Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vmf->vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	kvfree(array);
  85}
  86
  87/**
  88 *	relay_mmap_buf: - mmap channel buffer to process address space
  89 *	@buf: relay channel buffer
  90 *	@vma: vm_area_struct describing memory to be mapped
  91 *
  92 *	Returns 0 if ok, negative on error
  93 *
  94 *	Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98	unsigned long length = vma->vm_end - vma->vm_start;
  99	struct file *filp = vma->vm_file;
 100
 101	if (!buf)
 102		return -EBADF;
 103
 104	if (length != (unsigned long)buf->chan->alloc_size)
 105		return -EINVAL;
 106
 107	vma->vm_ops = &relay_file_mmap_ops;
 108	vma->vm_flags |= VM_DONTEXPAND;
 109	vma->vm_private_data = buf;
 110	buf->chan->cb->buf_mapped(buf, filp);
 111
 112	return 0;
 113}
 114
 115/**
 116 *	relay_alloc_buf - allocate a channel buffer
 117 *	@buf: the buffer struct
 118 *	@size: total size of the buffer
 119 *
 120 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *	passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125	void *mem;
 126	unsigned int i, j, n_pages;
 127
 128	*size = PAGE_ALIGN(*size);
 129	n_pages = *size >> PAGE_SHIFT;
 130
 131	buf->page_array = relay_alloc_page_array(n_pages);
 132	if (!buf->page_array)
 133		return NULL;
 134
 135	for (i = 0; i < n_pages; i++) {
 136		buf->page_array[i] = alloc_page(GFP_KERNEL);
 137		if (unlikely(!buf->page_array[i]))
 138			goto depopulate;
 139		set_page_private(buf->page_array[i], (unsigned long)buf);
 140	}
 141	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142	if (!mem)
 143		goto depopulate;
 144
 145	memset(mem, 0, *size);
 146	buf->page_count = n_pages;
 147	return mem;
 148
 149depopulate:
 150	for (j = 0; j < i; j++)
 151		__free_page(buf->page_array[j]);
 152	relay_free_page_array(buf->page_array);
 153	return NULL;
 154}
 155
 156/**
 157 *	relay_create_buf - allocate and initialize a channel buffer
 158 *	@chan: the relay channel
 159 *
 160 *	Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164	struct rchan_buf *buf;
 165
 166	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 167		return NULL;
 168
 169	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170	if (!buf)
 171		return NULL;
 172	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 173	if (!buf->padding)
 174		goto free_buf;
 175
 176	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 177	if (!buf->start)
 178		goto free_buf;
 179
 180	buf->chan = chan;
 181	kref_get(&buf->chan->kref);
 182	return buf;
 183
 184free_buf:
 185	kfree(buf->padding);
 186	kfree(buf);
 187	return NULL;
 188}
 189
 190/**
 191 *	relay_destroy_channel - free the channel struct
 192 *	@kref: target kernel reference that contains the relay channel
 193 *
 194 *	Should only be called from kref_put().
 195 */
 196static void relay_destroy_channel(struct kref *kref)
 197{
 198	struct rchan *chan = container_of(kref, struct rchan, kref);
 199	kfree(chan);
 200}
 201
 202/**
 203 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 204 *	@buf: the buffer struct
 205 */
 206static void relay_destroy_buf(struct rchan_buf *buf)
 207{
 208	struct rchan *chan = buf->chan;
 209	unsigned int i;
 210
 211	if (likely(buf->start)) {
 212		vunmap(buf->start);
 213		for (i = 0; i < buf->page_count; i++)
 214			__free_page(buf->page_array[i]);
 215		relay_free_page_array(buf->page_array);
 216	}
 217	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 218	kfree(buf->padding);
 219	kfree(buf);
 220	kref_put(&chan->kref, relay_destroy_channel);
 221}
 222
 223/**
 224 *	relay_remove_buf - remove a channel buffer
 225 *	@kref: target kernel reference that contains the relay buffer
 226 *
 227 *	Removes the file from the filesystem, which also frees the
 228 *	rchan_buf_struct and the channel buffer.  Should only be called from
 229 *	kref_put().
 230 */
 231static void relay_remove_buf(struct kref *kref)
 232{
 233	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 234	relay_destroy_buf(buf);
 235}
 236
 237/**
 238 *	relay_buf_empty - boolean, is the channel buffer empty?
 239 *	@buf: channel buffer
 240 *
 241 *	Returns 1 if the buffer is empty, 0 otherwise.
 242 */
 243static int relay_buf_empty(struct rchan_buf *buf)
 244{
 245	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 246}
 247
 248/**
 249 *	relay_buf_full - boolean, is the channel buffer full?
 250 *	@buf: channel buffer
 251 *
 252 *	Returns 1 if the buffer is full, 0 otherwise.
 253 */
 254int relay_buf_full(struct rchan_buf *buf)
 255{
 256	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 257	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 258}
 259EXPORT_SYMBOL_GPL(relay_buf_full);
 260
 261/*
 262 * High-level relay kernel API and associated functions.
 263 */
 264
 265/*
 266 * rchan_callback implementations defining default channel behavior.  Used
 267 * in place of corresponding NULL values in client callback struct.
 268 */
 269
 270/*
 271 * subbuf_start() default callback.  Does nothing.
 272 */
 273static int subbuf_start_default_callback (struct rchan_buf *buf,
 274					  void *subbuf,
 275					  void *prev_subbuf,
 276					  size_t prev_padding)
 277{
 278	if (relay_buf_full(buf))
 279		return 0;
 280
 281	return 1;
 282}
 283
 284/*
 285 * buf_mapped() default callback.  Does nothing.
 286 */
 287static void buf_mapped_default_callback(struct rchan_buf *buf,
 288					struct file *filp)
 289{
 290}
 291
 292/*
 293 * buf_unmapped() default callback.  Does nothing.
 294 */
 295static void buf_unmapped_default_callback(struct rchan_buf *buf,
 296					  struct file *filp)
 297{
 298}
 299
 300/*
 301 * create_buf_file_create() default callback.  Does nothing.
 302 */
 303static struct dentry *create_buf_file_default_callback(const char *filename,
 304						       struct dentry *parent,
 305						       umode_t mode,
 306						       struct rchan_buf *buf,
 307						       int *is_global)
 308{
 309	return NULL;
 310}
 311
 312/*
 313 * remove_buf_file() default callback.  Does nothing.
 314 */
 315static int remove_buf_file_default_callback(struct dentry *dentry)
 316{
 317	return -EINVAL;
 318}
 319
 320/* relay channel default callbacks */
 321static struct rchan_callbacks default_channel_callbacks = {
 322	.subbuf_start = subbuf_start_default_callback,
 323	.buf_mapped = buf_mapped_default_callback,
 324	.buf_unmapped = buf_unmapped_default_callback,
 325	.create_buf_file = create_buf_file_default_callback,
 326	.remove_buf_file = remove_buf_file_default_callback,
 327};
 328
 329/**
 330 *	wakeup_readers - wake up readers waiting on a channel
 331 *	@work: contains the channel buffer
 332 *
 333 *	This is the function used to defer reader waking
 334 */
 335static void wakeup_readers(struct irq_work *work)
 336{
 337	struct rchan_buf *buf;
 338
 339	buf = container_of(work, struct rchan_buf, wakeup_work);
 340	wake_up_interruptible(&buf->read_wait);
 341}
 342
 343/**
 344 *	__relay_reset - reset a channel buffer
 345 *	@buf: the channel buffer
 346 *	@init: 1 if this is a first-time initialization
 347 *
 348 *	See relay_reset() for description of effect.
 349 */
 350static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 351{
 352	size_t i;
 353
 354	if (init) {
 355		init_waitqueue_head(&buf->read_wait);
 356		kref_init(&buf->kref);
 357		init_irq_work(&buf->wakeup_work, wakeup_readers);
 358	} else {
 359		irq_work_sync(&buf->wakeup_work);
 360	}
 361
 362	buf->subbufs_produced = 0;
 363	buf->subbufs_consumed = 0;
 364	buf->bytes_consumed = 0;
 365	buf->finalized = 0;
 366	buf->data = buf->start;
 367	buf->offset = 0;
 368
 369	for (i = 0; i < buf->chan->n_subbufs; i++)
 370		buf->padding[i] = 0;
 371
 372	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 373}
 374
 375/**
 376 *	relay_reset - reset the channel
 377 *	@chan: the channel
 378 *
 379 *	This has the effect of erasing all data from all channel buffers
 380 *	and restarting the channel in its initial state.  The buffers
 381 *	are not freed, so any mappings are still in effect.
 382 *
 383 *	NOTE. Care should be taken that the channel isn't actually
 384 *	being used by anything when this call is made.
 385 */
 386void relay_reset(struct rchan *chan)
 387{
 388	struct rchan_buf *buf;
 389	unsigned int i;
 390
 391	if (!chan)
 392		return;
 393
 394	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 395		__relay_reset(buf, 0);
 396		return;
 397	}
 398
 399	mutex_lock(&relay_channels_mutex);
 400	for_each_possible_cpu(i)
 401		if ((buf = *per_cpu_ptr(chan->buf, i)))
 402			__relay_reset(buf, 0);
 403	mutex_unlock(&relay_channels_mutex);
 404}
 405EXPORT_SYMBOL_GPL(relay_reset);
 406
 407static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 408					struct dentry *dentry)
 409{
 410	buf->dentry = dentry;
 411	d_inode(buf->dentry)->i_size = buf->early_bytes;
 412}
 413
 414static struct dentry *relay_create_buf_file(struct rchan *chan,
 415					    struct rchan_buf *buf,
 416					    unsigned int cpu)
 417{
 418	struct dentry *dentry;
 419	char *tmpname;
 420
 421	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 422	if (!tmpname)
 423		return NULL;
 424	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 425
 426	/* Create file in fs */
 427	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 428					   S_IRUSR, buf,
 429					   &chan->is_global);
 430
 431	kfree(tmpname);
 432
 433	return dentry;
 434}
 435
 436/*
 437 *	relay_open_buf - create a new relay channel buffer
 438 *
 439 *	used by relay_open() and CPU hotplug.
 440 */
 441static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 442{
 443 	struct rchan_buf *buf = NULL;
 444	struct dentry *dentry;
 445
 446 	if (chan->is_global)
 447		return *per_cpu_ptr(chan->buf, 0);
 448
 449	buf = relay_create_buf(chan);
 450	if (!buf)
 451		return NULL;
 452
 453	if (chan->has_base_filename) {
 454		dentry = relay_create_buf_file(chan, buf, cpu);
 455		if (!dentry)
 456			goto free_buf;
 457		relay_set_buf_dentry(buf, dentry);
 458	} else {
 459		/* Only retrieve global info, nothing more, nothing less */
 460		dentry = chan->cb->create_buf_file(NULL, NULL,
 461						   S_IRUSR, buf,
 462						   &chan->is_global);
 463		if (WARN_ON(dentry))
 464			goto free_buf;
 465	}
 466
 467 	buf->cpu = cpu;
 468 	__relay_reset(buf, 1);
 469
 470 	if(chan->is_global) {
 471		*per_cpu_ptr(chan->buf, 0) = buf;
 472 		buf->cpu = 0;
 473  	}
 474
 475	return buf;
 476
 477free_buf:
 478 	relay_destroy_buf(buf);
 479	return NULL;
 480}
 481
 482/**
 483 *	relay_close_buf - close a channel buffer
 484 *	@buf: channel buffer
 485 *
 486 *	Marks the buffer finalized and restores the default callbacks.
 487 *	The channel buffer and channel buffer data structure are then freed
 488 *	automatically when the last reference is given up.
 489 */
 490static void relay_close_buf(struct rchan_buf *buf)
 491{
 492	buf->finalized = 1;
 493	irq_work_sync(&buf->wakeup_work);
 494	buf->chan->cb->remove_buf_file(buf->dentry);
 495	kref_put(&buf->kref, relay_remove_buf);
 496}
 497
 498static void setup_callbacks(struct rchan *chan,
 499				   struct rchan_callbacks *cb)
 500{
 501	if (!cb) {
 502		chan->cb = &default_channel_callbacks;
 503		return;
 504	}
 505
 506	if (!cb->subbuf_start)
 507		cb->subbuf_start = subbuf_start_default_callback;
 508	if (!cb->buf_mapped)
 509		cb->buf_mapped = buf_mapped_default_callback;
 510	if (!cb->buf_unmapped)
 511		cb->buf_unmapped = buf_unmapped_default_callback;
 512	if (!cb->create_buf_file)
 513		cb->create_buf_file = create_buf_file_default_callback;
 514	if (!cb->remove_buf_file)
 515		cb->remove_buf_file = remove_buf_file_default_callback;
 516	chan->cb = cb;
 517}
 518
 519int relay_prepare_cpu(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 520{
 
 521	struct rchan *chan;
 522	struct rchan_buf *buf;
 523
 524	mutex_lock(&relay_channels_mutex);
 525	list_for_each_entry(chan, &relay_channels, list) {
 526		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 527			continue;
 528		buf = relay_open_buf(chan, cpu);
 529		if (!buf) {
 530			pr_err("relay: cpu %d buffer creation failed\n", cpu);
 531			mutex_unlock(&relay_channels_mutex);
 532			return -ENOMEM;
 
 
 
 
 
 
 533		}
 534		*per_cpu_ptr(chan->buf, cpu) = buf;
 
 
 
 
 
 
 535	}
 536	mutex_unlock(&relay_channels_mutex);
 537	return 0;
 538}
 539
 540/**
 541 *	relay_open - create a new relay channel
 542 *	@base_filename: base name of files to create, %NULL for buffering only
 543 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 544 *	@subbuf_size: size of sub-buffers
 545 *	@n_subbufs: number of sub-buffers
 546 *	@cb: client callback functions
 547 *	@private_data: user-defined data
 548 *
 549 *	Returns channel pointer if successful, %NULL otherwise.
 550 *
 551 *	Creates a channel buffer for each cpu using the sizes and
 552 *	attributes specified.  The created channel buffer files
 553 *	will be named base_filename0...base_filenameN-1.  File
 554 *	permissions will be %S_IRUSR.
 555 *
 556 *	If opening a buffer (@parent = NULL) that you later wish to register
 557 *	in a filesystem, call relay_late_setup_files() once the @parent dentry
 558 *	is available.
 559 */
 560struct rchan *relay_open(const char *base_filename,
 561			 struct dentry *parent,
 562			 size_t subbuf_size,
 563			 size_t n_subbufs,
 564			 struct rchan_callbacks *cb,
 565			 void *private_data)
 566{
 567	unsigned int i;
 568	struct rchan *chan;
 569	struct rchan_buf *buf;
 570
 571	if (!(subbuf_size && n_subbufs))
 572		return NULL;
 573	if (subbuf_size > UINT_MAX / n_subbufs)
 574		return NULL;
 575
 576	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 577	if (!chan)
 578		return NULL;
 579
 580	chan->buf = alloc_percpu(struct rchan_buf *);
 581	chan->version = RELAYFS_CHANNEL_VERSION;
 582	chan->n_subbufs = n_subbufs;
 583	chan->subbuf_size = subbuf_size;
 584	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 585	chan->parent = parent;
 586	chan->private_data = private_data;
 587	if (base_filename) {
 588		chan->has_base_filename = 1;
 589		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 590	}
 591	setup_callbacks(chan, cb);
 592	kref_init(&chan->kref);
 593
 594	mutex_lock(&relay_channels_mutex);
 595	for_each_online_cpu(i) {
 596		buf = relay_open_buf(chan, i);
 597		if (!buf)
 598			goto free_bufs;
 599		*per_cpu_ptr(chan->buf, i) = buf;
 600	}
 601	list_add(&chan->list, &relay_channels);
 602	mutex_unlock(&relay_channels_mutex);
 603
 604	return chan;
 605
 606free_bufs:
 607	for_each_possible_cpu(i) {
 608		if ((buf = *per_cpu_ptr(chan->buf, i)))
 609			relay_close_buf(buf);
 610	}
 611
 612	kref_put(&chan->kref, relay_destroy_channel);
 613	mutex_unlock(&relay_channels_mutex);
 614	return NULL;
 615}
 616EXPORT_SYMBOL_GPL(relay_open);
 617
 618struct rchan_percpu_buf_dispatcher {
 619	struct rchan_buf *buf;
 620	struct dentry *dentry;
 621};
 622
 623/* Called in atomic context. */
 624static void __relay_set_buf_dentry(void *info)
 625{
 626	struct rchan_percpu_buf_dispatcher *p = info;
 627
 628	relay_set_buf_dentry(p->buf, p->dentry);
 629}
 630
 631/**
 632 *	relay_late_setup_files - triggers file creation
 633 *	@chan: channel to operate on
 634 *	@base_filename: base name of files to create
 635 *	@parent: dentry of parent directory, %NULL for root directory
 636 *
 637 *	Returns 0 if successful, non-zero otherwise.
 638 *
 639 *	Use to setup files for a previously buffer-only channel created
 640 *	by relay_open() with a NULL parent dentry.
 641 *
 642 *	For example, this is useful for perfomring early tracing in kernel,
 643 *	before VFS is up and then exposing the early results once the dentry
 644 *	is available.
 645 */
 646int relay_late_setup_files(struct rchan *chan,
 647			   const char *base_filename,
 648			   struct dentry *parent)
 649{
 650	int err = 0;
 651	unsigned int i, curr_cpu;
 652	unsigned long flags;
 653	struct dentry *dentry;
 654	struct rchan_buf *buf;
 655	struct rchan_percpu_buf_dispatcher disp;
 656
 657	if (!chan || !base_filename)
 658		return -EINVAL;
 659
 660	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 661
 662	mutex_lock(&relay_channels_mutex);
 663	/* Is chan already set up? */
 664	if (unlikely(chan->has_base_filename)) {
 665		mutex_unlock(&relay_channels_mutex);
 666		return -EEXIST;
 667	}
 668	chan->has_base_filename = 1;
 669	chan->parent = parent;
 670
 671	if (chan->is_global) {
 672		err = -EINVAL;
 673		buf = *per_cpu_ptr(chan->buf, 0);
 674		if (!WARN_ON_ONCE(!buf)) {
 675			dentry = relay_create_buf_file(chan, buf, 0);
 676			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 677				relay_set_buf_dentry(buf, dentry);
 678				err = 0;
 679			}
 680		}
 681		mutex_unlock(&relay_channels_mutex);
 682		return err;
 683	}
 684
 685	curr_cpu = get_cpu();
 686	/*
 687	 * The CPU hotplug notifier ran before us and created buffers with
 688	 * no files associated. So it's safe to call relay_setup_buf_file()
 689	 * on all currently online CPUs.
 690	 */
 691	for_each_online_cpu(i) {
 692		buf = *per_cpu_ptr(chan->buf, i);
 693		if (unlikely(!buf)) {
 694			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 695			err = -EINVAL;
 696			break;
 697		}
 698
 699		dentry = relay_create_buf_file(chan, buf, i);
 700		if (unlikely(!dentry)) {
 701			err = -EINVAL;
 702			break;
 703		}
 704
 705		if (curr_cpu == i) {
 706			local_irq_save(flags);
 707			relay_set_buf_dentry(buf, dentry);
 708			local_irq_restore(flags);
 709		} else {
 710			disp.buf = buf;
 711			disp.dentry = dentry;
 712			smp_mb();
 713			/* relay_channels_mutex must be held, so wait. */
 714			err = smp_call_function_single(i,
 715						       __relay_set_buf_dentry,
 716						       &disp, 1);
 717		}
 718		if (unlikely(err))
 719			break;
 720	}
 721	put_cpu();
 722	mutex_unlock(&relay_channels_mutex);
 723
 724	return err;
 725}
 726EXPORT_SYMBOL_GPL(relay_late_setup_files);
 727
 728/**
 729 *	relay_switch_subbuf - switch to a new sub-buffer
 730 *	@buf: channel buffer
 731 *	@length: size of current event
 732 *
 733 *	Returns either the length passed in or 0 if full.
 734 *
 735 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 736 *	updating padding counts, waking up readers, etc.
 737 */
 738size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 739{
 740	void *old, *new;
 741	size_t old_subbuf, new_subbuf;
 742
 743	if (unlikely(length > buf->chan->subbuf_size))
 744		goto toobig;
 745
 746	if (buf->offset != buf->chan->subbuf_size + 1) {
 747		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 748		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 749		buf->padding[old_subbuf] = buf->prev_padding;
 750		buf->subbufs_produced++;
 751		if (buf->dentry)
 752			d_inode(buf->dentry)->i_size +=
 753				buf->chan->subbuf_size -
 754				buf->padding[old_subbuf];
 755		else
 756			buf->early_bytes += buf->chan->subbuf_size -
 757					    buf->padding[old_subbuf];
 758		smp_mb();
 759		if (waitqueue_active(&buf->read_wait)) {
 760			/*
 761			 * Calling wake_up_interruptible() from here
 762			 * will deadlock if we happen to be logging
 763			 * from the scheduler (trying to re-grab
 764			 * rq->lock), so defer it.
 765			 */
 766			irq_work_queue(&buf->wakeup_work);
 767		}
 768	}
 769
 770	old = buf->data;
 771	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 772	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 773	buf->offset = 0;
 774	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 775		buf->offset = buf->chan->subbuf_size + 1;
 776		return 0;
 777	}
 778	buf->data = new;
 779	buf->padding[new_subbuf] = 0;
 780
 781	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 782		goto toobig;
 783
 784	return length;
 785
 786toobig:
 787	buf->chan->last_toobig = length;
 788	return 0;
 789}
 790EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 791
 792/**
 793 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 794 *	@chan: the channel
 795 *	@cpu: the cpu associated with the channel buffer to update
 796 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 797 *
 798 *	Adds to the channel buffer's consumed sub-buffer count.
 799 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 800 *	not the total consumed.
 801 *
 802 *	NOTE. Kernel clients don't need to call this function if the channel
 803 *	mode is 'overwrite'.
 804 */
 805void relay_subbufs_consumed(struct rchan *chan,
 806			    unsigned int cpu,
 807			    size_t subbufs_consumed)
 808{
 809	struct rchan_buf *buf;
 810
 811	if (!chan || cpu >= NR_CPUS)
 812		return;
 813
 814	buf = *per_cpu_ptr(chan->buf, cpu);
 815	if (!buf || subbufs_consumed > chan->n_subbufs)
 816		return;
 817
 
 818	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 819		buf->subbufs_consumed = buf->subbufs_produced;
 820	else
 821		buf->subbufs_consumed += subbufs_consumed;
 822}
 823EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 824
 825/**
 826 *	relay_close - close the channel
 827 *	@chan: the channel
 828 *
 829 *	Closes all channel buffers and frees the channel.
 830 */
 831void relay_close(struct rchan *chan)
 832{
 833	struct rchan_buf *buf;
 834	unsigned int i;
 835
 836	if (!chan)
 837		return;
 838
 839	mutex_lock(&relay_channels_mutex);
 840	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 841		relay_close_buf(buf);
 842	else
 843		for_each_possible_cpu(i)
 844			if ((buf = *per_cpu_ptr(chan->buf, i)))
 845				relay_close_buf(buf);
 846
 847	if (chan->last_toobig)
 848		printk(KERN_WARNING "relay: one or more items not logged "
 849		       "[item size (%zd) > sub-buffer size (%zd)]\n",
 850		       chan->last_toobig, chan->subbuf_size);
 851
 852	list_del(&chan->list);
 853	kref_put(&chan->kref, relay_destroy_channel);
 854	mutex_unlock(&relay_channels_mutex);
 855}
 856EXPORT_SYMBOL_GPL(relay_close);
 857
 858/**
 859 *	relay_flush - close the channel
 860 *	@chan: the channel
 861 *
 862 *	Flushes all channel buffers, i.e. forces buffer switch.
 863 */
 864void relay_flush(struct rchan *chan)
 865{
 866	struct rchan_buf *buf;
 867	unsigned int i;
 868
 869	if (!chan)
 870		return;
 871
 872	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 873		relay_switch_subbuf(buf, 0);
 874		return;
 875	}
 876
 877	mutex_lock(&relay_channels_mutex);
 878	for_each_possible_cpu(i)
 879		if ((buf = *per_cpu_ptr(chan->buf, i)))
 880			relay_switch_subbuf(buf, 0);
 881	mutex_unlock(&relay_channels_mutex);
 882}
 883EXPORT_SYMBOL_GPL(relay_flush);
 884
 885/**
 886 *	relay_file_open - open file op for relay files
 887 *	@inode: the inode
 888 *	@filp: the file
 889 *
 890 *	Increments the channel buffer refcount.
 891 */
 892static int relay_file_open(struct inode *inode, struct file *filp)
 893{
 894	struct rchan_buf *buf = inode->i_private;
 895	kref_get(&buf->kref);
 896	filp->private_data = buf;
 897
 898	return nonseekable_open(inode, filp);
 899}
 900
 901/**
 902 *	relay_file_mmap - mmap file op for relay files
 903 *	@filp: the file
 904 *	@vma: the vma describing what to map
 905 *
 906 *	Calls upon relay_mmap_buf() to map the file into user space.
 907 */
 908static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 909{
 910	struct rchan_buf *buf = filp->private_data;
 911	return relay_mmap_buf(buf, vma);
 912}
 913
 914/**
 915 *	relay_file_poll - poll file op for relay files
 916 *	@filp: the file
 917 *	@wait: poll table
 918 *
 919 *	Poll implemention.
 920 */
 921static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 922{
 923	__poll_t mask = 0;
 924	struct rchan_buf *buf = filp->private_data;
 925
 926	if (buf->finalized)
 927		return EPOLLERR;
 928
 929	if (filp->f_mode & FMODE_READ) {
 930		poll_wait(filp, &buf->read_wait, wait);
 931		if (!relay_buf_empty(buf))
 932			mask |= EPOLLIN | EPOLLRDNORM;
 933	}
 934
 935	return mask;
 936}
 937
 938/**
 939 *	relay_file_release - release file op for relay files
 940 *	@inode: the inode
 941 *	@filp: the file
 942 *
 943 *	Decrements the channel refcount, as the filesystem is
 944 *	no longer using it.
 945 */
 946static int relay_file_release(struct inode *inode, struct file *filp)
 947{
 948	struct rchan_buf *buf = filp->private_data;
 949	kref_put(&buf->kref, relay_remove_buf);
 950
 951	return 0;
 952}
 953
 954/*
 955 *	relay_file_read_consume - update the consumed count for the buffer
 956 */
 957static void relay_file_read_consume(struct rchan_buf *buf,
 958				    size_t read_pos,
 959				    size_t bytes_consumed)
 960{
 961	size_t subbuf_size = buf->chan->subbuf_size;
 962	size_t n_subbufs = buf->chan->n_subbufs;
 963	size_t read_subbuf;
 964
 965	if (buf->subbufs_produced == buf->subbufs_consumed &&
 966	    buf->offset == buf->bytes_consumed)
 967		return;
 968
 969	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 970		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 971		buf->bytes_consumed = 0;
 972	}
 973
 974	buf->bytes_consumed += bytes_consumed;
 975	if (!read_pos)
 976		read_subbuf = buf->subbufs_consumed % n_subbufs;
 977	else
 978		read_subbuf = read_pos / buf->chan->subbuf_size;
 979	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 980		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 981		    (buf->offset == subbuf_size))
 982			return;
 983		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 984		buf->bytes_consumed = 0;
 985	}
 986}
 987
 988/*
 989 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 990 */
 991static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 992{
 993	size_t subbuf_size = buf->chan->subbuf_size;
 994	size_t n_subbufs = buf->chan->n_subbufs;
 995	size_t produced = buf->subbufs_produced;
 996	size_t consumed = buf->subbufs_consumed;
 997
 998	relay_file_read_consume(buf, read_pos, 0);
 999
1000	consumed = buf->subbufs_consumed;
1001
1002	if (unlikely(buf->offset > subbuf_size)) {
1003		if (produced == consumed)
1004			return 0;
1005		return 1;
1006	}
1007
1008	if (unlikely(produced - consumed >= n_subbufs)) {
1009		consumed = produced - n_subbufs + 1;
1010		buf->subbufs_consumed = consumed;
1011		buf->bytes_consumed = 0;
1012	}
1013
1014	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1015	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1016
1017	if (consumed > produced)
1018		produced += n_subbufs * subbuf_size;
1019
1020	if (consumed == produced) {
1021		if (buf->offset == subbuf_size &&
1022		    buf->subbufs_produced > buf->subbufs_consumed)
1023			return 1;
1024		return 0;
1025	}
1026
1027	return 1;
1028}
1029
1030/**
1031 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1032 *	@read_pos: file read position
1033 *	@buf: relay channel buffer
1034 */
1035static size_t relay_file_read_subbuf_avail(size_t read_pos,
1036					   struct rchan_buf *buf)
1037{
1038	size_t padding, avail = 0;
1039	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1040	size_t subbuf_size = buf->chan->subbuf_size;
1041
1042	write_subbuf = (buf->data - buf->start) / subbuf_size;
1043	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1044	read_subbuf = read_pos / subbuf_size;
1045	read_offset = read_pos % subbuf_size;
1046	padding = buf->padding[read_subbuf];
1047
1048	if (read_subbuf == write_subbuf) {
1049		if (read_offset + padding < write_offset)
1050			avail = write_offset - (read_offset + padding);
1051	} else
1052		avail = (subbuf_size - padding) - read_offset;
1053
1054	return avail;
1055}
1056
1057/**
1058 *	relay_file_read_start_pos - find the first available byte to read
1059 *	@read_pos: file read position
1060 *	@buf: relay channel buffer
1061 *
1062 *	If the @read_pos is in the middle of padding, return the
1063 *	position of the first actually available byte, otherwise
1064 *	return the original value.
1065 */
1066static size_t relay_file_read_start_pos(size_t read_pos,
1067					struct rchan_buf *buf)
1068{
1069	size_t read_subbuf, padding, padding_start, padding_end;
1070	size_t subbuf_size = buf->chan->subbuf_size;
1071	size_t n_subbufs = buf->chan->n_subbufs;
1072	size_t consumed = buf->subbufs_consumed % n_subbufs;
1073
1074	if (!read_pos)
1075		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1076	read_subbuf = read_pos / subbuf_size;
1077	padding = buf->padding[read_subbuf];
1078	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1079	padding_end = (read_subbuf + 1) * subbuf_size;
1080	if (read_pos >= padding_start && read_pos < padding_end) {
1081		read_subbuf = (read_subbuf + 1) % n_subbufs;
1082		read_pos = read_subbuf * subbuf_size;
1083	}
1084
1085	return read_pos;
1086}
1087
1088/**
1089 *	relay_file_read_end_pos - return the new read position
1090 *	@read_pos: file read position
1091 *	@buf: relay channel buffer
1092 *	@count: number of bytes to be read
1093 */
1094static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1095				      size_t read_pos,
1096				      size_t count)
1097{
1098	size_t read_subbuf, padding, end_pos;
1099	size_t subbuf_size = buf->chan->subbuf_size;
1100	size_t n_subbufs = buf->chan->n_subbufs;
1101
1102	read_subbuf = read_pos / subbuf_size;
1103	padding = buf->padding[read_subbuf];
1104	if (read_pos % subbuf_size + count + padding == subbuf_size)
1105		end_pos = (read_subbuf + 1) * subbuf_size;
1106	else
1107		end_pos = read_pos + count;
1108	if (end_pos >= subbuf_size * n_subbufs)
1109		end_pos = 0;
1110
1111	return end_pos;
1112}
1113
1114static ssize_t relay_file_read(struct file *filp,
1115			       char __user *buffer,
1116			       size_t count,
1117			       loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118{
1119	struct rchan_buf *buf = filp->private_data;
1120	size_t read_start, avail;
1121	size_t written = 0;
1122	int ret;
1123
1124	if (!count)
1125		return 0;
1126
1127	inode_lock(file_inode(filp));
1128	do {
1129		void *from;
1130
1131		if (!relay_file_read_avail(buf, *ppos))
1132			break;
1133
1134		read_start = relay_file_read_start_pos(*ppos, buf);
1135		avail = relay_file_read_subbuf_avail(read_start, buf);
1136		if (!avail)
1137			break;
1138
1139		avail = min(count, avail);
1140		from = buf->start + read_start;
1141		ret = avail;
1142		if (copy_to_user(buffer, from, avail))
1143			break;
1144
1145		buffer += ret;
1146		written += ret;
1147		count -= ret;
1148
1149		relay_file_read_consume(buf, read_start, ret);
1150		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1151	} while (count);
1152	inode_unlock(file_inode(filp));
1153
1154	return written;
 
 
 
 
 
 
 
 
 
 
 
 
 
1155}
1156
1157static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1158{
1159	rbuf->bytes_consumed += bytes_consumed;
1160
1161	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1162		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1163		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1164	}
1165}
1166
1167static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1168				   struct pipe_buffer *buf)
1169{
1170	struct rchan_buf *rbuf;
1171
1172	rbuf = (struct rchan_buf *)page_private(buf->page);
1173	relay_consume_bytes(rbuf, buf->private);
1174}
1175
1176static const struct pipe_buf_operations relay_pipe_buf_ops = {
1177	.can_merge = 0,
1178	.confirm = generic_pipe_buf_confirm,
1179	.release = relay_pipe_buf_release,
1180	.steal = generic_pipe_buf_steal,
1181	.get = generic_pipe_buf_get,
1182};
1183
1184static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1185{
1186}
1187
1188/*
1189 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1190 */
1191static ssize_t subbuf_splice_actor(struct file *in,
1192			       loff_t *ppos,
1193			       struct pipe_inode_info *pipe,
1194			       size_t len,
1195			       unsigned int flags,
1196			       int *nonpad_ret)
1197{
1198	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1199	struct rchan_buf *rbuf = in->private_data;
1200	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1201	uint64_t pos = (uint64_t) *ppos;
1202	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1203	size_t read_start = (size_t) do_div(pos, alloc_size);
1204	size_t read_subbuf = read_start / subbuf_size;
1205	size_t padding = rbuf->padding[read_subbuf];
1206	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1207	struct page *pages[PIPE_DEF_BUFFERS];
1208	struct partial_page partial[PIPE_DEF_BUFFERS];
1209	struct splice_pipe_desc spd = {
1210		.pages = pages,
1211		.nr_pages = 0,
1212		.nr_pages_max = PIPE_DEF_BUFFERS,
1213		.partial = partial,
 
1214		.ops = &relay_pipe_buf_ops,
1215		.spd_release = relay_page_release,
1216	};
1217	ssize_t ret;
1218
1219	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1220		return 0;
1221	if (splice_grow_spd(pipe, &spd))
1222		return -ENOMEM;
1223
1224	/*
1225	 * Adjust read len, if longer than what is available
1226	 */
1227	if (len > (subbuf_size - read_start % subbuf_size))
1228		len = subbuf_size - read_start % subbuf_size;
1229
1230	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1231	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1232	poff = read_start & ~PAGE_MASK;
1233	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1234
1235	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1236		unsigned int this_len, this_end, private;
1237		unsigned int cur_pos = read_start + total_len;
1238
1239		if (!len)
1240			break;
1241
1242		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1243		private = this_len;
1244
1245		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1246		spd.partial[spd.nr_pages].offset = poff;
1247
1248		this_end = cur_pos + this_len;
1249		if (this_end >= nonpad_end) {
1250			this_len = nonpad_end - cur_pos;
1251			private = this_len + padding;
1252		}
1253		spd.partial[spd.nr_pages].len = this_len;
1254		spd.partial[spd.nr_pages].private = private;
1255
1256		len -= this_len;
1257		total_len += this_len;
1258		poff = 0;
1259		pidx = (pidx + 1) % subbuf_pages;
1260
1261		if (this_end >= nonpad_end) {
1262			spd.nr_pages++;
1263			break;
1264		}
1265	}
1266
1267	ret = 0;
1268	if (!spd.nr_pages)
1269		goto out;
1270
1271	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1272	if (ret < 0 || ret < total_len)
1273		goto out;
1274
1275        if (read_start + ret == nonpad_end)
1276                ret += padding;
1277
1278out:
1279	splice_shrink_spd(&spd);
1280	return ret;
1281}
1282
1283static ssize_t relay_file_splice_read(struct file *in,
1284				      loff_t *ppos,
1285				      struct pipe_inode_info *pipe,
1286				      size_t len,
1287				      unsigned int flags)
1288{
1289	ssize_t spliced;
1290	int ret;
1291	int nonpad_ret = 0;
1292
1293	ret = 0;
1294	spliced = 0;
1295
1296	while (len && !spliced) {
1297		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1298		if (ret < 0)
1299			break;
1300		else if (!ret) {
1301			if (flags & SPLICE_F_NONBLOCK)
1302				ret = -EAGAIN;
1303			break;
1304		}
1305
1306		*ppos += ret;
1307		if (ret > len)
1308			len = 0;
1309		else
1310			len -= ret;
1311		spliced += nonpad_ret;
1312		nonpad_ret = 0;
1313	}
1314
1315	if (spliced)
1316		return spliced;
1317
1318	return ret;
1319}
1320
1321const struct file_operations relay_file_operations = {
1322	.open		= relay_file_open,
1323	.poll		= relay_file_poll,
1324	.mmap		= relay_file_mmap,
1325	.read		= relay_file_read,
1326	.llseek		= no_llseek,
1327	.release	= relay_file_release,
1328	.splice_read	= relay_file_splice_read,
1329};
1330EXPORT_SYMBOL_GPL(relay_file_operations);
v4.6
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	kvfree(array);
  85}
  86
  87/**
  88 *	relay_mmap_buf: - mmap channel buffer to process address space
  89 *	@buf: relay channel buffer
  90 *	@vma: vm_area_struct describing memory to be mapped
  91 *
  92 *	Returns 0 if ok, negative on error
  93 *
  94 *	Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98	unsigned long length = vma->vm_end - vma->vm_start;
  99	struct file *filp = vma->vm_file;
 100
 101	if (!buf)
 102		return -EBADF;
 103
 104	if (length != (unsigned long)buf->chan->alloc_size)
 105		return -EINVAL;
 106
 107	vma->vm_ops = &relay_file_mmap_ops;
 108	vma->vm_flags |= VM_DONTEXPAND;
 109	vma->vm_private_data = buf;
 110	buf->chan->cb->buf_mapped(buf, filp);
 111
 112	return 0;
 113}
 114
 115/**
 116 *	relay_alloc_buf - allocate a channel buffer
 117 *	@buf: the buffer struct
 118 *	@size: total size of the buffer
 119 *
 120 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *	passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125	void *mem;
 126	unsigned int i, j, n_pages;
 127
 128	*size = PAGE_ALIGN(*size);
 129	n_pages = *size >> PAGE_SHIFT;
 130
 131	buf->page_array = relay_alloc_page_array(n_pages);
 132	if (!buf->page_array)
 133		return NULL;
 134
 135	for (i = 0; i < n_pages; i++) {
 136		buf->page_array[i] = alloc_page(GFP_KERNEL);
 137		if (unlikely(!buf->page_array[i]))
 138			goto depopulate;
 139		set_page_private(buf->page_array[i], (unsigned long)buf);
 140	}
 141	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142	if (!mem)
 143		goto depopulate;
 144
 145	memset(mem, 0, *size);
 146	buf->page_count = n_pages;
 147	return mem;
 148
 149depopulate:
 150	for (j = 0; j < i; j++)
 151		__free_page(buf->page_array[j]);
 152	relay_free_page_array(buf->page_array);
 153	return NULL;
 154}
 155
 156/**
 157 *	relay_create_buf - allocate and initialize a channel buffer
 158 *	@chan: the relay channel
 159 *
 160 *	Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164	struct rchan_buf *buf;
 165
 166	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
 167		return NULL;
 168
 169	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170	if (!buf)
 171		return NULL;
 172	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 173	if (!buf->padding)
 174		goto free_buf;
 175
 176	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 177	if (!buf->start)
 178		goto free_buf;
 179
 180	buf->chan = chan;
 181	kref_get(&buf->chan->kref);
 182	return buf;
 183
 184free_buf:
 185	kfree(buf->padding);
 186	kfree(buf);
 187	return NULL;
 188}
 189
 190/**
 191 *	relay_destroy_channel - free the channel struct
 192 *	@kref: target kernel reference that contains the relay channel
 193 *
 194 *	Should only be called from kref_put().
 195 */
 196static void relay_destroy_channel(struct kref *kref)
 197{
 198	struct rchan *chan = container_of(kref, struct rchan, kref);
 199	kfree(chan);
 200}
 201
 202/**
 203 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 204 *	@buf: the buffer struct
 205 */
 206static void relay_destroy_buf(struct rchan_buf *buf)
 207{
 208	struct rchan *chan = buf->chan;
 209	unsigned int i;
 210
 211	if (likely(buf->start)) {
 212		vunmap(buf->start);
 213		for (i = 0; i < buf->page_count; i++)
 214			__free_page(buf->page_array[i]);
 215		relay_free_page_array(buf->page_array);
 216	}
 217	chan->buf[buf->cpu] = NULL;
 218	kfree(buf->padding);
 219	kfree(buf);
 220	kref_put(&chan->kref, relay_destroy_channel);
 221}
 222
 223/**
 224 *	relay_remove_buf - remove a channel buffer
 225 *	@kref: target kernel reference that contains the relay buffer
 226 *
 227 *	Removes the file from the filesystem, which also frees the
 228 *	rchan_buf_struct and the channel buffer.  Should only be called from
 229 *	kref_put().
 230 */
 231static void relay_remove_buf(struct kref *kref)
 232{
 233	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 234	relay_destroy_buf(buf);
 235}
 236
 237/**
 238 *	relay_buf_empty - boolean, is the channel buffer empty?
 239 *	@buf: channel buffer
 240 *
 241 *	Returns 1 if the buffer is empty, 0 otherwise.
 242 */
 243static int relay_buf_empty(struct rchan_buf *buf)
 244{
 245	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 246}
 247
 248/**
 249 *	relay_buf_full - boolean, is the channel buffer full?
 250 *	@buf: channel buffer
 251 *
 252 *	Returns 1 if the buffer is full, 0 otherwise.
 253 */
 254int relay_buf_full(struct rchan_buf *buf)
 255{
 256	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 257	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 258}
 259EXPORT_SYMBOL_GPL(relay_buf_full);
 260
 261/*
 262 * High-level relay kernel API and associated functions.
 263 */
 264
 265/*
 266 * rchan_callback implementations defining default channel behavior.  Used
 267 * in place of corresponding NULL values in client callback struct.
 268 */
 269
 270/*
 271 * subbuf_start() default callback.  Does nothing.
 272 */
 273static int subbuf_start_default_callback (struct rchan_buf *buf,
 274					  void *subbuf,
 275					  void *prev_subbuf,
 276					  size_t prev_padding)
 277{
 278	if (relay_buf_full(buf))
 279		return 0;
 280
 281	return 1;
 282}
 283
 284/*
 285 * buf_mapped() default callback.  Does nothing.
 286 */
 287static void buf_mapped_default_callback(struct rchan_buf *buf,
 288					struct file *filp)
 289{
 290}
 291
 292/*
 293 * buf_unmapped() default callback.  Does nothing.
 294 */
 295static void buf_unmapped_default_callback(struct rchan_buf *buf,
 296					  struct file *filp)
 297{
 298}
 299
 300/*
 301 * create_buf_file_create() default callback.  Does nothing.
 302 */
 303static struct dentry *create_buf_file_default_callback(const char *filename,
 304						       struct dentry *parent,
 305						       umode_t mode,
 306						       struct rchan_buf *buf,
 307						       int *is_global)
 308{
 309	return NULL;
 310}
 311
 312/*
 313 * remove_buf_file() default callback.  Does nothing.
 314 */
 315static int remove_buf_file_default_callback(struct dentry *dentry)
 316{
 317	return -EINVAL;
 318}
 319
 320/* relay channel default callbacks */
 321static struct rchan_callbacks default_channel_callbacks = {
 322	.subbuf_start = subbuf_start_default_callback,
 323	.buf_mapped = buf_mapped_default_callback,
 324	.buf_unmapped = buf_unmapped_default_callback,
 325	.create_buf_file = create_buf_file_default_callback,
 326	.remove_buf_file = remove_buf_file_default_callback,
 327};
 328
 329/**
 330 *	wakeup_readers - wake up readers waiting on a channel
 331 *	@data: contains the channel buffer
 332 *
 333 *	This is the timer function used to defer reader waking.
 334 */
 335static void wakeup_readers(unsigned long data)
 336{
 337	struct rchan_buf *buf = (struct rchan_buf *)data;
 
 
 338	wake_up_interruptible(&buf->read_wait);
 339}
 340
 341/**
 342 *	__relay_reset - reset a channel buffer
 343 *	@buf: the channel buffer
 344 *	@init: 1 if this is a first-time initialization
 345 *
 346 *	See relay_reset() for description of effect.
 347 */
 348static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 349{
 350	size_t i;
 351
 352	if (init) {
 353		init_waitqueue_head(&buf->read_wait);
 354		kref_init(&buf->kref);
 355		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 356	} else
 357		del_timer_sync(&buf->timer);
 
 358
 359	buf->subbufs_produced = 0;
 360	buf->subbufs_consumed = 0;
 361	buf->bytes_consumed = 0;
 362	buf->finalized = 0;
 363	buf->data = buf->start;
 364	buf->offset = 0;
 365
 366	for (i = 0; i < buf->chan->n_subbufs; i++)
 367		buf->padding[i] = 0;
 368
 369	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 370}
 371
 372/**
 373 *	relay_reset - reset the channel
 374 *	@chan: the channel
 375 *
 376 *	This has the effect of erasing all data from all channel buffers
 377 *	and restarting the channel in its initial state.  The buffers
 378 *	are not freed, so any mappings are still in effect.
 379 *
 380 *	NOTE. Care should be taken that the channel isn't actually
 381 *	being used by anything when this call is made.
 382 */
 383void relay_reset(struct rchan *chan)
 384{
 
 385	unsigned int i;
 386
 387	if (!chan)
 388		return;
 389
 390	if (chan->is_global && chan->buf[0]) {
 391		__relay_reset(chan->buf[0], 0);
 392		return;
 393	}
 394
 395	mutex_lock(&relay_channels_mutex);
 396	for_each_possible_cpu(i)
 397		if (chan->buf[i])
 398			__relay_reset(chan->buf[i], 0);
 399	mutex_unlock(&relay_channels_mutex);
 400}
 401EXPORT_SYMBOL_GPL(relay_reset);
 402
 403static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 404					struct dentry *dentry)
 405{
 406	buf->dentry = dentry;
 407	d_inode(buf->dentry)->i_size = buf->early_bytes;
 408}
 409
 410static struct dentry *relay_create_buf_file(struct rchan *chan,
 411					    struct rchan_buf *buf,
 412					    unsigned int cpu)
 413{
 414	struct dentry *dentry;
 415	char *tmpname;
 416
 417	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 418	if (!tmpname)
 419		return NULL;
 420	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 421
 422	/* Create file in fs */
 423	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 424					   S_IRUSR, buf,
 425					   &chan->is_global);
 426
 427	kfree(tmpname);
 428
 429	return dentry;
 430}
 431
 432/*
 433 *	relay_open_buf - create a new relay channel buffer
 434 *
 435 *	used by relay_open() and CPU hotplug.
 436 */
 437static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 438{
 439 	struct rchan_buf *buf = NULL;
 440	struct dentry *dentry;
 441
 442 	if (chan->is_global)
 443		return chan->buf[0];
 444
 445	buf = relay_create_buf(chan);
 446	if (!buf)
 447		return NULL;
 448
 449	if (chan->has_base_filename) {
 450		dentry = relay_create_buf_file(chan, buf, cpu);
 451		if (!dentry)
 452			goto free_buf;
 453		relay_set_buf_dentry(buf, dentry);
 
 
 
 
 
 
 
 454	}
 455
 456 	buf->cpu = cpu;
 457 	__relay_reset(buf, 1);
 458
 459 	if(chan->is_global) {
 460 		chan->buf[0] = buf;
 461 		buf->cpu = 0;
 462  	}
 463
 464	return buf;
 465
 466free_buf:
 467 	relay_destroy_buf(buf);
 468	return NULL;
 469}
 470
 471/**
 472 *	relay_close_buf - close a channel buffer
 473 *	@buf: channel buffer
 474 *
 475 *	Marks the buffer finalized and restores the default callbacks.
 476 *	The channel buffer and channel buffer data structure are then freed
 477 *	automatically when the last reference is given up.
 478 */
 479static void relay_close_buf(struct rchan_buf *buf)
 480{
 481	buf->finalized = 1;
 482	del_timer_sync(&buf->timer);
 483	buf->chan->cb->remove_buf_file(buf->dentry);
 484	kref_put(&buf->kref, relay_remove_buf);
 485}
 486
 487static void setup_callbacks(struct rchan *chan,
 488				   struct rchan_callbacks *cb)
 489{
 490	if (!cb) {
 491		chan->cb = &default_channel_callbacks;
 492		return;
 493	}
 494
 495	if (!cb->subbuf_start)
 496		cb->subbuf_start = subbuf_start_default_callback;
 497	if (!cb->buf_mapped)
 498		cb->buf_mapped = buf_mapped_default_callback;
 499	if (!cb->buf_unmapped)
 500		cb->buf_unmapped = buf_unmapped_default_callback;
 501	if (!cb->create_buf_file)
 502		cb->create_buf_file = create_buf_file_default_callback;
 503	if (!cb->remove_buf_file)
 504		cb->remove_buf_file = remove_buf_file_default_callback;
 505	chan->cb = cb;
 506}
 507
 508/**
 509 * 	relay_hotcpu_callback - CPU hotplug callback
 510 * 	@nb: notifier block
 511 * 	@action: hotplug action to take
 512 * 	@hcpu: CPU number
 513 *
 514 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 515 */
 516static int relay_hotcpu_callback(struct notifier_block *nb,
 517				unsigned long action,
 518				void *hcpu)
 519{
 520	unsigned int hotcpu = (unsigned long)hcpu;
 521	struct rchan *chan;
 
 522
 523	switch(action) {
 524	case CPU_UP_PREPARE:
 525	case CPU_UP_PREPARE_FROZEN:
 526		mutex_lock(&relay_channels_mutex);
 527		list_for_each_entry(chan, &relay_channels, list) {
 528			if (chan->buf[hotcpu])
 529				continue;
 530			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 531			if(!chan->buf[hotcpu]) {
 532				printk(KERN_ERR
 533					"relay_hotcpu_callback: cpu %d buffer "
 534					"creation failed\n", hotcpu);
 535				mutex_unlock(&relay_channels_mutex);
 536				return notifier_from_errno(-ENOMEM);
 537			}
 538		}
 539		mutex_unlock(&relay_channels_mutex);
 540		break;
 541	case CPU_DEAD:
 542	case CPU_DEAD_FROZEN:
 543		/* No need to flush the cpu : will be flushed upon
 544		 * final relay_flush() call. */
 545		break;
 546	}
 547	return NOTIFY_OK;
 
 548}
 549
 550/**
 551 *	relay_open - create a new relay channel
 552 *	@base_filename: base name of files to create, %NULL for buffering only
 553 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 554 *	@subbuf_size: size of sub-buffers
 555 *	@n_subbufs: number of sub-buffers
 556 *	@cb: client callback functions
 557 *	@private_data: user-defined data
 558 *
 559 *	Returns channel pointer if successful, %NULL otherwise.
 560 *
 561 *	Creates a channel buffer for each cpu using the sizes and
 562 *	attributes specified.  The created channel buffer files
 563 *	will be named base_filename0...base_filenameN-1.  File
 564 *	permissions will be %S_IRUSR.
 
 
 
 
 565 */
 566struct rchan *relay_open(const char *base_filename,
 567			 struct dentry *parent,
 568			 size_t subbuf_size,
 569			 size_t n_subbufs,
 570			 struct rchan_callbacks *cb,
 571			 void *private_data)
 572{
 573	unsigned int i;
 574	struct rchan *chan;
 
 575
 576	if (!(subbuf_size && n_subbufs))
 577		return NULL;
 578	if (subbuf_size > UINT_MAX / n_subbufs)
 579		return NULL;
 580
 581	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 582	if (!chan)
 583		return NULL;
 584
 
 585	chan->version = RELAYFS_CHANNEL_VERSION;
 586	chan->n_subbufs = n_subbufs;
 587	chan->subbuf_size = subbuf_size;
 588	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 589	chan->parent = parent;
 590	chan->private_data = private_data;
 591	if (base_filename) {
 592		chan->has_base_filename = 1;
 593		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 594	}
 595	setup_callbacks(chan, cb);
 596	kref_init(&chan->kref);
 597
 598	mutex_lock(&relay_channels_mutex);
 599	for_each_online_cpu(i) {
 600		chan->buf[i] = relay_open_buf(chan, i);
 601		if (!chan->buf[i])
 602			goto free_bufs;
 
 603	}
 604	list_add(&chan->list, &relay_channels);
 605	mutex_unlock(&relay_channels_mutex);
 606
 607	return chan;
 608
 609free_bufs:
 610	for_each_possible_cpu(i) {
 611		if (chan->buf[i])
 612			relay_close_buf(chan->buf[i]);
 613	}
 614
 615	kref_put(&chan->kref, relay_destroy_channel);
 616	mutex_unlock(&relay_channels_mutex);
 617	return NULL;
 618}
 619EXPORT_SYMBOL_GPL(relay_open);
 620
 621struct rchan_percpu_buf_dispatcher {
 622	struct rchan_buf *buf;
 623	struct dentry *dentry;
 624};
 625
 626/* Called in atomic context. */
 627static void __relay_set_buf_dentry(void *info)
 628{
 629	struct rchan_percpu_buf_dispatcher *p = info;
 630
 631	relay_set_buf_dentry(p->buf, p->dentry);
 632}
 633
 634/**
 635 *	relay_late_setup_files - triggers file creation
 636 *	@chan: channel to operate on
 637 *	@base_filename: base name of files to create
 638 *	@parent: dentry of parent directory, %NULL for root directory
 639 *
 640 *	Returns 0 if successful, non-zero otherwise.
 641 *
 642 *	Use to setup files for a previously buffer-only channel.
 643 *	Useful to do early tracing in kernel, before VFS is up, for example.
 
 
 
 
 644 */
 645int relay_late_setup_files(struct rchan *chan,
 646			   const char *base_filename,
 647			   struct dentry *parent)
 648{
 649	int err = 0;
 650	unsigned int i, curr_cpu;
 651	unsigned long flags;
 652	struct dentry *dentry;
 
 653	struct rchan_percpu_buf_dispatcher disp;
 654
 655	if (!chan || !base_filename)
 656		return -EINVAL;
 657
 658	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 659
 660	mutex_lock(&relay_channels_mutex);
 661	/* Is chan already set up? */
 662	if (unlikely(chan->has_base_filename)) {
 663		mutex_unlock(&relay_channels_mutex);
 664		return -EEXIST;
 665	}
 666	chan->has_base_filename = 1;
 667	chan->parent = parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668	curr_cpu = get_cpu();
 669	/*
 670	 * The CPU hotplug notifier ran before us and created buffers with
 671	 * no files associated. So it's safe to call relay_setup_buf_file()
 672	 * on all currently online CPUs.
 673	 */
 674	for_each_online_cpu(i) {
 675		if (unlikely(!chan->buf[i])) {
 
 676			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 677			err = -EINVAL;
 678			break;
 679		}
 680
 681		dentry = relay_create_buf_file(chan, chan->buf[i], i);
 682		if (unlikely(!dentry)) {
 683			err = -EINVAL;
 684			break;
 685		}
 686
 687		if (curr_cpu == i) {
 688			local_irq_save(flags);
 689			relay_set_buf_dentry(chan->buf[i], dentry);
 690			local_irq_restore(flags);
 691		} else {
 692			disp.buf = chan->buf[i];
 693			disp.dentry = dentry;
 694			smp_mb();
 695			/* relay_channels_mutex must be held, so wait. */
 696			err = smp_call_function_single(i,
 697						       __relay_set_buf_dentry,
 698						       &disp, 1);
 699		}
 700		if (unlikely(err))
 701			break;
 702	}
 703	put_cpu();
 704	mutex_unlock(&relay_channels_mutex);
 705
 706	return err;
 707}
 
 708
 709/**
 710 *	relay_switch_subbuf - switch to a new sub-buffer
 711 *	@buf: channel buffer
 712 *	@length: size of current event
 713 *
 714 *	Returns either the length passed in or 0 if full.
 715 *
 716 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 717 *	updating padding counts, waking up readers, etc.
 718 */
 719size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 720{
 721	void *old, *new;
 722	size_t old_subbuf, new_subbuf;
 723
 724	if (unlikely(length > buf->chan->subbuf_size))
 725		goto toobig;
 726
 727	if (buf->offset != buf->chan->subbuf_size + 1) {
 728		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 729		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 730		buf->padding[old_subbuf] = buf->prev_padding;
 731		buf->subbufs_produced++;
 732		if (buf->dentry)
 733			d_inode(buf->dentry)->i_size +=
 734				buf->chan->subbuf_size -
 735				buf->padding[old_subbuf];
 736		else
 737			buf->early_bytes += buf->chan->subbuf_size -
 738					    buf->padding[old_subbuf];
 739		smp_mb();
 740		if (waitqueue_active(&buf->read_wait))
 741			/*
 742			 * Calling wake_up_interruptible() from here
 743			 * will deadlock if we happen to be logging
 744			 * from the scheduler (trying to re-grab
 745			 * rq->lock), so defer it.
 746			 */
 747			mod_timer(&buf->timer, jiffies + 1);
 
 748	}
 749
 750	old = buf->data;
 751	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 752	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 753	buf->offset = 0;
 754	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 755		buf->offset = buf->chan->subbuf_size + 1;
 756		return 0;
 757	}
 758	buf->data = new;
 759	buf->padding[new_subbuf] = 0;
 760
 761	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 762		goto toobig;
 763
 764	return length;
 765
 766toobig:
 767	buf->chan->last_toobig = length;
 768	return 0;
 769}
 770EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 771
 772/**
 773 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 774 *	@chan: the channel
 775 *	@cpu: the cpu associated with the channel buffer to update
 776 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 777 *
 778 *	Adds to the channel buffer's consumed sub-buffer count.
 779 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 780 *	not the total consumed.
 781 *
 782 *	NOTE. Kernel clients don't need to call this function if the channel
 783 *	mode is 'overwrite'.
 784 */
 785void relay_subbufs_consumed(struct rchan *chan,
 786			    unsigned int cpu,
 787			    size_t subbufs_consumed)
 788{
 789	struct rchan_buf *buf;
 790
 791	if (!chan)
 792		return;
 793
 794	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
 795					subbufs_consumed > chan->n_subbufs)
 796		return;
 797
 798	buf = chan->buf[cpu];
 799	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 800		buf->subbufs_consumed = buf->subbufs_produced;
 801	else
 802		buf->subbufs_consumed += subbufs_consumed;
 803}
 804EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 805
 806/**
 807 *	relay_close - close the channel
 808 *	@chan: the channel
 809 *
 810 *	Closes all channel buffers and frees the channel.
 811 */
 812void relay_close(struct rchan *chan)
 813{
 
 814	unsigned int i;
 815
 816	if (!chan)
 817		return;
 818
 819	mutex_lock(&relay_channels_mutex);
 820	if (chan->is_global && chan->buf[0])
 821		relay_close_buf(chan->buf[0]);
 822	else
 823		for_each_possible_cpu(i)
 824			if (chan->buf[i])
 825				relay_close_buf(chan->buf[i]);
 826
 827	if (chan->last_toobig)
 828		printk(KERN_WARNING "relay: one or more items not logged "
 829		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 830		       chan->last_toobig, chan->subbuf_size);
 831
 832	list_del(&chan->list);
 833	kref_put(&chan->kref, relay_destroy_channel);
 834	mutex_unlock(&relay_channels_mutex);
 835}
 836EXPORT_SYMBOL_GPL(relay_close);
 837
 838/**
 839 *	relay_flush - close the channel
 840 *	@chan: the channel
 841 *
 842 *	Flushes all channel buffers, i.e. forces buffer switch.
 843 */
 844void relay_flush(struct rchan *chan)
 845{
 
 846	unsigned int i;
 847
 848	if (!chan)
 849		return;
 850
 851	if (chan->is_global && chan->buf[0]) {
 852		relay_switch_subbuf(chan->buf[0], 0);
 853		return;
 854	}
 855
 856	mutex_lock(&relay_channels_mutex);
 857	for_each_possible_cpu(i)
 858		if (chan->buf[i])
 859			relay_switch_subbuf(chan->buf[i], 0);
 860	mutex_unlock(&relay_channels_mutex);
 861}
 862EXPORT_SYMBOL_GPL(relay_flush);
 863
 864/**
 865 *	relay_file_open - open file op for relay files
 866 *	@inode: the inode
 867 *	@filp: the file
 868 *
 869 *	Increments the channel buffer refcount.
 870 */
 871static int relay_file_open(struct inode *inode, struct file *filp)
 872{
 873	struct rchan_buf *buf = inode->i_private;
 874	kref_get(&buf->kref);
 875	filp->private_data = buf;
 876
 877	return nonseekable_open(inode, filp);
 878}
 879
 880/**
 881 *	relay_file_mmap - mmap file op for relay files
 882 *	@filp: the file
 883 *	@vma: the vma describing what to map
 884 *
 885 *	Calls upon relay_mmap_buf() to map the file into user space.
 886 */
 887static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 888{
 889	struct rchan_buf *buf = filp->private_data;
 890	return relay_mmap_buf(buf, vma);
 891}
 892
 893/**
 894 *	relay_file_poll - poll file op for relay files
 895 *	@filp: the file
 896 *	@wait: poll table
 897 *
 898 *	Poll implemention.
 899 */
 900static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 901{
 902	unsigned int mask = 0;
 903	struct rchan_buf *buf = filp->private_data;
 904
 905	if (buf->finalized)
 906		return POLLERR;
 907
 908	if (filp->f_mode & FMODE_READ) {
 909		poll_wait(filp, &buf->read_wait, wait);
 910		if (!relay_buf_empty(buf))
 911			mask |= POLLIN | POLLRDNORM;
 912	}
 913
 914	return mask;
 915}
 916
 917/**
 918 *	relay_file_release - release file op for relay files
 919 *	@inode: the inode
 920 *	@filp: the file
 921 *
 922 *	Decrements the channel refcount, as the filesystem is
 923 *	no longer using it.
 924 */
 925static int relay_file_release(struct inode *inode, struct file *filp)
 926{
 927	struct rchan_buf *buf = filp->private_data;
 928	kref_put(&buf->kref, relay_remove_buf);
 929
 930	return 0;
 931}
 932
 933/*
 934 *	relay_file_read_consume - update the consumed count for the buffer
 935 */
 936static void relay_file_read_consume(struct rchan_buf *buf,
 937				    size_t read_pos,
 938				    size_t bytes_consumed)
 939{
 940	size_t subbuf_size = buf->chan->subbuf_size;
 941	size_t n_subbufs = buf->chan->n_subbufs;
 942	size_t read_subbuf;
 943
 944	if (buf->subbufs_produced == buf->subbufs_consumed &&
 945	    buf->offset == buf->bytes_consumed)
 946		return;
 947
 948	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 949		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 950		buf->bytes_consumed = 0;
 951	}
 952
 953	buf->bytes_consumed += bytes_consumed;
 954	if (!read_pos)
 955		read_subbuf = buf->subbufs_consumed % n_subbufs;
 956	else
 957		read_subbuf = read_pos / buf->chan->subbuf_size;
 958	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 959		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 960		    (buf->offset == subbuf_size))
 961			return;
 962		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 963		buf->bytes_consumed = 0;
 964	}
 965}
 966
 967/*
 968 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 969 */
 970static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 971{
 972	size_t subbuf_size = buf->chan->subbuf_size;
 973	size_t n_subbufs = buf->chan->n_subbufs;
 974	size_t produced = buf->subbufs_produced;
 975	size_t consumed = buf->subbufs_consumed;
 976
 977	relay_file_read_consume(buf, read_pos, 0);
 978
 979	consumed = buf->subbufs_consumed;
 980
 981	if (unlikely(buf->offset > subbuf_size)) {
 982		if (produced == consumed)
 983			return 0;
 984		return 1;
 985	}
 986
 987	if (unlikely(produced - consumed >= n_subbufs)) {
 988		consumed = produced - n_subbufs + 1;
 989		buf->subbufs_consumed = consumed;
 990		buf->bytes_consumed = 0;
 991	}
 992
 993	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 994	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 995
 996	if (consumed > produced)
 997		produced += n_subbufs * subbuf_size;
 998
 999	if (consumed == produced) {
1000		if (buf->offset == subbuf_size &&
1001		    buf->subbufs_produced > buf->subbufs_consumed)
1002			return 1;
1003		return 0;
1004	}
1005
1006	return 1;
1007}
1008
1009/**
1010 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1011 *	@read_pos: file read position
1012 *	@buf: relay channel buffer
1013 */
1014static size_t relay_file_read_subbuf_avail(size_t read_pos,
1015					   struct rchan_buf *buf)
1016{
1017	size_t padding, avail = 0;
1018	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1019	size_t subbuf_size = buf->chan->subbuf_size;
1020
1021	write_subbuf = (buf->data - buf->start) / subbuf_size;
1022	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1023	read_subbuf = read_pos / subbuf_size;
1024	read_offset = read_pos % subbuf_size;
1025	padding = buf->padding[read_subbuf];
1026
1027	if (read_subbuf == write_subbuf) {
1028		if (read_offset + padding < write_offset)
1029			avail = write_offset - (read_offset + padding);
1030	} else
1031		avail = (subbuf_size - padding) - read_offset;
1032
1033	return avail;
1034}
1035
1036/**
1037 *	relay_file_read_start_pos - find the first available byte to read
1038 *	@read_pos: file read position
1039 *	@buf: relay channel buffer
1040 *
1041 *	If the @read_pos is in the middle of padding, return the
1042 *	position of the first actually available byte, otherwise
1043 *	return the original value.
1044 */
1045static size_t relay_file_read_start_pos(size_t read_pos,
1046					struct rchan_buf *buf)
1047{
1048	size_t read_subbuf, padding, padding_start, padding_end;
1049	size_t subbuf_size = buf->chan->subbuf_size;
1050	size_t n_subbufs = buf->chan->n_subbufs;
1051	size_t consumed = buf->subbufs_consumed % n_subbufs;
1052
1053	if (!read_pos)
1054		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1055	read_subbuf = read_pos / subbuf_size;
1056	padding = buf->padding[read_subbuf];
1057	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1058	padding_end = (read_subbuf + 1) * subbuf_size;
1059	if (read_pos >= padding_start && read_pos < padding_end) {
1060		read_subbuf = (read_subbuf + 1) % n_subbufs;
1061		read_pos = read_subbuf * subbuf_size;
1062	}
1063
1064	return read_pos;
1065}
1066
1067/**
1068 *	relay_file_read_end_pos - return the new read position
1069 *	@read_pos: file read position
1070 *	@buf: relay channel buffer
1071 *	@count: number of bytes to be read
1072 */
1073static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1074				      size_t read_pos,
1075				      size_t count)
1076{
1077	size_t read_subbuf, padding, end_pos;
1078	size_t subbuf_size = buf->chan->subbuf_size;
1079	size_t n_subbufs = buf->chan->n_subbufs;
1080
1081	read_subbuf = read_pos / subbuf_size;
1082	padding = buf->padding[read_subbuf];
1083	if (read_pos % subbuf_size + count + padding == subbuf_size)
1084		end_pos = (read_subbuf + 1) * subbuf_size;
1085	else
1086		end_pos = read_pos + count;
1087	if (end_pos >= subbuf_size * n_subbufs)
1088		end_pos = 0;
1089
1090	return end_pos;
1091}
1092
1093/*
1094 *	subbuf_read_actor - read up to one subbuf's worth of data
1095 */
1096static int subbuf_read_actor(size_t read_start,
1097			     struct rchan_buf *buf,
1098			     size_t avail,
1099			     read_descriptor_t *desc)
1100{
1101	void *from;
1102	int ret = 0;
1103
1104	from = buf->start + read_start;
1105	ret = avail;
1106	if (copy_to_user(desc->arg.buf, from, avail)) {
1107		desc->error = -EFAULT;
1108		ret = 0;
1109	}
1110	desc->arg.data += ret;
1111	desc->written += ret;
1112	desc->count -= ret;
1113
1114	return ret;
1115}
1116
1117typedef int (*subbuf_actor_t) (size_t read_start,
1118			       struct rchan_buf *buf,
1119			       size_t avail,
1120			       read_descriptor_t *desc);
1121
1122/*
1123 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1124 */
1125static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1126					subbuf_actor_t subbuf_actor,
1127					read_descriptor_t *desc)
1128{
1129	struct rchan_buf *buf = filp->private_data;
1130	size_t read_start, avail;
 
1131	int ret;
1132
1133	if (!desc->count)
1134		return 0;
1135
1136	inode_lock(file_inode(filp));
1137	do {
 
 
1138		if (!relay_file_read_avail(buf, *ppos))
1139			break;
1140
1141		read_start = relay_file_read_start_pos(*ppos, buf);
1142		avail = relay_file_read_subbuf_avail(read_start, buf);
1143		if (!avail)
1144			break;
1145
1146		avail = min(desc->count, avail);
1147		ret = subbuf_actor(read_start, buf, avail, desc);
1148		if (desc->error < 0)
 
1149			break;
1150
1151		if (ret) {
1152			relay_file_read_consume(buf, read_start, ret);
1153			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1154		}
1155	} while (desc->count && ret);
 
 
1156	inode_unlock(file_inode(filp));
1157
1158	return desc->written;
1159}
1160
1161static ssize_t relay_file_read(struct file *filp,
1162			       char __user *buffer,
1163			       size_t count,
1164			       loff_t *ppos)
1165{
1166	read_descriptor_t desc;
1167	desc.written = 0;
1168	desc.count = count;
1169	desc.arg.buf = buffer;
1170	desc.error = 0;
1171	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1172}
1173
1174static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1175{
1176	rbuf->bytes_consumed += bytes_consumed;
1177
1178	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1179		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1180		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1181	}
1182}
1183
1184static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1185				   struct pipe_buffer *buf)
1186{
1187	struct rchan_buf *rbuf;
1188
1189	rbuf = (struct rchan_buf *)page_private(buf->page);
1190	relay_consume_bytes(rbuf, buf->private);
1191}
1192
1193static const struct pipe_buf_operations relay_pipe_buf_ops = {
1194	.can_merge = 0,
1195	.confirm = generic_pipe_buf_confirm,
1196	.release = relay_pipe_buf_release,
1197	.steal = generic_pipe_buf_steal,
1198	.get = generic_pipe_buf_get,
1199};
1200
1201static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1202{
1203}
1204
1205/*
1206 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1207 */
1208static ssize_t subbuf_splice_actor(struct file *in,
1209			       loff_t *ppos,
1210			       struct pipe_inode_info *pipe,
1211			       size_t len,
1212			       unsigned int flags,
1213			       int *nonpad_ret)
1214{
1215	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1216	struct rchan_buf *rbuf = in->private_data;
1217	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1218	uint64_t pos = (uint64_t) *ppos;
1219	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1220	size_t read_start = (size_t) do_div(pos, alloc_size);
1221	size_t read_subbuf = read_start / subbuf_size;
1222	size_t padding = rbuf->padding[read_subbuf];
1223	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1224	struct page *pages[PIPE_DEF_BUFFERS];
1225	struct partial_page partial[PIPE_DEF_BUFFERS];
1226	struct splice_pipe_desc spd = {
1227		.pages = pages,
1228		.nr_pages = 0,
1229		.nr_pages_max = PIPE_DEF_BUFFERS,
1230		.partial = partial,
1231		.flags = flags,
1232		.ops = &relay_pipe_buf_ops,
1233		.spd_release = relay_page_release,
1234	};
1235	ssize_t ret;
1236
1237	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1238		return 0;
1239	if (splice_grow_spd(pipe, &spd))
1240		return -ENOMEM;
1241
1242	/*
1243	 * Adjust read len, if longer than what is available
1244	 */
1245	if (len > (subbuf_size - read_start % subbuf_size))
1246		len = subbuf_size - read_start % subbuf_size;
1247
1248	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1249	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1250	poff = read_start & ~PAGE_MASK;
1251	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1252
1253	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1254		unsigned int this_len, this_end, private;
1255		unsigned int cur_pos = read_start + total_len;
1256
1257		if (!len)
1258			break;
1259
1260		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1261		private = this_len;
1262
1263		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1264		spd.partial[spd.nr_pages].offset = poff;
1265
1266		this_end = cur_pos + this_len;
1267		if (this_end >= nonpad_end) {
1268			this_len = nonpad_end - cur_pos;
1269			private = this_len + padding;
1270		}
1271		spd.partial[spd.nr_pages].len = this_len;
1272		spd.partial[spd.nr_pages].private = private;
1273
1274		len -= this_len;
1275		total_len += this_len;
1276		poff = 0;
1277		pidx = (pidx + 1) % subbuf_pages;
1278
1279		if (this_end >= nonpad_end) {
1280			spd.nr_pages++;
1281			break;
1282		}
1283	}
1284
1285	ret = 0;
1286	if (!spd.nr_pages)
1287		goto out;
1288
1289	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1290	if (ret < 0 || ret < total_len)
1291		goto out;
1292
1293        if (read_start + ret == nonpad_end)
1294                ret += padding;
1295
1296out:
1297	splice_shrink_spd(&spd);
1298	return ret;
1299}
1300
1301static ssize_t relay_file_splice_read(struct file *in,
1302				      loff_t *ppos,
1303				      struct pipe_inode_info *pipe,
1304				      size_t len,
1305				      unsigned int flags)
1306{
1307	ssize_t spliced;
1308	int ret;
1309	int nonpad_ret = 0;
1310
1311	ret = 0;
1312	spliced = 0;
1313
1314	while (len && !spliced) {
1315		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1316		if (ret < 0)
1317			break;
1318		else if (!ret) {
1319			if (flags & SPLICE_F_NONBLOCK)
1320				ret = -EAGAIN;
1321			break;
1322		}
1323
1324		*ppos += ret;
1325		if (ret > len)
1326			len = 0;
1327		else
1328			len -= ret;
1329		spliced += nonpad_ret;
1330		nonpad_ret = 0;
1331	}
1332
1333	if (spliced)
1334		return spliced;
1335
1336	return ret;
1337}
1338
1339const struct file_operations relay_file_operations = {
1340	.open		= relay_file_open,
1341	.poll		= relay_file_poll,
1342	.mmap		= relay_file_mmap,
1343	.read		= relay_file_read,
1344	.llseek		= no_llseek,
1345	.release	= relay_file_release,
1346	.splice_read	= relay_file_splice_read,
1347};
1348EXPORT_SYMBOL_GPL(relay_file_operations);
1349
1350static __init int relay_init(void)
1351{
1352
1353	hotcpu_notifier(relay_hotcpu_callback, 0);
1354	return 0;
1355}
1356
1357early_initcall(relay_init);