Linux Audio

Check our new training course

Loading...
v4.17
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overridden MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overridden.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
 
 
 
 
 
 
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325	if (!(hw->overrides & FAST_AGING)) {
2326		sw_cfg_fast_aging(hw, 1);
2327		mdelay(1);
2328		sw_cfg_fast_aging(hw, 0);
2329	}
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336	port_cfg(hw, p,
2337		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348	return port_chk(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360	port_cfg(hw, p,
2361		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372	return port_chk(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386	port_cfg(hw, p,
2387		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409	int port;
2410
2411	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412		port_cfg_mirror_sniffer(hw, port, 0);
2413		port_cfg_mirror_rx(hw, port, 0);
2414		port_cfg_mirror_tx(hw, port, 0);
2415	}
2416	sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445	port_cfg(hw, p,
2446		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469	return port_chk(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: 	The hardware instance.
2494 * @port:	The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500	port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: 	The hardware instance.
2506 * @port:	The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512	port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: 	The hardware instance.
2518 * @set:	The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: 	The hardware instance.
2529 * @port:	The port index.
2530 * @set:	The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539	port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: 	The hardware instance.
2545 * @port:	The port index.
2546 * @prio:	The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552	u16 data;
2553
2554	if (prio > PORT_BASED_PRIORITY_BASE)
2555		prio = PORT_BASED_PRIORITY_BASE;
2556
2557	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560	data &= ~PORT_BASED_PRIORITY_MASK;
2561	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: 	The hardware instance.
2568 * @port:	The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port.  Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575	port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: 	The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586	int port;
2587	int tos;
2588	struct ksz_switch *sw = hw->ksz_switch;
2589
2590	/*
2591	 * Init all the 802.1p tag priority value to be assigned to different
2592	 * priority queue.
2593	 */
2594	sw->p_802_1p[0] = 0;
2595	sw->p_802_1p[1] = 0;
2596	sw->p_802_1p[2] = 1;
2597	sw->p_802_1p[3] = 1;
2598	sw->p_802_1p[4] = 2;
2599	sw->p_802_1p[5] = 2;
2600	sw->p_802_1p[6] = 3;
2601	sw->p_802_1p[7] = 3;
2602
2603	/*
2604	 * Init all the DiffServ priority value to be assigned to priority
2605	 * queue 0.
2606	 */
2607	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608		sw->diffserv[tos] = 0;
2609
2610	/* All QoS functions disabled. */
2611	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612		sw_dis_multi_queue(hw, port);
2613		sw_dis_diffserv(hw, port);
2614		sw_dis_802_1p(hw, port);
2615		sw_cfg_replace_vid(hw, port, 0);
2616
2617		sw->port_cfg[port].port_prio = 0;
2618		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619	}
2620	sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: 	The hardware instance.
2626 * @port:	The port index.
2627 * @vid:	Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633	u32 addr;
2634
2635	PORT_CTRL_ADDR(port, addr);
2636	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637	*vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: 	The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648	int port;
2649	int entry;
2650	struct ksz_switch *sw = hw->ksz_switch;
2651
2652	/* Read 16 VLAN entries from device's VLAN table. */
2653	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654		sw_r_vlan_table(hw, entry,
2655			&sw->vlan_table[entry].vid,
2656			&sw->vlan_table[entry].fid,
2657			&sw->vlan_table[entry].member);
2658	}
2659
2660	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662		sw->port_cfg[port].member = PORT_MASK;
2663	}
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: 	The hardware instance.
2669 * @port:	The port index.
2670 * @member:	The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676	u32 addr;
2677	u8 data;
2678
2679	PORT_CTRL_ADDR(port, addr);
2680	addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682	data = readb(hw->io + addr);
2683	data &= ~PORT_VLAN_MEMBERSHIP;
2684	data |= (member & PORT_MASK);
2685	writeb(data, hw->io + addr);
2686
2687	hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: 	The hardware instance.
2693 * @mac_addr:	Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699	int i;
2700
2701	for (i = 0; i < 6; i += 2) {
2702		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704	}
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: 	The hardware instance.
2710 * @mac_addr:	The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716	int i;
2717
2718	for (i = 0; i < 6; i += 2) {
2719		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721	}
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: 	The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732	u16 data;
2733
2734	/* Enable switch MII flow control. */
2735	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736	data |= SWITCH_FLOW_CTRL;
2737	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741	/* Enable aggressive back off algorithm in half duplex mode. */
2742	data |= SWITCH_AGGR_BACKOFF;
2743
2744	/* Enable automatic fast aging when link changed detected. */
2745	data |= SWITCH_AGING_ENABLE;
2746	data |= SWITCH_LINK_AUTO_AGING;
2747
2748	if (hw->overrides & FAST_AGING)
2749		data |= SWITCH_FAST_AGING;
2750	else
2751		data &= ~SWITCH_FAST_AGING;
2752	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756	/* Enable no excessive collision drop. */
2757	data |= NO_EXC_COLLISION_DROP;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762	STP_STATE_DISABLED = 0,
2763	STP_STATE_LISTENING,
2764	STP_STATE_LEARNING,
2765	STP_STATE_FORWARDING,
2766	STP_STATE_BLOCKED,
2767	STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: 	The hardware instance.
2773 * @port:	The port index.
2774 * @state:	The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780	u16 data;
2781
2782	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783	switch (state) {
2784	case STP_STATE_DISABLED:
2785		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786		data |= PORT_LEARN_DISABLE;
2787		break;
2788	case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793		data &= ~PORT_TX_ENABLE;
2794		data |= PORT_RX_ENABLE;
2795		data |= PORT_LEARN_DISABLE;
2796		break;
2797	case STP_STATE_LEARNING:
2798		data &= ~PORT_TX_ENABLE;
2799		data |= PORT_RX_ENABLE;
2800		data &= ~PORT_LEARN_DISABLE;
2801		break;
2802	case STP_STATE_FORWARDING:
2803		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804		data &= ~PORT_LEARN_DISABLE;
2805		break;
2806	case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages.  See sw_init_stp routine.
2810 */
2811		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812		data |= PORT_LEARN_DISABLE;
2813		break;
2814	case STP_STATE_SIMPLE:
2815		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816		data |= PORT_LEARN_DISABLE;
2817		break;
2818	}
2819	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820	hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY			0
2824#define BROADCAST_ENTRY			1
2825#define BRIDGE_ADDR_ENTRY		2
2826#define IPV6_ADDR_ENTRY			3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: 	The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836	struct ksz_mac_table *entry;
2837	int i;
2838
2839	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840		entry = &hw->ksz_switch->mac_table[i];
2841		sw_w_sta_mac_table(hw, i,
2842			entry->mac_addr, entry->ports,
2843			entry->override, 0,
2844			entry->use_fid, entry->fid);
2845	}
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: 	The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856	struct ksz_mac_table *entry;
2857
2858	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859	entry->mac_addr[0] = 0x01;
2860	entry->mac_addr[1] = 0x80;
2861	entry->mac_addr[2] = 0xC2;
2862	entry->mac_addr[3] = 0x00;
2863	entry->mac_addr[4] = 0x00;
2864	entry->mac_addr[5] = 0x00;
2865	entry->ports = HOST_MASK;
2866	entry->override = 1;
2867	entry->valid = 1;
2868	sw_w_sta_mac_table(hw, STP_ENTRY,
2869		entry->mac_addr, entry->ports,
2870		entry->override, entry->valid,
2871		entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: 	The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882	struct ksz_mac_table *entry;
2883	int i;
2884
2885	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886		entry = &hw->ksz_switch->mac_table[i];
2887		entry->valid = 0;
2888		sw_w_sta_mac_table(hw, i,
2889			entry->mac_addr, entry->ports,
2890			entry->override, entry->valid,
2891			entry->use_fid, entry->fid);
2892	}
2893}
2894
2895#define PHY_LINK_SUPPORT		\
2896	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897	PHY_AUTO_NEG_SYM_PAUSE |	\
2898	PHY_AUTO_NEG_100BT4 |		\
2899	PHY_AUTO_NEG_100BTX_FD |	\
2900	PHY_AUTO_NEG_100BTX |		\
2901	PHY_AUTO_NEG_10BT_FD |		\
2902	PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: 	The hardware instance.
2967 * @port:	Port to read.
2968 * @reg:	PHY register to read.
2969 * @val:	Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975	int phy;
2976
2977	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978	*val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: 	The hardware instance.
2984 * @port:	Port to write.
2985 * @reg:	PHY register to write.
2986 * @val:	Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992	int phy;
2993
2994	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995	writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE			0
3003#define AT93C_WR_OFF			0x00
3004#define AT93C_WR_ALL			0x10
3005#define AT93C_ER_ALL			0x20
3006#define AT93C_WR_ON			0x30
3007
3008#define AT93C_WRITE			1
3009#define AT93C_READ			2
3010#define AT93C_ERASE			3
3011
3012#define EEPROM_DELAY			4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016	u16 data;
3017
3018	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019	data &= ~gpio;
3020	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025	u16 data;
3026
3027	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028	data |= gpio;
3029	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034	u16 data;
3035
3036	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037	return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043	udelay(EEPROM_DELAY);
3044	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045	udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050	int i;
3051	u16 temp = 0;
3052
3053	for (i = 15; i >= 0; i--) {
3054		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055		udelay(EEPROM_DELAY);
3056
3057		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060		udelay(EEPROM_DELAY);
3061	}
3062	return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067	int i;
3068
3069	for (i = 15; i >= 0; i--) {
3070		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071			drop_gpio(hw, EEPROM_DATA_OUT);
3072		eeprom_clk(hw);
3073	}
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078	int i;
3079
3080	/* Initial start bit */
3081	raise_gpio(hw, EEPROM_DATA_OUT);
3082	eeprom_clk(hw);
3083
3084	/* AT93C operation */
3085	for (i = 1; i >= 0; i--) {
3086		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087			drop_gpio(hw, EEPROM_DATA_OUT);
3088		eeprom_clk(hw);
3089	}
3090
3091	/* Address location */
3092	for (i = 5; i >= 0; i--) {
3093		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094			drop_gpio(hw, EEPROM_DATA_OUT);
3095		eeprom_clk(hw);
3096	}
3097}
3098
3099#define EEPROM_DATA_RESERVED		0
3100#define EEPROM_DATA_MAC_ADDR_0		1
3101#define EEPROM_DATA_MAC_ADDR_1		2
3102#define EEPROM_DATA_MAC_ADDR_2		3
3103#define EEPROM_DATA_SUBSYS_ID		4
3104#define EEPROM_DATA_SUBSYS_VEN_ID	5
3105#define EEPROM_DATA_PM_CAP		6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR	9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: 	The hardware instance.
3113 * @reg:	The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121	u16 data;
3122
3123	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125	spi_reg(hw, AT93C_READ, reg);
3126	data = spi_r(hw);
3127
3128	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130	return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: 	The hardware instance.
3136 * @reg:	The register offset.
3137 * @data:	The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143	int timeout;
3144
3145	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147	/* Enable write. */
3148	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150	udelay(1);
3151
3152	/* Erase the register. */
3153	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154	spi_reg(hw, AT93C_ERASE, reg);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Check operation complete. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	timeout = 8;
3161	mdelay(2);
3162	do {
3163		mdelay(1);
3164	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166	udelay(1);
3167
3168	/* Write the register. */
3169	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170	spi_reg(hw, AT93C_WRITE, reg);
3171	spi_w(hw, data);
3172	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173	udelay(1);
3174
3175	/* Check operation complete. */
3176	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177	timeout = 8;
3178	mdelay(2);
3179	do {
3180		mdelay(1);
3181	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183	udelay(1);
3184
3185	/* Disable write. */
3186	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199	switch (port->flow_ctrl) {
3200	case PHY_FLOW_CTRL:
3201		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202		break;
3203	/* Not supported. */
3204	case PHY_TX_ONLY:
3205	case PHY_RX_ONLY:
3206	default:
3207		break;
3208	}
3209	return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214	u32 rx_cfg;
3215	u32 tx_cfg;
3216
3217	rx_cfg = hw->rx_cfg;
3218	tx_cfg = hw->tx_cfg;
3219	if (rx)
3220		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221	else
3222		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223	if (tx)
3224		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225	else
3226		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227	if (hw->enabled) {
3228		if (rx_cfg != hw->rx_cfg)
3229			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230		if (tx_cfg != hw->tx_cfg)
3231			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232	}
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236	u16 local, u16 remote)
3237{
3238	int rx;
3239	int tx;
3240
3241	if (hw->overrides & PAUSE_FLOW_CTRL)
3242		return;
3243
3244	rx = tx = 0;
3245	if (port->force_link)
3246		rx = tx = 1;
3247	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249			rx = tx = 1;
3250		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251				(local & PHY_AUTO_NEG_PAUSE) ==
3252				PHY_AUTO_NEG_ASYM_PAUSE) {
3253			tx = 1;
3254		}
3255	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257			rx = 1;
3258	}
3259	if (!hw->ksz_switch)
3260		set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264	struct ksz_port_info *info, u16 link_status)
3265{
3266	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268		u32 cfg = hw->tx_cfg;
3269
3270		/* Disable flow control in the half duplex mode. */
3271		if (1 == info->duplex)
3272			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273		if (hw->enabled && cfg != hw->tx_cfg)
3274			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275	}
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: 	The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287	uint interrupt;
3288	struct ksz_port_info *info;
3289	struct ksz_port_info *linked = NULL;
3290	struct ksz_hw *hw = port->hw;
3291	u16 data;
3292	u16 status;
3293	u8 local;
3294	u8 remote;
3295	int i;
3296	int p;
3297	int change = 0;
3298
3299	interrupt = hw_block_intr(hw);
3300
3301	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302		info = &hw->port_info[p];
3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306		/*
3307		 * Link status is changing all the time even when there is no
3308		 * cable connection!
3309		 */
3310		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311			PORT_STATUS_LINK_GOOD);
3312		local = (u8) data;
3313
3314		/* No change to status. */
3315		if (local == info->advertised && remote == info->partner)
3316			continue;
3317
3318		info->advertised = local;
3319		info->partner = remote;
3320		if (status & PORT_STATUS_LINK_GOOD) {
3321
3322			/* Remember the first linked port. */
3323			if (!linked)
3324				linked = info;
3325
3326			info->tx_rate = 10 * TX_RATE_UNIT;
3327			if (status & PORT_STATUS_SPEED_100MBIT)
3328				info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330			info->duplex = 1;
3331			if (status & PORT_STATUS_FULL_DUPLEX)
3332				info->duplex = 2;
3333
3334			if (media_connected != info->state) {
3335				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336					&data);
3337				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338					&status);
3339				determine_flow_ctrl(hw, port, data, status);
3340				if (hw->ksz_switch) {
3341					port_cfg_back_pressure(hw, p,
3342						(1 == info->duplex));
3343				}
3344				change |= 1 << i;
3345				port_cfg_change(hw, port, info, status);
3346			}
3347			info->state = media_connected;
3348		} else {
3349			if (media_disconnected != info->state) {
3350				change |= 1 << i;
3351
3352				/* Indicate the link just goes down. */
3353				hw->port_mib[p].link_down = 1;
3354			}
3355			info->state = media_disconnected;
3356		}
3357		hw->port_mib[p].state = (u8) info->state;
3358	}
3359
3360	if (linked && media_disconnected == port->linked->state)
3361		port->linked = linked;
3362
3363	hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT		10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: 	The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376	struct ksz_port_info *info;
3377	struct ksz_hw *hw = port->hw;
3378	u16 data;
3379	u16 cfg;
3380	u8 status;
3381	int i;
3382	int p;
3383
3384	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385		info = &hw->port_info[p];
3386
3387		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390		cfg = 0;
3391		if (status & PORT_STATUS_LINK_GOOD)
3392			cfg = data;
3393
3394		data |= PORT_AUTO_NEG_ENABLE;
3395		data = advertised_flow_ctrl(port, data);
3396
3397		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400		/* Check if manual configuration is specified by the user. */
3401		if (port->speed || port->duplex) {
3402			if (10 == port->speed)
3403				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404					PORT_AUTO_NEG_100BTX);
3405			else if (100 == port->speed)
3406				data &= ~(PORT_AUTO_NEG_10BT_FD |
3407					PORT_AUTO_NEG_10BT);
3408			if (1 == port->duplex)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_10BT_FD);
3411			else if (2 == port->duplex)
3412				data &= ~(PORT_AUTO_NEG_100BTX |
3413					PORT_AUTO_NEG_10BT);
3414		}
3415		if (data != cfg) {
3416			data |= PORT_AUTO_NEG_RESTART;
3417			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418		}
3419	}
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port: 	The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430	struct ksz_hw *hw = port->hw;
3431	u16 data;
3432	int i;
3433	int phy;
3434	int p;
3435
3436	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438		hw_r_phy_ctrl(hw, phy, &data);
3439
3440		data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442		if (10 == port->speed)
3443			data &= ~PHY_SPEED_100MBIT;
3444		else if (100 == port->speed)
3445			data |= PHY_SPEED_100MBIT;
3446		if (1 == port->duplex)
3447			data &= ~PHY_FULL_DUPLEX;
3448		else if (2 == port->duplex)
3449			data |= PHY_FULL_DUPLEX;
3450		hw_w_phy_ctrl(hw, phy, data);
3451	}
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456	struct ksz_hw *hw = port->hw;
3457	int i;
3458	int p;
3459
3460	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461		port_cfg(hw, p,
3462			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw: 	The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480	struct pci_dev *pdev = hw_priv->pdev;
3481	u16 data;
3482
3483	if (!pdev->pm_cap)
3484		return 0;
3485	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw: 	The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498	struct pci_dev *pdev = hw_priv->pdev;
3499	u16 data;
3500
3501	if (!pdev->pm_cap)
3502		return;
3503
3504	/* Clear PME_Status to deassert PMEN pin. */
3505	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506	data |= PCI_PM_CTRL_PME_STATUS;
3507	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw: 	The hardware instance.
3513 * @set:	The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520	struct pci_dev *pdev = hw_priv->pdev;
3521	u16 data;
3522
3523	if (!pdev->pm_cap)
3524		return;
3525	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526	data &= ~PCI_PM_CTRL_STATE_MASK;
3527	if (set)
3528		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529	else
3530		data &= ~PCI_PM_CTRL_PME_ENABLE;
3531	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw: 	The hardware instance.
3537 * @frame:	The pattern frame bit.
3538 * @set:	The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544	u16 data;
3545
3546	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547	if (set)
3548		data |= frame;
3549	else
3550		data &= ~frame;
3551	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw: 	The hardware instance.
3557 * @i:		The frame index.
3558 * @mask_size:	The size of the mask.
3559 * @mask:	Mask to ignore certain bytes in the pattern.
3560 * @frame_size:	The size of the frame.
3561 * @pattern:	The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566	const u8 *mask, uint frame_size, const u8 *pattern)
3567{
3568	int bits;
3569	int from;
3570	int len;
3571	int to;
3572	u32 crc;
3573	u8 data[64];
3574	u8 val = 0;
3575
3576	if (frame_size > mask_size * 8)
3577		frame_size = mask_size * 8;
3578	if (frame_size > 64)
3579		frame_size = 64;
3580
3581	i *= 0x10;
3582	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585	bits = len = from = to = 0;
3586	do {
3587		if (bits) {
3588			if ((val & 1))
3589				data[to++] = pattern[from];
3590			val >>= 1;
3591			++from;
3592			--bits;
3593		} else {
3594			val = mask[len];
3595			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596				+ len);
3597			++len;
3598			if (val)
3599				bits = 8;
3600			else
3601				from += 8;
3602		}
3603	} while (from < (int) frame_size);
3604	if (val) {
3605		bits = mask[len - 1];
3606		val <<= (from % 8);
3607		bits &= ~val;
3608		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609			1);
3610	}
3611	crc = ether_crc(to, data);
3612	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw: 	The hardware instance.
3618 * @ip_addr:	The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623{
3624	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625	u8 pattern[42] = {
3626		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628		0x08, 0x06,
3629		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631		0x00, 0x00, 0x00, 0x00,
3632		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633		0x00, 0x00, 0x00, 0x00 };
3634
3635	memcpy(&pattern[38], ip_addr, 4);
3636	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw: 	The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
3647	static const u8 mask[] = { 0x3F };
3648	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649
3650	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw: 	The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command.  Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
3665	static const u8 mask[] = { 0x3F };
3666	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668	memcpy(&pattern[3], &hw->override_addr[3], 3);
3669	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw: 	The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
3683	static const u8 mask[] = { 0x3F };
3684
3685	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw: 	The hardware instance.
3691 * @wol_enable:	The Wake-on-LAN settings.
3692 * @net_addr:	The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697{
3698	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700	hw_add_wol_ucast(hw);
3701	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702	hw_add_wol_mcast(hw);
3703	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705	hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw: 	The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719	int rc = 0;
3720	u16 data;
3721	u16 revision;
3722
3723	/* Set bus speed to 125MHz. */
3724	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726	/* Check KSZ884x chip ID. */
3727	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730	data &= KS884X_CHIP_ID_MASK_41;
3731	if (REG_CHIP_ID_41 == data)
3732		rc = 1;
3733	else if (REG_CHIP_ID_42 == data)
3734		rc = 2;
3735	else
3736		return 0;
3737
3738	/* Setup hardware features or bug workarounds. */
3739	if (revision <= 1) {
3740		hw->features |= SMALL_PACKET_TX_BUG;
3741		if (1 == rc)
3742			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743	}
3744	return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw: 	The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757	/* Wait for device to reset. */
3758	mdelay(10);
3759
3760	/* Write 0 to clear device reset. */
3761	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw: 	The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773	u16 data;
3774
3775	/* Change default LED mode. */
3776	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777	data &= ~LED_MODE;
3778	data |= SET_DEFAULT_LED;
3779	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782	/* Setup transmit control. */
3783	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786	/* Setup receive control. */
3787	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791	/* Hardware cannot handle UDP packet in IP fragments. */
3792	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794	if (hw->all_multi)
3795		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796	if (hw->promiscuous)
3797		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw: 	The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT  2
3814
3815	int alloc = info->alloc;
3816	int shift;
3817
3818	shift = 0;
3819	while (!(alloc & 1)) {
3820		shift++;
3821		alloc >>= 1;
3822	}
3823	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824		pr_alert("Hardware descriptor numbers not right!\n");
3825		while (alloc) {
3826			shift++;
3827			alloc >>= 1;
3828		}
3829		if (shift < MIN_DESC_SHIFT)
3830			shift = MIN_DESC_SHIFT;
3831		alloc = 1 << shift;
3832		info->alloc = alloc;
3833	}
3834	info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839	int i;
3840	u32 phys = desc_info->ring_phys;
3841	struct ksz_hw_desc *desc = desc_info->ring_virt;
3842	struct ksz_desc *cur = desc_info->ring;
3843	struct ksz_desc *previous = NULL;
3844
3845	for (i = 0; i < desc_info->alloc; i++) {
3846		cur->phw = desc++;
3847		phys += desc_info->size;
3848		previous = cur++;
3849		previous->phw->next = cpu_to_le32(phys);
3850	}
3851	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852	previous->sw.buf.rx.end_of_ring = 1;
3853	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855	desc_info->avail = desc_info->alloc;
3856	desc_info->last = desc_info->next = 0;
3857
3858	desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw: 	The hardware instance.
3864 * @tx_addr:	The transmit descriptor base.
3865 * @rx_addr:	The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871	/* Set base address of Tx/Rx descriptors. */
3872	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878	info->cur = info->ring;
3879	info->avail = info->alloc;
3880	info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885	writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw: 	The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898	/* Notify when the receive stops. */
3899	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901	writel(DMA_START, hw->io + KS_DMA_RX_START);
3902	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903	hw->rx_stop++;
3904
3905	/* Variable overflows. */
3906	if (0 == hw->rx_stop)
3907		hw->rx_stop = 2;
3908}
3909
3910/**
3911 * hw_stop_rx - stop receiving
3912 * @hw: 	The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918	hw->rx_stop = 0;
3919	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw: 	The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw: 	The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw: 	The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953	hw_stop_rx(hw);
3954	hw_stop_tx(hw);
3955	hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw: 	The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966	hw_start_tx(hw);
3967	hw_start_rx(hw);
3968	hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw: 	The hardware instance.
3974 * @length:	The length of the packet.
3975 * @physical:	Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983	/* Always leave one descriptor free. */
3984	if (hw->tx_desc_info.avail <= 1)
3985		return 0;
3986
3987	/* Allocate a descriptor for transmission and mark it current. */
3988	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991	/* Keep track of number of transmit descriptors used so far. */
3992	++hw->tx_int_cnt;
3993	hw->tx_size += length;
3994
3995	/* Cannot hold on too much data. */
3996	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997		hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999	if (physical > hw->tx_desc_info.avail)
4000		return 1;
4001
4002	return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw: 	The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013	struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015	cur->sw.buf.tx.last_seg = 1;
4016
4017	/* Interrupt only after specified number of descriptors used. */
4018	if (hw->tx_int_cnt > hw->tx_int_mask) {
4019		cur->sw.buf.tx.intr = 1;
4020		hw->tx_int_cnt = 0;
4021		hw->tx_size = 0;
4022	}
4023
4024	/* KSZ8842 supports port directed transmission. */
4025	cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027	release_desc(cur);
4028
4029	writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034	u32 *addr1 = (u32 *) addr;
4035	u16 *addr2 = (u16 *) &addr[4];
4036
4037	return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw: 	The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overridden.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049	int i;
4050
4051	for (i = 0; i < ETH_ALEN; i++)
4052		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053			hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055	sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw: 	The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066	int i;
4067
4068	for (i = 0; i < ETH_ALEN; i++)
4069		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070			KS884X_ADDR_0_OFFSET + i);
4071
4072	if (!hw->mac_override) {
4073		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074		if (empty_addr(hw->override_addr)) {
4075			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077			       ETH_ALEN);
4078			hw->override_addr[5] += hw->id;
4079			hw_set_addr(hw);
4080		}
4081	}
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086	int i;
4087	u32 mac_addr_lo;
4088	u32 mac_addr_hi;
4089
4090	mac_addr_hi = 0;
4091	for (i = 0; i < 2; i++) {
4092		mac_addr_hi <<= 8;
4093		mac_addr_hi |= mac_addr[i];
4094	}
4095	mac_addr_hi |= ADD_ADDR_ENABLE;
4096	mac_addr_lo = 0;
4097	for (i = 2; i < 6; i++) {
4098		mac_addr_lo <<= 8;
4099		mac_addr_lo |= mac_addr[i];
4100	}
4101	index *= ADD_ADDR_INCR;
4102
4103	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109	int i;
4110
4111	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112		if (empty_addr(hw->address[i]))
4113			writel(0, hw->io + ADD_ADDR_INCR * i +
4114				KS_ADD_ADDR_0_HI);
4115		else
4116			hw_ena_add_addr(hw, i, hw->address[i]);
4117	}
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122	int i;
4123	int j = ADDITIONAL_ENTRIES;
4124
4125	if (ether_addr_equal(hw->override_addr, mac_addr))
4126		return 0;
4127	for (i = 0; i < hw->addr_list_size; i++) {
4128		if (ether_addr_equal(hw->address[i], mac_addr))
4129			return 0;
4130		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131			j = i;
4132	}
4133	if (j < ADDITIONAL_ENTRIES) {
4134		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135		hw_ena_add_addr(hw, j, hw->address[j]);
4136		return 0;
4137	}
4138	return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143	int i;
4144
4145	for (i = 0; i < hw->addr_list_size; i++) {
4146		if (ether_addr_equal(hw->address[i], mac_addr)) {
4147			eth_zero_addr(hw->address[i]);
4148			writel(0, hw->io + ADD_ADDR_INCR * i +
4149				KS_ADD_ADDR_0_HI);
4150			return 0;
4151		}
4152	}
4153	return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw: 	The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164	int i;
4165
4166	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167		hw->multi_bits[i] = 0;
4168
4169		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170	}
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw: 	The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182	int i;
4183	int index;
4184	int position;
4185	int value;
4186
4187	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189	for (i = 0; i < hw->multi_list_size; i++) {
4190		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191		index = position >> 3;
4192		value = 1 << (position & 7);
4193		hw->multi_bits[index] |= (u8) value;
4194	}
4195
4196	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198			i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw: 	The hardware instance.
4204 * @multicast:	To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210	/* Stop receiving for reconfiguration. */
4211	hw_stop_rx(hw);
4212
4213	if (multicast)
4214		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215	else
4216		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218	if (hw->enabled)
4219		hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw: 	The hardware instance.
4225 * @prom:	To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231	/* Stop receiving for reconfiguration. */
4232	hw_stop_rx(hw);
4233
4234	if (prom)
4235		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236	else
4237		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239	if (hw->enabled)
4240		hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw: 	The hardware instance.
4246 * @enable:	The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252	int port;
4253
4254	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255		if (hw->dev_count > 1) {
4256			/* Set port-base vlan membership with host port. */
4257			sw_cfg_port_base_vlan(hw, port,
4258				HOST_MASK | (1 << port));
4259			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260		} else {
4261			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263		}
4264	}
4265	if (hw->dev_count > 1)
4266		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267	else
4268		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270	if (enable)
4271		enable = KS8842_START;
4272	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw: 	The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283	int port;
4284
4285	sw_set_global_ctrl(hw);
4286
4287	/* Enable switch broadcast storm protection at 10% percent rate. */
4288	sw_init_broad_storm(hw);
4289	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290	for (port = 0; port < SWITCH_PORT_NUM; port++)
4291		sw_ena_broad_storm(hw, port);
4292
4293	sw_init_prio(hw);
4294
4295	sw_init_mirror(hw);
4296
4297	sw_init_prio_rate(hw);
4298
4299	sw_init_vlan(hw);
4300
4301	if (hw->features & STP_SUPPORT)
4302		sw_init_stp(hw);
4303	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305		hw->overrides |= PAUSE_FLOW_CTRL;
4306	sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info:	Kernel timer information.
4312 * @time:	The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318	info->cnt = 0;
4319	info->timer.expires = jiffies + time;
4320	add_timer(&info->timer);
4321
4322	/* infinity */
4323	info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info:	Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334	if (info->max) {
4335		info->max = 0;
4336		del_timer_sync(&info->timer);
4337	}
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341	void (*function)(struct timer_list *))
4342{
4343	info->max = 0;
4344	info->period = period;
4345	timer_setup(&info->timer, function, 0);
 
 
4346}
4347
4348static void ksz_update_timer(struct ksz_timer_info *info)
4349{
4350	++info->cnt;
4351	if (info->max > 0) {
4352		if (info->cnt < info->max) {
4353			info->timer.expires = jiffies + info->period;
4354			add_timer(&info->timer);
4355		} else
4356			info->max = 0;
4357	} else if (info->max < 0) {
4358		info->timer.expires = jiffies + info->period;
4359		add_timer(&info->timer);
4360	}
4361}
4362
4363/**
4364 * ksz_alloc_soft_desc - allocate software descriptors
4365 * @desc_info:	Descriptor information structure.
4366 * @transmit:	Indication that descriptors are for transmit.
4367 *
4368 * This local function allocates software descriptors for manipulation in
4369 * memory.
4370 *
4371 * Return 0 if successful.
4372 */
4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374{
4375	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376				  GFP_KERNEL);
4377	if (!desc_info->ring)
4378		return 1;
4379	hw_init_desc(desc_info, transmit);
4380	return 0;
4381}
4382
4383/**
4384 * ksz_alloc_desc - allocate hardware descriptors
4385 * @adapter:	Adapter information structure.
4386 *
4387 * This local function allocates hardware descriptors for receiving and
4388 * transmitting.
4389 *
4390 * Return 0 if successful.
4391 */
4392static int ksz_alloc_desc(struct dev_info *adapter)
4393{
4394	struct ksz_hw *hw = &adapter->hw;
4395	int offset;
4396
4397	/* Allocate memory for RX & TX descriptors. */
4398	adapter->desc_pool.alloc_size =
4399		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401		DESC_ALIGNMENT;
4402
4403	adapter->desc_pool.alloc_virt =
4404		pci_zalloc_consistent(adapter->pdev,
4405				      adapter->desc_pool.alloc_size,
4406				      &adapter->desc_pool.dma_addr);
4407	if (adapter->desc_pool.alloc_virt == NULL) {
4408		adapter->desc_pool.alloc_size = 0;
4409		return 1;
4410	}
 
4411
4412	/* Align to the next cache line boundary. */
4413	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414		(DESC_ALIGNMENT -
4415		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418
4419	/* Allocate receive/transmit descriptors. */
4420	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421		adapter->desc_pool.virt;
4422	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425		(adapter->desc_pool.virt + offset);
4426	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427
4428	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429		return 1;
4430	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431		return 1;
4432
4433	return 0;
4434}
4435
4436/**
4437 * free_dma_buf - release DMA buffer resources
4438 * @adapter:	Adapter information structure.
4439 *
4440 * This routine is just a helper function to release the DMA buffer resources.
4441 */
4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443	int direction)
4444{
4445	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4446	dev_kfree_skb(dma_buf->skb);
4447	dma_buf->skb = NULL;
4448	dma_buf->dma = 0;
4449}
4450
4451/**
4452 * ksz_init_rx_buffers - initialize receive descriptors
4453 * @adapter:	Adapter information structure.
4454 *
4455 * This routine initializes DMA buffers for receiving.
4456 */
4457static void ksz_init_rx_buffers(struct dev_info *adapter)
4458{
4459	int i;
4460	struct ksz_desc *desc;
4461	struct ksz_dma_buf *dma_buf;
4462	struct ksz_hw *hw = &adapter->hw;
4463	struct ksz_desc_info *info = &hw->rx_desc_info;
4464
4465	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466		get_rx_pkt(info, &desc);
4467
4468		dma_buf = DMA_BUFFER(desc);
4469		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471		dma_buf->len = adapter->mtu;
4472		if (!dma_buf->skb)
4473			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474		if (dma_buf->skb && !dma_buf->dma)
 
4475			dma_buf->dma = pci_map_single(
4476				adapter->pdev,
4477				skb_tail_pointer(dma_buf->skb),
4478				dma_buf->len,
4479				PCI_DMA_FROMDEVICE);
 
4480
4481		/* Set descriptor. */
4482		set_rx_buf(desc, dma_buf->dma);
4483		set_rx_len(desc, dma_buf->len);
4484		release_desc(desc);
4485	}
4486}
4487
4488/**
4489 * ksz_alloc_mem - allocate memory for hardware descriptors
4490 * @adapter:	Adapter information structure.
4491 *
4492 * This function allocates memory for use by hardware descriptors for receiving
4493 * and transmitting.
4494 *
4495 * Return 0 if successful.
4496 */
4497static int ksz_alloc_mem(struct dev_info *adapter)
4498{
4499	struct ksz_hw *hw = &adapter->hw;
4500
4501	/* Determine the number of receive and transmit descriptors. */
4502	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504
4505	/* Determine how many descriptors to skip transmit interrupt. */
4506	hw->tx_int_cnt = 0;
4507	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508	if (hw->tx_int_mask > 8)
4509		hw->tx_int_mask = 8;
4510	while (hw->tx_int_mask) {
4511		hw->tx_int_cnt++;
4512		hw->tx_int_mask >>= 1;
4513	}
4514	if (hw->tx_int_cnt) {
4515		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516		hw->tx_int_cnt = 0;
4517	}
4518
4519	/* Determine the descriptor size. */
4520	hw->rx_desc_info.size =
4521		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523	hw->tx_desc_info.size =
4524		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527		pr_alert("Hardware descriptor size not right!\n");
4528	ksz_check_desc_num(&hw->rx_desc_info);
4529	ksz_check_desc_num(&hw->tx_desc_info);
4530
4531	/* Allocate descriptors. */
4532	if (ksz_alloc_desc(adapter))
4533		return 1;
4534
4535	return 0;
4536}
4537
4538/**
4539 * ksz_free_desc - free software and hardware descriptors
4540 * @adapter:	Adapter information structure.
4541 *
4542 * This local routine frees the software and hardware descriptors allocated by
4543 * ksz_alloc_desc().
4544 */
4545static void ksz_free_desc(struct dev_info *adapter)
4546{
4547	struct ksz_hw *hw = &adapter->hw;
4548
4549	/* Reset descriptor. */
4550	hw->rx_desc_info.ring_virt = NULL;
4551	hw->tx_desc_info.ring_virt = NULL;
4552	hw->rx_desc_info.ring_phys = 0;
4553	hw->tx_desc_info.ring_phys = 0;
4554
4555	/* Free memory. */
4556	if (adapter->desc_pool.alloc_virt)
4557		pci_free_consistent(
4558			adapter->pdev,
4559			adapter->desc_pool.alloc_size,
4560			adapter->desc_pool.alloc_virt,
4561			adapter->desc_pool.dma_addr);
4562
4563	/* Reset resource pool. */
4564	adapter->desc_pool.alloc_size = 0;
4565	adapter->desc_pool.alloc_virt = NULL;
4566
4567	kfree(hw->rx_desc_info.ring);
4568	hw->rx_desc_info.ring = NULL;
4569	kfree(hw->tx_desc_info.ring);
4570	hw->tx_desc_info.ring = NULL;
4571}
4572
4573/**
4574 * ksz_free_buffers - free buffers used in the descriptors
4575 * @adapter:	Adapter information structure.
4576 * @desc_info:	Descriptor information structure.
4577 *
4578 * This local routine frees buffers used in the DMA buffers.
4579 */
4580static void ksz_free_buffers(struct dev_info *adapter,
4581	struct ksz_desc_info *desc_info, int direction)
4582{
4583	int i;
4584	struct ksz_dma_buf *dma_buf;
4585	struct ksz_desc *desc = desc_info->ring;
4586
4587	for (i = 0; i < desc_info->alloc; i++) {
4588		dma_buf = DMA_BUFFER(desc);
4589		if (dma_buf->skb)
4590			free_dma_buf(adapter, dma_buf, direction);
4591		desc++;
4592	}
4593}
4594
4595/**
4596 * ksz_free_mem - free all resources used by descriptors
4597 * @adapter:	Adapter information structure.
4598 *
4599 * This local routine frees all the resources allocated by ksz_alloc_mem().
4600 */
4601static void ksz_free_mem(struct dev_info *adapter)
4602{
4603	/* Free transmit buffers. */
4604	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605		PCI_DMA_TODEVICE);
4606
4607	/* Free receive buffers. */
4608	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609		PCI_DMA_FROMDEVICE);
4610
4611	/* Free descriptors. */
4612	ksz_free_desc(adapter);
4613}
4614
4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616	u64 *counter)
4617{
4618	int i;
4619	int mib;
4620	int port;
4621	struct ksz_port_mib *port_mib;
4622
4623	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624	for (i = 0, port = first; i < cnt; i++, port++) {
4625		port_mib = &hw->port_mib[port];
4626		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627			counter[mib] += port_mib->counter[mib];
4628	}
4629}
4630
4631/**
4632 * send_packet - send packet
4633 * @skb:	Socket buffer.
4634 * @dev:	Network device.
4635 *
4636 * This routine is used to send a packet out to the network.
4637 */
4638static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639{
4640	struct ksz_desc *desc;
4641	struct ksz_desc *first;
4642	struct dev_priv *priv = netdev_priv(dev);
4643	struct dev_info *hw_priv = priv->adapter;
4644	struct ksz_hw *hw = &hw_priv->hw;
4645	struct ksz_desc_info *info = &hw->tx_desc_info;
4646	struct ksz_dma_buf *dma_buf;
4647	int len;
4648	int last_frag = skb_shinfo(skb)->nr_frags;
4649
4650	/*
4651	 * KSZ8842 with multiple device interfaces needs to be told which port
4652	 * to send.
4653	 */
4654	if (hw->dev_count > 1)
4655		hw->dst_ports = 1 << priv->port.first_port;
4656
4657	/* Hardware will pad the length to 60. */
4658	len = skb->len;
4659
4660	/* Remember the very first descriptor. */
4661	first = info->cur;
4662	desc = first;
4663
4664	dma_buf = DMA_BUFFER(desc);
4665	if (last_frag) {
4666		int frag;
4667		skb_frag_t *this_frag;
4668
4669		dma_buf->len = skb_headlen(skb);
4670
4671		dma_buf->dma = pci_map_single(
4672			hw_priv->pdev, skb->data, dma_buf->len,
4673			PCI_DMA_TODEVICE);
4674		set_tx_buf(desc, dma_buf->dma);
4675		set_tx_len(desc, dma_buf->len);
4676
4677		frag = 0;
4678		do {
4679			this_frag = &skb_shinfo(skb)->frags[frag];
4680
4681			/* Get a new descriptor. */
4682			get_tx_pkt(info, &desc);
4683
4684			/* Keep track of descriptors used so far. */
4685			++hw->tx_int_cnt;
4686
4687			dma_buf = DMA_BUFFER(desc);
4688			dma_buf->len = skb_frag_size(this_frag);
4689
4690			dma_buf->dma = pci_map_single(
4691				hw_priv->pdev,
4692				skb_frag_address(this_frag),
4693				dma_buf->len,
4694				PCI_DMA_TODEVICE);
4695			set_tx_buf(desc, dma_buf->dma);
4696			set_tx_len(desc, dma_buf->len);
4697
4698			frag++;
4699			if (frag == last_frag)
4700				break;
4701
4702			/* Do not release the last descriptor here. */
4703			release_desc(desc);
4704		} while (1);
4705
4706		/* current points to the last descriptor. */
4707		info->cur = desc;
4708
4709		/* Release the first descriptor. */
4710		release_desc(first);
4711	} else {
4712		dma_buf->len = len;
4713
4714		dma_buf->dma = pci_map_single(
4715			hw_priv->pdev, skb->data, dma_buf->len,
4716			PCI_DMA_TODEVICE);
4717		set_tx_buf(desc, dma_buf->dma);
4718		set_tx_len(desc, dma_buf->len);
4719	}
4720
4721	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4723		(desc)->sw.buf.tx.csum_gen_udp = 1;
4724	}
4725
4726	/*
4727	 * The last descriptor holds the packet so that it can be returned to
4728	 * network subsystem after all descriptors are transmitted.
4729	 */
4730	dma_buf->skb = skb;
4731
4732	hw_send_pkt(hw);
4733
4734	/* Update transmit statistics. */
4735	dev->stats.tx_packets++;
4736	dev->stats.tx_bytes += len;
4737}
4738
4739/**
4740 * transmit_cleanup - clean up transmit descriptors
4741 * @dev:	Network device.
4742 *
4743 * This routine is called to clean up the transmitted buffers.
4744 */
4745static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746{
4747	int last;
4748	union desc_stat status;
4749	struct ksz_hw *hw = &hw_priv->hw;
4750	struct ksz_desc_info *info = &hw->tx_desc_info;
4751	struct ksz_desc *desc;
4752	struct ksz_dma_buf *dma_buf;
4753	struct net_device *dev = NULL;
4754
4755	spin_lock_irq(&hw_priv->hwlock);
4756	last = info->last;
4757
4758	while (info->avail < info->alloc) {
4759		/* Get next descriptor which is not hardware owned. */
4760		desc = &info->ring[last];
4761		status.data = le32_to_cpu(desc->phw->ctrl.data);
4762		if (status.tx.hw_owned) {
4763			if (normal)
4764				break;
4765			else
4766				reset_desc(desc, status);
4767		}
4768
4769		dma_buf = DMA_BUFFER(desc);
4770		pci_unmap_single(
4771			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772			PCI_DMA_TODEVICE);
4773
4774		/* This descriptor contains the last buffer in the packet. */
4775		if (dma_buf->skb) {
4776			dev = dma_buf->skb->dev;
4777
4778			/* Release the packet back to network subsystem. */
4779			dev_kfree_skb_irq(dma_buf->skb);
4780			dma_buf->skb = NULL;
4781		}
4782
4783		/* Free the transmitted descriptor. */
4784		last++;
4785		last &= info->mask;
4786		info->avail++;
4787	}
4788	info->last = last;
4789	spin_unlock_irq(&hw_priv->hwlock);
4790
4791	/* Notify the network subsystem that the packet has been sent. */
4792	if (dev)
4793		netif_trans_update(dev);
4794}
4795
4796/**
4797 * transmit_done - transmit done processing
4798 * @dev:	Network device.
4799 *
4800 * This routine is called when the transmit interrupt is triggered, indicating
4801 * either a packet is sent successfully or there are transmit errors.
4802 */
4803static void tx_done(struct dev_info *hw_priv)
4804{
4805	struct ksz_hw *hw = &hw_priv->hw;
4806	int port;
4807
4808	transmit_cleanup(hw_priv, 1);
4809
4810	for (port = 0; port < hw->dev_count; port++) {
4811		struct net_device *dev = hw->port_info[port].pdev;
4812
4813		if (netif_running(dev) && netif_queue_stopped(dev))
4814			netif_wake_queue(dev);
4815	}
4816}
4817
4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819{
4820	skb->dev = old->dev;
4821	skb->protocol = old->protocol;
4822	skb->ip_summed = old->ip_summed;
4823	skb->csum = old->csum;
4824	skb_set_network_header(skb, ETH_HLEN);
4825
4826	dev_consume_skb_any(old);
4827}
4828
4829/**
4830 * netdev_tx - send out packet
4831 * @skb:	Socket buffer.
4832 * @dev:	Network device.
4833 *
4834 * This function is used by the upper network layer to send out a packet.
4835 *
4836 * Return 0 if successful; otherwise an error code indicating failure.
4837 */
4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839{
4840	struct dev_priv *priv = netdev_priv(dev);
4841	struct dev_info *hw_priv = priv->adapter;
4842	struct ksz_hw *hw = &hw_priv->hw;
4843	int left;
4844	int num = 1;
4845	int rc = 0;
4846
4847	if (hw->features & SMALL_PACKET_TX_BUG) {
4848		struct sk_buff *org_skb = skb;
4849
4850		if (skb->len <= 48) {
4851			if (skb_end_pointer(skb) - skb->data >= 50) {
4852				memset(&skb->data[skb->len], 0, 50 - skb->len);
4853				skb->len = 50;
4854			} else {
4855				skb = netdev_alloc_skb(dev, 50);
4856				if (!skb)
4857					return NETDEV_TX_BUSY;
4858				memcpy(skb->data, org_skb->data, org_skb->len);
4859				memset(&skb->data[org_skb->len], 0,
4860					50 - org_skb->len);
4861				skb->len = 50;
4862				copy_old_skb(org_skb, skb);
4863			}
4864		}
4865	}
4866
4867	spin_lock_irq(&hw_priv->hwlock);
4868
4869	num = skb_shinfo(skb)->nr_frags + 1;
4870	left = hw_alloc_pkt(hw, skb->len, num);
4871	if (left) {
4872		if (left < num ||
4873		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4874		     skb->protocol == htons(ETH_P_IPV6))) {
4875			struct sk_buff *org_skb = skb;
4876
4877			skb = netdev_alloc_skb(dev, org_skb->len);
4878			if (!skb) {
4879				rc = NETDEV_TX_BUSY;
4880				goto unlock;
4881			}
4882			skb_copy_and_csum_dev(org_skb, skb->data);
4883			org_skb->ip_summed = CHECKSUM_NONE;
4884			skb->len = org_skb->len;
4885			copy_old_skb(org_skb, skb);
4886		}
4887		send_packet(skb, dev);
4888		if (left <= num)
4889			netif_stop_queue(dev);
4890	} else {
4891		/* Stop the transmit queue until packet is allocated. */
4892		netif_stop_queue(dev);
4893		rc = NETDEV_TX_BUSY;
4894	}
4895unlock:
4896	spin_unlock_irq(&hw_priv->hwlock);
4897
4898	return rc;
4899}
4900
4901/**
4902 * netdev_tx_timeout - transmit timeout processing
4903 * @dev:	Network device.
4904 *
4905 * This routine is called when the transmit timer expires.  That indicates the
4906 * hardware is not running correctly because transmit interrupts are not
4907 * triggered to free up resources so that the transmit routine can continue
4908 * sending out packets.  The hardware is reset to correct the problem.
4909 */
4910static void netdev_tx_timeout(struct net_device *dev)
4911{
4912	static unsigned long last_reset;
4913
4914	struct dev_priv *priv = netdev_priv(dev);
4915	struct dev_info *hw_priv = priv->adapter;
4916	struct ksz_hw *hw = &hw_priv->hw;
4917	int port;
4918
4919	if (hw->dev_count > 1) {
4920		/*
4921		 * Only reset the hardware if time between calls is long
4922		 * enough.
4923		 */
4924		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925			hw_priv = NULL;
4926	}
4927
4928	last_reset = jiffies;
4929	if (hw_priv) {
4930		hw_dis_intr(hw);
4931		hw_disable(hw);
4932
4933		transmit_cleanup(hw_priv, 0);
4934		hw_reset_pkts(&hw->rx_desc_info);
4935		hw_reset_pkts(&hw->tx_desc_info);
4936		ksz_init_rx_buffers(hw_priv);
4937
4938		hw_reset(hw);
4939
4940		hw_set_desc_base(hw,
4941			hw->tx_desc_info.ring_phys,
4942			hw->rx_desc_info.ring_phys);
4943		hw_set_addr(hw);
4944		if (hw->all_multi)
4945			hw_set_multicast(hw, hw->all_multi);
4946		else if (hw->multi_list_size)
4947			hw_set_grp_addr(hw);
4948
4949		if (hw->dev_count > 1) {
4950			hw_set_add_addr(hw);
4951			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952				struct net_device *port_dev;
4953
4954				port_set_stp_state(hw, port,
4955					STP_STATE_DISABLED);
4956
4957				port_dev = hw->port_info[port].pdev;
4958				if (netif_running(port_dev))
4959					port_set_stp_state(hw, port,
4960						STP_STATE_SIMPLE);
4961			}
4962		}
4963
4964		hw_enable(hw);
4965		hw_ena_intr(hw);
4966	}
4967
4968	netif_trans_update(dev);
4969	netif_wake_queue(dev);
4970}
4971
4972static inline void csum_verified(struct sk_buff *skb)
4973{
4974	unsigned short protocol;
4975	struct iphdr *iph;
4976
4977	protocol = skb->protocol;
4978	skb_reset_network_header(skb);
4979	iph = (struct iphdr *) skb_network_header(skb);
4980	if (protocol == htons(ETH_P_8021Q)) {
4981		protocol = iph->tot_len;
4982		skb_set_network_header(skb, VLAN_HLEN);
4983		iph = (struct iphdr *) skb_network_header(skb);
4984	}
4985	if (protocol == htons(ETH_P_IP)) {
4986		if (iph->protocol == IPPROTO_TCP)
4987			skb->ip_summed = CHECKSUM_UNNECESSARY;
4988	}
4989}
4990
4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992	struct ksz_desc *desc, union desc_stat status)
4993{
4994	int packet_len;
4995	struct dev_priv *priv = netdev_priv(dev);
4996	struct dev_info *hw_priv = priv->adapter;
4997	struct ksz_dma_buf *dma_buf;
4998	struct sk_buff *skb;
4999	int rx_status;
5000
5001	/* Received length includes 4-byte CRC. */
5002	packet_len = status.rx.frame_len - 4;
5003
5004	dma_buf = DMA_BUFFER(desc);
5005	pci_dma_sync_single_for_cpu(
5006		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007		PCI_DMA_FROMDEVICE);
5008
5009	do {
5010		/* skb->data != skb->head */
5011		skb = netdev_alloc_skb(dev, packet_len + 2);
5012		if (!skb) {
5013			dev->stats.rx_dropped++;
5014			return -ENOMEM;
5015		}
5016
5017		/*
5018		 * Align socket buffer in 4-byte boundary for better
5019		 * performance.
5020		 */
5021		skb_reserve(skb, 2);
5022
5023		skb_put_data(skb, dma_buf->skb->data, packet_len);
 
5024	} while (0);
5025
5026	skb->protocol = eth_type_trans(skb, dev);
5027
5028	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5029		csum_verified(skb);
5030
5031	/* Update receive statistics. */
5032	dev->stats.rx_packets++;
5033	dev->stats.rx_bytes += packet_len;
5034
5035	/* Notify upper layer for received packet. */
5036	rx_status = netif_rx(skb);
5037
5038	return 0;
5039}
5040
5041static int dev_rcv_packets(struct dev_info *hw_priv)
5042{
5043	int next;
5044	union desc_stat status;
5045	struct ksz_hw *hw = &hw_priv->hw;
5046	struct net_device *dev = hw->port_info[0].pdev;
5047	struct ksz_desc_info *info = &hw->rx_desc_info;
5048	int left = info->alloc;
5049	struct ksz_desc *desc;
5050	int received = 0;
5051
5052	next = info->next;
5053	while (left--) {
5054		/* Get next descriptor which is not hardware owned. */
5055		desc = &info->ring[next];
5056		status.data = le32_to_cpu(desc->phw->ctrl.data);
5057		if (status.rx.hw_owned)
5058			break;
5059
5060		/* Status valid only when last descriptor bit is set. */
5061		if (status.rx.last_desc && status.rx.first_desc) {
5062			if (rx_proc(dev, hw, desc, status))
5063				goto release_packet;
5064			received++;
5065		}
5066
5067release_packet:
5068		release_desc(desc);
5069		next++;
5070		next &= info->mask;
5071	}
5072	info->next = next;
5073
5074	return received;
5075}
5076
5077static int port_rcv_packets(struct dev_info *hw_priv)
5078{
5079	int next;
5080	union desc_stat status;
5081	struct ksz_hw *hw = &hw_priv->hw;
5082	struct net_device *dev = hw->port_info[0].pdev;
5083	struct ksz_desc_info *info = &hw->rx_desc_info;
5084	int left = info->alloc;
5085	struct ksz_desc *desc;
5086	int received = 0;
5087
5088	next = info->next;
5089	while (left--) {
5090		/* Get next descriptor which is not hardware owned. */
5091		desc = &info->ring[next];
5092		status.data = le32_to_cpu(desc->phw->ctrl.data);
5093		if (status.rx.hw_owned)
5094			break;
5095
5096		if (hw->dev_count > 1) {
5097			/* Get received port number. */
5098			int p = HW_TO_DEV_PORT(status.rx.src_port);
5099
5100			dev = hw->port_info[p].pdev;
5101			if (!netif_running(dev))
5102				goto release_packet;
5103		}
5104
5105		/* Status valid only when last descriptor bit is set. */
5106		if (status.rx.last_desc && status.rx.first_desc) {
5107			if (rx_proc(dev, hw, desc, status))
5108				goto release_packet;
5109			received++;
5110		}
5111
5112release_packet:
5113		release_desc(desc);
5114		next++;
5115		next &= info->mask;
5116	}
5117	info->next = next;
5118
5119	return received;
5120}
5121
5122static int dev_rcv_special(struct dev_info *hw_priv)
5123{
5124	int next;
5125	union desc_stat status;
5126	struct ksz_hw *hw = &hw_priv->hw;
5127	struct net_device *dev = hw->port_info[0].pdev;
5128	struct ksz_desc_info *info = &hw->rx_desc_info;
5129	int left = info->alloc;
5130	struct ksz_desc *desc;
5131	int received = 0;
5132
5133	next = info->next;
5134	while (left--) {
5135		/* Get next descriptor which is not hardware owned. */
5136		desc = &info->ring[next];
5137		status.data = le32_to_cpu(desc->phw->ctrl.data);
5138		if (status.rx.hw_owned)
5139			break;
5140
5141		if (hw->dev_count > 1) {
5142			/* Get received port number. */
5143			int p = HW_TO_DEV_PORT(status.rx.src_port);
5144
5145			dev = hw->port_info[p].pdev;
5146			if (!netif_running(dev))
5147				goto release_packet;
5148		}
5149
5150		/* Status valid only when last descriptor bit is set. */
5151		if (status.rx.last_desc && status.rx.first_desc) {
5152			/*
5153			 * Receive without error.  With receive errors
5154			 * disabled, packets with receive errors will be
5155			 * dropped, so no need to check the error bit.
5156			 */
5157			if (!status.rx.error || (status.data &
5158					KS_DESC_RX_ERROR_COND) ==
5159					KS_DESC_RX_ERROR_TOO_LONG) {
5160				if (rx_proc(dev, hw, desc, status))
5161					goto release_packet;
5162				received++;
5163			} else {
5164				struct dev_priv *priv = netdev_priv(dev);
5165
5166				/* Update receive error statistics. */
5167				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5168			}
5169		}
5170
5171release_packet:
5172		release_desc(desc);
5173		next++;
5174		next &= info->mask;
5175	}
5176	info->next = next;
5177
5178	return received;
5179}
5180
5181static void rx_proc_task(unsigned long data)
5182{
5183	struct dev_info *hw_priv = (struct dev_info *) data;
5184	struct ksz_hw *hw = &hw_priv->hw;
5185
5186	if (!hw->enabled)
5187		return;
5188	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5189
5190		/* In case receive process is suspended because of overrun. */
5191		hw_resume_rx(hw);
5192
5193		/* tasklets are interruptible. */
5194		spin_lock_irq(&hw_priv->hwlock);
5195		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5196		spin_unlock_irq(&hw_priv->hwlock);
5197	} else {
5198		hw_ack_intr(hw, KS884X_INT_RX);
5199		tasklet_schedule(&hw_priv->rx_tasklet);
5200	}
5201}
5202
5203static void tx_proc_task(unsigned long data)
5204{
5205	struct dev_info *hw_priv = (struct dev_info *) data;
5206	struct ksz_hw *hw = &hw_priv->hw;
5207
5208	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5209
5210	tx_done(hw_priv);
5211
5212	/* tasklets are interruptible. */
5213	spin_lock_irq(&hw_priv->hwlock);
5214	hw_turn_on_intr(hw, KS884X_INT_TX);
5215	spin_unlock_irq(&hw_priv->hwlock);
5216}
5217
5218static inline void handle_rx_stop(struct ksz_hw *hw)
5219{
5220	/* Receive just has been stopped. */
5221	if (0 == hw->rx_stop)
5222		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5223	else if (hw->rx_stop > 1) {
5224		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5225			hw_start_rx(hw);
5226		} else {
5227			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5228			hw->rx_stop = 0;
5229		}
5230	} else
5231		/* Receive just has been started. */
5232		hw->rx_stop++;
5233}
5234
5235/**
5236 * netdev_intr - interrupt handling
5237 * @irq:	Interrupt number.
5238 * @dev_id:	Network device.
5239 *
5240 * This function is called by upper network layer to signal interrupt.
5241 *
5242 * Return IRQ_HANDLED if interrupt is handled.
5243 */
5244static irqreturn_t netdev_intr(int irq, void *dev_id)
5245{
5246	uint int_enable = 0;
5247	struct net_device *dev = (struct net_device *) dev_id;
5248	struct dev_priv *priv = netdev_priv(dev);
5249	struct dev_info *hw_priv = priv->adapter;
5250	struct ksz_hw *hw = &hw_priv->hw;
5251
5252	spin_lock(&hw_priv->hwlock);
5253
5254	hw_read_intr(hw, &int_enable);
5255
5256	/* Not our interrupt! */
5257	if (!int_enable) {
5258		spin_unlock(&hw_priv->hwlock);
5259		return IRQ_NONE;
5260	}
5261
5262	do {
5263		hw_ack_intr(hw, int_enable);
5264		int_enable &= hw->intr_mask;
5265
5266		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5267			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5268			tasklet_schedule(&hw_priv->tx_tasklet);
5269		}
5270
5271		if (likely(int_enable & KS884X_INT_RX)) {
5272			hw_dis_intr_bit(hw, KS884X_INT_RX);
5273			tasklet_schedule(&hw_priv->rx_tasklet);
5274		}
5275
5276		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5277			dev->stats.rx_fifo_errors++;
5278			hw_resume_rx(hw);
5279		}
5280
5281		if (unlikely(int_enable & KS884X_INT_PHY)) {
5282			struct ksz_port *port = &priv->port;
5283
5284			hw->features |= LINK_INT_WORKING;
5285			port_get_link_speed(port);
5286		}
5287
5288		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5289			handle_rx_stop(hw);
5290			break;
5291		}
5292
5293		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5294			u32 data;
5295
5296			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5297			pr_info("Tx stopped\n");
5298			data = readl(hw->io + KS_DMA_TX_CTRL);
5299			if (!(data & DMA_TX_ENABLE))
5300				pr_info("Tx disabled\n");
5301			break;
5302		}
5303	} while (0);
5304
5305	hw_ena_intr(hw);
5306
5307	spin_unlock(&hw_priv->hwlock);
5308
5309	return IRQ_HANDLED;
5310}
5311
5312/*
5313 * Linux network device functions
5314 */
5315
5316static unsigned long next_jiffies;
5317
5318#ifdef CONFIG_NET_POLL_CONTROLLER
5319static void netdev_netpoll(struct net_device *dev)
5320{
5321	struct dev_priv *priv = netdev_priv(dev);
5322	struct dev_info *hw_priv = priv->adapter;
5323
5324	hw_dis_intr(&hw_priv->hw);
5325	netdev_intr(dev->irq, dev);
5326}
5327#endif
5328
5329static void bridge_change(struct ksz_hw *hw)
5330{
5331	int port;
5332	u8  member;
5333	struct ksz_switch *sw = hw->ksz_switch;
5334
5335	/* No ports in forwarding state. */
5336	if (!sw->member) {
5337		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5338		sw_block_addr(hw);
5339	}
5340	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5341		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5342			member = HOST_MASK | sw->member;
5343		else
5344			member = HOST_MASK | (1 << port);
5345		if (member != sw->port_cfg[port].member)
5346			sw_cfg_port_base_vlan(hw, port, member);
5347	}
5348}
5349
5350/**
5351 * netdev_close - close network device
5352 * @dev:	Network device.
5353 *
5354 * This function process the close operation of network device.  This is caused
5355 * by the user command "ifconfig ethX down."
5356 *
5357 * Return 0 if successful; otherwise an error code indicating failure.
5358 */
5359static int netdev_close(struct net_device *dev)
5360{
5361	struct dev_priv *priv = netdev_priv(dev);
5362	struct dev_info *hw_priv = priv->adapter;
5363	struct ksz_port *port = &priv->port;
5364	struct ksz_hw *hw = &hw_priv->hw;
5365	int pi;
5366
5367	netif_stop_queue(dev);
5368
5369	ksz_stop_timer(&priv->monitor_timer_info);
5370
5371	/* Need to shut the port manually in multiple device interfaces mode. */
5372	if (hw->dev_count > 1) {
5373		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5374
5375		/* Port is closed.  Need to change bridge setting. */
5376		if (hw->features & STP_SUPPORT) {
5377			pi = 1 << port->first_port;
5378			if (hw->ksz_switch->member & pi) {
5379				hw->ksz_switch->member &= ~pi;
5380				bridge_change(hw);
5381			}
5382		}
5383	}
5384	if (port->first_port > 0)
5385		hw_del_addr(hw, dev->dev_addr);
5386	if (!hw_priv->wol_enable)
5387		port_set_power_saving(port, true);
5388
5389	if (priv->multicast)
5390		--hw->all_multi;
5391	if (priv->promiscuous)
5392		--hw->promiscuous;
5393
5394	hw_priv->opened--;
5395	if (!(hw_priv->opened)) {
5396		ksz_stop_timer(&hw_priv->mib_timer_info);
5397		flush_work(&hw_priv->mib_read);
5398
5399		hw_dis_intr(hw);
5400		hw_disable(hw);
5401		hw_clr_multicast(hw);
5402
5403		/* Delay for receive task to stop scheduling itself. */
5404		msleep(2000 / HZ);
5405
5406		tasklet_kill(&hw_priv->rx_tasklet);
5407		tasklet_kill(&hw_priv->tx_tasklet);
5408		free_irq(dev->irq, hw_priv->dev);
5409
5410		transmit_cleanup(hw_priv, 0);
5411		hw_reset_pkts(&hw->rx_desc_info);
5412		hw_reset_pkts(&hw->tx_desc_info);
5413
5414		/* Clean out static MAC table when the switch is shutdown. */
5415		if (hw->features & STP_SUPPORT)
5416			sw_clr_sta_mac_table(hw);
5417	}
5418
5419	return 0;
5420}
5421
5422static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5423{
5424	if (hw->ksz_switch) {
5425		u32 data;
5426
5427		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5428		if (hw->features & RX_HUGE_FRAME)
5429			data |= SWITCH_HUGE_PACKET;
5430		else
5431			data &= ~SWITCH_HUGE_PACKET;
5432		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5433	}
5434	if (hw->features & RX_HUGE_FRAME) {
5435		hw->rx_cfg |= DMA_RX_ERROR;
5436		hw_priv->dev_rcv = dev_rcv_special;
5437	} else {
5438		hw->rx_cfg &= ~DMA_RX_ERROR;
5439		if (hw->dev_count > 1)
5440			hw_priv->dev_rcv = port_rcv_packets;
5441		else
5442			hw_priv->dev_rcv = dev_rcv_packets;
5443	}
5444}
5445
5446static int prepare_hardware(struct net_device *dev)
5447{
5448	struct dev_priv *priv = netdev_priv(dev);
5449	struct dev_info *hw_priv = priv->adapter;
5450	struct ksz_hw *hw = &hw_priv->hw;
5451	int rc = 0;
5452
5453	/* Remember the network device that requests interrupts. */
5454	hw_priv->dev = dev;
5455	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5456	if (rc)
5457		return rc;
5458	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5459		     (unsigned long) hw_priv);
5460	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5461		     (unsigned long) hw_priv);
5462
5463	hw->promiscuous = 0;
5464	hw->all_multi = 0;
5465	hw->multi_list_size = 0;
5466
5467	hw_reset(hw);
5468
5469	hw_set_desc_base(hw,
5470		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5471	hw_set_addr(hw);
5472	hw_cfg_huge_frame(hw_priv, hw);
5473	ksz_init_rx_buffers(hw_priv);
5474	return 0;
5475}
5476
5477static void set_media_state(struct net_device *dev, int media_state)
5478{
5479	struct dev_priv *priv = netdev_priv(dev);
5480
5481	if (media_state == priv->media_state)
5482		netif_carrier_on(dev);
5483	else
5484		netif_carrier_off(dev);
5485	netif_info(priv, link, dev, "link %s\n",
5486		   media_state == priv->media_state ? "on" : "off");
5487}
5488
5489/**
5490 * netdev_open - open network device
5491 * @dev:	Network device.
5492 *
5493 * This function process the open operation of network device.  This is caused
5494 * by the user command "ifconfig ethX up."
5495 *
5496 * Return 0 if successful; otherwise an error code indicating failure.
5497 */
5498static int netdev_open(struct net_device *dev)
5499{
5500	struct dev_priv *priv = netdev_priv(dev);
5501	struct dev_info *hw_priv = priv->adapter;
5502	struct ksz_hw *hw = &hw_priv->hw;
5503	struct ksz_port *port = &priv->port;
5504	int i;
5505	int p;
5506	int rc = 0;
5507
5508	priv->multicast = 0;
5509	priv->promiscuous = 0;
5510
5511	/* Reset device statistics. */
5512	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5513	memset((void *) port->counter, 0,
5514		(sizeof(u64) * OID_COUNTER_LAST));
5515
5516	if (!(hw_priv->opened)) {
5517		rc = prepare_hardware(dev);
5518		if (rc)
5519			return rc;
5520		for (i = 0; i < hw->mib_port_cnt; i++) {
5521			if (next_jiffies < jiffies)
5522				next_jiffies = jiffies + HZ * 2;
5523			else
5524				next_jiffies += HZ * 1;
5525			hw_priv->counter[i].time = next_jiffies;
5526			hw->port_mib[i].state = media_disconnected;
5527			port_init_cnt(hw, i);
5528		}
5529		if (hw->ksz_switch)
5530			hw->port_mib[HOST_PORT].state = media_connected;
5531		else {
5532			hw_add_wol_bcast(hw);
5533			hw_cfg_wol_pme(hw, 0);
5534			hw_clr_wol_pme_status(&hw_priv->hw);
5535		}
5536	}
5537	port_set_power_saving(port, false);
5538
5539	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5540		/*
5541		 * Initialize to invalid value so that link detection
5542		 * is done.
5543		 */
5544		hw->port_info[p].partner = 0xFF;
5545		hw->port_info[p].state = media_disconnected;
5546	}
5547
5548	/* Need to open the port in multiple device interfaces mode. */
5549	if (hw->dev_count > 1) {
5550		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5551		if (port->first_port > 0)
5552			hw_add_addr(hw, dev->dev_addr);
5553	}
5554
5555	port_get_link_speed(port);
5556	if (port->force_link)
5557		port_force_link_speed(port);
5558	else
5559		port_set_link_speed(port);
5560
5561	if (!(hw_priv->opened)) {
5562		hw_setup_intr(hw);
5563		hw_enable(hw);
5564		hw_ena_intr(hw);
5565
5566		if (hw->mib_port_cnt)
5567			ksz_start_timer(&hw_priv->mib_timer_info,
5568				hw_priv->mib_timer_info.period);
5569	}
5570
5571	hw_priv->opened++;
5572
5573	ksz_start_timer(&priv->monitor_timer_info,
5574		priv->monitor_timer_info.period);
5575
5576	priv->media_state = port->linked->state;
5577
5578	set_media_state(dev, media_connected);
5579	netif_start_queue(dev);
5580
5581	return 0;
5582}
5583
5584/* RX errors = rx_errors */
5585/* RX dropped = rx_dropped */
5586/* RX overruns = rx_fifo_errors */
5587/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5588/* TX errors = tx_errors */
5589/* TX dropped = tx_dropped */
5590/* TX overruns = tx_fifo_errors */
5591/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5592/* collisions = collisions */
5593
5594/**
5595 * netdev_query_statistics - query network device statistics
5596 * @dev:	Network device.
5597 *
5598 * This function returns the statistics of the network device.  The device
5599 * needs not be opened.
5600 *
5601 * Return network device statistics.
5602 */
5603static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5604{
5605	struct dev_priv *priv = netdev_priv(dev);
5606	struct ksz_port *port = &priv->port;
5607	struct ksz_hw *hw = &priv->adapter->hw;
5608	struct ksz_port_mib *mib;
5609	int i;
5610	int p;
5611
5612	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5613	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5614
5615	/* Reset to zero to add count later. */
5616	dev->stats.multicast = 0;
5617	dev->stats.collisions = 0;
5618	dev->stats.rx_length_errors = 0;
5619	dev->stats.rx_crc_errors = 0;
5620	dev->stats.rx_frame_errors = 0;
5621	dev->stats.tx_window_errors = 0;
5622
5623	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5624		mib = &hw->port_mib[p];
5625
5626		dev->stats.multicast += (unsigned long)
5627			mib->counter[MIB_COUNTER_RX_MULTICAST];
5628
5629		dev->stats.collisions += (unsigned long)
5630			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5631
5632		dev->stats.rx_length_errors += (unsigned long)(
5633			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5634			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5635			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5636			mib->counter[MIB_COUNTER_RX_JABBER]);
5637		dev->stats.rx_crc_errors += (unsigned long)
5638			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5639		dev->stats.rx_frame_errors += (unsigned long)(
5640			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5641			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5642
5643		dev->stats.tx_window_errors += (unsigned long)
5644			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5645	}
5646
5647	return &dev->stats;
5648}
5649
5650/**
5651 * netdev_set_mac_address - set network device MAC address
5652 * @dev:	Network device.
5653 * @addr:	Buffer of MAC address.
5654 *
5655 * This function is used to set the MAC address of the network device.
5656 *
5657 * Return 0 to indicate success.
5658 */
5659static int netdev_set_mac_address(struct net_device *dev, void *addr)
5660{
5661	struct dev_priv *priv = netdev_priv(dev);
5662	struct dev_info *hw_priv = priv->adapter;
5663	struct ksz_hw *hw = &hw_priv->hw;
5664	struct sockaddr *mac = addr;
5665	uint interrupt;
5666
5667	if (priv->port.first_port > 0)
5668		hw_del_addr(hw, dev->dev_addr);
5669	else {
5670		hw->mac_override = 1;
5671		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5672	}
5673
5674	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5675
5676	interrupt = hw_block_intr(hw);
5677
5678	if (priv->port.first_port > 0)
5679		hw_add_addr(hw, dev->dev_addr);
5680	else
5681		hw_set_addr(hw);
5682	hw_restore_intr(hw, interrupt);
5683
5684	return 0;
5685}
5686
5687static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5688	struct ksz_hw *hw, int promiscuous)
5689{
5690	if (promiscuous != priv->promiscuous) {
5691		u8 prev_state = hw->promiscuous;
5692
5693		if (promiscuous)
5694			++hw->promiscuous;
5695		else
5696			--hw->promiscuous;
5697		priv->promiscuous = promiscuous;
5698
5699		/* Turn on/off promiscuous mode. */
5700		if (hw->promiscuous <= 1 && prev_state <= 1)
5701			hw_set_promiscuous(hw, hw->promiscuous);
5702
5703		/*
5704		 * Port is not in promiscuous mode, meaning it is released
5705		 * from the bridge.
5706		 */
5707		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5708		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5709			struct ksz_switch *sw = hw->ksz_switch;
5710			int port = priv->port.first_port;
5711
5712			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5713			port = 1 << port;
5714			if (sw->member & port) {
5715				sw->member &= ~port;
5716				bridge_change(hw);
5717			}
5718		}
5719	}
5720}
5721
5722static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5723	int multicast)
5724{
5725	if (multicast != priv->multicast) {
5726		u8 all_multi = hw->all_multi;
5727
5728		if (multicast)
5729			++hw->all_multi;
5730		else
5731			--hw->all_multi;
5732		priv->multicast = multicast;
5733
5734		/* Turn on/off all multicast mode. */
5735		if (hw->all_multi <= 1 && all_multi <= 1)
5736			hw_set_multicast(hw, hw->all_multi);
5737	}
5738}
5739
5740/**
5741 * netdev_set_rx_mode
5742 * @dev:	Network device.
5743 *
5744 * This routine is used to set multicast addresses or put the network device
5745 * into promiscuous mode.
5746 */
5747static void netdev_set_rx_mode(struct net_device *dev)
5748{
5749	struct dev_priv *priv = netdev_priv(dev);
5750	struct dev_info *hw_priv = priv->adapter;
5751	struct ksz_hw *hw = &hw_priv->hw;
5752	struct netdev_hw_addr *ha;
5753	int multicast = (dev->flags & IFF_ALLMULTI);
5754
5755	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5756
5757	if (hw_priv->hw.dev_count > 1)
5758		multicast |= (dev->flags & IFF_MULTICAST);
5759	dev_set_multicast(priv, hw, multicast);
5760
5761	/* Cannot use different hashes in multiple device interfaces mode. */
5762	if (hw_priv->hw.dev_count > 1)
5763		return;
5764
5765	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5766		int i = 0;
5767
5768		/* List too big to support so turn on all multicast mode. */
5769		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5770			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5771				hw->multi_list_size = MAX_MULTICAST_LIST;
5772				++hw->all_multi;
5773				hw_set_multicast(hw, hw->all_multi);
5774			}
5775			return;
5776		}
5777
5778		netdev_for_each_mc_addr(ha, dev) {
5779			if (i >= MAX_MULTICAST_LIST)
5780				break;
5781			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5782		}
5783		hw->multi_list_size = (u8) i;
5784		hw_set_grp_addr(hw);
5785	} else {
5786		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5787			--hw->all_multi;
5788			hw_set_multicast(hw, hw->all_multi);
5789		}
5790		hw->multi_list_size = 0;
5791		hw_clr_multicast(hw);
5792	}
5793}
5794
5795static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5796{
5797	struct dev_priv *priv = netdev_priv(dev);
5798	struct dev_info *hw_priv = priv->adapter;
5799	struct ksz_hw *hw = &hw_priv->hw;
5800	int hw_mtu;
5801
5802	if (netif_running(dev))
5803		return -EBUSY;
5804
5805	/* Cannot use different MTU in multiple device interfaces mode. */
5806	if (hw->dev_count > 1)
5807		if (dev != hw_priv->dev)
5808			return 0;
 
 
5809
5810	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5811	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5812		hw->features |= RX_HUGE_FRAME;
5813		hw_mtu = MAX_RX_BUF_SIZE;
5814	} else {
5815		hw->features &= ~RX_HUGE_FRAME;
5816		hw_mtu = REGULAR_RX_BUF_SIZE;
 
 
 
 
 
 
 
5817	}
5818	hw_mtu = (hw_mtu + 3) & ~3;
5819	hw_priv->mtu = hw_mtu;
5820	dev->mtu = new_mtu;
5821
5822	return 0;
5823}
5824
5825/**
5826 * netdev_ioctl - I/O control processing
5827 * @dev:	Network device.
5828 * @ifr:	Interface request structure.
5829 * @cmd:	I/O control code.
5830 *
5831 * This function is used to process I/O control calls.
5832 *
5833 * Return 0 to indicate success.
5834 */
5835static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5836{
5837	struct dev_priv *priv = netdev_priv(dev);
5838	struct dev_info *hw_priv = priv->adapter;
5839	struct ksz_hw *hw = &hw_priv->hw;
5840	struct ksz_port *port = &priv->port;
 
5841	int result = 0;
5842	struct mii_ioctl_data *data = if_mii(ifr);
5843
5844	if (down_interruptible(&priv->proc_sem))
5845		return -ERESTARTSYS;
5846
 
 
5847	switch (cmd) {
5848	/* Get address of MII PHY in use. */
5849	case SIOCGMIIPHY:
5850		data->phy_id = priv->id;
5851
5852		/* Fallthrough... */
5853
5854	/* Read MII PHY register. */
5855	case SIOCGMIIREG:
5856		if (data->phy_id != priv->id || data->reg_num >= 6)
5857			result = -EIO;
5858		else
5859			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5860				&data->val_out);
5861		break;
5862
5863	/* Write MII PHY register. */
5864	case SIOCSMIIREG:
5865		if (!capable(CAP_NET_ADMIN))
5866			result = -EPERM;
5867		else if (data->phy_id != priv->id || data->reg_num >= 6)
5868			result = -EIO;
5869		else
5870			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5871				data->val_in);
5872		break;
5873
5874	default:
5875		result = -EOPNOTSUPP;
5876	}
5877
5878	up(&priv->proc_sem);
5879
5880	return result;
5881}
5882
5883/*
5884 * MII support
5885 */
5886
5887/**
5888 * mdio_read - read PHY register
5889 * @dev:	Network device.
5890 * @phy_id:	The PHY id.
5891 * @reg_num:	The register number.
5892 *
5893 * This function returns the PHY register value.
5894 *
5895 * Return the register value.
5896 */
5897static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5898{
5899	struct dev_priv *priv = netdev_priv(dev);
5900	struct ksz_port *port = &priv->port;
5901	struct ksz_hw *hw = port->hw;
5902	u16 val_out;
5903
5904	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5905	return val_out;
5906}
5907
5908/**
5909 * mdio_write - set PHY register
5910 * @dev:	Network device.
5911 * @phy_id:	The PHY id.
5912 * @reg_num:	The register number.
5913 * @val:	The register value.
5914 *
5915 * This procedure sets the PHY register value.
5916 */
5917static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5918{
5919	struct dev_priv *priv = netdev_priv(dev);
5920	struct ksz_port *port = &priv->port;
5921	struct ksz_hw *hw = port->hw;
5922	int i;
5923	int pi;
5924
5925	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5926		hw_w_phy(hw, pi, reg_num << 1, val);
5927}
5928
5929/*
5930 * ethtool support
5931 */
5932
5933#define EEPROM_SIZE			0x40
5934
5935static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5936
5937#define ADVERTISED_ALL			\
5938	(ADVERTISED_10baseT_Half |	\
5939	ADVERTISED_10baseT_Full |	\
5940	ADVERTISED_100baseT_Half |	\
5941	ADVERTISED_100baseT_Full)
5942
5943/* These functions use the MII functions in mii.c. */
5944
5945/**
5946 * netdev_get_link_ksettings - get network device settings
5947 * @dev:	Network device.
5948 * @cmd:	Ethtool command.
5949 *
5950 * This function queries the PHY and returns its state in the ethtool command.
5951 *
5952 * Return 0 if successful; otherwise an error code.
5953 */
5954static int netdev_get_link_ksettings(struct net_device *dev,
5955				     struct ethtool_link_ksettings *cmd)
5956{
5957	struct dev_priv *priv = netdev_priv(dev);
5958	struct dev_info *hw_priv = priv->adapter;
5959
5960	mutex_lock(&hw_priv->lock);
5961	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5962	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5963	mutex_unlock(&hw_priv->lock);
5964
5965	/* Save advertised settings for workaround in next function. */
5966	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5967						cmd->link_modes.advertising);
5968
5969	return 0;
5970}
5971
5972/**
5973 * netdev_set_link_ksettings - set network device settings
5974 * @dev:	Network device.
5975 * @cmd:	Ethtool command.
5976 *
5977 * This function sets the PHY according to the ethtool command.
5978 *
5979 * Return 0 if successful; otherwise an error code.
5980 */
5981static int netdev_set_link_ksettings(struct net_device *dev,
5982				     const struct ethtool_link_ksettings *cmd)
5983{
5984	struct dev_priv *priv = netdev_priv(dev);
5985	struct dev_info *hw_priv = priv->adapter;
5986	struct ksz_port *port = &priv->port;
5987	struct ethtool_link_ksettings copy_cmd;
5988	u32 speed = cmd->base.speed;
5989	u32 advertising;
5990	int rc;
5991
5992	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5993						cmd->link_modes.advertising);
5994
5995	/*
5996	 * ethtool utility does not change advertised setting if auto
5997	 * negotiation is not specified explicitly.
5998	 */
5999	if (cmd->base.autoneg && priv->advertising == advertising) {
6000		advertising |= ADVERTISED_ALL;
6001		if (10 == speed)
6002			advertising &=
6003				~(ADVERTISED_100baseT_Full |
6004				ADVERTISED_100baseT_Half);
6005		else if (100 == speed)
6006			advertising &=
6007				~(ADVERTISED_10baseT_Full |
6008				ADVERTISED_10baseT_Half);
6009		if (0 == cmd->base.duplex)
6010			advertising &=
6011				~(ADVERTISED_100baseT_Full |
6012				ADVERTISED_10baseT_Full);
6013		else if (1 == cmd->base.duplex)
6014			advertising &=
6015				~(ADVERTISED_100baseT_Half |
6016				ADVERTISED_10baseT_Half);
6017	}
6018	mutex_lock(&hw_priv->lock);
6019	if (cmd->base.autoneg &&
6020	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
 
6021		port->duplex = 0;
6022		port->speed = 0;
6023		port->force_link = 0;
6024	} else {
6025		port->duplex = cmd->base.duplex + 1;
6026		if (1000 != speed)
6027			port->speed = speed;
6028		if (cmd->base.autoneg)
6029			port->force_link = 0;
6030		else
6031			port->force_link = 1;
6032	}
6033
6034	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6035	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6036						advertising);
6037	rc = mii_ethtool_set_link_ksettings(
6038		&priv->mii_if,
6039		(const struct ethtool_link_ksettings *)&copy_cmd);
6040	mutex_unlock(&hw_priv->lock);
6041	return rc;
6042}
6043
6044/**
6045 * netdev_nway_reset - restart auto-negotiation
6046 * @dev:	Network device.
6047 *
6048 * This function restarts the PHY for auto-negotiation.
6049 *
6050 * Return 0 if successful; otherwise an error code.
6051 */
6052static int netdev_nway_reset(struct net_device *dev)
6053{
6054	struct dev_priv *priv = netdev_priv(dev);
6055	struct dev_info *hw_priv = priv->adapter;
6056	int rc;
6057
6058	mutex_lock(&hw_priv->lock);
6059	rc = mii_nway_restart(&priv->mii_if);
6060	mutex_unlock(&hw_priv->lock);
6061	return rc;
6062}
6063
6064/**
6065 * netdev_get_link - get network device link status
6066 * @dev:	Network device.
6067 *
6068 * This function gets the link status from the PHY.
6069 *
6070 * Return true if PHY is linked and false otherwise.
6071 */
6072static u32 netdev_get_link(struct net_device *dev)
6073{
6074	struct dev_priv *priv = netdev_priv(dev);
6075	int rc;
6076
6077	rc = mii_link_ok(&priv->mii_if);
6078	return rc;
6079}
6080
6081/**
6082 * netdev_get_drvinfo - get network driver information
6083 * @dev:	Network device.
6084 * @info:	Ethtool driver info data structure.
6085 *
6086 * This procedure returns the driver information.
6087 */
6088static void netdev_get_drvinfo(struct net_device *dev,
6089	struct ethtool_drvinfo *info)
6090{
6091	struct dev_priv *priv = netdev_priv(dev);
6092	struct dev_info *hw_priv = priv->adapter;
6093
6094	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6095	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6096	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6097		sizeof(info->bus_info));
6098}
6099
6100/**
6101 * netdev_get_regs_len - get length of register dump
6102 * @dev:	Network device.
6103 *
6104 * This function returns the length of the register dump.
6105 *
6106 * Return length of the register dump.
6107 */
6108static struct hw_regs {
6109	int start;
6110	int end;
6111} hw_regs_range[] = {
6112	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6113	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6114	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6115	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6116	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6117	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6118	{ 0, 0 }
6119};
6120
6121static int netdev_get_regs_len(struct net_device *dev)
6122{
6123	struct hw_regs *range = hw_regs_range;
6124	int regs_len = 0x10 * sizeof(u32);
6125
6126	while (range->end > range->start) {
6127		regs_len += (range->end - range->start + 3) / 4 * 4;
6128		range++;
6129	}
6130	return regs_len;
6131}
6132
6133/**
6134 * netdev_get_regs - get register dump
6135 * @dev:	Network device.
6136 * @regs:	Ethtool registers data structure.
6137 * @ptr:	Buffer to store the register values.
6138 *
6139 * This procedure dumps the register values in the provided buffer.
6140 */
6141static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6142	void *ptr)
6143{
6144	struct dev_priv *priv = netdev_priv(dev);
6145	struct dev_info *hw_priv = priv->adapter;
6146	struct ksz_hw *hw = &hw_priv->hw;
6147	int *buf = (int *) ptr;
6148	struct hw_regs *range = hw_regs_range;
6149	int len;
6150
6151	mutex_lock(&hw_priv->lock);
6152	regs->version = 0;
6153	for (len = 0; len < 0x40; len += 4) {
6154		pci_read_config_dword(hw_priv->pdev, len, buf);
6155		buf++;
6156	}
6157	while (range->end > range->start) {
6158		for (len = range->start; len < range->end; len += 4) {
6159			*buf = readl(hw->io + len);
6160			buf++;
6161		}
6162		range++;
6163	}
6164	mutex_unlock(&hw_priv->lock);
6165}
6166
6167#define WOL_SUPPORT			\
6168	(WAKE_PHY | WAKE_MAGIC |	\
6169	WAKE_UCAST | WAKE_MCAST |	\
6170	WAKE_BCAST | WAKE_ARP)
6171
6172/**
6173 * netdev_get_wol - get Wake-on-LAN support
6174 * @dev:	Network device.
6175 * @wol:	Ethtool Wake-on-LAN data structure.
6176 *
6177 * This procedure returns Wake-on-LAN support.
6178 */
6179static void netdev_get_wol(struct net_device *dev,
6180	struct ethtool_wolinfo *wol)
6181{
6182	struct dev_priv *priv = netdev_priv(dev);
6183	struct dev_info *hw_priv = priv->adapter;
6184
6185	wol->supported = hw_priv->wol_support;
6186	wol->wolopts = hw_priv->wol_enable;
6187	memset(&wol->sopass, 0, sizeof(wol->sopass));
6188}
6189
6190/**
6191 * netdev_set_wol - set Wake-on-LAN support
6192 * @dev:	Network device.
6193 * @wol:	Ethtool Wake-on-LAN data structure.
6194 *
6195 * This function sets Wake-on-LAN support.
6196 *
6197 * Return 0 if successful; otherwise an error code.
6198 */
6199static int netdev_set_wol(struct net_device *dev,
6200	struct ethtool_wolinfo *wol)
6201{
6202	struct dev_priv *priv = netdev_priv(dev);
6203	struct dev_info *hw_priv = priv->adapter;
6204
6205	/* Need to find a way to retrieve the device IP address. */
6206	static const u8 net_addr[] = { 192, 168, 1, 1 };
6207
6208	if (wol->wolopts & ~hw_priv->wol_support)
6209		return -EINVAL;
6210
6211	hw_priv->wol_enable = wol->wolopts;
6212
6213	/* Link wakeup cannot really be disabled. */
6214	if (wol->wolopts)
6215		hw_priv->wol_enable |= WAKE_PHY;
6216	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6217	return 0;
6218}
6219
6220/**
6221 * netdev_get_msglevel - get debug message level
6222 * @dev:	Network device.
6223 *
6224 * This function returns current debug message level.
6225 *
6226 * Return current debug message flags.
6227 */
6228static u32 netdev_get_msglevel(struct net_device *dev)
6229{
6230	struct dev_priv *priv = netdev_priv(dev);
6231
6232	return priv->msg_enable;
6233}
6234
6235/**
6236 * netdev_set_msglevel - set debug message level
6237 * @dev:	Network device.
6238 * @value:	Debug message flags.
6239 *
6240 * This procedure sets debug message level.
6241 */
6242static void netdev_set_msglevel(struct net_device *dev, u32 value)
6243{
6244	struct dev_priv *priv = netdev_priv(dev);
6245
6246	priv->msg_enable = value;
6247}
6248
6249/**
6250 * netdev_get_eeprom_len - get EEPROM length
6251 * @dev:	Network device.
6252 *
6253 * This function returns the length of the EEPROM.
6254 *
6255 * Return length of the EEPROM.
6256 */
6257static int netdev_get_eeprom_len(struct net_device *dev)
6258{
6259	return EEPROM_SIZE * 2;
6260}
6261
6262/**
6263 * netdev_get_eeprom - get EEPROM data
6264 * @dev:	Network device.
6265 * @eeprom:	Ethtool EEPROM data structure.
6266 * @data:	Buffer to store the EEPROM data.
6267 *
6268 * This function dumps the EEPROM data in the provided buffer.
6269 *
6270 * Return 0 if successful; otherwise an error code.
6271 */
6272#define EEPROM_MAGIC			0x10A18842
6273
6274static int netdev_get_eeprom(struct net_device *dev,
6275	struct ethtool_eeprom *eeprom, u8 *data)
6276{
6277	struct dev_priv *priv = netdev_priv(dev);
6278	struct dev_info *hw_priv = priv->adapter;
6279	u8 *eeprom_byte = (u8 *) eeprom_data;
6280	int i;
6281	int len;
6282
6283	len = (eeprom->offset + eeprom->len + 1) / 2;
6284	for (i = eeprom->offset / 2; i < len; i++)
6285		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6286	eeprom->magic = EEPROM_MAGIC;
6287	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6288
6289	return 0;
6290}
6291
6292/**
6293 * netdev_set_eeprom - write EEPROM data
6294 * @dev:	Network device.
6295 * @eeprom:	Ethtool EEPROM data structure.
6296 * @data:	Data buffer.
6297 *
6298 * This function modifies the EEPROM data one byte at a time.
6299 *
6300 * Return 0 if successful; otherwise an error code.
6301 */
6302static int netdev_set_eeprom(struct net_device *dev,
6303	struct ethtool_eeprom *eeprom, u8 *data)
6304{
6305	struct dev_priv *priv = netdev_priv(dev);
6306	struct dev_info *hw_priv = priv->adapter;
6307	u16 eeprom_word[EEPROM_SIZE];
6308	u8 *eeprom_byte = (u8 *) eeprom_word;
6309	int i;
6310	int len;
6311
6312	if (eeprom->magic != EEPROM_MAGIC)
6313		return -EINVAL;
6314
6315	len = (eeprom->offset + eeprom->len + 1) / 2;
6316	for (i = eeprom->offset / 2; i < len; i++)
6317		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6318	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6319	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6320	for (i = 0; i < EEPROM_SIZE; i++)
6321		if (eeprom_word[i] != eeprom_data[i]) {
6322			eeprom_data[i] = eeprom_word[i];
6323			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6324	}
6325
6326	return 0;
6327}
6328
6329/**
6330 * netdev_get_pauseparam - get flow control parameters
6331 * @dev:	Network device.
6332 * @pause:	Ethtool PAUSE settings data structure.
6333 *
6334 * This procedure returns the PAUSE control flow settings.
6335 */
6336static void netdev_get_pauseparam(struct net_device *dev,
6337	struct ethtool_pauseparam *pause)
6338{
6339	struct dev_priv *priv = netdev_priv(dev);
6340	struct dev_info *hw_priv = priv->adapter;
6341	struct ksz_hw *hw = &hw_priv->hw;
6342
6343	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6344	if (!hw->ksz_switch) {
6345		pause->rx_pause =
6346			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6347		pause->tx_pause =
6348			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6349	} else {
6350		pause->rx_pause =
6351			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6353		pause->tx_pause =
6354			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6355				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6356	}
6357}
6358
6359/**
6360 * netdev_set_pauseparam - set flow control parameters
6361 * @dev:	Network device.
6362 * @pause:	Ethtool PAUSE settings data structure.
6363 *
6364 * This function sets the PAUSE control flow settings.
6365 * Not implemented yet.
6366 *
6367 * Return 0 if successful; otherwise an error code.
6368 */
6369static int netdev_set_pauseparam(struct net_device *dev,
6370	struct ethtool_pauseparam *pause)
6371{
6372	struct dev_priv *priv = netdev_priv(dev);
6373	struct dev_info *hw_priv = priv->adapter;
6374	struct ksz_hw *hw = &hw_priv->hw;
6375	struct ksz_port *port = &priv->port;
6376
6377	mutex_lock(&hw_priv->lock);
6378	if (pause->autoneg) {
6379		if (!pause->rx_pause && !pause->tx_pause)
6380			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6381		else
6382			port->flow_ctrl = PHY_FLOW_CTRL;
6383		hw->overrides &= ~PAUSE_FLOW_CTRL;
6384		port->force_link = 0;
6385		if (hw->ksz_switch) {
6386			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387				SWITCH_RX_FLOW_CTRL, 1);
6388			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389				SWITCH_TX_FLOW_CTRL, 1);
6390		}
6391		port_set_link_speed(port);
6392	} else {
6393		hw->overrides |= PAUSE_FLOW_CTRL;
6394		if (hw->ksz_switch) {
6395			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6397			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6399		} else
6400			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6401	}
6402	mutex_unlock(&hw_priv->lock);
6403
6404	return 0;
6405}
6406
6407/**
6408 * netdev_get_ringparam - get tx/rx ring parameters
6409 * @dev:	Network device.
6410 * @pause:	Ethtool RING settings data structure.
6411 *
6412 * This procedure returns the TX/RX ring settings.
6413 */
6414static void netdev_get_ringparam(struct net_device *dev,
6415	struct ethtool_ringparam *ring)
6416{
6417	struct dev_priv *priv = netdev_priv(dev);
6418	struct dev_info *hw_priv = priv->adapter;
6419	struct ksz_hw *hw = &hw_priv->hw;
6420
6421	ring->tx_max_pending = (1 << 9);
6422	ring->tx_pending = hw->tx_desc_info.alloc;
6423	ring->rx_max_pending = (1 << 9);
6424	ring->rx_pending = hw->rx_desc_info.alloc;
6425}
6426
6427#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6428
6429static struct {
6430	char string[ETH_GSTRING_LEN];
6431} ethtool_stats_keys[STATS_LEN] = {
6432	{ "rx_lo_priority_octets" },
6433	{ "rx_hi_priority_octets" },
6434	{ "rx_undersize_packets" },
6435	{ "rx_fragments" },
6436	{ "rx_oversize_packets" },
6437	{ "rx_jabbers" },
6438	{ "rx_symbol_errors" },
6439	{ "rx_crc_errors" },
6440	{ "rx_align_errors" },
6441	{ "rx_mac_ctrl_packets" },
6442	{ "rx_pause_packets" },
6443	{ "rx_bcast_packets" },
6444	{ "rx_mcast_packets" },
6445	{ "rx_ucast_packets" },
6446	{ "rx_64_or_less_octet_packets" },
6447	{ "rx_65_to_127_octet_packets" },
6448	{ "rx_128_to_255_octet_packets" },
6449	{ "rx_256_to_511_octet_packets" },
6450	{ "rx_512_to_1023_octet_packets" },
6451	{ "rx_1024_to_1522_octet_packets" },
6452
6453	{ "tx_lo_priority_octets" },
6454	{ "tx_hi_priority_octets" },
6455	{ "tx_late_collisions" },
6456	{ "tx_pause_packets" },
6457	{ "tx_bcast_packets" },
6458	{ "tx_mcast_packets" },
6459	{ "tx_ucast_packets" },
6460	{ "tx_deferred" },
6461	{ "tx_total_collisions" },
6462	{ "tx_excessive_collisions" },
6463	{ "tx_single_collisions" },
6464	{ "tx_mult_collisions" },
6465
6466	{ "rx_discards" },
6467	{ "tx_discards" },
6468};
6469
6470/**
6471 * netdev_get_strings - get statistics identity strings
6472 * @dev:	Network device.
6473 * @stringset:	String set identifier.
6474 * @buf:	Buffer to store the strings.
6475 *
6476 * This procedure returns the strings used to identify the statistics.
6477 */
6478static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6479{
6480	struct dev_priv *priv = netdev_priv(dev);
6481	struct dev_info *hw_priv = priv->adapter;
6482	struct ksz_hw *hw = &hw_priv->hw;
6483
6484	if (ETH_SS_STATS == stringset)
6485		memcpy(buf, &ethtool_stats_keys,
6486			ETH_GSTRING_LEN * hw->mib_cnt);
6487}
6488
6489/**
6490 * netdev_get_sset_count - get statistics size
6491 * @dev:	Network device.
6492 * @sset:	The statistics set number.
6493 *
6494 * This function returns the size of the statistics to be reported.
6495 *
6496 * Return size of the statistics to be reported.
6497 */
6498static int netdev_get_sset_count(struct net_device *dev, int sset)
6499{
6500	struct dev_priv *priv = netdev_priv(dev);
6501	struct dev_info *hw_priv = priv->adapter;
6502	struct ksz_hw *hw = &hw_priv->hw;
6503
6504	switch (sset) {
6505	case ETH_SS_STATS:
6506		return hw->mib_cnt;
6507	default:
6508		return -EOPNOTSUPP;
6509	}
6510}
6511
6512/**
6513 * netdev_get_ethtool_stats - get network device statistics
6514 * @dev:	Network device.
6515 * @stats:	Ethtool statistics data structure.
6516 * @data:	Buffer to store the statistics.
6517 *
6518 * This procedure returns the statistics.
6519 */
6520static void netdev_get_ethtool_stats(struct net_device *dev,
6521	struct ethtool_stats *stats, u64 *data)
6522{
6523	struct dev_priv *priv = netdev_priv(dev);
6524	struct dev_info *hw_priv = priv->adapter;
6525	struct ksz_hw *hw = &hw_priv->hw;
6526	struct ksz_port *port = &priv->port;
6527	int n_stats = stats->n_stats;
6528	int i;
6529	int n;
6530	int p;
6531	int rc;
6532	u64 counter[TOTAL_PORT_COUNTER_NUM];
6533
6534	mutex_lock(&hw_priv->lock);
6535	n = SWITCH_PORT_NUM;
6536	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6537		if (media_connected == hw->port_mib[p].state) {
6538			hw_priv->counter[p].read = 1;
6539
6540			/* Remember first port that requests read. */
6541			if (n == SWITCH_PORT_NUM)
6542				n = p;
6543		}
6544	}
6545	mutex_unlock(&hw_priv->lock);
6546
6547	if (n < SWITCH_PORT_NUM)
6548		schedule_work(&hw_priv->mib_read);
6549
6550	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6551		p = n;
6552		rc = wait_event_interruptible_timeout(
6553			hw_priv->counter[p].counter,
6554			2 == hw_priv->counter[p].read,
6555			HZ * 1);
6556	} else
6557		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6558			if (0 == i) {
6559				rc = wait_event_interruptible_timeout(
6560					hw_priv->counter[p].counter,
6561					2 == hw_priv->counter[p].read,
6562					HZ * 2);
6563			} else if (hw->port_mib[p].cnt_ptr) {
6564				rc = wait_event_interruptible_timeout(
6565					hw_priv->counter[p].counter,
6566					2 == hw_priv->counter[p].read,
6567					HZ * 1);
6568			}
6569		}
6570
6571	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6572	n = hw->mib_cnt;
6573	if (n > n_stats)
6574		n = n_stats;
6575	n_stats -= n;
6576	for (i = 0; i < n; i++)
6577		*data++ = counter[i];
6578}
6579
6580/**
6581 * netdev_set_features - set receive checksum support
6582 * @dev:	Network device.
6583 * @features:	New device features (offloads).
6584 *
6585 * This function sets receive checksum support setting.
6586 *
6587 * Return 0 if successful; otherwise an error code.
6588 */
6589static int netdev_set_features(struct net_device *dev,
6590	netdev_features_t features)
6591{
6592	struct dev_priv *priv = netdev_priv(dev);
6593	struct dev_info *hw_priv = priv->adapter;
6594	struct ksz_hw *hw = &hw_priv->hw;
6595
6596	mutex_lock(&hw_priv->lock);
6597
6598	/* see note in hw_setup() */
6599	if (features & NETIF_F_RXCSUM)
6600		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601	else
6602		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603
6604	if (hw->enabled)
6605		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606
6607	mutex_unlock(&hw_priv->lock);
6608
6609	return 0;
6610}
6611
6612static const struct ethtool_ops netdev_ethtool_ops = {
 
 
6613	.nway_reset		= netdev_nway_reset,
6614	.get_link		= netdev_get_link,
6615	.get_drvinfo		= netdev_get_drvinfo,
6616	.get_regs_len		= netdev_get_regs_len,
6617	.get_regs		= netdev_get_regs,
6618	.get_wol		= netdev_get_wol,
6619	.set_wol		= netdev_set_wol,
6620	.get_msglevel		= netdev_get_msglevel,
6621	.set_msglevel		= netdev_set_msglevel,
6622	.get_eeprom_len		= netdev_get_eeprom_len,
6623	.get_eeprom		= netdev_get_eeprom,
6624	.set_eeprom		= netdev_set_eeprom,
6625	.get_pauseparam		= netdev_get_pauseparam,
6626	.set_pauseparam		= netdev_set_pauseparam,
6627	.get_ringparam		= netdev_get_ringparam,
6628	.get_strings		= netdev_get_strings,
6629	.get_sset_count		= netdev_get_sset_count,
6630	.get_ethtool_stats	= netdev_get_ethtool_stats,
6631	.get_link_ksettings	= netdev_get_link_ksettings,
6632	.set_link_ksettings	= netdev_set_link_ksettings,
6633};
6634
6635/*
6636 * Hardware monitoring
6637 */
6638
6639static void update_link(struct net_device *dev, struct dev_priv *priv,
6640	struct ksz_port *port)
6641{
6642	if (priv->media_state != port->linked->state) {
6643		priv->media_state = port->linked->state;
6644		if (netif_running(dev))
6645			set_media_state(dev, media_connected);
6646	}
6647}
6648
6649static void mib_read_work(struct work_struct *work)
6650{
6651	struct dev_info *hw_priv =
6652		container_of(work, struct dev_info, mib_read);
6653	struct ksz_hw *hw = &hw_priv->hw;
6654	struct ksz_port_mib *mib;
6655	int i;
6656
6657	next_jiffies = jiffies;
6658	for (i = 0; i < hw->mib_port_cnt; i++) {
6659		mib = &hw->port_mib[i];
6660
6661		/* Reading MIB counters or requested to read. */
6662		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663
6664			/* Need to process receive interrupt. */
6665			if (port_r_cnt(hw, i))
6666				break;
6667			hw_priv->counter[i].read = 0;
6668
6669			/* Finish reading counters. */
6670			if (0 == mib->cnt_ptr) {
6671				hw_priv->counter[i].read = 2;
6672				wake_up_interruptible(
6673					&hw_priv->counter[i].counter);
6674			}
6675		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6676			/* Only read MIB counters when the port is connected. */
6677			if (media_connected == mib->state)
6678				hw_priv->counter[i].read = 1;
6679			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680			hw_priv->counter[i].time = next_jiffies;
6681
6682		/* Port is just disconnected. */
6683		} else if (mib->link_down) {
6684			mib->link_down = 0;
6685
6686			/* Read counters one last time after link is lost. */
6687			hw_priv->counter[i].read = 1;
6688		}
6689	}
6690}
6691
6692static void mib_monitor(struct timer_list *t)
6693{
6694	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6695
6696	mib_read_work(&hw_priv->mib_read);
6697
6698	/* This is used to verify Wake-on-LAN is working. */
6699	if (hw_priv->pme_wait) {
6700		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6701			hw_clr_wol_pme_status(&hw_priv->hw);
6702			hw_priv->pme_wait = 0;
6703		}
6704	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705
6706		/* PME is asserted.  Wait 2 seconds to clear it. */
6707		hw_priv->pme_wait = jiffies + HZ * 2;
6708	}
6709
6710	ksz_update_timer(&hw_priv->mib_timer_info);
6711}
6712
6713/**
6714 * dev_monitor - periodic monitoring
6715 * @ptr:	Network device pointer.
6716 *
6717 * This routine is run in a kernel timer to monitor the network device.
6718 */
6719static void dev_monitor(struct timer_list *t)
6720{
6721	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6722	struct net_device *dev = priv->mii_if.dev;
6723	struct dev_info *hw_priv = priv->adapter;
6724	struct ksz_hw *hw = &hw_priv->hw;
6725	struct ksz_port *port = &priv->port;
6726
6727	if (!(hw->features & LINK_INT_WORKING))
6728		port_get_link_speed(port);
6729	update_link(dev, priv, port);
6730
6731	ksz_update_timer(&priv->monitor_timer_info);
6732}
6733
6734/*
6735 * Linux network device interface functions
6736 */
6737
6738/* Driver exported variables */
6739
6740static int msg_enable;
6741
6742static char *macaddr = ":";
6743static char *mac1addr = ":";
6744
6745/*
6746 * This enables multiple network device mode for KSZ8842, which contains a
6747 * switch with two physical ports.  Some users like to take control of the
6748 * ports for running Spanning Tree Protocol.  The driver will create an
6749 * additional eth? device for the other port.
6750 *
6751 * Some limitations are the network devices cannot have different MTU and
6752 * multicast hash tables.
6753 */
6754static int multi_dev;
6755
6756/*
6757 * As most users select multiple network device mode to use Spanning Tree
6758 * Protocol, this enables a feature in which most unicast and multicast packets
6759 * are forwarded inside the switch and not passed to the host.  Only packets
6760 * that need the host's attention are passed to it.  This prevents the host
6761 * wasting CPU time to examine each and every incoming packets and do the
6762 * forwarding itself.
6763 *
6764 * As the hack requires the private bridge header, the driver cannot compile
6765 * with just the kernel headers.
6766 *
6767 * Enabling STP support also turns on multiple network device mode.
6768 */
6769static int stp;
6770
6771/*
6772 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6773 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6774 * STP support is enabled.
6775 */
6776static int fast_aging;
6777
6778/**
6779 * netdev_init - initialize network device.
6780 * @dev:	Network device.
6781 *
6782 * This function initializes the network device.
6783 *
6784 * Return 0 if successful; otherwise an error code indicating failure.
6785 */
6786static int __init netdev_init(struct net_device *dev)
6787{
6788	struct dev_priv *priv = netdev_priv(dev);
6789
6790	/* 500 ms timeout */
6791	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792		dev_monitor);
6793
6794	/* 500 ms timeout */
6795	dev->watchdog_timeo = HZ / 2;
6796
6797	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798
6799	/*
6800	 * Hardware does not really support IPv6 checksum generation, but
6801	 * driver actually runs faster with this on.
6802	 */
6803	dev->hw_features |= NETIF_F_IPV6_CSUM;
6804
6805	dev->features |= dev->hw_features;
6806
6807	sema_init(&priv->proc_sem, 1);
6808
6809	priv->mii_if.phy_id_mask = 0x1;
6810	priv->mii_if.reg_num_mask = 0x7;
6811	priv->mii_if.dev = dev;
6812	priv->mii_if.mdio_read = mdio_read;
6813	priv->mii_if.mdio_write = mdio_write;
6814	priv->mii_if.phy_id = priv->port.first_port + 1;
6815
6816	priv->msg_enable = netif_msg_init(msg_enable,
6817		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818
6819	return 0;
6820}
6821
6822static const struct net_device_ops netdev_ops = {
6823	.ndo_init		= netdev_init,
6824	.ndo_open		= netdev_open,
6825	.ndo_stop		= netdev_close,
6826	.ndo_get_stats		= netdev_query_statistics,
6827	.ndo_start_xmit		= netdev_tx,
6828	.ndo_tx_timeout		= netdev_tx_timeout,
6829	.ndo_change_mtu		= netdev_change_mtu,
6830	.ndo_set_features	= netdev_set_features,
6831	.ndo_set_mac_address	= netdev_set_mac_address,
6832	.ndo_validate_addr	= eth_validate_addr,
6833	.ndo_do_ioctl		= netdev_ioctl,
6834	.ndo_set_rx_mode	= netdev_set_rx_mode,
6835#ifdef CONFIG_NET_POLL_CONTROLLER
6836	.ndo_poll_controller	= netdev_netpoll,
6837#endif
6838};
6839
6840static void netdev_free(struct net_device *dev)
6841{
6842	if (dev->watchdog_timeo)
6843		unregister_netdev(dev);
6844
6845	free_netdev(dev);
6846}
6847
6848struct platform_info {
6849	struct dev_info dev_info;
6850	struct net_device *netdev[SWITCH_PORT_NUM];
6851};
6852
6853static int net_device_present;
6854
6855static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856{
6857	int i;
6858	int j;
6859	int got_num;
6860	int num;
6861
6862	i = j = num = got_num = 0;
6863	while (j < ETH_ALEN) {
6864		if (macaddr[i]) {
6865			int digit;
6866
6867			got_num = 1;
6868			digit = hex_to_bin(macaddr[i]);
6869			if (digit >= 0)
6870				num = num * 16 + digit;
6871			else if (':' == macaddr[i])
6872				got_num = 2;
6873			else
6874				break;
6875		} else if (got_num)
6876			got_num = 2;
6877		else
6878			break;
6879		if (2 == got_num) {
6880			if (MAIN_PORT == port) {
6881				hw_priv->hw.override_addr[j++] = (u8) num;
6882				hw_priv->hw.override_addr[5] +=
6883					hw_priv->hw.id;
6884			} else {
6885				hw_priv->hw.ksz_switch->other_addr[j++] =
6886					(u8) num;
6887				hw_priv->hw.ksz_switch->other_addr[5] +=
6888					hw_priv->hw.id;
6889			}
6890			num = got_num = 0;
6891		}
6892		i++;
6893	}
6894	if (ETH_ALEN == j) {
6895		if (MAIN_PORT == port)
6896			hw_priv->hw.mac_override = 1;
6897	}
6898}
6899
6900#define KS884X_DMA_MASK			(~0x0UL)
6901
6902static void read_other_addr(struct ksz_hw *hw)
6903{
6904	int i;
6905	u16 data[3];
6906	struct ksz_switch *sw = hw->ksz_switch;
6907
6908	for (i = 0; i < 3; i++)
6909		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911		sw->other_addr[5] = (u8) data[0];
6912		sw->other_addr[4] = (u8)(data[0] >> 8);
6913		sw->other_addr[3] = (u8) data[1];
6914		sw->other_addr[2] = (u8)(data[1] >> 8);
6915		sw->other_addr[1] = (u8) data[2];
6916		sw->other_addr[0] = (u8)(data[2] >> 8);
6917	}
6918}
6919
6920#ifndef PCI_VENDOR_ID_MICREL_KS
6921#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6922#endif
6923
6924static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
 
6925{
6926	struct net_device *dev;
6927	struct dev_priv *priv;
6928	struct dev_info *hw_priv;
6929	struct ksz_hw *hw;
6930	struct platform_info *info;
6931	struct ksz_port *port;
6932	unsigned long reg_base;
6933	unsigned long reg_len;
6934	int cnt;
6935	int i;
6936	int mib_port_count;
6937	int pi;
6938	int port_count;
6939	int result;
6940	char banner[sizeof(version)];
6941	struct ksz_switch *sw = NULL;
6942
6943	result = pci_enable_device(pdev);
6944	if (result)
6945		return result;
6946
6947	result = -ENODEV;
6948
6949	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6950			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6951		return result;
6952
6953	reg_base = pci_resource_start(pdev, 0);
6954	reg_len = pci_resource_len(pdev, 0);
6955	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6956		return result;
6957
6958	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6959		return result;
6960	pci_set_master(pdev);
6961
6962	result = -ENOMEM;
6963
6964	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6965	if (!info)
6966		goto pcidev_init_dev_err;
6967
6968	hw_priv = &info->dev_info;
6969	hw_priv->pdev = pdev;
6970
6971	hw = &hw_priv->hw;
6972
6973	hw->io = ioremap(reg_base, reg_len);
6974	if (!hw->io)
6975		goto pcidev_init_io_err;
6976
6977	cnt = hw_init(hw);
6978	if (!cnt) {
6979		if (msg_enable & NETIF_MSG_PROBE)
6980			pr_alert("chip not detected\n");
6981		result = -ENODEV;
6982		goto pcidev_init_alloc_err;
6983	}
6984
6985	snprintf(banner, sizeof(banner), "%s", version);
6986	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6987	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6988	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6989
6990	/* Assume device is KSZ8841. */
6991	hw->dev_count = 1;
6992	port_count = 1;
6993	mib_port_count = 1;
6994	hw->addr_list_size = 0;
6995	hw->mib_cnt = PORT_COUNTER_NUM;
6996	hw->mib_port_cnt = 1;
6997
6998	/* KSZ8842 has a switch with multiple ports. */
6999	if (2 == cnt) {
7000		if (fast_aging)
7001			hw->overrides |= FAST_AGING;
7002
7003		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7004
7005		/* Multiple network device interfaces are required. */
7006		if (multi_dev) {
7007			hw->dev_count = SWITCH_PORT_NUM;
7008			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7009		}
7010
7011		/* Single network device has multiple ports. */
7012		if (1 == hw->dev_count) {
7013			port_count = SWITCH_PORT_NUM;
7014			mib_port_count = SWITCH_PORT_NUM;
7015		}
7016		hw->mib_port_cnt = TOTAL_PORT_NUM;
7017		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7018		if (!hw->ksz_switch)
7019			goto pcidev_init_alloc_err;
7020
7021		sw = hw->ksz_switch;
7022	}
7023	for (i = 0; i < hw->mib_port_cnt; i++)
7024		hw->port_mib[i].mib_start = 0;
7025
7026	hw->parent = hw_priv;
7027
7028	/* Default MTU is 1500. */
7029	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7030
7031	if (ksz_alloc_mem(hw_priv))
7032		goto pcidev_init_mem_err;
7033
7034	hw_priv->hw.id = net_device_present;
7035
7036	spin_lock_init(&hw_priv->hwlock);
7037	mutex_init(&hw_priv->lock);
7038
 
 
 
 
 
 
 
 
 
 
7039	for (i = 0; i < TOTAL_PORT_NUM; i++)
7040		init_waitqueue_head(&hw_priv->counter[i].counter);
7041
7042	if (macaddr[0] != ':')
7043		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7044
7045	/* Read MAC address and initialize override address if not overridden. */
7046	hw_read_addr(hw);
7047
7048	/* Multiple device interfaces mode requires a second MAC address. */
7049	if (hw->dev_count > 1) {
7050		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7051		read_other_addr(hw);
7052		if (mac1addr[0] != ':')
7053			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7054	}
7055
7056	hw_setup(hw);
7057	if (hw->ksz_switch)
7058		sw_setup(hw);
7059	else {
7060		hw_priv->wol_support = WOL_SUPPORT;
7061		hw_priv->wol_enable = 0;
7062	}
7063
7064	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7065
7066	/* 500 ms timeout */
7067	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7068		mib_monitor);
7069
7070	for (i = 0; i < hw->dev_count; i++) {
7071		dev = alloc_etherdev(sizeof(struct dev_priv));
7072		if (!dev)
7073			goto pcidev_init_reg_err;
7074		SET_NETDEV_DEV(dev, &pdev->dev);
7075		info->netdev[i] = dev;
7076
7077		priv = netdev_priv(dev);
7078		priv->adapter = hw_priv;
7079		priv->id = net_device_present++;
7080
7081		port = &priv->port;
7082		port->port_cnt = port_count;
7083		port->mib_port_cnt = mib_port_count;
7084		port->first_port = i;
7085		port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087		port->hw = hw;
7088		port->linked = &hw->port_info[port->first_port];
7089
7090		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091			hw->port_info[pi].port_id = pi;
7092			hw->port_info[pi].pdev = dev;
7093			hw->port_info[pi].state = media_disconnected;
7094		}
7095
7096		dev->mem_start = (unsigned long) hw->io;
7097		dev->mem_end = dev->mem_start + reg_len - 1;
7098		dev->irq = pdev->irq;
7099		if (MAIN_PORT == i)
7100			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101			       ETH_ALEN);
7102		else {
7103			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7104			if (ether_addr_equal(sw->other_addr, hw->override_addr))
 
7105				dev->dev_addr[5] += port->first_port;
7106		}
7107
7108		dev->netdev_ops = &netdev_ops;
7109		dev->ethtool_ops = &netdev_ethtool_ops;
7110
7111		/* MTU range: 60 - 1894 */
7112		dev->min_mtu = ETH_ZLEN;
7113		dev->max_mtu = MAX_RX_BUF_SIZE -
7114			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7115
7116		if (register_netdev(dev))
7117			goto pcidev_init_reg_err;
7118		port_set_power_saving(port, true);
7119	}
7120
7121	pci_dev_get(hw_priv->pdev);
7122	pci_set_drvdata(pdev, info);
7123	return 0;
7124
7125pcidev_init_reg_err:
7126	for (i = 0; i < hw->dev_count; i++) {
7127		if (info->netdev[i]) {
7128			netdev_free(info->netdev[i]);
7129			info->netdev[i] = NULL;
7130		}
7131	}
7132
7133pcidev_init_mem_err:
7134	ksz_free_mem(hw_priv);
7135	kfree(hw->ksz_switch);
7136
7137pcidev_init_alloc_err:
7138	iounmap(hw->io);
7139
7140pcidev_init_io_err:
7141	kfree(info);
7142
7143pcidev_init_dev_err:
7144	release_mem_region(reg_base, reg_len);
7145
7146	return result;
7147}
7148
7149static void pcidev_exit(struct pci_dev *pdev)
7150{
7151	int i;
7152	struct platform_info *info = pci_get_drvdata(pdev);
7153	struct dev_info *hw_priv = &info->dev_info;
7154
 
 
7155	release_mem_region(pci_resource_start(pdev, 0),
7156		pci_resource_len(pdev, 0));
7157	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7158		if (info->netdev[i])
7159			netdev_free(info->netdev[i]);
7160	}
7161	if (hw_priv->hw.io)
7162		iounmap(hw_priv->hw.io);
7163	ksz_free_mem(hw_priv);
7164	kfree(hw_priv->hw.ksz_switch);
7165	pci_dev_put(hw_priv->pdev);
7166	kfree(info);
7167}
7168
7169#ifdef CONFIG_PM
7170static int pcidev_resume(struct pci_dev *pdev)
7171{
7172	int i;
7173	struct platform_info *info = pci_get_drvdata(pdev);
7174	struct dev_info *hw_priv = &info->dev_info;
7175	struct ksz_hw *hw = &hw_priv->hw;
7176
7177	pci_set_power_state(pdev, PCI_D0);
7178	pci_restore_state(pdev);
7179	pci_enable_wake(pdev, PCI_D0, 0);
7180
7181	if (hw_priv->wol_enable)
7182		hw_cfg_wol_pme(hw, 0);
7183	for (i = 0; i < hw->dev_count; i++) {
7184		if (info->netdev[i]) {
7185			struct net_device *dev = info->netdev[i];
7186
7187			if (netif_running(dev)) {
7188				netdev_open(dev);
7189				netif_device_attach(dev);
7190			}
7191		}
7192	}
7193	return 0;
7194}
7195
7196static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7197{
7198	int i;
7199	struct platform_info *info = pci_get_drvdata(pdev);
7200	struct dev_info *hw_priv = &info->dev_info;
7201	struct ksz_hw *hw = &hw_priv->hw;
7202
7203	/* Need to find a way to retrieve the device IP address. */
7204	static const u8 net_addr[] = { 192, 168, 1, 1 };
7205
7206	for (i = 0; i < hw->dev_count; i++) {
7207		if (info->netdev[i]) {
7208			struct net_device *dev = info->netdev[i];
7209
7210			if (netif_running(dev)) {
7211				netif_device_detach(dev);
7212				netdev_close(dev);
7213			}
7214		}
7215	}
7216	if (hw_priv->wol_enable) {
7217		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7218		hw_cfg_wol_pme(hw, 1);
7219	}
7220
7221	pci_save_state(pdev);
7222	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7223	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7224	return 0;
7225}
7226#endif
7227
7228static char pcidev_name[] = "ksz884xp";
7229
7230static const struct pci_device_id pcidev_table[] = {
7231	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7232		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7233	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7234		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7235	{ 0 }
7236};
7237
7238MODULE_DEVICE_TABLE(pci, pcidev_table);
7239
7240static struct pci_driver pci_device_driver = {
7241#ifdef CONFIG_PM
7242	.suspend	= pcidev_suspend,
7243	.resume		= pcidev_resume,
7244#endif
7245	.name		= pcidev_name,
7246	.id_table	= pcidev_table,
7247	.probe		= pcidev_init,
7248	.remove		= pcidev_exit
7249};
7250
7251module_pci_driver(pci_device_driver);
 
 
 
 
 
 
 
 
 
 
 
7252
7253MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7254MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7255MODULE_LICENSE("GPL");
7256
7257module_param_named(message, msg_enable, int, 0);
7258MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7259
7260module_param(macaddr, charp, 0);
7261module_param(mac1addr, charp, 0);
7262module_param(fast_aging, int, 0);
7263module_param(multi_dev, int, 0);
7264module_param(stp, int, 0);
7265MODULE_PARM_DESC(macaddr, "MAC address");
7266MODULE_PARM_DESC(mac1addr, "Second MAC address");
7267MODULE_PARM_DESC(fast_aging, "Fast aging");
7268MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7269MODULE_PARM_DESC(stp, "STP support");
v3.5.6
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overrided MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overrided.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] __devinitdata =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310}
2311
2312static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316}
2317
2318static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319{
2320	port_cfg(hw, p,
2321		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322}
2323
2324static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325{
2326	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327}
2328
2329static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330{
2331	if (!(hw->overrides & FAST_AGING)) {
2332		sw_cfg_fast_aging(hw, 1);
2333		mdelay(1);
2334		sw_cfg_fast_aging(hw, 0);
2335	}
2336}
2337
2338/* VLAN */
2339
2340static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344}
2345
2346static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347{
2348	port_cfg(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350}
2351
2352static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356}
2357
2358static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359{
2360	return port_chk(hw, p,
2361		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362}
2363
2364static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368}
2369
2370static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371{
2372	port_cfg(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374}
2375
2376static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380}
2381
2382static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383{
2384	return port_chk(hw, p,
2385		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386}
2387
2388/* Mirroring */
2389
2390static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394}
2395
2396static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400}
2401
2402static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403{
2404	port_cfg(hw, p,
2405		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406}
2407
2408static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409{
2410	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411}
2412
2413static void sw_init_mirror(struct ksz_hw *hw)
2414{
2415	int port;
2416
2417	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418		port_cfg_mirror_sniffer(hw, port, 0);
2419		port_cfg_mirror_rx(hw, port, 0);
2420		port_cfg_mirror_tx(hw, port, 0);
2421	}
2422	sw_cfg_mirror_rx_tx(hw, 0);
2423}
2424
2425static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426{
2427	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE, set);
2429}
2430
2431static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432{
2433	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434		SWITCH_UNK_DEF_PORT_ENABLE);
2435}
2436
2437static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438{
2439	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440}
2441
2442static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443{
2444	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445}
2446
2447/* Priority */
2448
2449static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453}
2454
2455static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459}
2460
2461static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465}
2466
2467static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468{
2469	port_cfg(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471}
2472
2473static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477}
2478
2479static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483}
2484
2485static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489}
2490
2491static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492{
2493	return port_chk(hw, p,
2494		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495}
2496
2497/**
2498 * sw_dis_diffserv - disable switch DiffServ priority
2499 * @hw: 	The hardware instance.
2500 * @port:	The port index.
2501 *
2502 * This routine disables the DiffServ priority function of the switch.
2503 */
2504static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505{
2506	port_cfg_diffserv(hw, port, 0);
2507}
2508
2509/**
2510 * sw_dis_802_1p - disable switch 802.1p priority
2511 * @hw: 	The hardware instance.
2512 * @port:	The port index.
2513 *
2514 * This routine disables the 802.1p priority function of the switch.
2515 */
2516static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517{
2518	port_cfg_802_1p(hw, port, 0);
2519}
2520
2521/**
2522 * sw_cfg_replace_null_vid -
2523 * @hw: 	The hardware instance.
2524 * @set:	The flag to disable or enable.
2525 *
2526 */
2527static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528{
2529	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530}
2531
2532/**
2533 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534 * @hw: 	The hardware instance.
2535 * @port:	The port index.
2536 * @set:	The flag to disable or enable.
2537 *
2538 * This routine enables the 802.1p priority re-mapping function of the switch.
2539 * That allows 802.1p priority field to be replaced with the port's default
2540 * tag's priority value if the ingress packet's 802.1p priority has a higher
2541 * priority than port's default tag's priority.
2542 */
2543static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544{
2545	port_cfg_replace_vid(hw, port, set);
2546}
2547
2548/**
2549 * sw_cfg_port_based - configure switch port based priority
2550 * @hw: 	The hardware instance.
2551 * @port:	The port index.
2552 * @prio:	The priority to set.
2553 *
2554 * This routine configures the port based priority of the switch.
2555 */
2556static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557{
2558	u16 data;
2559
2560	if (prio > PORT_BASED_PRIORITY_BASE)
2561		prio = PORT_BASED_PRIORITY_BASE;
2562
2563	hw->ksz_switch->port_cfg[port].port_prio = prio;
2564
2565	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566	data &= ~PORT_BASED_PRIORITY_MASK;
2567	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569}
2570
2571/**
2572 * sw_dis_multi_queue - disable transmit multiple queues
2573 * @hw: 	The hardware instance.
2574 * @port:	The port index.
2575 *
2576 * This routine disables the transmit multiple queues selection of the switch
2577 * port.  Only single transmit queue on the port.
2578 */
2579static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580{
2581	port_cfg_prio(hw, port, 0);
2582}
2583
2584/**
2585 * sw_init_prio - initialize switch priority
2586 * @hw: 	The hardware instance.
2587 *
2588 * This routine initializes the switch QoS priority functions.
2589 */
2590static void sw_init_prio(struct ksz_hw *hw)
2591{
2592	int port;
2593	int tos;
2594	struct ksz_switch *sw = hw->ksz_switch;
2595
2596	/*
2597	 * Init all the 802.1p tag priority value to be assigned to different
2598	 * priority queue.
2599	 */
2600	sw->p_802_1p[0] = 0;
2601	sw->p_802_1p[1] = 0;
2602	sw->p_802_1p[2] = 1;
2603	sw->p_802_1p[3] = 1;
2604	sw->p_802_1p[4] = 2;
2605	sw->p_802_1p[5] = 2;
2606	sw->p_802_1p[6] = 3;
2607	sw->p_802_1p[7] = 3;
2608
2609	/*
2610	 * Init all the DiffServ priority value to be assigned to priority
2611	 * queue 0.
2612	 */
2613	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614		sw->diffserv[tos] = 0;
2615
2616	/* All QoS functions disabled. */
2617	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618		sw_dis_multi_queue(hw, port);
2619		sw_dis_diffserv(hw, port);
2620		sw_dis_802_1p(hw, port);
2621		sw_cfg_replace_vid(hw, port, 0);
2622
2623		sw->port_cfg[port].port_prio = 0;
2624		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625	}
2626	sw_cfg_replace_null_vid(hw, 0);
2627}
2628
2629/**
2630 * port_get_def_vid - get port default VID.
2631 * @hw: 	The hardware instance.
2632 * @port:	The port index.
2633 * @vid:	Buffer to store the VID.
2634 *
2635 * This routine retrieves the default VID of the port.
2636 */
2637static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638{
2639	u32 addr;
2640
2641	PORT_CTRL_ADDR(port, addr);
2642	addr += KS8842_PORT_CTRL_VID_OFFSET;
2643	*vid = readw(hw->io + addr);
2644}
2645
2646/**
2647 * sw_init_vlan - initialize switch VLAN
2648 * @hw: 	The hardware instance.
2649 *
2650 * This routine initializes the VLAN function of the switch.
2651 */
2652static void sw_init_vlan(struct ksz_hw *hw)
2653{
2654	int port;
2655	int entry;
2656	struct ksz_switch *sw = hw->ksz_switch;
2657
2658	/* Read 16 VLAN entries from device's VLAN table. */
2659	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660		sw_r_vlan_table(hw, entry,
2661			&sw->vlan_table[entry].vid,
2662			&sw->vlan_table[entry].fid,
2663			&sw->vlan_table[entry].member);
2664	}
2665
2666	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668		sw->port_cfg[port].member = PORT_MASK;
2669	}
2670}
2671
2672/**
2673 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674 * @hw: 	The hardware instance.
2675 * @port:	The port index.
2676 * @member:	The port-based VLAN membership.
2677 *
2678 * This routine configures the port-based VLAN membership of the port.
2679 */
2680static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681{
2682	u32 addr;
2683	u8 data;
2684
2685	PORT_CTRL_ADDR(port, addr);
2686	addr += KS8842_PORT_CTRL_2_OFFSET;
2687
2688	data = readb(hw->io + addr);
2689	data &= ~PORT_VLAN_MEMBERSHIP;
2690	data |= (member & PORT_MASK);
2691	writeb(data, hw->io + addr);
2692
2693	hw->ksz_switch->port_cfg[port].member = member;
2694}
2695
2696/**
2697 * sw_get_addr - get the switch MAC address.
2698 * @hw: 	The hardware instance.
2699 * @mac_addr:	Buffer to store the MAC address.
2700 *
2701 * This function retrieves the MAC address of the switch.
2702 */
2703static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704{
2705	int i;
2706
2707	for (i = 0; i < 6; i += 2) {
2708		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710	}
2711}
2712
2713/**
2714 * sw_set_addr - configure switch MAC address
2715 * @hw: 	The hardware instance.
2716 * @mac_addr:	The MAC address.
2717 *
2718 * This function configures the MAC address of the switch.
2719 */
2720static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721{
2722	int i;
2723
2724	for (i = 0; i < 6; i += 2) {
2725		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727	}
2728}
2729
2730/**
2731 * sw_set_global_ctrl - set switch global control
2732 * @hw: 	The hardware instance.
2733 *
2734 * This routine sets the global control of the switch function.
2735 */
2736static void sw_set_global_ctrl(struct ksz_hw *hw)
2737{
2738	u16 data;
2739
2740	/* Enable switch MII flow control. */
2741	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742	data |= SWITCH_FLOW_CTRL;
2743	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744
2745	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746
2747	/* Enable aggressive back off algorithm in half duplex mode. */
2748	data |= SWITCH_AGGR_BACKOFF;
2749
2750	/* Enable automatic fast aging when link changed detected. */
2751	data |= SWITCH_AGING_ENABLE;
2752	data |= SWITCH_LINK_AUTO_AGING;
2753
2754	if (hw->overrides & FAST_AGING)
2755		data |= SWITCH_FAST_AGING;
2756	else
2757		data &= ~SWITCH_FAST_AGING;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759
2760	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761
2762	/* Enable no excessive collision drop. */
2763	data |= NO_EXC_COLLISION_DROP;
2764	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765}
2766
2767enum {
2768	STP_STATE_DISABLED = 0,
2769	STP_STATE_LISTENING,
2770	STP_STATE_LEARNING,
2771	STP_STATE_FORWARDING,
2772	STP_STATE_BLOCKED,
2773	STP_STATE_SIMPLE
2774};
2775
2776/**
2777 * port_set_stp_state - configure port spanning tree state
2778 * @hw: 	The hardware instance.
2779 * @port:	The port index.
2780 * @state:	The spanning tree state.
2781 *
2782 * This routine configures the spanning tree state of the port.
2783 */
2784static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785{
2786	u16 data;
2787
2788	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789	switch (state) {
2790	case STP_STATE_DISABLED:
2791		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792		data |= PORT_LEARN_DISABLE;
2793		break;
2794	case STP_STATE_LISTENING:
2795/*
2796 * No need to turn on transmit because of port direct mode.
2797 * Turning on receive is required if static MAC table is not setup.
2798 */
2799		data &= ~PORT_TX_ENABLE;
2800		data |= PORT_RX_ENABLE;
2801		data |= PORT_LEARN_DISABLE;
2802		break;
2803	case STP_STATE_LEARNING:
2804		data &= ~PORT_TX_ENABLE;
2805		data |= PORT_RX_ENABLE;
2806		data &= ~PORT_LEARN_DISABLE;
2807		break;
2808	case STP_STATE_FORWARDING:
2809		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810		data &= ~PORT_LEARN_DISABLE;
2811		break;
2812	case STP_STATE_BLOCKED:
2813/*
2814 * Need to setup static MAC table with override to keep receiving BPDU
2815 * messages.  See sw_init_stp routine.
2816 */
2817		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818		data |= PORT_LEARN_DISABLE;
2819		break;
2820	case STP_STATE_SIMPLE:
2821		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822		data |= PORT_LEARN_DISABLE;
2823		break;
2824	}
2825	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826	hw->ksz_switch->port_cfg[port].stp_state = state;
2827}
2828
2829#define STP_ENTRY			0
2830#define BROADCAST_ENTRY			1
2831#define BRIDGE_ADDR_ENTRY		2
2832#define IPV6_ADDR_ENTRY			3
2833
2834/**
2835 * sw_clr_sta_mac_table - clear static MAC table
2836 * @hw: 	The hardware instance.
2837 *
2838 * This routine clears the static MAC table.
2839 */
2840static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841{
2842	struct ksz_mac_table *entry;
2843	int i;
2844
2845	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846		entry = &hw->ksz_switch->mac_table[i];
2847		sw_w_sta_mac_table(hw, i,
2848			entry->mac_addr, entry->ports,
2849			entry->override, 0,
2850			entry->use_fid, entry->fid);
2851	}
2852}
2853
2854/**
2855 * sw_init_stp - initialize switch spanning tree support
2856 * @hw: 	The hardware instance.
2857 *
2858 * This routine initializes the spanning tree support of the switch.
2859 */
2860static void sw_init_stp(struct ksz_hw *hw)
2861{
2862	struct ksz_mac_table *entry;
2863
2864	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865	entry->mac_addr[0] = 0x01;
2866	entry->mac_addr[1] = 0x80;
2867	entry->mac_addr[2] = 0xC2;
2868	entry->mac_addr[3] = 0x00;
2869	entry->mac_addr[4] = 0x00;
2870	entry->mac_addr[5] = 0x00;
2871	entry->ports = HOST_MASK;
2872	entry->override = 1;
2873	entry->valid = 1;
2874	sw_w_sta_mac_table(hw, STP_ENTRY,
2875		entry->mac_addr, entry->ports,
2876		entry->override, entry->valid,
2877		entry->use_fid, entry->fid);
2878}
2879
2880/**
2881 * sw_block_addr - block certain packets from the host port
2882 * @hw: 	The hardware instance.
2883 *
2884 * This routine blocks certain packets from reaching to the host port.
2885 */
2886static void sw_block_addr(struct ksz_hw *hw)
2887{
2888	struct ksz_mac_table *entry;
2889	int i;
2890
2891	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892		entry = &hw->ksz_switch->mac_table[i];
2893		entry->valid = 0;
2894		sw_w_sta_mac_table(hw, i,
2895			entry->mac_addr, entry->ports,
2896			entry->override, entry->valid,
2897			entry->use_fid, entry->fid);
2898	}
2899}
2900
2901#define PHY_LINK_SUPPORT		\
2902	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2903	PHY_AUTO_NEG_SYM_PAUSE |	\
2904	PHY_AUTO_NEG_100BT4 |		\
2905	PHY_AUTO_NEG_100BTX_FD |	\
2906	PHY_AUTO_NEG_100BTX |		\
2907	PHY_AUTO_NEG_10BT_FD |		\
2908	PHY_AUTO_NEG_10BT)
2909
2910static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911{
2912	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913}
2914
2915static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916{
2917	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918}
2919
2920static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921{
2922	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923}
2924
2925static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926{
2927	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928}
2929
2930static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931{
2932	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933}
2934
2935static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936{
2937	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938}
2939
2940static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941{
2942	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943}
2944
2945static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946{
2947	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948}
2949
2950static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951{
2952	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953}
2954
2955static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956{
2957	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958}
2959
2960static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961{
2962	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963}
2964
2965static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966{
2967	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968}
2969
2970/**
2971 * hw_r_phy - read data from PHY register
2972 * @hw: 	The hardware instance.
2973 * @port:	Port to read.
2974 * @reg:	PHY register to read.
2975 * @val:	Buffer to store the read data.
2976 *
2977 * This routine reads data from the PHY register.
2978 */
2979static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980{
2981	int phy;
2982
2983	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984	*val = readw(hw->io + phy);
2985}
2986
2987/**
2988 * port_w_phy - write data to PHY register
2989 * @hw: 	The hardware instance.
2990 * @port:	Port to write.
2991 * @reg:	PHY register to write.
2992 * @val:	Word data to write.
2993 *
2994 * This routine writes data to the PHY register.
2995 */
2996static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997{
2998	int phy;
2999
3000	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001	writew(val, hw->io + phy);
3002}
3003
3004/*
3005 * EEPROM access functions
3006 */
3007
3008#define AT93C_CODE			0
3009#define AT93C_WR_OFF			0x00
3010#define AT93C_WR_ALL			0x10
3011#define AT93C_ER_ALL			0x20
3012#define AT93C_WR_ON			0x30
3013
3014#define AT93C_WRITE			1
3015#define AT93C_READ			2
3016#define AT93C_ERASE			3
3017
3018#define EEPROM_DELAY			4
3019
3020static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021{
3022	u16 data;
3023
3024	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025	data &= ~gpio;
3026	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027}
3028
3029static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030{
3031	u16 data;
3032
3033	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034	data |= gpio;
3035	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036}
3037
3038static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039{
3040	u16 data;
3041
3042	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043	return (u8)(data & gpio);
3044}
3045
3046static void eeprom_clk(struct ksz_hw *hw)
3047{
3048	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049	udelay(EEPROM_DELAY);
3050	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051	udelay(EEPROM_DELAY);
3052}
3053
3054static u16 spi_r(struct ksz_hw *hw)
3055{
3056	int i;
3057	u16 temp = 0;
3058
3059	for (i = 15; i >= 0; i--) {
3060		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061		udelay(EEPROM_DELAY);
3062
3063		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064
3065		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066		udelay(EEPROM_DELAY);
3067	}
3068	return temp;
3069}
3070
3071static void spi_w(struct ksz_hw *hw, u16 data)
3072{
3073	int i;
3074
3075	for (i = 15; i >= 0; i--) {
3076		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077			drop_gpio(hw, EEPROM_DATA_OUT);
3078		eeprom_clk(hw);
3079	}
3080}
3081
3082static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083{
3084	int i;
3085
3086	/* Initial start bit */
3087	raise_gpio(hw, EEPROM_DATA_OUT);
3088	eeprom_clk(hw);
3089
3090	/* AT93C operation */
3091	for (i = 1; i >= 0; i--) {
3092		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093			drop_gpio(hw, EEPROM_DATA_OUT);
3094		eeprom_clk(hw);
3095	}
3096
3097	/* Address location */
3098	for (i = 5; i >= 0; i--) {
3099		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100			drop_gpio(hw, EEPROM_DATA_OUT);
3101		eeprom_clk(hw);
3102	}
3103}
3104
3105#define EEPROM_DATA_RESERVED		0
3106#define EEPROM_DATA_MAC_ADDR_0		1
3107#define EEPROM_DATA_MAC_ADDR_1		2
3108#define EEPROM_DATA_MAC_ADDR_2		3
3109#define EEPROM_DATA_SUBSYS_ID		4
3110#define EEPROM_DATA_SUBSYS_VEN_ID	5
3111#define EEPROM_DATA_PM_CAP		6
3112
3113/* User defined EEPROM data */
3114#define EEPROM_DATA_OTHER_MAC_ADDR	9
3115
3116/**
3117 * eeprom_read - read from AT93C46 EEPROM
3118 * @hw: 	The hardware instance.
3119 * @reg:	The register offset.
3120 *
3121 * This function reads a word from the AT93C46 EEPROM.
3122 *
3123 * Return the data value.
3124 */
3125static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126{
3127	u16 data;
3128
3129	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130
3131	spi_reg(hw, AT93C_READ, reg);
3132	data = spi_r(hw);
3133
3134	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135
3136	return data;
3137}
3138
3139/**
3140 * eeprom_write - write to AT93C46 EEPROM
3141 * @hw: 	The hardware instance.
3142 * @reg:	The register offset.
3143 * @data:	The data value.
3144 *
3145 * This procedure writes a word to the AT93C46 EEPROM.
3146 */
3147static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148{
3149	int timeout;
3150
3151	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152
3153	/* Enable write. */
3154	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Erase the register. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	spi_reg(hw, AT93C_ERASE, reg);
3161	drop_gpio(hw, EEPROM_CHIP_SELECT);
3162	udelay(1);
3163
3164	/* Check operation complete. */
3165	raise_gpio(hw, EEPROM_CHIP_SELECT);
3166	timeout = 8;
3167	mdelay(2);
3168	do {
3169		mdelay(1);
3170	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171	drop_gpio(hw, EEPROM_CHIP_SELECT);
3172	udelay(1);
3173
3174	/* Write the register. */
3175	raise_gpio(hw, EEPROM_CHIP_SELECT);
3176	spi_reg(hw, AT93C_WRITE, reg);
3177	spi_w(hw, data);
3178	drop_gpio(hw, EEPROM_CHIP_SELECT);
3179	udelay(1);
3180
3181	/* Check operation complete. */
3182	raise_gpio(hw, EEPROM_CHIP_SELECT);
3183	timeout = 8;
3184	mdelay(2);
3185	do {
3186		mdelay(1);
3187	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188	drop_gpio(hw, EEPROM_CHIP_SELECT);
3189	udelay(1);
3190
3191	/* Disable write. */
3192	raise_gpio(hw, EEPROM_CHIP_SELECT);
3193	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194
3195	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196}
3197
3198/*
3199 * Link detection routines
3200 */
3201
3202static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203{
3204	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205	switch (port->flow_ctrl) {
3206	case PHY_FLOW_CTRL:
3207		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208		break;
3209	/* Not supported. */
3210	case PHY_TX_ONLY:
3211	case PHY_RX_ONLY:
3212	default:
3213		break;
3214	}
3215	return ctrl;
3216}
3217
3218static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219{
3220	u32 rx_cfg;
3221	u32 tx_cfg;
3222
3223	rx_cfg = hw->rx_cfg;
3224	tx_cfg = hw->tx_cfg;
3225	if (rx)
3226		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227	else
3228		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229	if (tx)
3230		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231	else
3232		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233	if (hw->enabled) {
3234		if (rx_cfg != hw->rx_cfg)
3235			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236		if (tx_cfg != hw->tx_cfg)
3237			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238	}
3239}
3240
3241static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242	u16 local, u16 remote)
3243{
3244	int rx;
3245	int tx;
3246
3247	if (hw->overrides & PAUSE_FLOW_CTRL)
3248		return;
3249
3250	rx = tx = 0;
3251	if (port->force_link)
3252		rx = tx = 1;
3253	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255			rx = tx = 1;
3256		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257				(local & PHY_AUTO_NEG_PAUSE) ==
3258				PHY_AUTO_NEG_ASYM_PAUSE) {
3259			tx = 1;
3260		}
3261	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3263			rx = 1;
3264	}
3265	if (!hw->ksz_switch)
3266		set_flow_ctrl(hw, rx, tx);
3267}
3268
3269static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270	struct ksz_port_info *info, u16 link_status)
3271{
3272	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3274		u32 cfg = hw->tx_cfg;
3275
3276		/* Disable flow control in the half duplex mode. */
3277		if (1 == info->duplex)
3278			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279		if (hw->enabled && cfg != hw->tx_cfg)
3280			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281	}
3282}
3283
3284/**
3285 * port_get_link_speed - get current link status
3286 * @port: 	The port instance.
3287 *
3288 * This routine reads PHY registers to determine the current link status of the
3289 * switch ports.
3290 */
3291static void port_get_link_speed(struct ksz_port *port)
3292{
3293	uint interrupt;
3294	struct ksz_port_info *info;
3295	struct ksz_port_info *linked = NULL;
3296	struct ksz_hw *hw = port->hw;
3297	u16 data;
3298	u16 status;
3299	u8 local;
3300	u8 remote;
3301	int i;
3302	int p;
3303	int change = 0;
3304
3305	interrupt = hw_block_intr(hw);
3306
3307	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308		info = &hw->port_info[p];
3309		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311
3312		/*
3313		 * Link status is changing all the time even when there is no
3314		 * cable connection!
3315		 */
3316		remote = status & (PORT_AUTO_NEG_COMPLETE |
3317			PORT_STATUS_LINK_GOOD);
3318		local = (u8) data;
3319
3320		/* No change to status. */
3321		if (local == info->advertised && remote == info->partner)
3322			continue;
3323
3324		info->advertised = local;
3325		info->partner = remote;
3326		if (status & PORT_STATUS_LINK_GOOD) {
3327
3328			/* Remember the first linked port. */
3329			if (!linked)
3330				linked = info;
3331
3332			info->tx_rate = 10 * TX_RATE_UNIT;
3333			if (status & PORT_STATUS_SPEED_100MBIT)
3334				info->tx_rate = 100 * TX_RATE_UNIT;
3335
3336			info->duplex = 1;
3337			if (status & PORT_STATUS_FULL_DUPLEX)
3338				info->duplex = 2;
3339
3340			if (media_connected != info->state) {
3341				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342					&data);
3343				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344					&status);
3345				determine_flow_ctrl(hw, port, data, status);
3346				if (hw->ksz_switch) {
3347					port_cfg_back_pressure(hw, p,
3348						(1 == info->duplex));
3349				}
3350				change |= 1 << i;
3351				port_cfg_change(hw, port, info, status);
3352			}
3353			info->state = media_connected;
3354		} else {
3355			if (media_disconnected != info->state) {
3356				change |= 1 << i;
3357
3358				/* Indicate the link just goes down. */
3359				hw->port_mib[p].link_down = 1;
3360			}
3361			info->state = media_disconnected;
3362		}
3363		hw->port_mib[p].state = (u8) info->state;
3364	}
3365
3366	if (linked && media_disconnected == port->linked->state)
3367		port->linked = linked;
3368
3369	hw_restore_intr(hw, interrupt);
3370}
3371
3372#define PHY_RESET_TIMEOUT		10
3373
3374/**
3375 * port_set_link_speed - set port speed
3376 * @port: 	The port instance.
3377 *
3378 * This routine sets the link speed of the switch ports.
3379 */
3380static void port_set_link_speed(struct ksz_port *port)
3381{
3382	struct ksz_port_info *info;
3383	struct ksz_hw *hw = port->hw;
3384	u16 data;
3385	u16 cfg;
3386	u8 status;
3387	int i;
3388	int p;
3389
3390	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391		info = &hw->port_info[p];
3392
3393		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395
3396		cfg = 0;
3397		if (status & PORT_STATUS_LINK_GOOD)
3398			cfg = data;
3399
3400		data |= PORT_AUTO_NEG_ENABLE;
3401		data = advertised_flow_ctrl(port, data);
3402
3403		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405
3406		/* Check if manual configuration is specified by the user. */
3407		if (port->speed || port->duplex) {
3408			if (10 == port->speed)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_100BTX);
3411			else if (100 == port->speed)
3412				data &= ~(PORT_AUTO_NEG_10BT_FD |
3413					PORT_AUTO_NEG_10BT);
3414			if (1 == port->duplex)
3415				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416					PORT_AUTO_NEG_10BT_FD);
3417			else if (2 == port->duplex)
3418				data &= ~(PORT_AUTO_NEG_100BTX |
3419					PORT_AUTO_NEG_10BT);
3420		}
3421		if (data != cfg) {
3422			data |= PORT_AUTO_NEG_RESTART;
3423			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424		}
3425	}
3426}
3427
3428/**
3429 * port_force_link_speed - force port speed
3430 * @port: 	The port instance.
3431 *
3432 * This routine forces the link speed of the switch ports.
3433 */
3434static void port_force_link_speed(struct ksz_port *port)
3435{
3436	struct ksz_hw *hw = port->hw;
3437	u16 data;
3438	int i;
3439	int phy;
3440	int p;
3441
3442	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444		hw_r_phy_ctrl(hw, phy, &data);
3445
3446		data &= ~PHY_AUTO_NEG_ENABLE;
3447
3448		if (10 == port->speed)
3449			data &= ~PHY_SPEED_100MBIT;
3450		else if (100 == port->speed)
3451			data |= PHY_SPEED_100MBIT;
3452		if (1 == port->duplex)
3453			data &= ~PHY_FULL_DUPLEX;
3454		else if (2 == port->duplex)
3455			data |= PHY_FULL_DUPLEX;
3456		hw_w_phy_ctrl(hw, phy, data);
3457	}
3458}
3459
3460static void port_set_power_saving(struct ksz_port *port, int enable)
3461{
3462	struct ksz_hw *hw = port->hw;
3463	int i;
3464	int p;
3465
3466	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467		port_cfg(hw, p,
3468			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469}
3470
3471/*
3472 * KSZ8841 power management functions
3473 */
3474
3475/**
3476 * hw_chk_wol_pme_status - check PMEN pin
3477 * @hw: 	The hardware instance.
3478 *
3479 * This function is used to check PMEN pin is asserted.
3480 *
3481 * Return 1 if PMEN pin is asserted; otherwise, 0.
3482 */
3483static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484{
3485	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486	struct pci_dev *pdev = hw_priv->pdev;
3487	u16 data;
3488
3489	if (!pdev->pm_cap)
3490		return 0;
3491	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493}
3494
3495/**
3496 * hw_clr_wol_pme_status - clear PMEN pin
3497 * @hw: 	The hardware instance.
3498 *
3499 * This routine is used to clear PME_Status to deassert PMEN pin.
3500 */
3501static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502{
3503	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504	struct pci_dev *pdev = hw_priv->pdev;
3505	u16 data;
3506
3507	if (!pdev->pm_cap)
3508		return;
3509
3510	/* Clear PME_Status to deassert PMEN pin. */
3511	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512	data |= PCI_PM_CTRL_PME_STATUS;
3513	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514}
3515
3516/**
3517 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518 * @hw: 	The hardware instance.
3519 * @set:	The flag indicating whether to enable or disable.
3520 *
3521 * This routine is used to enable or disable Wake-on-LAN.
3522 */
3523static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524{
3525	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526	struct pci_dev *pdev = hw_priv->pdev;
3527	u16 data;
3528
3529	if (!pdev->pm_cap)
3530		return;
3531	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532	data &= ~PCI_PM_CTRL_STATE_MASK;
3533	if (set)
3534		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535	else
3536		data &= ~PCI_PM_CTRL_PME_ENABLE;
3537	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538}
3539
3540/**
3541 * hw_cfg_wol - configure Wake-on-LAN features
3542 * @hw: 	The hardware instance.
3543 * @frame:	The pattern frame bit.
3544 * @set:	The flag indicating whether to enable or disable.
3545 *
3546 * This routine is used to enable or disable certain Wake-on-LAN features.
3547 */
3548static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549{
3550	u16 data;
3551
3552	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553	if (set)
3554		data |= frame;
3555	else
3556		data &= ~frame;
3557	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558}
3559
3560/**
3561 * hw_set_wol_frame - program Wake-on-LAN pattern
3562 * @hw: 	The hardware instance.
3563 * @i:		The frame index.
3564 * @mask_size:	The size of the mask.
3565 * @mask:	Mask to ignore certain bytes in the pattern.
3566 * @frame_size:	The size of the frame.
3567 * @pattern:	The frame data.
3568 *
3569 * This routine is used to program Wake-on-LAN pattern.
3570 */
3571static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572	const u8 *mask, uint frame_size, const u8 *pattern)
3573{
3574	int bits;
3575	int from;
3576	int len;
3577	int to;
3578	u32 crc;
3579	u8 data[64];
3580	u8 val = 0;
3581
3582	if (frame_size > mask_size * 8)
3583		frame_size = mask_size * 8;
3584	if (frame_size > 64)
3585		frame_size = 64;
3586
3587	i *= 0x10;
3588	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590
3591	bits = len = from = to = 0;
3592	do {
3593		if (bits) {
3594			if ((val & 1))
3595				data[to++] = pattern[from];
3596			val >>= 1;
3597			++from;
3598			--bits;
3599		} else {
3600			val = mask[len];
3601			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602				+ len);
3603			++len;
3604			if (val)
3605				bits = 8;
3606			else
3607				from += 8;
3608		}
3609	} while (from < (int) frame_size);
3610	if (val) {
3611		bits = mask[len - 1];
3612		val <<= (from % 8);
3613		bits &= ~val;
3614		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615			1);
3616	}
3617	crc = ether_crc(to, data);
3618	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619}
3620
3621/**
3622 * hw_add_wol_arp - add ARP pattern
3623 * @hw: 	The hardware instance.
3624 * @ip_addr:	The IPv4 address assigned to the device.
3625 *
3626 * This routine is used to add ARP pattern for waking up the host.
3627 */
3628static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629{
3630	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631	u8 pattern[42] = {
3632		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634		0x08, 0x06,
3635		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637		0x00, 0x00, 0x00, 0x00,
3638		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639		0x00, 0x00, 0x00, 0x00 };
3640
3641	memcpy(&pattern[38], ip_addr, 4);
3642	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643}
3644
3645/**
3646 * hw_add_wol_bcast - add broadcast pattern
3647 * @hw: 	The hardware instance.
3648 *
3649 * This routine is used to add broadcast pattern for waking up the host.
3650 */
3651static void hw_add_wol_bcast(struct ksz_hw *hw)
3652{
3653	static const u8 mask[] = { 0x3F };
3654	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655
3656	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657}
3658
3659/**
3660 * hw_add_wol_mcast - add multicast pattern
3661 * @hw: 	The hardware instance.
3662 *
3663 * This routine is used to add multicast pattern for waking up the host.
3664 *
3665 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666 * by IPv6 ping command.  Note that multicast packets are filtred through the
3667 * multicast hash table, so not all multicast packets can wake up the host.
3668 */
3669static void hw_add_wol_mcast(struct ksz_hw *hw)
3670{
3671	static const u8 mask[] = { 0x3F };
3672	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673
3674	memcpy(&pattern[3], &hw->override_addr[3], 3);
3675	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676}
3677
3678/**
3679 * hw_add_wol_ucast - add unicast pattern
3680 * @hw: 	The hardware instance.
3681 *
3682 * This routine is used to add unicast pattern to wakeup the host.
3683 *
3684 * It is assumed the unicast packet is directed to the device, as the hardware
3685 * can only receive them in normal case.
3686 */
3687static void hw_add_wol_ucast(struct ksz_hw *hw)
3688{
3689	static const u8 mask[] = { 0x3F };
3690
3691	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692}
3693
3694/**
3695 * hw_enable_wol - enable Wake-on-LAN
3696 * @hw: 	The hardware instance.
3697 * @wol_enable:	The Wake-on-LAN settings.
3698 * @net_addr:	The IPv4 address assigned to the device.
3699 *
3700 * This routine is used to enable Wake-on-LAN depending on driver settings.
3701 */
3702static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703{
3704	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706	hw_add_wol_ucast(hw);
3707	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708	hw_add_wol_mcast(hw);
3709	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711	hw_add_wol_arp(hw, net_addr);
3712}
3713
3714/**
3715 * hw_init - check driver is correct for the hardware
3716 * @hw: 	The hardware instance.
3717 *
3718 * This function checks the hardware is correct for this driver and sets the
3719 * hardware up for proper initialization.
3720 *
3721 * Return number of ports or 0 if not right.
3722 */
3723static int hw_init(struct ksz_hw *hw)
3724{
3725	int rc = 0;
3726	u16 data;
3727	u16 revision;
3728
3729	/* Set bus speed to 125MHz. */
3730	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731
3732	/* Check KSZ884x chip ID. */
3733	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734
3735	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736	data &= KS884X_CHIP_ID_MASK_41;
3737	if (REG_CHIP_ID_41 == data)
3738		rc = 1;
3739	else if (REG_CHIP_ID_42 == data)
3740		rc = 2;
3741	else
3742		return 0;
3743
3744	/* Setup hardware features or bug workarounds. */
3745	if (revision <= 1) {
3746		hw->features |= SMALL_PACKET_TX_BUG;
3747		if (1 == rc)
3748			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749	}
3750	return rc;
3751}
3752
3753/**
3754 * hw_reset - reset the hardware
3755 * @hw: 	The hardware instance.
3756 *
3757 * This routine resets the hardware.
3758 */
3759static void hw_reset(struct ksz_hw *hw)
3760{
3761	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762
3763	/* Wait for device to reset. */
3764	mdelay(10);
3765
3766	/* Write 0 to clear device reset. */
3767	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768}
3769
3770/**
3771 * hw_setup - setup the hardware
3772 * @hw: 	The hardware instance.
3773 *
3774 * This routine setup the hardware for proper operation.
3775 */
3776static void hw_setup(struct ksz_hw *hw)
3777{
3778#if SET_DEFAULT_LED
3779	u16 data;
3780
3781	/* Change default LED mode. */
3782	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783	data &= ~LED_MODE;
3784	data |= SET_DEFAULT_LED;
3785	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786#endif
3787
3788	/* Setup transmit control. */
3789	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791
3792	/* Setup receive control. */
3793	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796
3797	/* Hardware cannot handle UDP packet in IP fragments. */
3798	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799
3800	if (hw->all_multi)
3801		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802	if (hw->promiscuous)
3803		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804}
3805
3806/**
3807 * hw_setup_intr - setup interrupt mask
3808 * @hw: 	The hardware instance.
3809 *
3810 * This routine setup the interrupt mask for proper operation.
3811 */
3812static void hw_setup_intr(struct ksz_hw *hw)
3813{
3814	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815}
3816
3817static void ksz_check_desc_num(struct ksz_desc_info *info)
3818{
3819#define MIN_DESC_SHIFT  2
3820
3821	int alloc = info->alloc;
3822	int shift;
3823
3824	shift = 0;
3825	while (!(alloc & 1)) {
3826		shift++;
3827		alloc >>= 1;
3828	}
3829	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830		pr_alert("Hardware descriptor numbers not right!\n");
3831		while (alloc) {
3832			shift++;
3833			alloc >>= 1;
3834		}
3835		if (shift < MIN_DESC_SHIFT)
3836			shift = MIN_DESC_SHIFT;
3837		alloc = 1 << shift;
3838		info->alloc = alloc;
3839	}
3840	info->mask = info->alloc - 1;
3841}
3842
3843static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844{
3845	int i;
3846	u32 phys = desc_info->ring_phys;
3847	struct ksz_hw_desc *desc = desc_info->ring_virt;
3848	struct ksz_desc *cur = desc_info->ring;
3849	struct ksz_desc *previous = NULL;
3850
3851	for (i = 0; i < desc_info->alloc; i++) {
3852		cur->phw = desc++;
3853		phys += desc_info->size;
3854		previous = cur++;
3855		previous->phw->next = cpu_to_le32(phys);
3856	}
3857	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858	previous->sw.buf.rx.end_of_ring = 1;
3859	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860
3861	desc_info->avail = desc_info->alloc;
3862	desc_info->last = desc_info->next = 0;
3863
3864	desc_info->cur = desc_info->ring;
3865}
3866
3867/**
3868 * hw_set_desc_base - set descriptor base addresses
3869 * @hw: 	The hardware instance.
3870 * @tx_addr:	The transmit descriptor base.
3871 * @rx_addr:	The receive descriptor base.
3872 *
3873 * This routine programs the descriptor base addresses after reset.
3874 */
3875static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876{
3877	/* Set base address of Tx/Rx descriptors. */
3878	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880}
3881
3882static void hw_reset_pkts(struct ksz_desc_info *info)
3883{
3884	info->cur = info->ring;
3885	info->avail = info->alloc;
3886	info->last = info->next = 0;
3887}
3888
3889static inline void hw_resume_rx(struct ksz_hw *hw)
3890{
3891	writel(DMA_START, hw->io + KS_DMA_RX_START);
3892}
3893
3894/**
3895 * hw_start_rx - start receiving
3896 * @hw: 	The hardware instance.
3897 *
3898 * This routine starts the receive function of the hardware.
3899 */
3900static void hw_start_rx(struct ksz_hw *hw)
3901{
3902	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903
3904	/* Notify when the receive stops. */
3905	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906
3907	writel(DMA_START, hw->io + KS_DMA_RX_START);
3908	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909	hw->rx_stop++;
3910
3911	/* Variable overflows. */
3912	if (0 == hw->rx_stop)
3913		hw->rx_stop = 2;
3914}
3915
3916/*
3917 * hw_stop_rx - stop receiving
3918 * @hw: 	The hardware instance.
3919 *
3920 * This routine stops the receive function of the hardware.
3921 */
3922static void hw_stop_rx(struct ksz_hw *hw)
3923{
3924	hw->rx_stop = 0;
3925	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927}
3928
3929/**
3930 * hw_start_tx - start transmitting
3931 * @hw: 	The hardware instance.
3932 *
3933 * This routine starts the transmit function of the hardware.
3934 */
3935static void hw_start_tx(struct ksz_hw *hw)
3936{
3937	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938}
3939
3940/**
3941 * hw_stop_tx - stop transmitting
3942 * @hw: 	The hardware instance.
3943 *
3944 * This routine stops the transmit function of the hardware.
3945 */
3946static void hw_stop_tx(struct ksz_hw *hw)
3947{
3948	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949}
3950
3951/**
3952 * hw_disable - disable hardware
3953 * @hw: 	The hardware instance.
3954 *
3955 * This routine disables the hardware.
3956 */
3957static void hw_disable(struct ksz_hw *hw)
3958{
3959	hw_stop_rx(hw);
3960	hw_stop_tx(hw);
3961	hw->enabled = 0;
3962}
3963
3964/**
3965 * hw_enable - enable hardware
3966 * @hw: 	The hardware instance.
3967 *
3968 * This routine enables the hardware.
3969 */
3970static void hw_enable(struct ksz_hw *hw)
3971{
3972	hw_start_tx(hw);
3973	hw_start_rx(hw);
3974	hw->enabled = 1;
3975}
3976
3977/**
3978 * hw_alloc_pkt - allocate enough descriptors for transmission
3979 * @hw: 	The hardware instance.
3980 * @length:	The length of the packet.
3981 * @physical:	Number of descriptors required.
3982 *
3983 * This function allocates descriptors for transmission.
3984 *
3985 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986 */
3987static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988{
3989	/* Always leave one descriptor free. */
3990	if (hw->tx_desc_info.avail <= 1)
3991		return 0;
3992
3993	/* Allocate a descriptor for transmission and mark it current. */
3994	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996
3997	/* Keep track of number of transmit descriptors used so far. */
3998	++hw->tx_int_cnt;
3999	hw->tx_size += length;
4000
4001	/* Cannot hold on too much data. */
4002	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003		hw->tx_int_cnt = hw->tx_int_mask + 1;
4004
4005	if (physical > hw->tx_desc_info.avail)
4006		return 1;
4007
4008	return hw->tx_desc_info.avail;
4009}
4010
4011/**
4012 * hw_send_pkt - mark packet for transmission
4013 * @hw: 	The hardware instance.
4014 *
4015 * This routine marks the packet for transmission in PCI version.
4016 */
4017static void hw_send_pkt(struct ksz_hw *hw)
4018{
4019	struct ksz_desc *cur = hw->tx_desc_info.cur;
4020
4021	cur->sw.buf.tx.last_seg = 1;
4022
4023	/* Interrupt only after specified number of descriptors used. */
4024	if (hw->tx_int_cnt > hw->tx_int_mask) {
4025		cur->sw.buf.tx.intr = 1;
4026		hw->tx_int_cnt = 0;
4027		hw->tx_size = 0;
4028	}
4029
4030	/* KSZ8842 supports port directed transmission. */
4031	cur->sw.buf.tx.dest_port = hw->dst_ports;
4032
4033	release_desc(cur);
4034
4035	writel(0, hw->io + KS_DMA_TX_START);
4036}
4037
4038static int empty_addr(u8 *addr)
4039{
4040	u32 *addr1 = (u32 *) addr;
4041	u16 *addr2 = (u16 *) &addr[4];
4042
4043	return 0 == *addr1 && 0 == *addr2;
4044}
4045
4046/**
4047 * hw_set_addr - set MAC address
4048 * @hw: 	The hardware instance.
4049 *
4050 * This routine programs the MAC address of the hardware when the address is
4051 * overrided.
4052 */
4053static void hw_set_addr(struct ksz_hw *hw)
4054{
4055	int i;
4056
4057	for (i = 0; i < ETH_ALEN; i++)
4058		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059			hw->io + KS884X_ADDR_0_OFFSET + i);
4060
4061	sw_set_addr(hw, hw->override_addr);
4062}
4063
4064/**
4065 * hw_read_addr - read MAC address
4066 * @hw: 	The hardware instance.
4067 *
4068 * This routine retrieves the MAC address of the hardware.
4069 */
4070static void hw_read_addr(struct ksz_hw *hw)
4071{
4072	int i;
4073
4074	for (i = 0; i < ETH_ALEN; i++)
4075		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076			KS884X_ADDR_0_OFFSET + i);
4077
4078	if (!hw->mac_override) {
4079		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080		if (empty_addr(hw->override_addr)) {
4081			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083			       ETH_ALEN);
4084			hw->override_addr[5] += hw->id;
4085			hw_set_addr(hw);
4086		}
4087	}
4088}
4089
4090static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091{
4092	int i;
4093	u32 mac_addr_lo;
4094	u32 mac_addr_hi;
4095
4096	mac_addr_hi = 0;
4097	for (i = 0; i < 2; i++) {
4098		mac_addr_hi <<= 8;
4099		mac_addr_hi |= mac_addr[i];
4100	}
4101	mac_addr_hi |= ADD_ADDR_ENABLE;
4102	mac_addr_lo = 0;
4103	for (i = 2; i < 6; i++) {
4104		mac_addr_lo <<= 8;
4105		mac_addr_lo |= mac_addr[i];
4106	}
4107	index *= ADD_ADDR_INCR;
4108
4109	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111}
4112
4113static void hw_set_add_addr(struct ksz_hw *hw)
4114{
4115	int i;
4116
4117	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118		if (empty_addr(hw->address[i]))
4119			writel(0, hw->io + ADD_ADDR_INCR * i +
4120				KS_ADD_ADDR_0_HI);
4121		else
4122			hw_ena_add_addr(hw, i, hw->address[i]);
4123	}
4124}
4125
4126static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127{
4128	int i;
4129	int j = ADDITIONAL_ENTRIES;
4130
4131	if (!memcmp(hw->override_addr, mac_addr, ETH_ALEN))
4132		return 0;
4133	for (i = 0; i < hw->addr_list_size; i++) {
4134		if (!memcmp(hw->address[i], mac_addr, ETH_ALEN))
4135			return 0;
4136		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137			j = i;
4138	}
4139	if (j < ADDITIONAL_ENTRIES) {
4140		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141		hw_ena_add_addr(hw, j, hw->address[j]);
4142		return 0;
4143	}
4144	return -1;
4145}
4146
4147static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148{
4149	int i;
4150
4151	for (i = 0; i < hw->addr_list_size; i++) {
4152		if (!memcmp(hw->address[i], mac_addr, ETH_ALEN)) {
4153			memset(hw->address[i], 0, ETH_ALEN);
4154			writel(0, hw->io + ADD_ADDR_INCR * i +
4155				KS_ADD_ADDR_0_HI);
4156			return 0;
4157		}
4158	}
4159	return -1;
4160}
4161
4162/**
4163 * hw_clr_multicast - clear multicast addresses
4164 * @hw: 	The hardware instance.
4165 *
4166 * This routine removes all multicast addresses set in the hardware.
4167 */
4168static void hw_clr_multicast(struct ksz_hw *hw)
4169{
4170	int i;
4171
4172	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173		hw->multi_bits[i] = 0;
4174
4175		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176	}
4177}
4178
4179/**
4180 * hw_set_grp_addr - set multicast addresses
4181 * @hw: 	The hardware instance.
4182 *
4183 * This routine programs multicast addresses for the hardware to accept those
4184 * addresses.
4185 */
4186static void hw_set_grp_addr(struct ksz_hw *hw)
4187{
4188	int i;
4189	int index;
4190	int position;
4191	int value;
4192
4193	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194
4195	for (i = 0; i < hw->multi_list_size; i++) {
4196		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197		index = position >> 3;
4198		value = 1 << (position & 7);
4199		hw->multi_bits[index] |= (u8) value;
4200	}
4201
4202	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204			i);
4205}
4206
4207/**
4208 * hw_set_multicast - enable or disable all multicast receiving
4209 * @hw: 	The hardware instance.
4210 * @multicast:	To turn on or off the all multicast feature.
4211 *
4212 * This routine enables/disables the hardware to accept all multicast packets.
4213 */
4214static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215{
4216	/* Stop receiving for reconfiguration. */
4217	hw_stop_rx(hw);
4218
4219	if (multicast)
4220		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221	else
4222		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223
4224	if (hw->enabled)
4225		hw_start_rx(hw);
4226}
4227
4228/**
4229 * hw_set_promiscuous - enable or disable promiscuous receiving
4230 * @hw: 	The hardware instance.
4231 * @prom:	To turn on or off the promiscuous feature.
4232 *
4233 * This routine enables/disables the hardware to accept all packets.
4234 */
4235static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236{
4237	/* Stop receiving for reconfiguration. */
4238	hw_stop_rx(hw);
4239
4240	if (prom)
4241		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242	else
4243		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244
4245	if (hw->enabled)
4246		hw_start_rx(hw);
4247}
4248
4249/**
4250 * sw_enable - enable the switch
4251 * @hw: 	The hardware instance.
4252 * @enable:	The flag to enable or disable the switch
4253 *
4254 * This routine is used to enable/disable the switch in KSZ8842.
4255 */
4256static void sw_enable(struct ksz_hw *hw, int enable)
4257{
4258	int port;
4259
4260	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261		if (hw->dev_count > 1) {
4262			/* Set port-base vlan membership with host port. */
4263			sw_cfg_port_base_vlan(hw, port,
4264				HOST_MASK | (1 << port));
4265			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266		} else {
4267			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269		}
4270	}
4271	if (hw->dev_count > 1)
4272		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273	else
4274		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275
4276	if (enable)
4277		enable = KS8842_START;
4278	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279}
4280
4281/**
4282 * sw_setup - setup the switch
4283 * @hw: 	The hardware instance.
4284 *
4285 * This routine setup the hardware switch engine for default operation.
4286 */
4287static void sw_setup(struct ksz_hw *hw)
4288{
4289	int port;
4290
4291	sw_set_global_ctrl(hw);
4292
4293	/* Enable switch broadcast storm protection at 10% percent rate. */
4294	sw_init_broad_storm(hw);
4295	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296	for (port = 0; port < SWITCH_PORT_NUM; port++)
4297		sw_ena_broad_storm(hw, port);
4298
4299	sw_init_prio(hw);
4300
4301	sw_init_mirror(hw);
4302
4303	sw_init_prio_rate(hw);
4304
4305	sw_init_vlan(hw);
4306
4307	if (hw->features & STP_SUPPORT)
4308		sw_init_stp(hw);
4309	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311		hw->overrides |= PAUSE_FLOW_CTRL;
4312	sw_enable(hw, 1);
4313}
4314
4315/**
4316 * ksz_start_timer - start kernel timer
4317 * @info:	Kernel timer information.
4318 * @time:	The time tick.
4319 *
4320 * This routine starts the kernel timer after the specified time tick.
4321 */
4322static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323{
4324	info->cnt = 0;
4325	info->timer.expires = jiffies + time;
4326	add_timer(&info->timer);
4327
4328	/* infinity */
4329	info->max = -1;
4330}
4331
4332/**
4333 * ksz_stop_timer - stop kernel timer
4334 * @info:	Kernel timer information.
4335 *
4336 * This routine stops the kernel timer.
4337 */
4338static void ksz_stop_timer(struct ksz_timer_info *info)
4339{
4340	if (info->max) {
4341		info->max = 0;
4342		del_timer_sync(&info->timer);
4343	}
4344}
4345
4346static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347	void (*function)(unsigned long), void *data)
4348{
4349	info->max = 0;
4350	info->period = period;
4351	init_timer(&info->timer);
4352	info->timer.function = function;
4353	info->timer.data = (unsigned long) data;
4354}
4355
4356static void ksz_update_timer(struct ksz_timer_info *info)
4357{
4358	++info->cnt;
4359	if (info->max > 0) {
4360		if (info->cnt < info->max) {
4361			info->timer.expires = jiffies + info->period;
4362			add_timer(&info->timer);
4363		} else
4364			info->max = 0;
4365	} else if (info->max < 0) {
4366		info->timer.expires = jiffies + info->period;
4367		add_timer(&info->timer);
4368	}
4369}
4370
4371/**
4372 * ksz_alloc_soft_desc - allocate software descriptors
4373 * @desc_info:	Descriptor information structure.
4374 * @transmit:	Indication that descriptors are for transmit.
4375 *
4376 * This local function allocates software descriptors for manipulation in
4377 * memory.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382{
4383	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384				  GFP_KERNEL);
4385	if (!desc_info->ring)
4386		return 1;
4387	hw_init_desc(desc_info, transmit);
4388	return 0;
4389}
4390
4391/**
4392 * ksz_alloc_desc - allocate hardware descriptors
4393 * @adapter:	Adapter information structure.
4394 *
4395 * This local function allocates hardware descriptors for receiving and
4396 * transmitting.
4397 *
4398 * Return 0 if successful.
4399 */
4400static int ksz_alloc_desc(struct dev_info *adapter)
4401{
4402	struct ksz_hw *hw = &adapter->hw;
4403	int offset;
4404
4405	/* Allocate memory for RX & TX descriptors. */
4406	adapter->desc_pool.alloc_size =
4407		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409		DESC_ALIGNMENT;
4410
4411	adapter->desc_pool.alloc_virt =
4412		pci_alloc_consistent(
4413			adapter->pdev, adapter->desc_pool.alloc_size,
4414			&adapter->desc_pool.dma_addr);
4415	if (adapter->desc_pool.alloc_virt == NULL) {
4416		adapter->desc_pool.alloc_size = 0;
4417		return 1;
4418	}
4419	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4420
4421	/* Align to the next cache line boundary. */
4422	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4423		(DESC_ALIGNMENT -
4424		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4425	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4426	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4427
4428	/* Allocate receive/transmit descriptors. */
4429	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4430		adapter->desc_pool.virt;
4431	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4432	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4433	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434		(adapter->desc_pool.virt + offset);
4435	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4436
4437	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4438		return 1;
4439	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4440		return 1;
4441
4442	return 0;
4443}
4444
4445/**
4446 * free_dma_buf - release DMA buffer resources
4447 * @adapter:	Adapter information structure.
4448 *
4449 * This routine is just a helper function to release the DMA buffer resources.
4450 */
4451static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4452	int direction)
4453{
4454	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4455	dev_kfree_skb(dma_buf->skb);
4456	dma_buf->skb = NULL;
4457	dma_buf->dma = 0;
4458}
4459
4460/**
4461 * ksz_init_rx_buffers - initialize receive descriptors
4462 * @adapter:	Adapter information structure.
4463 *
4464 * This routine initializes DMA buffers for receiving.
4465 */
4466static void ksz_init_rx_buffers(struct dev_info *adapter)
4467{
4468	int i;
4469	struct ksz_desc *desc;
4470	struct ksz_dma_buf *dma_buf;
4471	struct ksz_hw *hw = &adapter->hw;
4472	struct ksz_desc_info *info = &hw->rx_desc_info;
4473
4474	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4475		get_rx_pkt(info, &desc);
4476
4477		dma_buf = DMA_BUFFER(desc);
4478		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4479			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4480		dma_buf->len = adapter->mtu;
4481		if (!dma_buf->skb)
4482			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4483		if (dma_buf->skb && !dma_buf->dma) {
4484			dma_buf->skb->dev = adapter->dev;
4485			dma_buf->dma = pci_map_single(
4486				adapter->pdev,
4487				skb_tail_pointer(dma_buf->skb),
4488				dma_buf->len,
4489				PCI_DMA_FROMDEVICE);
4490		}
4491
4492		/* Set descriptor. */
4493		set_rx_buf(desc, dma_buf->dma);
4494		set_rx_len(desc, dma_buf->len);
4495		release_desc(desc);
4496	}
4497}
4498
4499/**
4500 * ksz_alloc_mem - allocate memory for hardware descriptors
4501 * @adapter:	Adapter information structure.
4502 *
4503 * This function allocates memory for use by hardware descriptors for receiving
4504 * and transmitting.
4505 *
4506 * Return 0 if successful.
4507 */
4508static int ksz_alloc_mem(struct dev_info *adapter)
4509{
4510	struct ksz_hw *hw = &adapter->hw;
4511
4512	/* Determine the number of receive and transmit descriptors. */
4513	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4514	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4515
4516	/* Determine how many descriptors to skip transmit interrupt. */
4517	hw->tx_int_cnt = 0;
4518	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4519	if (hw->tx_int_mask > 8)
4520		hw->tx_int_mask = 8;
4521	while (hw->tx_int_mask) {
4522		hw->tx_int_cnt++;
4523		hw->tx_int_mask >>= 1;
4524	}
4525	if (hw->tx_int_cnt) {
4526		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4527		hw->tx_int_cnt = 0;
4528	}
4529
4530	/* Determine the descriptor size. */
4531	hw->rx_desc_info.size =
4532		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4533		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4534	hw->tx_desc_info.size =
4535		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4536		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4537	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4538		pr_alert("Hardware descriptor size not right!\n");
4539	ksz_check_desc_num(&hw->rx_desc_info);
4540	ksz_check_desc_num(&hw->tx_desc_info);
4541
4542	/* Allocate descriptors. */
4543	if (ksz_alloc_desc(adapter))
4544		return 1;
4545
4546	return 0;
4547}
4548
4549/**
4550 * ksz_free_desc - free software and hardware descriptors
4551 * @adapter:	Adapter information structure.
4552 *
4553 * This local routine frees the software and hardware descriptors allocated by
4554 * ksz_alloc_desc().
4555 */
4556static void ksz_free_desc(struct dev_info *adapter)
4557{
4558	struct ksz_hw *hw = &adapter->hw;
4559
4560	/* Reset descriptor. */
4561	hw->rx_desc_info.ring_virt = NULL;
4562	hw->tx_desc_info.ring_virt = NULL;
4563	hw->rx_desc_info.ring_phys = 0;
4564	hw->tx_desc_info.ring_phys = 0;
4565
4566	/* Free memory. */
4567	if (adapter->desc_pool.alloc_virt)
4568		pci_free_consistent(
4569			adapter->pdev,
4570			adapter->desc_pool.alloc_size,
4571			adapter->desc_pool.alloc_virt,
4572			adapter->desc_pool.dma_addr);
4573
4574	/* Reset resource pool. */
4575	adapter->desc_pool.alloc_size = 0;
4576	adapter->desc_pool.alloc_virt = NULL;
4577
4578	kfree(hw->rx_desc_info.ring);
4579	hw->rx_desc_info.ring = NULL;
4580	kfree(hw->tx_desc_info.ring);
4581	hw->tx_desc_info.ring = NULL;
4582}
4583
4584/**
4585 * ksz_free_buffers - free buffers used in the descriptors
4586 * @adapter:	Adapter information structure.
4587 * @desc_info:	Descriptor information structure.
4588 *
4589 * This local routine frees buffers used in the DMA buffers.
4590 */
4591static void ksz_free_buffers(struct dev_info *adapter,
4592	struct ksz_desc_info *desc_info, int direction)
4593{
4594	int i;
4595	struct ksz_dma_buf *dma_buf;
4596	struct ksz_desc *desc = desc_info->ring;
4597
4598	for (i = 0; i < desc_info->alloc; i++) {
4599		dma_buf = DMA_BUFFER(desc);
4600		if (dma_buf->skb)
4601			free_dma_buf(adapter, dma_buf, direction);
4602		desc++;
4603	}
4604}
4605
4606/**
4607 * ksz_free_mem - free all resources used by descriptors
4608 * @adapter:	Adapter information structure.
4609 *
4610 * This local routine frees all the resources allocated by ksz_alloc_mem().
4611 */
4612static void ksz_free_mem(struct dev_info *adapter)
4613{
4614	/* Free transmit buffers. */
4615	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4616		PCI_DMA_TODEVICE);
4617
4618	/* Free receive buffers. */
4619	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4620		PCI_DMA_FROMDEVICE);
4621
4622	/* Free descriptors. */
4623	ksz_free_desc(adapter);
4624}
4625
4626static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4627	u64 *counter)
4628{
4629	int i;
4630	int mib;
4631	int port;
4632	struct ksz_port_mib *port_mib;
4633
4634	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4635	for (i = 0, port = first; i < cnt; i++, port++) {
4636		port_mib = &hw->port_mib[port];
4637		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4638			counter[mib] += port_mib->counter[mib];
4639	}
4640}
4641
4642/**
4643 * send_packet - send packet
4644 * @skb:	Socket buffer.
4645 * @dev:	Network device.
4646 *
4647 * This routine is used to send a packet out to the network.
4648 */
4649static void send_packet(struct sk_buff *skb, struct net_device *dev)
4650{
4651	struct ksz_desc *desc;
4652	struct ksz_desc *first;
4653	struct dev_priv *priv = netdev_priv(dev);
4654	struct dev_info *hw_priv = priv->adapter;
4655	struct ksz_hw *hw = &hw_priv->hw;
4656	struct ksz_desc_info *info = &hw->tx_desc_info;
4657	struct ksz_dma_buf *dma_buf;
4658	int len;
4659	int last_frag = skb_shinfo(skb)->nr_frags;
4660
4661	/*
4662	 * KSZ8842 with multiple device interfaces needs to be told which port
4663	 * to send.
4664	 */
4665	if (hw->dev_count > 1)
4666		hw->dst_ports = 1 << priv->port.first_port;
4667
4668	/* Hardware will pad the length to 60. */
4669	len = skb->len;
4670
4671	/* Remember the very first descriptor. */
4672	first = info->cur;
4673	desc = first;
4674
4675	dma_buf = DMA_BUFFER(desc);
4676	if (last_frag) {
4677		int frag;
4678		skb_frag_t *this_frag;
4679
4680		dma_buf->len = skb_headlen(skb);
4681
4682		dma_buf->dma = pci_map_single(
4683			hw_priv->pdev, skb->data, dma_buf->len,
4684			PCI_DMA_TODEVICE);
4685		set_tx_buf(desc, dma_buf->dma);
4686		set_tx_len(desc, dma_buf->len);
4687
4688		frag = 0;
4689		do {
4690			this_frag = &skb_shinfo(skb)->frags[frag];
4691
4692			/* Get a new descriptor. */
4693			get_tx_pkt(info, &desc);
4694
4695			/* Keep track of descriptors used so far. */
4696			++hw->tx_int_cnt;
4697
4698			dma_buf = DMA_BUFFER(desc);
4699			dma_buf->len = skb_frag_size(this_frag);
4700
4701			dma_buf->dma = pci_map_single(
4702				hw_priv->pdev,
4703				skb_frag_address(this_frag),
4704				dma_buf->len,
4705				PCI_DMA_TODEVICE);
4706			set_tx_buf(desc, dma_buf->dma);
4707			set_tx_len(desc, dma_buf->len);
4708
4709			frag++;
4710			if (frag == last_frag)
4711				break;
4712
4713			/* Do not release the last descriptor here. */
4714			release_desc(desc);
4715		} while (1);
4716
4717		/* current points to the last descriptor. */
4718		info->cur = desc;
4719
4720		/* Release the first descriptor. */
4721		release_desc(first);
4722	} else {
4723		dma_buf->len = len;
4724
4725		dma_buf->dma = pci_map_single(
4726			hw_priv->pdev, skb->data, dma_buf->len,
4727			PCI_DMA_TODEVICE);
4728		set_tx_buf(desc, dma_buf->dma);
4729		set_tx_len(desc, dma_buf->len);
4730	}
4731
4732	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4733		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4734		(desc)->sw.buf.tx.csum_gen_udp = 1;
4735	}
4736
4737	/*
4738	 * The last descriptor holds the packet so that it can be returned to
4739	 * network subsystem after all descriptors are transmitted.
4740	 */
4741	dma_buf->skb = skb;
4742
4743	hw_send_pkt(hw);
4744
4745	/* Update transmit statistics. */
4746	dev->stats.tx_packets++;
4747	dev->stats.tx_bytes += len;
4748}
4749
4750/**
4751 * transmit_cleanup - clean up transmit descriptors
4752 * @dev:	Network device.
4753 *
4754 * This routine is called to clean up the transmitted buffers.
4755 */
4756static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4757{
4758	int last;
4759	union desc_stat status;
4760	struct ksz_hw *hw = &hw_priv->hw;
4761	struct ksz_desc_info *info = &hw->tx_desc_info;
4762	struct ksz_desc *desc;
4763	struct ksz_dma_buf *dma_buf;
4764	struct net_device *dev = NULL;
4765
4766	spin_lock(&hw_priv->hwlock);
4767	last = info->last;
4768
4769	while (info->avail < info->alloc) {
4770		/* Get next descriptor which is not hardware owned. */
4771		desc = &info->ring[last];
4772		status.data = le32_to_cpu(desc->phw->ctrl.data);
4773		if (status.tx.hw_owned) {
4774			if (normal)
4775				break;
4776			else
4777				reset_desc(desc, status);
4778		}
4779
4780		dma_buf = DMA_BUFFER(desc);
4781		pci_unmap_single(
4782			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4783			PCI_DMA_TODEVICE);
4784
4785		/* This descriptor contains the last buffer in the packet. */
4786		if (dma_buf->skb) {
4787			dev = dma_buf->skb->dev;
4788
4789			/* Release the packet back to network subsystem. */
4790			dev_kfree_skb_irq(dma_buf->skb);
4791			dma_buf->skb = NULL;
4792		}
4793
4794		/* Free the transmitted descriptor. */
4795		last++;
4796		last &= info->mask;
4797		info->avail++;
4798	}
4799	info->last = last;
4800	spin_unlock(&hw_priv->hwlock);
4801
4802	/* Notify the network subsystem that the packet has been sent. */
4803	if (dev)
4804		dev->trans_start = jiffies;
4805}
4806
4807/**
4808 * transmit_done - transmit done processing
4809 * @dev:	Network device.
4810 *
4811 * This routine is called when the transmit interrupt is triggered, indicating
4812 * either a packet is sent successfully or there are transmit errors.
4813 */
4814static void tx_done(struct dev_info *hw_priv)
4815{
4816	struct ksz_hw *hw = &hw_priv->hw;
4817	int port;
4818
4819	transmit_cleanup(hw_priv, 1);
4820
4821	for (port = 0; port < hw->dev_count; port++) {
4822		struct net_device *dev = hw->port_info[port].pdev;
4823
4824		if (netif_running(dev) && netif_queue_stopped(dev))
4825			netif_wake_queue(dev);
4826	}
4827}
4828
4829static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4830{
4831	skb->dev = old->dev;
4832	skb->protocol = old->protocol;
4833	skb->ip_summed = old->ip_summed;
4834	skb->csum = old->csum;
4835	skb_set_network_header(skb, ETH_HLEN);
4836
4837	dev_kfree_skb(old);
4838}
4839
4840/**
4841 * netdev_tx - send out packet
4842 * @skb:	Socket buffer.
4843 * @dev:	Network device.
4844 *
4845 * This function is used by the upper network layer to send out a packet.
4846 *
4847 * Return 0 if successful; otherwise an error code indicating failure.
4848 */
4849static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4850{
4851	struct dev_priv *priv = netdev_priv(dev);
4852	struct dev_info *hw_priv = priv->adapter;
4853	struct ksz_hw *hw = &hw_priv->hw;
4854	int left;
4855	int num = 1;
4856	int rc = 0;
4857
4858	if (hw->features & SMALL_PACKET_TX_BUG) {
4859		struct sk_buff *org_skb = skb;
4860
4861		if (skb->len <= 48) {
4862			if (skb_end_pointer(skb) - skb->data >= 50) {
4863				memset(&skb->data[skb->len], 0, 50 - skb->len);
4864				skb->len = 50;
4865			} else {
4866				skb = netdev_alloc_skb(dev, 50);
4867				if (!skb)
4868					return NETDEV_TX_BUSY;
4869				memcpy(skb->data, org_skb->data, org_skb->len);
4870				memset(&skb->data[org_skb->len], 0,
4871					50 - org_skb->len);
4872				skb->len = 50;
4873				copy_old_skb(org_skb, skb);
4874			}
4875		}
4876	}
4877
4878	spin_lock_irq(&hw_priv->hwlock);
4879
4880	num = skb_shinfo(skb)->nr_frags + 1;
4881	left = hw_alloc_pkt(hw, skb->len, num);
4882	if (left) {
4883		if (left < num ||
4884				((CHECKSUM_PARTIAL == skb->ip_summed) &&
4885				(ETH_P_IPV6 == htons(skb->protocol)))) {
4886			struct sk_buff *org_skb = skb;
4887
4888			skb = netdev_alloc_skb(dev, org_skb->len);
4889			if (!skb) {
4890				rc = NETDEV_TX_BUSY;
4891				goto unlock;
4892			}
4893			skb_copy_and_csum_dev(org_skb, skb->data);
4894			org_skb->ip_summed = CHECKSUM_NONE;
4895			skb->len = org_skb->len;
4896			copy_old_skb(org_skb, skb);
4897		}
4898		send_packet(skb, dev);
4899		if (left <= num)
4900			netif_stop_queue(dev);
4901	} else {
4902		/* Stop the transmit queue until packet is allocated. */
4903		netif_stop_queue(dev);
4904		rc = NETDEV_TX_BUSY;
4905	}
4906unlock:
4907	spin_unlock_irq(&hw_priv->hwlock);
4908
4909	return rc;
4910}
4911
4912/**
4913 * netdev_tx_timeout - transmit timeout processing
4914 * @dev:	Network device.
4915 *
4916 * This routine is called when the transmit timer expires.  That indicates the
4917 * hardware is not running correctly because transmit interrupts are not
4918 * triggered to free up resources so that the transmit routine can continue
4919 * sending out packets.  The hardware is reset to correct the problem.
4920 */
4921static void netdev_tx_timeout(struct net_device *dev)
4922{
4923	static unsigned long last_reset;
4924
4925	struct dev_priv *priv = netdev_priv(dev);
4926	struct dev_info *hw_priv = priv->adapter;
4927	struct ksz_hw *hw = &hw_priv->hw;
4928	int port;
4929
4930	if (hw->dev_count > 1) {
4931		/*
4932		 * Only reset the hardware if time between calls is long
4933		 * enough.
4934		 */
4935		if (jiffies - last_reset <= dev->watchdog_timeo)
4936			hw_priv = NULL;
4937	}
4938
4939	last_reset = jiffies;
4940	if (hw_priv) {
4941		hw_dis_intr(hw);
4942		hw_disable(hw);
4943
4944		transmit_cleanup(hw_priv, 0);
4945		hw_reset_pkts(&hw->rx_desc_info);
4946		hw_reset_pkts(&hw->tx_desc_info);
4947		ksz_init_rx_buffers(hw_priv);
4948
4949		hw_reset(hw);
4950
4951		hw_set_desc_base(hw,
4952			hw->tx_desc_info.ring_phys,
4953			hw->rx_desc_info.ring_phys);
4954		hw_set_addr(hw);
4955		if (hw->all_multi)
4956			hw_set_multicast(hw, hw->all_multi);
4957		else if (hw->multi_list_size)
4958			hw_set_grp_addr(hw);
4959
4960		if (hw->dev_count > 1) {
4961			hw_set_add_addr(hw);
4962			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4963				struct net_device *port_dev;
4964
4965				port_set_stp_state(hw, port,
4966					STP_STATE_DISABLED);
4967
4968				port_dev = hw->port_info[port].pdev;
4969				if (netif_running(port_dev))
4970					port_set_stp_state(hw, port,
4971						STP_STATE_SIMPLE);
4972			}
4973		}
4974
4975		hw_enable(hw);
4976		hw_ena_intr(hw);
4977	}
4978
4979	dev->trans_start = jiffies;
4980	netif_wake_queue(dev);
4981}
4982
4983static inline void csum_verified(struct sk_buff *skb)
4984{
4985	unsigned short protocol;
4986	struct iphdr *iph;
4987
4988	protocol = skb->protocol;
4989	skb_reset_network_header(skb);
4990	iph = (struct iphdr *) skb_network_header(skb);
4991	if (protocol == htons(ETH_P_8021Q)) {
4992		protocol = iph->tot_len;
4993		skb_set_network_header(skb, VLAN_HLEN);
4994		iph = (struct iphdr *) skb_network_header(skb);
4995	}
4996	if (protocol == htons(ETH_P_IP)) {
4997		if (iph->protocol == IPPROTO_TCP)
4998			skb->ip_summed = CHECKSUM_UNNECESSARY;
4999	}
5000}
5001
5002static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5003	struct ksz_desc *desc, union desc_stat status)
5004{
5005	int packet_len;
5006	struct dev_priv *priv = netdev_priv(dev);
5007	struct dev_info *hw_priv = priv->adapter;
5008	struct ksz_dma_buf *dma_buf;
5009	struct sk_buff *skb;
5010	int rx_status;
5011
5012	/* Received length includes 4-byte CRC. */
5013	packet_len = status.rx.frame_len - 4;
5014
5015	dma_buf = DMA_BUFFER(desc);
5016	pci_dma_sync_single_for_cpu(
5017		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5018		PCI_DMA_FROMDEVICE);
5019
5020	do {
5021		/* skb->data != skb->head */
5022		skb = netdev_alloc_skb(dev, packet_len + 2);
5023		if (!skb) {
5024			dev->stats.rx_dropped++;
5025			return -ENOMEM;
5026		}
5027
5028		/*
5029		 * Align socket buffer in 4-byte boundary for better
5030		 * performance.
5031		 */
5032		skb_reserve(skb, 2);
5033
5034		memcpy(skb_put(skb, packet_len),
5035			dma_buf->skb->data, packet_len);
5036	} while (0);
5037
5038	skb->protocol = eth_type_trans(skb, dev);
5039
5040	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5041		csum_verified(skb);
5042
5043	/* Update receive statistics. */
5044	dev->stats.rx_packets++;
5045	dev->stats.rx_bytes += packet_len;
5046
5047	/* Notify upper layer for received packet. */
5048	rx_status = netif_rx(skb);
5049
5050	return 0;
5051}
5052
5053static int dev_rcv_packets(struct dev_info *hw_priv)
5054{
5055	int next;
5056	union desc_stat status;
5057	struct ksz_hw *hw = &hw_priv->hw;
5058	struct net_device *dev = hw->port_info[0].pdev;
5059	struct ksz_desc_info *info = &hw->rx_desc_info;
5060	int left = info->alloc;
5061	struct ksz_desc *desc;
5062	int received = 0;
5063
5064	next = info->next;
5065	while (left--) {
5066		/* Get next descriptor which is not hardware owned. */
5067		desc = &info->ring[next];
5068		status.data = le32_to_cpu(desc->phw->ctrl.data);
5069		if (status.rx.hw_owned)
5070			break;
5071
5072		/* Status valid only when last descriptor bit is set. */
5073		if (status.rx.last_desc && status.rx.first_desc) {
5074			if (rx_proc(dev, hw, desc, status))
5075				goto release_packet;
5076			received++;
5077		}
5078
5079release_packet:
5080		release_desc(desc);
5081		next++;
5082		next &= info->mask;
5083	}
5084	info->next = next;
5085
5086	return received;
5087}
5088
5089static int port_rcv_packets(struct dev_info *hw_priv)
5090{
5091	int next;
5092	union desc_stat status;
5093	struct ksz_hw *hw = &hw_priv->hw;
5094	struct net_device *dev = hw->port_info[0].pdev;
5095	struct ksz_desc_info *info = &hw->rx_desc_info;
5096	int left = info->alloc;
5097	struct ksz_desc *desc;
5098	int received = 0;
5099
5100	next = info->next;
5101	while (left--) {
5102		/* Get next descriptor which is not hardware owned. */
5103		desc = &info->ring[next];
5104		status.data = le32_to_cpu(desc->phw->ctrl.data);
5105		if (status.rx.hw_owned)
5106			break;
5107
5108		if (hw->dev_count > 1) {
5109			/* Get received port number. */
5110			int p = HW_TO_DEV_PORT(status.rx.src_port);
5111
5112			dev = hw->port_info[p].pdev;
5113			if (!netif_running(dev))
5114				goto release_packet;
5115		}
5116
5117		/* Status valid only when last descriptor bit is set. */
5118		if (status.rx.last_desc && status.rx.first_desc) {
5119			if (rx_proc(dev, hw, desc, status))
5120				goto release_packet;
5121			received++;
5122		}
5123
5124release_packet:
5125		release_desc(desc);
5126		next++;
5127		next &= info->mask;
5128	}
5129	info->next = next;
5130
5131	return received;
5132}
5133
5134static int dev_rcv_special(struct dev_info *hw_priv)
5135{
5136	int next;
5137	union desc_stat status;
5138	struct ksz_hw *hw = &hw_priv->hw;
5139	struct net_device *dev = hw->port_info[0].pdev;
5140	struct ksz_desc_info *info = &hw->rx_desc_info;
5141	int left = info->alloc;
5142	struct ksz_desc *desc;
5143	int received = 0;
5144
5145	next = info->next;
5146	while (left--) {
5147		/* Get next descriptor which is not hardware owned. */
5148		desc = &info->ring[next];
5149		status.data = le32_to_cpu(desc->phw->ctrl.data);
5150		if (status.rx.hw_owned)
5151			break;
5152
5153		if (hw->dev_count > 1) {
5154			/* Get received port number. */
5155			int p = HW_TO_DEV_PORT(status.rx.src_port);
5156
5157			dev = hw->port_info[p].pdev;
5158			if (!netif_running(dev))
5159				goto release_packet;
5160		}
5161
5162		/* Status valid only when last descriptor bit is set. */
5163		if (status.rx.last_desc && status.rx.first_desc) {
5164			/*
5165			 * Receive without error.  With receive errors
5166			 * disabled, packets with receive errors will be
5167			 * dropped, so no need to check the error bit.
5168			 */
5169			if (!status.rx.error || (status.data &
5170					KS_DESC_RX_ERROR_COND) ==
5171					KS_DESC_RX_ERROR_TOO_LONG) {
5172				if (rx_proc(dev, hw, desc, status))
5173					goto release_packet;
5174				received++;
5175			} else {
5176				struct dev_priv *priv = netdev_priv(dev);
5177
5178				/* Update receive error statistics. */
5179				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5180			}
5181		}
5182
5183release_packet:
5184		release_desc(desc);
5185		next++;
5186		next &= info->mask;
5187	}
5188	info->next = next;
5189
5190	return received;
5191}
5192
5193static void rx_proc_task(unsigned long data)
5194{
5195	struct dev_info *hw_priv = (struct dev_info *) data;
5196	struct ksz_hw *hw = &hw_priv->hw;
5197
5198	if (!hw->enabled)
5199		return;
5200	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5201
5202		/* In case receive process is suspended because of overrun. */
5203		hw_resume_rx(hw);
5204
5205		/* tasklets are interruptible. */
5206		spin_lock_irq(&hw_priv->hwlock);
5207		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5208		spin_unlock_irq(&hw_priv->hwlock);
5209	} else {
5210		hw_ack_intr(hw, KS884X_INT_RX);
5211		tasklet_schedule(&hw_priv->rx_tasklet);
5212	}
5213}
5214
5215static void tx_proc_task(unsigned long data)
5216{
5217	struct dev_info *hw_priv = (struct dev_info *) data;
5218	struct ksz_hw *hw = &hw_priv->hw;
5219
5220	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5221
5222	tx_done(hw_priv);
5223
5224	/* tasklets are interruptible. */
5225	spin_lock_irq(&hw_priv->hwlock);
5226	hw_turn_on_intr(hw, KS884X_INT_TX);
5227	spin_unlock_irq(&hw_priv->hwlock);
5228}
5229
5230static inline void handle_rx_stop(struct ksz_hw *hw)
5231{
5232	/* Receive just has been stopped. */
5233	if (0 == hw->rx_stop)
5234		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5235	else if (hw->rx_stop > 1) {
5236		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5237			hw_start_rx(hw);
5238		} else {
5239			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5240			hw->rx_stop = 0;
5241		}
5242	} else
5243		/* Receive just has been started. */
5244		hw->rx_stop++;
5245}
5246
5247/**
5248 * netdev_intr - interrupt handling
5249 * @irq:	Interrupt number.
5250 * @dev_id:	Network device.
5251 *
5252 * This function is called by upper network layer to signal interrupt.
5253 *
5254 * Return IRQ_HANDLED if interrupt is handled.
5255 */
5256static irqreturn_t netdev_intr(int irq, void *dev_id)
5257{
5258	uint int_enable = 0;
5259	struct net_device *dev = (struct net_device *) dev_id;
5260	struct dev_priv *priv = netdev_priv(dev);
5261	struct dev_info *hw_priv = priv->adapter;
5262	struct ksz_hw *hw = &hw_priv->hw;
5263
 
 
5264	hw_read_intr(hw, &int_enable);
5265
5266	/* Not our interrupt! */
5267	if (!int_enable)
 
5268		return IRQ_NONE;
 
5269
5270	do {
5271		hw_ack_intr(hw, int_enable);
5272		int_enable &= hw->intr_mask;
5273
5274		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5275			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5276			tasklet_schedule(&hw_priv->tx_tasklet);
5277		}
5278
5279		if (likely(int_enable & KS884X_INT_RX)) {
5280			hw_dis_intr_bit(hw, KS884X_INT_RX);
5281			tasklet_schedule(&hw_priv->rx_tasklet);
5282		}
5283
5284		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5285			dev->stats.rx_fifo_errors++;
5286			hw_resume_rx(hw);
5287		}
5288
5289		if (unlikely(int_enable & KS884X_INT_PHY)) {
5290			struct ksz_port *port = &priv->port;
5291
5292			hw->features |= LINK_INT_WORKING;
5293			port_get_link_speed(port);
5294		}
5295
5296		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5297			handle_rx_stop(hw);
5298			break;
5299		}
5300
5301		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5302			u32 data;
5303
5304			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5305			pr_info("Tx stopped\n");
5306			data = readl(hw->io + KS_DMA_TX_CTRL);
5307			if (!(data & DMA_TX_ENABLE))
5308				pr_info("Tx disabled\n");
5309			break;
5310		}
5311	} while (0);
5312
5313	hw_ena_intr(hw);
5314
 
 
5315	return IRQ_HANDLED;
5316}
5317
5318/*
5319 * Linux network device functions
5320 */
5321
5322static unsigned long next_jiffies;
5323
5324#ifdef CONFIG_NET_POLL_CONTROLLER
5325static void netdev_netpoll(struct net_device *dev)
5326{
5327	struct dev_priv *priv = netdev_priv(dev);
5328	struct dev_info *hw_priv = priv->adapter;
5329
5330	hw_dis_intr(&hw_priv->hw);
5331	netdev_intr(dev->irq, dev);
5332}
5333#endif
5334
5335static void bridge_change(struct ksz_hw *hw)
5336{
5337	int port;
5338	u8  member;
5339	struct ksz_switch *sw = hw->ksz_switch;
5340
5341	/* No ports in forwarding state. */
5342	if (!sw->member) {
5343		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5344		sw_block_addr(hw);
5345	}
5346	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5347		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5348			member = HOST_MASK | sw->member;
5349		else
5350			member = HOST_MASK | (1 << port);
5351		if (member != sw->port_cfg[port].member)
5352			sw_cfg_port_base_vlan(hw, port, member);
5353	}
5354}
5355
5356/**
5357 * netdev_close - close network device
5358 * @dev:	Network device.
5359 *
5360 * This function process the close operation of network device.  This is caused
5361 * by the user command "ifconfig ethX down."
5362 *
5363 * Return 0 if successful; otherwise an error code indicating failure.
5364 */
5365static int netdev_close(struct net_device *dev)
5366{
5367	struct dev_priv *priv = netdev_priv(dev);
5368	struct dev_info *hw_priv = priv->adapter;
5369	struct ksz_port *port = &priv->port;
5370	struct ksz_hw *hw = &hw_priv->hw;
5371	int pi;
5372
5373	netif_stop_queue(dev);
5374
5375	ksz_stop_timer(&priv->monitor_timer_info);
5376
5377	/* Need to shut the port manually in multiple device interfaces mode. */
5378	if (hw->dev_count > 1) {
5379		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5380
5381		/* Port is closed.  Need to change bridge setting. */
5382		if (hw->features & STP_SUPPORT) {
5383			pi = 1 << port->first_port;
5384			if (hw->ksz_switch->member & pi) {
5385				hw->ksz_switch->member &= ~pi;
5386				bridge_change(hw);
5387			}
5388		}
5389	}
5390	if (port->first_port > 0)
5391		hw_del_addr(hw, dev->dev_addr);
5392	if (!hw_priv->wol_enable)
5393		port_set_power_saving(port, true);
5394
5395	if (priv->multicast)
5396		--hw->all_multi;
5397	if (priv->promiscuous)
5398		--hw->promiscuous;
5399
5400	hw_priv->opened--;
5401	if (!(hw_priv->opened)) {
5402		ksz_stop_timer(&hw_priv->mib_timer_info);
5403		flush_work(&hw_priv->mib_read);
5404
5405		hw_dis_intr(hw);
5406		hw_disable(hw);
5407		hw_clr_multicast(hw);
5408
5409		/* Delay for receive task to stop scheduling itself. */
5410		msleep(2000 / HZ);
5411
5412		tasklet_disable(&hw_priv->rx_tasklet);
5413		tasklet_disable(&hw_priv->tx_tasklet);
5414		free_irq(dev->irq, hw_priv->dev);
5415
5416		transmit_cleanup(hw_priv, 0);
5417		hw_reset_pkts(&hw->rx_desc_info);
5418		hw_reset_pkts(&hw->tx_desc_info);
5419
5420		/* Clean out static MAC table when the switch is shutdown. */
5421		if (hw->features & STP_SUPPORT)
5422			sw_clr_sta_mac_table(hw);
5423	}
5424
5425	return 0;
5426}
5427
5428static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5429{
5430	if (hw->ksz_switch) {
5431		u32 data;
5432
5433		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5434		if (hw->features & RX_HUGE_FRAME)
5435			data |= SWITCH_HUGE_PACKET;
5436		else
5437			data &= ~SWITCH_HUGE_PACKET;
5438		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5439	}
5440	if (hw->features & RX_HUGE_FRAME) {
5441		hw->rx_cfg |= DMA_RX_ERROR;
5442		hw_priv->dev_rcv = dev_rcv_special;
5443	} else {
5444		hw->rx_cfg &= ~DMA_RX_ERROR;
5445		if (hw->dev_count > 1)
5446			hw_priv->dev_rcv = port_rcv_packets;
5447		else
5448			hw_priv->dev_rcv = dev_rcv_packets;
5449	}
5450}
5451
5452static int prepare_hardware(struct net_device *dev)
5453{
5454	struct dev_priv *priv = netdev_priv(dev);
5455	struct dev_info *hw_priv = priv->adapter;
5456	struct ksz_hw *hw = &hw_priv->hw;
5457	int rc = 0;
5458
5459	/* Remember the network device that requests interrupts. */
5460	hw_priv->dev = dev;
5461	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5462	if (rc)
5463		return rc;
5464	tasklet_enable(&hw_priv->rx_tasklet);
5465	tasklet_enable(&hw_priv->tx_tasklet);
 
 
5466
5467	hw->promiscuous = 0;
5468	hw->all_multi = 0;
5469	hw->multi_list_size = 0;
5470
5471	hw_reset(hw);
5472
5473	hw_set_desc_base(hw,
5474		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5475	hw_set_addr(hw);
5476	hw_cfg_huge_frame(hw_priv, hw);
5477	ksz_init_rx_buffers(hw_priv);
5478	return 0;
5479}
5480
5481static void set_media_state(struct net_device *dev, int media_state)
5482{
5483	struct dev_priv *priv = netdev_priv(dev);
5484
5485	if (media_state == priv->media_state)
5486		netif_carrier_on(dev);
5487	else
5488		netif_carrier_off(dev);
5489	netif_info(priv, link, dev, "link %s\n",
5490		   media_state == priv->media_state ? "on" : "off");
5491}
5492
5493/**
5494 * netdev_open - open network device
5495 * @dev:	Network device.
5496 *
5497 * This function process the open operation of network device.  This is caused
5498 * by the user command "ifconfig ethX up."
5499 *
5500 * Return 0 if successful; otherwise an error code indicating failure.
5501 */
5502static int netdev_open(struct net_device *dev)
5503{
5504	struct dev_priv *priv = netdev_priv(dev);
5505	struct dev_info *hw_priv = priv->adapter;
5506	struct ksz_hw *hw = &hw_priv->hw;
5507	struct ksz_port *port = &priv->port;
5508	int i;
5509	int p;
5510	int rc = 0;
5511
5512	priv->multicast = 0;
5513	priv->promiscuous = 0;
5514
5515	/* Reset device statistics. */
5516	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5517	memset((void *) port->counter, 0,
5518		(sizeof(u64) * OID_COUNTER_LAST));
5519
5520	if (!(hw_priv->opened)) {
5521		rc = prepare_hardware(dev);
5522		if (rc)
5523			return rc;
5524		for (i = 0; i < hw->mib_port_cnt; i++) {
5525			if (next_jiffies < jiffies)
5526				next_jiffies = jiffies + HZ * 2;
5527			else
5528				next_jiffies += HZ * 1;
5529			hw_priv->counter[i].time = next_jiffies;
5530			hw->port_mib[i].state = media_disconnected;
5531			port_init_cnt(hw, i);
5532		}
5533		if (hw->ksz_switch)
5534			hw->port_mib[HOST_PORT].state = media_connected;
5535		else {
5536			hw_add_wol_bcast(hw);
5537			hw_cfg_wol_pme(hw, 0);
5538			hw_clr_wol_pme_status(&hw_priv->hw);
5539		}
5540	}
5541	port_set_power_saving(port, false);
5542
5543	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5544		/*
5545		 * Initialize to invalid value so that link detection
5546		 * is done.
5547		 */
5548		hw->port_info[p].partner = 0xFF;
5549		hw->port_info[p].state = media_disconnected;
5550	}
5551
5552	/* Need to open the port in multiple device interfaces mode. */
5553	if (hw->dev_count > 1) {
5554		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5555		if (port->first_port > 0)
5556			hw_add_addr(hw, dev->dev_addr);
5557	}
5558
5559	port_get_link_speed(port);
5560	if (port->force_link)
5561		port_force_link_speed(port);
5562	else
5563		port_set_link_speed(port);
5564
5565	if (!(hw_priv->opened)) {
5566		hw_setup_intr(hw);
5567		hw_enable(hw);
5568		hw_ena_intr(hw);
5569
5570		if (hw->mib_port_cnt)
5571			ksz_start_timer(&hw_priv->mib_timer_info,
5572				hw_priv->mib_timer_info.period);
5573	}
5574
5575	hw_priv->opened++;
5576
5577	ksz_start_timer(&priv->monitor_timer_info,
5578		priv->monitor_timer_info.period);
5579
5580	priv->media_state = port->linked->state;
5581
5582	set_media_state(dev, media_connected);
5583	netif_start_queue(dev);
5584
5585	return 0;
5586}
5587
5588/* RX errors = rx_errors */
5589/* RX dropped = rx_dropped */
5590/* RX overruns = rx_fifo_errors */
5591/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5592/* TX errors = tx_errors */
5593/* TX dropped = tx_dropped */
5594/* TX overruns = tx_fifo_errors */
5595/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5596/* collisions = collisions */
5597
5598/**
5599 * netdev_query_statistics - query network device statistics
5600 * @dev:	Network device.
5601 *
5602 * This function returns the statistics of the network device.  The device
5603 * needs not be opened.
5604 *
5605 * Return network device statistics.
5606 */
5607static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5608{
5609	struct dev_priv *priv = netdev_priv(dev);
5610	struct ksz_port *port = &priv->port;
5611	struct ksz_hw *hw = &priv->adapter->hw;
5612	struct ksz_port_mib *mib;
5613	int i;
5614	int p;
5615
5616	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5617	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5618
5619	/* Reset to zero to add count later. */
5620	dev->stats.multicast = 0;
5621	dev->stats.collisions = 0;
5622	dev->stats.rx_length_errors = 0;
5623	dev->stats.rx_crc_errors = 0;
5624	dev->stats.rx_frame_errors = 0;
5625	dev->stats.tx_window_errors = 0;
5626
5627	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5628		mib = &hw->port_mib[p];
5629
5630		dev->stats.multicast += (unsigned long)
5631			mib->counter[MIB_COUNTER_RX_MULTICAST];
5632
5633		dev->stats.collisions += (unsigned long)
5634			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5635
5636		dev->stats.rx_length_errors += (unsigned long)(
5637			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5638			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5639			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5640			mib->counter[MIB_COUNTER_RX_JABBER]);
5641		dev->stats.rx_crc_errors += (unsigned long)
5642			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5643		dev->stats.rx_frame_errors += (unsigned long)(
5644			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5645			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5646
5647		dev->stats.tx_window_errors += (unsigned long)
5648			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5649	}
5650
5651	return &dev->stats;
5652}
5653
5654/**
5655 * netdev_set_mac_address - set network device MAC address
5656 * @dev:	Network device.
5657 * @addr:	Buffer of MAC address.
5658 *
5659 * This function is used to set the MAC address of the network device.
5660 *
5661 * Return 0 to indicate success.
5662 */
5663static int netdev_set_mac_address(struct net_device *dev, void *addr)
5664{
5665	struct dev_priv *priv = netdev_priv(dev);
5666	struct dev_info *hw_priv = priv->adapter;
5667	struct ksz_hw *hw = &hw_priv->hw;
5668	struct sockaddr *mac = addr;
5669	uint interrupt;
5670
5671	if (priv->port.first_port > 0)
5672		hw_del_addr(hw, dev->dev_addr);
5673	else {
5674		hw->mac_override = 1;
5675		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5676	}
5677
5678	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5679
5680	interrupt = hw_block_intr(hw);
5681
5682	if (priv->port.first_port > 0)
5683		hw_add_addr(hw, dev->dev_addr);
5684	else
5685		hw_set_addr(hw);
5686	hw_restore_intr(hw, interrupt);
5687
5688	return 0;
5689}
5690
5691static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5692	struct ksz_hw *hw, int promiscuous)
5693{
5694	if (promiscuous != priv->promiscuous) {
5695		u8 prev_state = hw->promiscuous;
5696
5697		if (promiscuous)
5698			++hw->promiscuous;
5699		else
5700			--hw->promiscuous;
5701		priv->promiscuous = promiscuous;
5702
5703		/* Turn on/off promiscuous mode. */
5704		if (hw->promiscuous <= 1 && prev_state <= 1)
5705			hw_set_promiscuous(hw, hw->promiscuous);
5706
5707		/*
5708		 * Port is not in promiscuous mode, meaning it is released
5709		 * from the bridge.
5710		 */
5711		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5712		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5713			struct ksz_switch *sw = hw->ksz_switch;
5714			int port = priv->port.first_port;
5715
5716			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5717			port = 1 << port;
5718			if (sw->member & port) {
5719				sw->member &= ~port;
5720				bridge_change(hw);
5721			}
5722		}
5723	}
5724}
5725
5726static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5727	int multicast)
5728{
5729	if (multicast != priv->multicast) {
5730		u8 all_multi = hw->all_multi;
5731
5732		if (multicast)
5733			++hw->all_multi;
5734		else
5735			--hw->all_multi;
5736		priv->multicast = multicast;
5737
5738		/* Turn on/off all multicast mode. */
5739		if (hw->all_multi <= 1 && all_multi <= 1)
5740			hw_set_multicast(hw, hw->all_multi);
5741	}
5742}
5743
5744/**
5745 * netdev_set_rx_mode
5746 * @dev:	Network device.
5747 *
5748 * This routine is used to set multicast addresses or put the network device
5749 * into promiscuous mode.
5750 */
5751static void netdev_set_rx_mode(struct net_device *dev)
5752{
5753	struct dev_priv *priv = netdev_priv(dev);
5754	struct dev_info *hw_priv = priv->adapter;
5755	struct ksz_hw *hw = &hw_priv->hw;
5756	struct netdev_hw_addr *ha;
5757	int multicast = (dev->flags & IFF_ALLMULTI);
5758
5759	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5760
5761	if (hw_priv->hw.dev_count > 1)
5762		multicast |= (dev->flags & IFF_MULTICAST);
5763	dev_set_multicast(priv, hw, multicast);
5764
5765	/* Cannot use different hashes in multiple device interfaces mode. */
5766	if (hw_priv->hw.dev_count > 1)
5767		return;
5768
5769	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5770		int i = 0;
5771
5772		/* List too big to support so turn on all multicast mode. */
5773		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5774			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5775				hw->multi_list_size = MAX_MULTICAST_LIST;
5776				++hw->all_multi;
5777				hw_set_multicast(hw, hw->all_multi);
5778			}
5779			return;
5780		}
5781
5782		netdev_for_each_mc_addr(ha, dev) {
5783			if (i >= MAX_MULTICAST_LIST)
5784				break;
5785			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5786		}
5787		hw->multi_list_size = (u8) i;
5788		hw_set_grp_addr(hw);
5789	} else {
5790		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5791			--hw->all_multi;
5792			hw_set_multicast(hw, hw->all_multi);
5793		}
5794		hw->multi_list_size = 0;
5795		hw_clr_multicast(hw);
5796	}
5797}
5798
5799static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5800{
5801	struct dev_priv *priv = netdev_priv(dev);
5802	struct dev_info *hw_priv = priv->adapter;
5803	struct ksz_hw *hw = &hw_priv->hw;
5804	int hw_mtu;
5805
5806	if (netif_running(dev))
5807		return -EBUSY;
5808
5809	/* Cannot use different MTU in multiple device interfaces mode. */
5810	if (hw->dev_count > 1)
5811		if (dev != hw_priv->dev)
5812			return 0;
5813	if (new_mtu < 60)
5814		return -EINVAL;
5815
5816	if (dev->mtu != new_mtu) {
5817		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5818		if (hw_mtu > MAX_RX_BUF_SIZE)
5819			return -EINVAL;
5820		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5821			hw->features |= RX_HUGE_FRAME;
5822			hw_mtu = MAX_RX_BUF_SIZE;
5823		} else {
5824			hw->features &= ~RX_HUGE_FRAME;
5825			hw_mtu = REGULAR_RX_BUF_SIZE;
5826		}
5827		hw_mtu = (hw_mtu + 3) & ~3;
5828		hw_priv->mtu = hw_mtu;
5829		dev->mtu = new_mtu;
5830	}
 
 
 
 
5831	return 0;
5832}
5833
5834/**
5835 * netdev_ioctl - I/O control processing
5836 * @dev:	Network device.
5837 * @ifr:	Interface request structure.
5838 * @cmd:	I/O control code.
5839 *
5840 * This function is used to process I/O control calls.
5841 *
5842 * Return 0 to indicate success.
5843 */
5844static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5845{
5846	struct dev_priv *priv = netdev_priv(dev);
5847	struct dev_info *hw_priv = priv->adapter;
5848	struct ksz_hw *hw = &hw_priv->hw;
5849	struct ksz_port *port = &priv->port;
5850	int rc;
5851	int result = 0;
5852	struct mii_ioctl_data *data = if_mii(ifr);
5853
5854	if (down_interruptible(&priv->proc_sem))
5855		return -ERESTARTSYS;
5856
5857	/* assume success */
5858	rc = 0;
5859	switch (cmd) {
5860	/* Get address of MII PHY in use. */
5861	case SIOCGMIIPHY:
5862		data->phy_id = priv->id;
5863
5864		/* Fallthrough... */
5865
5866	/* Read MII PHY register. */
5867	case SIOCGMIIREG:
5868		if (data->phy_id != priv->id || data->reg_num >= 6)
5869			result = -EIO;
5870		else
5871			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5872				&data->val_out);
5873		break;
5874
5875	/* Write MII PHY register. */
5876	case SIOCSMIIREG:
5877		if (!capable(CAP_NET_ADMIN))
5878			result = -EPERM;
5879		else if (data->phy_id != priv->id || data->reg_num >= 6)
5880			result = -EIO;
5881		else
5882			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5883				data->val_in);
5884		break;
5885
5886	default:
5887		result = -EOPNOTSUPP;
5888	}
5889
5890	up(&priv->proc_sem);
5891
5892	return result;
5893}
5894
5895/*
5896 * MII support
5897 */
5898
5899/**
5900 * mdio_read - read PHY register
5901 * @dev:	Network device.
5902 * @phy_id:	The PHY id.
5903 * @reg_num:	The register number.
5904 *
5905 * This function returns the PHY register value.
5906 *
5907 * Return the register value.
5908 */
5909static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5910{
5911	struct dev_priv *priv = netdev_priv(dev);
5912	struct ksz_port *port = &priv->port;
5913	struct ksz_hw *hw = port->hw;
5914	u16 val_out;
5915
5916	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5917	return val_out;
5918}
5919
5920/**
5921 * mdio_write - set PHY register
5922 * @dev:	Network device.
5923 * @phy_id:	The PHY id.
5924 * @reg_num:	The register number.
5925 * @val:	The register value.
5926 *
5927 * This procedure sets the PHY register value.
5928 */
5929static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5930{
5931	struct dev_priv *priv = netdev_priv(dev);
5932	struct ksz_port *port = &priv->port;
5933	struct ksz_hw *hw = port->hw;
5934	int i;
5935	int pi;
5936
5937	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5938		hw_w_phy(hw, pi, reg_num << 1, val);
5939}
5940
5941/*
5942 * ethtool support
5943 */
5944
5945#define EEPROM_SIZE			0x40
5946
5947static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5948
5949#define ADVERTISED_ALL			\
5950	(ADVERTISED_10baseT_Half |	\
5951	ADVERTISED_10baseT_Full |	\
5952	ADVERTISED_100baseT_Half |	\
5953	ADVERTISED_100baseT_Full)
5954
5955/* These functions use the MII functions in mii.c. */
5956
5957/**
5958 * netdev_get_settings - get network device settings
5959 * @dev:	Network device.
5960 * @cmd:	Ethtool command.
5961 *
5962 * This function queries the PHY and returns its state in the ethtool command.
5963 *
5964 * Return 0 if successful; otherwise an error code.
5965 */
5966static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5967{
5968	struct dev_priv *priv = netdev_priv(dev);
5969	struct dev_info *hw_priv = priv->adapter;
5970
5971	mutex_lock(&hw_priv->lock);
5972	mii_ethtool_gset(&priv->mii_if, cmd);
5973	cmd->advertising |= SUPPORTED_TP;
5974	mutex_unlock(&hw_priv->lock);
5975
5976	/* Save advertised settings for workaround in next function. */
5977	priv->advertising = cmd->advertising;
 
 
5978	return 0;
5979}
5980
5981/**
5982 * netdev_set_settings - set network device settings
5983 * @dev:	Network device.
5984 * @cmd:	Ethtool command.
5985 *
5986 * This function sets the PHY according to the ethtool command.
5987 *
5988 * Return 0 if successful; otherwise an error code.
5989 */
5990static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5991{
5992	struct dev_priv *priv = netdev_priv(dev);
5993	struct dev_info *hw_priv = priv->adapter;
5994	struct ksz_port *port = &priv->port;
5995	u32 speed = ethtool_cmd_speed(cmd);
 
 
5996	int rc;
5997
 
 
 
5998	/*
5999	 * ethtool utility does not change advertised setting if auto
6000	 * negotiation is not specified explicitly.
6001	 */
6002	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6003		cmd->advertising |= ADVERTISED_ALL;
6004		if (10 == speed)
6005			cmd->advertising &=
6006				~(ADVERTISED_100baseT_Full |
6007				ADVERTISED_100baseT_Half);
6008		else if (100 == speed)
6009			cmd->advertising &=
6010				~(ADVERTISED_10baseT_Full |
6011				ADVERTISED_10baseT_Half);
6012		if (0 == cmd->duplex)
6013			cmd->advertising &=
6014				~(ADVERTISED_100baseT_Full |
6015				ADVERTISED_10baseT_Full);
6016		else if (1 == cmd->duplex)
6017			cmd->advertising &=
6018				~(ADVERTISED_100baseT_Half |
6019				ADVERTISED_10baseT_Half);
6020	}
6021	mutex_lock(&hw_priv->lock);
6022	if (cmd->autoneg &&
6023			(cmd->advertising & ADVERTISED_ALL) ==
6024			ADVERTISED_ALL) {
6025		port->duplex = 0;
6026		port->speed = 0;
6027		port->force_link = 0;
6028	} else {
6029		port->duplex = cmd->duplex + 1;
6030		if (1000 != speed)
6031			port->speed = speed;
6032		if (cmd->autoneg)
6033			port->force_link = 0;
6034		else
6035			port->force_link = 1;
6036	}
6037	rc = mii_ethtool_sset(&priv->mii_if, cmd);
 
 
 
 
 
 
6038	mutex_unlock(&hw_priv->lock);
6039	return rc;
6040}
6041
6042/**
6043 * netdev_nway_reset - restart auto-negotiation
6044 * @dev:	Network device.
6045 *
6046 * This function restarts the PHY for auto-negotiation.
6047 *
6048 * Return 0 if successful; otherwise an error code.
6049 */
6050static int netdev_nway_reset(struct net_device *dev)
6051{
6052	struct dev_priv *priv = netdev_priv(dev);
6053	struct dev_info *hw_priv = priv->adapter;
6054	int rc;
6055
6056	mutex_lock(&hw_priv->lock);
6057	rc = mii_nway_restart(&priv->mii_if);
6058	mutex_unlock(&hw_priv->lock);
6059	return rc;
6060}
6061
6062/**
6063 * netdev_get_link - get network device link status
6064 * @dev:	Network device.
6065 *
6066 * This function gets the link status from the PHY.
6067 *
6068 * Return true if PHY is linked and false otherwise.
6069 */
6070static u32 netdev_get_link(struct net_device *dev)
6071{
6072	struct dev_priv *priv = netdev_priv(dev);
6073	int rc;
6074
6075	rc = mii_link_ok(&priv->mii_if);
6076	return rc;
6077}
6078
6079/**
6080 * netdev_get_drvinfo - get network driver information
6081 * @dev:	Network device.
6082 * @info:	Ethtool driver info data structure.
6083 *
6084 * This procedure returns the driver information.
6085 */
6086static void netdev_get_drvinfo(struct net_device *dev,
6087	struct ethtool_drvinfo *info)
6088{
6089	struct dev_priv *priv = netdev_priv(dev);
6090	struct dev_info *hw_priv = priv->adapter;
6091
6092	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6093	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6094	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6095		sizeof(info->bus_info));
6096}
6097
6098/**
6099 * netdev_get_regs_len - get length of register dump
6100 * @dev:	Network device.
6101 *
6102 * This function returns the length of the register dump.
6103 *
6104 * Return length of the register dump.
6105 */
6106static struct hw_regs {
6107	int start;
6108	int end;
6109} hw_regs_range[] = {
6110	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6111	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6112	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6113	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6114	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6115	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6116	{ 0, 0 }
6117};
6118
6119static int netdev_get_regs_len(struct net_device *dev)
6120{
6121	struct hw_regs *range = hw_regs_range;
6122	int regs_len = 0x10 * sizeof(u32);
6123
6124	while (range->end > range->start) {
6125		regs_len += (range->end - range->start + 3) / 4 * 4;
6126		range++;
6127	}
6128	return regs_len;
6129}
6130
6131/**
6132 * netdev_get_regs - get register dump
6133 * @dev:	Network device.
6134 * @regs:	Ethtool registers data structure.
6135 * @ptr:	Buffer to store the register values.
6136 *
6137 * This procedure dumps the register values in the provided buffer.
6138 */
6139static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6140	void *ptr)
6141{
6142	struct dev_priv *priv = netdev_priv(dev);
6143	struct dev_info *hw_priv = priv->adapter;
6144	struct ksz_hw *hw = &hw_priv->hw;
6145	int *buf = (int *) ptr;
6146	struct hw_regs *range = hw_regs_range;
6147	int len;
6148
6149	mutex_lock(&hw_priv->lock);
6150	regs->version = 0;
6151	for (len = 0; len < 0x40; len += 4) {
6152		pci_read_config_dword(hw_priv->pdev, len, buf);
6153		buf++;
6154	}
6155	while (range->end > range->start) {
6156		for (len = range->start; len < range->end; len += 4) {
6157			*buf = readl(hw->io + len);
6158			buf++;
6159		}
6160		range++;
6161	}
6162	mutex_unlock(&hw_priv->lock);
6163}
6164
6165#define WOL_SUPPORT			\
6166	(WAKE_PHY | WAKE_MAGIC |	\
6167	WAKE_UCAST | WAKE_MCAST |	\
6168	WAKE_BCAST | WAKE_ARP)
6169
6170/**
6171 * netdev_get_wol - get Wake-on-LAN support
6172 * @dev:	Network device.
6173 * @wol:	Ethtool Wake-on-LAN data structure.
6174 *
6175 * This procedure returns Wake-on-LAN support.
6176 */
6177static void netdev_get_wol(struct net_device *dev,
6178	struct ethtool_wolinfo *wol)
6179{
6180	struct dev_priv *priv = netdev_priv(dev);
6181	struct dev_info *hw_priv = priv->adapter;
6182
6183	wol->supported = hw_priv->wol_support;
6184	wol->wolopts = hw_priv->wol_enable;
6185	memset(&wol->sopass, 0, sizeof(wol->sopass));
6186}
6187
6188/**
6189 * netdev_set_wol - set Wake-on-LAN support
6190 * @dev:	Network device.
6191 * @wol:	Ethtool Wake-on-LAN data structure.
6192 *
6193 * This function sets Wake-on-LAN support.
6194 *
6195 * Return 0 if successful; otherwise an error code.
6196 */
6197static int netdev_set_wol(struct net_device *dev,
6198	struct ethtool_wolinfo *wol)
6199{
6200	struct dev_priv *priv = netdev_priv(dev);
6201	struct dev_info *hw_priv = priv->adapter;
6202
6203	/* Need to find a way to retrieve the device IP address. */
6204	static const u8 net_addr[] = { 192, 168, 1, 1 };
6205
6206	if (wol->wolopts & ~hw_priv->wol_support)
6207		return -EINVAL;
6208
6209	hw_priv->wol_enable = wol->wolopts;
6210
6211	/* Link wakeup cannot really be disabled. */
6212	if (wol->wolopts)
6213		hw_priv->wol_enable |= WAKE_PHY;
6214	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6215	return 0;
6216}
6217
6218/**
6219 * netdev_get_msglevel - get debug message level
6220 * @dev:	Network device.
6221 *
6222 * This function returns current debug message level.
6223 *
6224 * Return current debug message flags.
6225 */
6226static u32 netdev_get_msglevel(struct net_device *dev)
6227{
6228	struct dev_priv *priv = netdev_priv(dev);
6229
6230	return priv->msg_enable;
6231}
6232
6233/**
6234 * netdev_set_msglevel - set debug message level
6235 * @dev:	Network device.
6236 * @value:	Debug message flags.
6237 *
6238 * This procedure sets debug message level.
6239 */
6240static void netdev_set_msglevel(struct net_device *dev, u32 value)
6241{
6242	struct dev_priv *priv = netdev_priv(dev);
6243
6244	priv->msg_enable = value;
6245}
6246
6247/**
6248 * netdev_get_eeprom_len - get EEPROM length
6249 * @dev:	Network device.
6250 *
6251 * This function returns the length of the EEPROM.
6252 *
6253 * Return length of the EEPROM.
6254 */
6255static int netdev_get_eeprom_len(struct net_device *dev)
6256{
6257	return EEPROM_SIZE * 2;
6258}
6259
6260/**
6261 * netdev_get_eeprom - get EEPROM data
6262 * @dev:	Network device.
6263 * @eeprom:	Ethtool EEPROM data structure.
6264 * @data:	Buffer to store the EEPROM data.
6265 *
6266 * This function dumps the EEPROM data in the provided buffer.
6267 *
6268 * Return 0 if successful; otherwise an error code.
6269 */
6270#define EEPROM_MAGIC			0x10A18842
6271
6272static int netdev_get_eeprom(struct net_device *dev,
6273	struct ethtool_eeprom *eeprom, u8 *data)
6274{
6275	struct dev_priv *priv = netdev_priv(dev);
6276	struct dev_info *hw_priv = priv->adapter;
6277	u8 *eeprom_byte = (u8 *) eeprom_data;
6278	int i;
6279	int len;
6280
6281	len = (eeprom->offset + eeprom->len + 1) / 2;
6282	for (i = eeprom->offset / 2; i < len; i++)
6283		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6284	eeprom->magic = EEPROM_MAGIC;
6285	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6286
6287	return 0;
6288}
6289
6290/**
6291 * netdev_set_eeprom - write EEPROM data
6292 * @dev:	Network device.
6293 * @eeprom:	Ethtool EEPROM data structure.
6294 * @data:	Data buffer.
6295 *
6296 * This function modifies the EEPROM data one byte at a time.
6297 *
6298 * Return 0 if successful; otherwise an error code.
6299 */
6300static int netdev_set_eeprom(struct net_device *dev,
6301	struct ethtool_eeprom *eeprom, u8 *data)
6302{
6303	struct dev_priv *priv = netdev_priv(dev);
6304	struct dev_info *hw_priv = priv->adapter;
6305	u16 eeprom_word[EEPROM_SIZE];
6306	u8 *eeprom_byte = (u8 *) eeprom_word;
6307	int i;
6308	int len;
6309
6310	if (eeprom->magic != EEPROM_MAGIC)
6311		return -EINVAL;
6312
6313	len = (eeprom->offset + eeprom->len + 1) / 2;
6314	for (i = eeprom->offset / 2; i < len; i++)
6315		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6316	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6317	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6318	for (i = 0; i < EEPROM_SIZE; i++)
6319		if (eeprom_word[i] != eeprom_data[i]) {
6320			eeprom_data[i] = eeprom_word[i];
6321			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6322	}
6323
6324	return 0;
6325}
6326
6327/**
6328 * netdev_get_pauseparam - get flow control parameters
6329 * @dev:	Network device.
6330 * @pause:	Ethtool PAUSE settings data structure.
6331 *
6332 * This procedure returns the PAUSE control flow settings.
6333 */
6334static void netdev_get_pauseparam(struct net_device *dev,
6335	struct ethtool_pauseparam *pause)
6336{
6337	struct dev_priv *priv = netdev_priv(dev);
6338	struct dev_info *hw_priv = priv->adapter;
6339	struct ksz_hw *hw = &hw_priv->hw;
6340
6341	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6342	if (!hw->ksz_switch) {
6343		pause->rx_pause =
6344			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6345		pause->tx_pause =
6346			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6347	} else {
6348		pause->rx_pause =
6349			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6350				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6351		pause->tx_pause =
6352			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6354	}
6355}
6356
6357/**
6358 * netdev_set_pauseparam - set flow control parameters
6359 * @dev:	Network device.
6360 * @pause:	Ethtool PAUSE settings data structure.
6361 *
6362 * This function sets the PAUSE control flow settings.
6363 * Not implemented yet.
6364 *
6365 * Return 0 if successful; otherwise an error code.
6366 */
6367static int netdev_set_pauseparam(struct net_device *dev,
6368	struct ethtool_pauseparam *pause)
6369{
6370	struct dev_priv *priv = netdev_priv(dev);
6371	struct dev_info *hw_priv = priv->adapter;
6372	struct ksz_hw *hw = &hw_priv->hw;
6373	struct ksz_port *port = &priv->port;
6374
6375	mutex_lock(&hw_priv->lock);
6376	if (pause->autoneg) {
6377		if (!pause->rx_pause && !pause->tx_pause)
6378			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6379		else
6380			port->flow_ctrl = PHY_FLOW_CTRL;
6381		hw->overrides &= ~PAUSE_FLOW_CTRL;
6382		port->force_link = 0;
6383		if (hw->ksz_switch) {
6384			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385				SWITCH_RX_FLOW_CTRL, 1);
6386			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387				SWITCH_TX_FLOW_CTRL, 1);
6388		}
6389		port_set_link_speed(port);
6390	} else {
6391		hw->overrides |= PAUSE_FLOW_CTRL;
6392		if (hw->ksz_switch) {
6393			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6394				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6395			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6397		} else
6398			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6399	}
6400	mutex_unlock(&hw_priv->lock);
6401
6402	return 0;
6403}
6404
6405/**
6406 * netdev_get_ringparam - get tx/rx ring parameters
6407 * @dev:	Network device.
6408 * @pause:	Ethtool RING settings data structure.
6409 *
6410 * This procedure returns the TX/RX ring settings.
6411 */
6412static void netdev_get_ringparam(struct net_device *dev,
6413	struct ethtool_ringparam *ring)
6414{
6415	struct dev_priv *priv = netdev_priv(dev);
6416	struct dev_info *hw_priv = priv->adapter;
6417	struct ksz_hw *hw = &hw_priv->hw;
6418
6419	ring->tx_max_pending = (1 << 9);
6420	ring->tx_pending = hw->tx_desc_info.alloc;
6421	ring->rx_max_pending = (1 << 9);
6422	ring->rx_pending = hw->rx_desc_info.alloc;
6423}
6424
6425#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6426
6427static struct {
6428	char string[ETH_GSTRING_LEN];
6429} ethtool_stats_keys[STATS_LEN] = {
6430	{ "rx_lo_priority_octets" },
6431	{ "rx_hi_priority_octets" },
6432	{ "rx_undersize_packets" },
6433	{ "rx_fragments" },
6434	{ "rx_oversize_packets" },
6435	{ "rx_jabbers" },
6436	{ "rx_symbol_errors" },
6437	{ "rx_crc_errors" },
6438	{ "rx_align_errors" },
6439	{ "rx_mac_ctrl_packets" },
6440	{ "rx_pause_packets" },
6441	{ "rx_bcast_packets" },
6442	{ "rx_mcast_packets" },
6443	{ "rx_ucast_packets" },
6444	{ "rx_64_or_less_octet_packets" },
6445	{ "rx_65_to_127_octet_packets" },
6446	{ "rx_128_to_255_octet_packets" },
6447	{ "rx_256_to_511_octet_packets" },
6448	{ "rx_512_to_1023_octet_packets" },
6449	{ "rx_1024_to_1522_octet_packets" },
6450
6451	{ "tx_lo_priority_octets" },
6452	{ "tx_hi_priority_octets" },
6453	{ "tx_late_collisions" },
6454	{ "tx_pause_packets" },
6455	{ "tx_bcast_packets" },
6456	{ "tx_mcast_packets" },
6457	{ "tx_ucast_packets" },
6458	{ "tx_deferred" },
6459	{ "tx_total_collisions" },
6460	{ "tx_excessive_collisions" },
6461	{ "tx_single_collisions" },
6462	{ "tx_mult_collisions" },
6463
6464	{ "rx_discards" },
6465	{ "tx_discards" },
6466};
6467
6468/**
6469 * netdev_get_strings - get statistics identity strings
6470 * @dev:	Network device.
6471 * @stringset:	String set identifier.
6472 * @buf:	Buffer to store the strings.
6473 *
6474 * This procedure returns the strings used to identify the statistics.
6475 */
6476static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6477{
6478	struct dev_priv *priv = netdev_priv(dev);
6479	struct dev_info *hw_priv = priv->adapter;
6480	struct ksz_hw *hw = &hw_priv->hw;
6481
6482	if (ETH_SS_STATS == stringset)
6483		memcpy(buf, &ethtool_stats_keys,
6484			ETH_GSTRING_LEN * hw->mib_cnt);
6485}
6486
6487/**
6488 * netdev_get_sset_count - get statistics size
6489 * @dev:	Network device.
6490 * @sset:	The statistics set number.
6491 *
6492 * This function returns the size of the statistics to be reported.
6493 *
6494 * Return size of the statistics to be reported.
6495 */
6496static int netdev_get_sset_count(struct net_device *dev, int sset)
6497{
6498	struct dev_priv *priv = netdev_priv(dev);
6499	struct dev_info *hw_priv = priv->adapter;
6500	struct ksz_hw *hw = &hw_priv->hw;
6501
6502	switch (sset) {
6503	case ETH_SS_STATS:
6504		return hw->mib_cnt;
6505	default:
6506		return -EOPNOTSUPP;
6507	}
6508}
6509
6510/**
6511 * netdev_get_ethtool_stats - get network device statistics
6512 * @dev:	Network device.
6513 * @stats:	Ethtool statistics data structure.
6514 * @data:	Buffer to store the statistics.
6515 *
6516 * This procedure returns the statistics.
6517 */
6518static void netdev_get_ethtool_stats(struct net_device *dev,
6519	struct ethtool_stats *stats, u64 *data)
6520{
6521	struct dev_priv *priv = netdev_priv(dev);
6522	struct dev_info *hw_priv = priv->adapter;
6523	struct ksz_hw *hw = &hw_priv->hw;
6524	struct ksz_port *port = &priv->port;
6525	int n_stats = stats->n_stats;
6526	int i;
6527	int n;
6528	int p;
6529	int rc;
6530	u64 counter[TOTAL_PORT_COUNTER_NUM];
6531
6532	mutex_lock(&hw_priv->lock);
6533	n = SWITCH_PORT_NUM;
6534	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6535		if (media_connected == hw->port_mib[p].state) {
6536			hw_priv->counter[p].read = 1;
6537
6538			/* Remember first port that requests read. */
6539			if (n == SWITCH_PORT_NUM)
6540				n = p;
6541		}
6542	}
6543	mutex_unlock(&hw_priv->lock);
6544
6545	if (n < SWITCH_PORT_NUM)
6546		schedule_work(&hw_priv->mib_read);
6547
6548	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6549		p = n;
6550		rc = wait_event_interruptible_timeout(
6551			hw_priv->counter[p].counter,
6552			2 == hw_priv->counter[p].read,
6553			HZ * 1);
6554	} else
6555		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6556			if (0 == i) {
6557				rc = wait_event_interruptible_timeout(
6558					hw_priv->counter[p].counter,
6559					2 == hw_priv->counter[p].read,
6560					HZ * 2);
6561			} else if (hw->port_mib[p].cnt_ptr) {
6562				rc = wait_event_interruptible_timeout(
6563					hw_priv->counter[p].counter,
6564					2 == hw_priv->counter[p].read,
6565					HZ * 1);
6566			}
6567		}
6568
6569	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6570	n = hw->mib_cnt;
6571	if (n > n_stats)
6572		n = n_stats;
6573	n_stats -= n;
6574	for (i = 0; i < n; i++)
6575		*data++ = counter[i];
6576}
6577
6578/**
6579 * netdev_set_features - set receive checksum support
6580 * @dev:	Network device.
6581 * @features:	New device features (offloads).
6582 *
6583 * This function sets receive checksum support setting.
6584 *
6585 * Return 0 if successful; otherwise an error code.
6586 */
6587static int netdev_set_features(struct net_device *dev,
6588	netdev_features_t features)
6589{
6590	struct dev_priv *priv = netdev_priv(dev);
6591	struct dev_info *hw_priv = priv->adapter;
6592	struct ksz_hw *hw = &hw_priv->hw;
6593
6594	mutex_lock(&hw_priv->lock);
6595
6596	/* see note in hw_setup() */
6597	if (features & NETIF_F_RXCSUM)
6598		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6599	else
6600		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6601
6602	if (hw->enabled)
6603		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6604
6605	mutex_unlock(&hw_priv->lock);
6606
6607	return 0;
6608}
6609
6610static const struct ethtool_ops netdev_ethtool_ops = {
6611	.get_settings		= netdev_get_settings,
6612	.set_settings		= netdev_set_settings,
6613	.nway_reset		= netdev_nway_reset,
6614	.get_link		= netdev_get_link,
6615	.get_drvinfo		= netdev_get_drvinfo,
6616	.get_regs_len		= netdev_get_regs_len,
6617	.get_regs		= netdev_get_regs,
6618	.get_wol		= netdev_get_wol,
6619	.set_wol		= netdev_set_wol,
6620	.get_msglevel		= netdev_get_msglevel,
6621	.set_msglevel		= netdev_set_msglevel,
6622	.get_eeprom_len		= netdev_get_eeprom_len,
6623	.get_eeprom		= netdev_get_eeprom,
6624	.set_eeprom		= netdev_set_eeprom,
6625	.get_pauseparam		= netdev_get_pauseparam,
6626	.set_pauseparam		= netdev_set_pauseparam,
6627	.get_ringparam		= netdev_get_ringparam,
6628	.get_strings		= netdev_get_strings,
6629	.get_sset_count		= netdev_get_sset_count,
6630	.get_ethtool_stats	= netdev_get_ethtool_stats,
 
 
6631};
6632
6633/*
6634 * Hardware monitoring
6635 */
6636
6637static void update_link(struct net_device *dev, struct dev_priv *priv,
6638	struct ksz_port *port)
6639{
6640	if (priv->media_state != port->linked->state) {
6641		priv->media_state = port->linked->state;
6642		if (netif_running(dev))
6643			set_media_state(dev, media_connected);
6644	}
6645}
6646
6647static void mib_read_work(struct work_struct *work)
6648{
6649	struct dev_info *hw_priv =
6650		container_of(work, struct dev_info, mib_read);
6651	struct ksz_hw *hw = &hw_priv->hw;
6652	struct ksz_port_mib *mib;
6653	int i;
6654
6655	next_jiffies = jiffies;
6656	for (i = 0; i < hw->mib_port_cnt; i++) {
6657		mib = &hw->port_mib[i];
6658
6659		/* Reading MIB counters or requested to read. */
6660		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6661
6662			/* Need to process receive interrupt. */
6663			if (port_r_cnt(hw, i))
6664				break;
6665			hw_priv->counter[i].read = 0;
6666
6667			/* Finish reading counters. */
6668			if (0 == mib->cnt_ptr) {
6669				hw_priv->counter[i].read = 2;
6670				wake_up_interruptible(
6671					&hw_priv->counter[i].counter);
6672			}
6673		} else if (jiffies >= hw_priv->counter[i].time) {
6674			/* Only read MIB counters when the port is connected. */
6675			if (media_connected == mib->state)
6676				hw_priv->counter[i].read = 1;
6677			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6678			hw_priv->counter[i].time = next_jiffies;
6679
6680		/* Port is just disconnected. */
6681		} else if (mib->link_down) {
6682			mib->link_down = 0;
6683
6684			/* Read counters one last time after link is lost. */
6685			hw_priv->counter[i].read = 1;
6686		}
6687	}
6688}
6689
6690static void mib_monitor(unsigned long ptr)
6691{
6692	struct dev_info *hw_priv = (struct dev_info *) ptr;
6693
6694	mib_read_work(&hw_priv->mib_read);
6695
6696	/* This is used to verify Wake-on-LAN is working. */
6697	if (hw_priv->pme_wait) {
6698		if (hw_priv->pme_wait <= jiffies) {
6699			hw_clr_wol_pme_status(&hw_priv->hw);
6700			hw_priv->pme_wait = 0;
6701		}
6702	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6703
6704		/* PME is asserted.  Wait 2 seconds to clear it. */
6705		hw_priv->pme_wait = jiffies + HZ * 2;
6706	}
6707
6708	ksz_update_timer(&hw_priv->mib_timer_info);
6709}
6710
6711/**
6712 * dev_monitor - periodic monitoring
6713 * @ptr:	Network device pointer.
6714 *
6715 * This routine is run in a kernel timer to monitor the network device.
6716 */
6717static void dev_monitor(unsigned long ptr)
6718{
6719	struct net_device *dev = (struct net_device *) ptr;
6720	struct dev_priv *priv = netdev_priv(dev);
6721	struct dev_info *hw_priv = priv->adapter;
6722	struct ksz_hw *hw = &hw_priv->hw;
6723	struct ksz_port *port = &priv->port;
6724
6725	if (!(hw->features & LINK_INT_WORKING))
6726		port_get_link_speed(port);
6727	update_link(dev, priv, port);
6728
6729	ksz_update_timer(&priv->monitor_timer_info);
6730}
6731
6732/*
6733 * Linux network device interface functions
6734 */
6735
6736/* Driver exported variables */
6737
6738static int msg_enable;
6739
6740static char *macaddr = ":";
6741static char *mac1addr = ":";
6742
6743/*
6744 * This enables multiple network device mode for KSZ8842, which contains a
6745 * switch with two physical ports.  Some users like to take control of the
6746 * ports for running Spanning Tree Protocol.  The driver will create an
6747 * additional eth? device for the other port.
6748 *
6749 * Some limitations are the network devices cannot have different MTU and
6750 * multicast hash tables.
6751 */
6752static int multi_dev;
6753
6754/*
6755 * As most users select multiple network device mode to use Spanning Tree
6756 * Protocol, this enables a feature in which most unicast and multicast packets
6757 * are forwarded inside the switch and not passed to the host.  Only packets
6758 * that need the host's attention are passed to it.  This prevents the host
6759 * wasting CPU time to examine each and every incoming packets and do the
6760 * forwarding itself.
6761 *
6762 * As the hack requires the private bridge header, the driver cannot compile
6763 * with just the kernel headers.
6764 *
6765 * Enabling STP support also turns on multiple network device mode.
6766 */
6767static int stp;
6768
6769/*
6770 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6771 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6772 * STP suport is enabled.
6773 */
6774static int fast_aging;
6775
6776/**
6777 * netdev_init - initialize network device.
6778 * @dev:	Network device.
6779 *
6780 * This function initializes the network device.
6781 *
6782 * Return 0 if successful; otherwise an error code indicating failure.
6783 */
6784static int __init netdev_init(struct net_device *dev)
6785{
6786	struct dev_priv *priv = netdev_priv(dev);
6787
6788	/* 500 ms timeout */
6789	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6790		dev_monitor, dev);
6791
6792	/* 500 ms timeout */
6793	dev->watchdog_timeo = HZ / 2;
6794
6795	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6796
6797	/*
6798	 * Hardware does not really support IPv6 checksum generation, but
6799	 * driver actually runs faster with this on.
6800	 */
6801	dev->hw_features |= NETIF_F_IPV6_CSUM;
6802
6803	dev->features |= dev->hw_features;
6804
6805	sema_init(&priv->proc_sem, 1);
6806
6807	priv->mii_if.phy_id_mask = 0x1;
6808	priv->mii_if.reg_num_mask = 0x7;
6809	priv->mii_if.dev = dev;
6810	priv->mii_if.mdio_read = mdio_read;
6811	priv->mii_if.mdio_write = mdio_write;
6812	priv->mii_if.phy_id = priv->port.first_port + 1;
6813
6814	priv->msg_enable = netif_msg_init(msg_enable,
6815		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6816
6817	return 0;
6818}
6819
6820static const struct net_device_ops netdev_ops = {
6821	.ndo_init		= netdev_init,
6822	.ndo_open		= netdev_open,
6823	.ndo_stop		= netdev_close,
6824	.ndo_get_stats		= netdev_query_statistics,
6825	.ndo_start_xmit		= netdev_tx,
6826	.ndo_tx_timeout		= netdev_tx_timeout,
6827	.ndo_change_mtu		= netdev_change_mtu,
6828	.ndo_set_features	= netdev_set_features,
6829	.ndo_set_mac_address	= netdev_set_mac_address,
6830	.ndo_validate_addr	= eth_validate_addr,
6831	.ndo_do_ioctl		= netdev_ioctl,
6832	.ndo_set_rx_mode	= netdev_set_rx_mode,
6833#ifdef CONFIG_NET_POLL_CONTROLLER
6834	.ndo_poll_controller	= netdev_netpoll,
6835#endif
6836};
6837
6838static void netdev_free(struct net_device *dev)
6839{
6840	if (dev->watchdog_timeo)
6841		unregister_netdev(dev);
6842
6843	free_netdev(dev);
6844}
6845
6846struct platform_info {
6847	struct dev_info dev_info;
6848	struct net_device *netdev[SWITCH_PORT_NUM];
6849};
6850
6851static int net_device_present;
6852
6853static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6854{
6855	int i;
6856	int j;
6857	int got_num;
6858	int num;
6859
6860	i = j = num = got_num = 0;
6861	while (j < ETH_ALEN) {
6862		if (macaddr[i]) {
6863			int digit;
6864
6865			got_num = 1;
6866			digit = hex_to_bin(macaddr[i]);
6867			if (digit >= 0)
6868				num = num * 16 + digit;
6869			else if (':' == macaddr[i])
6870				got_num = 2;
6871			else
6872				break;
6873		} else if (got_num)
6874			got_num = 2;
6875		else
6876			break;
6877		if (2 == got_num) {
6878			if (MAIN_PORT == port) {
6879				hw_priv->hw.override_addr[j++] = (u8) num;
6880				hw_priv->hw.override_addr[5] +=
6881					hw_priv->hw.id;
6882			} else {
6883				hw_priv->hw.ksz_switch->other_addr[j++] =
6884					(u8) num;
6885				hw_priv->hw.ksz_switch->other_addr[5] +=
6886					hw_priv->hw.id;
6887			}
6888			num = got_num = 0;
6889		}
6890		i++;
6891	}
6892	if (ETH_ALEN == j) {
6893		if (MAIN_PORT == port)
6894			hw_priv->hw.mac_override = 1;
6895	}
6896}
6897
6898#define KS884X_DMA_MASK			(~0x0UL)
6899
6900static void read_other_addr(struct ksz_hw *hw)
6901{
6902	int i;
6903	u16 data[3];
6904	struct ksz_switch *sw = hw->ksz_switch;
6905
6906	for (i = 0; i < 3; i++)
6907		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6908	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6909		sw->other_addr[5] = (u8) data[0];
6910		sw->other_addr[4] = (u8)(data[0] >> 8);
6911		sw->other_addr[3] = (u8) data[1];
6912		sw->other_addr[2] = (u8)(data[1] >> 8);
6913		sw->other_addr[1] = (u8) data[2];
6914		sw->other_addr[0] = (u8)(data[2] >> 8);
6915	}
6916}
6917
6918#ifndef PCI_VENDOR_ID_MICREL_KS
6919#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6920#endif
6921
6922static int __devinit pcidev_init(struct pci_dev *pdev,
6923	const struct pci_device_id *id)
6924{
6925	struct net_device *dev;
6926	struct dev_priv *priv;
6927	struct dev_info *hw_priv;
6928	struct ksz_hw *hw;
6929	struct platform_info *info;
6930	struct ksz_port *port;
6931	unsigned long reg_base;
6932	unsigned long reg_len;
6933	int cnt;
6934	int i;
6935	int mib_port_count;
6936	int pi;
6937	int port_count;
6938	int result;
6939	char banner[sizeof(version)];
6940	struct ksz_switch *sw = NULL;
6941
6942	result = pci_enable_device(pdev);
6943	if (result)
6944		return result;
6945
6946	result = -ENODEV;
6947
6948	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6949			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6950		return result;
6951
6952	reg_base = pci_resource_start(pdev, 0);
6953	reg_len = pci_resource_len(pdev, 0);
6954	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6955		return result;
6956
6957	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6958		return result;
6959	pci_set_master(pdev);
6960
6961	result = -ENOMEM;
6962
6963	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6964	if (!info)
6965		goto pcidev_init_dev_err;
6966
6967	hw_priv = &info->dev_info;
6968	hw_priv->pdev = pdev;
6969
6970	hw = &hw_priv->hw;
6971
6972	hw->io = ioremap(reg_base, reg_len);
6973	if (!hw->io)
6974		goto pcidev_init_io_err;
6975
6976	cnt = hw_init(hw);
6977	if (!cnt) {
6978		if (msg_enable & NETIF_MSG_PROBE)
6979			pr_alert("chip not detected\n");
6980		result = -ENODEV;
6981		goto pcidev_init_alloc_err;
6982	}
6983
6984	snprintf(banner, sizeof(banner), "%s", version);
6985	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6986	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6987	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6988
6989	/* Assume device is KSZ8841. */
6990	hw->dev_count = 1;
6991	port_count = 1;
6992	mib_port_count = 1;
6993	hw->addr_list_size = 0;
6994	hw->mib_cnt = PORT_COUNTER_NUM;
6995	hw->mib_port_cnt = 1;
6996
6997	/* KSZ8842 has a switch with multiple ports. */
6998	if (2 == cnt) {
6999		if (fast_aging)
7000			hw->overrides |= FAST_AGING;
7001
7002		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7003
7004		/* Multiple network device interfaces are required. */
7005		if (multi_dev) {
7006			hw->dev_count = SWITCH_PORT_NUM;
7007			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7008		}
7009
7010		/* Single network device has multiple ports. */
7011		if (1 == hw->dev_count) {
7012			port_count = SWITCH_PORT_NUM;
7013			mib_port_count = SWITCH_PORT_NUM;
7014		}
7015		hw->mib_port_cnt = TOTAL_PORT_NUM;
7016		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7017		if (!hw->ksz_switch)
7018			goto pcidev_init_alloc_err;
7019
7020		sw = hw->ksz_switch;
7021	}
7022	for (i = 0; i < hw->mib_port_cnt; i++)
7023		hw->port_mib[i].mib_start = 0;
7024
7025	hw->parent = hw_priv;
7026
7027	/* Default MTU is 1500. */
7028	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7029
7030	if (ksz_alloc_mem(hw_priv))
7031		goto pcidev_init_mem_err;
7032
7033	hw_priv->hw.id = net_device_present;
7034
7035	spin_lock_init(&hw_priv->hwlock);
7036	mutex_init(&hw_priv->lock);
7037
7038	/* tasklet is enabled. */
7039	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7040		(unsigned long) hw_priv);
7041	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7042		(unsigned long) hw_priv);
7043
7044	/* tasklet_enable will decrement the atomic counter. */
7045	tasklet_disable(&hw_priv->rx_tasklet);
7046	tasklet_disable(&hw_priv->tx_tasklet);
7047
7048	for (i = 0; i < TOTAL_PORT_NUM; i++)
7049		init_waitqueue_head(&hw_priv->counter[i].counter);
7050
7051	if (macaddr[0] != ':')
7052		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7053
7054	/* Read MAC address and initialize override address if not overrided. */
7055	hw_read_addr(hw);
7056
7057	/* Multiple device interfaces mode requires a second MAC address. */
7058	if (hw->dev_count > 1) {
7059		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7060		read_other_addr(hw);
7061		if (mac1addr[0] != ':')
7062			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7063	}
7064
7065	hw_setup(hw);
7066	if (hw->ksz_switch)
7067		sw_setup(hw);
7068	else {
7069		hw_priv->wol_support = WOL_SUPPORT;
7070		hw_priv->wol_enable = 0;
7071	}
7072
7073	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7074
7075	/* 500 ms timeout */
7076	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7077		mib_monitor, hw_priv);
7078
7079	for (i = 0; i < hw->dev_count; i++) {
7080		dev = alloc_etherdev(sizeof(struct dev_priv));
7081		if (!dev)
7082			goto pcidev_init_reg_err;
 
7083		info->netdev[i] = dev;
7084
7085		priv = netdev_priv(dev);
7086		priv->adapter = hw_priv;
7087		priv->id = net_device_present++;
7088
7089		port = &priv->port;
7090		port->port_cnt = port_count;
7091		port->mib_port_cnt = mib_port_count;
7092		port->first_port = i;
7093		port->flow_ctrl = PHY_FLOW_CTRL;
7094
7095		port->hw = hw;
7096		port->linked = &hw->port_info[port->first_port];
7097
7098		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7099			hw->port_info[pi].port_id = pi;
7100			hw->port_info[pi].pdev = dev;
7101			hw->port_info[pi].state = media_disconnected;
7102		}
7103
7104		dev->mem_start = (unsigned long) hw->io;
7105		dev->mem_end = dev->mem_start + reg_len - 1;
7106		dev->irq = pdev->irq;
7107		if (MAIN_PORT == i)
7108			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7109			       ETH_ALEN);
7110		else {
7111			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7112			if (!memcmp(sw->other_addr, hw->override_addr,
7113				    ETH_ALEN))
7114				dev->dev_addr[5] += port->first_port;
7115		}
7116
7117		dev->netdev_ops = &netdev_ops;
7118		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
 
 
 
 
 
 
7119		if (register_netdev(dev))
7120			goto pcidev_init_reg_err;
7121		port_set_power_saving(port, true);
7122	}
7123
7124	pci_dev_get(hw_priv->pdev);
7125	pci_set_drvdata(pdev, info);
7126	return 0;
7127
7128pcidev_init_reg_err:
7129	for (i = 0; i < hw->dev_count; i++) {
7130		if (info->netdev[i]) {
7131			netdev_free(info->netdev[i]);
7132			info->netdev[i] = NULL;
7133		}
7134	}
7135
7136pcidev_init_mem_err:
7137	ksz_free_mem(hw_priv);
7138	kfree(hw->ksz_switch);
7139
7140pcidev_init_alloc_err:
7141	iounmap(hw->io);
7142
7143pcidev_init_io_err:
7144	kfree(info);
7145
7146pcidev_init_dev_err:
7147	release_mem_region(reg_base, reg_len);
7148
7149	return result;
7150}
7151
7152static void pcidev_exit(struct pci_dev *pdev)
7153{
7154	int i;
7155	struct platform_info *info = pci_get_drvdata(pdev);
7156	struct dev_info *hw_priv = &info->dev_info;
7157
7158	pci_set_drvdata(pdev, NULL);
7159
7160	release_mem_region(pci_resource_start(pdev, 0),
7161		pci_resource_len(pdev, 0));
7162	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7163		if (info->netdev[i])
7164			netdev_free(info->netdev[i]);
7165	}
7166	if (hw_priv->hw.io)
7167		iounmap(hw_priv->hw.io);
7168	ksz_free_mem(hw_priv);
7169	kfree(hw_priv->hw.ksz_switch);
7170	pci_dev_put(hw_priv->pdev);
7171	kfree(info);
7172}
7173
7174#ifdef CONFIG_PM
7175static int pcidev_resume(struct pci_dev *pdev)
7176{
7177	int i;
7178	struct platform_info *info = pci_get_drvdata(pdev);
7179	struct dev_info *hw_priv = &info->dev_info;
7180	struct ksz_hw *hw = &hw_priv->hw;
7181
7182	pci_set_power_state(pdev, PCI_D0);
7183	pci_restore_state(pdev);
7184	pci_enable_wake(pdev, PCI_D0, 0);
7185
7186	if (hw_priv->wol_enable)
7187		hw_cfg_wol_pme(hw, 0);
7188	for (i = 0; i < hw->dev_count; i++) {
7189		if (info->netdev[i]) {
7190			struct net_device *dev = info->netdev[i];
7191
7192			if (netif_running(dev)) {
7193				netdev_open(dev);
7194				netif_device_attach(dev);
7195			}
7196		}
7197	}
7198	return 0;
7199}
7200
7201static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7202{
7203	int i;
7204	struct platform_info *info = pci_get_drvdata(pdev);
7205	struct dev_info *hw_priv = &info->dev_info;
7206	struct ksz_hw *hw = &hw_priv->hw;
7207
7208	/* Need to find a way to retrieve the device IP address. */
7209	static const u8 net_addr[] = { 192, 168, 1, 1 };
7210
7211	for (i = 0; i < hw->dev_count; i++) {
7212		if (info->netdev[i]) {
7213			struct net_device *dev = info->netdev[i];
7214
7215			if (netif_running(dev)) {
7216				netif_device_detach(dev);
7217				netdev_close(dev);
7218			}
7219		}
7220	}
7221	if (hw_priv->wol_enable) {
7222		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7223		hw_cfg_wol_pme(hw, 1);
7224	}
7225
7226	pci_save_state(pdev);
7227	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7228	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7229	return 0;
7230}
7231#endif
7232
7233static char pcidev_name[] = "ksz884xp";
7234
7235static struct pci_device_id pcidev_table[] = {
7236	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7237		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7238	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7239		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7240	{ 0 }
7241};
7242
7243MODULE_DEVICE_TABLE(pci, pcidev_table);
7244
7245static struct pci_driver pci_device_driver = {
7246#ifdef CONFIG_PM
7247	.suspend	= pcidev_suspend,
7248	.resume		= pcidev_resume,
7249#endif
7250	.name		= pcidev_name,
7251	.id_table	= pcidev_table,
7252	.probe		= pcidev_init,
7253	.remove		= pcidev_exit
7254};
7255
7256static int __init ksz884x_init_module(void)
7257{
7258	return pci_register_driver(&pci_device_driver);
7259}
7260
7261static void __exit ksz884x_cleanup_module(void)
7262{
7263	pci_unregister_driver(&pci_device_driver);
7264}
7265
7266module_init(ksz884x_init_module);
7267module_exit(ksz884x_cleanup_module);
7268
7269MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7270MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7271MODULE_LICENSE("GPL");
7272
7273module_param_named(message, msg_enable, int, 0);
7274MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7275
7276module_param(macaddr, charp, 0);
7277module_param(mac1addr, charp, 0);
7278module_param(fast_aging, int, 0);
7279module_param(multi_dev, int, 0);
7280module_param(stp, int, 0);
7281MODULE_PARM_DESC(macaddr, "MAC address");
7282MODULE_PARM_DESC(mac1addr, "Second MAC address");
7283MODULE_PARM_DESC(fast_aging, "Fast aging");
7284MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7285MODULE_PARM_DESC(stp, "STP support");