Loading...
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/sched/mm.h>
44#include <linux/sched/coredump.h>
45#include <linux/sched/numa_balancing.h>
46#include <linux/sched/task.h>
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
52#include <linux/memremap.h>
53#include <linux/ksm.h>
54#include <linux/rmap.h>
55#include <linux/export.h>
56#include <linux/delayacct.h>
57#include <linux/init.h>
58#include <linux/pfn_t.h>
59#include <linux/writeback.h>
60#include <linux/memcontrol.h>
61#include <linux/mmu_notifier.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
64#include <linux/gfp.h>
65#include <linux/migrate.h>
66#include <linux/string.h>
67#include <linux/dma-debug.h>
68#include <linux/debugfs.h>
69#include <linux/userfaultfd_k.h>
70#include <linux/dax.h>
71#include <linux/oom.h>
72
73#include <asm/io.h>
74#include <asm/mmu_context.h>
75#include <asm/pgalloc.h>
76#include <linux/uaccess.h>
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
81#include "internal.h"
82
83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85#endif
86
87#ifndef CONFIG_NEED_MULTIPLE_NODES
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
90EXPORT_SYMBOL(max_mapnr);
91
92struct page *mem_map;
93EXPORT_SYMBOL(mem_map);
94#endif
95
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103void *high_memory;
104EXPORT_SYMBOL(high_memory);
105
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
122 return 1;
123}
124__setup("norandmaps", disable_randmaps);
125
126unsigned long zero_pfn __read_mostly;
127EXPORT_SYMBOL(zero_pfn);
128
129unsigned long highest_memmap_pfn __read_mostly;
130
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
140
141
142#if defined(SPLIT_RSS_COUNTING)
143
144void sync_mm_rss(struct mm_struct *mm)
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177}
178#else /* SPLIT_RSS_COUNTING */
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
191static bool tlb_next_batch(struct mmu_gather *tlb)
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217}
218
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221{
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239}
240
241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242{
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250#endif
251 __tlb_reset_range(tlb);
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277{
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303{
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402/**
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
408 *
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
413 */
414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
416{
417 arch_tlb_gather_mmu(tlb, mm, start, end);
418 inc_tlb_flush_pending(tlb->mm);
419}
420
421void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
423{
424 /*
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
430 */
431 bool force = mm_tlb_flush_nested(tlb->mm);
432
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
435}
436
437/*
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
440 */
441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
443{
444 pgtable_t token = pmd_pgtable(*pmd);
445 pmd_clear(pmd);
446 pte_free_tlb(tlb, token, addr);
447 mm_dec_nr_ptes(tlb->mm);
448}
449
450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
453{
454 pmd_t *pmd;
455 unsigned long next;
456 unsigned long start;
457
458 start = addr;
459 pmd = pmd_offset(pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
464 free_pte_range(tlb, pmd, addr);
465 } while (pmd++, addr = next, addr != end);
466
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
474 }
475 if (end - 1 > ceiling - 1)
476 return;
477
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
480 pmd_free_tlb(tlb, pmd, start);
481 mm_dec_nr_pmds(tlb->mm);
482}
483
484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487{
488 pud_t *pud;
489 unsigned long next;
490 unsigned long start;
491
492 start = addr;
493 pud = pud_offset(p4d, addr);
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 } while (pud++, addr = next, addr != end);
500
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
508 }
509 if (end - 1 > ceiling - 1)
510 return;
511
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
515 mm_dec_nr_puds(tlb->mm);
516}
517
518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
521{
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
525
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
534
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
542 }
543 if (end - 1 > ceiling - 1)
544 return;
545
546 p4d = p4d_offset(pgd, start);
547 pgd_clear(pgd);
548 p4d_free_tlb(tlb, p4d, start);
549}
550
551/*
552 * This function frees user-level page tables of a process.
553 */
554void free_pgd_range(struct mmu_gather *tlb,
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
557{
558 pgd_t *pgd;
559 unsigned long next;
560
561 /*
562 * The next few lines have given us lots of grief...
563 *
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
567 *
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
575 *
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
580 *
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
585 */
586
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
592 }
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
597 }
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
602 /*
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
605 */
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 pgd = pgd_offset(tlb->mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 } while (pgd++, addr = next, addr != end);
614}
615
616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 unsigned long floor, unsigned long ceiling)
618{
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
622
623 /*
624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
626 */
627 unlink_anon_vmas(vma);
628 unlink_file_vma(vma);
629
630 if (is_vm_hugetlb_page(vma)) {
631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 floor, next ? next->vm_start : ceiling);
633 } else {
634 /*
635 * Optimization: gather nearby vmas into one call down
636 */
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 && !is_vm_hugetlb_page(next)) {
639 vma = next;
640 next = vma->vm_next;
641 unlink_anon_vmas(vma);
642 unlink_file_vma(vma);
643 }
644 free_pgd_range(tlb, addr, vma->vm_end,
645 floor, next ? next->vm_start : ceiling);
646 }
647 vma = next;
648 }
649}
650
651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652{
653 spinlock_t *ptl;
654 pgtable_t new = pte_alloc_one(mm, address);
655 if (!new)
656 return -ENOMEM;
657
658 /*
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
662 *
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
670 */
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
673 ptl = pmd_lock(mm, pmd);
674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
675 mm_inc_nr_ptes(mm);
676 pmd_populate(mm, pmd, new);
677 new = NULL;
678 }
679 spin_unlock(ptl);
680 if (new)
681 pte_free(mm, new);
682 return 0;
683}
684
685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686{
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
690
691 smp_wmb(); /* See comment in __pte_alloc */
692
693 spin_lock(&init_mm.page_table_lock);
694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
695 pmd_populate_kernel(&init_mm, pmd, new);
696 new = NULL;
697 }
698 spin_unlock(&init_mm.page_table_lock);
699 if (new)
700 pte_free_kernel(&init_mm, new);
701 return 0;
702}
703
704static inline void init_rss_vec(int *rss)
705{
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707}
708
709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710{
711 int i;
712
713 if (current->mm == mm)
714 sync_mm_rss(mm);
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
718}
719
720/*
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
724 *
725 * The calling function must still handle the error.
726 */
727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
729{
730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
739
740 /*
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
743 */
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
748 }
749 if (nr_unshown) {
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
752 nr_unshown = 0;
753 }
754 nr_shown = 0;
755 }
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
758
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
761
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 if (page)
766 dump_page(page, "bad pte");
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
774 dump_stack();
775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776}
777
778/*
779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
780 *
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
784 *
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
789 *
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
793 *
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
798 *
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 *
801 * And for normal mappings this is false.
802 *
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
807 *
808 *
809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810 *
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
818 *
819 */
820#ifdef __HAVE_ARCH_PTE_SPECIAL
821# define HAVE_PTE_SPECIAL 1
822#else
823# define HAVE_PTE_SPECIAL 0
824#endif
825struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
826 pte_t pte, bool with_public_device)
827{
828 unsigned long pfn = pte_pfn(pte);
829
830 if (HAVE_PTE_SPECIAL) {
831 if (likely(!pte_special(pte)))
832 goto check_pfn;
833 if (vma->vm_ops && vma->vm_ops->find_special_page)
834 return vma->vm_ops->find_special_page(vma, addr);
835 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
836 return NULL;
837 if (is_zero_pfn(pfn))
838 return NULL;
839
840 /*
841 * Device public pages are special pages (they are ZONE_DEVICE
842 * pages but different from persistent memory). They behave
843 * allmost like normal pages. The difference is that they are
844 * not on the lru and thus should never be involve with any-
845 * thing that involve lru manipulation (mlock, numa balancing,
846 * ...).
847 *
848 * This is why we still want to return NULL for such page from
849 * vm_normal_page() so that we do not have to special case all
850 * call site of vm_normal_page().
851 */
852 if (likely(pfn <= highest_memmap_pfn)) {
853 struct page *page = pfn_to_page(pfn);
854
855 if (is_device_public_page(page)) {
856 if (with_public_device)
857 return page;
858 return NULL;
859 }
860 }
861 print_bad_pte(vma, addr, pte, NULL);
862 return NULL;
863 }
864
865 /* !HAVE_PTE_SPECIAL case follows: */
866
867 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
868 if (vma->vm_flags & VM_MIXEDMAP) {
869 if (!pfn_valid(pfn))
870 return NULL;
871 goto out;
872 } else {
873 unsigned long off;
874 off = (addr - vma->vm_start) >> PAGE_SHIFT;
875 if (pfn == vma->vm_pgoff + off)
876 return NULL;
877 if (!is_cow_mapping(vma->vm_flags))
878 return NULL;
879 }
880 }
881
882 if (is_zero_pfn(pfn))
883 return NULL;
884check_pfn:
885 if (unlikely(pfn > highest_memmap_pfn)) {
886 print_bad_pte(vma, addr, pte, NULL);
887 return NULL;
888 }
889
890 /*
891 * NOTE! We still have PageReserved() pages in the page tables.
892 * eg. VDSO mappings can cause them to exist.
893 */
894out:
895 return pfn_to_page(pfn);
896}
897
898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
899struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t pmd)
901{
902 unsigned long pfn = pmd_pfn(pmd);
903
904 /*
905 * There is no pmd_special() but there may be special pmds, e.g.
906 * in a direct-access (dax) mapping, so let's just replicate the
907 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
908 */
909 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910 if (vma->vm_flags & VM_MIXEDMAP) {
911 if (!pfn_valid(pfn))
912 return NULL;
913 goto out;
914 } else {
915 unsigned long off;
916 off = (addr - vma->vm_start) >> PAGE_SHIFT;
917 if (pfn == vma->vm_pgoff + off)
918 return NULL;
919 if (!is_cow_mapping(vma->vm_flags))
920 return NULL;
921 }
922 }
923
924 if (is_zero_pfn(pfn))
925 return NULL;
926 if (unlikely(pfn > highest_memmap_pfn))
927 return NULL;
928
929 /*
930 * NOTE! We still have PageReserved() pages in the page tables.
931 * eg. VDSO mappings can cause them to exist.
932 */
933out:
934 return pfn_to_page(pfn);
935}
936#endif
937
938/*
939 * copy one vm_area from one task to the other. Assumes the page tables
940 * already present in the new task to be cleared in the whole range
941 * covered by this vma.
942 */
943
944static inline unsigned long
945copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
947 unsigned long addr, int *rss)
948{
949 unsigned long vm_flags = vma->vm_flags;
950 pte_t pte = *src_pte;
951 struct page *page;
952
953 /* pte contains position in swap or file, so copy. */
954 if (unlikely(!pte_present(pte))) {
955 swp_entry_t entry = pte_to_swp_entry(pte);
956
957 if (likely(!non_swap_entry(entry))) {
958 if (swap_duplicate(entry) < 0)
959 return entry.val;
960
961 /* make sure dst_mm is on swapoff's mmlist. */
962 if (unlikely(list_empty(&dst_mm->mmlist))) {
963 spin_lock(&mmlist_lock);
964 if (list_empty(&dst_mm->mmlist))
965 list_add(&dst_mm->mmlist,
966 &src_mm->mmlist);
967 spin_unlock(&mmlist_lock);
968 }
969 rss[MM_SWAPENTS]++;
970 } else if (is_migration_entry(entry)) {
971 page = migration_entry_to_page(entry);
972
973 rss[mm_counter(page)]++;
974
975 if (is_write_migration_entry(entry) &&
976 is_cow_mapping(vm_flags)) {
977 /*
978 * COW mappings require pages in both
979 * parent and child to be set to read.
980 */
981 make_migration_entry_read(&entry);
982 pte = swp_entry_to_pte(entry);
983 if (pte_swp_soft_dirty(*src_pte))
984 pte = pte_swp_mksoft_dirty(pte);
985 set_pte_at(src_mm, addr, src_pte, pte);
986 }
987 } else if (is_device_private_entry(entry)) {
988 page = device_private_entry_to_page(entry);
989
990 /*
991 * Update rss count even for unaddressable pages, as
992 * they should treated just like normal pages in this
993 * respect.
994 *
995 * We will likely want to have some new rss counters
996 * for unaddressable pages, at some point. But for now
997 * keep things as they are.
998 */
999 get_page(page);
1000 rss[mm_counter(page)]++;
1001 page_dup_rmap(page, false);
1002
1003 /*
1004 * We do not preserve soft-dirty information, because so
1005 * far, checkpoint/restore is the only feature that
1006 * requires that. And checkpoint/restore does not work
1007 * when a device driver is involved (you cannot easily
1008 * save and restore device driver state).
1009 */
1010 if (is_write_device_private_entry(entry) &&
1011 is_cow_mapping(vm_flags)) {
1012 make_device_private_entry_read(&entry);
1013 pte = swp_entry_to_pte(entry);
1014 set_pte_at(src_mm, addr, src_pte, pte);
1015 }
1016 }
1017 goto out_set_pte;
1018 }
1019
1020 /*
1021 * If it's a COW mapping, write protect it both
1022 * in the parent and the child
1023 */
1024 if (is_cow_mapping(vm_flags)) {
1025 ptep_set_wrprotect(src_mm, addr, src_pte);
1026 pte = pte_wrprotect(pte);
1027 }
1028
1029 /*
1030 * If it's a shared mapping, mark it clean in
1031 * the child
1032 */
1033 if (vm_flags & VM_SHARED)
1034 pte = pte_mkclean(pte);
1035 pte = pte_mkold(pte);
1036
1037 page = vm_normal_page(vma, addr, pte);
1038 if (page) {
1039 get_page(page);
1040 page_dup_rmap(page, false);
1041 rss[mm_counter(page)]++;
1042 } else if (pte_devmap(pte)) {
1043 page = pte_page(pte);
1044
1045 /*
1046 * Cache coherent device memory behave like regular page and
1047 * not like persistent memory page. For more informations see
1048 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049 */
1050 if (is_device_public_page(page)) {
1051 get_page(page);
1052 page_dup_rmap(page, false);
1053 rss[mm_counter(page)]++;
1054 }
1055 }
1056
1057out_set_pte:
1058 set_pte_at(dst_mm, addr, dst_pte, pte);
1059 return 0;
1060}
1061
1062static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064 unsigned long addr, unsigned long end)
1065{
1066 pte_t *orig_src_pte, *orig_dst_pte;
1067 pte_t *src_pte, *dst_pte;
1068 spinlock_t *src_ptl, *dst_ptl;
1069 int progress = 0;
1070 int rss[NR_MM_COUNTERS];
1071 swp_entry_t entry = (swp_entry_t){0};
1072
1073again:
1074 init_rss_vec(rss);
1075
1076 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077 if (!dst_pte)
1078 return -ENOMEM;
1079 src_pte = pte_offset_map(src_pmd, addr);
1080 src_ptl = pte_lockptr(src_mm, src_pmd);
1081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082 orig_src_pte = src_pte;
1083 orig_dst_pte = dst_pte;
1084 arch_enter_lazy_mmu_mode();
1085
1086 do {
1087 /*
1088 * We are holding two locks at this point - either of them
1089 * could generate latencies in another task on another CPU.
1090 */
1091 if (progress >= 32) {
1092 progress = 0;
1093 if (need_resched() ||
1094 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095 break;
1096 }
1097 if (pte_none(*src_pte)) {
1098 progress++;
1099 continue;
1100 }
1101 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102 vma, addr, rss);
1103 if (entry.val)
1104 break;
1105 progress += 8;
1106 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107
1108 arch_leave_lazy_mmu_mode();
1109 spin_unlock(src_ptl);
1110 pte_unmap(orig_src_pte);
1111 add_mm_rss_vec(dst_mm, rss);
1112 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113 cond_resched();
1114
1115 if (entry.val) {
1116 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117 return -ENOMEM;
1118 progress = 0;
1119 }
1120 if (addr != end)
1121 goto again;
1122 return 0;
1123}
1124
1125static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127 unsigned long addr, unsigned long end)
1128{
1129 pmd_t *src_pmd, *dst_pmd;
1130 unsigned long next;
1131
1132 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 if (!dst_pmd)
1134 return -ENOMEM;
1135 src_pmd = pmd_offset(src_pud, addr);
1136 do {
1137 next = pmd_addr_end(addr, end);
1138 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139 || pmd_devmap(*src_pmd)) {
1140 int err;
1141 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142 err = copy_huge_pmd(dst_mm, src_mm,
1143 dst_pmd, src_pmd, addr, vma);
1144 if (err == -ENOMEM)
1145 return -ENOMEM;
1146 if (!err)
1147 continue;
1148 /* fall through */
1149 }
1150 if (pmd_none_or_clear_bad(src_pmd))
1151 continue;
1152 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153 vma, addr, next))
1154 return -ENOMEM;
1155 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156 return 0;
1157}
1158
1159static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161 unsigned long addr, unsigned long end)
1162{
1163 pud_t *src_pud, *dst_pud;
1164 unsigned long next;
1165
1166 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167 if (!dst_pud)
1168 return -ENOMEM;
1169 src_pud = pud_offset(src_p4d, addr);
1170 do {
1171 next = pud_addr_end(addr, end);
1172 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173 int err;
1174
1175 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176 err = copy_huge_pud(dst_mm, src_mm,
1177 dst_pud, src_pud, addr, vma);
1178 if (err == -ENOMEM)
1179 return -ENOMEM;
1180 if (!err)
1181 continue;
1182 /* fall through */
1183 }
1184 if (pud_none_or_clear_bad(src_pud))
1185 continue;
1186 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187 vma, addr, next))
1188 return -ENOMEM;
1189 } while (dst_pud++, src_pud++, addr = next, addr != end);
1190 return 0;
1191}
1192
1193static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195 unsigned long addr, unsigned long end)
1196{
1197 p4d_t *src_p4d, *dst_p4d;
1198 unsigned long next;
1199
1200 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201 if (!dst_p4d)
1202 return -ENOMEM;
1203 src_p4d = p4d_offset(src_pgd, addr);
1204 do {
1205 next = p4d_addr_end(addr, end);
1206 if (p4d_none_or_clear_bad(src_p4d))
1207 continue;
1208 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209 vma, addr, next))
1210 return -ENOMEM;
1211 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212 return 0;
1213}
1214
1215int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 struct vm_area_struct *vma)
1217{
1218 pgd_t *src_pgd, *dst_pgd;
1219 unsigned long next;
1220 unsigned long addr = vma->vm_start;
1221 unsigned long end = vma->vm_end;
1222 unsigned long mmun_start; /* For mmu_notifiers */
1223 unsigned long mmun_end; /* For mmu_notifiers */
1224 bool is_cow;
1225 int ret;
1226
1227 /*
1228 * Don't copy ptes where a page fault will fill them correctly.
1229 * Fork becomes much lighter when there are big shared or private
1230 * readonly mappings. The tradeoff is that copy_page_range is more
1231 * efficient than faulting.
1232 */
1233 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234 !vma->anon_vma)
1235 return 0;
1236
1237 if (is_vm_hugetlb_page(vma))
1238 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
1240 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241 /*
1242 * We do not free on error cases below as remove_vma
1243 * gets called on error from higher level routine
1244 */
1245 ret = track_pfn_copy(vma);
1246 if (ret)
1247 return ret;
1248 }
1249
1250 /*
1251 * We need to invalidate the secondary MMU mappings only when
1252 * there could be a permission downgrade on the ptes of the
1253 * parent mm. And a permission downgrade will only happen if
1254 * is_cow_mapping() returns true.
1255 */
1256 is_cow = is_cow_mapping(vma->vm_flags);
1257 mmun_start = addr;
1258 mmun_end = end;
1259 if (is_cow)
1260 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261 mmun_end);
1262
1263 ret = 0;
1264 dst_pgd = pgd_offset(dst_mm, addr);
1265 src_pgd = pgd_offset(src_mm, addr);
1266 do {
1267 next = pgd_addr_end(addr, end);
1268 if (pgd_none_or_clear_bad(src_pgd))
1269 continue;
1270 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271 vma, addr, next))) {
1272 ret = -ENOMEM;
1273 break;
1274 }
1275 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276
1277 if (is_cow)
1278 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279 return ret;
1280}
1281
1282static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283 struct vm_area_struct *vma, pmd_t *pmd,
1284 unsigned long addr, unsigned long end,
1285 struct zap_details *details)
1286{
1287 struct mm_struct *mm = tlb->mm;
1288 int force_flush = 0;
1289 int rss[NR_MM_COUNTERS];
1290 spinlock_t *ptl;
1291 pte_t *start_pte;
1292 pte_t *pte;
1293 swp_entry_t entry;
1294
1295 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296again:
1297 init_rss_vec(rss);
1298 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299 pte = start_pte;
1300 flush_tlb_batched_pending(mm);
1301 arch_enter_lazy_mmu_mode();
1302 do {
1303 pte_t ptent = *pte;
1304 if (pte_none(ptent))
1305 continue;
1306
1307 if (pte_present(ptent)) {
1308 struct page *page;
1309
1310 page = _vm_normal_page(vma, addr, ptent, true);
1311 if (unlikely(details) && page) {
1312 /*
1313 * unmap_shared_mapping_pages() wants to
1314 * invalidate cache without truncating:
1315 * unmap shared but keep private pages.
1316 */
1317 if (details->check_mapping &&
1318 details->check_mapping != page_rmapping(page))
1319 continue;
1320 }
1321 ptent = ptep_get_and_clear_full(mm, addr, pte,
1322 tlb->fullmm);
1323 tlb_remove_tlb_entry(tlb, pte, addr);
1324 if (unlikely(!page))
1325 continue;
1326
1327 if (!PageAnon(page)) {
1328 if (pte_dirty(ptent)) {
1329 force_flush = 1;
1330 set_page_dirty(page);
1331 }
1332 if (pte_young(ptent) &&
1333 likely(!(vma->vm_flags & VM_SEQ_READ)))
1334 mark_page_accessed(page);
1335 }
1336 rss[mm_counter(page)]--;
1337 page_remove_rmap(page, false);
1338 if (unlikely(page_mapcount(page) < 0))
1339 print_bad_pte(vma, addr, ptent, page);
1340 if (unlikely(__tlb_remove_page(tlb, page))) {
1341 force_flush = 1;
1342 addr += PAGE_SIZE;
1343 break;
1344 }
1345 continue;
1346 }
1347
1348 entry = pte_to_swp_entry(ptent);
1349 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350 struct page *page = device_private_entry_to_page(entry);
1351
1352 if (unlikely(details && details->check_mapping)) {
1353 /*
1354 * unmap_shared_mapping_pages() wants to
1355 * invalidate cache without truncating:
1356 * unmap shared but keep private pages.
1357 */
1358 if (details->check_mapping !=
1359 page_rmapping(page))
1360 continue;
1361 }
1362
1363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 rss[mm_counter(page)]--;
1365 page_remove_rmap(page, false);
1366 put_page(page);
1367 continue;
1368 }
1369
1370 /* If details->check_mapping, we leave swap entries. */
1371 if (unlikely(details))
1372 continue;
1373
1374 entry = pte_to_swp_entry(ptent);
1375 if (!non_swap_entry(entry))
1376 rss[MM_SWAPENTS]--;
1377 else if (is_migration_entry(entry)) {
1378 struct page *page;
1379
1380 page = migration_entry_to_page(entry);
1381 rss[mm_counter(page)]--;
1382 }
1383 if (unlikely(!free_swap_and_cache(entry)))
1384 print_bad_pte(vma, addr, ptent, NULL);
1385 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386 } while (pte++, addr += PAGE_SIZE, addr != end);
1387
1388 add_mm_rss_vec(mm, rss);
1389 arch_leave_lazy_mmu_mode();
1390
1391 /* Do the actual TLB flush before dropping ptl */
1392 if (force_flush)
1393 tlb_flush_mmu_tlbonly(tlb);
1394 pte_unmap_unlock(start_pte, ptl);
1395
1396 /*
1397 * If we forced a TLB flush (either due to running out of
1398 * batch buffers or because we needed to flush dirty TLB
1399 * entries before releasing the ptl), free the batched
1400 * memory too. Restart if we didn't do everything.
1401 */
1402 if (force_flush) {
1403 force_flush = 0;
1404 tlb_flush_mmu_free(tlb);
1405 if (addr != end)
1406 goto again;
1407 }
1408
1409 return addr;
1410}
1411
1412static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413 struct vm_area_struct *vma, pud_t *pud,
1414 unsigned long addr, unsigned long end,
1415 struct zap_details *details)
1416{
1417 pmd_t *pmd;
1418 unsigned long next;
1419
1420 pmd = pmd_offset(pud, addr);
1421 do {
1422 next = pmd_addr_end(addr, end);
1423 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424 if (next - addr != HPAGE_PMD_SIZE) {
1425 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427 __split_huge_pmd(vma, pmd, addr, false, NULL);
1428 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429 goto next;
1430 /* fall through */
1431 }
1432 /*
1433 * Here there can be other concurrent MADV_DONTNEED or
1434 * trans huge page faults running, and if the pmd is
1435 * none or trans huge it can change under us. This is
1436 * because MADV_DONTNEED holds the mmap_sem in read
1437 * mode.
1438 */
1439 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 goto next;
1441 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442next:
1443 cond_resched();
1444 } while (pmd++, addr = next, addr != end);
1445
1446 return addr;
1447}
1448
1449static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450 struct vm_area_struct *vma, p4d_t *p4d,
1451 unsigned long addr, unsigned long end,
1452 struct zap_details *details)
1453{
1454 pud_t *pud;
1455 unsigned long next;
1456
1457 pud = pud_offset(p4d, addr);
1458 do {
1459 next = pud_addr_end(addr, end);
1460 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 if (next - addr != HPAGE_PUD_SIZE) {
1462 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 split_huge_pud(vma, pud, addr);
1464 } else if (zap_huge_pud(tlb, vma, pud, addr))
1465 goto next;
1466 /* fall through */
1467 }
1468 if (pud_none_or_clear_bad(pud))
1469 continue;
1470 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471next:
1472 cond_resched();
1473 } while (pud++, addr = next, addr != end);
1474
1475 return addr;
1476}
1477
1478static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 struct vm_area_struct *vma, pgd_t *pgd,
1480 unsigned long addr, unsigned long end,
1481 struct zap_details *details)
1482{
1483 p4d_t *p4d;
1484 unsigned long next;
1485
1486 p4d = p4d_offset(pgd, addr);
1487 do {
1488 next = p4d_addr_end(addr, end);
1489 if (p4d_none_or_clear_bad(p4d))
1490 continue;
1491 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 } while (p4d++, addr = next, addr != end);
1493
1494 return addr;
1495}
1496
1497void unmap_page_range(struct mmu_gather *tlb,
1498 struct vm_area_struct *vma,
1499 unsigned long addr, unsigned long end,
1500 struct zap_details *details)
1501{
1502 pgd_t *pgd;
1503 unsigned long next;
1504
1505 BUG_ON(addr >= end);
1506 tlb_start_vma(tlb, vma);
1507 pgd = pgd_offset(vma->vm_mm, addr);
1508 do {
1509 next = pgd_addr_end(addr, end);
1510 if (pgd_none_or_clear_bad(pgd))
1511 continue;
1512 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513 } while (pgd++, addr = next, addr != end);
1514 tlb_end_vma(tlb, vma);
1515}
1516
1517
1518static void unmap_single_vma(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, unsigned long start_addr,
1520 unsigned long end_addr,
1521 struct zap_details *details)
1522{
1523 unsigned long start = max(vma->vm_start, start_addr);
1524 unsigned long end;
1525
1526 if (start >= vma->vm_end)
1527 return;
1528 end = min(vma->vm_end, end_addr);
1529 if (end <= vma->vm_start)
1530 return;
1531
1532 if (vma->vm_file)
1533 uprobe_munmap(vma, start, end);
1534
1535 if (unlikely(vma->vm_flags & VM_PFNMAP))
1536 untrack_pfn(vma, 0, 0);
1537
1538 if (start != end) {
1539 if (unlikely(is_vm_hugetlb_page(vma))) {
1540 /*
1541 * It is undesirable to test vma->vm_file as it
1542 * should be non-null for valid hugetlb area.
1543 * However, vm_file will be NULL in the error
1544 * cleanup path of mmap_region. When
1545 * hugetlbfs ->mmap method fails,
1546 * mmap_region() nullifies vma->vm_file
1547 * before calling this function to clean up.
1548 * Since no pte has actually been setup, it is
1549 * safe to do nothing in this case.
1550 */
1551 if (vma->vm_file) {
1552 i_mmap_lock_write(vma->vm_file->f_mapping);
1553 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554 i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 }
1556 } else
1557 unmap_page_range(tlb, vma, start, end, details);
1558 }
1559}
1560
1561/**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
1563 * @tlb: address of the caller's struct mmu_gather
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
1567 *
1568 * Unmap all pages in the vma list.
1569 *
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns. So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
1579void unmap_vmas(struct mmu_gather *tlb,
1580 struct vm_area_struct *vma, unsigned long start_addr,
1581 unsigned long end_addr)
1582{
1583 struct mm_struct *mm = vma->vm_mm;
1584
1585 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589}
1590
1591/**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
1594 * @start: starting address of pages to zap
1595 * @size: number of bytes to zap
1596 *
1597 * Caller must protect the VMA list
1598 */
1599void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600 unsigned long size)
1601{
1602 struct mm_struct *mm = vma->vm_mm;
1603 struct mmu_gather tlb;
1604 unsigned long end = start + size;
1605
1606 lru_add_drain();
1607 tlb_gather_mmu(&tlb, mm, start, end);
1608 update_hiwater_rss(mm);
1609 mmu_notifier_invalidate_range_start(mm, start, end);
1610 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611 unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613 /*
1614 * zap_page_range does not specify whether mmap_sem should be
1615 * held for read or write. That allows parallel zap_page_range
1616 * operations to unmap a PTE and defer a flush meaning that
1617 * this call observes pte_none and fails to flush the TLB.
1618 * Rather than adding a complex API, ensure that no stale
1619 * TLB entries exist when this call returns.
1620 */
1621 flush_tlb_range(vma, start, end);
1622 }
1623
1624 mmu_notifier_invalidate_range_end(mm, start, end);
1625 tlb_finish_mmu(&tlb, start, end);
1626}
1627
1628/**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
1633 * @details: details of shared cache invalidation
1634 *
1635 * The range must fit into one VMA.
1636 */
1637static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638 unsigned long size, struct zap_details *details)
1639{
1640 struct mm_struct *mm = vma->vm_mm;
1641 struct mmu_gather tlb;
1642 unsigned long end = address + size;
1643
1644 lru_add_drain();
1645 tlb_gather_mmu(&tlb, mm, address, end);
1646 update_hiwater_rss(mm);
1647 mmu_notifier_invalidate_range_start(mm, address, end);
1648 unmap_single_vma(&tlb, vma, address, end, details);
1649 mmu_notifier_invalidate_range_end(mm, address, end);
1650 tlb_finish_mmu(&tlb, address, end);
1651}
1652
1653/**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
1663 * Returns 0 if successful.
1664 */
1665int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666 unsigned long size)
1667{
1668 if (address < vma->vm_start || address + size > vma->vm_end ||
1669 !(vma->vm_flags & VM_PFNMAP))
1670 return -1;
1671 zap_page_range_single(vma, address, size, NULL);
1672 return 0;
1673}
1674EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675
1676pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677 spinlock_t **ptl)
1678{
1679 pgd_t *pgd;
1680 p4d_t *p4d;
1681 pud_t *pud;
1682 pmd_t *pmd;
1683
1684 pgd = pgd_offset(mm, addr);
1685 p4d = p4d_alloc(mm, pgd, addr);
1686 if (!p4d)
1687 return NULL;
1688 pud = pud_alloc(mm, p4d, addr);
1689 if (!pud)
1690 return NULL;
1691 pmd = pmd_alloc(mm, pud, addr);
1692 if (!pmd)
1693 return NULL;
1694
1695 VM_BUG_ON(pmd_trans_huge(*pmd));
1696 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697}
1698
1699/*
1700 * This is the old fallback for page remapping.
1701 *
1702 * For historical reasons, it only allows reserved pages. Only
1703 * old drivers should use this, and they needed to mark their
1704 * pages reserved for the old functions anyway.
1705 */
1706static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 struct page *page, pgprot_t prot)
1708{
1709 struct mm_struct *mm = vma->vm_mm;
1710 int retval;
1711 pte_t *pte;
1712 spinlock_t *ptl;
1713
1714 retval = -EINVAL;
1715 if (PageAnon(page))
1716 goto out;
1717 retval = -ENOMEM;
1718 flush_dcache_page(page);
1719 pte = get_locked_pte(mm, addr, &ptl);
1720 if (!pte)
1721 goto out;
1722 retval = -EBUSY;
1723 if (!pte_none(*pte))
1724 goto out_unlock;
1725
1726 /* Ok, finally just insert the thing.. */
1727 get_page(page);
1728 inc_mm_counter_fast(mm, mm_counter_file(page));
1729 page_add_file_rmap(page, false);
1730 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731
1732 retval = 0;
1733 pte_unmap_unlock(pte, ptl);
1734 return retval;
1735out_unlock:
1736 pte_unmap_unlock(pte, ptl);
1737out:
1738 return retval;
1739}
1740
1741/**
1742 * vm_insert_page - insert single page into user vma
1743 * @vma: user vma to map to
1744 * @addr: target user address of this page
1745 * @page: source kernel page
1746 *
1747 * This allows drivers to insert individual pages they've allocated
1748 * into a user vma.
1749 *
1750 * The page has to be a nice clean _individual_ kernel allocation.
1751 * If you allocate a compound page, you need to have marked it as
1752 * such (__GFP_COMP), or manually just split the page up yourself
1753 * (see split_page()).
1754 *
1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756 * took an arbitrary page protection parameter. This doesn't allow
1757 * that. Your vma protection will have to be set up correctly, which
1758 * means that if you want a shared writable mapping, you'd better
1759 * ask for a shared writable mapping!
1760 *
1761 * The page does not need to be reserved.
1762 *
1763 * Usually this function is called from f_op->mmap() handler
1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766 * function from other places, for example from page-fault handler.
1767 */
1768int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 struct page *page)
1770{
1771 if (addr < vma->vm_start || addr >= vma->vm_end)
1772 return -EFAULT;
1773 if (!page_count(page))
1774 return -EINVAL;
1775 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777 BUG_ON(vma->vm_flags & VM_PFNMAP);
1778 vma->vm_flags |= VM_MIXEDMAP;
1779 }
1780 return insert_page(vma, addr, page, vma->vm_page_prot);
1781}
1782EXPORT_SYMBOL(vm_insert_page);
1783
1784static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785 pfn_t pfn, pgprot_t prot, bool mkwrite)
1786{
1787 struct mm_struct *mm = vma->vm_mm;
1788 int retval;
1789 pte_t *pte, entry;
1790 spinlock_t *ptl;
1791
1792 retval = -ENOMEM;
1793 pte = get_locked_pte(mm, addr, &ptl);
1794 if (!pte)
1795 goto out;
1796 retval = -EBUSY;
1797 if (!pte_none(*pte)) {
1798 if (mkwrite) {
1799 /*
1800 * For read faults on private mappings the PFN passed
1801 * in may not match the PFN we have mapped if the
1802 * mapped PFN is a writeable COW page. In the mkwrite
1803 * case we are creating a writable PTE for a shared
1804 * mapping and we expect the PFNs to match.
1805 */
1806 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807 goto out_unlock;
1808 entry = *pte;
1809 goto out_mkwrite;
1810 } else
1811 goto out_unlock;
1812 }
1813
1814 /* Ok, finally just insert the thing.. */
1815 if (pfn_t_devmap(pfn))
1816 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817 else
1818 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819
1820out_mkwrite:
1821 if (mkwrite) {
1822 entry = pte_mkyoung(entry);
1823 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 }
1825
1826 set_pte_at(mm, addr, pte, entry);
1827 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828
1829 retval = 0;
1830out_unlock:
1831 pte_unmap_unlock(pte, ptl);
1832out:
1833 return retval;
1834}
1835
1836/**
1837 * vm_insert_pfn - insert single pfn into user vma
1838 * @vma: user vma to map to
1839 * @addr: target user address of this page
1840 * @pfn: source kernel pfn
1841 *
1842 * Similar to vm_insert_page, this allows drivers to insert individual pages
1843 * they've allocated into a user vma. Same comments apply.
1844 *
1845 * This function should only be called from a vm_ops->fault handler, and
1846 * in that case the handler should return NULL.
1847 *
1848 * vma cannot be a COW mapping.
1849 *
1850 * As this is called only for pages that do not currently exist, we
1851 * do not need to flush old virtual caches or the TLB.
1852 */
1853int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854 unsigned long pfn)
1855{
1856 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857}
1858EXPORT_SYMBOL(vm_insert_pfn);
1859
1860/**
1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862 * @vma: user vma to map to
1863 * @addr: target user address of this page
1864 * @pfn: source kernel pfn
1865 * @pgprot: pgprot flags for the inserted page
1866 *
1867 * This is exactly like vm_insert_pfn, except that it allows drivers to
1868 * to override pgprot on a per-page basis.
1869 *
1870 * This only makes sense for IO mappings, and it makes no sense for
1871 * cow mappings. In general, using multiple vmas is preferable;
1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873 * impractical.
1874 */
1875int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876 unsigned long pfn, pgprot_t pgprot)
1877{
1878 int ret;
1879 /*
1880 * Technically, architectures with pte_special can avoid all these
1881 * restrictions (same for remap_pfn_range). However we would like
1882 * consistency in testing and feature parity among all, so we should
1883 * try to keep these invariants in place for everybody.
1884 */
1885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887 (VM_PFNMAP|VM_MIXEDMAP));
1888 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890
1891 if (addr < vma->vm_start || addr >= vma->vm_end)
1892 return -EFAULT;
1893
1894 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895
1896 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897 false);
1898
1899 return ret;
1900}
1901EXPORT_SYMBOL(vm_insert_pfn_prot);
1902
1903static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904{
1905 /* these checks mirror the abort conditions in vm_normal_page */
1906 if (vma->vm_flags & VM_MIXEDMAP)
1907 return true;
1908 if (pfn_t_devmap(pfn))
1909 return true;
1910 if (pfn_t_special(pfn))
1911 return true;
1912 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913 return true;
1914 return false;
1915}
1916
1917static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918 pfn_t pfn, bool mkwrite)
1919{
1920 pgprot_t pgprot = vma->vm_page_prot;
1921
1922 BUG_ON(!vm_mixed_ok(vma, pfn));
1923
1924 if (addr < vma->vm_start || addr >= vma->vm_end)
1925 return -EFAULT;
1926
1927 track_pfn_insert(vma, &pgprot, pfn);
1928
1929 /*
1930 * If we don't have pte special, then we have to use the pfn_valid()
1931 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 * refcount the page if pfn_valid is true (hence insert_page rather
1933 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1934 * without pte special, it would there be refcounted as a normal page.
1935 */
1936 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 struct page *page;
1938
1939 /*
1940 * At this point we are committed to insert_page()
1941 * regardless of whether the caller specified flags that
1942 * result in pfn_t_has_page() == false.
1943 */
1944 page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 return insert_page(vma, addr, page, pgprot);
1946 }
1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948}
1949
1950int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 pfn_t pfn)
1952{
1953 return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955}
1956EXPORT_SYMBOL(vm_insert_mixed);
1957
1958int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959 pfn_t pfn)
1960{
1961 return __vm_insert_mixed(vma, addr, pfn, true);
1962}
1963EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964
1965/*
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1969 */
1970static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971 unsigned long addr, unsigned long end,
1972 unsigned long pfn, pgprot_t prot)
1973{
1974 pte_t *pte;
1975 spinlock_t *ptl;
1976
1977 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978 if (!pte)
1979 return -ENOMEM;
1980 arch_enter_lazy_mmu_mode();
1981 do {
1982 BUG_ON(!pte_none(*pte));
1983 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984 pfn++;
1985 } while (pte++, addr += PAGE_SIZE, addr != end);
1986 arch_leave_lazy_mmu_mode();
1987 pte_unmap_unlock(pte - 1, ptl);
1988 return 0;
1989}
1990
1991static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992 unsigned long addr, unsigned long end,
1993 unsigned long pfn, pgprot_t prot)
1994{
1995 pmd_t *pmd;
1996 unsigned long next;
1997
1998 pfn -= addr >> PAGE_SHIFT;
1999 pmd = pmd_alloc(mm, pud, addr);
2000 if (!pmd)
2001 return -ENOMEM;
2002 VM_BUG_ON(pmd_trans_huge(*pmd));
2003 do {
2004 next = pmd_addr_end(addr, end);
2005 if (remap_pte_range(mm, pmd, addr, next,
2006 pfn + (addr >> PAGE_SHIFT), prot))
2007 return -ENOMEM;
2008 } while (pmd++, addr = next, addr != end);
2009 return 0;
2010}
2011
2012static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013 unsigned long addr, unsigned long end,
2014 unsigned long pfn, pgprot_t prot)
2015{
2016 pud_t *pud;
2017 unsigned long next;
2018
2019 pfn -= addr >> PAGE_SHIFT;
2020 pud = pud_alloc(mm, p4d, addr);
2021 if (!pud)
2022 return -ENOMEM;
2023 do {
2024 next = pud_addr_end(addr, end);
2025 if (remap_pmd_range(mm, pud, addr, next,
2026 pfn + (addr >> PAGE_SHIFT), prot))
2027 return -ENOMEM;
2028 } while (pud++, addr = next, addr != end);
2029 return 0;
2030}
2031
2032static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033 unsigned long addr, unsigned long end,
2034 unsigned long pfn, pgprot_t prot)
2035{
2036 p4d_t *p4d;
2037 unsigned long next;
2038
2039 pfn -= addr >> PAGE_SHIFT;
2040 p4d = p4d_alloc(mm, pgd, addr);
2041 if (!p4d)
2042 return -ENOMEM;
2043 do {
2044 next = p4d_addr_end(addr, end);
2045 if (remap_pud_range(mm, p4d, addr, next,
2046 pfn + (addr >> PAGE_SHIFT), prot))
2047 return -ENOMEM;
2048 } while (p4d++, addr = next, addr != end);
2049 return 0;
2050}
2051
2052/**
2053 * remap_pfn_range - remap kernel memory to userspace
2054 * @vma: user vma to map to
2055 * @addr: target user address to start at
2056 * @pfn: physical address of kernel memory
2057 * @size: size of map area
2058 * @prot: page protection flags for this mapping
2059 *
2060 * Note: this is only safe if the mm semaphore is held when called.
2061 */
2062int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063 unsigned long pfn, unsigned long size, pgprot_t prot)
2064{
2065 pgd_t *pgd;
2066 unsigned long next;
2067 unsigned long end = addr + PAGE_ALIGN(size);
2068 struct mm_struct *mm = vma->vm_mm;
2069 unsigned long remap_pfn = pfn;
2070 int err;
2071
2072 /*
2073 * Physically remapped pages are special. Tell the
2074 * rest of the world about it:
2075 * VM_IO tells people not to look at these pages
2076 * (accesses can have side effects).
2077 * VM_PFNMAP tells the core MM that the base pages are just
2078 * raw PFN mappings, and do not have a "struct page" associated
2079 * with them.
2080 * VM_DONTEXPAND
2081 * Disable vma merging and expanding with mremap().
2082 * VM_DONTDUMP
2083 * Omit vma from core dump, even when VM_IO turned off.
2084 *
2085 * There's a horrible special case to handle copy-on-write
2086 * behaviour that some programs depend on. We mark the "original"
2087 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088 * See vm_normal_page() for details.
2089 */
2090 if (is_cow_mapping(vma->vm_flags)) {
2091 if (addr != vma->vm_start || end != vma->vm_end)
2092 return -EINVAL;
2093 vma->vm_pgoff = pfn;
2094 }
2095
2096 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097 if (err)
2098 return -EINVAL;
2099
2100 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2101
2102 BUG_ON(addr >= end);
2103 pfn -= addr >> PAGE_SHIFT;
2104 pgd = pgd_offset(mm, addr);
2105 flush_cache_range(vma, addr, end);
2106 do {
2107 next = pgd_addr_end(addr, end);
2108 err = remap_p4d_range(mm, pgd, addr, next,
2109 pfn + (addr >> PAGE_SHIFT), prot);
2110 if (err)
2111 break;
2112 } while (pgd++, addr = next, addr != end);
2113
2114 if (err)
2115 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116
2117 return err;
2118}
2119EXPORT_SYMBOL(remap_pfn_range);
2120
2121/**
2122 * vm_iomap_memory - remap memory to userspace
2123 * @vma: user vma to map to
2124 * @start: start of area
2125 * @len: size of area
2126 *
2127 * This is a simplified io_remap_pfn_range() for common driver use. The
2128 * driver just needs to give us the physical memory range to be mapped,
2129 * we'll figure out the rest from the vma information.
2130 *
2131 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132 * whatever write-combining details or similar.
2133 */
2134int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135{
2136 unsigned long vm_len, pfn, pages;
2137
2138 /* Check that the physical memory area passed in looks valid */
2139 if (start + len < start)
2140 return -EINVAL;
2141 /*
2142 * You *really* shouldn't map things that aren't page-aligned,
2143 * but we've historically allowed it because IO memory might
2144 * just have smaller alignment.
2145 */
2146 len += start & ~PAGE_MASK;
2147 pfn = start >> PAGE_SHIFT;
2148 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149 if (pfn + pages < pfn)
2150 return -EINVAL;
2151
2152 /* We start the mapping 'vm_pgoff' pages into the area */
2153 if (vma->vm_pgoff > pages)
2154 return -EINVAL;
2155 pfn += vma->vm_pgoff;
2156 pages -= vma->vm_pgoff;
2157
2158 /* Can we fit all of the mapping? */
2159 vm_len = vma->vm_end - vma->vm_start;
2160 if (vm_len >> PAGE_SHIFT > pages)
2161 return -EINVAL;
2162
2163 /* Ok, let it rip */
2164 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165}
2166EXPORT_SYMBOL(vm_iomap_memory);
2167
2168static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169 unsigned long addr, unsigned long end,
2170 pte_fn_t fn, void *data)
2171{
2172 pte_t *pte;
2173 int err;
2174 pgtable_t token;
2175 spinlock_t *uninitialized_var(ptl);
2176
2177 pte = (mm == &init_mm) ?
2178 pte_alloc_kernel(pmd, addr) :
2179 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180 if (!pte)
2181 return -ENOMEM;
2182
2183 BUG_ON(pmd_huge(*pmd));
2184
2185 arch_enter_lazy_mmu_mode();
2186
2187 token = pmd_pgtable(*pmd);
2188
2189 do {
2190 err = fn(pte++, token, addr, data);
2191 if (err)
2192 break;
2193 } while (addr += PAGE_SIZE, addr != end);
2194
2195 arch_leave_lazy_mmu_mode();
2196
2197 if (mm != &init_mm)
2198 pte_unmap_unlock(pte-1, ptl);
2199 return err;
2200}
2201
2202static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 unsigned long addr, unsigned long end,
2204 pte_fn_t fn, void *data)
2205{
2206 pmd_t *pmd;
2207 unsigned long next;
2208 int err;
2209
2210 BUG_ON(pud_huge(*pud));
2211
2212 pmd = pmd_alloc(mm, pud, addr);
2213 if (!pmd)
2214 return -ENOMEM;
2215 do {
2216 next = pmd_addr_end(addr, end);
2217 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218 if (err)
2219 break;
2220 } while (pmd++, addr = next, addr != end);
2221 return err;
2222}
2223
2224static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225 unsigned long addr, unsigned long end,
2226 pte_fn_t fn, void *data)
2227{
2228 pud_t *pud;
2229 unsigned long next;
2230 int err;
2231
2232 pud = pud_alloc(mm, p4d, addr);
2233 if (!pud)
2234 return -ENOMEM;
2235 do {
2236 next = pud_addr_end(addr, end);
2237 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238 if (err)
2239 break;
2240 } while (pud++, addr = next, addr != end);
2241 return err;
2242}
2243
2244static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245 unsigned long addr, unsigned long end,
2246 pte_fn_t fn, void *data)
2247{
2248 p4d_t *p4d;
2249 unsigned long next;
2250 int err;
2251
2252 p4d = p4d_alloc(mm, pgd, addr);
2253 if (!p4d)
2254 return -ENOMEM;
2255 do {
2256 next = p4d_addr_end(addr, end);
2257 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258 if (err)
2259 break;
2260 } while (p4d++, addr = next, addr != end);
2261 return err;
2262}
2263
2264/*
2265 * Scan a region of virtual memory, filling in page tables as necessary
2266 * and calling a provided function on each leaf page table.
2267 */
2268int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269 unsigned long size, pte_fn_t fn, void *data)
2270{
2271 pgd_t *pgd;
2272 unsigned long next;
2273 unsigned long end = addr + size;
2274 int err;
2275
2276 if (WARN_ON(addr >= end))
2277 return -EINVAL;
2278
2279 pgd = pgd_offset(mm, addr);
2280 do {
2281 next = pgd_addr_end(addr, end);
2282 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283 if (err)
2284 break;
2285 } while (pgd++, addr = next, addr != end);
2286
2287 return err;
2288}
2289EXPORT_SYMBOL_GPL(apply_to_page_range);
2290
2291/*
2292 * handle_pte_fault chooses page fault handler according to an entry which was
2293 * read non-atomically. Before making any commitment, on those architectures
2294 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295 * parts, do_swap_page must check under lock before unmapping the pte and
2296 * proceeding (but do_wp_page is only called after already making such a check;
2297 * and do_anonymous_page can safely check later on).
2298 */
2299static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300 pte_t *page_table, pte_t orig_pte)
2301{
2302 int same = 1;
2303#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304 if (sizeof(pte_t) > sizeof(unsigned long)) {
2305 spinlock_t *ptl = pte_lockptr(mm, pmd);
2306 spin_lock(ptl);
2307 same = pte_same(*page_table, orig_pte);
2308 spin_unlock(ptl);
2309 }
2310#endif
2311 pte_unmap(page_table);
2312 return same;
2313}
2314
2315static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316{
2317 debug_dma_assert_idle(src);
2318
2319 /*
2320 * If the source page was a PFN mapping, we don't have
2321 * a "struct page" for it. We do a best-effort copy by
2322 * just copying from the original user address. If that
2323 * fails, we just zero-fill it. Live with it.
2324 */
2325 if (unlikely(!src)) {
2326 void *kaddr = kmap_atomic(dst);
2327 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328
2329 /*
2330 * This really shouldn't fail, because the page is there
2331 * in the page tables. But it might just be unreadable,
2332 * in which case we just give up and fill the result with
2333 * zeroes.
2334 */
2335 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336 clear_page(kaddr);
2337 kunmap_atomic(kaddr);
2338 flush_dcache_page(dst);
2339 } else
2340 copy_user_highpage(dst, src, va, vma);
2341}
2342
2343static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2344{
2345 struct file *vm_file = vma->vm_file;
2346
2347 if (vm_file)
2348 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2349
2350 /*
2351 * Special mappings (e.g. VDSO) do not have any file so fake
2352 * a default GFP_KERNEL for them.
2353 */
2354 return GFP_KERNEL;
2355}
2356
2357/*
2358 * Notify the address space that the page is about to become writable so that
2359 * it can prohibit this or wait for the page to get into an appropriate state.
2360 *
2361 * We do this without the lock held, so that it can sleep if it needs to.
2362 */
2363static int do_page_mkwrite(struct vm_fault *vmf)
2364{
2365 int ret;
2366 struct page *page = vmf->page;
2367 unsigned int old_flags = vmf->flags;
2368
2369 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2370
2371 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372 /* Restore original flags so that caller is not surprised */
2373 vmf->flags = old_flags;
2374 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375 return ret;
2376 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377 lock_page(page);
2378 if (!page->mapping) {
2379 unlock_page(page);
2380 return 0; /* retry */
2381 }
2382 ret |= VM_FAULT_LOCKED;
2383 } else
2384 VM_BUG_ON_PAGE(!PageLocked(page), page);
2385 return ret;
2386}
2387
2388/*
2389 * Handle dirtying of a page in shared file mapping on a write fault.
2390 *
2391 * The function expects the page to be locked and unlocks it.
2392 */
2393static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394 struct page *page)
2395{
2396 struct address_space *mapping;
2397 bool dirtied;
2398 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399
2400 dirtied = set_page_dirty(page);
2401 VM_BUG_ON_PAGE(PageAnon(page), page);
2402 /*
2403 * Take a local copy of the address_space - page.mapping may be zeroed
2404 * by truncate after unlock_page(). The address_space itself remains
2405 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2406 * release semantics to prevent the compiler from undoing this copying.
2407 */
2408 mapping = page_rmapping(page);
2409 unlock_page(page);
2410
2411 if ((dirtied || page_mkwrite) && mapping) {
2412 /*
2413 * Some device drivers do not set page.mapping
2414 * but still dirty their pages
2415 */
2416 balance_dirty_pages_ratelimited(mapping);
2417 }
2418
2419 if (!page_mkwrite)
2420 file_update_time(vma->vm_file);
2421}
2422
2423/*
2424 * Handle write page faults for pages that can be reused in the current vma
2425 *
2426 * This can happen either due to the mapping being with the VM_SHARED flag,
2427 * or due to us being the last reference standing to the page. In either
2428 * case, all we need to do here is to mark the page as writable and update
2429 * any related book-keeping.
2430 */
2431static inline void wp_page_reuse(struct vm_fault *vmf)
2432 __releases(vmf->ptl)
2433{
2434 struct vm_area_struct *vma = vmf->vma;
2435 struct page *page = vmf->page;
2436 pte_t entry;
2437 /*
2438 * Clear the pages cpupid information as the existing
2439 * information potentially belongs to a now completely
2440 * unrelated process.
2441 */
2442 if (page)
2443 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444
2445 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446 entry = pte_mkyoung(vmf->orig_pte);
2447 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449 update_mmu_cache(vma, vmf->address, vmf->pte);
2450 pte_unmap_unlock(vmf->pte, vmf->ptl);
2451}
2452
2453/*
2454 * Handle the case of a page which we actually need to copy to a new page.
2455 *
2456 * Called with mmap_sem locked and the old page referenced, but
2457 * without the ptl held.
2458 *
2459 * High level logic flow:
2460 *
2461 * - Allocate a page, copy the content of the old page to the new one.
2462 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463 * - Take the PTL. If the pte changed, bail out and release the allocated page
2464 * - If the pte is still the way we remember it, update the page table and all
2465 * relevant references. This includes dropping the reference the page-table
2466 * held to the old page, as well as updating the rmap.
2467 * - In any case, unlock the PTL and drop the reference we took to the old page.
2468 */
2469static int wp_page_copy(struct vm_fault *vmf)
2470{
2471 struct vm_area_struct *vma = vmf->vma;
2472 struct mm_struct *mm = vma->vm_mm;
2473 struct page *old_page = vmf->page;
2474 struct page *new_page = NULL;
2475 pte_t entry;
2476 int page_copied = 0;
2477 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479 struct mem_cgroup *memcg;
2480
2481 if (unlikely(anon_vma_prepare(vma)))
2482 goto oom;
2483
2484 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485 new_page = alloc_zeroed_user_highpage_movable(vma,
2486 vmf->address);
2487 if (!new_page)
2488 goto oom;
2489 } else {
2490 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491 vmf->address);
2492 if (!new_page)
2493 goto oom;
2494 cow_user_page(new_page, old_page, vmf->address, vma);
2495 }
2496
2497 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498 goto oom_free_new;
2499
2500 __SetPageUptodate(new_page);
2501
2502 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2503
2504 /*
2505 * Re-check the pte - we dropped the lock
2506 */
2507 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509 if (old_page) {
2510 if (!PageAnon(old_page)) {
2511 dec_mm_counter_fast(mm,
2512 mm_counter_file(old_page));
2513 inc_mm_counter_fast(mm, MM_ANONPAGES);
2514 }
2515 } else {
2516 inc_mm_counter_fast(mm, MM_ANONPAGES);
2517 }
2518 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519 entry = mk_pte(new_page, vma->vm_page_prot);
2520 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521 /*
2522 * Clear the pte entry and flush it first, before updating the
2523 * pte with the new entry. This will avoid a race condition
2524 * seen in the presence of one thread doing SMC and another
2525 * thread doing COW.
2526 */
2527 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529 mem_cgroup_commit_charge(new_page, memcg, false, false);
2530 lru_cache_add_active_or_unevictable(new_page, vma);
2531 /*
2532 * We call the notify macro here because, when using secondary
2533 * mmu page tables (such as kvm shadow page tables), we want the
2534 * new page to be mapped directly into the secondary page table.
2535 */
2536 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537 update_mmu_cache(vma, vmf->address, vmf->pte);
2538 if (old_page) {
2539 /*
2540 * Only after switching the pte to the new page may
2541 * we remove the mapcount here. Otherwise another
2542 * process may come and find the rmap count decremented
2543 * before the pte is switched to the new page, and
2544 * "reuse" the old page writing into it while our pte
2545 * here still points into it and can be read by other
2546 * threads.
2547 *
2548 * The critical issue is to order this
2549 * page_remove_rmap with the ptp_clear_flush above.
2550 * Those stores are ordered by (if nothing else,)
2551 * the barrier present in the atomic_add_negative
2552 * in page_remove_rmap.
2553 *
2554 * Then the TLB flush in ptep_clear_flush ensures that
2555 * no process can access the old page before the
2556 * decremented mapcount is visible. And the old page
2557 * cannot be reused until after the decremented
2558 * mapcount is visible. So transitively, TLBs to
2559 * old page will be flushed before it can be reused.
2560 */
2561 page_remove_rmap(old_page, false);
2562 }
2563
2564 /* Free the old page.. */
2565 new_page = old_page;
2566 page_copied = 1;
2567 } else {
2568 mem_cgroup_cancel_charge(new_page, memcg, false);
2569 }
2570
2571 if (new_page)
2572 put_page(new_page);
2573
2574 pte_unmap_unlock(vmf->pte, vmf->ptl);
2575 /*
2576 * No need to double call mmu_notifier->invalidate_range() callback as
2577 * the above ptep_clear_flush_notify() did already call it.
2578 */
2579 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580 if (old_page) {
2581 /*
2582 * Don't let another task, with possibly unlocked vma,
2583 * keep the mlocked page.
2584 */
2585 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586 lock_page(old_page); /* LRU manipulation */
2587 if (PageMlocked(old_page))
2588 munlock_vma_page(old_page);
2589 unlock_page(old_page);
2590 }
2591 put_page(old_page);
2592 }
2593 return page_copied ? VM_FAULT_WRITE : 0;
2594oom_free_new:
2595 put_page(new_page);
2596oom:
2597 if (old_page)
2598 put_page(old_page);
2599 return VM_FAULT_OOM;
2600}
2601
2602/**
2603 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604 * writeable once the page is prepared
2605 *
2606 * @vmf: structure describing the fault
2607 *
2608 * This function handles all that is needed to finish a write page fault in a
2609 * shared mapping due to PTE being read-only once the mapped page is prepared.
2610 * It handles locking of PTE and modifying it. The function returns
2611 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612 * lock.
2613 *
2614 * The function expects the page to be locked or other protection against
2615 * concurrent faults / writeback (such as DAX radix tree locks).
2616 */
2617int finish_mkwrite_fault(struct vm_fault *vmf)
2618{
2619 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621 &vmf->ptl);
2622 /*
2623 * We might have raced with another page fault while we released the
2624 * pte_offset_map_lock.
2625 */
2626 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 return VM_FAULT_NOPAGE;
2629 }
2630 wp_page_reuse(vmf);
2631 return 0;
2632}
2633
2634/*
2635 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636 * mapping
2637 */
2638static int wp_pfn_shared(struct vm_fault *vmf)
2639{
2640 struct vm_area_struct *vma = vmf->vma;
2641
2642 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643 int ret;
2644
2645 pte_unmap_unlock(vmf->pte, vmf->ptl);
2646 vmf->flags |= FAULT_FLAG_MKWRITE;
2647 ret = vma->vm_ops->pfn_mkwrite(vmf);
2648 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649 return ret;
2650 return finish_mkwrite_fault(vmf);
2651 }
2652 wp_page_reuse(vmf);
2653 return VM_FAULT_WRITE;
2654}
2655
2656static int wp_page_shared(struct vm_fault *vmf)
2657 __releases(vmf->ptl)
2658{
2659 struct vm_area_struct *vma = vmf->vma;
2660
2661 get_page(vmf->page);
2662
2663 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664 int tmp;
2665
2666 pte_unmap_unlock(vmf->pte, vmf->ptl);
2667 tmp = do_page_mkwrite(vmf);
2668 if (unlikely(!tmp || (tmp &
2669 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670 put_page(vmf->page);
2671 return tmp;
2672 }
2673 tmp = finish_mkwrite_fault(vmf);
2674 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675 unlock_page(vmf->page);
2676 put_page(vmf->page);
2677 return tmp;
2678 }
2679 } else {
2680 wp_page_reuse(vmf);
2681 lock_page(vmf->page);
2682 }
2683 fault_dirty_shared_page(vma, vmf->page);
2684 put_page(vmf->page);
2685
2686 return VM_FAULT_WRITE;
2687}
2688
2689/*
2690 * This routine handles present pages, when users try to write
2691 * to a shared page. It is done by copying the page to a new address
2692 * and decrementing the shared-page counter for the old page.
2693 *
2694 * Note that this routine assumes that the protection checks have been
2695 * done by the caller (the low-level page fault routine in most cases).
2696 * Thus we can safely just mark it writable once we've done any necessary
2697 * COW.
2698 *
2699 * We also mark the page dirty at this point even though the page will
2700 * change only once the write actually happens. This avoids a few races,
2701 * and potentially makes it more efficient.
2702 *
2703 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704 * but allow concurrent faults), with pte both mapped and locked.
2705 * We return with mmap_sem still held, but pte unmapped and unlocked.
2706 */
2707static int do_wp_page(struct vm_fault *vmf)
2708 __releases(vmf->ptl)
2709{
2710 struct vm_area_struct *vma = vmf->vma;
2711
2712 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713 if (!vmf->page) {
2714 /*
2715 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716 * VM_PFNMAP VMA.
2717 *
2718 * We should not cow pages in a shared writeable mapping.
2719 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720 */
2721 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722 (VM_WRITE|VM_SHARED))
2723 return wp_pfn_shared(vmf);
2724
2725 pte_unmap_unlock(vmf->pte, vmf->ptl);
2726 return wp_page_copy(vmf);
2727 }
2728
2729 /*
2730 * Take out anonymous pages first, anonymous shared vmas are
2731 * not dirty accountable.
2732 */
2733 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734 int total_map_swapcount;
2735 if (!trylock_page(vmf->page)) {
2736 get_page(vmf->page);
2737 pte_unmap_unlock(vmf->pte, vmf->ptl);
2738 lock_page(vmf->page);
2739 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740 vmf->address, &vmf->ptl);
2741 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742 unlock_page(vmf->page);
2743 pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 put_page(vmf->page);
2745 return 0;
2746 }
2747 put_page(vmf->page);
2748 }
2749 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750 if (total_map_swapcount == 1) {
2751 /*
2752 * The page is all ours. Move it to
2753 * our anon_vma so the rmap code will
2754 * not search our parent or siblings.
2755 * Protected against the rmap code by
2756 * the page lock.
2757 */
2758 page_move_anon_rmap(vmf->page, vma);
2759 }
2760 unlock_page(vmf->page);
2761 wp_page_reuse(vmf);
2762 return VM_FAULT_WRITE;
2763 }
2764 unlock_page(vmf->page);
2765 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766 (VM_WRITE|VM_SHARED))) {
2767 return wp_page_shared(vmf);
2768 }
2769
2770 /*
2771 * Ok, we need to copy. Oh, well..
2772 */
2773 get_page(vmf->page);
2774
2775 pte_unmap_unlock(vmf->pte, vmf->ptl);
2776 return wp_page_copy(vmf);
2777}
2778
2779static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780 unsigned long start_addr, unsigned long end_addr,
2781 struct zap_details *details)
2782{
2783 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784}
2785
2786static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787 struct zap_details *details)
2788{
2789 struct vm_area_struct *vma;
2790 pgoff_t vba, vea, zba, zea;
2791
2792 vma_interval_tree_foreach(vma, root,
2793 details->first_index, details->last_index) {
2794
2795 vba = vma->vm_pgoff;
2796 vea = vba + vma_pages(vma) - 1;
2797 zba = details->first_index;
2798 if (zba < vba)
2799 zba = vba;
2800 zea = details->last_index;
2801 if (zea > vea)
2802 zea = vea;
2803
2804 unmap_mapping_range_vma(vma,
2805 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807 details);
2808 }
2809}
2810
2811/**
2812 * unmap_mapping_pages() - Unmap pages from processes.
2813 * @mapping: The address space containing pages to be unmapped.
2814 * @start: Index of first page to be unmapped.
2815 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2816 * @even_cows: Whether to unmap even private COWed pages.
2817 *
2818 * Unmap the pages in this address space from any userspace process which
2819 * has them mmaped. Generally, you want to remove COWed pages as well when
2820 * a file is being truncated, but not when invalidating pages from the page
2821 * cache.
2822 */
2823void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824 pgoff_t nr, bool even_cows)
2825{
2826 struct zap_details details = { };
2827
2828 details.check_mapping = even_cows ? NULL : mapping;
2829 details.first_index = start;
2830 details.last_index = start + nr - 1;
2831 if (details.last_index < details.first_index)
2832 details.last_index = ULONG_MAX;
2833
2834 i_mmap_lock_write(mapping);
2835 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837 i_mmap_unlock_write(mapping);
2838}
2839
2840/**
2841 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842 * address_space corresponding to the specified byte range in the underlying
2843 * file.
2844 *
2845 * @mapping: the address space containing mmaps to be unmapped.
2846 * @holebegin: byte in first page to unmap, relative to the start of
2847 * the underlying file. This will be rounded down to a PAGE_SIZE
2848 * boundary. Note that this is different from truncate_pagecache(), which
2849 * must keep the partial page. In contrast, we must get rid of
2850 * partial pages.
2851 * @holelen: size of prospective hole in bytes. This will be rounded
2852 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2853 * end of the file.
2854 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855 * but 0 when invalidating pagecache, don't throw away private data.
2856 */
2857void unmap_mapping_range(struct address_space *mapping,
2858 loff_t const holebegin, loff_t const holelen, int even_cows)
2859{
2860 pgoff_t hba = holebegin >> PAGE_SHIFT;
2861 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862
2863 /* Check for overflow. */
2864 if (sizeof(holelen) > sizeof(hlen)) {
2865 long long holeend =
2866 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867 if (holeend & ~(long long)ULONG_MAX)
2868 hlen = ULONG_MAX - hba + 1;
2869 }
2870
2871 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872}
2873EXPORT_SYMBOL(unmap_mapping_range);
2874
2875/*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with pte unmapped and unlocked.
2879 *
2880 * We return with the mmap_sem locked or unlocked in the same cases
2881 * as does filemap_fault().
2882 */
2883int do_swap_page(struct vm_fault *vmf)
2884{
2885 struct vm_area_struct *vma = vmf->vma;
2886 struct page *page = NULL, *swapcache;
2887 struct mem_cgroup *memcg;
2888 swp_entry_t entry;
2889 pte_t pte;
2890 int locked;
2891 int exclusive = 0;
2892 int ret = 0;
2893
2894 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895 goto out;
2896
2897 entry = pte_to_swp_entry(vmf->orig_pte);
2898 if (unlikely(non_swap_entry(entry))) {
2899 if (is_migration_entry(entry)) {
2900 migration_entry_wait(vma->vm_mm, vmf->pmd,
2901 vmf->address);
2902 } else if (is_device_private_entry(entry)) {
2903 /*
2904 * For un-addressable device memory we call the pgmap
2905 * fault handler callback. The callback must migrate
2906 * the page back to some CPU accessible page.
2907 */
2908 ret = device_private_entry_fault(vma, vmf->address, entry,
2909 vmf->flags, vmf->pmd);
2910 } else if (is_hwpoison_entry(entry)) {
2911 ret = VM_FAULT_HWPOISON;
2912 } else {
2913 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914 ret = VM_FAULT_SIGBUS;
2915 }
2916 goto out;
2917 }
2918
2919
2920 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921 page = lookup_swap_cache(entry, vma, vmf->address);
2922 swapcache = page;
2923
2924 if (!page) {
2925 struct swap_info_struct *si = swp_swap_info(entry);
2926
2927 if (si->flags & SWP_SYNCHRONOUS_IO &&
2928 __swap_count(si, entry) == 1) {
2929 /* skip swapcache */
2930 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2931 vmf->address);
2932 if (page) {
2933 __SetPageLocked(page);
2934 __SetPageSwapBacked(page);
2935 set_page_private(page, entry.val);
2936 lru_cache_add_anon(page);
2937 swap_readpage(page, true);
2938 }
2939 } else {
2940 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2941 vmf);
2942 swapcache = page;
2943 }
2944
2945 if (!page) {
2946 /*
2947 * Back out if somebody else faulted in this pte
2948 * while we released the pte lock.
2949 */
2950 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2951 vmf->address, &vmf->ptl);
2952 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2953 ret = VM_FAULT_OOM;
2954 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955 goto unlock;
2956 }
2957
2958 /* Had to read the page from swap area: Major fault */
2959 ret = VM_FAULT_MAJOR;
2960 count_vm_event(PGMAJFAULT);
2961 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2962 } else if (PageHWPoison(page)) {
2963 /*
2964 * hwpoisoned dirty swapcache pages are kept for killing
2965 * owner processes (which may be unknown at hwpoison time)
2966 */
2967 ret = VM_FAULT_HWPOISON;
2968 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2969 goto out_release;
2970 }
2971
2972 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2973
2974 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975 if (!locked) {
2976 ret |= VM_FAULT_RETRY;
2977 goto out_release;
2978 }
2979
2980 /*
2981 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2982 * release the swapcache from under us. The page pin, and pte_same
2983 * test below, are not enough to exclude that. Even if it is still
2984 * swapcache, we need to check that the page's swap has not changed.
2985 */
2986 if (unlikely((!PageSwapCache(page) ||
2987 page_private(page) != entry.val)) && swapcache)
2988 goto out_page;
2989
2990 page = ksm_might_need_to_copy(page, vma, vmf->address);
2991 if (unlikely(!page)) {
2992 ret = VM_FAULT_OOM;
2993 page = swapcache;
2994 goto out_page;
2995 }
2996
2997 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2998 &memcg, false)) {
2999 ret = VM_FAULT_OOM;
3000 goto out_page;
3001 }
3002
3003 /*
3004 * Back out if somebody else already faulted in this pte.
3005 */
3006 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3007 &vmf->ptl);
3008 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3009 goto out_nomap;
3010
3011 if (unlikely(!PageUptodate(page))) {
3012 ret = VM_FAULT_SIGBUS;
3013 goto out_nomap;
3014 }
3015
3016 /*
3017 * The page isn't present yet, go ahead with the fault.
3018 *
3019 * Be careful about the sequence of operations here.
3020 * To get its accounting right, reuse_swap_page() must be called
3021 * while the page is counted on swap but not yet in mapcount i.e.
3022 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023 * must be called after the swap_free(), or it will never succeed.
3024 */
3025
3026 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3027 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3028 pte = mk_pte(page, vma->vm_page_prot);
3029 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3030 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3031 vmf->flags &= ~FAULT_FLAG_WRITE;
3032 ret |= VM_FAULT_WRITE;
3033 exclusive = RMAP_EXCLUSIVE;
3034 }
3035 flush_icache_page(vma, page);
3036 if (pte_swp_soft_dirty(vmf->orig_pte))
3037 pte = pte_mksoft_dirty(pte);
3038 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3039 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3040 vmf->orig_pte = pte;
3041
3042 /* ksm created a completely new copy */
3043 if (unlikely(page != swapcache && swapcache)) {
3044 page_add_new_anon_rmap(page, vma, vmf->address, false);
3045 mem_cgroup_commit_charge(page, memcg, false, false);
3046 lru_cache_add_active_or_unevictable(page, vma);
3047 } else {
3048 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3049 mem_cgroup_commit_charge(page, memcg, true, false);
3050 activate_page(page);
3051 }
3052
3053 swap_free(entry);
3054 if (mem_cgroup_swap_full(page) ||
3055 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3056 try_to_free_swap(page);
3057 unlock_page(page);
3058 if (page != swapcache && swapcache) {
3059 /*
3060 * Hold the lock to avoid the swap entry to be reused
3061 * until we take the PT lock for the pte_same() check
3062 * (to avoid false positives from pte_same). For
3063 * further safety release the lock after the swap_free
3064 * so that the swap count won't change under a
3065 * parallel locked swapcache.
3066 */
3067 unlock_page(swapcache);
3068 put_page(swapcache);
3069 }
3070
3071 if (vmf->flags & FAULT_FLAG_WRITE) {
3072 ret |= do_wp_page(vmf);
3073 if (ret & VM_FAULT_ERROR)
3074 ret &= VM_FAULT_ERROR;
3075 goto out;
3076 }
3077
3078 /* No need to invalidate - it was non-present before */
3079 update_mmu_cache(vma, vmf->address, vmf->pte);
3080unlock:
3081 pte_unmap_unlock(vmf->pte, vmf->ptl);
3082out:
3083 return ret;
3084out_nomap:
3085 mem_cgroup_cancel_charge(page, memcg, false);
3086 pte_unmap_unlock(vmf->pte, vmf->ptl);
3087out_page:
3088 unlock_page(page);
3089out_release:
3090 put_page(page);
3091 if (page != swapcache && swapcache) {
3092 unlock_page(swapcache);
3093 put_page(swapcache);
3094 }
3095 return ret;
3096}
3097
3098/*
3099 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100 * but allow concurrent faults), and pte mapped but not yet locked.
3101 * We return with mmap_sem still held, but pte unmapped and unlocked.
3102 */
3103static int do_anonymous_page(struct vm_fault *vmf)
3104{
3105 struct vm_area_struct *vma = vmf->vma;
3106 struct mem_cgroup *memcg;
3107 struct page *page;
3108 int ret = 0;
3109 pte_t entry;
3110
3111 /* File mapping without ->vm_ops ? */
3112 if (vma->vm_flags & VM_SHARED)
3113 return VM_FAULT_SIGBUS;
3114
3115 /*
3116 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3117 * pte_offset_map() on pmds where a huge pmd might be created
3118 * from a different thread.
3119 *
3120 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3121 * parallel threads are excluded by other means.
3122 *
3123 * Here we only have down_read(mmap_sem).
3124 */
3125 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3126 return VM_FAULT_OOM;
3127
3128 /* See the comment in pte_alloc_one_map() */
3129 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3130 return 0;
3131
3132 /* Use the zero-page for reads */
3133 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3134 !mm_forbids_zeropage(vma->vm_mm)) {
3135 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3136 vma->vm_page_prot));
3137 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3138 vmf->address, &vmf->ptl);
3139 if (!pte_none(*vmf->pte))
3140 goto unlock;
3141 ret = check_stable_address_space(vma->vm_mm);
3142 if (ret)
3143 goto unlock;
3144 /* Deliver the page fault to userland, check inside PT lock */
3145 if (userfaultfd_missing(vma)) {
3146 pte_unmap_unlock(vmf->pte, vmf->ptl);
3147 return handle_userfault(vmf, VM_UFFD_MISSING);
3148 }
3149 goto setpte;
3150 }
3151
3152 /* Allocate our own private page. */
3153 if (unlikely(anon_vma_prepare(vma)))
3154 goto oom;
3155 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3156 if (!page)
3157 goto oom;
3158
3159 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3160 goto oom_free_page;
3161
3162 /*
3163 * The memory barrier inside __SetPageUptodate makes sure that
3164 * preceeding stores to the page contents become visible before
3165 * the set_pte_at() write.
3166 */
3167 __SetPageUptodate(page);
3168
3169 entry = mk_pte(page, vma->vm_page_prot);
3170 if (vma->vm_flags & VM_WRITE)
3171 entry = pte_mkwrite(pte_mkdirty(entry));
3172
3173 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174 &vmf->ptl);
3175 if (!pte_none(*vmf->pte))
3176 goto release;
3177
3178 ret = check_stable_address_space(vma->vm_mm);
3179 if (ret)
3180 goto release;
3181
3182 /* Deliver the page fault to userland, check inside PT lock */
3183 if (userfaultfd_missing(vma)) {
3184 pte_unmap_unlock(vmf->pte, vmf->ptl);
3185 mem_cgroup_cancel_charge(page, memcg, false);
3186 put_page(page);
3187 return handle_userfault(vmf, VM_UFFD_MISSING);
3188 }
3189
3190 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3191 page_add_new_anon_rmap(page, vma, vmf->address, false);
3192 mem_cgroup_commit_charge(page, memcg, false, false);
3193 lru_cache_add_active_or_unevictable(page, vma);
3194setpte:
3195 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3196
3197 /* No need to invalidate - it was non-present before */
3198 update_mmu_cache(vma, vmf->address, vmf->pte);
3199unlock:
3200 pte_unmap_unlock(vmf->pte, vmf->ptl);
3201 return ret;
3202release:
3203 mem_cgroup_cancel_charge(page, memcg, false);
3204 put_page(page);
3205 goto unlock;
3206oom_free_page:
3207 put_page(page);
3208oom:
3209 return VM_FAULT_OOM;
3210}
3211
3212/*
3213 * The mmap_sem must have been held on entry, and may have been
3214 * released depending on flags and vma->vm_ops->fault() return value.
3215 * See filemap_fault() and __lock_page_retry().
3216 */
3217static int __do_fault(struct vm_fault *vmf)
3218{
3219 struct vm_area_struct *vma = vmf->vma;
3220 int ret;
3221
3222 ret = vma->vm_ops->fault(vmf);
3223 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224 VM_FAULT_DONE_COW)))
3225 return ret;
3226
3227 if (unlikely(PageHWPoison(vmf->page))) {
3228 if (ret & VM_FAULT_LOCKED)
3229 unlock_page(vmf->page);
3230 put_page(vmf->page);
3231 vmf->page = NULL;
3232 return VM_FAULT_HWPOISON;
3233 }
3234
3235 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236 lock_page(vmf->page);
3237 else
3238 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3239
3240 return ret;
3241}
3242
3243/*
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3248 */
3249static int pmd_devmap_trans_unstable(pmd_t *pmd)
3250{
3251 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3252}
3253
3254static int pte_alloc_one_map(struct vm_fault *vmf)
3255{
3256 struct vm_area_struct *vma = vmf->vma;
3257
3258 if (!pmd_none(*vmf->pmd))
3259 goto map_pte;
3260 if (vmf->prealloc_pte) {
3261 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262 if (unlikely(!pmd_none(*vmf->pmd))) {
3263 spin_unlock(vmf->ptl);
3264 goto map_pte;
3265 }
3266
3267 mm_inc_nr_ptes(vma->vm_mm);
3268 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269 spin_unlock(vmf->ptl);
3270 vmf->prealloc_pte = NULL;
3271 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272 return VM_FAULT_OOM;
3273 }
3274map_pte:
3275 /*
3276 * If a huge pmd materialized under us just retry later. Use
3277 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280 * running immediately after a huge pmd fault in a different thread of
3281 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282 * All we have to ensure is that it is a regular pmd that we can walk
3283 * with pte_offset_map() and we can do that through an atomic read in
3284 * C, which is what pmd_trans_unstable() provides.
3285 */
3286 if (pmd_devmap_trans_unstable(vmf->pmd))
3287 return VM_FAULT_NOPAGE;
3288
3289 /*
3290 * At this point we know that our vmf->pmd points to a page of ptes
3291 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3293 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294 * be valid and we will re-check to make sure the vmf->pte isn't
3295 * pte_none() under vmf->ptl protection when we return to
3296 * alloc_set_pte().
3297 */
3298 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299 &vmf->ptl);
3300 return 0;
3301}
3302
3303#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3304
3305#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307 unsigned long haddr)
3308{
3309 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311 return false;
3312 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313 return false;
3314 return true;
3315}
3316
3317static void deposit_prealloc_pte(struct vm_fault *vmf)
3318{
3319 struct vm_area_struct *vma = vmf->vma;
3320
3321 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3322 /*
3323 * We are going to consume the prealloc table,
3324 * count that as nr_ptes.
3325 */
3326 mm_inc_nr_ptes(vma->vm_mm);
3327 vmf->prealloc_pte = NULL;
3328}
3329
3330static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3331{
3332 struct vm_area_struct *vma = vmf->vma;
3333 bool write = vmf->flags & FAULT_FLAG_WRITE;
3334 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335 pmd_t entry;
3336 int i, ret;
3337
3338 if (!transhuge_vma_suitable(vma, haddr))
3339 return VM_FAULT_FALLBACK;
3340
3341 ret = VM_FAULT_FALLBACK;
3342 page = compound_head(page);
3343
3344 /*
3345 * Archs like ppc64 need additonal space to store information
3346 * related to pte entry. Use the preallocated table for that.
3347 */
3348 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350 if (!vmf->prealloc_pte)
3351 return VM_FAULT_OOM;
3352 smp_wmb(); /* See comment in __pte_alloc() */
3353 }
3354
3355 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 if (unlikely(!pmd_none(*vmf->pmd)))
3357 goto out;
3358
3359 for (i = 0; i < HPAGE_PMD_NR; i++)
3360 flush_icache_page(vma, page + i);
3361
3362 entry = mk_huge_pmd(page, vma->vm_page_prot);
3363 if (write)
3364 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3365
3366 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367 page_add_file_rmap(page, true);
3368 /*
3369 * deposit and withdraw with pmd lock held
3370 */
3371 if (arch_needs_pgtable_deposit())
3372 deposit_prealloc_pte(vmf);
3373
3374 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3375
3376 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3377
3378 /* fault is handled */
3379 ret = 0;
3380 count_vm_event(THP_FILE_MAPPED);
3381out:
3382 spin_unlock(vmf->ptl);
3383 return ret;
3384}
3385#else
3386static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3387{
3388 BUILD_BUG();
3389 return 0;
3390}
3391#endif
3392
3393/**
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3396 *
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3400 *
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402 * return.
3403 *
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
3406 */
3407int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408 struct page *page)
3409{
3410 struct vm_area_struct *vma = vmf->vma;
3411 bool write = vmf->flags & FAULT_FLAG_WRITE;
3412 pte_t entry;
3413 int ret;
3414
3415 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417 /* THP on COW? */
3418 VM_BUG_ON_PAGE(memcg, page);
3419
3420 ret = do_set_pmd(vmf, page);
3421 if (ret != VM_FAULT_FALLBACK)
3422 return ret;
3423 }
3424
3425 if (!vmf->pte) {
3426 ret = pte_alloc_one_map(vmf);
3427 if (ret)
3428 return ret;
3429 }
3430
3431 /* Re-check under ptl */
3432 if (unlikely(!pte_none(*vmf->pte)))
3433 return VM_FAULT_NOPAGE;
3434
3435 flush_icache_page(vma, page);
3436 entry = mk_pte(page, vma->vm_page_prot);
3437 if (write)
3438 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439 /* copy-on-write page */
3440 if (write && !(vma->vm_flags & VM_SHARED)) {
3441 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442 page_add_new_anon_rmap(page, vma, vmf->address, false);
3443 mem_cgroup_commit_charge(page, memcg, false, false);
3444 lru_cache_add_active_or_unevictable(page, vma);
3445 } else {
3446 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447 page_add_file_rmap(page, false);
3448 }
3449 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3450
3451 /* no need to invalidate: a not-present page won't be cached */
3452 update_mmu_cache(vma, vmf->address, vmf->pte);
3453
3454 return 0;
3455}
3456
3457
3458/**
3459 * finish_fault - finish page fault once we have prepared the page to fault
3460 *
3461 * @vmf: structure describing the fault
3462 *
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467 * error.
3468 *
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
3471 */
3472int finish_fault(struct vm_fault *vmf)
3473{
3474 struct page *page;
3475 int ret = 0;
3476
3477 /* Did we COW the page? */
3478 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479 !(vmf->vma->vm_flags & VM_SHARED))
3480 page = vmf->cow_page;
3481 else
3482 page = vmf->page;
3483
3484 /*
3485 * check even for read faults because we might have lost our CoWed
3486 * page
3487 */
3488 if (!(vmf->vma->vm_flags & VM_SHARED))
3489 ret = check_stable_address_space(vmf->vma->vm_mm);
3490 if (!ret)
3491 ret = alloc_set_pte(vmf, vmf->memcg, page);
3492 if (vmf->pte)
3493 pte_unmap_unlock(vmf->pte, vmf->ptl);
3494 return ret;
3495}
3496
3497static unsigned long fault_around_bytes __read_mostly =
3498 rounddown_pow_of_two(65536);
3499
3500#ifdef CONFIG_DEBUG_FS
3501static int fault_around_bytes_get(void *data, u64 *val)
3502{
3503 *val = fault_around_bytes;
3504 return 0;
3505}
3506
3507/*
3508 * fault_around_bytes must be rounded down to the nearest page order as it's
3509 * what do_fault_around() expects to see.
3510 */
3511static int fault_around_bytes_set(void *data, u64 val)
3512{
3513 if (val / PAGE_SIZE > PTRS_PER_PTE)
3514 return -EINVAL;
3515 if (val > PAGE_SIZE)
3516 fault_around_bytes = rounddown_pow_of_two(val);
3517 else
3518 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3519 return 0;
3520}
3521DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3522 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3523
3524static int __init fault_around_debugfs(void)
3525{
3526 void *ret;
3527
3528 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3529 &fault_around_bytes_fops);
3530 if (!ret)
3531 pr_warn("Failed to create fault_around_bytes in debugfs");
3532 return 0;
3533}
3534late_initcall(fault_around_debugfs);
3535#endif
3536
3537/*
3538 * do_fault_around() tries to map few pages around the fault address. The hope
3539 * is that the pages will be needed soon and this will lower the number of
3540 * faults to handle.
3541 *
3542 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3543 * not ready to be mapped: not up-to-date, locked, etc.
3544 *
3545 * This function is called with the page table lock taken. In the split ptlock
3546 * case the page table lock only protects only those entries which belong to
3547 * the page table corresponding to the fault address.
3548 *
3549 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3550 * only once.
3551 *
3552 * fault_around_bytes defines how many bytes we'll try to map.
3553 * do_fault_around() expects it to be set to a power of two less than or equal
3554 * to PTRS_PER_PTE.
3555 *
3556 * The virtual address of the area that we map is naturally aligned to
3557 * fault_around_bytes rounded down to the machine page size
3558 * (and therefore to page order). This way it's easier to guarantee
3559 * that we don't cross page table boundaries.
3560 */
3561static int do_fault_around(struct vm_fault *vmf)
3562{
3563 unsigned long address = vmf->address, nr_pages, mask;
3564 pgoff_t start_pgoff = vmf->pgoff;
3565 pgoff_t end_pgoff;
3566 int off, ret = 0;
3567
3568 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3570
3571 vmf->address = max(address & mask, vmf->vma->vm_start);
3572 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573 start_pgoff -= off;
3574
3575 /*
3576 * end_pgoff is either the end of the page table, the end of
3577 * the vma or nr_pages from start_pgoff, depending what is nearest.
3578 */
3579 end_pgoff = start_pgoff -
3580 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581 PTRS_PER_PTE - 1;
3582 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583 start_pgoff + nr_pages - 1);
3584
3585 if (pmd_none(*vmf->pmd)) {
3586 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587 vmf->address);
3588 if (!vmf->prealloc_pte)
3589 goto out;
3590 smp_wmb(); /* See comment in __pte_alloc() */
3591 }
3592
3593 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3594
3595 /* Huge page is mapped? Page fault is solved */
3596 if (pmd_trans_huge(*vmf->pmd)) {
3597 ret = VM_FAULT_NOPAGE;
3598 goto out;
3599 }
3600
3601 /* ->map_pages() haven't done anything useful. Cold page cache? */
3602 if (!vmf->pte)
3603 goto out;
3604
3605 /* check if the page fault is solved */
3606 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607 if (!pte_none(*vmf->pte))
3608 ret = VM_FAULT_NOPAGE;
3609 pte_unmap_unlock(vmf->pte, vmf->ptl);
3610out:
3611 vmf->address = address;
3612 vmf->pte = NULL;
3613 return ret;
3614}
3615
3616static int do_read_fault(struct vm_fault *vmf)
3617{
3618 struct vm_area_struct *vma = vmf->vma;
3619 int ret = 0;
3620
3621 /*
3622 * Let's call ->map_pages() first and use ->fault() as fallback
3623 * if page by the offset is not ready to be mapped (cold cache or
3624 * something).
3625 */
3626 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627 ret = do_fault_around(vmf);
3628 if (ret)
3629 return ret;
3630 }
3631
3632 ret = __do_fault(vmf);
3633 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634 return ret;
3635
3636 ret |= finish_fault(vmf);
3637 unlock_page(vmf->page);
3638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639 put_page(vmf->page);
3640 return ret;
3641}
3642
3643static int do_cow_fault(struct vm_fault *vmf)
3644{
3645 struct vm_area_struct *vma = vmf->vma;
3646 int ret;
3647
3648 if (unlikely(anon_vma_prepare(vma)))
3649 return VM_FAULT_OOM;
3650
3651 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652 if (!vmf->cow_page)
3653 return VM_FAULT_OOM;
3654
3655 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656 &vmf->memcg, false)) {
3657 put_page(vmf->cow_page);
3658 return VM_FAULT_OOM;
3659 }
3660
3661 ret = __do_fault(vmf);
3662 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 goto uncharge_out;
3664 if (ret & VM_FAULT_DONE_COW)
3665 return ret;
3666
3667 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668 __SetPageUptodate(vmf->cow_page);
3669
3670 ret |= finish_fault(vmf);
3671 unlock_page(vmf->page);
3672 put_page(vmf->page);
3673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674 goto uncharge_out;
3675 return ret;
3676uncharge_out:
3677 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678 put_page(vmf->cow_page);
3679 return ret;
3680}
3681
3682static int do_shared_fault(struct vm_fault *vmf)
3683{
3684 struct vm_area_struct *vma = vmf->vma;
3685 int ret, tmp;
3686
3687 ret = __do_fault(vmf);
3688 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689 return ret;
3690
3691 /*
3692 * Check if the backing address space wants to know that the page is
3693 * about to become writable
3694 */
3695 if (vma->vm_ops->page_mkwrite) {
3696 unlock_page(vmf->page);
3697 tmp = do_page_mkwrite(vmf);
3698 if (unlikely(!tmp ||
3699 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700 put_page(vmf->page);
3701 return tmp;
3702 }
3703 }
3704
3705 ret |= finish_fault(vmf);
3706 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707 VM_FAULT_RETRY))) {
3708 unlock_page(vmf->page);
3709 put_page(vmf->page);
3710 return ret;
3711 }
3712
3713 fault_dirty_shared_page(vma, vmf->page);
3714 return ret;
3715}
3716
3717/*
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value. See filemap_fault() and __lock_page_or_retry().
3722 */
3723static int do_fault(struct vm_fault *vmf)
3724{
3725 struct vm_area_struct *vma = vmf->vma;
3726 int ret;
3727
3728 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3729 if (!vma->vm_ops->fault)
3730 ret = VM_FAULT_SIGBUS;
3731 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3732 ret = do_read_fault(vmf);
3733 else if (!(vma->vm_flags & VM_SHARED))
3734 ret = do_cow_fault(vmf);
3735 else
3736 ret = do_shared_fault(vmf);
3737
3738 /* preallocated pagetable is unused: free it */
3739 if (vmf->prealloc_pte) {
3740 pte_free(vma->vm_mm, vmf->prealloc_pte);
3741 vmf->prealloc_pte = NULL;
3742 }
3743 return ret;
3744}
3745
3746static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3747 unsigned long addr, int page_nid,
3748 int *flags)
3749{
3750 get_page(page);
3751
3752 count_vm_numa_event(NUMA_HINT_FAULTS);
3753 if (page_nid == numa_node_id()) {
3754 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3755 *flags |= TNF_FAULT_LOCAL;
3756 }
3757
3758 return mpol_misplaced(page, vma, addr);
3759}
3760
3761static int do_numa_page(struct vm_fault *vmf)
3762{
3763 struct vm_area_struct *vma = vmf->vma;
3764 struct page *page = NULL;
3765 int page_nid = -1;
3766 int last_cpupid;
3767 int target_nid;
3768 bool migrated = false;
3769 pte_t pte;
3770 bool was_writable = pte_savedwrite(vmf->orig_pte);
3771 int flags = 0;
3772
3773 /*
3774 * The "pte" at this point cannot be used safely without
3775 * validation through pte_unmap_same(). It's of NUMA type but
3776 * the pfn may be screwed if the read is non atomic.
3777 */
3778 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3779 spin_lock(vmf->ptl);
3780 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3781 pte_unmap_unlock(vmf->pte, vmf->ptl);
3782 goto out;
3783 }
3784
3785 /*
3786 * Make it present again, Depending on how arch implementes non
3787 * accessible ptes, some can allow access by kernel mode.
3788 */
3789 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3790 pte = pte_modify(pte, vma->vm_page_prot);
3791 pte = pte_mkyoung(pte);
3792 if (was_writable)
3793 pte = pte_mkwrite(pte);
3794 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3795 update_mmu_cache(vma, vmf->address, vmf->pte);
3796
3797 page = vm_normal_page(vma, vmf->address, pte);
3798 if (!page) {
3799 pte_unmap_unlock(vmf->pte, vmf->ptl);
3800 return 0;
3801 }
3802
3803 /* TODO: handle PTE-mapped THP */
3804 if (PageCompound(page)) {
3805 pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 return 0;
3807 }
3808
3809 /*
3810 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3811 * much anyway since they can be in shared cache state. This misses
3812 * the case where a mapping is writable but the process never writes
3813 * to it but pte_write gets cleared during protection updates and
3814 * pte_dirty has unpredictable behaviour between PTE scan updates,
3815 * background writeback, dirty balancing and application behaviour.
3816 */
3817 if (!pte_write(pte))
3818 flags |= TNF_NO_GROUP;
3819
3820 /*
3821 * Flag if the page is shared between multiple address spaces. This
3822 * is later used when determining whether to group tasks together
3823 */
3824 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3825 flags |= TNF_SHARED;
3826
3827 last_cpupid = page_cpupid_last(page);
3828 page_nid = page_to_nid(page);
3829 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3830 &flags);
3831 pte_unmap_unlock(vmf->pte, vmf->ptl);
3832 if (target_nid == -1) {
3833 put_page(page);
3834 goto out;
3835 }
3836
3837 /* Migrate to the requested node */
3838 migrated = migrate_misplaced_page(page, vma, target_nid);
3839 if (migrated) {
3840 page_nid = target_nid;
3841 flags |= TNF_MIGRATED;
3842 } else
3843 flags |= TNF_MIGRATE_FAIL;
3844
3845out:
3846 if (page_nid != -1)
3847 task_numa_fault(last_cpupid, page_nid, 1, flags);
3848 return 0;
3849}
3850
3851static inline int create_huge_pmd(struct vm_fault *vmf)
3852{
3853 if (vma_is_anonymous(vmf->vma))
3854 return do_huge_pmd_anonymous_page(vmf);
3855 if (vmf->vma->vm_ops->huge_fault)
3856 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3857 return VM_FAULT_FALLBACK;
3858}
3859
3860/* `inline' is required to avoid gcc 4.1.2 build error */
3861static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3862{
3863 if (vma_is_anonymous(vmf->vma))
3864 return do_huge_pmd_wp_page(vmf, orig_pmd);
3865 if (vmf->vma->vm_ops->huge_fault)
3866 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867
3868 /* COW handled on pte level: split pmd */
3869 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3870 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3871
3872 return VM_FAULT_FALLBACK;
3873}
3874
3875static inline bool vma_is_accessible(struct vm_area_struct *vma)
3876{
3877 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3878}
3879
3880static int create_huge_pud(struct vm_fault *vmf)
3881{
3882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883 /* No support for anonymous transparent PUD pages yet */
3884 if (vma_is_anonymous(vmf->vma))
3885 return VM_FAULT_FALLBACK;
3886 if (vmf->vma->vm_ops->huge_fault)
3887 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3889 return VM_FAULT_FALLBACK;
3890}
3891
3892static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3893{
3894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3895 /* No support for anonymous transparent PUD pages yet */
3896 if (vma_is_anonymous(vmf->vma))
3897 return VM_FAULT_FALLBACK;
3898 if (vmf->vma->vm_ops->huge_fault)
3899 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3900#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3901 return VM_FAULT_FALLBACK;
3902}
3903
3904/*
3905 * These routines also need to handle stuff like marking pages dirty
3906 * and/or accessed for architectures that don't do it in hardware (most
3907 * RISC architectures). The early dirtying is also good on the i386.
3908 *
3909 * There is also a hook called "update_mmu_cache()" that architectures
3910 * with external mmu caches can use to update those (ie the Sparc or
3911 * PowerPC hashed page tables that act as extended TLBs).
3912 *
3913 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3914 * concurrent faults).
3915 *
3916 * The mmap_sem may have been released depending on flags and our return value.
3917 * See filemap_fault() and __lock_page_or_retry().
3918 */
3919static int handle_pte_fault(struct vm_fault *vmf)
3920{
3921 pte_t entry;
3922
3923 if (unlikely(pmd_none(*vmf->pmd))) {
3924 /*
3925 * Leave __pte_alloc() until later: because vm_ops->fault may
3926 * want to allocate huge page, and if we expose page table
3927 * for an instant, it will be difficult to retract from
3928 * concurrent faults and from rmap lookups.
3929 */
3930 vmf->pte = NULL;
3931 } else {
3932 /* See comment in pte_alloc_one_map() */
3933 if (pmd_devmap_trans_unstable(vmf->pmd))
3934 return 0;
3935 /*
3936 * A regular pmd is established and it can't morph into a huge
3937 * pmd from under us anymore at this point because we hold the
3938 * mmap_sem read mode and khugepaged takes it in write mode.
3939 * So now it's safe to run pte_offset_map().
3940 */
3941 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3942 vmf->orig_pte = *vmf->pte;
3943
3944 /*
3945 * some architectures can have larger ptes than wordsize,
3946 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3947 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3948 * accesses. The code below just needs a consistent view
3949 * for the ifs and we later double check anyway with the
3950 * ptl lock held. So here a barrier will do.
3951 */
3952 barrier();
3953 if (pte_none(vmf->orig_pte)) {
3954 pte_unmap(vmf->pte);
3955 vmf->pte = NULL;
3956 }
3957 }
3958
3959 if (!vmf->pte) {
3960 if (vma_is_anonymous(vmf->vma))
3961 return do_anonymous_page(vmf);
3962 else
3963 return do_fault(vmf);
3964 }
3965
3966 if (!pte_present(vmf->orig_pte))
3967 return do_swap_page(vmf);
3968
3969 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3970 return do_numa_page(vmf);
3971
3972 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3973 spin_lock(vmf->ptl);
3974 entry = vmf->orig_pte;
3975 if (unlikely(!pte_same(*vmf->pte, entry)))
3976 goto unlock;
3977 if (vmf->flags & FAULT_FLAG_WRITE) {
3978 if (!pte_write(entry))
3979 return do_wp_page(vmf);
3980 entry = pte_mkdirty(entry);
3981 }
3982 entry = pte_mkyoung(entry);
3983 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3984 vmf->flags & FAULT_FLAG_WRITE)) {
3985 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3986 } else {
3987 /*
3988 * This is needed only for protection faults but the arch code
3989 * is not yet telling us if this is a protection fault or not.
3990 * This still avoids useless tlb flushes for .text page faults
3991 * with threads.
3992 */
3993 if (vmf->flags & FAULT_FLAG_WRITE)
3994 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3995 }
3996unlock:
3997 pte_unmap_unlock(vmf->pte, vmf->ptl);
3998 return 0;
3999}
4000
4001/*
4002 * By the time we get here, we already hold the mm semaphore
4003 *
4004 * The mmap_sem may have been released depending on flags and our
4005 * return value. See filemap_fault() and __lock_page_or_retry().
4006 */
4007static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4008 unsigned int flags)
4009{
4010 struct vm_fault vmf = {
4011 .vma = vma,
4012 .address = address & PAGE_MASK,
4013 .flags = flags,
4014 .pgoff = linear_page_index(vma, address),
4015 .gfp_mask = __get_fault_gfp_mask(vma),
4016 };
4017 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4018 struct mm_struct *mm = vma->vm_mm;
4019 pgd_t *pgd;
4020 p4d_t *p4d;
4021 int ret;
4022
4023 pgd = pgd_offset(mm, address);
4024 p4d = p4d_alloc(mm, pgd, address);
4025 if (!p4d)
4026 return VM_FAULT_OOM;
4027
4028 vmf.pud = pud_alloc(mm, p4d, address);
4029 if (!vmf.pud)
4030 return VM_FAULT_OOM;
4031 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4032 ret = create_huge_pud(&vmf);
4033 if (!(ret & VM_FAULT_FALLBACK))
4034 return ret;
4035 } else {
4036 pud_t orig_pud = *vmf.pud;
4037
4038 barrier();
4039 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4040
4041 /* NUMA case for anonymous PUDs would go here */
4042
4043 if (dirty && !pud_write(orig_pud)) {
4044 ret = wp_huge_pud(&vmf, orig_pud);
4045 if (!(ret & VM_FAULT_FALLBACK))
4046 return ret;
4047 } else {
4048 huge_pud_set_accessed(&vmf, orig_pud);
4049 return 0;
4050 }
4051 }
4052 }
4053
4054 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4055 if (!vmf.pmd)
4056 return VM_FAULT_OOM;
4057 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4058 ret = create_huge_pmd(&vmf);
4059 if (!(ret & VM_FAULT_FALLBACK))
4060 return ret;
4061 } else {
4062 pmd_t orig_pmd = *vmf.pmd;
4063
4064 barrier();
4065 if (unlikely(is_swap_pmd(orig_pmd))) {
4066 VM_BUG_ON(thp_migration_supported() &&
4067 !is_pmd_migration_entry(orig_pmd));
4068 if (is_pmd_migration_entry(orig_pmd))
4069 pmd_migration_entry_wait(mm, vmf.pmd);
4070 return 0;
4071 }
4072 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4073 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4074 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4075
4076 if (dirty && !pmd_write(orig_pmd)) {
4077 ret = wp_huge_pmd(&vmf, orig_pmd);
4078 if (!(ret & VM_FAULT_FALLBACK))
4079 return ret;
4080 } else {
4081 huge_pmd_set_accessed(&vmf, orig_pmd);
4082 return 0;
4083 }
4084 }
4085 }
4086
4087 return handle_pte_fault(&vmf);
4088}
4089
4090/*
4091 * By the time we get here, we already hold the mm semaphore
4092 *
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value. See filemap_fault() and __lock_page_or_retry().
4095 */
4096int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4097 unsigned int flags)
4098{
4099 int ret;
4100
4101 __set_current_state(TASK_RUNNING);
4102
4103 count_vm_event(PGFAULT);
4104 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4105
4106 /* do counter updates before entering really critical section. */
4107 check_sync_rss_stat(current);
4108
4109 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4110 flags & FAULT_FLAG_INSTRUCTION,
4111 flags & FAULT_FLAG_REMOTE))
4112 return VM_FAULT_SIGSEGV;
4113
4114 /*
4115 * Enable the memcg OOM handling for faults triggered in user
4116 * space. Kernel faults are handled more gracefully.
4117 */
4118 if (flags & FAULT_FLAG_USER)
4119 mem_cgroup_oom_enable();
4120
4121 if (unlikely(is_vm_hugetlb_page(vma)))
4122 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4123 else
4124 ret = __handle_mm_fault(vma, address, flags);
4125
4126 if (flags & FAULT_FLAG_USER) {
4127 mem_cgroup_oom_disable();
4128 /*
4129 * The task may have entered a memcg OOM situation but
4130 * if the allocation error was handled gracefully (no
4131 * VM_FAULT_OOM), there is no need to kill anything.
4132 * Just clean up the OOM state peacefully.
4133 */
4134 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4135 mem_cgroup_oom_synchronize(false);
4136 }
4137
4138 return ret;
4139}
4140EXPORT_SYMBOL_GPL(handle_mm_fault);
4141
4142#ifndef __PAGETABLE_P4D_FOLDED
4143/*
4144 * Allocate p4d page table.
4145 * We've already handled the fast-path in-line.
4146 */
4147int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4148{
4149 p4d_t *new = p4d_alloc_one(mm, address);
4150 if (!new)
4151 return -ENOMEM;
4152
4153 smp_wmb(); /* See comment in __pte_alloc */
4154
4155 spin_lock(&mm->page_table_lock);
4156 if (pgd_present(*pgd)) /* Another has populated it */
4157 p4d_free(mm, new);
4158 else
4159 pgd_populate(mm, pgd, new);
4160 spin_unlock(&mm->page_table_lock);
4161 return 0;
4162}
4163#endif /* __PAGETABLE_P4D_FOLDED */
4164
4165#ifndef __PAGETABLE_PUD_FOLDED
4166/*
4167 * Allocate page upper directory.
4168 * We've already handled the fast-path in-line.
4169 */
4170int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4171{
4172 pud_t *new = pud_alloc_one(mm, address);
4173 if (!new)
4174 return -ENOMEM;
4175
4176 smp_wmb(); /* See comment in __pte_alloc */
4177
4178 spin_lock(&mm->page_table_lock);
4179#ifndef __ARCH_HAS_5LEVEL_HACK
4180 if (!p4d_present(*p4d)) {
4181 mm_inc_nr_puds(mm);
4182 p4d_populate(mm, p4d, new);
4183 } else /* Another has populated it */
4184 pud_free(mm, new);
4185#else
4186 if (!pgd_present(*p4d)) {
4187 mm_inc_nr_puds(mm);
4188 pgd_populate(mm, p4d, new);
4189 } else /* Another has populated it */
4190 pud_free(mm, new);
4191#endif /* __ARCH_HAS_5LEVEL_HACK */
4192 spin_unlock(&mm->page_table_lock);
4193 return 0;
4194}
4195#endif /* __PAGETABLE_PUD_FOLDED */
4196
4197#ifndef __PAGETABLE_PMD_FOLDED
4198/*
4199 * Allocate page middle directory.
4200 * We've already handled the fast-path in-line.
4201 */
4202int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4203{
4204 spinlock_t *ptl;
4205 pmd_t *new = pmd_alloc_one(mm, address);
4206 if (!new)
4207 return -ENOMEM;
4208
4209 smp_wmb(); /* See comment in __pte_alloc */
4210
4211 ptl = pud_lock(mm, pud);
4212#ifndef __ARCH_HAS_4LEVEL_HACK
4213 if (!pud_present(*pud)) {
4214 mm_inc_nr_pmds(mm);
4215 pud_populate(mm, pud, new);
4216 } else /* Another has populated it */
4217 pmd_free(mm, new);
4218#else
4219 if (!pgd_present(*pud)) {
4220 mm_inc_nr_pmds(mm);
4221 pgd_populate(mm, pud, new);
4222 } else /* Another has populated it */
4223 pmd_free(mm, new);
4224#endif /* __ARCH_HAS_4LEVEL_HACK */
4225 spin_unlock(ptl);
4226 return 0;
4227}
4228#endif /* __PAGETABLE_PMD_FOLDED */
4229
4230static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231 unsigned long *start, unsigned long *end,
4232 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4233{
4234 pgd_t *pgd;
4235 p4d_t *p4d;
4236 pud_t *pud;
4237 pmd_t *pmd;
4238 pte_t *ptep;
4239
4240 pgd = pgd_offset(mm, address);
4241 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4242 goto out;
4243
4244 p4d = p4d_offset(pgd, address);
4245 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4246 goto out;
4247
4248 pud = pud_offset(p4d, address);
4249 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4250 goto out;
4251
4252 pmd = pmd_offset(pud, address);
4253 VM_BUG_ON(pmd_trans_huge(*pmd));
4254
4255 if (pmd_huge(*pmd)) {
4256 if (!pmdpp)
4257 goto out;
4258
4259 if (start && end) {
4260 *start = address & PMD_MASK;
4261 *end = *start + PMD_SIZE;
4262 mmu_notifier_invalidate_range_start(mm, *start, *end);
4263 }
4264 *ptlp = pmd_lock(mm, pmd);
4265 if (pmd_huge(*pmd)) {
4266 *pmdpp = pmd;
4267 return 0;
4268 }
4269 spin_unlock(*ptlp);
4270 if (start && end)
4271 mmu_notifier_invalidate_range_end(mm, *start, *end);
4272 }
4273
4274 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4275 goto out;
4276
4277 if (start && end) {
4278 *start = address & PAGE_MASK;
4279 *end = *start + PAGE_SIZE;
4280 mmu_notifier_invalidate_range_start(mm, *start, *end);
4281 }
4282 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4283 if (!pte_present(*ptep))
4284 goto unlock;
4285 *ptepp = ptep;
4286 return 0;
4287unlock:
4288 pte_unmap_unlock(ptep, *ptlp);
4289 if (start && end)
4290 mmu_notifier_invalidate_range_end(mm, *start, *end);
4291out:
4292 return -EINVAL;
4293}
4294
4295static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4296 pte_t **ptepp, spinlock_t **ptlp)
4297{
4298 int res;
4299
4300 /* (void) is needed to make gcc happy */
4301 (void) __cond_lock(*ptlp,
4302 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4303 ptepp, NULL, ptlp)));
4304 return res;
4305}
4306
4307int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4308 unsigned long *start, unsigned long *end,
4309 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4310{
4311 int res;
4312
4313 /* (void) is needed to make gcc happy */
4314 (void) __cond_lock(*ptlp,
4315 !(res = __follow_pte_pmd(mm, address, start, end,
4316 ptepp, pmdpp, ptlp)));
4317 return res;
4318}
4319EXPORT_SYMBOL(follow_pte_pmd);
4320
4321/**
4322 * follow_pfn - look up PFN at a user virtual address
4323 * @vma: memory mapping
4324 * @address: user virtual address
4325 * @pfn: location to store found PFN
4326 *
4327 * Only IO mappings and raw PFN mappings are allowed.
4328 *
4329 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4330 */
4331int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4332 unsigned long *pfn)
4333{
4334 int ret = -EINVAL;
4335 spinlock_t *ptl;
4336 pte_t *ptep;
4337
4338 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4339 return ret;
4340
4341 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4342 if (ret)
4343 return ret;
4344 *pfn = pte_pfn(*ptep);
4345 pte_unmap_unlock(ptep, ptl);
4346 return 0;
4347}
4348EXPORT_SYMBOL(follow_pfn);
4349
4350#ifdef CONFIG_HAVE_IOREMAP_PROT
4351int follow_phys(struct vm_area_struct *vma,
4352 unsigned long address, unsigned int flags,
4353 unsigned long *prot, resource_size_t *phys)
4354{
4355 int ret = -EINVAL;
4356 pte_t *ptep, pte;
4357 spinlock_t *ptl;
4358
4359 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4360 goto out;
4361
4362 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4363 goto out;
4364 pte = *ptep;
4365
4366 if ((flags & FOLL_WRITE) && !pte_write(pte))
4367 goto unlock;
4368
4369 *prot = pgprot_val(pte_pgprot(pte));
4370 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4371
4372 ret = 0;
4373unlock:
4374 pte_unmap_unlock(ptep, ptl);
4375out:
4376 return ret;
4377}
4378
4379int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4380 void *buf, int len, int write)
4381{
4382 resource_size_t phys_addr;
4383 unsigned long prot = 0;
4384 void __iomem *maddr;
4385 int offset = addr & (PAGE_SIZE-1);
4386
4387 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4388 return -EINVAL;
4389
4390 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4391 if (write)
4392 memcpy_toio(maddr + offset, buf, len);
4393 else
4394 memcpy_fromio(buf, maddr + offset, len);
4395 iounmap(maddr);
4396
4397 return len;
4398}
4399EXPORT_SYMBOL_GPL(generic_access_phys);
4400#endif
4401
4402/*
4403 * Access another process' address space as given in mm. If non-NULL, use the
4404 * given task for page fault accounting.
4405 */
4406int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4407 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4408{
4409 struct vm_area_struct *vma;
4410 void *old_buf = buf;
4411 int write = gup_flags & FOLL_WRITE;
4412
4413 down_read(&mm->mmap_sem);
4414 /* ignore errors, just check how much was successfully transferred */
4415 while (len) {
4416 int bytes, ret, offset;
4417 void *maddr;
4418 struct page *page = NULL;
4419
4420 ret = get_user_pages_remote(tsk, mm, addr, 1,
4421 gup_flags, &page, &vma, NULL);
4422 if (ret <= 0) {
4423#ifndef CONFIG_HAVE_IOREMAP_PROT
4424 break;
4425#else
4426 /*
4427 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4428 * we can access using slightly different code.
4429 */
4430 vma = find_vma(mm, addr);
4431 if (!vma || vma->vm_start > addr)
4432 break;
4433 if (vma->vm_ops && vma->vm_ops->access)
4434 ret = vma->vm_ops->access(vma, addr, buf,
4435 len, write);
4436 if (ret <= 0)
4437 break;
4438 bytes = ret;
4439#endif
4440 } else {
4441 bytes = len;
4442 offset = addr & (PAGE_SIZE-1);
4443 if (bytes > PAGE_SIZE-offset)
4444 bytes = PAGE_SIZE-offset;
4445
4446 maddr = kmap(page);
4447 if (write) {
4448 copy_to_user_page(vma, page, addr,
4449 maddr + offset, buf, bytes);
4450 set_page_dirty_lock(page);
4451 } else {
4452 copy_from_user_page(vma, page, addr,
4453 buf, maddr + offset, bytes);
4454 }
4455 kunmap(page);
4456 put_page(page);
4457 }
4458 len -= bytes;
4459 buf += bytes;
4460 addr += bytes;
4461 }
4462 up_read(&mm->mmap_sem);
4463
4464 return buf - old_buf;
4465}
4466
4467/**
4468 * access_remote_vm - access another process' address space
4469 * @mm: the mm_struct of the target address space
4470 * @addr: start address to access
4471 * @buf: source or destination buffer
4472 * @len: number of bytes to transfer
4473 * @gup_flags: flags modifying lookup behaviour
4474 *
4475 * The caller must hold a reference on @mm.
4476 */
4477int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4478 void *buf, int len, unsigned int gup_flags)
4479{
4480 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4481}
4482
4483/*
4484 * Access another process' address space.
4485 * Source/target buffer must be kernel space,
4486 * Do not walk the page table directly, use get_user_pages
4487 */
4488int access_process_vm(struct task_struct *tsk, unsigned long addr,
4489 void *buf, int len, unsigned int gup_flags)
4490{
4491 struct mm_struct *mm;
4492 int ret;
4493
4494 mm = get_task_mm(tsk);
4495 if (!mm)
4496 return 0;
4497
4498 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4499
4500 mmput(mm);
4501
4502 return ret;
4503}
4504EXPORT_SYMBOL_GPL(access_process_vm);
4505
4506/*
4507 * Print the name of a VMA.
4508 */
4509void print_vma_addr(char *prefix, unsigned long ip)
4510{
4511 struct mm_struct *mm = current->mm;
4512 struct vm_area_struct *vma;
4513
4514 /*
4515 * we might be running from an atomic context so we cannot sleep
4516 */
4517 if (!down_read_trylock(&mm->mmap_sem))
4518 return;
4519
4520 vma = find_vma(mm, ip);
4521 if (vma && vma->vm_file) {
4522 struct file *f = vma->vm_file;
4523 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4524 if (buf) {
4525 char *p;
4526
4527 p = file_path(f, buf, PAGE_SIZE);
4528 if (IS_ERR(p))
4529 p = "?";
4530 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4531 vma->vm_start,
4532 vma->vm_end - vma->vm_start);
4533 free_page((unsigned long)buf);
4534 }
4535 }
4536 up_read(&mm->mmap_sem);
4537}
4538
4539#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4540void __might_fault(const char *file, int line)
4541{
4542 /*
4543 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4544 * holding the mmap_sem, this is safe because kernel memory doesn't
4545 * get paged out, therefore we'll never actually fault, and the
4546 * below annotations will generate false positives.
4547 */
4548 if (uaccess_kernel())
4549 return;
4550 if (pagefault_disabled())
4551 return;
4552 __might_sleep(file, line, 0);
4553#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554 if (current->mm)
4555 might_lock_read(¤t->mm->mmap_sem);
4556#endif
4557}
4558EXPORT_SYMBOL(__might_fault);
4559#endif
4560
4561#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4562static void clear_gigantic_page(struct page *page,
4563 unsigned long addr,
4564 unsigned int pages_per_huge_page)
4565{
4566 int i;
4567 struct page *p = page;
4568
4569 might_sleep();
4570 for (i = 0; i < pages_per_huge_page;
4571 i++, p = mem_map_next(p, page, i)) {
4572 cond_resched();
4573 clear_user_highpage(p, addr + i * PAGE_SIZE);
4574 }
4575}
4576void clear_huge_page(struct page *page,
4577 unsigned long addr_hint, unsigned int pages_per_huge_page)
4578{
4579 int i, n, base, l;
4580 unsigned long addr = addr_hint &
4581 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4582
4583 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584 clear_gigantic_page(page, addr, pages_per_huge_page);
4585 return;
4586 }
4587
4588 /* Clear sub-page to access last to keep its cache lines hot */
4589 might_sleep();
4590 n = (addr_hint - addr) / PAGE_SIZE;
4591 if (2 * n <= pages_per_huge_page) {
4592 /* If sub-page to access in first half of huge page */
4593 base = 0;
4594 l = n;
4595 /* Clear sub-pages at the end of huge page */
4596 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4597 cond_resched();
4598 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4599 }
4600 } else {
4601 /* If sub-page to access in second half of huge page */
4602 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4603 l = pages_per_huge_page - n;
4604 /* Clear sub-pages at the begin of huge page */
4605 for (i = 0; i < base; i++) {
4606 cond_resched();
4607 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608 }
4609 }
4610 /*
4611 * Clear remaining sub-pages in left-right-left-right pattern
4612 * towards the sub-page to access
4613 */
4614 for (i = 0; i < l; i++) {
4615 int left_idx = base + i;
4616 int right_idx = base + 2 * l - 1 - i;
4617
4618 cond_resched();
4619 clear_user_highpage(page + left_idx,
4620 addr + left_idx * PAGE_SIZE);
4621 cond_resched();
4622 clear_user_highpage(page + right_idx,
4623 addr + right_idx * PAGE_SIZE);
4624 }
4625}
4626
4627static void copy_user_gigantic_page(struct page *dst, struct page *src,
4628 unsigned long addr,
4629 struct vm_area_struct *vma,
4630 unsigned int pages_per_huge_page)
4631{
4632 int i;
4633 struct page *dst_base = dst;
4634 struct page *src_base = src;
4635
4636 for (i = 0; i < pages_per_huge_page; ) {
4637 cond_resched();
4638 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4639
4640 i++;
4641 dst = mem_map_next(dst, dst_base, i);
4642 src = mem_map_next(src, src_base, i);
4643 }
4644}
4645
4646void copy_user_huge_page(struct page *dst, struct page *src,
4647 unsigned long addr, struct vm_area_struct *vma,
4648 unsigned int pages_per_huge_page)
4649{
4650 int i;
4651
4652 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4653 copy_user_gigantic_page(dst, src, addr, vma,
4654 pages_per_huge_page);
4655 return;
4656 }
4657
4658 might_sleep();
4659 for (i = 0; i < pages_per_huge_page; i++) {
4660 cond_resched();
4661 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4662 }
4663}
4664
4665long copy_huge_page_from_user(struct page *dst_page,
4666 const void __user *usr_src,
4667 unsigned int pages_per_huge_page,
4668 bool allow_pagefault)
4669{
4670 void *src = (void *)usr_src;
4671 void *page_kaddr;
4672 unsigned long i, rc = 0;
4673 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4674
4675 for (i = 0; i < pages_per_huge_page; i++) {
4676 if (allow_pagefault)
4677 page_kaddr = kmap(dst_page + i);
4678 else
4679 page_kaddr = kmap_atomic(dst_page + i);
4680 rc = copy_from_user(page_kaddr,
4681 (const void __user *)(src + i * PAGE_SIZE),
4682 PAGE_SIZE);
4683 if (allow_pagefault)
4684 kunmap(dst_page + i);
4685 else
4686 kunmap_atomic(page_kaddr);
4687
4688 ret_val -= (PAGE_SIZE - rc);
4689 if (rc)
4690 break;
4691
4692 cond_resched();
4693 }
4694 return ret_val;
4695}
4696#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4697
4698#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4699
4700static struct kmem_cache *page_ptl_cachep;
4701
4702void __init ptlock_cache_init(void)
4703{
4704 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4705 SLAB_PANIC, NULL);
4706}
4707
4708bool ptlock_alloc(struct page *page)
4709{
4710 spinlock_t *ptl;
4711
4712 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4713 if (!ptl)
4714 return false;
4715 page->ptl = ptl;
4716 return true;
4717}
4718
4719void ptlock_free(struct page *page)
4720{
4721 kmem_cache_free(page_ptl_cachep, page->ptl);
4722}
4723#endif
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/pfn_t.h>
54#include <linux/writeback.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
60#include <linux/gfp.h>
61#include <linux/migrate.h>
62#include <linux/string.h>
63#include <linux/dma-debug.h>
64#include <linux/debugfs.h>
65#include <linux/userfaultfd_k.h>
66
67#include <asm/io.h>
68#include <asm/mmu_context.h>
69#include <asm/pgalloc.h>
70#include <asm/uaccess.h>
71#include <asm/tlb.h>
72#include <asm/tlbflush.h>
73#include <asm/pgtable.h>
74
75#include "internal.h"
76
77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79#endif
80
81#ifndef CONFIG_NEED_MULTIPLE_NODES
82/* use the per-pgdat data instead for discontigmem - mbligh */
83unsigned long max_mapnr;
84struct page *mem_map;
85
86EXPORT_SYMBOL(max_mapnr);
87EXPORT_SYMBOL(mem_map);
88#endif
89
90/*
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
96 */
97void * high_memory;
98
99EXPORT_SYMBOL(high_memory);
100
101/*
102 * Randomize the address space (stacks, mmaps, brk, etc.).
103 *
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
106 */
107int randomize_va_space __read_mostly =
108#ifdef CONFIG_COMPAT_BRK
109 1;
110#else
111 2;
112#endif
113
114static int __init disable_randmaps(char *s)
115{
116 randomize_va_space = 0;
117 return 1;
118}
119__setup("norandmaps", disable_randmaps);
120
121unsigned long zero_pfn __read_mostly;
122unsigned long highest_memmap_pfn __read_mostly;
123
124EXPORT_SYMBOL(zero_pfn);
125
126/*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129static int __init init_zero_pfn(void)
130{
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133}
134core_initcall(init_zero_pfn);
135
136
137#if defined(SPLIT_RSS_COUNTING)
138
139void sync_mm_rss(struct mm_struct *mm)
140{
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
147 }
148 }
149 current->rss_stat.events = 0;
150}
151
152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153{
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160}
161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164/* sync counter once per 64 page faults */
165#define TASK_RSS_EVENTS_THRESH (64)
166static void check_sync_rss_stat(struct task_struct *task)
167{
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
172}
173#else /* SPLIT_RSS_COUNTING */
174
175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178static void check_sync_rss_stat(struct task_struct *task)
179{
180}
181
182#endif /* SPLIT_RSS_COUNTING */
183
184#ifdef HAVE_GENERIC_MMU_GATHER
185
186static bool tlb_next_batch(struct mmu_gather *tlb)
187{
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return true;
194 }
195
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return false;
198
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return false;
202
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
211 return true;
212}
213
214/* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220{
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234#endif
235
236 __tlb_reset_range(tlb);
237}
238
239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240{
241 if (!tlb->end)
242 return;
243
244 tlb_flush(tlb);
245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
248#endif
249 __tlb_reset_range(tlb);
250}
251
252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253{
254 struct mmu_gather_batch *batch;
255
256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
259 }
260 tlb->active = &tlb->local;
261}
262
263void tlb_flush_mmu(struct mmu_gather *tlb)
264{
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
267}
268
269/* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
272 */
273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274{
275 struct mmu_gather_batch *batch, *next;
276
277 tlb_flush_mmu(tlb);
278
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
281
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
285 }
286 tlb->local.next = NULL;
287}
288
289/* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
294 */
295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296{
297 struct mmu_gather_batch *batch;
298
299 VM_BUG_ON(!tlb->end);
300
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
306 batch = tlb->active;
307 }
308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309
310 return batch->max - batch->nr;
311}
312
313#endif /* HAVE_GENERIC_MMU_GATHER */
314
315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317/*
318 * See the comment near struct mmu_table_batch.
319 */
320
321static void tlb_remove_table_smp_sync(void *arg)
322{
323 /* Simply deliver the interrupt */
324}
325
326static void tlb_remove_table_one(void *table)
327{
328 /*
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
331 *
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
334 */
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
337}
338
339static void tlb_remove_table_rcu(struct rcu_head *head)
340{
341 struct mmu_table_batch *batch;
342 int i;
343
344 batch = container_of(head, struct mmu_table_batch, rcu);
345
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
348
349 free_page((unsigned long)batch);
350}
351
352void tlb_table_flush(struct mmu_gather *tlb)
353{
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
359 }
360}
361
362void tlb_remove_table(struct mmu_gather *tlb, void *table)
363{
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 /*
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
369 */
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
373 }
374
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
380 }
381 (*batch)->nr = 0;
382 }
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
386}
387
388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389
390/*
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
393 */
394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
396{
397 pgtable_t token = pmd_pgtable(*pmd);
398 pmd_clear(pmd);
399 pte_free_tlb(tlb, token, addr);
400 atomic_long_dec(&tlb->mm->nr_ptes);
401}
402
403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
406{
407 pmd_t *pmd;
408 unsigned long next;
409 unsigned long start;
410
411 start = addr;
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 free_pte_range(tlb, pmd, addr);
418 } while (pmd++, addr = next, addr != end);
419
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
427 }
428 if (end - 1 > ceiling - 1)
429 return;
430
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
433 pmd_free_tlb(tlb, pmd, start);
434 mm_dec_nr_pmds(tlb->mm);
435}
436
437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
440{
441 pud_t *pud;
442 unsigned long next;
443 unsigned long start;
444
445 start = addr;
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 } while (pud++, addr = next, addr != end);
453
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
461 }
462 if (end - 1 > ceiling - 1)
463 return;
464
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
467 pud_free_tlb(tlb, pud, start);
468}
469
470/*
471 * This function frees user-level page tables of a process.
472 */
473void free_pgd_range(struct mmu_gather *tlb,
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
476{
477 pgd_t *pgd;
478 unsigned long next;
479
480 /*
481 * The next few lines have given us lots of grief...
482 *
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
486 *
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
494 *
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
499 *
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
504 */
505
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
511 }
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
516 }
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
521
522 pgd = pgd_offset(tlb->mm, addr);
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 } while (pgd++, addr = next, addr != end);
529}
530
531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 unsigned long floor, unsigned long ceiling)
533{
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
537
538 /*
539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
541 */
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
544
545 if (is_vm_hugetlb_page(vma)) {
546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 floor, next? next->vm_start: ceiling);
548 } else {
549 /*
550 * Optimization: gather nearby vmas into one call down
551 */
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 && !is_vm_hugetlb_page(next)) {
554 vma = next;
555 next = vma->vm_next;
556 unlink_anon_vmas(vma);
557 unlink_file_vma(vma);
558 }
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
561 }
562 vma = next;
563 }
564}
565
566int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567{
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
572
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 }
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
598}
599
600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601{
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
605
606 smp_wmb(); /* See comment in __pte_alloc */
607
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
612 }
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
617}
618
619static inline void init_rss_vec(int *rss)
620{
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622}
623
624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625{
626 int i;
627
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
633}
634
635/*
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
639 *
640 * The calling function must still handle the error.
641 */
642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
644{
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
653
654 /*
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
657 */
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
662 }
663 if (nr_unshown) {
664 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 nr_unshown);
666 nr_unshown = 0;
667 }
668 nr_shown = 0;
669 }
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
672
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
675
676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
677 current->comm,
678 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 if (page)
680 dump_page(page, "bad pte");
681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 /*
684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 */
686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma->vm_file,
688 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 mapping ? mapping->a_ops->readpage : NULL);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693}
694
695/*
696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697 *
698 * "Special" mappings do not wish to be associated with a "struct page" (either
699 * it doesn't exist, or it exists but they don't want to touch it). In this
700 * case, NULL is returned here. "Normal" mappings do have a struct page.
701 *
702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703 * pte bit, in which case this function is trivial. Secondly, an architecture
704 * may not have a spare pte bit, which requires a more complicated scheme,
705 * described below.
706 *
707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708 * special mapping (even if there are underlying and valid "struct pages").
709 * COWed pages of a VM_PFNMAP are always normal.
710 *
711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714 * mapping will always honor the rule
715 *
716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717 *
718 * And for normal mappings this is false.
719 *
720 * This restricts such mappings to be a linear translation from virtual address
721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
722 * as the vma is not a COW mapping; in that case, we know that all ptes are
723 * special (because none can have been COWed).
724 *
725 *
726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727 *
728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729 * page" backing, however the difference is that _all_ pages with a struct
730 * page (that is, those where pfn_valid is true) are refcounted and considered
731 * normal pages by the VM. The disadvantage is that pages are refcounted
732 * (which can be slower and simply not an option for some PFNMAP users). The
733 * advantage is that we don't have to follow the strict linearity rule of
734 * PFNMAP mappings in order to support COWable mappings.
735 *
736 */
737#ifdef __HAVE_ARCH_PTE_SPECIAL
738# define HAVE_PTE_SPECIAL 1
739#else
740# define HAVE_PTE_SPECIAL 0
741#endif
742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 pte_t pte)
744{
745 unsigned long pfn = pte_pfn(pte);
746
747 if (HAVE_PTE_SPECIAL) {
748 if (likely(!pte_special(pte)))
749 goto check_pfn;
750 if (vma->vm_ops && vma->vm_ops->find_special_page)
751 return vma->vm_ops->find_special_page(vma, addr);
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
757 }
758
759 /* !HAVE_PTE_SPECIAL case follows: */
760
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
773 }
774 }
775
776 if (is_zero_pfn(pfn))
777 return NULL;
778check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /*
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
787 */
788out:
789 return pfn_to_page(pfn);
790}
791
792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 pmd_t pmd)
795{
796 unsigned long pfn = pmd_pfn(pmd);
797
798 /*
799 * There is no pmd_special() but there may be special pmds, e.g.
800 * in a direct-access (dax) mapping, so let's just replicate the
801 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
802 */
803 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
804 if (vma->vm_flags & VM_MIXEDMAP) {
805 if (!pfn_valid(pfn))
806 return NULL;
807 goto out;
808 } else {
809 unsigned long off;
810 off = (addr - vma->vm_start) >> PAGE_SHIFT;
811 if (pfn == vma->vm_pgoff + off)
812 return NULL;
813 if (!is_cow_mapping(vma->vm_flags))
814 return NULL;
815 }
816 }
817
818 if (is_zero_pfn(pfn))
819 return NULL;
820 if (unlikely(pfn > highest_memmap_pfn))
821 return NULL;
822
823 /*
824 * NOTE! We still have PageReserved() pages in the page tables.
825 * eg. VDSO mappings can cause them to exist.
826 */
827out:
828 return pfn_to_page(pfn);
829}
830#endif
831
832/*
833 * copy one vm_area from one task to the other. Assumes the page tables
834 * already present in the new task to be cleared in the whole range
835 * covered by this vma.
836 */
837
838static inline unsigned long
839copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
840 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
841 unsigned long addr, int *rss)
842{
843 unsigned long vm_flags = vma->vm_flags;
844 pte_t pte = *src_pte;
845 struct page *page;
846
847 /* pte contains position in swap or file, so copy. */
848 if (unlikely(!pte_present(pte))) {
849 swp_entry_t entry = pte_to_swp_entry(pte);
850
851 if (likely(!non_swap_entry(entry))) {
852 if (swap_duplicate(entry) < 0)
853 return entry.val;
854
855 /* make sure dst_mm is on swapoff's mmlist. */
856 if (unlikely(list_empty(&dst_mm->mmlist))) {
857 spin_lock(&mmlist_lock);
858 if (list_empty(&dst_mm->mmlist))
859 list_add(&dst_mm->mmlist,
860 &src_mm->mmlist);
861 spin_unlock(&mmlist_lock);
862 }
863 rss[MM_SWAPENTS]++;
864 } else if (is_migration_entry(entry)) {
865 page = migration_entry_to_page(entry);
866
867 rss[mm_counter(page)]++;
868
869 if (is_write_migration_entry(entry) &&
870 is_cow_mapping(vm_flags)) {
871 /*
872 * COW mappings require pages in both
873 * parent and child to be set to read.
874 */
875 make_migration_entry_read(&entry);
876 pte = swp_entry_to_pte(entry);
877 if (pte_swp_soft_dirty(*src_pte))
878 pte = pte_swp_mksoft_dirty(pte);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
881 }
882 goto out_set_pte;
883 }
884
885 /*
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
888 */
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
892 }
893
894 /*
895 * If it's a shared mapping, mark it clean in
896 * the child
897 */
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
901
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page, false);
906 rss[mm_counter(page)]++;
907 }
908
909out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
911 return 0;
912}
913
914static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
917{
918 pte_t *orig_src_pte, *orig_dst_pte;
919 pte_t *src_pte, *dst_pte;
920 spinlock_t *src_ptl, *dst_ptl;
921 int progress = 0;
922 int rss[NR_MM_COUNTERS];
923 swp_entry_t entry = (swp_entry_t){0};
924
925again:
926 init_rss_vec(rss);
927
928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 if (!dst_pte)
930 return -ENOMEM;
931 src_pte = pte_offset_map(src_pmd, addr);
932 src_ptl = pte_lockptr(src_mm, src_pmd);
933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
936 arch_enter_lazy_mmu_mode();
937
938 do {
939 /*
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
942 */
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 break;
948 }
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
952 }
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
959
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl);
962 pte_unmap(orig_src_pte);
963 add_mm_rss_vec(dst_mm, rss);
964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 cond_resched();
966
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
971 }
972 if (addr != end)
973 goto again;
974 return 0;
975}
976
977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980{
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
983
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
990 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
991 int err;
992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1000 }
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1013{
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1016
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1034{
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
1041 bool is_cow;
1042 int ret;
1043
1044 /*
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1049 */
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051 !vma->anon_vma)
1052 return 0;
1053
1054 if (is_vm_hugetlb_page(vma))
1055 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058 /*
1059 * We do not free on error cases below as remove_vma
1060 * gets called on error from higher level routine
1061 */
1062 ret = track_pfn_copy(vma);
1063 if (ret)
1064 return ret;
1065 }
1066
1067 /*
1068 * We need to invalidate the secondary MMU mappings only when
1069 * there could be a permission downgrade on the ptes of the
1070 * parent mm. And a permission downgrade will only happen if
1071 * is_cow_mapping() returns true.
1072 */
1073 is_cow = is_cow_mapping(vma->vm_flags);
1074 mmun_start = addr;
1075 mmun_end = end;
1076 if (is_cow)
1077 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078 mmun_end);
1079
1080 ret = 0;
1081 dst_pgd = pgd_offset(dst_mm, addr);
1082 src_pgd = pgd_offset(src_mm, addr);
1083 do {
1084 next = pgd_addr_end(addr, end);
1085 if (pgd_none_or_clear_bad(src_pgd))
1086 continue;
1087 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088 vma, addr, next))) {
1089 ret = -ENOMEM;
1090 break;
1091 }
1092 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094 if (is_cow)
1095 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096 return ret;
1097}
1098
1099static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100 struct vm_area_struct *vma, pmd_t *pmd,
1101 unsigned long addr, unsigned long end,
1102 struct zap_details *details)
1103{
1104 struct mm_struct *mm = tlb->mm;
1105 int force_flush = 0;
1106 int rss[NR_MM_COUNTERS];
1107 spinlock_t *ptl;
1108 pte_t *start_pte;
1109 pte_t *pte;
1110 swp_entry_t entry;
1111
1112again:
1113 init_rss_vec(rss);
1114 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 pte = start_pte;
1116 arch_enter_lazy_mmu_mode();
1117 do {
1118 pte_t ptent = *pte;
1119 if (pte_none(ptent)) {
1120 continue;
1121 }
1122
1123 if (pte_present(ptent)) {
1124 struct page *page;
1125
1126 page = vm_normal_page(vma, addr, ptent);
1127 if (unlikely(details) && page) {
1128 /*
1129 * unmap_shared_mapping_pages() wants to
1130 * invalidate cache without truncating:
1131 * unmap shared but keep private pages.
1132 */
1133 if (details->check_mapping &&
1134 details->check_mapping != page->mapping)
1135 continue;
1136 }
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1142
1143 if (!PageAnon(page)) {
1144 if (pte_dirty(ptent)) {
1145 /*
1146 * oom_reaper cannot tear down dirty
1147 * pages
1148 */
1149 if (unlikely(details && details->ignore_dirty))
1150 continue;
1151 force_flush = 1;
1152 set_page_dirty(page);
1153 }
1154 if (pte_young(ptent) &&
1155 likely(!(vma->vm_flags & VM_SEQ_READ)))
1156 mark_page_accessed(page);
1157 }
1158 rss[mm_counter(page)]--;
1159 page_remove_rmap(page, false);
1160 if (unlikely(page_mapcount(page) < 0))
1161 print_bad_pte(vma, addr, ptent, page);
1162 if (unlikely(!__tlb_remove_page(tlb, page))) {
1163 force_flush = 1;
1164 addr += PAGE_SIZE;
1165 break;
1166 }
1167 continue;
1168 }
1169 /* only check swap_entries if explicitly asked for in details */
1170 if (unlikely(details && !details->check_swap_entries))
1171 continue;
1172
1173 entry = pte_to_swp_entry(ptent);
1174 if (!non_swap_entry(entry))
1175 rss[MM_SWAPENTS]--;
1176 else if (is_migration_entry(entry)) {
1177 struct page *page;
1178
1179 page = migration_entry_to_page(entry);
1180 rss[mm_counter(page)]--;
1181 }
1182 if (unlikely(!free_swap_and_cache(entry)))
1183 print_bad_pte(vma, addr, ptent, NULL);
1184 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185 } while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187 add_mm_rss_vec(mm, rss);
1188 arch_leave_lazy_mmu_mode();
1189
1190 /* Do the actual TLB flush before dropping ptl */
1191 if (force_flush)
1192 tlb_flush_mmu_tlbonly(tlb);
1193 pte_unmap_unlock(start_pte, ptl);
1194
1195 /*
1196 * If we forced a TLB flush (either due to running out of
1197 * batch buffers or because we needed to flush dirty TLB
1198 * entries before releasing the ptl), free the batched
1199 * memory too. Restart if we didn't do everything.
1200 */
1201 if (force_flush) {
1202 force_flush = 0;
1203 tlb_flush_mmu_free(tlb);
1204
1205 if (addr != end)
1206 goto again;
1207 }
1208
1209 return addr;
1210}
1211
1212static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213 struct vm_area_struct *vma, pud_t *pud,
1214 unsigned long addr, unsigned long end,
1215 struct zap_details *details)
1216{
1217 pmd_t *pmd;
1218 unsigned long next;
1219
1220 pmd = pmd_offset(pud, addr);
1221 do {
1222 next = pmd_addr_end(addr, end);
1223 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224 if (next - addr != HPAGE_PMD_SIZE) {
1225 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227 split_huge_pmd(vma, pmd, addr);
1228 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229 goto next;
1230 /* fall through */
1231 }
1232 /*
1233 * Here there can be other concurrent MADV_DONTNEED or
1234 * trans huge page faults running, and if the pmd is
1235 * none or trans huge it can change under us. This is
1236 * because MADV_DONTNEED holds the mmap_sem in read
1237 * mode.
1238 */
1239 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240 goto next;
1241 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242next:
1243 cond_resched();
1244 } while (pmd++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
1249static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma, pgd_t *pgd,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1253{
1254 pud_t *pud;
1255 unsigned long next;
1256
1257 pud = pud_offset(pgd, addr);
1258 do {
1259 next = pud_addr_end(addr, end);
1260 if (pud_none_or_clear_bad(pud))
1261 continue;
1262 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263 } while (pud++, addr = next, addr != end);
1264
1265 return addr;
1266}
1267
1268void unmap_page_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1272{
1273 pgd_t *pgd;
1274 unsigned long next;
1275
1276 BUG_ON(addr >= end);
1277 tlb_start_vma(tlb, vma);
1278 pgd = pgd_offset(vma->vm_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(pgd))
1282 continue;
1283 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284 } while (pgd++, addr = next, addr != end);
1285 tlb_end_vma(tlb, vma);
1286}
1287
1288
1289static void unmap_single_vma(struct mmu_gather *tlb,
1290 struct vm_area_struct *vma, unsigned long start_addr,
1291 unsigned long end_addr,
1292 struct zap_details *details)
1293{
1294 unsigned long start = max(vma->vm_start, start_addr);
1295 unsigned long end;
1296
1297 if (start >= vma->vm_end)
1298 return;
1299 end = min(vma->vm_end, end_addr);
1300 if (end <= vma->vm_start)
1301 return;
1302
1303 if (vma->vm_file)
1304 uprobe_munmap(vma, start, end);
1305
1306 if (unlikely(vma->vm_flags & VM_PFNMAP))
1307 untrack_pfn(vma, 0, 0);
1308
1309 if (start != end) {
1310 if (unlikely(is_vm_hugetlb_page(vma))) {
1311 /*
1312 * It is undesirable to test vma->vm_file as it
1313 * should be non-null for valid hugetlb area.
1314 * However, vm_file will be NULL in the error
1315 * cleanup path of mmap_region. When
1316 * hugetlbfs ->mmap method fails,
1317 * mmap_region() nullifies vma->vm_file
1318 * before calling this function to clean up.
1319 * Since no pte has actually been setup, it is
1320 * safe to do nothing in this case.
1321 */
1322 if (vma->vm_file) {
1323 i_mmap_lock_write(vma->vm_file->f_mapping);
1324 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325 i_mmap_unlock_write(vma->vm_file->f_mapping);
1326 }
1327 } else
1328 unmap_page_range(tlb, vma, start, end, details);
1329 }
1330}
1331
1332/**
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1338 *
1339 * Unmap all pages in the vma list.
1340 *
1341 * Only addresses between `start' and `end' will be unmapped.
1342 *
1343 * The VMA list must be sorted in ascending virtual address order.
1344 *
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns. So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1349 */
1350void unmap_vmas(struct mmu_gather *tlb,
1351 struct vm_area_struct *vma, unsigned long start_addr,
1352 unsigned long end_addr)
1353{
1354 struct mm_struct *mm = vma->vm_mm;
1355
1356 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1360}
1361
1362/**
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * Caller must protect the VMA list
1370 */
1371void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372 unsigned long size, struct zap_details *details)
1373{
1374 struct mm_struct *mm = vma->vm_mm;
1375 struct mmu_gather tlb;
1376 unsigned long end = start + size;
1377
1378 lru_add_drain();
1379 tlb_gather_mmu(&tlb, mm, start, end);
1380 update_hiwater_rss(mm);
1381 mmu_notifier_invalidate_range_start(mm, start, end);
1382 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383 unmap_single_vma(&tlb, vma, start, end, details);
1384 mmu_notifier_invalidate_range_end(mm, start, end);
1385 tlb_finish_mmu(&tlb, start, end);
1386}
1387
1388/**
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1394 *
1395 * The range must fit into one VMA.
1396 */
1397static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398 unsigned long size, struct zap_details *details)
1399{
1400 struct mm_struct *mm = vma->vm_mm;
1401 struct mmu_gather tlb;
1402 unsigned long end = address + size;
1403
1404 lru_add_drain();
1405 tlb_gather_mmu(&tlb, mm, address, end);
1406 update_hiwater_rss(mm);
1407 mmu_notifier_invalidate_range_start(mm, address, end);
1408 unmap_single_vma(&tlb, vma, address, end, details);
1409 mmu_notifier_invalidate_range_end(mm, address, end);
1410 tlb_finish_mmu(&tlb, address, end);
1411}
1412
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
1423 * Returns 0 if successful.
1424 */
1425int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426 unsigned long size)
1427{
1428 if (address < vma->vm_start || address + size > vma->vm_end ||
1429 !(vma->vm_flags & VM_PFNMAP))
1430 return -1;
1431 zap_page_range_single(vma, address, size, NULL);
1432 return 0;
1433}
1434EXPORT_SYMBOL_GPL(zap_vma_ptes);
1435
1436pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437 spinlock_t **ptl)
1438{
1439 pgd_t * pgd = pgd_offset(mm, addr);
1440 pud_t * pud = pud_alloc(mm, pgd, addr);
1441 if (pud) {
1442 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443 if (pmd) {
1444 VM_BUG_ON(pmd_trans_huge(*pmd));
1445 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446 }
1447 }
1448 return NULL;
1449}
1450
1451/*
1452 * This is the old fallback for page remapping.
1453 *
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1457 */
1458static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459 struct page *page, pgprot_t prot)
1460{
1461 struct mm_struct *mm = vma->vm_mm;
1462 int retval;
1463 pte_t *pte;
1464 spinlock_t *ptl;
1465
1466 retval = -EINVAL;
1467 if (PageAnon(page))
1468 goto out;
1469 retval = -ENOMEM;
1470 flush_dcache_page(page);
1471 pte = get_locked_pte(mm, addr, &ptl);
1472 if (!pte)
1473 goto out;
1474 retval = -EBUSY;
1475 if (!pte_none(*pte))
1476 goto out_unlock;
1477
1478 /* Ok, finally just insert the thing.. */
1479 get_page(page);
1480 inc_mm_counter_fast(mm, mm_counter_file(page));
1481 page_add_file_rmap(page);
1482 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484 retval = 0;
1485 pte_unmap_unlock(pte, ptl);
1486 return retval;
1487out_unlock:
1488 pte_unmap_unlock(pte, ptl);
1489out:
1490 return retval;
1491}
1492
1493/**
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1498 *
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1501 *
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1506 *
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1512 *
1513 * The page does not need to be reserved.
1514 *
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1519 */
1520int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521 struct page *page)
1522{
1523 if (addr < vma->vm_start || addr >= vma->vm_end)
1524 return -EFAULT;
1525 if (!page_count(page))
1526 return -EINVAL;
1527 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529 BUG_ON(vma->vm_flags & VM_PFNMAP);
1530 vma->vm_flags |= VM_MIXEDMAP;
1531 }
1532 return insert_page(vma, addr, page, vma->vm_page_prot);
1533}
1534EXPORT_SYMBOL(vm_insert_page);
1535
1536static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537 pfn_t pfn, pgprot_t prot)
1538{
1539 struct mm_struct *mm = vma->vm_mm;
1540 int retval;
1541 pte_t *pte, entry;
1542 spinlock_t *ptl;
1543
1544 retval = -ENOMEM;
1545 pte = get_locked_pte(mm, addr, &ptl);
1546 if (!pte)
1547 goto out;
1548 retval = -EBUSY;
1549 if (!pte_none(*pte))
1550 goto out_unlock;
1551
1552 /* Ok, finally just insert the thing.. */
1553 if (pfn_t_devmap(pfn))
1554 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555 else
1556 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557 set_pte_at(mm, addr, pte, entry);
1558 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1559
1560 retval = 0;
1561out_unlock:
1562 pte_unmap_unlock(pte, ptl);
1563out:
1564 return retval;
1565}
1566
1567/**
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1572 *
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1575 *
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1578 *
1579 * vma cannot be a COW mapping.
1580 *
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1583 */
1584int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585 unsigned long pfn)
1586{
1587 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591/**
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1597 *
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1600 *
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings. In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1605 */
1606int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607 unsigned long pfn, pgprot_t pgprot)
1608{
1609 int ret;
1610 /*
1611 * Technically, architectures with pte_special can avoid all these
1612 * restrictions (same for remap_pfn_range). However we would like
1613 * consistency in testing and feature parity among all, so we should
1614 * try to keep these invariants in place for everybody.
1615 */
1616 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618 (VM_PFNMAP|VM_MIXEDMAP));
1619 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622 if (addr < vma->vm_start || addr >= vma->vm_end)
1623 return -EFAULT;
1624 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625 return -EINVAL;
1626
1627 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1628
1629 return ret;
1630}
1631EXPORT_SYMBOL(vm_insert_pfn_prot);
1632
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 pfn_t pfn)
1635{
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
1640
1641 /*
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
1647 */
1648 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649 struct page *page;
1650
1651 /*
1652 * At this point we are committed to insert_page()
1653 * regardless of whether the caller specified flags that
1654 * result in pfn_t_has_page() == false.
1655 */
1656 page = pfn_to_page(pfn_t_to_pfn(pfn));
1657 return insert_page(vma, addr, page, vma->vm_page_prot);
1658 }
1659 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669 unsigned long addr, unsigned long end,
1670 unsigned long pfn, pgprot_t prot)
1671{
1672 pte_t *pte;
1673 spinlock_t *ptl;
1674
1675 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676 if (!pte)
1677 return -ENOMEM;
1678 arch_enter_lazy_mmu_mode();
1679 do {
1680 BUG_ON(!pte_none(*pte));
1681 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682 pfn++;
1683 } while (pte++, addr += PAGE_SIZE, addr != end);
1684 arch_leave_lazy_mmu_mode();
1685 pte_unmap_unlock(pte - 1, ptl);
1686 return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690 unsigned long addr, unsigned long end,
1691 unsigned long pfn, pgprot_t prot)
1692{
1693 pmd_t *pmd;
1694 unsigned long next;
1695
1696 pfn -= addr >> PAGE_SHIFT;
1697 pmd = pmd_alloc(mm, pud, addr);
1698 if (!pmd)
1699 return -ENOMEM;
1700 VM_BUG_ON(pmd_trans_huge(*pmd));
1701 do {
1702 next = pmd_addr_end(addr, end);
1703 if (remap_pte_range(mm, pmd, addr, next,
1704 pfn + (addr >> PAGE_SHIFT), prot))
1705 return -ENOMEM;
1706 } while (pmd++, addr = next, addr != end);
1707 return 0;
1708}
1709
1710static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711 unsigned long addr, unsigned long end,
1712 unsigned long pfn, pgprot_t prot)
1713{
1714 pud_t *pud;
1715 unsigned long next;
1716
1717 pfn -= addr >> PAGE_SHIFT;
1718 pud = pud_alloc(mm, pgd, addr);
1719 if (!pud)
1720 return -ENOMEM;
1721 do {
1722 next = pud_addr_end(addr, end);
1723 if (remap_pmd_range(mm, pud, addr, next,
1724 pfn + (addr >> PAGE_SHIFT), prot))
1725 return -ENOMEM;
1726 } while (pud++, addr = next, addr != end);
1727 return 0;
1728}
1729
1730/**
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1737 *
1738 * Note: this is only safe if the mm semaphore is held when called.
1739 */
1740int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741 unsigned long pfn, unsigned long size, pgprot_t prot)
1742{
1743 pgd_t *pgd;
1744 unsigned long next;
1745 unsigned long end = addr + PAGE_ALIGN(size);
1746 struct mm_struct *mm = vma->vm_mm;
1747 int err;
1748
1749 /*
1750 * Physically remapped pages are special. Tell the
1751 * rest of the world about it:
1752 * VM_IO tells people not to look at these pages
1753 * (accesses can have side effects).
1754 * VM_PFNMAP tells the core MM that the base pages are just
1755 * raw PFN mappings, and do not have a "struct page" associated
1756 * with them.
1757 * VM_DONTEXPAND
1758 * Disable vma merging and expanding with mremap().
1759 * VM_DONTDUMP
1760 * Omit vma from core dump, even when VM_IO turned off.
1761 *
1762 * There's a horrible special case to handle copy-on-write
1763 * behaviour that some programs depend on. We mark the "original"
1764 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765 * See vm_normal_page() for details.
1766 */
1767 if (is_cow_mapping(vma->vm_flags)) {
1768 if (addr != vma->vm_start || end != vma->vm_end)
1769 return -EINVAL;
1770 vma->vm_pgoff = pfn;
1771 }
1772
1773 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774 if (err)
1775 return -EINVAL;
1776
1777 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1778
1779 BUG_ON(addr >= end);
1780 pfn -= addr >> PAGE_SHIFT;
1781 pgd = pgd_offset(mm, addr);
1782 flush_cache_range(vma, addr, end);
1783 do {
1784 next = pgd_addr_end(addr, end);
1785 err = remap_pud_range(mm, pgd, addr, next,
1786 pfn + (addr >> PAGE_SHIFT), prot);
1787 if (err)
1788 break;
1789 } while (pgd++, addr = next, addr != end);
1790
1791 if (err)
1792 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1793
1794 return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
1798/**
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1803 *
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1807 *
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1810 */
1811int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1812{
1813 unsigned long vm_len, pfn, pages;
1814
1815 /* Check that the physical memory area passed in looks valid */
1816 if (start + len < start)
1817 return -EINVAL;
1818 /*
1819 * You *really* shouldn't map things that aren't page-aligned,
1820 * but we've historically allowed it because IO memory might
1821 * just have smaller alignment.
1822 */
1823 len += start & ~PAGE_MASK;
1824 pfn = start >> PAGE_SHIFT;
1825 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826 if (pfn + pages < pfn)
1827 return -EINVAL;
1828
1829 /* We start the mapping 'vm_pgoff' pages into the area */
1830 if (vma->vm_pgoff > pages)
1831 return -EINVAL;
1832 pfn += vma->vm_pgoff;
1833 pages -= vma->vm_pgoff;
1834
1835 /* Can we fit all of the mapping? */
1836 vm_len = vma->vm_end - vma->vm_start;
1837 if (vm_len >> PAGE_SHIFT > pages)
1838 return -EINVAL;
1839
1840 /* Ok, let it rip */
1841 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1842}
1843EXPORT_SYMBOL(vm_iomap_memory);
1844
1845static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846 unsigned long addr, unsigned long end,
1847 pte_fn_t fn, void *data)
1848{
1849 pte_t *pte;
1850 int err;
1851 pgtable_t token;
1852 spinlock_t *uninitialized_var(ptl);
1853
1854 pte = (mm == &init_mm) ?
1855 pte_alloc_kernel(pmd, addr) :
1856 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857 if (!pte)
1858 return -ENOMEM;
1859
1860 BUG_ON(pmd_huge(*pmd));
1861
1862 arch_enter_lazy_mmu_mode();
1863
1864 token = pmd_pgtable(*pmd);
1865
1866 do {
1867 err = fn(pte++, token, addr, data);
1868 if (err)
1869 break;
1870 } while (addr += PAGE_SIZE, addr != end);
1871
1872 arch_leave_lazy_mmu_mode();
1873
1874 if (mm != &init_mm)
1875 pte_unmap_unlock(pte-1, ptl);
1876 return err;
1877}
1878
1879static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880 unsigned long addr, unsigned long end,
1881 pte_fn_t fn, void *data)
1882{
1883 pmd_t *pmd;
1884 unsigned long next;
1885 int err;
1886
1887 BUG_ON(pud_huge(*pud));
1888
1889 pmd = pmd_alloc(mm, pud, addr);
1890 if (!pmd)
1891 return -ENOMEM;
1892 do {
1893 next = pmd_addr_end(addr, end);
1894 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895 if (err)
1896 break;
1897 } while (pmd++, addr = next, addr != end);
1898 return err;
1899}
1900
1901static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902 unsigned long addr, unsigned long end,
1903 pte_fn_t fn, void *data)
1904{
1905 pud_t *pud;
1906 unsigned long next;
1907 int err;
1908
1909 pud = pud_alloc(mm, pgd, addr);
1910 if (!pud)
1911 return -ENOMEM;
1912 do {
1913 next = pud_addr_end(addr, end);
1914 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915 if (err)
1916 break;
1917 } while (pud++, addr = next, addr != end);
1918 return err;
1919}
1920
1921/*
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1924 */
1925int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926 unsigned long size, pte_fn_t fn, void *data)
1927{
1928 pgd_t *pgd;
1929 unsigned long next;
1930 unsigned long end = addr + size;
1931 int err;
1932
1933 if (WARN_ON(addr >= end))
1934 return -EINVAL;
1935
1936 pgd = pgd_offset(mm, addr);
1937 do {
1938 next = pgd_addr_end(addr, end);
1939 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940 if (err)
1941 break;
1942 } while (pgd++, addr = next, addr != end);
1943
1944 return err;
1945}
1946EXPORT_SYMBOL_GPL(apply_to_page_range);
1947
1948/*
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically. Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
1954 * and do_anonymous_page can safely check later on).
1955 */
1956static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957 pte_t *page_table, pte_t orig_pte)
1958{
1959 int same = 1;
1960#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961 if (sizeof(pte_t) > sizeof(unsigned long)) {
1962 spinlock_t *ptl = pte_lockptr(mm, pmd);
1963 spin_lock(ptl);
1964 same = pte_same(*page_table, orig_pte);
1965 spin_unlock(ptl);
1966 }
1967#endif
1968 pte_unmap(page_table);
1969 return same;
1970}
1971
1972static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1973{
1974 debug_dma_assert_idle(src);
1975
1976 /*
1977 * If the source page was a PFN mapping, we don't have
1978 * a "struct page" for it. We do a best-effort copy by
1979 * just copying from the original user address. If that
1980 * fails, we just zero-fill it. Live with it.
1981 */
1982 if (unlikely(!src)) {
1983 void *kaddr = kmap_atomic(dst);
1984 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1985
1986 /*
1987 * This really shouldn't fail, because the page is there
1988 * in the page tables. But it might just be unreadable,
1989 * in which case we just give up and fill the result with
1990 * zeroes.
1991 */
1992 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993 clear_page(kaddr);
1994 kunmap_atomic(kaddr);
1995 flush_dcache_page(dst);
1996 } else
1997 copy_user_highpage(dst, src, va, vma);
1998}
1999
2000static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2001{
2002 struct file *vm_file = vma->vm_file;
2003
2004 if (vm_file)
2005 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2006
2007 /*
2008 * Special mappings (e.g. VDSO) do not have any file so fake
2009 * a default GFP_KERNEL for them.
2010 */
2011 return GFP_KERNEL;
2012}
2013
2014/*
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
2017 *
2018 * We do this without the lock held, so that it can sleep if it needs to.
2019 */
2020static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021 unsigned long address)
2022{
2023 struct vm_fault vmf;
2024 int ret;
2025
2026 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027 vmf.pgoff = page->index;
2028 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030 vmf.page = page;
2031 vmf.cow_page = NULL;
2032
2033 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035 return ret;
2036 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037 lock_page(page);
2038 if (!page->mapping) {
2039 unlock_page(page);
2040 return 0; /* retry */
2041 }
2042 ret |= VM_FAULT_LOCKED;
2043 } else
2044 VM_BUG_ON_PAGE(!PageLocked(page), page);
2045 return ret;
2046}
2047
2048/*
2049 * Handle write page faults for pages that can be reused in the current vma
2050 *
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2055 */
2056static inline int wp_page_reuse(struct mm_struct *mm,
2057 struct vm_area_struct *vma, unsigned long address,
2058 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059 struct page *page, int page_mkwrite,
2060 int dirty_shared)
2061 __releases(ptl)
2062{
2063 pte_t entry;
2064 /*
2065 * Clear the pages cpupid information as the existing
2066 * information potentially belongs to a now completely
2067 * unrelated process.
2068 */
2069 if (page)
2070 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2071
2072 flush_cache_page(vma, address, pte_pfn(orig_pte));
2073 entry = pte_mkyoung(orig_pte);
2074 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076 update_mmu_cache(vma, address, page_table);
2077 pte_unmap_unlock(page_table, ptl);
2078
2079 if (dirty_shared) {
2080 struct address_space *mapping;
2081 int dirtied;
2082
2083 if (!page_mkwrite)
2084 lock_page(page);
2085
2086 dirtied = set_page_dirty(page);
2087 VM_BUG_ON_PAGE(PageAnon(page), page);
2088 mapping = page->mapping;
2089 unlock_page(page);
2090 put_page(page);
2091
2092 if ((dirtied || page_mkwrite) && mapping) {
2093 /*
2094 * Some device drivers do not set page.mapping
2095 * but still dirty their pages
2096 */
2097 balance_dirty_pages_ratelimited(mapping);
2098 }
2099
2100 if (!page_mkwrite)
2101 file_update_time(vma->vm_file);
2102 }
2103
2104 return VM_FAULT_WRITE;
2105}
2106
2107/*
2108 * Handle the case of a page which we actually need to copy to a new page.
2109 *
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2112 *
2113 * High level logic flow:
2114 *
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 * relevant references. This includes dropping the reference the page-table
2120 * held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2122 */
2123static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124 unsigned long address, pte_t *page_table, pmd_t *pmd,
2125 pte_t orig_pte, struct page *old_page)
2126{
2127 struct page *new_page = NULL;
2128 spinlock_t *ptl = NULL;
2129 pte_t entry;
2130 int page_copied = 0;
2131 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2132 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2133 struct mem_cgroup *memcg;
2134
2135 if (unlikely(anon_vma_prepare(vma)))
2136 goto oom;
2137
2138 if (is_zero_pfn(pte_pfn(orig_pte))) {
2139 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2140 if (!new_page)
2141 goto oom;
2142 } else {
2143 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2144 if (!new_page)
2145 goto oom;
2146 cow_user_page(new_page, old_page, address, vma);
2147 }
2148
2149 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150 goto oom_free_new;
2151
2152 __SetPageUptodate(new_page);
2153
2154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2155
2156 /*
2157 * Re-check the pte - we dropped the lock
2158 */
2159 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160 if (likely(pte_same(*page_table, orig_pte))) {
2161 if (old_page) {
2162 if (!PageAnon(old_page)) {
2163 dec_mm_counter_fast(mm,
2164 mm_counter_file(old_page));
2165 inc_mm_counter_fast(mm, MM_ANONPAGES);
2166 }
2167 } else {
2168 inc_mm_counter_fast(mm, MM_ANONPAGES);
2169 }
2170 flush_cache_page(vma, address, pte_pfn(orig_pte));
2171 entry = mk_pte(new_page, vma->vm_page_prot);
2172 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2173 /*
2174 * Clear the pte entry and flush it first, before updating the
2175 * pte with the new entry. This will avoid a race condition
2176 * seen in the presence of one thread doing SMC and another
2177 * thread doing COW.
2178 */
2179 ptep_clear_flush_notify(vma, address, page_table);
2180 page_add_new_anon_rmap(new_page, vma, address, false);
2181 mem_cgroup_commit_charge(new_page, memcg, false, false);
2182 lru_cache_add_active_or_unevictable(new_page, vma);
2183 /*
2184 * We call the notify macro here because, when using secondary
2185 * mmu page tables (such as kvm shadow page tables), we want the
2186 * new page to be mapped directly into the secondary page table.
2187 */
2188 set_pte_at_notify(mm, address, page_table, entry);
2189 update_mmu_cache(vma, address, page_table);
2190 if (old_page) {
2191 /*
2192 * Only after switching the pte to the new page may
2193 * we remove the mapcount here. Otherwise another
2194 * process may come and find the rmap count decremented
2195 * before the pte is switched to the new page, and
2196 * "reuse" the old page writing into it while our pte
2197 * here still points into it and can be read by other
2198 * threads.
2199 *
2200 * The critical issue is to order this
2201 * page_remove_rmap with the ptp_clear_flush above.
2202 * Those stores are ordered by (if nothing else,)
2203 * the barrier present in the atomic_add_negative
2204 * in page_remove_rmap.
2205 *
2206 * Then the TLB flush in ptep_clear_flush ensures that
2207 * no process can access the old page before the
2208 * decremented mapcount is visible. And the old page
2209 * cannot be reused until after the decremented
2210 * mapcount is visible. So transitively, TLBs to
2211 * old page will be flushed before it can be reused.
2212 */
2213 page_remove_rmap(old_page, false);
2214 }
2215
2216 /* Free the old page.. */
2217 new_page = old_page;
2218 page_copied = 1;
2219 } else {
2220 mem_cgroup_cancel_charge(new_page, memcg, false);
2221 }
2222
2223 if (new_page)
2224 put_page(new_page);
2225
2226 pte_unmap_unlock(page_table, ptl);
2227 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2228 if (old_page) {
2229 /*
2230 * Don't let another task, with possibly unlocked vma,
2231 * keep the mlocked page.
2232 */
2233 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234 lock_page(old_page); /* LRU manipulation */
2235 if (PageMlocked(old_page))
2236 munlock_vma_page(old_page);
2237 unlock_page(old_page);
2238 }
2239 put_page(old_page);
2240 }
2241 return page_copied ? VM_FAULT_WRITE : 0;
2242oom_free_new:
2243 put_page(new_page);
2244oom:
2245 if (old_page)
2246 put_page(old_page);
2247 return VM_FAULT_OOM;
2248}
2249
2250/*
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2253 */
2254static int wp_pfn_shared(struct mm_struct *mm,
2255 struct vm_area_struct *vma, unsigned long address,
2256 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257 pmd_t *pmd)
2258{
2259 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260 struct vm_fault vmf = {
2261 .page = NULL,
2262 .pgoff = linear_page_index(vma, address),
2263 .virtual_address = (void __user *)(address & PAGE_MASK),
2264 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2265 };
2266 int ret;
2267
2268 pte_unmap_unlock(page_table, ptl);
2269 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270 if (ret & VM_FAULT_ERROR)
2271 return ret;
2272 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2273 /*
2274 * We might have raced with another page fault while we
2275 * released the pte_offset_map_lock.
2276 */
2277 if (!pte_same(*page_table, orig_pte)) {
2278 pte_unmap_unlock(page_table, ptl);
2279 return 0;
2280 }
2281 }
2282 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283 NULL, 0, 0);
2284}
2285
2286static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287 unsigned long address, pte_t *page_table,
2288 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289 struct page *old_page)
2290 __releases(ptl)
2291{
2292 int page_mkwrite = 0;
2293
2294 get_page(old_page);
2295
2296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297 int tmp;
2298
2299 pte_unmap_unlock(page_table, ptl);
2300 tmp = do_page_mkwrite(vma, old_page, address);
2301 if (unlikely(!tmp || (tmp &
2302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303 put_page(old_page);
2304 return tmp;
2305 }
2306 /*
2307 * Since we dropped the lock we need to revalidate
2308 * the PTE as someone else may have changed it. If
2309 * they did, we just return, as we can count on the
2310 * MMU to tell us if they didn't also make it writable.
2311 */
2312 page_table = pte_offset_map_lock(mm, pmd, address,
2313 &ptl);
2314 if (!pte_same(*page_table, orig_pte)) {
2315 unlock_page(old_page);
2316 pte_unmap_unlock(page_table, ptl);
2317 put_page(old_page);
2318 return 0;
2319 }
2320 page_mkwrite = 1;
2321 }
2322
2323 return wp_page_reuse(mm, vma, address, page_table, ptl,
2324 orig_pte, old_page, page_mkwrite, 1);
2325}
2326
2327/*
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2331 *
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2336 *
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2340 *
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2344 */
2345static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346 unsigned long address, pte_t *page_table, pmd_t *pmd,
2347 spinlock_t *ptl, pte_t orig_pte)
2348 __releases(ptl)
2349{
2350 struct page *old_page;
2351
2352 old_page = vm_normal_page(vma, address, orig_pte);
2353 if (!old_page) {
2354 /*
2355 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356 * VM_PFNMAP VMA.
2357 *
2358 * We should not cow pages in a shared writeable mapping.
2359 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2360 */
2361 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362 (VM_WRITE|VM_SHARED))
2363 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364 orig_pte, pmd);
2365
2366 pte_unmap_unlock(page_table, ptl);
2367 return wp_page_copy(mm, vma, address, page_table, pmd,
2368 orig_pte, old_page);
2369 }
2370
2371 /*
2372 * Take out anonymous pages first, anonymous shared vmas are
2373 * not dirty accountable.
2374 */
2375 if (PageAnon(old_page) && !PageKsm(old_page)) {
2376 int total_mapcount;
2377 if (!trylock_page(old_page)) {
2378 get_page(old_page);
2379 pte_unmap_unlock(page_table, ptl);
2380 lock_page(old_page);
2381 page_table = pte_offset_map_lock(mm, pmd, address,
2382 &ptl);
2383 if (!pte_same(*page_table, orig_pte)) {
2384 unlock_page(old_page);
2385 pte_unmap_unlock(page_table, ptl);
2386 put_page(old_page);
2387 return 0;
2388 }
2389 put_page(old_page);
2390 }
2391 if (reuse_swap_page(old_page, &total_mapcount)) {
2392 if (total_mapcount == 1) {
2393 /*
2394 * The page is all ours. Move it to
2395 * our anon_vma so the rmap code will
2396 * not search our parent or siblings.
2397 * Protected against the rmap code by
2398 * the page lock.
2399 */
2400 page_move_anon_rmap(compound_head(old_page),
2401 vma, address);
2402 }
2403 unlock_page(old_page);
2404 return wp_page_reuse(mm, vma, address, page_table, ptl,
2405 orig_pte, old_page, 0, 0);
2406 }
2407 unlock_page(old_page);
2408 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409 (VM_WRITE|VM_SHARED))) {
2410 return wp_page_shared(mm, vma, address, page_table, pmd,
2411 ptl, orig_pte, old_page);
2412 }
2413
2414 /*
2415 * Ok, we need to copy. Oh, well..
2416 */
2417 get_page(old_page);
2418
2419 pte_unmap_unlock(page_table, ptl);
2420 return wp_page_copy(mm, vma, address, page_table, pmd,
2421 orig_pte, old_page);
2422}
2423
2424static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425 unsigned long start_addr, unsigned long end_addr,
2426 struct zap_details *details)
2427{
2428 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2429}
2430
2431static inline void unmap_mapping_range_tree(struct rb_root *root,
2432 struct zap_details *details)
2433{
2434 struct vm_area_struct *vma;
2435 pgoff_t vba, vea, zba, zea;
2436
2437 vma_interval_tree_foreach(vma, root,
2438 details->first_index, details->last_index) {
2439
2440 vba = vma->vm_pgoff;
2441 vea = vba + vma_pages(vma) - 1;
2442 zba = details->first_index;
2443 if (zba < vba)
2444 zba = vba;
2445 zea = details->last_index;
2446 if (zea > vea)
2447 zea = vea;
2448
2449 unmap_mapping_range_vma(vma,
2450 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452 details);
2453 }
2454}
2455
2456/**
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2460 *
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file. This will be rounded down to a PAGE_SIZE
2464 * boundary. Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page. In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes. This will be rounded
2468 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2472 */
2473void unmap_mapping_range(struct address_space *mapping,
2474 loff_t const holebegin, loff_t const holelen, int even_cows)
2475{
2476 struct zap_details details = { };
2477 pgoff_t hba = holebegin >> PAGE_SHIFT;
2478 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2479
2480 /* Check for overflow. */
2481 if (sizeof(holelen) > sizeof(hlen)) {
2482 long long holeend =
2483 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484 if (holeend & ~(long long)ULONG_MAX)
2485 hlen = ULONG_MAX - hba + 1;
2486 }
2487
2488 details.check_mapping = even_cows? NULL: mapping;
2489 details.first_index = hba;
2490 details.last_index = hba + hlen - 1;
2491 if (details.last_index < details.first_index)
2492 details.last_index = ULONG_MAX;
2493
2494
2495 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496 i_mmap_lock_write(mapping);
2497 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499 i_mmap_unlock_write(mapping);
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
2503/*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2510 */
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512 unsigned long address, pte_t *page_table, pmd_t *pmd,
2513 unsigned int flags, pte_t orig_pte)
2514{
2515 spinlock_t *ptl;
2516 struct page *page, *swapcache;
2517 struct mem_cgroup *memcg;
2518 swp_entry_t entry;
2519 pte_t pte;
2520 int locked;
2521 int exclusive = 0;
2522 int ret = 0;
2523
2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525 goto out;
2526
2527 entry = pte_to_swp_entry(orig_pte);
2528 if (unlikely(non_swap_entry(entry))) {
2529 if (is_migration_entry(entry)) {
2530 migration_entry_wait(mm, pmd, address);
2531 } else if (is_hwpoison_entry(entry)) {
2532 ret = VM_FAULT_HWPOISON;
2533 } else {
2534 print_bad_pte(vma, address, orig_pte, NULL);
2535 ret = VM_FAULT_SIGBUS;
2536 }
2537 goto out;
2538 }
2539 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540 page = lookup_swap_cache(entry);
2541 if (!page) {
2542 page = swapin_readahead(entry,
2543 GFP_HIGHUSER_MOVABLE, vma, address);
2544 if (!page) {
2545 /*
2546 * Back out if somebody else faulted in this pte
2547 * while we released the pte lock.
2548 */
2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550 if (likely(pte_same(*page_table, orig_pte)))
2551 ret = VM_FAULT_OOM;
2552 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553 goto unlock;
2554 }
2555
2556 /* Had to read the page from swap area: Major fault */
2557 ret = VM_FAULT_MAJOR;
2558 count_vm_event(PGMAJFAULT);
2559 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560 } else if (PageHWPoison(page)) {
2561 /*
2562 * hwpoisoned dirty swapcache pages are kept for killing
2563 * owner processes (which may be unknown at hwpoison time)
2564 */
2565 ret = VM_FAULT_HWPOISON;
2566 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567 swapcache = page;
2568 goto out_release;
2569 }
2570
2571 swapcache = page;
2572 locked = lock_page_or_retry(page, mm, flags);
2573
2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 if (!locked) {
2576 ret |= VM_FAULT_RETRY;
2577 goto out_release;
2578 }
2579
2580 /*
2581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582 * release the swapcache from under us. The page pin, and pte_same
2583 * test below, are not enough to exclude that. Even if it is still
2584 * swapcache, we need to check that the page's swap has not changed.
2585 */
2586 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587 goto out_page;
2588
2589 page = ksm_might_need_to_copy(page, vma, address);
2590 if (unlikely(!page)) {
2591 ret = VM_FAULT_OOM;
2592 page = swapcache;
2593 goto out_page;
2594 }
2595
2596 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597 ret = VM_FAULT_OOM;
2598 goto out_page;
2599 }
2600
2601 /*
2602 * Back out if somebody else already faulted in this pte.
2603 */
2604 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605 if (unlikely(!pte_same(*page_table, orig_pte)))
2606 goto out_nomap;
2607
2608 if (unlikely(!PageUptodate(page))) {
2609 ret = VM_FAULT_SIGBUS;
2610 goto out_nomap;
2611 }
2612
2613 /*
2614 * The page isn't present yet, go ahead with the fault.
2615 *
2616 * Be careful about the sequence of operations here.
2617 * To get its accounting right, reuse_swap_page() must be called
2618 * while the page is counted on swap but not yet in mapcount i.e.
2619 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620 * must be called after the swap_free(), or it will never succeed.
2621 */
2622
2623 inc_mm_counter_fast(mm, MM_ANONPAGES);
2624 dec_mm_counter_fast(mm, MM_SWAPENTS);
2625 pte = mk_pte(page, vma->vm_page_prot);
2626 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628 flags &= ~FAULT_FLAG_WRITE;
2629 ret |= VM_FAULT_WRITE;
2630 exclusive = RMAP_EXCLUSIVE;
2631 }
2632 flush_icache_page(vma, page);
2633 if (pte_swp_soft_dirty(orig_pte))
2634 pte = pte_mksoft_dirty(pte);
2635 set_pte_at(mm, address, page_table, pte);
2636 if (page == swapcache) {
2637 do_page_add_anon_rmap(page, vma, address, exclusive);
2638 mem_cgroup_commit_charge(page, memcg, true, false);
2639 } else { /* ksm created a completely new copy */
2640 page_add_new_anon_rmap(page, vma, address, false);
2641 mem_cgroup_commit_charge(page, memcg, false, false);
2642 lru_cache_add_active_or_unevictable(page, vma);
2643 }
2644
2645 swap_free(entry);
2646 if (mem_cgroup_swap_full(page) ||
2647 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648 try_to_free_swap(page);
2649 unlock_page(page);
2650 if (page != swapcache) {
2651 /*
2652 * Hold the lock to avoid the swap entry to be reused
2653 * until we take the PT lock for the pte_same() check
2654 * (to avoid false positives from pte_same). For
2655 * further safety release the lock after the swap_free
2656 * so that the swap count won't change under a
2657 * parallel locked swapcache.
2658 */
2659 unlock_page(swapcache);
2660 put_page(swapcache);
2661 }
2662
2663 if (flags & FAULT_FLAG_WRITE) {
2664 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665 if (ret & VM_FAULT_ERROR)
2666 ret &= VM_FAULT_ERROR;
2667 goto out;
2668 }
2669
2670 /* No need to invalidate - it was non-present before */
2671 update_mmu_cache(vma, address, page_table);
2672unlock:
2673 pte_unmap_unlock(page_table, ptl);
2674out:
2675 return ret;
2676out_nomap:
2677 mem_cgroup_cancel_charge(page, memcg, false);
2678 pte_unmap_unlock(page_table, ptl);
2679out_page:
2680 unlock_page(page);
2681out_release:
2682 put_page(page);
2683 if (page != swapcache) {
2684 unlock_page(swapcache);
2685 put_page(swapcache);
2686 }
2687 return ret;
2688}
2689
2690/*
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697 address &= PAGE_MASK;
2698 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699 struct vm_area_struct *prev = vma->vm_prev;
2700
2701 /*
2702 * Is there a mapping abutting this one below?
2703 *
2704 * That's only ok if it's the same stack mapping
2705 * that has gotten split..
2706 */
2707 if (prev && prev->vm_end == address)
2708 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709
2710 return expand_downwards(vma, address - PAGE_SIZE);
2711 }
2712 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713 struct vm_area_struct *next = vma->vm_next;
2714
2715 /* As VM_GROWSDOWN but s/below/above/ */
2716 if (next && next->vm_start == address + PAGE_SIZE)
2717 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
2719 return expand_upwards(vma, address + PAGE_SIZE);
2720 }
2721 return 0;
2722}
2723
2724/*
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2728 */
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730 unsigned long address, pte_t *page_table, pmd_t *pmd,
2731 unsigned int flags)
2732{
2733 struct mem_cgroup *memcg;
2734 struct page *page;
2735 spinlock_t *ptl;
2736 pte_t entry;
2737
2738 pte_unmap(page_table);
2739
2740 /* File mapping without ->vm_ops ? */
2741 if (vma->vm_flags & VM_SHARED)
2742 return VM_FAULT_SIGBUS;
2743
2744 /* Check if we need to add a guard page to the stack */
2745 if (check_stack_guard_page(vma, address) < 0)
2746 return VM_FAULT_SIGSEGV;
2747
2748 /* Use the zero-page for reads */
2749 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751 vma->vm_page_prot));
2752 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753 if (!pte_none(*page_table))
2754 goto unlock;
2755 /* Deliver the page fault to userland, check inside PT lock */
2756 if (userfaultfd_missing(vma)) {
2757 pte_unmap_unlock(page_table, ptl);
2758 return handle_userfault(vma, address, flags,
2759 VM_UFFD_MISSING);
2760 }
2761 goto setpte;
2762 }
2763
2764 /* Allocate our own private page. */
2765 if (unlikely(anon_vma_prepare(vma)))
2766 goto oom;
2767 page = alloc_zeroed_user_highpage_movable(vma, address);
2768 if (!page)
2769 goto oom;
2770
2771 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772 goto oom_free_page;
2773
2774 /*
2775 * The memory barrier inside __SetPageUptodate makes sure that
2776 * preceeding stores to the page contents become visible before
2777 * the set_pte_at() write.
2778 */
2779 __SetPageUptodate(page);
2780
2781 entry = mk_pte(page, vma->vm_page_prot);
2782 if (vma->vm_flags & VM_WRITE)
2783 entry = pte_mkwrite(pte_mkdirty(entry));
2784
2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786 if (!pte_none(*page_table))
2787 goto release;
2788
2789 /* Deliver the page fault to userland, check inside PT lock */
2790 if (userfaultfd_missing(vma)) {
2791 pte_unmap_unlock(page_table, ptl);
2792 mem_cgroup_cancel_charge(page, memcg, false);
2793 put_page(page);
2794 return handle_userfault(vma, address, flags,
2795 VM_UFFD_MISSING);
2796 }
2797
2798 inc_mm_counter_fast(mm, MM_ANONPAGES);
2799 page_add_new_anon_rmap(page, vma, address, false);
2800 mem_cgroup_commit_charge(page, memcg, false, false);
2801 lru_cache_add_active_or_unevictable(page, vma);
2802setpte:
2803 set_pte_at(mm, address, page_table, entry);
2804
2805 /* No need to invalidate - it was non-present before */
2806 update_mmu_cache(vma, address, page_table);
2807unlock:
2808 pte_unmap_unlock(page_table, ptl);
2809 return 0;
2810release:
2811 mem_cgroup_cancel_charge(page, memcg, false);
2812 put_page(page);
2813 goto unlock;
2814oom_free_page:
2815 put_page(page);
2816oom:
2817 return VM_FAULT_OOM;
2818}
2819
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826 pgoff_t pgoff, unsigned int flags,
2827 struct page *cow_page, struct page **page)
2828{
2829 struct vm_fault vmf;
2830 int ret;
2831
2832 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833 vmf.pgoff = pgoff;
2834 vmf.flags = flags;
2835 vmf.page = NULL;
2836 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837 vmf.cow_page = cow_page;
2838
2839 ret = vma->vm_ops->fault(vma, &vmf);
2840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841 return ret;
2842 if (!vmf.page)
2843 goto out;
2844
2845 if (unlikely(PageHWPoison(vmf.page))) {
2846 if (ret & VM_FAULT_LOCKED)
2847 unlock_page(vmf.page);
2848 put_page(vmf.page);
2849 return VM_FAULT_HWPOISON;
2850 }
2851
2852 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853 lock_page(vmf.page);
2854 else
2855 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2856
2857 out:
2858 *page = vmf.page;
2859 return ret;
2860}
2861
2862/**
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2864 *
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2871 *
2872 * Caller must hold page table lock relevant for @pte.
2873 *
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2876 */
2877void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878 struct page *page, pte_t *pte, bool write, bool anon)
2879{
2880 pte_t entry;
2881
2882 flush_icache_page(vma, page);
2883 entry = mk_pte(page, vma->vm_page_prot);
2884 if (write)
2885 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2886 if (anon) {
2887 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888 page_add_new_anon_rmap(page, vma, address, false);
2889 } else {
2890 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891 page_add_file_rmap(page);
2892 }
2893 set_pte_at(vma->vm_mm, address, pte, entry);
2894
2895 /* no need to invalidate: a not-present page won't be cached */
2896 update_mmu_cache(vma, address, pte);
2897}
2898
2899static unsigned long fault_around_bytes __read_mostly =
2900 rounddown_pow_of_two(65536);
2901
2902#ifdef CONFIG_DEBUG_FS
2903static int fault_around_bytes_get(void *data, u64 *val)
2904{
2905 *val = fault_around_bytes;
2906 return 0;
2907}
2908
2909/*
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2913 */
2914static int fault_around_bytes_set(void *data, u64 val)
2915{
2916 if (val / PAGE_SIZE > PTRS_PER_PTE)
2917 return -EINVAL;
2918 if (val > PAGE_SIZE)
2919 fault_around_bytes = rounddown_pow_of_two(val);
2920 else
2921 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922 return 0;
2923}
2924DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2926
2927static int __init fault_around_debugfs(void)
2928{
2929 void *ret;
2930
2931 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932 &fault_around_bytes_fops);
2933 if (!ret)
2934 pr_warn("Failed to create fault_around_bytes in debugfs");
2935 return 0;
2936}
2937late_initcall(fault_around_debugfs);
2938#endif
2939
2940/*
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2944 *
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2947 *
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2951 *
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2954 *
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2958 *
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order). This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2962 */
2963static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2965{
2966 unsigned long start_addr, nr_pages, mask;
2967 pgoff_t max_pgoff;
2968 struct vm_fault vmf;
2969 int off;
2970
2971 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2973
2974 start_addr = max(address & mask, vma->vm_start);
2975 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976 pte -= off;
2977 pgoff -= off;
2978
2979 /*
2980 * max_pgoff is either end of page table or end of vma
2981 * or fault_around_pages() from pgoff, depending what is nearest.
2982 */
2983 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2984 PTRS_PER_PTE - 1;
2985 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986 pgoff + nr_pages - 1);
2987
2988 /* Check if it makes any sense to call ->map_pages */
2989 while (!pte_none(*pte)) {
2990 if (++pgoff > max_pgoff)
2991 return;
2992 start_addr += PAGE_SIZE;
2993 if (start_addr >= vma->vm_end)
2994 return;
2995 pte++;
2996 }
2997
2998 vmf.virtual_address = (void __user *) start_addr;
2999 vmf.pte = pte;
3000 vmf.pgoff = pgoff;
3001 vmf.max_pgoff = max_pgoff;
3002 vmf.flags = flags;
3003 vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004 vma->vm_ops->map_pages(vma, &vmf);
3005}
3006
3007static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008 unsigned long address, pmd_t *pmd,
3009 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010{
3011 struct page *fault_page;
3012 spinlock_t *ptl;
3013 pte_t *pte;
3014 int ret = 0;
3015
3016 /*
3017 * Let's call ->map_pages() first and use ->fault() as fallback
3018 * if page by the offset is not ready to be mapped (cold cache or
3019 * something).
3020 */
3021 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023 do_fault_around(vma, address, pte, pgoff, flags);
3024 if (!pte_same(*pte, orig_pte))
3025 goto unlock_out;
3026 pte_unmap_unlock(pte, ptl);
3027 }
3028
3029 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031 return ret;
3032
3033 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034 if (unlikely(!pte_same(*pte, orig_pte))) {
3035 pte_unmap_unlock(pte, ptl);
3036 unlock_page(fault_page);
3037 put_page(fault_page);
3038 return ret;
3039 }
3040 do_set_pte(vma, address, fault_page, pte, false, false);
3041 unlock_page(fault_page);
3042unlock_out:
3043 pte_unmap_unlock(pte, ptl);
3044 return ret;
3045}
3046
3047static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048 unsigned long address, pmd_t *pmd,
3049 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050{
3051 struct page *fault_page, *new_page;
3052 struct mem_cgroup *memcg;
3053 spinlock_t *ptl;
3054 pte_t *pte;
3055 int ret;
3056
3057 if (unlikely(anon_vma_prepare(vma)))
3058 return VM_FAULT_OOM;
3059
3060 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061 if (!new_page)
3062 return VM_FAULT_OOM;
3063
3064 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065 put_page(new_page);
3066 return VM_FAULT_OOM;
3067 }
3068
3069 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071 goto uncharge_out;
3072
3073 if (fault_page)
3074 copy_user_highpage(new_page, fault_page, address, vma);
3075 __SetPageUptodate(new_page);
3076
3077 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078 if (unlikely(!pte_same(*pte, orig_pte))) {
3079 pte_unmap_unlock(pte, ptl);
3080 if (fault_page) {
3081 unlock_page(fault_page);
3082 put_page(fault_page);
3083 } else {
3084 /*
3085 * The fault handler has no page to lock, so it holds
3086 * i_mmap_lock for read to protect against truncate.
3087 */
3088 i_mmap_unlock_read(vma->vm_file->f_mapping);
3089 }
3090 goto uncharge_out;
3091 }
3092 do_set_pte(vma, address, new_page, pte, true, true);
3093 mem_cgroup_commit_charge(new_page, memcg, false, false);
3094 lru_cache_add_active_or_unevictable(new_page, vma);
3095 pte_unmap_unlock(pte, ptl);
3096 if (fault_page) {
3097 unlock_page(fault_page);
3098 put_page(fault_page);
3099 } else {
3100 /*
3101 * The fault handler has no page to lock, so it holds
3102 * i_mmap_lock for read to protect against truncate.
3103 */
3104 i_mmap_unlock_read(vma->vm_file->f_mapping);
3105 }
3106 return ret;
3107uncharge_out:
3108 mem_cgroup_cancel_charge(new_page, memcg, false);
3109 put_page(new_page);
3110 return ret;
3111}
3112
3113static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114 unsigned long address, pmd_t *pmd,
3115 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3116{
3117 struct page *fault_page;
3118 struct address_space *mapping;
3119 spinlock_t *ptl;
3120 pte_t *pte;
3121 int dirtied = 0;
3122 int ret, tmp;
3123
3124 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126 return ret;
3127
3128 /*
3129 * Check if the backing address space wants to know that the page is
3130 * about to become writable
3131 */
3132 if (vma->vm_ops->page_mkwrite) {
3133 unlock_page(fault_page);
3134 tmp = do_page_mkwrite(vma, fault_page, address);
3135 if (unlikely(!tmp ||
3136 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137 put_page(fault_page);
3138 return tmp;
3139 }
3140 }
3141
3142 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143 if (unlikely(!pte_same(*pte, orig_pte))) {
3144 pte_unmap_unlock(pte, ptl);
3145 unlock_page(fault_page);
3146 put_page(fault_page);
3147 return ret;
3148 }
3149 do_set_pte(vma, address, fault_page, pte, true, false);
3150 pte_unmap_unlock(pte, ptl);
3151
3152 if (set_page_dirty(fault_page))
3153 dirtied = 1;
3154 /*
3155 * Take a local copy of the address_space - page.mapping may be zeroed
3156 * by truncate after unlock_page(). The address_space itself remains
3157 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3158 * release semantics to prevent the compiler from undoing this copying.
3159 */
3160 mapping = page_rmapping(fault_page);
3161 unlock_page(fault_page);
3162 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3163 /*
3164 * Some device drivers do not set page.mapping but still
3165 * dirty their pages
3166 */
3167 balance_dirty_pages_ratelimited(mapping);
3168 }
3169
3170 if (!vma->vm_ops->page_mkwrite)
3171 file_update_time(vma->vm_file);
3172
3173 return ret;
3174}
3175
3176/*
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value. See filemap_fault() and __lock_page_or_retry().
3181 */
3182static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183 unsigned long address, pte_t *page_table, pmd_t *pmd,
3184 unsigned int flags, pte_t orig_pte)
3185{
3186 pgoff_t pgoff = linear_page_index(vma, address);
3187
3188 pte_unmap(page_table);
3189 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190 if (!vma->vm_ops->fault)
3191 return VM_FAULT_SIGBUS;
3192 if (!(flags & FAULT_FLAG_WRITE))
3193 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194 orig_pte);
3195 if (!(vma->vm_flags & VM_SHARED))
3196 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197 orig_pte);
3198 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3199}
3200
3201static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202 unsigned long addr, int page_nid,
3203 int *flags)
3204{
3205 get_page(page);
3206
3207 count_vm_numa_event(NUMA_HINT_FAULTS);
3208 if (page_nid == numa_node_id()) {
3209 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210 *flags |= TNF_FAULT_LOCAL;
3211 }
3212
3213 return mpol_misplaced(page, vma, addr);
3214}
3215
3216static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3218{
3219 struct page *page = NULL;
3220 spinlock_t *ptl;
3221 int page_nid = -1;
3222 int last_cpupid;
3223 int target_nid;
3224 bool migrated = false;
3225 bool was_writable = pte_write(pte);
3226 int flags = 0;
3227
3228 /* A PROT_NONE fault should not end up here */
3229 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3230
3231 /*
3232 * The "pte" at this point cannot be used safely without
3233 * validation through pte_unmap_same(). It's of NUMA type but
3234 * the pfn may be screwed if the read is non atomic.
3235 *
3236 * We can safely just do a "set_pte_at()", because the old
3237 * page table entry is not accessible, so there would be no
3238 * concurrent hardware modifications to the PTE.
3239 */
3240 ptl = pte_lockptr(mm, pmd);
3241 spin_lock(ptl);
3242 if (unlikely(!pte_same(*ptep, pte))) {
3243 pte_unmap_unlock(ptep, ptl);
3244 goto out;
3245 }
3246
3247 /* Make it present again */
3248 pte = pte_modify(pte, vma->vm_page_prot);
3249 pte = pte_mkyoung(pte);
3250 if (was_writable)
3251 pte = pte_mkwrite(pte);
3252 set_pte_at(mm, addr, ptep, pte);
3253 update_mmu_cache(vma, addr, ptep);
3254
3255 page = vm_normal_page(vma, addr, pte);
3256 if (!page) {
3257 pte_unmap_unlock(ptep, ptl);
3258 return 0;
3259 }
3260
3261 /* TODO: handle PTE-mapped THP */
3262 if (PageCompound(page)) {
3263 pte_unmap_unlock(ptep, ptl);
3264 return 0;
3265 }
3266
3267 /*
3268 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269 * much anyway since they can be in shared cache state. This misses
3270 * the case where a mapping is writable but the process never writes
3271 * to it but pte_write gets cleared during protection updates and
3272 * pte_dirty has unpredictable behaviour between PTE scan updates,
3273 * background writeback, dirty balancing and application behaviour.
3274 */
3275 if (!(vma->vm_flags & VM_WRITE))
3276 flags |= TNF_NO_GROUP;
3277
3278 /*
3279 * Flag if the page is shared between multiple address spaces. This
3280 * is later used when determining whether to group tasks together
3281 */
3282 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283 flags |= TNF_SHARED;
3284
3285 last_cpupid = page_cpupid_last(page);
3286 page_nid = page_to_nid(page);
3287 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288 pte_unmap_unlock(ptep, ptl);
3289 if (target_nid == -1) {
3290 put_page(page);
3291 goto out;
3292 }
3293
3294 /* Migrate to the requested node */
3295 migrated = migrate_misplaced_page(page, vma, target_nid);
3296 if (migrated) {
3297 page_nid = target_nid;
3298 flags |= TNF_MIGRATED;
3299 } else
3300 flags |= TNF_MIGRATE_FAIL;
3301
3302out:
3303 if (page_nid != -1)
3304 task_numa_fault(last_cpupid, page_nid, 1, flags);
3305 return 0;
3306}
3307
3308static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309 unsigned long address, pmd_t *pmd, unsigned int flags)
3310{
3311 if (vma_is_anonymous(vma))
3312 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313 if (vma->vm_ops->pmd_fault)
3314 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3315 return VM_FAULT_FALLBACK;
3316}
3317
3318static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320 unsigned int flags)
3321{
3322 if (vma_is_anonymous(vma))
3323 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324 if (vma->vm_ops->pmd_fault)
3325 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3326 return VM_FAULT_FALLBACK;
3327}
3328
3329/*
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures). The early dirtying is also good on the i386.
3333 *
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value. See filemap_fault() and __lock_page_or_retry().
3344 */
3345static int handle_pte_fault(struct mm_struct *mm,
3346 struct vm_area_struct *vma, unsigned long address,
3347 pte_t *pte, pmd_t *pmd, unsigned int flags)
3348{
3349 pte_t entry;
3350 spinlock_t *ptl;
3351
3352 /*
3353 * some architectures can have larger ptes than wordsize,
3354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356 * The code below just needs a consistent view for the ifs and
3357 * we later double check anyway with the ptl lock held. So here
3358 * a barrier will do.
3359 */
3360 entry = *pte;
3361 barrier();
3362 if (!pte_present(entry)) {
3363 if (pte_none(entry)) {
3364 if (vma_is_anonymous(vma))
3365 return do_anonymous_page(mm, vma, address,
3366 pte, pmd, flags);
3367 else
3368 return do_fault(mm, vma, address, pte, pmd,
3369 flags, entry);
3370 }
3371 return do_swap_page(mm, vma, address,
3372 pte, pmd, flags, entry);
3373 }
3374
3375 if (pte_protnone(entry))
3376 return do_numa_page(mm, vma, address, entry, pte, pmd);
3377
3378 ptl = pte_lockptr(mm, pmd);
3379 spin_lock(ptl);
3380 if (unlikely(!pte_same(*pte, entry)))
3381 goto unlock;
3382 if (flags & FAULT_FLAG_WRITE) {
3383 if (!pte_write(entry))
3384 return do_wp_page(mm, vma, address,
3385 pte, pmd, ptl, entry);
3386 entry = pte_mkdirty(entry);
3387 }
3388 entry = pte_mkyoung(entry);
3389 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390 update_mmu_cache(vma, address, pte);
3391 } else {
3392 /*
3393 * This is needed only for protection faults but the arch code
3394 * is not yet telling us if this is a protection fault or not.
3395 * This still avoids useless tlb flushes for .text page faults
3396 * with threads.
3397 */
3398 if (flags & FAULT_FLAG_WRITE)
3399 flush_tlb_fix_spurious_fault(vma, address);
3400 }
3401unlock:
3402 pte_unmap_unlock(pte, ptl);
3403 return 0;
3404}
3405
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value. See filemap_fault() and __lock_page_or_retry().
3411 */
3412static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413 unsigned long address, unsigned int flags)
3414{
3415 pgd_t *pgd;
3416 pud_t *pud;
3417 pmd_t *pmd;
3418 pte_t *pte;
3419
3420 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421 flags & FAULT_FLAG_INSTRUCTION,
3422 flags & FAULT_FLAG_REMOTE))
3423 return VM_FAULT_SIGSEGV;
3424
3425 if (unlikely(is_vm_hugetlb_page(vma)))
3426 return hugetlb_fault(mm, vma, address, flags);
3427
3428 pgd = pgd_offset(mm, address);
3429 pud = pud_alloc(mm, pgd, address);
3430 if (!pud)
3431 return VM_FAULT_OOM;
3432 pmd = pmd_alloc(mm, pud, address);
3433 if (!pmd)
3434 return VM_FAULT_OOM;
3435 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3437 if (!(ret & VM_FAULT_FALLBACK))
3438 return ret;
3439 } else {
3440 pmd_t orig_pmd = *pmd;
3441 int ret;
3442
3443 barrier();
3444 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3446
3447 if (pmd_protnone(orig_pmd))
3448 return do_huge_pmd_numa_page(mm, vma, address,
3449 orig_pmd, pmd);
3450
3451 if (dirty && !pmd_write(orig_pmd)) {
3452 ret = wp_huge_pmd(mm, vma, address, pmd,
3453 orig_pmd, flags);
3454 if (!(ret & VM_FAULT_FALLBACK))
3455 return ret;
3456 } else {
3457 huge_pmd_set_accessed(mm, vma, address, pmd,
3458 orig_pmd, dirty);
3459 return 0;
3460 }
3461 }
3462 }
3463
3464 /*
3465 * Use pte_alloc() instead of pte_alloc_map, because we can't
3466 * run pte_offset_map on the pmd, if an huge pmd could
3467 * materialize from under us from a different thread.
3468 */
3469 if (unlikely(pte_alloc(mm, pmd, address)))
3470 return VM_FAULT_OOM;
3471 /*
3472 * If a huge pmd materialized under us just retry later. Use
3473 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476 * in a different thread of this mm, in turn leading to a misleading
3477 * pmd_trans_huge() retval. All we have to ensure is that it is a
3478 * regular pmd that we can walk with pte_offset_map() and we can do that
3479 * through an atomic read in C, which is what pmd_trans_unstable()
3480 * provides.
3481 */
3482 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483 return 0;
3484 /*
3485 * A regular pmd is established and it can't morph into a huge pmd
3486 * from under us anymore at this point because we hold the mmap_sem
3487 * read mode and khugepaged takes it in write mode. So now it's
3488 * safe to run pte_offset_map().
3489 */
3490 pte = pte_offset_map(pmd, address);
3491
3492 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3493}
3494
3495/*
3496 * By the time we get here, we already hold the mm semaphore
3497 *
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value. See filemap_fault() and __lock_page_or_retry().
3500 */
3501int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502 unsigned long address, unsigned int flags)
3503{
3504 int ret;
3505
3506 __set_current_state(TASK_RUNNING);
3507
3508 count_vm_event(PGFAULT);
3509 mem_cgroup_count_vm_event(mm, PGFAULT);
3510
3511 /* do counter updates before entering really critical section. */
3512 check_sync_rss_stat(current);
3513
3514 /*
3515 * Enable the memcg OOM handling for faults triggered in user
3516 * space. Kernel faults are handled more gracefully.
3517 */
3518 if (flags & FAULT_FLAG_USER)
3519 mem_cgroup_oom_enable();
3520
3521 ret = __handle_mm_fault(mm, vma, address, flags);
3522
3523 if (flags & FAULT_FLAG_USER) {
3524 mem_cgroup_oom_disable();
3525 /*
3526 * The task may have entered a memcg OOM situation but
3527 * if the allocation error was handled gracefully (no
3528 * VM_FAULT_OOM), there is no need to kill anything.
3529 * Just clean up the OOM state peacefully.
3530 */
3531 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532 mem_cgroup_oom_synchronize(false);
3533 }
3534
3535 return ret;
3536}
3537EXPORT_SYMBOL_GPL(handle_mm_fault);
3538
3539#ifndef __PAGETABLE_PUD_FOLDED
3540/*
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3543 */
3544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3545{
3546 pud_t *new = pud_alloc_one(mm, address);
3547 if (!new)
3548 return -ENOMEM;
3549
3550 smp_wmb(); /* See comment in __pte_alloc */
3551
3552 spin_lock(&mm->page_table_lock);
3553 if (pgd_present(*pgd)) /* Another has populated it */
3554 pud_free(mm, new);
3555 else
3556 pgd_populate(mm, pgd, new);
3557 spin_unlock(&mm->page_table_lock);
3558 return 0;
3559}
3560#endif /* __PAGETABLE_PUD_FOLDED */
3561
3562#ifndef __PAGETABLE_PMD_FOLDED
3563/*
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3566 */
3567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3568{
3569 pmd_t *new = pmd_alloc_one(mm, address);
3570 if (!new)
3571 return -ENOMEM;
3572
3573 smp_wmb(); /* See comment in __pte_alloc */
3574
3575 spin_lock(&mm->page_table_lock);
3576#ifndef __ARCH_HAS_4LEVEL_HACK
3577 if (!pud_present(*pud)) {
3578 mm_inc_nr_pmds(mm);
3579 pud_populate(mm, pud, new);
3580 } else /* Another has populated it */
3581 pmd_free(mm, new);
3582#else
3583 if (!pgd_present(*pud)) {
3584 mm_inc_nr_pmds(mm);
3585 pgd_populate(mm, pud, new);
3586 } else /* Another has populated it */
3587 pmd_free(mm, new);
3588#endif /* __ARCH_HAS_4LEVEL_HACK */
3589 spin_unlock(&mm->page_table_lock);
3590 return 0;
3591}
3592#endif /* __PAGETABLE_PMD_FOLDED */
3593
3594static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595 pte_t **ptepp, spinlock_t **ptlp)
3596{
3597 pgd_t *pgd;
3598 pud_t *pud;
3599 pmd_t *pmd;
3600 pte_t *ptep;
3601
3602 pgd = pgd_offset(mm, address);
3603 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604 goto out;
3605
3606 pud = pud_offset(pgd, address);
3607 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608 goto out;
3609
3610 pmd = pmd_offset(pud, address);
3611 VM_BUG_ON(pmd_trans_huge(*pmd));
3612 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613 goto out;
3614
3615 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616 if (pmd_huge(*pmd))
3617 goto out;
3618
3619 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620 if (!ptep)
3621 goto out;
3622 if (!pte_present(*ptep))
3623 goto unlock;
3624 *ptepp = ptep;
3625 return 0;
3626unlock:
3627 pte_unmap_unlock(ptep, *ptlp);
3628out:
3629 return -EINVAL;
3630}
3631
3632static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633 pte_t **ptepp, spinlock_t **ptlp)
3634{
3635 int res;
3636
3637 /* (void) is needed to make gcc happy */
3638 (void) __cond_lock(*ptlp,
3639 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3640 return res;
3641}
3642
3643/**
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3648 *
3649 * Only IO mappings and raw PFN mappings are allowed.
3650 *
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3652 */
3653int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654 unsigned long *pfn)
3655{
3656 int ret = -EINVAL;
3657 spinlock_t *ptl;
3658 pte_t *ptep;
3659
3660 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661 return ret;
3662
3663 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664 if (ret)
3665 return ret;
3666 *pfn = pte_pfn(*ptep);
3667 pte_unmap_unlock(ptep, ptl);
3668 return 0;
3669}
3670EXPORT_SYMBOL(follow_pfn);
3671
3672#ifdef CONFIG_HAVE_IOREMAP_PROT
3673int follow_phys(struct vm_area_struct *vma,
3674 unsigned long address, unsigned int flags,
3675 unsigned long *prot, resource_size_t *phys)
3676{
3677 int ret = -EINVAL;
3678 pte_t *ptep, pte;
3679 spinlock_t *ptl;
3680
3681 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682 goto out;
3683
3684 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685 goto out;
3686 pte = *ptep;
3687
3688 if ((flags & FOLL_WRITE) && !pte_write(pte))
3689 goto unlock;
3690
3691 *prot = pgprot_val(pte_pgprot(pte));
3692 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3693
3694 ret = 0;
3695unlock:
3696 pte_unmap_unlock(ptep, ptl);
3697out:
3698 return ret;
3699}
3700
3701int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702 void *buf, int len, int write)
3703{
3704 resource_size_t phys_addr;
3705 unsigned long prot = 0;
3706 void __iomem *maddr;
3707 int offset = addr & (PAGE_SIZE-1);
3708
3709 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710 return -EINVAL;
3711
3712 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713 if (write)
3714 memcpy_toio(maddr + offset, buf, len);
3715 else
3716 memcpy_fromio(buf, maddr + offset, len);
3717 iounmap(maddr);
3718
3719 return len;
3720}
3721EXPORT_SYMBOL_GPL(generic_access_phys);
3722#endif
3723
3724/*
3725 * Access another process' address space as given in mm. If non-NULL, use the
3726 * given task for page fault accounting.
3727 */
3728static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729 unsigned long addr, void *buf, int len, int write)
3730{
3731 struct vm_area_struct *vma;
3732 void *old_buf = buf;
3733
3734 down_read(&mm->mmap_sem);
3735 /* ignore errors, just check how much was successfully transferred */
3736 while (len) {
3737 int bytes, ret, offset;
3738 void *maddr;
3739 struct page *page = NULL;
3740
3741 ret = get_user_pages_remote(tsk, mm, addr, 1,
3742 write, 1, &page, &vma);
3743 if (ret <= 0) {
3744#ifndef CONFIG_HAVE_IOREMAP_PROT
3745 break;
3746#else
3747 /*
3748 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749 * we can access using slightly different code.
3750 */
3751 vma = find_vma(mm, addr);
3752 if (!vma || vma->vm_start > addr)
3753 break;
3754 if (vma->vm_ops && vma->vm_ops->access)
3755 ret = vma->vm_ops->access(vma, addr, buf,
3756 len, write);
3757 if (ret <= 0)
3758 break;
3759 bytes = ret;
3760#endif
3761 } else {
3762 bytes = len;
3763 offset = addr & (PAGE_SIZE-1);
3764 if (bytes > PAGE_SIZE-offset)
3765 bytes = PAGE_SIZE-offset;
3766
3767 maddr = kmap(page);
3768 if (write) {
3769 copy_to_user_page(vma, page, addr,
3770 maddr + offset, buf, bytes);
3771 set_page_dirty_lock(page);
3772 } else {
3773 copy_from_user_page(vma, page, addr,
3774 buf, maddr + offset, bytes);
3775 }
3776 kunmap(page);
3777 put_page(page);
3778 }
3779 len -= bytes;
3780 buf += bytes;
3781 addr += bytes;
3782 }
3783 up_read(&mm->mmap_sem);
3784
3785 return buf - old_buf;
3786}
3787
3788/**
3789 * access_remote_vm - access another process' address space
3790 * @mm: the mm_struct of the target address space
3791 * @addr: start address to access
3792 * @buf: source or destination buffer
3793 * @len: number of bytes to transfer
3794 * @write: whether the access is a write
3795 *
3796 * The caller must hold a reference on @mm.
3797 */
3798int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799 void *buf, int len, int write)
3800{
3801 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3802}
3803
3804/*
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3808 */
3809int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810 void *buf, int len, int write)
3811{
3812 struct mm_struct *mm;
3813 int ret;
3814
3815 mm = get_task_mm(tsk);
3816 if (!mm)
3817 return 0;
3818
3819 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3820 mmput(mm);
3821
3822 return ret;
3823}
3824
3825/*
3826 * Print the name of a VMA.
3827 */
3828void print_vma_addr(char *prefix, unsigned long ip)
3829{
3830 struct mm_struct *mm = current->mm;
3831 struct vm_area_struct *vma;
3832
3833 /*
3834 * Do not print if we are in atomic
3835 * contexts (in exception stacks, etc.):
3836 */
3837 if (preempt_count())
3838 return;
3839
3840 down_read(&mm->mmap_sem);
3841 vma = find_vma(mm, ip);
3842 if (vma && vma->vm_file) {
3843 struct file *f = vma->vm_file;
3844 char *buf = (char *)__get_free_page(GFP_KERNEL);
3845 if (buf) {
3846 char *p;
3847
3848 p = file_path(f, buf, PAGE_SIZE);
3849 if (IS_ERR(p))
3850 p = "?";
3851 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3852 vma->vm_start,
3853 vma->vm_end - vma->vm_start);
3854 free_page((unsigned long)buf);
3855 }
3856 }
3857 up_read(&mm->mmap_sem);
3858}
3859
3860#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861void __might_fault(const char *file, int line)
3862{
3863 /*
3864 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865 * holding the mmap_sem, this is safe because kernel memory doesn't
3866 * get paged out, therefore we'll never actually fault, and the
3867 * below annotations will generate false positives.
3868 */
3869 if (segment_eq(get_fs(), KERNEL_DS))
3870 return;
3871 if (pagefault_disabled())
3872 return;
3873 __might_sleep(file, line, 0);
3874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3875 if (current->mm)
3876 might_lock_read(¤t->mm->mmap_sem);
3877#endif
3878}
3879EXPORT_SYMBOL(__might_fault);
3880#endif
3881
3882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883static void clear_gigantic_page(struct page *page,
3884 unsigned long addr,
3885 unsigned int pages_per_huge_page)
3886{
3887 int i;
3888 struct page *p = page;
3889
3890 might_sleep();
3891 for (i = 0; i < pages_per_huge_page;
3892 i++, p = mem_map_next(p, page, i)) {
3893 cond_resched();
3894 clear_user_highpage(p, addr + i * PAGE_SIZE);
3895 }
3896}
3897void clear_huge_page(struct page *page,
3898 unsigned long addr, unsigned int pages_per_huge_page)
3899{
3900 int i;
3901
3902 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903 clear_gigantic_page(page, addr, pages_per_huge_page);
3904 return;
3905 }
3906
3907 might_sleep();
3908 for (i = 0; i < pages_per_huge_page; i++) {
3909 cond_resched();
3910 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3911 }
3912}
3913
3914static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915 unsigned long addr,
3916 struct vm_area_struct *vma,
3917 unsigned int pages_per_huge_page)
3918{
3919 int i;
3920 struct page *dst_base = dst;
3921 struct page *src_base = src;
3922
3923 for (i = 0; i < pages_per_huge_page; ) {
3924 cond_resched();
3925 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926
3927 i++;
3928 dst = mem_map_next(dst, dst_base, i);
3929 src = mem_map_next(src, src_base, i);
3930 }
3931}
3932
3933void copy_user_huge_page(struct page *dst, struct page *src,
3934 unsigned long addr, struct vm_area_struct *vma,
3935 unsigned int pages_per_huge_page)
3936{
3937 int i;
3938
3939 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940 copy_user_gigantic_page(dst, src, addr, vma,
3941 pages_per_huge_page);
3942 return;
3943 }
3944
3945 might_sleep();
3946 for (i = 0; i < pages_per_huge_page; i++) {
3947 cond_resched();
3948 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3949 }
3950}
3951#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3952
3953#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3954
3955static struct kmem_cache *page_ptl_cachep;
3956
3957void __init ptlock_cache_init(void)
3958{
3959 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960 SLAB_PANIC, NULL);
3961}
3962
3963bool ptlock_alloc(struct page *page)
3964{
3965 spinlock_t *ptl;
3966
3967 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968 if (!ptl)
3969 return false;
3970 page->ptl = ptl;
3971 return true;
3972}
3973
3974void ptlock_free(struct page *page)
3975{
3976 kmem_cache_free(page_ptl_cachep, page->ptl);
3977}
3978#endif