Loading...
1/* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/version.h>
35#include <linux/device.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/errno.h>
40#include <linux/list.h>
41#include <linux/string.h>
42#include <linux/dma-mapping.h>
43#include <linux/interrupt.h>
44#include <asm/byteorder.h>
45#include <asm/param.h>
46#include <linux/io.h>
47#include <linux/netdev_features.h>
48#include <linux/udp.h>
49#include <linux/tcp.h>
50#include <net/udp_tunnel.h>
51#include <linux/ip.h>
52#include <net/ipv6.h>
53#include <net/tcp.h>
54#include <linux/if_ether.h>
55#include <linux/if_vlan.h>
56#include <linux/pkt_sched.h>
57#include <linux/ethtool.h>
58#include <linux/in.h>
59#include <linux/random.h>
60#include <net/ip6_checksum.h>
61#include <linux/bitops.h>
62#include <linux/vmalloc.h>
63#include "qede.h"
64#include "qede_ptp.h"
65
66static char version[] =
67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70MODULE_LICENSE("GPL");
71MODULE_VERSION(DRV_MODULE_VERSION);
72
73static uint debug;
74module_param(debug, uint, 0);
75MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77static const struct qed_eth_ops *qed_ops;
78
79#define CHIP_NUM_57980S_40 0x1634
80#define CHIP_NUM_57980S_10 0x1666
81#define CHIP_NUM_57980S_MF 0x1636
82#define CHIP_NUM_57980S_100 0x1644
83#define CHIP_NUM_57980S_50 0x1654
84#define CHIP_NUM_57980S_25 0x1656
85#define CHIP_NUM_57980S_IOV 0x1664
86#define CHIP_NUM_AH 0x8070
87#define CHIP_NUM_AH_IOV 0x8090
88
89#ifndef PCI_DEVICE_ID_NX2_57980E
90#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
91#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
92#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
93#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
94#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
95#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
96#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
97#define PCI_DEVICE_ID_AH CHIP_NUM_AH
98#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
99
100#endif
101
102enum qede_pci_private {
103 QEDE_PRIVATE_PF,
104 QEDE_PRIVATE_VF
105};
106
107static const struct pci_device_id qede_pci_tbl[] = {
108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114#ifdef CONFIG_QED_SRIOV
115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116#endif
117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118#ifdef CONFIG_QED_SRIOV
119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120#endif
121 { 0 }
122};
123
124MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128#define TX_TIMEOUT (5 * HZ)
129
130/* Utilize last protocol index for XDP */
131#define XDP_PI 11
132
133static void qede_remove(struct pci_dev *pdev);
134static void qede_shutdown(struct pci_dev *pdev);
135static void qede_link_update(void *dev, struct qed_link_output *link);
136
137/* The qede lock is used to protect driver state change and driver flows that
138 * are not reentrant.
139 */
140void __qede_lock(struct qede_dev *edev)
141{
142 mutex_lock(&edev->qede_lock);
143}
144
145void __qede_unlock(struct qede_dev *edev)
146{
147 mutex_unlock(&edev->qede_lock);
148}
149
150#ifdef CONFIG_QED_SRIOV
151static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152 __be16 vlan_proto)
153{
154 struct qede_dev *edev = netdev_priv(ndev);
155
156 if (vlan > 4095) {
157 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158 return -EINVAL;
159 }
160
161 if (vlan_proto != htons(ETH_P_8021Q))
162 return -EPROTONOSUPPORT;
163
164 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165 vlan, vf);
166
167 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168}
169
170static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171{
172 struct qede_dev *edev = netdev_priv(ndev);
173
174 DP_VERBOSE(edev, QED_MSG_IOV,
175 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177
178 if (!is_valid_ether_addr(mac)) {
179 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180 return -EINVAL;
181 }
182
183 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184}
185
186static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187{
188 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189 struct qed_dev_info *qed_info = &edev->dev_info.common;
190 struct qed_update_vport_params *vport_params;
191 int rc;
192
193 vport_params = vzalloc(sizeof(*vport_params));
194 if (!vport_params)
195 return -ENOMEM;
196 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197
198 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199
200 /* Enable/Disable Tx switching for PF */
201 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203 vport_params->vport_id = 0;
204 vport_params->update_tx_switching_flg = 1;
205 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206 edev->ops->vport_update(edev->cdev, vport_params);
207 }
208
209 vfree(vport_params);
210 return rc;
211}
212#endif
213
214static struct pci_driver qede_pci_driver = {
215 .name = "qede",
216 .id_table = qede_pci_tbl,
217 .probe = qede_probe,
218 .remove = qede_remove,
219 .shutdown = qede_shutdown,
220#ifdef CONFIG_QED_SRIOV
221 .sriov_configure = qede_sriov_configure,
222#endif
223};
224
225static struct qed_eth_cb_ops qede_ll_ops = {
226 {
227#ifdef CONFIG_RFS_ACCEL
228 .arfs_filter_op = qede_arfs_filter_op,
229#endif
230 .link_update = qede_link_update,
231 },
232 .force_mac = qede_force_mac,
233 .ports_update = qede_udp_ports_update,
234};
235
236static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237 void *ptr)
238{
239 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240 struct ethtool_drvinfo drvinfo;
241 struct qede_dev *edev;
242
243 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244 goto done;
245
246 /* Check whether this is a qede device */
247 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248 goto done;
249
250 memset(&drvinfo, 0, sizeof(drvinfo));
251 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252 if (strcmp(drvinfo.driver, "qede"))
253 goto done;
254 edev = netdev_priv(ndev);
255
256 switch (event) {
257 case NETDEV_CHANGENAME:
258 /* Notify qed of the name change */
259 if (!edev->ops || !edev->ops->common)
260 goto done;
261 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262 break;
263 case NETDEV_CHANGEADDR:
264 edev = netdev_priv(ndev);
265 qede_rdma_event_changeaddr(edev);
266 break;
267 }
268
269done:
270 return NOTIFY_DONE;
271}
272
273static struct notifier_block qede_netdev_notifier = {
274 .notifier_call = qede_netdev_event,
275};
276
277static
278int __init qede_init(void)
279{
280 int ret;
281
282 pr_info("qede_init: %s\n", version);
283
284 qed_ops = qed_get_eth_ops();
285 if (!qed_ops) {
286 pr_notice("Failed to get qed ethtool operations\n");
287 return -EINVAL;
288 }
289
290 /* Must register notifier before pci ops, since we might miss
291 * interface rename after pci probe and netdev registration.
292 */
293 ret = register_netdevice_notifier(&qede_netdev_notifier);
294 if (ret) {
295 pr_notice("Failed to register netdevice_notifier\n");
296 qed_put_eth_ops();
297 return -EINVAL;
298 }
299
300 ret = pci_register_driver(&qede_pci_driver);
301 if (ret) {
302 pr_notice("Failed to register driver\n");
303 unregister_netdevice_notifier(&qede_netdev_notifier);
304 qed_put_eth_ops();
305 return -EINVAL;
306 }
307
308 return 0;
309}
310
311static void __exit qede_cleanup(void)
312{
313 if (debug & QED_LOG_INFO_MASK)
314 pr_info("qede_cleanup called\n");
315
316 unregister_netdevice_notifier(&qede_netdev_notifier);
317 pci_unregister_driver(&qede_pci_driver);
318 qed_put_eth_ops();
319}
320
321module_init(qede_init);
322module_exit(qede_cleanup);
323
324static int qede_open(struct net_device *ndev);
325static int qede_close(struct net_device *ndev);
326
327void qede_fill_by_demand_stats(struct qede_dev *edev)
328{
329 struct qede_stats_common *p_common = &edev->stats.common;
330 struct qed_eth_stats stats;
331
332 edev->ops->get_vport_stats(edev->cdev, &stats);
333
334 p_common->no_buff_discards = stats.common.no_buff_discards;
335 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336 p_common->ttl0_discard = stats.common.ttl0_discard;
337 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344 p_common->mac_filter_discards = stats.common.mac_filter_discards;
345
346 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354 p_common->coalesced_events = stats.common.tpa_coalesced_events;
355 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358
359 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360 p_common->rx_65_to_127_byte_packets =
361 stats.common.rx_65_to_127_byte_packets;
362 p_common->rx_128_to_255_byte_packets =
363 stats.common.rx_128_to_255_byte_packets;
364 p_common->rx_256_to_511_byte_packets =
365 stats.common.rx_256_to_511_byte_packets;
366 p_common->rx_512_to_1023_byte_packets =
367 stats.common.rx_512_to_1023_byte_packets;
368 p_common->rx_1024_to_1518_byte_packets =
369 stats.common.rx_1024_to_1518_byte_packets;
370 p_common->rx_crc_errors = stats.common.rx_crc_errors;
371 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372 p_common->rx_pause_frames = stats.common.rx_pause_frames;
373 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374 p_common->rx_align_errors = stats.common.rx_align_errors;
375 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377 p_common->rx_jabbers = stats.common.rx_jabbers;
378 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379 p_common->rx_fragments = stats.common.rx_fragments;
380 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381 p_common->tx_65_to_127_byte_packets =
382 stats.common.tx_65_to_127_byte_packets;
383 p_common->tx_128_to_255_byte_packets =
384 stats.common.tx_128_to_255_byte_packets;
385 p_common->tx_256_to_511_byte_packets =
386 stats.common.tx_256_to_511_byte_packets;
387 p_common->tx_512_to_1023_byte_packets =
388 stats.common.tx_512_to_1023_byte_packets;
389 p_common->tx_1024_to_1518_byte_packets =
390 stats.common.tx_1024_to_1518_byte_packets;
391 p_common->tx_pause_frames = stats.common.tx_pause_frames;
392 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393 p_common->brb_truncates = stats.common.brb_truncates;
394 p_common->brb_discards = stats.common.brb_discards;
395 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396
397 if (QEDE_IS_BB(edev)) {
398 struct qede_stats_bb *p_bb = &edev->stats.bb;
399
400 p_bb->rx_1519_to_1522_byte_packets =
401 stats.bb.rx_1519_to_1522_byte_packets;
402 p_bb->rx_1519_to_2047_byte_packets =
403 stats.bb.rx_1519_to_2047_byte_packets;
404 p_bb->rx_2048_to_4095_byte_packets =
405 stats.bb.rx_2048_to_4095_byte_packets;
406 p_bb->rx_4096_to_9216_byte_packets =
407 stats.bb.rx_4096_to_9216_byte_packets;
408 p_bb->rx_9217_to_16383_byte_packets =
409 stats.bb.rx_9217_to_16383_byte_packets;
410 p_bb->tx_1519_to_2047_byte_packets =
411 stats.bb.tx_1519_to_2047_byte_packets;
412 p_bb->tx_2048_to_4095_byte_packets =
413 stats.bb.tx_2048_to_4095_byte_packets;
414 p_bb->tx_4096_to_9216_byte_packets =
415 stats.bb.tx_4096_to_9216_byte_packets;
416 p_bb->tx_9217_to_16383_byte_packets =
417 stats.bb.tx_9217_to_16383_byte_packets;
418 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420 } else {
421 struct qede_stats_ah *p_ah = &edev->stats.ah;
422
423 p_ah->rx_1519_to_max_byte_packets =
424 stats.ah.rx_1519_to_max_byte_packets;
425 p_ah->tx_1519_to_max_byte_packets =
426 stats.ah.tx_1519_to_max_byte_packets;
427 }
428}
429
430static void qede_get_stats64(struct net_device *dev,
431 struct rtnl_link_stats64 *stats)
432{
433 struct qede_dev *edev = netdev_priv(dev);
434 struct qede_stats_common *p_common;
435
436 qede_fill_by_demand_stats(edev);
437 p_common = &edev->stats.common;
438
439 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440 p_common->rx_bcast_pkts;
441 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442 p_common->tx_bcast_pkts;
443
444 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445 p_common->rx_bcast_bytes;
446 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447 p_common->tx_bcast_bytes;
448
449 stats->tx_errors = p_common->tx_err_drop_pkts;
450 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451
452 stats->rx_fifo_errors = p_common->no_buff_discards;
453
454 if (QEDE_IS_BB(edev))
455 stats->collisions = edev->stats.bb.tx_total_collisions;
456 stats->rx_crc_errors = p_common->rx_crc_errors;
457 stats->rx_frame_errors = p_common->rx_align_errors;
458}
459
460#ifdef CONFIG_QED_SRIOV
461static int qede_get_vf_config(struct net_device *dev, int vfidx,
462 struct ifla_vf_info *ivi)
463{
464 struct qede_dev *edev = netdev_priv(dev);
465
466 if (!edev->ops)
467 return -EINVAL;
468
469 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470}
471
472static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473 int min_tx_rate, int max_tx_rate)
474{
475 struct qede_dev *edev = netdev_priv(dev);
476
477 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478 max_tx_rate);
479}
480
481static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482{
483 struct qede_dev *edev = netdev_priv(dev);
484
485 if (!edev->ops)
486 return -EINVAL;
487
488 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489}
490
491static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492 int link_state)
493{
494 struct qede_dev *edev = netdev_priv(dev);
495
496 if (!edev->ops)
497 return -EINVAL;
498
499 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500}
501
502static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503{
504 struct qede_dev *edev = netdev_priv(dev);
505
506 if (!edev->ops)
507 return -EINVAL;
508
509 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510}
511#endif
512
513static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514{
515 struct qede_dev *edev = netdev_priv(dev);
516
517 if (!netif_running(dev))
518 return -EAGAIN;
519
520 switch (cmd) {
521 case SIOCSHWTSTAMP:
522 return qede_ptp_hw_ts(edev, ifr);
523 default:
524 DP_VERBOSE(edev, QED_MSG_DEBUG,
525 "default IOCTL cmd 0x%x\n", cmd);
526 return -EOPNOTSUPP;
527 }
528
529 return 0;
530}
531
532static const struct net_device_ops qede_netdev_ops = {
533 .ndo_open = qede_open,
534 .ndo_stop = qede_close,
535 .ndo_start_xmit = qede_start_xmit,
536 .ndo_set_rx_mode = qede_set_rx_mode,
537 .ndo_set_mac_address = qede_set_mac_addr,
538 .ndo_validate_addr = eth_validate_addr,
539 .ndo_change_mtu = qede_change_mtu,
540 .ndo_do_ioctl = qede_ioctl,
541#ifdef CONFIG_QED_SRIOV
542 .ndo_set_vf_mac = qede_set_vf_mac,
543 .ndo_set_vf_vlan = qede_set_vf_vlan,
544 .ndo_set_vf_trust = qede_set_vf_trust,
545#endif
546 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548 .ndo_fix_features = qede_fix_features,
549 .ndo_set_features = qede_set_features,
550 .ndo_get_stats64 = qede_get_stats64,
551#ifdef CONFIG_QED_SRIOV
552 .ndo_set_vf_link_state = qede_set_vf_link_state,
553 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554 .ndo_get_vf_config = qede_get_vf_config,
555 .ndo_set_vf_rate = qede_set_vf_rate,
556#endif
557 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
558 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
559 .ndo_features_check = qede_features_check,
560 .ndo_bpf = qede_xdp,
561#ifdef CONFIG_RFS_ACCEL
562 .ndo_rx_flow_steer = qede_rx_flow_steer,
563#endif
564};
565
566static const struct net_device_ops qede_netdev_vf_ops = {
567 .ndo_open = qede_open,
568 .ndo_stop = qede_close,
569 .ndo_start_xmit = qede_start_xmit,
570 .ndo_set_rx_mode = qede_set_rx_mode,
571 .ndo_set_mac_address = qede_set_mac_addr,
572 .ndo_validate_addr = eth_validate_addr,
573 .ndo_change_mtu = qede_change_mtu,
574 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576 .ndo_fix_features = qede_fix_features,
577 .ndo_set_features = qede_set_features,
578 .ndo_get_stats64 = qede_get_stats64,
579 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
580 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
581 .ndo_features_check = qede_features_check,
582};
583
584static const struct net_device_ops qede_netdev_vf_xdp_ops = {
585 .ndo_open = qede_open,
586 .ndo_stop = qede_close,
587 .ndo_start_xmit = qede_start_xmit,
588 .ndo_set_rx_mode = qede_set_rx_mode,
589 .ndo_set_mac_address = qede_set_mac_addr,
590 .ndo_validate_addr = eth_validate_addr,
591 .ndo_change_mtu = qede_change_mtu,
592 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
593 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
594 .ndo_fix_features = qede_fix_features,
595 .ndo_set_features = qede_set_features,
596 .ndo_get_stats64 = qede_get_stats64,
597 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
598 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
599 .ndo_features_check = qede_features_check,
600 .ndo_bpf = qede_xdp,
601};
602
603/* -------------------------------------------------------------------------
604 * START OF PROBE / REMOVE
605 * -------------------------------------------------------------------------
606 */
607
608static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
609 struct pci_dev *pdev,
610 struct qed_dev_eth_info *info,
611 u32 dp_module, u8 dp_level)
612{
613 struct net_device *ndev;
614 struct qede_dev *edev;
615
616 ndev = alloc_etherdev_mqs(sizeof(*edev),
617 info->num_queues, info->num_queues);
618 if (!ndev) {
619 pr_err("etherdev allocation failed\n");
620 return NULL;
621 }
622
623 edev = netdev_priv(ndev);
624 edev->ndev = ndev;
625 edev->cdev = cdev;
626 edev->pdev = pdev;
627 edev->dp_module = dp_module;
628 edev->dp_level = dp_level;
629 edev->ops = qed_ops;
630 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
631 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
632
633 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
634 info->num_queues, info->num_queues);
635
636 SET_NETDEV_DEV(ndev, &pdev->dev);
637
638 memset(&edev->stats, 0, sizeof(edev->stats));
639 memcpy(&edev->dev_info, info, sizeof(*info));
640
641 /* As ethtool doesn't have the ability to show WoL behavior as
642 * 'default', if device supports it declare it's enabled.
643 */
644 if (edev->dev_info.common.wol_support)
645 edev->wol_enabled = true;
646
647 INIT_LIST_HEAD(&edev->vlan_list);
648
649 return edev;
650}
651
652static void qede_init_ndev(struct qede_dev *edev)
653{
654 struct net_device *ndev = edev->ndev;
655 struct pci_dev *pdev = edev->pdev;
656 bool udp_tunnel_enable = false;
657 netdev_features_t hw_features;
658
659 pci_set_drvdata(pdev, ndev);
660
661 ndev->mem_start = edev->dev_info.common.pci_mem_start;
662 ndev->base_addr = ndev->mem_start;
663 ndev->mem_end = edev->dev_info.common.pci_mem_end;
664 ndev->irq = edev->dev_info.common.pci_irq;
665
666 ndev->watchdog_timeo = TX_TIMEOUT;
667
668 if (IS_VF(edev)) {
669 if (edev->dev_info.xdp_supported)
670 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
671 else
672 ndev->netdev_ops = &qede_netdev_vf_ops;
673 } else {
674 ndev->netdev_ops = &qede_netdev_ops;
675 }
676
677 qede_set_ethtool_ops(ndev);
678
679 ndev->priv_flags |= IFF_UNICAST_FLT;
680
681 /* user-changeble features */
682 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
683 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
684 NETIF_F_TSO | NETIF_F_TSO6;
685
686 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
687 hw_features |= NETIF_F_NTUPLE;
688
689 if (edev->dev_info.common.vxlan_enable ||
690 edev->dev_info.common.geneve_enable)
691 udp_tunnel_enable = true;
692
693 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
694 hw_features |= NETIF_F_TSO_ECN;
695 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
696 NETIF_F_SG | NETIF_F_TSO |
697 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
698 NETIF_F_RXCSUM;
699 }
700
701 if (udp_tunnel_enable) {
702 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
703 NETIF_F_GSO_UDP_TUNNEL_CSUM);
704 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
705 NETIF_F_GSO_UDP_TUNNEL_CSUM);
706 }
707
708 if (edev->dev_info.common.gre_enable) {
709 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
710 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
711 NETIF_F_GSO_GRE_CSUM);
712 }
713
714 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
715 NETIF_F_HIGHDMA;
716 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
717 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
718 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
719
720 ndev->hw_features = hw_features;
721
722 /* MTU range: 46 - 9600 */
723 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
724 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
725
726 /* Set network device HW mac */
727 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
728
729 ndev->mtu = edev->dev_info.common.mtu;
730}
731
732/* This function converts from 32b param to two params of level and module
733 * Input 32b decoding:
734 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
735 * 'happy' flow, e.g. memory allocation failed.
736 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
737 * and provide important parameters.
738 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
739 * module. VERBOSE prints are for tracking the specific flow in low level.
740 *
741 * Notice that the level should be that of the lowest required logs.
742 */
743void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
744{
745 *p_dp_level = QED_LEVEL_NOTICE;
746 *p_dp_module = 0;
747
748 if (debug & QED_LOG_VERBOSE_MASK) {
749 *p_dp_level = QED_LEVEL_VERBOSE;
750 *p_dp_module = (debug & 0x3FFFFFFF);
751 } else if (debug & QED_LOG_INFO_MASK) {
752 *p_dp_level = QED_LEVEL_INFO;
753 } else if (debug & QED_LOG_NOTICE_MASK) {
754 *p_dp_level = QED_LEVEL_NOTICE;
755 }
756}
757
758static void qede_free_fp_array(struct qede_dev *edev)
759{
760 if (edev->fp_array) {
761 struct qede_fastpath *fp;
762 int i;
763
764 for_each_queue(i) {
765 fp = &edev->fp_array[i];
766
767 kfree(fp->sb_info);
768 /* Handle mem alloc failure case where qede_init_fp
769 * didn't register xdp_rxq_info yet.
770 * Implicit only (fp->type & QEDE_FASTPATH_RX)
771 */
772 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
773 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
774 kfree(fp->rxq);
775 kfree(fp->xdp_tx);
776 kfree(fp->txq);
777 }
778 kfree(edev->fp_array);
779 }
780
781 edev->num_queues = 0;
782 edev->fp_num_tx = 0;
783 edev->fp_num_rx = 0;
784}
785
786static int qede_alloc_fp_array(struct qede_dev *edev)
787{
788 u8 fp_combined, fp_rx = edev->fp_num_rx;
789 struct qede_fastpath *fp;
790 int i;
791
792 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
793 sizeof(*edev->fp_array), GFP_KERNEL);
794 if (!edev->fp_array) {
795 DP_NOTICE(edev, "fp array allocation failed\n");
796 goto err;
797 }
798
799 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
800
801 /* Allocate the FP elements for Rx queues followed by combined and then
802 * the Tx. This ordering should be maintained so that the respective
803 * queues (Rx or Tx) will be together in the fastpath array and the
804 * associated ids will be sequential.
805 */
806 for_each_queue(i) {
807 fp = &edev->fp_array[i];
808
809 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
810 if (!fp->sb_info) {
811 DP_NOTICE(edev, "sb info struct allocation failed\n");
812 goto err;
813 }
814
815 if (fp_rx) {
816 fp->type = QEDE_FASTPATH_RX;
817 fp_rx--;
818 } else if (fp_combined) {
819 fp->type = QEDE_FASTPATH_COMBINED;
820 fp_combined--;
821 } else {
822 fp->type = QEDE_FASTPATH_TX;
823 }
824
825 if (fp->type & QEDE_FASTPATH_TX) {
826 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
827 if (!fp->txq)
828 goto err;
829 }
830
831 if (fp->type & QEDE_FASTPATH_RX) {
832 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
833 if (!fp->rxq)
834 goto err;
835
836 if (edev->xdp_prog) {
837 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
838 GFP_KERNEL);
839 if (!fp->xdp_tx)
840 goto err;
841 fp->type |= QEDE_FASTPATH_XDP;
842 }
843 }
844 }
845
846 return 0;
847err:
848 qede_free_fp_array(edev);
849 return -ENOMEM;
850}
851
852static void qede_sp_task(struct work_struct *work)
853{
854 struct qede_dev *edev = container_of(work, struct qede_dev,
855 sp_task.work);
856
857 __qede_lock(edev);
858
859 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
860 if (edev->state == QEDE_STATE_OPEN)
861 qede_config_rx_mode(edev->ndev);
862
863#ifdef CONFIG_RFS_ACCEL
864 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
865 if (edev->state == QEDE_STATE_OPEN)
866 qede_process_arfs_filters(edev, false);
867 }
868#endif
869 __qede_unlock(edev);
870}
871
872static void qede_update_pf_params(struct qed_dev *cdev)
873{
874 struct qed_pf_params pf_params;
875
876 /* 64 rx + 64 tx + 64 XDP */
877 memset(&pf_params, 0, sizeof(struct qed_pf_params));
878 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
879
880 /* Same for VFs - make sure they'll have sufficient connections
881 * to support XDP Tx queues.
882 */
883 pf_params.eth_pf_params.num_vf_cons = 48;
884
885 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
886 qed_ops->common->update_pf_params(cdev, &pf_params);
887}
888
889#define QEDE_FW_VER_STR_SIZE 80
890
891static void qede_log_probe(struct qede_dev *edev)
892{
893 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
894 u8 buf[QEDE_FW_VER_STR_SIZE];
895 size_t left_size;
896
897 snprintf(buf, QEDE_FW_VER_STR_SIZE,
898 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
899 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
900 p_dev_info->fw_eng,
901 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
902 QED_MFW_VERSION_3_OFFSET,
903 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
904 QED_MFW_VERSION_2_OFFSET,
905 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
906 QED_MFW_VERSION_1_OFFSET,
907 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
908 QED_MFW_VERSION_0_OFFSET);
909
910 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
911 if (p_dev_info->mbi_version && left_size)
912 snprintf(buf + strlen(buf), left_size,
913 " [MBI %d.%d.%d]",
914 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
915 QED_MBI_VERSION_2_OFFSET,
916 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
917 QED_MBI_VERSION_1_OFFSET,
918 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
919 QED_MBI_VERSION_0_OFFSET);
920
921 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
922 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
923 buf, edev->ndev->name);
924}
925
926enum qede_probe_mode {
927 QEDE_PROBE_NORMAL,
928};
929
930static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
931 bool is_vf, enum qede_probe_mode mode)
932{
933 struct qed_probe_params probe_params;
934 struct qed_slowpath_params sp_params;
935 struct qed_dev_eth_info dev_info;
936 struct qede_dev *edev;
937 struct qed_dev *cdev;
938 int rc;
939
940 if (unlikely(dp_level & QED_LEVEL_INFO))
941 pr_notice("Starting qede probe\n");
942
943 memset(&probe_params, 0, sizeof(probe_params));
944 probe_params.protocol = QED_PROTOCOL_ETH;
945 probe_params.dp_module = dp_module;
946 probe_params.dp_level = dp_level;
947 probe_params.is_vf = is_vf;
948 cdev = qed_ops->common->probe(pdev, &probe_params);
949 if (!cdev) {
950 rc = -ENODEV;
951 goto err0;
952 }
953
954 qede_update_pf_params(cdev);
955
956 /* Start the Slowpath-process */
957 memset(&sp_params, 0, sizeof(sp_params));
958 sp_params.int_mode = QED_INT_MODE_MSIX;
959 sp_params.drv_major = QEDE_MAJOR_VERSION;
960 sp_params.drv_minor = QEDE_MINOR_VERSION;
961 sp_params.drv_rev = QEDE_REVISION_VERSION;
962 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
963 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
964 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
965 if (rc) {
966 pr_notice("Cannot start slowpath\n");
967 goto err1;
968 }
969
970 /* Learn information crucial for qede to progress */
971 rc = qed_ops->fill_dev_info(cdev, &dev_info);
972 if (rc)
973 goto err2;
974
975 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
976 dp_level);
977 if (!edev) {
978 rc = -ENOMEM;
979 goto err2;
980 }
981
982 if (is_vf)
983 edev->flags |= QEDE_FLAG_IS_VF;
984
985 qede_init_ndev(edev);
986
987 rc = qede_rdma_dev_add(edev);
988 if (rc)
989 goto err3;
990
991 /* Prepare the lock prior to the registration of the netdev,
992 * as once it's registered we might reach flows requiring it
993 * [it's even possible to reach a flow needing it directly
994 * from there, although it's unlikely].
995 */
996 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
997 mutex_init(&edev->qede_lock);
998 rc = register_netdev(edev->ndev);
999 if (rc) {
1000 DP_NOTICE(edev, "Cannot register net-device\n");
1001 goto err4;
1002 }
1003
1004 edev->ops->common->set_name(cdev, edev->ndev->name);
1005
1006 /* PTP not supported on VFs */
1007 if (!is_vf)
1008 qede_ptp_enable(edev, true);
1009
1010 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1011
1012#ifdef CONFIG_DCB
1013 if (!IS_VF(edev))
1014 qede_set_dcbnl_ops(edev->ndev);
1015#endif
1016
1017 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1018
1019 qede_log_probe(edev);
1020 return 0;
1021
1022err4:
1023 qede_rdma_dev_remove(edev);
1024err3:
1025 free_netdev(edev->ndev);
1026err2:
1027 qed_ops->common->slowpath_stop(cdev);
1028err1:
1029 qed_ops->common->remove(cdev);
1030err0:
1031 return rc;
1032}
1033
1034static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1035{
1036 bool is_vf = false;
1037 u32 dp_module = 0;
1038 u8 dp_level = 0;
1039
1040 switch ((enum qede_pci_private)id->driver_data) {
1041 case QEDE_PRIVATE_VF:
1042 if (debug & QED_LOG_VERBOSE_MASK)
1043 dev_err(&pdev->dev, "Probing a VF\n");
1044 is_vf = true;
1045 break;
1046 default:
1047 if (debug & QED_LOG_VERBOSE_MASK)
1048 dev_err(&pdev->dev, "Probing a PF\n");
1049 }
1050
1051 qede_config_debug(debug, &dp_module, &dp_level);
1052
1053 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1054 QEDE_PROBE_NORMAL);
1055}
1056
1057enum qede_remove_mode {
1058 QEDE_REMOVE_NORMAL,
1059};
1060
1061static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1062{
1063 struct net_device *ndev = pci_get_drvdata(pdev);
1064 struct qede_dev *edev = netdev_priv(ndev);
1065 struct qed_dev *cdev = edev->cdev;
1066
1067 DP_INFO(edev, "Starting qede_remove\n");
1068
1069 qede_rdma_dev_remove(edev);
1070 unregister_netdev(ndev);
1071 cancel_delayed_work_sync(&edev->sp_task);
1072
1073 qede_ptp_disable(edev);
1074
1075 edev->ops->common->set_power_state(cdev, PCI_D0);
1076
1077 pci_set_drvdata(pdev, NULL);
1078
1079 /* Use global ops since we've freed edev */
1080 qed_ops->common->slowpath_stop(cdev);
1081 if (system_state == SYSTEM_POWER_OFF)
1082 return;
1083 qed_ops->common->remove(cdev);
1084
1085 /* Since this can happen out-of-sync with other flows,
1086 * don't release the netdevice until after slowpath stop
1087 * has been called to guarantee various other contexts
1088 * [e.g., QED register callbacks] won't break anything when
1089 * accessing the netdevice.
1090 */
1091 free_netdev(ndev);
1092
1093 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1094}
1095
1096static void qede_remove(struct pci_dev *pdev)
1097{
1098 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1099}
1100
1101static void qede_shutdown(struct pci_dev *pdev)
1102{
1103 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1104}
1105
1106/* -------------------------------------------------------------------------
1107 * START OF LOAD / UNLOAD
1108 * -------------------------------------------------------------------------
1109 */
1110
1111static int qede_set_num_queues(struct qede_dev *edev)
1112{
1113 int rc;
1114 u16 rss_num;
1115
1116 /* Setup queues according to possible resources*/
1117 if (edev->req_queues)
1118 rss_num = edev->req_queues;
1119 else
1120 rss_num = netif_get_num_default_rss_queues() *
1121 edev->dev_info.common.num_hwfns;
1122
1123 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1124
1125 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1126 if (rc > 0) {
1127 /* Managed to request interrupts for our queues */
1128 edev->num_queues = rc;
1129 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1130 QEDE_QUEUE_CNT(edev), rss_num);
1131 rc = 0;
1132 }
1133
1134 edev->fp_num_tx = edev->req_num_tx;
1135 edev->fp_num_rx = edev->req_num_rx;
1136
1137 return rc;
1138}
1139
1140static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1141 u16 sb_id)
1142{
1143 if (sb_info->sb_virt) {
1144 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1145 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1146 (void *)sb_info->sb_virt, sb_info->sb_phys);
1147 memset(sb_info, 0, sizeof(*sb_info));
1148 }
1149}
1150
1151/* This function allocates fast-path status block memory */
1152static int qede_alloc_mem_sb(struct qede_dev *edev,
1153 struct qed_sb_info *sb_info, u16 sb_id)
1154{
1155 struct status_block_e4 *sb_virt;
1156 dma_addr_t sb_phys;
1157 int rc;
1158
1159 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1160 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1161 if (!sb_virt) {
1162 DP_ERR(edev, "Status block allocation failed\n");
1163 return -ENOMEM;
1164 }
1165
1166 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1167 sb_virt, sb_phys, sb_id,
1168 QED_SB_TYPE_L2_QUEUE);
1169 if (rc) {
1170 DP_ERR(edev, "Status block initialization failed\n");
1171 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1172 sb_virt, sb_phys);
1173 return rc;
1174 }
1175
1176 return 0;
1177}
1178
1179static void qede_free_rx_buffers(struct qede_dev *edev,
1180 struct qede_rx_queue *rxq)
1181{
1182 u16 i;
1183
1184 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1185 struct sw_rx_data *rx_buf;
1186 struct page *data;
1187
1188 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1189 data = rx_buf->data;
1190
1191 dma_unmap_page(&edev->pdev->dev,
1192 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1193
1194 rx_buf->data = NULL;
1195 __free_page(data);
1196 }
1197}
1198
1199static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1200{
1201 int i;
1202
1203 if (edev->gro_disable)
1204 return;
1205
1206 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1207 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1208 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1209
1210 if (replace_buf->data) {
1211 dma_unmap_page(&edev->pdev->dev,
1212 replace_buf->mapping,
1213 PAGE_SIZE, DMA_FROM_DEVICE);
1214 __free_page(replace_buf->data);
1215 }
1216 }
1217}
1218
1219static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1220{
1221 qede_free_sge_mem(edev, rxq);
1222
1223 /* Free rx buffers */
1224 qede_free_rx_buffers(edev, rxq);
1225
1226 /* Free the parallel SW ring */
1227 kfree(rxq->sw_rx_ring);
1228
1229 /* Free the real RQ ring used by FW */
1230 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1231 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1232}
1233
1234static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1235{
1236 dma_addr_t mapping;
1237 int i;
1238
1239 if (edev->gro_disable)
1240 return 0;
1241
1242 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1243 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1244 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1245
1246 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1247 if (unlikely(!replace_buf->data)) {
1248 DP_NOTICE(edev,
1249 "Failed to allocate TPA skb pool [replacement buffer]\n");
1250 goto err;
1251 }
1252
1253 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1254 PAGE_SIZE, DMA_FROM_DEVICE);
1255 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1256 DP_NOTICE(edev,
1257 "Failed to map TPA replacement buffer\n");
1258 goto err;
1259 }
1260
1261 replace_buf->mapping = mapping;
1262 tpa_info->buffer.page_offset = 0;
1263 tpa_info->buffer_mapping = mapping;
1264 tpa_info->state = QEDE_AGG_STATE_NONE;
1265 }
1266
1267 return 0;
1268err:
1269 qede_free_sge_mem(edev, rxq);
1270 edev->gro_disable = 1;
1271 edev->ndev->features &= ~NETIF_F_GRO_HW;
1272 return -ENOMEM;
1273}
1274
1275/* This function allocates all memory needed per Rx queue */
1276static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1277{
1278 int i, rc, size;
1279
1280 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1281
1282 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1283 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1284
1285 /* Make sure that the headroom and payload fit in a single page */
1286 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1287 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1288
1289 /* Segment size to spilt a page in multiple equal parts,
1290 * unless XDP is used in which case we'd use the entire page.
1291 */
1292 if (!edev->xdp_prog)
1293 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1294 else
1295 rxq->rx_buf_seg_size = PAGE_SIZE;
1296
1297 /* Allocate the parallel driver ring for Rx buffers */
1298 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1299 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1300 if (!rxq->sw_rx_ring) {
1301 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1302 rc = -ENOMEM;
1303 goto err;
1304 }
1305
1306 /* Allocate FW Rx ring */
1307 rc = edev->ops->common->chain_alloc(edev->cdev,
1308 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1309 QED_CHAIN_MODE_NEXT_PTR,
1310 QED_CHAIN_CNT_TYPE_U16,
1311 RX_RING_SIZE,
1312 sizeof(struct eth_rx_bd),
1313 &rxq->rx_bd_ring, NULL);
1314 if (rc)
1315 goto err;
1316
1317 /* Allocate FW completion ring */
1318 rc = edev->ops->common->chain_alloc(edev->cdev,
1319 QED_CHAIN_USE_TO_CONSUME,
1320 QED_CHAIN_MODE_PBL,
1321 QED_CHAIN_CNT_TYPE_U16,
1322 RX_RING_SIZE,
1323 sizeof(union eth_rx_cqe),
1324 &rxq->rx_comp_ring, NULL);
1325 if (rc)
1326 goto err;
1327
1328 /* Allocate buffers for the Rx ring */
1329 rxq->filled_buffers = 0;
1330 for (i = 0; i < rxq->num_rx_buffers; i++) {
1331 rc = qede_alloc_rx_buffer(rxq, false);
1332 if (rc) {
1333 DP_ERR(edev,
1334 "Rx buffers allocation failed at index %d\n", i);
1335 goto err;
1336 }
1337 }
1338
1339 rc = qede_alloc_sge_mem(edev, rxq);
1340err:
1341 return rc;
1342}
1343
1344static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1345{
1346 /* Free the parallel SW ring */
1347 if (txq->is_xdp)
1348 kfree(txq->sw_tx_ring.xdp);
1349 else
1350 kfree(txq->sw_tx_ring.skbs);
1351
1352 /* Free the real RQ ring used by FW */
1353 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1354}
1355
1356/* This function allocates all memory needed per Tx queue */
1357static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1358{
1359 union eth_tx_bd_types *p_virt;
1360 int size, rc;
1361
1362 txq->num_tx_buffers = edev->q_num_tx_buffers;
1363
1364 /* Allocate the parallel driver ring for Tx buffers */
1365 if (txq->is_xdp) {
1366 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1367 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1368 if (!txq->sw_tx_ring.xdp)
1369 goto err;
1370 } else {
1371 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1372 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1373 if (!txq->sw_tx_ring.skbs)
1374 goto err;
1375 }
1376
1377 rc = edev->ops->common->chain_alloc(edev->cdev,
1378 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1379 QED_CHAIN_MODE_PBL,
1380 QED_CHAIN_CNT_TYPE_U16,
1381 txq->num_tx_buffers,
1382 sizeof(*p_virt),
1383 &txq->tx_pbl, NULL);
1384 if (rc)
1385 goto err;
1386
1387 return 0;
1388
1389err:
1390 qede_free_mem_txq(edev, txq);
1391 return -ENOMEM;
1392}
1393
1394/* This function frees all memory of a single fp */
1395static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1396{
1397 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1398
1399 if (fp->type & QEDE_FASTPATH_RX)
1400 qede_free_mem_rxq(edev, fp->rxq);
1401
1402 if (fp->type & QEDE_FASTPATH_XDP)
1403 qede_free_mem_txq(edev, fp->xdp_tx);
1404
1405 if (fp->type & QEDE_FASTPATH_TX)
1406 qede_free_mem_txq(edev, fp->txq);
1407}
1408
1409/* This function allocates all memory needed for a single fp (i.e. an entity
1410 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1411 */
1412static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1413{
1414 int rc = 0;
1415
1416 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1417 if (rc)
1418 goto out;
1419
1420 if (fp->type & QEDE_FASTPATH_RX) {
1421 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1422 if (rc)
1423 goto out;
1424 }
1425
1426 if (fp->type & QEDE_FASTPATH_XDP) {
1427 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1428 if (rc)
1429 goto out;
1430 }
1431
1432 if (fp->type & QEDE_FASTPATH_TX) {
1433 rc = qede_alloc_mem_txq(edev, fp->txq);
1434 if (rc)
1435 goto out;
1436 }
1437
1438out:
1439 return rc;
1440}
1441
1442static void qede_free_mem_load(struct qede_dev *edev)
1443{
1444 int i;
1445
1446 for_each_queue(i) {
1447 struct qede_fastpath *fp = &edev->fp_array[i];
1448
1449 qede_free_mem_fp(edev, fp);
1450 }
1451}
1452
1453/* This function allocates all qede memory at NIC load. */
1454static int qede_alloc_mem_load(struct qede_dev *edev)
1455{
1456 int rc = 0, queue_id;
1457
1458 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1459 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1460
1461 rc = qede_alloc_mem_fp(edev, fp);
1462 if (rc) {
1463 DP_ERR(edev,
1464 "Failed to allocate memory for fastpath - rss id = %d\n",
1465 queue_id);
1466 qede_free_mem_load(edev);
1467 return rc;
1468 }
1469 }
1470
1471 return 0;
1472}
1473
1474/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1475static void qede_init_fp(struct qede_dev *edev)
1476{
1477 int queue_id, rxq_index = 0, txq_index = 0;
1478 struct qede_fastpath *fp;
1479
1480 for_each_queue(queue_id) {
1481 fp = &edev->fp_array[queue_id];
1482
1483 fp->edev = edev;
1484 fp->id = queue_id;
1485
1486 if (fp->type & QEDE_FASTPATH_XDP) {
1487 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1488 rxq_index);
1489 fp->xdp_tx->is_xdp = 1;
1490 }
1491
1492 if (fp->type & QEDE_FASTPATH_RX) {
1493 fp->rxq->rxq_id = rxq_index++;
1494
1495 /* Determine how to map buffers for this queue */
1496 if (fp->type & QEDE_FASTPATH_XDP)
1497 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1498 else
1499 fp->rxq->data_direction = DMA_FROM_DEVICE;
1500 fp->rxq->dev = &edev->pdev->dev;
1501
1502 /* Driver have no error path from here */
1503 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1504 fp->rxq->rxq_id) < 0);
1505 }
1506
1507 if (fp->type & QEDE_FASTPATH_TX) {
1508 fp->txq->index = txq_index++;
1509 if (edev->dev_info.is_legacy)
1510 fp->txq->is_legacy = 1;
1511 fp->txq->dev = &edev->pdev->dev;
1512 }
1513
1514 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1515 edev->ndev->name, queue_id);
1516 }
1517
1518 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1519}
1520
1521static int qede_set_real_num_queues(struct qede_dev *edev)
1522{
1523 int rc = 0;
1524
1525 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1526 if (rc) {
1527 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1528 return rc;
1529 }
1530
1531 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1532 if (rc) {
1533 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1534 return rc;
1535 }
1536
1537 return 0;
1538}
1539
1540static void qede_napi_disable_remove(struct qede_dev *edev)
1541{
1542 int i;
1543
1544 for_each_queue(i) {
1545 napi_disable(&edev->fp_array[i].napi);
1546
1547 netif_napi_del(&edev->fp_array[i].napi);
1548 }
1549}
1550
1551static void qede_napi_add_enable(struct qede_dev *edev)
1552{
1553 int i;
1554
1555 /* Add NAPI objects */
1556 for_each_queue(i) {
1557 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1558 qede_poll, NAPI_POLL_WEIGHT);
1559 napi_enable(&edev->fp_array[i].napi);
1560 }
1561}
1562
1563static void qede_sync_free_irqs(struct qede_dev *edev)
1564{
1565 int i;
1566
1567 for (i = 0; i < edev->int_info.used_cnt; i++) {
1568 if (edev->int_info.msix_cnt) {
1569 synchronize_irq(edev->int_info.msix[i].vector);
1570 free_irq(edev->int_info.msix[i].vector,
1571 &edev->fp_array[i]);
1572 } else {
1573 edev->ops->common->simd_handler_clean(edev->cdev, i);
1574 }
1575 }
1576
1577 edev->int_info.used_cnt = 0;
1578}
1579
1580static int qede_req_msix_irqs(struct qede_dev *edev)
1581{
1582 int i, rc;
1583
1584 /* Sanitize number of interrupts == number of prepared RSS queues */
1585 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1586 DP_ERR(edev,
1587 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1588 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1589 return -EINVAL;
1590 }
1591
1592 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1593#ifdef CONFIG_RFS_ACCEL
1594 struct qede_fastpath *fp = &edev->fp_array[i];
1595
1596 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1597 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1598 edev->int_info.msix[i].vector);
1599 if (rc) {
1600 DP_ERR(edev, "Failed to add CPU rmap\n");
1601 qede_free_arfs(edev);
1602 }
1603 }
1604#endif
1605 rc = request_irq(edev->int_info.msix[i].vector,
1606 qede_msix_fp_int, 0, edev->fp_array[i].name,
1607 &edev->fp_array[i]);
1608 if (rc) {
1609 DP_ERR(edev, "Request fp %d irq failed\n", i);
1610 qede_sync_free_irqs(edev);
1611 return rc;
1612 }
1613 DP_VERBOSE(edev, NETIF_MSG_INTR,
1614 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1615 edev->fp_array[i].name, i,
1616 &edev->fp_array[i]);
1617 edev->int_info.used_cnt++;
1618 }
1619
1620 return 0;
1621}
1622
1623static void qede_simd_fp_handler(void *cookie)
1624{
1625 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1626
1627 napi_schedule_irqoff(&fp->napi);
1628}
1629
1630static int qede_setup_irqs(struct qede_dev *edev)
1631{
1632 int i, rc = 0;
1633
1634 /* Learn Interrupt configuration */
1635 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1636 if (rc)
1637 return rc;
1638
1639 if (edev->int_info.msix_cnt) {
1640 rc = qede_req_msix_irqs(edev);
1641 if (rc)
1642 return rc;
1643 edev->ndev->irq = edev->int_info.msix[0].vector;
1644 } else {
1645 const struct qed_common_ops *ops;
1646
1647 /* qed should learn receive the RSS ids and callbacks */
1648 ops = edev->ops->common;
1649 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1650 ops->simd_handler_config(edev->cdev,
1651 &edev->fp_array[i], i,
1652 qede_simd_fp_handler);
1653 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1654 }
1655 return 0;
1656}
1657
1658static int qede_drain_txq(struct qede_dev *edev,
1659 struct qede_tx_queue *txq, bool allow_drain)
1660{
1661 int rc, cnt = 1000;
1662
1663 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1664 if (!cnt) {
1665 if (allow_drain) {
1666 DP_NOTICE(edev,
1667 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1668 txq->index);
1669 rc = edev->ops->common->drain(edev->cdev);
1670 if (rc)
1671 return rc;
1672 return qede_drain_txq(edev, txq, false);
1673 }
1674 DP_NOTICE(edev,
1675 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1676 txq->index, txq->sw_tx_prod,
1677 txq->sw_tx_cons);
1678 return -ENODEV;
1679 }
1680 cnt--;
1681 usleep_range(1000, 2000);
1682 barrier();
1683 }
1684
1685 /* FW finished processing, wait for HW to transmit all tx packets */
1686 usleep_range(1000, 2000);
1687
1688 return 0;
1689}
1690
1691static int qede_stop_txq(struct qede_dev *edev,
1692 struct qede_tx_queue *txq, int rss_id)
1693{
1694 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1695}
1696
1697static int qede_stop_queues(struct qede_dev *edev)
1698{
1699 struct qed_update_vport_params *vport_update_params;
1700 struct qed_dev *cdev = edev->cdev;
1701 struct qede_fastpath *fp;
1702 int rc, i;
1703
1704 /* Disable the vport */
1705 vport_update_params = vzalloc(sizeof(*vport_update_params));
1706 if (!vport_update_params)
1707 return -ENOMEM;
1708
1709 vport_update_params->vport_id = 0;
1710 vport_update_params->update_vport_active_flg = 1;
1711 vport_update_params->vport_active_flg = 0;
1712 vport_update_params->update_rss_flg = 0;
1713
1714 rc = edev->ops->vport_update(cdev, vport_update_params);
1715 vfree(vport_update_params);
1716
1717 if (rc) {
1718 DP_ERR(edev, "Failed to update vport\n");
1719 return rc;
1720 }
1721
1722 /* Flush Tx queues. If needed, request drain from MCP */
1723 for_each_queue(i) {
1724 fp = &edev->fp_array[i];
1725
1726 if (fp->type & QEDE_FASTPATH_TX) {
1727 rc = qede_drain_txq(edev, fp->txq, true);
1728 if (rc)
1729 return rc;
1730 }
1731
1732 if (fp->type & QEDE_FASTPATH_XDP) {
1733 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1734 if (rc)
1735 return rc;
1736 }
1737 }
1738
1739 /* Stop all Queues in reverse order */
1740 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1741 fp = &edev->fp_array[i];
1742
1743 /* Stop the Tx Queue(s) */
1744 if (fp->type & QEDE_FASTPATH_TX) {
1745 rc = qede_stop_txq(edev, fp->txq, i);
1746 if (rc)
1747 return rc;
1748 }
1749
1750 /* Stop the Rx Queue */
1751 if (fp->type & QEDE_FASTPATH_RX) {
1752 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1753 if (rc) {
1754 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1755 return rc;
1756 }
1757 }
1758
1759 /* Stop the XDP forwarding queue */
1760 if (fp->type & QEDE_FASTPATH_XDP) {
1761 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1762 if (rc)
1763 return rc;
1764
1765 bpf_prog_put(fp->rxq->xdp_prog);
1766 }
1767 }
1768
1769 /* Stop the vport */
1770 rc = edev->ops->vport_stop(cdev, 0);
1771 if (rc)
1772 DP_ERR(edev, "Failed to stop VPORT\n");
1773
1774 return rc;
1775}
1776
1777static int qede_start_txq(struct qede_dev *edev,
1778 struct qede_fastpath *fp,
1779 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1780{
1781 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1782 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1783 struct qed_queue_start_common_params params;
1784 struct qed_txq_start_ret_params ret_params;
1785 int rc;
1786
1787 memset(¶ms, 0, sizeof(params));
1788 memset(&ret_params, 0, sizeof(ret_params));
1789
1790 /* Let the XDP queue share the queue-zone with one of the regular txq.
1791 * We don't really care about its coalescing.
1792 */
1793 if (txq->is_xdp)
1794 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1795 else
1796 params.queue_id = txq->index;
1797
1798 params.p_sb = fp->sb_info;
1799 params.sb_idx = sb_idx;
1800
1801 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
1802 page_cnt, &ret_params);
1803 if (rc) {
1804 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1805 return rc;
1806 }
1807
1808 txq->doorbell_addr = ret_params.p_doorbell;
1809 txq->handle = ret_params.p_handle;
1810
1811 /* Determine the FW consumer address associated */
1812 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1813
1814 /* Prepare the doorbell parameters */
1815 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1816 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1817 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1818 DQ_XCM_ETH_TX_BD_PROD_CMD);
1819 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1820
1821 return rc;
1822}
1823
1824static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1825{
1826 int vlan_removal_en = 1;
1827 struct qed_dev *cdev = edev->cdev;
1828 struct qed_dev_info *qed_info = &edev->dev_info.common;
1829 struct qed_update_vport_params *vport_update_params;
1830 struct qed_queue_start_common_params q_params;
1831 struct qed_start_vport_params start = {0};
1832 int rc, i;
1833
1834 if (!edev->num_queues) {
1835 DP_ERR(edev,
1836 "Cannot update V-VPORT as active as there are no Rx queues\n");
1837 return -EINVAL;
1838 }
1839
1840 vport_update_params = vzalloc(sizeof(*vport_update_params));
1841 if (!vport_update_params)
1842 return -ENOMEM;
1843
1844 start.handle_ptp_pkts = !!(edev->ptp);
1845 start.gro_enable = !edev->gro_disable;
1846 start.mtu = edev->ndev->mtu;
1847 start.vport_id = 0;
1848 start.drop_ttl0 = true;
1849 start.remove_inner_vlan = vlan_removal_en;
1850 start.clear_stats = clear_stats;
1851
1852 rc = edev->ops->vport_start(cdev, &start);
1853
1854 if (rc) {
1855 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1856 goto out;
1857 }
1858
1859 DP_VERBOSE(edev, NETIF_MSG_IFUP,
1860 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1861 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1862
1863 for_each_queue(i) {
1864 struct qede_fastpath *fp = &edev->fp_array[i];
1865 dma_addr_t p_phys_table;
1866 u32 page_cnt;
1867
1868 if (fp->type & QEDE_FASTPATH_RX) {
1869 struct qed_rxq_start_ret_params ret_params;
1870 struct qede_rx_queue *rxq = fp->rxq;
1871 __le16 *val;
1872
1873 memset(&ret_params, 0, sizeof(ret_params));
1874 memset(&q_params, 0, sizeof(q_params));
1875 q_params.queue_id = rxq->rxq_id;
1876 q_params.vport_id = 0;
1877 q_params.p_sb = fp->sb_info;
1878 q_params.sb_idx = RX_PI;
1879
1880 p_phys_table =
1881 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1882 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1883
1884 rc = edev->ops->q_rx_start(cdev, i, &q_params,
1885 rxq->rx_buf_size,
1886 rxq->rx_bd_ring.p_phys_addr,
1887 p_phys_table,
1888 page_cnt, &ret_params);
1889 if (rc) {
1890 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1891 rc);
1892 goto out;
1893 }
1894
1895 /* Use the return parameters */
1896 rxq->hw_rxq_prod_addr = ret_params.p_prod;
1897 rxq->handle = ret_params.p_handle;
1898
1899 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1900 rxq->hw_cons_ptr = val;
1901
1902 qede_update_rx_prod(edev, rxq);
1903 }
1904
1905 if (fp->type & QEDE_FASTPATH_XDP) {
1906 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1907 if (rc)
1908 goto out;
1909
1910 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1911 if (IS_ERR(fp->rxq->xdp_prog)) {
1912 rc = PTR_ERR(fp->rxq->xdp_prog);
1913 fp->rxq->xdp_prog = NULL;
1914 goto out;
1915 }
1916 }
1917
1918 if (fp->type & QEDE_FASTPATH_TX) {
1919 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1920 if (rc)
1921 goto out;
1922 }
1923 }
1924
1925 /* Prepare and send the vport enable */
1926 vport_update_params->vport_id = start.vport_id;
1927 vport_update_params->update_vport_active_flg = 1;
1928 vport_update_params->vport_active_flg = 1;
1929
1930 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1931 qed_info->tx_switching) {
1932 vport_update_params->update_tx_switching_flg = 1;
1933 vport_update_params->tx_switching_flg = 1;
1934 }
1935
1936 qede_fill_rss_params(edev, &vport_update_params->rss_params,
1937 &vport_update_params->update_rss_flg);
1938
1939 rc = edev->ops->vport_update(cdev, vport_update_params);
1940 if (rc)
1941 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1942
1943out:
1944 vfree(vport_update_params);
1945 return rc;
1946}
1947
1948enum qede_unload_mode {
1949 QEDE_UNLOAD_NORMAL,
1950};
1951
1952static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1953 bool is_locked)
1954{
1955 struct qed_link_params link_params;
1956 int rc;
1957
1958 DP_INFO(edev, "Starting qede unload\n");
1959
1960 if (!is_locked)
1961 __qede_lock(edev);
1962
1963 edev->state = QEDE_STATE_CLOSED;
1964
1965 qede_rdma_dev_event_close(edev);
1966
1967 /* Close OS Tx */
1968 netif_tx_disable(edev->ndev);
1969 netif_carrier_off(edev->ndev);
1970
1971 /* Reset the link */
1972 memset(&link_params, 0, sizeof(link_params));
1973 link_params.link_up = false;
1974 edev->ops->common->set_link(edev->cdev, &link_params);
1975 rc = qede_stop_queues(edev);
1976 if (rc) {
1977 qede_sync_free_irqs(edev);
1978 goto out;
1979 }
1980
1981 DP_INFO(edev, "Stopped Queues\n");
1982
1983 qede_vlan_mark_nonconfigured(edev);
1984 edev->ops->fastpath_stop(edev->cdev);
1985
1986 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1987 qede_poll_for_freeing_arfs_filters(edev);
1988 qede_free_arfs(edev);
1989 }
1990
1991 /* Release the interrupts */
1992 qede_sync_free_irqs(edev);
1993 edev->ops->common->set_fp_int(edev->cdev, 0);
1994
1995 qede_napi_disable_remove(edev);
1996
1997 qede_free_mem_load(edev);
1998 qede_free_fp_array(edev);
1999
2000out:
2001 if (!is_locked)
2002 __qede_unlock(edev);
2003 DP_INFO(edev, "Ending qede unload\n");
2004}
2005
2006enum qede_load_mode {
2007 QEDE_LOAD_NORMAL,
2008 QEDE_LOAD_RELOAD,
2009};
2010
2011static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2012 bool is_locked)
2013{
2014 struct qed_link_params link_params;
2015 int rc;
2016
2017 DP_INFO(edev, "Starting qede load\n");
2018
2019 if (!is_locked)
2020 __qede_lock(edev);
2021
2022 rc = qede_set_num_queues(edev);
2023 if (rc)
2024 goto out;
2025
2026 rc = qede_alloc_fp_array(edev);
2027 if (rc)
2028 goto out;
2029
2030 qede_init_fp(edev);
2031
2032 rc = qede_alloc_mem_load(edev);
2033 if (rc)
2034 goto err1;
2035 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2036 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2037
2038 rc = qede_set_real_num_queues(edev);
2039 if (rc)
2040 goto err2;
2041
2042 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2043 rc = qede_alloc_arfs(edev);
2044 if (rc)
2045 DP_NOTICE(edev, "aRFS memory allocation failed\n");
2046 }
2047
2048 qede_napi_add_enable(edev);
2049 DP_INFO(edev, "Napi added and enabled\n");
2050
2051 rc = qede_setup_irqs(edev);
2052 if (rc)
2053 goto err3;
2054 DP_INFO(edev, "Setup IRQs succeeded\n");
2055
2056 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2057 if (rc)
2058 goto err4;
2059 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2060
2061 /* Program un-configured VLANs */
2062 qede_configure_vlan_filters(edev);
2063
2064 /* Ask for link-up using current configuration */
2065 memset(&link_params, 0, sizeof(link_params));
2066 link_params.link_up = true;
2067 edev->ops->common->set_link(edev->cdev, &link_params);
2068
2069 edev->state = QEDE_STATE_OPEN;
2070
2071 DP_INFO(edev, "Ending successfully qede load\n");
2072
2073 goto out;
2074err4:
2075 qede_sync_free_irqs(edev);
2076 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2077err3:
2078 qede_napi_disable_remove(edev);
2079err2:
2080 qede_free_mem_load(edev);
2081err1:
2082 edev->ops->common->set_fp_int(edev->cdev, 0);
2083 qede_free_fp_array(edev);
2084 edev->num_queues = 0;
2085 edev->fp_num_tx = 0;
2086 edev->fp_num_rx = 0;
2087out:
2088 if (!is_locked)
2089 __qede_unlock(edev);
2090
2091 return rc;
2092}
2093
2094/* 'func' should be able to run between unload and reload assuming interface
2095 * is actually running, or afterwards in case it's currently DOWN.
2096 */
2097void qede_reload(struct qede_dev *edev,
2098 struct qede_reload_args *args, bool is_locked)
2099{
2100 if (!is_locked)
2101 __qede_lock(edev);
2102
2103 /* Since qede_lock is held, internal state wouldn't change even
2104 * if netdev state would start transitioning. Check whether current
2105 * internal configuration indicates device is up, then reload.
2106 */
2107 if (edev->state == QEDE_STATE_OPEN) {
2108 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2109 if (args)
2110 args->func(edev, args);
2111 qede_load(edev, QEDE_LOAD_RELOAD, true);
2112
2113 /* Since no one is going to do it for us, re-configure */
2114 qede_config_rx_mode(edev->ndev);
2115 } else if (args) {
2116 args->func(edev, args);
2117 }
2118
2119 if (!is_locked)
2120 __qede_unlock(edev);
2121}
2122
2123/* called with rtnl_lock */
2124static int qede_open(struct net_device *ndev)
2125{
2126 struct qede_dev *edev = netdev_priv(ndev);
2127 int rc;
2128
2129 netif_carrier_off(ndev);
2130
2131 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2132
2133 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2134 if (rc)
2135 return rc;
2136
2137 udp_tunnel_get_rx_info(ndev);
2138
2139 edev->ops->common->update_drv_state(edev->cdev, true);
2140
2141 return 0;
2142}
2143
2144static int qede_close(struct net_device *ndev)
2145{
2146 struct qede_dev *edev = netdev_priv(ndev);
2147
2148 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2149
2150 edev->ops->common->update_drv_state(edev->cdev, false);
2151
2152 return 0;
2153}
2154
2155static void qede_link_update(void *dev, struct qed_link_output *link)
2156{
2157 struct qede_dev *edev = dev;
2158
2159 if (!netif_running(edev->ndev)) {
2160 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2161 return;
2162 }
2163
2164 if (link->link_up) {
2165 if (!netif_carrier_ok(edev->ndev)) {
2166 DP_NOTICE(edev, "Link is up\n");
2167 netif_tx_start_all_queues(edev->ndev);
2168 netif_carrier_on(edev->ndev);
2169 qede_rdma_dev_event_open(edev);
2170 }
2171 } else {
2172 if (netif_carrier_ok(edev->ndev)) {
2173 DP_NOTICE(edev, "Link is down\n");
2174 netif_tx_disable(edev->ndev);
2175 netif_carrier_off(edev->ndev);
2176 qede_rdma_dev_event_close(edev);
2177 }
2178 }
2179}
1/* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/version.h>
35#include <linux/device.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/errno.h>
40#include <linux/list.h>
41#include <linux/string.h>
42#include <linux/dma-mapping.h>
43#include <linux/interrupt.h>
44#include <asm/byteorder.h>
45#include <asm/param.h>
46#include <linux/io.h>
47#include <linux/netdev_features.h>
48#include <linux/udp.h>
49#include <linux/tcp.h>
50#include <net/udp_tunnel.h>
51#include <linux/ip.h>
52#include <net/ipv6.h>
53#include <net/tcp.h>
54#include <linux/if_ether.h>
55#include <linux/if_vlan.h>
56#include <linux/pkt_sched.h>
57#include <linux/ethtool.h>
58#include <linux/in.h>
59#include <linux/random.h>
60#include <net/ip6_checksum.h>
61#include <linux/bitops.h>
62#include <linux/vmalloc.h>
63#include "qede.h"
64#include "qede_ptp.h"
65
66static char version[] =
67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70MODULE_LICENSE("GPL");
71MODULE_VERSION(DRV_MODULE_VERSION);
72
73static uint debug;
74module_param(debug, uint, 0);
75MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77static const struct qed_eth_ops *qed_ops;
78
79#define CHIP_NUM_57980S_40 0x1634
80#define CHIP_NUM_57980S_10 0x1666
81#define CHIP_NUM_57980S_MF 0x1636
82#define CHIP_NUM_57980S_100 0x1644
83#define CHIP_NUM_57980S_50 0x1654
84#define CHIP_NUM_57980S_25 0x1656
85#define CHIP_NUM_57980S_IOV 0x1664
86#define CHIP_NUM_AH 0x8070
87#define CHIP_NUM_AH_IOV 0x8090
88
89#ifndef PCI_DEVICE_ID_NX2_57980E
90#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
91#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
92#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
93#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
94#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
95#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
96#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
97#define PCI_DEVICE_ID_AH CHIP_NUM_AH
98#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
99
100#endif
101
102enum qede_pci_private {
103 QEDE_PRIVATE_PF,
104 QEDE_PRIVATE_VF
105};
106
107static const struct pci_device_id qede_pci_tbl[] = {
108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114#ifdef CONFIG_QED_SRIOV
115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116#endif
117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118#ifdef CONFIG_QED_SRIOV
119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120#endif
121 { 0 }
122};
123
124MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128#define TX_TIMEOUT (5 * HZ)
129
130/* Utilize last protocol index for XDP */
131#define XDP_PI 11
132
133static void qede_remove(struct pci_dev *pdev);
134static void qede_shutdown(struct pci_dev *pdev);
135static void qede_link_update(void *dev, struct qed_link_output *link);
136static void qede_schedule_recovery_handler(void *dev);
137static void qede_recovery_handler(struct qede_dev *edev);
138static void qede_get_eth_tlv_data(void *edev, void *data);
139static void qede_get_generic_tlv_data(void *edev,
140 struct qed_generic_tlvs *data);
141
142#ifdef CONFIG_QED_SRIOV
143static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 __be16 vlan_proto)
145{
146 struct qede_dev *edev = netdev_priv(ndev);
147
148 if (vlan > 4095) {
149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 return -EINVAL;
151 }
152
153 if (vlan_proto != htons(ETH_P_8021Q))
154 return -EPROTONOSUPPORT;
155
156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 vlan, vf);
158
159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160}
161
162static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163{
164 struct qede_dev *edev = netdev_priv(ndev);
165
166 DP_VERBOSE(edev, QED_MSG_IOV,
167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169
170 if (!is_valid_ether_addr(mac)) {
171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 return -EINVAL;
173 }
174
175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176}
177
178static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179{
180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 struct qed_dev_info *qed_info = &edev->dev_info.common;
182 struct qed_update_vport_params *vport_params;
183 int rc;
184
185 vport_params = vzalloc(sizeof(*vport_params));
186 if (!vport_params)
187 return -ENOMEM;
188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189
190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191
192 /* Enable/Disable Tx switching for PF */
193 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 vport_params->vport_id = 0;
196 vport_params->update_tx_switching_flg = 1;
197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 edev->ops->vport_update(edev->cdev, vport_params);
199 }
200
201 vfree(vport_params);
202 return rc;
203}
204#endif
205
206static struct pci_driver qede_pci_driver = {
207 .name = "qede",
208 .id_table = qede_pci_tbl,
209 .probe = qede_probe,
210 .remove = qede_remove,
211 .shutdown = qede_shutdown,
212#ifdef CONFIG_QED_SRIOV
213 .sriov_configure = qede_sriov_configure,
214#endif
215};
216
217static struct qed_eth_cb_ops qede_ll_ops = {
218 {
219#ifdef CONFIG_RFS_ACCEL
220 .arfs_filter_op = qede_arfs_filter_op,
221#endif
222 .link_update = qede_link_update,
223 .schedule_recovery_handler = qede_schedule_recovery_handler,
224 .get_generic_tlv_data = qede_get_generic_tlv_data,
225 .get_protocol_tlv_data = qede_get_eth_tlv_data,
226 },
227 .force_mac = qede_force_mac,
228 .ports_update = qede_udp_ports_update,
229};
230
231static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 void *ptr)
233{
234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 struct ethtool_drvinfo drvinfo;
236 struct qede_dev *edev;
237
238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 goto done;
240
241 /* Check whether this is a qede device */
242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 goto done;
244
245 memset(&drvinfo, 0, sizeof(drvinfo));
246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 if (strcmp(drvinfo.driver, "qede"))
248 goto done;
249 edev = netdev_priv(ndev);
250
251 switch (event) {
252 case NETDEV_CHANGENAME:
253 /* Notify qed of the name change */
254 if (!edev->ops || !edev->ops->common)
255 goto done;
256 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 break;
258 case NETDEV_CHANGEADDR:
259 edev = netdev_priv(ndev);
260 qede_rdma_event_changeaddr(edev);
261 break;
262 }
263
264done:
265 return NOTIFY_DONE;
266}
267
268static struct notifier_block qede_netdev_notifier = {
269 .notifier_call = qede_netdev_event,
270};
271
272static
273int __init qede_init(void)
274{
275 int ret;
276
277 pr_info("qede_init: %s\n", version);
278
279 qed_ops = qed_get_eth_ops();
280 if (!qed_ops) {
281 pr_notice("Failed to get qed ethtool operations\n");
282 return -EINVAL;
283 }
284
285 /* Must register notifier before pci ops, since we might miss
286 * interface rename after pci probe and netdev registration.
287 */
288 ret = register_netdevice_notifier(&qede_netdev_notifier);
289 if (ret) {
290 pr_notice("Failed to register netdevice_notifier\n");
291 qed_put_eth_ops();
292 return -EINVAL;
293 }
294
295 ret = pci_register_driver(&qede_pci_driver);
296 if (ret) {
297 pr_notice("Failed to register driver\n");
298 unregister_netdevice_notifier(&qede_netdev_notifier);
299 qed_put_eth_ops();
300 return -EINVAL;
301 }
302
303 return 0;
304}
305
306static void __exit qede_cleanup(void)
307{
308 if (debug & QED_LOG_INFO_MASK)
309 pr_info("qede_cleanup called\n");
310
311 unregister_netdevice_notifier(&qede_netdev_notifier);
312 pci_unregister_driver(&qede_pci_driver);
313 qed_put_eth_ops();
314}
315
316module_init(qede_init);
317module_exit(qede_cleanup);
318
319static int qede_open(struct net_device *ndev);
320static int qede_close(struct net_device *ndev);
321
322void qede_fill_by_demand_stats(struct qede_dev *edev)
323{
324 struct qede_stats_common *p_common = &edev->stats.common;
325 struct qed_eth_stats stats;
326
327 edev->ops->get_vport_stats(edev->cdev, &stats);
328
329 p_common->no_buff_discards = stats.common.no_buff_discards;
330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 p_common->ttl0_discard = stats.common.ttl0_discard;
332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 p_common->gft_filter_drop = stats.common.gft_filter_drop;
341
342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354
355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 p_common->rx_65_to_127_byte_packets =
357 stats.common.rx_65_to_127_byte_packets;
358 p_common->rx_128_to_255_byte_packets =
359 stats.common.rx_128_to_255_byte_packets;
360 p_common->rx_256_to_511_byte_packets =
361 stats.common.rx_256_to_511_byte_packets;
362 p_common->rx_512_to_1023_byte_packets =
363 stats.common.rx_512_to_1023_byte_packets;
364 p_common->rx_1024_to_1518_byte_packets =
365 stats.common.rx_1024_to_1518_byte_packets;
366 p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 p_common->rx_align_errors = stats.common.rx_align_errors;
371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 p_common->rx_jabbers = stats.common.rx_jabbers;
374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 p_common->rx_fragments = stats.common.rx_fragments;
376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 p_common->tx_65_to_127_byte_packets =
378 stats.common.tx_65_to_127_byte_packets;
379 p_common->tx_128_to_255_byte_packets =
380 stats.common.tx_128_to_255_byte_packets;
381 p_common->tx_256_to_511_byte_packets =
382 stats.common.tx_256_to_511_byte_packets;
383 p_common->tx_512_to_1023_byte_packets =
384 stats.common.tx_512_to_1023_byte_packets;
385 p_common->tx_1024_to_1518_byte_packets =
386 stats.common.tx_1024_to_1518_byte_packets;
387 p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 p_common->brb_truncates = stats.common.brb_truncates;
390 p_common->brb_discards = stats.common.brb_discards;
391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 p_common->link_change_count = stats.common.link_change_count;
393 p_common->ptp_skip_txts = edev->ptp_skip_txts;
394
395 if (QEDE_IS_BB(edev)) {
396 struct qede_stats_bb *p_bb = &edev->stats.bb;
397
398 p_bb->rx_1519_to_1522_byte_packets =
399 stats.bb.rx_1519_to_1522_byte_packets;
400 p_bb->rx_1519_to_2047_byte_packets =
401 stats.bb.rx_1519_to_2047_byte_packets;
402 p_bb->rx_2048_to_4095_byte_packets =
403 stats.bb.rx_2048_to_4095_byte_packets;
404 p_bb->rx_4096_to_9216_byte_packets =
405 stats.bb.rx_4096_to_9216_byte_packets;
406 p_bb->rx_9217_to_16383_byte_packets =
407 stats.bb.rx_9217_to_16383_byte_packets;
408 p_bb->tx_1519_to_2047_byte_packets =
409 stats.bb.tx_1519_to_2047_byte_packets;
410 p_bb->tx_2048_to_4095_byte_packets =
411 stats.bb.tx_2048_to_4095_byte_packets;
412 p_bb->tx_4096_to_9216_byte_packets =
413 stats.bb.tx_4096_to_9216_byte_packets;
414 p_bb->tx_9217_to_16383_byte_packets =
415 stats.bb.tx_9217_to_16383_byte_packets;
416 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
417 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
418 } else {
419 struct qede_stats_ah *p_ah = &edev->stats.ah;
420
421 p_ah->rx_1519_to_max_byte_packets =
422 stats.ah.rx_1519_to_max_byte_packets;
423 p_ah->tx_1519_to_max_byte_packets =
424 stats.ah.tx_1519_to_max_byte_packets;
425 }
426}
427
428static void qede_get_stats64(struct net_device *dev,
429 struct rtnl_link_stats64 *stats)
430{
431 struct qede_dev *edev = netdev_priv(dev);
432 struct qede_stats_common *p_common;
433
434 qede_fill_by_demand_stats(edev);
435 p_common = &edev->stats.common;
436
437 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
438 p_common->rx_bcast_pkts;
439 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
440 p_common->tx_bcast_pkts;
441
442 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
443 p_common->rx_bcast_bytes;
444 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
445 p_common->tx_bcast_bytes;
446
447 stats->tx_errors = p_common->tx_err_drop_pkts;
448 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
449
450 stats->rx_fifo_errors = p_common->no_buff_discards;
451
452 if (QEDE_IS_BB(edev))
453 stats->collisions = edev->stats.bb.tx_total_collisions;
454 stats->rx_crc_errors = p_common->rx_crc_errors;
455 stats->rx_frame_errors = p_common->rx_align_errors;
456}
457
458#ifdef CONFIG_QED_SRIOV
459static int qede_get_vf_config(struct net_device *dev, int vfidx,
460 struct ifla_vf_info *ivi)
461{
462 struct qede_dev *edev = netdev_priv(dev);
463
464 if (!edev->ops)
465 return -EINVAL;
466
467 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468}
469
470static int qede_set_vf_rate(struct net_device *dev, int vfidx,
471 int min_tx_rate, int max_tx_rate)
472{
473 struct qede_dev *edev = netdev_priv(dev);
474
475 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
476 max_tx_rate);
477}
478
479static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
480{
481 struct qede_dev *edev = netdev_priv(dev);
482
483 if (!edev->ops)
484 return -EINVAL;
485
486 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487}
488
489static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
490 int link_state)
491{
492 struct qede_dev *edev = netdev_priv(dev);
493
494 if (!edev->ops)
495 return -EINVAL;
496
497 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498}
499
500static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
501{
502 struct qede_dev *edev = netdev_priv(dev);
503
504 if (!edev->ops)
505 return -EINVAL;
506
507 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
508}
509#endif
510
511static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
512{
513 struct qede_dev *edev = netdev_priv(dev);
514
515 if (!netif_running(dev))
516 return -EAGAIN;
517
518 switch (cmd) {
519 case SIOCSHWTSTAMP:
520 return qede_ptp_hw_ts(edev, ifr);
521 default:
522 DP_VERBOSE(edev, QED_MSG_DEBUG,
523 "default IOCTL cmd 0x%x\n", cmd);
524 return -EOPNOTSUPP;
525 }
526
527 return 0;
528}
529
530static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
531{
532 struct qede_dev *edev = netdev_priv(ndev);
533 int cos, count, offset;
534
535 if (num_tc > edev->dev_info.num_tc)
536 return -EINVAL;
537
538 netdev_reset_tc(ndev);
539 netdev_set_num_tc(ndev, num_tc);
540
541 for_each_cos_in_txq(edev, cos) {
542 count = QEDE_TSS_COUNT(edev);
543 offset = cos * QEDE_TSS_COUNT(edev);
544 netdev_set_tc_queue(ndev, cos, count, offset);
545 }
546
547 return 0;
548}
549
550static int
551qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
552 __be16 proto)
553{
554 switch (f->command) {
555 case FLOW_CLS_REPLACE:
556 return qede_add_tc_flower_fltr(edev, proto, f);
557 case FLOW_CLS_DESTROY:
558 return qede_delete_flow_filter(edev, f->cookie);
559 default:
560 return -EOPNOTSUPP;
561 }
562}
563
564static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
565 void *cb_priv)
566{
567 struct flow_cls_offload *f;
568 struct qede_dev *edev = cb_priv;
569
570 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
571 return -EOPNOTSUPP;
572
573 switch (type) {
574 case TC_SETUP_CLSFLOWER:
575 f = type_data;
576 return qede_set_flower(edev, f, f->common.protocol);
577 default:
578 return -EOPNOTSUPP;
579 }
580}
581
582static LIST_HEAD(qede_block_cb_list);
583
584static int
585qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
586 void *type_data)
587{
588 struct qede_dev *edev = netdev_priv(dev);
589 struct tc_mqprio_qopt *mqprio;
590
591 switch (type) {
592 case TC_SETUP_BLOCK:
593 return flow_block_cb_setup_simple(type_data,
594 &qede_block_cb_list,
595 qede_setup_tc_block_cb,
596 edev, edev, true);
597 case TC_SETUP_QDISC_MQPRIO:
598 mqprio = type_data;
599
600 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
601 return qede_setup_tc(dev, mqprio->num_tc);
602 default:
603 return -EOPNOTSUPP;
604 }
605}
606
607static const struct net_device_ops qede_netdev_ops = {
608 .ndo_open = qede_open,
609 .ndo_stop = qede_close,
610 .ndo_start_xmit = qede_start_xmit,
611 .ndo_select_queue = qede_select_queue,
612 .ndo_set_rx_mode = qede_set_rx_mode,
613 .ndo_set_mac_address = qede_set_mac_addr,
614 .ndo_validate_addr = eth_validate_addr,
615 .ndo_change_mtu = qede_change_mtu,
616 .ndo_do_ioctl = qede_ioctl,
617#ifdef CONFIG_QED_SRIOV
618 .ndo_set_vf_mac = qede_set_vf_mac,
619 .ndo_set_vf_vlan = qede_set_vf_vlan,
620 .ndo_set_vf_trust = qede_set_vf_trust,
621#endif
622 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
623 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
624 .ndo_fix_features = qede_fix_features,
625 .ndo_set_features = qede_set_features,
626 .ndo_get_stats64 = qede_get_stats64,
627#ifdef CONFIG_QED_SRIOV
628 .ndo_set_vf_link_state = qede_set_vf_link_state,
629 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
630 .ndo_get_vf_config = qede_get_vf_config,
631 .ndo_set_vf_rate = qede_set_vf_rate,
632#endif
633 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
634 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
635 .ndo_features_check = qede_features_check,
636 .ndo_bpf = qede_xdp,
637#ifdef CONFIG_RFS_ACCEL
638 .ndo_rx_flow_steer = qede_rx_flow_steer,
639#endif
640 .ndo_setup_tc = qede_setup_tc_offload,
641};
642
643static const struct net_device_ops qede_netdev_vf_ops = {
644 .ndo_open = qede_open,
645 .ndo_stop = qede_close,
646 .ndo_start_xmit = qede_start_xmit,
647 .ndo_select_queue = qede_select_queue,
648 .ndo_set_rx_mode = qede_set_rx_mode,
649 .ndo_set_mac_address = qede_set_mac_addr,
650 .ndo_validate_addr = eth_validate_addr,
651 .ndo_change_mtu = qede_change_mtu,
652 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
654 .ndo_fix_features = qede_fix_features,
655 .ndo_set_features = qede_set_features,
656 .ndo_get_stats64 = qede_get_stats64,
657 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
658 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
659 .ndo_features_check = qede_features_check,
660};
661
662static const struct net_device_ops qede_netdev_vf_xdp_ops = {
663 .ndo_open = qede_open,
664 .ndo_stop = qede_close,
665 .ndo_start_xmit = qede_start_xmit,
666 .ndo_select_queue = qede_select_queue,
667 .ndo_set_rx_mode = qede_set_rx_mode,
668 .ndo_set_mac_address = qede_set_mac_addr,
669 .ndo_validate_addr = eth_validate_addr,
670 .ndo_change_mtu = qede_change_mtu,
671 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
672 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
673 .ndo_fix_features = qede_fix_features,
674 .ndo_set_features = qede_set_features,
675 .ndo_get_stats64 = qede_get_stats64,
676 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
677 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
678 .ndo_features_check = qede_features_check,
679 .ndo_bpf = qede_xdp,
680};
681
682/* -------------------------------------------------------------------------
683 * START OF PROBE / REMOVE
684 * -------------------------------------------------------------------------
685 */
686
687static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
688 struct pci_dev *pdev,
689 struct qed_dev_eth_info *info,
690 u32 dp_module, u8 dp_level)
691{
692 struct net_device *ndev;
693 struct qede_dev *edev;
694
695 ndev = alloc_etherdev_mqs(sizeof(*edev),
696 info->num_queues * info->num_tc,
697 info->num_queues);
698 if (!ndev) {
699 pr_err("etherdev allocation failed\n");
700 return NULL;
701 }
702
703 edev = netdev_priv(ndev);
704 edev->ndev = ndev;
705 edev->cdev = cdev;
706 edev->pdev = pdev;
707 edev->dp_module = dp_module;
708 edev->dp_level = dp_level;
709 edev->ops = qed_ops;
710 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
711 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
712
713 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
714 info->num_queues, info->num_queues);
715
716 SET_NETDEV_DEV(ndev, &pdev->dev);
717
718 memset(&edev->stats, 0, sizeof(edev->stats));
719 memcpy(&edev->dev_info, info, sizeof(*info));
720
721 /* As ethtool doesn't have the ability to show WoL behavior as
722 * 'default', if device supports it declare it's enabled.
723 */
724 if (edev->dev_info.common.wol_support)
725 edev->wol_enabled = true;
726
727 INIT_LIST_HEAD(&edev->vlan_list);
728
729 return edev;
730}
731
732static void qede_init_ndev(struct qede_dev *edev)
733{
734 struct net_device *ndev = edev->ndev;
735 struct pci_dev *pdev = edev->pdev;
736 bool udp_tunnel_enable = false;
737 netdev_features_t hw_features;
738
739 pci_set_drvdata(pdev, ndev);
740
741 ndev->mem_start = edev->dev_info.common.pci_mem_start;
742 ndev->base_addr = ndev->mem_start;
743 ndev->mem_end = edev->dev_info.common.pci_mem_end;
744 ndev->irq = edev->dev_info.common.pci_irq;
745
746 ndev->watchdog_timeo = TX_TIMEOUT;
747
748 if (IS_VF(edev)) {
749 if (edev->dev_info.xdp_supported)
750 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
751 else
752 ndev->netdev_ops = &qede_netdev_vf_ops;
753 } else {
754 ndev->netdev_ops = &qede_netdev_ops;
755 }
756
757 qede_set_ethtool_ops(ndev);
758
759 ndev->priv_flags |= IFF_UNICAST_FLT;
760
761 /* user-changeble features */
762 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
763 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
764 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
765
766 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
767 hw_features |= NETIF_F_NTUPLE;
768
769 if (edev->dev_info.common.vxlan_enable ||
770 edev->dev_info.common.geneve_enable)
771 udp_tunnel_enable = true;
772
773 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
774 hw_features |= NETIF_F_TSO_ECN;
775 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
776 NETIF_F_SG | NETIF_F_TSO |
777 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
778 NETIF_F_RXCSUM;
779 }
780
781 if (udp_tunnel_enable) {
782 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
783 NETIF_F_GSO_UDP_TUNNEL_CSUM);
784 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
785 NETIF_F_GSO_UDP_TUNNEL_CSUM);
786 }
787
788 if (edev->dev_info.common.gre_enable) {
789 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
790 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
791 NETIF_F_GSO_GRE_CSUM);
792 }
793
794 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
795 NETIF_F_HIGHDMA;
796 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
797 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
798 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
799
800 ndev->hw_features = hw_features;
801
802 /* MTU range: 46 - 9600 */
803 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
804 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
805
806 /* Set network device HW mac */
807 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
808
809 ndev->mtu = edev->dev_info.common.mtu;
810}
811
812/* This function converts from 32b param to two params of level and module
813 * Input 32b decoding:
814 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
815 * 'happy' flow, e.g. memory allocation failed.
816 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
817 * and provide important parameters.
818 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
819 * module. VERBOSE prints are for tracking the specific flow in low level.
820 *
821 * Notice that the level should be that of the lowest required logs.
822 */
823void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
824{
825 *p_dp_level = QED_LEVEL_NOTICE;
826 *p_dp_module = 0;
827
828 if (debug & QED_LOG_VERBOSE_MASK) {
829 *p_dp_level = QED_LEVEL_VERBOSE;
830 *p_dp_module = (debug & 0x3FFFFFFF);
831 } else if (debug & QED_LOG_INFO_MASK) {
832 *p_dp_level = QED_LEVEL_INFO;
833 } else if (debug & QED_LOG_NOTICE_MASK) {
834 *p_dp_level = QED_LEVEL_NOTICE;
835 }
836}
837
838static void qede_free_fp_array(struct qede_dev *edev)
839{
840 if (edev->fp_array) {
841 struct qede_fastpath *fp;
842 int i;
843
844 for_each_queue(i) {
845 fp = &edev->fp_array[i];
846
847 kfree(fp->sb_info);
848 /* Handle mem alloc failure case where qede_init_fp
849 * didn't register xdp_rxq_info yet.
850 * Implicit only (fp->type & QEDE_FASTPATH_RX)
851 */
852 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
853 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
854 kfree(fp->rxq);
855 kfree(fp->xdp_tx);
856 kfree(fp->txq);
857 }
858 kfree(edev->fp_array);
859 }
860
861 edev->num_queues = 0;
862 edev->fp_num_tx = 0;
863 edev->fp_num_rx = 0;
864}
865
866static int qede_alloc_fp_array(struct qede_dev *edev)
867{
868 u8 fp_combined, fp_rx = edev->fp_num_rx;
869 struct qede_fastpath *fp;
870 int i;
871
872 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
873 sizeof(*edev->fp_array), GFP_KERNEL);
874 if (!edev->fp_array) {
875 DP_NOTICE(edev, "fp array allocation failed\n");
876 goto err;
877 }
878
879 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
880
881 /* Allocate the FP elements for Rx queues followed by combined and then
882 * the Tx. This ordering should be maintained so that the respective
883 * queues (Rx or Tx) will be together in the fastpath array and the
884 * associated ids will be sequential.
885 */
886 for_each_queue(i) {
887 fp = &edev->fp_array[i];
888
889 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
890 if (!fp->sb_info) {
891 DP_NOTICE(edev, "sb info struct allocation failed\n");
892 goto err;
893 }
894
895 if (fp_rx) {
896 fp->type = QEDE_FASTPATH_RX;
897 fp_rx--;
898 } else if (fp_combined) {
899 fp->type = QEDE_FASTPATH_COMBINED;
900 fp_combined--;
901 } else {
902 fp->type = QEDE_FASTPATH_TX;
903 }
904
905 if (fp->type & QEDE_FASTPATH_TX) {
906 fp->txq = kcalloc(edev->dev_info.num_tc,
907 sizeof(*fp->txq), GFP_KERNEL);
908 if (!fp->txq)
909 goto err;
910 }
911
912 if (fp->type & QEDE_FASTPATH_RX) {
913 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
914 if (!fp->rxq)
915 goto err;
916
917 if (edev->xdp_prog) {
918 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
919 GFP_KERNEL);
920 if (!fp->xdp_tx)
921 goto err;
922 fp->type |= QEDE_FASTPATH_XDP;
923 }
924 }
925 }
926
927 return 0;
928err:
929 qede_free_fp_array(edev);
930 return -ENOMEM;
931}
932
933/* The qede lock is used to protect driver state change and driver flows that
934 * are not reentrant.
935 */
936void __qede_lock(struct qede_dev *edev)
937{
938 mutex_lock(&edev->qede_lock);
939}
940
941void __qede_unlock(struct qede_dev *edev)
942{
943 mutex_unlock(&edev->qede_lock);
944}
945
946/* This version of the lock should be used when acquiring the RTNL lock is also
947 * needed in addition to the internal qede lock.
948 */
949static void qede_lock(struct qede_dev *edev)
950{
951 rtnl_lock();
952 __qede_lock(edev);
953}
954
955static void qede_unlock(struct qede_dev *edev)
956{
957 __qede_unlock(edev);
958 rtnl_unlock();
959}
960
961static void qede_sp_task(struct work_struct *work)
962{
963 struct qede_dev *edev = container_of(work, struct qede_dev,
964 sp_task.work);
965
966 /* The locking scheme depends on the specific flag:
967 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
968 * ensure that ongoing flows are ended and new ones are not started.
969 * In other cases - only the internal qede lock should be acquired.
970 */
971
972 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
973#ifdef CONFIG_QED_SRIOV
974 /* SRIOV must be disabled outside the lock to avoid a deadlock.
975 * The recovery of the active VFs is currently not supported.
976 */
977 qede_sriov_configure(edev->pdev, 0);
978#endif
979 qede_lock(edev);
980 qede_recovery_handler(edev);
981 qede_unlock(edev);
982 }
983
984 __qede_lock(edev);
985
986 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
987 if (edev->state == QEDE_STATE_OPEN)
988 qede_config_rx_mode(edev->ndev);
989
990#ifdef CONFIG_RFS_ACCEL
991 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
992 if (edev->state == QEDE_STATE_OPEN)
993 qede_process_arfs_filters(edev, false);
994 }
995#endif
996 __qede_unlock(edev);
997}
998
999static void qede_update_pf_params(struct qed_dev *cdev)
1000{
1001 struct qed_pf_params pf_params;
1002 u16 num_cons;
1003
1004 /* 64 rx + 64 tx + 64 XDP */
1005 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1006
1007 /* 1 rx + 1 xdp + max tx cos */
1008 num_cons = QED_MIN_L2_CONS;
1009
1010 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1011
1012 /* Same for VFs - make sure they'll have sufficient connections
1013 * to support XDP Tx queues.
1014 */
1015 pf_params.eth_pf_params.num_vf_cons = 48;
1016
1017 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1018 qed_ops->common->update_pf_params(cdev, &pf_params);
1019}
1020
1021#define QEDE_FW_VER_STR_SIZE 80
1022
1023static void qede_log_probe(struct qede_dev *edev)
1024{
1025 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1026 u8 buf[QEDE_FW_VER_STR_SIZE];
1027 size_t left_size;
1028
1029 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1030 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1031 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1032 p_dev_info->fw_eng,
1033 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1034 QED_MFW_VERSION_3_OFFSET,
1035 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1036 QED_MFW_VERSION_2_OFFSET,
1037 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1038 QED_MFW_VERSION_1_OFFSET,
1039 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1040 QED_MFW_VERSION_0_OFFSET);
1041
1042 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1043 if (p_dev_info->mbi_version && left_size)
1044 snprintf(buf + strlen(buf), left_size,
1045 " [MBI %d.%d.%d]",
1046 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1047 QED_MBI_VERSION_2_OFFSET,
1048 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1049 QED_MBI_VERSION_1_OFFSET,
1050 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1051 QED_MBI_VERSION_0_OFFSET);
1052
1053 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1054 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1055 buf, edev->ndev->name);
1056}
1057
1058enum qede_probe_mode {
1059 QEDE_PROBE_NORMAL,
1060 QEDE_PROBE_RECOVERY,
1061};
1062
1063static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1064 bool is_vf, enum qede_probe_mode mode)
1065{
1066 struct qed_probe_params probe_params;
1067 struct qed_slowpath_params sp_params;
1068 struct qed_dev_eth_info dev_info;
1069 struct qede_dev *edev;
1070 struct qed_dev *cdev;
1071 int rc;
1072
1073 if (unlikely(dp_level & QED_LEVEL_INFO))
1074 pr_notice("Starting qede probe\n");
1075
1076 memset(&probe_params, 0, sizeof(probe_params));
1077 probe_params.protocol = QED_PROTOCOL_ETH;
1078 probe_params.dp_module = dp_module;
1079 probe_params.dp_level = dp_level;
1080 probe_params.is_vf = is_vf;
1081 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1082 cdev = qed_ops->common->probe(pdev, &probe_params);
1083 if (!cdev) {
1084 rc = -ENODEV;
1085 goto err0;
1086 }
1087
1088 qede_update_pf_params(cdev);
1089
1090 /* Start the Slowpath-process */
1091 memset(&sp_params, 0, sizeof(sp_params));
1092 sp_params.int_mode = QED_INT_MODE_MSIX;
1093 sp_params.drv_major = QEDE_MAJOR_VERSION;
1094 sp_params.drv_minor = QEDE_MINOR_VERSION;
1095 sp_params.drv_rev = QEDE_REVISION_VERSION;
1096 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1097 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1098 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1099 if (rc) {
1100 pr_notice("Cannot start slowpath\n");
1101 goto err1;
1102 }
1103
1104 /* Learn information crucial for qede to progress */
1105 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1106 if (rc)
1107 goto err2;
1108
1109 if (mode != QEDE_PROBE_RECOVERY) {
1110 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1111 dp_level);
1112 if (!edev) {
1113 rc = -ENOMEM;
1114 goto err2;
1115 }
1116 } else {
1117 struct net_device *ndev = pci_get_drvdata(pdev);
1118
1119 edev = netdev_priv(ndev);
1120 edev->cdev = cdev;
1121 memset(&edev->stats, 0, sizeof(edev->stats));
1122 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1123 }
1124
1125 if (is_vf)
1126 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1127
1128 qede_init_ndev(edev);
1129
1130 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1131 if (rc)
1132 goto err3;
1133
1134 if (mode != QEDE_PROBE_RECOVERY) {
1135 /* Prepare the lock prior to the registration of the netdev,
1136 * as once it's registered we might reach flows requiring it
1137 * [it's even possible to reach a flow needing it directly
1138 * from there, although it's unlikely].
1139 */
1140 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1141 mutex_init(&edev->qede_lock);
1142
1143 rc = register_netdev(edev->ndev);
1144 if (rc) {
1145 DP_NOTICE(edev, "Cannot register net-device\n");
1146 goto err4;
1147 }
1148 }
1149
1150 edev->ops->common->set_name(cdev, edev->ndev->name);
1151
1152 /* PTP not supported on VFs */
1153 if (!is_vf)
1154 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1155
1156 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1157
1158#ifdef CONFIG_DCB
1159 if (!IS_VF(edev))
1160 qede_set_dcbnl_ops(edev->ndev);
1161#endif
1162
1163 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1164
1165 qede_log_probe(edev);
1166 return 0;
1167
1168err4:
1169 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1170err3:
1171 free_netdev(edev->ndev);
1172err2:
1173 qed_ops->common->slowpath_stop(cdev);
1174err1:
1175 qed_ops->common->remove(cdev);
1176err0:
1177 return rc;
1178}
1179
1180static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181{
1182 bool is_vf = false;
1183 u32 dp_module = 0;
1184 u8 dp_level = 0;
1185
1186 switch ((enum qede_pci_private)id->driver_data) {
1187 case QEDE_PRIVATE_VF:
1188 if (debug & QED_LOG_VERBOSE_MASK)
1189 dev_err(&pdev->dev, "Probing a VF\n");
1190 is_vf = true;
1191 break;
1192 default:
1193 if (debug & QED_LOG_VERBOSE_MASK)
1194 dev_err(&pdev->dev, "Probing a PF\n");
1195 }
1196
1197 qede_config_debug(debug, &dp_module, &dp_level);
1198
1199 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1200 QEDE_PROBE_NORMAL);
1201}
1202
1203enum qede_remove_mode {
1204 QEDE_REMOVE_NORMAL,
1205 QEDE_REMOVE_RECOVERY,
1206};
1207
1208static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1209{
1210 struct net_device *ndev = pci_get_drvdata(pdev);
1211 struct qede_dev *edev;
1212 struct qed_dev *cdev;
1213
1214 if (!ndev) {
1215 dev_info(&pdev->dev, "Device has already been removed\n");
1216 return;
1217 }
1218
1219 edev = netdev_priv(ndev);
1220 cdev = edev->cdev;
1221
1222 DP_INFO(edev, "Starting qede_remove\n");
1223
1224 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1225
1226 if (mode != QEDE_REMOVE_RECOVERY) {
1227 unregister_netdev(ndev);
1228
1229 cancel_delayed_work_sync(&edev->sp_task);
1230
1231 edev->ops->common->set_power_state(cdev, PCI_D0);
1232
1233 pci_set_drvdata(pdev, NULL);
1234 }
1235
1236 qede_ptp_disable(edev);
1237
1238 /* Use global ops since we've freed edev */
1239 qed_ops->common->slowpath_stop(cdev);
1240 if (system_state == SYSTEM_POWER_OFF)
1241 return;
1242 qed_ops->common->remove(cdev);
1243
1244 /* Since this can happen out-of-sync with other flows,
1245 * don't release the netdevice until after slowpath stop
1246 * has been called to guarantee various other contexts
1247 * [e.g., QED register callbacks] won't break anything when
1248 * accessing the netdevice.
1249 */
1250 if (mode != QEDE_REMOVE_RECOVERY)
1251 free_netdev(ndev);
1252
1253 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1254}
1255
1256static void qede_remove(struct pci_dev *pdev)
1257{
1258 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1259}
1260
1261static void qede_shutdown(struct pci_dev *pdev)
1262{
1263 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264}
1265
1266/* -------------------------------------------------------------------------
1267 * START OF LOAD / UNLOAD
1268 * -------------------------------------------------------------------------
1269 */
1270
1271static int qede_set_num_queues(struct qede_dev *edev)
1272{
1273 int rc;
1274 u16 rss_num;
1275
1276 /* Setup queues according to possible resources*/
1277 if (edev->req_queues)
1278 rss_num = edev->req_queues;
1279 else
1280 rss_num = netif_get_num_default_rss_queues() *
1281 edev->dev_info.common.num_hwfns;
1282
1283 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1284
1285 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1286 if (rc > 0) {
1287 /* Managed to request interrupts for our queues */
1288 edev->num_queues = rc;
1289 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1290 QEDE_QUEUE_CNT(edev), rss_num);
1291 rc = 0;
1292 }
1293
1294 edev->fp_num_tx = edev->req_num_tx;
1295 edev->fp_num_rx = edev->req_num_rx;
1296
1297 return rc;
1298}
1299
1300static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1301 u16 sb_id)
1302{
1303 if (sb_info->sb_virt) {
1304 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1305 QED_SB_TYPE_L2_QUEUE);
1306 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1307 (void *)sb_info->sb_virt, sb_info->sb_phys);
1308 memset(sb_info, 0, sizeof(*sb_info));
1309 }
1310}
1311
1312/* This function allocates fast-path status block memory */
1313static int qede_alloc_mem_sb(struct qede_dev *edev,
1314 struct qed_sb_info *sb_info, u16 sb_id)
1315{
1316 struct status_block_e4 *sb_virt;
1317 dma_addr_t sb_phys;
1318 int rc;
1319
1320 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1321 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1322 if (!sb_virt) {
1323 DP_ERR(edev, "Status block allocation failed\n");
1324 return -ENOMEM;
1325 }
1326
1327 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1328 sb_virt, sb_phys, sb_id,
1329 QED_SB_TYPE_L2_QUEUE);
1330 if (rc) {
1331 DP_ERR(edev, "Status block initialization failed\n");
1332 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1333 sb_virt, sb_phys);
1334 return rc;
1335 }
1336
1337 return 0;
1338}
1339
1340static void qede_free_rx_buffers(struct qede_dev *edev,
1341 struct qede_rx_queue *rxq)
1342{
1343 u16 i;
1344
1345 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1346 struct sw_rx_data *rx_buf;
1347 struct page *data;
1348
1349 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1350 data = rx_buf->data;
1351
1352 dma_unmap_page(&edev->pdev->dev,
1353 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1354
1355 rx_buf->data = NULL;
1356 __free_page(data);
1357 }
1358}
1359
1360static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1361{
1362 /* Free rx buffers */
1363 qede_free_rx_buffers(edev, rxq);
1364
1365 /* Free the parallel SW ring */
1366 kfree(rxq->sw_rx_ring);
1367
1368 /* Free the real RQ ring used by FW */
1369 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1370 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1371}
1372
1373static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1374{
1375 int i;
1376
1377 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1378 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1379
1380 tpa_info->state = QEDE_AGG_STATE_NONE;
1381 }
1382}
1383
1384/* This function allocates all memory needed per Rx queue */
1385static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1386{
1387 int i, rc, size;
1388
1389 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1390
1391 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1392
1393 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1394 size = rxq->rx_headroom +
1395 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1396
1397 /* Make sure that the headroom and payload fit in a single page */
1398 if (rxq->rx_buf_size + size > PAGE_SIZE)
1399 rxq->rx_buf_size = PAGE_SIZE - size;
1400
1401 /* Segment size to spilt a page in multiple equal parts ,
1402 * unless XDP is used in which case we'd use the entire page.
1403 */
1404 if (!edev->xdp_prog) {
1405 size = size + rxq->rx_buf_size;
1406 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1407 } else {
1408 rxq->rx_buf_seg_size = PAGE_SIZE;
1409 }
1410
1411 /* Allocate the parallel driver ring for Rx buffers */
1412 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1413 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1414 if (!rxq->sw_rx_ring) {
1415 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1416 rc = -ENOMEM;
1417 goto err;
1418 }
1419
1420 /* Allocate FW Rx ring */
1421 rc = edev->ops->common->chain_alloc(edev->cdev,
1422 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1423 QED_CHAIN_MODE_NEXT_PTR,
1424 QED_CHAIN_CNT_TYPE_U16,
1425 RX_RING_SIZE,
1426 sizeof(struct eth_rx_bd),
1427 &rxq->rx_bd_ring, NULL);
1428 if (rc)
1429 goto err;
1430
1431 /* Allocate FW completion ring */
1432 rc = edev->ops->common->chain_alloc(edev->cdev,
1433 QED_CHAIN_USE_TO_CONSUME,
1434 QED_CHAIN_MODE_PBL,
1435 QED_CHAIN_CNT_TYPE_U16,
1436 RX_RING_SIZE,
1437 sizeof(union eth_rx_cqe),
1438 &rxq->rx_comp_ring, NULL);
1439 if (rc)
1440 goto err;
1441
1442 /* Allocate buffers for the Rx ring */
1443 rxq->filled_buffers = 0;
1444 for (i = 0; i < rxq->num_rx_buffers; i++) {
1445 rc = qede_alloc_rx_buffer(rxq, false);
1446 if (rc) {
1447 DP_ERR(edev,
1448 "Rx buffers allocation failed at index %d\n", i);
1449 goto err;
1450 }
1451 }
1452
1453 if (!edev->gro_disable)
1454 qede_set_tpa_param(rxq);
1455err:
1456 return rc;
1457}
1458
1459static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1460{
1461 /* Free the parallel SW ring */
1462 if (txq->is_xdp)
1463 kfree(txq->sw_tx_ring.xdp);
1464 else
1465 kfree(txq->sw_tx_ring.skbs);
1466
1467 /* Free the real RQ ring used by FW */
1468 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1469}
1470
1471/* This function allocates all memory needed per Tx queue */
1472static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1473{
1474 union eth_tx_bd_types *p_virt;
1475 int size, rc;
1476
1477 txq->num_tx_buffers = edev->q_num_tx_buffers;
1478
1479 /* Allocate the parallel driver ring for Tx buffers */
1480 if (txq->is_xdp) {
1481 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1482 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1483 if (!txq->sw_tx_ring.xdp)
1484 goto err;
1485 } else {
1486 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1487 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1488 if (!txq->sw_tx_ring.skbs)
1489 goto err;
1490 }
1491
1492 rc = edev->ops->common->chain_alloc(edev->cdev,
1493 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1494 QED_CHAIN_MODE_PBL,
1495 QED_CHAIN_CNT_TYPE_U16,
1496 txq->num_tx_buffers,
1497 sizeof(*p_virt),
1498 &txq->tx_pbl, NULL);
1499 if (rc)
1500 goto err;
1501
1502 return 0;
1503
1504err:
1505 qede_free_mem_txq(edev, txq);
1506 return -ENOMEM;
1507}
1508
1509/* This function frees all memory of a single fp */
1510static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1511{
1512 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1513
1514 if (fp->type & QEDE_FASTPATH_RX)
1515 qede_free_mem_rxq(edev, fp->rxq);
1516
1517 if (fp->type & QEDE_FASTPATH_XDP)
1518 qede_free_mem_txq(edev, fp->xdp_tx);
1519
1520 if (fp->type & QEDE_FASTPATH_TX) {
1521 int cos;
1522
1523 for_each_cos_in_txq(edev, cos)
1524 qede_free_mem_txq(edev, &fp->txq[cos]);
1525 }
1526}
1527
1528/* This function allocates all memory needed for a single fp (i.e. an entity
1529 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1530 */
1531static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1532{
1533 int rc = 0;
1534
1535 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1536 if (rc)
1537 goto out;
1538
1539 if (fp->type & QEDE_FASTPATH_RX) {
1540 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1541 if (rc)
1542 goto out;
1543 }
1544
1545 if (fp->type & QEDE_FASTPATH_XDP) {
1546 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1547 if (rc)
1548 goto out;
1549 }
1550
1551 if (fp->type & QEDE_FASTPATH_TX) {
1552 int cos;
1553
1554 for_each_cos_in_txq(edev, cos) {
1555 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1556 if (rc)
1557 goto out;
1558 }
1559 }
1560
1561out:
1562 return rc;
1563}
1564
1565static void qede_free_mem_load(struct qede_dev *edev)
1566{
1567 int i;
1568
1569 for_each_queue(i) {
1570 struct qede_fastpath *fp = &edev->fp_array[i];
1571
1572 qede_free_mem_fp(edev, fp);
1573 }
1574}
1575
1576/* This function allocates all qede memory at NIC load. */
1577static int qede_alloc_mem_load(struct qede_dev *edev)
1578{
1579 int rc = 0, queue_id;
1580
1581 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1582 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1583
1584 rc = qede_alloc_mem_fp(edev, fp);
1585 if (rc) {
1586 DP_ERR(edev,
1587 "Failed to allocate memory for fastpath - rss id = %d\n",
1588 queue_id);
1589 qede_free_mem_load(edev);
1590 return rc;
1591 }
1592 }
1593
1594 return 0;
1595}
1596
1597static void qede_empty_tx_queue(struct qede_dev *edev,
1598 struct qede_tx_queue *txq)
1599{
1600 unsigned int pkts_compl = 0, bytes_compl = 0;
1601 struct netdev_queue *netdev_txq;
1602 int rc, len = 0;
1603
1604 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1605
1606 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1607 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1608 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1609 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1610 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1611 qed_chain_get_prod_idx(&txq->tx_pbl));
1612
1613 rc = qede_free_tx_pkt(edev, txq, &len);
1614 if (rc) {
1615 DP_NOTICE(edev,
1616 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1617 txq->index,
1618 qed_chain_get_cons_idx(&txq->tx_pbl),
1619 qed_chain_get_prod_idx(&txq->tx_pbl));
1620 break;
1621 }
1622
1623 bytes_compl += len;
1624 pkts_compl++;
1625 txq->sw_tx_cons++;
1626 }
1627
1628 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1629}
1630
1631static void qede_empty_tx_queues(struct qede_dev *edev)
1632{
1633 int i;
1634
1635 for_each_queue(i)
1636 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1637 int cos;
1638
1639 for_each_cos_in_txq(edev, cos) {
1640 struct qede_fastpath *fp;
1641
1642 fp = &edev->fp_array[i];
1643 qede_empty_tx_queue(edev,
1644 &fp->txq[cos]);
1645 }
1646 }
1647}
1648
1649/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1650static void qede_init_fp(struct qede_dev *edev)
1651{
1652 int queue_id, rxq_index = 0, txq_index = 0;
1653 struct qede_fastpath *fp;
1654
1655 for_each_queue(queue_id) {
1656 fp = &edev->fp_array[queue_id];
1657
1658 fp->edev = edev;
1659 fp->id = queue_id;
1660
1661 if (fp->type & QEDE_FASTPATH_XDP) {
1662 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1663 rxq_index);
1664 fp->xdp_tx->is_xdp = 1;
1665 }
1666
1667 if (fp->type & QEDE_FASTPATH_RX) {
1668 fp->rxq->rxq_id = rxq_index++;
1669
1670 /* Determine how to map buffers for this queue */
1671 if (fp->type & QEDE_FASTPATH_XDP)
1672 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1673 else
1674 fp->rxq->data_direction = DMA_FROM_DEVICE;
1675 fp->rxq->dev = &edev->pdev->dev;
1676
1677 /* Driver have no error path from here */
1678 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1679 fp->rxq->rxq_id) < 0);
1680 }
1681
1682 if (fp->type & QEDE_FASTPATH_TX) {
1683 int cos;
1684
1685 for_each_cos_in_txq(edev, cos) {
1686 struct qede_tx_queue *txq = &fp->txq[cos];
1687 u16 ndev_tx_id;
1688
1689 txq->cos = cos;
1690 txq->index = txq_index;
1691 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1692 txq->ndev_txq_id = ndev_tx_id;
1693
1694 if (edev->dev_info.is_legacy)
1695 txq->is_legacy = 1;
1696 txq->dev = &edev->pdev->dev;
1697 }
1698
1699 txq_index++;
1700 }
1701
1702 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1703 edev->ndev->name, queue_id);
1704 }
1705
1706 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1707}
1708
1709static int qede_set_real_num_queues(struct qede_dev *edev)
1710{
1711 int rc = 0;
1712
1713 rc = netif_set_real_num_tx_queues(edev->ndev,
1714 QEDE_TSS_COUNT(edev) *
1715 edev->dev_info.num_tc);
1716 if (rc) {
1717 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1718 return rc;
1719 }
1720
1721 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1722 if (rc) {
1723 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1724 return rc;
1725 }
1726
1727 return 0;
1728}
1729
1730static void qede_napi_disable_remove(struct qede_dev *edev)
1731{
1732 int i;
1733
1734 for_each_queue(i) {
1735 napi_disable(&edev->fp_array[i].napi);
1736
1737 netif_napi_del(&edev->fp_array[i].napi);
1738 }
1739}
1740
1741static void qede_napi_add_enable(struct qede_dev *edev)
1742{
1743 int i;
1744
1745 /* Add NAPI objects */
1746 for_each_queue(i) {
1747 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1748 qede_poll, NAPI_POLL_WEIGHT);
1749 napi_enable(&edev->fp_array[i].napi);
1750 }
1751}
1752
1753static void qede_sync_free_irqs(struct qede_dev *edev)
1754{
1755 int i;
1756
1757 for (i = 0; i < edev->int_info.used_cnt; i++) {
1758 if (edev->int_info.msix_cnt) {
1759 synchronize_irq(edev->int_info.msix[i].vector);
1760 free_irq(edev->int_info.msix[i].vector,
1761 &edev->fp_array[i]);
1762 } else {
1763 edev->ops->common->simd_handler_clean(edev->cdev, i);
1764 }
1765 }
1766
1767 edev->int_info.used_cnt = 0;
1768}
1769
1770static int qede_req_msix_irqs(struct qede_dev *edev)
1771{
1772 int i, rc;
1773
1774 /* Sanitize number of interrupts == number of prepared RSS queues */
1775 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1776 DP_ERR(edev,
1777 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1778 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1779 return -EINVAL;
1780 }
1781
1782 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1783#ifdef CONFIG_RFS_ACCEL
1784 struct qede_fastpath *fp = &edev->fp_array[i];
1785
1786 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1787 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1788 edev->int_info.msix[i].vector);
1789 if (rc) {
1790 DP_ERR(edev, "Failed to add CPU rmap\n");
1791 qede_free_arfs(edev);
1792 }
1793 }
1794#endif
1795 rc = request_irq(edev->int_info.msix[i].vector,
1796 qede_msix_fp_int, 0, edev->fp_array[i].name,
1797 &edev->fp_array[i]);
1798 if (rc) {
1799 DP_ERR(edev, "Request fp %d irq failed\n", i);
1800 qede_sync_free_irqs(edev);
1801 return rc;
1802 }
1803 DP_VERBOSE(edev, NETIF_MSG_INTR,
1804 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1805 edev->fp_array[i].name, i,
1806 &edev->fp_array[i]);
1807 edev->int_info.used_cnt++;
1808 }
1809
1810 return 0;
1811}
1812
1813static void qede_simd_fp_handler(void *cookie)
1814{
1815 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1816
1817 napi_schedule_irqoff(&fp->napi);
1818}
1819
1820static int qede_setup_irqs(struct qede_dev *edev)
1821{
1822 int i, rc = 0;
1823
1824 /* Learn Interrupt configuration */
1825 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1826 if (rc)
1827 return rc;
1828
1829 if (edev->int_info.msix_cnt) {
1830 rc = qede_req_msix_irqs(edev);
1831 if (rc)
1832 return rc;
1833 edev->ndev->irq = edev->int_info.msix[0].vector;
1834 } else {
1835 const struct qed_common_ops *ops;
1836
1837 /* qed should learn receive the RSS ids and callbacks */
1838 ops = edev->ops->common;
1839 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1840 ops->simd_handler_config(edev->cdev,
1841 &edev->fp_array[i], i,
1842 qede_simd_fp_handler);
1843 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1844 }
1845 return 0;
1846}
1847
1848static int qede_drain_txq(struct qede_dev *edev,
1849 struct qede_tx_queue *txq, bool allow_drain)
1850{
1851 int rc, cnt = 1000;
1852
1853 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1854 if (!cnt) {
1855 if (allow_drain) {
1856 DP_NOTICE(edev,
1857 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1858 txq->index);
1859 rc = edev->ops->common->drain(edev->cdev);
1860 if (rc)
1861 return rc;
1862 return qede_drain_txq(edev, txq, false);
1863 }
1864 DP_NOTICE(edev,
1865 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1866 txq->index, txq->sw_tx_prod,
1867 txq->sw_tx_cons);
1868 return -ENODEV;
1869 }
1870 cnt--;
1871 usleep_range(1000, 2000);
1872 barrier();
1873 }
1874
1875 /* FW finished processing, wait for HW to transmit all tx packets */
1876 usleep_range(1000, 2000);
1877
1878 return 0;
1879}
1880
1881static int qede_stop_txq(struct qede_dev *edev,
1882 struct qede_tx_queue *txq, int rss_id)
1883{
1884 /* delete doorbell from doorbell recovery mechanism */
1885 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1886 &txq->tx_db);
1887
1888 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1889}
1890
1891static int qede_stop_queues(struct qede_dev *edev)
1892{
1893 struct qed_update_vport_params *vport_update_params;
1894 struct qed_dev *cdev = edev->cdev;
1895 struct qede_fastpath *fp;
1896 int rc, i;
1897
1898 /* Disable the vport */
1899 vport_update_params = vzalloc(sizeof(*vport_update_params));
1900 if (!vport_update_params)
1901 return -ENOMEM;
1902
1903 vport_update_params->vport_id = 0;
1904 vport_update_params->update_vport_active_flg = 1;
1905 vport_update_params->vport_active_flg = 0;
1906 vport_update_params->update_rss_flg = 0;
1907
1908 rc = edev->ops->vport_update(cdev, vport_update_params);
1909 vfree(vport_update_params);
1910
1911 if (rc) {
1912 DP_ERR(edev, "Failed to update vport\n");
1913 return rc;
1914 }
1915
1916 /* Flush Tx queues. If needed, request drain from MCP */
1917 for_each_queue(i) {
1918 fp = &edev->fp_array[i];
1919
1920 if (fp->type & QEDE_FASTPATH_TX) {
1921 int cos;
1922
1923 for_each_cos_in_txq(edev, cos) {
1924 rc = qede_drain_txq(edev, &fp->txq[cos], true);
1925 if (rc)
1926 return rc;
1927 }
1928 }
1929
1930 if (fp->type & QEDE_FASTPATH_XDP) {
1931 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1932 if (rc)
1933 return rc;
1934 }
1935 }
1936
1937 /* Stop all Queues in reverse order */
1938 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1939 fp = &edev->fp_array[i];
1940
1941 /* Stop the Tx Queue(s) */
1942 if (fp->type & QEDE_FASTPATH_TX) {
1943 int cos;
1944
1945 for_each_cos_in_txq(edev, cos) {
1946 rc = qede_stop_txq(edev, &fp->txq[cos], i);
1947 if (rc)
1948 return rc;
1949 }
1950 }
1951
1952 /* Stop the Rx Queue */
1953 if (fp->type & QEDE_FASTPATH_RX) {
1954 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1955 if (rc) {
1956 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1957 return rc;
1958 }
1959 }
1960
1961 /* Stop the XDP forwarding queue */
1962 if (fp->type & QEDE_FASTPATH_XDP) {
1963 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1964 if (rc)
1965 return rc;
1966
1967 bpf_prog_put(fp->rxq->xdp_prog);
1968 }
1969 }
1970
1971 /* Stop the vport */
1972 rc = edev->ops->vport_stop(cdev, 0);
1973 if (rc)
1974 DP_ERR(edev, "Failed to stop VPORT\n");
1975
1976 return rc;
1977}
1978
1979static int qede_start_txq(struct qede_dev *edev,
1980 struct qede_fastpath *fp,
1981 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1982{
1983 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1984 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1985 struct qed_queue_start_common_params params;
1986 struct qed_txq_start_ret_params ret_params;
1987 int rc;
1988
1989 memset(¶ms, 0, sizeof(params));
1990 memset(&ret_params, 0, sizeof(ret_params));
1991
1992 /* Let the XDP queue share the queue-zone with one of the regular txq.
1993 * We don't really care about its coalescing.
1994 */
1995 if (txq->is_xdp)
1996 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1997 else
1998 params.queue_id = txq->index;
1999
2000 params.p_sb = fp->sb_info;
2001 params.sb_idx = sb_idx;
2002 params.tc = txq->cos;
2003
2004 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
2005 page_cnt, &ret_params);
2006 if (rc) {
2007 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2008 return rc;
2009 }
2010
2011 txq->doorbell_addr = ret_params.p_doorbell;
2012 txq->handle = ret_params.p_handle;
2013
2014 /* Determine the FW consumer address associated */
2015 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2016
2017 /* Prepare the doorbell parameters */
2018 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2019 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2020 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2021 DQ_XCM_ETH_TX_BD_PROD_CMD);
2022 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2023
2024 /* register doorbell with doorbell recovery mechanism */
2025 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2026 &txq->tx_db, DB_REC_WIDTH_32B,
2027 DB_REC_KERNEL);
2028
2029 return rc;
2030}
2031
2032static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2033{
2034 int vlan_removal_en = 1;
2035 struct qed_dev *cdev = edev->cdev;
2036 struct qed_dev_info *qed_info = &edev->dev_info.common;
2037 struct qed_update_vport_params *vport_update_params;
2038 struct qed_queue_start_common_params q_params;
2039 struct qed_start_vport_params start = {0};
2040 int rc, i;
2041
2042 if (!edev->num_queues) {
2043 DP_ERR(edev,
2044 "Cannot update V-VPORT as active as there are no Rx queues\n");
2045 return -EINVAL;
2046 }
2047
2048 vport_update_params = vzalloc(sizeof(*vport_update_params));
2049 if (!vport_update_params)
2050 return -ENOMEM;
2051
2052 start.handle_ptp_pkts = !!(edev->ptp);
2053 start.gro_enable = !edev->gro_disable;
2054 start.mtu = edev->ndev->mtu;
2055 start.vport_id = 0;
2056 start.drop_ttl0 = true;
2057 start.remove_inner_vlan = vlan_removal_en;
2058 start.clear_stats = clear_stats;
2059
2060 rc = edev->ops->vport_start(cdev, &start);
2061
2062 if (rc) {
2063 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2064 goto out;
2065 }
2066
2067 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2068 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2069 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2070
2071 for_each_queue(i) {
2072 struct qede_fastpath *fp = &edev->fp_array[i];
2073 dma_addr_t p_phys_table;
2074 u32 page_cnt;
2075
2076 if (fp->type & QEDE_FASTPATH_RX) {
2077 struct qed_rxq_start_ret_params ret_params;
2078 struct qede_rx_queue *rxq = fp->rxq;
2079 __le16 *val;
2080
2081 memset(&ret_params, 0, sizeof(ret_params));
2082 memset(&q_params, 0, sizeof(q_params));
2083 q_params.queue_id = rxq->rxq_id;
2084 q_params.vport_id = 0;
2085 q_params.p_sb = fp->sb_info;
2086 q_params.sb_idx = RX_PI;
2087
2088 p_phys_table =
2089 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2090 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2091
2092 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2093 rxq->rx_buf_size,
2094 rxq->rx_bd_ring.p_phys_addr,
2095 p_phys_table,
2096 page_cnt, &ret_params);
2097 if (rc) {
2098 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2099 rc);
2100 goto out;
2101 }
2102
2103 /* Use the return parameters */
2104 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2105 rxq->handle = ret_params.p_handle;
2106
2107 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2108 rxq->hw_cons_ptr = val;
2109
2110 qede_update_rx_prod(edev, rxq);
2111 }
2112
2113 if (fp->type & QEDE_FASTPATH_XDP) {
2114 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2115 if (rc)
2116 goto out;
2117
2118 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2119 if (IS_ERR(fp->rxq->xdp_prog)) {
2120 rc = PTR_ERR(fp->rxq->xdp_prog);
2121 fp->rxq->xdp_prog = NULL;
2122 goto out;
2123 }
2124 }
2125
2126 if (fp->type & QEDE_FASTPATH_TX) {
2127 int cos;
2128
2129 for_each_cos_in_txq(edev, cos) {
2130 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2131 TX_PI(cos));
2132 if (rc)
2133 goto out;
2134 }
2135 }
2136 }
2137
2138 /* Prepare and send the vport enable */
2139 vport_update_params->vport_id = start.vport_id;
2140 vport_update_params->update_vport_active_flg = 1;
2141 vport_update_params->vport_active_flg = 1;
2142
2143 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2144 qed_info->tx_switching) {
2145 vport_update_params->update_tx_switching_flg = 1;
2146 vport_update_params->tx_switching_flg = 1;
2147 }
2148
2149 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2150 &vport_update_params->update_rss_flg);
2151
2152 rc = edev->ops->vport_update(cdev, vport_update_params);
2153 if (rc)
2154 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2155
2156out:
2157 vfree(vport_update_params);
2158 return rc;
2159}
2160
2161enum qede_unload_mode {
2162 QEDE_UNLOAD_NORMAL,
2163 QEDE_UNLOAD_RECOVERY,
2164};
2165
2166static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2167 bool is_locked)
2168{
2169 struct qed_link_params link_params;
2170 int rc;
2171
2172 DP_INFO(edev, "Starting qede unload\n");
2173
2174 if (!is_locked)
2175 __qede_lock(edev);
2176
2177 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2178
2179 if (mode != QEDE_UNLOAD_RECOVERY)
2180 edev->state = QEDE_STATE_CLOSED;
2181
2182 qede_rdma_dev_event_close(edev);
2183
2184 /* Close OS Tx */
2185 netif_tx_disable(edev->ndev);
2186 netif_carrier_off(edev->ndev);
2187
2188 if (mode != QEDE_UNLOAD_RECOVERY) {
2189 /* Reset the link */
2190 memset(&link_params, 0, sizeof(link_params));
2191 link_params.link_up = false;
2192 edev->ops->common->set_link(edev->cdev, &link_params);
2193
2194 rc = qede_stop_queues(edev);
2195 if (rc) {
2196 qede_sync_free_irqs(edev);
2197 goto out;
2198 }
2199
2200 DP_INFO(edev, "Stopped Queues\n");
2201 }
2202
2203 qede_vlan_mark_nonconfigured(edev);
2204 edev->ops->fastpath_stop(edev->cdev);
2205
2206 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2207 qede_poll_for_freeing_arfs_filters(edev);
2208 qede_free_arfs(edev);
2209 }
2210
2211 /* Release the interrupts */
2212 qede_sync_free_irqs(edev);
2213 edev->ops->common->set_fp_int(edev->cdev, 0);
2214
2215 qede_napi_disable_remove(edev);
2216
2217 if (mode == QEDE_UNLOAD_RECOVERY)
2218 qede_empty_tx_queues(edev);
2219
2220 qede_free_mem_load(edev);
2221 qede_free_fp_array(edev);
2222
2223out:
2224 if (!is_locked)
2225 __qede_unlock(edev);
2226
2227 if (mode != QEDE_UNLOAD_RECOVERY)
2228 DP_NOTICE(edev, "Link is down\n");
2229
2230 edev->ptp_skip_txts = 0;
2231
2232 DP_INFO(edev, "Ending qede unload\n");
2233}
2234
2235enum qede_load_mode {
2236 QEDE_LOAD_NORMAL,
2237 QEDE_LOAD_RELOAD,
2238 QEDE_LOAD_RECOVERY,
2239};
2240
2241static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2242 bool is_locked)
2243{
2244 struct qed_link_params link_params;
2245 u8 num_tc;
2246 int rc;
2247
2248 DP_INFO(edev, "Starting qede load\n");
2249
2250 if (!is_locked)
2251 __qede_lock(edev);
2252
2253 rc = qede_set_num_queues(edev);
2254 if (rc)
2255 goto out;
2256
2257 rc = qede_alloc_fp_array(edev);
2258 if (rc)
2259 goto out;
2260
2261 qede_init_fp(edev);
2262
2263 rc = qede_alloc_mem_load(edev);
2264 if (rc)
2265 goto err1;
2266 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2267 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2268
2269 rc = qede_set_real_num_queues(edev);
2270 if (rc)
2271 goto err2;
2272
2273 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2274 rc = qede_alloc_arfs(edev);
2275 if (rc)
2276 DP_NOTICE(edev, "aRFS memory allocation failed\n");
2277 }
2278
2279 qede_napi_add_enable(edev);
2280 DP_INFO(edev, "Napi added and enabled\n");
2281
2282 rc = qede_setup_irqs(edev);
2283 if (rc)
2284 goto err3;
2285 DP_INFO(edev, "Setup IRQs succeeded\n");
2286
2287 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2288 if (rc)
2289 goto err4;
2290 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2291
2292 num_tc = netdev_get_num_tc(edev->ndev);
2293 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2294 qede_setup_tc(edev->ndev, num_tc);
2295
2296 /* Program un-configured VLANs */
2297 qede_configure_vlan_filters(edev);
2298
2299 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2300
2301 /* Ask for link-up using current configuration */
2302 memset(&link_params, 0, sizeof(link_params));
2303 link_params.link_up = true;
2304 edev->ops->common->set_link(edev->cdev, &link_params);
2305
2306 edev->state = QEDE_STATE_OPEN;
2307
2308 DP_INFO(edev, "Ending successfully qede load\n");
2309
2310 goto out;
2311err4:
2312 qede_sync_free_irqs(edev);
2313 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2314err3:
2315 qede_napi_disable_remove(edev);
2316err2:
2317 qede_free_mem_load(edev);
2318err1:
2319 edev->ops->common->set_fp_int(edev->cdev, 0);
2320 qede_free_fp_array(edev);
2321 edev->num_queues = 0;
2322 edev->fp_num_tx = 0;
2323 edev->fp_num_rx = 0;
2324out:
2325 if (!is_locked)
2326 __qede_unlock(edev);
2327
2328 return rc;
2329}
2330
2331/* 'func' should be able to run between unload and reload assuming interface
2332 * is actually running, or afterwards in case it's currently DOWN.
2333 */
2334void qede_reload(struct qede_dev *edev,
2335 struct qede_reload_args *args, bool is_locked)
2336{
2337 if (!is_locked)
2338 __qede_lock(edev);
2339
2340 /* Since qede_lock is held, internal state wouldn't change even
2341 * if netdev state would start transitioning. Check whether current
2342 * internal configuration indicates device is up, then reload.
2343 */
2344 if (edev->state == QEDE_STATE_OPEN) {
2345 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2346 if (args)
2347 args->func(edev, args);
2348 qede_load(edev, QEDE_LOAD_RELOAD, true);
2349
2350 /* Since no one is going to do it for us, re-configure */
2351 qede_config_rx_mode(edev->ndev);
2352 } else if (args) {
2353 args->func(edev, args);
2354 }
2355
2356 if (!is_locked)
2357 __qede_unlock(edev);
2358}
2359
2360/* called with rtnl_lock */
2361static int qede_open(struct net_device *ndev)
2362{
2363 struct qede_dev *edev = netdev_priv(ndev);
2364 int rc;
2365
2366 netif_carrier_off(ndev);
2367
2368 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2369
2370 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2371 if (rc)
2372 return rc;
2373
2374 udp_tunnel_get_rx_info(ndev);
2375
2376 edev->ops->common->update_drv_state(edev->cdev, true);
2377
2378 return 0;
2379}
2380
2381static int qede_close(struct net_device *ndev)
2382{
2383 struct qede_dev *edev = netdev_priv(ndev);
2384
2385 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2386
2387 edev->ops->common->update_drv_state(edev->cdev, false);
2388
2389 return 0;
2390}
2391
2392static void qede_link_update(void *dev, struct qed_link_output *link)
2393{
2394 struct qede_dev *edev = dev;
2395
2396 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2397 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2398 return;
2399 }
2400
2401 if (link->link_up) {
2402 if (!netif_carrier_ok(edev->ndev)) {
2403 DP_NOTICE(edev, "Link is up\n");
2404 netif_tx_start_all_queues(edev->ndev);
2405 netif_carrier_on(edev->ndev);
2406 qede_rdma_dev_event_open(edev);
2407 }
2408 } else {
2409 if (netif_carrier_ok(edev->ndev)) {
2410 DP_NOTICE(edev, "Link is down\n");
2411 netif_tx_disable(edev->ndev);
2412 netif_carrier_off(edev->ndev);
2413 qede_rdma_dev_event_close(edev);
2414 }
2415 }
2416}
2417
2418static void qede_schedule_recovery_handler(void *dev)
2419{
2420 struct qede_dev *edev = dev;
2421
2422 if (edev->state == QEDE_STATE_RECOVERY) {
2423 DP_NOTICE(edev,
2424 "Avoid scheduling a recovery handling since already in recovery state\n");
2425 return;
2426 }
2427
2428 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2429 schedule_delayed_work(&edev->sp_task, 0);
2430
2431 DP_INFO(edev, "Scheduled a recovery handler\n");
2432}
2433
2434static void qede_recovery_failed(struct qede_dev *edev)
2435{
2436 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2437
2438 netif_device_detach(edev->ndev);
2439
2440 if (edev->cdev)
2441 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2442}
2443
2444static void qede_recovery_handler(struct qede_dev *edev)
2445{
2446 u32 curr_state = edev->state;
2447 int rc;
2448
2449 DP_NOTICE(edev, "Starting a recovery process\n");
2450
2451 /* No need to acquire first the qede_lock since is done by qede_sp_task
2452 * before calling this function.
2453 */
2454 edev->state = QEDE_STATE_RECOVERY;
2455
2456 edev->ops->common->recovery_prolog(edev->cdev);
2457
2458 if (curr_state == QEDE_STATE_OPEN)
2459 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2460
2461 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2462
2463 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2464 IS_VF(edev), QEDE_PROBE_RECOVERY);
2465 if (rc) {
2466 edev->cdev = NULL;
2467 goto err;
2468 }
2469
2470 if (curr_state == QEDE_STATE_OPEN) {
2471 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2472 if (rc)
2473 goto err;
2474
2475 qede_config_rx_mode(edev->ndev);
2476 udp_tunnel_get_rx_info(edev->ndev);
2477 }
2478
2479 edev->state = curr_state;
2480
2481 DP_NOTICE(edev, "Recovery handling is done\n");
2482
2483 return;
2484
2485err:
2486 qede_recovery_failed(edev);
2487}
2488
2489static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2490{
2491 struct netdev_queue *netdev_txq;
2492
2493 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2494 if (netif_xmit_stopped(netdev_txq))
2495 return true;
2496
2497 return false;
2498}
2499
2500static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2501{
2502 struct qede_dev *edev = dev;
2503 struct netdev_hw_addr *ha;
2504 int i;
2505
2506 if (edev->ndev->features & NETIF_F_IP_CSUM)
2507 data->feat_flags |= QED_TLV_IP_CSUM;
2508 if (edev->ndev->features & NETIF_F_TSO)
2509 data->feat_flags |= QED_TLV_LSO;
2510
2511 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2512 memset(data->mac[1], 0, ETH_ALEN);
2513 memset(data->mac[2], 0, ETH_ALEN);
2514 /* Copy the first two UC macs */
2515 netif_addr_lock_bh(edev->ndev);
2516 i = 1;
2517 netdev_for_each_uc_addr(ha, edev->ndev) {
2518 ether_addr_copy(data->mac[i++], ha->addr);
2519 if (i == QED_TLV_MAC_COUNT)
2520 break;
2521 }
2522
2523 netif_addr_unlock_bh(edev->ndev);
2524}
2525
2526static void qede_get_eth_tlv_data(void *dev, void *data)
2527{
2528 struct qed_mfw_tlv_eth *etlv = data;
2529 struct qede_dev *edev = dev;
2530 struct qede_fastpath *fp;
2531 int i;
2532
2533 etlv->lso_maxoff_size = 0XFFFF;
2534 etlv->lso_maxoff_size_set = true;
2535 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2536 etlv->lso_minseg_size_set = true;
2537 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2538 etlv->prom_mode_set = true;
2539 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2540 etlv->tx_descr_size_set = true;
2541 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2542 etlv->rx_descr_size_set = true;
2543 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2544 etlv->iov_offload_set = true;
2545
2546 /* Fill information regarding queues; Should be done under the qede
2547 * lock to guarantee those don't change beneath our feet.
2548 */
2549 etlv->txqs_empty = true;
2550 etlv->rxqs_empty = true;
2551 etlv->num_txqs_full = 0;
2552 etlv->num_rxqs_full = 0;
2553
2554 __qede_lock(edev);
2555 for_each_queue(i) {
2556 fp = &edev->fp_array[i];
2557 if (fp->type & QEDE_FASTPATH_TX) {
2558 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2559
2560 if (txq->sw_tx_cons != txq->sw_tx_prod)
2561 etlv->txqs_empty = false;
2562 if (qede_is_txq_full(edev, txq))
2563 etlv->num_txqs_full++;
2564 }
2565 if (fp->type & QEDE_FASTPATH_RX) {
2566 if (qede_has_rx_work(fp->rxq))
2567 etlv->rxqs_empty = false;
2568
2569 /* This one is a bit tricky; Firmware might stop
2570 * placing packets if ring is not yet full.
2571 * Give an approximation.
2572 */
2573 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2574 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2575 RX_RING_SIZE - 100)
2576 etlv->num_rxqs_full++;
2577 }
2578 }
2579 __qede_unlock(edev);
2580
2581 etlv->txqs_empty_set = true;
2582 etlv->rxqs_empty_set = true;
2583 etlv->num_txqs_full_set = true;
2584 etlv->num_rxqs_full_set = true;
2585}