Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vmf->vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	kvfree(array);
 
 
 
  85}
  86
  87/**
  88 *	relay_mmap_buf: - mmap channel buffer to process address space
  89 *	@buf: relay channel buffer
  90 *	@vma: vm_area_struct describing memory to be mapped
  91 *
  92 *	Returns 0 if ok, negative on error
  93 *
  94 *	Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98	unsigned long length = vma->vm_end - vma->vm_start;
  99	struct file *filp = vma->vm_file;
 100
 101	if (!buf)
 102		return -EBADF;
 103
 104	if (length != (unsigned long)buf->chan->alloc_size)
 105		return -EINVAL;
 106
 107	vma->vm_ops = &relay_file_mmap_ops;
 108	vma->vm_flags |= VM_DONTEXPAND;
 109	vma->vm_private_data = buf;
 110	buf->chan->cb->buf_mapped(buf, filp);
 111
 112	return 0;
 113}
 114
 115/**
 116 *	relay_alloc_buf - allocate a channel buffer
 117 *	@buf: the buffer struct
 118 *	@size: total size of the buffer
 119 *
 120 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *	passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125	void *mem;
 126	unsigned int i, j, n_pages;
 127
 128	*size = PAGE_ALIGN(*size);
 129	n_pages = *size >> PAGE_SHIFT;
 130
 131	buf->page_array = relay_alloc_page_array(n_pages);
 132	if (!buf->page_array)
 133		return NULL;
 134
 135	for (i = 0; i < n_pages; i++) {
 136		buf->page_array[i] = alloc_page(GFP_KERNEL);
 137		if (unlikely(!buf->page_array[i]))
 138			goto depopulate;
 139		set_page_private(buf->page_array[i], (unsigned long)buf);
 140	}
 141	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142	if (!mem)
 143		goto depopulate;
 144
 145	memset(mem, 0, *size);
 146	buf->page_count = n_pages;
 147	return mem;
 148
 149depopulate:
 150	for (j = 0; j < i; j++)
 151		__free_page(buf->page_array[j]);
 152	relay_free_page_array(buf->page_array);
 153	return NULL;
 154}
 155
 156/**
 157 *	relay_create_buf - allocate and initialize a channel buffer
 158 *	@chan: the relay channel
 159 *
 160 *	Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164	struct rchan_buf *buf;
 165
 166	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 167		return NULL;
 168
 169	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170	if (!buf)
 171		return NULL;
 172	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 173	if (!buf->padding)
 174		goto free_buf;
 175
 176	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 177	if (!buf->start)
 178		goto free_buf;
 179
 180	buf->chan = chan;
 181	kref_get(&buf->chan->kref);
 182	return buf;
 183
 184free_buf:
 185	kfree(buf->padding);
 186	kfree(buf);
 187	return NULL;
 188}
 189
 190/**
 191 *	relay_destroy_channel - free the channel struct
 192 *	@kref: target kernel reference that contains the relay channel
 193 *
 194 *	Should only be called from kref_put().
 195 */
 196static void relay_destroy_channel(struct kref *kref)
 197{
 198	struct rchan *chan = container_of(kref, struct rchan, kref);
 199	kfree(chan);
 200}
 201
 202/**
 203 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 204 *	@buf: the buffer struct
 205 */
 206static void relay_destroy_buf(struct rchan_buf *buf)
 207{
 208	struct rchan *chan = buf->chan;
 209	unsigned int i;
 210
 211	if (likely(buf->start)) {
 212		vunmap(buf->start);
 213		for (i = 0; i < buf->page_count; i++)
 214			__free_page(buf->page_array[i]);
 215		relay_free_page_array(buf->page_array);
 216	}
 217	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 218	kfree(buf->padding);
 219	kfree(buf);
 220	kref_put(&chan->kref, relay_destroy_channel);
 221}
 222
 223/**
 224 *	relay_remove_buf - remove a channel buffer
 225 *	@kref: target kernel reference that contains the relay buffer
 226 *
 227 *	Removes the file from the filesystem, which also frees the
 228 *	rchan_buf_struct and the channel buffer.  Should only be called from
 229 *	kref_put().
 230 */
 231static void relay_remove_buf(struct kref *kref)
 232{
 233	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 
 234	relay_destroy_buf(buf);
 235}
 236
 237/**
 238 *	relay_buf_empty - boolean, is the channel buffer empty?
 239 *	@buf: channel buffer
 240 *
 241 *	Returns 1 if the buffer is empty, 0 otherwise.
 242 */
 243static int relay_buf_empty(struct rchan_buf *buf)
 244{
 245	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 246}
 247
 248/**
 249 *	relay_buf_full - boolean, is the channel buffer full?
 250 *	@buf: channel buffer
 251 *
 252 *	Returns 1 if the buffer is full, 0 otherwise.
 253 */
 254int relay_buf_full(struct rchan_buf *buf)
 255{
 256	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 257	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 258}
 259EXPORT_SYMBOL_GPL(relay_buf_full);
 260
 261/*
 262 * High-level relay kernel API and associated functions.
 263 */
 264
 265/*
 266 * rchan_callback implementations defining default channel behavior.  Used
 267 * in place of corresponding NULL values in client callback struct.
 268 */
 269
 270/*
 271 * subbuf_start() default callback.  Does nothing.
 272 */
 273static int subbuf_start_default_callback (struct rchan_buf *buf,
 274					  void *subbuf,
 275					  void *prev_subbuf,
 276					  size_t prev_padding)
 277{
 278	if (relay_buf_full(buf))
 279		return 0;
 280
 281	return 1;
 282}
 283
 284/*
 285 * buf_mapped() default callback.  Does nothing.
 286 */
 287static void buf_mapped_default_callback(struct rchan_buf *buf,
 288					struct file *filp)
 289{
 290}
 291
 292/*
 293 * buf_unmapped() default callback.  Does nothing.
 294 */
 295static void buf_unmapped_default_callback(struct rchan_buf *buf,
 296					  struct file *filp)
 297{
 298}
 299
 300/*
 301 * create_buf_file_create() default callback.  Does nothing.
 302 */
 303static struct dentry *create_buf_file_default_callback(const char *filename,
 304						       struct dentry *parent,
 305						       umode_t mode,
 306						       struct rchan_buf *buf,
 307						       int *is_global)
 308{
 309	return NULL;
 310}
 311
 312/*
 313 * remove_buf_file() default callback.  Does nothing.
 314 */
 315static int remove_buf_file_default_callback(struct dentry *dentry)
 316{
 317	return -EINVAL;
 318}
 319
 320/* relay channel default callbacks */
 321static struct rchan_callbacks default_channel_callbacks = {
 322	.subbuf_start = subbuf_start_default_callback,
 323	.buf_mapped = buf_mapped_default_callback,
 324	.buf_unmapped = buf_unmapped_default_callback,
 325	.create_buf_file = create_buf_file_default_callback,
 326	.remove_buf_file = remove_buf_file_default_callback,
 327};
 328
 329/**
 330 *	wakeup_readers - wake up readers waiting on a channel
 331 *	@work: contains the channel buffer
 332 *
 333 *	This is the function used to defer reader waking
 334 */
 335static void wakeup_readers(struct irq_work *work)
 336{
 337	struct rchan_buf *buf;
 338
 339	buf = container_of(work, struct rchan_buf, wakeup_work);
 340	wake_up_interruptible(&buf->read_wait);
 341}
 342
 343/**
 344 *	__relay_reset - reset a channel buffer
 345 *	@buf: the channel buffer
 346 *	@init: 1 if this is a first-time initialization
 347 *
 348 *	See relay_reset() for description of effect.
 349 */
 350static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 351{
 352	size_t i;
 353
 354	if (init) {
 355		init_waitqueue_head(&buf->read_wait);
 356		kref_init(&buf->kref);
 357		init_irq_work(&buf->wakeup_work, wakeup_readers);
 358	} else {
 359		irq_work_sync(&buf->wakeup_work);
 360	}
 361
 362	buf->subbufs_produced = 0;
 363	buf->subbufs_consumed = 0;
 364	buf->bytes_consumed = 0;
 365	buf->finalized = 0;
 366	buf->data = buf->start;
 367	buf->offset = 0;
 368
 369	for (i = 0; i < buf->chan->n_subbufs; i++)
 370		buf->padding[i] = 0;
 371
 372	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 373}
 374
 375/**
 376 *	relay_reset - reset the channel
 377 *	@chan: the channel
 378 *
 379 *	This has the effect of erasing all data from all channel buffers
 380 *	and restarting the channel in its initial state.  The buffers
 381 *	are not freed, so any mappings are still in effect.
 382 *
 383 *	NOTE. Care should be taken that the channel isn't actually
 384 *	being used by anything when this call is made.
 385 */
 386void relay_reset(struct rchan *chan)
 387{
 388	struct rchan_buf *buf;
 389	unsigned int i;
 390
 391	if (!chan)
 392		return;
 393
 394	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 395		__relay_reset(buf, 0);
 396		return;
 397	}
 398
 399	mutex_lock(&relay_channels_mutex);
 400	for_each_possible_cpu(i)
 401		if ((buf = *per_cpu_ptr(chan->buf, i)))
 402			__relay_reset(buf, 0);
 403	mutex_unlock(&relay_channels_mutex);
 404}
 405EXPORT_SYMBOL_GPL(relay_reset);
 406
 407static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 408					struct dentry *dentry)
 409{
 410	buf->dentry = dentry;
 411	d_inode(buf->dentry)->i_size = buf->early_bytes;
 412}
 413
 414static struct dentry *relay_create_buf_file(struct rchan *chan,
 415					    struct rchan_buf *buf,
 416					    unsigned int cpu)
 417{
 418	struct dentry *dentry;
 419	char *tmpname;
 420
 421	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 422	if (!tmpname)
 423		return NULL;
 424	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 425
 426	/* Create file in fs */
 427	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 428					   S_IRUSR, buf,
 429					   &chan->is_global);
 430
 431	kfree(tmpname);
 432
 433	return dentry;
 434}
 435
 436/*
 437 *	relay_open_buf - create a new relay channel buffer
 438 *
 439 *	used by relay_open() and CPU hotplug.
 440 */
 441static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 442{
 443 	struct rchan_buf *buf = NULL;
 444	struct dentry *dentry;
 445
 446 	if (chan->is_global)
 447		return *per_cpu_ptr(chan->buf, 0);
 448
 449	buf = relay_create_buf(chan);
 450	if (!buf)
 451		return NULL;
 452
 453	if (chan->has_base_filename) {
 454		dentry = relay_create_buf_file(chan, buf, cpu);
 455		if (!dentry)
 456			goto free_buf;
 457		relay_set_buf_dentry(buf, dentry);
 458	} else {
 459		/* Only retrieve global info, nothing more, nothing less */
 460		dentry = chan->cb->create_buf_file(NULL, NULL,
 461						   S_IRUSR, buf,
 462						   &chan->is_global);
 463		if (WARN_ON(dentry))
 464			goto free_buf;
 465	}
 466
 467 	buf->cpu = cpu;
 468 	__relay_reset(buf, 1);
 469
 470 	if(chan->is_global) {
 471		*per_cpu_ptr(chan->buf, 0) = buf;
 472 		buf->cpu = 0;
 473  	}
 474
 475	return buf;
 476
 477free_buf:
 478 	relay_destroy_buf(buf);
 479	return NULL;
 480}
 481
 482/**
 483 *	relay_close_buf - close a channel buffer
 484 *	@buf: channel buffer
 485 *
 486 *	Marks the buffer finalized and restores the default callbacks.
 487 *	The channel buffer and channel buffer data structure are then freed
 488 *	automatically when the last reference is given up.
 489 */
 490static void relay_close_buf(struct rchan_buf *buf)
 491{
 492	buf->finalized = 1;
 493	irq_work_sync(&buf->wakeup_work);
 494	buf->chan->cb->remove_buf_file(buf->dentry);
 495	kref_put(&buf->kref, relay_remove_buf);
 496}
 497
 498static void setup_callbacks(struct rchan *chan,
 499				   struct rchan_callbacks *cb)
 500{
 501	if (!cb) {
 502		chan->cb = &default_channel_callbacks;
 503		return;
 504	}
 505
 506	if (!cb->subbuf_start)
 507		cb->subbuf_start = subbuf_start_default_callback;
 508	if (!cb->buf_mapped)
 509		cb->buf_mapped = buf_mapped_default_callback;
 510	if (!cb->buf_unmapped)
 511		cb->buf_unmapped = buf_unmapped_default_callback;
 512	if (!cb->create_buf_file)
 513		cb->create_buf_file = create_buf_file_default_callback;
 514	if (!cb->remove_buf_file)
 515		cb->remove_buf_file = remove_buf_file_default_callback;
 516	chan->cb = cb;
 517}
 518
 519int relay_prepare_cpu(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 520{
 
 521	struct rchan *chan;
 522	struct rchan_buf *buf;
 523
 524	mutex_lock(&relay_channels_mutex);
 525	list_for_each_entry(chan, &relay_channels, list) {
 526		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 527			continue;
 528		buf = relay_open_buf(chan, cpu);
 529		if (!buf) {
 530			pr_err("relay: cpu %d buffer creation failed\n", cpu);
 531			mutex_unlock(&relay_channels_mutex);
 532			return -ENOMEM;
 
 
 
 
 
 
 533		}
 534		*per_cpu_ptr(chan->buf, cpu) = buf;
 
 
 
 
 
 
 535	}
 536	mutex_unlock(&relay_channels_mutex);
 537	return 0;
 538}
 539
 540/**
 541 *	relay_open - create a new relay channel
 542 *	@base_filename: base name of files to create, %NULL for buffering only
 543 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 544 *	@subbuf_size: size of sub-buffers
 545 *	@n_subbufs: number of sub-buffers
 546 *	@cb: client callback functions
 547 *	@private_data: user-defined data
 548 *
 549 *	Returns channel pointer if successful, %NULL otherwise.
 550 *
 551 *	Creates a channel buffer for each cpu using the sizes and
 552 *	attributes specified.  The created channel buffer files
 553 *	will be named base_filename0...base_filenameN-1.  File
 554 *	permissions will be %S_IRUSR.
 555 *
 556 *	If opening a buffer (@parent = NULL) that you later wish to register
 557 *	in a filesystem, call relay_late_setup_files() once the @parent dentry
 558 *	is available.
 559 */
 560struct rchan *relay_open(const char *base_filename,
 561			 struct dentry *parent,
 562			 size_t subbuf_size,
 563			 size_t n_subbufs,
 564			 struct rchan_callbacks *cb,
 565			 void *private_data)
 566{
 567	unsigned int i;
 568	struct rchan *chan;
 569	struct rchan_buf *buf;
 570
 571	if (!(subbuf_size && n_subbufs))
 572		return NULL;
 573	if (subbuf_size > UINT_MAX / n_subbufs)
 574		return NULL;
 575
 576	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 577	if (!chan)
 578		return NULL;
 579
 580	chan->buf = alloc_percpu(struct rchan_buf *);
 581	chan->version = RELAYFS_CHANNEL_VERSION;
 582	chan->n_subbufs = n_subbufs;
 583	chan->subbuf_size = subbuf_size;
 584	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 585	chan->parent = parent;
 586	chan->private_data = private_data;
 587	if (base_filename) {
 588		chan->has_base_filename = 1;
 589		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 590	}
 591	setup_callbacks(chan, cb);
 592	kref_init(&chan->kref);
 593
 594	mutex_lock(&relay_channels_mutex);
 595	for_each_online_cpu(i) {
 596		buf = relay_open_buf(chan, i);
 597		if (!buf)
 598			goto free_bufs;
 599		*per_cpu_ptr(chan->buf, i) = buf;
 600	}
 601	list_add(&chan->list, &relay_channels);
 602	mutex_unlock(&relay_channels_mutex);
 603
 604	return chan;
 605
 606free_bufs:
 607	for_each_possible_cpu(i) {
 608		if ((buf = *per_cpu_ptr(chan->buf, i)))
 609			relay_close_buf(buf);
 610	}
 611
 612	kref_put(&chan->kref, relay_destroy_channel);
 613	mutex_unlock(&relay_channels_mutex);
 614	return NULL;
 615}
 616EXPORT_SYMBOL_GPL(relay_open);
 617
 618struct rchan_percpu_buf_dispatcher {
 619	struct rchan_buf *buf;
 620	struct dentry *dentry;
 621};
 622
 623/* Called in atomic context. */
 624static void __relay_set_buf_dentry(void *info)
 625{
 626	struct rchan_percpu_buf_dispatcher *p = info;
 627
 628	relay_set_buf_dentry(p->buf, p->dentry);
 629}
 630
 631/**
 632 *	relay_late_setup_files - triggers file creation
 633 *	@chan: channel to operate on
 634 *	@base_filename: base name of files to create
 635 *	@parent: dentry of parent directory, %NULL for root directory
 636 *
 637 *	Returns 0 if successful, non-zero otherwise.
 638 *
 639 *	Use to setup files for a previously buffer-only channel created
 640 *	by relay_open() with a NULL parent dentry.
 641 *
 642 *	For example, this is useful for perfomring early tracing in kernel,
 643 *	before VFS is up and then exposing the early results once the dentry
 644 *	is available.
 645 */
 646int relay_late_setup_files(struct rchan *chan,
 647			   const char *base_filename,
 648			   struct dentry *parent)
 649{
 650	int err = 0;
 651	unsigned int i, curr_cpu;
 652	unsigned long flags;
 653	struct dentry *dentry;
 654	struct rchan_buf *buf;
 655	struct rchan_percpu_buf_dispatcher disp;
 656
 657	if (!chan || !base_filename)
 658		return -EINVAL;
 659
 660	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 661
 662	mutex_lock(&relay_channels_mutex);
 663	/* Is chan already set up? */
 664	if (unlikely(chan->has_base_filename)) {
 665		mutex_unlock(&relay_channels_mutex);
 666		return -EEXIST;
 667	}
 668	chan->has_base_filename = 1;
 669	chan->parent = parent;
 670
 671	if (chan->is_global) {
 672		err = -EINVAL;
 673		buf = *per_cpu_ptr(chan->buf, 0);
 674		if (!WARN_ON_ONCE(!buf)) {
 675			dentry = relay_create_buf_file(chan, buf, 0);
 676			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 677				relay_set_buf_dentry(buf, dentry);
 678				err = 0;
 679			}
 680		}
 681		mutex_unlock(&relay_channels_mutex);
 682		return err;
 683	}
 684
 685	curr_cpu = get_cpu();
 686	/*
 687	 * The CPU hotplug notifier ran before us and created buffers with
 688	 * no files associated. So it's safe to call relay_setup_buf_file()
 689	 * on all currently online CPUs.
 690	 */
 691	for_each_online_cpu(i) {
 692		buf = *per_cpu_ptr(chan->buf, i);
 693		if (unlikely(!buf)) {
 694			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 695			err = -EINVAL;
 696			break;
 697		}
 698
 699		dentry = relay_create_buf_file(chan, buf, i);
 700		if (unlikely(!dentry)) {
 701			err = -EINVAL;
 702			break;
 703		}
 704
 705		if (curr_cpu == i) {
 706			local_irq_save(flags);
 707			relay_set_buf_dentry(buf, dentry);
 708			local_irq_restore(flags);
 709		} else {
 710			disp.buf = buf;
 711			disp.dentry = dentry;
 712			smp_mb();
 713			/* relay_channels_mutex must be held, so wait. */
 714			err = smp_call_function_single(i,
 715						       __relay_set_buf_dentry,
 716						       &disp, 1);
 717		}
 718		if (unlikely(err))
 719			break;
 720	}
 721	put_cpu();
 722	mutex_unlock(&relay_channels_mutex);
 723
 724	return err;
 725}
 726EXPORT_SYMBOL_GPL(relay_late_setup_files);
 727
 728/**
 729 *	relay_switch_subbuf - switch to a new sub-buffer
 730 *	@buf: channel buffer
 731 *	@length: size of current event
 732 *
 733 *	Returns either the length passed in or 0 if full.
 734 *
 735 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 736 *	updating padding counts, waking up readers, etc.
 737 */
 738size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 739{
 740	void *old, *new;
 741	size_t old_subbuf, new_subbuf;
 742
 743	if (unlikely(length > buf->chan->subbuf_size))
 744		goto toobig;
 745
 746	if (buf->offset != buf->chan->subbuf_size + 1) {
 747		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 748		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 749		buf->padding[old_subbuf] = buf->prev_padding;
 750		buf->subbufs_produced++;
 751		if (buf->dentry)
 752			d_inode(buf->dentry)->i_size +=
 753				buf->chan->subbuf_size -
 754				buf->padding[old_subbuf];
 755		else
 756			buf->early_bytes += buf->chan->subbuf_size -
 757					    buf->padding[old_subbuf];
 758		smp_mb();
 759		if (waitqueue_active(&buf->read_wait)) {
 760			/*
 761			 * Calling wake_up_interruptible() from here
 762			 * will deadlock if we happen to be logging
 763			 * from the scheduler (trying to re-grab
 764			 * rq->lock), so defer it.
 765			 */
 766			irq_work_queue(&buf->wakeup_work);
 767		}
 768	}
 769
 770	old = buf->data;
 771	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 772	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 773	buf->offset = 0;
 774	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 775		buf->offset = buf->chan->subbuf_size + 1;
 776		return 0;
 777	}
 778	buf->data = new;
 779	buf->padding[new_subbuf] = 0;
 780
 781	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 782		goto toobig;
 783
 784	return length;
 785
 786toobig:
 787	buf->chan->last_toobig = length;
 788	return 0;
 789}
 790EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 791
 792/**
 793 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 794 *	@chan: the channel
 795 *	@cpu: the cpu associated with the channel buffer to update
 796 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 797 *
 798 *	Adds to the channel buffer's consumed sub-buffer count.
 799 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 800 *	not the total consumed.
 801 *
 802 *	NOTE. Kernel clients don't need to call this function if the channel
 803 *	mode is 'overwrite'.
 804 */
 805void relay_subbufs_consumed(struct rchan *chan,
 806			    unsigned int cpu,
 807			    size_t subbufs_consumed)
 808{
 809	struct rchan_buf *buf;
 810
 811	if (!chan || cpu >= NR_CPUS)
 812		return;
 813
 814	buf = *per_cpu_ptr(chan->buf, cpu);
 815	if (!buf || subbufs_consumed > chan->n_subbufs)
 816		return;
 817
 
 818	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 819		buf->subbufs_consumed = buf->subbufs_produced;
 820	else
 821		buf->subbufs_consumed += subbufs_consumed;
 822}
 823EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 824
 825/**
 826 *	relay_close - close the channel
 827 *	@chan: the channel
 828 *
 829 *	Closes all channel buffers and frees the channel.
 830 */
 831void relay_close(struct rchan *chan)
 832{
 833	struct rchan_buf *buf;
 834	unsigned int i;
 835
 836	if (!chan)
 837		return;
 838
 839	mutex_lock(&relay_channels_mutex);
 840	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 841		relay_close_buf(buf);
 842	else
 843		for_each_possible_cpu(i)
 844			if ((buf = *per_cpu_ptr(chan->buf, i)))
 845				relay_close_buf(buf);
 846
 847	if (chan->last_toobig)
 848		printk(KERN_WARNING "relay: one or more items not logged "
 849		       "[item size (%zd) > sub-buffer size (%zd)]\n",
 850		       chan->last_toobig, chan->subbuf_size);
 851
 852	list_del(&chan->list);
 853	kref_put(&chan->kref, relay_destroy_channel);
 854	mutex_unlock(&relay_channels_mutex);
 855}
 856EXPORT_SYMBOL_GPL(relay_close);
 857
 858/**
 859 *	relay_flush - close the channel
 860 *	@chan: the channel
 861 *
 862 *	Flushes all channel buffers, i.e. forces buffer switch.
 863 */
 864void relay_flush(struct rchan *chan)
 865{
 866	struct rchan_buf *buf;
 867	unsigned int i;
 868
 869	if (!chan)
 870		return;
 871
 872	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 873		relay_switch_subbuf(buf, 0);
 874		return;
 875	}
 876
 877	mutex_lock(&relay_channels_mutex);
 878	for_each_possible_cpu(i)
 879		if ((buf = *per_cpu_ptr(chan->buf, i)))
 880			relay_switch_subbuf(buf, 0);
 881	mutex_unlock(&relay_channels_mutex);
 882}
 883EXPORT_SYMBOL_GPL(relay_flush);
 884
 885/**
 886 *	relay_file_open - open file op for relay files
 887 *	@inode: the inode
 888 *	@filp: the file
 889 *
 890 *	Increments the channel buffer refcount.
 891 */
 892static int relay_file_open(struct inode *inode, struct file *filp)
 893{
 894	struct rchan_buf *buf = inode->i_private;
 895	kref_get(&buf->kref);
 896	filp->private_data = buf;
 897
 898	return nonseekable_open(inode, filp);
 899}
 900
 901/**
 902 *	relay_file_mmap - mmap file op for relay files
 903 *	@filp: the file
 904 *	@vma: the vma describing what to map
 905 *
 906 *	Calls upon relay_mmap_buf() to map the file into user space.
 907 */
 908static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 909{
 910	struct rchan_buf *buf = filp->private_data;
 911	return relay_mmap_buf(buf, vma);
 912}
 913
 914/**
 915 *	relay_file_poll - poll file op for relay files
 916 *	@filp: the file
 917 *	@wait: poll table
 918 *
 919 *	Poll implemention.
 920 */
 921static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 922{
 923	__poll_t mask = 0;
 924	struct rchan_buf *buf = filp->private_data;
 925
 926	if (buf->finalized)
 927		return EPOLLERR;
 928
 929	if (filp->f_mode & FMODE_READ) {
 930		poll_wait(filp, &buf->read_wait, wait);
 931		if (!relay_buf_empty(buf))
 932			mask |= EPOLLIN | EPOLLRDNORM;
 933	}
 934
 935	return mask;
 936}
 937
 938/**
 939 *	relay_file_release - release file op for relay files
 940 *	@inode: the inode
 941 *	@filp: the file
 942 *
 943 *	Decrements the channel refcount, as the filesystem is
 944 *	no longer using it.
 945 */
 946static int relay_file_release(struct inode *inode, struct file *filp)
 947{
 948	struct rchan_buf *buf = filp->private_data;
 949	kref_put(&buf->kref, relay_remove_buf);
 950
 951	return 0;
 952}
 953
 954/*
 955 *	relay_file_read_consume - update the consumed count for the buffer
 956 */
 957static void relay_file_read_consume(struct rchan_buf *buf,
 958				    size_t read_pos,
 959				    size_t bytes_consumed)
 960{
 961	size_t subbuf_size = buf->chan->subbuf_size;
 962	size_t n_subbufs = buf->chan->n_subbufs;
 963	size_t read_subbuf;
 964
 965	if (buf->subbufs_produced == buf->subbufs_consumed &&
 966	    buf->offset == buf->bytes_consumed)
 967		return;
 968
 969	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 970		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 971		buf->bytes_consumed = 0;
 972	}
 973
 974	buf->bytes_consumed += bytes_consumed;
 975	if (!read_pos)
 976		read_subbuf = buf->subbufs_consumed % n_subbufs;
 977	else
 978		read_subbuf = read_pos / buf->chan->subbuf_size;
 979	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 980		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 981		    (buf->offset == subbuf_size))
 982			return;
 983		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 984		buf->bytes_consumed = 0;
 985	}
 986}
 987
 988/*
 989 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 990 */
 991static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 992{
 993	size_t subbuf_size = buf->chan->subbuf_size;
 994	size_t n_subbufs = buf->chan->n_subbufs;
 995	size_t produced = buf->subbufs_produced;
 996	size_t consumed = buf->subbufs_consumed;
 997
 998	relay_file_read_consume(buf, read_pos, 0);
 999
1000	consumed = buf->subbufs_consumed;
1001
1002	if (unlikely(buf->offset > subbuf_size)) {
1003		if (produced == consumed)
1004			return 0;
1005		return 1;
1006	}
1007
1008	if (unlikely(produced - consumed >= n_subbufs)) {
1009		consumed = produced - n_subbufs + 1;
1010		buf->subbufs_consumed = consumed;
1011		buf->bytes_consumed = 0;
1012	}
1013
1014	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1015	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1016
1017	if (consumed > produced)
1018		produced += n_subbufs * subbuf_size;
1019
1020	if (consumed == produced) {
1021		if (buf->offset == subbuf_size &&
1022		    buf->subbufs_produced > buf->subbufs_consumed)
1023			return 1;
1024		return 0;
1025	}
1026
1027	return 1;
1028}
1029
1030/**
1031 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1032 *	@read_pos: file read position
1033 *	@buf: relay channel buffer
1034 */
1035static size_t relay_file_read_subbuf_avail(size_t read_pos,
1036					   struct rchan_buf *buf)
1037{
1038	size_t padding, avail = 0;
1039	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1040	size_t subbuf_size = buf->chan->subbuf_size;
1041
1042	write_subbuf = (buf->data - buf->start) / subbuf_size;
1043	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1044	read_subbuf = read_pos / subbuf_size;
1045	read_offset = read_pos % subbuf_size;
1046	padding = buf->padding[read_subbuf];
1047
1048	if (read_subbuf == write_subbuf) {
1049		if (read_offset + padding < write_offset)
1050			avail = write_offset - (read_offset + padding);
1051	} else
1052		avail = (subbuf_size - padding) - read_offset;
1053
1054	return avail;
1055}
1056
1057/**
1058 *	relay_file_read_start_pos - find the first available byte to read
1059 *	@read_pos: file read position
1060 *	@buf: relay channel buffer
1061 *
1062 *	If the @read_pos is in the middle of padding, return the
1063 *	position of the first actually available byte, otherwise
1064 *	return the original value.
1065 */
1066static size_t relay_file_read_start_pos(size_t read_pos,
1067					struct rchan_buf *buf)
1068{
1069	size_t read_subbuf, padding, padding_start, padding_end;
1070	size_t subbuf_size = buf->chan->subbuf_size;
1071	size_t n_subbufs = buf->chan->n_subbufs;
1072	size_t consumed = buf->subbufs_consumed % n_subbufs;
1073
1074	if (!read_pos)
1075		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1076	read_subbuf = read_pos / subbuf_size;
1077	padding = buf->padding[read_subbuf];
1078	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1079	padding_end = (read_subbuf + 1) * subbuf_size;
1080	if (read_pos >= padding_start && read_pos < padding_end) {
1081		read_subbuf = (read_subbuf + 1) % n_subbufs;
1082		read_pos = read_subbuf * subbuf_size;
1083	}
1084
1085	return read_pos;
1086}
1087
1088/**
1089 *	relay_file_read_end_pos - return the new read position
1090 *	@read_pos: file read position
1091 *	@buf: relay channel buffer
1092 *	@count: number of bytes to be read
1093 */
1094static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1095				      size_t read_pos,
1096				      size_t count)
1097{
1098	size_t read_subbuf, padding, end_pos;
1099	size_t subbuf_size = buf->chan->subbuf_size;
1100	size_t n_subbufs = buf->chan->n_subbufs;
1101
1102	read_subbuf = read_pos / subbuf_size;
1103	padding = buf->padding[read_subbuf];
1104	if (read_pos % subbuf_size + count + padding == subbuf_size)
1105		end_pos = (read_subbuf + 1) * subbuf_size;
1106	else
1107		end_pos = read_pos + count;
1108	if (end_pos >= subbuf_size * n_subbufs)
1109		end_pos = 0;
1110
1111	return end_pos;
1112}
1113
1114static ssize_t relay_file_read(struct file *filp,
1115			       char __user *buffer,
1116			       size_t count,
1117			       loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118{
1119	struct rchan_buf *buf = filp->private_data;
1120	size_t read_start, avail;
1121	size_t written = 0;
1122	int ret;
1123
1124	if (!count)
1125		return 0;
1126
1127	inode_lock(file_inode(filp));
1128	do {
1129		void *from;
1130
1131		if (!relay_file_read_avail(buf, *ppos))
1132			break;
1133
1134		read_start = relay_file_read_start_pos(*ppos, buf);
1135		avail = relay_file_read_subbuf_avail(read_start, buf);
1136		if (!avail)
1137			break;
1138
1139		avail = min(count, avail);
1140		from = buf->start + read_start;
1141		ret = avail;
1142		if (copy_to_user(buffer, from, avail))
1143			break;
1144
1145		buffer += ret;
1146		written += ret;
1147		count -= ret;
1148
1149		relay_file_read_consume(buf, read_start, ret);
1150		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1151	} while (count);
1152	inode_unlock(file_inode(filp));
 
1153
1154	return written;
 
 
 
 
 
 
 
 
 
 
 
1155}
1156
1157static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1158{
1159	rbuf->bytes_consumed += bytes_consumed;
1160
1161	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1162		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1163		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1164	}
1165}
1166
1167static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1168				   struct pipe_buffer *buf)
1169{
1170	struct rchan_buf *rbuf;
1171
1172	rbuf = (struct rchan_buf *)page_private(buf->page);
1173	relay_consume_bytes(rbuf, buf->private);
1174}
1175
1176static const struct pipe_buf_operations relay_pipe_buf_ops = {
1177	.can_merge = 0,
 
 
1178	.confirm = generic_pipe_buf_confirm,
1179	.release = relay_pipe_buf_release,
1180	.steal = generic_pipe_buf_steal,
1181	.get = generic_pipe_buf_get,
1182};
1183
1184static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1185{
1186}
1187
1188/*
1189 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1190 */
1191static ssize_t subbuf_splice_actor(struct file *in,
1192			       loff_t *ppos,
1193			       struct pipe_inode_info *pipe,
1194			       size_t len,
1195			       unsigned int flags,
1196			       int *nonpad_ret)
1197{
1198	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1199	struct rchan_buf *rbuf = in->private_data;
1200	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1201	uint64_t pos = (uint64_t) *ppos;
1202	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1203	size_t read_start = (size_t) do_div(pos, alloc_size);
1204	size_t read_subbuf = read_start / subbuf_size;
1205	size_t padding = rbuf->padding[read_subbuf];
1206	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1207	struct page *pages[PIPE_DEF_BUFFERS];
1208	struct partial_page partial[PIPE_DEF_BUFFERS];
1209	struct splice_pipe_desc spd = {
1210		.pages = pages,
1211		.nr_pages = 0,
1212		.nr_pages_max = PIPE_DEF_BUFFERS,
1213		.partial = partial,
 
1214		.ops = &relay_pipe_buf_ops,
1215		.spd_release = relay_page_release,
1216	};
1217	ssize_t ret;
1218
1219	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1220		return 0;
1221	if (splice_grow_spd(pipe, &spd))
1222		return -ENOMEM;
1223
1224	/*
1225	 * Adjust read len, if longer than what is available
1226	 */
1227	if (len > (subbuf_size - read_start % subbuf_size))
1228		len = subbuf_size - read_start % subbuf_size;
1229
1230	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1231	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1232	poff = read_start & ~PAGE_MASK;
1233	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1234
1235	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1236		unsigned int this_len, this_end, private;
1237		unsigned int cur_pos = read_start + total_len;
1238
1239		if (!len)
1240			break;
1241
1242		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1243		private = this_len;
1244
1245		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1246		spd.partial[spd.nr_pages].offset = poff;
1247
1248		this_end = cur_pos + this_len;
1249		if (this_end >= nonpad_end) {
1250			this_len = nonpad_end - cur_pos;
1251			private = this_len + padding;
1252		}
1253		spd.partial[spd.nr_pages].len = this_len;
1254		spd.partial[spd.nr_pages].private = private;
1255
1256		len -= this_len;
1257		total_len += this_len;
1258		poff = 0;
1259		pidx = (pidx + 1) % subbuf_pages;
1260
1261		if (this_end >= nonpad_end) {
1262			spd.nr_pages++;
1263			break;
1264		}
1265	}
1266
1267	ret = 0;
1268	if (!spd.nr_pages)
1269		goto out;
1270
1271	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1272	if (ret < 0 || ret < total_len)
1273		goto out;
1274
1275        if (read_start + ret == nonpad_end)
1276                ret += padding;
1277
1278out:
1279	splice_shrink_spd(&spd);
1280	return ret;
1281}
1282
1283static ssize_t relay_file_splice_read(struct file *in,
1284				      loff_t *ppos,
1285				      struct pipe_inode_info *pipe,
1286				      size_t len,
1287				      unsigned int flags)
1288{
1289	ssize_t spliced;
1290	int ret;
1291	int nonpad_ret = 0;
1292
1293	ret = 0;
1294	spliced = 0;
1295
1296	while (len && !spliced) {
1297		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1298		if (ret < 0)
1299			break;
1300		else if (!ret) {
1301			if (flags & SPLICE_F_NONBLOCK)
1302				ret = -EAGAIN;
1303			break;
1304		}
1305
1306		*ppos += ret;
1307		if (ret > len)
1308			len = 0;
1309		else
1310			len -= ret;
1311		spliced += nonpad_ret;
1312		nonpad_ret = 0;
1313	}
1314
1315	if (spliced)
1316		return spliced;
1317
1318	return ret;
1319}
1320
1321const struct file_operations relay_file_operations = {
1322	.open		= relay_file_open,
1323	.poll		= relay_file_poll,
1324	.mmap		= relay_file_mmap,
1325	.read		= relay_file_read,
1326	.llseek		= no_llseek,
1327	.release	= relay_file_release,
1328	.splice_read	= relay_file_splice_read,
1329};
1330EXPORT_SYMBOL_GPL(relay_file_operations);
v3.5.6
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	if (is_vmalloc_addr(array))
  85		vfree(array);
  86	else
  87		kfree(array);
  88}
  89
  90/**
  91 *	relay_mmap_buf: - mmap channel buffer to process address space
  92 *	@buf: relay channel buffer
  93 *	@vma: vm_area_struct describing memory to be mapped
  94 *
  95 *	Returns 0 if ok, negative on error
  96 *
  97 *	Caller should already have grabbed mmap_sem.
  98 */
  99static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
 100{
 101	unsigned long length = vma->vm_end - vma->vm_start;
 102	struct file *filp = vma->vm_file;
 103
 104	if (!buf)
 105		return -EBADF;
 106
 107	if (length != (unsigned long)buf->chan->alloc_size)
 108		return -EINVAL;
 109
 110	vma->vm_ops = &relay_file_mmap_ops;
 111	vma->vm_flags |= VM_DONTEXPAND;
 112	vma->vm_private_data = buf;
 113	buf->chan->cb->buf_mapped(buf, filp);
 114
 115	return 0;
 116}
 117
 118/**
 119 *	relay_alloc_buf - allocate a channel buffer
 120 *	@buf: the buffer struct
 121 *	@size: total size of the buffer
 122 *
 123 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 124 *	passed in size will get page aligned, if it isn't already.
 125 */
 126static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 127{
 128	void *mem;
 129	unsigned int i, j, n_pages;
 130
 131	*size = PAGE_ALIGN(*size);
 132	n_pages = *size >> PAGE_SHIFT;
 133
 134	buf->page_array = relay_alloc_page_array(n_pages);
 135	if (!buf->page_array)
 136		return NULL;
 137
 138	for (i = 0; i < n_pages; i++) {
 139		buf->page_array[i] = alloc_page(GFP_KERNEL);
 140		if (unlikely(!buf->page_array[i]))
 141			goto depopulate;
 142		set_page_private(buf->page_array[i], (unsigned long)buf);
 143	}
 144	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 145	if (!mem)
 146		goto depopulate;
 147
 148	memset(mem, 0, *size);
 149	buf->page_count = n_pages;
 150	return mem;
 151
 152depopulate:
 153	for (j = 0; j < i; j++)
 154		__free_page(buf->page_array[j]);
 155	relay_free_page_array(buf->page_array);
 156	return NULL;
 157}
 158
 159/**
 160 *	relay_create_buf - allocate and initialize a channel buffer
 161 *	@chan: the relay channel
 162 *
 163 *	Returns channel buffer if successful, %NULL otherwise.
 164 */
 165static struct rchan_buf *relay_create_buf(struct rchan *chan)
 166{
 167	struct rchan_buf *buf;
 168
 169	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
 170		return NULL;
 171
 172	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 173	if (!buf)
 174		return NULL;
 175	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 176	if (!buf->padding)
 177		goto free_buf;
 178
 179	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 180	if (!buf->start)
 181		goto free_buf;
 182
 183	buf->chan = chan;
 184	kref_get(&buf->chan->kref);
 185	return buf;
 186
 187free_buf:
 188	kfree(buf->padding);
 189	kfree(buf);
 190	return NULL;
 191}
 192
 193/**
 194 *	relay_destroy_channel - free the channel struct
 195 *	@kref: target kernel reference that contains the relay channel
 196 *
 197 *	Should only be called from kref_put().
 198 */
 199static void relay_destroy_channel(struct kref *kref)
 200{
 201	struct rchan *chan = container_of(kref, struct rchan, kref);
 202	kfree(chan);
 203}
 204
 205/**
 206 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 207 *	@buf: the buffer struct
 208 */
 209static void relay_destroy_buf(struct rchan_buf *buf)
 210{
 211	struct rchan *chan = buf->chan;
 212	unsigned int i;
 213
 214	if (likely(buf->start)) {
 215		vunmap(buf->start);
 216		for (i = 0; i < buf->page_count; i++)
 217			__free_page(buf->page_array[i]);
 218		relay_free_page_array(buf->page_array);
 219	}
 220	chan->buf[buf->cpu] = NULL;
 221	kfree(buf->padding);
 222	kfree(buf);
 223	kref_put(&chan->kref, relay_destroy_channel);
 224}
 225
 226/**
 227 *	relay_remove_buf - remove a channel buffer
 228 *	@kref: target kernel reference that contains the relay buffer
 229 *
 230 *	Removes the file from the fileystem, which also frees the
 231 *	rchan_buf_struct and the channel buffer.  Should only be called from
 232 *	kref_put().
 233 */
 234static void relay_remove_buf(struct kref *kref)
 235{
 236	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 237	buf->chan->cb->remove_buf_file(buf->dentry);
 238	relay_destroy_buf(buf);
 239}
 240
 241/**
 242 *	relay_buf_empty - boolean, is the channel buffer empty?
 243 *	@buf: channel buffer
 244 *
 245 *	Returns 1 if the buffer is empty, 0 otherwise.
 246 */
 247static int relay_buf_empty(struct rchan_buf *buf)
 248{
 249	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 250}
 251
 252/**
 253 *	relay_buf_full - boolean, is the channel buffer full?
 254 *	@buf: channel buffer
 255 *
 256 *	Returns 1 if the buffer is full, 0 otherwise.
 257 */
 258int relay_buf_full(struct rchan_buf *buf)
 259{
 260	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 261	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 262}
 263EXPORT_SYMBOL_GPL(relay_buf_full);
 264
 265/*
 266 * High-level relay kernel API and associated functions.
 267 */
 268
 269/*
 270 * rchan_callback implementations defining default channel behavior.  Used
 271 * in place of corresponding NULL values in client callback struct.
 272 */
 273
 274/*
 275 * subbuf_start() default callback.  Does nothing.
 276 */
 277static int subbuf_start_default_callback (struct rchan_buf *buf,
 278					  void *subbuf,
 279					  void *prev_subbuf,
 280					  size_t prev_padding)
 281{
 282	if (relay_buf_full(buf))
 283		return 0;
 284
 285	return 1;
 286}
 287
 288/*
 289 * buf_mapped() default callback.  Does nothing.
 290 */
 291static void buf_mapped_default_callback(struct rchan_buf *buf,
 292					struct file *filp)
 293{
 294}
 295
 296/*
 297 * buf_unmapped() default callback.  Does nothing.
 298 */
 299static void buf_unmapped_default_callback(struct rchan_buf *buf,
 300					  struct file *filp)
 301{
 302}
 303
 304/*
 305 * create_buf_file_create() default callback.  Does nothing.
 306 */
 307static struct dentry *create_buf_file_default_callback(const char *filename,
 308						       struct dentry *parent,
 309						       umode_t mode,
 310						       struct rchan_buf *buf,
 311						       int *is_global)
 312{
 313	return NULL;
 314}
 315
 316/*
 317 * remove_buf_file() default callback.  Does nothing.
 318 */
 319static int remove_buf_file_default_callback(struct dentry *dentry)
 320{
 321	return -EINVAL;
 322}
 323
 324/* relay channel default callbacks */
 325static struct rchan_callbacks default_channel_callbacks = {
 326	.subbuf_start = subbuf_start_default_callback,
 327	.buf_mapped = buf_mapped_default_callback,
 328	.buf_unmapped = buf_unmapped_default_callback,
 329	.create_buf_file = create_buf_file_default_callback,
 330	.remove_buf_file = remove_buf_file_default_callback,
 331};
 332
 333/**
 334 *	wakeup_readers - wake up readers waiting on a channel
 335 *	@data: contains the channel buffer
 336 *
 337 *	This is the timer function used to defer reader waking.
 338 */
 339static void wakeup_readers(unsigned long data)
 340{
 341	struct rchan_buf *buf = (struct rchan_buf *)data;
 
 
 342	wake_up_interruptible(&buf->read_wait);
 343}
 344
 345/**
 346 *	__relay_reset - reset a channel buffer
 347 *	@buf: the channel buffer
 348 *	@init: 1 if this is a first-time initialization
 349 *
 350 *	See relay_reset() for description of effect.
 351 */
 352static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 353{
 354	size_t i;
 355
 356	if (init) {
 357		init_waitqueue_head(&buf->read_wait);
 358		kref_init(&buf->kref);
 359		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 360	} else
 361		del_timer_sync(&buf->timer);
 
 362
 363	buf->subbufs_produced = 0;
 364	buf->subbufs_consumed = 0;
 365	buf->bytes_consumed = 0;
 366	buf->finalized = 0;
 367	buf->data = buf->start;
 368	buf->offset = 0;
 369
 370	for (i = 0; i < buf->chan->n_subbufs; i++)
 371		buf->padding[i] = 0;
 372
 373	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 374}
 375
 376/**
 377 *	relay_reset - reset the channel
 378 *	@chan: the channel
 379 *
 380 *	This has the effect of erasing all data from all channel buffers
 381 *	and restarting the channel in its initial state.  The buffers
 382 *	are not freed, so any mappings are still in effect.
 383 *
 384 *	NOTE. Care should be taken that the channel isn't actually
 385 *	being used by anything when this call is made.
 386 */
 387void relay_reset(struct rchan *chan)
 388{
 
 389	unsigned int i;
 390
 391	if (!chan)
 392		return;
 393
 394	if (chan->is_global && chan->buf[0]) {
 395		__relay_reset(chan->buf[0], 0);
 396		return;
 397	}
 398
 399	mutex_lock(&relay_channels_mutex);
 400	for_each_possible_cpu(i)
 401		if (chan->buf[i])
 402			__relay_reset(chan->buf[i], 0);
 403	mutex_unlock(&relay_channels_mutex);
 404}
 405EXPORT_SYMBOL_GPL(relay_reset);
 406
 407static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 408					struct dentry *dentry)
 409{
 410	buf->dentry = dentry;
 411	buf->dentry->d_inode->i_size = buf->early_bytes;
 412}
 413
 414static struct dentry *relay_create_buf_file(struct rchan *chan,
 415					    struct rchan_buf *buf,
 416					    unsigned int cpu)
 417{
 418	struct dentry *dentry;
 419	char *tmpname;
 420
 421	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 422	if (!tmpname)
 423		return NULL;
 424	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 425
 426	/* Create file in fs */
 427	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 428					   S_IRUSR, buf,
 429					   &chan->is_global);
 430
 431	kfree(tmpname);
 432
 433	return dentry;
 434}
 435
 436/*
 437 *	relay_open_buf - create a new relay channel buffer
 438 *
 439 *	used by relay_open() and CPU hotplug.
 440 */
 441static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 442{
 443 	struct rchan_buf *buf = NULL;
 444	struct dentry *dentry;
 445
 446 	if (chan->is_global)
 447		return chan->buf[0];
 448
 449	buf = relay_create_buf(chan);
 450	if (!buf)
 451		return NULL;
 452
 453	if (chan->has_base_filename) {
 454		dentry = relay_create_buf_file(chan, buf, cpu);
 455		if (!dentry)
 456			goto free_buf;
 457		relay_set_buf_dentry(buf, dentry);
 
 
 
 
 
 
 
 458	}
 459
 460 	buf->cpu = cpu;
 461 	__relay_reset(buf, 1);
 462
 463 	if(chan->is_global) {
 464 		chan->buf[0] = buf;
 465 		buf->cpu = 0;
 466  	}
 467
 468	return buf;
 469
 470free_buf:
 471 	relay_destroy_buf(buf);
 472	return NULL;
 473}
 474
 475/**
 476 *	relay_close_buf - close a channel buffer
 477 *	@buf: channel buffer
 478 *
 479 *	Marks the buffer finalized and restores the default callbacks.
 480 *	The channel buffer and channel buffer data structure are then freed
 481 *	automatically when the last reference is given up.
 482 */
 483static void relay_close_buf(struct rchan_buf *buf)
 484{
 485	buf->finalized = 1;
 486	del_timer_sync(&buf->timer);
 
 487	kref_put(&buf->kref, relay_remove_buf);
 488}
 489
 490static void setup_callbacks(struct rchan *chan,
 491				   struct rchan_callbacks *cb)
 492{
 493	if (!cb) {
 494		chan->cb = &default_channel_callbacks;
 495		return;
 496	}
 497
 498	if (!cb->subbuf_start)
 499		cb->subbuf_start = subbuf_start_default_callback;
 500	if (!cb->buf_mapped)
 501		cb->buf_mapped = buf_mapped_default_callback;
 502	if (!cb->buf_unmapped)
 503		cb->buf_unmapped = buf_unmapped_default_callback;
 504	if (!cb->create_buf_file)
 505		cb->create_buf_file = create_buf_file_default_callback;
 506	if (!cb->remove_buf_file)
 507		cb->remove_buf_file = remove_buf_file_default_callback;
 508	chan->cb = cb;
 509}
 510
 511/**
 512 * 	relay_hotcpu_callback - CPU hotplug callback
 513 * 	@nb: notifier block
 514 * 	@action: hotplug action to take
 515 * 	@hcpu: CPU number
 516 *
 517 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 518 */
 519static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
 520				unsigned long action,
 521				void *hcpu)
 522{
 523	unsigned int hotcpu = (unsigned long)hcpu;
 524	struct rchan *chan;
 
 525
 526	switch(action) {
 527	case CPU_UP_PREPARE:
 528	case CPU_UP_PREPARE_FROZEN:
 529		mutex_lock(&relay_channels_mutex);
 530		list_for_each_entry(chan, &relay_channels, list) {
 531			if (chan->buf[hotcpu])
 532				continue;
 533			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 534			if(!chan->buf[hotcpu]) {
 535				printk(KERN_ERR
 536					"relay_hotcpu_callback: cpu %d buffer "
 537					"creation failed\n", hotcpu);
 538				mutex_unlock(&relay_channels_mutex);
 539				return notifier_from_errno(-ENOMEM);
 540			}
 541		}
 542		mutex_unlock(&relay_channels_mutex);
 543		break;
 544	case CPU_DEAD:
 545	case CPU_DEAD_FROZEN:
 546		/* No need to flush the cpu : will be flushed upon
 547		 * final relay_flush() call. */
 548		break;
 549	}
 550	return NOTIFY_OK;
 
 551}
 552
 553/**
 554 *	relay_open - create a new relay channel
 555 *	@base_filename: base name of files to create, %NULL for buffering only
 556 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 557 *	@subbuf_size: size of sub-buffers
 558 *	@n_subbufs: number of sub-buffers
 559 *	@cb: client callback functions
 560 *	@private_data: user-defined data
 561 *
 562 *	Returns channel pointer if successful, %NULL otherwise.
 563 *
 564 *	Creates a channel buffer for each cpu using the sizes and
 565 *	attributes specified.  The created channel buffer files
 566 *	will be named base_filename0...base_filenameN-1.  File
 567 *	permissions will be %S_IRUSR.
 
 
 
 
 568 */
 569struct rchan *relay_open(const char *base_filename,
 570			 struct dentry *parent,
 571			 size_t subbuf_size,
 572			 size_t n_subbufs,
 573			 struct rchan_callbacks *cb,
 574			 void *private_data)
 575{
 576	unsigned int i;
 577	struct rchan *chan;
 
 578
 579	if (!(subbuf_size && n_subbufs))
 580		return NULL;
 581	if (subbuf_size > UINT_MAX / n_subbufs)
 582		return NULL;
 583
 584	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 585	if (!chan)
 586		return NULL;
 587
 
 588	chan->version = RELAYFS_CHANNEL_VERSION;
 589	chan->n_subbufs = n_subbufs;
 590	chan->subbuf_size = subbuf_size;
 591	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
 592	chan->parent = parent;
 593	chan->private_data = private_data;
 594	if (base_filename) {
 595		chan->has_base_filename = 1;
 596		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 597	}
 598	setup_callbacks(chan, cb);
 599	kref_init(&chan->kref);
 600
 601	mutex_lock(&relay_channels_mutex);
 602	for_each_online_cpu(i) {
 603		chan->buf[i] = relay_open_buf(chan, i);
 604		if (!chan->buf[i])
 605			goto free_bufs;
 
 606	}
 607	list_add(&chan->list, &relay_channels);
 608	mutex_unlock(&relay_channels_mutex);
 609
 610	return chan;
 611
 612free_bufs:
 613	for_each_possible_cpu(i) {
 614		if (chan->buf[i])
 615			relay_close_buf(chan->buf[i]);
 616	}
 617
 618	kref_put(&chan->kref, relay_destroy_channel);
 619	mutex_unlock(&relay_channels_mutex);
 620	return NULL;
 621}
 622EXPORT_SYMBOL_GPL(relay_open);
 623
 624struct rchan_percpu_buf_dispatcher {
 625	struct rchan_buf *buf;
 626	struct dentry *dentry;
 627};
 628
 629/* Called in atomic context. */
 630static void __relay_set_buf_dentry(void *info)
 631{
 632	struct rchan_percpu_buf_dispatcher *p = info;
 633
 634	relay_set_buf_dentry(p->buf, p->dentry);
 635}
 636
 637/**
 638 *	relay_late_setup_files - triggers file creation
 639 *	@chan: channel to operate on
 640 *	@base_filename: base name of files to create
 641 *	@parent: dentry of parent directory, %NULL for root directory
 642 *
 643 *	Returns 0 if successful, non-zero otherwise.
 644 *
 645 *	Use to setup files for a previously buffer-only channel.
 646 *	Useful to do early tracing in kernel, before VFS is up, for example.
 
 
 
 
 647 */
 648int relay_late_setup_files(struct rchan *chan,
 649			   const char *base_filename,
 650			   struct dentry *parent)
 651{
 652	int err = 0;
 653	unsigned int i, curr_cpu;
 654	unsigned long flags;
 655	struct dentry *dentry;
 
 656	struct rchan_percpu_buf_dispatcher disp;
 657
 658	if (!chan || !base_filename)
 659		return -EINVAL;
 660
 661	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 662
 663	mutex_lock(&relay_channels_mutex);
 664	/* Is chan already set up? */
 665	if (unlikely(chan->has_base_filename)) {
 666		mutex_unlock(&relay_channels_mutex);
 667		return -EEXIST;
 668	}
 669	chan->has_base_filename = 1;
 670	chan->parent = parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	curr_cpu = get_cpu();
 672	/*
 673	 * The CPU hotplug notifier ran before us and created buffers with
 674	 * no files associated. So it's safe to call relay_setup_buf_file()
 675	 * on all currently online CPUs.
 676	 */
 677	for_each_online_cpu(i) {
 678		if (unlikely(!chan->buf[i])) {
 
 679			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 680			err = -EINVAL;
 681			break;
 682		}
 683
 684		dentry = relay_create_buf_file(chan, chan->buf[i], i);
 685		if (unlikely(!dentry)) {
 686			err = -EINVAL;
 687			break;
 688		}
 689
 690		if (curr_cpu == i) {
 691			local_irq_save(flags);
 692			relay_set_buf_dentry(chan->buf[i], dentry);
 693			local_irq_restore(flags);
 694		} else {
 695			disp.buf = chan->buf[i];
 696			disp.dentry = dentry;
 697			smp_mb();
 698			/* relay_channels_mutex must be held, so wait. */
 699			err = smp_call_function_single(i,
 700						       __relay_set_buf_dentry,
 701						       &disp, 1);
 702		}
 703		if (unlikely(err))
 704			break;
 705	}
 706	put_cpu();
 707	mutex_unlock(&relay_channels_mutex);
 708
 709	return err;
 710}
 
 711
 712/**
 713 *	relay_switch_subbuf - switch to a new sub-buffer
 714 *	@buf: channel buffer
 715 *	@length: size of current event
 716 *
 717 *	Returns either the length passed in or 0 if full.
 718 *
 719 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 720 *	updating padding counts, waking up readers, etc.
 721 */
 722size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 723{
 724	void *old, *new;
 725	size_t old_subbuf, new_subbuf;
 726
 727	if (unlikely(length > buf->chan->subbuf_size))
 728		goto toobig;
 729
 730	if (buf->offset != buf->chan->subbuf_size + 1) {
 731		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 732		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 733		buf->padding[old_subbuf] = buf->prev_padding;
 734		buf->subbufs_produced++;
 735		if (buf->dentry)
 736			buf->dentry->d_inode->i_size +=
 737				buf->chan->subbuf_size -
 738				buf->padding[old_subbuf];
 739		else
 740			buf->early_bytes += buf->chan->subbuf_size -
 741					    buf->padding[old_subbuf];
 742		smp_mb();
 743		if (waitqueue_active(&buf->read_wait))
 744			/*
 745			 * Calling wake_up_interruptible() from here
 746			 * will deadlock if we happen to be logging
 747			 * from the scheduler (trying to re-grab
 748			 * rq->lock), so defer it.
 749			 */
 750			mod_timer(&buf->timer, jiffies + 1);
 
 751	}
 752
 753	old = buf->data;
 754	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 755	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 756	buf->offset = 0;
 757	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 758		buf->offset = buf->chan->subbuf_size + 1;
 759		return 0;
 760	}
 761	buf->data = new;
 762	buf->padding[new_subbuf] = 0;
 763
 764	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 765		goto toobig;
 766
 767	return length;
 768
 769toobig:
 770	buf->chan->last_toobig = length;
 771	return 0;
 772}
 773EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 774
 775/**
 776 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 777 *	@chan: the channel
 778 *	@cpu: the cpu associated with the channel buffer to update
 779 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 780 *
 781 *	Adds to the channel buffer's consumed sub-buffer count.
 782 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 783 *	not the total consumed.
 784 *
 785 *	NOTE. Kernel clients don't need to call this function if the channel
 786 *	mode is 'overwrite'.
 787 */
 788void relay_subbufs_consumed(struct rchan *chan,
 789			    unsigned int cpu,
 790			    size_t subbufs_consumed)
 791{
 792	struct rchan_buf *buf;
 793
 794	if (!chan)
 795		return;
 796
 797	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
 798					subbufs_consumed > chan->n_subbufs)
 799		return;
 800
 801	buf = chan->buf[cpu];
 802	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 803		buf->subbufs_consumed = buf->subbufs_produced;
 804	else
 805		buf->subbufs_consumed += subbufs_consumed;
 806}
 807EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 808
 809/**
 810 *	relay_close - close the channel
 811 *	@chan: the channel
 812 *
 813 *	Closes all channel buffers and frees the channel.
 814 */
 815void relay_close(struct rchan *chan)
 816{
 
 817	unsigned int i;
 818
 819	if (!chan)
 820		return;
 821
 822	mutex_lock(&relay_channels_mutex);
 823	if (chan->is_global && chan->buf[0])
 824		relay_close_buf(chan->buf[0]);
 825	else
 826		for_each_possible_cpu(i)
 827			if (chan->buf[i])
 828				relay_close_buf(chan->buf[i]);
 829
 830	if (chan->last_toobig)
 831		printk(KERN_WARNING "relay: one or more items not logged "
 832		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 833		       chan->last_toobig, chan->subbuf_size);
 834
 835	list_del(&chan->list);
 836	kref_put(&chan->kref, relay_destroy_channel);
 837	mutex_unlock(&relay_channels_mutex);
 838}
 839EXPORT_SYMBOL_GPL(relay_close);
 840
 841/**
 842 *	relay_flush - close the channel
 843 *	@chan: the channel
 844 *
 845 *	Flushes all channel buffers, i.e. forces buffer switch.
 846 */
 847void relay_flush(struct rchan *chan)
 848{
 
 849	unsigned int i;
 850
 851	if (!chan)
 852		return;
 853
 854	if (chan->is_global && chan->buf[0]) {
 855		relay_switch_subbuf(chan->buf[0], 0);
 856		return;
 857	}
 858
 859	mutex_lock(&relay_channels_mutex);
 860	for_each_possible_cpu(i)
 861		if (chan->buf[i])
 862			relay_switch_subbuf(chan->buf[i], 0);
 863	mutex_unlock(&relay_channels_mutex);
 864}
 865EXPORT_SYMBOL_GPL(relay_flush);
 866
 867/**
 868 *	relay_file_open - open file op for relay files
 869 *	@inode: the inode
 870 *	@filp: the file
 871 *
 872 *	Increments the channel buffer refcount.
 873 */
 874static int relay_file_open(struct inode *inode, struct file *filp)
 875{
 876	struct rchan_buf *buf = inode->i_private;
 877	kref_get(&buf->kref);
 878	filp->private_data = buf;
 879
 880	return nonseekable_open(inode, filp);
 881}
 882
 883/**
 884 *	relay_file_mmap - mmap file op for relay files
 885 *	@filp: the file
 886 *	@vma: the vma describing what to map
 887 *
 888 *	Calls upon relay_mmap_buf() to map the file into user space.
 889 */
 890static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 891{
 892	struct rchan_buf *buf = filp->private_data;
 893	return relay_mmap_buf(buf, vma);
 894}
 895
 896/**
 897 *	relay_file_poll - poll file op for relay files
 898 *	@filp: the file
 899 *	@wait: poll table
 900 *
 901 *	Poll implemention.
 902 */
 903static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 904{
 905	unsigned int mask = 0;
 906	struct rchan_buf *buf = filp->private_data;
 907
 908	if (buf->finalized)
 909		return POLLERR;
 910
 911	if (filp->f_mode & FMODE_READ) {
 912		poll_wait(filp, &buf->read_wait, wait);
 913		if (!relay_buf_empty(buf))
 914			mask |= POLLIN | POLLRDNORM;
 915	}
 916
 917	return mask;
 918}
 919
 920/**
 921 *	relay_file_release - release file op for relay files
 922 *	@inode: the inode
 923 *	@filp: the file
 924 *
 925 *	Decrements the channel refcount, as the filesystem is
 926 *	no longer using it.
 927 */
 928static int relay_file_release(struct inode *inode, struct file *filp)
 929{
 930	struct rchan_buf *buf = filp->private_data;
 931	kref_put(&buf->kref, relay_remove_buf);
 932
 933	return 0;
 934}
 935
 936/*
 937 *	relay_file_read_consume - update the consumed count for the buffer
 938 */
 939static void relay_file_read_consume(struct rchan_buf *buf,
 940				    size_t read_pos,
 941				    size_t bytes_consumed)
 942{
 943	size_t subbuf_size = buf->chan->subbuf_size;
 944	size_t n_subbufs = buf->chan->n_subbufs;
 945	size_t read_subbuf;
 946
 947	if (buf->subbufs_produced == buf->subbufs_consumed &&
 948	    buf->offset == buf->bytes_consumed)
 949		return;
 950
 951	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 952		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 953		buf->bytes_consumed = 0;
 954	}
 955
 956	buf->bytes_consumed += bytes_consumed;
 957	if (!read_pos)
 958		read_subbuf = buf->subbufs_consumed % n_subbufs;
 959	else
 960		read_subbuf = read_pos / buf->chan->subbuf_size;
 961	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 962		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 963		    (buf->offset == subbuf_size))
 964			return;
 965		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 966		buf->bytes_consumed = 0;
 967	}
 968}
 969
 970/*
 971 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 972 */
 973static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 974{
 975	size_t subbuf_size = buf->chan->subbuf_size;
 976	size_t n_subbufs = buf->chan->n_subbufs;
 977	size_t produced = buf->subbufs_produced;
 978	size_t consumed = buf->subbufs_consumed;
 979
 980	relay_file_read_consume(buf, read_pos, 0);
 981
 982	consumed = buf->subbufs_consumed;
 983
 984	if (unlikely(buf->offset > subbuf_size)) {
 985		if (produced == consumed)
 986			return 0;
 987		return 1;
 988	}
 989
 990	if (unlikely(produced - consumed >= n_subbufs)) {
 991		consumed = produced - n_subbufs + 1;
 992		buf->subbufs_consumed = consumed;
 993		buf->bytes_consumed = 0;
 994	}
 995
 996	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 997	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 998
 999	if (consumed > produced)
1000		produced += n_subbufs * subbuf_size;
1001
1002	if (consumed == produced) {
1003		if (buf->offset == subbuf_size &&
1004		    buf->subbufs_produced > buf->subbufs_consumed)
1005			return 1;
1006		return 0;
1007	}
1008
1009	return 1;
1010}
1011
1012/**
1013 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1014 *	@read_pos: file read position
1015 *	@buf: relay channel buffer
1016 */
1017static size_t relay_file_read_subbuf_avail(size_t read_pos,
1018					   struct rchan_buf *buf)
1019{
1020	size_t padding, avail = 0;
1021	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1022	size_t subbuf_size = buf->chan->subbuf_size;
1023
1024	write_subbuf = (buf->data - buf->start) / subbuf_size;
1025	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1026	read_subbuf = read_pos / subbuf_size;
1027	read_offset = read_pos % subbuf_size;
1028	padding = buf->padding[read_subbuf];
1029
1030	if (read_subbuf == write_subbuf) {
1031		if (read_offset + padding < write_offset)
1032			avail = write_offset - (read_offset + padding);
1033	} else
1034		avail = (subbuf_size - padding) - read_offset;
1035
1036	return avail;
1037}
1038
1039/**
1040 *	relay_file_read_start_pos - find the first available byte to read
1041 *	@read_pos: file read position
1042 *	@buf: relay channel buffer
1043 *
1044 *	If the @read_pos is in the middle of padding, return the
1045 *	position of the first actually available byte, otherwise
1046 *	return the original value.
1047 */
1048static size_t relay_file_read_start_pos(size_t read_pos,
1049					struct rchan_buf *buf)
1050{
1051	size_t read_subbuf, padding, padding_start, padding_end;
1052	size_t subbuf_size = buf->chan->subbuf_size;
1053	size_t n_subbufs = buf->chan->n_subbufs;
1054	size_t consumed = buf->subbufs_consumed % n_subbufs;
1055
1056	if (!read_pos)
1057		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1058	read_subbuf = read_pos / subbuf_size;
1059	padding = buf->padding[read_subbuf];
1060	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1061	padding_end = (read_subbuf + 1) * subbuf_size;
1062	if (read_pos >= padding_start && read_pos < padding_end) {
1063		read_subbuf = (read_subbuf + 1) % n_subbufs;
1064		read_pos = read_subbuf * subbuf_size;
1065	}
1066
1067	return read_pos;
1068}
1069
1070/**
1071 *	relay_file_read_end_pos - return the new read position
1072 *	@read_pos: file read position
1073 *	@buf: relay channel buffer
1074 *	@count: number of bytes to be read
1075 */
1076static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1077				      size_t read_pos,
1078				      size_t count)
1079{
1080	size_t read_subbuf, padding, end_pos;
1081	size_t subbuf_size = buf->chan->subbuf_size;
1082	size_t n_subbufs = buf->chan->n_subbufs;
1083
1084	read_subbuf = read_pos / subbuf_size;
1085	padding = buf->padding[read_subbuf];
1086	if (read_pos % subbuf_size + count + padding == subbuf_size)
1087		end_pos = (read_subbuf + 1) * subbuf_size;
1088	else
1089		end_pos = read_pos + count;
1090	if (end_pos >= subbuf_size * n_subbufs)
1091		end_pos = 0;
1092
1093	return end_pos;
1094}
1095
1096/*
1097 *	subbuf_read_actor - read up to one subbuf's worth of data
1098 */
1099static int subbuf_read_actor(size_t read_start,
1100			     struct rchan_buf *buf,
1101			     size_t avail,
1102			     read_descriptor_t *desc,
1103			     read_actor_t actor)
1104{
1105	void *from;
1106	int ret = 0;
1107
1108	from = buf->start + read_start;
1109	ret = avail;
1110	if (copy_to_user(desc->arg.buf, from, avail)) {
1111		desc->error = -EFAULT;
1112		ret = 0;
1113	}
1114	desc->arg.data += ret;
1115	desc->written += ret;
1116	desc->count -= ret;
1117
1118	return ret;
1119}
1120
1121typedef int (*subbuf_actor_t) (size_t read_start,
1122			       struct rchan_buf *buf,
1123			       size_t avail,
1124			       read_descriptor_t *desc,
1125			       read_actor_t actor);
1126
1127/*
1128 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1129 */
1130static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1131					subbuf_actor_t subbuf_actor,
1132					read_actor_t actor,
1133					read_descriptor_t *desc)
1134{
1135	struct rchan_buf *buf = filp->private_data;
1136	size_t read_start, avail;
 
1137	int ret;
1138
1139	if (!desc->count)
1140		return 0;
1141
1142	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1143	do {
 
 
1144		if (!relay_file_read_avail(buf, *ppos))
1145			break;
1146
1147		read_start = relay_file_read_start_pos(*ppos, buf);
1148		avail = relay_file_read_subbuf_avail(read_start, buf);
1149		if (!avail)
1150			break;
1151
1152		avail = min(desc->count, avail);
1153		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1154		if (desc->error < 0)
 
1155			break;
1156
1157		if (ret) {
1158			relay_file_read_consume(buf, read_start, ret);
1159			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1160		}
1161	} while (desc->count && ret);
1162	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1163
1164	return desc->written;
1165}
1166
1167static ssize_t relay_file_read(struct file *filp,
1168			       char __user *buffer,
1169			       size_t count,
1170			       loff_t *ppos)
1171{
1172	read_descriptor_t desc;
1173	desc.written = 0;
1174	desc.count = count;
1175	desc.arg.buf = buffer;
1176	desc.error = 0;
1177	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1178				       NULL, &desc);
1179}
1180
1181static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1182{
1183	rbuf->bytes_consumed += bytes_consumed;
1184
1185	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1186		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1187		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1188	}
1189}
1190
1191static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1192				   struct pipe_buffer *buf)
1193{
1194	struct rchan_buf *rbuf;
1195
1196	rbuf = (struct rchan_buf *)page_private(buf->page);
1197	relay_consume_bytes(rbuf, buf->private);
1198}
1199
1200static const struct pipe_buf_operations relay_pipe_buf_ops = {
1201	.can_merge = 0,
1202	.map = generic_pipe_buf_map,
1203	.unmap = generic_pipe_buf_unmap,
1204	.confirm = generic_pipe_buf_confirm,
1205	.release = relay_pipe_buf_release,
1206	.steal = generic_pipe_buf_steal,
1207	.get = generic_pipe_buf_get,
1208};
1209
1210static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1211{
1212}
1213
1214/*
1215 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1216 */
1217static ssize_t subbuf_splice_actor(struct file *in,
1218			       loff_t *ppos,
1219			       struct pipe_inode_info *pipe,
1220			       size_t len,
1221			       unsigned int flags,
1222			       int *nonpad_ret)
1223{
1224	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1225	struct rchan_buf *rbuf = in->private_data;
1226	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1227	uint64_t pos = (uint64_t) *ppos;
1228	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1229	size_t read_start = (size_t) do_div(pos, alloc_size);
1230	size_t read_subbuf = read_start / subbuf_size;
1231	size_t padding = rbuf->padding[read_subbuf];
1232	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1233	struct page *pages[PIPE_DEF_BUFFERS];
1234	struct partial_page partial[PIPE_DEF_BUFFERS];
1235	struct splice_pipe_desc spd = {
1236		.pages = pages,
1237		.nr_pages = 0,
1238		.nr_pages_max = PIPE_DEF_BUFFERS,
1239		.partial = partial,
1240		.flags = flags,
1241		.ops = &relay_pipe_buf_ops,
1242		.spd_release = relay_page_release,
1243	};
1244	ssize_t ret;
1245
1246	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1247		return 0;
1248	if (splice_grow_spd(pipe, &spd))
1249		return -ENOMEM;
1250
1251	/*
1252	 * Adjust read len, if longer than what is available
1253	 */
1254	if (len > (subbuf_size - read_start % subbuf_size))
1255		len = subbuf_size - read_start % subbuf_size;
1256
1257	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1258	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1259	poff = read_start & ~PAGE_MASK;
1260	nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1261
1262	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1263		unsigned int this_len, this_end, private;
1264		unsigned int cur_pos = read_start + total_len;
1265
1266		if (!len)
1267			break;
1268
1269		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1270		private = this_len;
1271
1272		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1273		spd.partial[spd.nr_pages].offset = poff;
1274
1275		this_end = cur_pos + this_len;
1276		if (this_end >= nonpad_end) {
1277			this_len = nonpad_end - cur_pos;
1278			private = this_len + padding;
1279		}
1280		spd.partial[spd.nr_pages].len = this_len;
1281		spd.partial[spd.nr_pages].private = private;
1282
1283		len -= this_len;
1284		total_len += this_len;
1285		poff = 0;
1286		pidx = (pidx + 1) % subbuf_pages;
1287
1288		if (this_end >= nonpad_end) {
1289			spd.nr_pages++;
1290			break;
1291		}
1292	}
1293
1294	ret = 0;
1295	if (!spd.nr_pages)
1296		goto out;
1297
1298	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1299	if (ret < 0 || ret < total_len)
1300		goto out;
1301
1302        if (read_start + ret == nonpad_end)
1303                ret += padding;
1304
1305out:
1306	splice_shrink_spd(&spd);
1307	return ret;
1308}
1309
1310static ssize_t relay_file_splice_read(struct file *in,
1311				      loff_t *ppos,
1312				      struct pipe_inode_info *pipe,
1313				      size_t len,
1314				      unsigned int flags)
1315{
1316	ssize_t spliced;
1317	int ret;
1318	int nonpad_ret = 0;
1319
1320	ret = 0;
1321	spliced = 0;
1322
1323	while (len && !spliced) {
1324		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1325		if (ret < 0)
1326			break;
1327		else if (!ret) {
1328			if (flags & SPLICE_F_NONBLOCK)
1329				ret = -EAGAIN;
1330			break;
1331		}
1332
1333		*ppos += ret;
1334		if (ret > len)
1335			len = 0;
1336		else
1337			len -= ret;
1338		spliced += nonpad_ret;
1339		nonpad_ret = 0;
1340	}
1341
1342	if (spliced)
1343		return spliced;
1344
1345	return ret;
1346}
1347
1348const struct file_operations relay_file_operations = {
1349	.open		= relay_file_open,
1350	.poll		= relay_file_poll,
1351	.mmap		= relay_file_mmap,
1352	.read		= relay_file_read,
1353	.llseek		= no_llseek,
1354	.release	= relay_file_release,
1355	.splice_read	= relay_file_splice_read,
1356};
1357EXPORT_SYMBOL_GPL(relay_file_operations);
1358
1359static __init int relay_init(void)
1360{
1361
1362	hotcpu_notifier(relay_hotcpu_callback, 0);
1363	return 0;
1364}
1365
1366early_initcall(relay_init);