Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
 
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72
  73#include <asm/io.h>
  74#include <asm/mmu_context.h>
  75#include <asm/pgalloc.h>
  76#include <linux/uaccess.h>
  77#include <asm/tlb.h>
  78#include <asm/tlbflush.h>
  79#include <asm/pgtable.h>
  80
  81#include "internal.h"
  82
  83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  85#endif
  86
  87#ifndef CONFIG_NEED_MULTIPLE_NODES
  88/* use the per-pgdat data instead for discontigmem - mbligh */
  89unsigned long max_mapnr;
  90EXPORT_SYMBOL(max_mapnr);
  91
  92struct page *mem_map;
 
 
  93EXPORT_SYMBOL(mem_map);
  94#endif
  95
 
  96/*
  97 * A number of key systems in x86 including ioremap() rely on the assumption
  98 * that high_memory defines the upper bound on direct map memory, then end
  99 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 101 * and ZONE_HIGHMEM.
 102 */
 103void *high_memory;
 
 
 104EXPORT_SYMBOL(high_memory);
 105
 106/*
 107 * Randomize the address space (stacks, mmaps, brk, etc.).
 108 *
 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 110 *   as ancient (libc5 based) binaries can segfault. )
 111 */
 112int randomize_va_space __read_mostly =
 113#ifdef CONFIG_COMPAT_BRK
 114					1;
 115#else
 116					2;
 117#endif
 118
 119static int __init disable_randmaps(char *s)
 120{
 121	randomize_va_space = 0;
 122	return 1;
 123}
 124__setup("norandmaps", disable_randmaps);
 125
 126unsigned long zero_pfn __read_mostly;
 127EXPORT_SYMBOL(zero_pfn);
 128
 129unsigned long highest_memmap_pfn __read_mostly;
 130
 131/*
 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 133 */
 134static int __init init_zero_pfn(void)
 135{
 136	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 137	return 0;
 138}
 139core_initcall(init_zero_pfn);
 140
 141
 142#if defined(SPLIT_RSS_COUNTING)
 143
 144void sync_mm_rss(struct mm_struct *mm)
 145{
 146	int i;
 147
 148	for (i = 0; i < NR_MM_COUNTERS; i++) {
 149		if (current->rss_stat.count[i]) {
 150			add_mm_counter(mm, i, current->rss_stat.count[i]);
 151			current->rss_stat.count[i] = 0;
 152		}
 153	}
 154	current->rss_stat.events = 0;
 155}
 156
 157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 158{
 159	struct task_struct *task = current;
 160
 161	if (likely(task->mm == mm))
 162		task->rss_stat.count[member] += val;
 163	else
 164		add_mm_counter(mm, member, val);
 165}
 166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 168
 169/* sync counter once per 64 page faults */
 170#define TASK_RSS_EVENTS_THRESH	(64)
 171static void check_sync_rss_stat(struct task_struct *task)
 172{
 173	if (unlikely(task != current))
 174		return;
 175	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 176		sync_mm_rss(task->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177}
 178#else /* SPLIT_RSS_COUNTING */
 179
 180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 182
 183static void check_sync_rss_stat(struct task_struct *task)
 184{
 185}
 186
 187#endif /* SPLIT_RSS_COUNTING */
 188
 189#ifdef HAVE_GENERIC_MMU_GATHER
 190
 191static bool tlb_next_batch(struct mmu_gather *tlb)
 192{
 193	struct mmu_gather_batch *batch;
 194
 195	batch = tlb->active;
 196	if (batch->next) {
 197		tlb->active = batch->next;
 198		return true;
 199	}
 200
 201	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 202		return false;
 203
 204	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 205	if (!batch)
 206		return false;
 207
 208	tlb->batch_count++;
 209	batch->next = NULL;
 210	batch->nr   = 0;
 211	batch->max  = MAX_GATHER_BATCH;
 212
 213	tlb->active->next = batch;
 214	tlb->active = batch;
 215
 216	return true;
 217}
 218
 219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 220				unsigned long start, unsigned long end)
 
 
 
 
 221{
 222	tlb->mm = mm;
 223
 224	/* Is it from 0 to ~0? */
 225	tlb->fullmm     = !(start | (end+1));
 226	tlb->need_flush_all = 0;
 227	tlb->local.next = NULL;
 228	tlb->local.nr   = 0;
 229	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230	tlb->active     = &tlb->local;
 231	tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234	tlb->batch = NULL;
 235#endif
 236	tlb->page_size = 0;
 237
 238	__tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243	if (!tlb->end)
 244		return;
 245
 
 
 
 246	tlb_flush(tlb);
 247	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249	tlb_table_flush(tlb);
 250#endif
 251	__tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256	struct mmu_gather_batch *batch;
 257
 258	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259		free_pages_and_swap_cache(batch->pages, batch->nr);
 260		batch->nr = 0;
 261	}
 262	tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267	tlb_flush_mmu_tlbonly(tlb);
 268	tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *	Called at the end of the shootdown operation to free up any resources
 273 *	that were required.
 274 */
 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 276		unsigned long start, unsigned long end, bool force)
 277{
 278	struct mmu_gather_batch *batch, *next;
 279
 280	if (force)
 281		__tlb_adjust_range(tlb, start, end - start);
 282
 283	tlb_flush_mmu(tlb);
 284
 285	/* keep the page table cache within bounds */
 286	check_pgt_cache();
 287
 288	for (batch = tlb->local.next; batch; batch = next) {
 289		next = batch->next;
 290		free_pages((unsigned long)batch, 0);
 291	}
 292	tlb->local.next = NULL;
 293}
 294
 295/* __tlb_remove_page
 296 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 297 *	handling the additional races in SMP caused by other CPUs caching valid
 298 *	mappings in their TLBs. Returns the number of free page slots left.
 299 *	When out of page slots we must call tlb_flush_mmu().
 300 *returns true if the caller should flush.
 301 */
 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 303{
 304	struct mmu_gather_batch *batch;
 305
 306	VM_BUG_ON(!tlb->end);
 307	VM_WARN_ON(tlb->page_size != page_size);
 
 
 
 
 308
 309	batch = tlb->active;
 310	/*
 311	 * Add the page and check if we are full. If so
 312	 * force a flush.
 313	 */
 314	batch->pages[batch->nr++] = page;
 315	if (batch->nr == batch->max) {
 316		if (!tlb_next_batch(tlb))
 317			return true;
 318		batch = tlb->active;
 319	}
 320	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 321
 322	return false;
 323}
 324
 325#endif /* HAVE_GENERIC_MMU_GATHER */
 326
 327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 328
 329/*
 330 * See the comment near struct mmu_table_batch.
 331 */
 332
 333static void tlb_remove_table_smp_sync(void *arg)
 334{
 335	/* Simply deliver the interrupt */
 336}
 337
 338static void tlb_remove_table_one(void *table)
 339{
 340	/*
 341	 * This isn't an RCU grace period and hence the page-tables cannot be
 342	 * assumed to be actually RCU-freed.
 343	 *
 344	 * It is however sufficient for software page-table walkers that rely on
 345	 * IRQ disabling. See the comment near struct mmu_table_batch.
 346	 */
 347	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 348	__tlb_remove_table(table);
 349}
 350
 351static void tlb_remove_table_rcu(struct rcu_head *head)
 352{
 353	struct mmu_table_batch *batch;
 354	int i;
 355
 356	batch = container_of(head, struct mmu_table_batch, rcu);
 357
 358	for (i = 0; i < batch->nr; i++)
 359		__tlb_remove_table(batch->tables[i]);
 360
 361	free_page((unsigned long)batch);
 362}
 363
 364void tlb_table_flush(struct mmu_gather *tlb)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	if (*batch) {
 369		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 370		*batch = NULL;
 371	}
 372}
 373
 374void tlb_remove_table(struct mmu_gather *tlb, void *table)
 375{
 376	struct mmu_table_batch **batch = &tlb->batch;
 377
 
 
 378	/*
 379	 * When there's less then two users of this mm there cannot be a
 380	 * concurrent page-table walk.
 381	 */
 382	if (atomic_read(&tlb->mm->mm_users) < 2) {
 383		__tlb_remove_table(table);
 384		return;
 385	}
 386
 387	if (*batch == NULL) {
 388		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 389		if (*batch == NULL) {
 390			tlb_remove_table_one(table);
 391			return;
 392		}
 393		(*batch)->nr = 0;
 394	}
 395	(*batch)->tables[(*batch)->nr++] = table;
 396	if ((*batch)->nr == MAX_TABLE_BATCH)
 397		tlb_table_flush(tlb);
 398}
 399
 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 401
 402/**
 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
 404 * @tlb: the mmu_gather structure to initialize
 405 * @mm: the mm_struct of the target address space
 406 * @start: start of the region that will be removed from the page-table
 407 * @end: end of the region that will be removed from the page-table
 408 *
 409 * Called to initialize an (on-stack) mmu_gather structure for page-table
 410 * tear-down from @mm. The @start and @end are set to 0 and -1
 411 * respectively when @mm is without users and we're going to destroy
 412 * the full address space (exit/execve).
 413 */
 414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 415			unsigned long start, unsigned long end)
 416{
 417	arch_tlb_gather_mmu(tlb, mm, start, end);
 418	inc_tlb_flush_pending(tlb->mm);
 419}
 420
 421void tlb_finish_mmu(struct mmu_gather *tlb,
 422		unsigned long start, unsigned long end)
 423{
 424	/*
 425	 * If there are parallel threads are doing PTE changes on same range
 426	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
 427	 * flush by batching, a thread has stable TLB entry can fail to flush
 428	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
 429	 * forcefully if we detect parallel PTE batching threads.
 430	 */
 431	bool force = mm_tlb_flush_nested(tlb->mm);
 432
 433	arch_tlb_finish_mmu(tlb, start, end, force);
 434	dec_tlb_flush_pending(tlb->mm);
 
 
 435}
 436
 437/*
 438 * Note: this doesn't free the actual pages themselves. That
 439 * has been handled earlier when unmapping all the memory regions.
 440 */
 441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 442			   unsigned long addr)
 443{
 444	pgtable_t token = pmd_pgtable(*pmd);
 445	pmd_clear(pmd);
 446	pte_free_tlb(tlb, token, addr);
 447	mm_dec_nr_ptes(tlb->mm);
 448}
 449
 450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 451				unsigned long addr, unsigned long end,
 452				unsigned long floor, unsigned long ceiling)
 453{
 454	pmd_t *pmd;
 455	unsigned long next;
 456	unsigned long start;
 457
 458	start = addr;
 459	pmd = pmd_offset(pud, addr);
 460	do {
 461		next = pmd_addr_end(addr, end);
 462		if (pmd_none_or_clear_bad(pmd))
 463			continue;
 464		free_pte_range(tlb, pmd, addr);
 465	} while (pmd++, addr = next, addr != end);
 466
 467	start &= PUD_MASK;
 468	if (start < floor)
 469		return;
 470	if (ceiling) {
 471		ceiling &= PUD_MASK;
 472		if (!ceiling)
 473			return;
 474	}
 475	if (end - 1 > ceiling - 1)
 476		return;
 477
 478	pmd = pmd_offset(pud, start);
 479	pud_clear(pud);
 480	pmd_free_tlb(tlb, pmd, start);
 481	mm_dec_nr_pmds(tlb->mm);
 482}
 483
 484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 485				unsigned long addr, unsigned long end,
 486				unsigned long floor, unsigned long ceiling)
 487{
 488	pud_t *pud;
 489	unsigned long next;
 490	unsigned long start;
 491
 492	start = addr;
 493	pud = pud_offset(p4d, addr);
 494	do {
 495		next = pud_addr_end(addr, end);
 496		if (pud_none_or_clear_bad(pud))
 497			continue;
 498		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 499	} while (pud++, addr = next, addr != end);
 500
 501	start &= P4D_MASK;
 502	if (start < floor)
 503		return;
 504	if (ceiling) {
 505		ceiling &= P4D_MASK;
 506		if (!ceiling)
 507			return;
 508	}
 509	if (end - 1 > ceiling - 1)
 510		return;
 511
 512	pud = pud_offset(p4d, start);
 513	p4d_clear(p4d);
 514	pud_free_tlb(tlb, pud, start);
 515	mm_dec_nr_puds(tlb->mm);
 516}
 517
 518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 519				unsigned long addr, unsigned long end,
 520				unsigned long floor, unsigned long ceiling)
 521{
 522	p4d_t *p4d;
 523	unsigned long next;
 524	unsigned long start;
 525
 526	start = addr;
 527	p4d = p4d_offset(pgd, addr);
 528	do {
 529		next = p4d_addr_end(addr, end);
 530		if (p4d_none_or_clear_bad(p4d))
 531			continue;
 532		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 533	} while (p4d++, addr = next, addr != end);
 534
 535	start &= PGDIR_MASK;
 536	if (start < floor)
 537		return;
 538	if (ceiling) {
 539		ceiling &= PGDIR_MASK;
 540		if (!ceiling)
 541			return;
 542	}
 543	if (end - 1 > ceiling - 1)
 544		return;
 545
 546	p4d = p4d_offset(pgd, start);
 547	pgd_clear(pgd);
 548	p4d_free_tlb(tlb, p4d, start);
 549}
 550
 551/*
 552 * This function frees user-level page tables of a process.
 
 
 553 */
 554void free_pgd_range(struct mmu_gather *tlb,
 555			unsigned long addr, unsigned long end,
 556			unsigned long floor, unsigned long ceiling)
 557{
 558	pgd_t *pgd;
 559	unsigned long next;
 560
 561	/*
 562	 * The next few lines have given us lots of grief...
 563	 *
 564	 * Why are we testing PMD* at this top level?  Because often
 565	 * there will be no work to do at all, and we'd prefer not to
 566	 * go all the way down to the bottom just to discover that.
 567	 *
 568	 * Why all these "- 1"s?  Because 0 represents both the bottom
 569	 * of the address space and the top of it (using -1 for the
 570	 * top wouldn't help much: the masks would do the wrong thing).
 571	 * The rule is that addr 0 and floor 0 refer to the bottom of
 572	 * the address space, but end 0 and ceiling 0 refer to the top
 573	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 574	 * that end 0 case should be mythical).
 575	 *
 576	 * Wherever addr is brought up or ceiling brought down, we must
 577	 * be careful to reject "the opposite 0" before it confuses the
 578	 * subsequent tests.  But what about where end is brought down
 579	 * by PMD_SIZE below? no, end can't go down to 0 there.
 580	 *
 581	 * Whereas we round start (addr) and ceiling down, by different
 582	 * masks at different levels, in order to test whether a table
 583	 * now has no other vmas using it, so can be freed, we don't
 584	 * bother to round floor or end up - the tests don't need that.
 585	 */
 586
 587	addr &= PMD_MASK;
 588	if (addr < floor) {
 589		addr += PMD_SIZE;
 590		if (!addr)
 591			return;
 592	}
 593	if (ceiling) {
 594		ceiling &= PMD_MASK;
 595		if (!ceiling)
 596			return;
 597	}
 598	if (end - 1 > ceiling - 1)
 599		end -= PMD_SIZE;
 600	if (addr > end - 1)
 601		return;
 602	/*
 603	 * We add page table cache pages with PAGE_SIZE,
 604	 * (see pte_free_tlb()), flush the tlb if we need
 605	 */
 606	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 607	pgd = pgd_offset(tlb->mm, addr);
 608	do {
 609		next = pgd_addr_end(addr, end);
 610		if (pgd_none_or_clear_bad(pgd))
 611			continue;
 612		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 613	} while (pgd++, addr = next, addr != end);
 614}
 615
 616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 617		unsigned long floor, unsigned long ceiling)
 618{
 619	while (vma) {
 620		struct vm_area_struct *next = vma->vm_next;
 621		unsigned long addr = vma->vm_start;
 622
 623		/*
 624		 * Hide vma from rmap and truncate_pagecache before freeing
 625		 * pgtables
 626		 */
 627		unlink_anon_vmas(vma);
 628		unlink_file_vma(vma);
 629
 630		if (is_vm_hugetlb_page(vma)) {
 631			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 632				floor, next ? next->vm_start : ceiling);
 633		} else {
 634			/*
 635			 * Optimization: gather nearby vmas into one call down
 636			 */
 637			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 638			       && !is_vm_hugetlb_page(next)) {
 639				vma = next;
 640				next = vma->vm_next;
 641				unlink_anon_vmas(vma);
 642				unlink_file_vma(vma);
 643			}
 644			free_pgd_range(tlb, addr, vma->vm_end,
 645				floor, next ? next->vm_start : ceiling);
 646		}
 647		vma = next;
 648	}
 649}
 650
 651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 
 652{
 653	spinlock_t *ptl;
 654	pgtable_t new = pte_alloc_one(mm, address);
 
 655	if (!new)
 656		return -ENOMEM;
 657
 658	/*
 659	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 660	 * visible before the pte is made visible to other CPUs by being
 661	 * put into page tables.
 662	 *
 663	 * The other side of the story is the pointer chasing in the page
 664	 * table walking code (when walking the page table without locking;
 665	 * ie. most of the time). Fortunately, these data accesses consist
 666	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 667	 * being the notable exception) will already guarantee loads are
 668	 * seen in-order. See the alpha page table accessors for the
 669	 * smp_read_barrier_depends() barriers in page table walking code.
 670	 */
 671	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 672
 673	ptl = pmd_lock(mm, pmd);
 
 674	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 675		mm_inc_nr_ptes(mm);
 676		pmd_populate(mm, pmd, new);
 677		new = NULL;
 678	}
 679	spin_unlock(ptl);
 
 680	if (new)
 681		pte_free(mm, new);
 
 
 682	return 0;
 683}
 684
 685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 686{
 687	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 688	if (!new)
 689		return -ENOMEM;
 690
 691	smp_wmb(); /* See comment in __pte_alloc */
 692
 693	spin_lock(&init_mm.page_table_lock);
 694	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 695		pmd_populate_kernel(&init_mm, pmd, new);
 696		new = NULL;
 697	}
 
 698	spin_unlock(&init_mm.page_table_lock);
 699	if (new)
 700		pte_free_kernel(&init_mm, new);
 701	return 0;
 702}
 703
 704static inline void init_rss_vec(int *rss)
 705{
 706	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 707}
 708
 709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 710{
 711	int i;
 712
 713	if (current->mm == mm)
 714		sync_mm_rss(mm);
 715	for (i = 0; i < NR_MM_COUNTERS; i++)
 716		if (rss[i])
 717			add_mm_counter(mm, i, rss[i]);
 718}
 719
 720/*
 721 * This function is called to print an error when a bad pte
 722 * is found. For example, we might have a PFN-mapped pte in
 723 * a region that doesn't allow it.
 724 *
 725 * The calling function must still handle the error.
 726 */
 727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 728			  pte_t pte, struct page *page)
 729{
 730	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 731	p4d_t *p4d = p4d_offset(pgd, addr);
 732	pud_t *pud = pud_offset(p4d, addr);
 733	pmd_t *pmd = pmd_offset(pud, addr);
 734	struct address_space *mapping;
 735	pgoff_t index;
 736	static unsigned long resume;
 737	static unsigned long nr_shown;
 738	static unsigned long nr_unshown;
 739
 740	/*
 741	 * Allow a burst of 60 reports, then keep quiet for that minute;
 742	 * or allow a steady drip of one report per second.
 743	 */
 744	if (nr_shown == 60) {
 745		if (time_before(jiffies, resume)) {
 746			nr_unshown++;
 747			return;
 748		}
 749		if (nr_unshown) {
 750			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 751				 nr_unshown);
 
 752			nr_unshown = 0;
 753		}
 754		nr_shown = 0;
 755	}
 756	if (nr_shown++ == 0)
 757		resume = jiffies + 60 * HZ;
 758
 759	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 760	index = linear_page_index(vma, addr);
 761
 762	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 763		 current->comm,
 764		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 765	if (page)
 766		dump_page(page, "bad pte");
 767	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 768		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 769	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 770		 vma->vm_file,
 771		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 772		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 773		 mapping ? mapping->a_ops->readpage : NULL);
 
 
 
 
 
 774	dump_stack();
 775	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 
 
 
 
 
 
 
 
 
 
 
 776}
 
 
 
 
 
 
 
 
 777
 778/*
 779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 780 *
 781 * "Special" mappings do not wish to be associated with a "struct page" (either
 782 * it doesn't exist, or it exists but they don't want to touch it). In this
 783 * case, NULL is returned here. "Normal" mappings do have a struct page.
 784 *
 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 786 * pte bit, in which case this function is trivial. Secondly, an architecture
 787 * may not have a spare pte bit, which requires a more complicated scheme,
 788 * described below.
 789 *
 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 791 * special mapping (even if there are underlying and valid "struct pages").
 792 * COWed pages of a VM_PFNMAP are always normal.
 793 *
 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 797 * mapping will always honor the rule
 798 *
 799 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 800 *
 801 * And for normal mappings this is false.
 802 *
 803 * This restricts such mappings to be a linear translation from virtual address
 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 805 * as the vma is not a COW mapping; in that case, we know that all ptes are
 806 * special (because none can have been COWed).
 807 *
 808 *
 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 810 *
 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 812 * page" backing, however the difference is that _all_ pages with a struct
 813 * page (that is, those where pfn_valid is true) are refcounted and considered
 814 * normal pages by the VM. The disadvantage is that pages are refcounted
 815 * (which can be slower and simply not an option for some PFNMAP users). The
 816 * advantage is that we don't have to follow the strict linearity rule of
 817 * PFNMAP mappings in order to support COWable mappings.
 818 *
 819 */
 820#ifdef __HAVE_ARCH_PTE_SPECIAL
 821# define HAVE_PTE_SPECIAL 1
 822#else
 823# define HAVE_PTE_SPECIAL 0
 824#endif
 825struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 826			     pte_t pte, bool with_public_device)
 827{
 828	unsigned long pfn = pte_pfn(pte);
 829
 830	if (HAVE_PTE_SPECIAL) {
 831		if (likely(!pte_special(pte)))
 832			goto check_pfn;
 833		if (vma->vm_ops && vma->vm_ops->find_special_page)
 834			return vma->vm_ops->find_special_page(vma, addr);
 835		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 836			return NULL;
 837		if (is_zero_pfn(pfn))
 838			return NULL;
 839
 840		/*
 841		 * Device public pages are special pages (they are ZONE_DEVICE
 842		 * pages but different from persistent memory). They behave
 843		 * allmost like normal pages. The difference is that they are
 844		 * not on the lru and thus should never be involve with any-
 845		 * thing that involve lru manipulation (mlock, numa balancing,
 846		 * ...).
 847		 *
 848		 * This is why we still want to return NULL for such page from
 849		 * vm_normal_page() so that we do not have to special case all
 850		 * call site of vm_normal_page().
 851		 */
 852		if (likely(pfn <= highest_memmap_pfn)) {
 853			struct page *page = pfn_to_page(pfn);
 854
 855			if (is_device_public_page(page)) {
 856				if (with_public_device)
 857					return page;
 858				return NULL;
 859			}
 860		}
 861		print_bad_pte(vma, addr, pte, NULL);
 862		return NULL;
 863	}
 864
 865	/* !HAVE_PTE_SPECIAL case follows: */
 866
 867	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 868		if (vma->vm_flags & VM_MIXEDMAP) {
 869			if (!pfn_valid(pfn))
 870				return NULL;
 871			goto out;
 872		} else {
 873			unsigned long off;
 874			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 875			if (pfn == vma->vm_pgoff + off)
 876				return NULL;
 877			if (!is_cow_mapping(vma->vm_flags))
 878				return NULL;
 879		}
 880	}
 881
 882	if (is_zero_pfn(pfn))
 883		return NULL;
 884check_pfn:
 885	if (unlikely(pfn > highest_memmap_pfn)) {
 886		print_bad_pte(vma, addr, pte, NULL);
 887		return NULL;
 888	}
 889
 890	/*
 891	 * NOTE! We still have PageReserved() pages in the page tables.
 892	 * eg. VDSO mappings can cause them to exist.
 893	 */
 894out:
 895	return pfn_to_page(pfn);
 896}
 897
 898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 899struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 900				pmd_t pmd)
 901{
 902	unsigned long pfn = pmd_pfn(pmd);
 903
 904	/*
 905	 * There is no pmd_special() but there may be special pmds, e.g.
 906	 * in a direct-access (dax) mapping, so let's just replicate the
 907	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 908	 */
 909	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 910		if (vma->vm_flags & VM_MIXEDMAP) {
 911			if (!pfn_valid(pfn))
 912				return NULL;
 913			goto out;
 914		} else {
 915			unsigned long off;
 916			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 917			if (pfn == vma->vm_pgoff + off)
 918				return NULL;
 919			if (!is_cow_mapping(vma->vm_flags))
 920				return NULL;
 921		}
 922	}
 923
 924	if (is_zero_pfn(pfn))
 925		return NULL;
 926	if (unlikely(pfn > highest_memmap_pfn))
 927		return NULL;
 928
 929	/*
 930	 * NOTE! We still have PageReserved() pages in the page tables.
 931	 * eg. VDSO mappings can cause them to exist.
 932	 */
 933out:
 934	return pfn_to_page(pfn);
 935}
 936#endif
 937
 938/*
 939 * copy one vm_area from one task to the other. Assumes the page tables
 940 * already present in the new task to be cleared in the whole range
 941 * covered by this vma.
 942 */
 943
 944static inline unsigned long
 945copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 946		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 947		unsigned long addr, int *rss)
 948{
 949	unsigned long vm_flags = vma->vm_flags;
 950	pte_t pte = *src_pte;
 951	struct page *page;
 952
 953	/* pte contains position in swap or file, so copy. */
 954	if (unlikely(!pte_present(pte))) {
 955		swp_entry_t entry = pte_to_swp_entry(pte);
 
 956
 957		if (likely(!non_swap_entry(entry))) {
 958			if (swap_duplicate(entry) < 0)
 959				return entry.val;
 960
 961			/* make sure dst_mm is on swapoff's mmlist. */
 962			if (unlikely(list_empty(&dst_mm->mmlist))) {
 963				spin_lock(&mmlist_lock);
 964				if (list_empty(&dst_mm->mmlist))
 965					list_add(&dst_mm->mmlist,
 966							&src_mm->mmlist);
 967				spin_unlock(&mmlist_lock);
 968			}
 969			rss[MM_SWAPENTS]++;
 970		} else if (is_migration_entry(entry)) {
 971			page = migration_entry_to_page(entry);
 972
 973			rss[mm_counter(page)]++;
 974
 975			if (is_write_migration_entry(entry) &&
 976					is_cow_mapping(vm_flags)) {
 977				/*
 978				 * COW mappings require pages in both
 979				 * parent and child to be set to read.
 980				 */
 981				make_migration_entry_read(&entry);
 982				pte = swp_entry_to_pte(entry);
 983				if (pte_swp_soft_dirty(*src_pte))
 984					pte = pte_swp_mksoft_dirty(pte);
 985				set_pte_at(src_mm, addr, src_pte, pte);
 986			}
 987		} else if (is_device_private_entry(entry)) {
 988			page = device_private_entry_to_page(entry);
 989
 990			/*
 991			 * Update rss count even for unaddressable pages, as
 992			 * they should treated just like normal pages in this
 993			 * respect.
 994			 *
 995			 * We will likely want to have some new rss counters
 996			 * for unaddressable pages, at some point. But for now
 997			 * keep things as they are.
 998			 */
 999			get_page(page);
1000			rss[mm_counter(page)]++;
1001			page_dup_rmap(page, false);
1002
1003			/*
1004			 * We do not preserve soft-dirty information, because so
1005			 * far, checkpoint/restore is the only feature that
1006			 * requires that. And checkpoint/restore does not work
1007			 * when a device driver is involved (you cannot easily
1008			 * save and restore device driver state).
1009			 */
1010			if (is_write_device_private_entry(entry) &&
1011			    is_cow_mapping(vm_flags)) {
1012				make_device_private_entry_read(&entry);
1013				pte = swp_entry_to_pte(entry);
1014				set_pte_at(src_mm, addr, src_pte, pte);
1015			}
1016		}
1017		goto out_set_pte;
1018	}
1019
1020	/*
1021	 * If it's a COW mapping, write protect it both
1022	 * in the parent and the child
1023	 */
1024	if (is_cow_mapping(vm_flags)) {
1025		ptep_set_wrprotect(src_mm, addr, src_pte);
1026		pte = pte_wrprotect(pte);
1027	}
1028
1029	/*
1030	 * If it's a shared mapping, mark it clean in
1031	 * the child
1032	 */
1033	if (vm_flags & VM_SHARED)
1034		pte = pte_mkclean(pte);
1035	pte = pte_mkold(pte);
1036
1037	page = vm_normal_page(vma, addr, pte);
1038	if (page) {
1039		get_page(page);
1040		page_dup_rmap(page, false);
1041		rss[mm_counter(page)]++;
1042	} else if (pte_devmap(pte)) {
1043		page = pte_page(pte);
1044
1045		/*
1046		 * Cache coherent device memory behave like regular page and
1047		 * not like persistent memory page. For more informations see
1048		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049		 */
1050		if (is_device_public_page(page)) {
1051			get_page(page);
1052			page_dup_rmap(page, false);
1053			rss[mm_counter(page)]++;
1054		}
1055	}
1056
1057out_set_pte:
1058	set_pte_at(dst_mm, addr, dst_pte, pte);
1059	return 0;
1060}
1061
1062static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064		   unsigned long addr, unsigned long end)
1065{
1066	pte_t *orig_src_pte, *orig_dst_pte;
1067	pte_t *src_pte, *dst_pte;
1068	spinlock_t *src_ptl, *dst_ptl;
1069	int progress = 0;
1070	int rss[NR_MM_COUNTERS];
1071	swp_entry_t entry = (swp_entry_t){0};
1072
1073again:
1074	init_rss_vec(rss);
1075
1076	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077	if (!dst_pte)
1078		return -ENOMEM;
1079	src_pte = pte_offset_map(src_pmd, addr);
1080	src_ptl = pte_lockptr(src_mm, src_pmd);
1081	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082	orig_src_pte = src_pte;
1083	orig_dst_pte = dst_pte;
1084	arch_enter_lazy_mmu_mode();
1085
1086	do {
1087		/*
1088		 * We are holding two locks at this point - either of them
1089		 * could generate latencies in another task on another CPU.
1090		 */
1091		if (progress >= 32) {
1092			progress = 0;
1093			if (need_resched() ||
1094			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095				break;
1096		}
1097		if (pte_none(*src_pte)) {
1098			progress++;
1099			continue;
1100		}
1101		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102							vma, addr, rss);
1103		if (entry.val)
1104			break;
1105		progress += 8;
1106	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107
1108	arch_leave_lazy_mmu_mode();
1109	spin_unlock(src_ptl);
1110	pte_unmap(orig_src_pte);
1111	add_mm_rss_vec(dst_mm, rss);
1112	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113	cond_resched();
1114
1115	if (entry.val) {
1116		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117			return -ENOMEM;
1118		progress = 0;
1119	}
1120	if (addr != end)
1121		goto again;
1122	return 0;
1123}
1124
1125static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127		unsigned long addr, unsigned long end)
1128{
1129	pmd_t *src_pmd, *dst_pmd;
1130	unsigned long next;
1131
1132	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133	if (!dst_pmd)
1134		return -ENOMEM;
1135	src_pmd = pmd_offset(src_pud, addr);
1136	do {
1137		next = pmd_addr_end(addr, end);
1138		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139			|| pmd_devmap(*src_pmd)) {
1140			int err;
1141			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142			err = copy_huge_pmd(dst_mm, src_mm,
1143					    dst_pmd, src_pmd, addr, vma);
1144			if (err == -ENOMEM)
1145				return -ENOMEM;
1146			if (!err)
1147				continue;
1148			/* fall through */
1149		}
1150		if (pmd_none_or_clear_bad(src_pmd))
1151			continue;
1152		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153						vma, addr, next))
1154			return -ENOMEM;
1155	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156	return 0;
1157}
1158
1159static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161		unsigned long addr, unsigned long end)
1162{
1163	pud_t *src_pud, *dst_pud;
1164	unsigned long next;
1165
1166	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167	if (!dst_pud)
1168		return -ENOMEM;
1169	src_pud = pud_offset(src_p4d, addr);
1170	do {
1171		next = pud_addr_end(addr, end);
1172		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173			int err;
1174
1175			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176			err = copy_huge_pud(dst_mm, src_mm,
1177					    dst_pud, src_pud, addr, vma);
1178			if (err == -ENOMEM)
1179				return -ENOMEM;
1180			if (!err)
1181				continue;
1182			/* fall through */
1183		}
1184		if (pud_none_or_clear_bad(src_pud))
1185			continue;
1186		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187						vma, addr, next))
1188			return -ENOMEM;
1189	} while (dst_pud++, src_pud++, addr = next, addr != end);
1190	return 0;
1191}
1192
1193static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195		unsigned long addr, unsigned long end)
1196{
1197	p4d_t *src_p4d, *dst_p4d;
1198	unsigned long next;
1199
1200	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201	if (!dst_p4d)
1202		return -ENOMEM;
1203	src_p4d = p4d_offset(src_pgd, addr);
1204	do {
1205		next = p4d_addr_end(addr, end);
1206		if (p4d_none_or_clear_bad(src_p4d))
1207			continue;
1208		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209						vma, addr, next))
1210			return -ENOMEM;
1211	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212	return 0;
1213}
1214
1215int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216		struct vm_area_struct *vma)
1217{
1218	pgd_t *src_pgd, *dst_pgd;
1219	unsigned long next;
1220	unsigned long addr = vma->vm_start;
1221	unsigned long end = vma->vm_end;
1222	unsigned long mmun_start;	/* For mmu_notifiers */
1223	unsigned long mmun_end;		/* For mmu_notifiers */
1224	bool is_cow;
1225	int ret;
1226
1227	/*
1228	 * Don't copy ptes where a page fault will fill them correctly.
1229	 * Fork becomes much lighter when there are big shared or private
1230	 * readonly mappings. The tradeoff is that copy_page_range is more
1231	 * efficient than faulting.
1232	 */
1233	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234			!vma->anon_vma)
1235		return 0;
 
1236
1237	if (is_vm_hugetlb_page(vma))
1238		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
1240	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241		/*
1242		 * We do not free on error cases below as remove_vma
1243		 * gets called on error from higher level routine
1244		 */
1245		ret = track_pfn_copy(vma);
1246		if (ret)
1247			return ret;
1248	}
1249
1250	/*
1251	 * We need to invalidate the secondary MMU mappings only when
1252	 * there could be a permission downgrade on the ptes of the
1253	 * parent mm. And a permission downgrade will only happen if
1254	 * is_cow_mapping() returns true.
1255	 */
1256	is_cow = is_cow_mapping(vma->vm_flags);
1257	mmun_start = addr;
1258	mmun_end   = end;
1259	if (is_cow)
1260		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261						    mmun_end);
1262
1263	ret = 0;
1264	dst_pgd = pgd_offset(dst_mm, addr);
1265	src_pgd = pgd_offset(src_mm, addr);
1266	do {
1267		next = pgd_addr_end(addr, end);
1268		if (pgd_none_or_clear_bad(src_pgd))
1269			continue;
1270		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271					    vma, addr, next))) {
1272			ret = -ENOMEM;
1273			break;
1274		}
1275	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276
1277	if (is_cow)
1278		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
 
1279	return ret;
1280}
1281
1282static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283				struct vm_area_struct *vma, pmd_t *pmd,
1284				unsigned long addr, unsigned long end,
1285				struct zap_details *details)
1286{
1287	struct mm_struct *mm = tlb->mm;
1288	int force_flush = 0;
1289	int rss[NR_MM_COUNTERS];
1290	spinlock_t *ptl;
1291	pte_t *start_pte;
1292	pte_t *pte;
1293	swp_entry_t entry;
1294
1295	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296again:
1297	init_rss_vec(rss);
1298	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299	pte = start_pte;
1300	flush_tlb_batched_pending(mm);
1301	arch_enter_lazy_mmu_mode();
1302	do {
1303		pte_t ptent = *pte;
1304		if (pte_none(ptent))
1305			continue;
 
1306
1307		if (pte_present(ptent)) {
1308			struct page *page;
1309
1310			page = _vm_normal_page(vma, addr, ptent, true);
1311			if (unlikely(details) && page) {
1312				/*
1313				 * unmap_shared_mapping_pages() wants to
1314				 * invalidate cache without truncating:
1315				 * unmap shared but keep private pages.
1316				 */
1317				if (details->check_mapping &&
1318				    details->check_mapping != page_rmapping(page))
 
 
 
 
 
 
 
 
1319					continue;
1320			}
1321			ptent = ptep_get_and_clear_full(mm, addr, pte,
1322							tlb->fullmm);
1323			tlb_remove_tlb_entry(tlb, pte, addr);
1324			if (unlikely(!page))
1325				continue;
1326
1327			if (!PageAnon(page)) {
1328				if (pte_dirty(ptent)) {
1329					force_flush = 1;
 
 
 
 
 
1330					set_page_dirty(page);
1331				}
1332				if (pte_young(ptent) &&
1333				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1334					mark_page_accessed(page);
 
1335			}
1336			rss[mm_counter(page)]--;
1337			page_remove_rmap(page, false);
1338			if (unlikely(page_mapcount(page) < 0))
1339				print_bad_pte(vma, addr, ptent, page);
1340			if (unlikely(__tlb_remove_page(tlb, page))) {
1341				force_flush = 1;
1342				addr += PAGE_SIZE;
1343				break;
1344			}
1345			continue;
1346		}
1347
1348		entry = pte_to_swp_entry(ptent);
1349		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350			struct page *page = device_private_entry_to_page(entry);
1351
1352			if (unlikely(details && details->check_mapping)) {
1353				/*
1354				 * unmap_shared_mapping_pages() wants to
1355				 * invalidate cache without truncating:
1356				 * unmap shared but keep private pages.
1357				 */
1358				if (details->check_mapping !=
1359				    page_rmapping(page))
1360					continue;
1361			}
1362
1363			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364			rss[mm_counter(page)]--;
1365			page_remove_rmap(page, false);
1366			put_page(page);
1367			continue;
1368		}
1369
1370		/* If details->check_mapping, we leave swap entries. */
 
 
1371		if (unlikely(details))
1372			continue;
 
 
 
 
 
1373
1374		entry = pte_to_swp_entry(ptent);
1375		if (!non_swap_entry(entry))
1376			rss[MM_SWAPENTS]--;
1377		else if (is_migration_entry(entry)) {
1378			struct page *page;
1379
1380			page = migration_entry_to_page(entry);
1381			rss[mm_counter(page)]--;
1382		}
1383		if (unlikely(!free_swap_and_cache(entry)))
1384			print_bad_pte(vma, addr, ptent, NULL);
1385		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386	} while (pte++, addr += PAGE_SIZE, addr != end);
1387
1388	add_mm_rss_vec(mm, rss);
1389	arch_leave_lazy_mmu_mode();
1390
1391	/* Do the actual TLB flush before dropping ptl */
1392	if (force_flush)
1393		tlb_flush_mmu_tlbonly(tlb);
1394	pte_unmap_unlock(start_pte, ptl);
1395
1396	/*
1397	 * If we forced a TLB flush (either due to running out of
1398	 * batch buffers or because we needed to flush dirty TLB
1399	 * entries before releasing the ptl), free the batched
1400	 * memory too. Restart if we didn't do everything.
1401	 */
1402	if (force_flush) {
1403		force_flush = 0;
1404		tlb_flush_mmu_free(tlb);
1405		if (addr != end)
1406			goto again;
1407	}
1408
1409	return addr;
1410}
1411
1412static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413				struct vm_area_struct *vma, pud_t *pud,
1414				unsigned long addr, unsigned long end,
1415				struct zap_details *details)
1416{
1417	pmd_t *pmd;
1418	unsigned long next;
1419
1420	pmd = pmd_offset(pud, addr);
1421	do {
1422		next = pmd_addr_end(addr, end);
1423		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424			if (next - addr != HPAGE_PMD_SIZE) {
1425				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427				__split_huge_pmd(vma, pmd, addr, false, NULL);
1428			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429				goto next;
1430			/* fall through */
1431		}
1432		/*
1433		 * Here there can be other concurrent MADV_DONTNEED or
1434		 * trans huge page faults running, and if the pmd is
1435		 * none or trans huge it can change under us. This is
1436		 * because MADV_DONTNEED holds the mmap_sem in read
1437		 * mode.
1438		 */
1439		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440			goto next;
1441		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442next:
1443		cond_resched();
1444	} while (pmd++, addr = next, addr != end);
1445
1446	return addr;
1447}
1448
1449static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450				struct vm_area_struct *vma, p4d_t *p4d,
1451				unsigned long addr, unsigned long end,
1452				struct zap_details *details)
1453{
1454	pud_t *pud;
1455	unsigned long next;
1456
1457	pud = pud_offset(p4d, addr);
1458	do {
1459		next = pud_addr_end(addr, end);
1460		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461			if (next - addr != HPAGE_PUD_SIZE) {
1462				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463				split_huge_pud(vma, pud, addr);
1464			} else if (zap_huge_pud(tlb, vma, pud, addr))
1465				goto next;
1466			/* fall through */
1467		}
1468		if (pud_none_or_clear_bad(pud))
1469			continue;
1470		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471next:
1472		cond_resched();
1473	} while (pud++, addr = next, addr != end);
1474
1475	return addr;
1476}
1477
1478static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479				struct vm_area_struct *vma, pgd_t *pgd,
1480				unsigned long addr, unsigned long end,
1481				struct zap_details *details)
1482{
1483	p4d_t *p4d;
1484	unsigned long next;
1485
1486	p4d = p4d_offset(pgd, addr);
1487	do {
1488		next = p4d_addr_end(addr, end);
1489		if (p4d_none_or_clear_bad(p4d))
1490			continue;
1491		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492	} while (p4d++, addr = next, addr != end);
1493
1494	return addr;
1495}
1496
1497void unmap_page_range(struct mmu_gather *tlb,
1498			     struct vm_area_struct *vma,
1499			     unsigned long addr, unsigned long end,
1500			     struct zap_details *details)
1501{
1502	pgd_t *pgd;
1503	unsigned long next;
1504
 
 
 
1505	BUG_ON(addr >= end);
 
1506	tlb_start_vma(tlb, vma);
1507	pgd = pgd_offset(vma->vm_mm, addr);
1508	do {
1509		next = pgd_addr_end(addr, end);
1510		if (pgd_none_or_clear_bad(pgd))
1511			continue;
1512		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513	} while (pgd++, addr = next, addr != end);
1514	tlb_end_vma(tlb, vma);
1515}
1516
1517
1518static void unmap_single_vma(struct mmu_gather *tlb,
1519		struct vm_area_struct *vma, unsigned long start_addr,
1520		unsigned long end_addr,
1521		struct zap_details *details)
1522{
1523	unsigned long start = max(vma->vm_start, start_addr);
1524	unsigned long end;
1525
1526	if (start >= vma->vm_end)
1527		return;
1528	end = min(vma->vm_end, end_addr);
1529	if (end <= vma->vm_start)
1530		return;
1531
1532	if (vma->vm_file)
1533		uprobe_munmap(vma, start, end);
1534
1535	if (unlikely(vma->vm_flags & VM_PFNMAP))
1536		untrack_pfn(vma, 0, 0);
1537
1538	if (start != end) {
1539		if (unlikely(is_vm_hugetlb_page(vma))) {
1540			/*
1541			 * It is undesirable to test vma->vm_file as it
1542			 * should be non-null for valid hugetlb area.
1543			 * However, vm_file will be NULL in the error
1544			 * cleanup path of mmap_region. When
1545			 * hugetlbfs ->mmap method fails,
1546			 * mmap_region() nullifies vma->vm_file
1547			 * before calling this function to clean up.
1548			 * Since no pte has actually been setup, it is
1549			 * safe to do nothing in this case.
1550			 */
1551			if (vma->vm_file) {
1552				i_mmap_lock_write(vma->vm_file->f_mapping);
1553				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554				i_mmap_unlock_write(vma->vm_file->f_mapping);
1555			}
1556		} else
1557			unmap_page_range(tlb, vma, start, end, details);
1558	}
1559}
1560
1561/**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
1563 * @tlb: address of the caller's struct mmu_gather
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
 
 
 
 
1567 *
1568 * Unmap all pages in the vma list.
1569 *
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns.  So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
1579void unmap_vmas(struct mmu_gather *tlb,
1580		struct vm_area_struct *vma, unsigned long start_addr,
1581		unsigned long end_addr)
 
1582{
 
1583	struct mm_struct *mm = vma->vm_mm;
1584
1585	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589}
1590
1591/**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
1594 * @start: starting address of pages to zap
1595 * @size: number of bytes to zap
1596 *
1597 * Caller must protect the VMA list
1598 */
1599void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600		unsigned long size)
1601{
1602	struct mm_struct *mm = vma->vm_mm;
1603	struct mmu_gather tlb;
1604	unsigned long end = start + size;
1605
1606	lru_add_drain();
1607	tlb_gather_mmu(&tlb, mm, start, end);
1608	update_hiwater_rss(mm);
1609	mmu_notifier_invalidate_range_start(mm, start, end);
1610	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611		unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613		/*
1614		 * zap_page_range does not specify whether mmap_sem should be
1615		 * held for read or write. That allows parallel zap_page_range
1616		 * operations to unmap a PTE and defer a flush meaning that
1617		 * this call observes pte_none and fails to flush the TLB.
1618		 * Rather than adding a complex API, ensure that no stale
1619		 * TLB entries exist when this call returns.
1620		 */
1621		flush_tlb_range(vma, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622	}
1623
1624	mmu_notifier_invalidate_range_end(mm, start, end);
1625	tlb_finish_mmu(&tlb, start, end);
1626}
1627
1628/**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
1633 * @details: details of shared cache invalidation
1634 *
1635 * The range must fit into one VMA.
1636 */
1637static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638		unsigned long size, struct zap_details *details)
1639{
1640	struct mm_struct *mm = vma->vm_mm;
1641	struct mmu_gather tlb;
1642	unsigned long end = address + size;
 
1643
1644	lru_add_drain();
1645	tlb_gather_mmu(&tlb, mm, address, end);
1646	update_hiwater_rss(mm);
1647	mmu_notifier_invalidate_range_start(mm, address, end);
1648	unmap_single_vma(&tlb, vma, address, end, details);
1649	mmu_notifier_invalidate_range_end(mm, address, end);
1650	tlb_finish_mmu(&tlb, address, end);
 
1651}
1652
1653/**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
1663 * Returns 0 if successful.
1664 */
1665int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666		unsigned long size)
1667{
1668	if (address < vma->vm_start || address + size > vma->vm_end ||
1669	    		!(vma->vm_flags & VM_PFNMAP))
1670		return -1;
1671	zap_page_range_single(vma, address, size, NULL);
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675
1676pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677			spinlock_t **ptl)
 
 
 
 
 
 
 
 
 
 
 
 
1678{
1679	pgd_t *pgd;
1680	p4d_t *p4d;
1681	pud_t *pud;
1682	pmd_t *pmd;
 
 
 
 
1683
1684	pgd = pgd_offset(mm, addr);
1685	p4d = p4d_alloc(mm, pgd, addr);
1686	if (!p4d)
1687		return NULL;
1688	pud = pud_alloc(mm, p4d, addr);
1689	if (!pud)
1690		return NULL;
1691	pmd = pmd_alloc(mm, pud, addr);
1692	if (!pmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693		return NULL;
 
 
 
 
1694
1695	VM_BUG_ON(pmd_trans_huge(*pmd));
1696	return pte_alloc_map_lock(mm, pmd, addr, ptl);
 
 
 
 
 
 
 
 
 
 
 
1697}
1698
1699/*
1700 * This is the old fallback for page remapping.
1701 *
1702 * For historical reasons, it only allows reserved pages. Only
1703 * old drivers should use this, and they needed to mark their
1704 * pages reserved for the old functions anyway.
1705 */
1706static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707			struct page *page, pgprot_t prot)
1708{
1709	struct mm_struct *mm = vma->vm_mm;
1710	int retval;
1711	pte_t *pte;
1712	spinlock_t *ptl;
1713
1714	retval = -EINVAL;
1715	if (PageAnon(page))
1716		goto out;
1717	retval = -ENOMEM;
1718	flush_dcache_page(page);
1719	pte = get_locked_pte(mm, addr, &ptl);
1720	if (!pte)
1721		goto out;
1722	retval = -EBUSY;
1723	if (!pte_none(*pte))
1724		goto out_unlock;
1725
1726	/* Ok, finally just insert the thing.. */
1727	get_page(page);
1728	inc_mm_counter_fast(mm, mm_counter_file(page));
1729	page_add_file_rmap(page, false);
1730	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731
1732	retval = 0;
1733	pte_unmap_unlock(pte, ptl);
1734	return retval;
1735out_unlock:
1736	pte_unmap_unlock(pte, ptl);
1737out:
1738	return retval;
1739}
1740
1741/**
1742 * vm_insert_page - insert single page into user vma
1743 * @vma: user vma to map to
1744 * @addr: target user address of this page
1745 * @page: source kernel page
1746 *
1747 * This allows drivers to insert individual pages they've allocated
1748 * into a user vma.
1749 *
1750 * The page has to be a nice clean _individual_ kernel allocation.
1751 * If you allocate a compound page, you need to have marked it as
1752 * such (__GFP_COMP), or manually just split the page up yourself
1753 * (see split_page()).
1754 *
1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756 * took an arbitrary page protection parameter. This doesn't allow
1757 * that. Your vma protection will have to be set up correctly, which
1758 * means that if you want a shared writable mapping, you'd better
1759 * ask for a shared writable mapping!
1760 *
1761 * The page does not need to be reserved.
1762 *
1763 * Usually this function is called from f_op->mmap() handler
1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766 * function from other places, for example from page-fault handler.
1767 */
1768int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769			struct page *page)
1770{
1771	if (addr < vma->vm_start || addr >= vma->vm_end)
1772		return -EFAULT;
1773	if (!page_count(page))
1774		return -EINVAL;
1775	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777		BUG_ON(vma->vm_flags & VM_PFNMAP);
1778		vma->vm_flags |= VM_MIXEDMAP;
1779	}
1780	return insert_page(vma, addr, page, vma->vm_page_prot);
1781}
1782EXPORT_SYMBOL(vm_insert_page);
1783
1784static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785			pfn_t pfn, pgprot_t prot, bool mkwrite)
1786{
1787	struct mm_struct *mm = vma->vm_mm;
1788	int retval;
1789	pte_t *pte, entry;
1790	spinlock_t *ptl;
1791
1792	retval = -ENOMEM;
1793	pte = get_locked_pte(mm, addr, &ptl);
1794	if (!pte)
1795		goto out;
1796	retval = -EBUSY;
1797	if (!pte_none(*pte)) {
1798		if (mkwrite) {
1799			/*
1800			 * For read faults on private mappings the PFN passed
1801			 * in may not match the PFN we have mapped if the
1802			 * mapped PFN is a writeable COW page.  In the mkwrite
1803			 * case we are creating a writable PTE for a shared
1804			 * mapping and we expect the PFNs to match.
1805			 */
1806			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807				goto out_unlock;
1808			entry = *pte;
1809			goto out_mkwrite;
1810		} else
1811			goto out_unlock;
1812	}
1813
1814	/* Ok, finally just insert the thing.. */
1815	if (pfn_t_devmap(pfn))
1816		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817	else
1818		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819
1820out_mkwrite:
1821	if (mkwrite) {
1822		entry = pte_mkyoung(entry);
1823		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824	}
1825
1826	set_pte_at(mm, addr, pte, entry);
1827	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828
1829	retval = 0;
1830out_unlock:
1831	pte_unmap_unlock(pte, ptl);
1832out:
1833	return retval;
1834}
1835
1836/**
1837 * vm_insert_pfn - insert single pfn into user vma
1838 * @vma: user vma to map to
1839 * @addr: target user address of this page
1840 * @pfn: source kernel pfn
1841 *
1842 * Similar to vm_insert_page, this allows drivers to insert individual pages
1843 * they've allocated into a user vma. Same comments apply.
1844 *
1845 * This function should only be called from a vm_ops->fault handler, and
1846 * in that case the handler should return NULL.
1847 *
1848 * vma cannot be a COW mapping.
1849 *
1850 * As this is called only for pages that do not currently exist, we
1851 * do not need to flush old virtual caches or the TLB.
1852 */
1853int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854			unsigned long pfn)
1855{
1856	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857}
1858EXPORT_SYMBOL(vm_insert_pfn);
1859
1860/**
1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862 * @vma: user vma to map to
1863 * @addr: target user address of this page
1864 * @pfn: source kernel pfn
1865 * @pgprot: pgprot flags for the inserted page
1866 *
1867 * This is exactly like vm_insert_pfn, except that it allows drivers to
1868 * to override pgprot on a per-page basis.
1869 *
1870 * This only makes sense for IO mappings, and it makes no sense for
1871 * cow mappings.  In general, using multiple vmas is preferable;
1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873 * impractical.
1874 */
1875int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876			unsigned long pfn, pgprot_t pgprot)
1877{
1878	int ret;
 
1879	/*
1880	 * Technically, architectures with pte_special can avoid all these
1881	 * restrictions (same for remap_pfn_range).  However we would like
1882	 * consistency in testing and feature parity among all, so we should
1883	 * try to keep these invariants in place for everybody.
1884	 */
1885	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887						(VM_PFNMAP|VM_MIXEDMAP));
1888	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890
1891	if (addr < vma->vm_start || addr >= vma->vm_end)
1892		return -EFAULT;
 
 
1893
1894	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895
1896	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897			false);
1898
1899	return ret;
1900}
1901EXPORT_SYMBOL(vm_insert_pfn_prot);
1902
1903static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904{
1905	/* these checks mirror the abort conditions in vm_normal_page */
1906	if (vma->vm_flags & VM_MIXEDMAP)
1907		return true;
1908	if (pfn_t_devmap(pfn))
1909		return true;
1910	if (pfn_t_special(pfn))
1911		return true;
1912	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913		return true;
1914	return false;
1915}
1916
1917static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918			pfn_t pfn, bool mkwrite)
1919{
1920	pgprot_t pgprot = vma->vm_page_prot;
1921
1922	BUG_ON(!vm_mixed_ok(vma, pfn));
1923
1924	if (addr < vma->vm_start || addr >= vma->vm_end)
1925		return -EFAULT;
1926
1927	track_pfn_insert(vma, &pgprot, pfn);
1928
1929	/*
1930	 * If we don't have pte special, then we have to use the pfn_valid()
1931	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932	 * refcount the page if pfn_valid is true (hence insert_page rather
1933	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1934	 * without pte special, it would there be refcounted as a normal page.
1935	 */
1936	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937		struct page *page;
1938
1939		/*
1940		 * At this point we are committed to insert_page()
1941		 * regardless of whether the caller specified flags that
1942		 * result in pfn_t_has_page() == false.
1943		 */
1944		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945		return insert_page(vma, addr, page, pgprot);
1946	}
1947	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948}
1949
1950int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951			pfn_t pfn)
1952{
1953	return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955}
1956EXPORT_SYMBOL(vm_insert_mixed);
1957
1958int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959			pfn_t pfn)
1960{
1961	return __vm_insert_mixed(vma, addr, pfn, true);
1962}
1963EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964
1965/*
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1969 */
1970static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971			unsigned long addr, unsigned long end,
1972			unsigned long pfn, pgprot_t prot)
1973{
1974	pte_t *pte;
1975	spinlock_t *ptl;
1976
1977	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978	if (!pte)
1979		return -ENOMEM;
1980	arch_enter_lazy_mmu_mode();
1981	do {
1982		BUG_ON(!pte_none(*pte));
1983		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984		pfn++;
1985	} while (pte++, addr += PAGE_SIZE, addr != end);
1986	arch_leave_lazy_mmu_mode();
1987	pte_unmap_unlock(pte - 1, ptl);
1988	return 0;
1989}
1990
1991static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992			unsigned long addr, unsigned long end,
1993			unsigned long pfn, pgprot_t prot)
1994{
1995	pmd_t *pmd;
1996	unsigned long next;
1997
1998	pfn -= addr >> PAGE_SHIFT;
1999	pmd = pmd_alloc(mm, pud, addr);
2000	if (!pmd)
2001		return -ENOMEM;
2002	VM_BUG_ON(pmd_trans_huge(*pmd));
2003	do {
2004		next = pmd_addr_end(addr, end);
2005		if (remap_pte_range(mm, pmd, addr, next,
2006				pfn + (addr >> PAGE_SHIFT), prot))
2007			return -ENOMEM;
2008	} while (pmd++, addr = next, addr != end);
2009	return 0;
2010}
2011
2012static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013			unsigned long addr, unsigned long end,
2014			unsigned long pfn, pgprot_t prot)
2015{
2016	pud_t *pud;
2017	unsigned long next;
2018
2019	pfn -= addr >> PAGE_SHIFT;
2020	pud = pud_alloc(mm, p4d, addr);
2021	if (!pud)
2022		return -ENOMEM;
2023	do {
2024		next = pud_addr_end(addr, end);
2025		if (remap_pmd_range(mm, pud, addr, next,
2026				pfn + (addr >> PAGE_SHIFT), prot))
2027			return -ENOMEM;
2028	} while (pud++, addr = next, addr != end);
2029	return 0;
2030}
2031
2032static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033			unsigned long addr, unsigned long end,
2034			unsigned long pfn, pgprot_t prot)
2035{
2036	p4d_t *p4d;
2037	unsigned long next;
2038
2039	pfn -= addr >> PAGE_SHIFT;
2040	p4d = p4d_alloc(mm, pgd, addr);
2041	if (!p4d)
2042		return -ENOMEM;
2043	do {
2044		next = p4d_addr_end(addr, end);
2045		if (remap_pud_range(mm, p4d, addr, next,
2046				pfn + (addr >> PAGE_SHIFT), prot))
2047			return -ENOMEM;
2048	} while (p4d++, addr = next, addr != end);
2049	return 0;
2050}
2051
2052/**
2053 * remap_pfn_range - remap kernel memory to userspace
2054 * @vma: user vma to map to
2055 * @addr: target user address to start at
2056 * @pfn: physical address of kernel memory
2057 * @size: size of map area
2058 * @prot: page protection flags for this mapping
2059 *
2060 *  Note: this is only safe if the mm semaphore is held when called.
2061 */
2062int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063		    unsigned long pfn, unsigned long size, pgprot_t prot)
2064{
2065	pgd_t *pgd;
2066	unsigned long next;
2067	unsigned long end = addr + PAGE_ALIGN(size);
2068	struct mm_struct *mm = vma->vm_mm;
2069	unsigned long remap_pfn = pfn;
2070	int err;
2071
2072	/*
2073	 * Physically remapped pages are special. Tell the
2074	 * rest of the world about it:
2075	 *   VM_IO tells people not to look at these pages
2076	 *	(accesses can have side effects).
 
 
 
 
 
2077	 *   VM_PFNMAP tells the core MM that the base pages are just
2078	 *	raw PFN mappings, and do not have a "struct page" associated
2079	 *	with them.
2080	 *   VM_DONTEXPAND
2081	 *      Disable vma merging and expanding with mremap().
2082	 *   VM_DONTDUMP
2083	 *      Omit vma from core dump, even when VM_IO turned off.
2084	 *
2085	 * There's a horrible special case to handle copy-on-write
2086	 * behaviour that some programs depend on. We mark the "original"
2087	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088	 * See vm_normal_page() for details.
2089	 */
2090	if (is_cow_mapping(vma->vm_flags)) {
2091		if (addr != vma->vm_start || end != vma->vm_end)
2092			return -EINVAL;
2093		vma->vm_pgoff = pfn;
2094	}
2095
2096	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097	if (err)
2098		return -EINVAL;
2099
2100	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
 
 
 
 
 
 
 
2101
2102	BUG_ON(addr >= end);
2103	pfn -= addr >> PAGE_SHIFT;
2104	pgd = pgd_offset(mm, addr);
2105	flush_cache_range(vma, addr, end);
2106	do {
2107		next = pgd_addr_end(addr, end);
2108		err = remap_p4d_range(mm, pgd, addr, next,
2109				pfn + (addr >> PAGE_SHIFT), prot);
2110		if (err)
2111			break;
2112	} while (pgd++, addr = next, addr != end);
2113
2114	if (err)
2115		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116
2117	return err;
2118}
2119EXPORT_SYMBOL(remap_pfn_range);
2120
2121/**
2122 * vm_iomap_memory - remap memory to userspace
2123 * @vma: user vma to map to
2124 * @start: start of area
2125 * @len: size of area
2126 *
2127 * This is a simplified io_remap_pfn_range() for common driver use. The
2128 * driver just needs to give us the physical memory range to be mapped,
2129 * we'll figure out the rest from the vma information.
2130 *
2131 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132 * whatever write-combining details or similar.
2133 */
2134int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135{
2136	unsigned long vm_len, pfn, pages;
2137
2138	/* Check that the physical memory area passed in looks valid */
2139	if (start + len < start)
2140		return -EINVAL;
2141	/*
2142	 * You *really* shouldn't map things that aren't page-aligned,
2143	 * but we've historically allowed it because IO memory might
2144	 * just have smaller alignment.
2145	 */
2146	len += start & ~PAGE_MASK;
2147	pfn = start >> PAGE_SHIFT;
2148	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149	if (pfn + pages < pfn)
2150		return -EINVAL;
2151
2152	/* We start the mapping 'vm_pgoff' pages into the area */
2153	if (vma->vm_pgoff > pages)
2154		return -EINVAL;
2155	pfn += vma->vm_pgoff;
2156	pages -= vma->vm_pgoff;
2157
2158	/* Can we fit all of the mapping? */
2159	vm_len = vma->vm_end - vma->vm_start;
2160	if (vm_len >> PAGE_SHIFT > pages)
2161		return -EINVAL;
2162
2163	/* Ok, let it rip */
2164	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165}
2166EXPORT_SYMBOL(vm_iomap_memory);
2167
2168static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169				     unsigned long addr, unsigned long end,
2170				     pte_fn_t fn, void *data)
2171{
2172	pte_t *pte;
2173	int err;
2174	pgtable_t token;
2175	spinlock_t *uninitialized_var(ptl);
2176
2177	pte = (mm == &init_mm) ?
2178		pte_alloc_kernel(pmd, addr) :
2179		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180	if (!pte)
2181		return -ENOMEM;
2182
2183	BUG_ON(pmd_huge(*pmd));
2184
2185	arch_enter_lazy_mmu_mode();
2186
2187	token = pmd_pgtable(*pmd);
2188
2189	do {
2190		err = fn(pte++, token, addr, data);
2191		if (err)
2192			break;
2193	} while (addr += PAGE_SIZE, addr != end);
2194
2195	arch_leave_lazy_mmu_mode();
2196
2197	if (mm != &init_mm)
2198		pte_unmap_unlock(pte-1, ptl);
2199	return err;
2200}
2201
2202static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203				     unsigned long addr, unsigned long end,
2204				     pte_fn_t fn, void *data)
2205{
2206	pmd_t *pmd;
2207	unsigned long next;
2208	int err;
2209
2210	BUG_ON(pud_huge(*pud));
2211
2212	pmd = pmd_alloc(mm, pud, addr);
2213	if (!pmd)
2214		return -ENOMEM;
2215	do {
2216		next = pmd_addr_end(addr, end);
2217		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218		if (err)
2219			break;
2220	} while (pmd++, addr = next, addr != end);
2221	return err;
2222}
2223
2224static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225				     unsigned long addr, unsigned long end,
2226				     pte_fn_t fn, void *data)
2227{
2228	pud_t *pud;
2229	unsigned long next;
2230	int err;
2231
2232	pud = pud_alloc(mm, p4d, addr);
2233	if (!pud)
2234		return -ENOMEM;
2235	do {
2236		next = pud_addr_end(addr, end);
2237		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238		if (err)
2239			break;
2240	} while (pud++, addr = next, addr != end);
2241	return err;
2242}
2243
2244static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245				     unsigned long addr, unsigned long end,
2246				     pte_fn_t fn, void *data)
2247{
2248	p4d_t *p4d;
2249	unsigned long next;
2250	int err;
2251
2252	p4d = p4d_alloc(mm, pgd, addr);
2253	if (!p4d)
2254		return -ENOMEM;
2255	do {
2256		next = p4d_addr_end(addr, end);
2257		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258		if (err)
2259			break;
2260	} while (p4d++, addr = next, addr != end);
2261	return err;
2262}
2263
2264/*
2265 * Scan a region of virtual memory, filling in page tables as necessary
2266 * and calling a provided function on each leaf page table.
2267 */
2268int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269			unsigned long size, pte_fn_t fn, void *data)
2270{
2271	pgd_t *pgd;
2272	unsigned long next;
2273	unsigned long end = addr + size;
2274	int err;
2275
2276	if (WARN_ON(addr >= end))
2277		return -EINVAL;
2278
2279	pgd = pgd_offset(mm, addr);
2280	do {
2281		next = pgd_addr_end(addr, end);
2282		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283		if (err)
2284			break;
2285	} while (pgd++, addr = next, addr != end);
2286
2287	return err;
2288}
2289EXPORT_SYMBOL_GPL(apply_to_page_range);
2290
2291/*
2292 * handle_pte_fault chooses page fault handler according to an entry which was
2293 * read non-atomically.  Before making any commitment, on those architectures
2294 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295 * parts, do_swap_page must check under lock before unmapping the pte and
2296 * proceeding (but do_wp_page is only called after already making such a check;
 
2297 * and do_anonymous_page can safely check later on).
2298 */
2299static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300				pte_t *page_table, pte_t orig_pte)
2301{
2302	int same = 1;
2303#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304	if (sizeof(pte_t) > sizeof(unsigned long)) {
2305		spinlock_t *ptl = pte_lockptr(mm, pmd);
2306		spin_lock(ptl);
2307		same = pte_same(*page_table, orig_pte);
2308		spin_unlock(ptl);
2309	}
2310#endif
2311	pte_unmap(page_table);
2312	return same;
2313}
2314
2315static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316{
2317	debug_dma_assert_idle(src);
2318
2319	/*
2320	 * If the source page was a PFN mapping, we don't have
2321	 * a "struct page" for it. We do a best-effort copy by
2322	 * just copying from the original user address. If that
2323	 * fails, we just zero-fill it. Live with it.
2324	 */
2325	if (unlikely(!src)) {
2326		void *kaddr = kmap_atomic(dst);
2327		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328
2329		/*
2330		 * This really shouldn't fail, because the page is there
2331		 * in the page tables. But it might just be unreadable,
2332		 * in which case we just give up and fill the result with
2333		 * zeroes.
2334		 */
2335		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336			clear_page(kaddr);
2337		kunmap_atomic(kaddr);
2338		flush_dcache_page(dst);
2339	} else
2340		copy_user_highpage(dst, src, va, vma);
2341}
2342
2343static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344{
2345	struct file *vm_file = vma->vm_file;
 
 
 
 
2346
2347	if (vm_file)
2348		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
 
 
 
 
 
 
 
 
 
 
 
 
2349
2350	/*
2351	 * Special mappings (e.g. VDSO) do not have any file so fake
2352	 * a default GFP_KERNEL for them.
2353	 */
2354	return GFP_KERNEL;
2355}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356
2357/*
2358 * Notify the address space that the page is about to become writable so that
2359 * it can prohibit this or wait for the page to get into an appropriate state.
2360 *
2361 * We do this without the lock held, so that it can sleep if it needs to.
2362 */
2363static int do_page_mkwrite(struct vm_fault *vmf)
2364{
2365	int ret;
2366	struct page *page = vmf->page;
2367	unsigned int old_flags = vmf->flags;
2368
2369	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2370
2371	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372	/* Restore original flags so that caller is not surprised */
2373	vmf->flags = old_flags;
2374	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375		return ret;
2376	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377		lock_page(page);
2378		if (!page->mapping) {
2379			unlock_page(page);
2380			return 0; /* retry */
 
 
 
 
2381		}
2382		ret |= VM_FAULT_LOCKED;
2383	} else
2384		VM_BUG_ON_PAGE(!PageLocked(page), page);
2385	return ret;
2386}
2387
2388/*
2389 * Handle dirtying of a page in shared file mapping on a write fault.
2390 *
2391 * The function expects the page to be locked and unlocks it.
2392 */
2393static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394				    struct page *page)
2395{
2396	struct address_space *mapping;
2397	bool dirtied;
2398	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399
2400	dirtied = set_page_dirty(page);
2401	VM_BUG_ON_PAGE(PageAnon(page), page);
2402	/*
2403	 * Take a local copy of the address_space - page.mapping may be zeroed
2404	 * by truncate after unlock_page().   The address_space itself remains
2405	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2406	 * release semantics to prevent the compiler from undoing this copying.
2407	 */
2408	mapping = page_rmapping(page);
2409	unlock_page(page);
2410
2411	if ((dirtied || page_mkwrite) && mapping) {
2412		/*
2413		 * Some device drivers do not set page.mapping
2414		 * but still dirty their pages
 
 
 
 
2415		 */
2416		balance_dirty_pages_ratelimited(mapping);
2417	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
2419	if (!page_mkwrite)
2420		file_update_time(vma->vm_file);
2421}
 
 
 
2422
2423/*
2424 * Handle write page faults for pages that can be reused in the current vma
2425 *
2426 * This can happen either due to the mapping being with the VM_SHARED flag,
2427 * or due to us being the last reference standing to the page. In either
2428 * case, all we need to do here is to mark the page as writable and update
2429 * any related book-keeping.
2430 */
2431static inline void wp_page_reuse(struct vm_fault *vmf)
2432	__releases(vmf->ptl)
2433{
2434	struct vm_area_struct *vma = vmf->vma;
2435	struct page *page = vmf->page;
2436	pte_t entry;
2437	/*
2438	 * Clear the pages cpupid information as the existing
2439	 * information potentially belongs to a now completely
2440	 * unrelated process.
2441	 */
2442	if (page)
2443		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444
2445	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446	entry = pte_mkyoung(vmf->orig_pte);
2447	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449		update_mmu_cache(vma, vmf->address, vmf->pte);
2450	pte_unmap_unlock(vmf->pte, vmf->ptl);
2451}
2452
2453/*
2454 * Handle the case of a page which we actually need to copy to a new page.
2455 *
2456 * Called with mmap_sem locked and the old page referenced, but
2457 * without the ptl held.
2458 *
2459 * High level logic flow:
2460 *
2461 * - Allocate a page, copy the content of the old page to the new one.
2462 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463 * - Take the PTL. If the pte changed, bail out and release the allocated page
2464 * - If the pte is still the way we remember it, update the page table and all
2465 *   relevant references. This includes dropping the reference the page-table
2466 *   held to the old page, as well as updating the rmap.
2467 * - In any case, unlock the PTL and drop the reference we took to the old page.
2468 */
2469static int wp_page_copy(struct vm_fault *vmf)
2470{
2471	struct vm_area_struct *vma = vmf->vma;
2472	struct mm_struct *mm = vma->vm_mm;
2473	struct page *old_page = vmf->page;
2474	struct page *new_page = NULL;
2475	pte_t entry;
2476	int page_copied = 0;
2477	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479	struct mem_cgroup *memcg;
2480
2481	if (unlikely(anon_vma_prepare(vma)))
2482		goto oom;
2483
2484	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485		new_page = alloc_zeroed_user_highpage_movable(vma,
2486							      vmf->address);
2487		if (!new_page)
2488			goto oom;
2489	} else {
2490		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491				vmf->address);
2492		if (!new_page)
2493			goto oom;
2494		cow_user_page(new_page, old_page, vmf->address, vma);
2495	}
2496
2497	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498		goto oom_free_new;
2499
2500	__SetPageUptodate(new_page);
2501
2502	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2503
2504	/*
2505	 * Re-check the pte - we dropped the lock
2506	 */
2507	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509		if (old_page) {
2510			if (!PageAnon(old_page)) {
2511				dec_mm_counter_fast(mm,
2512						mm_counter_file(old_page));
2513				inc_mm_counter_fast(mm, MM_ANONPAGES);
2514			}
2515		} else {
2516			inc_mm_counter_fast(mm, MM_ANONPAGES);
2517		}
2518		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519		entry = mk_pte(new_page, vma->vm_page_prot);
2520		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521		/*
2522		 * Clear the pte entry and flush it first, before updating the
2523		 * pte with the new entry. This will avoid a race condition
2524		 * seen in the presence of one thread doing SMC and another
2525		 * thread doing COW.
2526		 */
2527		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529		mem_cgroup_commit_charge(new_page, memcg, false, false);
2530		lru_cache_add_active_or_unevictable(new_page, vma);
2531		/*
2532		 * We call the notify macro here because, when using secondary
2533		 * mmu page tables (such as kvm shadow page tables), we want the
2534		 * new page to be mapped directly into the secondary page table.
2535		 */
2536		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537		update_mmu_cache(vma, vmf->address, vmf->pte);
2538		if (old_page) {
2539			/*
2540			 * Only after switching the pte to the new page may
2541			 * we remove the mapcount here. Otherwise another
2542			 * process may come and find the rmap count decremented
2543			 * before the pte is switched to the new page, and
2544			 * "reuse" the old page writing into it while our pte
2545			 * here still points into it and can be read by other
2546			 * threads.
2547			 *
2548			 * The critical issue is to order this
2549			 * page_remove_rmap with the ptp_clear_flush above.
2550			 * Those stores are ordered by (if nothing else,)
2551			 * the barrier present in the atomic_add_negative
2552			 * in page_remove_rmap.
2553			 *
2554			 * Then the TLB flush in ptep_clear_flush ensures that
2555			 * no process can access the old page before the
2556			 * decremented mapcount is visible. And the old page
2557			 * cannot be reused until after the decremented
2558			 * mapcount is visible. So transitively, TLBs to
2559			 * old page will be flushed before it can be reused.
2560			 */
2561			page_remove_rmap(old_page, false);
2562		}
2563
2564		/* Free the old page.. */
2565		new_page = old_page;
2566		page_copied = 1;
2567	} else {
2568		mem_cgroup_cancel_charge(new_page, memcg, false);
2569	}
2570
2571	if (new_page)
2572		put_page(new_page);
2573
2574	pte_unmap_unlock(vmf->pte, vmf->ptl);
2575	/*
2576	 * No need to double call mmu_notifier->invalidate_range() callback as
2577	 * the above ptep_clear_flush_notify() did already call it.
2578	 */
2579	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580	if (old_page) {
2581		/*
2582		 * Don't let another task, with possibly unlocked vma,
2583		 * keep the mlocked page.
2584		 */
2585		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586			lock_page(old_page);	/* LRU manipulation */
2587			if (PageMlocked(old_page))
2588				munlock_vma_page(old_page);
2589			unlock_page(old_page);
2590		}
2591		put_page(old_page);
2592	}
2593	return page_copied ? VM_FAULT_WRITE : 0;
2594oom_free_new:
2595	put_page(new_page);
2596oom:
2597	if (old_page)
2598		put_page(old_page);
2599	return VM_FAULT_OOM;
2600}
2601
2602/**
2603 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604 *			  writeable once the page is prepared
2605 *
2606 * @vmf: structure describing the fault
2607 *
2608 * This function handles all that is needed to finish a write page fault in a
2609 * shared mapping due to PTE being read-only once the mapped page is prepared.
2610 * It handles locking of PTE and modifying it. The function returns
2611 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612 * lock.
2613 *
2614 * The function expects the page to be locked or other protection against
2615 * concurrent faults / writeback (such as DAX radix tree locks).
2616 */
2617int finish_mkwrite_fault(struct vm_fault *vmf)
2618{
2619	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621				       &vmf->ptl);
2622	/*
2623	 * We might have raced with another page fault while we released the
2624	 * pte_offset_map_lock.
2625	 */
2626	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627		pte_unmap_unlock(vmf->pte, vmf->ptl);
2628		return VM_FAULT_NOPAGE;
2629	}
2630	wp_page_reuse(vmf);
2631	return 0;
2632}
2633
2634/*
2635 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636 * mapping
2637 */
2638static int wp_pfn_shared(struct vm_fault *vmf)
2639{
2640	struct vm_area_struct *vma = vmf->vma;
2641
2642	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643		int ret;
2644
2645		pte_unmap_unlock(vmf->pte, vmf->ptl);
2646		vmf->flags |= FAULT_FLAG_MKWRITE;
2647		ret = vma->vm_ops->pfn_mkwrite(vmf);
2648		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649			return ret;
2650		return finish_mkwrite_fault(vmf);
2651	}
2652	wp_page_reuse(vmf);
2653	return VM_FAULT_WRITE;
2654}
2655
2656static int wp_page_shared(struct vm_fault *vmf)
2657	__releases(vmf->ptl)
2658{
2659	struct vm_area_struct *vma = vmf->vma;
2660
2661	get_page(vmf->page);
2662
2663	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664		int tmp;
2665
2666		pte_unmap_unlock(vmf->pte, vmf->ptl);
2667		tmp = do_page_mkwrite(vmf);
2668		if (unlikely(!tmp || (tmp &
2669				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670			put_page(vmf->page);
2671			return tmp;
2672		}
2673		tmp = finish_mkwrite_fault(vmf);
2674		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675			unlock_page(vmf->page);
2676			put_page(vmf->page);
2677			return tmp;
2678		}
2679	} else {
2680		wp_page_reuse(vmf);
2681		lock_page(vmf->page);
2682	}
2683	fault_dirty_shared_page(vma, vmf->page);
2684	put_page(vmf->page);
2685
2686	return VM_FAULT_WRITE;
2687}
2688
2689/*
2690 * This routine handles present pages, when users try to write
2691 * to a shared page. It is done by copying the page to a new address
2692 * and decrementing the shared-page counter for the old page.
2693 *
2694 * Note that this routine assumes that the protection checks have been
2695 * done by the caller (the low-level page fault routine in most cases).
2696 * Thus we can safely just mark it writable once we've done any necessary
2697 * COW.
2698 *
2699 * We also mark the page dirty at this point even though the page will
2700 * change only once the write actually happens. This avoids a few races,
2701 * and potentially makes it more efficient.
2702 *
2703 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704 * but allow concurrent faults), with pte both mapped and locked.
2705 * We return with mmap_sem still held, but pte unmapped and unlocked.
2706 */
2707static int do_wp_page(struct vm_fault *vmf)
2708	__releases(vmf->ptl)
2709{
2710	struct vm_area_struct *vma = vmf->vma;
2711
2712	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713	if (!vmf->page) {
2714		/*
2715		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716		 * VM_PFNMAP VMA.
2717		 *
2718		 * We should not cow pages in a shared writeable mapping.
2719		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720		 */
2721		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722				     (VM_WRITE|VM_SHARED))
2723			return wp_pfn_shared(vmf);
2724
2725		pte_unmap_unlock(vmf->pte, vmf->ptl);
2726		return wp_page_copy(vmf);
2727	}
2728
2729	/*
2730	 * Take out anonymous pages first, anonymous shared vmas are
2731	 * not dirty accountable.
2732	 */
2733	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734		int total_map_swapcount;
2735		if (!trylock_page(vmf->page)) {
2736			get_page(vmf->page);
2737			pte_unmap_unlock(vmf->pte, vmf->ptl);
2738			lock_page(vmf->page);
2739			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740					vmf->address, &vmf->ptl);
2741			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742				unlock_page(vmf->page);
2743				pte_unmap_unlock(vmf->pte, vmf->ptl);
2744				put_page(vmf->page);
2745				return 0;
2746			}
2747			put_page(vmf->page);
2748		}
2749		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750			if (total_map_swapcount == 1) {
2751				/*
2752				 * The page is all ours. Move it to
2753				 * our anon_vma so the rmap code will
2754				 * not search our parent or siblings.
2755				 * Protected against the rmap code by
2756				 * the page lock.
2757				 */
2758				page_move_anon_rmap(vmf->page, vma);
2759			}
2760			unlock_page(vmf->page);
2761			wp_page_reuse(vmf);
2762			return VM_FAULT_WRITE;
2763		}
2764		unlock_page(vmf->page);
2765	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766					(VM_WRITE|VM_SHARED))) {
2767		return wp_page_shared(vmf);
2768	}
 
2769
2770	/*
2771	 * Ok, we need to copy. Oh, well..
2772	 */
2773	get_page(vmf->page);
2774
2775	pte_unmap_unlock(vmf->pte, vmf->ptl);
2776	return wp_page_copy(vmf);
2777}
2778
2779static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780		unsigned long start_addr, unsigned long end_addr,
2781		struct zap_details *details)
2782{
2783	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784}
2785
2786static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787					    struct zap_details *details)
2788{
2789	struct vm_area_struct *vma;
 
2790	pgoff_t vba, vea, zba, zea;
2791
2792	vma_interval_tree_foreach(vma, root,
2793			details->first_index, details->last_index) {
2794
2795		vba = vma->vm_pgoff;
2796		vea = vba + vma_pages(vma) - 1;
 
2797		zba = details->first_index;
2798		if (zba < vba)
2799			zba = vba;
2800		zea = details->last_index;
2801		if (zea > vea)
2802			zea = vea;
2803
2804		unmap_mapping_range_vma(vma,
2805			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807				details);
2808	}
2809}
2810
2811/**
2812 * unmap_mapping_pages() - Unmap pages from processes.
2813 * @mapping: The address space containing pages to be unmapped.
2814 * @start: Index of first page to be unmapped.
2815 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816 * @even_cows: Whether to unmap even private COWed pages.
2817 *
2818 * Unmap the pages in this address space from any userspace process which
2819 * has them mmaped.  Generally, you want to remove COWed pages as well when
2820 * a file is being truncated, but not when invalidating pages from the page
2821 * cache.
2822 */
2823void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824		pgoff_t nr, bool even_cows)
2825{
2826	struct zap_details details = { };
2827
2828	details.check_mapping = even_cows ? NULL : mapping;
2829	details.first_index = start;
2830	details.last_index = start + nr - 1;
2831	if (details.last_index < details.first_index)
2832		details.last_index = ULONG_MAX;
2833
2834	i_mmap_lock_write(mapping);
2835	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837	i_mmap_unlock_write(mapping);
 
 
 
 
 
 
2838}
2839
2840/**
2841 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842 * address_space corresponding to the specified byte range in the underlying
2843 * file.
2844 *
2845 * @mapping: the address space containing mmaps to be unmapped.
2846 * @holebegin: byte in first page to unmap, relative to the start of
2847 * the underlying file.  This will be rounded down to a PAGE_SIZE
2848 * boundary.  Note that this is different from truncate_pagecache(), which
2849 * must keep the partial page.  In contrast, we must get rid of
2850 * partial pages.
2851 * @holelen: size of prospective hole in bytes.  This will be rounded
2852 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853 * end of the file.
2854 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855 * but 0 when invalidating pagecache, don't throw away private data.
2856 */
2857void unmap_mapping_range(struct address_space *mapping,
2858		loff_t const holebegin, loff_t const holelen, int even_cows)
2859{
 
2860	pgoff_t hba = holebegin >> PAGE_SHIFT;
2861	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862
2863	/* Check for overflow. */
2864	if (sizeof(holelen) > sizeof(hlen)) {
2865		long long holeend =
2866			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867		if (holeend & ~(long long)ULONG_MAX)
2868			hlen = ULONG_MAX - hba + 1;
2869	}
2870
2871	unmap_mapping_pages(mapping, hba, hlen, even_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
2872}
2873EXPORT_SYMBOL(unmap_mapping_range);
2874
2875/*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with pte unmapped and unlocked.
2879 *
2880 * We return with the mmap_sem locked or unlocked in the same cases
2881 * as does filemap_fault().
2882 */
2883int do_swap_page(struct vm_fault *vmf)
 
 
2884{
2885	struct vm_area_struct *vma = vmf->vma;
2886	struct page *page = NULL, *swapcache;
2887	struct mem_cgroup *memcg;
2888	swp_entry_t entry;
2889	pte_t pte;
2890	int locked;
 
2891	int exclusive = 0;
2892	int ret = 0;
2893
2894	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895		goto out;
2896
2897	entry = pte_to_swp_entry(vmf->orig_pte);
2898	if (unlikely(non_swap_entry(entry))) {
2899		if (is_migration_entry(entry)) {
2900			migration_entry_wait(vma->vm_mm, vmf->pmd,
2901					     vmf->address);
2902		} else if (is_device_private_entry(entry)) {
2903			/*
2904			 * For un-addressable device memory we call the pgmap
2905			 * fault handler callback. The callback must migrate
2906			 * the page back to some CPU accessible page.
2907			 */
2908			ret = device_private_entry_fault(vma, vmf->address, entry,
2909						 vmf->flags, vmf->pmd);
2910		} else if (is_hwpoison_entry(entry)) {
2911			ret = VM_FAULT_HWPOISON;
2912		} else {
2913			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914			ret = VM_FAULT_SIGBUS;
2915		}
2916		goto out;
2917	}
2918
2919
2920	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921	page = lookup_swap_cache(entry, vma, vmf->address);
2922	swapcache = page;
2923
2924	if (!page) {
2925		struct swap_info_struct *si = swp_swap_info(entry);
2926
2927		if (si->flags & SWP_SYNCHRONOUS_IO &&
2928				__swap_count(si, entry) == 1) {
2929			/* skip swapcache */
2930			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2931							vmf->address);
2932			if (page) {
2933				__SetPageLocked(page);
2934				__SetPageSwapBacked(page);
2935				set_page_private(page, entry.val);
2936				lru_cache_add_anon(page);
2937				swap_readpage(page, true);
2938			}
2939		} else {
2940			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2941						vmf);
2942			swapcache = page;
2943		}
2944
2945		if (!page) {
2946			/*
2947			 * Back out if somebody else faulted in this pte
2948			 * while we released the pte lock.
2949			 */
2950			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2951					vmf->address, &vmf->ptl);
2952			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2953				ret = VM_FAULT_OOM;
2954			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955			goto unlock;
2956		}
2957
2958		/* Had to read the page from swap area: Major fault */
2959		ret = VM_FAULT_MAJOR;
2960		count_vm_event(PGMAJFAULT);
2961		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2962	} else if (PageHWPoison(page)) {
2963		/*
2964		 * hwpoisoned dirty swapcache pages are kept for killing
2965		 * owner processes (which may be unknown at hwpoison time)
2966		 */
2967		ret = VM_FAULT_HWPOISON;
2968		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2969		goto out_release;
2970	}
2971
2972	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2973
2974	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975	if (!locked) {
2976		ret |= VM_FAULT_RETRY;
2977		goto out_release;
2978	}
2979
2980	/*
2981	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2982	 * release the swapcache from under us.  The page pin, and pte_same
2983	 * test below, are not enough to exclude that.  Even if it is still
2984	 * swapcache, we need to check that the page's swap has not changed.
2985	 */
2986	if (unlikely((!PageSwapCache(page) ||
2987			page_private(page) != entry.val)) && swapcache)
2988		goto out_page;
2989
2990	page = ksm_might_need_to_copy(page, vma, vmf->address);
2991	if (unlikely(!page)) {
2992		ret = VM_FAULT_OOM;
2993		page = swapcache;
2994		goto out_page;
 
 
 
 
 
2995	}
2996
2997	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2998				&memcg, false)) {
2999		ret = VM_FAULT_OOM;
3000		goto out_page;
3001	}
3002
3003	/*
3004	 * Back out if somebody else already faulted in this pte.
3005	 */
3006	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3007			&vmf->ptl);
3008	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3009		goto out_nomap;
3010
3011	if (unlikely(!PageUptodate(page))) {
3012		ret = VM_FAULT_SIGBUS;
3013		goto out_nomap;
3014	}
3015
3016	/*
3017	 * The page isn't present yet, go ahead with the fault.
3018	 *
3019	 * Be careful about the sequence of operations here.
3020	 * To get its accounting right, reuse_swap_page() must be called
3021	 * while the page is counted on swap but not yet in mapcount i.e.
3022	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
3024	 */
3025
3026	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3027	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3028	pte = mk_pte(page, vma->vm_page_prot);
3029	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3030		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3031		vmf->flags &= ~FAULT_FLAG_WRITE;
3032		ret |= VM_FAULT_WRITE;
3033		exclusive = RMAP_EXCLUSIVE;
3034	}
3035	flush_icache_page(vma, page);
3036	if (pte_swp_soft_dirty(vmf->orig_pte))
3037		pte = pte_mksoft_dirty(pte);
3038	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3039	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3040	vmf->orig_pte = pte;
3041
3042	/* ksm created a completely new copy */
3043	if (unlikely(page != swapcache && swapcache)) {
3044		page_add_new_anon_rmap(page, vma, vmf->address, false);
3045		mem_cgroup_commit_charge(page, memcg, false, false);
3046		lru_cache_add_active_or_unevictable(page, vma);
3047	} else {
3048		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3049		mem_cgroup_commit_charge(page, memcg, true, false);
3050		activate_page(page);
3051	}
3052
3053	swap_free(entry);
3054	if (mem_cgroup_swap_full(page) ||
3055	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3056		try_to_free_swap(page);
3057	unlock_page(page);
3058	if (page != swapcache && swapcache) {
3059		/*
3060		 * Hold the lock to avoid the swap entry to be reused
3061		 * until we take the PT lock for the pte_same() check
3062		 * (to avoid false positives from pte_same). For
3063		 * further safety release the lock after the swap_free
3064		 * so that the swap count won't change under a
3065		 * parallel locked swapcache.
3066		 */
3067		unlock_page(swapcache);
3068		put_page(swapcache);
3069	}
3070
3071	if (vmf->flags & FAULT_FLAG_WRITE) {
3072		ret |= do_wp_page(vmf);
3073		if (ret & VM_FAULT_ERROR)
3074			ret &= VM_FAULT_ERROR;
3075		goto out;
3076	}
3077
3078	/* No need to invalidate - it was non-present before */
3079	update_mmu_cache(vma, vmf->address, vmf->pte);
3080unlock:
3081	pte_unmap_unlock(vmf->pte, vmf->ptl);
3082out:
3083	return ret;
3084out_nomap:
3085	mem_cgroup_cancel_charge(page, memcg, false);
3086	pte_unmap_unlock(vmf->pte, vmf->ptl);
3087out_page:
3088	unlock_page(page);
3089out_release:
3090	put_page(page);
3091	if (page != swapcache && swapcache) {
3092		unlock_page(swapcache);
3093		put_page(swapcache);
3094	}
3095	return ret;
3096}
3097
3098/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100 * but allow concurrent faults), and pte mapped but not yet locked.
3101 * We return with mmap_sem still held, but pte unmapped and unlocked.
3102 */
3103static int do_anonymous_page(struct vm_fault *vmf)
 
 
3104{
3105	struct vm_area_struct *vma = vmf->vma;
3106	struct mem_cgroup *memcg;
3107	struct page *page;
3108	int ret = 0;
3109	pte_t entry;
3110
3111	/* File mapping without ->vm_ops ? */
3112	if (vma->vm_flags & VM_SHARED)
3113		return VM_FAULT_SIGBUS;
3114
3115	/*
3116	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3117	 * pte_offset_map() on pmds where a huge pmd might be created
3118	 * from a different thread.
3119	 *
3120	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3121	 * parallel threads are excluded by other means.
3122	 *
3123	 * Here we only have down_read(mmap_sem).
3124	 */
3125	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3126		return VM_FAULT_OOM;
3127
3128	/* See the comment in pte_alloc_one_map() */
3129	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3130		return 0;
3131
3132	/* Use the zero-page for reads */
3133	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3134			!mm_forbids_zeropage(vma->vm_mm)) {
3135		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3136						vma->vm_page_prot));
3137		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3138				vmf->address, &vmf->ptl);
3139		if (!pte_none(*vmf->pte))
3140			goto unlock;
3141		ret = check_stable_address_space(vma->vm_mm);
3142		if (ret)
3143			goto unlock;
3144		/* Deliver the page fault to userland, check inside PT lock */
3145		if (userfaultfd_missing(vma)) {
3146			pte_unmap_unlock(vmf->pte, vmf->ptl);
3147			return handle_userfault(vmf, VM_UFFD_MISSING);
3148		}
3149		goto setpte;
3150	}
3151
3152	/* Allocate our own private page. */
3153	if (unlikely(anon_vma_prepare(vma)))
3154		goto oom;
3155	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3156	if (!page)
3157		goto oom;
 
3158
3159	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3160		goto oom_free_page;
3161
3162	/*
3163	 * The memory barrier inside __SetPageUptodate makes sure that
3164	 * preceeding stores to the page contents become visible before
3165	 * the set_pte_at() write.
3166	 */
3167	__SetPageUptodate(page);
3168
3169	entry = mk_pte(page, vma->vm_page_prot);
3170	if (vma->vm_flags & VM_WRITE)
3171		entry = pte_mkwrite(pte_mkdirty(entry));
3172
3173	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174			&vmf->ptl);
3175	if (!pte_none(*vmf->pte))
3176		goto release;
3177
3178	ret = check_stable_address_space(vma->vm_mm);
3179	if (ret)
3180		goto release;
3181
3182	/* Deliver the page fault to userland, check inside PT lock */
3183	if (userfaultfd_missing(vma)) {
3184		pte_unmap_unlock(vmf->pte, vmf->ptl);
3185		mem_cgroup_cancel_charge(page, memcg, false);
3186		put_page(page);
3187		return handle_userfault(vmf, VM_UFFD_MISSING);
3188	}
3189
3190	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3191	page_add_new_anon_rmap(page, vma, vmf->address, false);
3192	mem_cgroup_commit_charge(page, memcg, false, false);
3193	lru_cache_add_active_or_unevictable(page, vma);
3194setpte:
3195	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3196
3197	/* No need to invalidate - it was non-present before */
3198	update_mmu_cache(vma, vmf->address, vmf->pte);
3199unlock:
3200	pte_unmap_unlock(vmf->pte, vmf->ptl);
3201	return ret;
3202release:
3203	mem_cgroup_cancel_charge(page, memcg, false);
3204	put_page(page);
3205	goto unlock;
3206oom_free_page:
3207	put_page(page);
3208oom:
3209	return VM_FAULT_OOM;
3210}
3211
3212/*
3213 * The mmap_sem must have been held on entry, and may have been
3214 * released depending on flags and vma->vm_ops->fault() return value.
3215 * See filemap_fault() and __lock_page_retry().
 
 
 
 
 
 
 
 
3216 */
3217static int __do_fault(struct vm_fault *vmf)
 
 
3218{
3219	struct vm_area_struct *vma = vmf->vma;
 
 
 
 
 
 
 
3220	int ret;
 
3221
3222	ret = vma->vm_ops->fault(vmf);
3223	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224			    VM_FAULT_DONE_COW)))
3225		return ret;
3226
3227	if (unlikely(PageHWPoison(vmf->page))) {
3228		if (ret & VM_FAULT_LOCKED)
3229			unlock_page(vmf->page);
3230		put_page(vmf->page);
3231		vmf->page = NULL;
3232		return VM_FAULT_HWPOISON;
3233	}
3234
3235	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236		lock_page(vmf->page);
3237	else
3238		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3239
3240	return ret;
3241}
3242
3243/*
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3248 */
3249static int pmd_devmap_trans_unstable(pmd_t *pmd)
3250{
3251	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3252}
3253
3254static int pte_alloc_one_map(struct vm_fault *vmf)
3255{
3256	struct vm_area_struct *vma = vmf->vma;
3257
3258	if (!pmd_none(*vmf->pmd))
3259		goto map_pte;
3260	if (vmf->prealloc_pte) {
3261		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262		if (unlikely(!pmd_none(*vmf->pmd))) {
3263			spin_unlock(vmf->ptl);
3264			goto map_pte;
3265		}
3266
3267		mm_inc_nr_ptes(vma->vm_mm);
3268		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269		spin_unlock(vmf->ptl);
3270		vmf->prealloc_pte = NULL;
3271	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272		return VM_FAULT_OOM;
3273	}
3274map_pte:
3275	/*
3276	 * If a huge pmd materialized under us just retry later.  Use
3277	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280	 * running immediately after a huge pmd fault in a different thread of
3281	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282	 * All we have to ensure is that it is a regular pmd that we can walk
3283	 * with pte_offset_map() and we can do that through an atomic read in
3284	 * C, which is what pmd_trans_unstable() provides.
3285	 */
3286	if (pmd_devmap_trans_unstable(vmf->pmd))
3287		return VM_FAULT_NOPAGE;
3288
3289	/*
3290	 * At this point we know that our vmf->pmd points to a page of ptes
3291	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3293	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294	 * be valid and we will re-check to make sure the vmf->pte isn't
3295	 * pte_none() under vmf->ptl protection when we return to
3296	 * alloc_set_pte().
3297	 */
3298	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299			&vmf->ptl);
3300	return 0;
3301}
3302
3303#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3304
3305#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307		unsigned long haddr)
3308{
3309	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311		return false;
3312	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313		return false;
3314	return true;
3315}
3316
3317static void deposit_prealloc_pte(struct vm_fault *vmf)
3318{
3319	struct vm_area_struct *vma = vmf->vma;
3320
3321	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3322	/*
3323	 * We are going to consume the prealloc table,
3324	 * count that as nr_ptes.
3325	 */
3326	mm_inc_nr_ptes(vma->vm_mm);
3327	vmf->prealloc_pte = NULL;
3328}
3329
3330static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3331{
3332	struct vm_area_struct *vma = vmf->vma;
3333	bool write = vmf->flags & FAULT_FLAG_WRITE;
3334	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335	pmd_t entry;
3336	int i, ret;
3337
3338	if (!transhuge_vma_suitable(vma, haddr))
3339		return VM_FAULT_FALLBACK;
3340
3341	ret = VM_FAULT_FALLBACK;
3342	page = compound_head(page);
3343
3344	/*
3345	 * Archs like ppc64 need additonal space to store information
3346	 * related to pte entry. Use the preallocated table for that.
3347	 */
3348	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350		if (!vmf->prealloc_pte)
3351			return VM_FAULT_OOM;
3352		smp_wmb(); /* See comment in __pte_alloc() */
3353	}
3354
3355	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356	if (unlikely(!pmd_none(*vmf->pmd)))
3357		goto out;
3358
3359	for (i = 0; i < HPAGE_PMD_NR; i++)
3360		flush_icache_page(vma, page + i);
3361
3362	entry = mk_huge_pmd(page, vma->vm_page_prot);
3363	if (write)
3364		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3365
3366	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367	page_add_file_rmap(page, true);
3368	/*
3369	 * deposit and withdraw with pmd lock held
3370	 */
3371	if (arch_needs_pgtable_deposit())
3372		deposit_prealloc_pte(vmf);
3373
3374	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3375
3376	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3377
3378	/* fault is handled */
3379	ret = 0;
3380	count_vm_event(THP_FILE_MAPPED);
3381out:
3382	spin_unlock(vmf->ptl);
3383	return ret;
3384}
3385#else
3386static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3387{
3388	BUILD_BUG();
3389	return 0;
3390}
3391#endif
3392
3393/**
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3396 *
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3400 *
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402 * return.
3403 *
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
3406 */
3407int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408		struct page *page)
3409{
3410	struct vm_area_struct *vma = vmf->vma;
3411	bool write = vmf->flags & FAULT_FLAG_WRITE;
3412	pte_t entry;
3413	int ret;
3414
3415	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417		/* THP on COW? */
3418		VM_BUG_ON_PAGE(memcg, page);
3419
3420		ret = do_set_pmd(vmf, page);
3421		if (ret != VM_FAULT_FALLBACK)
3422			return ret;
3423	}
 
 
3424
3425	if (!vmf->pte) {
3426		ret = pte_alloc_one_map(vmf);
3427		if (ret)
3428			return ret;
3429	}
3430
3431	/* Re-check under ptl */
3432	if (unlikely(!pte_none(*vmf->pte)))
3433		return VM_FAULT_NOPAGE;
 
3434
3435	flush_icache_page(vma, page);
3436	entry = mk_pte(page, vma->vm_page_prot);
3437	if (write)
3438		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439	/* copy-on-write page */
3440	if (write && !(vma->vm_flags & VM_SHARED)) {
3441		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442		page_add_new_anon_rmap(page, vma, vmf->address, false);
3443		mem_cgroup_commit_charge(page, memcg, false, false);
3444		lru_cache_add_active_or_unevictable(page, vma);
3445	} else {
3446		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447		page_add_file_rmap(page, false);
3448	}
3449	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3450
3451	/* no need to invalidate: a not-present page won't be cached */
3452	update_mmu_cache(vma, vmf->address, vmf->pte);
3453
3454	return 0;
3455}
3456
3457
3458/**
3459 * finish_fault - finish page fault once we have prepared the page to fault
3460 *
3461 * @vmf: structure describing the fault
3462 *
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467 * error.
3468 *
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
3471 */
3472int finish_fault(struct vm_fault *vmf)
3473{
3474	struct page *page;
3475	int ret = 0;
3476
3477	/* Did we COW the page? */
3478	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479	    !(vmf->vma->vm_flags & VM_SHARED))
3480		page = vmf->cow_page;
3481	else
3482		page = vmf->page;
3483
3484	/*
3485	 * check even for read faults because we might have lost our CoWed
3486	 * page
3487	 */
3488	if (!(vmf->vma->vm_flags & VM_SHARED))
3489		ret = check_stable_address_space(vmf->vma->vm_mm);
3490	if (!ret)
3491		ret = alloc_set_pte(vmf, vmf->memcg, page);
3492	if (vmf->pte)
3493		pte_unmap_unlock(vmf->pte, vmf->ptl);
3494	return ret;
3495}
3496
3497static unsigned long fault_around_bytes __read_mostly =
3498	rounddown_pow_of_two(65536);
3499
3500#ifdef CONFIG_DEBUG_FS
3501static int fault_around_bytes_get(void *data, u64 *val)
3502{
3503	*val = fault_around_bytes;
3504	return 0;
3505}
3506
3507/*
3508 * fault_around_bytes must be rounded down to the nearest page order as it's
3509 * what do_fault_around() expects to see.
3510 */
3511static int fault_around_bytes_set(void *data, u64 val)
3512{
3513	if (val / PAGE_SIZE > PTRS_PER_PTE)
3514		return -EINVAL;
3515	if (val > PAGE_SIZE)
3516		fault_around_bytes = rounddown_pow_of_two(val);
3517	else
3518		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3519	return 0;
3520}
3521DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3522		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3523
3524static int __init fault_around_debugfs(void)
3525{
3526	void *ret;
3527
3528	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3529			&fault_around_bytes_fops);
3530	if (!ret)
3531		pr_warn("Failed to create fault_around_bytes in debugfs");
3532	return 0;
3533}
3534late_initcall(fault_around_debugfs);
3535#endif
3536
3537/*
3538 * do_fault_around() tries to map few pages around the fault address. The hope
3539 * is that the pages will be needed soon and this will lower the number of
3540 * faults to handle.
3541 *
3542 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3543 * not ready to be mapped: not up-to-date, locked, etc.
3544 *
3545 * This function is called with the page table lock taken. In the split ptlock
3546 * case the page table lock only protects only those entries which belong to
3547 * the page table corresponding to the fault address.
3548 *
3549 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3550 * only once.
3551 *
3552 * fault_around_bytes defines how many bytes we'll try to map.
3553 * do_fault_around() expects it to be set to a power of two less than or equal
3554 * to PTRS_PER_PTE.
3555 *
3556 * The virtual address of the area that we map is naturally aligned to
3557 * fault_around_bytes rounded down to the machine page size
3558 * (and therefore to page order).  This way it's easier to guarantee
3559 * that we don't cross page table boundaries.
3560 */
3561static int do_fault_around(struct vm_fault *vmf)
3562{
3563	unsigned long address = vmf->address, nr_pages, mask;
3564	pgoff_t start_pgoff = vmf->pgoff;
3565	pgoff_t end_pgoff;
3566	int off, ret = 0;
3567
3568	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3570
3571	vmf->address = max(address & mask, vmf->vma->vm_start);
3572	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573	start_pgoff -= off;
3574
3575	/*
3576	 *  end_pgoff is either the end of the page table, the end of
3577	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3578	 */
3579	end_pgoff = start_pgoff -
3580		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581		PTRS_PER_PTE - 1;
3582	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583			start_pgoff + nr_pages - 1);
3584
3585	if (pmd_none(*vmf->pmd)) {
3586		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587						  vmf->address);
3588		if (!vmf->prealloc_pte)
3589			goto out;
3590		smp_wmb(); /* See comment in __pte_alloc() */
3591	}
 
 
3592
3593	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3594
3595	/* Huge page is mapped? Page fault is solved */
3596	if (pmd_trans_huge(*vmf->pmd)) {
3597		ret = VM_FAULT_NOPAGE;
3598		goto out;
3599	}
3600
3601	/* ->map_pages() haven't done anything useful. Cold page cache? */
3602	if (!vmf->pte)
3603		goto out;
3604
3605	/* check if the page fault is solved */
3606	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607	if (!pte_none(*vmf->pte))
3608		ret = VM_FAULT_NOPAGE;
3609	pte_unmap_unlock(vmf->pte, vmf->ptl);
3610out:
3611	vmf->address = address;
3612	vmf->pte = NULL;
3613	return ret;
3614}
3615
3616static int do_read_fault(struct vm_fault *vmf)
3617{
3618	struct vm_area_struct *vma = vmf->vma;
3619	int ret = 0;
3620
3621	/*
3622	 * Let's call ->map_pages() first and use ->fault() as fallback
3623	 * if page by the offset is not ready to be mapped (cold cache or
3624	 * something).
3625	 */
3626	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627		ret = do_fault_around(vmf);
3628		if (ret)
3629			return ret;
3630	}
3631
3632	ret = __do_fault(vmf);
3633	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3635
3636	ret |= finish_fault(vmf);
3637	unlock_page(vmf->page);
3638	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639		put_page(vmf->page);
3640	return ret;
3641}
 
 
 
 
3642
3643static int do_cow_fault(struct vm_fault *vmf)
3644{
3645	struct vm_area_struct *vma = vmf->vma;
3646	int ret;
3647
3648	if (unlikely(anon_vma_prepare(vma)))
3649		return VM_FAULT_OOM;
3650
3651	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652	if (!vmf->cow_page)
3653		return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
3654
3655	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656				&vmf->memcg, false)) {
3657		put_page(vmf->cow_page);
3658		return VM_FAULT_OOM;
 
 
 
3659	}
3660
3661	ret = __do_fault(vmf);
3662	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663		goto uncharge_out;
3664	if (ret & VM_FAULT_DONE_COW)
3665		return ret;
3666
3667	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668	__SetPageUptodate(vmf->cow_page);
3669
3670	ret |= finish_fault(vmf);
3671	unlock_page(vmf->page);
3672	put_page(vmf->page);
3673	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674		goto uncharge_out;
3675	return ret;
3676uncharge_out:
3677	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678	put_page(vmf->cow_page);
 
 
 
3679	return ret;
3680}
3681
3682static int do_shared_fault(struct vm_fault *vmf)
 
 
3683{
3684	struct vm_area_struct *vma = vmf->vma;
3685	int ret, tmp;
3686
3687	ret = __do_fault(vmf);
3688	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689		return ret;
3690
3691	/*
3692	 * Check if the backing address space wants to know that the page is
3693	 * about to become writable
3694	 */
3695	if (vma->vm_ops->page_mkwrite) {
3696		unlock_page(vmf->page);
3697		tmp = do_page_mkwrite(vmf);
3698		if (unlikely(!tmp ||
3699				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700			put_page(vmf->page);
3701			return tmp;
3702		}
3703	}
3704
3705	ret |= finish_fault(vmf);
3706	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707					VM_FAULT_RETRY))) {
3708		unlock_page(vmf->page);
3709		put_page(vmf->page);
3710		return ret;
3711	}
3712
3713	fault_dirty_shared_page(vma, vmf->page);
3714	return ret;
3715}
3716
3717/*
 
 
 
 
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value.  See filemap_fault() and __lock_page_or_retry().
3722 */
3723static int do_fault(struct vm_fault *vmf)
3724{
3725	struct vm_area_struct *vma = vmf->vma;
3726	int ret;
3727
3728	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3729	if (!vma->vm_ops->fault)
3730		ret = VM_FAULT_SIGBUS;
3731	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3732		ret = do_read_fault(vmf);
3733	else if (!(vma->vm_flags & VM_SHARED))
3734		ret = do_cow_fault(vmf);
3735	else
3736		ret = do_shared_fault(vmf);
3737
3738	/* preallocated pagetable is unused: free it */
3739	if (vmf->prealloc_pte) {
3740		pte_free(vma->vm_mm, vmf->prealloc_pte);
3741		vmf->prealloc_pte = NULL;
3742	}
3743	return ret;
3744}
3745
3746static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3747				unsigned long addr, int page_nid,
3748				int *flags)
3749{
3750	get_page(page);
3751
3752	count_vm_numa_event(NUMA_HINT_FAULTS);
3753	if (page_nid == numa_node_id()) {
3754		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3755		*flags |= TNF_FAULT_LOCAL;
3756	}
3757
3758	return mpol_misplaced(page, vma, addr);
3759}
3760
3761static int do_numa_page(struct vm_fault *vmf)
3762{
3763	struct vm_area_struct *vma = vmf->vma;
3764	struct page *page = NULL;
3765	int page_nid = -1;
3766	int last_cpupid;
3767	int target_nid;
3768	bool migrated = false;
3769	pte_t pte;
3770	bool was_writable = pte_savedwrite(vmf->orig_pte);
3771	int flags = 0;
3772
3773	/*
3774	 * The "pte" at this point cannot be used safely without
3775	 * validation through pte_unmap_same(). It's of NUMA type but
3776	 * the pfn may be screwed if the read is non atomic.
3777	 */
3778	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3779	spin_lock(vmf->ptl);
3780	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3781		pte_unmap_unlock(vmf->pte, vmf->ptl);
3782		goto out;
3783	}
3784
3785	/*
3786	 * Make it present again, Depending on how arch implementes non
3787	 * accessible ptes, some can allow access by kernel mode.
3788	 */
3789	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3790	pte = pte_modify(pte, vma->vm_page_prot);
3791	pte = pte_mkyoung(pte);
3792	if (was_writable)
3793		pte = pte_mkwrite(pte);
3794	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3795	update_mmu_cache(vma, vmf->address, vmf->pte);
3796
3797	page = vm_normal_page(vma, vmf->address, pte);
3798	if (!page) {
3799		pte_unmap_unlock(vmf->pte, vmf->ptl);
3800		return 0;
3801	}
3802
3803	/* TODO: handle PTE-mapped THP */
3804	if (PageCompound(page)) {
3805		pte_unmap_unlock(vmf->pte, vmf->ptl);
3806		return 0;
3807	}
3808
3809	/*
3810	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3811	 * much anyway since they can be in shared cache state. This misses
3812	 * the case where a mapping is writable but the process never writes
3813	 * to it but pte_write gets cleared during protection updates and
3814	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3815	 * background writeback, dirty balancing and application behaviour.
3816	 */
3817	if (!pte_write(pte))
3818		flags |= TNF_NO_GROUP;
3819
3820	/*
3821	 * Flag if the page is shared between multiple address spaces. This
3822	 * is later used when determining whether to group tasks together
3823	 */
3824	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3825		flags |= TNF_SHARED;
3826
3827	last_cpupid = page_cpupid_last(page);
3828	page_nid = page_to_nid(page);
3829	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3830			&flags);
3831	pte_unmap_unlock(vmf->pte, vmf->ptl);
3832	if (target_nid == -1) {
3833		put_page(page);
3834		goto out;
3835	}
3836
3837	/* Migrate to the requested node */
3838	migrated = migrate_misplaced_page(page, vma, target_nid);
3839	if (migrated) {
3840		page_nid = target_nid;
3841		flags |= TNF_MIGRATED;
3842	} else
3843		flags |= TNF_MIGRATE_FAIL;
3844
3845out:
3846	if (page_nid != -1)
3847		task_numa_fault(last_cpupid, page_nid, 1, flags);
3848	return 0;
3849}
3850
3851static inline int create_huge_pmd(struct vm_fault *vmf)
3852{
3853	if (vma_is_anonymous(vmf->vma))
3854		return do_huge_pmd_anonymous_page(vmf);
3855	if (vmf->vma->vm_ops->huge_fault)
3856		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3857	return VM_FAULT_FALLBACK;
3858}
3859
3860/* `inline' is required to avoid gcc 4.1.2 build error */
3861static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3862{
3863	if (vma_is_anonymous(vmf->vma))
3864		return do_huge_pmd_wp_page(vmf, orig_pmd);
3865	if (vmf->vma->vm_ops->huge_fault)
3866		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867
3868	/* COW handled on pte level: split pmd */
3869	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3870	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3871
3872	return VM_FAULT_FALLBACK;
3873}
3874
3875static inline bool vma_is_accessible(struct vm_area_struct *vma)
3876{
3877	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3878}
3879
3880static int create_huge_pud(struct vm_fault *vmf)
3881{
3882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883	/* No support for anonymous transparent PUD pages yet */
3884	if (vma_is_anonymous(vmf->vma))
3885		return VM_FAULT_FALLBACK;
3886	if (vmf->vma->vm_ops->huge_fault)
3887		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3889	return VM_FAULT_FALLBACK;
3890}
3891
3892static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3893{
3894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3895	/* No support for anonymous transparent PUD pages yet */
3896	if (vma_is_anonymous(vmf->vma))
3897		return VM_FAULT_FALLBACK;
3898	if (vmf->vma->vm_ops->huge_fault)
3899		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3900#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3901	return VM_FAULT_FALLBACK;
3902}
3903
3904/*
3905 * These routines also need to handle stuff like marking pages dirty
3906 * and/or accessed for architectures that don't do it in hardware (most
3907 * RISC architectures).  The early dirtying is also good on the i386.
3908 *
3909 * There is also a hook called "update_mmu_cache()" that architectures
3910 * with external mmu caches can use to update those (ie the Sparc or
3911 * PowerPC hashed page tables that act as extended TLBs).
3912 *
3913 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3914 * concurrent faults).
3915 *
3916 * The mmap_sem may have been released depending on flags and our return value.
3917 * See filemap_fault() and __lock_page_or_retry().
3918 */
3919static int handle_pte_fault(struct vm_fault *vmf)
 
 
3920{
3921	pte_t entry;
 
3922
3923	if (unlikely(pmd_none(*vmf->pmd))) {
3924		/*
3925		 * Leave __pte_alloc() until later: because vm_ops->fault may
3926		 * want to allocate huge page, and if we expose page table
3927		 * for an instant, it will be difficult to retract from
3928		 * concurrent faults and from rmap lookups.
3929		 */
3930		vmf->pte = NULL;
3931	} else {
3932		/* See comment in pte_alloc_one_map() */
3933		if (pmd_devmap_trans_unstable(vmf->pmd))
3934			return 0;
3935		/*
3936		 * A regular pmd is established and it can't morph into a huge
3937		 * pmd from under us anymore at this point because we hold the
3938		 * mmap_sem read mode and khugepaged takes it in write mode.
3939		 * So now it's safe to run pte_offset_map().
3940		 */
3941		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3942		vmf->orig_pte = *vmf->pte;
3943
3944		/*
3945		 * some architectures can have larger ptes than wordsize,
3946		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3947		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3948		 * accesses.  The code below just needs a consistent view
3949		 * for the ifs and we later double check anyway with the
3950		 * ptl lock held. So here a barrier will do.
3951		 */
3952		barrier();
3953		if (pte_none(vmf->orig_pte)) {
3954			pte_unmap(vmf->pte);
3955			vmf->pte = NULL;
3956		}
 
 
 
 
 
3957	}
3958
3959	if (!vmf->pte) {
3960		if (vma_is_anonymous(vmf->vma))
3961			return do_anonymous_page(vmf);
3962		else
3963			return do_fault(vmf);
3964	}
3965
3966	if (!pte_present(vmf->orig_pte))
3967		return do_swap_page(vmf);
3968
3969	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3970		return do_numa_page(vmf);
3971
3972	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3973	spin_lock(vmf->ptl);
3974	entry = vmf->orig_pte;
3975	if (unlikely(!pte_same(*vmf->pte, entry)))
3976		goto unlock;
3977	if (vmf->flags & FAULT_FLAG_WRITE) {
3978		if (!pte_write(entry))
3979			return do_wp_page(vmf);
 
3980		entry = pte_mkdirty(entry);
3981	}
3982	entry = pte_mkyoung(entry);
3983	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3984				vmf->flags & FAULT_FLAG_WRITE)) {
3985		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3986	} else {
3987		/*
3988		 * This is needed only for protection faults but the arch code
3989		 * is not yet telling us if this is a protection fault or not.
3990		 * This still avoids useless tlb flushes for .text page faults
3991		 * with threads.
3992		 */
3993		if (vmf->flags & FAULT_FLAG_WRITE)
3994			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3995	}
3996unlock:
3997	pte_unmap_unlock(vmf->pte, vmf->ptl);
3998	return 0;
3999}
4000
4001/*
4002 * By the time we get here, we already hold the mm semaphore
4003 *
4004 * The mmap_sem may have been released depending on flags and our
4005 * return value.  See filemap_fault() and __lock_page_or_retry().
4006 */
4007static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4008		unsigned int flags)
4009{
4010	struct vm_fault vmf = {
4011		.vma = vma,
4012		.address = address & PAGE_MASK,
4013		.flags = flags,
4014		.pgoff = linear_page_index(vma, address),
4015		.gfp_mask = __get_fault_gfp_mask(vma),
4016	};
4017	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4018	struct mm_struct *mm = vma->vm_mm;
4019	pgd_t *pgd;
4020	p4d_t *p4d;
4021	int ret;
4022
4023	pgd = pgd_offset(mm, address);
4024	p4d = p4d_alloc(mm, pgd, address);
4025	if (!p4d)
4026		return VM_FAULT_OOM;
4027
4028	vmf.pud = pud_alloc(mm, p4d, address);
4029	if (!vmf.pud)
4030		return VM_FAULT_OOM;
4031	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4032		ret = create_huge_pud(&vmf);
4033		if (!(ret & VM_FAULT_FALLBACK))
4034			return ret;
4035	} else {
4036		pud_t orig_pud = *vmf.pud;
4037
4038		barrier();
4039		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4040
4041			/* NUMA case for anonymous PUDs would go here */
 
4042
4043			if (dirty && !pud_write(orig_pud)) {
4044				ret = wp_huge_pud(&vmf, orig_pud);
4045				if (!(ret & VM_FAULT_FALLBACK))
4046					return ret;
4047			} else {
4048				huge_pud_set_accessed(&vmf, orig_pud);
4049				return 0;
4050			}
4051		}
4052	}
4053
4054	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4055	if (!vmf.pmd)
 
4056		return VM_FAULT_OOM;
4057	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4058		ret = create_huge_pmd(&vmf);
4059		if (!(ret & VM_FAULT_FALLBACK))
4060			return ret;
 
 
 
4061	} else {
4062		pmd_t orig_pmd = *vmf.pmd;
4063
4064		barrier();
4065		if (unlikely(is_swap_pmd(orig_pmd))) {
4066			VM_BUG_ON(thp_migration_supported() &&
4067					  !is_pmd_migration_entry(orig_pmd));
4068			if (is_pmd_migration_entry(orig_pmd))
4069				pmd_migration_entry_wait(mm, vmf.pmd);
 
4070			return 0;
4071		}
4072		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4073			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4074				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4075
4076			if (dirty && !pmd_write(orig_pmd)) {
4077				ret = wp_huge_pmd(&vmf, orig_pmd);
4078				if (!(ret & VM_FAULT_FALLBACK))
4079					return ret;
4080			} else {
4081				huge_pmd_set_accessed(&vmf, orig_pmd);
4082				return 0;
4083			}
4084		}
4085	}
4086
4087	return handle_pte_fault(&vmf);
4088}
4089
4090/*
4091 * By the time we get here, we already hold the mm semaphore
4092 *
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value.  See filemap_fault() and __lock_page_or_retry().
4095 */
4096int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4097		unsigned int flags)
4098{
4099	int ret;
4100
4101	__set_current_state(TASK_RUNNING);
4102
4103	count_vm_event(PGFAULT);
4104	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4105
4106	/* do counter updates before entering really critical section. */
4107	check_sync_rss_stat(current);
4108
4109	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4110					    flags & FAULT_FLAG_INSTRUCTION,
4111					    flags & FAULT_FLAG_REMOTE))
4112		return VM_FAULT_SIGSEGV;
4113
4114	/*
4115	 * Enable the memcg OOM handling for faults triggered in user
4116	 * space.  Kernel faults are handled more gracefully.
 
4117	 */
4118	if (flags & FAULT_FLAG_USER)
4119		mem_cgroup_oom_enable();
4120
4121	if (unlikely(is_vm_hugetlb_page(vma)))
4122		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4123	else
4124		ret = __handle_mm_fault(vma, address, flags);
4125
4126	if (flags & FAULT_FLAG_USER) {
4127		mem_cgroup_oom_disable();
4128		/*
4129		 * The task may have entered a memcg OOM situation but
4130		 * if the allocation error was handled gracefully (no
4131		 * VM_FAULT_OOM), there is no need to kill anything.
4132		 * Just clean up the OOM state peacefully.
4133		 */
4134		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4135			mem_cgroup_oom_synchronize(false);
4136	}
4137
4138	return ret;
4139}
4140EXPORT_SYMBOL_GPL(handle_mm_fault);
4141
4142#ifndef __PAGETABLE_P4D_FOLDED
4143/*
4144 * Allocate p4d page table.
4145 * We've already handled the fast-path in-line.
4146 */
4147int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4148{
4149	p4d_t *new = p4d_alloc_one(mm, address);
4150	if (!new)
4151		return -ENOMEM;
4152
4153	smp_wmb(); /* See comment in __pte_alloc */
4154
4155	spin_lock(&mm->page_table_lock);
4156	if (pgd_present(*pgd))		/* Another has populated it */
4157		p4d_free(mm, new);
4158	else
4159		pgd_populate(mm, pgd, new);
4160	spin_unlock(&mm->page_table_lock);
4161	return 0;
4162}
4163#endif /* __PAGETABLE_P4D_FOLDED */
4164
4165#ifndef __PAGETABLE_PUD_FOLDED
4166/*
4167 * Allocate page upper directory.
4168 * We've already handled the fast-path in-line.
4169 */
4170int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4171{
4172	pud_t *new = pud_alloc_one(mm, address);
4173	if (!new)
4174		return -ENOMEM;
4175
4176	smp_wmb(); /* See comment in __pte_alloc */
4177
4178	spin_lock(&mm->page_table_lock);
4179#ifndef __ARCH_HAS_5LEVEL_HACK
4180	if (!p4d_present(*p4d)) {
4181		mm_inc_nr_puds(mm);
4182		p4d_populate(mm, p4d, new);
4183	} else	/* Another has populated it */
4184		pud_free(mm, new);
4185#else
4186	if (!pgd_present(*p4d)) {
4187		mm_inc_nr_puds(mm);
4188		pgd_populate(mm, p4d, new);
4189	} else	/* Another has populated it */
4190		pud_free(mm, new);
4191#endif /* __ARCH_HAS_5LEVEL_HACK */
 
4192	spin_unlock(&mm->page_table_lock);
4193	return 0;
4194}
4195#endif /* __PAGETABLE_PUD_FOLDED */
4196
4197#ifndef __PAGETABLE_PMD_FOLDED
4198/*
4199 * Allocate page middle directory.
4200 * We've already handled the fast-path in-line.
4201 */
4202int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4203{
4204	spinlock_t *ptl;
4205	pmd_t *new = pmd_alloc_one(mm, address);
4206	if (!new)
4207		return -ENOMEM;
4208
4209	smp_wmb(); /* See comment in __pte_alloc */
4210
4211	ptl = pud_lock(mm, pud);
4212#ifndef __ARCH_HAS_4LEVEL_HACK
4213	if (!pud_present(*pud)) {
4214		mm_inc_nr_pmds(mm);
4215		pud_populate(mm, pud, new);
4216	} else	/* Another has populated it */
4217		pmd_free(mm, new);
 
 
4218#else
4219	if (!pgd_present(*pud)) {
4220		mm_inc_nr_pmds(mm);
4221		pgd_populate(mm, pud, new);
4222	} else /* Another has populated it */
4223		pmd_free(mm, new);
 
 
4224#endif /* __ARCH_HAS_4LEVEL_HACK */
4225	spin_unlock(ptl);
4226	return 0;
4227}
4228#endif /* __PAGETABLE_PMD_FOLDED */
4229
4230static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231			    unsigned long *start, unsigned long *end,
4232			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4233{
4234	pgd_t *pgd;
4235	p4d_t *p4d;
4236	pud_t *pud;
4237	pmd_t *pmd;
4238	pte_t *ptep;
4239
4240	pgd = pgd_offset(mm, address);
4241	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4242		goto out;
4243
4244	p4d = p4d_offset(pgd, address);
4245	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4246		goto out;
4247
4248	pud = pud_offset(p4d, address);
4249	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4250		goto out;
4251
4252	pmd = pmd_offset(pud, address);
4253	VM_BUG_ON(pmd_trans_huge(*pmd));
4254
4255	if (pmd_huge(*pmd)) {
4256		if (!pmdpp)
4257			goto out;
4258
4259		if (start && end) {
4260			*start = address & PMD_MASK;
4261			*end = *start + PMD_SIZE;
4262			mmu_notifier_invalidate_range_start(mm, *start, *end);
4263		}
4264		*ptlp = pmd_lock(mm, pmd);
4265		if (pmd_huge(*pmd)) {
4266			*pmdpp = pmd;
4267			return 0;
4268		}
4269		spin_unlock(*ptlp);
4270		if (start && end)
4271			mmu_notifier_invalidate_range_end(mm, *start, *end);
4272	}
4273
4274	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4275		goto out;
4276
4277	if (start && end) {
4278		*start = address & PAGE_MASK;
4279		*end = *start + PAGE_SIZE;
4280		mmu_notifier_invalidate_range_start(mm, *start, *end);
4281	}
4282	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
4283	if (!pte_present(*ptep))
4284		goto unlock;
4285	*ptepp = ptep;
4286	return 0;
4287unlock:
4288	pte_unmap_unlock(ptep, *ptlp);
4289	if (start && end)
4290		mmu_notifier_invalidate_range_end(mm, *start, *end);
4291out:
4292	return -EINVAL;
4293}
4294
4295static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4296			     pte_t **ptepp, spinlock_t **ptlp)
4297{
4298	int res;
4299
4300	/* (void) is needed to make gcc happy */
4301	(void) __cond_lock(*ptlp,
4302			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4303						    ptepp, NULL, ptlp)));
4304	return res;
4305}
4306
4307int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4308			     unsigned long *start, unsigned long *end,
4309			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4310{
4311	int res;
4312
4313	/* (void) is needed to make gcc happy */
4314	(void) __cond_lock(*ptlp,
4315			   !(res = __follow_pte_pmd(mm, address, start, end,
4316						    ptepp, pmdpp, ptlp)));
4317	return res;
4318}
4319EXPORT_SYMBOL(follow_pte_pmd);
4320
4321/**
4322 * follow_pfn - look up PFN at a user virtual address
4323 * @vma: memory mapping
4324 * @address: user virtual address
4325 * @pfn: location to store found PFN
4326 *
4327 * Only IO mappings and raw PFN mappings are allowed.
4328 *
4329 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4330 */
4331int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4332	unsigned long *pfn)
4333{
4334	int ret = -EINVAL;
4335	spinlock_t *ptl;
4336	pte_t *ptep;
4337
4338	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4339		return ret;
4340
4341	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4342	if (ret)
4343		return ret;
4344	*pfn = pte_pfn(*ptep);
4345	pte_unmap_unlock(ptep, ptl);
4346	return 0;
4347}
4348EXPORT_SYMBOL(follow_pfn);
4349
4350#ifdef CONFIG_HAVE_IOREMAP_PROT
4351int follow_phys(struct vm_area_struct *vma,
4352		unsigned long address, unsigned int flags,
4353		unsigned long *prot, resource_size_t *phys)
4354{
4355	int ret = -EINVAL;
4356	pte_t *ptep, pte;
4357	spinlock_t *ptl;
4358
4359	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4360		goto out;
4361
4362	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4363		goto out;
4364	pte = *ptep;
4365
4366	if ((flags & FOLL_WRITE) && !pte_write(pte))
4367		goto unlock;
4368
4369	*prot = pgprot_val(pte_pgprot(pte));
4370	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4371
4372	ret = 0;
4373unlock:
4374	pte_unmap_unlock(ptep, ptl);
4375out:
4376	return ret;
4377}
4378
4379int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4380			void *buf, int len, int write)
4381{
4382	resource_size_t phys_addr;
4383	unsigned long prot = 0;
4384	void __iomem *maddr;
4385	int offset = addr & (PAGE_SIZE-1);
4386
4387	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4388		return -EINVAL;
4389
4390	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4391	if (write)
4392		memcpy_toio(maddr + offset, buf, len);
4393	else
4394		memcpy_fromio(buf, maddr + offset, len);
4395	iounmap(maddr);
4396
4397	return len;
4398}
4399EXPORT_SYMBOL_GPL(generic_access_phys);
4400#endif
4401
4402/*
4403 * Access another process' address space as given in mm.  If non-NULL, use the
4404 * given task for page fault accounting.
4405 */
4406int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4407		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4408{
4409	struct vm_area_struct *vma;
4410	void *old_buf = buf;
4411	int write = gup_flags & FOLL_WRITE;
4412
4413	down_read(&mm->mmap_sem);
4414	/* ignore errors, just check how much was successfully transferred */
4415	while (len) {
4416		int bytes, ret, offset;
4417		void *maddr;
4418		struct page *page = NULL;
4419
4420		ret = get_user_pages_remote(tsk, mm, addr, 1,
4421				gup_flags, &page, &vma, NULL);
4422		if (ret <= 0) {
4423#ifndef CONFIG_HAVE_IOREMAP_PROT
4424			break;
4425#else
4426			/*
4427			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4428			 * we can access using slightly different code.
4429			 */
 
4430			vma = find_vma(mm, addr);
4431			if (!vma || vma->vm_start > addr)
4432				break;
4433			if (vma->vm_ops && vma->vm_ops->access)
4434				ret = vma->vm_ops->access(vma, addr, buf,
4435							  len, write);
4436			if (ret <= 0)
 
4437				break;
4438			bytes = ret;
4439#endif
4440		} else {
4441			bytes = len;
4442			offset = addr & (PAGE_SIZE-1);
4443			if (bytes > PAGE_SIZE-offset)
4444				bytes = PAGE_SIZE-offset;
4445
4446			maddr = kmap(page);
4447			if (write) {
4448				copy_to_user_page(vma, page, addr,
4449						  maddr + offset, buf, bytes);
4450				set_page_dirty_lock(page);
4451			} else {
4452				copy_from_user_page(vma, page, addr,
4453						    buf, maddr + offset, bytes);
4454			}
4455			kunmap(page);
4456			put_page(page);
4457		}
4458		len -= bytes;
4459		buf += bytes;
4460		addr += bytes;
4461	}
4462	up_read(&mm->mmap_sem);
4463
4464	return buf - old_buf;
4465}
4466
4467/**
4468 * access_remote_vm - access another process' address space
4469 * @mm:		the mm_struct of the target address space
4470 * @addr:	start address to access
4471 * @buf:	source or destination buffer
4472 * @len:	number of bytes to transfer
4473 * @gup_flags:	flags modifying lookup behaviour
4474 *
4475 * The caller must hold a reference on @mm.
4476 */
4477int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4478		void *buf, int len, unsigned int gup_flags)
4479{
4480	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4481}
4482
4483/*
4484 * Access another process' address space.
4485 * Source/target buffer must be kernel space,
4486 * Do not walk the page table directly, use get_user_pages
4487 */
4488int access_process_vm(struct task_struct *tsk, unsigned long addr,
4489		void *buf, int len, unsigned int gup_flags)
4490{
4491	struct mm_struct *mm;
4492	int ret;
4493
4494	mm = get_task_mm(tsk);
4495	if (!mm)
4496		return 0;
4497
4498	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4499
4500	mmput(mm);
4501
4502	return ret;
4503}
4504EXPORT_SYMBOL_GPL(access_process_vm);
4505
4506/*
4507 * Print the name of a VMA.
4508 */
4509void print_vma_addr(char *prefix, unsigned long ip)
4510{
4511	struct mm_struct *mm = current->mm;
4512	struct vm_area_struct *vma;
4513
4514	/*
4515	 * we might be running from an atomic context so we cannot sleep
 
4516	 */
4517	if (!down_read_trylock(&mm->mmap_sem))
4518		return;
4519
 
4520	vma = find_vma(mm, ip);
4521	if (vma && vma->vm_file) {
4522		struct file *f = vma->vm_file;
4523		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4524		if (buf) {
4525			char *p;
4526
4527			p = file_path(f, buf, PAGE_SIZE);
4528			if (IS_ERR(p))
4529				p = "?";
4530			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
4531					vma->vm_start,
4532					vma->vm_end - vma->vm_start);
4533			free_page((unsigned long)buf);
4534		}
4535	}
4536	up_read(&mm->mmap_sem);
4537}
4538
4539#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4540void __might_fault(const char *file, int line)
4541{
4542	/*
4543	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4544	 * holding the mmap_sem, this is safe because kernel memory doesn't
4545	 * get paged out, therefore we'll never actually fault, and the
4546	 * below annotations will generate false positives.
4547	 */
4548	if (uaccess_kernel())
4549		return;
4550	if (pagefault_disabled())
4551		return;
4552	__might_sleep(file, line, 0);
4553#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554	if (current->mm)
 
 
 
 
 
4555		might_lock_read(&current->mm->mmap_sem);
4556#endif
4557}
4558EXPORT_SYMBOL(__might_fault);
4559#endif
4560
4561#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4562static void clear_gigantic_page(struct page *page,
4563				unsigned long addr,
4564				unsigned int pages_per_huge_page)
4565{
4566	int i;
4567	struct page *p = page;
4568
4569	might_sleep();
4570	for (i = 0; i < pages_per_huge_page;
4571	     i++, p = mem_map_next(p, page, i)) {
4572		cond_resched();
4573		clear_user_highpage(p, addr + i * PAGE_SIZE);
4574	}
4575}
4576void clear_huge_page(struct page *page,
4577		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4578{
4579	int i, n, base, l;
4580	unsigned long addr = addr_hint &
4581		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4582
4583	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584		clear_gigantic_page(page, addr, pages_per_huge_page);
4585		return;
4586	}
4587
4588	/* Clear sub-page to access last to keep its cache lines hot */
4589	might_sleep();
4590	n = (addr_hint - addr) / PAGE_SIZE;
4591	if (2 * n <= pages_per_huge_page) {
4592		/* If sub-page to access in first half of huge page */
4593		base = 0;
4594		l = n;
4595		/* Clear sub-pages at the end of huge page */
4596		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4597			cond_resched();
4598			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4599		}
4600	} else {
4601		/* If sub-page to access in second half of huge page */
4602		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4603		l = pages_per_huge_page - n;
4604		/* Clear sub-pages at the begin of huge page */
4605		for (i = 0; i < base; i++) {
4606			cond_resched();
4607			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608		}
4609	}
4610	/*
4611	 * Clear remaining sub-pages in left-right-left-right pattern
4612	 * towards the sub-page to access
4613	 */
4614	for (i = 0; i < l; i++) {
4615		int left_idx = base + i;
4616		int right_idx = base + 2 * l - 1 - i;
4617
4618		cond_resched();
4619		clear_user_highpage(page + left_idx,
4620				    addr + left_idx * PAGE_SIZE);
4621		cond_resched();
4622		clear_user_highpage(page + right_idx,
4623				    addr + right_idx * PAGE_SIZE);
4624	}
4625}
4626
4627static void copy_user_gigantic_page(struct page *dst, struct page *src,
4628				    unsigned long addr,
4629				    struct vm_area_struct *vma,
4630				    unsigned int pages_per_huge_page)
4631{
4632	int i;
4633	struct page *dst_base = dst;
4634	struct page *src_base = src;
4635
4636	for (i = 0; i < pages_per_huge_page; ) {
4637		cond_resched();
4638		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4639
4640		i++;
4641		dst = mem_map_next(dst, dst_base, i);
4642		src = mem_map_next(src, src_base, i);
4643	}
4644}
4645
4646void copy_user_huge_page(struct page *dst, struct page *src,
4647			 unsigned long addr, struct vm_area_struct *vma,
4648			 unsigned int pages_per_huge_page)
4649{
4650	int i;
4651
4652	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4653		copy_user_gigantic_page(dst, src, addr, vma,
4654					pages_per_huge_page);
4655		return;
4656	}
4657
4658	might_sleep();
4659	for (i = 0; i < pages_per_huge_page; i++) {
4660		cond_resched();
4661		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4662	}
4663}
4664
4665long copy_huge_page_from_user(struct page *dst_page,
4666				const void __user *usr_src,
4667				unsigned int pages_per_huge_page,
4668				bool allow_pagefault)
4669{
4670	void *src = (void *)usr_src;
4671	void *page_kaddr;
4672	unsigned long i, rc = 0;
4673	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4674
4675	for (i = 0; i < pages_per_huge_page; i++) {
4676		if (allow_pagefault)
4677			page_kaddr = kmap(dst_page + i);
4678		else
4679			page_kaddr = kmap_atomic(dst_page + i);
4680		rc = copy_from_user(page_kaddr,
4681				(const void __user *)(src + i * PAGE_SIZE),
4682				PAGE_SIZE);
4683		if (allow_pagefault)
4684			kunmap(dst_page + i);
4685		else
4686			kunmap_atomic(page_kaddr);
4687
4688		ret_val -= (PAGE_SIZE - rc);
4689		if (rc)
4690			break;
4691
4692		cond_resched();
4693	}
4694	return ret_val;
4695}
4696#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4697
4698#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4699
4700static struct kmem_cache *page_ptl_cachep;
4701
4702void __init ptlock_cache_init(void)
4703{
4704	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4705			SLAB_PANIC, NULL);
4706}
4707
4708bool ptlock_alloc(struct page *page)
4709{
4710	spinlock_t *ptl;
4711
4712	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4713	if (!ptl)
4714		return false;
4715	page->ptl = ptl;
4716	return true;
4717}
4718
4719void ptlock_free(struct page *page)
4720{
4721	kmem_cache_free(page_ptl_cachep, page->ptl);
4722}
4723#endif
v3.1
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
 
 
 
  60
  61#include <asm/io.h>
 
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
  68#include "internal.h"
  69
 
 
 
 
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
 
 
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 
 
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (task->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, task->rss_stat.count[i]);
 135			task->rss_stat.count[i] = 0;
 136		}
 137	}
 138	task->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		__sync_task_rss_stat(task, task->mm);
 161}
 162
 163unsigned long get_mm_counter(struct mm_struct *mm, int member)
 164{
 165	long val = 0;
 166
 167	/*
 168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
 169	 * The caller must guarantee task->mm is not invalid.
 170	 */
 171	val = atomic_long_read(&mm->rss_stat.count[member]);
 172	/*
 173	 * counter is updated in asynchronous manner and may go to minus.
 174	 * But it's never be expected number for users.
 175	 */
 176	if (val < 0)
 177		return 0;
 178	return (unsigned long)val;
 179}
 180
 181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
 182{
 183	__sync_task_rss_stat(task, mm);
 184}
 185#else /* SPLIT_RSS_COUNTING */
 186
 187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 189
 190static void check_sync_rss_stat(struct task_struct *task)
 191{
 192}
 193
 194#endif /* SPLIT_RSS_COUNTING */
 195
 196#ifdef HAVE_GENERIC_MMU_GATHER
 197
 198static int tlb_next_batch(struct mmu_gather *tlb)
 199{
 200	struct mmu_gather_batch *batch;
 201
 202	batch = tlb->active;
 203	if (batch->next) {
 204		tlb->active = batch->next;
 205		return 1;
 206	}
 207
 
 
 
 208	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 209	if (!batch)
 210		return 0;
 211
 
 212	batch->next = NULL;
 213	batch->nr   = 0;
 214	batch->max  = MAX_GATHER_BATCH;
 215
 216	tlb->active->next = batch;
 217	tlb->active = batch;
 218
 219	return 1;
 220}
 221
 222/* tlb_gather_mmu
 223 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 224 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 225 *	users and we're going to destroy the full address space (exit/execve).
 226 */
 227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 228{
 229	tlb->mm = mm;
 230
 231	tlb->fullmm     = fullmm;
 232	tlb->need_flush = 0;
 233	tlb->fast_mode  = (num_possible_cpus() == 1);
 234	tlb->local.next = NULL;
 235	tlb->local.nr   = 0;
 236	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 237	tlb->active     = &tlb->local;
 
 238
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb->batch = NULL;
 241#endif
 
 
 
 242}
 243
 244void tlb_flush_mmu(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 
 247
 248	if (!tlb->need_flush)
 249		return;
 250	tlb->need_flush = 0;
 251	tlb_flush(tlb);
 
 252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 253	tlb_table_flush(tlb);
 254#endif
 
 
 255
 256	if (tlb_fast_mode(tlb))
 257		return;
 
 258
 259	for (batch = &tlb->local; batch; batch = batch->next) {
 260		free_pages_and_swap_cache(batch->pages, batch->nr);
 261		batch->nr = 0;
 262	}
 263	tlb->active = &tlb->local;
 264}
 265
 
 
 
 
 
 
 266/* tlb_finish_mmu
 267 *	Called at the end of the shootdown operation to free up any resources
 268 *	that were required.
 269 */
 270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 
 271{
 272	struct mmu_gather_batch *batch, *next;
 273
 
 
 
 274	tlb_flush_mmu(tlb);
 275
 276	/* keep the page table cache within bounds */
 277	check_pgt_cache();
 278
 279	for (batch = tlb->local.next; batch; batch = next) {
 280		next = batch->next;
 281		free_pages((unsigned long)batch, 0);
 282	}
 283	tlb->local.next = NULL;
 284}
 285
 286/* __tlb_remove_page
 287 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 288 *	handling the additional races in SMP caused by other CPUs caching valid
 289 *	mappings in their TLBs. Returns the number of free page slots left.
 290 *	When out of page slots we must call tlb_flush_mmu().
 
 291 */
 292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 293{
 294	struct mmu_gather_batch *batch;
 295
 296	tlb->need_flush = 1;
 297
 298	if (tlb_fast_mode(tlb)) {
 299		free_page_and_swap_cache(page);
 300		return 1; /* avoid calling tlb_flush_mmu() */
 301	}
 302
 303	batch = tlb->active;
 
 
 
 
 304	batch->pages[batch->nr++] = page;
 305	if (batch->nr == batch->max) {
 306		if (!tlb_next_batch(tlb))
 307			return 0;
 308		batch = tlb->active;
 309	}
 310	VM_BUG_ON(batch->nr > batch->max);
 311
 312	return batch->max - batch->nr;
 313}
 314
 315#endif /* HAVE_GENERIC_MMU_GATHER */
 316
 317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 318
 319/*
 320 * See the comment near struct mmu_table_batch.
 321 */
 322
 323static void tlb_remove_table_smp_sync(void *arg)
 324{
 325	/* Simply deliver the interrupt */
 326}
 327
 328static void tlb_remove_table_one(void *table)
 329{
 330	/*
 331	 * This isn't an RCU grace period and hence the page-tables cannot be
 332	 * assumed to be actually RCU-freed.
 333	 *
 334	 * It is however sufficient for software page-table walkers that rely on
 335	 * IRQ disabling. See the comment near struct mmu_table_batch.
 336	 */
 337	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 338	__tlb_remove_table(table);
 339}
 340
 341static void tlb_remove_table_rcu(struct rcu_head *head)
 342{
 343	struct mmu_table_batch *batch;
 344	int i;
 345
 346	batch = container_of(head, struct mmu_table_batch, rcu);
 347
 348	for (i = 0; i < batch->nr; i++)
 349		__tlb_remove_table(batch->tables[i]);
 350
 351	free_page((unsigned long)batch);
 352}
 353
 354void tlb_table_flush(struct mmu_gather *tlb)
 355{
 356	struct mmu_table_batch **batch = &tlb->batch;
 357
 358	if (*batch) {
 359		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 360		*batch = NULL;
 361	}
 362}
 363
 364void tlb_remove_table(struct mmu_gather *tlb, void *table)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	tlb->need_flush = 1;
 369
 370	/*
 371	 * When there's less then two users of this mm there cannot be a
 372	 * concurrent page-table walk.
 373	 */
 374	if (atomic_read(&tlb->mm->mm_users) < 2) {
 375		__tlb_remove_table(table);
 376		return;
 377	}
 378
 379	if (*batch == NULL) {
 380		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 381		if (*batch == NULL) {
 382			tlb_remove_table_one(table);
 383			return;
 384		}
 385		(*batch)->nr = 0;
 386	}
 387	(*batch)->tables[(*batch)->nr++] = table;
 388	if ((*batch)->nr == MAX_TABLE_BATCH)
 389		tlb_table_flush(tlb);
 390}
 391
 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 393
 394/*
 395 * If a p?d_bad entry is found while walking page tables, report
 396 * the error, before resetting entry to p?d_none.  Usually (but
 397 * very seldom) called out from the p?d_none_or_clear_bad macros.
 398 */
 399
 400void pgd_clear_bad(pgd_t *pgd)
 
 
 
 
 
 
 
 401{
 402	pgd_ERROR(*pgd);
 403	pgd_clear(pgd);
 404}
 405
 406void pud_clear_bad(pud_t *pud)
 
 407{
 408	pud_ERROR(*pud);
 409	pud_clear(pud);
 410}
 
 
 
 
 
 411
 412void pmd_clear_bad(pmd_t *pmd)
 413{
 414	pmd_ERROR(*pmd);
 415	pmd_clear(pmd);
 416}
 417
 418/*
 419 * Note: this doesn't free the actual pages themselves. That
 420 * has been handled earlier when unmapping all the memory regions.
 421 */
 422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 423			   unsigned long addr)
 424{
 425	pgtable_t token = pmd_pgtable(*pmd);
 426	pmd_clear(pmd);
 427	pte_free_tlb(tlb, token, addr);
 428	tlb->mm->nr_ptes--;
 429}
 430
 431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 432				unsigned long addr, unsigned long end,
 433				unsigned long floor, unsigned long ceiling)
 434{
 435	pmd_t *pmd;
 436	unsigned long next;
 437	unsigned long start;
 438
 439	start = addr;
 440	pmd = pmd_offset(pud, addr);
 441	do {
 442		next = pmd_addr_end(addr, end);
 443		if (pmd_none_or_clear_bad(pmd))
 444			continue;
 445		free_pte_range(tlb, pmd, addr);
 446	} while (pmd++, addr = next, addr != end);
 447
 448	start &= PUD_MASK;
 449	if (start < floor)
 450		return;
 451	if (ceiling) {
 452		ceiling &= PUD_MASK;
 453		if (!ceiling)
 454			return;
 455	}
 456	if (end - 1 > ceiling - 1)
 457		return;
 458
 459	pmd = pmd_offset(pud, start);
 460	pud_clear(pud);
 461	pmd_free_tlb(tlb, pmd, start);
 
 462}
 463
 464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 465				unsigned long addr, unsigned long end,
 466				unsigned long floor, unsigned long ceiling)
 467{
 468	pud_t *pud;
 469	unsigned long next;
 470	unsigned long start;
 471
 472	start = addr;
 473	pud = pud_offset(pgd, addr);
 474	do {
 475		next = pud_addr_end(addr, end);
 476		if (pud_none_or_clear_bad(pud))
 477			continue;
 478		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 479	} while (pud++, addr = next, addr != end);
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481	start &= PGDIR_MASK;
 482	if (start < floor)
 483		return;
 484	if (ceiling) {
 485		ceiling &= PGDIR_MASK;
 486		if (!ceiling)
 487			return;
 488	}
 489	if (end - 1 > ceiling - 1)
 490		return;
 491
 492	pud = pud_offset(pgd, start);
 493	pgd_clear(pgd);
 494	pud_free_tlb(tlb, pud, start);
 495}
 496
 497/*
 498 * This function frees user-level page tables of a process.
 499 *
 500 * Must be called with pagetable lock held.
 501 */
 502void free_pgd_range(struct mmu_gather *tlb,
 503			unsigned long addr, unsigned long end,
 504			unsigned long floor, unsigned long ceiling)
 505{
 506	pgd_t *pgd;
 507	unsigned long next;
 508
 509	/*
 510	 * The next few lines have given us lots of grief...
 511	 *
 512	 * Why are we testing PMD* at this top level?  Because often
 513	 * there will be no work to do at all, and we'd prefer not to
 514	 * go all the way down to the bottom just to discover that.
 515	 *
 516	 * Why all these "- 1"s?  Because 0 represents both the bottom
 517	 * of the address space and the top of it (using -1 for the
 518	 * top wouldn't help much: the masks would do the wrong thing).
 519	 * The rule is that addr 0 and floor 0 refer to the bottom of
 520	 * the address space, but end 0 and ceiling 0 refer to the top
 521	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 522	 * that end 0 case should be mythical).
 523	 *
 524	 * Wherever addr is brought up or ceiling brought down, we must
 525	 * be careful to reject "the opposite 0" before it confuses the
 526	 * subsequent tests.  But what about where end is brought down
 527	 * by PMD_SIZE below? no, end can't go down to 0 there.
 528	 *
 529	 * Whereas we round start (addr) and ceiling down, by different
 530	 * masks at different levels, in order to test whether a table
 531	 * now has no other vmas using it, so can be freed, we don't
 532	 * bother to round floor or end up - the tests don't need that.
 533	 */
 534
 535	addr &= PMD_MASK;
 536	if (addr < floor) {
 537		addr += PMD_SIZE;
 538		if (!addr)
 539			return;
 540	}
 541	if (ceiling) {
 542		ceiling &= PMD_MASK;
 543		if (!ceiling)
 544			return;
 545	}
 546	if (end - 1 > ceiling - 1)
 547		end -= PMD_SIZE;
 548	if (addr > end - 1)
 549		return;
 550
 
 
 
 
 551	pgd = pgd_offset(tlb->mm, addr);
 552	do {
 553		next = pgd_addr_end(addr, end);
 554		if (pgd_none_or_clear_bad(pgd))
 555			continue;
 556		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 557	} while (pgd++, addr = next, addr != end);
 558}
 559
 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 561		unsigned long floor, unsigned long ceiling)
 562{
 563	while (vma) {
 564		struct vm_area_struct *next = vma->vm_next;
 565		unsigned long addr = vma->vm_start;
 566
 567		/*
 568		 * Hide vma from rmap and truncate_pagecache before freeing
 569		 * pgtables
 570		 */
 571		unlink_anon_vmas(vma);
 572		unlink_file_vma(vma);
 573
 574		if (is_vm_hugetlb_page(vma)) {
 575			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 576				floor, next? next->vm_start: ceiling);
 577		} else {
 578			/*
 579			 * Optimization: gather nearby vmas into one call down
 580			 */
 581			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 582			       && !is_vm_hugetlb_page(next)) {
 583				vma = next;
 584				next = vma->vm_next;
 585				unlink_anon_vmas(vma);
 586				unlink_file_vma(vma);
 587			}
 588			free_pgd_range(tlb, addr, vma->vm_end,
 589				floor, next? next->vm_start: ceiling);
 590		}
 591		vma = next;
 592	}
 593}
 594
 595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 596		pmd_t *pmd, unsigned long address)
 597{
 
 598	pgtable_t new = pte_alloc_one(mm, address);
 599	int wait_split_huge_page;
 600	if (!new)
 601		return -ENOMEM;
 602
 603	/*
 604	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 605	 * visible before the pte is made visible to other CPUs by being
 606	 * put into page tables.
 607	 *
 608	 * The other side of the story is the pointer chasing in the page
 609	 * table walking code (when walking the page table without locking;
 610	 * ie. most of the time). Fortunately, these data accesses consist
 611	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 612	 * being the notable exception) will already guarantee loads are
 613	 * seen in-order. See the alpha page table accessors for the
 614	 * smp_read_barrier_depends() barriers in page table walking code.
 615	 */
 616	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 617
 618	spin_lock(&mm->page_table_lock);
 619	wait_split_huge_page = 0;
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		mm->nr_ptes++;
 622		pmd_populate(mm, pmd, new);
 623		new = NULL;
 624	} else if (unlikely(pmd_trans_splitting(*pmd)))
 625		wait_split_huge_page = 1;
 626	spin_unlock(&mm->page_table_lock);
 627	if (new)
 628		pte_free(mm, new);
 629	if (wait_split_huge_page)
 630		wait_split_huge_page(vma->anon_vma, pmd);
 631	return 0;
 632}
 633
 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 635{
 636	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 637	if (!new)
 638		return -ENOMEM;
 639
 640	smp_wmb(); /* See comment in __pte_alloc */
 641
 642	spin_lock(&init_mm.page_table_lock);
 643	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 644		pmd_populate_kernel(&init_mm, pmd, new);
 645		new = NULL;
 646	} else
 647		VM_BUG_ON(pmd_trans_splitting(*pmd));
 648	spin_unlock(&init_mm.page_table_lock);
 649	if (new)
 650		pte_free_kernel(&init_mm, new);
 651	return 0;
 652}
 653
 654static inline void init_rss_vec(int *rss)
 655{
 656	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 657}
 658
 659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 660{
 661	int i;
 662
 663	if (current->mm == mm)
 664		sync_mm_rss(current, mm);
 665	for (i = 0; i < NR_MM_COUNTERS; i++)
 666		if (rss[i])
 667			add_mm_counter(mm, i, rss[i]);
 668}
 669
 670/*
 671 * This function is called to print an error when a bad pte
 672 * is found. For example, we might have a PFN-mapped pte in
 673 * a region that doesn't allow it.
 674 *
 675 * The calling function must still handle the error.
 676 */
 677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 678			  pte_t pte, struct page *page)
 679{
 680	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 681	pud_t *pud = pud_offset(pgd, addr);
 
 682	pmd_t *pmd = pmd_offset(pud, addr);
 683	struct address_space *mapping;
 684	pgoff_t index;
 685	static unsigned long resume;
 686	static unsigned long nr_shown;
 687	static unsigned long nr_unshown;
 688
 689	/*
 690	 * Allow a burst of 60 reports, then keep quiet for that minute;
 691	 * or allow a steady drip of one report per second.
 692	 */
 693	if (nr_shown == 60) {
 694		if (time_before(jiffies, resume)) {
 695			nr_unshown++;
 696			return;
 697		}
 698		if (nr_unshown) {
 699			printk(KERN_ALERT
 700				"BUG: Bad page map: %lu messages suppressed\n",
 701				nr_unshown);
 702			nr_unshown = 0;
 703		}
 704		nr_shown = 0;
 705	}
 706	if (nr_shown++ == 0)
 707		resume = jiffies + 60 * HZ;
 708
 709	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 710	index = linear_page_index(vma, addr);
 711
 712	printk(KERN_ALERT
 713		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 714		current->comm,
 715		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 716	if (page)
 717		dump_page(page);
 718	printk(KERN_ALERT
 719		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 720		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 721	/*
 722	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 723	 */
 724	if (vma->vm_ops)
 725		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 726				(unsigned long)vma->vm_ops->fault);
 727	if (vma->vm_file && vma->vm_file->f_op)
 728		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 729				(unsigned long)vma->vm_file->f_op->mmap);
 730	dump_stack();
 731	add_taint(TAINT_BAD_PAGE);
 732}
 733
 734static inline int is_cow_mapping(vm_flags_t flags)
 735{
 736	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 737}
 738
 739#ifndef is_zero_pfn
 740static inline int is_zero_pfn(unsigned long pfn)
 741{
 742	return pfn == zero_pfn;
 743}
 744#endif
 745
 746#ifndef my_zero_pfn
 747static inline unsigned long my_zero_pfn(unsigned long addr)
 748{
 749	return zero_pfn;
 750}
 751#endif
 752
 753/*
 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 755 *
 756 * "Special" mappings do not wish to be associated with a "struct page" (either
 757 * it doesn't exist, or it exists but they don't want to touch it). In this
 758 * case, NULL is returned here. "Normal" mappings do have a struct page.
 759 *
 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 761 * pte bit, in which case this function is trivial. Secondly, an architecture
 762 * may not have a spare pte bit, which requires a more complicated scheme,
 763 * described below.
 764 *
 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 766 * special mapping (even if there are underlying and valid "struct pages").
 767 * COWed pages of a VM_PFNMAP are always normal.
 768 *
 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 772 * mapping will always honor the rule
 773 *
 774 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 775 *
 776 * And for normal mappings this is false.
 777 *
 778 * This restricts such mappings to be a linear translation from virtual address
 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 780 * as the vma is not a COW mapping; in that case, we know that all ptes are
 781 * special (because none can have been COWed).
 782 *
 783 *
 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 785 *
 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 787 * page" backing, however the difference is that _all_ pages with a struct
 788 * page (that is, those where pfn_valid is true) are refcounted and considered
 789 * normal pages by the VM. The disadvantage is that pages are refcounted
 790 * (which can be slower and simply not an option for some PFNMAP users). The
 791 * advantage is that we don't have to follow the strict linearity rule of
 792 * PFNMAP mappings in order to support COWable mappings.
 793 *
 794 */
 795#ifdef __HAVE_ARCH_PTE_SPECIAL
 796# define HAVE_PTE_SPECIAL 1
 797#else
 798# define HAVE_PTE_SPECIAL 0
 799#endif
 800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 801				pte_t pte)
 802{
 803	unsigned long pfn = pte_pfn(pte);
 804
 805	if (HAVE_PTE_SPECIAL) {
 806		if (likely(!pte_special(pte)))
 807			goto check_pfn;
 
 
 808		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 809			return NULL;
 810		if (!is_zero_pfn(pfn))
 811			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812		return NULL;
 813	}
 814
 815	/* !HAVE_PTE_SPECIAL case follows: */
 816
 817	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 818		if (vma->vm_flags & VM_MIXEDMAP) {
 819			if (!pfn_valid(pfn))
 820				return NULL;
 821			goto out;
 822		} else {
 823			unsigned long off;
 824			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 825			if (pfn == vma->vm_pgoff + off)
 826				return NULL;
 827			if (!is_cow_mapping(vma->vm_flags))
 828				return NULL;
 829		}
 830	}
 831
 832	if (is_zero_pfn(pfn))
 833		return NULL;
 834check_pfn:
 835	if (unlikely(pfn > highest_memmap_pfn)) {
 836		print_bad_pte(vma, addr, pte, NULL);
 837		return NULL;
 838	}
 839
 840	/*
 841	 * NOTE! We still have PageReserved() pages in the page tables.
 842	 * eg. VDSO mappings can cause them to exist.
 843	 */
 844out:
 845	return pfn_to_page(pfn);
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * copy one vm_area from one task to the other. Assumes the page tables
 850 * already present in the new task to be cleared in the whole range
 851 * covered by this vma.
 852 */
 853
 854static inline unsigned long
 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 856		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 857		unsigned long addr, int *rss)
 858{
 859	unsigned long vm_flags = vma->vm_flags;
 860	pte_t pte = *src_pte;
 861	struct page *page;
 862
 863	/* pte contains position in swap or file, so copy. */
 864	if (unlikely(!pte_present(pte))) {
 865		if (!pte_file(pte)) {
 866			swp_entry_t entry = pte_to_swp_entry(pte);
 867
 
 868			if (swap_duplicate(entry) < 0)
 869				return entry.val;
 870
 871			/* make sure dst_mm is on swapoff's mmlist. */
 872			if (unlikely(list_empty(&dst_mm->mmlist))) {
 873				spin_lock(&mmlist_lock);
 874				if (list_empty(&dst_mm->mmlist))
 875					list_add(&dst_mm->mmlist,
 876						 &src_mm->mmlist);
 877				spin_unlock(&mmlist_lock);
 878			}
 879			if (likely(!non_swap_entry(entry)))
 880				rss[MM_SWAPENTS]++;
 881			else if (is_write_migration_entry(entry) &&
 
 
 
 
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both parent
 885				 * and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889				set_pte_at(src_mm, addr, src_pte, pte);
 890			}
 891		}
 892		goto out_set_pte;
 893	}
 894
 895	/*
 896	 * If it's a COW mapping, write protect it both
 897	 * in the parent and the child
 898	 */
 899	if (is_cow_mapping(vm_flags)) {
 900		ptep_set_wrprotect(src_mm, addr, src_pte);
 901		pte = pte_wrprotect(pte);
 902	}
 903
 904	/*
 905	 * If it's a shared mapping, mark it clean in
 906	 * the child
 907	 */
 908	if (vm_flags & VM_SHARED)
 909		pte = pte_mkclean(pte);
 910	pte = pte_mkold(pte);
 911
 912	page = vm_normal_page(vma, addr, pte);
 913	if (page) {
 914		get_page(page);
 915		page_dup_rmap(page);
 916		if (PageAnon(page))
 917			rss[MM_ANONPAGES]++;
 918		else
 919			rss[MM_FILEPAGES]++;
 
 
 
 
 
 
 
 
 
 
 920	}
 921
 922out_set_pte:
 923	set_pte_at(dst_mm, addr, dst_pte, pte);
 924	return 0;
 925}
 926
 927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 928		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 929		   unsigned long addr, unsigned long end)
 930{
 931	pte_t *orig_src_pte, *orig_dst_pte;
 932	pte_t *src_pte, *dst_pte;
 933	spinlock_t *src_ptl, *dst_ptl;
 934	int progress = 0;
 935	int rss[NR_MM_COUNTERS];
 936	swp_entry_t entry = (swp_entry_t){0};
 937
 938again:
 939	init_rss_vec(rss);
 940
 941	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 942	if (!dst_pte)
 943		return -ENOMEM;
 944	src_pte = pte_offset_map(src_pmd, addr);
 945	src_ptl = pte_lockptr(src_mm, src_pmd);
 946	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 947	orig_src_pte = src_pte;
 948	orig_dst_pte = dst_pte;
 949	arch_enter_lazy_mmu_mode();
 950
 951	do {
 952		/*
 953		 * We are holding two locks at this point - either of them
 954		 * could generate latencies in another task on another CPU.
 955		 */
 956		if (progress >= 32) {
 957			progress = 0;
 958			if (need_resched() ||
 959			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 960				break;
 961		}
 962		if (pte_none(*src_pte)) {
 963			progress++;
 964			continue;
 965		}
 966		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 967							vma, addr, rss);
 968		if (entry.val)
 969			break;
 970		progress += 8;
 971	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 972
 973	arch_leave_lazy_mmu_mode();
 974	spin_unlock(src_ptl);
 975	pte_unmap(orig_src_pte);
 976	add_mm_rss_vec(dst_mm, rss);
 977	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 978	cond_resched();
 979
 980	if (entry.val) {
 981		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 982			return -ENOMEM;
 983		progress = 0;
 984	}
 985	if (addr != end)
 986		goto again;
 987	return 0;
 988}
 989
 990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 991		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 992		unsigned long addr, unsigned long end)
 993{
 994	pmd_t *src_pmd, *dst_pmd;
 995	unsigned long next;
 996
 997	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 998	if (!dst_pmd)
 999		return -ENOMEM;
1000	src_pmd = pmd_offset(src_pud, addr);
1001	do {
1002		next = pmd_addr_end(addr, end);
1003		if (pmd_trans_huge(*src_pmd)) {
 
1004			int err;
1005			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006			err = copy_huge_pmd(dst_mm, src_mm,
1007					    dst_pmd, src_pmd, addr, vma);
1008			if (err == -ENOMEM)
1009				return -ENOMEM;
1010			if (!err)
1011				continue;
1012			/* fall through */
1013		}
1014		if (pmd_none_or_clear_bad(src_pmd))
1015			continue;
1016		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017						vma, addr, next))
1018			return -ENOMEM;
1019	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020	return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025		unsigned long addr, unsigned long end)
1026{
1027	pud_t *src_pud, *dst_pud;
1028	unsigned long next;
1029
1030	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031	if (!dst_pud)
1032		return -ENOMEM;
1033	src_pud = pud_offset(src_pgd, addr);
1034	do {
1035		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1036		if (pud_none_or_clear_bad(src_pud))
1037			continue;
1038		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039						vma, addr, next))
1040			return -ENOMEM;
1041	} while (dst_pud++, src_pud++, addr = next, addr != end);
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046		struct vm_area_struct *vma)
1047{
1048	pgd_t *src_pgd, *dst_pgd;
1049	unsigned long next;
1050	unsigned long addr = vma->vm_start;
1051	unsigned long end = vma->vm_end;
 
 
 
1052	int ret;
1053
1054	/*
1055	 * Don't copy ptes where a page fault will fill them correctly.
1056	 * Fork becomes much lighter when there are big shared or private
1057	 * readonly mappings. The tradeoff is that copy_page_range is more
1058	 * efficient than faulting.
1059	 */
1060	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061		if (!vma->anon_vma)
1062			return 0;
1063	}
1064
1065	if (is_vm_hugetlb_page(vma))
1066		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068	if (unlikely(is_pfn_mapping(vma))) {
1069		/*
1070		 * We do not free on error cases below as remove_vma
1071		 * gets called on error from higher level routine
1072		 */
1073		ret = track_pfn_vma_copy(vma);
1074		if (ret)
1075			return ret;
1076	}
1077
1078	/*
1079	 * We need to invalidate the secondary MMU mappings only when
1080	 * there could be a permission downgrade on the ptes of the
1081	 * parent mm. And a permission downgrade will only happen if
1082	 * is_cow_mapping() returns true.
1083	 */
1084	if (is_cow_mapping(vma->vm_flags))
1085		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
1086
1087	ret = 0;
1088	dst_pgd = pgd_offset(dst_mm, addr);
1089	src_pgd = pgd_offset(src_mm, addr);
1090	do {
1091		next = pgd_addr_end(addr, end);
1092		if (pgd_none_or_clear_bad(src_pgd))
1093			continue;
1094		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095					    vma, addr, next))) {
1096			ret = -ENOMEM;
1097			break;
1098		}
1099	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101	if (is_cow_mapping(vma->vm_flags))
1102		mmu_notifier_invalidate_range_end(src_mm,
1103						  vma->vm_start, end);
1104	return ret;
1105}
1106
1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108				struct vm_area_struct *vma, pmd_t *pmd,
1109				unsigned long addr, unsigned long end,
1110				struct zap_details *details)
1111{
1112	struct mm_struct *mm = tlb->mm;
1113	int force_flush = 0;
1114	int rss[NR_MM_COUNTERS];
1115	spinlock_t *ptl;
1116	pte_t *start_pte;
1117	pte_t *pte;
 
1118
 
1119again:
1120	init_rss_vec(rss);
1121	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122	pte = start_pte;
 
1123	arch_enter_lazy_mmu_mode();
1124	do {
1125		pte_t ptent = *pte;
1126		if (pte_none(ptent)) {
1127			continue;
1128		}
1129
1130		if (pte_present(ptent)) {
1131			struct page *page;
1132
1133			page = vm_normal_page(vma, addr, ptent);
1134			if (unlikely(details) && page) {
1135				/*
1136				 * unmap_shared_mapping_pages() wants to
1137				 * invalidate cache without truncating:
1138				 * unmap shared but keep private pages.
1139				 */
1140				if (details->check_mapping &&
1141				    details->check_mapping != page->mapping)
1142					continue;
1143				/*
1144				 * Each page->index must be checked when
1145				 * invalidating or truncating nonlinear.
1146				 */
1147				if (details->nonlinear_vma &&
1148				    (page->index < details->first_index ||
1149				     page->index > details->last_index))
1150					continue;
1151			}
1152			ptent = ptep_get_and_clear_full(mm, addr, pte,
1153							tlb->fullmm);
1154			tlb_remove_tlb_entry(tlb, pte, addr);
1155			if (unlikely(!page))
1156				continue;
1157			if (unlikely(details) && details->nonlinear_vma
1158			    && linear_page_index(details->nonlinear_vma,
1159						addr) != page->index)
1160				set_pte_at(mm, addr, pte,
1161					   pgoff_to_pte(page->index));
1162			if (PageAnon(page))
1163				rss[MM_ANONPAGES]--;
1164			else {
1165				if (pte_dirty(ptent))
1166					set_page_dirty(page);
 
1167				if (pte_young(ptent) &&
1168				    likely(!VM_SequentialReadHint(vma)))
1169					mark_page_accessed(page);
1170				rss[MM_FILEPAGES]--;
1171			}
1172			page_remove_rmap(page);
 
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			force_flush = !__tlb_remove_page(tlb, page);
1176			if (force_flush)
 
1177				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178			continue;
1179		}
1180		/*
1181		 * If details->check_mapping, we leave swap entries;
1182		 * if details->nonlinear_vma, we leave file entries.
1183		 */
1184		if (unlikely(details))
1185			continue;
1186		if (pte_file(ptent)) {
1187			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188				print_bad_pte(vma, addr, ptent, NULL);
1189		} else {
1190			swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192			if (!non_swap_entry(entry))
1193				rss[MM_SWAPENTS]--;
1194			if (unlikely(!free_swap_and_cache(entry)))
1195				print_bad_pte(vma, addr, ptent, NULL);
 
 
 
 
1196		}
 
 
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
 
 
 
 
1202	pte_unmap_unlock(start_pte, ptl);
1203
1204	/*
1205	 * mmu_gather ran out of room to batch pages, we break out of
1206	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207	 * and page-free while holding it.
 
1208	 */
1209	if (force_flush) {
1210		force_flush = 0;
1211		tlb_flush_mmu(tlb);
1212		if (addr != end)
1213			goto again;
1214	}
1215
1216	return addr;
1217}
1218
1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220				struct vm_area_struct *vma, pud_t *pud,
1221				unsigned long addr, unsigned long end,
1222				struct zap_details *details)
1223{
1224	pmd_t *pmd;
1225	unsigned long next;
1226
1227	pmd = pmd_offset(pud, addr);
1228	do {
1229		next = pmd_addr_end(addr, end);
1230		if (pmd_trans_huge(*pmd)) {
1231			if (next-addr != HPAGE_PMD_SIZE) {
1232				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233				split_huge_page_pmd(vma->vm_mm, pmd);
1234			} else if (zap_huge_pmd(tlb, vma, pmd))
1235				continue;
 
1236			/* fall through */
1237		}
1238		if (pmd_none_or_clear_bad(pmd))
1239			continue;
 
 
 
 
 
 
 
1240		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
 
1241		cond_resched();
1242	} while (pmd++, addr = next, addr != end);
1243
1244	return addr;
1245}
1246
1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248				struct vm_area_struct *vma, pgd_t *pgd,
1249				unsigned long addr, unsigned long end,
1250				struct zap_details *details)
1251{
1252	pud_t *pud;
1253	unsigned long next;
1254
1255	pud = pud_offset(pgd, addr);
1256	do {
1257		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1258		if (pud_none_or_clear_bad(pud))
1259			continue;
1260		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1261	} while (pud++, addr = next, addr != end);
1262
1263	return addr;
1264}
1265
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267				struct vm_area_struct *vma,
1268				unsigned long addr, unsigned long end,
1269				struct zap_details *details)
1270{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	pgd_t *pgd;
1272	unsigned long next;
1273
1274	if (details && !details->check_mapping && !details->nonlinear_vma)
1275		details = NULL;
1276
1277	BUG_ON(addr >= end);
1278	mem_cgroup_uncharge_start();
1279	tlb_start_vma(tlb, vma);
1280	pgd = pgd_offset(vma->vm_mm, addr);
1281	do {
1282		next = pgd_addr_end(addr, end);
1283		if (pgd_none_or_clear_bad(pgd))
1284			continue;
1285		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286	} while (pgd++, addr = next, addr != end);
1287	tlb_end_vma(tlb, vma);
1288	mem_cgroup_uncharge_end();
 
 
 
 
 
 
 
 
 
1289
1290	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291}
1292
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
1295 * @tlb: address of the caller's struct mmu_gather
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
1302 * Returns the end address of the unmapping (restart addr if interrupted).
1303 *
1304 * Unmap all pages in the vma list.
1305 *
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns.  So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1316		struct vm_area_struct *vma, unsigned long start_addr,
1317		unsigned long end_addr, unsigned long *nr_accounted,
1318		struct zap_details *details)
1319{
1320	unsigned long start = start_addr;
1321	struct mm_struct *mm = vma->vm_mm;
1322
1323	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1325		unsigned long end;
 
 
1326
1327		start = max(vma->vm_start, start_addr);
1328		if (start >= vma->vm_end)
1329			continue;
1330		end = min(vma->vm_end, end_addr);
1331		if (end <= vma->vm_start)
1332			continue;
 
 
 
 
 
 
 
 
1333
1334		if (vma->vm_flags & VM_ACCOUNT)
1335			*nr_accounted += (end - start) >> PAGE_SHIFT;
 
 
 
 
1336
1337		if (unlikely(is_pfn_mapping(vma)))
1338			untrack_pfn_vma(vma, 0, 0);
1339
1340		while (start != end) {
1341			if (unlikely(is_vm_hugetlb_page(vma))) {
1342				/*
1343				 * It is undesirable to test vma->vm_file as it
1344				 * should be non-null for valid hugetlb area.
1345				 * However, vm_file will be NULL in the error
1346				 * cleanup path of do_mmap_pgoff. When
1347				 * hugetlbfs ->mmap method fails,
1348				 * do_mmap_pgoff() nullifies vma->vm_file
1349				 * before calling this function to clean up.
1350				 * Since no pte has actually been setup, it is
1351				 * safe to do nothing in this case.
1352				 */
1353				if (vma->vm_file)
1354					unmap_hugepage_range(vma, start, end, NULL);
1355
1356				start = end;
1357			} else
1358				start = unmap_page_range(tlb, vma, start, end, details);
1359		}
1360	}
1361
1362	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363	return start;	/* which is now the end (or restart) address */
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
 
 
1372 */
1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1374		unsigned long size, struct zap_details *details)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	struct mmu_gather tlb;
1378	unsigned long end = address + size;
1379	unsigned long nr_accounted = 0;
1380
1381	lru_add_drain();
1382	tlb_gather_mmu(&tlb, mm, 0);
1383	update_hiwater_rss(mm);
1384	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
 
 
1385	tlb_finish_mmu(&tlb, address, end);
1386	return end;
1387}
1388
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402		unsigned long size)
1403{
1404	if (address < vma->vm_start || address + size > vma->vm_end ||
1405	    		!(vma->vm_flags & VM_PFNMAP))
1406		return -1;
1407	zap_page_range(vma, address, size, NULL);
1408	return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1423 */
1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1425			unsigned int flags)
1426{
1427	pgd_t *pgd;
 
1428	pud_t *pud;
1429	pmd_t *pmd;
1430	pte_t *ptep, pte;
1431	spinlock_t *ptl;
1432	struct page *page;
1433	struct mm_struct *mm = vma->vm_mm;
1434
1435	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436	if (!IS_ERR(page)) {
1437		BUG_ON(flags & FOLL_GET);
1438		goto out;
1439	}
1440
1441	page = NULL;
1442	pgd = pgd_offset(mm, address);
1443	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1444		goto no_page_table;
1445
1446	pud = pud_offset(pgd, address);
1447	if (pud_none(*pud))
1448		goto no_page_table;
1449	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1450		BUG_ON(flags & FOLL_GET);
1451		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452		goto out;
1453	}
1454	if (unlikely(pud_bad(*pud)))
1455		goto no_page_table;
1456
1457	pmd = pmd_offset(pud, address);
1458	if (pmd_none(*pmd))
1459		goto no_page_table;
1460	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1461		BUG_ON(flags & FOLL_GET);
1462		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1463		goto out;
1464	}
1465	if (pmd_trans_huge(*pmd)) {
1466		if (flags & FOLL_SPLIT) {
1467			split_huge_page_pmd(mm, pmd);
1468			goto split_fallthrough;
1469		}
1470		spin_lock(&mm->page_table_lock);
1471		if (likely(pmd_trans_huge(*pmd))) {
1472			if (unlikely(pmd_trans_splitting(*pmd))) {
1473				spin_unlock(&mm->page_table_lock);
1474				wait_split_huge_page(vma->anon_vma, pmd);
1475			} else {
1476				page = follow_trans_huge_pmd(mm, address,
1477							     pmd, flags);
1478				spin_unlock(&mm->page_table_lock);
1479				goto out;
1480			}
1481		} else
1482			spin_unlock(&mm->page_table_lock);
1483		/* fall through */
1484	}
1485split_fallthrough:
1486	if (unlikely(pmd_bad(*pmd)))
1487		goto no_page_table;
1488
1489	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1490
1491	pte = *ptep;
1492	if (!pte_present(pte))
1493		goto no_page;
1494	if ((flags & FOLL_WRITE) && !pte_write(pte))
1495		goto unlock;
1496
1497	page = vm_normal_page(vma, address, pte);
1498	if (unlikely(!page)) {
1499		if ((flags & FOLL_DUMP) ||
1500		    !is_zero_pfn(pte_pfn(pte)))
1501			goto bad_page;
1502		page = pte_page(pte);
1503	}
1504
1505	if (flags & FOLL_GET)
1506		get_page(page);
1507	if (flags & FOLL_TOUCH) {
1508		if ((flags & FOLL_WRITE) &&
1509		    !pte_dirty(pte) && !PageDirty(page))
1510			set_page_dirty(page);
1511		/*
1512		 * pte_mkyoung() would be more correct here, but atomic care
1513		 * is needed to avoid losing the dirty bit: it is easier to use
1514		 * mark_page_accessed().
1515		 */
1516		mark_page_accessed(page);
1517	}
1518	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1519		/*
1520		 * The preliminary mapping check is mainly to avoid the
1521		 * pointless overhead of lock_page on the ZERO_PAGE
1522		 * which might bounce very badly if there is contention.
1523		 *
1524		 * If the page is already locked, we don't need to
1525		 * handle it now - vmscan will handle it later if and
1526		 * when it attempts to reclaim the page.
1527		 */
1528		if (page->mapping && trylock_page(page)) {
1529			lru_add_drain();  /* push cached pages to LRU */
1530			/*
1531			 * Because we lock page here and migration is
1532			 * blocked by the pte's page reference, we need
1533			 * only check for file-cache page truncation.
1534			 */
1535			if (page->mapping)
1536				mlock_vma_page(page);
1537			unlock_page(page);
1538		}
1539	}
1540unlock:
1541	pte_unmap_unlock(ptep, ptl);
1542out:
1543	return page;
1544
1545bad_page:
1546	pte_unmap_unlock(ptep, ptl);
1547	return ERR_PTR(-EFAULT);
1548
1549no_page:
1550	pte_unmap_unlock(ptep, ptl);
1551	if (!pte_none(pte))
1552		return page;
1553
1554no_page_table:
1555	/*
1556	 * When core dumping an enormous anonymous area that nobody
1557	 * has touched so far, we don't want to allocate unnecessary pages or
1558	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1559	 * then get_dump_page() will return NULL to leave a hole in the dump.
1560	 * But we can only make this optimization where a hole would surely
1561	 * be zero-filled if handle_mm_fault() actually did handle it.
1562	 */
1563	if ((flags & FOLL_DUMP) &&
1564	    (!vma->vm_ops || !vma->vm_ops->fault))
1565		return ERR_PTR(-EFAULT);
1566	return page;
1567}
1568
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
1571	return stack_guard_page_start(vma, addr) ||
1572	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1573}
1574
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk:	task_struct of target task
1578 * @mm:		mm_struct of target mm
1579 * @start:	starting user address
1580 * @nr_pages:	number of pages from start to pin
1581 * @gup_flags:	flags modifying pin behaviour
1582 * @pages:	array that receives pointers to the pages pinned.
1583 *		Should be at least nr_pages long. Or NULL, if caller
1584 *		only intends to ensure the pages are faulted in.
1585 * @vmas:	array of pointers to vmas corresponding to each page.
1586 *		Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1625		     unsigned long start, int nr_pages, unsigned int gup_flags,
1626		     struct page **pages, struct vm_area_struct **vmas,
1627		     int *nonblocking)
1628{
1629	int i;
1630	unsigned long vm_flags;
1631
1632	if (nr_pages <= 0)
1633		return 0;
1634
1635	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1637	/* 
1638	 * Require read or write permissions.
1639	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1640	 */
1641	vm_flags  = (gup_flags & FOLL_WRITE) ?
1642			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643	vm_flags &= (gup_flags & FOLL_FORCE) ?
1644			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1645	i = 0;
1646
1647	do {
1648		struct vm_area_struct *vma;
1649
1650		vma = find_extend_vma(mm, start);
1651		if (!vma && in_gate_area(mm, start)) {
1652			unsigned long pg = start & PAGE_MASK;
1653			pgd_t *pgd;
1654			pud_t *pud;
1655			pmd_t *pmd;
1656			pte_t *pte;
1657
1658			/* user gate pages are read-only */
1659			if (gup_flags & FOLL_WRITE)
1660				return i ? : -EFAULT;
1661			if (pg > TASK_SIZE)
1662				pgd = pgd_offset_k(pg);
1663			else
1664				pgd = pgd_offset_gate(mm, pg);
1665			BUG_ON(pgd_none(*pgd));
1666			pud = pud_offset(pgd, pg);
1667			BUG_ON(pud_none(*pud));
1668			pmd = pmd_offset(pud, pg);
1669			if (pmd_none(*pmd))
1670				return i ? : -EFAULT;
1671			VM_BUG_ON(pmd_trans_huge(*pmd));
1672			pte = pte_offset_map(pmd, pg);
1673			if (pte_none(*pte)) {
1674				pte_unmap(pte);
1675				return i ? : -EFAULT;
1676			}
1677			vma = get_gate_vma(mm);
1678			if (pages) {
1679				struct page *page;
1680
1681				page = vm_normal_page(vma, start, *pte);
1682				if (!page) {
1683					if (!(gup_flags & FOLL_DUMP) &&
1684					     is_zero_pfn(pte_pfn(*pte)))
1685						page = pte_page(*pte);
1686					else {
1687						pte_unmap(pte);
1688						return i ? : -EFAULT;
1689					}
1690				}
1691				pages[i] = page;
1692				get_page(page);
1693			}
1694			pte_unmap(pte);
1695			goto next_page;
1696		}
1697
1698		if (!vma ||
1699		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1700		    !(vm_flags & vma->vm_flags))
1701			return i ? : -EFAULT;
1702
1703		if (is_vm_hugetlb_page(vma)) {
1704			i = follow_hugetlb_page(mm, vma, pages, vmas,
1705					&start, &nr_pages, i, gup_flags);
1706			continue;
1707		}
1708
1709		do {
1710			struct page *page;
1711			unsigned int foll_flags = gup_flags;
1712
1713			/*
1714			 * If we have a pending SIGKILL, don't keep faulting
1715			 * pages and potentially allocating memory.
1716			 */
1717			if (unlikely(fatal_signal_pending(current)))
1718				return i ? i : -ERESTARTSYS;
1719
1720			cond_resched();
1721			while (!(page = follow_page(vma, start, foll_flags))) {
1722				int ret;
1723				unsigned int fault_flags = 0;
1724
1725				/* For mlock, just skip the stack guard page. */
1726				if (foll_flags & FOLL_MLOCK) {
1727					if (stack_guard_page(vma, start))
1728						goto next_page;
1729				}
1730				if (foll_flags & FOLL_WRITE)
1731					fault_flags |= FAULT_FLAG_WRITE;
1732				if (nonblocking)
1733					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1734				if (foll_flags & FOLL_NOWAIT)
1735					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1736
1737				ret = handle_mm_fault(mm, vma, start,
1738							fault_flags);
1739
1740				if (ret & VM_FAULT_ERROR) {
1741					if (ret & VM_FAULT_OOM)
1742						return i ? i : -ENOMEM;
1743					if (ret & (VM_FAULT_HWPOISON |
1744						   VM_FAULT_HWPOISON_LARGE)) {
1745						if (i)
1746							return i;
1747						else if (gup_flags & FOLL_HWPOISON)
1748							return -EHWPOISON;
1749						else
1750							return -EFAULT;
1751					}
1752					if (ret & VM_FAULT_SIGBUS)
1753						return i ? i : -EFAULT;
1754					BUG();
1755				}
1756
1757				if (tsk) {
1758					if (ret & VM_FAULT_MAJOR)
1759						tsk->maj_flt++;
1760					else
1761						tsk->min_flt++;
1762				}
1763
1764				if (ret & VM_FAULT_RETRY) {
1765					if (nonblocking)
1766						*nonblocking = 0;
1767					return i;
1768				}
1769
1770				/*
1771				 * The VM_FAULT_WRITE bit tells us that
1772				 * do_wp_page has broken COW when necessary,
1773				 * even if maybe_mkwrite decided not to set
1774				 * pte_write. We can thus safely do subsequent
1775				 * page lookups as if they were reads. But only
1776				 * do so when looping for pte_write is futile:
1777				 * in some cases userspace may also be wanting
1778				 * to write to the gotten user page, which a
1779				 * read fault here might prevent (a readonly
1780				 * page might get reCOWed by userspace write).
1781				 */
1782				if ((ret & VM_FAULT_WRITE) &&
1783				    !(vma->vm_flags & VM_WRITE))
1784					foll_flags &= ~FOLL_WRITE;
1785
1786				cond_resched();
1787			}
1788			if (IS_ERR(page))
1789				return i ? i : PTR_ERR(page);
1790			if (pages) {
1791				pages[i] = page;
1792
1793				flush_anon_page(vma, page, start);
1794				flush_dcache_page(page);
1795			}
1796next_page:
1797			if (vmas)
1798				vmas[i] = vma;
1799			i++;
1800			start += PAGE_SIZE;
1801			nr_pages--;
1802		} while (nr_pages && start < vma->vm_end);
1803	} while (nr_pages);
1804	return i;
1805}
1806EXPORT_SYMBOL(__get_user_pages);
1807
1808/*
1809 * fixup_user_fault() - manually resolve a user page fault
1810 * @tsk:	the task_struct to use for page fault accounting, or
1811 *		NULL if faults are not to be recorded.
1812 * @mm:		mm_struct of target mm
1813 * @address:	user address
1814 * @fault_flags:flags to pass down to handle_mm_fault()
1815 *
1816 * This is meant to be called in the specific scenario where for locking reasons
1817 * we try to access user memory in atomic context (within a pagefault_disable()
1818 * section), this returns -EFAULT, and we want to resolve the user fault before
1819 * trying again.
1820 *
1821 * Typically this is meant to be used by the futex code.
1822 *
1823 * The main difference with get_user_pages() is that this function will
1824 * unconditionally call handle_mm_fault() which will in turn perform all the
1825 * necessary SW fixup of the dirty and young bits in the PTE, while
1826 * handle_mm_fault() only guarantees to update these in the struct page.
1827 *
1828 * This is important for some architectures where those bits also gate the
1829 * access permission to the page because they are maintained in software.  On
1830 * such architectures, gup() will not be enough to make a subsequent access
1831 * succeed.
1832 *
1833 * This should be called with the mm_sem held for read.
1834 */
1835int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1836		     unsigned long address, unsigned int fault_flags)
1837{
1838	struct vm_area_struct *vma;
1839	int ret;
1840
1841	vma = find_extend_vma(mm, address);
1842	if (!vma || address < vma->vm_start)
1843		return -EFAULT;
1844
1845	ret = handle_mm_fault(mm, vma, address, fault_flags);
1846	if (ret & VM_FAULT_ERROR) {
1847		if (ret & VM_FAULT_OOM)
1848			return -ENOMEM;
1849		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1850			return -EHWPOISON;
1851		if (ret & VM_FAULT_SIGBUS)
1852			return -EFAULT;
1853		BUG();
1854	}
1855	if (tsk) {
1856		if (ret & VM_FAULT_MAJOR)
1857			tsk->maj_flt++;
1858		else
1859			tsk->min_flt++;
1860	}
1861	return 0;
1862}
1863
1864/*
1865 * get_user_pages() - pin user pages in memory
1866 * @tsk:	the task_struct to use for page fault accounting, or
1867 *		NULL if faults are not to be recorded.
1868 * @mm:		mm_struct of target mm
1869 * @start:	starting user address
1870 * @nr_pages:	number of pages from start to pin
1871 * @write:	whether pages will be written to by the caller
1872 * @force:	whether to force write access even if user mapping is
1873 *		readonly. This will result in the page being COWed even
1874 *		in MAP_SHARED mappings. You do not want this.
1875 * @pages:	array that receives pointers to the pages pinned.
1876 *		Should be at least nr_pages long. Or NULL, if caller
1877 *		only intends to ensure the pages are faulted in.
1878 * @vmas:	array of pointers to vmas corresponding to each page.
1879 *		Or NULL if the caller does not require them.
1880 *
1881 * Returns number of pages pinned. This may be fewer than the number
1882 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1883 * were pinned, returns -errno. Each page returned must be released
1884 * with a put_page() call when it is finished with. vmas will only
1885 * remain valid while mmap_sem is held.
1886 *
1887 * Must be called with mmap_sem held for read or write.
1888 *
1889 * get_user_pages walks a process's page tables and takes a reference to
1890 * each struct page that each user address corresponds to at a given
1891 * instant. That is, it takes the page that would be accessed if a user
1892 * thread accesses the given user virtual address at that instant.
1893 *
1894 * This does not guarantee that the page exists in the user mappings when
1895 * get_user_pages returns, and there may even be a completely different
1896 * page there in some cases (eg. if mmapped pagecache has been invalidated
1897 * and subsequently re faulted). However it does guarantee that the page
1898 * won't be freed completely. And mostly callers simply care that the page
1899 * contains data that was valid *at some point in time*. Typically, an IO
1900 * or similar operation cannot guarantee anything stronger anyway because
1901 * locks can't be held over the syscall boundary.
1902 *
1903 * If write=0, the page must not be written to. If the page is written to,
1904 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1905 * after the page is finished with, and before put_page is called.
1906 *
1907 * get_user_pages is typically used for fewer-copy IO operations, to get a
1908 * handle on the memory by some means other than accesses via the user virtual
1909 * addresses. The pages may be submitted for DMA to devices or accessed via
1910 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1911 * use the correct cache flushing APIs.
1912 *
1913 * See also get_user_pages_fast, for performance critical applications.
1914 */
1915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1916		unsigned long start, int nr_pages, int write, int force,
1917		struct page **pages, struct vm_area_struct **vmas)
1918{
1919	int flags = FOLL_TOUCH;
1920
1921	if (pages)
1922		flags |= FOLL_GET;
1923	if (write)
1924		flags |= FOLL_WRITE;
1925	if (force)
1926		flags |= FOLL_FORCE;
1927
1928	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1929				NULL);
1930}
1931EXPORT_SYMBOL(get_user_pages);
1932
1933/**
1934 * get_dump_page() - pin user page in memory while writing it to core dump
1935 * @addr: user address
1936 *
1937 * Returns struct page pointer of user page pinned for dump,
1938 * to be freed afterwards by page_cache_release() or put_page().
1939 *
1940 * Returns NULL on any kind of failure - a hole must then be inserted into
1941 * the corefile, to preserve alignment with its headers; and also returns
1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1943 * allowing a hole to be left in the corefile to save diskspace.
1944 *
1945 * Called without mmap_sem, but after all other threads have been killed.
1946 */
1947#ifdef CONFIG_ELF_CORE
1948struct page *get_dump_page(unsigned long addr)
1949{
1950	struct vm_area_struct *vma;
1951	struct page *page;
1952
1953	if (__get_user_pages(current, current->mm, addr, 1,
1954			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1955			     NULL) < 1)
1956		return NULL;
1957	flush_cache_page(vma, addr, page_to_pfn(page));
1958	return page;
1959}
1960#endif /* CONFIG_ELF_CORE */
1961
1962pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1963			spinlock_t **ptl)
1964{
1965	pgd_t * pgd = pgd_offset(mm, addr);
1966	pud_t * pud = pud_alloc(mm, pgd, addr);
1967	if (pud) {
1968		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1969		if (pmd) {
1970			VM_BUG_ON(pmd_trans_huge(*pmd));
1971			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1972		}
1973	}
1974	return NULL;
1975}
1976
1977/*
1978 * This is the old fallback for page remapping.
1979 *
1980 * For historical reasons, it only allows reserved pages. Only
1981 * old drivers should use this, and they needed to mark their
1982 * pages reserved for the old functions anyway.
1983 */
1984static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1985			struct page *page, pgprot_t prot)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	int retval;
1989	pte_t *pte;
1990	spinlock_t *ptl;
1991
1992	retval = -EINVAL;
1993	if (PageAnon(page))
1994		goto out;
1995	retval = -ENOMEM;
1996	flush_dcache_page(page);
1997	pte = get_locked_pte(mm, addr, &ptl);
1998	if (!pte)
1999		goto out;
2000	retval = -EBUSY;
2001	if (!pte_none(*pte))
2002		goto out_unlock;
2003
2004	/* Ok, finally just insert the thing.. */
2005	get_page(page);
2006	inc_mm_counter_fast(mm, MM_FILEPAGES);
2007	page_add_file_rmap(page);
2008	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2009
2010	retval = 0;
2011	pte_unmap_unlock(pte, ptl);
2012	return retval;
2013out_unlock:
2014	pte_unmap_unlock(pte, ptl);
2015out:
2016	return retval;
2017}
2018
2019/**
2020 * vm_insert_page - insert single page into user vma
2021 * @vma: user vma to map to
2022 * @addr: target user address of this page
2023 * @page: source kernel page
2024 *
2025 * This allows drivers to insert individual pages they've allocated
2026 * into a user vma.
2027 *
2028 * The page has to be a nice clean _individual_ kernel allocation.
2029 * If you allocate a compound page, you need to have marked it as
2030 * such (__GFP_COMP), or manually just split the page up yourself
2031 * (see split_page()).
2032 *
2033 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2034 * took an arbitrary page protection parameter. This doesn't allow
2035 * that. Your vma protection will have to be set up correctly, which
2036 * means that if you want a shared writable mapping, you'd better
2037 * ask for a shared writable mapping!
2038 *
2039 * The page does not need to be reserved.
 
 
 
 
 
2040 */
2041int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042			struct page *page)
2043{
2044	if (addr < vma->vm_start || addr >= vma->vm_end)
2045		return -EFAULT;
2046	if (!page_count(page))
2047		return -EINVAL;
2048	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2049	return insert_page(vma, addr, page, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vm_insert_page);
2052
2053static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054			unsigned long pfn, pgprot_t prot)
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	int retval;
2058	pte_t *pte, entry;
2059	spinlock_t *ptl;
2060
2061	retval = -ENOMEM;
2062	pte = get_locked_pte(mm, addr, &ptl);
2063	if (!pte)
2064		goto out;
2065	retval = -EBUSY;
2066	if (!pte_none(*pte))
2067		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068
2069	/* Ok, finally just insert the thing.. */
2070	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
 
 
 
 
 
 
 
2071	set_pte_at(mm, addr, pte, entry);
2072	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2073
2074	retval = 0;
2075out_unlock:
2076	pte_unmap_unlock(pte, ptl);
2077out:
2078	return retval;
2079}
2080
2081/**
2082 * vm_insert_pfn - insert single pfn into user vma
2083 * @vma: user vma to map to
2084 * @addr: target user address of this page
2085 * @pfn: source kernel pfn
2086 *
2087 * Similar to vm_inert_page, this allows drivers to insert individual pages
2088 * they've allocated into a user vma. Same comments apply.
2089 *
2090 * This function should only be called from a vm_ops->fault handler, and
2091 * in that case the handler should return NULL.
2092 *
2093 * vma cannot be a COW mapping.
2094 *
2095 * As this is called only for pages that do not currently exist, we
2096 * do not need to flush old virtual caches or the TLB.
2097 */
2098int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2099			unsigned long pfn)
2100{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101	int ret;
2102	pgprot_t pgprot = vma->vm_page_prot;
2103	/*
2104	 * Technically, architectures with pte_special can avoid all these
2105	 * restrictions (same for remap_pfn_range).  However we would like
2106	 * consistency in testing and feature parity among all, so we should
2107	 * try to keep these invariants in place for everybody.
2108	 */
2109	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2110	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2111						(VM_PFNMAP|VM_MIXEDMAP));
2112	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2113	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2114
2115	if (addr < vma->vm_start || addr >= vma->vm_end)
2116		return -EFAULT;
2117	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2118		return -EINVAL;
2119
2120	ret = insert_pfn(vma, addr, pfn, pgprot);
2121
2122	if (ret)
2123		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2124
2125	return ret;
2126}
2127EXPORT_SYMBOL(vm_insert_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130			unsigned long pfn)
2131{
2132	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 
 
2133
2134	if (addr < vma->vm_start || addr >= vma->vm_end)
2135		return -EFAULT;
2136
 
 
2137	/*
2138	 * If we don't have pte special, then we have to use the pfn_valid()
2139	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2140	 * refcount the page if pfn_valid is true (hence insert_page rather
2141	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2142	 * without pte special, it would there be refcounted as a normal page.
2143	 */
2144	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2145		struct page *page;
2146
2147		page = pfn_to_page(pfn);
2148		return insert_page(vma, addr, page, vma->vm_page_prot);
 
 
 
 
 
2149	}
2150	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 
 
 
 
 
 
 
2151}
2152EXPORT_SYMBOL(vm_insert_mixed);
2153
 
 
 
 
 
 
 
2154/*
2155 * maps a range of physical memory into the requested pages. the old
2156 * mappings are removed. any references to nonexistent pages results
2157 * in null mappings (currently treated as "copy-on-access")
2158 */
2159static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2160			unsigned long addr, unsigned long end,
2161			unsigned long pfn, pgprot_t prot)
2162{
2163	pte_t *pte;
2164	spinlock_t *ptl;
2165
2166	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2167	if (!pte)
2168		return -ENOMEM;
2169	arch_enter_lazy_mmu_mode();
2170	do {
2171		BUG_ON(!pte_none(*pte));
2172		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173		pfn++;
2174	} while (pte++, addr += PAGE_SIZE, addr != end);
2175	arch_leave_lazy_mmu_mode();
2176	pte_unmap_unlock(pte - 1, ptl);
2177	return 0;
2178}
2179
2180static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181			unsigned long addr, unsigned long end,
2182			unsigned long pfn, pgprot_t prot)
2183{
2184	pmd_t *pmd;
2185	unsigned long next;
2186
2187	pfn -= addr >> PAGE_SHIFT;
2188	pmd = pmd_alloc(mm, pud, addr);
2189	if (!pmd)
2190		return -ENOMEM;
2191	VM_BUG_ON(pmd_trans_huge(*pmd));
2192	do {
2193		next = pmd_addr_end(addr, end);
2194		if (remap_pte_range(mm, pmd, addr, next,
2195				pfn + (addr >> PAGE_SHIFT), prot))
2196			return -ENOMEM;
2197	} while (pmd++, addr = next, addr != end);
2198	return 0;
2199}
2200
2201static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2202			unsigned long addr, unsigned long end,
2203			unsigned long pfn, pgprot_t prot)
2204{
2205	pud_t *pud;
2206	unsigned long next;
2207
2208	pfn -= addr >> PAGE_SHIFT;
2209	pud = pud_alloc(mm, pgd, addr);
2210	if (!pud)
2211		return -ENOMEM;
2212	do {
2213		next = pud_addr_end(addr, end);
2214		if (remap_pmd_range(mm, pud, addr, next,
2215				pfn + (addr >> PAGE_SHIFT), prot))
2216			return -ENOMEM;
2217	} while (pud++, addr = next, addr != end);
2218	return 0;
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/**
2222 * remap_pfn_range - remap kernel memory to userspace
2223 * @vma: user vma to map to
2224 * @addr: target user address to start at
2225 * @pfn: physical address of kernel memory
2226 * @size: size of map area
2227 * @prot: page protection flags for this mapping
2228 *
2229 *  Note: this is only safe if the mm semaphore is held when called.
2230 */
2231int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2232		    unsigned long pfn, unsigned long size, pgprot_t prot)
2233{
2234	pgd_t *pgd;
2235	unsigned long next;
2236	unsigned long end = addr + PAGE_ALIGN(size);
2237	struct mm_struct *mm = vma->vm_mm;
 
2238	int err;
2239
2240	/*
2241	 * Physically remapped pages are special. Tell the
2242	 * rest of the world about it:
2243	 *   VM_IO tells people not to look at these pages
2244	 *	(accesses can have side effects).
2245	 *   VM_RESERVED is specified all over the place, because
2246	 *	in 2.4 it kept swapout's vma scan off this vma; but
2247	 *	in 2.6 the LRU scan won't even find its pages, so this
2248	 *	flag means no more than count its pages in reserved_vm,
2249	 * 	and omit it from core dump, even when VM_IO turned off.
2250	 *   VM_PFNMAP tells the core MM that the base pages are just
2251	 *	raw PFN mappings, and do not have a "struct page" associated
2252	 *	with them.
 
 
 
 
2253	 *
2254	 * There's a horrible special case to handle copy-on-write
2255	 * behaviour that some programs depend on. We mark the "original"
2256	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2257	 */
2258	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2259		vma->vm_pgoff = pfn;
2260		vma->vm_flags |= VM_PFN_AT_MMAP;
2261	} else if (is_cow_mapping(vma->vm_flags))
 
 
2262		return -EINVAL;
2263
2264	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2265
2266	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2267	if (err) {
2268		/*
2269		 * To indicate that track_pfn related cleanup is not
2270		 * needed from higher level routine calling unmap_vmas
2271		 */
2272		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2273		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2274		return -EINVAL;
2275	}
2276
2277	BUG_ON(addr >= end);
2278	pfn -= addr >> PAGE_SHIFT;
2279	pgd = pgd_offset(mm, addr);
2280	flush_cache_range(vma, addr, end);
2281	do {
2282		next = pgd_addr_end(addr, end);
2283		err = remap_pud_range(mm, pgd, addr, next,
2284				pfn + (addr >> PAGE_SHIFT), prot);
2285		if (err)
2286			break;
2287	} while (pgd++, addr = next, addr != end);
2288
2289	if (err)
2290		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2291
2292	return err;
2293}
2294EXPORT_SYMBOL(remap_pfn_range);
2295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2297				     unsigned long addr, unsigned long end,
2298				     pte_fn_t fn, void *data)
2299{
2300	pte_t *pte;
2301	int err;
2302	pgtable_t token;
2303	spinlock_t *uninitialized_var(ptl);
2304
2305	pte = (mm == &init_mm) ?
2306		pte_alloc_kernel(pmd, addr) :
2307		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308	if (!pte)
2309		return -ENOMEM;
2310
2311	BUG_ON(pmd_huge(*pmd));
2312
2313	arch_enter_lazy_mmu_mode();
2314
2315	token = pmd_pgtable(*pmd);
2316
2317	do {
2318		err = fn(pte++, token, addr, data);
2319		if (err)
2320			break;
2321	} while (addr += PAGE_SIZE, addr != end);
2322
2323	arch_leave_lazy_mmu_mode();
2324
2325	if (mm != &init_mm)
2326		pte_unmap_unlock(pte-1, ptl);
2327	return err;
2328}
2329
2330static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2331				     unsigned long addr, unsigned long end,
2332				     pte_fn_t fn, void *data)
2333{
2334	pmd_t *pmd;
2335	unsigned long next;
2336	int err;
2337
2338	BUG_ON(pud_huge(*pud));
2339
2340	pmd = pmd_alloc(mm, pud, addr);
2341	if (!pmd)
2342		return -ENOMEM;
2343	do {
2344		next = pmd_addr_end(addr, end);
2345		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2346		if (err)
2347			break;
2348	} while (pmd++, addr = next, addr != end);
2349	return err;
2350}
2351
2352static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2353				     unsigned long addr, unsigned long end,
2354				     pte_fn_t fn, void *data)
2355{
2356	pud_t *pud;
2357	unsigned long next;
2358	int err;
2359
2360	pud = pud_alloc(mm, pgd, addr);
2361	if (!pud)
2362		return -ENOMEM;
2363	do {
2364		next = pud_addr_end(addr, end);
2365		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2366		if (err)
2367			break;
2368	} while (pud++, addr = next, addr != end);
2369	return err;
2370}
2371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372/*
2373 * Scan a region of virtual memory, filling in page tables as necessary
2374 * and calling a provided function on each leaf page table.
2375 */
2376int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2377			unsigned long size, pte_fn_t fn, void *data)
2378{
2379	pgd_t *pgd;
2380	unsigned long next;
2381	unsigned long end = addr + size;
2382	int err;
2383
2384	BUG_ON(addr >= end);
 
 
2385	pgd = pgd_offset(mm, addr);
2386	do {
2387		next = pgd_addr_end(addr, end);
2388		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2389		if (err)
2390			break;
2391	} while (pgd++, addr = next, addr != end);
2392
2393	return err;
2394}
2395EXPORT_SYMBOL_GPL(apply_to_page_range);
2396
2397/*
2398 * handle_pte_fault chooses page fault handler according to an entry
2399 * which was read non-atomically.  Before making any commitment, on
2400 * those architectures or configurations (e.g. i386 with PAE) which
2401 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2402 * must check under lock before unmapping the pte and proceeding
2403 * (but do_wp_page is only called after already making such a check;
2404 * and do_anonymous_page can safely check later on).
2405 */
2406static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2407				pte_t *page_table, pte_t orig_pte)
2408{
2409	int same = 1;
2410#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2411	if (sizeof(pte_t) > sizeof(unsigned long)) {
2412		spinlock_t *ptl = pte_lockptr(mm, pmd);
2413		spin_lock(ptl);
2414		same = pte_same(*page_table, orig_pte);
2415		spin_unlock(ptl);
2416	}
2417#endif
2418	pte_unmap(page_table);
2419	return same;
2420}
2421
2422static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2423{
 
 
2424	/*
2425	 * If the source page was a PFN mapping, we don't have
2426	 * a "struct page" for it. We do a best-effort copy by
2427	 * just copying from the original user address. If that
2428	 * fails, we just zero-fill it. Live with it.
2429	 */
2430	if (unlikely(!src)) {
2431		void *kaddr = kmap_atomic(dst, KM_USER0);
2432		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2433
2434		/*
2435		 * This really shouldn't fail, because the page is there
2436		 * in the page tables. But it might just be unreadable,
2437		 * in which case we just give up and fill the result with
2438		 * zeroes.
2439		 */
2440		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2441			clear_page(kaddr);
2442		kunmap_atomic(kaddr, KM_USER0);
2443		flush_dcache_page(dst);
2444	} else
2445		copy_user_highpage(dst, src, va, vma);
2446}
2447
2448/*
2449 * This routine handles present pages, when users try to write
2450 * to a shared page. It is done by copying the page to a new address
2451 * and decrementing the shared-page counter for the old page.
2452 *
2453 * Note that this routine assumes that the protection checks have been
2454 * done by the caller (the low-level page fault routine in most cases).
2455 * Thus we can safely just mark it writable once we've done any necessary
2456 * COW.
2457 *
2458 * We also mark the page dirty at this point even though the page will
2459 * change only once the write actually happens. This avoids a few races,
2460 * and potentially makes it more efficient.
2461 *
2462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463 * but allow concurrent faults), with pte both mapped and locked.
2464 * We return with mmap_sem still held, but pte unmapped and unlocked.
2465 */
2466static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2467		unsigned long address, pte_t *page_table, pmd_t *pmd,
2468		spinlock_t *ptl, pte_t orig_pte)
2469	__releases(ptl)
2470{
2471	struct page *old_page, *new_page;
2472	pte_t entry;
2473	int ret = 0;
2474	int page_mkwrite = 0;
2475	struct page *dirty_page = NULL;
2476
2477	old_page = vm_normal_page(vma, address, orig_pte);
2478	if (!old_page) {
2479		/*
2480		 * VM_MIXEDMAP !pfn_valid() case
2481		 *
2482		 * We should not cow pages in a shared writeable mapping.
2483		 * Just mark the pages writable as we can't do any dirty
2484		 * accounting on raw pfn maps.
2485		 */
2486		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2487				     (VM_WRITE|VM_SHARED))
2488			goto reuse;
2489		goto gotten;
2490	}
2491
2492	/*
2493	 * Take out anonymous pages first, anonymous shared vmas are
2494	 * not dirty accountable.
2495	 */
2496	if (PageAnon(old_page) && !PageKsm(old_page)) {
2497		if (!trylock_page(old_page)) {
2498			page_cache_get(old_page);
2499			pte_unmap_unlock(page_table, ptl);
2500			lock_page(old_page);
2501			page_table = pte_offset_map_lock(mm, pmd, address,
2502							 &ptl);
2503			if (!pte_same(*page_table, orig_pte)) {
2504				unlock_page(old_page);
2505				goto unlock;
2506			}
2507			page_cache_release(old_page);
2508		}
2509		if (reuse_swap_page(old_page)) {
2510			/*
2511			 * The page is all ours.  Move it to our anon_vma so
2512			 * the rmap code will not search our parent or siblings.
2513			 * Protected against the rmap code by the page lock.
2514			 */
2515			page_move_anon_rmap(old_page, vma, address);
2516			unlock_page(old_page);
2517			goto reuse;
2518		}
2519		unlock_page(old_page);
2520	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2521					(VM_WRITE|VM_SHARED))) {
2522		/*
2523		 * Only catch write-faults on shared writable pages,
2524		 * read-only shared pages can get COWed by
2525		 * get_user_pages(.write=1, .force=1).
2526		 */
2527		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2528			struct vm_fault vmf;
2529			int tmp;
2530
2531			vmf.virtual_address = (void __user *)(address &
2532								PAGE_MASK);
2533			vmf.pgoff = old_page->index;
2534			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2535			vmf.page = old_page;
2536
2537			/*
2538			 * Notify the address space that the page is about to
2539			 * become writable so that it can prohibit this or wait
2540			 * for the page to get into an appropriate state.
2541			 *
2542			 * We do this without the lock held, so that it can
2543			 * sleep if it needs to.
2544			 */
2545			page_cache_get(old_page);
2546			pte_unmap_unlock(page_table, ptl);
 
2547
2548			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2549			if (unlikely(tmp &
2550					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2551				ret = tmp;
2552				goto unwritable_page;
2553			}
2554			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2555				lock_page(old_page);
2556				if (!old_page->mapping) {
2557					ret = 0; /* retry the fault */
2558					unlock_page(old_page);
2559					goto unwritable_page;
2560				}
2561			} else
2562				VM_BUG_ON(!PageLocked(old_page));
2563
2564			/*
2565			 * Since we dropped the lock we need to revalidate
2566			 * the PTE as someone else may have changed it.  If
2567			 * they did, we just return, as we can count on the
2568			 * MMU to tell us if they didn't also make it writable.
2569			 */
2570			page_table = pte_offset_map_lock(mm, pmd, address,
2571							 &ptl);
2572			if (!pte_same(*page_table, orig_pte)) {
2573				unlock_page(old_page);
2574				goto unlock;
2575			}
2576
2577			page_mkwrite = 1;
2578		}
2579		dirty_page = old_page;
2580		get_page(dirty_page);
 
 
 
2581
2582reuse:
2583		flush_cache_page(vma, address, pte_pfn(orig_pte));
2584		entry = pte_mkyoung(orig_pte);
2585		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2586		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2587			update_mmu_cache(vma, address, page_table);
2588		pte_unmap_unlock(page_table, ptl);
2589		ret |= VM_FAULT_WRITE;
 
 
 
2590
2591		if (!dirty_page)
2592			return ret;
 
 
 
 
 
 
 
 
2593
 
2594		/*
2595		 * Yes, Virginia, this is actually required to prevent a race
2596		 * with clear_page_dirty_for_io() from clearing the page dirty
2597		 * bit after it clear all dirty ptes, but before a racing
2598		 * do_wp_page installs a dirty pte.
2599		 *
2600		 * __do_fault is protected similarly.
2601		 */
2602		if (!page_mkwrite) {
2603			wait_on_page_locked(dirty_page);
2604			set_page_dirty_balance(dirty_page, page_mkwrite);
2605		}
2606		put_page(dirty_page);
2607		if (page_mkwrite) {
2608			struct address_space *mapping = dirty_page->mapping;
2609
2610			set_page_dirty(dirty_page);
2611			unlock_page(dirty_page);
2612			page_cache_release(dirty_page);
2613			if (mapping)	{
2614				/*
2615				 * Some device drivers do not set page.mapping
2616				 * but still dirty their pages
2617				 */
2618				balance_dirty_pages_ratelimited(mapping);
2619			}
2620		}
2621
2622		/* file_update_time outside page_lock */
2623		if (vma->vm_file)
2624			file_update_time(vma->vm_file);
2625
2626		return ret;
2627	}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629	/*
2630	 * Ok, we need to copy. Oh, well..
 
 
2631	 */
2632	page_cache_get(old_page);
2633gotten:
2634	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635
2636	if (unlikely(anon_vma_prepare(vma)))
2637		goto oom;
2638
2639	if (is_zero_pfn(pte_pfn(orig_pte))) {
2640		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2641		if (!new_page)
2642			goto oom;
2643	} else {
2644		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2645		if (!new_page)
2646			goto oom;
2647		cow_user_page(new_page, old_page, address, vma);
2648	}
 
 
 
 
2649	__SetPageUptodate(new_page);
2650
2651	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2652		goto oom_free_new;
2653
2654	/*
2655	 * Re-check the pte - we dropped the lock
2656	 */
2657	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2658	if (likely(pte_same(*page_table, orig_pte))) {
2659		if (old_page) {
2660			if (!PageAnon(old_page)) {
2661				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2662				inc_mm_counter_fast(mm, MM_ANONPAGES);
2663			}
2664		} else
2665			inc_mm_counter_fast(mm, MM_ANONPAGES);
2666		flush_cache_page(vma, address, pte_pfn(orig_pte));
 
2667		entry = mk_pte(new_page, vma->vm_page_prot);
2668		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2669		/*
2670		 * Clear the pte entry and flush it first, before updating the
2671		 * pte with the new entry. This will avoid a race condition
2672		 * seen in the presence of one thread doing SMC and another
2673		 * thread doing COW.
2674		 */
2675		ptep_clear_flush(vma, address, page_table);
2676		page_add_new_anon_rmap(new_page, vma, address);
 
 
2677		/*
2678		 * We call the notify macro here because, when using secondary
2679		 * mmu page tables (such as kvm shadow page tables), we want the
2680		 * new page to be mapped directly into the secondary page table.
2681		 */
2682		set_pte_at_notify(mm, address, page_table, entry);
2683		update_mmu_cache(vma, address, page_table);
2684		if (old_page) {
2685			/*
2686			 * Only after switching the pte to the new page may
2687			 * we remove the mapcount here. Otherwise another
2688			 * process may come and find the rmap count decremented
2689			 * before the pte is switched to the new page, and
2690			 * "reuse" the old page writing into it while our pte
2691			 * here still points into it and can be read by other
2692			 * threads.
2693			 *
2694			 * The critical issue is to order this
2695			 * page_remove_rmap with the ptp_clear_flush above.
2696			 * Those stores are ordered by (if nothing else,)
2697			 * the barrier present in the atomic_add_negative
2698			 * in page_remove_rmap.
2699			 *
2700			 * Then the TLB flush in ptep_clear_flush ensures that
2701			 * no process can access the old page before the
2702			 * decremented mapcount is visible. And the old page
2703			 * cannot be reused until after the decremented
2704			 * mapcount is visible. So transitively, TLBs to
2705			 * old page will be flushed before it can be reused.
2706			 */
2707			page_remove_rmap(old_page);
2708		}
2709
2710		/* Free the old page.. */
2711		new_page = old_page;
2712		ret |= VM_FAULT_WRITE;
2713	} else
2714		mem_cgroup_uncharge_page(new_page);
 
2715
2716	if (new_page)
2717		page_cache_release(new_page);
2718unlock:
2719	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
2720	if (old_page) {
2721		/*
2722		 * Don't let another task, with possibly unlocked vma,
2723		 * keep the mlocked page.
2724		 */
2725		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2726			lock_page(old_page);	/* LRU manipulation */
2727			munlock_vma_page(old_page);
 
2728			unlock_page(old_page);
2729		}
2730		page_cache_release(old_page);
2731	}
2732	return ret;
2733oom_free_new:
2734	page_cache_release(new_page);
2735oom:
2736	if (old_page) {
2737		if (page_mkwrite) {
2738			unlock_page(old_page);
2739			page_cache_release(old_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		}
2741		page_cache_release(old_page);
 
 
 
2742	}
2743	return VM_FAULT_OOM;
2744
2745unwritable_page:
2746	page_cache_release(old_page);
2747	return ret;
 
 
 
 
2748}
2749
2750static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2751		unsigned long start_addr, unsigned long end_addr,
2752		struct zap_details *details)
2753{
2754	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2755}
2756
2757static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2758					    struct zap_details *details)
2759{
2760	struct vm_area_struct *vma;
2761	struct prio_tree_iter iter;
2762	pgoff_t vba, vea, zba, zea;
2763
2764	vma_prio_tree_foreach(vma, &iter, root,
2765			details->first_index, details->last_index) {
2766
2767		vba = vma->vm_pgoff;
2768		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2769		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2770		zba = details->first_index;
2771		if (zba < vba)
2772			zba = vba;
2773		zea = details->last_index;
2774		if (zea > vea)
2775			zea = vea;
2776
2777		unmap_mapping_range_vma(vma,
2778			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2780				details);
2781	}
2782}
2783
2784static inline void unmap_mapping_range_list(struct list_head *head,
2785					    struct zap_details *details)
2786{
2787	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789	/*
2790	 * In nonlinear VMAs there is no correspondence between virtual address
2791	 * offset and file offset.  So we must perform an exhaustive search
2792	 * across *all* the pages in each nonlinear VMA, not just the pages
2793	 * whose virtual address lies outside the file truncation point.
2794	 */
2795	list_for_each_entry(vma, head, shared.vm_set.list) {
2796		details->nonlinear_vma = vma;
2797		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2798	}
2799}
2800
2801/**
2802 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2803 * @mapping: the address space containing mmaps to be unmapped.
2804 * @holebegin: byte in first page to unmap, relative to the start of
2805 * the underlying file.  This will be rounded down to a PAGE_SIZE
2806 * boundary.  Note that this is different from truncate_pagecache(), which
2807 * must keep the partial page.  In contrast, we must get rid of
2808 * partial pages.
2809 * @holelen: size of prospective hole in bytes.  This will be rounded
2810 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2811 * end of the file.
2812 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2813 * but 0 when invalidating pagecache, don't throw away private data.
2814 */
2815void unmap_mapping_range(struct address_space *mapping,
2816		loff_t const holebegin, loff_t const holelen, int even_cows)
2817{
2818	struct zap_details details;
2819	pgoff_t hba = holebegin >> PAGE_SHIFT;
2820	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821
2822	/* Check for overflow. */
2823	if (sizeof(holelen) > sizeof(hlen)) {
2824		long long holeend =
2825			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2826		if (holeend & ~(long long)ULONG_MAX)
2827			hlen = ULONG_MAX - hba + 1;
2828	}
2829
2830	details.check_mapping = even_cows? NULL: mapping;
2831	details.nonlinear_vma = NULL;
2832	details.first_index = hba;
2833	details.last_index = hba + hlen - 1;
2834	if (details.last_index < details.first_index)
2835		details.last_index = ULONG_MAX;
2836
2837
2838	mutex_lock(&mapping->i_mmap_mutex);
2839	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2840		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2841	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2842		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2843	mutex_unlock(&mapping->i_mmap_mutex);
2844}
2845EXPORT_SYMBOL(unmap_mapping_range);
2846
2847/*
2848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2849 * but allow concurrent faults), and pte mapped but not yet locked.
2850 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
2851 */
2852static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2853		unsigned long address, pte_t *page_table, pmd_t *pmd,
2854		unsigned int flags, pte_t orig_pte)
2855{
2856	spinlock_t *ptl;
2857	struct page *page, *swapcache = NULL;
 
2858	swp_entry_t entry;
2859	pte_t pte;
2860	int locked;
2861	struct mem_cgroup *ptr;
2862	int exclusive = 0;
2863	int ret = 0;
2864
2865	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2866		goto out;
2867
2868	entry = pte_to_swp_entry(orig_pte);
2869	if (unlikely(non_swap_entry(entry))) {
2870		if (is_migration_entry(entry)) {
2871			migration_entry_wait(mm, pmd, address);
 
 
 
 
 
 
 
 
 
2872		} else if (is_hwpoison_entry(entry)) {
2873			ret = VM_FAULT_HWPOISON;
2874		} else {
2875			print_bad_pte(vma, address, orig_pte, NULL);
2876			ret = VM_FAULT_SIGBUS;
2877		}
2878		goto out;
2879	}
 
 
2880	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2881	page = lookup_swap_cache(entry);
 
 
2882	if (!page) {
2883		grab_swap_token(mm); /* Contend for token _before_ read-in */
2884		page = swapin_readahead(entry,
2885					GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2886		if (!page) {
2887			/*
2888			 * Back out if somebody else faulted in this pte
2889			 * while we released the pte lock.
2890			 */
2891			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2892			if (likely(pte_same(*page_table, orig_pte)))
 
2893				ret = VM_FAULT_OOM;
2894			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2895			goto unlock;
2896		}
2897
2898		/* Had to read the page from swap area: Major fault */
2899		ret = VM_FAULT_MAJOR;
2900		count_vm_event(PGMAJFAULT);
2901		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2902	} else if (PageHWPoison(page)) {
2903		/*
2904		 * hwpoisoned dirty swapcache pages are kept for killing
2905		 * owner processes (which may be unknown at hwpoison time)
2906		 */
2907		ret = VM_FAULT_HWPOISON;
2908		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2909		goto out_release;
2910	}
2911
2912	locked = lock_page_or_retry(page, mm, flags);
 
2913	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914	if (!locked) {
2915		ret |= VM_FAULT_RETRY;
2916		goto out_release;
2917	}
2918
2919	/*
2920	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2921	 * release the swapcache from under us.  The page pin, and pte_same
2922	 * test below, are not enough to exclude that.  Even if it is still
2923	 * swapcache, we need to check that the page's swap has not changed.
2924	 */
2925	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 
2926		goto out_page;
2927
2928	if (ksm_might_need_to_copy(page, vma, address)) {
2929		swapcache = page;
2930		page = ksm_does_need_to_copy(page, vma, address);
2931
2932		if (unlikely(!page)) {
2933			ret = VM_FAULT_OOM;
2934			page = swapcache;
2935			swapcache = NULL;
2936			goto out_page;
2937		}
2938	}
2939
2940	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
 
2941		ret = VM_FAULT_OOM;
2942		goto out_page;
2943	}
2944
2945	/*
2946	 * Back out if somebody else already faulted in this pte.
2947	 */
2948	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2949	if (unlikely(!pte_same(*page_table, orig_pte)))
 
2950		goto out_nomap;
2951
2952	if (unlikely(!PageUptodate(page))) {
2953		ret = VM_FAULT_SIGBUS;
2954		goto out_nomap;
2955	}
2956
2957	/*
2958	 * The page isn't present yet, go ahead with the fault.
2959	 *
2960	 * Be careful about the sequence of operations here.
2961	 * To get its accounting right, reuse_swap_page() must be called
2962	 * while the page is counted on swap but not yet in mapcount i.e.
2963	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2964	 * must be called after the swap_free(), or it will never succeed.
2965	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2966	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2967	 * in page->private. In this case, a record in swap_cgroup  is silently
2968	 * discarded at swap_free().
2969	 */
2970
2971	inc_mm_counter_fast(mm, MM_ANONPAGES);
2972	dec_mm_counter_fast(mm, MM_SWAPENTS);
2973	pte = mk_pte(page, vma->vm_page_prot);
2974	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2975		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2976		flags &= ~FAULT_FLAG_WRITE;
2977		ret |= VM_FAULT_WRITE;
2978		exclusive = 1;
2979	}
2980	flush_icache_page(vma, page);
2981	set_pte_at(mm, address, page_table, pte);
2982	do_page_add_anon_rmap(page, vma, address, exclusive);
2983	/* It's better to call commit-charge after rmap is established */
2984	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 
 
 
 
 
 
2985
2986	swap_free(entry);
2987	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
2988		try_to_free_swap(page);
2989	unlock_page(page);
2990	if (swapcache) {
2991		/*
2992		 * Hold the lock to avoid the swap entry to be reused
2993		 * until we take the PT lock for the pte_same() check
2994		 * (to avoid false positives from pte_same). For
2995		 * further safety release the lock after the swap_free
2996		 * so that the swap count won't change under a
2997		 * parallel locked swapcache.
2998		 */
2999		unlock_page(swapcache);
3000		page_cache_release(swapcache);
3001	}
3002
3003	if (flags & FAULT_FLAG_WRITE) {
3004		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3005		if (ret & VM_FAULT_ERROR)
3006			ret &= VM_FAULT_ERROR;
3007		goto out;
3008	}
3009
3010	/* No need to invalidate - it was non-present before */
3011	update_mmu_cache(vma, address, page_table);
3012unlock:
3013	pte_unmap_unlock(page_table, ptl);
3014out:
3015	return ret;
3016out_nomap:
3017	mem_cgroup_cancel_charge_swapin(ptr);
3018	pte_unmap_unlock(page_table, ptl);
3019out_page:
3020	unlock_page(page);
3021out_release:
3022	page_cache_release(page);
3023	if (swapcache) {
3024		unlock_page(swapcache);
3025		page_cache_release(swapcache);
3026	}
3027	return ret;
3028}
3029
3030/*
3031 * This is like a special single-page "expand_{down|up}wards()",
3032 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3033 * doesn't hit another vma.
3034 */
3035static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3036{
3037	address &= PAGE_MASK;
3038	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3039		struct vm_area_struct *prev = vma->vm_prev;
3040
3041		/*
3042		 * Is there a mapping abutting this one below?
3043		 *
3044		 * That's only ok if it's the same stack mapping
3045		 * that has gotten split..
3046		 */
3047		if (prev && prev->vm_end == address)
3048			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3049
3050		expand_downwards(vma, address - PAGE_SIZE);
3051	}
3052	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3053		struct vm_area_struct *next = vma->vm_next;
3054
3055		/* As VM_GROWSDOWN but s/below/above/ */
3056		if (next && next->vm_start == address + PAGE_SIZE)
3057			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3058
3059		expand_upwards(vma, address + PAGE_SIZE);
3060	}
3061	return 0;
3062}
3063
3064/*
3065 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3066 * but allow concurrent faults), and pte mapped but not yet locked.
3067 * We return with mmap_sem still held, but pte unmapped and unlocked.
3068 */
3069static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3070		unsigned long address, pte_t *page_table, pmd_t *pmd,
3071		unsigned int flags)
3072{
 
 
3073	struct page *page;
3074	spinlock_t *ptl;
3075	pte_t entry;
3076
3077	pte_unmap(page_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	/* Check if we need to add a guard page to the stack */
3080	if (check_stack_guard_page(vma, address) < 0)
3081		return VM_FAULT_SIGBUS;
3082
3083	/* Use the zero-page for reads */
3084	if (!(flags & FAULT_FLAG_WRITE)) {
3085		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
3086						vma->vm_page_prot));
3087		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3088		if (!pte_none(*page_table))
 
3089			goto unlock;
 
 
 
 
 
 
 
 
3090		goto setpte;
3091	}
3092
3093	/* Allocate our own private page. */
3094	if (unlikely(anon_vma_prepare(vma)))
3095		goto oom;
3096	page = alloc_zeroed_user_highpage_movable(vma, address);
3097	if (!page)
3098		goto oom;
3099	__SetPageUptodate(page);
3100
3101	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3102		goto oom_free_page;
3103
 
 
 
 
 
 
 
3104	entry = mk_pte(page, vma->vm_page_prot);
3105	if (vma->vm_flags & VM_WRITE)
3106		entry = pte_mkwrite(pte_mkdirty(entry));
3107
3108	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3109	if (!pte_none(*page_table))
 
 
 
 
 
3110		goto release;
3111
3112	inc_mm_counter_fast(mm, MM_ANONPAGES);
3113	page_add_new_anon_rmap(page, vma, address);
 
 
 
 
 
 
 
 
 
 
3114setpte:
3115	set_pte_at(mm, address, page_table, entry);
3116
3117	/* No need to invalidate - it was non-present before */
3118	update_mmu_cache(vma, address, page_table);
3119unlock:
3120	pte_unmap_unlock(page_table, ptl);
3121	return 0;
3122release:
3123	mem_cgroup_uncharge_page(page);
3124	page_cache_release(page);
3125	goto unlock;
3126oom_free_page:
3127	page_cache_release(page);
3128oom:
3129	return VM_FAULT_OOM;
3130}
3131
3132/*
3133 * __do_fault() tries to create a new page mapping. It aggressively
3134 * tries to share with existing pages, but makes a separate copy if
3135 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3136 * the next page fault.
3137 *
3138 * As this is called only for pages that do not currently exist, we
3139 * do not need to flush old virtual caches or the TLB.
3140 *
3141 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3142 * but allow concurrent faults), and pte neither mapped nor locked.
3143 * We return with mmap_sem still held, but pte unmapped and unlocked.
3144 */
3145static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3146		unsigned long address, pmd_t *pmd,
3147		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3148{
3149	pte_t *page_table;
3150	spinlock_t *ptl;
3151	struct page *page;
3152	struct page *cow_page;
3153	pte_t entry;
3154	int anon = 0;
3155	struct page *dirty_page = NULL;
3156	struct vm_fault vmf;
3157	int ret;
3158	int page_mkwrite = 0;
3159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160	/*
3161	 * If we do COW later, allocate page befor taking lock_page()
3162	 * on the file cache page. This will reduce lock holding time.
3163	 */
3164	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165
3166		if (unlikely(anon_vma_prepare(vma)))
 
 
 
 
 
 
3167			return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168
3169		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3170		if (!cow_page)
3171			return VM_FAULT_OOM;
 
3172
3173		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3174			page_cache_release(cow_page);
3175			return VM_FAULT_OOM;
3176		}
3177	} else
3178		cow_page = NULL;
3179
3180	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3181	vmf.pgoff = pgoff;
3182	vmf.flags = flags;
3183	vmf.page = NULL;
 
3184
3185	ret = vma->vm_ops->fault(vma, &vmf);
3186	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3187			    VM_FAULT_RETRY)))
3188		goto uncharge_out;
3189
3190	if (unlikely(PageHWPoison(vmf.page))) {
3191		if (ret & VM_FAULT_LOCKED)
3192			unlock_page(vmf.page);
3193		ret = VM_FAULT_HWPOISON;
3194		goto uncharge_out;
 
 
 
 
 
 
 
 
3195	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196
3197	/*
3198	 * For consistency in subsequent calls, make the faulted page always
3199	 * locked.
3200	 */
3201	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202		lock_page(vmf.page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203	else
3204		VM_BUG_ON(!PageLocked(vmf.page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3205
3206	/*
3207	 * Should we do an early C-O-W break?
 
3208	 */
3209	page = vmf.page;
3210	if (flags & FAULT_FLAG_WRITE) {
3211		if (!(vma->vm_flags & VM_SHARED)) {
3212			page = cow_page;
3213			anon = 1;
3214			copy_user_highpage(page, vmf.page, address, vma);
3215			__SetPageUptodate(page);
3216		} else {
3217			/*
3218			 * If the page will be shareable, see if the backing
3219			 * address space wants to know that the page is about
3220			 * to become writable
3221			 */
3222			if (vma->vm_ops->page_mkwrite) {
3223				int tmp;
3224
3225				unlock_page(page);
3226				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3227				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3228				if (unlikely(tmp &
3229					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230					ret = tmp;
3231					goto unwritable_page;
3232				}
3233				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3234					lock_page(page);
3235					if (!page->mapping) {
3236						ret = 0; /* retry the fault */
3237						unlock_page(page);
3238						goto unwritable_page;
3239					}
3240				} else
3241					VM_BUG_ON(!PageLocked(page));
3242				page_mkwrite = 1;
3243			}
3244		}
3245
 
 
 
 
3246	}
3247
3248	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249
3250	/*
3251	 * This silly early PAGE_DIRTY setting removes a race
3252	 * due to the bad i386 page protection. But it's valid
3253	 * for other architectures too.
3254	 *
3255	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3256	 * an exclusive copy of the page, or this is a shared mapping,
3257	 * so we can make it writable and dirty to avoid having to
3258	 * handle that later.
3259	 */
3260	/* Only go through if we didn't race with anybody else... */
3261	if (likely(pte_same(*page_table, orig_pte))) {
3262		flush_icache_page(vma, page);
3263		entry = mk_pte(page, vma->vm_page_prot);
3264		if (flags & FAULT_FLAG_WRITE)
3265			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3266		if (anon) {
3267			inc_mm_counter_fast(mm, MM_ANONPAGES);
3268			page_add_new_anon_rmap(page, vma, address);
3269		} else {
3270			inc_mm_counter_fast(mm, MM_FILEPAGES);
3271			page_add_file_rmap(page);
3272			if (flags & FAULT_FLAG_WRITE) {
3273				dirty_page = page;
3274				get_page(dirty_page);
3275			}
3276		}
3277		set_pte_at(mm, address, page_table, entry);
3278
3279		/* no need to invalidate: a not-present page won't be cached */
3280		update_mmu_cache(vma, address, page_table);
3281	} else {
3282		if (cow_page)
3283			mem_cgroup_uncharge_page(cow_page);
3284		if (anon)
3285			page_cache_release(page);
3286		else
3287			anon = 1; /* no anon but release faulted_page */
3288	}
3289
3290	pte_unmap_unlock(page_table, ptl);
 
 
 
3291
3292	if (dirty_page) {
3293		struct address_space *mapping = page->mapping;
3294
3295		if (set_page_dirty(dirty_page))
3296			page_mkwrite = 1;
3297		unlock_page(dirty_page);
3298		put_page(dirty_page);
3299		if (page_mkwrite && mapping) {
3300			/*
3301			 * Some device drivers do not set page.mapping but still
3302			 * dirty their pages
3303			 */
3304			balance_dirty_pages_ratelimited(mapping);
3305		}
3306
3307		/* file_update_time outside page_lock */
3308		if (vma->vm_file)
3309			file_update_time(vma->vm_file);
3310	} else {
3311		unlock_page(vmf.page);
3312		if (anon)
3313			page_cache_release(vmf.page);
3314	}
3315
3316	return ret;
 
 
 
 
 
 
 
3317
3318unwritable_page:
3319	page_cache_release(page);
 
 
 
3320	return ret;
3321uncharge_out:
3322	/* fs's fault handler get error */
3323	if (cow_page) {
3324		mem_cgroup_uncharge_page(cow_page);
3325		page_cache_release(cow_page);
3326	}
3327	return ret;
3328}
3329
3330static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3331		unsigned long address, pte_t *page_table, pmd_t *pmd,
3332		unsigned int flags, pte_t orig_pte)
3333{
3334	pgoff_t pgoff = (((address & PAGE_MASK)
3335			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3336
3337	pte_unmap(page_table);
3338	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3339}
3340
3341/*
3342 * Fault of a previously existing named mapping. Repopulate the pte
3343 * from the encoded file_pte if possible. This enables swappable
3344 * nonlinear vmas.
3345 *
3346 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3347 * but allow concurrent faults), and pte mapped but not yet locked.
3348 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
3349 */
3350static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3351		unsigned long address, pte_t *page_table, pmd_t *pmd,
3352		unsigned int flags, pte_t orig_pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353{
3354	pgoff_t pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355
3356	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
3357
3358	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
 
 
3359		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360
3361	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3362		/*
3363		 * Page table corrupted: show pte and kill process.
3364		 */
3365		print_bad_pte(vma, address, orig_pte, NULL);
3366		return VM_FAULT_SIGBUS;
 
 
3367	}
3368
3369	pgoff = pte_to_pgoff(orig_pte);
3370	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371}
3372
3373/*
3374 * These routines also need to handle stuff like marking pages dirty
3375 * and/or accessed for architectures that don't do it in hardware (most
3376 * RISC architectures).  The early dirtying is also good on the i386.
3377 *
3378 * There is also a hook called "update_mmu_cache()" that architectures
3379 * with external mmu caches can use to update those (ie the Sparc or
3380 * PowerPC hashed page tables that act as extended TLBs).
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
3385 */
3386int handle_pte_fault(struct mm_struct *mm,
3387		     struct vm_area_struct *vma, unsigned long address,
3388		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3389{
3390	pte_t entry;
3391	spinlock_t *ptl;
3392
3393	entry = *pte;
3394	if (!pte_present(entry)) {
3395		if (pte_none(entry)) {
3396			if (vma->vm_ops) {
3397				if (likely(vma->vm_ops->fault))
3398					return do_linear_fault(mm, vma, address,
3399						pte, pmd, flags, entry);
3400			}
3401			return do_anonymous_page(mm, vma, address,
3402						 pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403		}
3404		if (pte_file(entry))
3405			return do_nonlinear_fault(mm, vma, address,
3406					pte, pmd, flags, entry);
3407		return do_swap_page(mm, vma, address,
3408					pte, pmd, flags, entry);
3409	}
3410
3411	ptl = pte_lockptr(mm, pmd);
3412	spin_lock(ptl);
3413	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414		goto unlock;
3415	if (flags & FAULT_FLAG_WRITE) {
3416		if (!pte_write(entry))
3417			return do_wp_page(mm, vma, address,
3418					pte, pmd, ptl, entry);
3419		entry = pte_mkdirty(entry);
3420	}
3421	entry = pte_mkyoung(entry);
3422	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3423		update_mmu_cache(vma, address, pte);
 
3424	} else {
3425		/*
3426		 * This is needed only for protection faults but the arch code
3427		 * is not yet telling us if this is a protection fault or not.
3428		 * This still avoids useless tlb flushes for .text page faults
3429		 * with threads.
3430		 */
3431		if (flags & FAULT_FLAG_WRITE)
3432			flush_tlb_fix_spurious_fault(vma, address);
3433	}
3434unlock:
3435	pte_unmap_unlock(pte, ptl);
3436	return 0;
3437}
3438
3439/*
3440 * By the time we get here, we already hold the mm semaphore
 
 
 
3441 */
3442int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3443		unsigned long address, unsigned int flags)
3444{
 
 
 
 
 
 
 
 
 
3445	pgd_t *pgd;
3446	pud_t *pud;
3447	pmd_t *pmd;
3448	pte_t *pte;
 
 
 
 
3449
3450	__set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
3451
3452	count_vm_event(PGFAULT);
3453	mem_cgroup_count_vm_event(mm, PGFAULT);
3454
3455	/* do counter updates before entering really critical section. */
3456	check_sync_rss_stat(current);
3457
3458	if (unlikely(is_vm_hugetlb_page(vma)))
3459		return hugetlb_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
3460
3461	pgd = pgd_offset(mm, address);
3462	pud = pud_alloc(mm, pgd, address);
3463	if (!pud)
3464		return VM_FAULT_OOM;
3465	pmd = pmd_alloc(mm, pud, address);
3466	if (!pmd)
3467		return VM_FAULT_OOM;
3468	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3469		if (!vma->vm_ops)
3470			return do_huge_pmd_anonymous_page(mm, vma, address,
3471							  pmd, flags);
3472	} else {
3473		pmd_t orig_pmd = *pmd;
 
3474		barrier();
3475		if (pmd_trans_huge(orig_pmd)) {
3476			if (flags & FAULT_FLAG_WRITE &&
3477			    !pmd_write(orig_pmd) &&
3478			    !pmd_trans_splitting(orig_pmd))
3479				return do_huge_pmd_wp_page(mm, vma, address,
3480							   pmd, orig_pmd);
3481			return 0;
3482		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3483	}
3484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3485	/*
3486	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3487	 * run pte_offset_map on the pmd, if an huge pmd could
3488	 * materialize from under us from a different thread.
3489	 */
3490	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3491		return VM_FAULT_OOM;
3492	/* if an huge pmd materialized from under us just retry later */
3493	if (unlikely(pmd_trans_huge(*pmd)))
3494		return 0;
3495	/*
3496	 * A regular pmd is established and it can't morph into a huge pmd
3497	 * from under us anymore at this point because we hold the mmap_sem
3498	 * read mode and khugepaged takes it in write mode. So now it's
3499	 * safe to run pte_offset_map().
3500	 */
3501	pte = pte_offset_map(pmd, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502
3503	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
3504}
 
3505
3506#ifndef __PAGETABLE_PUD_FOLDED
3507/*
3508 * Allocate page upper directory.
3509 * We've already handled the fast-path in-line.
3510 */
3511int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3512{
3513	pud_t *new = pud_alloc_one(mm, address);
3514	if (!new)
3515		return -ENOMEM;
3516
3517	smp_wmb(); /* See comment in __pte_alloc */
3518
3519	spin_lock(&mm->page_table_lock);
3520	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
 
 
 
 
 
 
 
3521		pud_free(mm, new);
3522	else
3523		pgd_populate(mm, pgd, new);
3524	spin_unlock(&mm->page_table_lock);
3525	return 0;
3526}
3527#endif /* __PAGETABLE_PUD_FOLDED */
3528
3529#ifndef __PAGETABLE_PMD_FOLDED
3530/*
3531 * Allocate page middle directory.
3532 * We've already handled the fast-path in-line.
3533 */
3534int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3535{
 
3536	pmd_t *new = pmd_alloc_one(mm, address);
3537	if (!new)
3538		return -ENOMEM;
3539
3540	smp_wmb(); /* See comment in __pte_alloc */
3541
3542	spin_lock(&mm->page_table_lock);
3543#ifndef __ARCH_HAS_4LEVEL_HACK
3544	if (pud_present(*pud))		/* Another has populated it */
 
 
 
3545		pmd_free(mm, new);
3546	else
3547		pud_populate(mm, pud, new);
3548#else
3549	if (pgd_present(*pud))		/* Another has populated it */
 
 
 
3550		pmd_free(mm, new);
3551	else
3552		pgd_populate(mm, pud, new);
3553#endif /* __ARCH_HAS_4LEVEL_HACK */
3554	spin_unlock(&mm->page_table_lock);
3555	return 0;
3556}
3557#endif /* __PAGETABLE_PMD_FOLDED */
3558
3559int make_pages_present(unsigned long addr, unsigned long end)
3560{
3561	int ret, len, write;
3562	struct vm_area_struct * vma;
3563
3564	vma = find_vma(current->mm, addr);
3565	if (!vma)
3566		return -ENOMEM;
3567	/*
3568	 * We want to touch writable mappings with a write fault in order
3569	 * to break COW, except for shared mappings because these don't COW
3570	 * and we would not want to dirty them for nothing.
3571	 */
3572	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3573	BUG_ON(addr >= end);
3574	BUG_ON(end > vma->vm_end);
3575	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3576	ret = get_user_pages(current, current->mm, addr,
3577			len, write, 0, NULL, NULL);
3578	if (ret < 0)
3579		return ret;
3580	return ret == len ? 0 : -EFAULT;
3581}
3582
3583#if !defined(__HAVE_ARCH_GATE_AREA)
3584
3585#if defined(AT_SYSINFO_EHDR)
3586static struct vm_area_struct gate_vma;
3587
3588static int __init gate_vma_init(void)
3589{
3590	gate_vma.vm_mm = NULL;
3591	gate_vma.vm_start = FIXADDR_USER_START;
3592	gate_vma.vm_end = FIXADDR_USER_END;
3593	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3594	gate_vma.vm_page_prot = __P101;
3595	/*
3596	 * Make sure the vDSO gets into every core dump.
3597	 * Dumping its contents makes post-mortem fully interpretable later
3598	 * without matching up the same kernel and hardware config to see
3599	 * what PC values meant.
3600	 */
3601	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3602	return 0;
3603}
3604__initcall(gate_vma_init);
3605#endif
3606
3607struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3608{
3609#ifdef AT_SYSINFO_EHDR
3610	return &gate_vma;
3611#else
3612	return NULL;
3613#endif
3614}
3615
3616int in_gate_area_no_mm(unsigned long addr)
3617{
3618#ifdef AT_SYSINFO_EHDR
3619	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3620		return 1;
3621#endif
3622	return 0;
3623}
3624
3625#endif	/* __HAVE_ARCH_GATE_AREA */
3626
3627static int __follow_pte(struct mm_struct *mm, unsigned long address,
3628		pte_t **ptepp, spinlock_t **ptlp)
3629{
3630	pgd_t *pgd;
 
3631	pud_t *pud;
3632	pmd_t *pmd;
3633	pte_t *ptep;
3634
3635	pgd = pgd_offset(mm, address);
3636	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3637		goto out;
3638
3639	pud = pud_offset(pgd, address);
 
 
 
 
3640	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3641		goto out;
3642
3643	pmd = pmd_offset(pud, address);
3644	VM_BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3646		goto out;
3647
3648	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3649	if (pmd_huge(*pmd))
3650		goto out;
3651
 
3652	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3653	if (!ptep)
3654		goto out;
3655	if (!pte_present(*ptep))
3656		goto unlock;
3657	*ptepp = ptep;
3658	return 0;
3659unlock:
3660	pte_unmap_unlock(ptep, *ptlp);
 
 
3661out:
3662	return -EINVAL;
3663}
3664
3665static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3666			     pte_t **ptepp, spinlock_t **ptlp)
3667{
3668	int res;
3669
3670	/* (void) is needed to make gcc happy */
3671	(void) __cond_lock(*ptlp,
3672			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
 
3673	return res;
3674}
3675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3676/**
3677 * follow_pfn - look up PFN at a user virtual address
3678 * @vma: memory mapping
3679 * @address: user virtual address
3680 * @pfn: location to store found PFN
3681 *
3682 * Only IO mappings and raw PFN mappings are allowed.
3683 *
3684 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3685 */
3686int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3687	unsigned long *pfn)
3688{
3689	int ret = -EINVAL;
3690	spinlock_t *ptl;
3691	pte_t *ptep;
3692
3693	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3694		return ret;
3695
3696	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3697	if (ret)
3698		return ret;
3699	*pfn = pte_pfn(*ptep);
3700	pte_unmap_unlock(ptep, ptl);
3701	return 0;
3702}
3703EXPORT_SYMBOL(follow_pfn);
3704
3705#ifdef CONFIG_HAVE_IOREMAP_PROT
3706int follow_phys(struct vm_area_struct *vma,
3707		unsigned long address, unsigned int flags,
3708		unsigned long *prot, resource_size_t *phys)
3709{
3710	int ret = -EINVAL;
3711	pte_t *ptep, pte;
3712	spinlock_t *ptl;
3713
3714	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3715		goto out;
3716
3717	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3718		goto out;
3719	pte = *ptep;
3720
3721	if ((flags & FOLL_WRITE) && !pte_write(pte))
3722		goto unlock;
3723
3724	*prot = pgprot_val(pte_pgprot(pte));
3725	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3726
3727	ret = 0;
3728unlock:
3729	pte_unmap_unlock(ptep, ptl);
3730out:
3731	return ret;
3732}
3733
3734int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3735			void *buf, int len, int write)
3736{
3737	resource_size_t phys_addr;
3738	unsigned long prot = 0;
3739	void __iomem *maddr;
3740	int offset = addr & (PAGE_SIZE-1);
3741
3742	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3743		return -EINVAL;
3744
3745	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3746	if (write)
3747		memcpy_toio(maddr + offset, buf, len);
3748	else
3749		memcpy_fromio(buf, maddr + offset, len);
3750	iounmap(maddr);
3751
3752	return len;
3753}
 
3754#endif
3755
3756/*
3757 * Access another process' address space as given in mm.  If non-NULL, use the
3758 * given task for page fault accounting.
3759 */
3760static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3761		unsigned long addr, void *buf, int len, int write)
3762{
3763	struct vm_area_struct *vma;
3764	void *old_buf = buf;
 
3765
3766	down_read(&mm->mmap_sem);
3767	/* ignore errors, just check how much was successfully transferred */
3768	while (len) {
3769		int bytes, ret, offset;
3770		void *maddr;
3771		struct page *page = NULL;
3772
3773		ret = get_user_pages(tsk, mm, addr, 1,
3774				write, 1, &page, &vma);
3775		if (ret <= 0) {
 
 
 
3776			/*
3777			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3778			 * we can access using slightly different code.
3779			 */
3780#ifdef CONFIG_HAVE_IOREMAP_PROT
3781			vma = find_vma(mm, addr);
3782			if (!vma || vma->vm_start > addr)
3783				break;
3784			if (vma->vm_ops && vma->vm_ops->access)
3785				ret = vma->vm_ops->access(vma, addr, buf,
3786							  len, write);
3787			if (ret <= 0)
3788#endif
3789				break;
3790			bytes = ret;
 
3791		} else {
3792			bytes = len;
3793			offset = addr & (PAGE_SIZE-1);
3794			if (bytes > PAGE_SIZE-offset)
3795				bytes = PAGE_SIZE-offset;
3796
3797			maddr = kmap(page);
3798			if (write) {
3799				copy_to_user_page(vma, page, addr,
3800						  maddr + offset, buf, bytes);
3801				set_page_dirty_lock(page);
3802			} else {
3803				copy_from_user_page(vma, page, addr,
3804						    buf, maddr + offset, bytes);
3805			}
3806			kunmap(page);
3807			page_cache_release(page);
3808		}
3809		len -= bytes;
3810		buf += bytes;
3811		addr += bytes;
3812	}
3813	up_read(&mm->mmap_sem);
3814
3815	return buf - old_buf;
3816}
3817
3818/**
3819 * access_remote_vm - access another process' address space
3820 * @mm:		the mm_struct of the target address space
3821 * @addr:	start address to access
3822 * @buf:	source or destination buffer
3823 * @len:	number of bytes to transfer
3824 * @write:	whether the access is a write
3825 *
3826 * The caller must hold a reference on @mm.
3827 */
3828int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3829		void *buf, int len, int write)
3830{
3831	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3832}
3833
3834/*
3835 * Access another process' address space.
3836 * Source/target buffer must be kernel space,
3837 * Do not walk the page table directly, use get_user_pages
3838 */
3839int access_process_vm(struct task_struct *tsk, unsigned long addr,
3840		void *buf, int len, int write)
3841{
3842	struct mm_struct *mm;
3843	int ret;
3844
3845	mm = get_task_mm(tsk);
3846	if (!mm)
3847		return 0;
3848
3849	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
3850	mmput(mm);
3851
3852	return ret;
3853}
 
3854
3855/*
3856 * Print the name of a VMA.
3857 */
3858void print_vma_addr(char *prefix, unsigned long ip)
3859{
3860	struct mm_struct *mm = current->mm;
3861	struct vm_area_struct *vma;
3862
3863	/*
3864	 * Do not print if we are in atomic
3865	 * contexts (in exception stacks, etc.):
3866	 */
3867	if (preempt_count())
3868		return;
3869
3870	down_read(&mm->mmap_sem);
3871	vma = find_vma(mm, ip);
3872	if (vma && vma->vm_file) {
3873		struct file *f = vma->vm_file;
3874		char *buf = (char *)__get_free_page(GFP_KERNEL);
3875		if (buf) {
3876			char *p, *s;
3877
3878			p = d_path(&f->f_path, buf, PAGE_SIZE);
3879			if (IS_ERR(p))
3880				p = "?";
3881			s = strrchr(p, '/');
3882			if (s)
3883				p = s+1;
3884			printk("%s%s[%lx+%lx]", prefix, p,
3885					vma->vm_start,
3886					vma->vm_end - vma->vm_start);
3887			free_page((unsigned long)buf);
3888		}
3889	}
3890	up_read(&current->mm->mmap_sem);
3891}
3892
3893#ifdef CONFIG_PROVE_LOCKING
3894void might_fault(void)
3895{
3896	/*
3897	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3898	 * holding the mmap_sem, this is safe because kernel memory doesn't
3899	 * get paged out, therefore we'll never actually fault, and the
3900	 * below annotations will generate false positives.
3901	 */
3902	if (segment_eq(get_fs(), KERNEL_DS))
 
 
3903		return;
3904
3905	might_sleep();
3906	/*
3907	 * it would be nicer only to annotate paths which are not under
3908	 * pagefault_disable, however that requires a larger audit and
3909	 * providing helpers like get_user_atomic.
3910	 */
3911	if (!in_atomic() && current->mm)
3912		might_lock_read(&current->mm->mmap_sem);
 
3913}
3914EXPORT_SYMBOL(might_fault);
3915#endif
3916
3917#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3918static void clear_gigantic_page(struct page *page,
3919				unsigned long addr,
3920				unsigned int pages_per_huge_page)
3921{
3922	int i;
3923	struct page *p = page;
3924
3925	might_sleep();
3926	for (i = 0; i < pages_per_huge_page;
3927	     i++, p = mem_map_next(p, page, i)) {
3928		cond_resched();
3929		clear_user_highpage(p, addr + i * PAGE_SIZE);
3930	}
3931}
3932void clear_huge_page(struct page *page,
3933		     unsigned long addr, unsigned int pages_per_huge_page)
3934{
3935	int i;
 
 
3936
3937	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3938		clear_gigantic_page(page, addr, pages_per_huge_page);
3939		return;
3940	}
3941
 
3942	might_sleep();
3943	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3944		cond_resched();
3945		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
 
3946	}
3947}
3948
3949static void copy_user_gigantic_page(struct page *dst, struct page *src,
3950				    unsigned long addr,
3951				    struct vm_area_struct *vma,
3952				    unsigned int pages_per_huge_page)
3953{
3954	int i;
3955	struct page *dst_base = dst;
3956	struct page *src_base = src;
3957
3958	for (i = 0; i < pages_per_huge_page; ) {
3959		cond_resched();
3960		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3961
3962		i++;
3963		dst = mem_map_next(dst, dst_base, i);
3964		src = mem_map_next(src, src_base, i);
3965	}
3966}
3967
3968void copy_user_huge_page(struct page *dst, struct page *src,
3969			 unsigned long addr, struct vm_area_struct *vma,
3970			 unsigned int pages_per_huge_page)
3971{
3972	int i;
3973
3974	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3975		copy_user_gigantic_page(dst, src, addr, vma,
3976					pages_per_huge_page);
3977		return;
3978	}
3979
3980	might_sleep();
3981	for (i = 0; i < pages_per_huge_page; i++) {
3982		cond_resched();
3983		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3984	}
3985}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */