksz_hw *hw)
5330{
5331 int port;
5332 u8 member;
5333 struct ksz_switch *sw = hw->ksz_switch;
5334
5335 /* No ports in forwarding state. */
5336 if (!sw->member) {
5337 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5338 sw_block_addr(hw);
5339 }
5340 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5341 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5342 member = HOST_MASK | sw->member;
5343 else
5344 member = HOST_MASK | (1 << port);
5345 if (member != sw->port_cfg[port].member)
5346 sw_cfg_port_base_vlan(hw, port, member);
5347 }
5348}
5349
5350/**
5351 * netdev_close - close network device
5352 * @dev: Network device.
5353 *
5354 * This function process the close operation of network device. This is caused
5355 * by the user command "ifconfig ethX down."
5356 *
5357 * Return 0 if successful; otherwise an error code indicating failure.
5358 */
5359static int netdev_close(struct net_device *dev)
5360{
5361 struct dev_priv *priv = netdev_priv(dev);
5362 struct dev_info *hw_priv = priv->adapter;
5363 struct ksz_port *port = &priv->port;
5364 struct ksz_hw *hw = &hw_priv->hw;
5365 int pi;
5366
5367 netif_stop_queue(dev);
5368
5369 ksz_stop_timer(&priv->monitor_timer_info);
5370
5371 /* Need to shut the port manually in multiple device interfaces mode. */
5372 if (hw->dev_count > 1) {
5373 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5374
5375 /* Port is closed. Need to change bridge setting. */
5376 if (hw->features & STP_SUPPORT) {
5377 pi = 1 << port->first_port;
5378 if (hw->ksz_switch->member & pi) {
5379 hw->ksz_switch->member &= ~pi;
5380 bridge_change(hw);
5381 }
5382 }
5383 }
5384 if (port->first_port > 0)
5385 hw_del_addr(hw, dev->dev_addr);
5386 if (!hw_priv->wol_enable)
5387 port_set_power_saving(port, true);
5388
5389 if (priv->multicast)
5390 --hw->all_multi;
5391 if (priv->promiscuous)
5392 --hw->promiscuous;
5393
5394 hw_priv->opened--;
5395 if (!(hw_priv->opened)) {
5396 ksz_stop_timer(&hw_priv->mib_timer_info);
5397 flush_work(&hw_priv->mib_read);
5398
5399 hw_dis_intr(hw);
5400 hw_disable(hw);
5401 hw_clr_multicast(hw);
5402
5403 /* Delay for receive task to stop scheduling itself. */
5404 msleep(2000 / HZ);
5405
5406 tasklet_kill(&hw_priv->rx_tasklet);
5407 tasklet_kill(&hw_priv->tx_tasklet);
5408 free_irq(dev->irq, hw_priv->dev);
5409
5410 transmit_cleanup(hw_priv, 0);
5411 hw_reset_pkts(&hw->rx_desc_info);
5412 hw_reset_pkts(&hw->tx_desc_info);
5413
5414 /* Clean out static MAC table when the switch is shutdown. */
5415 if (hw->features & STP_SUPPORT)
5416 sw_clr_sta_mac_table(hw);
5417 }
5418
5419 return 0;
5420}
5421
5422static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5423{
5424 if (hw->ksz_switch) {
5425 u32 data;
5426
5427 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5428 if (hw->features & RX_HUGE_FRAME)
5429 data |= SWITCH_HUGE_PACKET;
5430 else
5431 data &= ~SWITCH_HUGE_PACKET;
5432 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5433 }
5434 if (hw->features & RX_HUGE_FRAME) {
5435 hw->rx_cfg |= DMA_RX_ERROR;
5436 hw_priv->dev_rcv = dev_rcv_special;
5437 } else {
5438 hw->rx_cfg &= ~DMA_RX_ERROR;
5439 if (hw->dev_count > 1)
5440 hw_priv->dev_rcv = port_rcv_packets;
5441 else
5442 hw_priv->dev_rcv = dev_rcv_packets;
5443 }
5444}
5445
5446static int prepare_hardware(struct net_device *dev)
5447{
5448 struct dev_priv *priv = netdev_priv(dev);
5449 struct dev_info *hw_priv = priv->adapter;
5450 struct ksz_hw *hw = &hw_priv->hw;
5451 int rc = 0;
5452
5453 /* Remember the network device that requests interrupts. */
5454 hw_priv->dev = dev;
5455 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5456 if (rc)
5457 return rc;
5458 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5459 (unsigned long) hw_priv);
5460 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5461 (unsigned long) hw_priv);
5462
5463 hw->promiscuous = 0;
5464 hw->all_multi = 0;
5465 hw->multi_list_size = 0;
5466
5467 hw_reset(hw);
5468
5469 hw_set_desc_base(hw,
5470 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5471 hw_set_addr(hw);
5472 hw_cfg_huge_frame(hw_priv, hw);
5473 ksz_init_rx_buffers(hw_priv);
5474 return 0;
5475}
5476
5477static void set_media_state(struct net_device *dev, int media_state)
5478{
5479 struct dev_priv *priv = netdev_priv(dev);
5480
5481 if (media_state == priv->media_state)
5482 netif_carrier_on(dev);
5483 else
5484 netif_carrier_off(dev);
5485 netif_info(priv, link, dev, "link %s\n",
5486 media_state == priv->media_state ? "on" : "off");
5487}
5488
5489/**
5490 * netdev_open - open network device
5491 * @dev: Network device.
5492 *
5493 * This function process the open operation of network device. This is caused
5494 * by the user command "ifconfig ethX up."
5495 *
5496 * Return 0 if successful; otherwise an error code indicating failure.
5497 */
5498static int netdev_open(struct net_device *dev)
5499{
5500 struct dev_priv *priv = netdev_priv(dev);
5501 struct dev_info *hw_priv = priv->adapter;
5502 struct ksz_hw *hw = &hw_priv->hw;
5503 struct ksz_port *port = &priv->port;
5504 int i;
5505 int p;
5506 int rc = 0;
5507
5508 priv->multicast = 0;
5509 priv->promiscuous = 0;
5510
5511 /* Reset device statistics. */
5512 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5513 memset((void *) port->counter, 0,
5514 (sizeof(u64) * OID_COUNTER_LAST));
5515
5516 if (!(hw_priv->opened)) {
5517 rc = prepare_hardware(dev);
5518 if (rc)
5519 return rc;
5520 for (i = 0; i < hw->mib_port_cnt; i++) {
5521 if (next_jiffies < jiffies)
5522 next_jiffies = jiffies + HZ * 2;
5523 else
5524 next_jiffies += HZ * 1;
5525 hw_priv->counter[i].time = next_jiffies;
5526 hw->port_mib[i].state = media_disconnected;
5527 port_init_cnt(hw, i);
5528 }
5529 if (hw->ksz_switch)
5530 hw->port_mib[HOST_PORT].state = media_connected;
5531 else {
5532 hw_add_wol_bcast(hw);
5533 hw_cfg_wol_pme(hw, 0);
5534 hw_clr_wol_pme_status(&hw_priv->hw);
5535 }
5536 }
5537 port_set_power_saving(port, false);
5538
5539 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5540 /*
5541 * Initialize to invalid value so that link detection
5542 * is done.
5543 */
5544 hw->port_info[p].partner = 0xFF;
5545 hw->port_info[p].state = media_disconnected;
5546 }
5547
5548 /* Need to open the port in multiple device interfaces mode. */
5549 if (hw->dev_count > 1) {
5550 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5551 if (port->first_port > 0)
5552 hw_add_addr(hw, dev->dev_addr);
5553 }
5554
5555 port_get_link_speed(port);
5556 if (port->force_link)
5557 port_force_link_speed(port);
5558 else
5559 port_set_link_speed(port);
5560
5561 if (!(hw_priv->opened)) {
5562 hw_setup_intr(hw);
5563 hw_enable(hw);
5564 hw_ena_intr(hw);
5565
5566 if (hw->mib_port_cnt)
5567 ksz_start_timer(&hw_priv->mib_timer_info,
5568 hw_priv->mib_timer_info.period);
5569 }
5570
5571 hw_priv->opened++;
5572
5573 ksz_start_timer(&priv->monitor_timer_info,
5574 priv->monitor_timer_info.period);
5575
5576 priv->media_state = port->linked->state;
5577
5578 set_media_state(dev, media_connected);
5579 netif_start_queue(dev);
5580
5581 return 0;
5582}
5583
5584/* RX errors = rx_errors */
5585/* RX dropped = rx_dropped */
5586/* RX overruns = rx_fifo_errors */
5587/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5588/* TX errors = tx_errors */
5589/* TX dropped = tx_dropped */
5590/* TX overruns = tx_fifo_errors */
5591/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5592/* collisions = collisions */
5593
5594/**
5595 * netdev_query_statistics - query network device statistics
5596 * @dev: Network device.
5597 *
5598 * This function returns the statistics of the network device. The device
5599 * needs not be opened.
5600 *
5601 * Return network device statistics.
5602 */
5603static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5604{
5605 struct dev_priv *priv = netdev_priv(dev);
5606 struct ksz_port *port = &priv->port;
5607 struct ksz_hw *hw = &priv->adapter->hw;
5608 struct ksz_port_mib *mib;
5609 int i;
5610 int p;
5611
5612 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5613 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5614
5615 /* Reset to zero to add count later. */
5616 dev->stats.multicast = 0;
5617 dev->stats.collisions = 0;
5618 dev->stats.rx_length_errors = 0;
5619 dev->stats.rx_crc_errors = 0;
5620 dev->stats.rx_frame_errors = 0;
5621 dev->stats.tx_window_errors = 0;
5622
5623 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5624 mib = &hw->port_mib[p];
5625
5626 dev->stats.multicast += (unsigned long)
5627 mib->counter[MIB_COUNTER_RX_MULTICAST];
5628
5629 dev->stats.collisions += (unsigned long)
5630 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5631
5632 dev->stats.rx_length_errors += (unsigned long)(
5633 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5634 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5635 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5636 mib->counter[MIB_COUNTER_RX_JABBER]);
5637 dev->stats.rx_crc_errors += (unsigned long)
5638 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5639 dev->stats.rx_frame_errors += (unsigned long)(
5640 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5641 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5642
5643 dev->stats.tx_window_errors += (unsigned long)
5644 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5645 }
5646
5647 return &dev->stats;
5648}
5649
5650/**
5651 * netdev_set_mac_address - set network device MAC address
5652 * @dev: Network device.
5653 * @addr: Buffer of MAC address.
5654 *
5655 * This function is used to set the MAC address of the network device.
5656 *
5657 * Return 0 to indicate success.
5658 */
5659static int netdev_set_mac_address(struct net_device *dev, void *addr)
5660{
5661 struct dev_priv *priv = netdev_priv(dev);
5662 struct dev_info *hw_priv = priv->adapter;
5663 struct ksz_hw *hw = &hw_priv->hw;
5664 struct sockaddr *mac = addr;
5665 uint interrupt;
5666
5667 if (priv->port.first_port > 0)
5668 hw_del_addr(hw, dev->dev_addr);
5669 else {
5670 hw->mac_override = 1;
5671 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5672 }
5673
5674 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5675
5676 interrupt = hw_block_intr(hw);
5677
5678 if (priv->port.first_port > 0)
5679 hw_add_addr(hw, dev->dev_addr);
5680 else
5681 hw_set_addr(hw);
5682 hw_restore_intr(hw, interrupt);
5683
5684 return 0;
5685}
5686
5687static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5688 struct ksz_hw *hw, int promiscuous)
5689{
5690 if (promiscuous != priv->promiscuous) {
5691 u8 prev_state = hw->promiscuous;
5692
5693 if (promiscuous)
5694 ++hw->promiscuous;
5695 else
5696 --hw->promiscuous;
5697 priv->promiscuous = promiscuous;
5698
5699 /* Turn on/off promiscuous mode. */
5700 if (hw->promiscuous <= 1 && prev_state <= 1)
5701 hw_set_promiscuous(hw, hw->promiscuous);
5702
5703 /*
5704 * Port is not in promiscuous mode, meaning it is released
5705 * from the bridge.
5706 */
5707 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5708 (dev->priv_flags & IFF_BRIDGE_PORT)) {
5709 struct ksz_switch *sw = hw->ksz_switch;
5710 int port = priv->port.first_port;
5711
5712 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5713 port = 1 << port;
5714 if (sw->member & port) {
5715 sw->member &= ~port;
5716 bridge_change(hw);
5717 }
5718 }
5719 }
5720}
5721
5722static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5723 int multicast)
5724{
5725 if (multicast != priv->multicast) {
5726 u8 all_multi = hw->all_multi;
5727
5728 if (multicast)
5729 ++hw->all_multi;
5730 else
5731 --hw->all_multi;
5732 priv->multicast = multicast;
5733
5734 /* Turn on/off all multicast mode. */
5735 if (hw->all_multi <= 1 && all_multi <= 1)
5736 hw_set_multicast(hw, hw->all_multi);
5737 }
5738}
5739
5740/**
5741 * netdev_set_rx_mode
5742 * @dev: Network device.
5743 *
5744 * This routine is used to set multicast addresses or put the network device
5745 * into promiscuous mode.
5746 */
5747static void netdev_set_rx_mode(struct net_device *dev)
5748{
5749 struct dev_priv *priv = netdev_priv(dev);
5750 struct dev_info *hw_priv = priv->adapter;
5751 struct ksz_hw *hw = &hw_priv->hw;
5752 struct netdev_hw_addr *ha;
5753 int multicast = (dev->flags & IFF_ALLMULTI);
5754
5755 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5756
5757 if (hw_priv->hw.dev_count > 1)
5758 multicast |= (dev->flags & IFF_MULTICAST);
5759 dev_set_multicast(priv, hw, multicast);
5760
5761 /* Cannot use different hashes in multiple device interfaces mode. */
5762 if (hw_priv->hw.dev_count > 1)
5763 return;
5764
5765 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5766 int i = 0;
5767
5768 /* List too big to support so turn on all multicast mode. */
5769 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5770 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5771 hw->multi_list_size = MAX_MULTICAST_LIST;
5772 ++hw->all_multi;
5773 hw_set_multicast(hw, hw->all_multi);
5774 }
5775 return;
5776 }
5777
5778 netdev_for_each_mc_addr(ha, dev) {
5779 if (i >= MAX_MULTICAST_LIST)
5780 break;
5781 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5782 }
5783 hw->multi_list_size = (u8) i;
5784 hw_set_grp_addr(hw);
5785 } else {
5786 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5787 --hw->all_multi;
5788 hw_set_multicast(hw, hw->all_multi);
5789 }
5790 hw->multi_list_size = 0;
5791 hw_clr_multicast(hw);
5792 }
5793}
5794
5795static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5796{
5797 struct dev_priv *priv = netdev_priv(dev);
5798 struct dev_info *hw_priv = priv->adapter;
5799 struct ksz_hw *hw = &hw_priv->hw;
5800 int hw_mtu;
5801
5802 if (netif_running(dev))
5803 return -EBUSY;
5804
5805 /* Cannot use different MTU in multiple device interfaces mode. */
5806 if (hw->dev_count > 1)
5807 if (dev != hw_priv->dev)
5808 return 0;
5809
5810 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5811 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5812 hw->features |= RX_HUGE_FRAME;
5813 hw_mtu = MAX_RX_BUF_SIZE;
5814 } else {
5815 hw->features &= ~RX_HUGE_FRAME;
5816 hw_mtu = REGULAR_RX_BUF_SIZE;
5817 }
5818 hw_mtu = (hw_mtu + 3) & ~3;
5819 hw_priv->mtu = hw_mtu;
5820 dev->mtu = new_mtu;
5821
5822 return 0;
5823}
5824
5825/**
5826 * netdev_ioctl - I/O control processing
5827 * @dev: Network device.
5828 * @ifr: Interface request structure.
5829 * @cmd: I/O control code.
5830 *
5831 * This function is used to process I/O control calls.
5832 *
5833 * Return 0 to indicate success.
5834 */
5835static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5836{
5837 struct dev_priv *priv = netdev_priv(dev);
5838 struct dev_info *hw_priv = priv->adapter;
5839 struct ksz_hw *hw = &hw_priv->hw;
5840 struct ksz_port *port = &priv->port;
5841 int result = 0;
5842 struct mii_ioctl_data *data = if_mii(ifr);
5843
5844 if (down_interruptible(&priv->proc_sem))
5845 return -ERESTARTSYS;
5846
5847 switch (cmd) {
5848 /* Get address of MII PHY in use. */
5849 case SIOCGMIIPHY:
5850 data->phy_id = priv->id;
5851
5852 /* Fallthrough... */
5853
5854 /* Read MII PHY register. */
5855 case SIOCGMIIREG:
5856 if (data->phy_id != priv->id || data->reg_num >= 6)
5857 result = -EIO;
5858 else
5859 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5860 &data->val_out);
5861 break;
5862
5863 /* Write MII PHY register. */
5864 case SIOCSMIIREG:
5865 if (!capable(CAP_NET_ADMIN))
5866 result = -EPERM;
5867 else if (data->phy_id != priv->id || data->reg_num >= 6)
5868 result = -EIO;
5869 else
5870 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5871 data->val_in);
5872 break;
5873
5874 default:
5875 result = -EOPNOTSUPP;
5876 }
5877
5878 up(&priv->proc_sem);
5879
5880 return result;
5881}
5882
5883/*
5884 * MII support
5885 */
5886
5887/**
5888 * mdio_read - read PHY register
5889 * @dev: Network device.
5890 * @phy_id: The PHY id.
5891 * @reg_num: The register number.
5892 *
5893 * This function returns the PHY register value.
5894 *
5895 * Return the register value.
5896 */
5897static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5898{
5899 struct dev_priv *priv = netdev_priv(dev);
5900 struct ksz_port *port = &priv->port;
5901 struct ksz_hw *hw = port->hw;
5902 u16 val_out;
5903
5904 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5905 return val_out;
5906}
5907
5908/**
5909 * mdio_write - set PHY register
5910 * @dev: Network device.
5911 * @phy_id: The PHY id.
5912 * @reg_num: The register number.
5913 * @val: The register value.
5914 *
5915 * This procedure sets the PHY register value.
5916 */
5917static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5918{
5919 struct dev_priv *priv = netdev_priv(dev);
5920 struct ksz_port *port = &priv->port;
5921 struct ksz_hw *hw = port->hw;
5922 int i;
5923 int pi;
5924
5925 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5926 hw_w_phy(hw, pi, reg_num << 1, val);
5927}
5928
5929/*
5930 * ethtool support
5931 */
5932
5933#define EEPROM_SIZE 0x40
5934
5935static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5936
5937#define ADVERTISED_ALL \
5938 (ADVERTISED_10baseT_Half | \
5939 ADVERTISED_10baseT_Full | \
5940 ADVERTISED_100baseT_Half | \
5941 ADVERTISED_100baseT_Full)
5942
5943/* These functions use the MII functions in mii.c. */
5944
5945/**
5946 * netdev_get_link_ksettings - get network device settings
5947 * @dev: Network device.
5948 * @cmd: Ethtool command.
5949 *
5950 * This function queries the PHY and returns its state in the ethtool command.
5951 *
5952 * Return 0 if successful; otherwise an error code.
5953 */
5954static int netdev_get_link_ksettings(struct net_device *dev,
5955 struct ethtool_link_ksettings *cmd)
5956{
5957 struct dev_priv *priv = netdev_priv(dev);
5958 struct dev_info *hw_priv = priv->adapter;
5959
5960 mutex_lock(&hw_priv->lock);
5961 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5962 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5963 mutex_unlock(&hw_priv->lock);
5964
5965 /* Save advertised settings for workaround in next function. */
5966 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5967 cmd->link_modes.advertising);
5968
5969 return 0;
5970}
5971
5972/**
5973 * netdev_set_link_ksettings - set network device settings
5974 * @dev: Network device.
5975 * @cmd: Ethtool command.
5976 *
5977 * This function sets the PHY according to the ethtool command.
5978 *
5979 * Return 0 if successful; otherwise an error code.
5980 */
5981static int netdev_set_link_ksettings(struct net_device *dev,
5982 const struct ethtool_link_ksettings *cmd)
5983{
5984 struct dev_priv *priv = netdev_priv(dev);
5985 struct dev_info *hw_priv = priv->adapter;
5986 struct ksz_port *port = &priv->port;
5987 struct ethtool_link_ksettings copy_cmd;
5988 u32 speed = cmd->base.speed;
5989 u32 advertising;
5990 int rc;
5991
5992 ethtool_convert_link_mode_to_legacy_u32(&advertising,
5993 cmd->link_modes.advertising);
5994
5995 /*
5996 * ethtool utility does not change advertised setting if auto
5997 * negotiation is not specified explicitly.
5998 */
5999 if (cmd->base.autoneg && priv->advertising == advertising) {
6000 advertising |= ADVERTISED_ALL;
6001 if (10 == speed)
6002 advertising &=
6003 ~(ADVERTISED_100baseT_Full |
6004 ADVERTISED_100baseT_Half);
6005 else if (100 == speed)
6006 advertising &=
6007 ~(ADVERTISED_10baseT_Full |
6008 ADVERTISED_10baseT_Half);
6009 if (0 == cmd->base.duplex)
6010 advertising &=
6011 ~(ADVERTISED_100baseT_Full |
6012 ADVERTISED_10baseT_Full);
6013 else if (1 == cmd->base.duplex)
6014 advertising &=
6015 ~(ADVERTISED_100baseT_Half |
6016 ADVERTISED_10baseT_Half);
6017 }
6018 mutex_lock(&hw_priv->lock);
6019 if (cmd->base.autoneg &&
6020 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6021 port->duplex = 0;
6022 port->speed = 0;
6023 port->force_link = 0;
6024 } else {
6025 port->duplex = cmd->base.duplex + 1;
6026 if (1000 != speed)
6027 port->speed = speed;
6028 if (cmd->base.autoneg)
6029 port->force_link = 0;
6030 else
6031 port->force_link = 1;
6032 }
6033
6034 memcpy(©_cmd, cmd, sizeof(copy_cmd));
6035 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6036 advertising);
6037 rc = mii_ethtool_set_link_ksettings(
6038 &priv->mii_if,
6039 (const struct ethtool_link_ksettings *)©_cmd);
6040 mutex_unlock(&hw_priv->lock);
6041 return rc;
6042}
6043
6044/**
6045 * netdev_nway_reset - restart auto-negotiation
6046 * @dev: Network device.
6047 *
6048 * This function restarts the PHY for auto-negotiation.
6049 *
6050 * Return 0 if successful; otherwise an error code.
6051 */
6052static int netdev_nway_reset(struct net_device *dev)
6053{
6054 struct dev_priv *priv = netdev_priv(dev);
6055 struct dev_info *hw_priv = priv->adapter;
6056 int rc;
6057
6058 mutex_lock(&hw_priv->lock);
6059 rc = mii_nway_restart(&priv->mii_if);
6060 mutex_unlock(&hw_priv->lock);
6061 return rc;
6062}
6063
6064/**
6065 * netdev_get_link - get network device link status
6066 * @dev: Network device.
6067 *
6068 * This function gets the link status from the PHY.
6069 *
6070 * Return true if PHY is linked and false otherwise.
6071 */
6072static u32 netdev_get_link(struct net_device *dev)
6073{
6074 struct dev_priv *priv = netdev_priv(dev);
6075 int rc;
6076
6077 rc = mii_link_ok(&priv->mii_if);
6078 return rc;
6079}
6080
6081/**
6082 * netdev_get_drvinfo - get network driver information
6083 * @dev: Network device.
6084 * @info: Ethtool driver info data structure.
6085 *
6086 * This procedure returns the driver information.
6087 */
6088static void netdev_get_drvinfo(struct net_device *dev,
6089 struct ethtool_drvinfo *info)
6090{
6091 struct dev_priv *priv = netdev_priv(dev);
6092 struct dev_info *hw_priv = priv->adapter;
6093
6094 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6095 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6096 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6097 sizeof(info->bus_info));
6098}
6099
6100/**
6101 * netdev_get_regs_len - get length of register dump
6102 * @dev: Network device.
6103 *
6104 * This function returns the length of the register dump.
6105 *
6106 * Return length of the register dump.
6107 */
6108static struct hw_regs {
6109 int start;
6110 int end;
6111} hw_regs_range[] = {
6112 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6113 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6114 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6115 { KS884X_SIDER_P, KS8842_SGCR7_P },
6116 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6117 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6118 { 0, 0 }
6119};
6120
6121static int netdev_get_regs_len(struct net_device *dev)
6122{
6123 struct hw_regs *range = hw_regs_range;
6124 int regs_len = 0x10 * sizeof(u32);
6125
6126 while (range->end > range->start) {
6127 regs_len += (range->end - range->start + 3) / 4 * 4;
6128 range++;
6129 }
6130 return regs_len;
6131}
6132
6133/**
6134 * netdev_get_regs - get register dump
6135 * @dev: Network device.
6136 * @regs: Ethtool registers data structure.
6137 * @ptr: Buffer to store the register values.
6138 *
6139 * This procedure dumps the register values in the provided buffer.
6140 */
6141static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6142 void *ptr)
6143{
6144 struct dev_priv *priv = netdev_priv(dev);
6145 struct dev_info *hw_priv = priv->adapter;
6146 struct ksz_hw *hw = &hw_priv->hw;
6147 int *buf = (int *) ptr;
6148 struct hw_regs *range = hw_regs_range;
6149 int len;
6150
6151 mutex_lock(&hw_priv->lock);
6152 regs->version = 0;
6153 for (len = 0; len < 0x40; len += 4) {
6154 pci_read_config_dword(hw_priv->pdev, len, buf);
6155 buf++;
6156 }
6157 while (range->end > range->start) {
6158 for (len = range->start; len < range->end; len += 4) {
6159 *buf = readl(hw->io + len);
6160 buf++;
6161 }
6162 range++;
6163 }
6164 mutex_unlock(&hw_priv->lock);
6165}
6166
6167#define WOL_SUPPORT \
6168 (WAKE_PHY | WAKE_MAGIC | \
6169 WAKE_UCAST | WAKE_MCAST | \
6170 WAKE_BCAST | WAKE_ARP)
6171
6172/**
6173 * netdev_get_wol - get Wake-on-LAN support
6174 * @dev: Network device.
6175 * @wol: Ethtool Wake-on-LAN data structure.
6176 *
6177 * This procedure returns Wake-on-LAN support.
6178 */
6179static void netdev_get_wol(struct net_device *dev,
6180 struct ethtool_wolinfo *wol)
6181{
6182 struct dev_priv *priv = netdev_priv(dev);
6183 struct dev_info *hw_priv = priv->adapter;
6184
6185 wol->supported = hw_priv->wol_support;
6186 wol->wolopts = hw_priv->wol_enable;
6187 memset(&wol->sopass, 0, sizeof(wol->sopass));
6188}
6189
6190/**
6191 * netdev_set_wol - set Wake-on-LAN support
6192 * @dev: Network device.
6193 * @wol: Ethtool Wake-on-LAN data structure.
6194 *
6195 * This function sets Wake-on-LAN support.
6196 *
6197 * Return 0 if successful; otherwise an error code.
6198 */
6199static int netdev_set_wol(struct net_device *dev,
6200 struct ethtool_wolinfo *wol)
6201{
6202 struct dev_priv *priv = netdev_priv(dev);
6203 struct dev_info *hw_priv = priv->adapter;
6204
6205 /* Need to find a way to retrieve the device IP address. */
6206 static const u8 net_addr[] = { 192, 168, 1, 1 };
6207
6208 if (wol->wolopts & ~hw_priv->wol_support)
6209 return -EINVAL;
6210
6211 hw_priv->wol_enable = wol->wolopts;
6212
6213 /* Link wakeup cannot really be disabled. */
6214 if (wol->wolopts)
6215 hw_priv->wol_enable |= WAKE_PHY;
6216 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6217 return 0;
6218}
6219
6220/**
6221 * netdev_get_msglevel - get debug message level
6222 * @dev: Network device.
6223 *
6224 * This function returns current debug message level.
6225 *
6226 * Return current debug message flags.
6227 */
6228static u32 netdev_get_msglevel(struct net_device *dev)
6229{
6230 struct dev_priv *priv = netdev_priv(dev);
6231
6232 return priv->msg_enable;
6233}
6234
6235/**
6236 * netdev_set_msglevel - set debug message level
6237 * @dev: Network device.
6238 * @value: Debug message flags.
6239 *
6240 * This procedure sets debug message level.
6241 */
6242static void netdev_set_msglevel(struct net_device *dev, u32 value)
6243{
6244 struct dev_priv *priv = netdev_priv(dev);
6245
6246 priv->msg_enable = value;
6247}
6248
6249/**
6250 * netdev_get_eeprom_len - get EEPROM length
6251 * @dev: Network device.
6252 *
6253 * This function returns the length of the EEPROM.
6254 *
6255 * Return length of the EEPROM.
6256 */
6257static int netdev_get_eeprom_len(struct net_device *dev)
6258{
6259 return EEPROM_SIZE * 2;
6260}
6261
6262/**
6263 * netdev_get_eeprom - get EEPROM data
6264 * @dev: Network device.
6265 * @eeprom: Ethtool EEPROM data structure.
6266 * @data: Buffer to store the EEPROM data.
6267 *
6268 * This function dumps the EEPROM data in the provided buffer.
6269 *
6270 * Return 0 if successful; otherwise an error code.
6271 */
6272#define EEPROM_MAGIC 0x10A18842
6273
6274static int netdev_get_eeprom(struct net_device *dev,
6275 struct ethtool_eeprom *eeprom, u8 *data)
6276{
6277 struct dev_priv *priv = netdev_priv(dev);
6278 struct dev_info *hw_priv = priv->adapter;
6279 u8 *eeprom_byte = (u8 *) eeprom_data;
6280 int i;
6281 int len;
6282
6283 len = (eeprom->offset + eeprom->len + 1) / 2;
6284 for (i = eeprom->offset / 2; i < len; i++)
6285 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6286 eeprom->magic = EEPROM_MAGIC;
6287 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6288
6289 return 0;
6290}
6291
6292/**
6293 * netdev_set_eeprom - write EEPROM data
6294 * @dev: Network device.
6295 * @eeprom: Ethtool EEPROM data structure.
6296 * @data: Data buffer.
6297 *
6298 * This function modifies the EEPROM data one byte at a time.
6299 *
6300 * Return 0 if successful; otherwise an error code.
6301 */
6302static int netdev_set_eeprom(struct net_device *dev,
6303 struct ethtool_eeprom *eeprom, u8 *data)
6304{
6305 struct dev_priv *priv = netdev_priv(dev);
6306 struct dev_info *hw_priv = priv->adapter;
6307 u16 eeprom_word[EEPROM_SIZE];
6308 u8 *eeprom_byte = (u8 *) eeprom_word;
6309 int i;
6310 int len;
6311
6312 if (eeprom->magic != EEPROM_MAGIC)
6313 return -EINVAL;
6314
6315 len = (eeprom->offset + eeprom->len + 1) / 2;
6316 for (i = eeprom->offset / 2; i < len; i++)
6317 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6318 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6319 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6320 for (i = 0; i < EEPROM_SIZE; i++)
6321 if (eeprom_word[i] != eeprom_data[i]) {
6322 eeprom_data[i] = eeprom_word[i];
6323 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6324 }
6325
6326 return 0;
6327}
6328
6329/**
6330 * netdev_get_pauseparam - get flow control parameters
6331 * @dev: Network device.
6332 * @pause: Ethtool PAUSE settings data structure.
6333 *
6334 * This procedure returns the PAUSE control flow settings.
6335 */
6336static void netdev_get_pauseparam(struct net_device *dev,
6337 struct ethtool_pauseparam *pause)
6338{
6339 struct dev_priv *priv = netdev_priv(dev);
6340 struct dev_info *hw_priv = priv->adapter;
6341 struct ksz_hw *hw = &hw_priv->hw;
6342
6343 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6344 if (!hw->ksz_switch) {
6345 pause->rx_pause =
6346 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6347 pause->tx_pause =
6348 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6349 } else {
6350 pause->rx_pause =
6351 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6353 pause->tx_pause =
6354 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6355 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6356 }
6357}
6358
6359/**
6360 * netdev_set_pauseparam - set flow control parameters
6361 * @dev: Network device.
6362 * @pause: Ethtool PAUSE settings data structure.
6363 *
6364 * This function sets the PAUSE control flow settings.
6365 * Not implemented yet.
6366 *
6367 * Return 0 if successful; otherwise an error code.
6368 */
6369static int netdev_set_pauseparam(struct net_device *dev,
6370 struct ethtool_pauseparam *pause)
6371{
6372 struct dev_priv *priv = netdev_priv(dev);
6373 struct dev_info *hw_priv = priv->adapter;
6374 struct ksz_hw *hw = &hw_priv->hw;
6375 struct ksz_port *port = &priv->port;
6376
6377 mutex_lock(&hw_priv->lock);
6378 if (pause->autoneg) {
6379 if (!pause->rx_pause && !pause->tx_pause)
6380 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6381 else
6382 port->flow_ctrl = PHY_FLOW_CTRL;
6383 hw->overrides &= ~PAUSE_FLOW_CTRL;
6384 port->force_link = 0;
6385 if (hw->ksz_switch) {
6386 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387 SWITCH_RX_FLOW_CTRL, 1);
6388 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389 SWITCH_TX_FLOW_CTRL, 1);
6390 }
6391 port_set_link_speed(port);
6392 } else {
6393 hw->overrides |= PAUSE_FLOW_CTRL;
6394 if (hw->ksz_switch) {
6395 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6397 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6399 } else
6400 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6401 }
6402 mutex_unlock(&hw_priv->lock);
6403
6404 return 0;
6405}
6406
6407/**
6408 * netdev_get_ringparam - get tx/rx ring parameters
6409 * @dev: Network device.
6410 * @pause: Ethtool RING settings data structure.
6411 *
6412 * This procedure returns the TX/RX ring settings.
6413 */
6414static void netdev_get_ringparam(struct net_device *dev,
6415 struct ethtool_ringparam *ring)
6416{
6417 struct dev_priv *priv = netdev_priv(dev);
6418 struct dev_info *hw_priv = priv->adapter;
6419 struct ksz_hw *hw = &hw_priv->hw;
6420
6421 ring->tx_max_pending = (1 << 9);
6422 ring->tx_pending = hw->tx_desc_info.alloc;
6423 ring->rx_max_pending = (1 << 9);
6424 ring->rx_pending = hw->rx_desc_info.alloc;
6425}
6426
6427#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6428
6429static struct {
6430 char string[ETH_GSTRING_LEN];
6431} ethtool_stats_keys[STATS_LEN] = {
6432 { "rx_lo_priority_octets" },
6433 { "rx_hi_priority_octets" },
6434 { "rx_undersize_packets" },
6435 { "rx_fragments" },
6436 { "rx_oversize_packets" },
6437 { "rx_jabbers" },
6438 { "rx_symbol_errors" },
6439 { "rx_crc_errors" },
6440 { "rx_align_errors" },
6441 { "rx_mac_ctrl_packets" },
6442 { "rx_pause_packets" },
6443 { "rx_bcast_packets" },
6444 { "rx_mcast_packets" },
6445 { "rx_ucast_packets" },
6446 { "rx_64_or_less_octet_packets" },
6447 { "rx_65_to_127_octet_packets" },
6448 { "rx_128_to_255_octet_packets" },
6449 { "rx_256_to_511_octet_packets" },
6450 { "rx_512_to_1023_octet_packets" },
6451 { "rx_1024_to_1522_octet_packets" },
6452
6453 { "tx_lo_priority_octets" },
6454 { "tx_hi_priority_octets" },
6455 { "tx_late_collisions" },
6456 { "tx_pause_packets" },
6457 { "tx_bcast_packets" },
6458 { "tx_mcast_packets" },
6459 { "tx_ucast_packets" },
6460 { "tx_deferred" },
6461 { "tx_total_collisions" },
6462 { "tx_excessive_collisions" },
6463 { "tx_single_collisions" },
6464 { "tx_mult_collisions" },
6465
6466 { "rx_discards" },
6467 { "tx_discards" },
6468};
6469
6470/**
6471 * netdev_get_strings - get statistics identity strings
6472 * @dev: Network device.
6473 * @stringset: String set identifier.
6474 * @buf: Buffer to store the strings.
6475 *
6476 * This procedure returns the strings used to identify the statistics.
6477 */
6478static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6479{
6480 struct dev_priv *priv = netdev_priv(dev);
6481 struct dev_info *hw_priv = priv->adapter;
6482 struct ksz_hw *hw = &hw_priv->hw;
6483
6484 if (ETH_SS_STATS == stringset)
6485 memcpy(buf, ðtool_stats_keys,
6486 ETH_GSTRING_LEN * hw->mib_cnt);
6487}
6488
6489/**
6490 * netdev_get_sset_count - get statistics size
6491 * @dev: Network device.
6492 * @sset: The statistics set number.
6493 *
6494 * This function returns the size of the statistics to be reported.
6495 *
6496 * Return size of the statistics to be reported.
6497 */
6498static int netdev_get_sset_count(struct net_device *dev, int sset)
6499{
6500 struct dev_priv *priv = netdev_priv(dev);
6501 struct dev_info *hw_priv = priv->adapter;
6502 struct ksz_hw *hw = &hw_priv->hw;
6503
6504 switch (sset) {
6505 case ETH_SS_STATS:
6506 return hw->mib_cnt;
6507 default:
6508 return -EOPNOTSUPP;
6509 }
6510}
6511
6512/**
6513 * netdev_get_ethtool_stats - get network device statistics
6514 * @dev: Network device.
6515 * @stats: Ethtool statistics data structure.
6516 * @data: Buffer to store the statistics.
6517 *
6518 * This procedure returns the statistics.
6519 */
6520static void netdev_get_ethtool_stats(struct net_device *dev,
6521 struct ethtool_stats *stats, u64 *data)
6522{
6523 struct dev_priv *priv = netdev_priv(dev);
6524 struct dev_info *hw_priv = priv->adapter;
6525 struct ksz_hw *hw = &hw_priv->hw;
6526 struct ksz_port *port = &priv->port;
6527 int n_stats = stats->n_stats;
6528 int i;
6529 int n;
6530 int p;
6531 int rc;
6532 u64 counter[TOTAL_PORT_COUNTER_NUM];
6533
6534 mutex_lock(&hw_priv->lock);
6535 n = SWITCH_PORT_NUM;
6536 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6537 if (media_connected == hw->port_mib[p].state) {
6538 hw_priv->counter[p].read = 1;
6539
6540 /* Remember first port that requests read. */
6541 if (n == SWITCH_PORT_NUM)
6542 n = p;
6543 }
6544 }
6545 mutex_unlock(&hw_priv->lock);
6546
6547 if (n < SWITCH_PORT_NUM)
6548 schedule_work(&hw_priv->mib_read);
6549
6550 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6551 p = n;
6552 rc = wait_event_interruptible_timeout(
6553 hw_priv->counter[p].counter,
6554 2 == hw_priv->counter[p].read,
6555 HZ * 1);
6556 } else
6557 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6558 if (0 == i) {
6559 rc = wait_event_interruptible_timeout(
6560 hw_priv->counter[p].counter,
6561 2 == hw_priv->counter[p].read,
6562 HZ * 2);
6563 } else if (hw->port_mib[p].cnt_ptr) {
6564 rc = wait_event_interruptible_timeout(
6565 hw_priv->counter[p].counter,
6566 2 == hw_priv->counter[p].read,
6567 HZ * 1);
6568 }
6569 }
6570
6571 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6572 n = hw->mib_cnt;
6573 if (n > n_stats)
6574 n = n_stats;
6575 n_stats -= n;
6576 for (i = 0; i < n; i++)
6577 *data++ = counter[i];
6578}
6579
6580/**
6581 * netdev_set_features - set receive checksum support
6582 * @dev: Network device.
6583 * @features: New device features (offloads).
6584 *
6585 * This function sets receive checksum support setting.
6586 *
6587 * Return 0 if successful; otherwise an error code.
6588 */
6589static int netdev_set_features(struct net_device *dev,
6590 netdev_features_t features)
6591{
6592 struct dev_priv *priv = netdev_priv(dev);
6593 struct dev_info *hw_priv = priv->adapter;
6594 struct ksz_hw *hw = &hw_priv->hw;
6595
6596 mutex_lock(&hw_priv->lock);
6597
6598 /* see note in hw_setup() */
6599 if (features & NETIF_F_RXCSUM)
6600 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601 else
6602 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603
6604 if (hw->enabled)
6605 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606
6607 mutex_unlock(&hw_priv->lock);
6608
6609 return 0;
6610}
6611
6612static const struct ethtool_ops netdev_ethtool_ops = {
6613 .nway_reset = netdev_nway_reset,
6614 .get_link = netdev_get_link,
6615 .get_drvinfo = netdev_get_drvinfo,
6616 .get_regs_len = netdev_get_regs_len,
6617 .get_regs = netdev_get_regs,
6618 .get_wol = netdev_get_wol,
6619 .set_wol = netdev_set_wol,
6620 .get_msglevel = netdev_get_msglevel,
6621 .set_msglevel = netdev_set_msglevel,
6622 .get_eeprom_len = netdev_get_eeprom_len,
6623 .get_eeprom = netdev_get_eeprom,
6624 .set_eeprom = netdev_set_eeprom,
6625 .get_pauseparam = netdev_get_pauseparam,
6626 .set_pauseparam = netdev_set_pauseparam,
6627 .get_ringparam = netdev_get_ringparam,
6628 .get_strings = netdev_get_strings,
6629 .get_sset_count = netdev_get_sset_count,
6630 .get_ethtool_stats = netdev_get_ethtool_stats,
6631 .get_link_ksettings = netdev_get_link_ksettings,
6632 .set_link_ksettings = netdev_set_link_ksettings,
6633};
6634
6635/*
6636 * Hardware monitoring
6637 */
6638
6639static void update_link(struct net_device *dev, struct dev_priv *priv,
6640 struct ksz_port *port)
6641{
6642 if (priv->media_state != port->linked->state) {
6643 priv->media_state = port->linked->state;
6644 if (netif_running(dev))
6645 set_media_state(dev, media_connected);
6646 }
6647}
6648
6649static void mib_read_work(struct work_struct *work)
6650{
6651 struct dev_info *hw_priv =
6652 container_of(work, struct dev_info, mib_read);
6653 struct ksz_hw *hw = &hw_priv->hw;
6654 struct ksz_port_mib *mib;
6655 int i;
6656
6657 next_jiffies = jiffies;
6658 for (i = 0; i < hw->mib_port_cnt; i++) {
6659 mib = &hw->port_mib[i];
6660
6661 /* Reading MIB counters or requested to read. */
6662 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663
6664 /* Need to process receive interrupt. */
6665 if (port_r_cnt(hw, i))
6666 break;
6667 hw_priv->counter[i].read = 0;
6668
6669 /* Finish reading counters. */
6670 if (0 == mib->cnt_ptr) {
6671 hw_priv->counter[i].read = 2;
6672 wake_up_interruptible(
6673 &hw_priv->counter[i].counter);
6674 }
6675 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6676 /* Only read MIB counters when the port is connected. */
6677 if (media_connected == mib->state)
6678 hw_priv->counter[i].read = 1;
6679 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680 hw_priv->counter[i].time = next_jiffies;
6681
6682 /* Port is just disconnected. */
6683 } else if (mib->link_down) {
6684 mib->link_down = 0;
6685
6686 /* Read counters one last time after link is lost. */
6687 hw_priv->counter[i].read = 1;
6688 }
6689 }
6690}
6691
6692static void mib_monitor(struct timer_list *t)
6693{
6694 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6695
6696 mib_read_work(&hw_priv->mib_read);
6697
6698 /* This is used to verify Wake-on-LAN is working. */
6699 if (hw_priv->pme_wait) {
6700 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6701 hw_clr_wol_pme_status(&hw_priv->hw);
6702 hw_priv->pme_wait = 0;
6703 }
6704 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705
6706 /* PME is asserted. Wait 2 seconds to clear it. */
6707 hw_priv->pme_wait = jiffies + HZ * 2;
6708 }
6709
6710 ksz_update_timer(&hw_priv->mib_timer_info);
6711}
6712
6713/**
6714 * dev_monitor - periodic monitoring
6715 * @ptr: Network device pointer.
6716 *
6717 * This routine is run in a kernel timer to monitor the network device.
6718 */
6719static void dev_monitor(struct timer_list *t)
6720{
6721 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6722 struct net_device *dev = priv->mii_if.dev;
6723 struct dev_info *hw_priv = priv->adapter;
6724 struct ksz_hw *hw = &hw_priv->hw;
6725 struct ksz_port *port = &priv->port;
6726
6727 if (!(hw->features & LINK_INT_WORKING))
6728 port_get_link_speed(port);
6729 update_link(dev, priv, port);
6730
6731 ksz_update_timer(&priv->monitor_timer_info);
6732}
6733
6734/*
6735 * Linux network device interface functions
6736 */
6737
6738/* Driver exported variables */
6739
6740static int msg_enable;
6741
6742static char *macaddr = ":";
6743static char *mac1addr = ":";
6744
6745/*
6746 * This enables multiple network device mode for KSZ8842, which contains a
6747 * switch with two physical ports. Some users like to take control of the
6748 * ports for running Spanning Tree Protocol. The driver will create an
6749 * additional eth? device for the other port.
6750 *
6751 * Some limitations are the network devices cannot have different MTU and
6752 * multicast hash tables.
6753 */
6754static int multi_dev;
6755
6756/*
6757 * As most users select multiple network device mode to use Spanning Tree
6758 * Protocol, this enables a feature in which most unicast and multicast packets
6759 * are forwarded inside the switch and not passed to the host. Only packets
6760 * that need the host's attention are passed to it. This prevents the host
6761 * wasting CPU time to examine each and every incoming packets and do the
6762 * forwarding itself.
6763 *
6764 * As the hack requires the private bridge header, the driver cannot compile
6765 * with just the kernel headers.
6766 *
6767 * Enabling STP support also turns on multiple network device mode.
6768 */
6769static int stp;
6770
6771/*
6772 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6773 * needs that. However, fast aging is used to flush the dynamic MAC table when
6774 * STP support is enabled.
6775 */
6776static int fast_aging;
6777
6778/**
6779 * netdev_init - initialize network device.
6780 * @dev: Network device.
6781 *
6782 * This function initializes the network device.
6783 *
6784 * Return 0 if successful; otherwise an error code indicating failure.
6785 */
6786static int __init netdev_init(struct net_device *dev)
6787{
6788 struct dev_priv *priv = netdev_priv(dev);
6789
6790 /* 500 ms timeout */
6791 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792 dev_monitor);
6793
6794 /* 500 ms timeout */
6795 dev->watchdog_timeo = HZ / 2;
6796
6797 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798
6799 /*
6800 * Hardware does not really support IPv6 checksum generation, but
6801 * driver actually runs faster with this on.
6802 */
6803 dev->hw_features |= NETIF_F_IPV6_CSUM;
6804
6805 dev->features |= dev->hw_features;
6806
6807 sema_init(&priv->proc_sem, 1);
6808
6809 priv->mii_if.phy_id_mask = 0x1;
6810 priv->mii_if.reg_num_mask = 0x7;
6811 priv->mii_if.dev = dev;
6812 priv->mii_if.mdio_read = mdio_read;
6813 priv->mii_if.mdio_write = mdio_write;
6814 priv->mii_if.phy_id = priv->port.first_port + 1;
6815
6816 priv->msg_enable = netif_msg_init(msg_enable,
6817 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818
6819 return 0;
6820}
6821
6822static const struct net_device_ops netdev_ops = {
6823 .ndo_init = netdev_init,
6824 .ndo_open = netdev_open,
6825 .ndo_stop = netdev_close,
6826 .ndo_get_stats = netdev_query_statistics,
6827 .ndo_start_xmit = netdev_tx,
6828 .ndo_tx_timeout = netdev_tx_timeout,
6829 .ndo_change_mtu = netdev_change_mtu,
6830 .ndo_set_features = netdev_set_features,
6831 .ndo_set_mac_address = netdev_set_mac_address,
6832 .ndo_validate_addr = eth_validate_addr,
6833 .ndo_do_ioctl = netdev_ioctl,
6834 .ndo_set_rx_mode = netdev_set_rx_mode,
6835#ifdef CONFIG_NET_POLL_CONTROLLER
6836 .ndo_poll_controller = netdev_netpoll,
6837#endif
6838};
6839
6840static void netdev_free(struct net_device *dev)
6841{
6842 if (dev->watchdog_timeo)
6843 unregister_netdev(dev);
6844
6845 free_netdev(dev);
6846}
6847
6848struct platform_info {
6849 struct dev_info dev_info;
6850 struct net_device *netdev[SWITCH_PORT_NUM];
6851};
6852
6853static int net_device_present;
6854
6855static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856{
6857 int i;
6858 int j;
6859 int got_num;
6860 int num;
6861
6862 i = j = num = got_num = 0;
6863 while (j < ETH_ALEN) {
6864 if (macaddr[i]) {
6865 int digit;
6866
6867 got_num = 1;
6868 digit = hex_to_bin(macaddr[i]);
6869 if (digit >= 0)
6870 num = num * 16 + digit;
6871 else if (':' == macaddr[i])
6872 got_num = 2;
6873 else
6874 break;
6875 } else if (got_num)
6876 got_num = 2;
6877 else
6878 break;
6879 if (2 == got_num) {
6880 if (MAIN_PORT == port) {
6881 hw_priv->hw.override_addr[j++] = (u8) num;
6882 hw_priv->hw.override_addr[5] +=
6883 hw_priv->hw.id;
6884 } else {
6885 hw_priv->hw.ksz_switch->other_addr[j++] =
6886 (u8) num;
6887 hw_priv->hw.ksz_switch->other_addr[5] +=
6888 hw_priv->hw.id;
6889 }
6890 num = got_num = 0;
6891 }
6892 i++;
6893 }
6894 if (ETH_ALEN == j) {
6895 if (MAIN_PORT == port)
6896 hw_priv->hw.mac_override = 1;
6897 }
6898}
6899
6900#define KS884X_DMA_MASK (~0x0UL)
6901
6902static void read_other_addr(struct ksz_hw *hw)
6903{
6904 int i;
6905 u16 data[3];
6906 struct ksz_switch *sw = hw->ksz_switch;
6907
6908 for (i = 0; i < 3; i++)
6909 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911 sw->other_addr[5] = (u8) data[0];
6912 sw->other_addr[4] = (u8)(data[0] >> 8);
6913 sw->other_addr[3] = (u8) data[1];
6914 sw->other_addr[2] = (u8)(data[1] >> 8);
6915 sw->other_addr[1] = (u8) data[2];
6916 sw->other_addr[0] = (u8)(data[2] >> 8);
6917 }
6918}
6919
6920#ifndef PCI_VENDOR_ID_MICREL_KS
6921#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6922#endif
6923
6924static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6925{
6926 struct net_device *dev;
6927 struct dev_priv *priv;
6928 struct dev_info *hw_priv;
6929 struct ksz_hw *hw;
6930 struct platform_info *info;
6931 struct ksz_port *port;
6932 unsigned long reg_base;
6933 unsigned long reg_len;
6934 int cnt;
6935 int i;
6936 int mib_port_count;
6937 int pi;
6938 int port_count;
6939 int result;
6940 char banner[sizeof(version)];
6941 struct ksz_switch *sw = NULL;
6942
6943 result = pci_enable_device(pdev);
6944 if (result)
6945 return result;
6946
6947 result = -ENODEV;
6948
6949 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6950 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6951 return result;
6952
6953 reg_base = pci_resource_start(pdev, 0);
6954 reg_len = pci_resource_len(pdev, 0);
6955 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6956 return result;
6957
6958 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6959 return result;
6960 pci_set_master(pdev);
6961
6962 result = -ENOMEM;
6963
6964 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6965 if (!info)
6966 goto pcidev_init_dev_err;
6967
6968 hw_priv = &info->dev_info;
6969 hw_priv->pdev = pdev;
6970
6971 hw = &hw_priv->hw;
6972
6973 hw->io = ioremap(reg_base, reg_len);
6974 if (!hw->io)
6975 goto pcidev_init_io_err;
6976
6977 cnt = hw_init(hw);
6978 if (!cnt) {
6979 if (msg_enable & NETIF_MSG_PROBE)
6980 pr_alert("chip not detected\n");
6981 result = -ENODEV;
6982 goto pcidev_init_alloc_err;
6983 }
6984
6985 snprintf(banner, sizeof(banner), "%s", version);
6986 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6987 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6988 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6989
6990 /* Assume device is KSZ8841. */
6991 hw->dev_count = 1;
6992 port_count = 1;
6993 mib_port_count = 1;
6994 hw->addr_list_size = 0;
6995 hw->mib_cnt = PORT_COUNTER_NUM;
6996 hw->mib_port_cnt = 1;
6997
6998 /* KSZ8842 has a switch with multiple ports. */
6999 if (2 == cnt) {
7000 if (fast_aging)
7001 hw->overrides |= FAST_AGING;
7002
7003 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7004
7005 /* Multiple network device interfaces are required. */
7006 if (multi_dev) {
7007 hw->dev_count = SWITCH_PORT_NUM;
7008 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7009 }
7010
7011 /* Single network device has multiple ports. */
7012 if (1 == hw->dev_count) {
7013 port_count = SWITCH_PORT_NUM;
7014 mib_port_count = SWITCH_PORT_NUM;
7015 }
7016 hw->mib_port_cnt = TOTAL_PORT_NUM;
7017 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7018 if (!hw->ksz_switch)
7019 goto pcidev_init_alloc_err;
7020
7021 sw = hw->ksz_switch;
7022 }
7023 for (i = 0; i < hw->mib_port_cnt; i++)
7024 hw->port_mib[i].mib_start = 0;
7025
7026 hw->parent = hw_priv;
7027
7028 /* Default MTU is 1500. */
7029 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7030
7031 if (ksz_alloc_mem(hw_priv))
7032 goto pcidev_init_mem_err;
7033
7034 hw_priv->hw.id = net_device_present;
7035
7036 spin_lock_init(&hw_priv->hwlock);
7037 mutex_init(&hw_priv->lock);
7038
7039 for (i = 0; i < TOTAL_PORT_NUM; i++)
7040 init_waitqueue_head(&hw_priv->counter[i].counter);
7041
7042 if (macaddr[0] != ':')
7043 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7044
7045 /* Read MAC address and initialize override address if not overridden. */
7046 hw_read_addr(hw);
7047
7048 /* Multiple device interfaces mode requires a second MAC address. */
7049 if (hw->dev_count > 1) {
7050 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7051 read_other_addr(hw);
7052 if (mac1addr[0] != ':')
7053 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7054 }
7055
7056 hw_setup(hw);
7057 if (hw->ksz_switch)
7058 sw_setup(hw);
7059 else {
7060 hw_priv->wol_support = WOL_SUPPORT;
7061 hw_priv->wol_enable = 0;
7062 }
7063
7064 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7065
7066 /* 500 ms timeout */
7067 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7068 mib_monitor);
7069
7070 for (i = 0; i < hw->dev_count; i++) {
7071 dev = alloc_etherdev(sizeof(struct dev_priv));
7072 if (!dev)
7073 goto pcidev_init_reg_err;
7074 SET_NETDEV_DEV(dev, &pdev->dev);
7075 info->netdev[i] = dev;
7076
7077 priv = netdev_priv(dev);
7078 priv->adapter = hw_priv;
7079 priv->id = net_device_present++;
7080
7081 port = &priv->port;
7082 port->port_cnt = port_count;
7083 port->mib_port_cnt = mib_port_count;
7084 port->first_port = i;
7085 port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087 port->hw = hw;
7088 port->linked = &hw->port_info[port->first_port];
7089
7090 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091 hw->port_info[pi].port_id = pi;
7092 hw->port_info[pi].pdev = dev;
7093 hw->port_info[pi].state = media_disconnected;
7094 }
7095
7096 dev->mem_start = (unsigned long) hw->io;
7097 dev->mem_end = dev->mem_start + reg_len - 1;
7098 dev->irq = pdev->irq;
7099 if (MAIN_PORT == i)
7100 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101 ETH_ALEN);
7102 else {
7103 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7104 if (ether_addr_equal(sw->other_addr, hw->override_addr))
7105 dev->dev_addr[5] += port->first_port;
7106 }
7107
7108 dev->netdev_ops = &netdev_ops;
7109 dev->ethtool_ops = &netdev_ethtool_ops;
7110
7111 /* MTU range: 60 - 1894 */
7112 dev->min_mtu = ETH_ZLEN;
7113 dev->max_mtu = MAX_RX_BUF_SIZE -
7114 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7115
7116 if (register_netdev(dev))
7117 goto pcidev_init_reg_err;
7118 port_set_power_saving(port, true);
7119 }
7120
7121 pci_dev_get(hw_priv->pdev);
7122 pci_set_drvdata(pdev, info);
7123 return 0;
7124
7125pcidev_init_reg_err:
7126 for (i = 0; i < hw->dev_count; i++) {
7127 if (info->netdev[i]) {
7128 netdev_free(info->netdev[i]);
7129 info->netdev[i] = NULL;
7130 }
7131 }
7132
7133pcidev_init_mem_err:
7134 ksz_free_mem(hw_priv);
7135 kfree(hw->ksz_switch);
7136
7137pcidev_init_alloc_err:
7138 iounmap(hw->io);
7139
7140pcidev_init_io_err:
7141 kfree(info);
7142
7143pcidev_init_dev_err:
7144 release_mem_region(reg_base, reg_len);
7145
7146 return result;
7147}
7148
7149static void pcidev_exit(struct pci_dev *pdev)
7150{
7151 int i;
7152 struct platform_info *info = pci_get_drvdata(pdev);
7153 struct dev_info *hw_priv = &info->dev_info;
7154
7155 release_mem_region(pci_resource_start(pdev, 0),
7156 pci_resource_len(pdev, 0));
7157 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7158 if (info->netdev[i])
7159 netdev_free(info->netdev[i]);
7160 }
7161 if (hw_priv->hw.io)
7162 iounmap(hw_priv->hw.io);
7163 ksz_free_mem(hw_priv);
7164 kfree(hw_priv->hw.ksz_switch);
7165 pci_dev_put(hw_priv->pdev);
7166 kfree(info);
7167}
7168
7169#ifdef CONFIG_PM
7170static int pcidev_resume(struct pci_dev *pdev)
7171{
7172 int i;
7173 struct platform_info *info = pci_get_drvdata(pdev);
7174 struct dev_info *hw_priv = &info->dev_info;
7175 struct ksz_hw *hw = &hw_priv->hw;
7176
7177 pci_set_power_state(pdev, PCI_D0);
7178 pci_restore_state(pdev);
7179 pci_enable_wake(pdev, PCI_D0, 0);
7180
7181 if (hw_priv->wol_enable)
7182 hw_cfg_wol_pme(hw, 0);
7183 for (i = 0; i < hw->dev_count; i++) {
7184 if (info->netdev[i]) {
7185 struct net_device *dev = info->netdev[i];
7186
7187 if (netif_running(dev)) {
7188 netdev_open(dev);
7189 netif_device_attach(dev);
7190 }
7191 }
7192 }
7193 return 0;
7194}
7195
7196static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7197{
7198 int i;
7199 struct platform_info *info = pci_get_drvdata(pdev);
7200 struct dev_info *hw_priv = &info->dev_info;
7201 struct ksz_hw *hw = &hw_priv->hw;
7202
7203 /* Need to find a way to retrieve the device IP address. */
7204 static const u8 net_addr[] = { 192, 168, 1, 1 };
7205
7206 for (i = 0; i < hw->dev_count; i++) {
7207 if (info->netdev[i]) {
7208 struct net_device *dev = info->netdev[i];
7209
7210 if (netif_running(dev)) {
7211 netif_device_detach(dev);
7212 netdev_close(dev);
7213 }
7214 }
7215 }
7216 if (hw_priv->wol_enable) {
7217 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7218 hw_cfg_wol_pme(hw, 1);
7219 }
7220
7221 pci_save_state(pdev);
7222 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7223 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7224 return 0;
7225}
7226#endif
7227
7228static char pcidev_name[] = "ksz884xp";
7229
7230static const struct pci_device_id pcidev_table[] = {
7231 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7233 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7235 { 0 }
7236};
7237
7238MODULE_DEVICE_TABLE(pci, pcidev_table);
7239
7240static struct pci_driver pci_device_driver = {
7241#ifdef CONFIG_PM
7242 .suspend = pcidev_suspend,
7243 .resume = pcidev_resume,
7244#endif
7245 .name = pcidev_name,
7246 .id_table = pcidev_table,
7247 .probe = pcidev_init,
7248 .remove = pcidev_exit
7249};
7250
7251module_pci_driver(pci_device_driver);
7252
7253MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7254MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7255MODULE_LICENSE("GPL");
7256
7257module_param_named(message, msg_enable, int, 0);
7258MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7259
7260module_param(macaddr, charp, 0);
7261module_param(mac1addr, charp, 0);
7262module_param(fast_aging, int, 0);
7263module_param(multi_dev, int, 0);
7264module_param(stp, int, 0);
7265MODULE_PARM_DESC(macaddr, "MAC address");
7266MODULE_PARM_DESC(mac1addr, "Second MAC address");
7267MODULE_PARM_DESC(fast_aging, "Fast aging");
7268MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7269MODULE_PARM_DESC(stp, "STP support");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 *
5 * Copyright (c) 2009-2010 Micrel, Inc.
6 * Tristram Ha <Tristram.Ha@micrel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/ioport.h>
16#include <linux/pci.h>
17#include <linux/proc_fs.h>
18#include <linux/mii.h>
19#include <linux/platform_device.h>
20#include <linux/ethtool.h>
21#include <linux/etherdevice.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/if_vlan.h>
25#include <linux/crc32.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28#include <linux/micrel_phy.h>
29
30
31/* DMA Registers */
32
33#define KS_DMA_TX_CTRL 0x0000
34#define DMA_TX_ENABLE 0x00000001
35#define DMA_TX_CRC_ENABLE 0x00000002
36#define DMA_TX_PAD_ENABLE 0x00000004
37#define DMA_TX_LOOPBACK 0x00000100
38#define DMA_TX_FLOW_ENABLE 0x00000200
39#define DMA_TX_CSUM_IP 0x00010000
40#define DMA_TX_CSUM_TCP 0x00020000
41#define DMA_TX_CSUM_UDP 0x00040000
42#define DMA_TX_BURST_SIZE 0x3F000000
43
44#define KS_DMA_RX_CTRL 0x0004
45#define DMA_RX_ENABLE 0x00000001
46#define KS884X_DMA_RX_MULTICAST 0x00000002
47#define DMA_RX_PROMISCUOUS 0x00000004
48#define DMA_RX_ERROR 0x00000008
49#define DMA_RX_UNICAST 0x00000010
50#define DMA_RX_ALL_MULTICAST 0x00000020
51#define DMA_RX_BROADCAST 0x00000040
52#define DMA_RX_FLOW_ENABLE 0x00000200
53#define DMA_RX_CSUM_IP 0x00010000
54#define DMA_RX_CSUM_TCP 0x00020000
55#define DMA_RX_CSUM_UDP 0x00040000
56#define DMA_RX_BURST_SIZE 0x3F000000
57
58#define DMA_BURST_SHIFT 24
59#define DMA_BURST_DEFAULT 8
60
61#define KS_DMA_TX_START 0x0008
62#define KS_DMA_RX_START 0x000C
63#define DMA_START 0x00000001
64
65#define KS_DMA_TX_ADDR 0x0010
66#define KS_DMA_RX_ADDR 0x0014
67
68#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
69#define DMA_ADDR_LIST_SHIFT 2
70
71/* MTR0 */
72#define KS884X_MULTICAST_0_OFFSET 0x0020
73#define KS884X_MULTICAST_1_OFFSET 0x0021
74#define KS884X_MULTICAST_2_OFFSET 0x0022
75#define KS884x_MULTICAST_3_OFFSET 0x0023
76/* MTR1 */
77#define KS884X_MULTICAST_4_OFFSET 0x0024
78#define KS884X_MULTICAST_5_OFFSET 0x0025
79#define KS884X_MULTICAST_6_OFFSET 0x0026
80#define KS884X_MULTICAST_7_OFFSET 0x0027
81
82/* Interrupt Registers */
83
84/* INTEN */
85#define KS884X_INTERRUPTS_ENABLE 0x0028
86/* INTST */
87#define KS884X_INTERRUPTS_STATUS 0x002C
88
89#define KS884X_INT_RX_STOPPED 0x02000000
90#define KS884X_INT_TX_STOPPED 0x04000000
91#define KS884X_INT_RX_OVERRUN 0x08000000
92#define KS884X_INT_TX_EMPTY 0x10000000
93#define KS884X_INT_RX 0x20000000
94#define KS884X_INT_TX 0x40000000
95#define KS884X_INT_PHY 0x80000000
96
97#define KS884X_INT_RX_MASK \
98 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
99#define KS884X_INT_TX_MASK \
100 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
101#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
102
103/* MAC Additional Station Address */
104
105/* MAAL0 */
106#define KS_ADD_ADDR_0_LO 0x0080
107/* MAAH0 */
108#define KS_ADD_ADDR_0_HI 0x0084
109/* MAAL1 */
110#define KS_ADD_ADDR_1_LO 0x0088
111/* MAAH1 */
112#define KS_ADD_ADDR_1_HI 0x008C
113/* MAAL2 */
114#define KS_ADD_ADDR_2_LO 0x0090
115/* MAAH2 */
116#define KS_ADD_ADDR_2_HI 0x0094
117/* MAAL3 */
118#define KS_ADD_ADDR_3_LO 0x0098
119/* MAAH3 */
120#define KS_ADD_ADDR_3_HI 0x009C
121/* MAAL4 */
122#define KS_ADD_ADDR_4_LO 0x00A0
123/* MAAH4 */
124#define KS_ADD_ADDR_4_HI 0x00A4
125/* MAAL5 */
126#define KS_ADD_ADDR_5_LO 0x00A8
127/* MAAH5 */
128#define KS_ADD_ADDR_5_HI 0x00AC
129/* MAAL6 */
130#define KS_ADD_ADDR_6_LO 0x00B0
131/* MAAH6 */
132#define KS_ADD_ADDR_6_HI 0x00B4
133/* MAAL7 */
134#define KS_ADD_ADDR_7_LO 0x00B8
135/* MAAH7 */
136#define KS_ADD_ADDR_7_HI 0x00BC
137/* MAAL8 */
138#define KS_ADD_ADDR_8_LO 0x00C0
139/* MAAH8 */
140#define KS_ADD_ADDR_8_HI 0x00C4
141/* MAAL9 */
142#define KS_ADD_ADDR_9_LO 0x00C8
143/* MAAH9 */
144#define KS_ADD_ADDR_9_HI 0x00CC
145/* MAAL10 */
146#define KS_ADD_ADDR_A_LO 0x00D0
147/* MAAH10 */
148#define KS_ADD_ADDR_A_HI 0x00D4
149/* MAAL11 */
150#define KS_ADD_ADDR_B_LO 0x00D8
151/* MAAH11 */
152#define KS_ADD_ADDR_B_HI 0x00DC
153/* MAAL12 */
154#define KS_ADD_ADDR_C_LO 0x00E0
155/* MAAH12 */
156#define KS_ADD_ADDR_C_HI 0x00E4
157/* MAAL13 */
158#define KS_ADD_ADDR_D_LO 0x00E8
159/* MAAH13 */
160#define KS_ADD_ADDR_D_HI 0x00EC
161/* MAAL14 */
162#define KS_ADD_ADDR_E_LO 0x00F0
163/* MAAH14 */
164#define KS_ADD_ADDR_E_HI 0x00F4
165/* MAAL15 */
166#define KS_ADD_ADDR_F_LO 0x00F8
167/* MAAH15 */
168#define KS_ADD_ADDR_F_HI 0x00FC
169
170#define ADD_ADDR_HI_MASK 0x0000FFFF
171#define ADD_ADDR_ENABLE 0x80000000
172#define ADD_ADDR_INCR 8
173
174/* Miscellaneous Registers */
175
176/* MARL */
177#define KS884X_ADDR_0_OFFSET 0x0200
178#define KS884X_ADDR_1_OFFSET 0x0201
179/* MARM */
180#define KS884X_ADDR_2_OFFSET 0x0202
181#define KS884X_ADDR_3_OFFSET 0x0203
182/* MARH */
183#define KS884X_ADDR_4_OFFSET 0x0204
184#define KS884X_ADDR_5_OFFSET 0x0205
185
186/* OBCR */
187#define KS884X_BUS_CTRL_OFFSET 0x0210
188
189#define BUS_SPEED_125_MHZ 0x0000
190#define BUS_SPEED_62_5_MHZ 0x0001
191#define BUS_SPEED_41_66_MHZ 0x0002
192#define BUS_SPEED_25_MHZ 0x0003
193
194/* EEPCR */
195#define KS884X_EEPROM_CTRL_OFFSET 0x0212
196
197#define EEPROM_CHIP_SELECT 0x0001
198#define EEPROM_SERIAL_CLOCK 0x0002
199#define EEPROM_DATA_OUT 0x0004
200#define EEPROM_DATA_IN 0x0008
201#define EEPROM_ACCESS_ENABLE 0x0010
202
203/* MBIR */
204#define KS884X_MEM_INFO_OFFSET 0x0214
205
206#define RX_MEM_TEST_FAILED 0x0008
207#define RX_MEM_TEST_FINISHED 0x0010
208#define TX_MEM_TEST_FAILED 0x0800
209#define TX_MEM_TEST_FINISHED 0x1000
210
211/* GCR */
212#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
213#define GLOBAL_SOFTWARE_RESET 0x0001
214
215#define KS8841_POWER_MANAGE_OFFSET 0x0218
216
217/* WFCR */
218#define KS8841_WOL_CTRL_OFFSET 0x021A
219#define KS8841_WOL_MAGIC_ENABLE 0x0080
220#define KS8841_WOL_FRAME3_ENABLE 0x0008
221#define KS8841_WOL_FRAME2_ENABLE 0x0004
222#define KS8841_WOL_FRAME1_ENABLE 0x0002
223#define KS8841_WOL_FRAME0_ENABLE 0x0001
224
225/* WF0 */
226#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
227#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
228#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
229
230/* IACR */
231#define KS884X_IACR_P 0x04A0
232#define KS884X_IACR_OFFSET KS884X_IACR_P
233
234/* IADR1 */
235#define KS884X_IADR1_P 0x04A2
236#define KS884X_IADR2_P 0x04A4
237#define KS884X_IADR3_P 0x04A6
238#define KS884X_IADR4_P 0x04A8
239#define KS884X_IADR5_P 0x04AA
240
241#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
242#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
243
244#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
245#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
246#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
247#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
248#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
249#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
250#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
251#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
252#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
253
254/* P1MBCR */
255#define KS884X_P1MBCR_P 0x04D0
256#define KS884X_P1MBSR_P 0x04D2
257#define KS884X_PHY1ILR_P 0x04D4
258#define KS884X_PHY1IHR_P 0x04D6
259#define KS884X_P1ANAR_P 0x04D8
260#define KS884X_P1ANLPR_P 0x04DA
261
262/* P2MBCR */
263#define KS884X_P2MBCR_P 0x04E0
264#define KS884X_P2MBSR_P 0x04E2
265#define KS884X_PHY2ILR_P 0x04E4
266#define KS884X_PHY2IHR_P 0x04E6
267#define KS884X_P2ANAR_P 0x04E8
268#define KS884X_P2ANLPR_P 0x04EA
269
270#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
271#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
272
273#define KS884X_PHY_CTRL_OFFSET 0x00
274
275#define KS884X_PHY_STATUS_OFFSET 0x02
276
277#define KS884X_PHY_ID_1_OFFSET 0x04
278#define KS884X_PHY_ID_2_OFFSET 0x06
279
280#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
281
282#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
283
284/* P1VCT */
285#define KS884X_P1VCT_P 0x04F0
286#define KS884X_P1PHYCTRL_P 0x04F2
287
288/* P2VCT */
289#define KS884X_P2VCT_P 0x04F4
290#define KS884X_P2PHYCTRL_P 0x04F6
291
292#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
293#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
294
295#define KS884X_PHY_LINK_MD_OFFSET 0x00
296
297#define PHY_START_CABLE_DIAG 0x8000
298#define PHY_CABLE_DIAG_RESULT 0x6000
299#define PHY_CABLE_STAT_NORMAL 0x0000
300#define PHY_CABLE_STAT_OPEN 0x2000
301#define PHY_CABLE_STAT_SHORT 0x4000
302#define PHY_CABLE_STAT_FAILED 0x6000
303#define PHY_CABLE_10M_SHORT 0x1000
304#define PHY_CABLE_FAULT_COUNTER 0x01FF
305
306#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
307
308#define PHY_STAT_REVERSED_POLARITY 0x0020
309#define PHY_STAT_MDIX 0x0010
310#define PHY_FORCE_LINK 0x0008
311#define PHY_POWER_SAVING_DISABLE 0x0004
312#define PHY_REMOTE_LOOPBACK 0x0002
313
314/* SIDER */
315#define KS884X_SIDER_P 0x0400
316#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
317#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
318
319#define REG_FAMILY_ID 0x88
320
321#define REG_CHIP_ID_41 0x8810
322#define REG_CHIP_ID_42 0x8800
323
324#define KS884X_CHIP_ID_MASK_41 0xFF10
325#define KS884X_CHIP_ID_MASK 0xFFF0
326#define KS884X_CHIP_ID_SHIFT 4
327#define KS884X_REVISION_MASK 0x000E
328#define KS884X_REVISION_SHIFT 1
329#define KS8842_START 0x0001
330
331#define CHIP_IP_41_M 0x8810
332#define CHIP_IP_42_M 0x8800
333#define CHIP_IP_61_M 0x8890
334#define CHIP_IP_62_M 0x8880
335
336#define CHIP_IP_41_P 0x8850
337#define CHIP_IP_42_P 0x8840
338#define CHIP_IP_61_P 0x88D0
339#define CHIP_IP_62_P 0x88C0
340
341/* SGCR1 */
342#define KS8842_SGCR1_P 0x0402
343#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
344
345#define SWITCH_PASS_ALL 0x8000
346#define SWITCH_TX_FLOW_CTRL 0x2000
347#define SWITCH_RX_FLOW_CTRL 0x1000
348#define SWITCH_CHECK_LENGTH 0x0800
349#define SWITCH_AGING_ENABLE 0x0400
350#define SWITCH_FAST_AGING 0x0200
351#define SWITCH_AGGR_BACKOFF 0x0100
352#define SWITCH_PASS_PAUSE 0x0008
353#define SWITCH_LINK_AUTO_AGING 0x0001
354
355/* SGCR2 */
356#define KS8842_SGCR2_P 0x0404
357#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
358
359#define SWITCH_VLAN_ENABLE 0x8000
360#define SWITCH_IGMP_SNOOP 0x4000
361#define IPV6_MLD_SNOOP_ENABLE 0x2000
362#define IPV6_MLD_SNOOP_OPTION 0x1000
363#define PRIORITY_SCHEME_SELECT 0x0800
364#define SWITCH_MIRROR_RX_TX 0x0100
365#define UNICAST_VLAN_BOUNDARY 0x0080
366#define MULTICAST_STORM_DISABLE 0x0040
367#define SWITCH_BACK_PRESSURE 0x0020
368#define FAIR_FLOW_CTRL 0x0010
369#define NO_EXC_COLLISION_DROP 0x0008
370#define SWITCH_HUGE_PACKET 0x0004
371#define SWITCH_LEGAL_PACKET 0x0002
372#define SWITCH_BUF_RESERVE 0x0001
373
374/* SGCR3 */
375#define KS8842_SGCR3_P 0x0406
376#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
377
378#define BROADCAST_STORM_RATE_LO 0xFF00
379#define SWITCH_REPEATER 0x0080
380#define SWITCH_HALF_DUPLEX 0x0040
381#define SWITCH_FLOW_CTRL 0x0020
382#define SWITCH_10_MBIT 0x0010
383#define SWITCH_REPLACE_NULL_VID 0x0008
384#define BROADCAST_STORM_RATE_HI 0x0007
385
386#define BROADCAST_STORM_RATE 0x07FF
387
388/* SGCR4 */
389#define KS8842_SGCR4_P 0x0408
390
391/* SGCR5 */
392#define KS8842_SGCR5_P 0x040A
393#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
394
395#define LED_MODE 0x8200
396#define LED_SPEED_DUPLEX_ACT 0x0000
397#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
398#define LED_DUPLEX_10_100 0x0200
399
400/* SGCR6 */
401#define KS8842_SGCR6_P 0x0410
402#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
403
404#define KS8842_PRIORITY_MASK 3
405#define KS8842_PRIORITY_SHIFT 2
406
407/* SGCR7 */
408#define KS8842_SGCR7_P 0x0412
409#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
410
411#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
412#define SWITCH_UNK_DEF_PORT_3 0x0004
413#define SWITCH_UNK_DEF_PORT_2 0x0002
414#define SWITCH_UNK_DEF_PORT_1 0x0001
415
416/* MACAR1 */
417#define KS8842_MACAR1_P 0x0470
418#define KS8842_MACAR2_P 0x0472
419#define KS8842_MACAR3_P 0x0474
420#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
421#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
422#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
423#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
424#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
425#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
426
427/* TOSR1 */
428#define KS8842_TOSR1_P 0x0480
429#define KS8842_TOSR2_P 0x0482
430#define KS8842_TOSR3_P 0x0484
431#define KS8842_TOSR4_P 0x0486
432#define KS8842_TOSR5_P 0x0488
433#define KS8842_TOSR6_P 0x048A
434#define KS8842_TOSR7_P 0x0490
435#define KS8842_TOSR8_P 0x0492
436#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
437#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
438#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
439#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
440#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
441#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
442
443#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
444#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
445
446/* P1CR1 */
447#define KS8842_P1CR1_P 0x0500
448#define KS8842_P1CR2_P 0x0502
449#define KS8842_P1VIDR_P 0x0504
450#define KS8842_P1CR3_P 0x0506
451#define KS8842_P1IRCR_P 0x0508
452#define KS8842_P1ERCR_P 0x050A
453#define KS884X_P1SCSLMD_P 0x0510
454#define KS884X_P1CR4_P 0x0512
455#define KS884X_P1SR_P 0x0514
456
457/* P2CR1 */
458#define KS8842_P2CR1_P 0x0520
459#define KS8842_P2CR2_P 0x0522
460#define KS8842_P2VIDR_P 0x0524
461#define KS8842_P2CR3_P 0x0526
462#define KS8842_P2IRCR_P 0x0528
463#define KS8842_P2ERCR_P 0x052A
464#define KS884X_P2SCSLMD_P 0x0530
465#define KS884X_P2CR4_P 0x0532
466#define KS884X_P2SR_P 0x0534
467
468/* P3CR1 */
469#define KS8842_P3CR1_P 0x0540
470#define KS8842_P3CR2_P 0x0542
471#define KS8842_P3VIDR_P 0x0544
472#define KS8842_P3CR3_P 0x0546
473#define KS8842_P3IRCR_P 0x0548
474#define KS8842_P3ERCR_P 0x054A
475
476#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
477#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
478#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
479
480#define PORT_CTRL_ADDR(port, addr) \
481 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
482 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
483
484#define KS8842_PORT_CTRL_1_OFFSET 0x00
485
486#define PORT_BROADCAST_STORM 0x0080
487#define PORT_DIFFSERV_ENABLE 0x0040
488#define PORT_802_1P_ENABLE 0x0020
489#define PORT_BASED_PRIORITY_MASK 0x0018
490#define PORT_BASED_PRIORITY_BASE 0x0003
491#define PORT_BASED_PRIORITY_SHIFT 3
492#define PORT_BASED_PRIORITY_0 0x0000
493#define PORT_BASED_PRIORITY_1 0x0008
494#define PORT_BASED_PRIORITY_2 0x0010
495#define PORT_BASED_PRIORITY_3 0x0018
496#define PORT_INSERT_TAG 0x0004
497#define PORT_REMOVE_TAG 0x0002
498#define PORT_PRIO_QUEUE_ENABLE 0x0001
499
500#define KS8842_PORT_CTRL_2_OFFSET 0x02
501
502#define PORT_INGRESS_VLAN_FILTER 0x4000
503#define PORT_DISCARD_NON_VID 0x2000
504#define PORT_FORCE_FLOW_CTRL 0x1000
505#define PORT_BACK_PRESSURE 0x0800
506#define PORT_TX_ENABLE 0x0400
507#define PORT_RX_ENABLE 0x0200
508#define PORT_LEARN_DISABLE 0x0100
509#define PORT_MIRROR_SNIFFER 0x0080
510#define PORT_MIRROR_RX 0x0040
511#define PORT_MIRROR_TX 0x0020
512#define PORT_USER_PRIORITY_CEILING 0x0008
513#define PORT_VLAN_MEMBERSHIP 0x0007
514
515#define KS8842_PORT_CTRL_VID_OFFSET 0x04
516
517#define PORT_DEFAULT_VID 0x0001
518
519#define KS8842_PORT_CTRL_3_OFFSET 0x06
520
521#define PORT_INGRESS_LIMIT_MODE 0x000C
522#define PORT_INGRESS_ALL 0x0000
523#define PORT_INGRESS_UNICAST 0x0004
524#define PORT_INGRESS_MULTICAST 0x0008
525#define PORT_INGRESS_BROADCAST 0x000C
526#define PORT_COUNT_IFG 0x0002
527#define PORT_COUNT_PREAMBLE 0x0001
528
529#define KS8842_PORT_IN_RATE_OFFSET 0x08
530#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
531
532#define PORT_PRIORITY_RATE 0x0F
533#define PORT_PRIORITY_RATE_SHIFT 4
534
535#define KS884X_PORT_LINK_MD 0x10
536
537#define PORT_CABLE_10M_SHORT 0x8000
538#define PORT_CABLE_DIAG_RESULT 0x6000
539#define PORT_CABLE_STAT_NORMAL 0x0000
540#define PORT_CABLE_STAT_OPEN 0x2000
541#define PORT_CABLE_STAT_SHORT 0x4000
542#define PORT_CABLE_STAT_FAILED 0x6000
543#define PORT_START_CABLE_DIAG 0x1000
544#define PORT_FORCE_LINK 0x0800
545#define PORT_POWER_SAVING_DISABLE 0x0400
546#define PORT_PHY_REMOTE_LOOPBACK 0x0200
547#define PORT_CABLE_FAULT_COUNTER 0x01FF
548
549#define KS884X_PORT_CTRL_4_OFFSET 0x12
550
551#define PORT_LED_OFF 0x8000
552#define PORT_TX_DISABLE 0x4000
553#define PORT_AUTO_NEG_RESTART 0x2000
554#define PORT_REMOTE_FAULT_DISABLE 0x1000
555#define PORT_POWER_DOWN 0x0800
556#define PORT_AUTO_MDIX_DISABLE 0x0400
557#define PORT_FORCE_MDIX 0x0200
558#define PORT_LOOPBACK 0x0100
559#define PORT_AUTO_NEG_ENABLE 0x0080
560#define PORT_FORCE_100_MBIT 0x0040
561#define PORT_FORCE_FULL_DUPLEX 0x0020
562#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
563#define PORT_AUTO_NEG_100BTX_FD 0x0008
564#define PORT_AUTO_NEG_100BTX 0x0004
565#define PORT_AUTO_NEG_10BT_FD 0x0002
566#define PORT_AUTO_NEG_10BT 0x0001
567
568#define KS884X_PORT_STATUS_OFFSET 0x14
569
570#define PORT_HP_MDIX 0x8000
571#define PORT_REVERSED_POLARITY 0x2000
572#define PORT_RX_FLOW_CTRL 0x0800
573#define PORT_TX_FLOW_CTRL 0x1000
574#define PORT_STATUS_SPEED_100MBIT 0x0400
575#define PORT_STATUS_FULL_DUPLEX 0x0200
576#define PORT_REMOTE_FAULT 0x0100
577#define PORT_MDIX_STATUS 0x0080
578#define PORT_AUTO_NEG_COMPLETE 0x0040
579#define PORT_STATUS_LINK_GOOD 0x0020
580#define PORT_REMOTE_SYM_PAUSE 0x0010
581#define PORT_REMOTE_100BTX_FD 0x0008
582#define PORT_REMOTE_100BTX 0x0004
583#define PORT_REMOTE_10BT_FD 0x0002
584#define PORT_REMOTE_10BT 0x0001
585
586/*
587#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
588#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
589#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
590#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
591#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
592#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
593*/
594
595#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
596#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
597#define STATIC_MAC_TABLE_VALID 0x00080000
598#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
599#define STATIC_MAC_TABLE_USE_FID 0x00200000
600#define STATIC_MAC_TABLE_FID 0x03C00000
601
602#define STATIC_MAC_FWD_PORTS_SHIFT 16
603#define STATIC_MAC_FID_SHIFT 22
604
605/*
606#define VLAN_TABLE_VID 00-00000000-00000FFF
607#define VLAN_TABLE_FID 00-00000000-0000F000
608#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
609#define VLAN_TABLE_VALID 00-00000000-00080000
610*/
611
612#define VLAN_TABLE_VID 0x00000FFF
613#define VLAN_TABLE_FID 0x0000F000
614#define VLAN_TABLE_MEMBERSHIP 0x00070000
615#define VLAN_TABLE_VALID 0x00080000
616
617#define VLAN_TABLE_FID_SHIFT 12
618#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
619
620/*
621#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
622#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
623#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
624#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
625#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
626#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
627#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
628#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
629*/
630
631#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
632#define DYNAMIC_MAC_TABLE_FID 0x000F0000
633#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
634#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
635#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
636
637#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
638#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
639#define DYNAMIC_MAC_TABLE_RESERVED 0x78
640#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
641
642#define DYNAMIC_MAC_FID_SHIFT 16
643#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
644#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
645#define DYNAMIC_MAC_ENTRIES_SHIFT 24
646#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
647
648/*
649#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
650#define MIB_COUNTER_VALID 00-00000000-40000000
651#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
652*/
653
654#define MIB_COUNTER_VALUE 0x3FFFFFFF
655#define MIB_COUNTER_VALID 0x40000000
656#define MIB_COUNTER_OVERFLOW 0x80000000
657
658#define MIB_PACKET_DROPPED 0x0000FFFF
659
660#define KS_MIB_PACKET_DROPPED_TX_0 0x100
661#define KS_MIB_PACKET_DROPPED_TX_1 0x101
662#define KS_MIB_PACKET_DROPPED_TX 0x102
663#define KS_MIB_PACKET_DROPPED_RX_0 0x103
664#define KS_MIB_PACKET_DROPPED_RX_1 0x104
665#define KS_MIB_PACKET_DROPPED_RX 0x105
666
667/* Change default LED mode. */
668#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
669
670#define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
671
672#define MAX_ETHERNET_BODY_SIZE 1500
673#define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
674
675#define MAX_ETHERNET_PACKET_SIZE \
676 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
677
678#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
679#define MAX_RX_BUF_SIZE (1912 + 4)
680
681#define ADDITIONAL_ENTRIES 16
682#define MAX_MULTICAST_LIST 32
683
684#define HW_MULTICAST_SIZE 8
685
686#define HW_TO_DEV_PORT(port) (port - 1)
687
688enum {
689 media_connected,
690 media_disconnected
691};
692
693enum {
694 OID_COUNTER_UNKOWN,
695
696 OID_COUNTER_FIRST,
697
698 /* total transmit errors */
699 OID_COUNTER_XMIT_ERROR,
700
701 /* total receive errors */
702 OID_COUNTER_RCV_ERROR,
703
704 OID_COUNTER_LAST
705};
706
707/*
708 * Hardware descriptor definitions
709 */
710
711#define DESC_ALIGNMENT 16
712#define BUFFER_ALIGNMENT 8
713
714#define NUM_OF_RX_DESC 64
715#define NUM_OF_TX_DESC 64
716
717#define KS_DESC_RX_FRAME_LEN 0x000007FF
718#define KS_DESC_RX_FRAME_TYPE 0x00008000
719#define KS_DESC_RX_ERROR_CRC 0x00010000
720#define KS_DESC_RX_ERROR_RUNT 0x00020000
721#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
722#define KS_DESC_RX_ERROR_PHY 0x00080000
723#define KS884X_DESC_RX_PORT_MASK 0x00300000
724#define KS_DESC_RX_MULTICAST 0x01000000
725#define KS_DESC_RX_ERROR 0x02000000
726#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
727#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
728#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
729#define KS_DESC_RX_LAST 0x20000000
730#define KS_DESC_RX_FIRST 0x40000000
731#define KS_DESC_RX_ERROR_COND \
732 (KS_DESC_RX_ERROR_CRC | \
733 KS_DESC_RX_ERROR_RUNT | \
734 KS_DESC_RX_ERROR_PHY | \
735 KS_DESC_RX_ERROR_TOO_LONG)
736
737#define KS_DESC_HW_OWNED 0x80000000
738
739#define KS_DESC_BUF_SIZE 0x000007FF
740#define KS884X_DESC_TX_PORT_MASK 0x00300000
741#define KS_DESC_END_OF_RING 0x02000000
742#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
743#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
744#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
745#define KS_DESC_TX_LAST 0x20000000
746#define KS_DESC_TX_FIRST 0x40000000
747#define KS_DESC_TX_INTERRUPT 0x80000000
748
749#define KS_DESC_PORT_SHIFT 20
750
751#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
752
753#define KS_DESC_TX_MASK \
754 (KS_DESC_TX_INTERRUPT | \
755 KS_DESC_TX_FIRST | \
756 KS_DESC_TX_LAST | \
757 KS_DESC_TX_CSUM_GEN_IP | \
758 KS_DESC_TX_CSUM_GEN_TCP | \
759 KS_DESC_TX_CSUM_GEN_UDP | \
760 KS_DESC_BUF_SIZE)
761
762struct ksz_desc_rx_stat {
763#ifdef __BIG_ENDIAN_BITFIELD
764 u32 hw_owned:1;
765 u32 first_desc:1;
766 u32 last_desc:1;
767 u32 csum_err_ip:1;
768 u32 csum_err_tcp:1;
769 u32 csum_err_udp:1;
770 u32 error:1;
771 u32 multicast:1;
772 u32 src_port:4;
773 u32 err_phy:1;
774 u32 err_too_long:1;
775 u32 err_runt:1;
776 u32 err_crc:1;
777 u32 frame_type:1;
778 u32 reserved1:4;
779 u32 frame_len:11;
780#else
781 u32 frame_len:11;
782 u32 reserved1:4;
783 u32 frame_type:1;
784 u32 err_crc:1;
785 u32 err_runt:1;
786 u32 err_too_long:1;
787 u32 err_phy:1;
788 u32 src_port:4;
789 u32 multicast:1;
790 u32 error:1;
791 u32 csum_err_udp:1;
792 u32 csum_err_tcp:1;
793 u32 csum_err_ip:1;
794 u32 last_desc:1;
795 u32 first_desc:1;
796 u32 hw_owned:1;
797#endif
798};
799
800struct ksz_desc_tx_stat {
801#ifdef __BIG_ENDIAN_BITFIELD
802 u32 hw_owned:1;
803 u32 reserved1:31;
804#else
805 u32 reserved1:31;
806 u32 hw_owned:1;
807#endif
808};
809
810struct ksz_desc_rx_buf {
811#ifdef __BIG_ENDIAN_BITFIELD
812 u32 reserved4:6;
813 u32 end_of_ring:1;
814 u32 reserved3:14;
815 u32 buf_size:11;
816#else
817 u32 buf_size:11;
818 u32 reserved3:14;
819 u32 end_of_ring:1;
820 u32 reserved4:6;
821#endif
822};
823
824struct ksz_desc_tx_buf {
825#ifdef __BIG_ENDIAN_BITFIELD
826 u32 intr:1;
827 u32 first_seg:1;
828 u32 last_seg:1;
829 u32 csum_gen_ip:1;
830 u32 csum_gen_tcp:1;
831 u32 csum_gen_udp:1;
832 u32 end_of_ring:1;
833 u32 reserved4:1;
834 u32 dest_port:4;
835 u32 reserved3:9;
836 u32 buf_size:11;
837#else
838 u32 buf_size:11;
839 u32 reserved3:9;
840 u32 dest_port:4;
841 u32 reserved4:1;
842 u32 end_of_ring:1;
843 u32 csum_gen_udp:1;
844 u32 csum_gen_tcp:1;
845 u32 csum_gen_ip:1;
846 u32 last_seg:1;
847 u32 first_seg:1;
848 u32 intr:1;
849#endif
850};
851
852union desc_stat {
853 struct ksz_desc_rx_stat rx;
854 struct ksz_desc_tx_stat tx;
855 u32 data;
856};
857
858union desc_buf {
859 struct ksz_desc_rx_buf rx;
860 struct ksz_desc_tx_buf tx;
861 u32 data;
862};
863
864/**
865 * struct ksz_hw_desc - Hardware descriptor data structure
866 * @ctrl: Descriptor control value.
867 * @buf: Descriptor buffer value.
868 * @addr: Physical address of memory buffer.
869 * @next: Pointer to next hardware descriptor.
870 */
871struct ksz_hw_desc {
872 union desc_stat ctrl;
873 union desc_buf buf;
874 u32 addr;
875 u32 next;
876};
877
878/**
879 * struct ksz_sw_desc - Software descriptor data structure
880 * @ctrl: Descriptor control value.
881 * @buf: Descriptor buffer value.
882 * @buf_size: Current buffers size value in hardware descriptor.
883 */
884struct ksz_sw_desc {
885 union desc_stat ctrl;
886 union desc_buf buf;
887 u32 buf_size;
888};
889
890/**
891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
892 * @skb: Associated socket buffer.
893 * @dma: Associated physical DMA address.
894 * @len: Actual len used.
895 */
896struct ksz_dma_buf {
897 struct sk_buff *skb;
898 dma_addr_t dma;
899 int len;
900};
901
902/**
903 * struct ksz_desc - Descriptor structure
904 * @phw: Hardware descriptor pointer to uncached physical memory.
905 * @sw: Cached memory to hold hardware descriptor values for
906 * manipulation.
907 * @dma_buf: Operating system dependent data structure to hold physical
908 * memory buffer allocation information.
909 */
910struct ksz_desc {
911 struct ksz_hw_desc *phw;
912 struct ksz_sw_desc sw;
913 struct ksz_dma_buf dma_buf;
914};
915
916#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
917
918/**
919 * struct ksz_desc_info - Descriptor information data structure
920 * @ring: First descriptor in the ring.
921 * @cur: Current descriptor being manipulated.
922 * @ring_virt: First hardware descriptor in the ring.
923 * @ring_phys: The physical address of the first descriptor of the ring.
924 * @size: Size of hardware descriptor.
925 * @alloc: Number of descriptors allocated.
926 * @avail: Number of descriptors available for use.
927 * @last: Index for last descriptor released to hardware.
928 * @next: Index for next descriptor available for use.
929 * @mask: Mask for index wrapping.
930 */
931struct ksz_desc_info {
932 struct ksz_desc *ring;
933 struct ksz_desc *cur;
934 struct ksz_hw_desc *ring_virt;
935 u32 ring_phys;
936 int size;
937 int alloc;
938 int avail;
939 int last;
940 int next;
941 int mask;
942};
943
944/*
945 * KSZ8842 switch definitions
946 */
947
948enum {
949 TABLE_STATIC_MAC = 0,
950 TABLE_VLAN,
951 TABLE_DYNAMIC_MAC,
952 TABLE_MIB
953};
954
955#define LEARNED_MAC_TABLE_ENTRIES 1024
956#define STATIC_MAC_TABLE_ENTRIES 8
957
958/**
959 * struct ksz_mac_table - Static MAC table data structure
960 * @mac_addr: MAC address to filter.
961 * @vid: VID value.
962 * @fid: FID value.
963 * @ports: Port membership.
964 * @override: Override setting.
965 * @use_fid: FID use setting.
966 * @valid: Valid setting indicating the entry is being used.
967 */
968struct ksz_mac_table {
969 u8 mac_addr[ETH_ALEN];
970 u16 vid;
971 u8 fid;
972 u8 ports;
973 u8 override:1;
974 u8 use_fid:1;
975 u8 valid:1;
976};
977
978#define VLAN_TABLE_ENTRIES 16
979
980/**
981 * struct ksz_vlan_table - VLAN table data structure
982 * @vid: VID value.
983 * @fid: FID value.
984 * @member: Port membership.
985 */
986struct ksz_vlan_table {
987 u16 vid;
988 u8 fid;
989 u8 member;
990};
991
992#define DIFFSERV_ENTRIES 64
993#define PRIO_802_1P_ENTRIES 8
994#define PRIO_QUEUES 4
995
996#define SWITCH_PORT_NUM 2
997#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
998#define HOST_MASK (1 << SWITCH_PORT_NUM)
999#define PORT_MASK 7
1000
1001#define MAIN_PORT 0
1002#define OTHER_PORT 1
1003#define HOST_PORT SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM 0x20
1006#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1010#define MIB_COUNTER_RX_UNDERSIZE 0x02
1011#define MIB_COUNTER_RX_FRAGMENT 0x03
1012#define MIB_COUNTER_RX_OVERSIZE 0x04
1013#define MIB_COUNTER_RX_JABBER 0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1015#define MIB_COUNTER_RX_CRC_ERR 0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1017#define MIB_COUNTER_RX_CTRL_8808 0x09
1018#define MIB_COUNTER_RX_PAUSE 0x0A
1019#define MIB_COUNTER_RX_BROADCAST 0x0B
1020#define MIB_COUNTER_RX_MULTICAST 0x0C
1021#define MIB_COUNTER_RX_UNICAST 0x0D
1022#define MIB_COUNTER_RX_OCTET_64 0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255 0x10
1025#define MIB_COUNTER_RX_OCTET_256_511 0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1031#define MIB_COUNTER_TX_PAUSE 0x17
1032#define MIB_COUNTER_TX_BROADCAST 0x18
1033#define MIB_COUNTER_TX_MULTICAST 0x19
1034#define MIB_COUNTER_TX_UNICAST 0x1A
1035#define MIB_COUNTER_TX_DEFERRED 0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr: Current pointer to MIB counter index.
1047 * @link_down: Indication the link has just gone down.
1048 * @state: Connection status of the port.
1049 * @mib_start: The starting counter index. Some ports do not start at 0.
1050 * @counter: 64-bit MIB counter value.
1051 * @dropped: Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values. A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected. The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected. The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064 u8 cnt_ptr;
1065 u8 link_down;
1066 u8 state;
1067 u8 mib_start;
1068
1069 u64 counter[TOTAL_PORT_COUNTER_NUM];
1070 u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid: VID value.
1076 * @member: Port membership.
1077 * @port_prio: Port priority.
1078 * @rx_rate: Receive priority rate.
1079 * @tx_rate: Transmit priority rate.
1080 * @stp_state: Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083 u16 vid;
1084 u8 member;
1085 u8 port_prio;
1086 u32 rx_rate[PRIO_QUEUES];
1087 u32 tx_rate[PRIO_QUEUES];
1088 int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table: MAC table entries information.
1094 * @vlan_table: VLAN table entries information.
1095 * @port_cfg: Port configuration information.
1096 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1097 * (bit7 ~ bit2) field.
1098 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1099 * Tag priority field.
1100 * @br_addr: Bridge address. Used for STP.
1101 * @other_addr: Other MAC address. Used for multiple network device mode.
1102 * @broad_per: Broadcast storm percentage.
1103 * @member: Current port membership. Used for STP.
1104 */
1105struct ksz_switch {
1106 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110 u8 diffserv[DIFFSERV_ENTRIES];
1111 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113 u8 br_addr[ETH_ALEN];
1114 u8 other_addr[ETH_ALEN];
1115
1116 u8 broad_per;
1117 u8 member;
1118};
1119
1120#define TX_RATE_UNIT 10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state: Connection status of the port.
1125 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1126 * @duplex: Duplex mode.
1127 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1128 * @partner: Auto-negotiation partner setting. Used to determine link.
1129 * @port_id: Port index to access actual hardware register.
1130 * @pdev: Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133 uint state;
1134 uint tx_rate;
1135 u8 duplex;
1136 u8 advertised;
1137 u8 partner;
1138 u8 port_id;
1139 void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE 52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING (1 << 0)
1146#define SMALL_PACKET_TX_BUG (1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1148#define RX_HUGE_FRAME (1 << 4)
1149#define STP_SUPPORT (1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL (1 << 0)
1153#define FAST_AGING (1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io: Virtual address assigned.
1158 * @ksz_switch: Pointer to KSZ8842 switch.
1159 * @port_info: Port information.
1160 * @port_mib: Port MIB information.
1161 * @dev_count: Number of network devices this hardware supports.
1162 * @dst_ports: Destination ports in switch for transmission.
1163 * @id: Hardware ID. Used for display only.
1164 * @mib_cnt: Number of MIB counters this hardware has.
1165 * @mib_port_cnt: Number of ports with MIB counters.
1166 * @tx_cfg: Cached transmit control settings.
1167 * @rx_cfg: Cached receive control settings.
1168 * @intr_mask: Current interrupt mask.
1169 * @intr_set: Current interrup set.
1170 * @intr_blocked: Interrupt blocked.
1171 * @rx_desc_info: Receive descriptor information.
1172 * @tx_desc_info: Transmit descriptor information.
1173 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1174 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1175 * @tx_size: Transmit data size. Used for TX optimization.
1176 * The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr: Permanent MAC address.
1178 * @override_addr: Overridden MAC address.
1179 * @address: Additional MAC address entries.
1180 * @addr_list_size: Additional MAC address list size.
1181 * @mac_override: Indication of MAC address overridden.
1182 * @promiscuous: Counter to keep track of promiscuous mode set.
1183 * @all_multi: Counter to keep track of all multicast mode set.
1184 * @multi_list: Multicast address entries.
1185 * @multi_bits: Cached multicast hash table settings.
1186 * @multi_list_size: Multicast address list size.
1187 * @enabled: Indication of hardware enabled.
1188 * @rx_stop: Indication of receive process stop.
1189 * @reserved2: none
1190 * @features: Hardware features to enable.
1191 * @overrides: Hardware features to override.
1192 * @parent: Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195 void __iomem *io;
1196
1197 struct ksz_switch *ksz_switch;
1198 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200 int dev_count;
1201 int dst_ports;
1202 int id;
1203 int mib_cnt;
1204 int mib_port_cnt;
1205
1206 u32 tx_cfg;
1207 u32 rx_cfg;
1208 u32 intr_mask;
1209 u32 intr_set;
1210 uint intr_blocked;
1211
1212 struct ksz_desc_info rx_desc_info;
1213 struct ksz_desc_info tx_desc_info;
1214
1215 int tx_int_cnt;
1216 int tx_int_mask;
1217 int tx_size;
1218
1219 u8 perm_addr[ETH_ALEN];
1220 u8 override_addr[ETH_ALEN];
1221 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222 u8 addr_list_size;
1223 u8 mac_override;
1224 u8 promiscuous;
1225 u8 all_multi;
1226 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227 u8 multi_bits[HW_MULTICAST_SIZE];
1228 u8 multi_list_size;
1229
1230 u8 enabled;
1231 u8 rx_stop;
1232 u8 reserved2[1];
1233
1234 uint features;
1235 uint overrides;
1236
1237 void *parent;
1238};
1239
1240enum {
1241 PHY_NO_FLOW_CTRL,
1242 PHY_FLOW_CTRL,
1243 PHY_TX_ONLY,
1244 PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1250 * duplex, and 0 for auto, which normally results in full
1251 * duplex.
1252 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 0 for auto, which normally results in 100 Mbit.
1254 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1255 * force.
1256 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1257 * control, and PHY_FLOW_CTRL for flow control.
1258 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * Mbit PHY.
1260 * @first_port: Index of first port this port supports.
1261 * @mib_port_cnt: Number of ports with MIB counters.
1262 * @port_cnt: Number of ports this port supports.
1263 * @counter: Port statistics counter.
1264 * @hw: Pointer to hardware structure.
1265 * @linked: Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268 u8 duplex;
1269 u8 speed;
1270 u8 force_link;
1271 u8 flow_ctrl;
1272
1273 int first_port;
1274 int mib_port_cnt;
1275 int port_cnt;
1276 u64 counter[OID_COUNTER_LAST];
1277
1278 struct ksz_hw *hw;
1279 struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer: Kernel timer.
1285 * @cnt: Running timer counter.
1286 * @max: Number of times to run timer; -1 for infinity.
1287 * @period: Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290 struct timer_list timer;
1291 int cnt;
1292 int max;
1293 int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr: Physical DMA address allocated.
1299 * @alloc_size: Allocation size.
1300 * @phys: Actual physical address used.
1301 * @alloc_virt: Virtual address allocated.
1302 * @virt: Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305 dma_addr_t dma_addr;
1306 uint alloc_size;
1307 uint phys;
1308 u8 *alloc_virt;
1309 u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter: Wait queue to wakeup after counters are read.
1315 * @time: Next time in jiffies to read counter.
1316 * @read: Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319 wait_queue_head_t counter;
1320 unsigned long time;
1321 int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev: Pointer to network device.
1327 * @pdev: Pointer to PCI device.
1328 * @hw: Hardware structure.
1329 * @desc_pool: Physical memory used for descriptor pool.
1330 * @hwlock: Spinlock to prevent hardware from accessing.
1331 * @lock: Mutex lock to prevent device from accessing.
1332 * @dev_rcv: Receive process function used.
1333 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index: Buffer index for receiving fragments.
1335 * @skb_len: Buffer length for receiving fragments.
1336 * @mib_read: Workqueue to read MIB counters.
1337 * @mib_timer_info: Timer to read MIB counters.
1338 * @counter: Used for MIB reading.
1339 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1340 * the maximum is MAX_RX_BUF_SIZE.
1341 * @opened: Counter to keep track of device open.
1342 * @rx_tasklet: Receive processing tasklet.
1343 * @tx_tasklet: Transmit processing tasklet.
1344 * @wol_enable: Wake-on-LAN enable set by ethtool.
1345 * @wol_support: Wake-on-LAN support used by ethtool.
1346 * @pme_wait: Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349 struct net_device *dev;
1350 struct pci_dev *pdev;
1351
1352 struct ksz_hw hw;
1353 struct ksz_shared_mem desc_pool;
1354
1355 spinlock_t hwlock;
1356 struct mutex lock;
1357
1358 int (*dev_rcv)(struct dev_info *);
1359
1360 struct sk_buff *last_skb;
1361 int skb_index;
1362 int skb_len;
1363
1364 struct work_struct mib_read;
1365 struct ksz_timer_info mib_timer_info;
1366 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368 int mtu;
1369 int opened;
1370
1371 struct tasklet_struct rx_tasklet;
1372 struct tasklet_struct tx_tasklet;
1373
1374 int wol_enable;
1375 int wol_support;
1376 unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter: Adapter device information.
1382 * @port: Port information.
1383 * @monitor_timer_info: Timer to monitor ports.
1384 * @proc_sem: Semaphore for proc accessing.
1385 * @id: Device ID.
1386 * @mii_if: MII interface information.
1387 * @advertising: Temporary variable to store advertised settings.
1388 * @msg_enable: The message flags controlling driver output.
1389 * @media_state: The connection status of the device.
1390 * @multicast: The all multicast state of the device.
1391 * @promiscuous: The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394 struct dev_info *adapter;
1395 struct ksz_port port;
1396 struct ksz_timer_info monitor_timer_info;
1397
1398 struct semaphore proc_sem;
1399 int id;
1400
1401 struct mii_if_info mii_if;
1402 u32 advertising;
1403
1404 u32 msg_enable;
1405 int media_state;
1406 int multicast;
1407 int promiscuous;
1408};
1409
1410#define DRV_NAME "KSZ884X PCI"
1411#define DEVICE_NAME "KSZ884x PCI"
1412#define DRV_VERSION "1.0.0"
1413#define DRV_RELDATE "Feb 8, 2010"
1414
1415static char version[] =
1416 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431 hw->intr_blocked = hw->intr_mask;
1432 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438 hw->intr_set = interrupt;
1439 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444 hw->intr_blocked = 0;
1445 hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450 hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455 u32 read_intr;
1456
1457 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458 hw->intr_set = read_intr & ~interrupt;
1459 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460 hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: The hardware instance.
1466 * @bit: The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473 hw->intr_mask |= bit;
1474
1475 if (!hw->intr_blocked)
1476 hw_set_intr(hw, hw->intr_mask);
1477}
1478
1479static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1480{
1481 u32 read_intr;
1482
1483 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1484 hw->intr_set = read_intr | interrupt;
1485 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1486}
1487
1488static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1489{
1490 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1491 *status = *status & hw->intr_set;
1492}
1493
1494static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1495{
1496 if (interrupt)
1497 hw_ena_intr(hw);
1498}
1499
1500/**
1501 * hw_block_intr - block hardware interrupts
1502 * @hw: The hardware instance.
1503 *
1504 * This function blocks all interrupts of the hardware and returns the current
1505 * interrupt enable mask so that interrupts can be restored later.
1506 *
1507 * Return the current interrupt enable mask.
1508 */
1509static uint hw_block_intr(struct ksz_hw *hw)
1510{
1511 uint interrupt = 0;
1512
1513 if (!hw->intr_blocked) {
1514 hw_dis_intr(hw);
1515 interrupt = hw->intr_blocked;
1516 }
1517 return interrupt;
1518}
1519
1520/*
1521 * Hardware descriptor routines
1522 */
1523
1524static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1525{
1526 status.rx.hw_owned = 0;
1527 desc->phw->ctrl.data = cpu_to_le32(status.data);
1528}
1529
1530static inline void release_desc(struct ksz_desc *desc)
1531{
1532 desc->sw.ctrl.tx.hw_owned = 1;
1533 if (desc->sw.buf_size != desc->sw.buf.data) {
1534 desc->sw.buf_size = desc->sw.buf.data;
1535 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1536 }
1537 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1538}
1539
1540static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1541{
1542 *desc = &info->ring[info->last];
1543 info->last++;
1544 info->last &= info->mask;
1545 info->avail--;
1546 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1547}
1548
1549static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1550{
1551 desc->phw->addr = cpu_to_le32(addr);
1552}
1553
1554static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1555{
1556 desc->sw.buf.rx.buf_size = len;
1557}
1558
1559static inline void get_tx_pkt(struct ksz_desc_info *info,
1560 struct ksz_desc **desc)
1561{
1562 *desc = &info->ring[info->next];
1563 info->next++;
1564 info->next &= info->mask;
1565 info->avail--;
1566 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1567}
1568
1569static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1570{
1571 desc->phw->addr = cpu_to_le32(addr);
1572}
1573
1574static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1575{
1576 desc->sw.buf.tx.buf_size = len;
1577}
1578
1579/* Switch functions */
1580
1581#define TABLE_READ 0x10
1582#define TABLE_SEL_SHIFT 2
1583
1584#define HW_DELAY(hw, reg) \
1585 do { \
1586 readw(hw->io + reg); \
1587 } while (0)
1588
1589/**
1590 * sw_r_table - read 4 bytes of data from switch table
1591 * @hw: The hardware instance.
1592 * @table: The table selector.
1593 * @addr: The address of the table entry.
1594 * @data: Buffer to store the read data.
1595 *
1596 * This routine reads 4 bytes of data from the table of the switch.
1597 * Hardware interrupts are disabled to minimize corruption of read data.
1598 */
1599static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1600{
1601 u16 ctrl_addr;
1602 uint interrupt;
1603
1604 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1605
1606 interrupt = hw_block_intr(hw);
1607
1608 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1609 HW_DELAY(hw, KS884X_IACR_OFFSET);
1610 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1611
1612 hw_restore_intr(hw, interrupt);
1613}
1614
1615/**
1616 * sw_w_table_64 - write 8 bytes of data to the switch table
1617 * @hw: The hardware instance.
1618 * @table: The table selector.
1619 * @addr: The address of the table entry.
1620 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1621 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1622 *
1623 * This routine writes 8 bytes of data to the table of the switch.
1624 * Hardware interrupts are disabled to minimize corruption of written data.
1625 */
1626static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1627 u32 data_lo)
1628{
1629 u16 ctrl_addr;
1630 uint interrupt;
1631
1632 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1633
1634 interrupt = hw_block_intr(hw);
1635
1636 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1637 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1638
1639 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1640 HW_DELAY(hw, KS884X_IACR_OFFSET);
1641
1642 hw_restore_intr(hw, interrupt);
1643}
1644
1645/**
1646 * sw_w_sta_mac_table - write to the static MAC table
1647 * @hw: The hardware instance.
1648 * @addr: The address of the table entry.
1649 * @mac_addr: The MAC address.
1650 * @ports: The port members.
1651 * @override: The flag to override the port receive/transmit settings.
1652 * @valid: The flag to indicate entry is valid.
1653 * @use_fid: The flag to indicate the FID is valid.
1654 * @fid: The FID value.
1655 *
1656 * This routine writes an entry of the static MAC table of the switch. It
1657 * calls sw_w_table_64() to write the data.
1658 */
1659static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1660 u8 ports, int override, int valid, int use_fid, u8 fid)
1661{
1662 u32 data_hi;
1663 u32 data_lo;
1664
1665 data_lo = ((u32) mac_addr[2] << 24) |
1666 ((u32) mac_addr[3] << 16) |
1667 ((u32) mac_addr[4] << 8) | mac_addr[5];
1668 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1669 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1670
1671 if (override)
1672 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1673 if (use_fid) {
1674 data_hi |= STATIC_MAC_TABLE_USE_FID;
1675 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1676 }
1677 if (valid)
1678 data_hi |= STATIC_MAC_TABLE_VALID;
1679
1680 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1681}
1682
1683/**
1684 * sw_r_vlan_table - read from the VLAN table
1685 * @hw: The hardware instance.
1686 * @addr: The address of the table entry.
1687 * @vid: Buffer to store the VID.
1688 * @fid: Buffer to store the VID.
1689 * @member: Buffer to store the port membership.
1690 *
1691 * This function reads an entry of the VLAN table of the switch. It calls
1692 * sw_r_table() to get the data.
1693 *
1694 * Return 0 if the entry is valid; otherwise -1.
1695 */
1696static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1697 u8 *member)
1698{
1699 u32 data;
1700
1701 sw_r_table(hw, TABLE_VLAN, addr, &data);
1702 if (data & VLAN_TABLE_VALID) {
1703 *vid = (u16)(data & VLAN_TABLE_VID);
1704 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1705 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1706 VLAN_TABLE_MEMBERSHIP_SHIFT);
1707 return 0;
1708 }
1709 return -1;
1710}
1711
1712/**
1713 * port_r_mib_cnt - read MIB counter
1714 * @hw: The hardware instance.
1715 * @port: The port index.
1716 * @addr: The address of the counter.
1717 * @cnt: Buffer to store the counter.
1718 *
1719 * This routine reads a MIB counter of the port.
1720 * Hardware interrupts are disabled to minimize corruption of read data.
1721 */
1722static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1723{
1724 u32 data;
1725 u16 ctrl_addr;
1726 uint interrupt;
1727 int timeout;
1728
1729 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1730
1731 interrupt = hw_block_intr(hw);
1732
1733 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1734 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1735 HW_DELAY(hw, KS884X_IACR_OFFSET);
1736
1737 for (timeout = 100; timeout > 0; timeout--) {
1738 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1739
1740 if (data & MIB_COUNTER_VALID) {
1741 if (data & MIB_COUNTER_OVERFLOW)
1742 *cnt += MIB_COUNTER_VALUE + 1;
1743 *cnt += data & MIB_COUNTER_VALUE;
1744 break;
1745 }
1746 }
1747
1748 hw_restore_intr(hw, interrupt);
1749}
1750
1751/**
1752 * port_r_mib_pkt - read dropped packet counts
1753 * @hw: The hardware instance.
1754 * @port: The port index.
1755 * @last: last one
1756 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1757 *
1758 * This routine reads the dropped packet counts of the port.
1759 * Hardware interrupts are disabled to minimize corruption of read data.
1760 */
1761static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1762{
1763 u32 cur;
1764 u32 data;
1765 u16 ctrl_addr;
1766 uint interrupt;
1767 int index;
1768
1769 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1770 do {
1771 interrupt = hw_block_intr(hw);
1772
1773 ctrl_addr = (u16) index;
1774 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1775 << 8);
1776 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1777 HW_DELAY(hw, KS884X_IACR_OFFSET);
1778 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1779
1780 hw_restore_intr(hw, interrupt);
1781
1782 data &= MIB_PACKET_DROPPED;
1783 cur = *last;
1784 if (data != cur) {
1785 *last = data;
1786 if (data < cur)
1787 data += MIB_PACKET_DROPPED + 1;
1788 data -= cur;
1789 *cnt += data;
1790 }
1791 ++last;
1792 ++cnt;
1793 index -= KS_MIB_PACKET_DROPPED_TX -
1794 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1795 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1796}
1797
1798/**
1799 * port_r_cnt - read MIB counters periodically
1800 * @hw: The hardware instance.
1801 * @port: The port index.
1802 *
1803 * This routine is used to read the counters of the port periodically to avoid
1804 * counter overflow. The hardware should be acquired first before calling this
1805 * routine.
1806 *
1807 * Return non-zero when not all counters not read.
1808 */
1809static int port_r_cnt(struct ksz_hw *hw, int port)
1810{
1811 struct ksz_port_mib *mib = &hw->port_mib[port];
1812
1813 if (mib->mib_start < PORT_COUNTER_NUM)
1814 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1815 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1816 &mib->counter[mib->cnt_ptr]);
1817 ++mib->cnt_ptr;
1818 }
1819 if (hw->mib_cnt > PORT_COUNTER_NUM)
1820 port_r_mib_pkt(hw, port, mib->dropped,
1821 &mib->counter[PORT_COUNTER_NUM]);
1822 mib->cnt_ptr = 0;
1823 return 0;
1824}
1825
1826/**
1827 * port_init_cnt - initialize MIB counter values
1828 * @hw: The hardware instance.
1829 * @port: The port index.
1830 *
1831 * This routine is used to initialize all counters to zero if the hardware
1832 * cannot do it after reset.
1833 */
1834static void port_init_cnt(struct ksz_hw *hw, int port)
1835{
1836 struct ksz_port_mib *mib = &hw->port_mib[port];
1837
1838 mib->cnt_ptr = 0;
1839 if (mib->mib_start < PORT_COUNTER_NUM)
1840 do {
1841 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1842 &mib->counter[mib->cnt_ptr]);
1843 ++mib->cnt_ptr;
1844 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1845 if (hw->mib_cnt > PORT_COUNTER_NUM)
1846 port_r_mib_pkt(hw, port, mib->dropped,
1847 &mib->counter[PORT_COUNTER_NUM]);
1848 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1849 mib->cnt_ptr = 0;
1850}
1851
1852/*
1853 * Port functions
1854 */
1855
1856/**
1857 * port_chk - check port register bits
1858 * @hw: The hardware instance.
1859 * @port: The port index.
1860 * @offset: The offset of the port register.
1861 * @bits: The data bits to check.
1862 *
1863 * This function checks whether the specified bits of the port register are set
1864 * or not.
1865 *
1866 * Return 0 if the bits are not set.
1867 */
1868static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1869{
1870 u32 addr;
1871 u16 data;
1872
1873 PORT_CTRL_ADDR(port, addr);
1874 addr += offset;
1875 data = readw(hw->io + addr);
1876 return (data & bits) == bits;
1877}
1878
1879/**
1880 * port_cfg - set port register bits
1881 * @hw: The hardware instance.
1882 * @port: The port index.
1883 * @offset: The offset of the port register.
1884 * @bits: The data bits to set.
1885 * @set: The flag indicating whether the bits are to be set or not.
1886 *
1887 * This routine sets or resets the specified bits of the port register.
1888 */
1889static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1890 int set)
1891{
1892 u32 addr;
1893 u16 data;
1894
1895 PORT_CTRL_ADDR(port, addr);
1896 addr += offset;
1897 data = readw(hw->io + addr);
1898 if (set)
1899 data |= bits;
1900 else
1901 data &= ~bits;
1902 writew(data, hw->io + addr);
1903}
1904
1905/**
1906 * port_chk_shift - check port bit
1907 * @hw: The hardware instance.
1908 * @port: The port index.
1909 * @addr: The offset of the register.
1910 * @shift: Number of bits to shift.
1911 *
1912 * This function checks whether the specified port is set in the register or
1913 * not.
1914 *
1915 * Return 0 if the port is not set.
1916 */
1917static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1918{
1919 u16 data;
1920 u16 bit = 1 << port;
1921
1922 data = readw(hw->io + addr);
1923 data >>= shift;
1924 return (data & bit) == bit;
1925}
1926
1927/**
1928 * port_cfg_shift - set port bit
1929 * @hw: The hardware instance.
1930 * @port: The port index.
1931 * @addr: The offset of the register.
1932 * @shift: Number of bits to shift.
1933 * @set: The flag indicating whether the port is to be set or not.
1934 *
1935 * This routine sets or resets the specified port in the register.
1936 */
1937static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
1938 int set)
1939{
1940 u16 data;
1941 u16 bits = 1 << port;
1942
1943 data = readw(hw->io + addr);
1944 bits <<= shift;
1945 if (set)
1946 data |= bits;
1947 else
1948 data &= ~bits;
1949 writew(data, hw->io + addr);
1950}
1951
1952/**
1953 * port_r8 - read byte from port register
1954 * @hw: The hardware instance.
1955 * @port: The port index.
1956 * @offset: The offset of the port register.
1957 * @data: Buffer to store the data.
1958 *
1959 * This routine reads a byte from the port register.
1960 */
1961static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1962{
1963 u32 addr;
1964
1965 PORT_CTRL_ADDR(port, addr);
1966 addr += offset;
1967 *data = readb(hw->io + addr);
1968}
1969
1970/**
1971 * port_r16 - read word from port register.
1972 * @hw: The hardware instance.
1973 * @port: The port index.
1974 * @offset: The offset of the port register.
1975 * @data: Buffer to store the data.
1976 *
1977 * This routine reads a word from the port register.
1978 */
1979static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1980{
1981 u32 addr;
1982
1983 PORT_CTRL_ADDR(port, addr);
1984 addr += offset;
1985 *data = readw(hw->io + addr);
1986}
1987
1988/**
1989 * port_w16 - write word to port register.
1990 * @hw: The hardware instance.
1991 * @port: The port index.
1992 * @offset: The offset of the port register.
1993 * @data: Data to write.
1994 *
1995 * This routine writes a word to the port register.
1996 */
1997static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1998{
1999 u32 addr;
2000
2001 PORT_CTRL_ADDR(port, addr);
2002 addr += offset;
2003 writew(data, hw->io + addr);
2004}
2005
2006/**
2007 * sw_chk - check switch register bits
2008 * @hw: The hardware instance.
2009 * @addr: The address of the switch register.
2010 * @bits: The data bits to check.
2011 *
2012 * This function checks whether the specified bits of the switch register are
2013 * set or not.
2014 *
2015 * Return 0 if the bits are not set.
2016 */
2017static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2018{
2019 u16 data;
2020
2021 data = readw(hw->io + addr);
2022 return (data & bits) == bits;
2023}
2024
2025/**
2026 * sw_cfg - set switch register bits
2027 * @hw: The hardware instance.
2028 * @addr: The address of the switch register.
2029 * @bits: The data bits to set.
2030 * @set: The flag indicating whether the bits are to be set or not.
2031 *
2032 * This function sets or resets the specified bits of the switch register.
2033 */
2034static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2035{
2036 u16 data;
2037
2038 data = readw(hw->io + addr);
2039 if (set)
2040 data |= bits;
2041 else
2042 data &= ~bits;
2043 writew(data, hw->io + addr);
2044}
2045
2046/* Bandwidth */
2047
2048static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2049{
2050 port_cfg(hw, p,
2051 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2052}
2053
2054static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2055{
2056 return port_chk(hw, p,
2057 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2058}
2059
2060/* Driver set switch broadcast storm protection at 10% rate. */
2061#define BROADCAST_STORM_PROTECTION_RATE 10
2062
2063/* 148,800 frames * 67 ms / 100 */
2064#define BROADCAST_STORM_VALUE 9969
2065
2066/**
2067 * sw_cfg_broad_storm - configure broadcast storm threshold
2068 * @hw: The hardware instance.
2069 * @percent: Broadcast storm threshold in percent of transmit rate.
2070 *
2071 * This routine configures the broadcast storm threshold of the switch.
2072 */
2073static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2074{
2075 u16 data;
2076 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2077
2078 if (value > BROADCAST_STORM_RATE)
2079 value = BROADCAST_STORM_RATE;
2080
2081 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2082 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2083 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2084 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2085}
2086
2087/**
2088 * sw_get_broad_storm - get broadcast storm threshold
2089 * @hw: The hardware instance.
2090 * @percent: Buffer to store the broadcast storm threshold percentage.
2091 *
2092 * This routine retrieves the broadcast storm threshold of the switch.
2093 */
2094static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2095{
2096 int num;
2097 u16 data;
2098
2099 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2100 num = (data & BROADCAST_STORM_RATE_HI);
2101 num <<= 8;
2102 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2103 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2104 *percent = (u8) num;
2105}
2106
2107/**
2108 * sw_dis_broad_storm - disable broadstorm
2109 * @hw: The hardware instance.
2110 * @port: The port index.
2111 *
2112 * This routine disables the broadcast storm limit function of the switch.
2113 */
2114static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2115{
2116 port_cfg_broad_storm(hw, port, 0);
2117}
2118
2119/**
2120 * sw_ena_broad_storm - enable broadcast storm
2121 * @hw: The hardware instance.
2122 * @port: The port index.
2123 *
2124 * This routine enables the broadcast storm limit function of the switch.
2125 */
2126static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2127{
2128 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2129 port_cfg_broad_storm(hw, port, 1);
2130}
2131
2132/**
2133 * sw_init_broad_storm - initialize broadcast storm
2134 * @hw: The hardware instance.
2135 *
2136 * This routine initializes the broadcast storm limit function of the switch.
2137 */
2138static void sw_init_broad_storm(struct ksz_hw *hw)
2139{
2140 int port;
2141
2142 hw->ksz_switch->broad_per = 1;
2143 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2144 for (port = 0; port < TOTAL_PORT_NUM; port++)
2145 sw_dis_broad_storm(hw, port);
2146 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2147}
2148
2149/**
2150 * hw_cfg_broad_storm - configure broadcast storm
2151 * @hw: The hardware instance.
2152 * @percent: Broadcast storm threshold in percent of transmit rate.
2153 *
2154 * This routine configures the broadcast storm threshold of the switch.
2155 * It is called by user functions. The hardware should be acquired first.
2156 */
2157static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2158{
2159 if (percent > 100)
2160 percent = 100;
2161
2162 sw_cfg_broad_storm(hw, percent);
2163 sw_get_broad_storm(hw, &percent);
2164 hw->ksz_switch->broad_per = percent;
2165}
2166
2167/**
2168 * sw_dis_prio_rate - disable switch priority rate
2169 * @hw: The hardware instance.
2170 * @port: The port index.
2171 *
2172 * This routine disables the priority rate function of the switch.
2173 */
2174static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2175{
2176 u32 addr;
2177
2178 PORT_CTRL_ADDR(port, addr);
2179 addr += KS8842_PORT_IN_RATE_OFFSET;
2180 writel(0, hw->io + addr);
2181}
2182
2183/**
2184 * sw_init_prio_rate - initialize switch prioirty rate
2185 * @hw: The hardware instance.
2186 *
2187 * This routine initializes the priority rate function of the switch.
2188 */
2189static void sw_init_prio_rate(struct ksz_hw *hw)
2190{
2191 int port;
2192 int prio;
2193 struct ksz_switch *sw = hw->ksz_switch;
2194
2195 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2196 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2197 sw->port_cfg[port].rx_rate[prio] =
2198 sw->port_cfg[port].tx_rate[prio] = 0;
2199 }
2200 sw_dis_prio_rate(hw, port);
2201 }
2202}
2203
2204/* Communication */
2205
2206static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2207{
2208 port_cfg(hw, p,
2209 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2210}
2211
2212static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2213{
2214 port_cfg(hw, p,
2215 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2216}
2217
2218static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2219{
2220 return port_chk(hw, p,
2221 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2222}
2223
2224static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2225{
2226 return port_chk(hw, p,
2227 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2228}
2229
2230/* Spanning Tree */
2231
2232static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2233{
2234 port_cfg(hw, p,
2235 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2236}
2237
2238static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2239{
2240 port_cfg(hw, p,
2241 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2242}
2243
2244static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2245{
2246 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2247}
2248
2249static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2250{
2251 if (!(hw->overrides & FAST_AGING)) {
2252 sw_cfg_fast_aging(hw, 1);
2253 mdelay(1);
2254 sw_cfg_fast_aging(hw, 0);
2255 }
2256}
2257
2258/* VLAN */
2259
2260static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2261{
2262 port_cfg(hw, p,
2263 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2264}
2265
2266static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2267{
2268 port_cfg(hw, p,
2269 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2270}
2271
2272static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2273{
2274 return port_chk(hw, p,
2275 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2276}
2277
2278static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2279{
2280 return port_chk(hw, p,
2281 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2282}
2283
2284static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2285{
2286 port_cfg(hw, p,
2287 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2288}
2289
2290static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2291{
2292 port_cfg(hw, p,
2293 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2294}
2295
2296static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2297{
2298 return port_chk(hw, p,
2299 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2300}
2301
2302static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2303{
2304 return port_chk(hw, p,
2305 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2306}
2307
2308/* Mirroring */
2309
2310static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2311{
2312 port_cfg(hw, p,
2313 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2314}
2315
2316static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2317{
2318 port_cfg(hw, p,
2319 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2320}
2321
2322static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2323{
2324 port_cfg(hw, p,
2325 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2326}
2327
2328static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2329{
2330 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2331}
2332
2333static void sw_init_mirror(struct ksz_hw *hw)
2334{
2335 int port;
2336
2337 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2338 port_cfg_mirror_sniffer(hw, port, 0);
2339 port_cfg_mirror_rx(hw, port, 0);
2340 port_cfg_mirror_tx(hw, port, 0);
2341 }
2342 sw_cfg_mirror_rx_tx(hw, 0);
2343}
2344
2345static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2346{
2347 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2348 SWITCH_UNK_DEF_PORT_ENABLE, set);
2349}
2350
2351static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2352{
2353 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2354 SWITCH_UNK_DEF_PORT_ENABLE);
2355}
2356
2357static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2358{
2359 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2360}
2361
2362static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2363{
2364 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2365}
2366
2367/* Priority */
2368
2369static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2370{
2371 port_cfg(hw, p,
2372 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2373}
2374
2375static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2376{
2377 port_cfg(hw, p,
2378 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2379}
2380
2381static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2382{
2383 port_cfg(hw, p,
2384 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2385}
2386
2387static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2388{
2389 port_cfg(hw, p,
2390 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2391}
2392
2393static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2394{
2395 return port_chk(hw, p,
2396 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2397}
2398
2399static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2400{
2401 return port_chk(hw, p,
2402 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2403}
2404
2405static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2406{
2407 return port_chk(hw, p,
2408 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2409}
2410
2411static inline int port_chk_prio(struct ksz_hw *hw, int p)
2412{
2413 return port_chk(hw, p,
2414 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2415}
2416
2417/**
2418 * sw_dis_diffserv - disable switch DiffServ priority
2419 * @hw: The hardware instance.
2420 * @port: The port index.
2421 *
2422 * This routine disables the DiffServ priority function of the switch.
2423 */
2424static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2425{
2426 port_cfg_diffserv(hw, port, 0);
2427}
2428
2429/**
2430 * sw_dis_802_1p - disable switch 802.1p priority
2431 * @hw: The hardware instance.
2432 * @port: The port index.
2433 *
2434 * This routine disables the 802.1p priority function of the switch.
2435 */
2436static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2437{
2438 port_cfg_802_1p(hw, port, 0);
2439}
2440
2441/**
2442 * sw_cfg_replace_null_vid -
2443 * @hw: The hardware instance.
2444 * @set: The flag to disable or enable.
2445 *
2446 */
2447static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2448{
2449 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2450}
2451
2452/**
2453 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2454 * @hw: The hardware instance.
2455 * @port: The port index.
2456 * @set: The flag to disable or enable.
2457 *
2458 * This routine enables the 802.1p priority re-mapping function of the switch.
2459 * That allows 802.1p priority field to be replaced with the port's default
2460 * tag's priority value if the ingress packet's 802.1p priority has a higher
2461 * priority than port's default tag's priority.
2462 */
2463static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2464{
2465 port_cfg_replace_vid(hw, port, set);
2466}
2467
2468/**
2469 * sw_cfg_port_based - configure switch port based priority
2470 * @hw: The hardware instance.
2471 * @port: The port index.
2472 * @prio: The priority to set.
2473 *
2474 * This routine configures the port based priority of the switch.
2475 */
2476static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2477{
2478 u16 data;
2479
2480 if (prio > PORT_BASED_PRIORITY_BASE)
2481 prio = PORT_BASED_PRIORITY_BASE;
2482
2483 hw->ksz_switch->port_cfg[port].port_prio = prio;
2484
2485 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2486 data &= ~PORT_BASED_PRIORITY_MASK;
2487 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2488 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2489}
2490
2491/**
2492 * sw_dis_multi_queue - disable transmit multiple queues
2493 * @hw: The hardware instance.
2494 * @port: The port index.
2495 *
2496 * This routine disables the transmit multiple queues selection of the switch
2497 * port. Only single transmit queue on the port.
2498 */
2499static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2500{
2501 port_cfg_prio(hw, port, 0);
2502}
2503
2504/**
2505 * sw_init_prio - initialize switch priority
2506 * @hw: The hardware instance.
2507 *
2508 * This routine initializes the switch QoS priority functions.
2509 */
2510static void sw_init_prio(struct ksz_hw *hw)
2511{
2512 int port;
2513 int tos;
2514 struct ksz_switch *sw = hw->ksz_switch;
2515
2516 /*
2517 * Init all the 802.1p tag priority value to be assigned to different
2518 * priority queue.
2519 */
2520 sw->p_802_1p[0] = 0;
2521 sw->p_802_1p[1] = 0;
2522 sw->p_802_1p[2] = 1;
2523 sw->p_802_1p[3] = 1;
2524 sw->p_802_1p[4] = 2;
2525 sw->p_802_1p[5] = 2;
2526 sw->p_802_1p[6] = 3;
2527 sw->p_802_1p[7] = 3;
2528
2529 /*
2530 * Init all the DiffServ priority value to be assigned to priority
2531 * queue 0.
2532 */
2533 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2534 sw->diffserv[tos] = 0;
2535
2536 /* All QoS functions disabled. */
2537 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2538 sw_dis_multi_queue(hw, port);
2539 sw_dis_diffserv(hw, port);
2540 sw_dis_802_1p(hw, port);
2541 sw_cfg_replace_vid(hw, port, 0);
2542
2543 sw->port_cfg[port].port_prio = 0;
2544 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2545 }
2546 sw_cfg_replace_null_vid(hw, 0);
2547}
2548
2549/**
2550 * port_get_def_vid - get port default VID.
2551 * @hw: The hardware instance.
2552 * @port: The port index.
2553 * @vid: Buffer to store the VID.
2554 *
2555 * This routine retrieves the default VID of the port.
2556 */
2557static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2558{
2559 u32 addr;
2560
2561 PORT_CTRL_ADDR(port, addr);
2562 addr += KS8842_PORT_CTRL_VID_OFFSET;
2563 *vid = readw(hw->io + addr);
2564}
2565
2566/**
2567 * sw_init_vlan - initialize switch VLAN
2568 * @hw: The hardware instance.
2569 *
2570 * This routine initializes the VLAN function of the switch.
2571 */
2572static void sw_init_vlan(struct ksz_hw *hw)
2573{
2574 int port;
2575 int entry;
2576 struct ksz_switch *sw = hw->ksz_switch;
2577
2578 /* Read 16 VLAN entries from device's VLAN table. */
2579 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2580 sw_r_vlan_table(hw, entry,
2581 &sw->vlan_table[entry].vid,
2582 &sw->vlan_table[entry].fid,
2583 &sw->vlan_table[entry].member);
2584 }
2585
2586 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2587 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2588 sw->port_cfg[port].member = PORT_MASK;
2589 }
2590}
2591
2592/**
2593 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2594 * @hw: The hardware instance.
2595 * @port: The port index.
2596 * @member: The port-based VLAN membership.
2597 *
2598 * This routine configures the port-based VLAN membership of the port.
2599 */
2600static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2601{
2602 u32 addr;
2603 u8 data;
2604
2605 PORT_CTRL_ADDR(port, addr);
2606 addr += KS8842_PORT_CTRL_2_OFFSET;
2607
2608 data = readb(hw->io + addr);
2609 data &= ~PORT_VLAN_MEMBERSHIP;
2610 data |= (member & PORT_MASK);
2611 writeb(data, hw->io + addr);
2612
2613 hw->ksz_switch->port_cfg[port].member = member;
2614}
2615
2616/**
2617 * sw_get_addr - get the switch MAC address.
2618 * @hw: The hardware instance.
2619 * @mac_addr: Buffer to store the MAC address.
2620 *
2621 * This function retrieves the MAC address of the switch.
2622 */
2623static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2624{
2625 int i;
2626
2627 for (i = 0; i < 6; i += 2) {
2628 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2629 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2630 }
2631}
2632
2633/**
2634 * sw_set_addr - configure switch MAC address
2635 * @hw: The hardware instance.
2636 * @mac_addr: The MAC address.
2637 *
2638 * This function configures the MAC address of the switch.
2639 */
2640static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2641{
2642 int i;
2643
2644 for (i = 0; i < 6; i += 2) {
2645 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2646 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2647 }
2648}
2649
2650/**
2651 * sw_set_global_ctrl - set switch global control
2652 * @hw: The hardware instance.
2653 *
2654 * This routine sets the global control of the switch function.
2655 */
2656static void sw_set_global_ctrl(struct ksz_hw *hw)
2657{
2658 u16 data;
2659
2660 /* Enable switch MII flow control. */
2661 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2662 data |= SWITCH_FLOW_CTRL;
2663 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2664
2665 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2666
2667 /* Enable aggressive back off algorithm in half duplex mode. */
2668 data |= SWITCH_AGGR_BACKOFF;
2669
2670 /* Enable automatic fast aging when link changed detected. */
2671 data |= SWITCH_AGING_ENABLE;
2672 data |= SWITCH_LINK_AUTO_AGING;
2673
2674 if (hw->overrides & FAST_AGING)
2675 data |= SWITCH_FAST_AGING;
2676 else
2677 data &= ~SWITCH_FAST_AGING;
2678 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2679
2680 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2681
2682 /* Enable no excessive collision drop. */
2683 data |= NO_EXC_COLLISION_DROP;
2684 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2685}
2686
2687enum {
2688 STP_STATE_DISABLED = 0,
2689 STP_STATE_LISTENING,
2690 STP_STATE_LEARNING,
2691 STP_STATE_FORWARDING,
2692 STP_STATE_BLOCKED,
2693 STP_STATE_SIMPLE
2694};
2695
2696/**
2697 * port_set_stp_state - configure port spanning tree state
2698 * @hw: The hardware instance.
2699 * @port: The port index.
2700 * @state: The spanning tree state.
2701 *
2702 * This routine configures the spanning tree state of the port.
2703 */
2704static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2705{
2706 u16 data;
2707
2708 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2709 switch (state) {
2710 case STP_STATE_DISABLED:
2711 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2712 data |= PORT_LEARN_DISABLE;
2713 break;
2714 case STP_STATE_LISTENING:
2715/*
2716 * No need to turn on transmit because of port direct mode.
2717 * Turning on receive is required if static MAC table is not setup.
2718 */
2719 data &= ~PORT_TX_ENABLE;
2720 data |= PORT_RX_ENABLE;
2721 data |= PORT_LEARN_DISABLE;
2722 break;
2723 case STP_STATE_LEARNING:
2724 data &= ~PORT_TX_ENABLE;
2725 data |= PORT_RX_ENABLE;
2726 data &= ~PORT_LEARN_DISABLE;
2727 break;
2728 case STP_STATE_FORWARDING:
2729 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2730 data &= ~PORT_LEARN_DISABLE;
2731 break;
2732 case STP_STATE_BLOCKED:
2733/*
2734 * Need to setup static MAC table with override to keep receiving BPDU
2735 * messages. See sw_init_stp routine.
2736 */
2737 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2738 data |= PORT_LEARN_DISABLE;
2739 break;
2740 case STP_STATE_SIMPLE:
2741 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2742 data |= PORT_LEARN_DISABLE;
2743 break;
2744 }
2745 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2746 hw->ksz_switch->port_cfg[port].stp_state = state;
2747}
2748
2749#define STP_ENTRY 0
2750#define BROADCAST_ENTRY 1
2751#define BRIDGE_ADDR_ENTRY 2
2752#define IPV6_ADDR_ENTRY 3
2753
2754/**
2755 * sw_clr_sta_mac_table - clear static MAC table
2756 * @hw: The hardware instance.
2757 *
2758 * This routine clears the static MAC table.
2759 */
2760static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2761{
2762 struct ksz_mac_table *entry;
2763 int i;
2764
2765 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2766 entry = &hw->ksz_switch->mac_table[i];
2767 sw_w_sta_mac_table(hw, i,
2768 entry->mac_addr, entry->ports,
2769 entry->override, 0,
2770 entry->use_fid, entry->fid);
2771 }
2772}
2773
2774/**
2775 * sw_init_stp - initialize switch spanning tree support
2776 * @hw: The hardware instance.
2777 *
2778 * This routine initializes the spanning tree support of the switch.
2779 */
2780static void sw_init_stp(struct ksz_hw *hw)
2781{
2782 struct ksz_mac_table *entry;
2783
2784 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2785 entry->mac_addr[0] = 0x01;
2786 entry->mac_addr[1] = 0x80;
2787 entry->mac_addr[2] = 0xC2;
2788 entry->mac_addr[3] = 0x00;
2789 entry->mac_addr[4] = 0x00;
2790 entry->mac_addr[5] = 0x00;
2791 entry->ports = HOST_MASK;
2792 entry->override = 1;
2793 entry->valid = 1;
2794 sw_w_sta_mac_table(hw, STP_ENTRY,
2795 entry->mac_addr, entry->ports,
2796 entry->override, entry->valid,
2797 entry->use_fid, entry->fid);
2798}
2799
2800/**
2801 * sw_block_addr - block certain packets from the host port
2802 * @hw: The hardware instance.
2803 *
2804 * This routine blocks certain packets from reaching to the host port.
2805 */
2806static void sw_block_addr(struct ksz_hw *hw)
2807{
2808 struct ksz_mac_table *entry;
2809 int i;
2810
2811 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2812 entry = &hw->ksz_switch->mac_table[i];
2813 entry->valid = 0;
2814 sw_w_sta_mac_table(hw, i,
2815 entry->mac_addr, entry->ports,
2816 entry->override, entry->valid,
2817 entry->use_fid, entry->fid);
2818 }
2819}
2820
2821static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2822{
2823 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2824}
2825
2826static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2827{
2828 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2829}
2830
2831static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2832{
2833 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2834}
2835
2836static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2837{
2838 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2839}
2840
2841static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2842{
2843 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2844}
2845
2846static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2847{
2848 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2849}
2850
2851static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2852{
2853 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2854}
2855
2856static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2857{
2858 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2859}
2860
2861static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2862{
2863 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2864}
2865
2866static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2867{
2868 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2869}
2870
2871static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2872{
2873 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2874}
2875
2876static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2877{
2878 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2879}
2880
2881/**
2882 * hw_r_phy - read data from PHY register
2883 * @hw: The hardware instance.
2884 * @port: Port to read.
2885 * @reg: PHY register to read.
2886 * @val: Buffer to store the read data.
2887 *
2888 * This routine reads data from the PHY register.
2889 */
2890static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2891{
2892 int phy;
2893
2894 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2895 *val = readw(hw->io + phy);
2896}
2897
2898/**
2899 * hw_w_phy - write data to PHY register
2900 * @hw: The hardware instance.
2901 * @port: Port to write.
2902 * @reg: PHY register to write.
2903 * @val: Word data to write.
2904 *
2905 * This routine writes data to the PHY register.
2906 */
2907static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2908{
2909 int phy;
2910
2911 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2912 writew(val, hw->io + phy);
2913}
2914
2915/*
2916 * EEPROM access functions
2917 */
2918
2919#define AT93C_CODE 0
2920#define AT93C_WR_OFF 0x00
2921#define AT93C_WR_ALL 0x10
2922#define AT93C_ER_ALL 0x20
2923#define AT93C_WR_ON 0x30
2924
2925#define AT93C_WRITE 1
2926#define AT93C_READ 2
2927#define AT93C_ERASE 3
2928
2929#define EEPROM_DELAY 4
2930
2931static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2932{
2933 u16 data;
2934
2935 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2936 data &= ~gpio;
2937 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2938}
2939
2940static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2941{
2942 u16 data;
2943
2944 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2945 data |= gpio;
2946 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2947}
2948
2949static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2950{
2951 u16 data;
2952
2953 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2954 return (u8)(data & gpio);
2955}
2956
2957static void eeprom_clk(struct ksz_hw *hw)
2958{
2959 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2960 udelay(EEPROM_DELAY);
2961 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2962 udelay(EEPROM_DELAY);
2963}
2964
2965static u16 spi_r(struct ksz_hw *hw)
2966{
2967 int i;
2968 u16 temp = 0;
2969
2970 for (i = 15; i >= 0; i--) {
2971 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2972 udelay(EEPROM_DELAY);
2973
2974 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2975
2976 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2977 udelay(EEPROM_DELAY);
2978 }
2979 return temp;
2980}
2981
2982static void spi_w(struct ksz_hw *hw, u16 data)
2983{
2984 int i;
2985
2986 for (i = 15; i >= 0; i--) {
2987 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2988 drop_gpio(hw, EEPROM_DATA_OUT);
2989 eeprom_clk(hw);
2990 }
2991}
2992
2993static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2994{
2995 int i;
2996
2997 /* Initial start bit */
2998 raise_gpio(hw, EEPROM_DATA_OUT);
2999 eeprom_clk(hw);
3000
3001 /* AT93C operation */
3002 for (i = 1; i >= 0; i--) {
3003 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3004 drop_gpio(hw, EEPROM_DATA_OUT);
3005 eeprom_clk(hw);
3006 }
3007
3008 /* Address location */
3009 for (i = 5; i >= 0; i--) {
3010 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3011 drop_gpio(hw, EEPROM_DATA_OUT);
3012 eeprom_clk(hw);
3013 }
3014}
3015
3016#define EEPROM_DATA_RESERVED 0
3017#define EEPROM_DATA_MAC_ADDR_0 1
3018#define EEPROM_DATA_MAC_ADDR_1 2
3019#define EEPROM_DATA_MAC_ADDR_2 3
3020#define EEPROM_DATA_SUBSYS_ID 4
3021#define EEPROM_DATA_SUBSYS_VEN_ID 5
3022#define EEPROM_DATA_PM_CAP 6
3023
3024/* User defined EEPROM data */
3025#define EEPROM_DATA_OTHER_MAC_ADDR 9
3026
3027/**
3028 * eeprom_read - read from AT93C46 EEPROM
3029 * @hw: The hardware instance.
3030 * @reg: The register offset.
3031 *
3032 * This function reads a word from the AT93C46 EEPROM.
3033 *
3034 * Return the data value.
3035 */
3036static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3037{
3038 u16 data;
3039
3040 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3041
3042 spi_reg(hw, AT93C_READ, reg);
3043 data = spi_r(hw);
3044
3045 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3046
3047 return data;
3048}
3049
3050/**
3051 * eeprom_write - write to AT93C46 EEPROM
3052 * @hw: The hardware instance.
3053 * @reg: The register offset.
3054 * @data: The data value.
3055 *
3056 * This procedure writes a word to the AT93C46 EEPROM.
3057 */
3058static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3059{
3060 int timeout;
3061
3062 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3063
3064 /* Enable write. */
3065 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3066 drop_gpio(hw, EEPROM_CHIP_SELECT);
3067 udelay(1);
3068
3069 /* Erase the register. */
3070 raise_gpio(hw, EEPROM_CHIP_SELECT);
3071 spi_reg(hw, AT93C_ERASE, reg);
3072 drop_gpio(hw, EEPROM_CHIP_SELECT);
3073 udelay(1);
3074
3075 /* Check operation complete. */
3076 raise_gpio(hw, EEPROM_CHIP_SELECT);
3077 timeout = 8;
3078 mdelay(2);
3079 do {
3080 mdelay(1);
3081 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3082 drop_gpio(hw, EEPROM_CHIP_SELECT);
3083 udelay(1);
3084
3085 /* Write the register. */
3086 raise_gpio(hw, EEPROM_CHIP_SELECT);
3087 spi_reg(hw, AT93C_WRITE, reg);
3088 spi_w(hw, data);
3089 drop_gpio(hw, EEPROM_CHIP_SELECT);
3090 udelay(1);
3091
3092 /* Check operation complete. */
3093 raise_gpio(hw, EEPROM_CHIP_SELECT);
3094 timeout = 8;
3095 mdelay(2);
3096 do {
3097 mdelay(1);
3098 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3099 drop_gpio(hw, EEPROM_CHIP_SELECT);
3100 udelay(1);
3101
3102 /* Disable write. */
3103 raise_gpio(hw, EEPROM_CHIP_SELECT);
3104 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3105
3106 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3107}
3108
3109/*
3110 * Link detection routines
3111 */
3112
3113static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3114{
3115 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3116 switch (port->flow_ctrl) {
3117 case PHY_FLOW_CTRL:
3118 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3119 break;
3120 /* Not supported. */
3121 case PHY_TX_ONLY:
3122 case PHY_RX_ONLY:
3123 default:
3124 break;
3125 }
3126 return ctrl;
3127}
3128
3129static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3130{
3131 u32 rx_cfg;
3132 u32 tx_cfg;
3133
3134 rx_cfg = hw->rx_cfg;
3135 tx_cfg = hw->tx_cfg;
3136 if (rx)
3137 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3138 else
3139 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3140 if (tx)
3141 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3142 else
3143 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3144 if (hw->enabled) {
3145 if (rx_cfg != hw->rx_cfg)
3146 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3147 if (tx_cfg != hw->tx_cfg)
3148 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3149 }
3150}
3151
3152static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3153 u16 local, u16 remote)
3154{
3155 int rx;
3156 int tx;
3157
3158 if (hw->overrides & PAUSE_FLOW_CTRL)
3159 return;
3160
3161 rx = tx = 0;
3162 if (port->force_link)
3163 rx = tx = 1;
3164 if (remote & LPA_PAUSE_CAP) {
3165 if (local & ADVERTISE_PAUSE_CAP) {
3166 rx = tx = 1;
3167 } else if ((remote & LPA_PAUSE_ASYM) &&
3168 (local &
3169 (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
3170 ADVERTISE_PAUSE_ASYM) {
3171 tx = 1;
3172 }
3173 } else if (remote & LPA_PAUSE_ASYM) {
3174 if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3175 == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3176 rx = 1;
3177 }
3178 if (!hw->ksz_switch)
3179 set_flow_ctrl(hw, rx, tx);
3180}
3181
3182static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3183 struct ksz_port_info *info, u16 link_status)
3184{
3185 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3186 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3187 u32 cfg = hw->tx_cfg;
3188
3189 /* Disable flow control in the half duplex mode. */
3190 if (1 == info->duplex)
3191 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3192 if (hw->enabled && cfg != hw->tx_cfg)
3193 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3194 }
3195}
3196
3197/**
3198 * port_get_link_speed - get current link status
3199 * @port: The port instance.
3200 *
3201 * This routine reads PHY registers to determine the current link status of the
3202 * switch ports.
3203 */
3204static void port_get_link_speed(struct ksz_port *port)
3205{
3206 uint interrupt;
3207 struct ksz_port_info *info;
3208 struct ksz_port_info *linked = NULL;
3209 struct ksz_hw *hw = port->hw;
3210 u16 data;
3211 u16 status;
3212 u8 local;
3213 u8 remote;
3214 int i;
3215 int p;
3216 int change = 0;
3217
3218 interrupt = hw_block_intr(hw);
3219
3220 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3221 info = &hw->port_info[p];
3222 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3223 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3224
3225 /*
3226 * Link status is changing all the time even when there is no
3227 * cable connection!
3228 */
3229 remote = status & (PORT_AUTO_NEG_COMPLETE |
3230 PORT_STATUS_LINK_GOOD);
3231 local = (u8) data;
3232
3233 /* No change to status. */
3234 if (local == info->advertised && remote == info->partner)
3235 continue;
3236
3237 info->advertised = local;
3238 info->partner = remote;
3239 if (status & PORT_STATUS_LINK_GOOD) {
3240
3241 /* Remember the first linked port. */
3242 if (!linked)
3243 linked = info;
3244
3245 info->tx_rate = 10 * TX_RATE_UNIT;
3246 if (status & PORT_STATUS_SPEED_100MBIT)
3247 info->tx_rate = 100 * TX_RATE_UNIT;
3248
3249 info->duplex = 1;
3250 if (status & PORT_STATUS_FULL_DUPLEX)
3251 info->duplex = 2;
3252
3253 if (media_connected != info->state) {
3254 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3255 &data);
3256 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3257 &status);
3258 determine_flow_ctrl(hw, port, data, status);
3259 if (hw->ksz_switch) {
3260 port_cfg_back_pressure(hw, p,
3261 (1 == info->duplex));
3262 }
3263 change |= 1 << i;
3264 port_cfg_change(hw, port, info, status);
3265 }
3266 info->state = media_connected;
3267 } else {
3268 if (media_disconnected != info->state) {
3269 change |= 1 << i;
3270
3271 /* Indicate the link just goes down. */
3272 hw->port_mib[p].link_down = 1;
3273 }
3274 info->state = media_disconnected;
3275 }
3276 hw->port_mib[p].state = (u8) info->state;
3277 }
3278
3279 if (linked && media_disconnected == port->linked->state)
3280 port->linked = linked;
3281
3282 hw_restore_intr(hw, interrupt);
3283}
3284
3285#define PHY_RESET_TIMEOUT 10
3286
3287/**
3288 * port_set_link_speed - set port speed
3289 * @port: The port instance.
3290 *
3291 * This routine sets the link speed of the switch ports.
3292 */
3293static void port_set_link_speed(struct ksz_port *port)
3294{
3295 struct ksz_hw *hw = port->hw;
3296 u16 data;
3297 u16 cfg;
3298 u8 status;
3299 int i;
3300 int p;
3301
3302 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306 cfg = 0;
3307 if (status & PORT_STATUS_LINK_GOOD)
3308 cfg = data;
3309
3310 data |= PORT_AUTO_NEG_ENABLE;
3311 data = advertised_flow_ctrl(port, data);
3312
3313 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3314 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3315
3316 /* Check if manual configuration is specified by the user. */
3317 if (port->speed || port->duplex) {
3318 if (10 == port->speed)
3319 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3320 PORT_AUTO_NEG_100BTX);
3321 else if (100 == port->speed)
3322 data &= ~(PORT_AUTO_NEG_10BT_FD |
3323 PORT_AUTO_NEG_10BT);
3324 if (1 == port->duplex)
3325 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3326 PORT_AUTO_NEG_10BT_FD);
3327 else if (2 == port->duplex)
3328 data &= ~(PORT_AUTO_NEG_100BTX |
3329 PORT_AUTO_NEG_10BT);
3330 }
3331 if (data != cfg) {
3332 data |= PORT_AUTO_NEG_RESTART;
3333 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3334 }
3335 }
3336}
3337
3338/**
3339 * port_force_link_speed - force port speed
3340 * @port: The port instance.
3341 *
3342 * This routine forces the link speed of the switch ports.
3343 */
3344static void port_force_link_speed(struct ksz_port *port)
3345{
3346 struct ksz_hw *hw = port->hw;
3347 u16 data;
3348 int i;
3349 int phy;
3350 int p;
3351
3352 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3353 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3354 hw_r_phy_ctrl(hw, phy, &data);
3355
3356 data &= ~BMCR_ANENABLE;
3357
3358 if (10 == port->speed)
3359 data &= ~BMCR_SPEED100;
3360 else if (100 == port->speed)
3361 data |= BMCR_SPEED100;
3362 if (1 == port->duplex)
3363 data &= ~BMCR_FULLDPLX;
3364 else if (2 == port->duplex)
3365 data |= BMCR_FULLDPLX;
3366 hw_w_phy_ctrl(hw, phy, data);
3367 }
3368}
3369
3370static void port_set_power_saving(struct ksz_port *port, int enable)
3371{
3372 struct ksz_hw *hw = port->hw;
3373 int i;
3374 int p;
3375
3376 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3377 port_cfg(hw, p,
3378 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3379}
3380
3381/*
3382 * KSZ8841 power management functions
3383 */
3384
3385/**
3386 * hw_chk_wol_pme_status - check PMEN pin
3387 * @hw: The hardware instance.
3388 *
3389 * This function is used to check PMEN pin is asserted.
3390 *
3391 * Return 1 if PMEN pin is asserted; otherwise, 0.
3392 */
3393static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3394{
3395 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3396 struct pci_dev *pdev = hw_priv->pdev;
3397 u16 data;
3398
3399 if (!pdev->pm_cap)
3400 return 0;
3401 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3402 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3403}
3404
3405/**
3406 * hw_clr_wol_pme_status - clear PMEN pin
3407 * @hw: The hardware instance.
3408 *
3409 * This routine is used to clear PME_Status to deassert PMEN pin.
3410 */
3411static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3412{
3413 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3414 struct pci_dev *pdev = hw_priv->pdev;
3415 u16 data;
3416
3417 if (!pdev->pm_cap)
3418 return;
3419
3420 /* Clear PME_Status to deassert PMEN pin. */
3421 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3422 data |= PCI_PM_CTRL_PME_STATUS;
3423 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3424}
3425
3426/**
3427 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3428 * @hw: The hardware instance.
3429 * @set: The flag indicating whether to enable or disable.
3430 *
3431 * This routine is used to enable or disable Wake-on-LAN.
3432 */
3433static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3434{
3435 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3436 struct pci_dev *pdev = hw_priv->pdev;
3437 u16 data;
3438
3439 if (!pdev->pm_cap)
3440 return;
3441 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3442 data &= ~PCI_PM_CTRL_STATE_MASK;
3443 if (set)
3444 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3445 else
3446 data &= ~PCI_PM_CTRL_PME_ENABLE;
3447 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3448}
3449
3450/**
3451 * hw_cfg_wol - configure Wake-on-LAN features
3452 * @hw: The hardware instance.
3453 * @frame: The pattern frame bit.
3454 * @set: The flag indicating whether to enable or disable.
3455 *
3456 * This routine is used to enable or disable certain Wake-on-LAN features.
3457 */
3458static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3459{
3460 u16 data;
3461
3462 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3463 if (set)
3464 data |= frame;
3465 else
3466 data &= ~frame;
3467 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3468}
3469
3470/**
3471 * hw_set_wol_frame - program Wake-on-LAN pattern
3472 * @hw: The hardware instance.
3473 * @i: The frame index.
3474 * @mask_size: The size of the mask.
3475 * @mask: Mask to ignore certain bytes in the pattern.
3476 * @frame_size: The size of the frame.
3477 * @pattern: The frame data.
3478 *
3479 * This routine is used to program Wake-on-LAN pattern.
3480 */
3481static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3482 const u8 *mask, uint frame_size, const u8 *pattern)
3483{
3484 int bits;
3485 int from;
3486 int len;
3487 int to;
3488 u32 crc;
3489 u8 data[64];
3490 u8 val = 0;
3491
3492 if (frame_size > mask_size * 8)
3493 frame_size = mask_size * 8;
3494 if (frame_size > 64)
3495 frame_size = 64;
3496
3497 i *= 0x10;
3498 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3499 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3500
3501 bits = len = from = to = 0;
3502 do {
3503 if (bits) {
3504 if ((val & 1))
3505 data[to++] = pattern[from];
3506 val >>= 1;
3507 ++from;
3508 --bits;
3509 } else {
3510 val = mask[len];
3511 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3512 + len);
3513 ++len;
3514 if (val)
3515 bits = 8;
3516 else
3517 from += 8;
3518 }
3519 } while (from < (int) frame_size);
3520 if (val) {
3521 bits = mask[len - 1];
3522 val <<= (from % 8);
3523 bits &= ~val;
3524 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3525 1);
3526 }
3527 crc = ether_crc(to, data);
3528 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3529}
3530
3531/**
3532 * hw_add_wol_arp - add ARP pattern
3533 * @hw: The hardware instance.
3534 * @ip_addr: The IPv4 address assigned to the device.
3535 *
3536 * This routine is used to add ARP pattern for waking up the host.
3537 */
3538static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3539{
3540 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3541 u8 pattern[42] = {
3542 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3543 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3544 0x08, 0x06,
3545 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3546 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3547 0x00, 0x00, 0x00, 0x00,
3548 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3549 0x00, 0x00, 0x00, 0x00 };
3550
3551 memcpy(&pattern[38], ip_addr, 4);
3552 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3553}
3554
3555/**
3556 * hw_add_wol_bcast - add broadcast pattern
3557 * @hw: The hardware instance.
3558 *
3559 * This routine is used to add broadcast pattern for waking up the host.
3560 */
3561static void hw_add_wol_bcast(struct ksz_hw *hw)
3562{
3563 static const u8 mask[] = { 0x3F };
3564 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3565
3566 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3567}
3568
3569/**
3570 * hw_add_wol_mcast - add multicast pattern
3571 * @hw: The hardware instance.
3572 *
3573 * This routine is used to add multicast pattern for waking up the host.
3574 *
3575 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3576 * by IPv6 ping command. Note that multicast packets are filtred through the
3577 * multicast hash table, so not all multicast packets can wake up the host.
3578 */
3579static void hw_add_wol_mcast(struct ksz_hw *hw)
3580{
3581 static const u8 mask[] = { 0x3F };
3582 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3583
3584 memcpy(&pattern[3], &hw->override_addr[3], 3);
3585 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3586}
3587
3588/**
3589 * hw_add_wol_ucast - add unicast pattern
3590 * @hw: The hardware instance.
3591 *
3592 * This routine is used to add unicast pattern to wakeup the host.
3593 *
3594 * It is assumed the unicast packet is directed to the device, as the hardware
3595 * can only receive them in normal case.
3596 */
3597static void hw_add_wol_ucast(struct ksz_hw *hw)
3598{
3599 static const u8 mask[] = { 0x3F };
3600
3601 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3602}
3603
3604/**
3605 * hw_enable_wol - enable Wake-on-LAN
3606 * @hw: The hardware instance.
3607 * @wol_enable: The Wake-on-LAN settings.
3608 * @net_addr: The IPv4 address assigned to the device.
3609 *
3610 * This routine is used to enable Wake-on-LAN depending on driver settings.
3611 */
3612static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3613{
3614 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3615 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3616 hw_add_wol_ucast(hw);
3617 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3618 hw_add_wol_mcast(hw);
3619 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3620 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3621 hw_add_wol_arp(hw, net_addr);
3622}
3623
3624/**
3625 * hw_init - check driver is correct for the hardware
3626 * @hw: The hardware instance.
3627 *
3628 * This function checks the hardware is correct for this driver and sets the
3629 * hardware up for proper initialization.
3630 *
3631 * Return number of ports or 0 if not right.
3632 */
3633static int hw_init(struct ksz_hw *hw)
3634{
3635 int rc = 0;
3636 u16 data;
3637 u16 revision;
3638
3639 /* Set bus speed to 125MHz. */
3640 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3641
3642 /* Check KSZ884x chip ID. */
3643 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3644
3645 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3646 data &= KS884X_CHIP_ID_MASK_41;
3647 if (REG_CHIP_ID_41 == data)
3648 rc = 1;
3649 else if (REG_CHIP_ID_42 == data)
3650 rc = 2;
3651 else
3652 return 0;
3653
3654 /* Setup hardware features or bug workarounds. */
3655 if (revision <= 1) {
3656 hw->features |= SMALL_PACKET_TX_BUG;
3657 if (1 == rc)
3658 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3659 }
3660 return rc;
3661}
3662
3663/**
3664 * hw_reset - reset the hardware
3665 * @hw: The hardware instance.
3666 *
3667 * This routine resets the hardware.
3668 */
3669static void hw_reset(struct ksz_hw *hw)
3670{
3671 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3672
3673 /* Wait for device to reset. */
3674 mdelay(10);
3675
3676 /* Write 0 to clear device reset. */
3677 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3678}
3679
3680/**
3681 * hw_setup - setup the hardware
3682 * @hw: The hardware instance.
3683 *
3684 * This routine setup the hardware for proper operation.
3685 */
3686static void hw_setup(struct ksz_hw *hw)
3687{
3688#if SET_DEFAULT_LED
3689 u16 data;
3690
3691 /* Change default LED mode. */
3692 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3693 data &= ~LED_MODE;
3694 data |= SET_DEFAULT_LED;
3695 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3696#endif
3697
3698 /* Setup transmit control. */
3699 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3700 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3701
3702 /* Setup receive control. */
3703 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3704 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3705 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3706
3707 /* Hardware cannot handle UDP packet in IP fragments. */
3708 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3709
3710 if (hw->all_multi)
3711 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3712 if (hw->promiscuous)
3713 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3714}
3715
3716/**
3717 * hw_setup_intr - setup interrupt mask
3718 * @hw: The hardware instance.
3719 *
3720 * This routine setup the interrupt mask for proper operation.
3721 */
3722static void hw_setup_intr(struct ksz_hw *hw)
3723{
3724 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3725}
3726
3727static void ksz_check_desc_num(struct ksz_desc_info *info)
3728{
3729#define MIN_DESC_SHIFT 2
3730
3731 int alloc = info->alloc;
3732 int shift;
3733
3734 shift = 0;
3735 while (!(alloc & 1)) {
3736 shift++;
3737 alloc >>= 1;
3738 }
3739 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3740 pr_alert("Hardware descriptor numbers not right!\n");
3741 while (alloc) {
3742 shift++;
3743 alloc >>= 1;
3744 }
3745 if (shift < MIN_DESC_SHIFT)
3746 shift = MIN_DESC_SHIFT;
3747 alloc = 1 << shift;
3748 info->alloc = alloc;
3749 }
3750 info->mask = info->alloc - 1;
3751}
3752
3753static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3754{
3755 int i;
3756 u32 phys = desc_info->ring_phys;
3757 struct ksz_hw_desc *desc = desc_info->ring_virt;
3758 struct ksz_desc *cur = desc_info->ring;
3759 struct ksz_desc *previous = NULL;
3760
3761 for (i = 0; i < desc_info->alloc; i++) {
3762 cur->phw = desc++;
3763 phys += desc_info->size;
3764 previous = cur++;
3765 previous->phw->next = cpu_to_le32(phys);
3766 }
3767 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3768 previous->sw.buf.rx.end_of_ring = 1;
3769 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3770
3771 desc_info->avail = desc_info->alloc;
3772 desc_info->last = desc_info->next = 0;
3773
3774 desc_info->cur = desc_info->ring;
3775}
3776
3777/**
3778 * hw_set_desc_base - set descriptor base addresses
3779 * @hw: The hardware instance.
3780 * @tx_addr: The transmit descriptor base.
3781 * @rx_addr: The receive descriptor base.
3782 *
3783 * This routine programs the descriptor base addresses after reset.
3784 */
3785static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3786{
3787 /* Set base address of Tx/Rx descriptors. */
3788 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3789 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3790}
3791
3792static void hw_reset_pkts(struct ksz_desc_info *info)
3793{
3794 info->cur = info->ring;
3795 info->avail = info->alloc;
3796 info->last = info->next = 0;
3797}
3798
3799static inline void hw_resume_rx(struct ksz_hw *hw)
3800{
3801 writel(DMA_START, hw->io + KS_DMA_RX_START);
3802}
3803
3804/**
3805 * hw_start_rx - start receiving
3806 * @hw: The hardware instance.
3807 *
3808 * This routine starts the receive function of the hardware.
3809 */
3810static void hw_start_rx(struct ksz_hw *hw)
3811{
3812 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3813
3814 /* Notify when the receive stops. */
3815 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3816
3817 writel(DMA_START, hw->io + KS_DMA_RX_START);
3818 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3819 hw->rx_stop++;
3820
3821 /* Variable overflows. */
3822 if (0 == hw->rx_stop)
3823 hw->rx_stop = 2;
3824}
3825
3826/**
3827 * hw_stop_rx - stop receiving
3828 * @hw: The hardware instance.
3829 *
3830 * This routine stops the receive function of the hardware.
3831 */
3832static void hw_stop_rx(struct ksz_hw *hw)
3833{
3834 hw->rx_stop = 0;
3835 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3836 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3837}
3838
3839/**
3840 * hw_start_tx - start transmitting
3841 * @hw: The hardware instance.
3842 *
3843 * This routine starts the transmit function of the hardware.
3844 */
3845static void hw_start_tx(struct ksz_hw *hw)
3846{
3847 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3848}
3849
3850/**
3851 * hw_stop_tx - stop transmitting
3852 * @hw: The hardware instance.
3853 *
3854 * This routine stops the transmit function of the hardware.
3855 */
3856static void hw_stop_tx(struct ksz_hw *hw)
3857{
3858 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3859}
3860
3861/**
3862 * hw_disable - disable hardware
3863 * @hw: The hardware instance.
3864 *
3865 * This routine disables the hardware.
3866 */
3867static void hw_disable(struct ksz_hw *hw)
3868{
3869 hw_stop_rx(hw);
3870 hw_stop_tx(hw);
3871 hw->enabled = 0;
3872}
3873
3874/**
3875 * hw_enable - enable hardware
3876 * @hw: The hardware instance.
3877 *
3878 * This routine enables the hardware.
3879 */
3880static void hw_enable(struct ksz_hw *hw)
3881{
3882 hw_start_tx(hw);
3883 hw_start_rx(hw);
3884 hw->enabled = 1;
3885}
3886
3887/**
3888 * hw_alloc_pkt - allocate enough descriptors for transmission
3889 * @hw: The hardware instance.
3890 * @length: The length of the packet.
3891 * @physical: Number of descriptors required.
3892 *
3893 * This function allocates descriptors for transmission.
3894 *
3895 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3896 */
3897static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3898{
3899 /* Always leave one descriptor free. */
3900 if (hw->tx_desc_info.avail <= 1)
3901 return 0;
3902
3903 /* Allocate a descriptor for transmission and mark it current. */
3904 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3905 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3906
3907 /* Keep track of number of transmit descriptors used so far. */
3908 ++hw->tx_int_cnt;
3909 hw->tx_size += length;
3910
3911 /* Cannot hold on too much data. */
3912 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3913 hw->tx_int_cnt = hw->tx_int_mask + 1;
3914
3915 if (physical > hw->tx_desc_info.avail)
3916 return 1;
3917
3918 return hw->tx_desc_info.avail;
3919}
3920
3921/**
3922 * hw_send_pkt - mark packet for transmission
3923 * @hw: The hardware instance.
3924 *
3925 * This routine marks the packet for transmission in PCI version.
3926 */
3927static void hw_send_pkt(struct ksz_hw *hw)
3928{
3929 struct ksz_desc *cur = hw->tx_desc_info.cur;
3930
3931 cur->sw.buf.tx.last_seg = 1;
3932
3933 /* Interrupt only after specified number of descriptors used. */
3934 if (hw->tx_int_cnt > hw->tx_int_mask) {
3935 cur->sw.buf.tx.intr = 1;
3936 hw->tx_int_cnt = 0;
3937 hw->tx_size = 0;
3938 }
3939
3940 /* KSZ8842 supports port directed transmission. */
3941 cur->sw.buf.tx.dest_port = hw->dst_ports;
3942
3943 release_desc(cur);
3944
3945 writel(0, hw->io + KS_DMA_TX_START);
3946}
3947
3948static int empty_addr(u8 *addr)
3949{
3950 u32 *addr1 = (u32 *) addr;
3951 u16 *addr2 = (u16 *) &addr[4];
3952
3953 return 0 == *addr1 && 0 == *addr2;
3954}
3955
3956/**
3957 * hw_set_addr - set MAC address
3958 * @hw: The hardware instance.
3959 *
3960 * This routine programs the MAC address of the hardware when the address is
3961 * overridden.
3962 */
3963static void hw_set_addr(struct ksz_hw *hw)
3964{
3965 int i;
3966
3967 for (i = 0; i < ETH_ALEN; i++)
3968 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3969 hw->io + KS884X_ADDR_0_OFFSET + i);
3970
3971 sw_set_addr(hw, hw->override_addr);
3972}
3973
3974/**
3975 * hw_read_addr - read MAC address
3976 * @hw: The hardware instance.
3977 *
3978 * This routine retrieves the MAC address of the hardware.
3979 */
3980static void hw_read_addr(struct ksz_hw *hw)
3981{
3982 int i;
3983
3984 for (i = 0; i < ETH_ALEN; i++)
3985 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3986 KS884X_ADDR_0_OFFSET + i);
3987
3988 if (!hw->mac_override) {
3989 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3990 if (empty_addr(hw->override_addr)) {
3991 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3992 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3993 ETH_ALEN);
3994 hw->override_addr[5] += hw->id;
3995 hw_set_addr(hw);
3996 }
3997 }
3998}
3999
4000static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4001{
4002 int i;
4003 u32 mac_addr_lo;
4004 u32 mac_addr_hi;
4005
4006 mac_addr_hi = 0;
4007 for (i = 0; i < 2; i++) {
4008 mac_addr_hi <<= 8;
4009 mac_addr_hi |= mac_addr[i];
4010 }
4011 mac_addr_hi |= ADD_ADDR_ENABLE;
4012 mac_addr_lo = 0;
4013 for (i = 2; i < 6; i++) {
4014 mac_addr_lo <<= 8;
4015 mac_addr_lo |= mac_addr[i];
4016 }
4017 index *= ADD_ADDR_INCR;
4018
4019 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4020 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4021}
4022
4023static void hw_set_add_addr(struct ksz_hw *hw)
4024{
4025 int i;
4026
4027 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4028 if (empty_addr(hw->address[i]))
4029 writel(0, hw->io + ADD_ADDR_INCR * i +
4030 KS_ADD_ADDR_0_HI);
4031 else
4032 hw_ena_add_addr(hw, i, hw->address[i]);
4033 }
4034}
4035
4036static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4037{
4038 int i;
4039 int j = ADDITIONAL_ENTRIES;
4040
4041 if (ether_addr_equal(hw->override_addr, mac_addr))
4042 return 0;
4043 for (i = 0; i < hw->addr_list_size; i++) {
4044 if (ether_addr_equal(hw->address[i], mac_addr))
4045 return 0;
4046 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4047 j = i;
4048 }
4049 if (j < ADDITIONAL_ENTRIES) {
4050 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4051 hw_ena_add_addr(hw, j, hw->address[j]);
4052 return 0;
4053 }
4054 return -1;
4055}
4056
4057static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4058{
4059 int i;
4060
4061 for (i = 0; i < hw->addr_list_size; i++) {
4062 if (ether_addr_equal(hw->address[i], mac_addr)) {
4063 eth_zero_addr(hw->address[i]);
4064 writel(0, hw->io + ADD_ADDR_INCR * i +
4065 KS_ADD_ADDR_0_HI);
4066 return 0;
4067 }
4068 }
4069 return -1;
4070}
4071
4072/**
4073 * hw_clr_multicast - clear multicast addresses
4074 * @hw: The hardware instance.
4075 *
4076 * This routine removes all multicast addresses set in the hardware.
4077 */
4078static void hw_clr_multicast(struct ksz_hw *hw)
4079{
4080 int i;
4081
4082 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4083 hw->multi_bits[i] = 0;
4084
4085 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4086 }
4087}
4088
4089/**
4090 * hw_set_grp_addr - set multicast addresses
4091 * @hw: The hardware instance.
4092 *
4093 * This routine programs multicast addresses for the hardware to accept those
4094 * addresses.
4095 */
4096static void hw_set_grp_addr(struct ksz_hw *hw)
4097{
4098 int i;
4099 int index;
4100 int position;
4101 int value;
4102
4103 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4104
4105 for (i = 0; i < hw->multi_list_size; i++) {
4106 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4107 index = position >> 3;
4108 value = 1 << (position & 7);
4109 hw->multi_bits[index] |= (u8) value;
4110 }
4111
4112 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4113 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4114 i);
4115}
4116
4117/**
4118 * hw_set_multicast - enable or disable all multicast receiving
4119 * @hw: The hardware instance.
4120 * @multicast: To turn on or off the all multicast feature.
4121 *
4122 * This routine enables/disables the hardware to accept all multicast packets.
4123 */
4124static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4125{
4126 /* Stop receiving for reconfiguration. */
4127 hw_stop_rx(hw);
4128
4129 if (multicast)
4130 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4131 else
4132 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4133
4134 if (hw->enabled)
4135 hw_start_rx(hw);
4136}
4137
4138/**
4139 * hw_set_promiscuous - enable or disable promiscuous receiving
4140 * @hw: The hardware instance.
4141 * @prom: To turn on or off the promiscuous feature.
4142 *
4143 * This routine enables/disables the hardware to accept all packets.
4144 */
4145static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4146{
4147 /* Stop receiving for reconfiguration. */
4148 hw_stop_rx(hw);
4149
4150 if (prom)
4151 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4152 else
4153 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4154
4155 if (hw->enabled)
4156 hw_start_rx(hw);
4157}
4158
4159/**
4160 * sw_enable - enable the switch
4161 * @hw: The hardware instance.
4162 * @enable: The flag to enable or disable the switch
4163 *
4164 * This routine is used to enable/disable the switch in KSZ8842.
4165 */
4166static void sw_enable(struct ksz_hw *hw, int enable)
4167{
4168 int port;
4169
4170 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4171 if (hw->dev_count > 1) {
4172 /* Set port-base vlan membership with host port. */
4173 sw_cfg_port_base_vlan(hw, port,
4174 HOST_MASK | (1 << port));
4175 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4176 } else {
4177 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4178 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4179 }
4180 }
4181 if (hw->dev_count > 1)
4182 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4183 else
4184 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4185
4186 if (enable)
4187 enable = KS8842_START;
4188 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4189}
4190
4191/**
4192 * sw_setup - setup the switch
4193 * @hw: The hardware instance.
4194 *
4195 * This routine setup the hardware switch engine for default operation.
4196 */
4197static void sw_setup(struct ksz_hw *hw)
4198{
4199 int port;
4200
4201 sw_set_global_ctrl(hw);
4202
4203 /* Enable switch broadcast storm protection at 10% percent rate. */
4204 sw_init_broad_storm(hw);
4205 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4206 for (port = 0; port < SWITCH_PORT_NUM; port++)
4207 sw_ena_broad_storm(hw, port);
4208
4209 sw_init_prio(hw);
4210
4211 sw_init_mirror(hw);
4212
4213 sw_init_prio_rate(hw);
4214
4215 sw_init_vlan(hw);
4216
4217 if (hw->features & STP_SUPPORT)
4218 sw_init_stp(hw);
4219 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4220 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4221 hw->overrides |= PAUSE_FLOW_CTRL;
4222 sw_enable(hw, 1);
4223}
4224
4225/**
4226 * ksz_start_timer - start kernel timer
4227 * @info: Kernel timer information.
4228 * @time: The time tick.
4229 *
4230 * This routine starts the kernel timer after the specified time tick.
4231 */
4232static void ksz_start_timer(struct ksz_timer_info *info, int time)
4233{
4234 info->cnt = 0;
4235 info->timer.expires = jiffies + time;
4236 add_timer(&info->timer);
4237
4238 /* infinity */
4239 info->max = -1;
4240}
4241
4242/**
4243 * ksz_stop_timer - stop kernel timer
4244 * @info: Kernel timer information.
4245 *
4246 * This routine stops the kernel timer.
4247 */
4248static void ksz_stop_timer(struct ksz_timer_info *info)
4249{
4250 if (info->max) {
4251 info->max = 0;
4252 del_timer_sync(&info->timer);
4253 }
4254}
4255
4256static void ksz_init_timer(struct ksz_timer_info *info, int period,
4257 void (*function)(struct timer_list *))
4258{
4259 info->max = 0;
4260 info->period = period;
4261 timer_setup(&info->timer, function, 0);
4262}
4263
4264static void ksz_update_timer(struct ksz_timer_info *info)
4265{
4266 ++info->cnt;
4267 if (info->max > 0) {
4268 if (info->cnt < info->max) {
4269 info->timer.expires = jiffies + info->period;
4270 add_timer(&info->timer);
4271 } else
4272 info->max = 0;
4273 } else if (info->max < 0) {
4274 info->timer.expires = jiffies + info->period;
4275 add_timer(&info->timer);
4276 }
4277}
4278
4279/**
4280 * ksz_alloc_soft_desc - allocate software descriptors
4281 * @desc_info: Descriptor information structure.
4282 * @transmit: Indication that descriptors are for transmit.
4283 *
4284 * This local function allocates software descriptors for manipulation in
4285 * memory.
4286 *
4287 * Return 0 if successful.
4288 */
4289static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4290{
4291 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4292 GFP_KERNEL);
4293 if (!desc_info->ring)
4294 return 1;
4295 hw_init_desc(desc_info, transmit);
4296 return 0;
4297}
4298
4299/**
4300 * ksz_alloc_desc - allocate hardware descriptors
4301 * @adapter: Adapter information structure.
4302 *
4303 * This local function allocates hardware descriptors for receiving and
4304 * transmitting.
4305 *
4306 * Return 0 if successful.
4307 */
4308static int ksz_alloc_desc(struct dev_info *adapter)
4309{
4310 struct ksz_hw *hw = &adapter->hw;
4311 int offset;
4312
4313 /* Allocate memory for RX & TX descriptors. */
4314 adapter->desc_pool.alloc_size =
4315 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4316 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4317 DESC_ALIGNMENT;
4318
4319 adapter->desc_pool.alloc_virt =
4320 dma_alloc_coherent(&adapter->pdev->dev,
4321 adapter->desc_pool.alloc_size,
4322 &adapter->desc_pool.dma_addr, GFP_KERNEL);
4323 if (adapter->desc_pool.alloc_virt == NULL) {
4324 adapter->desc_pool.alloc_size = 0;
4325 return 1;
4326 }
4327
4328 /* Align to the next cache line boundary. */
4329 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4330 (DESC_ALIGNMENT -
4331 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4332 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4333 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4334
4335 /* Allocate receive/transmit descriptors. */
4336 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4337 adapter->desc_pool.virt;
4338 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4339 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4340 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4341 (adapter->desc_pool.virt + offset);
4342 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4343
4344 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4345 return 1;
4346 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4347 return 1;
4348
4349 return 0;
4350}
4351
4352/**
4353 * free_dma_buf - release DMA buffer resources
4354 * @adapter: Adapter information structure.
4355 * @dma_buf: pointer to buf
4356 * @direction: to or from device
4357 *
4358 * This routine is just a helper function to release the DMA buffer resources.
4359 */
4360static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4361 int direction)
4362{
4363 dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4364 direction);
4365 dev_kfree_skb(dma_buf->skb);
4366 dma_buf->skb = NULL;
4367 dma_buf->dma = 0;
4368}
4369
4370/**
4371 * ksz_init_rx_buffers - initialize receive descriptors
4372 * @adapter: Adapter information structure.
4373 *
4374 * This routine initializes DMA buffers for receiving.
4375 */
4376static void ksz_init_rx_buffers(struct dev_info *adapter)
4377{
4378 int i;
4379 struct ksz_desc *desc;
4380 struct ksz_dma_buf *dma_buf;
4381 struct ksz_hw *hw = &adapter->hw;
4382 struct ksz_desc_info *info = &hw->rx_desc_info;
4383
4384 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4385 get_rx_pkt(info, &desc);
4386
4387 dma_buf = DMA_BUFFER(desc);
4388 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4389 free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4390 dma_buf->len = adapter->mtu;
4391 if (!dma_buf->skb)
4392 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4393 if (dma_buf->skb && !dma_buf->dma)
4394 dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4395 skb_tail_pointer(dma_buf->skb),
4396 dma_buf->len,
4397 DMA_FROM_DEVICE);
4398
4399 /* Set descriptor. */
4400 set_rx_buf(desc, dma_buf->dma);
4401 set_rx_len(desc, dma_buf->len);
4402 release_desc(desc);
4403 }
4404}
4405
4406/**
4407 * ksz_alloc_mem - allocate memory for hardware descriptors
4408 * @adapter: Adapter information structure.
4409 *
4410 * This function allocates memory for use by hardware descriptors for receiving
4411 * and transmitting.
4412 *
4413 * Return 0 if successful.
4414 */
4415static int ksz_alloc_mem(struct dev_info *adapter)
4416{
4417 struct ksz_hw *hw = &adapter->hw;
4418
4419 /* Determine the number of receive and transmit descriptors. */
4420 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4421 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4422
4423 /* Determine how many descriptors to skip transmit interrupt. */
4424 hw->tx_int_cnt = 0;
4425 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4426 if (hw->tx_int_mask > 8)
4427 hw->tx_int_mask = 8;
4428 while (hw->tx_int_mask) {
4429 hw->tx_int_cnt++;
4430 hw->tx_int_mask >>= 1;
4431 }
4432 if (hw->tx_int_cnt) {
4433 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4434 hw->tx_int_cnt = 0;
4435 }
4436
4437 /* Determine the descriptor size. */
4438 hw->rx_desc_info.size =
4439 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4440 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4441 hw->tx_desc_info.size =
4442 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4443 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4444 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4445 pr_alert("Hardware descriptor size not right!\n");
4446 ksz_check_desc_num(&hw->rx_desc_info);
4447 ksz_check_desc_num(&hw->tx_desc_info);
4448
4449 /* Allocate descriptors. */
4450 if (ksz_alloc_desc(adapter))
4451 return 1;
4452
4453 return 0;
4454}
4455
4456/**
4457 * ksz_free_desc - free software and hardware descriptors
4458 * @adapter: Adapter information structure.
4459 *
4460 * This local routine frees the software and hardware descriptors allocated by
4461 * ksz_alloc_desc().
4462 */
4463static void ksz_free_desc(struct dev_info *adapter)
4464{
4465 struct ksz_hw *hw = &adapter->hw;
4466
4467 /* Reset descriptor. */
4468 hw->rx_desc_info.ring_virt = NULL;
4469 hw->tx_desc_info.ring_virt = NULL;
4470 hw->rx_desc_info.ring_phys = 0;
4471 hw->tx_desc_info.ring_phys = 0;
4472
4473 /* Free memory. */
4474 if (adapter->desc_pool.alloc_virt)
4475 dma_free_coherent(&adapter->pdev->dev,
4476 adapter->desc_pool.alloc_size,
4477 adapter->desc_pool.alloc_virt,
4478 adapter->desc_pool.dma_addr);
4479
4480 /* Reset resource pool. */
4481 adapter->desc_pool.alloc_size = 0;
4482 adapter->desc_pool.alloc_virt = NULL;
4483
4484 kfree(hw->rx_desc_info.ring);
4485 hw->rx_desc_info.ring = NULL;
4486 kfree(hw->tx_desc_info.ring);
4487 hw->tx_desc_info.ring = NULL;
4488}
4489
4490/**
4491 * ksz_free_buffers - free buffers used in the descriptors
4492 * @adapter: Adapter information structure.
4493 * @desc_info: Descriptor information structure.
4494 * @direction: to or from device
4495 *
4496 * This local routine frees buffers used in the DMA buffers.
4497 */
4498static void ksz_free_buffers(struct dev_info *adapter,
4499 struct ksz_desc_info *desc_info, int direction)
4500{
4501 int i;
4502 struct ksz_dma_buf *dma_buf;
4503 struct ksz_desc *desc = desc_info->ring;
4504
4505 for (i = 0; i < desc_info->alloc; i++) {
4506 dma_buf = DMA_BUFFER(desc);
4507 if (dma_buf->skb)
4508 free_dma_buf(adapter, dma_buf, direction);
4509 desc++;
4510 }
4511}
4512
4513/**
4514 * ksz_free_mem - free all resources used by descriptors
4515 * @adapter: Adapter information structure.
4516 *
4517 * This local routine frees all the resources allocated by ksz_alloc_mem().
4518 */
4519static void ksz_free_mem(struct dev_info *adapter)
4520{
4521 /* Free transmit buffers. */
4522 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4523
4524 /* Free receive buffers. */
4525 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4526
4527 /* Free descriptors. */
4528 ksz_free_desc(adapter);
4529}
4530
4531static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4532 u64 *counter)
4533{
4534 int i;
4535 int mib;
4536 int port;
4537 struct ksz_port_mib *port_mib;
4538
4539 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4540 for (i = 0, port = first; i < cnt; i++, port++) {
4541 port_mib = &hw->port_mib[port];
4542 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4543 counter[mib] += port_mib->counter[mib];
4544 }
4545}
4546
4547/**
4548 * send_packet - send packet
4549 * @skb: Socket buffer.
4550 * @dev: Network device.
4551 *
4552 * This routine is used to send a packet out to the network.
4553 */
4554static void send_packet(struct sk_buff *skb, struct net_device *dev)
4555{
4556 struct ksz_desc *desc;
4557 struct ksz_desc *first;
4558 struct dev_priv *priv = netdev_priv(dev);
4559 struct dev_info *hw_priv = priv->adapter;
4560 struct ksz_hw *hw = &hw_priv->hw;
4561 struct ksz_desc_info *info = &hw->tx_desc_info;
4562 struct ksz_dma_buf *dma_buf;
4563 int len;
4564 int last_frag = skb_shinfo(skb)->nr_frags;
4565
4566 /*
4567 * KSZ8842 with multiple device interfaces needs to be told which port
4568 * to send.
4569 */
4570 if (hw->dev_count > 1)
4571 hw->dst_ports = 1 << priv->port.first_port;
4572
4573 /* Hardware will pad the length to 60. */
4574 len = skb->len;
4575
4576 /* Remember the very first descriptor. */
4577 first = info->cur;
4578 desc = first;
4579
4580 dma_buf = DMA_BUFFER(desc);
4581 if (last_frag) {
4582 int frag;
4583 skb_frag_t *this_frag;
4584
4585 dma_buf->len = skb_headlen(skb);
4586
4587 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4588 dma_buf->len, DMA_TO_DEVICE);
4589 set_tx_buf(desc, dma_buf->dma);
4590 set_tx_len(desc, dma_buf->len);
4591
4592 frag = 0;
4593 do {
4594 this_frag = &skb_shinfo(skb)->frags[frag];
4595
4596 /* Get a new descriptor. */
4597 get_tx_pkt(info, &desc);
4598
4599 /* Keep track of descriptors used so far. */
4600 ++hw->tx_int_cnt;
4601
4602 dma_buf = DMA_BUFFER(desc);
4603 dma_buf->len = skb_frag_size(this_frag);
4604
4605 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4606 skb_frag_address(this_frag),
4607 dma_buf->len,
4608 DMA_TO_DEVICE);
4609 set_tx_buf(desc, dma_buf->dma);
4610 set_tx_len(desc, dma_buf->len);
4611
4612 frag++;
4613 if (frag == last_frag)
4614 break;
4615
4616 /* Do not release the last descriptor here. */
4617 release_desc(desc);
4618 } while (1);
4619
4620 /* current points to the last descriptor. */
4621 info->cur = desc;
4622
4623 /* Release the first descriptor. */
4624 release_desc(first);
4625 } else {
4626 dma_buf->len = len;
4627
4628 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4629 dma_buf->len, DMA_TO_DEVICE);
4630 set_tx_buf(desc, dma_buf->dma);
4631 set_tx_len(desc, dma_buf->len);
4632 }
4633
4634 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4635 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4636 (desc)->sw.buf.tx.csum_gen_udp = 1;
4637 }
4638
4639 /*
4640 * The last descriptor holds the packet so that it can be returned to
4641 * network subsystem after all descriptors are transmitted.
4642 */
4643 dma_buf->skb = skb;
4644
4645 hw_send_pkt(hw);
4646
4647 /* Update transmit statistics. */
4648 dev->stats.tx_packets++;
4649 dev->stats.tx_bytes += len;
4650}
4651
4652/**
4653 * transmit_cleanup - clean up transmit descriptors
4654 * @hw_priv: Network device.
4655 * @normal: break if owned
4656 *
4657 * This routine is called to clean up the transmitted buffers.
4658 */
4659static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4660{
4661 int last;
4662 union desc_stat status;
4663 struct ksz_hw *hw = &hw_priv->hw;
4664 struct ksz_desc_info *info = &hw->tx_desc_info;
4665 struct ksz_desc *desc;
4666 struct ksz_dma_buf *dma_buf;
4667 struct net_device *dev = NULL;
4668
4669 spin_lock_irq(&hw_priv->hwlock);
4670 last = info->last;
4671
4672 while (info->avail < info->alloc) {
4673 /* Get next descriptor which is not hardware owned. */
4674 desc = &info->ring[last];
4675 status.data = le32_to_cpu(desc->phw->ctrl.data);
4676 if (status.tx.hw_owned) {
4677 if (normal)
4678 break;
4679 else
4680 reset_desc(desc, status);
4681 }
4682
4683 dma_buf = DMA_BUFFER(desc);
4684 dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4685 dma_buf->len, DMA_TO_DEVICE);
4686
4687 /* This descriptor contains the last buffer in the packet. */
4688 if (dma_buf->skb) {
4689 dev = dma_buf->skb->dev;
4690
4691 /* Release the packet back to network subsystem. */
4692 dev_kfree_skb_irq(dma_buf->skb);
4693 dma_buf->skb = NULL;
4694 }
4695
4696 /* Free the transmitted descriptor. */
4697 last++;
4698 last &= info->mask;
4699 info->avail++;
4700 }
4701 info->last = last;
4702 spin_unlock_irq(&hw_priv->hwlock);
4703
4704 /* Notify the network subsystem that the packet has been sent. */
4705 if (dev)
4706 netif_trans_update(dev);
4707}
4708
4709/**
4710 * tx_done - transmit done processing
4711 * @hw_priv: Network device.
4712 *
4713 * This routine is called when the transmit interrupt is triggered, indicating
4714 * either a packet is sent successfully or there are transmit errors.
4715 */
4716static void tx_done(struct dev_info *hw_priv)
4717{
4718 struct ksz_hw *hw = &hw_priv->hw;
4719 int port;
4720
4721 transmit_cleanup(hw_priv, 1);
4722
4723 for (port = 0; port < hw->dev_count; port++) {
4724 struct net_device *dev = hw->port_info[port].pdev;
4725
4726 if (netif_running(dev) && netif_queue_stopped(dev))
4727 netif_wake_queue(dev);
4728 }
4729}
4730
4731static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4732{
4733 skb->dev = old->dev;
4734 skb->protocol = old->protocol;
4735 skb->ip_summed = old->ip_summed;
4736 skb->csum = old->csum;
4737 skb_set_network_header(skb, ETH_HLEN);
4738
4739 dev_consume_skb_any(old);
4740}
4741
4742/**
4743 * netdev_tx - send out packet
4744 * @skb: Socket buffer.
4745 * @dev: Network device.
4746 *
4747 * This function is used by the upper network layer to send out a packet.
4748 *
4749 * Return 0 if successful; otherwise an error code indicating failure.
4750 */
4751static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4752{
4753 struct dev_priv *priv = netdev_priv(dev);
4754 struct dev_info *hw_priv = priv->adapter;
4755 struct ksz_hw *hw = &hw_priv->hw;
4756 int left;
4757 int num = 1;
4758 int rc = 0;
4759
4760 if (hw->features & SMALL_PACKET_TX_BUG) {
4761 struct sk_buff *org_skb = skb;
4762
4763 if (skb->len <= 48) {
4764 if (skb_end_pointer(skb) - skb->data >= 50) {
4765 memset(&skb->data[skb->len], 0, 50 - skb->len);
4766 skb->len = 50;
4767 } else {
4768 skb = netdev_alloc_skb(dev, 50);
4769 if (!skb)
4770 return NETDEV_TX_BUSY;
4771 memcpy(skb->data, org_skb->data, org_skb->len);
4772 memset(&skb->data[org_skb->len], 0,
4773 50 - org_skb->len);
4774 skb->len = 50;
4775 copy_old_skb(org_skb, skb);
4776 }
4777 }
4778 }
4779
4780 spin_lock_irq(&hw_priv->hwlock);
4781
4782 num = skb_shinfo(skb)->nr_frags + 1;
4783 left = hw_alloc_pkt(hw, skb->len, num);
4784 if (left) {
4785 if (left < num ||
4786 (CHECKSUM_PARTIAL == skb->ip_summed &&
4787 skb->protocol == htons(ETH_P_IPV6))) {
4788 struct sk_buff *org_skb = skb;
4789
4790 skb = netdev_alloc_skb(dev, org_skb->len);
4791 if (!skb) {
4792 rc = NETDEV_TX_BUSY;
4793 goto unlock;
4794 }
4795 skb_copy_and_csum_dev(org_skb, skb->data);
4796 org_skb->ip_summed = CHECKSUM_NONE;
4797 skb->len = org_skb->len;
4798 copy_old_skb(org_skb, skb);
4799 }
4800 send_packet(skb, dev);
4801 if (left <= num)
4802 netif_stop_queue(dev);
4803 } else {
4804 /* Stop the transmit queue until packet is allocated. */
4805 netif_stop_queue(dev);
4806 rc = NETDEV_TX_BUSY;
4807 }
4808unlock:
4809 spin_unlock_irq(&hw_priv->hwlock);
4810
4811 return rc;
4812}
4813
4814/**
4815 * netdev_tx_timeout - transmit timeout processing
4816 * @dev: Network device.
4817 * @txqueue: index of hanging queue
4818 *
4819 * This routine is called when the transmit timer expires. That indicates the
4820 * hardware is not running correctly because transmit interrupts are not
4821 * triggered to free up resources so that the transmit routine can continue
4822 * sending out packets. The hardware is reset to correct the problem.
4823 */
4824static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4825{
4826 static unsigned long last_reset;
4827
4828 struct dev_priv *priv = netdev_priv(dev);
4829 struct dev_info *hw_priv = priv->adapter;
4830 struct ksz_hw *hw = &hw_priv->hw;
4831 int port;
4832
4833 if (hw->dev_count > 1) {
4834 /*
4835 * Only reset the hardware if time between calls is long
4836 * enough.
4837 */
4838 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4839 hw_priv = NULL;
4840 }
4841
4842 last_reset = jiffies;
4843 if (hw_priv) {
4844 hw_dis_intr(hw);
4845 hw_disable(hw);
4846
4847 transmit_cleanup(hw_priv, 0);
4848 hw_reset_pkts(&hw->rx_desc_info);
4849 hw_reset_pkts(&hw->tx_desc_info);
4850 ksz_init_rx_buffers(hw_priv);
4851
4852 hw_reset(hw);
4853
4854 hw_set_desc_base(hw,
4855 hw->tx_desc_info.ring_phys,
4856 hw->rx_desc_info.ring_phys);
4857 hw_set_addr(hw);
4858 if (hw->all_multi)
4859 hw_set_multicast(hw, hw->all_multi);
4860 else if (hw->multi_list_size)
4861 hw_set_grp_addr(hw);
4862
4863 if (hw->dev_count > 1) {
4864 hw_set_add_addr(hw);
4865 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4866 struct net_device *port_dev;
4867
4868 port_set_stp_state(hw, port,
4869 STP_STATE_DISABLED);
4870
4871 port_dev = hw->port_info[port].pdev;
4872 if (netif_running(port_dev))
4873 port_set_stp_state(hw, port,
4874 STP_STATE_SIMPLE);
4875 }
4876 }
4877
4878 hw_enable(hw);
4879 hw_ena_intr(hw);
4880 }
4881
4882 netif_trans_update(dev);
4883 netif_wake_queue(dev);
4884}
4885
4886static inline void csum_verified(struct sk_buff *skb)
4887{
4888 unsigned short protocol;
4889 struct iphdr *iph;
4890
4891 protocol = skb->protocol;
4892 skb_reset_network_header(skb);
4893 iph = (struct iphdr *) skb_network_header(skb);
4894 if (protocol == htons(ETH_P_8021Q)) {
4895 protocol = iph->tot_len;
4896 skb_set_network_header(skb, VLAN_HLEN);
4897 iph = (struct iphdr *) skb_network_header(skb);
4898 }
4899 if (protocol == htons(ETH_P_IP)) {
4900 if (iph->protocol == IPPROTO_TCP)
4901 skb->ip_summed = CHECKSUM_UNNECESSARY;
4902 }
4903}
4904
4905static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4906 struct ksz_desc *desc, union desc_stat status)
4907{
4908 int packet_len;
4909 struct dev_priv *priv = netdev_priv(dev);
4910 struct dev_info *hw_priv = priv->adapter;
4911 struct ksz_dma_buf *dma_buf;
4912 struct sk_buff *skb;
4913
4914 /* Received length includes 4-byte CRC. */
4915 packet_len = status.rx.frame_len - 4;
4916
4917 dma_buf = DMA_BUFFER(desc);
4918 dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4919 packet_len + 4, DMA_FROM_DEVICE);
4920
4921 do {
4922 /* skb->data != skb->head */
4923 skb = netdev_alloc_skb(dev, packet_len + 2);
4924 if (!skb) {
4925 dev->stats.rx_dropped++;
4926 return -ENOMEM;
4927 }
4928
4929 /*
4930 * Align socket buffer in 4-byte boundary for better
4931 * performance.
4932 */
4933 skb_reserve(skb, 2);
4934
4935 skb_put_data(skb, dma_buf->skb->data, packet_len);
4936 } while (0);
4937
4938 skb->protocol = eth_type_trans(skb, dev);
4939
4940 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4941 csum_verified(skb);
4942
4943 /* Update receive statistics. */
4944 dev->stats.rx_packets++;
4945 dev->stats.rx_bytes += packet_len;
4946
4947 /* Notify upper layer for received packet. */
4948 netif_rx(skb);
4949
4950 return 0;
4951}
4952
4953static int dev_rcv_packets(struct dev_info *hw_priv)
4954{
4955 int next;
4956 union desc_stat status;
4957 struct ksz_hw *hw = &hw_priv->hw;
4958 struct net_device *dev = hw->port_info[0].pdev;
4959 struct ksz_desc_info *info = &hw->rx_desc_info;
4960 int left = info->alloc;
4961 struct ksz_desc *desc;
4962 int received = 0;
4963
4964 next = info->next;
4965 while (left--) {
4966 /* Get next descriptor which is not hardware owned. */
4967 desc = &info->ring[next];
4968 status.data = le32_to_cpu(desc->phw->ctrl.data);
4969 if (status.rx.hw_owned)
4970 break;
4971
4972 /* Status valid only when last descriptor bit is set. */
4973 if (status.rx.last_desc && status.rx.first_desc) {
4974 if (rx_proc(dev, hw, desc, status))
4975 goto release_packet;
4976 received++;
4977 }
4978
4979release_packet:
4980 release_desc(desc);
4981 next++;
4982 next &= info->mask;
4983 }
4984 info->next = next;
4985
4986 return received;
4987}
4988
4989static int port_rcv_packets(struct dev_info *hw_priv)
4990{
4991 int next;
4992 union desc_stat status;
4993 struct ksz_hw *hw = &hw_priv->hw;
4994 struct net_device *dev = hw->port_info[0].pdev;
4995 struct ksz_desc_info *info = &hw->rx_desc_info;
4996 int left = info->alloc;
4997 struct ksz_desc *desc;
4998 int received = 0;
4999
5000 next = info->next;
5001 while (left--) {
5002 /* Get next descriptor which is not hardware owned. */
5003 desc = &info->ring[next];
5004 status.data = le32_to_cpu(desc->phw->ctrl.data);
5005 if (status.rx.hw_owned)
5006 break;
5007
5008 if (hw->dev_count > 1) {
5009 /* Get received port number. */
5010 int p = HW_TO_DEV_PORT(status.rx.src_port);
5011
5012 dev = hw->port_info[p].pdev;
5013 if (!netif_running(dev))
5014 goto release_packet;
5015 }
5016
5017 /* Status valid only when last descriptor bit is set. */
5018 if (status.rx.last_desc && status.rx.first_desc) {
5019 if (rx_proc(dev, hw, desc, status))
5020 goto release_packet;
5021 received++;
5022 }
5023
5024release_packet:
5025 release_desc(desc);
5026 next++;
5027 next &= info->mask;
5028 }
5029 info->next = next;
5030
5031 return received;
5032}
5033
5034static int dev_rcv_special(struct dev_info *hw_priv)
5035{
5036 int next;
5037 union desc_stat status;
5038 struct ksz_hw *hw = &hw_priv->hw;
5039 struct net_device *dev = hw->port_info[0].pdev;
5040 struct ksz_desc_info *info = &hw->rx_desc_info;
5041 int left = info->alloc;
5042 struct ksz_desc *desc;
5043 int received = 0;
5044
5045 next = info->next;
5046 while (left--) {
5047 /* Get next descriptor which is not hardware owned. */
5048 desc = &info->ring[next];
5049 status.data = le32_to_cpu(desc->phw->ctrl.data);
5050 if (status.rx.hw_owned)
5051 break;
5052
5053 if (hw->dev_count > 1) {
5054 /* Get received port number. */
5055 int p = HW_TO_DEV_PORT(status.rx.src_port);
5056
5057 dev = hw->port_info[p].pdev;
5058 if (!netif_running(dev))
5059 goto release_packet;
5060 }
5061
5062 /* Status valid only when last descriptor bit is set. */
5063 if (status.rx.last_desc && status.rx.first_desc) {
5064 /*
5065 * Receive without error. With receive errors
5066 * disabled, packets with receive errors will be
5067 * dropped, so no need to check the error bit.
5068 */
5069 if (!status.rx.error || (status.data &
5070 KS_DESC_RX_ERROR_COND) ==
5071 KS_DESC_RX_ERROR_TOO_LONG) {
5072 if (rx_proc(dev, hw, desc, status))
5073 goto release_packet;
5074 received++;
5075 } else {
5076 struct dev_priv *priv = netdev_priv(dev);
5077
5078 /* Update receive error statistics. */
5079 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5080 }
5081 }
5082
5083release_packet:
5084 release_desc(desc);
5085 next++;
5086 next &= info->mask;
5087 }
5088 info->next = next;
5089
5090 return received;
5091}
5092
5093static void rx_proc_task(struct tasklet_struct *t)
5094{
5095 struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5096 struct ksz_hw *hw = &hw_priv->hw;
5097
5098 if (!hw->enabled)
5099 return;
5100 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5101
5102 /* In case receive process is suspended because of overrun. */
5103 hw_resume_rx(hw);
5104
5105 /* tasklets are interruptible. */
5106 spin_lock_irq(&hw_priv->hwlock);
5107 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5108 spin_unlock_irq(&hw_priv->hwlock);
5109 } else {
5110 hw_ack_intr(hw, KS884X_INT_RX);
5111 tasklet_schedule(&hw_priv->rx_tasklet);
5112 }
5113}
5114
5115static void tx_proc_task(struct tasklet_struct *t)
5116{
5117 struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5118 struct ksz_hw *hw = &hw_priv->hw;
5119
5120 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5121
5122 tx_done(hw_priv);
5123
5124 /* tasklets are interruptible. */
5125 spin_lock_irq(&hw_priv->hwlock);
5126 hw_turn_on_intr(hw, KS884X_INT_TX);
5127 spin_unlock_irq(&hw_priv->hwlock);
5128}
5129
5130static inline void handle_rx_stop(struct ksz_hw *hw)
5131{
5132 /* Receive just has been stopped. */
5133 if (0 == hw->rx_stop)
5134 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5135 else if (hw->rx_stop > 1) {
5136 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5137 hw_start_rx(hw);
5138 } else {
5139 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5140 hw->rx_stop = 0;
5141 }
5142 } else
5143 /* Receive just has been started. */
5144 hw->rx_stop++;
5145}
5146
5147/**
5148 * netdev_intr - interrupt handling
5149 * @irq: Interrupt number.
5150 * @dev_id: Network device.
5151 *
5152 * This function is called by upper network layer to signal interrupt.
5153 *
5154 * Return IRQ_HANDLED if interrupt is handled.
5155 */
5156static irqreturn_t netdev_intr(int irq, void *dev_id)
5157{
5158 uint int_enable = 0;
5159 struct net_device *dev = (struct net_device *) dev_id;
5160 struct dev_priv *priv = netdev_priv(dev);
5161 struct dev_info *hw_priv = priv->adapter;
5162 struct ksz_hw *hw = &hw_priv->hw;
5163
5164 spin_lock(&hw_priv->hwlock);
5165
5166 hw_read_intr(hw, &int_enable);
5167
5168 /* Not our interrupt! */
5169 if (!int_enable) {
5170 spin_unlock(&hw_priv->hwlock);
5171 return IRQ_NONE;
5172 }
5173
5174 do {
5175 hw_ack_intr(hw, int_enable);
5176 int_enable &= hw->intr_mask;
5177
5178 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5179 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5180 tasklet_schedule(&hw_priv->tx_tasklet);
5181 }
5182
5183 if (likely(int_enable & KS884X_INT_RX)) {
5184 hw_dis_intr_bit(hw, KS884X_INT_RX);
5185 tasklet_schedule(&hw_priv->rx_tasklet);
5186 }
5187
5188 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5189 dev->stats.rx_fifo_errors++;
5190 hw_resume_rx(hw);
5191 }
5192
5193 if (unlikely(int_enable & KS884X_INT_PHY)) {
5194 struct ksz_port *port = &priv->port;
5195
5196 hw->features |= LINK_INT_WORKING;
5197 port_get_link_speed(port);
5198 }
5199
5200 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5201 handle_rx_stop(hw);
5202 break;
5203 }
5204
5205 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5206 u32 data;
5207
5208 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5209 pr_info("Tx stopped\n");
5210 data = readl(hw->io + KS_DMA_TX_CTRL);
5211 if (!(data & DMA_TX_ENABLE))
5212 pr_info("Tx disabled\n");
5213 break;
5214 }
5215 } while (0);
5216
5217 hw_ena_intr(hw);
5218
5219 spin_unlock(&hw_priv->hwlock);
5220
5221 return IRQ_HANDLED;
5222}
5223
5224/*
5225 * Linux network device functions
5226 */
5227
5228static unsigned long next_jiffies;
5229
5230#ifdef CONFIG_NET_POLL_CONTROLLER
5231static void netdev_netpoll(struct net_device *dev)
5232{
5233 struct dev_priv *priv = netdev_priv(dev);
5234 struct dev_info *hw_priv = priv->adapter;
5235
5236 hw_dis_intr(&hw_priv->hw);
5237 netdev_intr(dev->irq, dev);
5238}
5239#endif
5240
5241static void bridge_change(struct ksz_hw *hw)
5242{
5243 int port;
5244 u8 member;
5245 struct ksz_switch *sw = hw->ksz_switch;
5246
5247 /* No ports in forwarding state. */
5248 if (!sw->member) {
5249 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5250 sw_block_addr(hw);
5251 }
5252 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5253 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5254 member = HOST_MASK | sw->member;
5255 else
5256 member = HOST_MASK | (1 << port);
5257 if (member != sw->port_cfg[port].member)
5258 sw_cfg_port_base_vlan(hw, port, member);
5259 }
5260}
5261
5262/**
5263 * netdev_close - close network device
5264 * @dev: Network device.
5265 *
5266 * This function process the close operation of network device. This is caused
5267 * by the user command "ifconfig ethX down."
5268 *
5269 * Return 0 if successful; otherwise an error code indicating failure.
5270 */
5271static int netdev_close(struct net_device *dev)
5272{
5273 struct dev_priv *priv = netdev_priv(dev);
5274 struct dev_info *hw_priv = priv->adapter;
5275 struct ksz_port *port = &priv->port;
5276 struct ksz_hw *hw = &hw_priv->hw;
5277 int pi;
5278
5279 netif_stop_queue(dev);
5280
5281 ksz_stop_timer(&priv->monitor_timer_info);
5282
5283 /* Need to shut the port manually in multiple device interfaces mode. */
5284 if (hw->dev_count > 1) {
5285 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5286
5287 /* Port is closed. Need to change bridge setting. */
5288 if (hw->features & STP_SUPPORT) {
5289 pi = 1 << port->first_port;
5290 if (hw->ksz_switch->member & pi) {
5291 hw->ksz_switch->member &= ~pi;
5292 bridge_change(hw);
5293 }
5294 }
5295 }
5296 if (port->first_port > 0)
5297 hw_del_addr(hw, dev->dev_addr);
5298 if (!hw_priv->wol_enable)
5299 port_set_power_saving(port, true);
5300
5301 if (priv->multicast)
5302 --hw->all_multi;
5303 if (priv->promiscuous)
5304 --hw->promiscuous;
5305
5306 hw_priv->opened--;
5307 if (!(hw_priv->opened)) {
5308 ksz_stop_timer(&hw_priv->mib_timer_info);
5309 flush_work(&hw_priv->mib_read);
5310
5311 hw_dis_intr(hw);
5312 hw_disable(hw);
5313 hw_clr_multicast(hw);
5314
5315 /* Delay for receive task to stop scheduling itself. */
5316 msleep(2000 / HZ);
5317
5318 tasklet_kill(&hw_priv->rx_tasklet);
5319 tasklet_kill(&hw_priv->tx_tasklet);
5320 free_irq(dev->irq, hw_priv->dev);
5321
5322 transmit_cleanup(hw_priv, 0);
5323 hw_reset_pkts(&hw->rx_desc_info);
5324 hw_reset_pkts(&hw->tx_desc_info);
5325
5326 /* Clean out static MAC table when the switch is shutdown. */
5327 if (hw->features & STP_SUPPORT)
5328 sw_clr_sta_mac_table(hw);
5329 }
5330
5331 return 0;
5332}
5333
5334static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5335{
5336 if (hw->ksz_switch) {
5337 u32 data;
5338
5339 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5340 if (hw->features & RX_HUGE_FRAME)
5341 data |= SWITCH_HUGE_PACKET;
5342 else
5343 data &= ~SWITCH_HUGE_PACKET;
5344 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5345 }
5346 if (hw->features & RX_HUGE_FRAME) {
5347 hw->rx_cfg |= DMA_RX_ERROR;
5348 hw_priv->dev_rcv = dev_rcv_special;
5349 } else {
5350 hw->rx_cfg &= ~DMA_RX_ERROR;
5351 if (hw->dev_count > 1)
5352 hw_priv->dev_rcv = port_rcv_packets;
5353 else
5354 hw_priv->dev_rcv = dev_rcv_packets;
5355 }
5356}
5357
5358static int prepare_hardware(struct net_device *dev)
5359{
5360 struct dev_priv *priv = netdev_priv(dev);
5361 struct dev_info *hw_priv = priv->adapter;
5362 struct ksz_hw *hw = &hw_priv->hw;
5363 int rc = 0;
5364
5365 /* Remember the network device that requests interrupts. */
5366 hw_priv->dev = dev;
5367 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5368 if (rc)
5369 return rc;
5370 tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5371 tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5372
5373 hw->promiscuous = 0;
5374 hw->all_multi = 0;
5375 hw->multi_list_size = 0;
5376
5377 hw_reset(hw);
5378
5379 hw_set_desc_base(hw,
5380 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5381 hw_set_addr(hw);
5382 hw_cfg_huge_frame(hw_priv, hw);
5383 ksz_init_rx_buffers(hw_priv);
5384 return 0;
5385}
5386
5387static void set_media_state(struct net_device *dev, int media_state)
5388{
5389 struct dev_priv *priv = netdev_priv(dev);
5390
5391 if (media_state == priv->media_state)
5392 netif_carrier_on(dev);
5393 else
5394 netif_carrier_off(dev);
5395 netif_info(priv, link, dev, "link %s\n",
5396 media_state == priv->media_state ? "on" : "off");
5397}
5398
5399/**
5400 * netdev_open - open network device
5401 * @dev: Network device.
5402 *
5403 * This function process the open operation of network device. This is caused
5404 * by the user command "ifconfig ethX up."
5405 *
5406 * Return 0 if successful; otherwise an error code indicating failure.
5407 */
5408static int netdev_open(struct net_device *dev)
5409{
5410 struct dev_priv *priv = netdev_priv(dev);
5411 struct dev_info *hw_priv = priv->adapter;
5412 struct ksz_hw *hw = &hw_priv->hw;
5413 struct ksz_port *port = &priv->port;
5414 int i;
5415 int p;
5416 int rc = 0;
5417
5418 priv->multicast = 0;
5419 priv->promiscuous = 0;
5420
5421 /* Reset device statistics. */
5422 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5423 memset((void *) port->counter, 0,
5424 (sizeof(u64) * OID_COUNTER_LAST));
5425
5426 if (!(hw_priv->opened)) {
5427 rc = prepare_hardware(dev);
5428 if (rc)
5429 return rc;
5430 for (i = 0; i < hw->mib_port_cnt; i++) {
5431 if (next_jiffies < jiffies)
5432 next_jiffies = jiffies + HZ * 2;
5433 else
5434 next_jiffies += HZ * 1;
5435 hw_priv->counter[i].time = next_jiffies;
5436 hw->port_mib[i].state = media_disconnected;
5437 port_init_cnt(hw, i);
5438 }
5439 if (hw->ksz_switch)
5440 hw->port_mib[HOST_PORT].state = media_connected;
5441 else {
5442 hw_add_wol_bcast(hw);
5443 hw_cfg_wol_pme(hw, 0);
5444 hw_clr_wol_pme_status(&hw_priv->hw);
5445 }
5446 }
5447 port_set_power_saving(port, false);
5448
5449 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5450 /*
5451 * Initialize to invalid value so that link detection
5452 * is done.
5453 */
5454 hw->port_info[p].partner = 0xFF;
5455 hw->port_info[p].state = media_disconnected;
5456 }
5457
5458 /* Need to open the port in multiple device interfaces mode. */
5459 if (hw->dev_count > 1) {
5460 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5461 if (port->first_port > 0)
5462 hw_add_addr(hw, dev->dev_addr);
5463 }
5464
5465 port_get_link_speed(port);
5466 if (port->force_link)
5467 port_force_link_speed(port);
5468 else
5469 port_set_link_speed(port);
5470
5471 if (!(hw_priv->opened)) {
5472 hw_setup_intr(hw);
5473 hw_enable(hw);
5474 hw_ena_intr(hw);
5475
5476 if (hw->mib_port_cnt)
5477 ksz_start_timer(&hw_priv->mib_timer_info,
5478 hw_priv->mib_timer_info.period);
5479 }
5480
5481 hw_priv->opened++;
5482
5483 ksz_start_timer(&priv->monitor_timer_info,
5484 priv->monitor_timer_info.period);
5485
5486 priv->media_state = port->linked->state;
5487
5488 set_media_state(dev, media_connected);
5489 netif_start_queue(dev);
5490
5491 return 0;
5492}
5493
5494/* RX errors = rx_errors */
5495/* RX dropped = rx_dropped */
5496/* RX overruns = rx_fifo_errors */
5497/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5498/* TX errors = tx_errors */
5499/* TX dropped = tx_dropped */
5500/* TX overruns = tx_fifo_errors */
5501/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5502/* collisions = collisions */
5503
5504/**
5505 * netdev_query_statistics - query network device statistics
5506 * @dev: Network device.
5507 *
5508 * This function returns the statistics of the network device. The device
5509 * needs not be opened.
5510 *
5511 * Return network device statistics.
5512 */
5513static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5514{
5515 struct dev_priv *priv = netdev_priv(dev);
5516 struct ksz_port *port = &priv->port;
5517 struct ksz_hw *hw = &priv->adapter->hw;
5518 struct ksz_port_mib *mib;
5519 int i;
5520 int p;
5521
5522 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5523 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5524
5525 /* Reset to zero to add count later. */
5526 dev->stats.multicast = 0;
5527 dev->stats.collisions = 0;
5528 dev->stats.rx_length_errors = 0;
5529 dev->stats.rx_crc_errors = 0;
5530 dev->stats.rx_frame_errors = 0;
5531 dev->stats.tx_window_errors = 0;
5532
5533 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5534 mib = &hw->port_mib[p];
5535
5536 dev->stats.multicast += (unsigned long)
5537 mib->counter[MIB_COUNTER_RX_MULTICAST];
5538
5539 dev->stats.collisions += (unsigned long)
5540 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5541
5542 dev->stats.rx_length_errors += (unsigned long)(
5543 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5544 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5545 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5546 mib->counter[MIB_COUNTER_RX_JABBER]);
5547 dev->stats.rx_crc_errors += (unsigned long)
5548 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5549 dev->stats.rx_frame_errors += (unsigned long)(
5550 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5551 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5552
5553 dev->stats.tx_window_errors += (unsigned long)
5554 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5555 }
5556
5557 return &dev->stats;
5558}
5559
5560/**
5561 * netdev_set_mac_address - set network device MAC address
5562 * @dev: Network device.
5563 * @addr: Buffer of MAC address.
5564 *
5565 * This function is used to set the MAC address of the network device.
5566 *
5567 * Return 0 to indicate success.
5568 */
5569static int netdev_set_mac_address(struct net_device *dev, void *addr)
5570{
5571 struct dev_priv *priv = netdev_priv(dev);
5572 struct dev_info *hw_priv = priv->adapter;
5573 struct ksz_hw *hw = &hw_priv->hw;
5574 struct sockaddr *mac = addr;
5575 uint interrupt;
5576
5577 if (priv->port.first_port > 0)
5578 hw_del_addr(hw, dev->dev_addr);
5579 else {
5580 hw->mac_override = 1;
5581 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5582 }
5583
5584 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5585
5586 interrupt = hw_block_intr(hw);
5587
5588 if (priv->port.first_port > 0)
5589 hw_add_addr(hw, dev->dev_addr);
5590 else
5591 hw_set_addr(hw);
5592 hw_restore_intr(hw, interrupt);
5593
5594 return 0;
5595}
5596
5597static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5598 struct ksz_hw *hw, int promiscuous)
5599{
5600 if (promiscuous != priv->promiscuous) {
5601 u8 prev_state = hw->promiscuous;
5602
5603 if (promiscuous)
5604 ++hw->promiscuous;
5605 else
5606 --hw->promiscuous;
5607 priv->promiscuous = promiscuous;
5608
5609 /* Turn on/off promiscuous mode. */
5610 if (hw->promiscuous <= 1 && prev_state <= 1)
5611 hw_set_promiscuous(hw, hw->promiscuous);
5612
5613 /*
5614 * Port is not in promiscuous mode, meaning it is released
5615 * from the bridge.
5616 */
5617 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5618 netif_is_bridge_port(dev)) {
5619 struct ksz_switch *sw = hw->ksz_switch;
5620 int port = priv->port.first_port;
5621
5622 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5623 port = 1 << port;
5624 if (sw->member & port) {
5625 sw->member &= ~port;
5626 bridge_change(hw);
5627 }
5628 }
5629 }
5630}
5631
5632static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5633 int multicast)
5634{
5635 if (multicast != priv->multicast) {
5636 u8 all_multi = hw->all_multi;
5637
5638 if (multicast)
5639 ++hw->all_multi;
5640 else
5641 --hw->all_multi;
5642 priv->multicast = multicast;
5643
5644 /* Turn on/off all multicast mode. */
5645 if (hw->all_multi <= 1 && all_multi <= 1)
5646 hw_set_multicast(hw, hw->all_multi);
5647 }
5648}
5649
5650/**
5651 * netdev_set_rx_mode
5652 * @dev: Network device.
5653 *
5654 * This routine is used to set multicast addresses or put the network device
5655 * into promiscuous mode.
5656 */
5657static void netdev_set_rx_mode(struct net_device *dev)
5658{
5659 struct dev_priv *priv = netdev_priv(dev);
5660 struct dev_info *hw_priv = priv->adapter;
5661 struct ksz_hw *hw = &hw_priv->hw;
5662 struct netdev_hw_addr *ha;
5663 int multicast = (dev->flags & IFF_ALLMULTI);
5664
5665 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5666
5667 if (hw_priv->hw.dev_count > 1)
5668 multicast |= (dev->flags & IFF_MULTICAST);
5669 dev_set_multicast(priv, hw, multicast);
5670
5671 /* Cannot use different hashes in multiple device interfaces mode. */
5672 if (hw_priv->hw.dev_count > 1)
5673 return;
5674
5675 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5676 int i = 0;
5677
5678 /* List too big to support so turn on all multicast mode. */
5679 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5680 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5681 hw->multi_list_size = MAX_MULTICAST_LIST;
5682 ++hw->all_multi;
5683 hw_set_multicast(hw, hw->all_multi);
5684 }
5685 return;
5686 }
5687
5688 netdev_for_each_mc_addr(ha, dev) {
5689 if (i >= MAX_MULTICAST_LIST)
5690 break;
5691 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5692 }
5693 hw->multi_list_size = (u8) i;
5694 hw_set_grp_addr(hw);
5695 } else {
5696 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5697 --hw->all_multi;
5698 hw_set_multicast(hw, hw->all_multi);
5699 }
5700 hw->multi_list_size = 0;
5701 hw_clr_multicast(hw);
5702 }
5703}
5704
5705static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5706{
5707 struct dev_priv *priv = netdev_priv(dev);
5708 struct dev_info *hw_priv = priv->adapter;
5709 struct ksz_hw *hw = &hw_priv->hw;
5710 int hw_mtu;
5711
5712 if (netif_running(dev))
5713 return -EBUSY;
5714
5715 /* Cannot use different MTU in multiple device interfaces mode. */
5716 if (hw->dev_count > 1)
5717 if (dev != hw_priv->dev)
5718 return 0;
5719
5720 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5721 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5722 hw->features |= RX_HUGE_FRAME;
5723 hw_mtu = MAX_RX_BUF_SIZE;
5724 } else {
5725 hw->features &= ~RX_HUGE_FRAME;
5726 hw_mtu = REGULAR_RX_BUF_SIZE;
5727 }
5728 hw_mtu = (hw_mtu + 3) & ~3;
5729 hw_priv->mtu = hw_mtu;
5730 dev->mtu = new_mtu;
5731
5732 return 0;
5733}
5734
5735/**
5736 * netdev_ioctl - I/O control processing
5737 * @dev: Network device.
5738 * @ifr: Interface request structure.
5739 * @cmd: I/O control code.
5740 *
5741 * This function is used to process I/O control calls.
5742 *
5743 * Return 0 to indicate success.
5744 */
5745static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5746{
5747 struct dev_priv *priv = netdev_priv(dev);
5748 struct dev_info *hw_priv = priv->adapter;
5749 struct ksz_hw *hw = &hw_priv->hw;
5750 struct ksz_port *port = &priv->port;
5751 int result = 0;
5752 struct mii_ioctl_data *data = if_mii(ifr);
5753
5754 if (down_interruptible(&priv->proc_sem))
5755 return -ERESTARTSYS;
5756
5757 switch (cmd) {
5758 /* Get address of MII PHY in use. */
5759 case SIOCGMIIPHY:
5760 data->phy_id = priv->id;
5761 fallthrough;
5762
5763 /* Read MII PHY register. */
5764 case SIOCGMIIREG:
5765 if (data->phy_id != priv->id || data->reg_num >= 6)
5766 result = -EIO;
5767 else
5768 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5769 &data->val_out);
5770 break;
5771
5772 /* Write MII PHY register. */
5773 case SIOCSMIIREG:
5774 if (!capable(CAP_NET_ADMIN))
5775 result = -EPERM;
5776 else if (data->phy_id != priv->id || data->reg_num >= 6)
5777 result = -EIO;
5778 else
5779 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5780 data->val_in);
5781 break;
5782
5783 default:
5784 result = -EOPNOTSUPP;
5785 }
5786
5787 up(&priv->proc_sem);
5788
5789 return result;
5790}
5791
5792/*
5793 * MII support
5794 */
5795
5796/**
5797 * mdio_read - read PHY register
5798 * @dev: Network device.
5799 * @phy_id: The PHY id.
5800 * @reg_num: The register number.
5801 *
5802 * This function returns the PHY register value.
5803 *
5804 * Return the register value.
5805 */
5806static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5807{
5808 struct dev_priv *priv = netdev_priv(dev);
5809 struct ksz_port *port = &priv->port;
5810 struct ksz_hw *hw = port->hw;
5811 u16 val_out;
5812
5813 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5814 return val_out;
5815}
5816
5817/**
5818 * mdio_write - set PHY register
5819 * @dev: Network device.
5820 * @phy_id: The PHY id.
5821 * @reg_num: The register number.
5822 * @val: The register value.
5823 *
5824 * This procedure sets the PHY register value.
5825 */
5826static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5827{
5828 struct dev_priv *priv = netdev_priv(dev);
5829 struct ksz_port *port = &priv->port;
5830 struct ksz_hw *hw = port->hw;
5831 int i;
5832 int pi;
5833
5834 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5835 hw_w_phy(hw, pi, reg_num << 1, val);
5836}
5837
5838/*
5839 * ethtool support
5840 */
5841
5842#define EEPROM_SIZE 0x40
5843
5844static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5845
5846#define ADVERTISED_ALL \
5847 (ADVERTISED_10baseT_Half | \
5848 ADVERTISED_10baseT_Full | \
5849 ADVERTISED_100baseT_Half | \
5850 ADVERTISED_100baseT_Full)
5851
5852/* These functions use the MII functions in mii.c. */
5853
5854/**
5855 * netdev_get_link_ksettings - get network device settings
5856 * @dev: Network device.
5857 * @cmd: Ethtool command.
5858 *
5859 * This function queries the PHY and returns its state in the ethtool command.
5860 *
5861 * Return 0 if successful; otherwise an error code.
5862 */
5863static int netdev_get_link_ksettings(struct net_device *dev,
5864 struct ethtool_link_ksettings *cmd)
5865{
5866 struct dev_priv *priv = netdev_priv(dev);
5867 struct dev_info *hw_priv = priv->adapter;
5868
5869 mutex_lock(&hw_priv->lock);
5870 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5871 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5872 mutex_unlock(&hw_priv->lock);
5873
5874 /* Save advertised settings for workaround in next function. */
5875 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5876 cmd->link_modes.advertising);
5877
5878 return 0;
5879}
5880
5881/**
5882 * netdev_set_link_ksettings - set network device settings
5883 * @dev: Network device.
5884 * @cmd: Ethtool command.
5885 *
5886 * This function sets the PHY according to the ethtool command.
5887 *
5888 * Return 0 if successful; otherwise an error code.
5889 */
5890static int netdev_set_link_ksettings(struct net_device *dev,
5891 const struct ethtool_link_ksettings *cmd)
5892{
5893 struct dev_priv *priv = netdev_priv(dev);
5894 struct dev_info *hw_priv = priv->adapter;
5895 struct ksz_port *port = &priv->port;
5896 struct ethtool_link_ksettings copy_cmd;
5897 u32 speed = cmd->base.speed;
5898 u32 advertising;
5899 int rc;
5900
5901 ethtool_convert_link_mode_to_legacy_u32(&advertising,
5902 cmd->link_modes.advertising);
5903
5904 /*
5905 * ethtool utility does not change advertised setting if auto
5906 * negotiation is not specified explicitly.
5907 */
5908 if (cmd->base.autoneg && priv->advertising == advertising) {
5909 advertising |= ADVERTISED_ALL;
5910 if (10 == speed)
5911 advertising &=
5912 ~(ADVERTISED_100baseT_Full |
5913 ADVERTISED_100baseT_Half);
5914 else if (100 == speed)
5915 advertising &=
5916 ~(ADVERTISED_10baseT_Full |
5917 ADVERTISED_10baseT_Half);
5918 if (0 == cmd->base.duplex)
5919 advertising &=
5920 ~(ADVERTISED_100baseT_Full |
5921 ADVERTISED_10baseT_Full);
5922 else if (1 == cmd->base.duplex)
5923 advertising &=
5924 ~(ADVERTISED_100baseT_Half |
5925 ADVERTISED_10baseT_Half);
5926 }
5927 mutex_lock(&hw_priv->lock);
5928 if (cmd->base.autoneg &&
5929 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5930 port->duplex = 0;
5931 port->speed = 0;
5932 port->force_link = 0;
5933 } else {
5934 port->duplex = cmd->base.duplex + 1;
5935 if (1000 != speed)
5936 port->speed = speed;
5937 if (cmd->base.autoneg)
5938 port->force_link = 0;
5939 else
5940 port->force_link = 1;
5941 }
5942
5943 memcpy(©_cmd, cmd, sizeof(copy_cmd));
5944 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5945 advertising);
5946 rc = mii_ethtool_set_link_ksettings(
5947 &priv->mii_if,
5948 (const struct ethtool_link_ksettings *)©_cmd);
5949 mutex_unlock(&hw_priv->lock);
5950 return rc;
5951}
5952
5953/**
5954 * netdev_nway_reset - restart auto-negotiation
5955 * @dev: Network device.
5956 *
5957 * This function restarts the PHY for auto-negotiation.
5958 *
5959 * Return 0 if successful; otherwise an error code.
5960 */
5961static int netdev_nway_reset(struct net_device *dev)
5962{
5963 struct dev_priv *priv = netdev_priv(dev);
5964 struct dev_info *hw_priv = priv->adapter;
5965 int rc;
5966
5967 mutex_lock(&hw_priv->lock);
5968 rc = mii_nway_restart(&priv->mii_if);
5969 mutex_unlock(&hw_priv->lock);
5970 return rc;
5971}
5972
5973/**
5974 * netdev_get_link - get network device link status
5975 * @dev: Network device.
5976 *
5977 * This function gets the link status from the PHY.
5978 *
5979 * Return true if PHY is linked and false otherwise.
5980 */
5981static u32 netdev_get_link(struct net_device *dev)
5982{
5983 struct dev_priv *priv = netdev_priv(dev);
5984 int rc;
5985
5986 rc = mii_link_ok(&priv->mii_if);
5987 return rc;
5988}
5989
5990/**
5991 * netdev_get_drvinfo - get network driver information
5992 * @dev: Network device.
5993 * @info: Ethtool driver info data structure.
5994 *
5995 * This procedure returns the driver information.
5996 */
5997static void netdev_get_drvinfo(struct net_device *dev,
5998 struct ethtool_drvinfo *info)
5999{
6000 struct dev_priv *priv = netdev_priv(dev);
6001 struct dev_info *hw_priv = priv->adapter;
6002
6003 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6004 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6005 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6006 sizeof(info->bus_info));
6007}
6008
6009static struct hw_regs {
6010 int start;
6011 int end;
6012} hw_regs_range[] = {
6013 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6014 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6015 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6016 { KS884X_SIDER_P, KS8842_SGCR7_P },
6017 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6018 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6019 { 0, 0 }
6020};
6021
6022/**
6023 * netdev_get_regs_len - get length of register dump
6024 * @dev: Network device.
6025 *
6026 * This function returns the length of the register dump.
6027 *
6028 * Return length of the register dump.
6029 */
6030static int netdev_get_regs_len(struct net_device *dev)
6031{
6032 struct hw_regs *range = hw_regs_range;
6033 int regs_len = 0x10 * sizeof(u32);
6034
6035 while (range->end > range->start) {
6036 regs_len += (range->end - range->start + 3) / 4 * 4;
6037 range++;
6038 }
6039 return regs_len;
6040}
6041
6042/**
6043 * netdev_get_regs - get register dump
6044 * @dev: Network device.
6045 * @regs: Ethtool registers data structure.
6046 * @ptr: Buffer to store the register values.
6047 *
6048 * This procedure dumps the register values in the provided buffer.
6049 */
6050static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6051 void *ptr)
6052{
6053 struct dev_priv *priv = netdev_priv(dev);
6054 struct dev_info *hw_priv = priv->adapter;
6055 struct ksz_hw *hw = &hw_priv->hw;
6056 int *buf = (int *) ptr;
6057 struct hw_regs *range = hw_regs_range;
6058 int len;
6059
6060 mutex_lock(&hw_priv->lock);
6061 regs->version = 0;
6062 for (len = 0; len < 0x40; len += 4) {
6063 pci_read_config_dword(hw_priv->pdev, len, buf);
6064 buf++;
6065 }
6066 while (range->end > range->start) {
6067 for (len = range->start; len < range->end; len += 4) {
6068 *buf = readl(hw->io + len);
6069 buf++;
6070 }
6071 range++;
6072 }
6073 mutex_unlock(&hw_priv->lock);
6074}
6075
6076#define WOL_SUPPORT \
6077 (WAKE_PHY | WAKE_MAGIC | \
6078 WAKE_UCAST | WAKE_MCAST | \
6079 WAKE_BCAST | WAKE_ARP)
6080
6081/**
6082 * netdev_get_wol - get Wake-on-LAN support
6083 * @dev: Network device.
6084 * @wol: Ethtool Wake-on-LAN data structure.
6085 *
6086 * This procedure returns Wake-on-LAN support.
6087 */
6088static void netdev_get_wol(struct net_device *dev,
6089 struct ethtool_wolinfo *wol)
6090{
6091 struct dev_priv *priv = netdev_priv(dev);
6092 struct dev_info *hw_priv = priv->adapter;
6093
6094 wol->supported = hw_priv->wol_support;
6095 wol->wolopts = hw_priv->wol_enable;
6096 memset(&wol->sopass, 0, sizeof(wol->sopass));
6097}
6098
6099/**
6100 * netdev_set_wol - set Wake-on-LAN support
6101 * @dev: Network device.
6102 * @wol: Ethtool Wake-on-LAN data structure.
6103 *
6104 * This function sets Wake-on-LAN support.
6105 *
6106 * Return 0 if successful; otherwise an error code.
6107 */
6108static int netdev_set_wol(struct net_device *dev,
6109 struct ethtool_wolinfo *wol)
6110{
6111 struct dev_priv *priv = netdev_priv(dev);
6112 struct dev_info *hw_priv = priv->adapter;
6113
6114 /* Need to find a way to retrieve the device IP address. */
6115 static const u8 net_addr[] = { 192, 168, 1, 1 };
6116
6117 if (wol->wolopts & ~hw_priv->wol_support)
6118 return -EINVAL;
6119
6120 hw_priv->wol_enable = wol->wolopts;
6121
6122 /* Link wakeup cannot really be disabled. */
6123 if (wol->wolopts)
6124 hw_priv->wol_enable |= WAKE_PHY;
6125 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6126 return 0;
6127}
6128
6129/**
6130 * netdev_get_msglevel - get debug message level
6131 * @dev: Network device.
6132 *
6133 * This function returns current debug message level.
6134 *
6135 * Return current debug message flags.
6136 */
6137static u32 netdev_get_msglevel(struct net_device *dev)
6138{
6139 struct dev_priv *priv = netdev_priv(dev);
6140
6141 return priv->msg_enable;
6142}
6143
6144/**
6145 * netdev_set_msglevel - set debug message level
6146 * @dev: Network device.
6147 * @value: Debug message flags.
6148 *
6149 * This procedure sets debug message level.
6150 */
6151static void netdev_set_msglevel(struct net_device *dev, u32 value)
6152{
6153 struct dev_priv *priv = netdev_priv(dev);
6154
6155 priv->msg_enable = value;
6156}
6157
6158/**
6159 * netdev_get_eeprom_len - get EEPROM length
6160 * @dev: Network device.
6161 *
6162 * This function returns the length of the EEPROM.
6163 *
6164 * Return length of the EEPROM.
6165 */
6166static int netdev_get_eeprom_len(struct net_device *dev)
6167{
6168 return EEPROM_SIZE * 2;
6169}
6170
6171#define EEPROM_MAGIC 0x10A18842
6172
6173/**
6174 * netdev_get_eeprom - get EEPROM data
6175 * @dev: Network device.
6176 * @eeprom: Ethtool EEPROM data structure.
6177 * @data: Buffer to store the EEPROM data.
6178 *
6179 * This function dumps the EEPROM data in the provided buffer.
6180 *
6181 * Return 0 if successful; otherwise an error code.
6182 */
6183static int netdev_get_eeprom(struct net_device *dev,
6184 struct ethtool_eeprom *eeprom, u8 *data)
6185{
6186 struct dev_priv *priv = netdev_priv(dev);
6187 struct dev_info *hw_priv = priv->adapter;
6188 u8 *eeprom_byte = (u8 *) eeprom_data;
6189 int i;
6190 int len;
6191
6192 len = (eeprom->offset + eeprom->len + 1) / 2;
6193 for (i = eeprom->offset / 2; i < len; i++)
6194 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6195 eeprom->magic = EEPROM_MAGIC;
6196 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6197
6198 return 0;
6199}
6200
6201/**
6202 * netdev_set_eeprom - write EEPROM data
6203 * @dev: Network device.
6204 * @eeprom: Ethtool EEPROM data structure.
6205 * @data: Data buffer.
6206 *
6207 * This function modifies the EEPROM data one byte at a time.
6208 *
6209 * Return 0 if successful; otherwise an error code.
6210 */
6211static int netdev_set_eeprom(struct net_device *dev,
6212 struct ethtool_eeprom *eeprom, u8 *data)
6213{
6214 struct dev_priv *priv = netdev_priv(dev);
6215 struct dev_info *hw_priv = priv->adapter;
6216 u16 eeprom_word[EEPROM_SIZE];
6217 u8 *eeprom_byte = (u8 *) eeprom_word;
6218 int i;
6219 int len;
6220
6221 if (eeprom->magic != EEPROM_MAGIC)
6222 return -EINVAL;
6223
6224 len = (eeprom->offset + eeprom->len + 1) / 2;
6225 for (i = eeprom->offset / 2; i < len; i++)
6226 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6227 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6228 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6229 for (i = 0; i < EEPROM_SIZE; i++)
6230 if (eeprom_word[i] != eeprom_data[i]) {
6231 eeprom_data[i] = eeprom_word[i];
6232 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6233 }
6234
6235 return 0;
6236}
6237
6238/**
6239 * netdev_get_pauseparam - get flow control parameters
6240 * @dev: Network device.
6241 * @pause: Ethtool PAUSE settings data structure.
6242 *
6243 * This procedure returns the PAUSE control flow settings.
6244 */
6245static void netdev_get_pauseparam(struct net_device *dev,
6246 struct ethtool_pauseparam *pause)
6247{
6248 struct dev_priv *priv = netdev_priv(dev);
6249 struct dev_info *hw_priv = priv->adapter;
6250 struct ksz_hw *hw = &hw_priv->hw;
6251
6252 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6253 if (!hw->ksz_switch) {
6254 pause->rx_pause =
6255 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6256 pause->tx_pause =
6257 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6258 } else {
6259 pause->rx_pause =
6260 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6261 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6262 pause->tx_pause =
6263 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6264 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6265 }
6266}
6267
6268/**
6269 * netdev_set_pauseparam - set flow control parameters
6270 * @dev: Network device.
6271 * @pause: Ethtool PAUSE settings data structure.
6272 *
6273 * This function sets the PAUSE control flow settings.
6274 * Not implemented yet.
6275 *
6276 * Return 0 if successful; otherwise an error code.
6277 */
6278static int netdev_set_pauseparam(struct net_device *dev,
6279 struct ethtool_pauseparam *pause)
6280{
6281 struct dev_priv *priv = netdev_priv(dev);
6282 struct dev_info *hw_priv = priv->adapter;
6283 struct ksz_hw *hw = &hw_priv->hw;
6284 struct ksz_port *port = &priv->port;
6285
6286 mutex_lock(&hw_priv->lock);
6287 if (pause->autoneg) {
6288 if (!pause->rx_pause && !pause->tx_pause)
6289 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6290 else
6291 port->flow_ctrl = PHY_FLOW_CTRL;
6292 hw->overrides &= ~PAUSE_FLOW_CTRL;
6293 port->force_link = 0;
6294 if (hw->ksz_switch) {
6295 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6296 SWITCH_RX_FLOW_CTRL, 1);
6297 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6298 SWITCH_TX_FLOW_CTRL, 1);
6299 }
6300 port_set_link_speed(port);
6301 } else {
6302 hw->overrides |= PAUSE_FLOW_CTRL;
6303 if (hw->ksz_switch) {
6304 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6305 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6306 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6307 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6308 } else
6309 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6310 }
6311 mutex_unlock(&hw_priv->lock);
6312
6313 return 0;
6314}
6315
6316/**
6317 * netdev_get_ringparam - get tx/rx ring parameters
6318 * @dev: Network device.
6319 * @ring: Ethtool RING settings data structure.
6320 *
6321 * This procedure returns the TX/RX ring settings.
6322 */
6323static void netdev_get_ringparam(struct net_device *dev,
6324 struct ethtool_ringparam *ring)
6325{
6326 struct dev_priv *priv = netdev_priv(dev);
6327 struct dev_info *hw_priv = priv->adapter;
6328 struct ksz_hw *hw = &hw_priv->hw;
6329
6330 ring->tx_max_pending = (1 << 9);
6331 ring->tx_pending = hw->tx_desc_info.alloc;
6332 ring->rx_max_pending = (1 << 9);
6333 ring->rx_pending = hw->rx_desc_info.alloc;
6334}
6335
6336#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6337
6338static struct {
6339 char string[ETH_GSTRING_LEN];
6340} ethtool_stats_keys[STATS_LEN] = {
6341 { "rx_lo_priority_octets" },
6342 { "rx_hi_priority_octets" },
6343 { "rx_undersize_packets" },
6344 { "rx_fragments" },
6345 { "rx_oversize_packets" },
6346 { "rx_jabbers" },
6347 { "rx_symbol_errors" },
6348 { "rx_crc_errors" },
6349 { "rx_align_errors" },
6350 { "rx_mac_ctrl_packets" },
6351 { "rx_pause_packets" },
6352 { "rx_bcast_packets" },
6353 { "rx_mcast_packets" },
6354 { "rx_ucast_packets" },
6355 { "rx_64_or_less_octet_packets" },
6356 { "rx_65_to_127_octet_packets" },
6357 { "rx_128_to_255_octet_packets" },
6358 { "rx_256_to_511_octet_packets" },
6359 { "rx_512_to_1023_octet_packets" },
6360 { "rx_1024_to_1522_octet_packets" },
6361
6362 { "tx_lo_priority_octets" },
6363 { "tx_hi_priority_octets" },
6364 { "tx_late_collisions" },
6365 { "tx_pause_packets" },
6366 { "tx_bcast_packets" },
6367 { "tx_mcast_packets" },
6368 { "tx_ucast_packets" },
6369 { "tx_deferred" },
6370 { "tx_total_collisions" },
6371 { "tx_excessive_collisions" },
6372 { "tx_single_collisions" },
6373 { "tx_mult_collisions" },
6374
6375 { "rx_discards" },
6376 { "tx_discards" },
6377};
6378
6379/**
6380 * netdev_get_strings - get statistics identity strings
6381 * @dev: Network device.
6382 * @stringset: String set identifier.
6383 * @buf: Buffer to store the strings.
6384 *
6385 * This procedure returns the strings used to identify the statistics.
6386 */
6387static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6388{
6389 struct dev_priv *priv = netdev_priv(dev);
6390 struct dev_info *hw_priv = priv->adapter;
6391 struct ksz_hw *hw = &hw_priv->hw;
6392
6393 if (ETH_SS_STATS == stringset)
6394 memcpy(buf, ðtool_stats_keys,
6395 ETH_GSTRING_LEN * hw->mib_cnt);
6396}
6397
6398/**
6399 * netdev_get_sset_count - get statistics size
6400 * @dev: Network device.
6401 * @sset: The statistics set number.
6402 *
6403 * This function returns the size of the statistics to be reported.
6404 *
6405 * Return size of the statistics to be reported.
6406 */
6407static int netdev_get_sset_count(struct net_device *dev, int sset)
6408{
6409 struct dev_priv *priv = netdev_priv(dev);
6410 struct dev_info *hw_priv = priv->adapter;
6411 struct ksz_hw *hw = &hw_priv->hw;
6412
6413 switch (sset) {
6414 case ETH_SS_STATS:
6415 return hw->mib_cnt;
6416 default:
6417 return -EOPNOTSUPP;
6418 }
6419}
6420
6421/**
6422 * netdev_get_ethtool_stats - get network device statistics
6423 * @dev: Network device.
6424 * @stats: Ethtool statistics data structure.
6425 * @data: Buffer to store the statistics.
6426 *
6427 * This procedure returns the statistics.
6428 */
6429static void netdev_get_ethtool_stats(struct net_device *dev,
6430 struct ethtool_stats *stats, u64 *data)
6431{
6432 struct dev_priv *priv = netdev_priv(dev);
6433 struct dev_info *hw_priv = priv->adapter;
6434 struct ksz_hw *hw = &hw_priv->hw;
6435 struct ksz_port *port = &priv->port;
6436 int n_stats = stats->n_stats;
6437 int i;
6438 int n;
6439 int p;
6440 u64 counter[TOTAL_PORT_COUNTER_NUM];
6441
6442 mutex_lock(&hw_priv->lock);
6443 n = SWITCH_PORT_NUM;
6444 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6445 if (media_connected == hw->port_mib[p].state) {
6446 hw_priv->counter[p].read = 1;
6447
6448 /* Remember first port that requests read. */
6449 if (n == SWITCH_PORT_NUM)
6450 n = p;
6451 }
6452 }
6453 mutex_unlock(&hw_priv->lock);
6454
6455 if (n < SWITCH_PORT_NUM)
6456 schedule_work(&hw_priv->mib_read);
6457
6458 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6459 p = n;
6460 wait_event_interruptible_timeout(
6461 hw_priv->counter[p].counter,
6462 2 == hw_priv->counter[p].read,
6463 HZ * 1);
6464 } else
6465 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6466 if (0 == i) {
6467 wait_event_interruptible_timeout(
6468 hw_priv->counter[p].counter,
6469 2 == hw_priv->counter[p].read,
6470 HZ * 2);
6471 } else if (hw->port_mib[p].cnt_ptr) {
6472 wait_event_interruptible_timeout(
6473 hw_priv->counter[p].counter,
6474 2 == hw_priv->counter[p].read,
6475 HZ * 1);
6476 }
6477 }
6478
6479 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6480 n = hw->mib_cnt;
6481 if (n > n_stats)
6482 n = n_stats;
6483 n_stats -= n;
6484 for (i = 0; i < n; i++)
6485 *data++ = counter[i];
6486}
6487
6488/**
6489 * netdev_set_features - set receive checksum support
6490 * @dev: Network device.
6491 * @features: New device features (offloads).
6492 *
6493 * This function sets receive checksum support setting.
6494 *
6495 * Return 0 if successful; otherwise an error code.
6496 */
6497static int netdev_set_features(struct net_device *dev,
6498 netdev_features_t features)
6499{
6500 struct dev_priv *priv = netdev_priv(dev);
6501 struct dev_info *hw_priv = priv->adapter;
6502 struct ksz_hw *hw = &hw_priv->hw;
6503
6504 mutex_lock(&hw_priv->lock);
6505
6506 /* see note in hw_setup() */
6507 if (features & NETIF_F_RXCSUM)
6508 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6509 else
6510 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6511
6512 if (hw->enabled)
6513 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6514
6515 mutex_unlock(&hw_priv->lock);
6516
6517 return 0;
6518}
6519
6520static const struct ethtool_ops netdev_ethtool_ops = {
6521 .nway_reset = netdev_nway_reset,
6522 .get_link = netdev_get_link,
6523 .get_drvinfo = netdev_get_drvinfo,
6524 .get_regs_len = netdev_get_regs_len,
6525 .get_regs = netdev_get_regs,
6526 .get_wol = netdev_get_wol,
6527 .set_wol = netdev_set_wol,
6528 .get_msglevel = netdev_get_msglevel,
6529 .set_msglevel = netdev_set_msglevel,
6530 .get_eeprom_len = netdev_get_eeprom_len,
6531 .get_eeprom = netdev_get_eeprom,
6532 .set_eeprom = netdev_set_eeprom,
6533 .get_pauseparam = netdev_get_pauseparam,
6534 .set_pauseparam = netdev_set_pauseparam,
6535 .get_ringparam = netdev_get_ringparam,
6536 .get_strings = netdev_get_strings,
6537 .get_sset_count = netdev_get_sset_count,
6538 .get_ethtool_stats = netdev_get_ethtool_stats,
6539 .get_link_ksettings = netdev_get_link_ksettings,
6540 .set_link_ksettings = netdev_set_link_ksettings,
6541};
6542
6543/*
6544 * Hardware monitoring
6545 */
6546
6547static void update_link(struct net_device *dev, struct dev_priv *priv,
6548 struct ksz_port *port)
6549{
6550 if (priv->media_state != port->linked->state) {
6551 priv->media_state = port->linked->state;
6552 if (netif_running(dev))
6553 set_media_state(dev, media_connected);
6554 }
6555}
6556
6557static void mib_read_work(struct work_struct *work)
6558{
6559 struct dev_info *hw_priv =
6560 container_of(work, struct dev_info, mib_read);
6561 struct ksz_hw *hw = &hw_priv->hw;
6562 struct ksz_port_mib *mib;
6563 int i;
6564
6565 next_jiffies = jiffies;
6566 for (i = 0; i < hw->mib_port_cnt; i++) {
6567 mib = &hw->port_mib[i];
6568
6569 /* Reading MIB counters or requested to read. */
6570 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6571
6572 /* Need to process receive interrupt. */
6573 if (port_r_cnt(hw, i))
6574 break;
6575 hw_priv->counter[i].read = 0;
6576
6577 /* Finish reading counters. */
6578 if (0 == mib->cnt_ptr) {
6579 hw_priv->counter[i].read = 2;
6580 wake_up_interruptible(
6581 &hw_priv->counter[i].counter);
6582 }
6583 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6584 /* Only read MIB counters when the port is connected. */
6585 if (media_connected == mib->state)
6586 hw_priv->counter[i].read = 1;
6587 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6588 hw_priv->counter[i].time = next_jiffies;
6589
6590 /* Port is just disconnected. */
6591 } else if (mib->link_down) {
6592 mib->link_down = 0;
6593
6594 /* Read counters one last time after link is lost. */
6595 hw_priv->counter[i].read = 1;
6596 }
6597 }
6598}
6599
6600static void mib_monitor(struct timer_list *t)
6601{
6602 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6603
6604 mib_read_work(&hw_priv->mib_read);
6605
6606 /* This is used to verify Wake-on-LAN is working. */
6607 if (hw_priv->pme_wait) {
6608 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6609 hw_clr_wol_pme_status(&hw_priv->hw);
6610 hw_priv->pme_wait = 0;
6611 }
6612 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6613
6614 /* PME is asserted. Wait 2 seconds to clear it. */
6615 hw_priv->pme_wait = jiffies + HZ * 2;
6616 }
6617
6618 ksz_update_timer(&hw_priv->mib_timer_info);
6619}
6620
6621/**
6622 * dev_monitor - periodic monitoring
6623 * @t: timer list containing a network device pointer.
6624 *
6625 * This routine is run in a kernel timer to monitor the network device.
6626 */
6627static void dev_monitor(struct timer_list *t)
6628{
6629 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6630 struct net_device *dev = priv->mii_if.dev;
6631 struct dev_info *hw_priv = priv->adapter;
6632 struct ksz_hw *hw = &hw_priv->hw;
6633 struct ksz_port *port = &priv->port;
6634
6635 if (!(hw->features & LINK_INT_WORKING))
6636 port_get_link_speed(port);
6637 update_link(dev, priv, port);
6638
6639 ksz_update_timer(&priv->monitor_timer_info);
6640}
6641
6642/*
6643 * Linux network device interface functions
6644 */
6645
6646/* Driver exported variables */
6647
6648static int msg_enable;
6649
6650static char *macaddr = ":";
6651static char *mac1addr = ":";
6652
6653/*
6654 * This enables multiple network device mode for KSZ8842, which contains a
6655 * switch with two physical ports. Some users like to take control of the
6656 * ports for running Spanning Tree Protocol. The driver will create an
6657 * additional eth? device for the other port.
6658 *
6659 * Some limitations are the network devices cannot have different MTU and
6660 * multicast hash tables.
6661 */
6662static int multi_dev;
6663
6664/*
6665 * As most users select multiple network device mode to use Spanning Tree
6666 * Protocol, this enables a feature in which most unicast and multicast packets
6667 * are forwarded inside the switch and not passed to the host. Only packets
6668 * that need the host's attention are passed to it. This prevents the host
6669 * wasting CPU time to examine each and every incoming packets and do the
6670 * forwarding itself.
6671 *
6672 * As the hack requires the private bridge header, the driver cannot compile
6673 * with just the kernel headers.
6674 *
6675 * Enabling STP support also turns on multiple network device mode.
6676 */
6677static int stp;
6678
6679/*
6680 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6681 * needs that. However, fast aging is used to flush the dynamic MAC table when
6682 * STP support is enabled.
6683 */
6684static int fast_aging;
6685
6686/**
6687 * netdev_init - initialize network device.
6688 * @dev: Network device.
6689 *
6690 * This function initializes the network device.
6691 *
6692 * Return 0 if successful; otherwise an error code indicating failure.
6693 */
6694static int __init netdev_init(struct net_device *dev)
6695{
6696 struct dev_priv *priv = netdev_priv(dev);
6697
6698 /* 500 ms timeout */
6699 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6700 dev_monitor);
6701
6702 /* 500 ms timeout */
6703 dev->watchdog_timeo = HZ / 2;
6704
6705 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6706
6707 /*
6708 * Hardware does not really support IPv6 checksum generation, but
6709 * driver actually runs faster with this on.
6710 */
6711 dev->hw_features |= NETIF_F_IPV6_CSUM;
6712
6713 dev->features |= dev->hw_features;
6714
6715 sema_init(&priv->proc_sem, 1);
6716
6717 priv->mii_if.phy_id_mask = 0x1;
6718 priv->mii_if.reg_num_mask = 0x7;
6719 priv->mii_if.dev = dev;
6720 priv->mii_if.mdio_read = mdio_read;
6721 priv->mii_if.mdio_write = mdio_write;
6722 priv->mii_if.phy_id = priv->port.first_port + 1;
6723
6724 priv->msg_enable = netif_msg_init(msg_enable,
6725 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6726
6727 return 0;
6728}
6729
6730static const struct net_device_ops netdev_ops = {
6731 .ndo_init = netdev_init,
6732 .ndo_open = netdev_open,
6733 .ndo_stop = netdev_close,
6734 .ndo_get_stats = netdev_query_statistics,
6735 .ndo_start_xmit = netdev_tx,
6736 .ndo_tx_timeout = netdev_tx_timeout,
6737 .ndo_change_mtu = netdev_change_mtu,
6738 .ndo_set_features = netdev_set_features,
6739 .ndo_set_mac_address = netdev_set_mac_address,
6740 .ndo_validate_addr = eth_validate_addr,
6741 .ndo_do_ioctl = netdev_ioctl,
6742 .ndo_set_rx_mode = netdev_set_rx_mode,
6743#ifdef CONFIG_NET_POLL_CONTROLLER
6744 .ndo_poll_controller = netdev_netpoll,
6745#endif
6746};
6747
6748static void netdev_free(struct net_device *dev)
6749{
6750 if (dev->watchdog_timeo)
6751 unregister_netdev(dev);
6752
6753 free_netdev(dev);
6754}
6755
6756struct platform_info {
6757 struct dev_info dev_info;
6758 struct net_device *netdev[SWITCH_PORT_NUM];
6759};
6760
6761static int net_device_present;
6762
6763static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6764{
6765 int i;
6766 int j;
6767 int got_num;
6768 int num;
6769
6770 i = j = num = got_num = 0;
6771 while (j < ETH_ALEN) {
6772 if (macaddr[i]) {
6773 int digit;
6774
6775 got_num = 1;
6776 digit = hex_to_bin(macaddr[i]);
6777 if (digit >= 0)
6778 num = num * 16 + digit;
6779 else if (':' == macaddr[i])
6780 got_num = 2;
6781 else
6782 break;
6783 } else if (got_num)
6784 got_num = 2;
6785 else
6786 break;
6787 if (2 == got_num) {
6788 if (MAIN_PORT == port) {
6789 hw_priv->hw.override_addr[j++] = (u8) num;
6790 hw_priv->hw.override_addr[5] +=
6791 hw_priv->hw.id;
6792 } else {
6793 hw_priv->hw.ksz_switch->other_addr[j++] =
6794 (u8) num;
6795 hw_priv->hw.ksz_switch->other_addr[5] +=
6796 hw_priv->hw.id;
6797 }
6798 num = got_num = 0;
6799 }
6800 i++;
6801 }
6802 if (ETH_ALEN == j) {
6803 if (MAIN_PORT == port)
6804 hw_priv->hw.mac_override = 1;
6805 }
6806}
6807
6808#define KS884X_DMA_MASK (~0x0UL)
6809
6810static void read_other_addr(struct ksz_hw *hw)
6811{
6812 int i;
6813 u16 data[3];
6814 struct ksz_switch *sw = hw->ksz_switch;
6815
6816 for (i = 0; i < 3; i++)
6817 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6818 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6819 sw->other_addr[5] = (u8) data[0];
6820 sw->other_addr[4] = (u8)(data[0] >> 8);
6821 sw->other_addr[3] = (u8) data[1];
6822 sw->other_addr[2] = (u8)(data[1] >> 8);
6823 sw->other_addr[1] = (u8) data[2];
6824 sw->other_addr[0] = (u8)(data[2] >> 8);
6825 }
6826}
6827
6828#ifndef PCI_VENDOR_ID_MICREL_KS
6829#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6830#endif
6831
6832static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6833{
6834 struct net_device *dev;
6835 struct dev_priv *priv;
6836 struct dev_info *hw_priv;
6837 struct ksz_hw *hw;
6838 struct platform_info *info;
6839 struct ksz_port *port;
6840 unsigned long reg_base;
6841 unsigned long reg_len;
6842 int cnt;
6843 int i;
6844 int mib_port_count;
6845 int pi;
6846 int port_count;
6847 int result;
6848 char banner[sizeof(version)];
6849 struct ksz_switch *sw = NULL;
6850
6851 result = pci_enable_device(pdev);
6852 if (result)
6853 return result;
6854
6855 result = -ENODEV;
6856
6857 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6858 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6859 return result;
6860
6861 reg_base = pci_resource_start(pdev, 0);
6862 reg_len = pci_resource_len(pdev, 0);
6863 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6864 return result;
6865
6866 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6867 return result;
6868 pci_set_master(pdev);
6869
6870 result = -ENOMEM;
6871
6872 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6873 if (!info)
6874 goto pcidev_init_dev_err;
6875
6876 hw_priv = &info->dev_info;
6877 hw_priv->pdev = pdev;
6878
6879 hw = &hw_priv->hw;
6880
6881 hw->io = ioremap(reg_base, reg_len);
6882 if (!hw->io)
6883 goto pcidev_init_io_err;
6884
6885 cnt = hw_init(hw);
6886 if (!cnt) {
6887 if (msg_enable & NETIF_MSG_PROBE)
6888 pr_alert("chip not detected\n");
6889 result = -ENODEV;
6890 goto pcidev_init_alloc_err;
6891 }
6892
6893 snprintf(banner, sizeof(banner), "%s", version);
6894 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6895 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6896 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6897
6898 /* Assume device is KSZ8841. */
6899 hw->dev_count = 1;
6900 port_count = 1;
6901 mib_port_count = 1;
6902 hw->addr_list_size = 0;
6903 hw->mib_cnt = PORT_COUNTER_NUM;
6904 hw->mib_port_cnt = 1;
6905
6906 /* KSZ8842 has a switch with multiple ports. */
6907 if (2 == cnt) {
6908 if (fast_aging)
6909 hw->overrides |= FAST_AGING;
6910
6911 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6912
6913 /* Multiple network device interfaces are required. */
6914 if (multi_dev) {
6915 hw->dev_count = SWITCH_PORT_NUM;
6916 hw->addr_list_size = SWITCH_PORT_NUM - 1;
6917 }
6918
6919 /* Single network device has multiple ports. */
6920 if (1 == hw->dev_count) {
6921 port_count = SWITCH_PORT_NUM;
6922 mib_port_count = SWITCH_PORT_NUM;
6923 }
6924 hw->mib_port_cnt = TOTAL_PORT_NUM;
6925 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6926 if (!hw->ksz_switch)
6927 goto pcidev_init_alloc_err;
6928
6929 sw = hw->ksz_switch;
6930 }
6931 for (i = 0; i < hw->mib_port_cnt; i++)
6932 hw->port_mib[i].mib_start = 0;
6933
6934 hw->parent = hw_priv;
6935
6936 /* Default MTU is 1500. */
6937 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6938
6939 if (ksz_alloc_mem(hw_priv))
6940 goto pcidev_init_mem_err;
6941
6942 hw_priv->hw.id = net_device_present;
6943
6944 spin_lock_init(&hw_priv->hwlock);
6945 mutex_init(&hw_priv->lock);
6946
6947 for (i = 0; i < TOTAL_PORT_NUM; i++)
6948 init_waitqueue_head(&hw_priv->counter[i].counter);
6949
6950 if (macaddr[0] != ':')
6951 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6952
6953 /* Read MAC address and initialize override address if not overridden. */
6954 hw_read_addr(hw);
6955
6956 /* Multiple device interfaces mode requires a second MAC address. */
6957 if (hw->dev_count > 1) {
6958 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6959 read_other_addr(hw);
6960 if (mac1addr[0] != ':')
6961 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6962 }
6963
6964 hw_setup(hw);
6965 if (hw->ksz_switch)
6966 sw_setup(hw);
6967 else {
6968 hw_priv->wol_support = WOL_SUPPORT;
6969 hw_priv->wol_enable = 0;
6970 }
6971
6972 INIT_WORK(&hw_priv->mib_read, mib_read_work);
6973
6974 /* 500 ms timeout */
6975 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6976 mib_monitor);
6977
6978 for (i = 0; i < hw->dev_count; i++) {
6979 dev = alloc_etherdev(sizeof(struct dev_priv));
6980 if (!dev)
6981 goto pcidev_init_reg_err;
6982 SET_NETDEV_DEV(dev, &pdev->dev);
6983 info->netdev[i] = dev;
6984
6985 priv = netdev_priv(dev);
6986 priv->adapter = hw_priv;
6987 priv->id = net_device_present++;
6988
6989 port = &priv->port;
6990 port->port_cnt = port_count;
6991 port->mib_port_cnt = mib_port_count;
6992 port->first_port = i;
6993 port->flow_ctrl = PHY_FLOW_CTRL;
6994
6995 port->hw = hw;
6996 port->linked = &hw->port_info[port->first_port];
6997
6998 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6999 hw->port_info[pi].port_id = pi;
7000 hw->port_info[pi].pdev = dev;
7001 hw->port_info[pi].state = media_disconnected;
7002 }
7003
7004 dev->mem_start = (unsigned long) hw->io;
7005 dev->mem_end = dev->mem_start + reg_len - 1;
7006 dev->irq = pdev->irq;
7007 if (MAIN_PORT == i)
7008 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7009 ETH_ALEN);
7010 else {
7011 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7012 if (ether_addr_equal(sw->other_addr, hw->override_addr))
7013 dev->dev_addr[5] += port->first_port;
7014 }
7015
7016 dev->netdev_ops = &netdev_ops;
7017 dev->ethtool_ops = &netdev_ethtool_ops;
7018
7019 /* MTU range: 60 - 1894 */
7020 dev->min_mtu = ETH_ZLEN;
7021 dev->max_mtu = MAX_RX_BUF_SIZE -
7022 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7023
7024 if (register_netdev(dev))
7025 goto pcidev_init_reg_err;
7026 port_set_power_saving(port, true);
7027 }
7028
7029 pci_dev_get(hw_priv->pdev);
7030 pci_set_drvdata(pdev, info);
7031 return 0;
7032
7033pcidev_init_reg_err:
7034 for (i = 0; i < hw->dev_count; i++) {
7035 if (info->netdev[i]) {
7036 netdev_free(info->netdev[i]);
7037 info->netdev[i] = NULL;
7038 }
7039 }
7040
7041pcidev_init_mem_err:
7042 ksz_free_mem(hw_priv);
7043 kfree(hw->ksz_switch);
7044
7045pcidev_init_alloc_err:
7046 iounmap(hw->io);
7047
7048pcidev_init_io_err:
7049 kfree(info);
7050
7051pcidev_init_dev_err:
7052 release_mem_region(reg_base, reg_len);
7053
7054 return result;
7055}
7056
7057static void pcidev_exit(struct pci_dev *pdev)
7058{
7059 int i;
7060 struct platform_info *info = pci_get_drvdata(pdev);
7061 struct dev_info *hw_priv = &info->dev_info;
7062
7063 release_mem_region(pci_resource_start(pdev, 0),
7064 pci_resource_len(pdev, 0));
7065 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7066 if (info->netdev[i])
7067 netdev_free(info->netdev[i]);
7068 }
7069 if (hw_priv->hw.io)
7070 iounmap(hw_priv->hw.io);
7071 ksz_free_mem(hw_priv);
7072 kfree(hw_priv->hw.ksz_switch);
7073 pci_dev_put(hw_priv->pdev);
7074 kfree(info);
7075}
7076
7077static int __maybe_unused pcidev_resume(struct device *dev_d)
7078{
7079 int i;
7080 struct platform_info *info = dev_get_drvdata(dev_d);
7081 struct dev_info *hw_priv = &info->dev_info;
7082 struct ksz_hw *hw = &hw_priv->hw;
7083
7084 device_wakeup_disable(dev_d);
7085
7086 if (hw_priv->wol_enable)
7087 hw_cfg_wol_pme(hw, 0);
7088 for (i = 0; i < hw->dev_count; i++) {
7089 if (info->netdev[i]) {
7090 struct net_device *dev = info->netdev[i];
7091
7092 if (netif_running(dev)) {
7093 netdev_open(dev);
7094 netif_device_attach(dev);
7095 }
7096 }
7097 }
7098 return 0;
7099}
7100
7101static int __maybe_unused pcidev_suspend(struct device *dev_d)
7102{
7103 int i;
7104 struct platform_info *info = dev_get_drvdata(dev_d);
7105 struct dev_info *hw_priv = &info->dev_info;
7106 struct ksz_hw *hw = &hw_priv->hw;
7107
7108 /* Need to find a way to retrieve the device IP address. */
7109 static const u8 net_addr[] = { 192, 168, 1, 1 };
7110
7111 for (i = 0; i < hw->dev_count; i++) {
7112 if (info->netdev[i]) {
7113 struct net_device *dev = info->netdev[i];
7114
7115 if (netif_running(dev)) {
7116 netif_device_detach(dev);
7117 netdev_close(dev);
7118 }
7119 }
7120 }
7121 if (hw_priv->wol_enable) {
7122 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7123 hw_cfg_wol_pme(hw, 1);
7124 }
7125
7126 device_wakeup_enable(dev_d);
7127 return 0;
7128}
7129
7130static char pcidev_name[] = "ksz884xp";
7131
7132static const struct pci_device_id pcidev_table[] = {
7133 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7135 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7137 { 0 }
7138};
7139
7140MODULE_DEVICE_TABLE(pci, pcidev_table);
7141
7142static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7143
7144static struct pci_driver pci_device_driver = {
7145 .driver.pm = &pcidev_pm_ops,
7146 .name = pcidev_name,
7147 .id_table = pcidev_table,
7148 .probe = pcidev_init,
7149 .remove = pcidev_exit
7150};
7151
7152module_pci_driver(pci_device_driver);
7153
7154MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7155MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7156MODULE_LICENSE("GPL");
7157
7158module_param_named(message, msg_enable, int, 0);
7159MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7160
7161module_param(macaddr, charp, 0);
7162module_param(mac1addr, charp, 0);
7163module_param(fast_aging, int, 0);
7164module_param(multi_dev, int, 0);
7165module_param(stp, int, 0);
7166MODULE_PARM_DESC(macaddr, "MAC address");
7167MODULE_PARM_DESC(mac1addr, "Second MAC address");
7168MODULE_PARM_DESC(fast_aging, "Fast aging");
7169MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7170MODULE_PARM_DESC(stp, "STP support");