Linux Audio

Check our new training course

Loading...
v4.17
   1/* QLogic qede NIC Driver
   2 * Copyright (c) 2015-2017  QLogic Corporation
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and /or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/module.h>
  33#include <linux/pci.h>
  34#include <linux/version.h>
  35#include <linux/device.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/errno.h>
  40#include <linux/list.h>
  41#include <linux/string.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/interrupt.h>
  44#include <asm/byteorder.h>
  45#include <asm/param.h>
  46#include <linux/io.h>
  47#include <linux/netdev_features.h>
  48#include <linux/udp.h>
  49#include <linux/tcp.h>
  50#include <net/udp_tunnel.h>
  51#include <linux/ip.h>
  52#include <net/ipv6.h>
  53#include <net/tcp.h>
  54#include <linux/if_ether.h>
  55#include <linux/if_vlan.h>
  56#include <linux/pkt_sched.h>
  57#include <linux/ethtool.h>
  58#include <linux/in.h>
  59#include <linux/random.h>
  60#include <net/ip6_checksum.h>
  61#include <linux/bitops.h>
  62#include <linux/vmalloc.h>
  63#include "qede.h"
  64#include "qede_ptp.h"
  65
  66static char version[] =
  67	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  68
  69MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  70MODULE_LICENSE("GPL");
  71MODULE_VERSION(DRV_MODULE_VERSION);
  72
  73static uint debug;
  74module_param(debug, uint, 0);
  75MODULE_PARM_DESC(debug, " Default debug msglevel");
  76
  77static const struct qed_eth_ops *qed_ops;
  78
  79#define CHIP_NUM_57980S_40		0x1634
  80#define CHIP_NUM_57980S_10		0x1666
  81#define CHIP_NUM_57980S_MF		0x1636
  82#define CHIP_NUM_57980S_100		0x1644
  83#define CHIP_NUM_57980S_50		0x1654
  84#define CHIP_NUM_57980S_25		0x1656
  85#define CHIP_NUM_57980S_IOV		0x1664
  86#define CHIP_NUM_AH			0x8070
  87#define CHIP_NUM_AH_IOV			0x8090
  88
  89#ifndef PCI_DEVICE_ID_NX2_57980E
  90#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  91#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  92#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  93#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  94#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  95#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  96#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
  97#define PCI_DEVICE_ID_AH		CHIP_NUM_AH
  98#define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
  99
 100#endif
 101
 102enum qede_pci_private {
 103	QEDE_PRIVATE_PF,
 104	QEDE_PRIVATE_VF
 105};
 106
 107static const struct pci_device_id qede_pci_tbl[] = {
 108	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
 109	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
 110	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
 111	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
 112	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
 113	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
 114#ifdef CONFIG_QED_SRIOV
 115	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
 116#endif
 117	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
 118#ifdef CONFIG_QED_SRIOV
 119	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
 120#endif
 121	{ 0 }
 122};
 123
 124MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
 125
 126static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 127
 128#define TX_TIMEOUT		(5 * HZ)
 129
 130/* Utilize last protocol index for XDP */
 131#define XDP_PI	11
 132
 133static void qede_remove(struct pci_dev *pdev);
 134static void qede_shutdown(struct pci_dev *pdev);
 
 135static void qede_link_update(void *dev, struct qed_link_output *link);
 136
 137/* The qede lock is used to protect driver state change and driver flows that
 138 * are not reentrant.
 139 */
 140void __qede_lock(struct qede_dev *edev)
 141{
 142	mutex_lock(&edev->qede_lock);
 143}
 144
 145void __qede_unlock(struct qede_dev *edev)
 146{
 147	mutex_unlock(&edev->qede_lock);
 148}
 149
 150#ifdef CONFIG_QED_SRIOV
 151static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 152			    __be16 vlan_proto)
 153{
 154	struct qede_dev *edev = netdev_priv(ndev);
 155
 156	if (vlan > 4095) {
 157		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 158		return -EINVAL;
 159	}
 160
 161	if (vlan_proto != htons(ETH_P_8021Q))
 162		return -EPROTONOSUPPORT;
 163
 164	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 165		   vlan, vf);
 166
 167	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 168}
 169
 170static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 171{
 172	struct qede_dev *edev = netdev_priv(ndev);
 173
 174	DP_VERBOSE(edev, QED_MSG_IOV,
 175		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
 176		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
 177
 178	if (!is_valid_ether_addr(mac)) {
 179		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 180		return -EINVAL;
 181	}
 182
 183	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 184}
 185
 186static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 187{
 188	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 189	struct qed_dev_info *qed_info = &edev->dev_info.common;
 190	struct qed_update_vport_params *vport_params;
 191	int rc;
 192
 193	vport_params = vzalloc(sizeof(*vport_params));
 194	if (!vport_params)
 195		return -ENOMEM;
 196	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 197
 198	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 199
 200	/* Enable/Disable Tx switching for PF */
 201	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 202	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
 203		vport_params->vport_id = 0;
 204		vport_params->update_tx_switching_flg = 1;
 205		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 206		edev->ops->vport_update(edev->cdev, vport_params);
 207	}
 208
 209	vfree(vport_params);
 210	return rc;
 211}
 212#endif
 213
 214static struct pci_driver qede_pci_driver = {
 215	.name = "qede",
 216	.id_table = qede_pci_tbl,
 217	.probe = qede_probe,
 218	.remove = qede_remove,
 219	.shutdown = qede_shutdown,
 220#ifdef CONFIG_QED_SRIOV
 221	.sriov_configure = qede_sriov_configure,
 222#endif
 223};
 224
 225static struct qed_eth_cb_ops qede_ll_ops = {
 226	{
 227#ifdef CONFIG_RFS_ACCEL
 228		.arfs_filter_op = qede_arfs_filter_op,
 229#endif
 230		.link_update = qede_link_update,
 231	},
 232	.force_mac = qede_force_mac,
 233	.ports_update = qede_udp_ports_update,
 234};
 235
 236static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 237			     void *ptr)
 238{
 239	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 240	struct ethtool_drvinfo drvinfo;
 241	struct qede_dev *edev;
 242
 243	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 
 244		goto done;
 245
 246	/* Check whether this is a qede device */
 247	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 248		goto done;
 249
 250	memset(&drvinfo, 0, sizeof(drvinfo));
 251	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 252	if (strcmp(drvinfo.driver, "qede"))
 253		goto done;
 254	edev = netdev_priv(ndev);
 255
 256	switch (event) {
 257	case NETDEV_CHANGENAME:
 258		/* Notify qed of the name change */
 259		if (!edev->ops || !edev->ops->common)
 260			goto done;
 261		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 262		break;
 263	case NETDEV_CHANGEADDR:
 264		edev = netdev_priv(ndev);
 265		qede_rdma_event_changeaddr(edev);
 266		break;
 267	}
 268
 269done:
 270	return NOTIFY_DONE;
 271}
 272
 273static struct notifier_block qede_netdev_notifier = {
 274	.notifier_call = qede_netdev_event,
 275};
 276
 277static
 278int __init qede_init(void)
 279{
 280	int ret;
 
 
 
 281
 282	pr_info("qede_init: %s\n", version);
 
 
 
 
 
 
 283
 284	qed_ops = qed_get_eth_ops();
 285	if (!qed_ops) {
 286		pr_notice("Failed to get qed ethtool operations\n");
 287		return -EINVAL;
 288	}
 289
 290	/* Must register notifier before pci ops, since we might miss
 291	 * interface rename after pci probe and netdev registration.
 292	 */
 293	ret = register_netdevice_notifier(&qede_netdev_notifier);
 294	if (ret) {
 295		pr_notice("Failed to register netdevice_notifier\n");
 296		qed_put_eth_ops();
 297		return -EINVAL;
 298	}
 299
 300	ret = pci_register_driver(&qede_pci_driver);
 301	if (ret) {
 302		pr_notice("Failed to register driver\n");
 303		unregister_netdevice_notifier(&qede_netdev_notifier);
 304		qed_put_eth_ops();
 305		return -EINVAL;
 306	}
 307
 308	return 0;
 309}
 310
 311static void __exit qede_cleanup(void)
 312{
 313	if (debug & QED_LOG_INFO_MASK)
 314		pr_info("qede_cleanup called\n");
 315
 316	unregister_netdevice_notifier(&qede_netdev_notifier);
 317	pci_unregister_driver(&qede_pci_driver);
 318	qed_put_eth_ops();
 319}
 320
 321module_init(qede_init);
 322module_exit(qede_cleanup);
 323
 324static int qede_open(struct net_device *ndev);
 325static int qede_close(struct net_device *ndev);
 
 
 326
 327void qede_fill_by_demand_stats(struct qede_dev *edev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328{
 329	struct qede_stats_common *p_common = &edev->stats.common;
 330	struct qed_eth_stats stats;
 331
 332	edev->ops->get_vport_stats(edev->cdev, &stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333
 334	p_common->no_buff_discards = stats.common.no_buff_discards;
 335	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 336	p_common->ttl0_discard = stats.common.ttl0_discard;
 337	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 338	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 339	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 340	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 341	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 342	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 343	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 344	p_common->mac_filter_discards = stats.common.mac_filter_discards;
 345
 346	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 347	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 348	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 349	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 350	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 351	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 352	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 353	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 354	p_common->coalesced_events = stats.common.tpa_coalesced_events;
 355	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 356	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 357	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 358
 359	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 360	p_common->rx_65_to_127_byte_packets =
 361	    stats.common.rx_65_to_127_byte_packets;
 362	p_common->rx_128_to_255_byte_packets =
 363	    stats.common.rx_128_to_255_byte_packets;
 364	p_common->rx_256_to_511_byte_packets =
 365	    stats.common.rx_256_to_511_byte_packets;
 366	p_common->rx_512_to_1023_byte_packets =
 367	    stats.common.rx_512_to_1023_byte_packets;
 368	p_common->rx_1024_to_1518_byte_packets =
 369	    stats.common.rx_1024_to_1518_byte_packets;
 370	p_common->rx_crc_errors = stats.common.rx_crc_errors;
 371	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 372	p_common->rx_pause_frames = stats.common.rx_pause_frames;
 373	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 374	p_common->rx_align_errors = stats.common.rx_align_errors;
 375	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 376	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 377	p_common->rx_jabbers = stats.common.rx_jabbers;
 378	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 379	p_common->rx_fragments = stats.common.rx_fragments;
 380	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 381	p_common->tx_65_to_127_byte_packets =
 382	    stats.common.tx_65_to_127_byte_packets;
 383	p_common->tx_128_to_255_byte_packets =
 384	    stats.common.tx_128_to_255_byte_packets;
 385	p_common->tx_256_to_511_byte_packets =
 386	    stats.common.tx_256_to_511_byte_packets;
 387	p_common->tx_512_to_1023_byte_packets =
 388	    stats.common.tx_512_to_1023_byte_packets;
 389	p_common->tx_1024_to_1518_byte_packets =
 390	    stats.common.tx_1024_to_1518_byte_packets;
 391	p_common->tx_pause_frames = stats.common.tx_pause_frames;
 392	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 393	p_common->brb_truncates = stats.common.brb_truncates;
 394	p_common->brb_discards = stats.common.brb_discards;
 395	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 396
 397	if (QEDE_IS_BB(edev)) {
 398		struct qede_stats_bb *p_bb = &edev->stats.bb;
 399
 400		p_bb->rx_1519_to_1522_byte_packets =
 401		    stats.bb.rx_1519_to_1522_byte_packets;
 402		p_bb->rx_1519_to_2047_byte_packets =
 403		    stats.bb.rx_1519_to_2047_byte_packets;
 404		p_bb->rx_2048_to_4095_byte_packets =
 405		    stats.bb.rx_2048_to_4095_byte_packets;
 406		p_bb->rx_4096_to_9216_byte_packets =
 407		    stats.bb.rx_4096_to_9216_byte_packets;
 408		p_bb->rx_9217_to_16383_byte_packets =
 409		    stats.bb.rx_9217_to_16383_byte_packets;
 410		p_bb->tx_1519_to_2047_byte_packets =
 411		    stats.bb.tx_1519_to_2047_byte_packets;
 412		p_bb->tx_2048_to_4095_byte_packets =
 413		    stats.bb.tx_2048_to_4095_byte_packets;
 414		p_bb->tx_4096_to_9216_byte_packets =
 415		    stats.bb.tx_4096_to_9216_byte_packets;
 416		p_bb->tx_9217_to_16383_byte_packets =
 417		    stats.bb.tx_9217_to_16383_byte_packets;
 418		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 419		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 420	} else {
 421		struct qede_stats_ah *p_ah = &edev->stats.ah;
 
 
 
 
 
 
 422
 423		p_ah->rx_1519_to_max_byte_packets =
 424		    stats.ah.rx_1519_to_max_byte_packets;
 425		p_ah->tx_1519_to_max_byte_packets =
 426		    stats.ah.tx_1519_to_max_byte_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	}
 
 
 428}
 429
 430static void qede_get_stats64(struct net_device *dev,
 431			     struct rtnl_link_stats64 *stats)
 432{
 433	struct qede_dev *edev = netdev_priv(dev);
 434	struct qede_stats_common *p_common;
 435
 436	qede_fill_by_demand_stats(edev);
 437	p_common = &edev->stats.common;
 
 438
 439	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 440			    p_common->rx_bcast_pkts;
 441	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 442			    p_common->tx_bcast_pkts;
 
 
 
 
 443
 444	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 445			  p_common->rx_bcast_bytes;
 446	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 447			  p_common->tx_bcast_bytes;
 448
 449	stats->tx_errors = p_common->tx_err_drop_pkts;
 450	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 
 
 
 451
 452	stats->rx_fifo_errors = p_common->no_buff_discards;
 
 
 
 
 453
 454	if (QEDE_IS_BB(edev))
 455		stats->collisions = edev->stats.bb.tx_total_collisions;
 456	stats->rx_crc_errors = p_common->rx_crc_errors;
 457	stats->rx_frame_errors = p_common->rx_align_errors;
 458}
 459
 460#ifdef CONFIG_QED_SRIOV
 461static int qede_get_vf_config(struct net_device *dev, int vfidx,
 462			      struct ifla_vf_info *ivi)
 
 463{
 464	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 465
 466	if (!edev->ops)
 467		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468
 469	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 
 
 
 
 470}
 471
 472static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 473			    int min_tx_rate, int max_tx_rate)
 474{
 475	struct qede_dev *edev = netdev_priv(dev);
 
 476
 477	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 478					max_tx_rate);
 
 
 
 
 
 479}
 480
 481static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 482{
 483	struct qede_dev *edev = netdev_priv(dev);
 
 484
 485	if (!edev->ops)
 486		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 
 
 489}
 490
 491static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 492				  int link_state)
 
 493{
 494	struct qede_dev *edev = netdev_priv(dev);
 495
 496	if (!edev->ops)
 497		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500}
 501
 502static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503{
 504	struct qede_dev *edev = netdev_priv(dev);
 505
 506	if (!edev->ops)
 507		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508
 509	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 
 
 
 
 
 
 510}
 511#endif
 512
 513static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517	if (!netif_running(dev))
 518		return -EAGAIN;
 
 
 
 
 
 
 519
 520	switch (cmd) {
 521	case SIOCSHWTSTAMP:
 522		return qede_ptp_hw_ts(edev, ifr);
 523	default:
 524		DP_VERBOSE(edev, QED_MSG_DEBUG,
 525			   "default IOCTL cmd 0x%x\n", cmd);
 526		return -EOPNOTSUPP;
 527	}
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529	return 0;
 530}
 531
 532static const struct net_device_ops qede_netdev_ops = {
 533	.ndo_open = qede_open,
 534	.ndo_stop = qede_close,
 535	.ndo_start_xmit = qede_start_xmit,
 536	.ndo_set_rx_mode = qede_set_rx_mode,
 537	.ndo_set_mac_address = qede_set_mac_addr,
 538	.ndo_validate_addr = eth_validate_addr,
 539	.ndo_change_mtu = qede_change_mtu,
 540	.ndo_do_ioctl = qede_ioctl,
 541#ifdef CONFIG_QED_SRIOV
 542	.ndo_set_vf_mac = qede_set_vf_mac,
 543	.ndo_set_vf_vlan = qede_set_vf_vlan,
 544	.ndo_set_vf_trust = qede_set_vf_trust,
 545#endif
 546	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 547	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 548	.ndo_fix_features = qede_fix_features,
 549	.ndo_set_features = qede_set_features,
 550	.ndo_get_stats64 = qede_get_stats64,
 551#ifdef CONFIG_QED_SRIOV
 552	.ndo_set_vf_link_state = qede_set_vf_link_state,
 553	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
 554	.ndo_get_vf_config = qede_get_vf_config,
 555	.ndo_set_vf_rate = qede_set_vf_rate,
 556#endif
 557	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 558	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 559	.ndo_features_check = qede_features_check,
 560	.ndo_bpf = qede_xdp,
 561#ifdef CONFIG_RFS_ACCEL
 562	.ndo_rx_flow_steer = qede_rx_flow_steer,
 563#endif
 564};
 565
 566static const struct net_device_ops qede_netdev_vf_ops = {
 567	.ndo_open = qede_open,
 568	.ndo_stop = qede_close,
 569	.ndo_start_xmit = qede_start_xmit,
 570	.ndo_set_rx_mode = qede_set_rx_mode,
 571	.ndo_set_mac_address = qede_set_mac_addr,
 572	.ndo_validate_addr = eth_validate_addr,
 573	.ndo_change_mtu = qede_change_mtu,
 574	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 575	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 576	.ndo_fix_features = qede_fix_features,
 577	.ndo_set_features = qede_set_features,
 578	.ndo_get_stats64 = qede_get_stats64,
 579	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 580	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 581	.ndo_features_check = qede_features_check,
 582};
 583
 584static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585	.ndo_open = qede_open,
 586	.ndo_stop = qede_close,
 587	.ndo_start_xmit = qede_start_xmit,
 588	.ndo_set_rx_mode = qede_set_rx_mode,
 589	.ndo_set_mac_address = qede_set_mac_addr,
 590	.ndo_validate_addr = eth_validate_addr,
 591	.ndo_change_mtu = qede_change_mtu,
 592	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 593	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 594	.ndo_fix_features = qede_fix_features,
 595	.ndo_set_features = qede_set_features,
 596	.ndo_get_stats64 = qede_get_stats64,
 597	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 598	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 599	.ndo_features_check = qede_features_check,
 600	.ndo_bpf = qede_xdp,
 601};
 602
 603/* -------------------------------------------------------------------------
 604 * START OF PROBE / REMOVE
 605 * -------------------------------------------------------------------------
 606 */
 607
 608static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 609					    struct pci_dev *pdev,
 610					    struct qed_dev_eth_info *info,
 611					    u32 dp_module, u8 dp_level)
 
 612{
 613	struct net_device *ndev;
 614	struct qede_dev *edev;
 615
 616	ndev = alloc_etherdev_mqs(sizeof(*edev),
 617				  info->num_queues, info->num_queues);
 
 618	if (!ndev) {
 619		pr_err("etherdev allocation failed\n");
 620		return NULL;
 621	}
 622
 623	edev = netdev_priv(ndev);
 624	edev->ndev = ndev;
 625	edev->cdev = cdev;
 626	edev->pdev = pdev;
 627	edev->dp_module = dp_module;
 628	edev->dp_level = dp_level;
 629	edev->ops = qed_ops;
 630	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 631	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 632
 633	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 634		info->num_queues, info->num_queues);
 635
 636	SET_NETDEV_DEV(ndev, &pdev->dev);
 637
 638	memset(&edev->stats, 0, sizeof(edev->stats));
 639	memcpy(&edev->dev_info, info, sizeof(*info));
 640
 641	/* As ethtool doesn't have the ability to show WoL behavior as
 642	 * 'default', if device supports it declare it's enabled.
 643	 */
 644	if (edev->dev_info.common.wol_support)
 645		edev->wol_enabled = true;
 646
 647	INIT_LIST_HEAD(&edev->vlan_list);
 648
 649	return edev;
 650}
 651
 652static void qede_init_ndev(struct qede_dev *edev)
 653{
 654	struct net_device *ndev = edev->ndev;
 655	struct pci_dev *pdev = edev->pdev;
 656	bool udp_tunnel_enable = false;
 657	netdev_features_t hw_features;
 658
 659	pci_set_drvdata(pdev, ndev);
 660
 661	ndev->mem_start = edev->dev_info.common.pci_mem_start;
 662	ndev->base_addr = ndev->mem_start;
 663	ndev->mem_end = edev->dev_info.common.pci_mem_end;
 664	ndev->irq = edev->dev_info.common.pci_irq;
 665
 666	ndev->watchdog_timeo = TX_TIMEOUT;
 667
 668	if (IS_VF(edev)) {
 669		if (edev->dev_info.xdp_supported)
 670			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 671		else
 672			ndev->netdev_ops = &qede_netdev_vf_ops;
 673	} else {
 674		ndev->netdev_ops = &qede_netdev_ops;
 675	}
 676
 677	qede_set_ethtool_ops(ndev);
 678
 679	ndev->priv_flags |= IFF_UNICAST_FLT;
 680
 681	/* user-changeble features */
 682	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 683		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 684		      NETIF_F_TSO | NETIF_F_TSO6;
 685
 686	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
 687		hw_features |= NETIF_F_NTUPLE;
 688
 689	if (edev->dev_info.common.vxlan_enable ||
 690	    edev->dev_info.common.geneve_enable)
 691		udp_tunnel_enable = true;
 692
 693	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 694		hw_features |= NETIF_F_TSO_ECN;
 695		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 696					NETIF_F_SG | NETIF_F_TSO |
 697					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 698					NETIF_F_RXCSUM;
 699	}
 700
 701	if (udp_tunnel_enable) {
 702		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 703				NETIF_F_GSO_UDP_TUNNEL_CSUM);
 704		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 705					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
 706	}
 707
 708	if (edev->dev_info.common.gre_enable) {
 709		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 710		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 711					  NETIF_F_GSO_GRE_CSUM);
 712	}
 713
 714	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 715			      NETIF_F_HIGHDMA;
 716	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 717			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 718			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 719
 720	ndev->hw_features = hw_features;
 721
 722	/* MTU range: 46 - 9600 */
 723	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 724	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 725
 726	/* Set network device HW mac */
 727	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 728
 729	ndev->mtu = edev->dev_info.common.mtu;
 730}
 731
 732/* This function converts from 32b param to two params of level and module
 733 * Input 32b decoding:
 734 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 735 * 'happy' flow, e.g. memory allocation failed.
 736 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 737 * and provide important parameters.
 738 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 739 * module. VERBOSE prints are for tracking the specific flow in low level.
 740 *
 741 * Notice that the level should be that of the lowest required logs.
 742 */
 743void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 744{
 745	*p_dp_level = QED_LEVEL_NOTICE;
 746	*p_dp_module = 0;
 747
 748	if (debug & QED_LOG_VERBOSE_MASK) {
 749		*p_dp_level = QED_LEVEL_VERBOSE;
 750		*p_dp_module = (debug & 0x3FFFFFFF);
 751	} else if (debug & QED_LOG_INFO_MASK) {
 752		*p_dp_level = QED_LEVEL_INFO;
 753	} else if (debug & QED_LOG_NOTICE_MASK) {
 754		*p_dp_level = QED_LEVEL_NOTICE;
 755	}
 756}
 757
 758static void qede_free_fp_array(struct qede_dev *edev)
 759{
 760	if (edev->fp_array) {
 761		struct qede_fastpath *fp;
 762		int i;
 763
 764		for_each_queue(i) {
 765			fp = &edev->fp_array[i];
 766
 767			kfree(fp->sb_info);
 768			/* Handle mem alloc failure case where qede_init_fp
 769			 * didn't register xdp_rxq_info yet.
 770			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
 771			 */
 772			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 773				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 774			kfree(fp->rxq);
 775			kfree(fp->xdp_tx);
 776			kfree(fp->txq);
 777		}
 778		kfree(edev->fp_array);
 779	}
 780
 781	edev->num_queues = 0;
 782	edev->fp_num_tx = 0;
 783	edev->fp_num_rx = 0;
 784}
 785
 786static int qede_alloc_fp_array(struct qede_dev *edev)
 787{
 788	u8 fp_combined, fp_rx = edev->fp_num_rx;
 789	struct qede_fastpath *fp;
 790	int i;
 791
 792	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 793				 sizeof(*edev->fp_array), GFP_KERNEL);
 794	if (!edev->fp_array) {
 795		DP_NOTICE(edev, "fp array allocation failed\n");
 796		goto err;
 797	}
 798
 799	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
 800
 801	/* Allocate the FP elements for Rx queues followed by combined and then
 802	 * the Tx. This ordering should be maintained so that the respective
 803	 * queues (Rx or Tx) will be together in the fastpath array and the
 804	 * associated ids will be sequential.
 805	 */
 806	for_each_queue(i) {
 807		fp = &edev->fp_array[i];
 808
 809		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
 810		if (!fp->sb_info) {
 811			DP_NOTICE(edev, "sb info struct allocation failed\n");
 812			goto err;
 813		}
 814
 815		if (fp_rx) {
 816			fp->type = QEDE_FASTPATH_RX;
 817			fp_rx--;
 818		} else if (fp_combined) {
 819			fp->type = QEDE_FASTPATH_COMBINED;
 820			fp_combined--;
 821		} else {
 822			fp->type = QEDE_FASTPATH_TX;
 823		}
 824
 825		if (fp->type & QEDE_FASTPATH_TX) {
 826			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
 827			if (!fp->txq)
 828				goto err;
 829		}
 830
 831		if (fp->type & QEDE_FASTPATH_RX) {
 832			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
 833			if (!fp->rxq)
 834				goto err;
 835
 836			if (edev->xdp_prog) {
 837				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
 838						     GFP_KERNEL);
 839				if (!fp->xdp_tx)
 840					goto err;
 841				fp->type |= QEDE_FASTPATH_XDP;
 842			}
 843		}
 844	}
 845
 846	return 0;
 847err:
 848	qede_free_fp_array(edev);
 849	return -ENOMEM;
 850}
 851
 852static void qede_sp_task(struct work_struct *work)
 853{
 854	struct qede_dev *edev = container_of(work, struct qede_dev,
 855					     sp_task.work);
 
 856
 857	__qede_lock(edev);
 858
 859	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
 860		if (edev->state == QEDE_STATE_OPEN)
 861			qede_config_rx_mode(edev->ndev);
 862
 863#ifdef CONFIG_RFS_ACCEL
 864	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
 865		if (edev->state == QEDE_STATE_OPEN)
 866			qede_process_arfs_filters(edev, false);
 867	}
 868#endif
 869	__qede_unlock(edev);
 870}
 871
 872static void qede_update_pf_params(struct qed_dev *cdev)
 873{
 874	struct qed_pf_params pf_params;
 875
 876	/* 64 rx + 64 tx + 64 XDP */
 877	memset(&pf_params, 0, sizeof(struct qed_pf_params));
 878	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
 879
 880	/* Same for VFs - make sure they'll have sufficient connections
 881	 * to support XDP Tx queues.
 882	 */
 883	pf_params.eth_pf_params.num_vf_cons = 48;
 884
 885	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
 886	qed_ops->common->update_pf_params(cdev, &pf_params);
 887}
 888
 889#define QEDE_FW_VER_STR_SIZE	80
 890
 891static void qede_log_probe(struct qede_dev *edev)
 892{
 893	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
 894	u8 buf[QEDE_FW_VER_STR_SIZE];
 895	size_t left_size;
 896
 897	snprintf(buf, QEDE_FW_VER_STR_SIZE,
 898		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
 899		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
 900		 p_dev_info->fw_eng,
 901		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
 902		 QED_MFW_VERSION_3_OFFSET,
 903		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
 904		 QED_MFW_VERSION_2_OFFSET,
 905		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
 906		 QED_MFW_VERSION_1_OFFSET,
 907		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
 908		 QED_MFW_VERSION_0_OFFSET);
 909
 910	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
 911	if (p_dev_info->mbi_version && left_size)
 912		snprintf(buf + strlen(buf), left_size,
 913			 " [MBI %d.%d.%d]",
 914			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
 915			 QED_MBI_VERSION_2_OFFSET,
 916			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
 917			 QED_MBI_VERSION_1_OFFSET,
 918			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
 919			 QED_MBI_VERSION_0_OFFSET);
 920
 921	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
 922		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
 923		buf, edev->ndev->name);
 924}
 925
 926enum qede_probe_mode {
 927	QEDE_PROBE_NORMAL,
 928};
 929
 930static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
 931			bool is_vf, enum qede_probe_mode mode)
 932{
 933	struct qed_probe_params probe_params;
 934	struct qed_slowpath_params sp_params;
 935	struct qed_dev_eth_info dev_info;
 936	struct qede_dev *edev;
 937	struct qed_dev *cdev;
 938	int rc;
 939
 940	if (unlikely(dp_level & QED_LEVEL_INFO))
 941		pr_notice("Starting qede probe\n");
 942
 943	memset(&probe_params, 0, sizeof(probe_params));
 944	probe_params.protocol = QED_PROTOCOL_ETH;
 945	probe_params.dp_module = dp_module;
 946	probe_params.dp_level = dp_level;
 947	probe_params.is_vf = is_vf;
 948	cdev = qed_ops->common->probe(pdev, &probe_params);
 949	if (!cdev) {
 950		rc = -ENODEV;
 951		goto err0;
 952	}
 953
 954	qede_update_pf_params(cdev);
 955
 956	/* Start the Slowpath-process */
 957	memset(&sp_params, 0, sizeof(sp_params));
 958	sp_params.int_mode = QED_INT_MODE_MSIX;
 959	sp_params.drv_major = QEDE_MAJOR_VERSION;
 960	sp_params.drv_minor = QEDE_MINOR_VERSION;
 961	sp_params.drv_rev = QEDE_REVISION_VERSION;
 962	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
 963	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
 964	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
 965	if (rc) {
 966		pr_notice("Cannot start slowpath\n");
 967		goto err1;
 968	}
 969
 970	/* Learn information crucial for qede to progress */
 971	rc = qed_ops->fill_dev_info(cdev, &dev_info);
 972	if (rc)
 973		goto err2;
 974
 975	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
 976				   dp_level);
 977	if (!edev) {
 978		rc = -ENOMEM;
 979		goto err2;
 980	}
 981
 982	if (is_vf)
 983		edev->flags |= QEDE_FLAG_IS_VF;
 984
 985	qede_init_ndev(edev);
 986
 987	rc = qede_rdma_dev_add(edev);
 988	if (rc)
 989		goto err3;
 990
 991	/* Prepare the lock prior to the registration of the netdev,
 992	 * as once it's registered we might reach flows requiring it
 993	 * [it's even possible to reach a flow needing it directly
 994	 * from there, although it's unlikely].
 995	 */
 996	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
 997	mutex_init(&edev->qede_lock);
 998	rc = register_netdev(edev->ndev);
 999	if (rc) {
1000		DP_NOTICE(edev, "Cannot register net-device\n");
1001		goto err4;
1002	}
1003
1004	edev->ops->common->set_name(cdev, edev->ndev->name);
1005
1006	/* PTP not supported on VFs */
1007	if (!is_vf)
1008		qede_ptp_enable(edev, true);
1009
1010	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1011
1012#ifdef CONFIG_DCB
1013	if (!IS_VF(edev))
1014		qede_set_dcbnl_ops(edev->ndev);
1015#endif
1016
1017	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1018
1019	qede_log_probe(edev);
1020	return 0;
1021
1022err4:
1023	qede_rdma_dev_remove(edev);
1024err3:
1025	free_netdev(edev->ndev);
1026err2:
1027	qed_ops->common->slowpath_stop(cdev);
1028err1:
1029	qed_ops->common->remove(cdev);
1030err0:
1031	return rc;
1032}
1033
1034static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1035{
1036	bool is_vf = false;
1037	u32 dp_module = 0;
1038	u8 dp_level = 0;
1039
1040	switch ((enum qede_pci_private)id->driver_data) {
1041	case QEDE_PRIVATE_VF:
1042		if (debug & QED_LOG_VERBOSE_MASK)
1043			dev_err(&pdev->dev, "Probing a VF\n");
1044		is_vf = true;
1045		break;
1046	default:
1047		if (debug & QED_LOG_VERBOSE_MASK)
1048			dev_err(&pdev->dev, "Probing a PF\n");
1049	}
1050
1051	qede_config_debug(debug, &dp_module, &dp_level);
1052
1053	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1054			    QEDE_PROBE_NORMAL);
1055}
1056
1057enum qede_remove_mode {
1058	QEDE_REMOVE_NORMAL,
1059};
1060
1061static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1062{
1063	struct net_device *ndev = pci_get_drvdata(pdev);
1064	struct qede_dev *edev = netdev_priv(ndev);
1065	struct qed_dev *cdev = edev->cdev;
1066
1067	DP_INFO(edev, "Starting qede_remove\n");
1068
1069	qede_rdma_dev_remove(edev);
1070	unregister_netdev(ndev);
1071	cancel_delayed_work_sync(&edev->sp_task);
1072
1073	qede_ptp_disable(edev);
1074
1075	edev->ops->common->set_power_state(cdev, PCI_D0);
1076
1077	pci_set_drvdata(pdev, NULL);
1078
 
 
1079	/* Use global ops since we've freed edev */
1080	qed_ops->common->slowpath_stop(cdev);
1081	if (system_state == SYSTEM_POWER_OFF)
1082		return;
1083	qed_ops->common->remove(cdev);
1084
1085	/* Since this can happen out-of-sync with other flows,
1086	 * don't release the netdevice until after slowpath stop
1087	 * has been called to guarantee various other contexts
1088	 * [e.g., QED register callbacks] won't break anything when
1089	 * accessing the netdevice.
1090	 */
1091	 free_netdev(ndev);
1092
1093	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1094}
1095
1096static void qede_remove(struct pci_dev *pdev)
1097{
1098	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1099}
1100
1101static void qede_shutdown(struct pci_dev *pdev)
1102{
1103	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1104}
1105
1106/* -------------------------------------------------------------------------
1107 * START OF LOAD / UNLOAD
1108 * -------------------------------------------------------------------------
1109 */
1110
1111static int qede_set_num_queues(struct qede_dev *edev)
1112{
1113	int rc;
1114	u16 rss_num;
1115
1116	/* Setup queues according to possible resources*/
1117	if (edev->req_queues)
1118		rss_num = edev->req_queues;
1119	else
1120		rss_num = netif_get_num_default_rss_queues() *
1121			  edev->dev_info.common.num_hwfns;
1122
1123	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1124
1125	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1126	if (rc > 0) {
1127		/* Managed to request interrupts for our queues */
1128		edev->num_queues = rc;
1129		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1130			QEDE_QUEUE_CNT(edev), rss_num);
1131		rc = 0;
1132	}
1133
1134	edev->fp_num_tx = edev->req_num_tx;
1135	edev->fp_num_rx = edev->req_num_rx;
1136
1137	return rc;
1138}
1139
1140static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1141			     u16 sb_id)
1142{
1143	if (sb_info->sb_virt) {
1144		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1145		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1146				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1147		memset(sb_info, 0, sizeof(*sb_info));
1148	}
1149}
1150
1151/* This function allocates fast-path status block memory */
1152static int qede_alloc_mem_sb(struct qede_dev *edev,
1153			     struct qed_sb_info *sb_info, u16 sb_id)
 
1154{
1155	struct status_block_e4 *sb_virt;
1156	dma_addr_t sb_phys;
1157	int rc;
1158
1159	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1160				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
 
1161	if (!sb_virt) {
1162		DP_ERR(edev, "Status block allocation failed\n");
1163		return -ENOMEM;
1164	}
1165
1166	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1167					sb_virt, sb_phys, sb_id,
1168					QED_SB_TYPE_L2_QUEUE);
1169	if (rc) {
1170		DP_ERR(edev, "Status block initialization failed\n");
1171		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1172				  sb_virt, sb_phys);
1173		return rc;
1174	}
1175
1176	return 0;
1177}
1178
1179static void qede_free_rx_buffers(struct qede_dev *edev,
1180				 struct qede_rx_queue *rxq)
1181{
1182	u16 i;
1183
1184	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1185		struct sw_rx_data *rx_buf;
1186		struct page *data;
1187
1188		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1189		data = rx_buf->data;
1190
1191		dma_unmap_page(&edev->pdev->dev,
1192			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
 
1193
1194		rx_buf->data = NULL;
1195		__free_page(data);
1196	}
1197}
1198
1199static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1200{
1201	int i;
1202
1203	if (edev->gro_disable)
1204		return;
1205
1206	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1207		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1208		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1209
1210		if (replace_buf->data) {
1211			dma_unmap_page(&edev->pdev->dev,
1212				       replace_buf->mapping,
1213				       PAGE_SIZE, DMA_FROM_DEVICE);
1214			__free_page(replace_buf->data);
1215		}
1216	}
1217}
1218
1219static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
 
1220{
1221	qede_free_sge_mem(edev, rxq);
1222
1223	/* Free rx buffers */
1224	qede_free_rx_buffers(edev, rxq);
1225
1226	/* Free the parallel SW ring */
1227	kfree(rxq->sw_rx_ring);
1228
1229	/* Free the real RQ ring used by FW */
1230	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1231	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1232}
1233
1234static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	dma_addr_t mapping;
1237	int i;
1238
1239	if (edev->gro_disable)
1240		return 0;
1241
 
 
 
 
 
1242	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1243		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1244		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1245
1246		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1247		if (unlikely(!replace_buf->data)) {
1248			DP_NOTICE(edev,
1249				  "Failed to allocate TPA skb pool [replacement buffer]\n");
1250			goto err;
1251		}
1252
1253		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1254				       PAGE_SIZE, DMA_FROM_DEVICE);
1255		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1256			DP_NOTICE(edev,
1257				  "Failed to map TPA replacement buffer\n");
1258			goto err;
1259		}
1260
1261		replace_buf->mapping = mapping;
1262		tpa_info->buffer.page_offset = 0;
1263		tpa_info->buffer_mapping = mapping;
1264		tpa_info->state = QEDE_AGG_STATE_NONE;
 
1265	}
1266
1267	return 0;
1268err:
1269	qede_free_sge_mem(edev, rxq);
1270	edev->gro_disable = 1;
1271	edev->ndev->features &= ~NETIF_F_GRO_HW;
1272	return -ENOMEM;
1273}
1274
1275/* This function allocates all memory needed per Rx queue */
1276static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
 
1277{
1278	int i, rc, size;
1279
1280	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1281
1282	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1283	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
 
 
1284
1285	/* Make sure that the headroom and  payload fit in a single page */
1286	if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1287		rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1288
1289	/* Segment size to spilt a page in multiple equal parts,
1290	 * unless XDP is used in which case we'd use the entire page.
1291	 */
1292	if (!edev->xdp_prog)
1293		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1294	else
1295		rxq->rx_buf_seg_size = PAGE_SIZE;
1296
1297	/* Allocate the parallel driver ring for Rx buffers */
1298	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1299	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1300	if (!rxq->sw_rx_ring) {
1301		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1302		rc = -ENOMEM;
1303		goto err;
1304	}
1305
1306	/* Allocate FW Rx ring  */
1307	rc = edev->ops->common->chain_alloc(edev->cdev,
1308					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1309					    QED_CHAIN_MODE_NEXT_PTR,
1310					    QED_CHAIN_CNT_TYPE_U16,
1311					    RX_RING_SIZE,
1312					    sizeof(struct eth_rx_bd),
1313					    &rxq->rx_bd_ring, NULL);
 
1314	if (rc)
1315		goto err;
1316
1317	/* Allocate FW completion ring */
1318	rc = edev->ops->common->chain_alloc(edev->cdev,
1319					    QED_CHAIN_USE_TO_CONSUME,
1320					    QED_CHAIN_MODE_PBL,
1321					    QED_CHAIN_CNT_TYPE_U16,
1322					    RX_RING_SIZE,
1323					    sizeof(union eth_rx_cqe),
1324					    &rxq->rx_comp_ring, NULL);
1325	if (rc)
1326		goto err;
1327
1328	/* Allocate buffers for the Rx ring */
1329	rxq->filled_buffers = 0;
1330	for (i = 0; i < rxq->num_rx_buffers; i++) {
1331		rc = qede_alloc_rx_buffer(rxq, false);
1332		if (rc) {
1333			DP_ERR(edev,
1334			       "Rx buffers allocation failed at index %d\n", i);
1335			goto err;
1336		}
1337	}
1338
1339	rc = qede_alloc_sge_mem(edev, rxq);
1340err:
1341	return rc;
1342}
1343
1344static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
 
1345{
1346	/* Free the parallel SW ring */
1347	if (txq->is_xdp)
1348		kfree(txq->sw_tx_ring.xdp);
1349	else
1350		kfree(txq->sw_tx_ring.skbs);
1351
1352	/* Free the real RQ ring used by FW */
1353	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1354}
1355
1356/* This function allocates all memory needed per Tx queue */
1357static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
 
1358{
1359	union eth_tx_bd_types *p_virt;
1360	int size, rc;
 
1361
1362	txq->num_tx_buffers = edev->q_num_tx_buffers;
1363
1364	/* Allocate the parallel driver ring for Tx buffers */
1365	if (txq->is_xdp) {
1366		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1367		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1368		if (!txq->sw_tx_ring.xdp)
1369			goto err;
1370	} else {
1371		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1372		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1373		if (!txq->sw_tx_ring.skbs)
1374			goto err;
1375	}
1376
1377	rc = edev->ops->common->chain_alloc(edev->cdev,
1378					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1379					    QED_CHAIN_MODE_PBL,
1380					    QED_CHAIN_CNT_TYPE_U16,
1381					    txq->num_tx_buffers,
1382					    sizeof(*p_virt),
1383					    &txq->tx_pbl, NULL);
1384	if (rc)
1385		goto err;
1386
1387	return 0;
1388
1389err:
1390	qede_free_mem_txq(edev, txq);
1391	return -ENOMEM;
1392}
1393
1394/* This function frees all memory of a single fp */
1395static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
 
1396{
1397	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1398
1399	if (fp->type & QEDE_FASTPATH_RX)
1400		qede_free_mem_rxq(edev, fp->rxq);
1401
1402	if (fp->type & QEDE_FASTPATH_XDP)
1403		qede_free_mem_txq(edev, fp->xdp_tx);
1404
1405	if (fp->type & QEDE_FASTPATH_TX)
1406		qede_free_mem_txq(edev, fp->txq);
1407}
1408
1409/* This function allocates all memory needed for a single fp (i.e. an entity
1410 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1411 */
1412static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
 
1413{
1414	int rc = 0;
1415
1416	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1417	if (rc)
1418		goto out;
1419
1420	if (fp->type & QEDE_FASTPATH_RX) {
1421		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1422		if (rc)
1423			goto out;
1424	}
1425
1426	if (fp->type & QEDE_FASTPATH_XDP) {
1427		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1428		if (rc)
1429			goto out;
1430	}
1431
1432	if (fp->type & QEDE_FASTPATH_TX) {
1433		rc = qede_alloc_mem_txq(edev, fp->txq);
1434		if (rc)
1435			goto out;
1436	}
1437
1438out:
 
1439	return rc;
1440}
1441
1442static void qede_free_mem_load(struct qede_dev *edev)
1443{
1444	int i;
1445
1446	for_each_queue(i) {
1447		struct qede_fastpath *fp = &edev->fp_array[i];
1448
1449		qede_free_mem_fp(edev, fp);
1450	}
1451}
1452
1453/* This function allocates all qede memory at NIC load. */
1454static int qede_alloc_mem_load(struct qede_dev *edev)
1455{
1456	int rc = 0, queue_id;
1457
1458	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1459		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1460
1461		rc = qede_alloc_mem_fp(edev, fp);
1462		if (rc) {
1463			DP_ERR(edev,
1464			       "Failed to allocate memory for fastpath - rss id = %d\n",
1465			       queue_id);
1466			qede_free_mem_load(edev);
1467			return rc;
1468		}
1469	}
1470
1471	return 0;
1472}
1473
1474/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1475static void qede_init_fp(struct qede_dev *edev)
1476{
1477	int queue_id, rxq_index = 0, txq_index = 0;
1478	struct qede_fastpath *fp;
1479
1480	for_each_queue(queue_id) {
1481		fp = &edev->fp_array[queue_id];
1482
1483		fp->edev = edev;
1484		fp->id = queue_id;
1485
1486		if (fp->type & QEDE_FASTPATH_XDP) {
1487			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1488								rxq_index);
1489			fp->xdp_tx->is_xdp = 1;
1490		}
1491
1492		if (fp->type & QEDE_FASTPATH_RX) {
1493			fp->rxq->rxq_id = rxq_index++;
1494
1495			/* Determine how to map buffers for this queue */
1496			if (fp->type & QEDE_FASTPATH_XDP)
1497				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1498			else
1499				fp->rxq->data_direction = DMA_FROM_DEVICE;
1500			fp->rxq->dev = &edev->pdev->dev;
1501
1502			/* Driver have no error path from here */
1503			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1504						 fp->rxq->rxq_id) < 0);
1505		}
1506
1507		if (fp->type & QEDE_FASTPATH_TX) {
1508			fp->txq->index = txq_index++;
1509			if (edev->dev_info.is_legacy)
1510				fp->txq->is_legacy = 1;
1511			fp->txq->dev = &edev->pdev->dev;
1512		}
1513
1514		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1515			 edev->ndev->name, queue_id);
1516	}
1517
1518	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1519}
1520
1521static int qede_set_real_num_queues(struct qede_dev *edev)
1522{
1523	int rc = 0;
1524
1525	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1526	if (rc) {
1527		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1528		return rc;
1529	}
1530
1531	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1532	if (rc) {
1533		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1534		return rc;
1535	}
1536
1537	return 0;
1538}
1539
1540static void qede_napi_disable_remove(struct qede_dev *edev)
1541{
1542	int i;
1543
1544	for_each_queue(i) {
1545		napi_disable(&edev->fp_array[i].napi);
1546
1547		netif_napi_del(&edev->fp_array[i].napi);
1548	}
1549}
1550
1551static void qede_napi_add_enable(struct qede_dev *edev)
1552{
1553	int i;
1554
1555	/* Add NAPI objects */
1556	for_each_queue(i) {
1557		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1558			       qede_poll, NAPI_POLL_WEIGHT);
1559		napi_enable(&edev->fp_array[i].napi);
1560	}
1561}
1562
1563static void qede_sync_free_irqs(struct qede_dev *edev)
1564{
1565	int i;
1566
1567	for (i = 0; i < edev->int_info.used_cnt; i++) {
1568		if (edev->int_info.msix_cnt) {
1569			synchronize_irq(edev->int_info.msix[i].vector);
1570			free_irq(edev->int_info.msix[i].vector,
1571				 &edev->fp_array[i]);
1572		} else {
1573			edev->ops->common->simd_handler_clean(edev->cdev, i);
1574		}
1575	}
1576
1577	edev->int_info.used_cnt = 0;
1578}
1579
1580static int qede_req_msix_irqs(struct qede_dev *edev)
1581{
1582	int i, rc;
1583
1584	/* Sanitize number of interrupts == number of prepared RSS queues */
1585	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1586		DP_ERR(edev,
1587		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1588		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1589		return -EINVAL;
1590	}
1591
1592	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1593#ifdef CONFIG_RFS_ACCEL
1594		struct qede_fastpath *fp = &edev->fp_array[i];
1595
1596		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1597			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1598					      edev->int_info.msix[i].vector);
1599			if (rc) {
1600				DP_ERR(edev, "Failed to add CPU rmap\n");
1601				qede_free_arfs(edev);
1602			}
1603		}
1604#endif
1605		rc = request_irq(edev->int_info.msix[i].vector,
1606				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1607				 &edev->fp_array[i]);
1608		if (rc) {
1609			DP_ERR(edev, "Request fp %d irq failed\n", i);
1610			qede_sync_free_irqs(edev);
1611			return rc;
1612		}
1613		DP_VERBOSE(edev, NETIF_MSG_INTR,
1614			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1615			   edev->fp_array[i].name, i,
1616			   &edev->fp_array[i]);
1617		edev->int_info.used_cnt++;
1618	}
1619
1620	return 0;
1621}
1622
1623static void qede_simd_fp_handler(void *cookie)
1624{
1625	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1626
1627	napi_schedule_irqoff(&fp->napi);
1628}
1629
1630static int qede_setup_irqs(struct qede_dev *edev)
1631{
1632	int i, rc = 0;
1633
1634	/* Learn Interrupt configuration */
1635	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1636	if (rc)
1637		return rc;
1638
1639	if (edev->int_info.msix_cnt) {
1640		rc = qede_req_msix_irqs(edev);
1641		if (rc)
1642			return rc;
1643		edev->ndev->irq = edev->int_info.msix[0].vector;
1644	} else {
1645		const struct qed_common_ops *ops;
1646
1647		/* qed should learn receive the RSS ids and callbacks */
1648		ops = edev->ops->common;
1649		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1650			ops->simd_handler_config(edev->cdev,
1651						 &edev->fp_array[i], i,
1652						 qede_simd_fp_handler);
1653		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1654	}
1655	return 0;
1656}
1657
1658static int qede_drain_txq(struct qede_dev *edev,
1659			  struct qede_tx_queue *txq, bool allow_drain)
 
1660{
1661	int rc, cnt = 1000;
1662
1663	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1664		if (!cnt) {
1665			if (allow_drain) {
1666				DP_NOTICE(edev,
1667					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1668					  txq->index);
1669				rc = edev->ops->common->drain(edev->cdev);
1670				if (rc)
1671					return rc;
1672				return qede_drain_txq(edev, txq, false);
1673			}
1674			DP_NOTICE(edev,
1675				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1676				  txq->index, txq->sw_tx_prod,
1677				  txq->sw_tx_cons);
1678			return -ENODEV;
1679		}
1680		cnt--;
1681		usleep_range(1000, 2000);
1682		barrier();
1683	}
1684
1685	/* FW finished processing, wait for HW to transmit all tx packets */
1686	usleep_range(1000, 2000);
1687
1688	return 0;
1689}
1690
1691static int qede_stop_txq(struct qede_dev *edev,
1692			 struct qede_tx_queue *txq, int rss_id)
1693{
1694	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1695}
1696
1697static int qede_stop_queues(struct qede_dev *edev)
1698{
1699	struct qed_update_vport_params *vport_update_params;
1700	struct qed_dev *cdev = edev->cdev;
1701	struct qede_fastpath *fp;
1702	int rc, i;
1703
1704	/* Disable the vport */
1705	vport_update_params = vzalloc(sizeof(*vport_update_params));
1706	if (!vport_update_params)
1707		return -ENOMEM;
1708
1709	vport_update_params->vport_id = 0;
1710	vport_update_params->update_vport_active_flg = 1;
1711	vport_update_params->vport_active_flg = 0;
1712	vport_update_params->update_rss_flg = 0;
1713
1714	rc = edev->ops->vport_update(cdev, vport_update_params);
1715	vfree(vport_update_params);
1716
 
1717	if (rc) {
1718		DP_ERR(edev, "Failed to update vport\n");
1719		return rc;
1720	}
1721
1722	/* Flush Tx queues. If needed, request drain from MCP */
1723	for_each_queue(i) {
1724		fp = &edev->fp_array[i];
1725
1726		if (fp->type & QEDE_FASTPATH_TX) {
1727			rc = qede_drain_txq(edev, fp->txq, true);
1728			if (rc)
1729				return rc;
1730		}
1731
1732		if (fp->type & QEDE_FASTPATH_XDP) {
1733			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1734			if (rc)
1735				return rc;
1736		}
1737	}
1738
1739	/* Stop all Queues in reverse order */
1740	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1741		fp = &edev->fp_array[i];
1742
1743		/* Stop the Tx Queue(s) */
1744		if (fp->type & QEDE_FASTPATH_TX) {
1745			rc = qede_stop_txq(edev, fp->txq, i);
1746			if (rc)
1747				return rc;
1748		}
1749
1750		/* Stop the Rx Queue */
1751		if (fp->type & QEDE_FASTPATH_RX) {
1752			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1753			if (rc) {
1754				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
 
1755				return rc;
1756			}
1757		}
1758
1759		/* Stop the XDP forwarding queue */
1760		if (fp->type & QEDE_FASTPATH_XDP) {
1761			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1762			if (rc)
1763				return rc;
1764
1765			bpf_prog_put(fp->rxq->xdp_prog);
 
 
 
1766		}
1767	}
1768
1769	/* Stop the vport */
1770	rc = edev->ops->vport_stop(cdev, 0);
1771	if (rc)
1772		DP_ERR(edev, "Failed to stop VPORT\n");
1773
1774	return rc;
1775}
1776
1777static int qede_start_txq(struct qede_dev *edev,
1778			  struct qede_fastpath *fp,
1779			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1780{
1781	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1782	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1783	struct qed_queue_start_common_params params;
1784	struct qed_txq_start_ret_params ret_params;
1785	int rc;
1786
1787	memset(&params, 0, sizeof(params));
1788	memset(&ret_params, 0, sizeof(ret_params));
1789
1790	/* Let the XDP queue share the queue-zone with one of the regular txq.
1791	 * We don't really care about its coalescing.
1792	 */
1793	if (txq->is_xdp)
1794		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1795	else
1796		params.queue_id = txq->index;
1797
1798	params.p_sb = fp->sb_info;
1799	params.sb_idx = sb_idx;
1800
1801	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1802				   page_cnt, &ret_params);
1803	if (rc) {
1804		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1805		return rc;
1806	}
1807
1808	txq->doorbell_addr = ret_params.p_doorbell;
1809	txq->handle = ret_params.p_handle;
1810
1811	/* Determine the FW consumer address associated */
1812	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1813
1814	/* Prepare the doorbell parameters */
1815	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1816	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1817	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1818		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1819	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1820
1821	return rc;
1822}
1823
1824static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1825{
 
1826	int vlan_removal_en = 1;
1827	struct qed_dev *cdev = edev->cdev;
1828	struct qed_dev_info *qed_info = &edev->dev_info.common;
1829	struct qed_update_vport_params *vport_update_params;
1830	struct qed_queue_start_common_params q_params;
1831	struct qed_start_vport_params start = {0};
1832	int rc, i;
1833
1834	if (!edev->num_queues) {
1835		DP_ERR(edev,
1836		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1837		return -EINVAL;
1838	}
1839
1840	vport_update_params = vzalloc(sizeof(*vport_update_params));
1841	if (!vport_update_params)
1842		return -ENOMEM;
1843
1844	start.handle_ptp_pkts = !!(edev->ptp);
1845	start.gro_enable = !edev->gro_disable;
1846	start.mtu = edev->ndev->mtu;
1847	start.vport_id = 0;
1848	start.drop_ttl0 = true;
1849	start.remove_inner_vlan = vlan_removal_en;
1850	start.clear_stats = clear_stats;
1851
1852	rc = edev->ops->vport_start(cdev, &start);
1853
1854	if (rc) {
1855		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1856		goto out;
1857	}
1858
1859	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1860		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1861		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1862
1863	for_each_queue(i) {
1864		struct qede_fastpath *fp = &edev->fp_array[i];
1865		dma_addr_t p_phys_table;
1866		u32 page_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867
1868		if (fp->type & QEDE_FASTPATH_RX) {
1869			struct qed_rxq_start_ret_params ret_params;
1870			struct qede_rx_queue *rxq = fp->rxq;
1871			__le16 *val;
 
1872
1873			memset(&ret_params, 0, sizeof(ret_params));
1874			memset(&q_params, 0, sizeof(q_params));
1875			q_params.queue_id = rxq->rxq_id;
 
1876			q_params.vport_id = 0;
1877			q_params.p_sb = fp->sb_info;
1878			q_params.sb_idx = RX_PI;
1879
1880			p_phys_table =
1881			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1882			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1883
1884			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1885						   rxq->rx_buf_size,
1886						   rxq->rx_bd_ring.p_phys_addr,
1887						   p_phys_table,
1888						   page_cnt, &ret_params);
1889			if (rc) {
1890				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1891				       rc);
1892				goto out;
1893			}
1894
1895			/* Use the return parameters */
1896			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1897			rxq->handle = ret_params.p_handle;
1898
1899			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1900			rxq->hw_cons_ptr = val;
1901
1902			qede_update_rx_prod(edev, rxq);
1903		}
1904
1905		if (fp->type & QEDE_FASTPATH_XDP) {
1906			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1907			if (rc)
1908				goto out;
1909
1910			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1911			if (IS_ERR(fp->rxq->xdp_prog)) {
1912				rc = PTR_ERR(fp->rxq->xdp_prog);
1913				fp->rxq->xdp_prog = NULL;
1914				goto out;
1915			}
1916		}
1917
1918		if (fp->type & QEDE_FASTPATH_TX) {
1919			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1920			if (rc)
1921				goto out;
1922		}
1923	}
1924
1925	/* Prepare and send the vport enable */
1926	vport_update_params->vport_id = start.vport_id;
1927	vport_update_params->update_vport_active_flg = 1;
1928	vport_update_params->vport_active_flg = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1931	    qed_info->tx_switching) {
1932		vport_update_params->update_tx_switching_flg = 1;
1933		vport_update_params->tx_switching_flg = 1;
1934	}
1935
1936	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1937			     &vport_update_params->update_rss_flg);
1938
1939	rc = edev->ops->vport_update(cdev, vport_update_params);
1940	if (rc)
1941		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
 
 
 
1942
1943out:
1944	vfree(vport_update_params);
1945	return rc;
 
 
 
 
 
 
1946}
1947
1948enum qede_unload_mode {
1949	QEDE_UNLOAD_NORMAL,
1950};
1951
1952static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1953			bool is_locked)
1954{
1955	struct qed_link_params link_params;
1956	int rc;
1957
1958	DP_INFO(edev, "Starting qede unload\n");
1959
1960	if (!is_locked)
1961		__qede_lock(edev);
1962
1963	edev->state = QEDE_STATE_CLOSED;
1964
1965	qede_rdma_dev_event_close(edev);
1966
1967	/* Close OS Tx */
1968	netif_tx_disable(edev->ndev);
1969	netif_carrier_off(edev->ndev);
1970
1971	/* Reset the link */
1972	memset(&link_params, 0, sizeof(link_params));
1973	link_params.link_up = false;
1974	edev->ops->common->set_link(edev->cdev, &link_params);
1975	rc = qede_stop_queues(edev);
1976	if (rc) {
1977		qede_sync_free_irqs(edev);
1978		goto out;
1979	}
1980
1981	DP_INFO(edev, "Stopped Queues\n");
1982
1983	qede_vlan_mark_nonconfigured(edev);
1984	edev->ops->fastpath_stop(edev->cdev);
1985
1986	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1987		qede_poll_for_freeing_arfs_filters(edev);
1988		qede_free_arfs(edev);
1989	}
1990
1991	/* Release the interrupts */
1992	qede_sync_free_irqs(edev);
1993	edev->ops->common->set_fp_int(edev->cdev, 0);
1994
1995	qede_napi_disable_remove(edev);
1996
1997	qede_free_mem_load(edev);
1998	qede_free_fp_array(edev);
1999
2000out:
2001	if (!is_locked)
2002		__qede_unlock(edev);
2003	DP_INFO(edev, "Ending qede unload\n");
2004}
2005
2006enum qede_load_mode {
2007	QEDE_LOAD_NORMAL,
2008	QEDE_LOAD_RELOAD,
2009};
2010
2011static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2012		     bool is_locked)
2013{
2014	struct qed_link_params link_params;
 
2015	int rc;
2016
2017	DP_INFO(edev, "Starting qede load\n");
2018
2019	if (!is_locked)
2020		__qede_lock(edev);
2021
2022	rc = qede_set_num_queues(edev);
2023	if (rc)
2024		goto out;
2025
2026	rc = qede_alloc_fp_array(edev);
2027	if (rc)
2028		goto out;
2029
2030	qede_init_fp(edev);
2031
2032	rc = qede_alloc_mem_load(edev);
2033	if (rc)
2034		goto err1;
2035	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2036		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2037
2038	rc = qede_set_real_num_queues(edev);
2039	if (rc)
2040		goto err2;
2041
2042	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2043		rc = qede_alloc_arfs(edev);
2044		if (rc)
2045			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2046	}
2047
2048	qede_napi_add_enable(edev);
2049	DP_INFO(edev, "Napi added and enabled\n");
2050
2051	rc = qede_setup_irqs(edev);
2052	if (rc)
2053		goto err3;
2054	DP_INFO(edev, "Setup IRQs succeeded\n");
2055
2056	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2057	if (rc)
2058		goto err4;
2059	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2060
 
 
 
 
 
 
 
2061	/* Program un-configured VLANs */
2062	qede_configure_vlan_filters(edev);
2063
2064	/* Ask for link-up using current configuration */
2065	memset(&link_params, 0, sizeof(link_params));
2066	link_params.link_up = true;
2067	edev->ops->common->set_link(edev->cdev, &link_params);
2068
2069	edev->state = QEDE_STATE_OPEN;
 
 
 
2070
2071	DP_INFO(edev, "Ending successfully qede load\n");
2072
2073	goto out;
 
2074err4:
2075	qede_sync_free_irqs(edev);
2076	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2077err3:
2078	qede_napi_disable_remove(edev);
2079err2:
2080	qede_free_mem_load(edev);
2081err1:
2082	edev->ops->common->set_fp_int(edev->cdev, 0);
2083	qede_free_fp_array(edev);
2084	edev->num_queues = 0;
2085	edev->fp_num_tx = 0;
2086	edev->fp_num_rx = 0;
2087out:
2088	if (!is_locked)
2089		__qede_unlock(edev);
2090
2091	return rc;
2092}
2093
2094/* 'func' should be able to run between unload and reload assuming interface
2095 * is actually running, or afterwards in case it's currently DOWN.
2096 */
2097void qede_reload(struct qede_dev *edev,
2098		 struct qede_reload_args *args, bool is_locked)
 
2099{
2100	if (!is_locked)
2101		__qede_lock(edev);
2102
2103	/* Since qede_lock is held, internal state wouldn't change even
2104	 * if netdev state would start transitioning. Check whether current
2105	 * internal configuration indicates device is up, then reload.
2106	 */
2107	if (edev->state == QEDE_STATE_OPEN) {
2108		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2109		if (args)
2110			args->func(edev, args);
2111		qede_load(edev, QEDE_LOAD_RELOAD, true);
2112
2113		/* Since no one is going to do it for us, re-configure */
2114		qede_config_rx_mode(edev->ndev);
2115	} else if (args) {
2116		args->func(edev, args);
2117	}
2118
2119	if (!is_locked)
2120		__qede_unlock(edev);
 
2121}
2122
2123/* called with rtnl_lock */
2124static int qede_open(struct net_device *ndev)
2125{
2126	struct qede_dev *edev = netdev_priv(ndev);
2127	int rc;
2128
2129	netif_carrier_off(ndev);
2130
2131	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2132
2133	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2134	if (rc)
2135		return rc;
2136
2137	udp_tunnel_get_rx_info(ndev);
2138
2139	edev->ops->common->update_drv_state(edev->cdev, true);
2140
2141	return 0;
2142}
2143
2144static int qede_close(struct net_device *ndev)
2145{
2146	struct qede_dev *edev = netdev_priv(ndev);
2147
2148	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2149
2150	edev->ops->common->update_drv_state(edev->cdev, false);
2151
2152	return 0;
2153}
2154
2155static void qede_link_update(void *dev, struct qed_link_output *link)
2156{
2157	struct qede_dev *edev = dev;
2158
2159	if (!netif_running(edev->ndev)) {
2160		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2161		return;
2162	}
2163
2164	if (link->link_up) {
2165		if (!netif_carrier_ok(edev->ndev)) {
2166			DP_NOTICE(edev, "Link is up\n");
2167			netif_tx_start_all_queues(edev->ndev);
2168			netif_carrier_on(edev->ndev);
2169			qede_rdma_dev_event_open(edev);
2170		}
2171	} else {
2172		if (netif_carrier_ok(edev->ndev)) {
2173			DP_NOTICE(edev, "Link is down\n");
2174			netif_tx_disable(edev->ndev);
2175			netif_carrier_off(edev->ndev);
2176			qede_rdma_dev_event_close(edev);
2177		}
2178	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179}
v4.6
   1/* QLogic qede NIC Driver
   2* Copyright (c) 2015 QLogic Corporation
   3*
   4* This software is available under the terms of the GNU General Public License
   5* (GPL) Version 2, available from the file COPYING in the main directory of
   6* this source tree.
   7*/
   8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/version.h>
  12#include <linux/device.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/skbuff.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/string.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/interrupt.h>
  21#include <asm/byteorder.h>
  22#include <asm/param.h>
  23#include <linux/io.h>
  24#include <linux/netdev_features.h>
  25#include <linux/udp.h>
  26#include <linux/tcp.h>
  27#include <net/vxlan.h>
  28#include <linux/ip.h>
  29#include <net/ipv6.h>
  30#include <net/tcp.h>
  31#include <linux/if_ether.h>
  32#include <linux/if_vlan.h>
  33#include <linux/pkt_sched.h>
  34#include <linux/ethtool.h>
  35#include <linux/in.h>
  36#include <linux/random.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/bitops.h>
  39
  40#include "qede.h"
 
  41
  42static char version[] =
  43	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  44
  45MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49static uint debug;
  50module_param(debug, uint, 0);
  51MODULE_PARM_DESC(debug, " Default debug msglevel");
  52
  53static const struct qed_eth_ops *qed_ops;
  54
  55#define CHIP_NUM_57980S_40		0x1634
  56#define CHIP_NUM_57980S_10		0x1666
  57#define CHIP_NUM_57980S_MF		0x1636
  58#define CHIP_NUM_57980S_100		0x1644
  59#define CHIP_NUM_57980S_50		0x1654
  60#define CHIP_NUM_57980S_25		0x1656
 
 
 
  61
  62#ifndef PCI_DEVICE_ID_NX2_57980E
  63#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  64#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  65#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  66#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  67#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  68#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
 
 
 
 
  69#endif
  70
 
 
 
 
 
  71static const struct pci_device_id qede_pci_tbl[] = {
  72	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
  73	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
  74	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
  75	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
  76	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
  77	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
 
 
 
 
 
 
 
  78	{ 0 }
  79};
  80
  81MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  82
  83static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  84
  85#define TX_TIMEOUT		(5 * HZ)
  86
 
 
 
  87static void qede_remove(struct pci_dev *pdev);
  88static int qede_alloc_rx_buffer(struct qede_dev *edev,
  89				struct qede_rx_queue *rxq);
  90static void qede_link_update(void *dev, struct qed_link_output *link);
  91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92static struct pci_driver qede_pci_driver = {
  93	.name = "qede",
  94	.id_table = qede_pci_tbl,
  95	.probe = qede_probe,
  96	.remove = qede_remove,
 
 
 
 
  97};
  98
  99static struct qed_eth_cb_ops qede_ll_ops = {
 100	{
 
 
 
 101		.link_update = qede_link_update,
 102	},
 
 
 103};
 104
 105static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 106			     void *ptr)
 107{
 108	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 109	struct ethtool_drvinfo drvinfo;
 110	struct qede_dev *edev;
 111
 112	/* Currently only support name change */
 113	if (event != NETDEV_CHANGENAME)
 114		goto done;
 115
 116	/* Check whether this is a qede device */
 117	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 118		goto done;
 119
 120	memset(&drvinfo, 0, sizeof(drvinfo));
 121	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 122	if (strcmp(drvinfo.driver, "qede"))
 123		goto done;
 124	edev = netdev_priv(ndev);
 125
 126	/* Notify qed of the name change */
 127	if (!edev->ops || !edev->ops->common)
 128		goto done;
 129	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
 130				  "qede");
 
 
 
 
 
 
 
 131
 132done:
 133	return NOTIFY_DONE;
 134}
 135
 136static struct notifier_block qede_netdev_notifier = {
 137	.notifier_call = qede_netdev_event,
 138};
 139
 140static
 141int __init qede_init(void)
 142{
 143	int ret;
 144	u32 qed_ver;
 145
 146	pr_notice("qede_init: %s\n", version);
 147
 148	qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
 149	if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
 150		pr_notice("Version mismatch [%08x != %08x]\n",
 151			  qed_ver,
 152			  QEDE_ETH_INTERFACE_VERSION);
 153		return -EINVAL;
 154	}
 155
 156	qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
 157	if (!qed_ops) {
 158		pr_notice("Failed to get qed ethtool operations\n");
 159		return -EINVAL;
 160	}
 161
 162	/* Must register notifier before pci ops, since we might miss
 163	 * interface rename after pci probe and netdev registeration.
 164	 */
 165	ret = register_netdevice_notifier(&qede_netdev_notifier);
 166	if (ret) {
 167		pr_notice("Failed to register netdevice_notifier\n");
 168		qed_put_eth_ops();
 169		return -EINVAL;
 170	}
 171
 172	ret = pci_register_driver(&qede_pci_driver);
 173	if (ret) {
 174		pr_notice("Failed to register driver\n");
 175		unregister_netdevice_notifier(&qede_netdev_notifier);
 176		qed_put_eth_ops();
 177		return -EINVAL;
 178	}
 179
 180	return 0;
 181}
 182
 183static void __exit qede_cleanup(void)
 184{
 185	pr_notice("qede_cleanup called\n");
 
 186
 187	unregister_netdevice_notifier(&qede_netdev_notifier);
 188	pci_unregister_driver(&qede_pci_driver);
 189	qed_put_eth_ops();
 190}
 191
 192module_init(qede_init);
 193module_exit(qede_cleanup);
 194
 195/* -------------------------------------------------------------------------
 196 * START OF FAST-PATH
 197 * -------------------------------------------------------------------------
 198 */
 199
 200/* Unmap the data and free skb */
 201static int qede_free_tx_pkt(struct qede_dev *edev,
 202			    struct qede_tx_queue *txq,
 203			    int *len)
 204{
 205	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
 206	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 207	struct eth_tx_1st_bd *first_bd;
 208	struct eth_tx_bd *tx_data_bd;
 209	int bds_consumed = 0;
 210	int nbds;
 211	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
 212	int i, split_bd_len = 0;
 213
 214	if (unlikely(!skb)) {
 215		DP_ERR(edev,
 216		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 217		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 218		return -1;
 219	}
 220
 221	*len = skb->len;
 222
 223	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 224
 225	bds_consumed++;
 226
 227	nbds = first_bd->data.nbds;
 228
 229	if (data_split) {
 230		struct eth_tx_bd *split = (struct eth_tx_bd *)
 231			qed_chain_consume(&txq->tx_pbl);
 232		split_bd_len = BD_UNMAP_LEN(split);
 233		bds_consumed++;
 234	}
 235	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 236		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 237
 238	/* Unmap the data of the skb frags */
 239	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 240		tx_data_bd = (struct eth_tx_bd *)
 241			qed_chain_consume(&txq->tx_pbl);
 242		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 243			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 244	}
 245
 246	while (bds_consumed++ < nbds)
 247		qed_chain_consume(&txq->tx_pbl);
 248
 249	/* Free skb */
 250	dev_kfree_skb_any(skb);
 251	txq->sw_tx_ring[idx].skb = NULL;
 252	txq->sw_tx_ring[idx].flags = 0;
 253
 254	return 0;
 255}
 256
 257/* Unmap the data and free skb when mapping failed during start_xmit */
 258static void qede_free_failed_tx_pkt(struct qede_dev *edev,
 259				    struct qede_tx_queue *txq,
 260				    struct eth_tx_1st_bd *first_bd,
 261				    int nbd,
 262				    bool data_split)
 263{
 264	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 265	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 266	struct eth_tx_bd *tx_data_bd;
 267	int i, split_bd_len = 0;
 268
 269	/* Return prod to its position before this skb was handled */
 270	qed_chain_set_prod(&txq->tx_pbl,
 271			   le16_to_cpu(txq->tx_db.data.bd_prod),
 272			   first_bd);
 273
 274	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 275
 276	if (data_split) {
 277		struct eth_tx_bd *split = (struct eth_tx_bd *)
 278					  qed_chain_produce(&txq->tx_pbl);
 279		split_bd_len = BD_UNMAP_LEN(split);
 280		nbd--;
 281	}
 282
 283	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 284		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 285
 286	/* Unmap the data of the skb frags */
 287	for (i = 0; i < nbd; i++) {
 288		tx_data_bd = (struct eth_tx_bd *)
 289			qed_chain_produce(&txq->tx_pbl);
 290		if (tx_data_bd->nbytes)
 291			dma_unmap_page(&edev->pdev->dev,
 292				       BD_UNMAP_ADDR(tx_data_bd),
 293				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 294	}
 295
 296	/* Return again prod to its position before this skb was handled */
 297	qed_chain_set_prod(&txq->tx_pbl,
 298			   le16_to_cpu(txq->tx_db.data.bd_prod),
 299			   first_bd);
 300
 301	/* Free skb */
 302	dev_kfree_skb_any(skb);
 303	txq->sw_tx_ring[idx].skb = NULL;
 304	txq->sw_tx_ring[idx].flags = 0;
 305}
 306
 307static u32 qede_xmit_type(struct qede_dev *edev,
 308			  struct sk_buff *skb,
 309			  int *ipv6_ext)
 310{
 311	u32 rc = XMIT_L4_CSUM;
 312	__be16 l3_proto;
 313
 314	if (skb->ip_summed != CHECKSUM_PARTIAL)
 315		return XMIT_PLAIN;
 316
 317	l3_proto = vlan_get_protocol(skb);
 318	if (l3_proto == htons(ETH_P_IPV6) &&
 319	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 320		*ipv6_ext = 1;
 321
 322	if (skb_is_gso(skb))
 323		rc |= XMIT_LSO;
 324
 325	return rc;
 326}
 327
 328static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 329					 struct eth_tx_2nd_bd *second_bd,
 330					 struct eth_tx_3rd_bd *third_bd)
 331{
 332	u8 l4_proto;
 333	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 334
 335	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 336
 337	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 338		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 339		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 340
 341	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 342		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 343
 344	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 345		l4_proto = ipv6_hdr(skb)->nexthdr;
 346	else
 347		l4_proto = ip_hdr(skb)->protocol;
 348
 349	if (l4_proto == IPPROTO_UDP)
 350		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 351
 352	if (third_bd)
 353		third_bd->data.bitfields |=
 354			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 355				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 356				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 357
 358	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 359	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 360}
 361
 362static int map_frag_to_bd(struct qede_dev *edev,
 363			  skb_frag_t *frag,
 364			  struct eth_tx_bd *bd)
 365{
 366	dma_addr_t mapping;
 367
 368	/* Map skb non-linear frag data for DMA */
 369	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
 370				   skb_frag_size(frag),
 371				   DMA_TO_DEVICE);
 372	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 373		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
 374		return -ENOMEM;
 375	}
 376
 377	/* Setup the data pointer of the frag data */
 378	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 379
 380	return 0;
 381}
 382
 383/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 384#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 385static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
 386			     u8 xmit_type)
 387{
 388	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 389
 390	if (xmit_type & XMIT_LSO) {
 391		int hlen;
 392
 393		hlen = skb_transport_header(skb) +
 394		       tcp_hdrlen(skb) - skb->data;
 395
 396		/* linear payload would require its own BD */
 397		if (skb_headlen(skb) > hlen)
 398			allowed_frags--;
 399	}
 400
 401	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 402}
 403#endif
 404
 405/* Main transmit function */
 406static
 407netdev_tx_t qede_start_xmit(struct sk_buff *skb,
 408			    struct net_device *ndev)
 409{
 410	struct qede_dev *edev = netdev_priv(ndev);
 411	struct netdev_queue *netdev_txq;
 412	struct qede_tx_queue *txq;
 413	struct eth_tx_1st_bd *first_bd;
 414	struct eth_tx_2nd_bd *second_bd = NULL;
 415	struct eth_tx_3rd_bd *third_bd = NULL;
 416	struct eth_tx_bd *tx_data_bd = NULL;
 417	u16 txq_index;
 418	u8 nbd = 0;
 419	dma_addr_t mapping;
 420	int rc, frag_idx = 0, ipv6_ext = 0;
 421	u8 xmit_type;
 422	u16 idx;
 423	u16 hlen;
 424	bool data_split = false;
 425
 426	/* Get tx-queue context and netdev index */
 427	txq_index = skb_get_queue_mapping(skb);
 428	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
 429	txq = QEDE_TX_QUEUE(edev, txq_index);
 430	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 431
 432	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
 433			       (MAX_SKB_FRAGS + 1));
 434
 435	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
 436
 437#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 438	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
 439		if (skb_linearize(skb)) {
 440			DP_NOTICE(edev,
 441				  "SKB linearization failed - silently dropping this SKB\n");
 442			dev_kfree_skb_any(skb);
 443			return NETDEV_TX_OK;
 444		}
 445	}
 446#endif
 447
 448	/* Fill the entry in the SW ring and the BDs in the FW ring */
 449	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 450	txq->sw_tx_ring[idx].skb = skb;
 451	first_bd = (struct eth_tx_1st_bd *)
 452		   qed_chain_produce(&txq->tx_pbl);
 453	memset(first_bd, 0, sizeof(*first_bd));
 454	first_bd->data.bd_flags.bitfields =
 455		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 456
 457	/* Map skb linear data for DMA and set in the first BD */
 458	mapping = dma_map_single(&edev->pdev->dev, skb->data,
 459				 skb_headlen(skb), DMA_TO_DEVICE);
 460	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 461		DP_NOTICE(edev, "SKB mapping failed\n");
 462		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
 463		return NETDEV_TX_OK;
 464	}
 465	nbd++;
 466	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 467
 468	/* In case there is IPv6 with extension headers or LSO we need 2nd and
 469	 * 3rd BDs.
 470	 */
 471	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 472		second_bd = (struct eth_tx_2nd_bd *)
 473			qed_chain_produce(&txq->tx_pbl);
 474		memset(second_bd, 0, sizeof(*second_bd));
 475
 476		nbd++;
 477		third_bd = (struct eth_tx_3rd_bd *)
 478			qed_chain_produce(&txq->tx_pbl);
 479		memset(third_bd, 0, sizeof(*third_bd));
 480
 481		nbd++;
 482		/* We need to fill in additional data in second_bd... */
 483		tx_data_bd = (struct eth_tx_bd *)second_bd;
 484	}
 485
 486	if (skb_vlan_tag_present(skb)) {
 487		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 488		first_bd->data.bd_flags.bitfields |=
 489			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 490	}
 491
 492	/* Fill the parsing flags & params according to the requested offload */
 493	if (xmit_type & XMIT_L4_CSUM) {
 494		u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
 495
 496		/* We don't re-calculate IP checksum as it is already done by
 497		 * the upper stack
 498		 */
 499		first_bd->data.bd_flags.bitfields |=
 500			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 501
 502		first_bd->data.bitfields |= cpu_to_le16(temp);
 503
 504		/* If the packet is IPv6 with extension header, indicate that
 505		 * to FW and pass few params, since the device cracker doesn't
 506		 * support parsing IPv6 with extension header/s.
 507		 */
 508		if (unlikely(ipv6_ext))
 509			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 510	}
 511
 512	if (xmit_type & XMIT_LSO) {
 513		first_bd->data.bd_flags.bitfields |=
 514			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 515		third_bd->data.lso_mss =
 516			cpu_to_le16(skb_shinfo(skb)->gso_size);
 517
 518		first_bd->data.bd_flags.bitfields |=
 519		1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 520		hlen = skb_transport_header(skb) +
 521		       tcp_hdrlen(skb) - skb->data;
 522
 523		/* @@@TBD - if will not be removed need to check */
 524		third_bd->data.bitfields |=
 525			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
 526
 527		/* Make life easier for FW guys who can't deal with header and
 528		 * data on same BD. If we need to split, use the second bd...
 529		 */
 530		if (unlikely(skb_headlen(skb) > hlen)) {
 531			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 532				   "TSO split header size is %d (%x:%x)\n",
 533				   first_bd->nbytes, first_bd->addr.hi,
 534				   first_bd->addr.lo);
 535
 536			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 537					   le32_to_cpu(first_bd->addr.lo)) +
 538					   hlen;
 539
 540			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 541					      le16_to_cpu(first_bd->nbytes) -
 542					      hlen);
 543
 544			/* this marks the BD as one that has no
 545			 * individual mapping
 546			 */
 547			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
 548
 549			first_bd->nbytes = cpu_to_le16(hlen);
 550
 551			tx_data_bd = (struct eth_tx_bd *)third_bd;
 552			data_split = true;
 553		}
 554	}
 555
 556	/* Handle fragmented skb */
 557	/* special handle for frags inside 2nd and 3rd bds.. */
 558	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 559		rc = map_frag_to_bd(edev,
 560				    &skb_shinfo(skb)->frags[frag_idx],
 561				    tx_data_bd);
 562		if (rc) {
 563			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 564						data_split);
 565			return NETDEV_TX_OK;
 566		}
 567
 568		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 569			tx_data_bd = (struct eth_tx_bd *)third_bd;
 570		else
 571			tx_data_bd = NULL;
 572
 573		frag_idx++;
 574	}
 575
 576	/* map last frags into 4th, 5th .... */
 577	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 578		tx_data_bd = (struct eth_tx_bd *)
 579			     qed_chain_produce(&txq->tx_pbl);
 580
 581		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 582
 583		rc = map_frag_to_bd(edev,
 584				    &skb_shinfo(skb)->frags[frag_idx],
 585				    tx_data_bd);
 586		if (rc) {
 587			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 588						data_split);
 589			return NETDEV_TX_OK;
 590		}
 591	}
 592
 593	/* update the first BD with the actual num BDs */
 594	first_bd->data.nbds = nbd;
 595
 596	netdev_tx_sent_queue(netdev_txq, skb->len);
 597
 598	skb_tx_timestamp(skb);
 599
 600	/* Advance packet producer only before sending the packet since mapping
 601	 * of pages may fail.
 602	 */
 603	txq->sw_tx_prod++;
 604
 605	/* 'next page' entries are counted in the producer value */
 606	txq->tx_db.data.bd_prod =
 607		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 608
 609	/* wmb makes sure that the BDs data is updated before updating the
 610	 * producer, otherwise FW may read old data from the BDs.
 611	 */
 612	wmb();
 613	barrier();
 614	writel(txq->tx_db.raw, txq->doorbell_addr);
 615
 616	/* mmiowb is needed to synchronize doorbell writes from more than one
 617	 * processor. It guarantees that the write arrives to the device before
 618	 * the queue lock is released and another start_xmit is called (possibly
 619	 * on another CPU). Without this barrier, the next doorbell can bypass
 620	 * this doorbell. This is applicable to IA64/Altix systems.
 621	 */
 622	mmiowb();
 623
 624	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 625		      < (MAX_SKB_FRAGS + 1))) {
 626		netif_tx_stop_queue(netdev_txq);
 627		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 628			   "Stop queue was called\n");
 629		/* paired memory barrier is in qede_tx_int(), we have to keep
 630		 * ordering of set_bit() in netif_tx_stop_queue() and read of
 631		 * fp->bd_tx_cons
 632		 */
 633		smp_mb();
 634
 635		if (qed_chain_get_elem_left(&txq->tx_pbl)
 636		     >= (MAX_SKB_FRAGS + 1) &&
 637		    (edev->state == QEDE_STATE_OPEN)) {
 638			netif_tx_wake_queue(netdev_txq);
 639			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 640				   "Wake queue was called\n");
 641		}
 642	}
 643
 644	return NETDEV_TX_OK;
 645}
 646
 647static int qede_txq_has_work(struct qede_tx_queue *txq)
 648{
 649	u16 hw_bd_cons;
 650
 651	/* Tell compiler that consumer and producer can change */
 652	barrier();
 653	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 654	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 655		return 0;
 656
 657	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 658}
 659
 660static int qede_tx_int(struct qede_dev *edev,
 661		       struct qede_tx_queue *txq)
 662{
 663	struct netdev_queue *netdev_txq;
 664	u16 hw_bd_cons;
 665	unsigned int pkts_compl = 0, bytes_compl = 0;
 666	int rc;
 667
 668	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 669
 670	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 671	barrier();
 672
 673	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 674		int len = 0;
 675
 676		rc = qede_free_tx_pkt(edev, txq, &len);
 677		if (rc) {
 678			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 679				  hw_bd_cons,
 680				  qed_chain_get_cons_idx(&txq->tx_pbl));
 681			break;
 682		}
 683
 684		bytes_compl += len;
 685		pkts_compl++;
 686		txq->sw_tx_cons++;
 687	}
 688
 689	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 690
 691	/* Need to make the tx_bd_cons update visible to start_xmit()
 692	 * before checking for netif_tx_queue_stopped().  Without the
 693	 * memory barrier, there is a small possibility that
 694	 * start_xmit() will miss it and cause the queue to be stopped
 695	 * forever.
 696	 * On the other hand we need an rmb() here to ensure the proper
 697	 * ordering of bit testing in the following
 698	 * netif_tx_queue_stopped(txq) call.
 699	 */
 700	smp_mb();
 701
 702	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 703		/* Taking tx_lock is needed to prevent reenabling the queue
 704		 * while it's empty. This could have happen if rx_action() gets
 705		 * suspended in qede_tx_int() after the condition before
 706		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 707		 *
 708		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 709		 * sends some packets consuming the whole queue again->
 710		 * stops the queue
 711		 */
 712
 713		__netif_tx_lock(netdev_txq, smp_processor_id());
 714
 715		if ((netif_tx_queue_stopped(netdev_txq)) &&
 716		    (edev->state == QEDE_STATE_OPEN) &&
 717		    (qed_chain_get_elem_left(&txq->tx_pbl)
 718		      >= (MAX_SKB_FRAGS + 1))) {
 719			netif_tx_wake_queue(netdev_txq);
 720			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 721				   "Wake queue was called\n");
 722		}
 723
 724		__netif_tx_unlock(netdev_txq);
 725	}
 726
 727	return 0;
 728}
 729
 730static bool qede_has_rx_work(struct qede_rx_queue *rxq)
 731{
 732	u16 hw_comp_cons, sw_comp_cons;
 733
 734	/* Tell compiler that status block fields can change */
 735	barrier();
 736
 737	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 738	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 739
 740	return hw_comp_cons != sw_comp_cons;
 741}
 742
 743static bool qede_has_tx_work(struct qede_fastpath *fp)
 744{
 745	u8 tc;
 746
 747	for (tc = 0; tc < fp->edev->num_tc; tc++)
 748		if (qede_txq_has_work(&fp->txqs[tc]))
 749			return true;
 750	return false;
 751}
 752
 753static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 754{
 755	qed_chain_consume(&rxq->rx_bd_ring);
 756	rxq->sw_rx_cons++;
 757}
 758
 759/* This function reuses the buffer(from an offset) from
 760 * consumer index to producer index in the bd ring
 761 */
 762static inline void qede_reuse_page(struct qede_dev *edev,
 763				   struct qede_rx_queue *rxq,
 764				   struct sw_rx_data *curr_cons)
 765{
 766	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 767	struct sw_rx_data *curr_prod;
 768	dma_addr_t new_mapping;
 769
 770	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 771	*curr_prod = *curr_cons;
 772
 773	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 774
 775	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 776	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
 777
 778	rxq->sw_rx_prod++;
 779	curr_cons->data = NULL;
 780}
 781
 782/* In case of allocation failures reuse buffers
 783 * from consumer index to produce buffers for firmware
 784 */
 785static void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
 786				    struct qede_dev *edev, u8 count)
 787{
 788	struct sw_rx_data *curr_cons;
 789
 790	for (; count > 0; count--) {
 791		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 792		qede_reuse_page(edev, rxq, curr_cons);
 793		qede_rx_bd_ring_consume(rxq);
 794	}
 795}
 796
 797static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
 798					 struct qede_rx_queue *rxq,
 799					 struct sw_rx_data *curr_cons)
 800{
 801	/* Move to the next segment in the page */
 802	curr_cons->page_offset += rxq->rx_buf_seg_size;
 803
 804	if (curr_cons->page_offset == PAGE_SIZE) {
 805		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
 806			/* Since we failed to allocate new buffer
 807			 * current buffer can be used again.
 808			 */
 809			curr_cons->page_offset -= rxq->rx_buf_seg_size;
 810
 811			return -ENOMEM;
 812		}
 813
 814		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
 815			       PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816	} else {
 817		/* Increment refcount of the page as we don't want
 818		 * network stack to take the ownership of the page
 819		 * which can be recycled multiple times by the driver.
 820		 */
 821		atomic_inc(&curr_cons->data->_count);
 822		qede_reuse_page(edev, rxq, curr_cons);
 823	}
 824
 825	return 0;
 826}
 827
 828static inline void qede_update_rx_prod(struct qede_dev *edev,
 829				       struct qede_rx_queue *rxq)
 830{
 831	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 832	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 833	struct eth_rx_prod_data rx_prods = {0};
 834
 835	/* Update producers */
 836	rx_prods.bd_prod = cpu_to_le16(bd_prod);
 837	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 838
 839	/* Make sure that the BD and SGE data is updated before updating the
 840	 * producers since FW might read the BD/SGE right after the producer
 841	 * is updated.
 842	 */
 843	wmb();
 844
 845	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 846			(u32 *)&rx_prods);
 847
 848	/* mmiowb is needed to synchronize doorbell writes from more than one
 849	 * processor. It guarantees that the write arrives to the device before
 850	 * the napi lock is released and another qede_poll is called (possibly
 851	 * on another CPU). Without this barrier, the next doorbell can bypass
 852	 * this doorbell. This is applicable to IA64/Altix systems.
 853	 */
 854	mmiowb();
 855}
 856
 857static u32 qede_get_rxhash(struct qede_dev *edev,
 858			   u8 bitfields,
 859			   __le32 rss_hash,
 860			   enum pkt_hash_types *rxhash_type)
 861{
 862	enum rss_hash_type htype;
 863
 864	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 865
 866	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
 867		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 868				(htype == RSS_HASH_TYPE_IPV6)) ?
 869				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 870		return le32_to_cpu(rss_hash);
 871	}
 872	*rxhash_type = PKT_HASH_TYPE_NONE;
 873	return 0;
 874}
 875
 876static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 
 877{
 878	skb_checksum_none_assert(skb);
 
 879
 880	if (csum_flag & QEDE_CSUM_UNNECESSARY)
 881		skb->ip_summed = CHECKSUM_UNNECESSARY;
 882}
 883
 884static inline void qede_skb_receive(struct qede_dev *edev,
 885				    struct qede_fastpath *fp,
 886				    struct sk_buff *skb,
 887				    u16 vlan_tag)
 888{
 889	if (vlan_tag)
 890		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 891				       vlan_tag);
 892
 893	napi_gro_receive(&fp->napi, skb);
 894}
 
 
 895
 896static void qede_set_gro_params(struct qede_dev *edev,
 897				struct sk_buff *skb,
 898				struct eth_fast_path_rx_tpa_start_cqe *cqe)
 899{
 900	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 901
 902	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 903	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 904		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 905	else
 906		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 907
 908	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 909					cqe->header_len;
 
 
 910}
 911
 912static int qede_fill_frag_skb(struct qede_dev *edev,
 913			      struct qede_rx_queue *rxq,
 914			      u8 tpa_agg_index,
 915			      u16 len_on_bd)
 916{
 917	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 918							 NUM_RX_BDS_MAX];
 919	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 920	struct sk_buff *skb = tpa_info->skb;
 921
 922	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
 923		goto out;
 924
 925	/* Add one frag and update the appropriate fields in the skb */
 926	skb_fill_page_desc(skb, tpa_info->frag_id++,
 927			   current_bd->data, current_bd->page_offset,
 928			   len_on_bd);
 929
 930	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
 931		/* Incr page ref count to reuse on allocation failure
 932		 * so that it doesn't get freed while freeing SKB.
 933		 */
 934		atomic_inc(&current_bd->data->_count);
 935		goto out;
 936	}
 937
 938	qed_chain_consume(&rxq->rx_bd_ring);
 939	rxq->sw_rx_cons++;
 940
 941	skb->data_len += len_on_bd;
 942	skb->truesize += rxq->rx_buf_seg_size;
 943	skb->len += len_on_bd;
 944
 945	return 0;
 946
 947out:
 948	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
 949	qede_recycle_rx_bd_ring(rxq, edev, 1);
 950	return -ENOMEM;
 951}
 952
 953static void qede_tpa_start(struct qede_dev *edev,
 954			   struct qede_rx_queue *rxq,
 955			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
 956{
 957	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 958	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
 959	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 960	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
 961	dma_addr_t mapping = tpa_info->replace_buf_mapping;
 962	struct sw_rx_data *sw_rx_data_cons;
 963	struct sw_rx_data *sw_rx_data_prod;
 964	enum pkt_hash_types rxhash_type;
 965	u32 rxhash;
 966
 967	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 968	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 969
 970	/* Use pre-allocated replacement buffer - we can't release the agg.
 971	 * start until its over and we don't want to risk allocation failing
 972	 * here, so re-allocate when aggregation will be over.
 973	 */
 974	dma_unmap_addr_set(sw_rx_data_prod, mapping,
 975			   dma_unmap_addr(replace_buf, mapping));
 976
 977	sw_rx_data_prod->data = replace_buf->data;
 978	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
 979	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
 980	sw_rx_data_prod->page_offset = replace_buf->page_offset;
 981
 982	rxq->sw_rx_prod++;
 983
 984	/* move partial skb from cons to pool (don't unmap yet)
 985	 * save mapping, incase we drop the packet later on.
 986	 */
 987	tpa_info->start_buf = *sw_rx_data_cons;
 988	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
 989			   le32_to_cpu(rx_bd_cons->addr.lo));
 990
 991	tpa_info->start_buf_mapping = mapping;
 992	rxq->sw_rx_cons++;
 993
 994	/* set tpa state to start only if we are able to allocate skb
 995	 * for this aggregation, otherwise mark as error and aggregation will
 996	 * be dropped
 997	 */
 998	tpa_info->skb = netdev_alloc_skb(edev->ndev,
 999					 le16_to_cpu(cqe->len_on_first_bd));
1000	if (unlikely(!tpa_info->skb)) {
1001		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1002		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1003		goto cons_buf;
1004	}
1005
1006	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1007	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1008
1009	/* Start filling in the aggregation info */
1010	tpa_info->frag_id = 0;
1011	tpa_info->agg_state = QEDE_AGG_STATE_START;
1012
1013	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1014				 cqe->rss_hash, &rxhash_type);
1015	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1016	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1017	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1018		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1019		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1020	else
1021		tpa_info->vlan_tag = 0;
1022
1023	/* This is needed in order to enable forwarding support */
1024	qede_set_gro_params(edev, tpa_info->skb, cqe);
1025
1026cons_buf: /* We still need to handle bd_len_list to consume buffers */
1027	if (likely(cqe->ext_bd_len_list[0]))
1028		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1029				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1030
1031	if (unlikely(cqe->ext_bd_len_list[1])) {
1032		DP_ERR(edev,
1033		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1034		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1035	}
1036}
1037
1038#ifdef CONFIG_INET
1039static void qede_gro_ip_csum(struct sk_buff *skb)
1040{
1041	const struct iphdr *iph = ip_hdr(skb);
1042	struct tcphdr *th;
1043
1044	skb_set_transport_header(skb, sizeof(struct iphdr));
1045	th = tcp_hdr(skb);
1046
1047	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1048				  iph->saddr, iph->daddr, 0);
1049
1050	tcp_gro_complete(skb);
1051}
1052
1053static void qede_gro_ipv6_csum(struct sk_buff *skb)
1054{
1055	struct ipv6hdr *iph = ipv6_hdr(skb);
1056	struct tcphdr *th;
1057
1058	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1059	th = tcp_hdr(skb);
1060
1061	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1062				  &iph->saddr, &iph->daddr, 0);
1063	tcp_gro_complete(skb);
1064}
1065#endif
1066
1067static void qede_gro_receive(struct qede_dev *edev,
1068			     struct qede_fastpath *fp,
1069			     struct sk_buff *skb,
1070			     u16 vlan_tag)
1071{
1072	/* FW can send a single MTU sized packet from gro flow
1073	 * due to aggregation timeout/last segment etc. which
1074	 * is not expected to be a gro packet. If a skb has zero
1075	 * frags then simply push it in the stack as non gso skb.
1076	 */
1077	if (unlikely(!skb->data_len)) {
1078		skb_shinfo(skb)->gso_type = 0;
1079		skb_shinfo(skb)->gso_size = 0;
1080		goto send_skb;
1081	}
1082
1083#ifdef CONFIG_INET
1084	if (skb_shinfo(skb)->gso_size) {
1085		skb_set_network_header(skb, 0);
1086
1087		switch (skb->protocol) {
1088		case htons(ETH_P_IP):
1089			qede_gro_ip_csum(skb);
1090			break;
1091		case htons(ETH_P_IPV6):
1092			qede_gro_ipv6_csum(skb);
1093			break;
1094		default:
1095			DP_ERR(edev,
1096			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1097			       ntohs(skb->protocol));
1098		}
1099	}
1100#endif
1101
1102send_skb:
1103	skb_record_rx_queue(skb, fp->rss_id);
1104	qede_skb_receive(edev, fp, skb, vlan_tag);
1105}
1106
1107static inline void qede_tpa_cont(struct qede_dev *edev,
1108				 struct qede_rx_queue *rxq,
1109				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1110{
1111	int i;
1112
1113	for (i = 0; cqe->len_list[i]; i++)
1114		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1115				   le16_to_cpu(cqe->len_list[i]));
1116
1117	if (unlikely(i > 1))
1118		DP_ERR(edev,
1119		       "Strange - TPA cont with more than a single len_list entry\n");
1120}
1121
1122static void qede_tpa_end(struct qede_dev *edev,
1123			 struct qede_fastpath *fp,
1124			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1125{
1126	struct qede_rx_queue *rxq = fp->rxq;
1127	struct qede_agg_info *tpa_info;
1128	struct sk_buff *skb;
1129	int i;
1130
1131	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1132	skb = tpa_info->skb;
1133
1134	for (i = 0; cqe->len_list[i]; i++)
1135		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1136				   le16_to_cpu(cqe->len_list[i]));
1137	if (unlikely(i > 1))
1138		DP_ERR(edev,
1139		       "Strange - TPA emd with more than a single len_list entry\n");
1140
1141	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1142		goto err;
1143
1144	/* Sanity */
1145	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1146		DP_ERR(edev,
1147		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1148		       cqe->num_of_bds, tpa_info->frag_id);
1149	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1150		DP_ERR(edev,
1151		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1152		       le16_to_cpu(cqe->total_packet_len), skb->len);
1153
1154	memcpy(skb->data,
1155	       page_address(tpa_info->start_buf.data) +
1156		tpa_info->start_cqe.placement_offset +
1157		tpa_info->start_buf.page_offset,
1158	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1159
1160	/* Recycle [mapped] start buffer for the next replacement */
1161	tpa_info->replace_buf = tpa_info->start_buf;
1162	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1163
1164	/* Finalize the SKB */
1165	skb->protocol = eth_type_trans(skb, edev->ndev);
1166	skb->ip_summed = CHECKSUM_UNNECESSARY;
1167
1168	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1169	 * to skb_shinfo(skb)->gso_segs
1170	 */
1171	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1172
1173	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1174
1175	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1176
1177	return;
1178err:
1179	/* The BD starting the aggregation is still mapped; Re-use it for
1180	 * future aggregations [as replacement buffer]
1181	 */
1182	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1183	       sizeof(struct sw_rx_data));
1184	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1185	tpa_info->start_buf.data = NULL;
1186	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1187	dev_kfree_skb_any(tpa_info->skb);
1188	tpa_info->skb = NULL;
1189}
1190
1191static u8 qede_check_csum(u16 flag)
1192{
1193	u16 csum_flag = 0;
1194	u8 csum = 0;
1195
1196	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1197	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
1198		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1199			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1200		csum = QEDE_CSUM_UNNECESSARY;
1201	}
1202
1203	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1204		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1205
1206	if (csum_flag & flag)
1207		return QEDE_CSUM_ERROR;
1208
1209	return csum;
1210}
1211
1212static int qede_rx_int(struct qede_fastpath *fp, int budget)
1213{
1214	struct qede_dev *edev = fp->edev;
1215	struct qede_rx_queue *rxq = fp->rxq;
1216
1217	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1218	int rx_pkt = 0;
1219	u8 csum_flag;
1220
1221	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1222	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1223
1224	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1225	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1226	 * read before it is written by FW, then FW writes CQE and SB, and then
1227	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1228	 */
1229	rmb();
1230
1231	/* Loop to complete all indicated BDs */
1232	while (sw_comp_cons != hw_comp_cons) {
1233		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1234		enum pkt_hash_types rxhash_type;
1235		enum eth_rx_cqe_type cqe_type;
1236		struct sw_rx_data *sw_rx_data;
1237		union eth_rx_cqe *cqe;
1238		struct sk_buff *skb;
1239		struct page *data;
1240		__le16 flags;
1241		u16 len, pad;
1242		u32 rx_hash;
1243
1244		/* Get the CQE from the completion ring */
1245		cqe = (union eth_rx_cqe *)
1246			qed_chain_consume(&rxq->rx_comp_ring);
1247		cqe_type = cqe->fast_path_regular.type;
1248
1249		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1250			edev->ops->eth_cqe_completion(
1251					edev->cdev, fp->rss_id,
1252					(struct eth_slow_path_rx_cqe *)cqe);
1253			goto next_cqe;
1254		}
1255
1256		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1257			switch (cqe_type) {
1258			case ETH_RX_CQE_TYPE_TPA_START:
1259				qede_tpa_start(edev, rxq,
1260					       &cqe->fast_path_tpa_start);
1261				goto next_cqe;
1262			case ETH_RX_CQE_TYPE_TPA_CONT:
1263				qede_tpa_cont(edev, rxq,
1264					      &cqe->fast_path_tpa_cont);
1265				goto next_cqe;
1266			case ETH_RX_CQE_TYPE_TPA_END:
1267				qede_tpa_end(edev, fp,
1268					     &cqe->fast_path_tpa_end);
1269				goto next_rx_only;
1270			default:
1271				break;
1272			}
1273		}
1274
1275		/* Get the data from the SW ring */
1276		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1277		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1278		data = sw_rx_data->data;
1279
1280		fp_cqe = &cqe->fast_path_regular;
1281		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1282		pad = fp_cqe->placement_offset;
1283		flags = cqe->fast_path_regular.pars_flags.flags;
1284
1285		/* If this is an error packet then drop it */
1286		parse_flag = le16_to_cpu(flags);
1287
1288		csum_flag = qede_check_csum(parse_flag);
1289		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1290			DP_NOTICE(edev,
1291				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1292				  sw_comp_cons, parse_flag);
1293			rxq->rx_hw_errors++;
1294			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1295			goto next_cqe;
1296		}
1297
1298		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1299		if (unlikely(!skb)) {
1300			DP_NOTICE(edev,
1301				  "Build_skb failed, dropping incoming packet\n");
1302			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1303			rxq->rx_alloc_errors++;
1304			goto next_cqe;
1305		}
1306
1307		/* Copy data into SKB */
1308		if (len + pad <= QEDE_RX_HDR_SIZE) {
1309			memcpy(skb_put(skb, len),
1310			       page_address(data) + pad +
1311				sw_rx_data->page_offset, len);
1312			qede_reuse_page(edev, rxq, sw_rx_data);
1313		} else {
1314			struct skb_frag_struct *frag;
1315			unsigned int pull_len;
1316			unsigned char *va;
1317
1318			frag = &skb_shinfo(skb)->frags[0];
1319
1320			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1321					pad + sw_rx_data->page_offset,
1322					len, rxq->rx_buf_seg_size);
1323
1324			va = skb_frag_address(frag);
1325			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1326
1327			/* Align the pull_len to optimize memcpy */
1328			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1329
1330			skb_frag_size_sub(frag, pull_len);
1331			frag->page_offset += pull_len;
1332			skb->data_len -= pull_len;
1333			skb->tail += pull_len;
1334
1335			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1336							    sw_rx_data))) {
1337				DP_ERR(edev, "Failed to allocate rx buffer\n");
1338				/* Incr page ref count to reuse on allocation
1339				 * failure so that it doesn't get freed while
1340				 * freeing SKB.
1341				 */
1342
1343				atomic_inc(&sw_rx_data->data->_count);
1344				rxq->rx_alloc_errors++;
1345				qede_recycle_rx_bd_ring(rxq, edev,
1346							fp_cqe->bd_num);
1347				dev_kfree_skb_any(skb);
1348				goto next_cqe;
1349			}
1350		}
1351
1352		qede_rx_bd_ring_consume(rxq);
1353
1354		if (fp_cqe->bd_num != 1) {
1355			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1356			u8 num_frags;
1357
1358			pkt_len -= len;
1359
1360			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1361			     num_frags--) {
1362				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1363						rxq->rx_buf_size : pkt_len;
1364				if (unlikely(!cur_size)) {
1365					DP_ERR(edev,
1366					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1367					       num_frags);
1368					qede_recycle_rx_bd_ring(rxq, edev,
1369								num_frags);
1370					dev_kfree_skb_any(skb);
1371					goto next_cqe;
1372				}
1373
1374				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1375					qede_recycle_rx_bd_ring(rxq, edev,
1376								num_frags);
1377					dev_kfree_skb_any(skb);
1378					goto next_cqe;
1379				}
1380
1381				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1382				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1383				qede_rx_bd_ring_consume(rxq);
1384
1385				dma_unmap_page(&edev->pdev->dev,
1386					       sw_rx_data->mapping,
1387					       PAGE_SIZE, DMA_FROM_DEVICE);
1388
1389				skb_fill_page_desc(skb,
1390						   skb_shinfo(skb)->nr_frags++,
1391						   sw_rx_data->data, 0,
1392						   cur_size);
1393
1394				skb->truesize += PAGE_SIZE;
1395				skb->data_len += cur_size;
1396				skb->len += cur_size;
1397				pkt_len -= cur_size;
1398			}
1399
1400			if (unlikely(pkt_len))
1401				DP_ERR(edev,
1402				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1403				       pkt_len);
1404		}
1405
1406		skb->protocol = eth_type_trans(skb, edev->ndev);
1407
1408		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1409					  fp_cqe->rss_hash,
1410					  &rxhash_type);
1411
1412		skb_set_hash(skb, rx_hash, rxhash_type);
1413
1414		qede_set_skb_csum(skb, csum_flag);
1415
1416		skb_record_rx_queue(skb, fp->rss_id);
1417
1418		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1419next_rx_only:
1420		rx_pkt++;
1421
1422next_cqe: /* don't consume bd rx buffer */
1423		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1424		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1425		/* CR TPA - revisit how to handle budget in TPA perhaps
1426		 * increase on "end"
1427		 */
1428		if (rx_pkt == budget)
1429			break;
1430	} /* repeat while sw_comp_cons != hw_comp_cons... */
1431
1432	/* Update producers */
1433	qede_update_rx_prod(edev, rxq);
1434
1435	return rx_pkt;
1436}
1437
1438static int qede_poll(struct napi_struct *napi, int budget)
1439{
1440	int work_done = 0;
1441	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1442						 napi);
1443	struct qede_dev *edev = fp->edev;
1444
1445	while (1) {
1446		u8 tc;
1447
1448		for (tc = 0; tc < edev->num_tc; tc++)
1449			if (qede_txq_has_work(&fp->txqs[tc]))
1450				qede_tx_int(edev, &fp->txqs[tc]);
1451
1452		if (qede_has_rx_work(fp->rxq)) {
1453			work_done += qede_rx_int(fp, budget - work_done);
1454
1455			/* must not complete if we consumed full budget */
1456			if (work_done >= budget)
1457				break;
1458		}
1459
1460		/* Fall out from the NAPI loop if needed */
1461		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1462			qed_sb_update_sb_idx(fp->sb_info);
1463			/* *_has_*_work() reads the status block,
1464			 * thus we need to ensure that status block indices
1465			 * have been actually read (qed_sb_update_sb_idx)
1466			 * prior to this check (*_has_*_work) so that
1467			 * we won't write the "newer" value of the status block
1468			 * to HW (if there was a DMA right after
1469			 * qede_has_rx_work and if there is no rmb, the memory
1470			 * reading (qed_sb_update_sb_idx) may be postponed
1471			 * to right before *_ack_sb). In this case there
1472			 * will never be another interrupt until there is
1473			 * another update of the status block, while there
1474			 * is still unhandled work.
1475			 */
1476			rmb();
1477
1478			if (!(qede_has_rx_work(fp->rxq) ||
1479			      qede_has_tx_work(fp))) {
1480				napi_complete(napi);
1481				/* Update and reenable interrupts */
1482				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1483					   1 /*update*/);
1484				break;
1485			}
1486		}
1487	}
1488
1489	return work_done;
1490}
1491
1492static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1493{
1494	struct qede_fastpath *fp = fp_cookie;
1495
1496	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1497
1498	napi_schedule_irqoff(&fp->napi);
1499	return IRQ_HANDLED;
1500}
1501
1502/* -------------------------------------------------------------------------
1503 * END OF FAST-PATH
1504 * -------------------------------------------------------------------------
1505 */
1506
1507static int qede_open(struct net_device *ndev);
1508static int qede_close(struct net_device *ndev);
1509static int qede_set_mac_addr(struct net_device *ndev, void *p);
1510static void qede_set_rx_mode(struct net_device *ndev);
1511static void qede_config_rx_mode(struct net_device *ndev);
1512
1513static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1514				 enum qed_filter_xcast_params_type opcode,
1515				 unsigned char mac[ETH_ALEN])
1516{
1517	struct qed_filter_params filter_cmd;
1518
1519	memset(&filter_cmd, 0, sizeof(filter_cmd));
1520	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1521	filter_cmd.filter.ucast.type = opcode;
1522	filter_cmd.filter.ucast.mac_valid = 1;
1523	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1524
1525	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1526}
1527
1528static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1529				  enum qed_filter_xcast_params_type opcode,
1530				  u16 vid)
1531{
1532	struct qed_filter_params filter_cmd;
1533
1534	memset(&filter_cmd, 0, sizeof(filter_cmd));
1535	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1536	filter_cmd.filter.ucast.type = opcode;
1537	filter_cmd.filter.ucast.vlan_valid = 1;
1538	filter_cmd.filter.ucast.vlan = vid;
1539
1540	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1541}
1542
1543void qede_fill_by_demand_stats(struct qede_dev *edev)
1544{
1545	struct qed_eth_stats stats;
1546
1547	edev->ops->get_vport_stats(edev->cdev, &stats);
1548	edev->stats.no_buff_discards = stats.no_buff_discards;
1549	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1550	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1551	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1552	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1553	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1554	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1555	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1556	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1557
1558	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1559	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1560	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1561	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1562	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1563	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1564	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1565	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1566	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1567	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1568	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1569	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1570
1571	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1572	edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1573	edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1574	edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1575	edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1576	edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1577	edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1578	edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1579	edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1580	edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1581	edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1582	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1583	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1584	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1585	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1586	edev->stats.rx_align_errors = stats.rx_align_errors;
1587	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1588	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1589	edev->stats.rx_jabbers = stats.rx_jabbers;
1590	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1591	edev->stats.rx_fragments = stats.rx_fragments;
1592	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1593	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1594	edev->stats.tx_128_to_255_byte_packets =
1595				stats.tx_128_to_255_byte_packets;
1596	edev->stats.tx_256_to_511_byte_packets =
1597				stats.tx_256_to_511_byte_packets;
1598	edev->stats.tx_512_to_1023_byte_packets =
1599				stats.tx_512_to_1023_byte_packets;
1600	edev->stats.tx_1024_to_1518_byte_packets =
1601				stats.tx_1024_to_1518_byte_packets;
1602	edev->stats.tx_1519_to_2047_byte_packets =
1603				stats.tx_1519_to_2047_byte_packets;
1604	edev->stats.tx_2048_to_4095_byte_packets =
1605				stats.tx_2048_to_4095_byte_packets;
1606	edev->stats.tx_4096_to_9216_byte_packets =
1607				stats.tx_4096_to_9216_byte_packets;
1608	edev->stats.tx_9217_to_16383_byte_packets =
1609				stats.tx_9217_to_16383_byte_packets;
1610	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1611	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1612	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1613	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1614	edev->stats.brb_truncates = stats.brb_truncates;
1615	edev->stats.brb_discards = stats.brb_discards;
1616	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1617}
1618
1619static struct rtnl_link_stats64 *qede_get_stats64(
1620			    struct net_device *dev,
1621			    struct rtnl_link_stats64 *stats)
1622{
1623	struct qede_dev *edev = netdev_priv(dev);
1624
1625	qede_fill_by_demand_stats(edev);
1626
1627	stats->rx_packets = edev->stats.rx_ucast_pkts +
1628			    edev->stats.rx_mcast_pkts +
1629			    edev->stats.rx_bcast_pkts;
1630	stats->tx_packets = edev->stats.tx_ucast_pkts +
1631			    edev->stats.tx_mcast_pkts +
1632			    edev->stats.tx_bcast_pkts;
1633
1634	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1635			  edev->stats.rx_mcast_bytes +
1636			  edev->stats.rx_bcast_bytes;
1637
1638	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1639			  edev->stats.tx_mcast_bytes +
1640			  edev->stats.tx_bcast_bytes;
1641
1642	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1643	stats->multicast = edev->stats.rx_mcast_pkts +
1644			   edev->stats.rx_bcast_pkts;
1645
1646	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1647
1648	stats->collisions = edev->stats.tx_total_collisions;
1649	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1650	stats->rx_frame_errors = edev->stats.rx_align_errors;
1651
1652	return stats;
1653}
 
1654
1655static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1656{
1657	struct qed_update_vport_params params;
1658	int rc;
1659
1660	/* Proceed only if action actually needs to be performed */
1661	if (edev->accept_any_vlan == action)
1662		return;
1663
1664	memset(&params, 0, sizeof(params));
1665
1666	params.vport_id = 0;
1667	params.accept_any_vlan = action;
1668	params.update_accept_any_vlan_flg = 1;
1669
1670	rc = edev->ops->vport_update(edev->cdev, &params);
1671	if (rc) {
1672		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1673		       action ? "enable" : "disable");
1674	} else {
1675		DP_INFO(edev, "%s accept-any-vlan\n",
1676			action ? "enabled" : "disabled");
1677		edev->accept_any_vlan = action;
1678	}
1679}
1680
1681static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1682{
1683	struct qede_dev *edev = netdev_priv(dev);
1684	struct qede_vlan *vlan, *tmp;
1685	int rc;
1686
1687	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1688
1689	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1690	if (!vlan) {
1691		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1692		return -ENOMEM;
1693	}
1694	INIT_LIST_HEAD(&vlan->list);
1695	vlan->vid = vid;
1696	vlan->configured = false;
1697
1698	/* Verify vlan isn't already configured */
1699	list_for_each_entry(tmp, &edev->vlan_list, list) {
1700		if (tmp->vid == vlan->vid) {
1701			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1702				   "vlan already configured\n");
1703			kfree(vlan);
1704			return -EEXIST;
1705		}
1706	}
1707
1708	/* If interface is down, cache this VLAN ID and return */
1709	if (edev->state != QEDE_STATE_OPEN) {
1710		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1711			   "Interface is down, VLAN %d will be configured when interface is up\n",
1712			   vid);
1713		if (vid != 0)
1714			edev->non_configured_vlans++;
1715		list_add(&vlan->list, &edev->vlan_list);
1716
1717		return 0;
 
 
 
 
 
 
1718	}
1719
1720	/* Check for the filter limit.
1721	 * Note - vlan0 has a reserved filter and can be added without
1722	 * worrying about quota
1723	 */
1724	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1725	    (vlan->vid == 0)) {
1726		rc = qede_set_ucast_rx_vlan(edev,
1727					    QED_FILTER_XCAST_TYPE_ADD,
1728					    vlan->vid);
1729		if (rc) {
1730			DP_ERR(edev, "Failed to configure VLAN %d\n",
1731			       vlan->vid);
1732			kfree(vlan);
1733			return -EINVAL;
1734		}
1735		vlan->configured = true;
1736
1737		/* vlan0 filter isn't consuming out of our quota */
1738		if (vlan->vid != 0)
1739			edev->configured_vlans++;
1740	} else {
1741		/* Out of quota; Activate accept-any-VLAN mode */
1742		if (!edev->non_configured_vlans)
1743			qede_config_accept_any_vlan(edev, true);
1744
1745		edev->non_configured_vlans++;
1746	}
1747
1748	list_add(&vlan->list, &edev->vlan_list);
1749
1750	return 0;
1751}
1752
1753static void qede_del_vlan_from_list(struct qede_dev *edev,
1754				    struct qede_vlan *vlan)
1755{
1756	/* vlan0 filter isn't consuming out of our quota */
1757	if (vlan->vid != 0) {
1758		if (vlan->configured)
1759			edev->configured_vlans--;
1760		else
1761			edev->non_configured_vlans--;
1762	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763
1764	list_del(&vlan->list);
1765	kfree(vlan);
1766}
1767
1768static int qede_configure_vlan_filters(struct qede_dev *edev)
1769{
1770	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1771	struct qed_dev_eth_info *dev_info;
1772	struct qede_vlan *vlan = NULL;
1773
1774	if (list_empty(&edev->vlan_list))
1775		return 0;
1776
1777	dev_info = &edev->dev_info;
 
 
 
1778
1779	/* Configure non-configured vlans */
1780	list_for_each_entry(vlan, &edev->vlan_list, list) {
1781		if (vlan->configured)
1782			continue;
1783
1784		/* We have used all our credits, now enable accept_any_vlan */
1785		if ((vlan->vid != 0) &&
1786		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
1787			accept_any_vlan = 1;
1788			continue;
1789		}
1790
1791		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1792
1793		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1794					    vlan->vid);
1795		if (rc) {
1796			DP_ERR(edev, "Failed to configure VLAN %u\n",
1797			       vlan->vid);
1798			real_rc = rc;
1799			continue;
1800		}
1801
1802		vlan->configured = true;
1803		/* vlan0 filter doesn't consume our VLAN filter's quota */
1804		if (vlan->vid != 0) {
1805			edev->non_configured_vlans--;
1806			edev->configured_vlans++;
1807		}
1808	}
1809
1810	/* enable accept_any_vlan mode if we have more VLANs than credits,
1811	 * or remove accept_any_vlan mode if we've actually removed
1812	 * a non-configured vlan, and all remaining vlans are truly configured.
1813	 */
1814
1815	if (accept_any_vlan)
1816		qede_config_accept_any_vlan(edev, true);
1817	else if (!edev->non_configured_vlans)
1818		qede_config_accept_any_vlan(edev, false);
1819
1820	return real_rc;
1821}
1822
1823static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1824{
1825	struct qede_dev *edev = netdev_priv(dev);
1826	struct qede_vlan *vlan = NULL;
1827	int rc;
1828
1829	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1830
1831	/* Find whether entry exists */
1832	list_for_each_entry(vlan, &edev->vlan_list, list)
1833		if (vlan->vid == vid)
1834			break;
1835
1836	if (!vlan || (vlan->vid != vid)) {
1837		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1838			   "Vlan isn't configured\n");
1839		return 0;
1840	}
1841
1842	if (edev->state != QEDE_STATE_OPEN) {
1843		/* As interface is already down, we don't have a VPORT
1844		 * instance to remove vlan filter. So just update vlan list
1845		 */
1846		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1847			   "Interface is down, removing VLAN from list only\n");
1848		qede_del_vlan_from_list(edev, vlan);
1849		return 0;
1850	}
1851
1852	/* Remove vlan */
1853	rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1854	if (rc) {
1855		DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1856		return -EINVAL;
1857	}
1858
1859	qede_del_vlan_from_list(edev, vlan);
1860
1861	/* We have removed a VLAN - try to see if we can
1862	 * configure non-configured VLAN from the list.
1863	 */
1864	rc = qede_configure_vlan_filters(edev);
1865
1866	return rc;
1867}
1868
1869static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1870{
1871	struct qede_vlan *vlan = NULL;
1872
1873	if (list_empty(&edev->vlan_list))
1874		return;
1875
1876	list_for_each_entry(vlan, &edev->vlan_list, list) {
1877		if (!vlan->configured)
1878			continue;
1879
1880		vlan->configured = false;
1881
1882		/* vlan0 filter isn't consuming out of our quota */
1883		if (vlan->vid != 0) {
1884			edev->non_configured_vlans++;
1885			edev->configured_vlans--;
1886		}
1887
1888		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1889			   "marked vlan %d as non-configured\n",
1890			   vlan->vid);
1891	}
1892
1893	edev->accept_any_vlan = false;
1894}
1895
1896static const struct net_device_ops qede_netdev_ops = {
1897	.ndo_open = qede_open,
1898	.ndo_stop = qede_close,
1899	.ndo_start_xmit = qede_start_xmit,
1900	.ndo_set_rx_mode = qede_set_rx_mode,
1901	.ndo_set_mac_address = qede_set_mac_addr,
1902	.ndo_validate_addr = eth_validate_addr,
1903	.ndo_change_mtu = qede_change_mtu,
1904	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1905	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 
 
1906	.ndo_get_stats64 = qede_get_stats64,
 
 
 
 
1907};
1908
1909/* -------------------------------------------------------------------------
1910 * START OF PROBE / REMOVE
1911 * -------------------------------------------------------------------------
1912 */
1913
1914static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1915					    struct pci_dev *pdev,
1916					    struct qed_dev_eth_info *info,
1917					    u32 dp_module,
1918					    u8 dp_level)
1919{
1920	struct net_device *ndev;
1921	struct qede_dev *edev;
1922
1923	ndev = alloc_etherdev_mqs(sizeof(*edev),
1924				  info->num_queues,
1925				  info->num_queues);
1926	if (!ndev) {
1927		pr_err("etherdev allocation failed\n");
1928		return NULL;
1929	}
1930
1931	edev = netdev_priv(ndev);
1932	edev->ndev = ndev;
1933	edev->cdev = cdev;
1934	edev->pdev = pdev;
1935	edev->dp_module = dp_module;
1936	edev->dp_level = dp_level;
1937	edev->ops = qed_ops;
1938	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1939	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1940
 
 
 
1941	SET_NETDEV_DEV(ndev, &pdev->dev);
1942
1943	memset(&edev->stats, 0, sizeof(edev->stats));
1944	memcpy(&edev->dev_info, info, sizeof(*info));
1945
1946	edev->num_tc = edev->dev_info.num_tc;
 
 
 
 
1947
1948	INIT_LIST_HEAD(&edev->vlan_list);
1949
1950	return edev;
1951}
1952
1953static void qede_init_ndev(struct qede_dev *edev)
1954{
1955	struct net_device *ndev = edev->ndev;
1956	struct pci_dev *pdev = edev->pdev;
1957	u32 hw_features;
 
1958
1959	pci_set_drvdata(pdev, ndev);
1960
1961	ndev->mem_start = edev->dev_info.common.pci_mem_start;
1962	ndev->base_addr = ndev->mem_start;
1963	ndev->mem_end = edev->dev_info.common.pci_mem_end;
1964	ndev->irq = edev->dev_info.common.pci_irq;
1965
1966	ndev->watchdog_timeo = TX_TIMEOUT;
1967
1968	ndev->netdev_ops = &qede_netdev_ops;
 
 
 
 
 
 
 
1969
1970	qede_set_ethtool_ops(ndev);
1971
 
 
1972	/* user-changeble features */
1973	hw_features = NETIF_F_GRO | NETIF_F_SG |
1974		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1975		      NETIF_F_TSO | NETIF_F_TSO6;
1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1978			      NETIF_F_HIGHDMA;
1979	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1980			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1981			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1982
1983	ndev->hw_features = hw_features;
1984
 
 
 
 
1985	/* Set network device HW mac */
1986	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 
 
1987}
1988
1989/* This function converts from 32b param to two params of level and module
1990 * Input 32b decoding:
1991 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1992 * 'happy' flow, e.g. memory allocation failed.
1993 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1994 * and provide important parameters.
1995 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1996 * module. VERBOSE prints are for tracking the specific flow in low level.
1997 *
1998 * Notice that the level should be that of the lowest required logs.
1999 */
2000void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2001{
2002	*p_dp_level = QED_LEVEL_NOTICE;
2003	*p_dp_module = 0;
2004
2005	if (debug & QED_LOG_VERBOSE_MASK) {
2006		*p_dp_level = QED_LEVEL_VERBOSE;
2007		*p_dp_module = (debug & 0x3FFFFFFF);
2008	} else if (debug & QED_LOG_INFO_MASK) {
2009		*p_dp_level = QED_LEVEL_INFO;
2010	} else if (debug & QED_LOG_NOTICE_MASK) {
2011		*p_dp_level = QED_LEVEL_NOTICE;
2012	}
2013}
2014
2015static void qede_free_fp_array(struct qede_dev *edev)
2016{
2017	if (edev->fp_array) {
2018		struct qede_fastpath *fp;
2019		int i;
2020
2021		for_each_rss(i) {
2022			fp = &edev->fp_array[i];
2023
2024			kfree(fp->sb_info);
 
 
 
 
 
 
2025			kfree(fp->rxq);
2026			kfree(fp->txqs);
 
2027		}
2028		kfree(edev->fp_array);
2029	}
2030	edev->num_rss = 0;
 
 
 
2031}
2032
2033static int qede_alloc_fp_array(struct qede_dev *edev)
2034{
 
2035	struct qede_fastpath *fp;
2036	int i;
2037
2038	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2039				 sizeof(*edev->fp_array), GFP_KERNEL);
2040	if (!edev->fp_array) {
2041		DP_NOTICE(edev, "fp array allocation failed\n");
2042		goto err;
2043	}
2044
2045	for_each_rss(i) {
 
 
 
 
 
 
 
2046		fp = &edev->fp_array[i];
2047
2048		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2049		if (!fp->sb_info) {
2050			DP_NOTICE(edev, "sb info struct allocation failed\n");
2051			goto err;
2052		}
2053
2054		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2055		if (!fp->rxq) {
2056			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2057			goto err;
 
 
 
 
2058		}
2059
2060		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2061		if (!fp->txqs) {
2062			DP_NOTICE(edev, "TXQ array allocation failed\n");
2063			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064		}
2065	}
2066
2067	return 0;
2068err:
2069	qede_free_fp_array(edev);
2070	return -ENOMEM;
2071}
2072
2073static void qede_sp_task(struct work_struct *work)
2074{
2075	struct qede_dev *edev = container_of(work, struct qede_dev,
2076					     sp_task.work);
2077	mutex_lock(&edev->qede_lock);
2078
2079	if (edev->state == QEDE_STATE_OPEN) {
2080		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
 
 
2081			qede_config_rx_mode(edev->ndev);
 
 
 
 
 
2082	}
2083
2084	mutex_unlock(&edev->qede_lock);
2085}
2086
2087static void qede_update_pf_params(struct qed_dev *cdev)
2088{
2089	struct qed_pf_params pf_params;
2090
2091	/* 64 rx + 64 tx */
2092	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2093	pf_params.eth_pf_params.num_cons = 128;
 
 
 
 
 
 
 
2094	qed_ops->common->update_pf_params(cdev, &pf_params);
2095}
2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097enum qede_probe_mode {
2098	QEDE_PROBE_NORMAL,
2099};
2100
2101static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2102			enum qede_probe_mode mode)
2103{
2104	struct qed_slowpath_params params;
 
2105	struct qed_dev_eth_info dev_info;
2106	struct qede_dev *edev;
2107	struct qed_dev *cdev;
2108	int rc;
2109
2110	if (unlikely(dp_level & QED_LEVEL_INFO))
2111		pr_notice("Starting qede probe\n");
2112
2113	cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
2114				      dp_module, dp_level);
 
 
 
 
2115	if (!cdev) {
2116		rc = -ENODEV;
2117		goto err0;
2118	}
2119
2120	qede_update_pf_params(cdev);
2121
2122	/* Start the Slowpath-process */
2123	memset(&params, 0, sizeof(struct qed_slowpath_params));
2124	params.int_mode = QED_INT_MODE_MSIX;
2125	params.drv_major = QEDE_MAJOR_VERSION;
2126	params.drv_minor = QEDE_MINOR_VERSION;
2127	params.drv_rev = QEDE_REVISION_VERSION;
2128	params.drv_eng = QEDE_ENGINEERING_VERSION;
2129	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2130	rc = qed_ops->common->slowpath_start(cdev, &params);
2131	if (rc) {
2132		pr_notice("Cannot start slowpath\n");
2133		goto err1;
2134	}
2135
2136	/* Learn information crucial for qede to progress */
2137	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2138	if (rc)
2139		goto err2;
2140
2141	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2142				   dp_level);
2143	if (!edev) {
2144		rc = -ENOMEM;
2145		goto err2;
2146	}
2147
 
 
 
2148	qede_init_ndev(edev);
2149
 
 
 
 
 
 
 
 
 
 
 
2150	rc = register_netdev(edev->ndev);
2151	if (rc) {
2152		DP_NOTICE(edev, "Cannot register net-device\n");
2153		goto err3;
2154	}
2155
2156	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
 
 
 
 
2157
2158	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2159
2160	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2161	mutex_init(&edev->qede_lock);
 
 
2162
2163	DP_INFO(edev, "Ending successfully qede probe\n");
2164
 
2165	return 0;
2166
 
 
2167err3:
2168	free_netdev(edev->ndev);
2169err2:
2170	qed_ops->common->slowpath_stop(cdev);
2171err1:
2172	qed_ops->common->remove(cdev);
2173err0:
2174	return rc;
2175}
2176
2177static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2178{
 
2179	u32 dp_module = 0;
2180	u8 dp_level = 0;
2181
 
 
 
 
 
 
 
 
 
 
 
2182	qede_config_debug(debug, &dp_module, &dp_level);
2183
2184	return __qede_probe(pdev, dp_module, dp_level,
2185			    QEDE_PROBE_NORMAL);
2186}
2187
2188enum qede_remove_mode {
2189	QEDE_REMOVE_NORMAL,
2190};
2191
2192static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2193{
2194	struct net_device *ndev = pci_get_drvdata(pdev);
2195	struct qede_dev *edev = netdev_priv(ndev);
2196	struct qed_dev *cdev = edev->cdev;
2197
2198	DP_INFO(edev, "Starting qede_remove\n");
2199
 
 
2200	cancel_delayed_work_sync(&edev->sp_task);
2201	unregister_netdev(ndev);
 
2202
2203	edev->ops->common->set_power_state(cdev, PCI_D0);
2204
2205	pci_set_drvdata(pdev, NULL);
2206
2207	free_netdev(ndev);
2208
2209	/* Use global ops since we've freed edev */
2210	qed_ops->common->slowpath_stop(cdev);
 
 
2211	qed_ops->common->remove(cdev);
2212
2213	pr_notice("Ending successfully qede_remove\n");
 
 
 
 
 
 
 
 
2214}
2215
2216static void qede_remove(struct pci_dev *pdev)
2217{
2218	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2219}
2220
 
 
 
 
 
2221/* -------------------------------------------------------------------------
2222 * START OF LOAD / UNLOAD
2223 * -------------------------------------------------------------------------
2224 */
2225
2226static int qede_set_num_queues(struct qede_dev *edev)
2227{
2228	int rc;
2229	u16 rss_num;
2230
2231	/* Setup queues according to possible resources*/
2232	if (edev->req_rss)
2233		rss_num = edev->req_rss;
2234	else
2235		rss_num = netif_get_num_default_rss_queues() *
2236			  edev->dev_info.common.num_hwfns;
2237
2238	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2239
2240	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2241	if (rc > 0) {
2242		/* Managed to request interrupts for our queues */
2243		edev->num_rss = rc;
2244		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2245			QEDE_RSS_CNT(edev), rss_num);
2246		rc = 0;
2247	}
 
 
 
 
2248	return rc;
2249}
2250
2251static void qede_free_mem_sb(struct qede_dev *edev,
2252			     struct qed_sb_info *sb_info)
2253{
2254	if (sb_info->sb_virt)
 
2255		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2256				  (void *)sb_info->sb_virt, sb_info->sb_phys);
 
 
2257}
2258
2259/* This function allocates fast-path status block memory */
2260static int qede_alloc_mem_sb(struct qede_dev *edev,
2261			     struct qed_sb_info *sb_info,
2262			     u16 sb_id)
2263{
2264	struct status_block *sb_virt;
2265	dma_addr_t sb_phys;
2266	int rc;
2267
2268	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2269				     sizeof(*sb_virt),
2270				     &sb_phys, GFP_KERNEL);
2271	if (!sb_virt) {
2272		DP_ERR(edev, "Status block allocation failed\n");
2273		return -ENOMEM;
2274	}
2275
2276	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2277					sb_virt, sb_phys, sb_id,
2278					QED_SB_TYPE_L2_QUEUE);
2279	if (rc) {
2280		DP_ERR(edev, "Status block initialization failed\n");
2281		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2282				  sb_virt, sb_phys);
2283		return rc;
2284	}
2285
2286	return 0;
2287}
2288
2289static void qede_free_rx_buffers(struct qede_dev *edev,
2290				 struct qede_rx_queue *rxq)
2291{
2292	u16 i;
2293
2294	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2295		struct sw_rx_data *rx_buf;
2296		struct page *data;
2297
2298		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2299		data = rx_buf->data;
2300
2301		dma_unmap_page(&edev->pdev->dev,
2302			       rx_buf->mapping,
2303			       PAGE_SIZE, DMA_FROM_DEVICE);
2304
2305		rx_buf->data = NULL;
2306		__free_page(data);
2307	}
2308}
2309
2310static void qede_free_sge_mem(struct qede_dev *edev,
2311			      struct qede_rx_queue *rxq) {
2312	int i;
2313
2314	if (edev->gro_disable)
2315		return;
2316
2317	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2318		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2319		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2320
2321		if (replace_buf->data) {
2322			dma_unmap_page(&edev->pdev->dev,
2323				       dma_unmap_addr(replace_buf, mapping),
2324				       PAGE_SIZE, DMA_FROM_DEVICE);
2325			__free_page(replace_buf->data);
2326		}
2327	}
2328}
2329
2330static void qede_free_mem_rxq(struct qede_dev *edev,
2331			      struct qede_rx_queue *rxq)
2332{
2333	qede_free_sge_mem(edev, rxq);
2334
2335	/* Free rx buffers */
2336	qede_free_rx_buffers(edev, rxq);
2337
2338	/* Free the parallel SW ring */
2339	kfree(rxq->sw_rx_ring);
2340
2341	/* Free the real RQ ring used by FW */
2342	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2343	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2344}
2345
2346static int qede_alloc_rx_buffer(struct qede_dev *edev,
2347				struct qede_rx_queue *rxq)
2348{
2349	struct sw_rx_data *sw_rx_data;
2350	struct eth_rx_bd *rx_bd;
2351	dma_addr_t mapping;
2352	struct page *data;
2353	u16 rx_buf_size;
2354
2355	rx_buf_size = rxq->rx_buf_size;
2356
2357	data = alloc_pages(GFP_ATOMIC, 0);
2358	if (unlikely(!data)) {
2359		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2360		return -ENOMEM;
2361	}
2362
2363	/* Map the entire page as it would be used
2364	 * for multiple RX buffer segment size mapping.
2365	 */
2366	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2367			       PAGE_SIZE, DMA_FROM_DEVICE);
2368	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2369		__free_page(data);
2370		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2371		return -ENOMEM;
2372	}
2373
2374	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2375	sw_rx_data->page_offset = 0;
2376	sw_rx_data->data = data;
2377	sw_rx_data->mapping = mapping;
2378
2379	/* Advance PROD and get BD pointer */
2380	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2381	WARN_ON(!rx_bd);
2382	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2383	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2384
2385	rxq->sw_rx_prod++;
2386
2387	return 0;
2388}
2389
2390static int qede_alloc_sge_mem(struct qede_dev *edev,
2391			      struct qede_rx_queue *rxq)
2392{
2393	dma_addr_t mapping;
2394	int i;
2395
2396	if (edev->gro_disable)
2397		return 0;
2398
2399	if (edev->ndev->mtu > PAGE_SIZE) {
2400		edev->gro_disable = 1;
2401		return 0;
2402	}
2403
2404	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2405		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2406		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2407
2408		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2409		if (unlikely(!replace_buf->data)) {
2410			DP_NOTICE(edev,
2411				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2412			goto err;
2413		}
2414
2415		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2416				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2417		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2418			DP_NOTICE(edev,
2419				  "Failed to map TPA replacement buffer\n");
2420			goto err;
2421		}
2422
2423		dma_unmap_addr_set(replace_buf, mapping, mapping);
2424		tpa_info->replace_buf.page_offset = 0;
2425
2426		tpa_info->replace_buf_mapping = mapping;
2427		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2428	}
2429
2430	return 0;
2431err:
2432	qede_free_sge_mem(edev, rxq);
2433	edev->gro_disable = 1;
 
2434	return -ENOMEM;
2435}
2436
2437/* This function allocates all memory needed per Rx queue */
2438static int qede_alloc_mem_rxq(struct qede_dev *edev,
2439			      struct qede_rx_queue *rxq)
2440{
2441	int i, rc, size;
2442
2443	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2444
2445	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2446			   edev->ndev->mtu;
2447	if (rxq->rx_buf_size > PAGE_SIZE)
2448		rxq->rx_buf_size = PAGE_SIZE;
2449
2450	/* Segment size to spilt a page in multiple equal parts */
2451	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
 
 
 
 
 
 
 
 
 
2452
2453	/* Allocate the parallel driver ring for Rx buffers */
2454	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2455	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2456	if (!rxq->sw_rx_ring) {
2457		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2458		rc = -ENOMEM;
2459		goto err;
2460	}
2461
2462	/* Allocate FW Rx ring  */
2463	rc = edev->ops->common->chain_alloc(edev->cdev,
2464					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2465					    QED_CHAIN_MODE_NEXT_PTR,
 
2466					    RX_RING_SIZE,
2467					    sizeof(struct eth_rx_bd),
2468					    &rxq->rx_bd_ring);
2469
2470	if (rc)
2471		goto err;
2472
2473	/* Allocate FW completion ring */
2474	rc = edev->ops->common->chain_alloc(edev->cdev,
2475					    QED_CHAIN_USE_TO_CONSUME,
2476					    QED_CHAIN_MODE_PBL,
 
2477					    RX_RING_SIZE,
2478					    sizeof(union eth_rx_cqe),
2479					    &rxq->rx_comp_ring);
2480	if (rc)
2481		goto err;
2482
2483	/* Allocate buffers for the Rx ring */
 
2484	for (i = 0; i < rxq->num_rx_buffers; i++) {
2485		rc = qede_alloc_rx_buffer(edev, rxq);
2486		if (rc) {
2487			DP_ERR(edev,
2488			       "Rx buffers allocation failed at index %d\n", i);
2489			goto err;
2490		}
2491	}
2492
2493	rc = qede_alloc_sge_mem(edev, rxq);
2494err:
2495	return rc;
2496}
2497
2498static void qede_free_mem_txq(struct qede_dev *edev,
2499			      struct qede_tx_queue *txq)
2500{
2501	/* Free the parallel SW ring */
2502	kfree(txq->sw_tx_ring);
 
 
 
2503
2504	/* Free the real RQ ring used by FW */
2505	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2506}
2507
2508/* This function allocates all memory needed per Tx queue */
2509static int qede_alloc_mem_txq(struct qede_dev *edev,
2510			      struct qede_tx_queue *txq)
2511{
 
2512	int size, rc;
2513	union eth_tx_bd_types *p_virt;
2514
2515	txq->num_tx_buffers = edev->q_num_tx_buffers;
2516
2517	/* Allocate the parallel driver ring for Tx buffers */
2518	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2519	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2520	if (!txq->sw_tx_ring) {
2521		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2522		goto err;
 
 
 
 
 
2523	}
2524
2525	rc = edev->ops->common->chain_alloc(edev->cdev,
2526					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2527					    QED_CHAIN_MODE_PBL,
2528					    NUM_TX_BDS_MAX,
 
2529					    sizeof(*p_virt),
2530					    &txq->tx_pbl);
2531	if (rc)
2532		goto err;
2533
2534	return 0;
2535
2536err:
2537	qede_free_mem_txq(edev, txq);
2538	return -ENOMEM;
2539}
2540
2541/* This function frees all memory of a single fp */
2542static void qede_free_mem_fp(struct qede_dev *edev,
2543			     struct qede_fastpath *fp)
2544{
2545	int tc;
2546
2547	qede_free_mem_sb(edev, fp->sb_info);
 
2548
2549	qede_free_mem_rxq(edev, fp->rxq);
 
2550
2551	for (tc = 0; tc < edev->num_tc; tc++)
2552		qede_free_mem_txq(edev, &fp->txqs[tc]);
2553}
2554
2555/* This function allocates all memory needed for a single fp (i.e. an entity
2556 * which contains status block, one rx queue and multiple per-TC tx queues.
2557 */
2558static int qede_alloc_mem_fp(struct qede_dev *edev,
2559			     struct qede_fastpath *fp)
2560{
2561	int rc, tc;
2562
2563	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2564	if (rc)
2565		goto err;
 
 
 
 
 
 
2566
2567	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2568	if (rc)
2569		goto err;
 
 
2570
2571	for (tc = 0; tc < edev->num_tc; tc++) {
2572		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2573		if (rc)
2574			goto err;
2575	}
2576
2577	return 0;
2578err:
2579	return rc;
2580}
2581
2582static void qede_free_mem_load(struct qede_dev *edev)
2583{
2584	int i;
2585
2586	for_each_rss(i) {
2587		struct qede_fastpath *fp = &edev->fp_array[i];
2588
2589		qede_free_mem_fp(edev, fp);
2590	}
2591}
2592
2593/* This function allocates all qede memory at NIC load. */
2594static int qede_alloc_mem_load(struct qede_dev *edev)
2595{
2596	int rc = 0, rss_id;
2597
2598	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2599		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2600
2601		rc = qede_alloc_mem_fp(edev, fp);
2602		if (rc) {
2603			DP_ERR(edev,
2604			       "Failed to allocate memory for fastpath - rss id = %d\n",
2605			       rss_id);
2606			qede_free_mem_load(edev);
2607			return rc;
2608		}
2609	}
2610
2611	return 0;
2612}
2613
2614/* This function inits fp content and resets the SB, RXQ and TXQ structures */
2615static void qede_init_fp(struct qede_dev *edev)
2616{
2617	int rss_id, txq_index, tc;
2618	struct qede_fastpath *fp;
2619
2620	for_each_rss(rss_id) {
2621		fp = &edev->fp_array[rss_id];
2622
2623		fp->edev = edev;
2624		fp->rss_id = rss_id;
2625
2626		memset((void *)&fp->napi, 0, sizeof(fp->napi));
2627
2628		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2629
2630		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2631		fp->rxq->rxq_id = rss_id;
2632
2633		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2634		for (tc = 0; tc < edev->num_tc; tc++) {
2635			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2636			fp->txqs[tc].index = txq_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637		}
2638
2639		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2640			 edev->ndev->name, rss_id);
2641	}
2642
2643	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2644}
2645
2646static int qede_set_real_num_queues(struct qede_dev *edev)
2647{
2648	int rc = 0;
2649
2650	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2651	if (rc) {
2652		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2653		return rc;
2654	}
2655	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
 
2656	if (rc) {
2657		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2658		return rc;
2659	}
2660
2661	return 0;
2662}
2663
2664static void qede_napi_disable_remove(struct qede_dev *edev)
2665{
2666	int i;
2667
2668	for_each_rss(i) {
2669		napi_disable(&edev->fp_array[i].napi);
2670
2671		netif_napi_del(&edev->fp_array[i].napi);
2672	}
2673}
2674
2675static void qede_napi_add_enable(struct qede_dev *edev)
2676{
2677	int i;
2678
2679	/* Add NAPI objects */
2680	for_each_rss(i) {
2681		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2682			       qede_poll, NAPI_POLL_WEIGHT);
2683		napi_enable(&edev->fp_array[i].napi);
2684	}
2685}
2686
2687static void qede_sync_free_irqs(struct qede_dev *edev)
2688{
2689	int i;
2690
2691	for (i = 0; i < edev->int_info.used_cnt; i++) {
2692		if (edev->int_info.msix_cnt) {
2693			synchronize_irq(edev->int_info.msix[i].vector);
2694			free_irq(edev->int_info.msix[i].vector,
2695				 &edev->fp_array[i]);
2696		} else {
2697			edev->ops->common->simd_handler_clean(edev->cdev, i);
2698		}
2699	}
2700
2701	edev->int_info.used_cnt = 0;
2702}
2703
2704static int qede_req_msix_irqs(struct qede_dev *edev)
2705{
2706	int i, rc;
2707
2708	/* Sanitize number of interrupts == number of prepared RSS queues */
2709	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2710		DP_ERR(edev,
2711		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2712		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2713		return -EINVAL;
2714	}
2715
2716	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
 
 
 
 
 
 
 
 
 
 
 
 
2717		rc = request_irq(edev->int_info.msix[i].vector,
2718				 qede_msix_fp_int, 0, edev->fp_array[i].name,
2719				 &edev->fp_array[i]);
2720		if (rc) {
2721			DP_ERR(edev, "Request fp %d irq failed\n", i);
2722			qede_sync_free_irqs(edev);
2723			return rc;
2724		}
2725		DP_VERBOSE(edev, NETIF_MSG_INTR,
2726			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2727			   edev->fp_array[i].name, i,
2728			   &edev->fp_array[i]);
2729		edev->int_info.used_cnt++;
2730	}
2731
2732	return 0;
2733}
2734
2735static void qede_simd_fp_handler(void *cookie)
2736{
2737	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2738
2739	napi_schedule_irqoff(&fp->napi);
2740}
2741
2742static int qede_setup_irqs(struct qede_dev *edev)
2743{
2744	int i, rc = 0;
2745
2746	/* Learn Interrupt configuration */
2747	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2748	if (rc)
2749		return rc;
2750
2751	if (edev->int_info.msix_cnt) {
2752		rc = qede_req_msix_irqs(edev);
2753		if (rc)
2754			return rc;
2755		edev->ndev->irq = edev->int_info.msix[0].vector;
2756	} else {
2757		const struct qed_common_ops *ops;
2758
2759		/* qed should learn receive the RSS ids and callbacks */
2760		ops = edev->ops->common;
2761		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2762			ops->simd_handler_config(edev->cdev,
2763						 &edev->fp_array[i], i,
2764						 qede_simd_fp_handler);
2765		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2766	}
2767	return 0;
2768}
2769
2770static int qede_drain_txq(struct qede_dev *edev,
2771			  struct qede_tx_queue *txq,
2772			  bool allow_drain)
2773{
2774	int rc, cnt = 1000;
2775
2776	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2777		if (!cnt) {
2778			if (allow_drain) {
2779				DP_NOTICE(edev,
2780					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2781					  txq->index);
2782				rc = edev->ops->common->drain(edev->cdev);
2783				if (rc)
2784					return rc;
2785				return qede_drain_txq(edev, txq, false);
2786			}
2787			DP_NOTICE(edev,
2788				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2789				  txq->index, txq->sw_tx_prod,
2790				  txq->sw_tx_cons);
2791			return -ENODEV;
2792		}
2793		cnt--;
2794		usleep_range(1000, 2000);
2795		barrier();
2796	}
2797
2798	/* FW finished processing, wait for HW to transmit all tx packets */
2799	usleep_range(1000, 2000);
2800
2801	return 0;
2802}
2803
 
 
 
 
 
 
2804static int qede_stop_queues(struct qede_dev *edev)
2805{
2806	struct qed_update_vport_params vport_update_params;
2807	struct qed_dev *cdev = edev->cdev;
2808	int rc, tc, i;
 
2809
2810	/* Disable the vport */
2811	memset(&vport_update_params, 0, sizeof(vport_update_params));
2812	vport_update_params.vport_id = 0;
2813	vport_update_params.update_vport_active_flg = 1;
2814	vport_update_params.vport_active_flg = 0;
2815	vport_update_params.update_rss_flg = 0;
 
 
 
 
 
 
2816
2817	rc = edev->ops->vport_update(cdev, &vport_update_params);
2818	if (rc) {
2819		DP_ERR(edev, "Failed to update vport\n");
2820		return rc;
2821	}
2822
2823	/* Flush Tx queues. If needed, request drain from MCP */
2824	for_each_rss(i) {
2825		struct qede_fastpath *fp = &edev->fp_array[i];
2826
2827		for (tc = 0; tc < edev->num_tc; tc++) {
2828			struct qede_tx_queue *txq = &fp->txqs[tc];
 
 
 
2829
2830			rc = qede_drain_txq(edev, txq, true);
 
2831			if (rc)
2832				return rc;
2833		}
2834	}
2835
2836	/* Stop all Queues in reverse order*/
2837	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2838		struct qed_stop_rxq_params rx_params;
2839
2840		/* Stop the Tx Queue(s)*/
2841		for (tc = 0; tc < edev->num_tc; tc++) {
2842			struct qed_stop_txq_params tx_params;
2843
2844			tx_params.rss_id = i;
2845			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2846			rc = edev->ops->q_tx_stop(cdev, &tx_params);
 
 
 
2847			if (rc) {
2848				DP_ERR(edev, "Failed to stop TXQ #%d\n",
2849				       tx_params.tx_queue_id);
2850				return rc;
2851			}
2852		}
2853
2854		/* Stop the Rx Queue*/
2855		memset(&rx_params, 0, sizeof(rx_params));
2856		rx_params.rss_id = i;
2857		rx_params.rx_queue_id = i;
 
2858
2859		rc = edev->ops->q_rx_stop(cdev, &rx_params);
2860		if (rc) {
2861			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2862			return rc;
2863		}
2864	}
2865
2866	/* Stop the vport */
2867	rc = edev->ops->vport_stop(cdev, 0);
2868	if (rc)
2869		DP_ERR(edev, "Failed to stop VPORT\n");
2870
2871	return rc;
2872}
2873
2874static int qede_start_queues(struct qede_dev *edev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875{
2876	int rc, tc, i;
2877	int vlan_removal_en = 1;
2878	struct qed_dev *cdev = edev->cdev;
2879	struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2880	struct qed_update_vport_params vport_update_params;
2881	struct qed_queue_start_common_params q_params;
2882	struct qed_start_vport_params start = {0};
 
2883
2884	if (!edev->num_rss) {
2885		DP_ERR(edev,
2886		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2887		return -EINVAL;
2888	}
2889
 
 
 
 
 
2890	start.gro_enable = !edev->gro_disable;
2891	start.mtu = edev->ndev->mtu;
2892	start.vport_id = 0;
2893	start.drop_ttl0 = true;
2894	start.remove_inner_vlan = vlan_removal_en;
 
2895
2896	rc = edev->ops->vport_start(cdev, &start);
2897
2898	if (rc) {
2899		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2900		return rc;
2901	}
2902
2903	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2904		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2905		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2906
2907	for_each_rss(i) {
2908		struct qede_fastpath *fp = &edev->fp_array[i];
2909		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2910
2911		memset(&q_params, 0, sizeof(q_params));
2912		q_params.rss_id = i;
2913		q_params.queue_id = i;
2914		q_params.vport_id = 0;
2915		q_params.sb = fp->sb_info->igu_sb_id;
2916		q_params.sb_idx = RX_PI;
2917
2918		rc = edev->ops->q_rx_start(cdev, &q_params,
2919					   fp->rxq->rx_buf_size,
2920					   fp->rxq->rx_bd_ring.p_phys_addr,
2921					   phys_table,
2922					   fp->rxq->rx_comp_ring.page_cnt,
2923					   &fp->rxq->hw_rxq_prod_addr);
2924		if (rc) {
2925			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2926			return rc;
2927		}
2928
2929		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2930
2931		qede_update_rx_prod(edev, fp->rxq);
2932
2933		for (tc = 0; tc < edev->num_tc; tc++) {
2934			struct qede_tx_queue *txq = &fp->txqs[tc];
2935			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2936
 
2937			memset(&q_params, 0, sizeof(q_params));
2938			q_params.rss_id = i;
2939			q_params.queue_id = txq_index;
2940			q_params.vport_id = 0;
2941			q_params.sb = fp->sb_info->igu_sb_id;
2942			q_params.sb_idx = TX_PI(tc);
2943
2944			rc = edev->ops->q_tx_start(cdev, &q_params,
2945						   txq->tx_pbl.pbl.p_phys_table,
2946						   txq->tx_pbl.page_cnt,
2947						   &txq->doorbell_addr);
 
 
 
 
 
2948			if (rc) {
2949				DP_ERR(edev, "Start TXQ #%d failed %d\n",
2950				       txq_index, rc);
2951				return rc;
2952			}
2953
2954			txq->hw_cons_ptr =
2955				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2956			SET_FIELD(txq->tx_db.data.params,
2957				  ETH_DB_DATA_DEST, DB_DEST_XCM);
2958			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2959				  DB_AGG_CMD_SET);
2960			SET_FIELD(txq->tx_db.data.params,
2961				  ETH_DB_DATA_AGG_VAL_SEL,
2962				  DQ_XCM_ETH_TX_BD_PROD_CMD);
 
 
 
 
 
 
 
 
 
 
 
 
 
2963
2964			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
 
 
 
2965		}
2966	}
2967
2968	/* Prepare and send the vport enable */
2969	memset(&vport_update_params, 0, sizeof(vport_update_params));
2970	vport_update_params.vport_id = start.vport_id;
2971	vport_update_params.update_vport_active_flg = 1;
2972	vport_update_params.vport_active_flg = 1;
2973
2974	/* Fill struct with RSS params */
2975	if (QEDE_RSS_CNT(edev) > 1) {
2976		vport_update_params.update_rss_flg = 1;
2977		for (i = 0; i < 128; i++)
2978			rss_params->rss_ind_table[i] =
2979			ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2980		netdev_rss_key_fill(rss_params->rss_key,
2981				    sizeof(rss_params->rss_key));
2982	} else {
2983		memset(rss_params, 0, sizeof(*rss_params));
2984	}
2985	memcpy(&vport_update_params.rss_params, rss_params,
2986	       sizeof(*rss_params));
2987
2988	rc = edev->ops->vport_update(cdev, &vport_update_params);
2989	if (rc) {
2990		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2991		return rc;
2992	}
2993
2994	return 0;
2995}
2996
2997static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2998				 enum qed_filter_xcast_params_type opcode,
2999				 unsigned char *mac, int num_macs)
3000{
3001	struct qed_filter_params filter_cmd;
3002	int i;
3003
3004	memset(&filter_cmd, 0, sizeof(filter_cmd));
3005	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3006	filter_cmd.filter.mcast.type = opcode;
3007	filter_cmd.filter.mcast.num = num_macs;
3008
3009	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3010		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3011
3012	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3013}
3014
3015enum qede_unload_mode {
3016	QEDE_UNLOAD_NORMAL,
3017};
3018
3019static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
 
3020{
3021	struct qed_link_params link_params;
3022	int rc;
3023
3024	DP_INFO(edev, "Starting qede unload\n");
3025
3026	mutex_lock(&edev->qede_lock);
 
 
3027	edev->state = QEDE_STATE_CLOSED;
3028
 
 
3029	/* Close OS Tx */
3030	netif_tx_disable(edev->ndev);
3031	netif_carrier_off(edev->ndev);
3032
3033	/* Reset the link */
3034	memset(&link_params, 0, sizeof(link_params));
3035	link_params.link_up = false;
3036	edev->ops->common->set_link(edev->cdev, &link_params);
3037	rc = qede_stop_queues(edev);
3038	if (rc) {
3039		qede_sync_free_irqs(edev);
3040		goto out;
3041	}
3042
3043	DP_INFO(edev, "Stopped Queues\n");
3044
3045	qede_vlan_mark_nonconfigured(edev);
3046	edev->ops->fastpath_stop(edev->cdev);
3047
 
 
 
 
 
3048	/* Release the interrupts */
3049	qede_sync_free_irqs(edev);
3050	edev->ops->common->set_fp_int(edev->cdev, 0);
3051
3052	qede_napi_disable_remove(edev);
3053
3054	qede_free_mem_load(edev);
3055	qede_free_fp_array(edev);
3056
3057out:
3058	mutex_unlock(&edev->qede_lock);
 
3059	DP_INFO(edev, "Ending qede unload\n");
3060}
3061
3062enum qede_load_mode {
3063	QEDE_LOAD_NORMAL,
 
3064};
3065
3066static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
 
3067{
3068	struct qed_link_params link_params;
3069	struct qed_link_output link_output;
3070	int rc;
3071
3072	DP_INFO(edev, "Starting qede load\n");
3073
 
 
 
3074	rc = qede_set_num_queues(edev);
3075	if (rc)
3076		goto err0;
3077
3078	rc = qede_alloc_fp_array(edev);
3079	if (rc)
3080		goto err0;
3081
3082	qede_init_fp(edev);
3083
3084	rc = qede_alloc_mem_load(edev);
3085	if (rc)
3086		goto err1;
3087	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3088		QEDE_RSS_CNT(edev), edev->num_tc);
3089
3090	rc = qede_set_real_num_queues(edev);
3091	if (rc)
3092		goto err2;
3093
 
 
 
 
 
 
3094	qede_napi_add_enable(edev);
3095	DP_INFO(edev, "Napi added and enabled\n");
3096
3097	rc = qede_setup_irqs(edev);
3098	if (rc)
3099		goto err3;
3100	DP_INFO(edev, "Setup IRQs succeeded\n");
3101
3102	rc = qede_start_queues(edev);
3103	if (rc)
3104		goto err4;
3105	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3106
3107	/* Add primary mac and set Rx filters */
3108	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3109
3110	mutex_lock(&edev->qede_lock);
3111	edev->state = QEDE_STATE_OPEN;
3112	mutex_unlock(&edev->qede_lock);
3113
3114	/* Program un-configured VLANs */
3115	qede_configure_vlan_filters(edev);
3116
3117	/* Ask for link-up using current configuration */
3118	memset(&link_params, 0, sizeof(link_params));
3119	link_params.link_up = true;
3120	edev->ops->common->set_link(edev->cdev, &link_params);
3121
3122	/* Query whether link is already-up */
3123	memset(&link_output, 0, sizeof(link_output));
3124	edev->ops->common->get_link(edev->cdev, &link_output);
3125	qede_link_update(edev, &link_output);
3126
3127	DP_INFO(edev, "Ending successfully qede load\n");
3128
3129	return 0;
3130
3131err4:
3132	qede_sync_free_irqs(edev);
3133	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3134err3:
3135	qede_napi_disable_remove(edev);
3136err2:
3137	qede_free_mem_load(edev);
3138err1:
3139	edev->ops->common->set_fp_int(edev->cdev, 0);
3140	qede_free_fp_array(edev);
3141	edev->num_rss = 0;
3142err0:
 
 
 
 
 
3143	return rc;
3144}
3145
 
 
 
3146void qede_reload(struct qede_dev *edev,
3147		 void (*func)(struct qede_dev *, union qede_reload_args *),
3148		 union qede_reload_args *args)
3149{
3150	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3151	/* Call function handler to update parameters
3152	 * needed for function load.
 
 
 
3153	 */
3154	if (func)
3155		func(edev, args);
3156
3157	qede_load(edev, QEDE_LOAD_NORMAL);
 
 
 
 
 
 
 
3158
3159	mutex_lock(&edev->qede_lock);
3160	qede_config_rx_mode(edev->ndev);
3161	mutex_unlock(&edev->qede_lock);
3162}
3163
3164/* called with rtnl_lock */
3165static int qede_open(struct net_device *ndev)
3166{
3167	struct qede_dev *edev = netdev_priv(ndev);
 
3168
3169	netif_carrier_off(ndev);
3170
3171	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3172
3173	return qede_load(edev, QEDE_LOAD_NORMAL);
 
 
 
 
 
 
 
 
3174}
3175
3176static int qede_close(struct net_device *ndev)
3177{
3178	struct qede_dev *edev = netdev_priv(ndev);
3179
3180	qede_unload(edev, QEDE_UNLOAD_NORMAL);
 
 
3181
3182	return 0;
3183}
3184
3185static void qede_link_update(void *dev, struct qed_link_output *link)
3186{
3187	struct qede_dev *edev = dev;
3188
3189	if (!netif_running(edev->ndev)) {
3190		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3191		return;
3192	}
3193
3194	if (link->link_up) {
3195		if (!netif_carrier_ok(edev->ndev)) {
3196			DP_NOTICE(edev, "Link is up\n");
3197			netif_tx_start_all_queues(edev->ndev);
3198			netif_carrier_on(edev->ndev);
 
3199		}
3200	} else {
3201		if (netif_carrier_ok(edev->ndev)) {
3202			DP_NOTICE(edev, "Link is down\n");
3203			netif_tx_disable(edev->ndev);
3204			netif_carrier_off(edev->ndev);
 
3205		}
3206	}
3207}
3208
3209static int qede_set_mac_addr(struct net_device *ndev, void *p)
3210{
3211	struct qede_dev *edev = netdev_priv(ndev);
3212	struct sockaddr *addr = p;
3213	int rc;
3214
3215	ASSERT_RTNL(); /* @@@TBD To be removed */
3216
3217	DP_INFO(edev, "Set_mac_addr called\n");
3218
3219	if (!is_valid_ether_addr(addr->sa_data)) {
3220		DP_NOTICE(edev, "The MAC address is not valid\n");
3221		return -EFAULT;
3222	}
3223
3224	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3225
3226	if (!netif_running(ndev))  {
3227		DP_NOTICE(edev, "The device is currently down\n");
3228		return 0;
3229	}
3230
3231	/* Remove the previous primary mac */
3232	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3233				   edev->primary_mac);
3234	if (rc)
3235		return rc;
3236
3237	/* Add MAC filter according to the new unicast HW MAC address */
3238	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3239	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3240				      edev->primary_mac);
3241}
3242
3243static int
3244qede_configure_mcast_filtering(struct net_device *ndev,
3245			       enum qed_filter_rx_mode_type *accept_flags)
3246{
3247	struct qede_dev *edev = netdev_priv(ndev);
3248	unsigned char *mc_macs, *temp;
3249	struct netdev_hw_addr *ha;
3250	int rc = 0, mc_count;
3251	size_t size;
3252
3253	size = 64 * ETH_ALEN;
3254
3255	mc_macs = kzalloc(size, GFP_KERNEL);
3256	if (!mc_macs) {
3257		DP_NOTICE(edev,
3258			  "Failed to allocate memory for multicast MACs\n");
3259		rc = -ENOMEM;
3260		goto exit;
3261	}
3262
3263	temp = mc_macs;
3264
3265	/* Remove all previously configured MAC filters */
3266	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3267				   mc_macs, 1);
3268	if (rc)
3269		goto exit;
3270
3271	netif_addr_lock_bh(ndev);
3272
3273	mc_count = netdev_mc_count(ndev);
3274	if (mc_count < 64) {
3275		netdev_for_each_mc_addr(ha, ndev) {
3276			ether_addr_copy(temp, ha->addr);
3277			temp += ETH_ALEN;
3278		}
3279	}
3280
3281	netif_addr_unlock_bh(ndev);
3282
3283	/* Check for all multicast @@@TBD resource allocation */
3284	if ((ndev->flags & IFF_ALLMULTI) ||
3285	    (mc_count > 64)) {
3286		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3287			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3288	} else {
3289		/* Add all multicast MAC filters */
3290		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3291					   mc_macs, mc_count);
3292	}
3293
3294exit:
3295	kfree(mc_macs);
3296	return rc;
3297}
3298
3299static void qede_set_rx_mode(struct net_device *ndev)
3300{
3301	struct qede_dev *edev = netdev_priv(ndev);
3302
3303	DP_INFO(edev, "qede_set_rx_mode called\n");
3304
3305	if (edev->state != QEDE_STATE_OPEN) {
3306		DP_INFO(edev,
3307			"qede_set_rx_mode called while interface is down\n");
3308	} else {
3309		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3310		schedule_delayed_work(&edev->sp_task, 0);
3311	}
3312}
3313
3314/* Must be called with qede_lock held */
3315static void qede_config_rx_mode(struct net_device *ndev)
3316{
3317	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3318	struct qede_dev *edev = netdev_priv(ndev);
3319	struct qed_filter_params rx_mode;
3320	unsigned char *uc_macs, *temp;
3321	struct netdev_hw_addr *ha;
3322	int rc, uc_count;
3323	size_t size;
3324
3325	netif_addr_lock_bh(ndev);
3326
3327	uc_count = netdev_uc_count(ndev);
3328	size = uc_count * ETH_ALEN;
3329
3330	uc_macs = kzalloc(size, GFP_ATOMIC);
3331	if (!uc_macs) {
3332		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3333		netif_addr_unlock_bh(ndev);
3334		return;
3335	}
3336
3337	temp = uc_macs;
3338	netdev_for_each_uc_addr(ha, ndev) {
3339		ether_addr_copy(temp, ha->addr);
3340		temp += ETH_ALEN;
3341	}
3342
3343	netif_addr_unlock_bh(ndev);
3344
3345	/* Configure the struct for the Rx mode */
3346	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3347	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3348
3349	/* Remove all previous unicast secondary macs and multicast macs
3350	 * (configrue / leave the primary mac)
3351	 */
3352	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3353				   edev->primary_mac);
3354	if (rc)
3355		goto out;
3356
3357	/* Check for promiscuous */
3358	if ((ndev->flags & IFF_PROMISC) ||
3359	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3360		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3361	} else {
3362		/* Add MAC filters according to the unicast secondary macs */
3363		int i;
3364
3365		temp = uc_macs;
3366		for (i = 0; i < uc_count; i++) {
3367			rc = qede_set_ucast_rx_mac(edev,
3368						   QED_FILTER_XCAST_TYPE_ADD,
3369						   temp);
3370			if (rc)
3371				goto out;
3372
3373			temp += ETH_ALEN;
3374		}
3375
3376		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3377		if (rc)
3378			goto out;
3379	}
3380
3381	/* take care of VLAN mode */
3382	if (ndev->flags & IFF_PROMISC) {
3383		qede_config_accept_any_vlan(edev, true);
3384	} else if (!edev->non_configured_vlans) {
3385		/* It's possible that accept_any_vlan mode is set due to a
3386		 * previous setting of IFF_PROMISC. If vlan credits are
3387		 * sufficient, disable accept_any_vlan.
3388		 */
3389		qede_config_accept_any_vlan(edev, false);
3390	}
3391
3392	rx_mode.filter.accept_flags = accept_flags;
3393	edev->ops->filter_config(edev->cdev, &rx_mode);
3394out:
3395	kfree(uc_macs);
3396}