Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pci-aspm.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
  37#include "pci.h"
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46
  47int pci_pci_problems;
  48EXPORT_SYMBOL(pci_pci_problems);
  49
  50unsigned int pci_pm_d3_delay;
  51
  52static void pci_pme_list_scan(struct work_struct *work);
  53
  54static LIST_HEAD(pci_pme_list);
  55static DEFINE_MUTEX(pci_pme_list_mutex);
  56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  57
  58struct pci_pme_device {
  59	struct list_head list;
  60	struct pci_dev *dev;
  61};
  62
  63#define PME_TIMEOUT 1000 /* How long between PME checks */
  64
  65static void pci_dev_d3_sleep(struct pci_dev *dev)
  66{
  67	unsigned int delay = dev->d3_delay;
  68
  69	if (delay < pci_pm_d3_delay)
  70		delay = pci_pm_d3_delay;
  71
  72	if (delay)
  73		msleep(delay);
  74}
  75
  76#ifdef CONFIG_PCI_DOMAINS
  77int pci_domains_supported = 1;
  78#endif
  79
  80#define DEFAULT_CARDBUS_IO_SIZE		(256)
  81#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  82/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  83unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  84unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  85
  86#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  87#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  88/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  91
  92#define DEFAULT_HOTPLUG_BUS_SIZE	1
  93unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  94
  95enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  96
  97/*
  98 * The default CLS is used if arch didn't set CLS explicitly and not
  99 * all pci devices agree on the same value.  Arch can override either
 100 * the dfl or actual value as it sees fit.  Don't forget this is
 101 * measured in 32-bit words, not bytes.
 102 */
 103u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 104u8 pci_cache_line_size;
 105
 106/*
 107 * If we set up a device for bus mastering, we need to check the latency
 108 * timer as certain BIOSes forget to set it properly.
 109 */
 110unsigned int pcibios_max_latency = 255;
 111
 112/* If set, the PCIe ARI capability will not be used. */
 113static bool pcie_ari_disabled;
 114
 115/* Disable bridge_d3 for all PCIe ports */
 116static bool pci_bridge_d3_disable;
 117/* Force bridge_d3 for all PCIe ports */
 118static bool pci_bridge_d3_force;
 119
 120static int __init pcie_port_pm_setup(char *str)
 121{
 122	if (!strcmp(str, "off"))
 123		pci_bridge_d3_disable = true;
 124	else if (!strcmp(str, "force"))
 125		pci_bridge_d3_force = true;
 126	return 1;
 127}
 128__setup("pcie_port_pm=", pcie_port_pm_setup);
 129
 130/* Time to wait after a reset for device to become responsive */
 131#define PCIE_RESET_READY_POLL_MS 60000
 132
 133/**
 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 135 * @bus: pointer to PCI bus structure to search
 136 *
 137 * Given a PCI bus, returns the highest PCI bus number present in the set
 138 * including the given PCI bus and its list of child PCI buses.
 139 */
 140unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 141{
 142	struct pci_bus *tmp;
 143	unsigned char max, n;
 144
 145	max = bus->busn_res.end;
 146	list_for_each_entry(tmp, &bus->children, node) {
 147		n = pci_bus_max_busnr(tmp);
 148		if (n > max)
 149			max = n;
 150	}
 151	return max;
 152}
 153EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 154
 155#ifdef CONFIG_HAS_IOMEM
 156void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 157{
 158	struct resource *res = &pdev->resource[bar];
 159
 160	/*
 161	 * Make sure the BAR is actually a memory resource, not an IO resource
 162	 */
 163	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 164		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 165		return NULL;
 166	}
 167	return ioremap_nocache(res->start, resource_size(res));
 168}
 169EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 170
 171void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 172{
 173	/*
 174	 * Make sure the BAR is actually a memory resource, not an IO resource
 175	 */
 176	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 177		WARN_ON(1);
 178		return NULL;
 179	}
 180	return ioremap_wc(pci_resource_start(pdev, bar),
 181			  pci_resource_len(pdev, bar));
 182}
 183EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 184#endif
 185
 186
 187static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 188				   u8 pos, int cap, int *ttl)
 189{
 190	u8 id;
 191	u16 ent;
 192
 193	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 194
 195	while ((*ttl)--) {
 196		if (pos < 0x40)
 197			break;
 198		pos &= ~3;
 199		pci_bus_read_config_word(bus, devfn, pos, &ent);
 200
 201		id = ent & 0xff;
 202		if (id == 0xff)
 203			break;
 204		if (id == cap)
 205			return pos;
 206		pos = (ent >> 8);
 207	}
 208	return 0;
 209}
 210
 211static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 212			       u8 pos, int cap)
 213{
 214	int ttl = PCI_FIND_CAP_TTL;
 215
 216	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 217}
 218
 219int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 220{
 221	return __pci_find_next_cap(dev->bus, dev->devfn,
 222				   pos + PCI_CAP_LIST_NEXT, cap);
 223}
 224EXPORT_SYMBOL_GPL(pci_find_next_capability);
 225
 226static int __pci_bus_find_cap_start(struct pci_bus *bus,
 227				    unsigned int devfn, u8 hdr_type)
 228{
 229	u16 status;
 230
 231	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 232	if (!(status & PCI_STATUS_CAP_LIST))
 233		return 0;
 234
 235	switch (hdr_type) {
 236	case PCI_HEADER_TYPE_NORMAL:
 237	case PCI_HEADER_TYPE_BRIDGE:
 238		return PCI_CAPABILITY_LIST;
 239	case PCI_HEADER_TYPE_CARDBUS:
 240		return PCI_CB_CAPABILITY_LIST;
 241	}
 242
 243	return 0;
 244}
 245
 246/**
 247 * pci_find_capability - query for devices' capabilities
 248 * @dev: PCI device to query
 249 * @cap: capability code
 250 *
 251 * Tell if a device supports a given PCI capability.
 252 * Returns the address of the requested capability structure within the
 253 * device's PCI configuration space or 0 in case the device does not
 254 * support it.  Possible values for @cap:
 255 *
 256 *  %PCI_CAP_ID_PM           Power Management
 257 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 258 *  %PCI_CAP_ID_VPD          Vital Product Data
 259 *  %PCI_CAP_ID_SLOTID       Slot Identification
 260 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 261 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 262 *  %PCI_CAP_ID_PCIX         PCI-X
 263 *  %PCI_CAP_ID_EXP          PCI Express
 264 */
 265int pci_find_capability(struct pci_dev *dev, int cap)
 266{
 267	int pos;
 268
 269	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 270	if (pos)
 271		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 272
 273	return pos;
 274}
 275EXPORT_SYMBOL(pci_find_capability);
 276
 277/**
 278 * pci_bus_find_capability - query for devices' capabilities
 279 * @bus:   the PCI bus to query
 280 * @devfn: PCI device to query
 281 * @cap:   capability code
 282 *
 283 * Like pci_find_capability() but works for pci devices that do not have a
 284 * pci_dev structure set up yet.
 285 *
 286 * Returns the address of the requested capability structure within the
 287 * device's PCI configuration space or 0 in case the device does not
 288 * support it.
 289 */
 290int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 291{
 292	int pos;
 293	u8 hdr_type;
 294
 295	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 296
 297	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 298	if (pos)
 299		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 300
 301	return pos;
 302}
 303EXPORT_SYMBOL(pci_bus_find_capability);
 304
 305/**
 306 * pci_find_next_ext_capability - Find an extended capability
 307 * @dev: PCI device to query
 308 * @start: address at which to start looking (0 to start at beginning of list)
 309 * @cap: capability code
 310 *
 311 * Returns the address of the next matching extended capability structure
 312 * within the device's PCI configuration space or 0 if the device does
 313 * not support it.  Some capabilities can occur several times, e.g., the
 314 * vendor-specific capability, and this provides a way to find them all.
 315 */
 316int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 317{
 318	u32 header;
 319	int ttl;
 320	int pos = PCI_CFG_SPACE_SIZE;
 321
 322	/* minimum 8 bytes per capability */
 323	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 324
 325	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 326		return 0;
 327
 328	if (start)
 329		pos = start;
 330
 331	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 332		return 0;
 333
 334	/*
 335	 * If we have no capabilities, this is indicated by cap ID,
 336	 * cap version and next pointer all being 0.
 337	 */
 338	if (header == 0)
 339		return 0;
 340
 341	while (ttl-- > 0) {
 342		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 343			return pos;
 344
 345		pos = PCI_EXT_CAP_NEXT(header);
 346		if (pos < PCI_CFG_SPACE_SIZE)
 347			break;
 348
 349		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 350			break;
 351	}
 352
 353	return 0;
 354}
 355EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 356
 357/**
 358 * pci_find_ext_capability - Find an extended capability
 359 * @dev: PCI device to query
 360 * @cap: capability code
 361 *
 362 * Returns the address of the requested extended capability structure
 363 * within the device's PCI configuration space or 0 if the device does
 364 * not support it.  Possible values for @cap:
 365 *
 366 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 367 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 368 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 369 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 370 */
 371int pci_find_ext_capability(struct pci_dev *dev, int cap)
 372{
 373	return pci_find_next_ext_capability(dev, 0, cap);
 374}
 375EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 376
 377static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 378{
 379	int rc, ttl = PCI_FIND_CAP_TTL;
 380	u8 cap, mask;
 381
 382	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 383		mask = HT_3BIT_CAP_MASK;
 384	else
 385		mask = HT_5BIT_CAP_MASK;
 386
 387	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 388				      PCI_CAP_ID_HT, &ttl);
 389	while (pos) {
 390		rc = pci_read_config_byte(dev, pos + 3, &cap);
 391		if (rc != PCIBIOS_SUCCESSFUL)
 392			return 0;
 393
 394		if ((cap & mask) == ht_cap)
 395			return pos;
 396
 397		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 398					      pos + PCI_CAP_LIST_NEXT,
 399					      PCI_CAP_ID_HT, &ttl);
 400	}
 401
 402	return 0;
 403}
 404/**
 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 406 * @dev: PCI device to query
 407 * @pos: Position from which to continue searching
 408 * @ht_cap: Hypertransport capability code
 409 *
 410 * To be used in conjunction with pci_find_ht_capability() to search for
 411 * all capabilities matching @ht_cap. @pos should always be a value returned
 412 * from pci_find_ht_capability().
 413 *
 414 * NB. To be 100% safe against broken PCI devices, the caller should take
 415 * steps to avoid an infinite loop.
 416 */
 417int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 418{
 419	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 420}
 421EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 422
 423/**
 424 * pci_find_ht_capability - query a device's Hypertransport capabilities
 425 * @dev: PCI device to query
 426 * @ht_cap: Hypertransport capability code
 427 *
 428 * Tell if a device supports a given Hypertransport capability.
 429 * Returns an address within the device's PCI configuration space
 430 * or 0 in case the device does not support the request capability.
 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 432 * which has a Hypertransport capability matching @ht_cap.
 433 */
 434int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 435{
 436	int pos;
 437
 438	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 439	if (pos)
 440		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 441
 442	return pos;
 443}
 444EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 445
 446/**
 447 * pci_find_parent_resource - return resource region of parent bus of given region
 448 * @dev: PCI device structure contains resources to be searched
 449 * @res: child resource record for which parent is sought
 450 *
 451 *  For given resource region of given device, return the resource
 452 *  region of parent bus the given region is contained in.
 453 */
 454struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 455					  struct resource *res)
 456{
 457	const struct pci_bus *bus = dev->bus;
 458	struct resource *r;
 459	int i;
 460
 461	pci_bus_for_each_resource(bus, r, i) {
 462		if (!r)
 463			continue;
 464		if (resource_contains(r, res)) {
 465
 466			/*
 467			 * If the window is prefetchable but the BAR is
 468			 * not, the allocator made a mistake.
 469			 */
 470			if (r->flags & IORESOURCE_PREFETCH &&
 471			    !(res->flags & IORESOURCE_PREFETCH))
 472				return NULL;
 473
 474			/*
 475			 * If we're below a transparent bridge, there may
 476			 * be both a positively-decoded aperture and a
 477			 * subtractively-decoded region that contain the BAR.
 478			 * We want the positively-decoded one, so this depends
 479			 * on pci_bus_for_each_resource() giving us those
 480			 * first.
 481			 */
 482			return r;
 483		}
 484	}
 485	return NULL;
 486}
 487EXPORT_SYMBOL(pci_find_parent_resource);
 488
 489/**
 490 * pci_find_resource - Return matching PCI device resource
 491 * @dev: PCI device to query
 492 * @res: Resource to look for
 493 *
 494 * Goes over standard PCI resources (BARs) and checks if the given resource
 495 * is partially or fully contained in any of them. In that case the
 496 * matching resource is returned, %NULL otherwise.
 497 */
 498struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 499{
 500	int i;
 501
 502	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 503		struct resource *r = &dev->resource[i];
 504
 505		if (r->start && resource_contains(r, res))
 506			return r;
 507	}
 508
 509	return NULL;
 510}
 511EXPORT_SYMBOL(pci_find_resource);
 512
 513/**
 514 * pci_find_pcie_root_port - return PCIe Root Port
 515 * @dev: PCI device to query
 516 *
 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 518 * for a given PCI Device.
 519 */
 520struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 521{
 522	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 523
 524	bridge = pci_upstream_bridge(dev);
 525	while (bridge && pci_is_pcie(bridge)) {
 526		highest_pcie_bridge = bridge;
 527		bridge = pci_upstream_bridge(bridge);
 528	}
 529
 530	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 531		return NULL;
 532
 533	return highest_pcie_bridge;
 534}
 535EXPORT_SYMBOL(pci_find_pcie_root_port);
 536
 537/**
 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 539 * @dev: the PCI device to operate on
 540 * @pos: config space offset of status word
 541 * @mask: mask of bit(s) to care about in status word
 542 *
 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 544 */
 545int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 546{
 547	int i;
 548
 549	/* Wait for Transaction Pending bit clean */
 550	for (i = 0; i < 4; i++) {
 551		u16 status;
 552		if (i)
 553			msleep((1 << (i - 1)) * 100);
 554
 555		pci_read_config_word(dev, pos, &status);
 556		if (!(status & mask))
 557			return 1;
 558	}
 559
 560	return 0;
 561}
 562
 563/**
 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 565 * @dev: PCI device to have its BARs restored
 566 *
 567 * Restore the BAR values for a given device, so as to make it
 568 * accessible by its driver.
 569 */
 570static void pci_restore_bars(struct pci_dev *dev)
 571{
 572	int i;
 573
 
 
 
 
 574	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 575		pci_update_resource(dev, i);
 576}
 577
 578static const struct pci_platform_pm_ops *pci_platform_pm;
 579
 580int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 581{
 582	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 583	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 584		return -EINVAL;
 585	pci_platform_pm = ops;
 586	return 0;
 587}
 588
 589static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 590{
 591	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 592}
 593
 594static inline int platform_pci_set_power_state(struct pci_dev *dev,
 595					       pci_power_t t)
 596{
 597	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 598}
 599
 600static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 601{
 602	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 603}
 604
 605static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 606{
 607	return pci_platform_pm ?
 608			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 609}
 610
 611static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 612{
 613	return pci_platform_pm ?
 614			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 615}
 616
 617static inline bool platform_pci_need_resume(struct pci_dev *dev)
 618{
 619	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 620}
 621
 622/**
 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 624 *                           given PCI device
 625 * @dev: PCI device to handle.
 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 627 *
 628 * RETURN VALUE:
 629 * -EINVAL if the requested state is invalid.
 630 * -EIO if device does not support PCI PM or its PM capabilities register has a
 631 * wrong version, or device doesn't support the requested state.
 632 * 0 if device already is in the requested state.
 633 * 0 if device's power state has been successfully changed.
 634 */
 635static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	u16 pmcsr;
 638	bool need_restore = false;
 639
 640	/* Check if we're already there */
 641	if (dev->current_state == state)
 642		return 0;
 643
 644	if (!dev->pm_cap)
 645		return -EIO;
 646
 647	if (state < PCI_D0 || state > PCI_D3hot)
 648		return -EINVAL;
 649
 650	/* Validate current state:
 651	 * Can enter D0 from any state, but if we can only go deeper
 652	 * to sleep if we're already in a low power state
 653	 */
 654	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 655	    && dev->current_state > state) {
 656		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 657			dev->current_state, state);
 658		return -EINVAL;
 659	}
 660
 661	/* check if this device supports the desired state */
 662	if ((state == PCI_D1 && !dev->d1_support)
 663	   || (state == PCI_D2 && !dev->d2_support))
 664		return -EIO;
 665
 666	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 667
 668	/* If we're (effectively) in D3, force entire word to 0.
 669	 * This doesn't affect PME_Status, disables PME_En, and
 670	 * sets PowerState to 0.
 671	 */
 672	switch (dev->current_state) {
 673	case PCI_D0:
 674	case PCI_D1:
 675	case PCI_D2:
 676		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 677		pmcsr |= state;
 678		break;
 679	case PCI_D3hot:
 680	case PCI_D3cold:
 681	case PCI_UNKNOWN: /* Boot-up */
 682		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 683		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 684			need_restore = true;
 685		/* Fall-through: force to D0 */
 686	default:
 687		pmcsr = 0;
 688		break;
 689	}
 690
 691	/* enter specified state */
 692	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 693
 694	/* Mandatory power management transition delays */
 695	/* see PCI PM 1.1 5.6.1 table 18 */
 696	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 697		pci_dev_d3_sleep(dev);
 698	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 699		udelay(PCI_PM_D2_DELAY);
 700
 701	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 702	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 703	if (dev->current_state != state && printk_ratelimit())
 704		pci_info(dev, "Refused to change power state, currently in D%d\n",
 705			 dev->current_state);
 706
 707	/*
 708	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 709	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 710	 * from D3hot to D0 _may_ perform an internal reset, thereby
 711	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 712	 * For example, at least some versions of the 3c905B and the
 713	 * 3c556B exhibit this behaviour.
 714	 *
 715	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 716	 * devices in a D3hot state at boot.  Consequently, we need to
 717	 * restore at least the BARs so that the device will be
 718	 * accessible to its driver.
 719	 */
 720	if (need_restore)
 721		pci_restore_bars(dev);
 722
 723	if (dev->bus->self)
 724		pcie_aspm_pm_state_change(dev->bus->self);
 725
 726	return 0;
 727}
 728
 729/**
 730 * pci_update_current_state - Read power state of given device and cache it
 
 731 * @dev: PCI device to handle.
 732 * @state: State to cache in case the device doesn't have the PM capability
 733 *
 734 * The power state is read from the PMCSR register, which however is
 735 * inaccessible in D3cold.  The platform firmware is therefore queried first
 736 * to detect accessibility of the register.  In case the platform firmware
 737 * reports an incorrect state or the device isn't power manageable by the
 738 * platform at all, we try to detect D3cold by testing accessibility of the
 739 * vendor ID in config space.
 740 */
 741void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 742{
 743	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 744	    !pci_device_is_present(dev)) {
 745		dev->current_state = PCI_D3cold;
 746	} else if (dev->pm_cap) {
 747		u16 pmcsr;
 748
 
 
 
 
 
 
 
 
 
 
 749		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 750		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 751	} else {
 752		dev->current_state = state;
 753	}
 754}
 755
 756/**
 757 * pci_power_up - Put the given device into D0 forcibly
 758 * @dev: PCI device to power up
 759 */
 760void pci_power_up(struct pci_dev *dev)
 761{
 762	if (platform_pci_power_manageable(dev))
 763		platform_pci_set_power_state(dev, PCI_D0);
 764
 765	pci_raw_set_power_state(dev, PCI_D0);
 766	pci_update_current_state(dev, PCI_D0);
 767}
 768
 769/**
 770 * pci_platform_power_transition - Use platform to change device power state
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 */
 774static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int error;
 777
 778	if (platform_pci_power_manageable(dev)) {
 779		error = platform_pci_set_power_state(dev, state);
 780		if (!error)
 781			pci_update_current_state(dev, state);
 782	} else
 783		error = -ENODEV;
 784
 785	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 786		dev->current_state = PCI_D0;
 787
 788	return error;
 789}
 790
 791/**
 792 * pci_wakeup - Wake up a PCI device
 793 * @pci_dev: Device to handle.
 794 * @ign: ignored parameter
 795 */
 796static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 797{
 798	pci_wakeup_event(pci_dev);
 799	pm_request_resume(&pci_dev->dev);
 800	return 0;
 801}
 802
 803/**
 804 * pci_wakeup_bus - Walk given bus and wake up devices on it
 805 * @bus: Top bus of the subtree to walk.
 806 */
 807void pci_wakeup_bus(struct pci_bus *bus)
 808{
 809	if (bus)
 810		pci_walk_bus(bus, pci_wakeup, NULL);
 811}
 812
 813/**
 814 * __pci_start_power_transition - Start power transition of a PCI device
 815 * @dev: PCI device to handle.
 816 * @state: State to put the device into.
 817 */
 818static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 819{
 820	if (state == PCI_D0) {
 821		pci_platform_power_transition(dev, PCI_D0);
 822		/*
 823		 * Mandatory power management transition delays, see
 824		 * PCI Express Base Specification Revision 2.0 Section
 825		 * 6.6.1: Conventional Reset.  Do not delay for
 826		 * devices powered on/off by corresponding bridge,
 827		 * because have already delayed for the bridge.
 828		 */
 829		if (dev->runtime_d3cold) {
 830			if (dev->d3cold_delay)
 831				msleep(dev->d3cold_delay);
 832			/*
 833			 * When powering on a bridge from D3cold, the
 834			 * whole hierarchy may be powered on into
 835			 * D0uninitialized state, resume them to give
 836			 * them a chance to suspend again
 837			 */
 838			pci_wakeup_bus(dev->subordinate);
 839		}
 840	}
 841}
 842
 843/**
 844 * __pci_dev_set_current_state - Set current state of a PCI device
 845 * @dev: Device to handle
 846 * @data: pointer to state to be set
 847 */
 848static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 849{
 850	pci_power_t state = *(pci_power_t *)data;
 851
 852	dev->current_state = state;
 853	return 0;
 854}
 855
 856/**
 857 * pci_bus_set_current_state - Walk given bus and set current state of devices
 858 * @bus: Top bus of the subtree to walk.
 859 * @state: state to be set
 860 */
 861void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 862{
 863	if (bus)
 864		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 865}
 866
 867/**
 868 * __pci_complete_power_transition - Complete power transition of a PCI device
 869 * @dev: PCI device to handle.
 870 * @state: State to put the device into.
 871 *
 872 * This function should not be called directly by device drivers.
 873 */
 874int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 875{
 876	int ret;
 877
 878	if (state <= PCI_D0)
 879		return -EINVAL;
 880	ret = pci_platform_power_transition(dev, state);
 881	/* Power off the bridge may power off the whole hierarchy */
 882	if (!ret && state == PCI_D3cold)
 883		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 884	return ret;
 885}
 886EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 887
 888/**
 889 * pci_set_power_state - Set the power state of a PCI device
 890 * @dev: PCI device to handle.
 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 892 *
 893 * Transition a device to a new power state, using the platform firmware and/or
 894 * the device's PCI PM registers.
 895 *
 896 * RETURN VALUE:
 897 * -EINVAL if the requested state is invalid.
 898 * -EIO if device does not support PCI PM or its PM capabilities register has a
 899 * wrong version, or device doesn't support the requested state.
 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 901 * 0 if device already is in the requested state.
 902 * 0 if the transition is to D3 but D3 is not supported.
 903 * 0 if device's power state has been successfully changed.
 904 */
 905int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 906{
 907	int error;
 908
 909	/* bound the state we're entering */
 910	if (state > PCI_D3cold)
 911		state = PCI_D3cold;
 912	else if (state < PCI_D0)
 913		state = PCI_D0;
 914	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 915		/*
 916		 * If the device or the parent bridge do not support PCI PM,
 917		 * ignore the request if we're doing anything other than putting
 918		 * it into D0 (which would only happen on boot).
 919		 */
 920		return 0;
 921
 922	/* Check if we're already there */
 923	if (dev->current_state == state)
 924		return 0;
 925
 926	__pci_start_power_transition(dev, state);
 927
 928	/* This device is quirked not to be put into D3, so
 929	   don't put it in D3 */
 930	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 931		return 0;
 932
 933	/*
 934	 * To put device in D3cold, we put device into D3hot in native
 935	 * way, then put device into D3cold with platform ops
 936	 */
 937	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 938					PCI_D3hot : state);
 939
 940	if (!__pci_complete_power_transition(dev, state))
 941		error = 0;
 942
 943	return error;
 944}
 945EXPORT_SYMBOL(pci_set_power_state);
 946
 947/**
 948 * pci_choose_state - Choose the power state of a PCI device
 949 * @dev: PCI device to be suspended
 950 * @state: target sleep state for the whole system. This is the value
 951 *	that is passed to suspend() function.
 952 *
 953 * Returns PCI power state suitable for given device and given system
 954 * message.
 955 */
 956
 957pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 958{
 959	pci_power_t ret;
 960
 961	if (!dev->pm_cap)
 962		return PCI_D0;
 963
 964	ret = platform_pci_choose_state(dev);
 965	if (ret != PCI_POWER_ERROR)
 966		return ret;
 967
 968	switch (state.event) {
 969	case PM_EVENT_ON:
 970		return PCI_D0;
 971	case PM_EVENT_FREEZE:
 972	case PM_EVENT_PRETHAW:
 973		/* REVISIT both freeze and pre-thaw "should" use D0 */
 974	case PM_EVENT_SUSPEND:
 975	case PM_EVENT_HIBERNATE:
 976		return PCI_D3hot;
 977	default:
 978		pci_info(dev, "unrecognized suspend event %d\n",
 979			 state.event);
 980		BUG();
 981	}
 982	return PCI_D0;
 983}
 984EXPORT_SYMBOL(pci_choose_state);
 985
 986#define PCI_EXP_SAVE_REGS	7
 987
 988static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 989						       u16 cap, bool extended)
 990{
 991	struct pci_cap_saved_state *tmp;
 992
 993	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 994		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 995			return tmp;
 996	}
 997	return NULL;
 998}
 999
1000struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001{
1002	return _pci_find_saved_cap(dev, cap, false);
1003}
1004
1005struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006{
1007	return _pci_find_saved_cap(dev, cap, true);
1008}
1009
1010static int pci_save_pcie_state(struct pci_dev *dev)
1011{
1012	int i = 0;
1013	struct pci_cap_saved_state *save_state;
1014	u16 *cap;
1015
1016	if (!pci_is_pcie(dev))
1017		return 0;
1018
1019	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020	if (!save_state) {
1021		pci_err(dev, "buffer not found in %s\n", __func__);
1022		return -ENOMEM;
1023	}
1024
1025	cap = (u16 *)&save_state->cap.data[0];
1026	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033
1034	return 0;
1035}
1036
1037static void pci_restore_pcie_state(struct pci_dev *dev)
1038{
1039	int i = 0;
1040	struct pci_cap_saved_state *save_state;
1041	u16 *cap;
1042
1043	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044	if (!save_state)
1045		return;
1046
1047	cap = (u16 *)&save_state->cap.data[0];
1048	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055}
1056
1057
1058static int pci_save_pcix_state(struct pci_dev *dev)
1059{
1060	int pos;
1061	struct pci_cap_saved_state *save_state;
1062
1063	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064	if (!pos)
1065		return 0;
1066
1067	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068	if (!save_state) {
1069		pci_err(dev, "buffer not found in %s\n", __func__);
1070		return -ENOMEM;
1071	}
1072
1073	pci_read_config_word(dev, pos + PCI_X_CMD,
1074			     (u16 *)save_state->cap.data);
1075
1076	return 0;
1077}
1078
1079static void pci_restore_pcix_state(struct pci_dev *dev)
1080{
1081	int i = 0, pos;
1082	struct pci_cap_saved_state *save_state;
1083	u16 *cap;
1084
1085	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087	if (!save_state || !pos)
1088		return;
1089	cap = (u16 *)&save_state->cap.data[0];
1090
1091	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092}
1093
1094
1095/**
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
1098 */
1099int pci_save_state(struct pci_dev *dev)
1100{
1101	int i;
1102	/* XXX: 100% dword access ok here? */
1103	for (i = 0; i < 16; i++)
1104		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105	dev->state_saved = true;
1106
1107	i = pci_save_pcie_state(dev);
1108	if (i != 0)
1109		return i;
1110
1111	i = pci_save_pcix_state(dev);
1112	if (i != 0)
1113		return i;
1114
1115	return pci_save_vc_state(dev);
1116}
1117EXPORT_SYMBOL(pci_save_state);
1118
1119static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120				     u32 saved_val, int retry)
1121{
1122	u32 val;
1123
1124	pci_read_config_dword(pdev, offset, &val);
1125	if (val == saved_val)
1126		return;
1127
1128	for (;;) {
1129		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130			offset, val, saved_val);
1131		pci_write_config_dword(pdev, offset, saved_val);
1132		if (retry-- <= 0)
1133			return;
1134
1135		pci_read_config_dword(pdev, offset, &val);
1136		if (val == saved_val)
1137			return;
1138
1139		mdelay(1);
1140	}
1141}
1142
1143static void pci_restore_config_space_range(struct pci_dev *pdev,
1144					   int start, int end, int retry)
1145{
1146	int index;
1147
1148	for (index = end; index >= start; index--)
1149		pci_restore_config_dword(pdev, 4 * index,
1150					 pdev->saved_config_space[index],
1151					 retry);
1152}
1153
1154static void pci_restore_config_space(struct pci_dev *pdev)
1155{
1156	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157		pci_restore_config_space_range(pdev, 10, 15, 0);
1158		/* Restore BARs before the command register. */
1159		pci_restore_config_space_range(pdev, 4, 9, 10);
1160		pci_restore_config_space_range(pdev, 0, 3, 0);
1161	} else {
1162		pci_restore_config_space_range(pdev, 0, 15, 0);
1163	}
1164}
1165
1166/**
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1169 */
1170void pci_restore_state(struct pci_dev *dev)
1171{
1172	if (!dev->state_saved)
1173		return;
1174
1175	/* PCI Express register must be restored first */
1176	pci_restore_pcie_state(dev);
1177	pci_restore_pasid_state(dev);
1178	pci_restore_pri_state(dev);
1179	pci_restore_ats_state(dev);
1180	pci_restore_vc_state(dev);
1181
1182	pci_cleanup_aer_error_status_regs(dev);
1183
1184	pci_restore_config_space(dev);
1185
1186	pci_restore_pcix_state(dev);
1187	pci_restore_msi_state(dev);
1188
1189	/* Restore ACS and IOV configuration state */
1190	pci_enable_acs(dev);
1191	pci_restore_iov_state(dev);
1192
1193	dev->state_saved = false;
1194}
1195EXPORT_SYMBOL(pci_restore_state);
1196
1197struct pci_saved_state {
1198	u32 config_space[16];
1199	struct pci_cap_saved_data cap[0];
1200};
1201
1202/**
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 *			   the device saved state.
1205 * @dev: PCI device that we're dealing with
1206 *
1207 * Return NULL if no state or error.
1208 */
1209struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210{
1211	struct pci_saved_state *state;
1212	struct pci_cap_saved_state *tmp;
1213	struct pci_cap_saved_data *cap;
1214	size_t size;
1215
1216	if (!dev->state_saved)
1217		return NULL;
1218
1219	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220
1221	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223
1224	state = kzalloc(size, GFP_KERNEL);
1225	if (!state)
1226		return NULL;
1227
1228	memcpy(state->config_space, dev->saved_config_space,
1229	       sizeof(state->config_space));
1230
1231	cap = state->cap;
1232	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234		memcpy(cap, &tmp->cap, len);
1235		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236	}
1237	/* Empty cap_save terminates list */
1238
1239	return state;
1240}
1241EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242
1243/**
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1247 */
1248int pci_load_saved_state(struct pci_dev *dev,
1249			 struct pci_saved_state *state)
1250{
1251	struct pci_cap_saved_data *cap;
1252
1253	dev->state_saved = false;
1254
1255	if (!state)
1256		return 0;
1257
1258	memcpy(dev->saved_config_space, state->config_space,
1259	       sizeof(state->config_space));
1260
1261	cap = state->cap;
1262	while (cap->size) {
1263		struct pci_cap_saved_state *tmp;
1264
1265		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266		if (!tmp || tmp->cap.size != cap->size)
1267			return -EINVAL;
1268
1269		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271		       sizeof(struct pci_cap_saved_data) + cap->size);
1272	}
1273
1274	dev->state_saved = true;
1275	return 0;
1276}
1277EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278
1279/**
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 *				   and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1284 */
1285int pci_load_and_free_saved_state(struct pci_dev *dev,
1286				  struct pci_saved_state **state)
1287{
1288	int ret = pci_load_saved_state(dev, *state);
1289	kfree(*state);
1290	*state = NULL;
1291	return ret;
1292}
1293EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294
1295int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296{
1297	return pci_enable_resources(dev, bars);
1298}
1299
1300static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301{
1302	int err;
1303	struct pci_dev *bridge;
1304	u16 cmd;
1305	u8 pin;
1306
1307	err = pci_set_power_state(dev, PCI_D0);
1308	if (err < 0 && err != -EIO)
1309		return err;
1310
1311	bridge = pci_upstream_bridge(dev);
1312	if (bridge)
1313		pcie_aspm_powersave_config_link(bridge);
1314
1315	err = pcibios_enable_device(dev, bars);
1316	if (err < 0)
1317		return err;
1318	pci_fixup_device(pci_fixup_enable, dev);
1319
1320	if (dev->msi_enabled || dev->msix_enabled)
1321		return 0;
1322
1323	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324	if (pin) {
1325		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327			pci_write_config_word(dev, PCI_COMMAND,
1328					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329	}
1330
1331	return 0;
1332}
1333
1334/**
1335 * pci_reenable_device - Resume abandoned device
1336 * @dev: PCI device to be resumed
1337 *
1338 *  Note this function is a backend of pci_default_resume and is not supposed
1339 *  to be called by normal code, write proper resume handler and use it instead.
1340 */
1341int pci_reenable_device(struct pci_dev *dev)
1342{
1343	if (pci_is_enabled(dev))
1344		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345	return 0;
1346}
1347EXPORT_SYMBOL(pci_reenable_device);
1348
1349static void pci_enable_bridge(struct pci_dev *dev)
1350{
1351	struct pci_dev *bridge;
1352	int retval;
1353
1354	bridge = pci_upstream_bridge(dev);
1355	if (bridge)
1356		pci_enable_bridge(bridge);
1357
1358	if (pci_is_enabled(dev)) {
1359		if (!dev->is_busmaster)
1360			pci_set_master(dev);
1361		return;
1362	}
1363
1364	retval = pci_enable_device(dev);
1365	if (retval)
1366		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367			retval);
1368	pci_set_master(dev);
1369}
1370
1371static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372{
1373	struct pci_dev *bridge;
1374	int err;
1375	int i, bars = 0;
1376
1377	/*
1378	 * Power state could be unknown at this point, either due to a fresh
1379	 * boot or a device removal call.  So get the current power state
1380	 * so that things like MSI message writing will behave as expected
1381	 * (e.g. if the device really is in D0 at enable time).
1382	 */
1383	if (dev->pm_cap) {
1384		u16 pmcsr;
1385		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387	}
1388
1389	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390		return 0;		/* already enabled */
1391
1392	bridge = pci_upstream_bridge(dev);
1393	if (bridge)
1394		pci_enable_bridge(bridge);
1395
1396	/* only skip sriov related */
1397	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398		if (dev->resource[i].flags & flags)
1399			bars |= (1 << i);
1400	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401		if (dev->resource[i].flags & flags)
1402			bars |= (1 << i);
1403
1404	err = do_pci_enable_device(dev, bars);
1405	if (err < 0)
1406		atomic_dec(&dev->enable_cnt);
1407	return err;
1408}
1409
1410/**
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1413 *
1414 *  Initialize device before it's used by a driver. Ask low-level code
1415 *  to enable I/O resources. Wake up the device if it was suspended.
1416 *  Beware, this function can fail.
1417 */
1418int pci_enable_device_io(struct pci_dev *dev)
1419{
1420	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421}
1422EXPORT_SYMBOL(pci_enable_device_io);
1423
1424/**
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1427 *
1428 *  Initialize device before it's used by a driver. Ask low-level code
1429 *  to enable Memory resources. Wake up the device if it was suspended.
1430 *  Beware, this function can fail.
1431 */
1432int pci_enable_device_mem(struct pci_dev *dev)
1433{
1434	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435}
1436EXPORT_SYMBOL(pci_enable_device_mem);
1437
1438/**
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1441 *
1442 *  Initialize device before it's used by a driver. Ask low-level code
1443 *  to enable I/O and memory. Wake up the device if it was suspended.
1444 *  Beware, this function can fail.
1445 *
1446 *  Note we don't actually enable the device many times if we call
1447 *  this function repeatedly (we just increment the count).
1448 */
1449int pci_enable_device(struct pci_dev *dev)
1450{
1451	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452}
1453EXPORT_SYMBOL(pci_enable_device);
1454
1455/*
1456 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately.  pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1460 */
1461struct pci_devres {
1462	unsigned int enabled:1;
1463	unsigned int pinned:1;
1464	unsigned int orig_intx:1;
1465	unsigned int restore_intx:1;
1466	unsigned int mwi:1;
1467	u32 region_mask;
1468};
1469
1470static void pcim_release(struct device *gendev, void *res)
1471{
1472	struct pci_dev *dev = to_pci_dev(gendev);
1473	struct pci_devres *this = res;
1474	int i;
1475
1476	if (dev->msi_enabled)
1477		pci_disable_msi(dev);
1478	if (dev->msix_enabled)
1479		pci_disable_msix(dev);
1480
1481	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482		if (this->region_mask & (1 << i))
1483			pci_release_region(dev, i);
1484
1485	if (this->mwi)
1486		pci_clear_mwi(dev);
1487
1488	if (this->restore_intx)
1489		pci_intx(dev, this->orig_intx);
1490
1491	if (this->enabled && !this->pinned)
1492		pci_disable_device(dev);
1493}
1494
1495static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496{
1497	struct pci_devres *dr, *new_dr;
1498
1499	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500	if (dr)
1501		return dr;
1502
1503	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504	if (!new_dr)
1505		return NULL;
1506	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507}
1508
1509static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510{
1511	if (pci_is_managed(pdev))
1512		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513	return NULL;
1514}
1515
1516/**
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1519 *
1520 * Managed pci_enable_device().
1521 */
1522int pcim_enable_device(struct pci_dev *pdev)
1523{
1524	struct pci_devres *dr;
1525	int rc;
1526
1527	dr = get_pci_dr(pdev);
1528	if (unlikely(!dr))
1529		return -ENOMEM;
1530	if (dr->enabled)
1531		return 0;
1532
1533	rc = pci_enable_device(pdev);
1534	if (!rc) {
1535		pdev->is_managed = 1;
1536		dr->enabled = 1;
1537	}
1538	return rc;
1539}
1540EXPORT_SYMBOL(pcim_enable_device);
1541
1542/**
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1545 *
1546 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547 * driver detach.  @pdev must have been enabled with
1548 * pcim_enable_device().
1549 */
1550void pcim_pin_device(struct pci_dev *pdev)
1551{
1552	struct pci_devres *dr;
1553
1554	dr = find_pci_dr(pdev);
1555	WARN_ON(!dr || !dr->enabled);
1556	if (dr)
1557		dr->pinned = 1;
1558}
1559EXPORT_SYMBOL(pcim_pin_device);
1560
1561/*
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1564 *
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1568 */
1569int __weak pcibios_add_device(struct pci_dev *dev)
1570{
1571	return 0;
1572}
1573
1574/**
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1577 *
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1581 */
1582void __weak pcibios_release_device(struct pci_dev *dev) {}
1583
1584/**
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1587 *
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1590 * override this.
1591 */
1592void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593
1594/**
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1598 *
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1602 */
1603void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604
1605static void do_pci_disable_device(struct pci_dev *dev)
1606{
1607	u16 pci_command;
1608
1609	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610	if (pci_command & PCI_COMMAND_MASTER) {
1611		pci_command &= ~PCI_COMMAND_MASTER;
1612		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613	}
1614
1615	pcibios_disable_device(dev);
1616}
1617
1618/**
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1621 *
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1624 */
1625void pci_disable_enabled_device(struct pci_dev *dev)
1626{
1627	if (pci_is_enabled(dev))
1628		do_pci_disable_device(dev);
1629}
1630
1631/**
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1634 *
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore.  This only involves disabling PCI bus-mastering, if active.
1637 *
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1640 */
1641void pci_disable_device(struct pci_dev *dev)
1642{
1643	struct pci_devres *dr;
1644
1645	dr = find_pci_dr(dev);
1646	if (dr)
1647		dr->enabled = 0;
1648
1649	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650		      "disabling already-disabled device");
1651
1652	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653		return;
1654
1655	do_pci_disable_device(dev);
1656
1657	dev->is_busmaster = 0;
1658}
1659EXPORT_SYMBOL(pci_disable_device);
1660
1661/**
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1665 *
1666 *
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1669 */
1670int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671					enum pcie_reset_state state)
1672{
1673	return -EINVAL;
1674}
1675
1676/**
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1680 *
1681 *
1682 * Sets the PCI reset state for the device.
1683 */
1684int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685{
1686	return pcibios_set_pcie_reset_state(dev, state);
1687}
1688EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689
1690/**
1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692 * @dev: PCIe root port or event collector.
1693 */
1694void pcie_clear_root_pme_status(struct pci_dev *dev)
1695{
1696	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697}
1698
1699/**
1700 * pci_check_pme_status - Check if given device has generated PME.
1701 * @dev: Device to check.
1702 *
1703 * Check the PME status of the device and if set, clear it and clear PME enable
1704 * (if set).  Return 'true' if PME status and PME enable were both set or
1705 * 'false' otherwise.
1706 */
1707bool pci_check_pme_status(struct pci_dev *dev)
1708{
1709	int pmcsr_pos;
1710	u16 pmcsr;
1711	bool ret = false;
1712
1713	if (!dev->pm_cap)
1714		return false;
1715
1716	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719		return false;
1720
1721	/* Clear PME status. */
1722	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724		/* Disable PME to avoid interrupt flood. */
1725		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726		ret = true;
1727	}
1728
1729	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730
1731	return ret;
1732}
1733
1734/**
1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736 * @dev: Device to handle.
1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738 *
1739 * Check if @dev has generated PME and queue a resume request for it in that
1740 * case.
1741 */
1742static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743{
1744	if (pme_poll_reset && dev->pme_poll)
1745		dev->pme_poll = false;
1746
1747	if (pci_check_pme_status(dev)) {
1748		pci_wakeup_event(dev);
1749		pm_request_resume(&dev->dev);
1750	}
1751	return 0;
1752}
1753
1754/**
1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756 * @bus: Top bus of the subtree to walk.
1757 */
1758void pci_pme_wakeup_bus(struct pci_bus *bus)
1759{
1760	if (bus)
1761		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762}
1763
1764
1765/**
1766 * pci_pme_capable - check the capability of PCI device to generate PME#
1767 * @dev: PCI device to handle.
1768 * @state: PCI state from which device will issue PME#.
1769 */
1770bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771{
1772	if (!dev->pm_cap)
1773		return false;
1774
1775	return !!(dev->pme_support & (1 << state));
1776}
1777EXPORT_SYMBOL(pci_pme_capable);
1778
1779static void pci_pme_list_scan(struct work_struct *work)
1780{
1781	struct pci_pme_device *pme_dev, *n;
1782
1783	mutex_lock(&pci_pme_list_mutex);
1784	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785		if (pme_dev->dev->pme_poll) {
1786			struct pci_dev *bridge;
1787
1788			bridge = pme_dev->dev->bus->self;
1789			/*
1790			 * If bridge is in low power state, the
1791			 * configuration space of subordinate devices
1792			 * may be not accessible
1793			 */
1794			if (bridge && bridge->current_state != PCI_D0)
1795				continue;
1796			pci_pme_wakeup(pme_dev->dev, NULL);
1797		} else {
1798			list_del(&pme_dev->list);
1799			kfree(pme_dev);
1800		}
1801	}
1802	if (!list_empty(&pci_pme_list))
1803		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804				   msecs_to_jiffies(PME_TIMEOUT));
1805	mutex_unlock(&pci_pme_list_mutex);
1806}
1807
1808static void __pci_pme_active(struct pci_dev *dev, bool enable)
1809{
1810	u16 pmcsr;
1811
1812	if (!dev->pme_support)
1813		return;
1814
1815	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816	/* Clear PME_Status by writing 1 to it and enable PME# */
1817	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818	if (!enable)
1819		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820
1821	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822}
1823
1824/**
1825 * pci_pme_restore - Restore PME configuration after config space restore.
1826 * @dev: PCI device to update.
1827 */
1828void pci_pme_restore(struct pci_dev *dev)
1829{
1830	u16 pmcsr;
1831
1832	if (!dev->pme_support)
1833		return;
1834
1835	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836	if (dev->wakeup_prepared) {
1837		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839	} else {
1840		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842	}
1843	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844}
1845
1846/**
1847 * pci_pme_active - enable or disable PCI device's PME# function
1848 * @dev: PCI device to handle.
1849 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850 *
1851 * The caller must verify that the device is capable of generating PME# before
1852 * calling this function with @enable equal to 'true'.
1853 */
1854void pci_pme_active(struct pci_dev *dev, bool enable)
1855{
1856	__pci_pme_active(dev, enable);
1857
1858	/*
1859	 * PCI (as opposed to PCIe) PME requires that the device have
1860	 * its PME# line hooked up correctly. Not all hardware vendors
1861	 * do this, so the PME never gets delivered and the device
1862	 * remains asleep. The easiest way around this is to
1863	 * periodically walk the list of suspended devices and check
1864	 * whether any have their PME flag set. The assumption is that
1865	 * we'll wake up often enough anyway that this won't be a huge
1866	 * hit, and the power savings from the devices will still be a
1867	 * win.
1868	 *
1869	 * Although PCIe uses in-band PME message instead of PME# line
1870	 * to report PME, PME does not work for some PCIe devices in
1871	 * reality.  For example, there are devices that set their PME
1872	 * status bits, but don't really bother to send a PME message;
1873	 * there are PCI Express Root Ports that don't bother to
1874	 * trigger interrupts when they receive PME messages from the
1875	 * devices below.  So PME poll is used for PCIe devices too.
1876	 */
1877
1878	if (dev->pme_poll) {
1879		struct pci_pme_device *pme_dev;
1880		if (enable) {
1881			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882					  GFP_KERNEL);
1883			if (!pme_dev) {
1884				pci_warn(dev, "can't enable PME#\n");
1885				return;
1886			}
1887			pme_dev->dev = dev;
1888			mutex_lock(&pci_pme_list_mutex);
1889			list_add(&pme_dev->list, &pci_pme_list);
1890			if (list_is_singular(&pci_pme_list))
1891				queue_delayed_work(system_freezable_wq,
1892						   &pci_pme_work,
1893						   msecs_to_jiffies(PME_TIMEOUT));
1894			mutex_unlock(&pci_pme_list_mutex);
1895		} else {
1896			mutex_lock(&pci_pme_list_mutex);
1897			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898				if (pme_dev->dev == dev) {
1899					list_del(&pme_dev->list);
1900					kfree(pme_dev);
1901					break;
1902				}
1903			}
1904			mutex_unlock(&pci_pme_list_mutex);
1905		}
1906	}
1907
1908	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909}
1910EXPORT_SYMBOL(pci_pme_active);
1911
1912/**
1913 * __pci_enable_wake - enable PCI device as wakeup event source
1914 * @dev: PCI device affected
1915 * @state: PCI state from which device will issue wakeup events
 
1916 * @enable: True to enable event generation; false to disable
1917 *
1918 * This enables the device as a wakeup event source, or disables it.
1919 * When such events involves platform-specific hooks, those hooks are
1920 * called automatically by this routine.
1921 *
1922 * Devices with legacy power management (no standard PCI PM capabilities)
1923 * always require such platform hooks.
1924 *
1925 * RETURN VALUE:
1926 * 0 is returned on success
1927 * -EINVAL is returned if device is not supposed to wake up the system
1928 * Error code depending on the platform is returned if both the platform and
1929 * the native mechanism fail to enable the generation of wake-up events
1930 */
1931static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
 
1932{
1933	int ret = 0;
1934
1935	/*
1936	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937	 * but that is set up elsewhere, so skip them.
1938	 */
1939	if (pci_has_subordinate(dev))
1940		return 0;
1941
1942	/* Don't do the same thing twice in a row for one device. */
1943	if (!!enable == !!dev->wakeup_prepared)
1944		return 0;
1945
1946	/*
1947	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950	 */
1951
1952	if (enable) {
1953		int error;
1954
1955		if (pci_pme_capable(dev, state))
1956			pci_pme_active(dev, true);
1957		else
1958			ret = 1;
1959		error = platform_pci_set_wakeup(dev, true);
 
1960		if (ret)
1961			ret = error;
1962		if (!ret)
1963			dev->wakeup_prepared = true;
1964	} else {
1965		platform_pci_set_wakeup(dev, false);
 
 
 
1966		pci_pme_active(dev, false);
1967		dev->wakeup_prepared = false;
1968	}
1969
1970	return ret;
1971}
1972
1973/**
1974 * pci_enable_wake - change wakeup settings for a PCI device
1975 * @pci_dev: Target device
1976 * @state: PCI state from which device will issue wakeup events
1977 * @enable: Whether or not to enable event generation
1978 *
1979 * If @enable is set, check device_may_wakeup() for the device before calling
1980 * __pci_enable_wake() for it.
1981 */
1982int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1983{
1984	if (enable && !device_may_wakeup(&pci_dev->dev))
1985		return -EINVAL;
1986
1987	return __pci_enable_wake(pci_dev, state, enable);
1988}
1989EXPORT_SYMBOL(pci_enable_wake);
1990
1991/**
1992 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1993 * @dev: PCI device to prepare
1994 * @enable: True to enable wake-up event generation; false to disable
1995 *
1996 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1997 * and this function allows them to set that up cleanly - pci_enable_wake()
1998 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1999 * ordering constraints.
2000 *
2001 * This function only returns error code if the device is not allowed to wake
2002 * up the system from sleep or it is not capable of generating PME# from both
2003 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2004 */
2005int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2006{
2007	return pci_pme_capable(dev, PCI_D3cold) ?
2008			pci_enable_wake(dev, PCI_D3cold, enable) :
2009			pci_enable_wake(dev, PCI_D3hot, enable);
2010}
2011EXPORT_SYMBOL(pci_wake_from_d3);
2012
2013/**
2014 * pci_target_state - find an appropriate low power state for a given PCI dev
2015 * @dev: PCI device
2016 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2017 *
2018 * Use underlying platform code to find a supported low power state for @dev.
2019 * If the platform can't manage @dev, return the deepest state from which it
2020 * can generate wake events, based on any available PME info.
2021 */
2022static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2023{
2024	pci_power_t target_state = PCI_D3hot;
2025
2026	if (platform_pci_power_manageable(dev)) {
2027		/*
2028		 * Call the platform to choose the target state of the device
2029		 * and enable wake-up from this state if supported.
2030		 */
2031		pci_power_t state = platform_pci_choose_state(dev);
2032
2033		switch (state) {
2034		case PCI_POWER_ERROR:
2035		case PCI_UNKNOWN:
2036			break;
2037		case PCI_D1:
2038		case PCI_D2:
2039			if (pci_no_d1d2(dev))
2040				break;
2041		default:
2042			target_state = state;
2043		}
2044
2045		return target_state;
2046	}
2047
2048	if (!dev->pm_cap)
2049		target_state = PCI_D0;
2050
2051	/*
2052	 * If the device is in D3cold even though it's not power-manageable by
2053	 * the platform, it may have been powered down by non-standard means.
2054	 * Best to let it slumber.
2055	 */
2056	if (dev->current_state == PCI_D3cold)
2057		target_state = PCI_D3cold;
2058
2059	if (wakeup) {
2060		/*
2061		 * Find the deepest state from which the device can generate
2062		 * wake-up events, make it the target state and enable device
2063		 * to generate PME#.
2064		 */
2065		if (dev->pme_support) {
2066			while (target_state
2067			      && !(dev->pme_support & (1 << target_state)))
2068				target_state--;
2069		}
2070	}
2071
2072	return target_state;
2073}
2074
2075/**
2076 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2077 * @dev: Device to handle.
2078 *
2079 * Choose the power state appropriate for the device depending on whether
2080 * it can wake up the system and/or is power manageable by the platform
2081 * (PCI_D3hot is the default) and put the device into that state.
2082 */
2083int pci_prepare_to_sleep(struct pci_dev *dev)
2084{
2085	bool wakeup = device_may_wakeup(&dev->dev);
2086	pci_power_t target_state = pci_target_state(dev, wakeup);
2087	int error;
2088
2089	if (target_state == PCI_POWER_ERROR)
2090		return -EIO;
2091
2092	pci_enable_wake(dev, target_state, wakeup);
2093
2094	error = pci_set_power_state(dev, target_state);
2095
2096	if (error)
2097		pci_enable_wake(dev, target_state, false);
2098
2099	return error;
2100}
2101EXPORT_SYMBOL(pci_prepare_to_sleep);
2102
2103/**
2104 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2105 * @dev: Device to handle.
2106 *
2107 * Disable device's system wake-up capability and put it into D0.
2108 */
2109int pci_back_from_sleep(struct pci_dev *dev)
2110{
2111	pci_enable_wake(dev, PCI_D0, false);
2112	return pci_set_power_state(dev, PCI_D0);
2113}
2114EXPORT_SYMBOL(pci_back_from_sleep);
2115
2116/**
2117 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2118 * @dev: PCI device being suspended.
2119 *
2120 * Prepare @dev to generate wake-up events at run time and put it into a low
2121 * power state.
2122 */
2123int pci_finish_runtime_suspend(struct pci_dev *dev)
2124{
2125	pci_power_t target_state;
2126	int error;
2127
2128	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2129	if (target_state == PCI_POWER_ERROR)
2130		return -EIO;
2131
2132	dev->runtime_d3cold = target_state == PCI_D3cold;
2133
2134	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2135
2136	error = pci_set_power_state(dev, target_state);
2137
2138	if (error) {
2139		pci_enable_wake(dev, target_state, false);
2140		dev->runtime_d3cold = false;
2141	}
2142
2143	return error;
2144}
2145
2146/**
2147 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2148 * @dev: Device to check.
2149 *
2150 * Return true if the device itself is capable of generating wake-up events
2151 * (through the platform or using the native PCIe PME) or if the device supports
2152 * PME and one of its upstream bridges can generate wake-up events.
2153 */
2154bool pci_dev_run_wake(struct pci_dev *dev)
2155{
2156	struct pci_bus *bus = dev->bus;
2157
2158	if (!dev->pme_support)
2159		return false;
2160
2161	/* PME-capable in principle, but not from the target power state */
2162	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2163		return false;
2164
2165	if (device_can_wakeup(&dev->dev))
2166		return true;
2167
2168	while (bus->parent) {
2169		struct pci_dev *bridge = bus->self;
2170
2171		if (device_can_wakeup(&bridge->dev))
2172			return true;
2173
2174		bus = bus->parent;
2175	}
2176
2177	/* We have reached the root bus. */
2178	if (bus->bridge)
2179		return device_can_wakeup(bus->bridge);
2180
2181	return false;
2182}
2183EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2184
2185/**
2186 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2187 * @pci_dev: Device to check.
2188 *
2189 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2190 * reconfigured due to wakeup settings difference between system and runtime
2191 * suspend and the current power state of it is suitable for the upcoming
2192 * (system) transition.
2193 *
2194 * If the device is not configured for system wakeup, disable PME for it before
2195 * returning 'true' to prevent it from waking up the system unnecessarily.
2196 */
2197bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2198{
2199	struct device *dev = &pci_dev->dev;
2200	bool wakeup = device_may_wakeup(dev);
2201
2202	if (!pm_runtime_suspended(dev)
2203	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2204	    || platform_pci_need_resume(pci_dev))
2205		return false;
2206
2207	/*
2208	 * At this point the device is good to go unless it's been configured
2209	 * to generate PME at the runtime suspend time, but it is not supposed
2210	 * to wake up the system.  In that case, simply disable PME for it
2211	 * (it will have to be re-enabled on exit from system resume).
2212	 *
2213	 * If the device's power state is D3cold and the platform check above
2214	 * hasn't triggered, the device's configuration is suitable and we don't
2215	 * need to manipulate it at all.
2216	 */
2217	spin_lock_irq(&dev->power.lock);
2218
2219	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2220	    !wakeup)
2221		__pci_pme_active(pci_dev, false);
2222
2223	spin_unlock_irq(&dev->power.lock);
2224	return true;
2225}
2226
2227/**
2228 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2229 * @pci_dev: Device to handle.
2230 *
2231 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2232 * it might have been disabled during the prepare phase of system suspend if
2233 * the device was not configured for system wakeup.
2234 */
2235void pci_dev_complete_resume(struct pci_dev *pci_dev)
2236{
2237	struct device *dev = &pci_dev->dev;
2238
2239	if (!pci_dev_run_wake(pci_dev))
2240		return;
2241
2242	spin_lock_irq(&dev->power.lock);
2243
2244	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2245		__pci_pme_active(pci_dev, true);
2246
2247	spin_unlock_irq(&dev->power.lock);
2248}
2249
2250void pci_config_pm_runtime_get(struct pci_dev *pdev)
2251{
2252	struct device *dev = &pdev->dev;
2253	struct device *parent = dev->parent;
2254
2255	if (parent)
2256		pm_runtime_get_sync(parent);
2257	pm_runtime_get_noresume(dev);
2258	/*
2259	 * pdev->current_state is set to PCI_D3cold during suspending,
2260	 * so wait until suspending completes
2261	 */
2262	pm_runtime_barrier(dev);
2263	/*
2264	 * Only need to resume devices in D3cold, because config
2265	 * registers are still accessible for devices suspended but
2266	 * not in D3cold.
2267	 */
2268	if (pdev->current_state == PCI_D3cold)
2269		pm_runtime_resume(dev);
2270}
2271
2272void pci_config_pm_runtime_put(struct pci_dev *pdev)
2273{
2274	struct device *dev = &pdev->dev;
2275	struct device *parent = dev->parent;
2276
2277	pm_runtime_put(dev);
2278	if (parent)
2279		pm_runtime_put_sync(parent);
2280}
2281
2282/**
2283 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2284 * @bridge: Bridge to check
2285 *
2286 * This function checks if it is possible to move the bridge to D3.
2287 * Currently we only allow D3 for recent enough PCIe ports.
2288 */
2289bool pci_bridge_d3_possible(struct pci_dev *bridge)
2290{
2291	if (!pci_is_pcie(bridge))
2292		return false;
2293
2294	switch (pci_pcie_type(bridge)) {
2295	case PCI_EXP_TYPE_ROOT_PORT:
2296	case PCI_EXP_TYPE_UPSTREAM:
2297	case PCI_EXP_TYPE_DOWNSTREAM:
2298		if (pci_bridge_d3_disable)
2299			return false;
2300
2301		/*
2302		 * Hotplug interrupts cannot be delivered if the link is down,
2303		 * so parents of a hotplug port must stay awake. In addition,
2304		 * hotplug ports handled by firmware in System Management Mode
2305		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2306		 * For simplicity, disallow in general for now.
2307		 */
2308		if (bridge->is_hotplug_bridge)
2309			return false;
2310
2311		if (pci_bridge_d3_force)
2312			return true;
2313
2314		/*
2315		 * It should be safe to put PCIe ports from 2015 or newer
2316		 * to D3.
2317		 */
2318		if (dmi_get_bios_year() >= 2015)
2319			return true;
2320		break;
2321	}
2322
2323	return false;
2324}
2325
2326static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2327{
2328	bool *d3cold_ok = data;
2329
2330	if (/* The device needs to be allowed to go D3cold ... */
2331	    dev->no_d3cold || !dev->d3cold_allowed ||
2332
2333	    /* ... and if it is wakeup capable to do so from D3cold. */
2334	    (device_may_wakeup(&dev->dev) &&
2335	     !pci_pme_capable(dev, PCI_D3cold)) ||
2336
2337	    /* If it is a bridge it must be allowed to go to D3. */
2338	    !pci_power_manageable(dev))
2339
2340		*d3cold_ok = false;
2341
2342	return !*d3cold_ok;
2343}
2344
2345/*
2346 * pci_bridge_d3_update - Update bridge D3 capabilities
2347 * @dev: PCI device which is changed
2348 *
2349 * Update upstream bridge PM capabilities accordingly depending on if the
2350 * device PM configuration was changed or the device is being removed.  The
2351 * change is also propagated upstream.
2352 */
2353void pci_bridge_d3_update(struct pci_dev *dev)
2354{
2355	bool remove = !device_is_registered(&dev->dev);
2356	struct pci_dev *bridge;
2357	bool d3cold_ok = true;
2358
2359	bridge = pci_upstream_bridge(dev);
2360	if (!bridge || !pci_bridge_d3_possible(bridge))
2361		return;
2362
2363	/*
2364	 * If D3 is currently allowed for the bridge, removing one of its
2365	 * children won't change that.
2366	 */
2367	if (remove && bridge->bridge_d3)
2368		return;
2369
2370	/*
2371	 * If D3 is currently allowed for the bridge and a child is added or
2372	 * changed, disallowance of D3 can only be caused by that child, so
2373	 * we only need to check that single device, not any of its siblings.
2374	 *
2375	 * If D3 is currently not allowed for the bridge, checking the device
2376	 * first may allow us to skip checking its siblings.
2377	 */
2378	if (!remove)
2379		pci_dev_check_d3cold(dev, &d3cold_ok);
2380
2381	/*
2382	 * If D3 is currently not allowed for the bridge, this may be caused
2383	 * either by the device being changed/removed or any of its siblings,
2384	 * so we need to go through all children to find out if one of them
2385	 * continues to block D3.
2386	 */
2387	if (d3cold_ok && !bridge->bridge_d3)
2388		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2389			     &d3cold_ok);
2390
2391	if (bridge->bridge_d3 != d3cold_ok) {
2392		bridge->bridge_d3 = d3cold_ok;
2393		/* Propagate change to upstream bridges */
2394		pci_bridge_d3_update(bridge);
2395	}
2396}
2397
2398/**
2399 * pci_d3cold_enable - Enable D3cold for device
2400 * @dev: PCI device to handle
2401 *
2402 * This function can be used in drivers to enable D3cold from the device
2403 * they handle.  It also updates upstream PCI bridge PM capabilities
2404 * accordingly.
2405 */
2406void pci_d3cold_enable(struct pci_dev *dev)
2407{
2408	if (dev->no_d3cold) {
2409		dev->no_d3cold = false;
2410		pci_bridge_d3_update(dev);
2411	}
2412}
2413EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2414
2415/**
2416 * pci_d3cold_disable - Disable D3cold for device
2417 * @dev: PCI device to handle
2418 *
2419 * This function can be used in drivers to disable D3cold from the device
2420 * they handle.  It also updates upstream PCI bridge PM capabilities
2421 * accordingly.
2422 */
2423void pci_d3cold_disable(struct pci_dev *dev)
2424{
2425	if (!dev->no_d3cold) {
2426		dev->no_d3cold = true;
2427		pci_bridge_d3_update(dev);
2428	}
2429}
2430EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2431
2432/**
2433 * pci_pm_init - Initialize PM functions of given PCI device
2434 * @dev: PCI device to handle.
2435 */
2436void pci_pm_init(struct pci_dev *dev)
2437{
2438	int pm;
2439	u16 pmc;
2440
2441	pm_runtime_forbid(&dev->dev);
2442	pm_runtime_set_active(&dev->dev);
2443	pm_runtime_enable(&dev->dev);
2444	device_enable_async_suspend(&dev->dev);
2445	dev->wakeup_prepared = false;
2446
2447	dev->pm_cap = 0;
2448	dev->pme_support = 0;
2449
2450	/* find PCI PM capability in list */
2451	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2452	if (!pm)
2453		return;
2454	/* Check device's ability to generate PME# */
2455	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2456
2457	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2458		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2459			pmc & PCI_PM_CAP_VER_MASK);
2460		return;
2461	}
2462
2463	dev->pm_cap = pm;
2464	dev->d3_delay = PCI_PM_D3_WAIT;
2465	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2466	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2467	dev->d3cold_allowed = true;
2468
2469	dev->d1_support = false;
2470	dev->d2_support = false;
2471	if (!pci_no_d1d2(dev)) {
2472		if (pmc & PCI_PM_CAP_D1)
2473			dev->d1_support = true;
2474		if (pmc & PCI_PM_CAP_D2)
2475			dev->d2_support = true;
2476
2477		if (dev->d1_support || dev->d2_support)
2478			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2479				   dev->d1_support ? " D1" : "",
2480				   dev->d2_support ? " D2" : "");
2481	}
2482
2483	pmc &= PCI_PM_CAP_PME_MASK;
2484	if (pmc) {
2485		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
 
2486			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2487			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2488			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2489			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2490			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2491		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2492		dev->pme_poll = true;
2493		/*
2494		 * Make device's PM flags reflect the wake-up capability, but
2495		 * let the user space enable it to wake up the system as needed.
2496		 */
2497		device_set_wakeup_capable(&dev->dev, true);
2498		/* Disable the PME# generation functionality */
2499		pci_pme_active(dev, false);
2500	}
2501}
2502
2503static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2504{
2505	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2506
2507	switch (prop) {
2508	case PCI_EA_P_MEM:
2509	case PCI_EA_P_VF_MEM:
2510		flags |= IORESOURCE_MEM;
2511		break;
2512	case PCI_EA_P_MEM_PREFETCH:
2513	case PCI_EA_P_VF_MEM_PREFETCH:
2514		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2515		break;
2516	case PCI_EA_P_IO:
2517		flags |= IORESOURCE_IO;
2518		break;
2519	default:
2520		return 0;
2521	}
2522
2523	return flags;
2524}
2525
2526static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2527					    u8 prop)
2528{
2529	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2530		return &dev->resource[bei];
2531#ifdef CONFIG_PCI_IOV
2532	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2533		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2534		return &dev->resource[PCI_IOV_RESOURCES +
2535				      bei - PCI_EA_BEI_VF_BAR0];
2536#endif
2537	else if (bei == PCI_EA_BEI_ROM)
2538		return &dev->resource[PCI_ROM_RESOURCE];
2539	else
2540		return NULL;
2541}
2542
2543/* Read an Enhanced Allocation (EA) entry */
2544static int pci_ea_read(struct pci_dev *dev, int offset)
2545{
2546	struct resource *res;
2547	int ent_size, ent_offset = offset;
2548	resource_size_t start, end;
2549	unsigned long flags;
2550	u32 dw0, bei, base, max_offset;
2551	u8 prop;
2552	bool support_64 = (sizeof(resource_size_t) >= 8);
2553
2554	pci_read_config_dword(dev, ent_offset, &dw0);
2555	ent_offset += 4;
2556
2557	/* Entry size field indicates DWORDs after 1st */
2558	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2559
2560	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2561		goto out;
2562
2563	bei = (dw0 & PCI_EA_BEI) >> 4;
2564	prop = (dw0 & PCI_EA_PP) >> 8;
2565
2566	/*
2567	 * If the Property is in the reserved range, try the Secondary
2568	 * Property instead.
2569	 */
2570	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2571		prop = (dw0 & PCI_EA_SP) >> 16;
2572	if (prop > PCI_EA_P_BRIDGE_IO)
2573		goto out;
2574
2575	res = pci_ea_get_resource(dev, bei, prop);
2576	if (!res) {
2577		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2578		goto out;
2579	}
2580
2581	flags = pci_ea_flags(dev, prop);
2582	if (!flags) {
2583		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2584		goto out;
2585	}
2586
2587	/* Read Base */
2588	pci_read_config_dword(dev, ent_offset, &base);
2589	start = (base & PCI_EA_FIELD_MASK);
2590	ent_offset += 4;
2591
2592	/* Read MaxOffset */
2593	pci_read_config_dword(dev, ent_offset, &max_offset);
2594	ent_offset += 4;
2595
2596	/* Read Base MSBs (if 64-bit entry) */
2597	if (base & PCI_EA_IS_64) {
2598		u32 base_upper;
2599
2600		pci_read_config_dword(dev, ent_offset, &base_upper);
2601		ent_offset += 4;
2602
2603		flags |= IORESOURCE_MEM_64;
2604
2605		/* entry starts above 32-bit boundary, can't use */
2606		if (!support_64 && base_upper)
2607			goto out;
2608
2609		if (support_64)
2610			start |= ((u64)base_upper << 32);
2611	}
2612
2613	end = start + (max_offset | 0x03);
2614
2615	/* Read MaxOffset MSBs (if 64-bit entry) */
2616	if (max_offset & PCI_EA_IS_64) {
2617		u32 max_offset_upper;
2618
2619		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2620		ent_offset += 4;
2621
2622		flags |= IORESOURCE_MEM_64;
2623
2624		/* entry too big, can't use */
2625		if (!support_64 && max_offset_upper)
2626			goto out;
2627
2628		if (support_64)
2629			end += ((u64)max_offset_upper << 32);
2630	}
2631
2632	if (end < start) {
2633		pci_err(dev, "EA Entry crosses address boundary\n");
2634		goto out;
2635	}
2636
2637	if (ent_size != ent_offset - offset) {
2638		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
 
2639			ent_size, ent_offset - offset);
2640		goto out;
2641	}
2642
2643	res->name = pci_name(dev);
2644	res->start = start;
2645	res->end = end;
2646	res->flags = flags;
2647
2648	if (bei <= PCI_EA_BEI_BAR5)
2649		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2650			   bei, res, prop);
2651	else if (bei == PCI_EA_BEI_ROM)
2652		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2653			   res, prop);
2654	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2655		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2656			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2657	else
2658		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2659			   bei, res, prop);
2660
2661out:
2662	return offset + ent_size;
2663}
2664
2665/* Enhanced Allocation Initialization */
2666void pci_ea_init(struct pci_dev *dev)
2667{
2668	int ea;
2669	u8 num_ent;
2670	int offset;
2671	int i;
2672
2673	/* find PCI EA capability in list */
2674	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2675	if (!ea)
2676		return;
2677
2678	/* determine the number of entries */
2679	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2680					&num_ent);
2681	num_ent &= PCI_EA_NUM_ENT_MASK;
2682
2683	offset = ea + PCI_EA_FIRST_ENT;
2684
2685	/* Skip DWORD 2 for type 1 functions */
2686	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2687		offset += 4;
2688
2689	/* parse each EA entry */
2690	for (i = 0; i < num_ent; ++i)
2691		offset = pci_ea_read(dev, offset);
2692}
2693
2694static void pci_add_saved_cap(struct pci_dev *pci_dev,
2695	struct pci_cap_saved_state *new_cap)
2696{
2697	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2698}
2699
2700/**
2701 * _pci_add_cap_save_buffer - allocate buffer for saving given
2702 *                            capability registers
2703 * @dev: the PCI device
2704 * @cap: the capability to allocate the buffer for
2705 * @extended: Standard or Extended capability ID
2706 * @size: requested size of the buffer
2707 */
2708static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2709				    bool extended, unsigned int size)
2710{
2711	int pos;
2712	struct pci_cap_saved_state *save_state;
2713
2714	if (extended)
2715		pos = pci_find_ext_capability(dev, cap);
2716	else
2717		pos = pci_find_capability(dev, cap);
2718
2719	if (!pos)
2720		return 0;
2721
2722	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2723	if (!save_state)
2724		return -ENOMEM;
2725
2726	save_state->cap.cap_nr = cap;
2727	save_state->cap.cap_extended = extended;
2728	save_state->cap.size = size;
2729	pci_add_saved_cap(dev, save_state);
2730
2731	return 0;
2732}
2733
2734int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2735{
2736	return _pci_add_cap_save_buffer(dev, cap, false, size);
2737}
2738
2739int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2740{
2741	return _pci_add_cap_save_buffer(dev, cap, true, size);
2742}
2743
2744/**
2745 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2746 * @dev: the PCI device
2747 */
2748void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2749{
2750	int error;
2751
2752	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2753					PCI_EXP_SAVE_REGS * sizeof(u16));
2754	if (error)
2755		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
 
2756
2757	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2758	if (error)
2759		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
 
2760
2761	pci_allocate_vc_save_buffers(dev);
2762}
2763
2764void pci_free_cap_save_buffers(struct pci_dev *dev)
2765{
2766	struct pci_cap_saved_state *tmp;
2767	struct hlist_node *n;
2768
2769	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2770		kfree(tmp);
2771}
2772
2773/**
2774 * pci_configure_ari - enable or disable ARI forwarding
2775 * @dev: the PCI device
2776 *
2777 * If @dev and its upstream bridge both support ARI, enable ARI in the
2778 * bridge.  Otherwise, disable ARI in the bridge.
2779 */
2780void pci_configure_ari(struct pci_dev *dev)
2781{
2782	u32 cap;
2783	struct pci_dev *bridge;
2784
2785	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2786		return;
2787
2788	bridge = dev->bus->self;
2789	if (!bridge)
2790		return;
2791
2792	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2793	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2794		return;
2795
2796	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2797		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2798					 PCI_EXP_DEVCTL2_ARI);
2799		bridge->ari_enabled = 1;
2800	} else {
2801		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2802					   PCI_EXP_DEVCTL2_ARI);
2803		bridge->ari_enabled = 0;
2804	}
2805}
2806
2807static int pci_acs_enable;
2808
2809/**
2810 * pci_request_acs - ask for ACS to be enabled if supported
2811 */
2812void pci_request_acs(void)
2813{
2814	pci_acs_enable = 1;
2815}
2816
2817/**
2818 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2819 * @dev: the PCI device
2820 */
2821static void pci_std_enable_acs(struct pci_dev *dev)
2822{
2823	int pos;
2824	u16 cap;
2825	u16 ctrl;
2826
2827	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2828	if (!pos)
2829		return;
2830
2831	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2832	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2833
2834	/* Source Validation */
2835	ctrl |= (cap & PCI_ACS_SV);
2836
2837	/* P2P Request Redirect */
2838	ctrl |= (cap & PCI_ACS_RR);
2839
2840	/* P2P Completion Redirect */
2841	ctrl |= (cap & PCI_ACS_CR);
2842
2843	/* Upstream Forwarding */
2844	ctrl |= (cap & PCI_ACS_UF);
2845
2846	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 
 
2847}
2848
2849/**
2850 * pci_enable_acs - enable ACS if hardware support it
2851 * @dev: the PCI device
2852 */
2853void pci_enable_acs(struct pci_dev *dev)
2854{
2855	if (!pci_acs_enable)
2856		return;
2857
2858	if (!pci_dev_specific_enable_acs(dev))
2859		return;
2860
2861	pci_std_enable_acs(dev);
2862}
2863
2864static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2865{
2866	int pos;
2867	u16 cap, ctrl;
2868
2869	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2870	if (!pos)
2871		return false;
2872
2873	/*
2874	 * Except for egress control, capabilities are either required
2875	 * or only required if controllable.  Features missing from the
2876	 * capability field can therefore be assumed as hard-wired enabled.
2877	 */
2878	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2879	acs_flags &= (cap | PCI_ACS_EC);
2880
2881	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2882	return (ctrl & acs_flags) == acs_flags;
2883}
2884
2885/**
2886 * pci_acs_enabled - test ACS against required flags for a given device
2887 * @pdev: device to test
2888 * @acs_flags: required PCI ACS flags
2889 *
2890 * Return true if the device supports the provided flags.  Automatically
2891 * filters out flags that are not implemented on multifunction devices.
2892 *
2893 * Note that this interface checks the effective ACS capabilities of the
2894 * device rather than the actual capabilities.  For instance, most single
2895 * function endpoints are not required to support ACS because they have no
2896 * opportunity for peer-to-peer access.  We therefore return 'true'
2897 * regardless of whether the device exposes an ACS capability.  This makes
2898 * it much easier for callers of this function to ignore the actual type
2899 * or topology of the device when testing ACS support.
2900 */
2901bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2902{
2903	int ret;
2904
2905	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2906	if (ret >= 0)
2907		return ret > 0;
2908
2909	/*
2910	 * Conventional PCI and PCI-X devices never support ACS, either
2911	 * effectively or actually.  The shared bus topology implies that
2912	 * any device on the bus can receive or snoop DMA.
2913	 */
2914	if (!pci_is_pcie(pdev))
2915		return false;
2916
2917	switch (pci_pcie_type(pdev)) {
2918	/*
2919	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2920	 * but since their primary interface is PCI/X, we conservatively
2921	 * handle them as we would a non-PCIe device.
2922	 */
2923	case PCI_EXP_TYPE_PCIE_BRIDGE:
2924	/*
2925	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2926	 * applicable... must never implement an ACS Extended Capability...".
2927	 * This seems arbitrary, but we take a conservative interpretation
2928	 * of this statement.
2929	 */
2930	case PCI_EXP_TYPE_PCI_BRIDGE:
2931	case PCI_EXP_TYPE_RC_EC:
2932		return false;
2933	/*
2934	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2935	 * implement ACS in order to indicate their peer-to-peer capabilities,
2936	 * regardless of whether they are single- or multi-function devices.
2937	 */
2938	case PCI_EXP_TYPE_DOWNSTREAM:
2939	case PCI_EXP_TYPE_ROOT_PORT:
2940		return pci_acs_flags_enabled(pdev, acs_flags);
2941	/*
2942	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2943	 * implemented by the remaining PCIe types to indicate peer-to-peer
2944	 * capabilities, but only when they are part of a multifunction
2945	 * device.  The footnote for section 6.12 indicates the specific
2946	 * PCIe types included here.
2947	 */
2948	case PCI_EXP_TYPE_ENDPOINT:
2949	case PCI_EXP_TYPE_UPSTREAM:
2950	case PCI_EXP_TYPE_LEG_END:
2951	case PCI_EXP_TYPE_RC_END:
2952		if (!pdev->multifunction)
2953			break;
2954
2955		return pci_acs_flags_enabled(pdev, acs_flags);
2956	}
2957
2958	/*
2959	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2960	 * to single function devices with the exception of downstream ports.
2961	 */
2962	return true;
2963}
2964
2965/**
2966 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2967 * @start: starting downstream device
2968 * @end: ending upstream device or NULL to search to the root bus
2969 * @acs_flags: required flags
2970 *
2971 * Walk up a device tree from start to end testing PCI ACS support.  If
2972 * any step along the way does not support the required flags, return false.
2973 */
2974bool pci_acs_path_enabled(struct pci_dev *start,
2975			  struct pci_dev *end, u16 acs_flags)
2976{
2977	struct pci_dev *pdev, *parent = start;
2978
2979	do {
2980		pdev = parent;
2981
2982		if (!pci_acs_enabled(pdev, acs_flags))
2983			return false;
2984
2985		if (pci_is_root_bus(pdev->bus))
2986			return (end == NULL);
2987
2988		parent = pdev->bus->self;
2989	} while (pdev != end);
2990
2991	return true;
2992}
2993
2994/**
2995 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2996 * @pdev: PCI device
2997 * @bar: BAR to find
2998 *
2999 * Helper to find the position of the ctrl register for a BAR.
3000 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3001 * Returns -ENOENT if no ctrl register for the BAR could be found.
3002 */
3003static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3004{
3005	unsigned int pos, nbars, i;
3006	u32 ctrl;
3007
3008	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3009	if (!pos)
3010		return -ENOTSUPP;
3011
3012	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3013	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3014		    PCI_REBAR_CTRL_NBAR_SHIFT;
3015
3016	for (i = 0; i < nbars; i++, pos += 8) {
3017		int bar_idx;
3018
3019		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3020		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3021		if (bar_idx == bar)
3022			return pos;
3023	}
3024
3025	return -ENOENT;
3026}
3027
3028/**
3029 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3030 * @pdev: PCI device
3031 * @bar: BAR to query
3032 *
3033 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3034 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3035 */
3036u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3037{
3038	int pos;
3039	u32 cap;
3040
3041	pos = pci_rebar_find_pos(pdev, bar);
3042	if (pos < 0)
3043		return 0;
3044
3045	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3046	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3047}
3048
3049/**
3050 * pci_rebar_get_current_size - get the current size of a BAR
3051 * @pdev: PCI device
3052 * @bar: BAR to set size to
3053 *
3054 * Read the size of a BAR from the resizable BAR config.
3055 * Returns size if found or negative error code.
3056 */
3057int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3058{
3059	int pos;
3060	u32 ctrl;
3061
3062	pos = pci_rebar_find_pos(pdev, bar);
3063	if (pos < 0)
3064		return pos;
3065
3066	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3067	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3068}
3069
3070/**
3071 * pci_rebar_set_size - set a new size for a BAR
3072 * @pdev: PCI device
3073 * @bar: BAR to set size to
3074 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3075 *
3076 * Set the new size of a BAR as defined in the spec.
3077 * Returns zero if resizing was successful, error code otherwise.
3078 */
3079int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3080{
3081	int pos;
3082	u32 ctrl;
3083
3084	pos = pci_rebar_find_pos(pdev, bar);
3085	if (pos < 0)
3086		return pos;
3087
3088	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3089	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3090	ctrl |= size << 8;
3091	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3092	return 0;
3093}
3094
3095/**
3096 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3097 * @dev: the PCI device
3098 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3099 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3100 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3101 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3102 *
3103 * Return 0 if all upstream bridges support AtomicOp routing, egress
3104 * blocking is disabled on all upstream ports, and the root port supports
3105 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3106 * AtomicOp completion), or negative otherwise.
3107 */
3108int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3109{
3110	struct pci_bus *bus = dev->bus;
3111	struct pci_dev *bridge;
3112	u32 cap, ctl2;
3113
3114	if (!pci_is_pcie(dev))
3115		return -EINVAL;
3116
3117	/*
3118	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3119	 * AtomicOp requesters.  For now, we only support endpoints as
3120	 * requesters and root ports as completers.  No endpoints as
3121	 * completers, and no peer-to-peer.
3122	 */
3123
3124	switch (pci_pcie_type(dev)) {
3125	case PCI_EXP_TYPE_ENDPOINT:
3126	case PCI_EXP_TYPE_LEG_END:
3127	case PCI_EXP_TYPE_RC_END:
3128		break;
3129	default:
3130		return -EINVAL;
3131	}
3132
3133	while (bus->parent) {
3134		bridge = bus->self;
3135
3136		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3137
3138		switch (pci_pcie_type(bridge)) {
3139		/* Ensure switch ports support AtomicOp routing */
3140		case PCI_EXP_TYPE_UPSTREAM:
3141		case PCI_EXP_TYPE_DOWNSTREAM:
3142			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3143				return -EINVAL;
3144			break;
3145
3146		/* Ensure root port supports all the sizes we care about */
3147		case PCI_EXP_TYPE_ROOT_PORT:
3148			if ((cap & cap_mask) != cap_mask)
3149				return -EINVAL;
3150			break;
3151		}
3152
3153		/* Ensure upstream ports don't block AtomicOps on egress */
3154		if (!bridge->has_secondary_link) {
3155			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3156						   &ctl2);
3157			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3158				return -EINVAL;
3159		}
3160
3161		bus = bus->parent;
3162	}
3163
3164	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3165				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3166	return 0;
3167}
3168EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3169
3170/**
3171 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3172 * @dev: the PCI device
3173 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3174 *
3175 * Perform INTx swizzling for a device behind one level of bridge.  This is
3176 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3177 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3178 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3179 * the PCI Express Base Specification, Revision 2.1)
3180 */
3181u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3182{
3183	int slot;
3184
3185	if (pci_ari_enabled(dev->bus))
3186		slot = 0;
3187	else
3188		slot = PCI_SLOT(dev->devfn);
3189
3190	return (((pin - 1) + slot) % 4) + 1;
3191}
3192
3193int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3194{
3195	u8 pin;
3196
3197	pin = dev->pin;
3198	if (!pin)
3199		return -1;
3200
3201	while (!pci_is_root_bus(dev->bus)) {
3202		pin = pci_swizzle_interrupt_pin(dev, pin);
3203		dev = dev->bus->self;
3204	}
3205	*bridge = dev;
3206	return pin;
3207}
3208
3209/**
3210 * pci_common_swizzle - swizzle INTx all the way to root bridge
3211 * @dev: the PCI device
3212 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3213 *
3214 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3215 * bridges all the way up to a PCI root bus.
3216 */
3217u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3218{
3219	u8 pin = *pinp;
3220
3221	while (!pci_is_root_bus(dev->bus)) {
3222		pin = pci_swizzle_interrupt_pin(dev, pin);
3223		dev = dev->bus->self;
3224	}
3225	*pinp = pin;
3226	return PCI_SLOT(dev->devfn);
3227}
3228EXPORT_SYMBOL_GPL(pci_common_swizzle);
3229
3230/**
3231 *	pci_release_region - Release a PCI bar
3232 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3233 *	@bar: BAR to release
3234 *
3235 *	Releases the PCI I/O and memory resources previously reserved by a
3236 *	successful call to pci_request_region.  Call this function only
3237 *	after all use of the PCI regions has ceased.
3238 */
3239void pci_release_region(struct pci_dev *pdev, int bar)
3240{
3241	struct pci_devres *dr;
3242
3243	if (pci_resource_len(pdev, bar) == 0)
3244		return;
3245	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3246		release_region(pci_resource_start(pdev, bar),
3247				pci_resource_len(pdev, bar));
3248	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3249		release_mem_region(pci_resource_start(pdev, bar),
3250				pci_resource_len(pdev, bar));
3251
3252	dr = find_pci_dr(pdev);
3253	if (dr)
3254		dr->region_mask &= ~(1 << bar);
3255}
3256EXPORT_SYMBOL(pci_release_region);
3257
3258/**
3259 *	__pci_request_region - Reserved PCI I/O and memory resource
3260 *	@pdev: PCI device whose resources are to be reserved
3261 *	@bar: BAR to be reserved
3262 *	@res_name: Name to be associated with resource.
3263 *	@exclusive: whether the region access is exclusive or not
3264 *
3265 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3266 *	being reserved by owner @res_name.  Do not access any
3267 *	address inside the PCI regions unless this call returns
3268 *	successfully.
3269 *
3270 *	If @exclusive is set, then the region is marked so that userspace
3271 *	is explicitly not allowed to map the resource via /dev/mem or
3272 *	sysfs MMIO access.
3273 *
3274 *	Returns 0 on success, or %EBUSY on error.  A warning
3275 *	message is also printed on failure.
3276 */
3277static int __pci_request_region(struct pci_dev *pdev, int bar,
3278				const char *res_name, int exclusive)
3279{
3280	struct pci_devres *dr;
3281
3282	if (pci_resource_len(pdev, bar) == 0)
3283		return 0;
3284
3285	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3286		if (!request_region(pci_resource_start(pdev, bar),
3287			    pci_resource_len(pdev, bar), res_name))
3288			goto err_out;
3289	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3290		if (!__request_mem_region(pci_resource_start(pdev, bar),
3291					pci_resource_len(pdev, bar), res_name,
3292					exclusive))
3293			goto err_out;
3294	}
3295
3296	dr = find_pci_dr(pdev);
3297	if (dr)
3298		dr->region_mask |= 1 << bar;
3299
3300	return 0;
3301
3302err_out:
3303	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3304		 &pdev->resource[bar]);
3305	return -EBUSY;
3306}
3307
3308/**
3309 *	pci_request_region - Reserve PCI I/O and memory resource
3310 *	@pdev: PCI device whose resources are to be reserved
3311 *	@bar: BAR to be reserved
3312 *	@res_name: Name to be associated with resource
3313 *
3314 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3315 *	being reserved by owner @res_name.  Do not access any
3316 *	address inside the PCI regions unless this call returns
3317 *	successfully.
3318 *
3319 *	Returns 0 on success, or %EBUSY on error.  A warning
3320 *	message is also printed on failure.
3321 */
3322int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3323{
3324	return __pci_request_region(pdev, bar, res_name, 0);
3325}
3326EXPORT_SYMBOL(pci_request_region);
3327
3328/**
3329 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3330 *	@pdev: PCI device whose resources are to be reserved
3331 *	@bar: BAR to be reserved
3332 *	@res_name: Name to be associated with resource.
3333 *
3334 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3335 *	being reserved by owner @res_name.  Do not access any
3336 *	address inside the PCI regions unless this call returns
3337 *	successfully.
3338 *
3339 *	Returns 0 on success, or %EBUSY on error.  A warning
3340 *	message is also printed on failure.
3341 *
3342 *	The key difference that _exclusive makes it that userspace is
3343 *	explicitly not allowed to map the resource via /dev/mem or
3344 *	sysfs.
3345 */
3346int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3347				 const char *res_name)
3348{
3349	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3350}
3351EXPORT_SYMBOL(pci_request_region_exclusive);
3352
3353/**
3354 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3355 * @pdev: PCI device whose resources were previously reserved
3356 * @bars: Bitmask of BARs to be released
3357 *
3358 * Release selected PCI I/O and memory resources previously reserved.
3359 * Call this function only after all use of the PCI regions has ceased.
3360 */
3361void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3362{
3363	int i;
3364
3365	for (i = 0; i < 6; i++)
3366		if (bars & (1 << i))
3367			pci_release_region(pdev, i);
3368}
3369EXPORT_SYMBOL(pci_release_selected_regions);
3370
3371static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372					  const char *res_name, int excl)
3373{
3374	int i;
3375
3376	for (i = 0; i < 6; i++)
3377		if (bars & (1 << i))
3378			if (__pci_request_region(pdev, i, res_name, excl))
3379				goto err_out;
3380	return 0;
3381
3382err_out:
3383	while (--i >= 0)
3384		if (bars & (1 << i))
3385			pci_release_region(pdev, i);
3386
3387	return -EBUSY;
3388}
3389
3390
3391/**
3392 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3393 * @pdev: PCI device whose resources are to be reserved
3394 * @bars: Bitmask of BARs to be requested
3395 * @res_name: Name to be associated with resource
3396 */
3397int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3398				 const char *res_name)
3399{
3400	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3401}
3402EXPORT_SYMBOL(pci_request_selected_regions);
3403
3404int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3405					   const char *res_name)
3406{
3407	return __pci_request_selected_regions(pdev, bars, res_name,
3408			IORESOURCE_EXCLUSIVE);
3409}
3410EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3411
3412/**
3413 *	pci_release_regions - Release reserved PCI I/O and memory resources
3414 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3415 *
3416 *	Releases all PCI I/O and memory resources previously reserved by a
3417 *	successful call to pci_request_regions.  Call this function only
3418 *	after all use of the PCI regions has ceased.
3419 */
3420
3421void pci_release_regions(struct pci_dev *pdev)
3422{
3423	pci_release_selected_regions(pdev, (1 << 6) - 1);
3424}
3425EXPORT_SYMBOL(pci_release_regions);
3426
3427/**
3428 *	pci_request_regions - Reserved PCI I/O and memory resources
3429 *	@pdev: PCI device whose resources are to be reserved
3430 *	@res_name: Name to be associated with resource.
3431 *
3432 *	Mark all PCI regions associated with PCI device @pdev as
3433 *	being reserved by owner @res_name.  Do not access any
3434 *	address inside the PCI regions unless this call returns
3435 *	successfully.
3436 *
3437 *	Returns 0 on success, or %EBUSY on error.  A warning
3438 *	message is also printed on failure.
3439 */
3440int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3441{
3442	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3443}
3444EXPORT_SYMBOL(pci_request_regions);
3445
3446/**
3447 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3448 *	@pdev: PCI device whose resources are to be reserved
3449 *	@res_name: Name to be associated with resource.
3450 *
3451 *	Mark all PCI regions associated with PCI device @pdev as
3452 *	being reserved by owner @res_name.  Do not access any
3453 *	address inside the PCI regions unless this call returns
3454 *	successfully.
3455 *
3456 *	pci_request_regions_exclusive() will mark the region so that
3457 *	/dev/mem and the sysfs MMIO access will not be allowed.
3458 *
3459 *	Returns 0 on success, or %EBUSY on error.  A warning
3460 *	message is also printed on failure.
3461 */
3462int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3463{
3464	return pci_request_selected_regions_exclusive(pdev,
3465					((1 << 6) - 1), res_name);
3466}
3467EXPORT_SYMBOL(pci_request_regions_exclusive);
3468
3469/*
3470 * Record the PCI IO range (expressed as CPU physical address + size).
3471 * Return a negative value if an error has occured, zero otherwise
3472 */
3473int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3474			resource_size_t	size)
3475{
3476	int ret = 0;
3477#ifdef PCI_IOBASE
3478	struct logic_pio_hwaddr *range;
3479
3480	if (!size || addr + size < addr)
3481		return -EINVAL;
3482
3483	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3484	if (!range)
3485		return -ENOMEM;
3486
3487	range->fwnode = fwnode;
3488	range->size = size;
3489	range->hw_start = addr;
3490	range->flags = LOGIC_PIO_CPU_MMIO;
3491
3492	ret = logic_pio_register_range(range);
3493	if (ret)
3494		kfree(range);
3495#endif
3496
3497	return ret;
3498}
3499
3500phys_addr_t pci_pio_to_address(unsigned long pio)
3501{
3502	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3503
3504#ifdef PCI_IOBASE
3505	if (pio >= MMIO_UPPER_LIMIT)
3506		return address;
3507
3508	address = logic_pio_to_hwaddr(pio);
3509#endif
3510
3511	return address;
3512}
3513
3514unsigned long __weak pci_address_to_pio(phys_addr_t address)
3515{
3516#ifdef PCI_IOBASE
3517	return logic_pio_trans_cpuaddr(address);
3518#else
3519	if (address > IO_SPACE_LIMIT)
3520		return (unsigned long)-1;
3521
3522	return (unsigned long) address;
3523#endif
3524}
3525
3526/**
3527 *	pci_remap_iospace - Remap the memory mapped I/O space
3528 *	@res: Resource describing the I/O space
3529 *	@phys_addr: physical address of range to be mapped
3530 *
3531 *	Remap the memory mapped I/O space described by the @res
3532 *	and the CPU physical address @phys_addr into virtual address space.
3533 *	Only architectures that have memory mapped IO functions defined
3534 *	(and the PCI_IOBASE value defined) should call this function.
3535 */
3536int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3537{
3538#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3539	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3540
3541	if (!(res->flags & IORESOURCE_IO))
3542		return -EINVAL;
3543
3544	if (res->end > IO_SPACE_LIMIT)
3545		return -EINVAL;
3546
3547	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3548				  pgprot_device(PAGE_KERNEL));
3549#else
3550	/* this architecture does not have memory mapped I/O space,
3551	   so this function should never be called */
3552	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3553	return -ENODEV;
3554#endif
3555}
3556EXPORT_SYMBOL(pci_remap_iospace);
3557
3558/**
3559 *	pci_unmap_iospace - Unmap the memory mapped I/O space
3560 *	@res: resource to be unmapped
3561 *
3562 *	Unmap the CPU virtual address @res from virtual address space.
3563 *	Only architectures that have memory mapped IO functions defined
3564 *	(and the PCI_IOBASE value defined) should call this function.
3565 */
3566void pci_unmap_iospace(struct resource *res)
3567{
3568#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3569	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3570
3571	unmap_kernel_range(vaddr, resource_size(res));
3572#endif
3573}
3574EXPORT_SYMBOL(pci_unmap_iospace);
3575
3576/**
3577 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3578 * @dev: Generic device to remap IO address for
3579 * @offset: Resource address to map
3580 * @size: Size of map
3581 *
3582 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3583 * detach.
3584 */
3585void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3586				      resource_size_t offset,
3587				      resource_size_t size)
3588{
3589	void __iomem **ptr, *addr;
3590
3591	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3592	if (!ptr)
3593		return NULL;
3594
3595	addr = pci_remap_cfgspace(offset, size);
3596	if (addr) {
3597		*ptr = addr;
3598		devres_add(dev, ptr);
3599	} else
3600		devres_free(ptr);
3601
3602	return addr;
3603}
3604EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3605
3606/**
3607 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3608 * @dev: generic device to handle the resource for
3609 * @res: configuration space resource to be handled
3610 *
3611 * Checks that a resource is a valid memory region, requests the memory
3612 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3613 * proper PCI configuration space memory attributes are guaranteed.
3614 *
3615 * All operations are managed and will be undone on driver detach.
3616 *
3617 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3618 * on failure. Usage example::
3619 *
3620 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3621 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3622 *	if (IS_ERR(base))
3623 *		return PTR_ERR(base);
3624 */
3625void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3626					  struct resource *res)
3627{
3628	resource_size_t size;
3629	const char *name;
3630	void __iomem *dest_ptr;
3631
3632	BUG_ON(!dev);
3633
3634	if (!res || resource_type(res) != IORESOURCE_MEM) {
3635		dev_err(dev, "invalid resource\n");
3636		return IOMEM_ERR_PTR(-EINVAL);
3637	}
3638
3639	size = resource_size(res);
3640	name = res->name ?: dev_name(dev);
3641
3642	if (!devm_request_mem_region(dev, res->start, size, name)) {
3643		dev_err(dev, "can't request region for resource %pR\n", res);
3644		return IOMEM_ERR_PTR(-EBUSY);
3645	}
3646
3647	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3648	if (!dest_ptr) {
3649		dev_err(dev, "ioremap failed for resource %pR\n", res);
3650		devm_release_mem_region(dev, res->start, size);
3651		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3652	}
3653
3654	return dest_ptr;
3655}
3656EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3657
3658static void __pci_set_master(struct pci_dev *dev, bool enable)
3659{
3660	u16 old_cmd, cmd;
3661
3662	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3663	if (enable)
3664		cmd = old_cmd | PCI_COMMAND_MASTER;
3665	else
3666		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3667	if (cmd != old_cmd) {
3668		pci_dbg(dev, "%s bus mastering\n",
3669			enable ? "enabling" : "disabling");
3670		pci_write_config_word(dev, PCI_COMMAND, cmd);
3671	}
3672	dev->is_busmaster = enable;
3673}
3674
3675/**
3676 * pcibios_setup - process "pci=" kernel boot arguments
3677 * @str: string used to pass in "pci=" kernel boot arguments
3678 *
3679 * Process kernel boot arguments.  This is the default implementation.
3680 * Architecture specific implementations can override this as necessary.
3681 */
3682char * __weak __init pcibios_setup(char *str)
3683{
3684	return str;
3685}
3686
3687/**
3688 * pcibios_set_master - enable PCI bus-mastering for device dev
3689 * @dev: the PCI device to enable
3690 *
3691 * Enables PCI bus-mastering for the device.  This is the default
3692 * implementation.  Architecture specific implementations can override
3693 * this if necessary.
3694 */
3695void __weak pcibios_set_master(struct pci_dev *dev)
3696{
3697	u8 lat;
3698
3699	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3700	if (pci_is_pcie(dev))
3701		return;
3702
3703	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3704	if (lat < 16)
3705		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3706	else if (lat > pcibios_max_latency)
3707		lat = pcibios_max_latency;
3708	else
3709		return;
3710
3711	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3712}
3713
3714/**
3715 * pci_set_master - enables bus-mastering for device dev
3716 * @dev: the PCI device to enable
3717 *
3718 * Enables bus-mastering on the device and calls pcibios_set_master()
3719 * to do the needed arch specific settings.
3720 */
3721void pci_set_master(struct pci_dev *dev)
3722{
3723	__pci_set_master(dev, true);
3724	pcibios_set_master(dev);
3725}
3726EXPORT_SYMBOL(pci_set_master);
3727
3728/**
3729 * pci_clear_master - disables bus-mastering for device dev
3730 * @dev: the PCI device to disable
3731 */
3732void pci_clear_master(struct pci_dev *dev)
3733{
3734	__pci_set_master(dev, false);
3735}
3736EXPORT_SYMBOL(pci_clear_master);
3737
3738/**
3739 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3740 * @dev: the PCI device for which MWI is to be enabled
3741 *
3742 * Helper function for pci_set_mwi.
3743 * Originally copied from drivers/net/acenic.c.
3744 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3745 *
3746 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3747 */
3748int pci_set_cacheline_size(struct pci_dev *dev)
3749{
3750	u8 cacheline_size;
3751
3752	if (!pci_cache_line_size)
3753		return -EINVAL;
3754
3755	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3756	   equal to or multiple of the right value. */
3757	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3758	if (cacheline_size >= pci_cache_line_size &&
3759	    (cacheline_size % pci_cache_line_size) == 0)
3760		return 0;
3761
3762	/* Write the correct value. */
3763	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3764	/* Read it back. */
3765	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3766	if (cacheline_size == pci_cache_line_size)
3767		return 0;
3768
3769	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3770		   pci_cache_line_size << 2);
3771
3772	return -EINVAL;
3773}
3774EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3775
3776/**
3777 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3778 * @dev: the PCI device for which MWI is enabled
3779 *
3780 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3781 *
3782 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3783 */
3784int pci_set_mwi(struct pci_dev *dev)
3785{
3786#ifdef PCI_DISABLE_MWI
3787	return 0;
3788#else
3789	int rc;
3790	u16 cmd;
3791
3792	rc = pci_set_cacheline_size(dev);
3793	if (rc)
3794		return rc;
3795
3796	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3797	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3798		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3799		cmd |= PCI_COMMAND_INVALIDATE;
3800		pci_write_config_word(dev, PCI_COMMAND, cmd);
3801	}
3802	return 0;
3803#endif
3804}
3805EXPORT_SYMBOL(pci_set_mwi);
3806
3807/**
3808 * pcim_set_mwi - a device-managed pci_set_mwi()
3809 * @dev: the PCI device for which MWI is enabled
3810 *
3811 * Managed pci_set_mwi().
3812 *
3813 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3814 */
3815int pcim_set_mwi(struct pci_dev *dev)
3816{
3817	struct pci_devres *dr;
3818
3819	dr = find_pci_dr(dev);
3820	if (!dr)
3821		return -ENOMEM;
3822
3823	dr->mwi = 1;
3824	return pci_set_mwi(dev);
3825}
3826EXPORT_SYMBOL(pcim_set_mwi);
3827
3828/**
3829 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3830 * @dev: the PCI device for which MWI is enabled
3831 *
3832 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3833 * Callers are not required to check the return value.
3834 *
3835 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3836 */
3837int pci_try_set_mwi(struct pci_dev *dev)
3838{
3839#ifdef PCI_DISABLE_MWI
3840	return 0;
3841#else
3842	return pci_set_mwi(dev);
3843#endif
3844}
3845EXPORT_SYMBOL(pci_try_set_mwi);
3846
3847/**
3848 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3849 * @dev: the PCI device to disable
3850 *
3851 * Disables PCI Memory-Write-Invalidate transaction on the device
3852 */
3853void pci_clear_mwi(struct pci_dev *dev)
3854{
3855#ifndef PCI_DISABLE_MWI
3856	u16 cmd;
3857
3858	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3859	if (cmd & PCI_COMMAND_INVALIDATE) {
3860		cmd &= ~PCI_COMMAND_INVALIDATE;
3861		pci_write_config_word(dev, PCI_COMMAND, cmd);
3862	}
3863#endif
3864}
3865EXPORT_SYMBOL(pci_clear_mwi);
3866
3867/**
3868 * pci_intx - enables/disables PCI INTx for device dev
3869 * @pdev: the PCI device to operate on
3870 * @enable: boolean: whether to enable or disable PCI INTx
3871 *
3872 * Enables/disables PCI INTx for device dev
3873 */
3874void pci_intx(struct pci_dev *pdev, int enable)
3875{
3876	u16 pci_command, new;
3877
3878	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3879
3880	if (enable)
3881		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3882	else
3883		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3884
3885	if (new != pci_command) {
3886		struct pci_devres *dr;
3887
3888		pci_write_config_word(pdev, PCI_COMMAND, new);
3889
3890		dr = find_pci_dr(pdev);
3891		if (dr && !dr->restore_intx) {
3892			dr->restore_intx = 1;
3893			dr->orig_intx = !enable;
3894		}
3895	}
3896}
3897EXPORT_SYMBOL_GPL(pci_intx);
3898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3899static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3900{
3901	struct pci_bus *bus = dev->bus;
3902	bool mask_updated = true;
3903	u32 cmd_status_dword;
3904	u16 origcmd, newcmd;
3905	unsigned long flags;
3906	bool irq_pending;
3907
3908	/*
3909	 * We do a single dword read to retrieve both command and status.
3910	 * Document assumptions that make this possible.
3911	 */
3912	BUILD_BUG_ON(PCI_COMMAND % 4);
3913	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3914
3915	raw_spin_lock_irqsave(&pci_lock, flags);
3916
3917	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3918
3919	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3920
3921	/*
3922	 * Check interrupt status register to see whether our device
3923	 * triggered the interrupt (when masking) or the next IRQ is
3924	 * already pending (when unmasking).
3925	 */
3926	if (mask != irq_pending) {
3927		mask_updated = false;
3928		goto done;
3929	}
3930
3931	origcmd = cmd_status_dword;
3932	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3933	if (mask)
3934		newcmd |= PCI_COMMAND_INTX_DISABLE;
3935	if (newcmd != origcmd)
3936		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3937
3938done:
3939	raw_spin_unlock_irqrestore(&pci_lock, flags);
3940
3941	return mask_updated;
3942}
3943
3944/**
3945 * pci_check_and_mask_intx - mask INTx on pending interrupt
3946 * @dev: the PCI device to operate on
3947 *
3948 * Check if the device dev has its INTx line asserted, mask it and
3949 * return true in that case. False is returned if no interrupt was
3950 * pending.
3951 */
3952bool pci_check_and_mask_intx(struct pci_dev *dev)
3953{
3954	return pci_check_and_set_intx_mask(dev, true);
3955}
3956EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3957
3958/**
3959 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3960 * @dev: the PCI device to operate on
3961 *
3962 * Check if the device dev has its INTx line asserted, unmask it if not
3963 * and return true. False is returned and the mask remains active if
3964 * there was still an interrupt pending.
3965 */
3966bool pci_check_and_unmask_intx(struct pci_dev *dev)
3967{
3968	return pci_check_and_set_intx_mask(dev, false);
3969}
3970EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3971
3972/**
3973 * pci_wait_for_pending_transaction - waits for pending transaction
3974 * @dev: the PCI device to operate on
3975 *
3976 * Return 0 if transaction is pending 1 otherwise.
3977 */
3978int pci_wait_for_pending_transaction(struct pci_dev *dev)
3979{
3980	if (!pci_is_pcie(dev))
3981		return 1;
3982
3983	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3984				    PCI_EXP_DEVSTA_TRPND);
3985}
3986EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3987
3988static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
 
 
 
 
 
 
3989{
3990	int delay = 1;
3991	u32 id;
3992
3993	/*
3994	 * After reset, the device should not silently discard config
3995	 * requests, but it may still indicate that it needs more time by
3996	 * responding to them with CRS completions.  The Root Port will
3997	 * generally synthesize ~0 data to complete the read (except when
3998	 * CRS SV is enabled and the read was for the Vendor ID; in that
3999	 * case it synthesizes 0x0001 data).
4000	 *
4001	 * Wait for the device to return a non-CRS completion.  Read the
4002	 * Command register instead of Vendor ID so we don't have to
4003	 * contend with the CRS SV value.
4004	 */
4005	pci_read_config_dword(dev, PCI_COMMAND, &id);
4006	while (id == ~0) {
4007		if (delay > timeout) {
4008			pci_warn(dev, "not ready %dms after %s; giving up\n",
4009				 delay - 1, reset_type);
4010			return -ENOTTY;
4011		}
4012
4013		if (delay > 1000)
4014			pci_info(dev, "not ready %dms after %s; waiting\n",
4015				 delay - 1, reset_type);
4016
4017		msleep(delay);
4018		delay *= 2;
4019		pci_read_config_dword(dev, PCI_COMMAND, &id);
4020	}
4021
4022	if (delay > 1000)
4023		pci_info(dev, "ready %dms after %s\n", delay - 1,
4024			 reset_type);
4025
4026	return 0;
4027}
4028
4029/**
4030 * pcie_has_flr - check if a device supports function level resets
4031 * @dev:	device to check
4032 *
4033 * Returns true if the device advertises support for PCIe function level
4034 * resets.
4035 */
4036static bool pcie_has_flr(struct pci_dev *dev)
4037{
4038	u32 cap;
4039
4040	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4041		return false;
4042
4043	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4044	return cap & PCI_EXP_DEVCAP_FLR;
4045}
 
 
 
4046
4047/**
4048 * pcie_flr - initiate a PCIe function level reset
4049 * @dev:	device to reset
4050 *
4051 * Initiate a function level reset on @dev.  The caller should ensure the
4052 * device supports FLR before calling this function, e.g. by using the
4053 * pcie_has_flr() helper.
4054 */
4055int pcie_flr(struct pci_dev *dev)
4056{
4057	if (!pci_wait_for_pending_transaction(dev))
4058		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4059
4060	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4061
4062	/*
4063	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4064	 * 100ms, but may silently discard requests while the FLR is in
4065	 * progress.  Wait 100ms before trying to access the device.
4066	 */
4067	msleep(100);
4068
4069	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4070}
4071EXPORT_SYMBOL_GPL(pcie_flr);
4072
4073static int pci_af_flr(struct pci_dev *dev, int probe)
4074{
4075	int pos;
4076	u8 cap;
4077
4078	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4079	if (!pos)
4080		return -ENOTTY;
4081
4082	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4083		return -ENOTTY;
4084
4085	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4086	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4087		return -ENOTTY;
4088
4089	if (probe)
4090		return 0;
4091
4092	/*
4093	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4094	 * is used, so we use the conrol offset rather than status and shift
4095	 * the test bit to match.
4096	 */
4097	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4098				 PCI_AF_STATUS_TP << 8))
4099		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4100
4101	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4102
4103	/*
4104	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4105	 * updated 27 July 2006; a device must complete an FLR within
4106	 * 100ms, but may silently discard requests while the FLR is in
4107	 * progress.  Wait 100ms before trying to access the device.
4108	 */
4109	msleep(100);
4110
4111	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4112}
4113
4114/**
4115 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4116 * @dev: Device to reset.
4117 * @probe: If set, only check if the device can be reset this way.
4118 *
4119 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4120 * unset, it will be reinitialized internally when going from PCI_D3hot to
4121 * PCI_D0.  If that's the case and the device is not in a low-power state
4122 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4123 *
4124 * NOTE: This causes the caller to sleep for twice the device power transition
4125 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4126 * by default (i.e. unless the @dev's d3_delay field has a different value).
4127 * Moreover, only devices in D0 can be reset by this function.
4128 */
4129static int pci_pm_reset(struct pci_dev *dev, int probe)
4130{
4131	u16 csr;
4132
4133	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4134		return -ENOTTY;
4135
4136	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4137	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4138		return -ENOTTY;
4139
4140	if (probe)
4141		return 0;
4142
4143	if (dev->current_state != PCI_D0)
4144		return -EINVAL;
4145
4146	csr &= ~PCI_PM_CTRL_STATE_MASK;
4147	csr |= PCI_D3hot;
4148	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4149	pci_dev_d3_sleep(dev);
4150
4151	csr &= ~PCI_PM_CTRL_STATE_MASK;
4152	csr |= PCI_D0;
4153	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4154	pci_dev_d3_sleep(dev);
4155
4156	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4157}
4158
4159void pci_reset_secondary_bus(struct pci_dev *dev)
4160{
4161	u16 ctrl;
4162
4163	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4164	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4165	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4166
4167	/*
4168	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4169	 * this to 2ms to ensure that we meet the minimum requirement.
4170	 */
4171	msleep(2);
4172
4173	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4174	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4175
4176	/*
4177	 * Trhfa for conventional PCI is 2^25 clock cycles.
4178	 * Assuming a minimum 33MHz clock this results in a 1s
4179	 * delay before we can consider subordinate devices to
4180	 * be re-initialized.  PCIe has some ways to shorten this,
4181	 * but we don't make use of them yet.
4182	 */
4183	ssleep(1);
4184}
4185
4186void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4187{
4188	pci_reset_secondary_bus(dev);
4189}
4190
4191/**
4192 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4193 * @dev: Bridge device
4194 *
4195 * Use the bridge control register to assert reset on the secondary bus.
4196 * Devices on the secondary bus are left in power-on state.
4197 */
4198int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4199{
4200	pcibios_reset_secondary_bus(dev);
4201
4202	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4203}
4204EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4205
4206static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4207{
4208	struct pci_dev *pdev;
4209
4210	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4211	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4212		return -ENOTTY;
4213
4214	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4215		if (pdev != dev)
4216			return -ENOTTY;
4217
4218	if (probe)
4219		return 0;
4220
4221	pci_reset_bridge_secondary_bus(dev->bus->self);
4222
4223	return 0;
4224}
4225
4226static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4227{
4228	int rc = -ENOTTY;
4229
4230	if (!hotplug || !try_module_get(hotplug->ops->owner))
4231		return rc;
4232
4233	if (hotplug->ops->reset_slot)
4234		rc = hotplug->ops->reset_slot(hotplug, probe);
4235
4236	module_put(hotplug->ops->owner);
4237
4238	return rc;
4239}
4240
4241static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4242{
4243	struct pci_dev *pdev;
4244
4245	if (dev->subordinate || !dev->slot ||
4246	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4247		return -ENOTTY;
4248
4249	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4250		if (pdev != dev && pdev->slot == dev->slot)
4251			return -ENOTTY;
4252
4253	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4254}
4255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256static void pci_dev_lock(struct pci_dev *dev)
4257{
4258	pci_cfg_access_lock(dev);
4259	/* block PM suspend, driver probe, etc. */
4260	device_lock(&dev->dev);
4261}
4262
4263/* Return 1 on successful lock, 0 on contention */
4264static int pci_dev_trylock(struct pci_dev *dev)
4265{
4266	if (pci_cfg_access_trylock(dev)) {
4267		if (device_trylock(&dev->dev))
4268			return 1;
4269		pci_cfg_access_unlock(dev);
4270	}
4271
4272	return 0;
4273}
4274
4275static void pci_dev_unlock(struct pci_dev *dev)
4276{
4277	device_unlock(&dev->dev);
4278	pci_cfg_access_unlock(dev);
4279}
4280
4281static void pci_dev_save_and_disable(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
4282{
4283	const struct pci_error_handlers *err_handler =
4284			dev->driver ? dev->driver->err_handler : NULL;
 
 
 
4285
4286	/*
4287	 * dev->driver->err_handler->reset_prepare() is protected against
4288	 * races with ->remove() by the device lock, which must be held by
4289	 * the caller.
4290	 */
4291	if (err_handler && err_handler->reset_prepare)
4292		err_handler->reset_prepare(dev);
4293
4294	/*
4295	 * Wake-up device prior to save.  PM registers default to D0 after
4296	 * reset and a simple register restore doesn't reliably return
4297	 * to a non-D0 state anyway.
4298	 */
4299	pci_set_power_state(dev, PCI_D0);
4300
4301	pci_save_state(dev);
4302	/*
4303	 * Disable the device by clearing the Command register, except for
4304	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4305	 * BARs, but also prevents the device from being Bus Master, preventing
4306	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4307	 * compliant devices, INTx-disable prevents legacy interrupts.
4308	 */
4309	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4310}
4311
4312static void pci_dev_restore(struct pci_dev *dev)
4313{
4314	const struct pci_error_handlers *err_handler =
4315			dev->driver ? dev->driver->err_handler : NULL;
4316
4317	pci_restore_state(dev);
 
 
4318
4319	/*
4320	 * dev->driver->err_handler->reset_done() is protected against
4321	 * races with ->remove() by the device lock, which must be held by
4322	 * the caller.
4323	 */
4324	if (err_handler && err_handler->reset_done)
4325		err_handler->reset_done(dev);
 
 
 
 
 
 
4326}
4327
4328/**
4329 * __pci_reset_function_locked - reset a PCI device function while holding
4330 * the @dev mutex lock.
4331 * @dev: PCI device to reset
4332 *
4333 * Some devices allow an individual function to be reset without affecting
4334 * other functions in the same device.  The PCI device must be responsive
4335 * to PCI config space in order to use this function.
4336 *
4337 * The device function is presumed to be unused and the caller is holding
4338 * the device mutex lock when this function is called.
4339 * Resetting the device will make the contents of PCI configuration space
4340 * random, so any caller of this must be prepared to reinitialise the
4341 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4342 * etc.
4343 *
4344 * Returns 0 if the device function was successfully reset or negative if the
4345 * device doesn't support resetting a single function.
4346 */
4347int __pci_reset_function_locked(struct pci_dev *dev)
4348{
4349	int rc;
4350
4351	might_sleep();
4352
4353	/*
4354	 * A reset method returns -ENOTTY if it doesn't support this device
4355	 * and we should try the next method.
4356	 *
4357	 * If it returns 0 (success), we're finished.  If it returns any
4358	 * other error, we're also finished: this indicates that further
4359	 * reset mechanisms might be broken on the device.
4360	 */
4361	rc = pci_dev_specific_reset(dev, 0);
4362	if (rc != -ENOTTY)
4363		return rc;
4364	if (pcie_has_flr(dev)) {
4365		rc = pcie_flr(dev);
4366		if (rc != -ENOTTY)
4367			return rc;
4368	}
4369	rc = pci_af_flr(dev, 0);
4370	if (rc != -ENOTTY)
4371		return rc;
4372	rc = pci_pm_reset(dev, 0);
4373	if (rc != -ENOTTY)
4374		return rc;
4375	rc = pci_dev_reset_slot_function(dev, 0);
4376	if (rc != -ENOTTY)
4377		return rc;
4378	return pci_parent_bus_reset(dev, 0);
4379}
4380EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4381
4382/**
4383 * pci_probe_reset_function - check whether the device can be safely reset
 
4384 * @dev: PCI device to reset
4385 *
4386 * Some devices allow an individual function to be reset without affecting
4387 * other functions in the same device.  The PCI device must be responsive
4388 * to PCI config space in order to use this function.
4389 *
4390 * Returns 0 if the device function can be reset or negative if the
 
 
 
 
 
 
 
4391 * device doesn't support resetting a single function.
4392 */
4393int pci_probe_reset_function(struct pci_dev *dev)
4394{
4395	int rc;
4396
4397	might_sleep();
4398
4399	rc = pci_dev_specific_reset(dev, 1);
4400	if (rc != -ENOTTY)
4401		return rc;
4402	if (pcie_has_flr(dev))
4403		return 0;
4404	rc = pci_af_flr(dev, 1);
4405	if (rc != -ENOTTY)
4406		return rc;
4407	rc = pci_pm_reset(dev, 1);
4408	if (rc != -ENOTTY)
4409		return rc;
4410	rc = pci_dev_reset_slot_function(dev, 1);
4411	if (rc != -ENOTTY)
4412		return rc;
4413
4414	return pci_parent_bus_reset(dev, 1);
4415}
 
4416
4417/**
4418 * pci_reset_function - quiesce and reset a PCI device function
4419 * @dev: PCI device to reset
4420 *
4421 * Some devices allow an individual function to be reset without affecting
4422 * other functions in the same device.  The PCI device must be responsive
4423 * to PCI config space in order to use this function.
4424 *
4425 * This function does not just reset the PCI portion of a device, but
4426 * clears all the state associated with the device.  This function differs
4427 * from __pci_reset_function_locked() in that it saves and restores device state
4428 * over the reset and takes the PCI device lock.
4429 *
4430 * Returns 0 if the device function was successfully reset or negative if the
4431 * device doesn't support resetting a single function.
4432 */
4433int pci_reset_function(struct pci_dev *dev)
4434{
4435	int rc;
4436
4437	if (!dev->reset_fn)
4438		return -ENOTTY;
4439
4440	pci_dev_lock(dev);
4441	pci_dev_save_and_disable(dev);
4442
4443	rc = __pci_reset_function_locked(dev);
4444
4445	pci_dev_restore(dev);
4446	pci_dev_unlock(dev);
4447
4448	return rc;
4449}
4450EXPORT_SYMBOL_GPL(pci_reset_function);
4451
4452/**
4453 * pci_reset_function_locked - quiesce and reset a PCI device function
4454 * @dev: PCI device to reset
4455 *
4456 * Some devices allow an individual function to be reset without affecting
4457 * other functions in the same device.  The PCI device must be responsive
4458 * to PCI config space in order to use this function.
4459 *
4460 * This function does not just reset the PCI portion of a device, but
4461 * clears all the state associated with the device.  This function differs
4462 * from __pci_reset_function_locked() in that it saves and restores device state
4463 * over the reset.  It also differs from pci_reset_function() in that it
4464 * requires the PCI device lock to be held.
4465 *
4466 * Returns 0 if the device function was successfully reset or negative if the
4467 * device doesn't support resetting a single function.
4468 */
4469int pci_reset_function_locked(struct pci_dev *dev)
4470{
4471	int rc;
4472
4473	if (!dev->reset_fn)
4474		return -ENOTTY;
 
4475
4476	pci_dev_save_and_disable(dev);
4477
4478	rc = __pci_reset_function_locked(dev);
4479
4480	pci_dev_restore(dev);
4481
4482	return rc;
4483}
4484EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4485
4486/**
4487 * pci_try_reset_function - quiesce and reset a PCI device function
4488 * @dev: PCI device to reset
4489 *
4490 * Same as above, except return -EAGAIN if unable to lock device.
4491 */
4492int pci_try_reset_function(struct pci_dev *dev)
4493{
4494	int rc;
4495
4496	if (!dev->reset_fn)
4497		return -ENOTTY;
4498
4499	if (!pci_dev_trylock(dev))
4500		return -EAGAIN;
4501
4502	pci_dev_save_and_disable(dev);
4503	rc = __pci_reset_function_locked(dev);
 
 
 
 
 
 
4504	pci_dev_restore(dev);
4505	pci_dev_unlock(dev);
4506
4507	return rc;
4508}
4509EXPORT_SYMBOL_GPL(pci_try_reset_function);
4510
4511/* Do any devices on or below this bus prevent a bus reset? */
4512static bool pci_bus_resetable(struct pci_bus *bus)
4513{
4514	struct pci_dev *dev;
4515
4516
4517	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4518		return false;
4519
4520	list_for_each_entry(dev, &bus->devices, bus_list) {
4521		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4522		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4523			return false;
4524	}
4525
4526	return true;
4527}
4528
4529/* Lock devices from the top of the tree down */
4530static void pci_bus_lock(struct pci_bus *bus)
4531{
4532	struct pci_dev *dev;
4533
4534	list_for_each_entry(dev, &bus->devices, bus_list) {
4535		pci_dev_lock(dev);
4536		if (dev->subordinate)
4537			pci_bus_lock(dev->subordinate);
4538	}
4539}
4540
4541/* Unlock devices from the bottom of the tree up */
4542static void pci_bus_unlock(struct pci_bus *bus)
4543{
4544	struct pci_dev *dev;
4545
4546	list_for_each_entry(dev, &bus->devices, bus_list) {
4547		if (dev->subordinate)
4548			pci_bus_unlock(dev->subordinate);
4549		pci_dev_unlock(dev);
4550	}
4551}
4552
4553/* Return 1 on successful lock, 0 on contention */
4554static int pci_bus_trylock(struct pci_bus *bus)
4555{
4556	struct pci_dev *dev;
4557
4558	list_for_each_entry(dev, &bus->devices, bus_list) {
4559		if (!pci_dev_trylock(dev))
4560			goto unlock;
4561		if (dev->subordinate) {
4562			if (!pci_bus_trylock(dev->subordinate)) {
4563				pci_dev_unlock(dev);
4564				goto unlock;
4565			}
4566		}
4567	}
4568	return 1;
4569
4570unlock:
4571	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4572		if (dev->subordinate)
4573			pci_bus_unlock(dev->subordinate);
4574		pci_dev_unlock(dev);
4575	}
4576	return 0;
4577}
4578
4579/* Do any devices on or below this slot prevent a bus reset? */
4580static bool pci_slot_resetable(struct pci_slot *slot)
4581{
4582	struct pci_dev *dev;
4583
4584	if (slot->bus->self &&
4585	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4586		return false;
4587
4588	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4589		if (!dev->slot || dev->slot != slot)
4590			continue;
4591		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4592		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4593			return false;
4594	}
4595
4596	return true;
4597}
4598
4599/* Lock devices from the top of the tree down */
4600static void pci_slot_lock(struct pci_slot *slot)
4601{
4602	struct pci_dev *dev;
4603
4604	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605		if (!dev->slot || dev->slot != slot)
4606			continue;
4607		pci_dev_lock(dev);
4608		if (dev->subordinate)
4609			pci_bus_lock(dev->subordinate);
4610	}
4611}
4612
4613/* Unlock devices from the bottom of the tree up */
4614static void pci_slot_unlock(struct pci_slot *slot)
4615{
4616	struct pci_dev *dev;
4617
4618	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4619		if (!dev->slot || dev->slot != slot)
4620			continue;
4621		if (dev->subordinate)
4622			pci_bus_unlock(dev->subordinate);
4623		pci_dev_unlock(dev);
4624	}
4625}
4626
4627/* Return 1 on successful lock, 0 on contention */
4628static int pci_slot_trylock(struct pci_slot *slot)
4629{
4630	struct pci_dev *dev;
4631
4632	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4633		if (!dev->slot || dev->slot != slot)
4634			continue;
4635		if (!pci_dev_trylock(dev))
4636			goto unlock;
4637		if (dev->subordinate) {
4638			if (!pci_bus_trylock(dev->subordinate)) {
4639				pci_dev_unlock(dev);
4640				goto unlock;
4641			}
4642		}
4643	}
4644	return 1;
4645
4646unlock:
4647	list_for_each_entry_continue_reverse(dev,
4648					     &slot->bus->devices, bus_list) {
4649		if (!dev->slot || dev->slot != slot)
4650			continue;
4651		if (dev->subordinate)
4652			pci_bus_unlock(dev->subordinate);
4653		pci_dev_unlock(dev);
4654	}
4655	return 0;
4656}
4657
4658/* Save and disable devices from the top of the tree down */
4659static void pci_bus_save_and_disable(struct pci_bus *bus)
4660{
4661	struct pci_dev *dev;
4662
4663	list_for_each_entry(dev, &bus->devices, bus_list) {
4664		pci_dev_lock(dev);
4665		pci_dev_save_and_disable(dev);
4666		pci_dev_unlock(dev);
4667		if (dev->subordinate)
4668			pci_bus_save_and_disable(dev->subordinate);
4669	}
4670}
4671
4672/*
4673 * Restore devices from top of the tree down - parent bridges need to be
4674 * restored before we can get to subordinate devices.
4675 */
4676static void pci_bus_restore(struct pci_bus *bus)
4677{
4678	struct pci_dev *dev;
4679
4680	list_for_each_entry(dev, &bus->devices, bus_list) {
4681		pci_dev_lock(dev);
4682		pci_dev_restore(dev);
4683		pci_dev_unlock(dev);
4684		if (dev->subordinate)
4685			pci_bus_restore(dev->subordinate);
4686	}
4687}
4688
4689/* Save and disable devices from the top of the tree down */
4690static void pci_slot_save_and_disable(struct pci_slot *slot)
4691{
4692	struct pci_dev *dev;
4693
4694	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695		if (!dev->slot || dev->slot != slot)
4696			continue;
4697		pci_dev_save_and_disable(dev);
4698		if (dev->subordinate)
4699			pci_bus_save_and_disable(dev->subordinate);
4700	}
4701}
4702
4703/*
4704 * Restore devices from top of the tree down - parent bridges need to be
4705 * restored before we can get to subordinate devices.
4706 */
4707static void pci_slot_restore(struct pci_slot *slot)
4708{
4709	struct pci_dev *dev;
4710
4711	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4712		if (!dev->slot || dev->slot != slot)
4713			continue;
4714		pci_dev_lock(dev);
4715		pci_dev_restore(dev);
4716		pci_dev_unlock(dev);
4717		if (dev->subordinate)
4718			pci_bus_restore(dev->subordinate);
4719	}
4720}
4721
4722static int pci_slot_reset(struct pci_slot *slot, int probe)
4723{
4724	int rc;
4725
4726	if (!slot || !pci_slot_resetable(slot))
4727		return -ENOTTY;
4728
4729	if (!probe)
4730		pci_slot_lock(slot);
4731
4732	might_sleep();
4733
4734	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4735
4736	if (!probe)
4737		pci_slot_unlock(slot);
4738
4739	return rc;
4740}
4741
4742/**
4743 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4744 * @slot: PCI slot to probe
4745 *
4746 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4747 */
4748int pci_probe_reset_slot(struct pci_slot *slot)
4749{
4750	return pci_slot_reset(slot, 1);
4751}
4752EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4753
4754/**
4755 * pci_reset_slot - reset a PCI slot
4756 * @slot: PCI slot to reset
4757 *
4758 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4759 * independent of other slots.  For instance, some slots may support slot power
4760 * control.  In the case of a 1:1 bus to slot architecture, this function may
4761 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4762 * Generally a slot reset should be attempted before a bus reset.  All of the
4763 * function of the slot and any subordinate buses behind the slot are reset
4764 * through this function.  PCI config space of all devices in the slot and
4765 * behind the slot is saved before and restored after reset.
4766 *
4767 * Return 0 on success, non-zero on error.
4768 */
4769int pci_reset_slot(struct pci_slot *slot)
4770{
4771	int rc;
4772
4773	rc = pci_slot_reset(slot, 1);
4774	if (rc)
4775		return rc;
4776
4777	pci_slot_save_and_disable(slot);
4778
4779	rc = pci_slot_reset(slot, 0);
4780
4781	pci_slot_restore(slot);
4782
4783	return rc;
4784}
4785EXPORT_SYMBOL_GPL(pci_reset_slot);
4786
4787/**
4788 * pci_try_reset_slot - Try to reset a PCI slot
4789 * @slot: PCI slot to reset
4790 *
4791 * Same as above except return -EAGAIN if the slot cannot be locked
4792 */
4793int pci_try_reset_slot(struct pci_slot *slot)
4794{
4795	int rc;
4796
4797	rc = pci_slot_reset(slot, 1);
4798	if (rc)
4799		return rc;
4800
4801	pci_slot_save_and_disable(slot);
4802
4803	if (pci_slot_trylock(slot)) {
4804		might_sleep();
4805		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4806		pci_slot_unlock(slot);
4807	} else
4808		rc = -EAGAIN;
4809
4810	pci_slot_restore(slot);
4811
4812	return rc;
4813}
4814EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4815
4816static int pci_bus_reset(struct pci_bus *bus, int probe)
4817{
4818	if (!bus->self || !pci_bus_resetable(bus))
4819		return -ENOTTY;
4820
4821	if (probe)
4822		return 0;
4823
4824	pci_bus_lock(bus);
4825
4826	might_sleep();
4827
4828	pci_reset_bridge_secondary_bus(bus->self);
4829
4830	pci_bus_unlock(bus);
4831
4832	return 0;
4833}
4834
4835/**
4836 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4837 * @bus: PCI bus to probe
4838 *
4839 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4840 */
4841int pci_probe_reset_bus(struct pci_bus *bus)
4842{
4843	return pci_bus_reset(bus, 1);
4844}
4845EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4846
4847/**
4848 * pci_reset_bus - reset a PCI bus
4849 * @bus: top level PCI bus to reset
4850 *
4851 * Do a bus reset on the given bus and any subordinate buses, saving
4852 * and restoring state of all devices.
4853 *
4854 * Return 0 on success, non-zero on error.
4855 */
4856int pci_reset_bus(struct pci_bus *bus)
4857{
4858	int rc;
4859
4860	rc = pci_bus_reset(bus, 1);
4861	if (rc)
4862		return rc;
4863
4864	pci_bus_save_and_disable(bus);
4865
4866	rc = pci_bus_reset(bus, 0);
4867
4868	pci_bus_restore(bus);
4869
4870	return rc;
4871}
4872EXPORT_SYMBOL_GPL(pci_reset_bus);
4873
4874/**
4875 * pci_try_reset_bus - Try to reset a PCI bus
4876 * @bus: top level PCI bus to reset
4877 *
4878 * Same as above except return -EAGAIN if the bus cannot be locked
4879 */
4880int pci_try_reset_bus(struct pci_bus *bus)
4881{
4882	int rc;
4883
4884	rc = pci_bus_reset(bus, 1);
4885	if (rc)
4886		return rc;
4887
4888	pci_bus_save_and_disable(bus);
4889
4890	if (pci_bus_trylock(bus)) {
4891		might_sleep();
4892		pci_reset_bridge_secondary_bus(bus->self);
4893		pci_bus_unlock(bus);
4894	} else
4895		rc = -EAGAIN;
4896
4897	pci_bus_restore(bus);
4898
4899	return rc;
4900}
4901EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4902
4903/**
4904 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4905 * @dev: PCI device to query
4906 *
4907 * Returns mmrbc: maximum designed memory read count in bytes
4908 *    or appropriate error value.
4909 */
4910int pcix_get_max_mmrbc(struct pci_dev *dev)
4911{
4912	int cap;
4913	u32 stat;
4914
4915	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4916	if (!cap)
4917		return -EINVAL;
4918
4919	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4920		return -EINVAL;
4921
4922	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4923}
4924EXPORT_SYMBOL(pcix_get_max_mmrbc);
4925
4926/**
4927 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4928 * @dev: PCI device to query
4929 *
4930 * Returns mmrbc: maximum memory read count in bytes
4931 *    or appropriate error value.
4932 */
4933int pcix_get_mmrbc(struct pci_dev *dev)
4934{
4935	int cap;
4936	u16 cmd;
4937
4938	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4939	if (!cap)
4940		return -EINVAL;
4941
4942	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4943		return -EINVAL;
4944
4945	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4946}
4947EXPORT_SYMBOL(pcix_get_mmrbc);
4948
4949/**
4950 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4951 * @dev: PCI device to query
4952 * @mmrbc: maximum memory read count in bytes
4953 *    valid values are 512, 1024, 2048, 4096
4954 *
4955 * If possible sets maximum memory read byte count, some bridges have erratas
4956 * that prevent this.
4957 */
4958int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4959{
4960	int cap;
4961	u32 stat, v, o;
4962	u16 cmd;
4963
4964	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4965		return -EINVAL;
4966
4967	v = ffs(mmrbc) - 10;
4968
4969	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4970	if (!cap)
4971		return -EINVAL;
4972
4973	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4974		return -EINVAL;
4975
4976	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4977		return -E2BIG;
4978
4979	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4980		return -EINVAL;
4981
4982	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4983	if (o != v) {
4984		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4985			return -EIO;
4986
4987		cmd &= ~PCI_X_CMD_MAX_READ;
4988		cmd |= v << 2;
4989		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4990			return -EIO;
4991	}
4992	return 0;
4993}
4994EXPORT_SYMBOL(pcix_set_mmrbc);
4995
4996/**
4997 * pcie_get_readrq - get PCI Express read request size
4998 * @dev: PCI device to query
4999 *
5000 * Returns maximum memory read request in bytes
5001 *    or appropriate error value.
5002 */
5003int pcie_get_readrq(struct pci_dev *dev)
5004{
5005	u16 ctl;
5006
5007	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5008
5009	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5010}
5011EXPORT_SYMBOL(pcie_get_readrq);
5012
5013/**
5014 * pcie_set_readrq - set PCI Express maximum memory read request
5015 * @dev: PCI device to query
5016 * @rq: maximum memory read count in bytes
5017 *    valid values are 128, 256, 512, 1024, 2048, 4096
5018 *
5019 * If possible sets maximum memory read request in bytes
5020 */
5021int pcie_set_readrq(struct pci_dev *dev, int rq)
5022{
5023	u16 v;
5024
5025	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5026		return -EINVAL;
5027
5028	/*
5029	 * If using the "performance" PCIe config, we clamp the
5030	 * read rq size to the max packet size to prevent the
5031	 * host bridge generating requests larger than we can
5032	 * cope with
5033	 */
5034	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5035		int mps = pcie_get_mps(dev);
5036
5037		if (mps < rq)
5038			rq = mps;
5039	}
5040
5041	v = (ffs(rq) - 8) << 12;
5042
5043	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5044						  PCI_EXP_DEVCTL_READRQ, v);
5045}
5046EXPORT_SYMBOL(pcie_set_readrq);
5047
5048/**
5049 * pcie_get_mps - get PCI Express maximum payload size
5050 * @dev: PCI device to query
5051 *
5052 * Returns maximum payload size in bytes
5053 */
5054int pcie_get_mps(struct pci_dev *dev)
5055{
5056	u16 ctl;
5057
5058	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5059
5060	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5061}
5062EXPORT_SYMBOL(pcie_get_mps);
5063
5064/**
5065 * pcie_set_mps - set PCI Express maximum payload size
5066 * @dev: PCI device to query
5067 * @mps: maximum payload size in bytes
5068 *    valid values are 128, 256, 512, 1024, 2048, 4096
5069 *
5070 * If possible sets maximum payload size
5071 */
5072int pcie_set_mps(struct pci_dev *dev, int mps)
5073{
5074	u16 v;
5075
5076	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5077		return -EINVAL;
5078
5079	v = ffs(mps) - 8;
5080	if (v > dev->pcie_mpss)
5081		return -EINVAL;
5082	v <<= 5;
5083
5084	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5085						  PCI_EXP_DEVCTL_PAYLOAD, v);
5086}
5087EXPORT_SYMBOL(pcie_set_mps);
5088
5089/**
5090 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5091 * @dev: PCI device to query
5092 * @speed: storage for minimum speed
5093 * @width: storage for minimum width
5094 *
5095 * This function will walk up the PCI device chain and determine the minimum
5096 * link width and speed of the device.
5097 */
5098int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5099			  enum pcie_link_width *width)
5100{
5101	int ret;
5102
5103	*speed = PCI_SPEED_UNKNOWN;
5104	*width = PCIE_LNK_WIDTH_UNKNOWN;
5105
5106	while (dev) {
5107		u16 lnksta;
5108		enum pci_bus_speed next_speed;
5109		enum pcie_link_width next_width;
5110
5111		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5112		if (ret)
5113			return ret;
5114
5115		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5116		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5117			PCI_EXP_LNKSTA_NLW_SHIFT;
5118
5119		if (next_speed < *speed)
5120			*speed = next_speed;
5121
5122		if (next_width < *width)
5123			*width = next_width;
5124
5125		dev = dev->bus->self;
5126	}
5127
5128	return 0;
5129}
5130EXPORT_SYMBOL(pcie_get_minimum_link);
5131
5132/**
5133 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5134 *			      device and its bandwidth limitation
5135 * @dev: PCI device to query
5136 * @limiting_dev: storage for device causing the bandwidth limitation
5137 * @speed: storage for speed of limiting device
5138 * @width: storage for width of limiting device
5139 *
5140 * Walk up the PCI device chain and find the point where the minimum
5141 * bandwidth is available.  Return the bandwidth available there and (if
5142 * limiting_dev, speed, and width pointers are supplied) information about
5143 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5144 * raw bandwidth.
5145 */
5146u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5147			     enum pci_bus_speed *speed,
5148			     enum pcie_link_width *width)
5149{
5150	u16 lnksta;
5151	enum pci_bus_speed next_speed;
5152	enum pcie_link_width next_width;
5153	u32 bw, next_bw;
5154
5155	if (speed)
5156		*speed = PCI_SPEED_UNKNOWN;
5157	if (width)
5158		*width = PCIE_LNK_WIDTH_UNKNOWN;
5159
5160	bw = 0;
5161
5162	while (dev) {
5163		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5164
5165		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5166		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5167			PCI_EXP_LNKSTA_NLW_SHIFT;
5168
5169		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5170
5171		/* Check if current device limits the total bandwidth */
5172		if (!bw || next_bw <= bw) {
5173			bw = next_bw;
5174
5175			if (limiting_dev)
5176				*limiting_dev = dev;
5177			if (speed)
5178				*speed = next_speed;
5179			if (width)
5180				*width = next_width;
5181		}
5182
5183		dev = pci_upstream_bridge(dev);
5184	}
5185
5186	return bw;
5187}
5188EXPORT_SYMBOL(pcie_bandwidth_available);
5189
5190/**
5191 * pcie_get_speed_cap - query for the PCI device's link speed capability
5192 * @dev: PCI device to query
5193 *
5194 * Query the PCI device speed capability.  Return the maximum link speed
5195 * supported by the device.
5196 */
5197enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5198{
5199	u32 lnkcap2, lnkcap;
5200
5201	/*
5202	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5203	 * Speeds Vector in Link Capabilities 2 when supported, falling
5204	 * back to Max Link Speed in Link Capabilities otherwise.
5205	 */
5206	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5207	if (lnkcap2) { /* PCIe r3.0-compliant */
5208		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5209			return PCIE_SPEED_16_0GT;
5210		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5211			return PCIE_SPEED_8_0GT;
5212		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5213			return PCIE_SPEED_5_0GT;
5214		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5215			return PCIE_SPEED_2_5GT;
5216		return PCI_SPEED_UNKNOWN;
5217	}
5218
5219	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5220	if (lnkcap) {
5221		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5222			return PCIE_SPEED_16_0GT;
5223		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5224			return PCIE_SPEED_8_0GT;
5225		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5226			return PCIE_SPEED_5_0GT;
5227		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5228			return PCIE_SPEED_2_5GT;
5229	}
5230
5231	return PCI_SPEED_UNKNOWN;
5232}
5233
5234/**
5235 * pcie_get_width_cap - query for the PCI device's link width capability
5236 * @dev: PCI device to query
5237 *
5238 * Query the PCI device width capability.  Return the maximum link width
5239 * supported by the device.
5240 */
5241enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5242{
5243	u32 lnkcap;
5244
5245	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5246	if (lnkcap)
5247		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5248
5249	return PCIE_LNK_WIDTH_UNKNOWN;
5250}
5251
5252/**
5253 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5254 * @dev: PCI device
5255 * @speed: storage for link speed
5256 * @width: storage for link width
5257 *
5258 * Calculate a PCI device's link bandwidth by querying for its link speed
5259 * and width, multiplying them, and applying encoding overhead.  The result
5260 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5261 */
5262u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5263			   enum pcie_link_width *width)
5264{
5265	*speed = pcie_get_speed_cap(dev);
5266	*width = pcie_get_width_cap(dev);
5267
5268	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5269		return 0;
5270
5271	return *width * PCIE_SPEED2MBS_ENC(*speed);
5272}
5273
5274/**
5275 * pcie_print_link_status - Report the PCI device's link speed and width
5276 * @dev: PCI device to query
5277 *
5278 * Report the available bandwidth at the device.  If this is less than the
5279 * device is capable of, report the device's maximum possible bandwidth and
5280 * the upstream link that limits its performance to less than that.
5281 */
5282void pcie_print_link_status(struct pci_dev *dev)
5283{
5284	enum pcie_link_width width, width_cap;
5285	enum pci_bus_speed speed, speed_cap;
5286	struct pci_dev *limiting_dev = NULL;
5287	u32 bw_avail, bw_cap;
5288
5289	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5290	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5291
5292	if (bw_avail >= bw_cap)
5293		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5294			 bw_cap / 1000, bw_cap % 1000,
5295			 PCIE_SPEED2STR(speed_cap), width_cap);
5296	else
5297		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5298			 bw_avail / 1000, bw_avail % 1000,
5299			 PCIE_SPEED2STR(speed), width,
5300			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5301			 bw_cap / 1000, bw_cap % 1000,
5302			 PCIE_SPEED2STR(speed_cap), width_cap);
5303}
5304EXPORT_SYMBOL(pcie_print_link_status);
5305
5306/**
5307 * pci_select_bars - Make BAR mask from the type of resource
5308 * @dev: the PCI device for which BAR mask is made
5309 * @flags: resource type mask to be selected
5310 *
5311 * This helper routine makes bar mask from the type of resource.
5312 */
5313int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5314{
5315	int i, bars = 0;
5316	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5317		if (pci_resource_flags(dev, i) & flags)
5318			bars |= (1 << i);
5319	return bars;
5320}
5321EXPORT_SYMBOL(pci_select_bars);
5322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323/* Some architectures require additional programming to enable VGA */
5324static arch_set_vga_state_t arch_set_vga_state;
5325
5326void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5327{
5328	arch_set_vga_state = func;	/* NULL disables */
5329}
5330
5331static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5332				  unsigned int command_bits, u32 flags)
5333{
5334	if (arch_set_vga_state)
5335		return arch_set_vga_state(dev, decode, command_bits,
5336						flags);
5337	return 0;
5338}
5339
5340/**
5341 * pci_set_vga_state - set VGA decode state on device and parents if requested
5342 * @dev: the PCI device
5343 * @decode: true = enable decoding, false = disable decoding
5344 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5345 * @flags: traverse ancestors and change bridges
5346 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5347 */
5348int pci_set_vga_state(struct pci_dev *dev, bool decode,
5349		      unsigned int command_bits, u32 flags)
5350{
5351	struct pci_bus *bus;
5352	struct pci_dev *bridge;
5353	u16 cmd;
5354	int rc;
5355
5356	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5357
5358	/* ARCH specific VGA enables */
5359	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5360	if (rc)
5361		return rc;
5362
5363	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5364		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5365		if (decode == true)
5366			cmd |= command_bits;
5367		else
5368			cmd &= ~command_bits;
5369		pci_write_config_word(dev, PCI_COMMAND, cmd);
5370	}
5371
5372	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5373		return 0;
5374
5375	bus = dev->bus;
5376	while (bus) {
5377		bridge = bus->self;
5378		if (bridge) {
5379			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5380					     &cmd);
5381			if (decode == true)
5382				cmd |= PCI_BRIDGE_CTL_VGA;
5383			else
5384				cmd &= ~PCI_BRIDGE_CTL_VGA;
5385			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5386					      cmd);
5387		}
5388		bus = bus->parent;
5389	}
5390	return 0;
5391}
5392
5393/**
5394 * pci_add_dma_alias - Add a DMA devfn alias for a device
5395 * @dev: the PCI device for which alias is added
5396 * @devfn: alias slot and function
5397 *
5398 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5399 * It should be called early, preferably as PCI fixup header quirk.
5400 */
5401void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5402{
5403	if (!dev->dma_alias_mask)
5404		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5405					      sizeof(long), GFP_KERNEL);
5406	if (!dev->dma_alias_mask) {
5407		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5408		return;
5409	}
5410
5411	set_bit(devfn, dev->dma_alias_mask);
5412	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5413		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5414}
5415
5416bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5417{
5418	return (dev1->dma_alias_mask &&
5419		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5420	       (dev2->dma_alias_mask &&
5421		test_bit(dev1->devfn, dev2->dma_alias_mask));
5422}
5423
5424bool pci_device_is_present(struct pci_dev *pdev)
5425{
5426	u32 v;
5427
5428	if (pci_dev_is_disconnected(pdev))
5429		return false;
5430	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5431}
5432EXPORT_SYMBOL_GPL(pci_device_is_present);
5433
5434void pci_ignore_hotplug(struct pci_dev *dev)
5435{
5436	struct pci_dev *bridge = dev->bus->self;
5437
5438	dev->ignore_hotplug = 1;
5439	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5440	if (bridge)
5441		bridge->ignore_hotplug = 1;
5442}
5443EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5444
5445resource_size_t __weak pcibios_default_alignment(void)
5446{
5447	return 0;
5448}
5449
5450#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5451static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5452static DEFINE_SPINLOCK(resource_alignment_lock);
5453
5454/**
5455 * pci_specified_resource_alignment - get resource alignment specified by user.
5456 * @dev: the PCI device to get
5457 * @resize: whether or not to change resources' size when reassigning alignment
5458 *
5459 * RETURNS: Resource alignment if it is specified.
5460 *          Zero if it is not specified.
5461 */
5462static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5463							bool *resize)
5464{
5465	int seg, bus, slot, func, align_order, count;
5466	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5467	resource_size_t align = pcibios_default_alignment();
5468	char *p;
5469
5470	spin_lock(&resource_alignment_lock);
5471	p = resource_alignment_param;
5472	if (!*p && !align)
5473		goto out;
5474	if (pci_has_flag(PCI_PROBE_ONLY)) {
5475		align = 0;
5476		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5477		goto out;
5478	}
5479
5480	while (*p) {
5481		count = 0;
5482		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5483							p[count] == '@') {
5484			p += count + 1;
5485		} else {
5486			align_order = -1;
5487		}
5488		if (strncmp(p, "pci:", 4) == 0) {
5489			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5490			p += 4;
5491			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5492				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5493				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5494					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5495						p);
5496					break;
5497				}
5498				subsystem_vendor = subsystem_device = 0;
5499			}
5500			p += count;
5501			if ((!vendor || (vendor == dev->vendor)) &&
5502				(!device || (device == dev->device)) &&
5503				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5504				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5505				*resize = true;
5506				if (align_order == -1)
5507					align = PAGE_SIZE;
5508				else
5509					align = 1 << align_order;
5510				/* Found */
5511				break;
5512			}
5513		}
5514		else {
5515			if (sscanf(p, "%x:%x:%x.%x%n",
5516				&seg, &bus, &slot, &func, &count) != 4) {
5517				seg = 0;
5518				if (sscanf(p, "%x:%x.%x%n",
5519						&bus, &slot, &func, &count) != 3) {
5520					/* Invalid format */
5521					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5522						p);
5523					break;
5524				}
5525			}
5526			p += count;
5527			if (seg == pci_domain_nr(dev->bus) &&
5528				bus == dev->bus->number &&
5529				slot == PCI_SLOT(dev->devfn) &&
5530				func == PCI_FUNC(dev->devfn)) {
5531				*resize = true;
5532				if (align_order == -1)
5533					align = PAGE_SIZE;
5534				else
5535					align = 1 << align_order;
5536				/* Found */
5537				break;
5538			}
5539		}
5540		if (*p != ';' && *p != ',') {
5541			/* End of param or invalid format */
5542			break;
5543		}
5544		p++;
5545	}
5546out:
5547	spin_unlock(&resource_alignment_lock);
5548	return align;
5549}
5550
5551static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5552					   resource_size_t align, bool resize)
5553{
5554	struct resource *r = &dev->resource[bar];
5555	resource_size_t size;
5556
5557	if (!(r->flags & IORESOURCE_MEM))
5558		return;
5559
5560	if (r->flags & IORESOURCE_PCI_FIXED) {
5561		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5562			 bar, r, (unsigned long long)align);
5563		return;
5564	}
5565
5566	size = resource_size(r);
5567	if (size >= align)
5568		return;
5569
5570	/*
5571	 * Increase the alignment of the resource.  There are two ways we
5572	 * can do this:
5573	 *
5574	 * 1) Increase the size of the resource.  BARs are aligned on their
5575	 *    size, so when we reallocate space for this resource, we'll
5576	 *    allocate it with the larger alignment.  This also prevents
5577	 *    assignment of any other BARs inside the alignment region, so
5578	 *    if we're requesting page alignment, this means no other BARs
5579	 *    will share the page.
5580	 *
5581	 *    The disadvantage is that this makes the resource larger than
5582	 *    the hardware BAR, which may break drivers that compute things
5583	 *    based on the resource size, e.g., to find registers at a
5584	 *    fixed offset before the end of the BAR.
5585	 *
5586	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5587	 *    set r->start to the desired alignment.  By itself this
5588	 *    doesn't prevent other BARs being put inside the alignment
5589	 *    region, but if we realign *every* resource of every device in
5590	 *    the system, none of them will share an alignment region.
5591	 *
5592	 * When the user has requested alignment for only some devices via
5593	 * the "pci=resource_alignment" argument, "resize" is true and we
5594	 * use the first method.  Otherwise we assume we're aligning all
5595	 * devices and we use the second.
5596	 */
5597
5598	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5599		 bar, r, (unsigned long long)align);
5600
5601	if (resize) {
5602		r->start = 0;
5603		r->end = align - 1;
5604	} else {
5605		r->flags &= ~IORESOURCE_SIZEALIGN;
5606		r->flags |= IORESOURCE_STARTALIGN;
5607		r->start = align;
5608		r->end = r->start + size - 1;
5609	}
5610	r->flags |= IORESOURCE_UNSET;
5611}
5612
5613/*
5614 * This function disables memory decoding and releases memory resources
5615 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5616 * It also rounds up size to specified alignment.
5617 * Later on, the kernel will assign page-aligned memory resource back
5618 * to the device.
5619 */
5620void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5621{
5622	int i;
5623	struct resource *r;
5624	resource_size_t align;
5625	u16 command;
5626	bool resize = false;
5627
5628	/*
5629	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5630	 * 3.4.1.11.  Their resources are allocated from the space
5631	 * described by the VF BARx register in the PF's SR-IOV capability.
5632	 * We can't influence their alignment here.
5633	 */
5634	if (dev->is_virtfn)
5635		return;
5636
5637	/* check if specified PCI is target device to reassign */
5638	align = pci_specified_resource_alignment(dev, &resize);
5639	if (!align)
5640		return;
5641
5642	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5643	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5644		pci_warn(dev, "Can't reassign resources to host bridge\n");
 
5645		return;
5646	}
5647
 
 
5648	pci_read_config_word(dev, PCI_COMMAND, &command);
5649	command &= ~PCI_COMMAND_MEMORY;
5650	pci_write_config_word(dev, PCI_COMMAND, command);
5651
5652	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5653		pci_request_resource_alignment(dev, i, align, resize);
5654
5655	/*
5656	 * Need to disable bridge's resource window,
 
 
 
 
 
 
 
 
 
 
 
5657	 * to enable the kernel to reassign new resource
5658	 * window later on.
5659	 */
5660	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5661	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5662		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5663			r = &dev->resource[i];
5664			if (!(r->flags & IORESOURCE_MEM))
5665				continue;
5666			r->flags |= IORESOURCE_UNSET;
5667			r->end = resource_size(r) - 1;
5668			r->start = 0;
5669		}
5670		pci_disable_bridge_window(dev);
5671	}
5672}
5673
5674static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5675{
5676	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5677		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5678	spin_lock(&resource_alignment_lock);
5679	strncpy(resource_alignment_param, buf, count);
5680	resource_alignment_param[count] = '\0';
5681	spin_unlock(&resource_alignment_lock);
5682	return count;
5683}
5684
5685static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5686{
5687	size_t count;
5688	spin_lock(&resource_alignment_lock);
5689	count = snprintf(buf, size, "%s", resource_alignment_param);
5690	spin_unlock(&resource_alignment_lock);
5691	return count;
5692}
5693
5694static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5695{
5696	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5697}
5698
5699static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5700					const char *buf, size_t count)
5701{
5702	return pci_set_resource_alignment_param(buf, count);
5703}
5704
5705static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5706					pci_resource_alignment_store);
5707
5708static int __init pci_resource_alignment_sysfs_init(void)
5709{
5710	return bus_create_file(&pci_bus_type,
5711					&bus_attr_resource_alignment);
5712}
5713late_initcall(pci_resource_alignment_sysfs_init);
5714
5715static void pci_no_domains(void)
5716{
5717#ifdef CONFIG_PCI_DOMAINS
5718	pci_domains_supported = 0;
5719#endif
5720}
5721
5722#ifdef CONFIG_PCI_DOMAINS
5723static atomic_t __domain_nr = ATOMIC_INIT(-1);
5724
5725int pci_get_new_domain_nr(void)
5726{
5727	return atomic_inc_return(&__domain_nr);
5728}
5729
5730#ifdef CONFIG_PCI_DOMAINS_GENERIC
5731static int of_pci_bus_find_domain_nr(struct device *parent)
5732{
5733	static int use_dt_domains = -1;
5734	int domain = -1;
5735
5736	if (parent)
5737		domain = of_get_pci_domain_nr(parent->of_node);
5738	/*
5739	 * Check DT domain and use_dt_domains values.
5740	 *
5741	 * If DT domain property is valid (domain >= 0) and
5742	 * use_dt_domains != 0, the DT assignment is valid since this means
5743	 * we have not previously allocated a domain number by using
5744	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5745	 * 1, to indicate that we have just assigned a domain number from
5746	 * DT.
5747	 *
5748	 * If DT domain property value is not valid (ie domain < 0), and we
5749	 * have not previously assigned a domain number from DT
5750	 * (use_dt_domains != 1) we should assign a domain number by
5751	 * using the:
5752	 *
5753	 * pci_get_new_domain_nr()
5754	 *
5755	 * API and update the use_dt_domains value to keep track of method we
5756	 * are using to assign domain numbers (use_dt_domains = 0).
5757	 *
5758	 * All other combinations imply we have a platform that is trying
5759	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5760	 * which is a recipe for domain mishandling and it is prevented by
5761	 * invalidating the domain value (domain = -1) and printing a
5762	 * corresponding error.
5763	 */
5764	if (domain >= 0 && use_dt_domains) {
5765		use_dt_domains = 1;
5766	} else if (domain < 0 && use_dt_domains != 1) {
5767		use_dt_domains = 0;
5768		domain = pci_get_new_domain_nr();
5769	} else {
5770		if (parent)
5771			pr_err("Node %pOF has ", parent->of_node);
5772		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5773		domain = -1;
5774	}
5775
5776	return domain;
5777}
5778
5779int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5780{
5781	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5782			       acpi_pci_bus_find_domain_nr(bus);
5783}
5784#endif
5785#endif
5786
5787/**
5788 * pci_ext_cfg_avail - can we access extended PCI config space?
5789 *
5790 * Returns 1 if we can access PCI extended config space (offsets
5791 * greater than 0xff). This is the default implementation. Architecture
5792 * implementations can override this.
5793 */
5794int __weak pci_ext_cfg_avail(void)
5795{
5796	return 1;
5797}
5798
5799void __weak pci_fixup_cardbus(struct pci_bus *bus)
5800{
5801}
5802EXPORT_SYMBOL(pci_fixup_cardbus);
5803
5804static int __init pci_setup(char *str)
5805{
5806	while (str) {
5807		char *k = strchr(str, ',');
5808		if (k)
5809			*k++ = 0;
5810		if (*str && (str = pcibios_setup(str)) && *str) {
5811			if (!strcmp(str, "nomsi")) {
5812				pci_no_msi();
5813			} else if (!strcmp(str, "noaer")) {
5814				pci_no_aer();
5815			} else if (!strncmp(str, "realloc=", 8)) {
5816				pci_realloc_get_opt(str + 8);
5817			} else if (!strncmp(str, "realloc", 7)) {
5818				pci_realloc_get_opt("on");
5819			} else if (!strcmp(str, "nodomains")) {
5820				pci_no_domains();
5821			} else if (!strncmp(str, "noari", 5)) {
5822				pcie_ari_disabled = true;
5823			} else if (!strncmp(str, "cbiosize=", 9)) {
5824				pci_cardbus_io_size = memparse(str + 9, &str);
5825			} else if (!strncmp(str, "cbmemsize=", 10)) {
5826				pci_cardbus_mem_size = memparse(str + 10, &str);
5827			} else if (!strncmp(str, "resource_alignment=", 19)) {
5828				pci_set_resource_alignment_param(str + 19,
5829							strlen(str + 19));
5830			} else if (!strncmp(str, "ecrc=", 5)) {
5831				pcie_ecrc_get_policy(str + 5);
5832			} else if (!strncmp(str, "hpiosize=", 9)) {
5833				pci_hotplug_io_size = memparse(str + 9, &str);
5834			} else if (!strncmp(str, "hpmemsize=", 10)) {
5835				pci_hotplug_mem_size = memparse(str + 10, &str);
5836			} else if (!strncmp(str, "hpbussize=", 10)) {
5837				pci_hotplug_bus_size =
5838					simple_strtoul(str + 10, &str, 0);
5839				if (pci_hotplug_bus_size > 0xff)
5840					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5841			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5842				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5843			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5844				pcie_bus_config = PCIE_BUS_SAFE;
5845			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5846				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5847			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5848				pcie_bus_config = PCIE_BUS_PEER2PEER;
5849			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5850				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5851			} else {
5852				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5853						str);
5854			}
5855		}
5856		str = k;
5857	}
5858	return 0;
5859}
5860early_param("pci", pci_setup);
v4.6
 
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
 
  12#include <linux/init.h>
  13#include <linux/of.h>
  14#include <linux/of_pci.h>
  15#include <linux/pci.h>
  16#include <linux/pm.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/string.h>
  21#include <linux/log2.h>
 
  22#include <linux/pci-aspm.h>
  23#include <linux/pm_wakeup.h>
  24#include <linux/interrupt.h>
  25#include <linux/device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/pci_hotplug.h>
 
 
  28#include <asm/setup.h>
 
  29#include <linux/aer.h>
  30#include "pci.h"
  31
  32const char *pci_power_names[] = {
  33	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  34};
  35EXPORT_SYMBOL_GPL(pci_power_names);
  36
  37int isa_dma_bridge_buggy;
  38EXPORT_SYMBOL(isa_dma_bridge_buggy);
  39
  40int pci_pci_problems;
  41EXPORT_SYMBOL(pci_pci_problems);
  42
  43unsigned int pci_pm_d3_delay;
  44
  45static void pci_pme_list_scan(struct work_struct *work);
  46
  47static LIST_HEAD(pci_pme_list);
  48static DEFINE_MUTEX(pci_pme_list_mutex);
  49static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  50
  51struct pci_pme_device {
  52	struct list_head list;
  53	struct pci_dev *dev;
  54};
  55
  56#define PME_TIMEOUT 1000 /* How long between PME checks */
  57
  58static void pci_dev_d3_sleep(struct pci_dev *dev)
  59{
  60	unsigned int delay = dev->d3_delay;
  61
  62	if (delay < pci_pm_d3_delay)
  63		delay = pci_pm_d3_delay;
  64
  65	msleep(delay);
 
  66}
  67
  68#ifdef CONFIG_PCI_DOMAINS
  69int pci_domains_supported = 1;
  70#endif
  71
  72#define DEFAULT_CARDBUS_IO_SIZE		(256)
  73#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  74/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  75unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  76unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  77
  78#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  79#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  80/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  81unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  82unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  83
 
 
 
  84enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  85
  86/*
  87 * The default CLS is used if arch didn't set CLS explicitly and not
  88 * all pci devices agree on the same value.  Arch can override either
  89 * the dfl or actual value as it sees fit.  Don't forget this is
  90 * measured in 32-bit words, not bytes.
  91 */
  92u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  93u8 pci_cache_line_size;
  94
  95/*
  96 * If we set up a device for bus mastering, we need to check the latency
  97 * timer as certain BIOSes forget to set it properly.
  98 */
  99unsigned int pcibios_max_latency = 255;
 100
 101/* If set, the PCIe ARI capability will not be used. */
 102static bool pcie_ari_disabled;
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104/**
 105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 106 * @bus: pointer to PCI bus structure to search
 107 *
 108 * Given a PCI bus, returns the highest PCI bus number present in the set
 109 * including the given PCI bus and its list of child PCI buses.
 110 */
 111unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 112{
 113	struct pci_bus *tmp;
 114	unsigned char max, n;
 115
 116	max = bus->busn_res.end;
 117	list_for_each_entry(tmp, &bus->children, node) {
 118		n = pci_bus_max_busnr(tmp);
 119		if (n > max)
 120			max = n;
 121	}
 122	return max;
 123}
 124EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 125
 126#ifdef CONFIG_HAS_IOMEM
 127void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 128{
 129	struct resource *res = &pdev->resource[bar];
 130
 131	/*
 132	 * Make sure the BAR is actually a memory resource, not an IO resource
 133	 */
 134	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 135		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
 136		return NULL;
 137	}
 138	return ioremap_nocache(res->start, resource_size(res));
 139}
 140EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 141
 142void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 143{
 144	/*
 145	 * Make sure the BAR is actually a memory resource, not an IO resource
 146	 */
 147	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 148		WARN_ON(1);
 149		return NULL;
 150	}
 151	return ioremap_wc(pci_resource_start(pdev, bar),
 152			  pci_resource_len(pdev, bar));
 153}
 154EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 155#endif
 156
 157
 158static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 159				   u8 pos, int cap, int *ttl)
 160{
 161	u8 id;
 162	u16 ent;
 163
 164	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 165
 166	while ((*ttl)--) {
 167		if (pos < 0x40)
 168			break;
 169		pos &= ~3;
 170		pci_bus_read_config_word(bus, devfn, pos, &ent);
 171
 172		id = ent & 0xff;
 173		if (id == 0xff)
 174			break;
 175		if (id == cap)
 176			return pos;
 177		pos = (ent >> 8);
 178	}
 179	return 0;
 180}
 181
 182static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 183			       u8 pos, int cap)
 184{
 185	int ttl = PCI_FIND_CAP_TTL;
 186
 187	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 188}
 189
 190int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 191{
 192	return __pci_find_next_cap(dev->bus, dev->devfn,
 193				   pos + PCI_CAP_LIST_NEXT, cap);
 194}
 195EXPORT_SYMBOL_GPL(pci_find_next_capability);
 196
 197static int __pci_bus_find_cap_start(struct pci_bus *bus,
 198				    unsigned int devfn, u8 hdr_type)
 199{
 200	u16 status;
 201
 202	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 203	if (!(status & PCI_STATUS_CAP_LIST))
 204		return 0;
 205
 206	switch (hdr_type) {
 207	case PCI_HEADER_TYPE_NORMAL:
 208	case PCI_HEADER_TYPE_BRIDGE:
 209		return PCI_CAPABILITY_LIST;
 210	case PCI_HEADER_TYPE_CARDBUS:
 211		return PCI_CB_CAPABILITY_LIST;
 212	}
 213
 214	return 0;
 215}
 216
 217/**
 218 * pci_find_capability - query for devices' capabilities
 219 * @dev: PCI device to query
 220 * @cap: capability code
 221 *
 222 * Tell if a device supports a given PCI capability.
 223 * Returns the address of the requested capability structure within the
 224 * device's PCI configuration space or 0 in case the device does not
 225 * support it.  Possible values for @cap:
 226 *
 227 *  %PCI_CAP_ID_PM           Power Management
 228 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 229 *  %PCI_CAP_ID_VPD          Vital Product Data
 230 *  %PCI_CAP_ID_SLOTID       Slot Identification
 231 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 232 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 233 *  %PCI_CAP_ID_PCIX         PCI-X
 234 *  %PCI_CAP_ID_EXP          PCI Express
 235 */
 236int pci_find_capability(struct pci_dev *dev, int cap)
 237{
 238	int pos;
 239
 240	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 241	if (pos)
 242		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 243
 244	return pos;
 245}
 246EXPORT_SYMBOL(pci_find_capability);
 247
 248/**
 249 * pci_bus_find_capability - query for devices' capabilities
 250 * @bus:   the PCI bus to query
 251 * @devfn: PCI device to query
 252 * @cap:   capability code
 253 *
 254 * Like pci_find_capability() but works for pci devices that do not have a
 255 * pci_dev structure set up yet.
 256 *
 257 * Returns the address of the requested capability structure within the
 258 * device's PCI configuration space or 0 in case the device does not
 259 * support it.
 260 */
 261int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 262{
 263	int pos;
 264	u8 hdr_type;
 265
 266	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 267
 268	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 269	if (pos)
 270		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 271
 272	return pos;
 273}
 274EXPORT_SYMBOL(pci_bus_find_capability);
 275
 276/**
 277 * pci_find_next_ext_capability - Find an extended capability
 278 * @dev: PCI device to query
 279 * @start: address at which to start looking (0 to start at beginning of list)
 280 * @cap: capability code
 281 *
 282 * Returns the address of the next matching extended capability structure
 283 * within the device's PCI configuration space or 0 if the device does
 284 * not support it.  Some capabilities can occur several times, e.g., the
 285 * vendor-specific capability, and this provides a way to find them all.
 286 */
 287int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 288{
 289	u32 header;
 290	int ttl;
 291	int pos = PCI_CFG_SPACE_SIZE;
 292
 293	/* minimum 8 bytes per capability */
 294	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 295
 296	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 297		return 0;
 298
 299	if (start)
 300		pos = start;
 301
 302	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 303		return 0;
 304
 305	/*
 306	 * If we have no capabilities, this is indicated by cap ID,
 307	 * cap version and next pointer all being 0.
 308	 */
 309	if (header == 0)
 310		return 0;
 311
 312	while (ttl-- > 0) {
 313		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 314			return pos;
 315
 316		pos = PCI_EXT_CAP_NEXT(header);
 317		if (pos < PCI_CFG_SPACE_SIZE)
 318			break;
 319
 320		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 321			break;
 322	}
 323
 324	return 0;
 325}
 326EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 327
 328/**
 329 * pci_find_ext_capability - Find an extended capability
 330 * @dev: PCI device to query
 331 * @cap: capability code
 332 *
 333 * Returns the address of the requested extended capability structure
 334 * within the device's PCI configuration space or 0 if the device does
 335 * not support it.  Possible values for @cap:
 336 *
 337 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 338 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 339 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 340 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 341 */
 342int pci_find_ext_capability(struct pci_dev *dev, int cap)
 343{
 344	return pci_find_next_ext_capability(dev, 0, cap);
 345}
 346EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 347
 348static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 349{
 350	int rc, ttl = PCI_FIND_CAP_TTL;
 351	u8 cap, mask;
 352
 353	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 354		mask = HT_3BIT_CAP_MASK;
 355	else
 356		mask = HT_5BIT_CAP_MASK;
 357
 358	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 359				      PCI_CAP_ID_HT, &ttl);
 360	while (pos) {
 361		rc = pci_read_config_byte(dev, pos + 3, &cap);
 362		if (rc != PCIBIOS_SUCCESSFUL)
 363			return 0;
 364
 365		if ((cap & mask) == ht_cap)
 366			return pos;
 367
 368		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 369					      pos + PCI_CAP_LIST_NEXT,
 370					      PCI_CAP_ID_HT, &ttl);
 371	}
 372
 373	return 0;
 374}
 375/**
 376 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 377 * @dev: PCI device to query
 378 * @pos: Position from which to continue searching
 379 * @ht_cap: Hypertransport capability code
 380 *
 381 * To be used in conjunction with pci_find_ht_capability() to search for
 382 * all capabilities matching @ht_cap. @pos should always be a value returned
 383 * from pci_find_ht_capability().
 384 *
 385 * NB. To be 100% safe against broken PCI devices, the caller should take
 386 * steps to avoid an infinite loop.
 387 */
 388int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 389{
 390	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 391}
 392EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 393
 394/**
 395 * pci_find_ht_capability - query a device's Hypertransport capabilities
 396 * @dev: PCI device to query
 397 * @ht_cap: Hypertransport capability code
 398 *
 399 * Tell if a device supports a given Hypertransport capability.
 400 * Returns an address within the device's PCI configuration space
 401 * or 0 in case the device does not support the request capability.
 402 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 403 * which has a Hypertransport capability matching @ht_cap.
 404 */
 405int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 406{
 407	int pos;
 408
 409	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 410	if (pos)
 411		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 412
 413	return pos;
 414}
 415EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 416
 417/**
 418 * pci_find_parent_resource - return resource region of parent bus of given region
 419 * @dev: PCI device structure contains resources to be searched
 420 * @res: child resource record for which parent is sought
 421 *
 422 *  For given resource region of given device, return the resource
 423 *  region of parent bus the given region is contained in.
 424 */
 425struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 426					  struct resource *res)
 427{
 428	const struct pci_bus *bus = dev->bus;
 429	struct resource *r;
 430	int i;
 431
 432	pci_bus_for_each_resource(bus, r, i) {
 433		if (!r)
 434			continue;
 435		if (res->start && resource_contains(r, res)) {
 436
 437			/*
 438			 * If the window is prefetchable but the BAR is
 439			 * not, the allocator made a mistake.
 440			 */
 441			if (r->flags & IORESOURCE_PREFETCH &&
 442			    !(res->flags & IORESOURCE_PREFETCH))
 443				return NULL;
 444
 445			/*
 446			 * If we're below a transparent bridge, there may
 447			 * be both a positively-decoded aperture and a
 448			 * subtractively-decoded region that contain the BAR.
 449			 * We want the positively-decoded one, so this depends
 450			 * on pci_bus_for_each_resource() giving us those
 451			 * first.
 452			 */
 453			return r;
 454		}
 455	}
 456	return NULL;
 457}
 458EXPORT_SYMBOL(pci_find_parent_resource);
 459
 460/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461 * pci_find_pcie_root_port - return PCIe Root Port
 462 * @dev: PCI device to query
 463 *
 464 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 465 * for a given PCI Device.
 466 */
 467struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 468{
 469	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
 470
 471	bridge = pci_upstream_bridge(dev);
 472	while (bridge && pci_is_pcie(bridge)) {
 473		highest_pcie_bridge = bridge;
 474		bridge = pci_upstream_bridge(bridge);
 475	}
 476
 477	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 478		return NULL;
 479
 480	return highest_pcie_bridge;
 481}
 482EXPORT_SYMBOL(pci_find_pcie_root_port);
 483
 484/**
 485 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 486 * @dev: the PCI device to operate on
 487 * @pos: config space offset of status word
 488 * @mask: mask of bit(s) to care about in status word
 489 *
 490 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 491 */
 492int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 493{
 494	int i;
 495
 496	/* Wait for Transaction Pending bit clean */
 497	for (i = 0; i < 4; i++) {
 498		u16 status;
 499		if (i)
 500			msleep((1 << (i - 1)) * 100);
 501
 502		pci_read_config_word(dev, pos, &status);
 503		if (!(status & mask))
 504			return 1;
 505	}
 506
 507	return 0;
 508}
 509
 510/**
 511 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 512 * @dev: PCI device to have its BARs restored
 513 *
 514 * Restore the BAR values for a given device, so as to make it
 515 * accessible by its driver.
 516 */
 517static void pci_restore_bars(struct pci_dev *dev)
 518{
 519	int i;
 520
 521	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
 522	if (dev->is_virtfn)
 523		return;
 524
 525	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 526		pci_update_resource(dev, i);
 527}
 528
 529static const struct pci_platform_pm_ops *pci_platform_pm;
 530
 531int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 532{
 533	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 534	    || !ops->sleep_wake)
 535		return -EINVAL;
 536	pci_platform_pm = ops;
 537	return 0;
 538}
 539
 540static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 541{
 542	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 543}
 544
 545static inline int platform_pci_set_power_state(struct pci_dev *dev,
 546					       pci_power_t t)
 547{
 548	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 549}
 550
 551static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 552{
 553	return pci_platform_pm ?
 554			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 555}
 556
 557static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 558{
 559	return pci_platform_pm ?
 560			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 561}
 562
 563static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 564{
 565	return pci_platform_pm ?
 566			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 567}
 568
 569static inline bool platform_pci_need_resume(struct pci_dev *dev)
 570{
 571	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 572}
 573
 574/**
 575 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 576 *                           given PCI device
 577 * @dev: PCI device to handle.
 578 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 579 *
 580 * RETURN VALUE:
 581 * -EINVAL if the requested state is invalid.
 582 * -EIO if device does not support PCI PM or its PM capabilities register has a
 583 * wrong version, or device doesn't support the requested state.
 584 * 0 if device already is in the requested state.
 585 * 0 if device's power state has been successfully changed.
 586 */
 587static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 588{
 589	u16 pmcsr;
 590	bool need_restore = false;
 591
 592	/* Check if we're already there */
 593	if (dev->current_state == state)
 594		return 0;
 595
 596	if (!dev->pm_cap)
 597		return -EIO;
 598
 599	if (state < PCI_D0 || state > PCI_D3hot)
 600		return -EINVAL;
 601
 602	/* Validate current state:
 603	 * Can enter D0 from any state, but if we can only go deeper
 604	 * to sleep if we're already in a low power state
 605	 */
 606	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 607	    && dev->current_state > state) {
 608		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 609			dev->current_state, state);
 610		return -EINVAL;
 611	}
 612
 613	/* check if this device supports the desired state */
 614	if ((state == PCI_D1 && !dev->d1_support)
 615	   || (state == PCI_D2 && !dev->d2_support))
 616		return -EIO;
 617
 618	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 619
 620	/* If we're (effectively) in D3, force entire word to 0.
 621	 * This doesn't affect PME_Status, disables PME_En, and
 622	 * sets PowerState to 0.
 623	 */
 624	switch (dev->current_state) {
 625	case PCI_D0:
 626	case PCI_D1:
 627	case PCI_D2:
 628		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 629		pmcsr |= state;
 630		break;
 631	case PCI_D3hot:
 632	case PCI_D3cold:
 633	case PCI_UNKNOWN: /* Boot-up */
 634		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 635		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 636			need_restore = true;
 637		/* Fall-through: force to D0 */
 638	default:
 639		pmcsr = 0;
 640		break;
 641	}
 642
 643	/* enter specified state */
 644	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 645
 646	/* Mandatory power management transition delays */
 647	/* see PCI PM 1.1 5.6.1 table 18 */
 648	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 649		pci_dev_d3_sleep(dev);
 650	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 651		udelay(PCI_PM_D2_DELAY);
 652
 653	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 654	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 655	if (dev->current_state != state && printk_ratelimit())
 656		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 657			 dev->current_state);
 658
 659	/*
 660	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 661	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 662	 * from D3hot to D0 _may_ perform an internal reset, thereby
 663	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 664	 * For example, at least some versions of the 3c905B and the
 665	 * 3c556B exhibit this behaviour.
 666	 *
 667	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 668	 * devices in a D3hot state at boot.  Consequently, we need to
 669	 * restore at least the BARs so that the device will be
 670	 * accessible to its driver.
 671	 */
 672	if (need_restore)
 673		pci_restore_bars(dev);
 674
 675	if (dev->bus->self)
 676		pcie_aspm_pm_state_change(dev->bus->self);
 677
 678	return 0;
 679}
 680
 681/**
 682 * pci_update_current_state - Read PCI power state of given device from its
 683 *                            PCI PM registers and cache it
 684 * @dev: PCI device to handle.
 685 * @state: State to cache in case the device doesn't have the PM capability
 
 
 
 
 
 
 
 686 */
 687void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 688{
 689	if (dev->pm_cap) {
 
 
 
 690		u16 pmcsr;
 691
 692		/*
 693		 * Configuration space is not accessible for device in
 694		 * D3cold, so just keep or set D3cold for safety
 695		 */
 696		if (dev->current_state == PCI_D3cold)
 697			return;
 698		if (state == PCI_D3cold) {
 699			dev->current_state = PCI_D3cold;
 700			return;
 701		}
 702		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 703		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 704	} else {
 705		dev->current_state = state;
 706	}
 707}
 708
 709/**
 710 * pci_power_up - Put the given device into D0 forcibly
 711 * @dev: PCI device to power up
 712 */
 713void pci_power_up(struct pci_dev *dev)
 714{
 715	if (platform_pci_power_manageable(dev))
 716		platform_pci_set_power_state(dev, PCI_D0);
 717
 718	pci_raw_set_power_state(dev, PCI_D0);
 719	pci_update_current_state(dev, PCI_D0);
 720}
 721
 722/**
 723 * pci_platform_power_transition - Use platform to change device power state
 724 * @dev: PCI device to handle.
 725 * @state: State to put the device into.
 726 */
 727static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 728{
 729	int error;
 730
 731	if (platform_pci_power_manageable(dev)) {
 732		error = platform_pci_set_power_state(dev, state);
 733		if (!error)
 734			pci_update_current_state(dev, state);
 735	} else
 736		error = -ENODEV;
 737
 738	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 739		dev->current_state = PCI_D0;
 740
 741	return error;
 742}
 743
 744/**
 745 * pci_wakeup - Wake up a PCI device
 746 * @pci_dev: Device to handle.
 747 * @ign: ignored parameter
 748 */
 749static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 750{
 751	pci_wakeup_event(pci_dev);
 752	pm_request_resume(&pci_dev->dev);
 753	return 0;
 754}
 755
 756/**
 757 * pci_wakeup_bus - Walk given bus and wake up devices on it
 758 * @bus: Top bus of the subtree to walk.
 759 */
 760static void pci_wakeup_bus(struct pci_bus *bus)
 761{
 762	if (bus)
 763		pci_walk_bus(bus, pci_wakeup, NULL);
 764}
 765
 766/**
 767 * __pci_start_power_transition - Start power transition of a PCI device
 768 * @dev: PCI device to handle.
 769 * @state: State to put the device into.
 770 */
 771static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 772{
 773	if (state == PCI_D0) {
 774		pci_platform_power_transition(dev, PCI_D0);
 775		/*
 776		 * Mandatory power management transition delays, see
 777		 * PCI Express Base Specification Revision 2.0 Section
 778		 * 6.6.1: Conventional Reset.  Do not delay for
 779		 * devices powered on/off by corresponding bridge,
 780		 * because have already delayed for the bridge.
 781		 */
 782		if (dev->runtime_d3cold) {
 783			msleep(dev->d3cold_delay);
 
 784			/*
 785			 * When powering on a bridge from D3cold, the
 786			 * whole hierarchy may be powered on into
 787			 * D0uninitialized state, resume them to give
 788			 * them a chance to suspend again
 789			 */
 790			pci_wakeup_bus(dev->subordinate);
 791		}
 792	}
 793}
 794
 795/**
 796 * __pci_dev_set_current_state - Set current state of a PCI device
 797 * @dev: Device to handle
 798 * @data: pointer to state to be set
 799 */
 800static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 801{
 802	pci_power_t state = *(pci_power_t *)data;
 803
 804	dev->current_state = state;
 805	return 0;
 806}
 807
 808/**
 809 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 810 * @bus: Top bus of the subtree to walk.
 811 * @state: state to be set
 812 */
 813static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 814{
 815	if (bus)
 816		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 817}
 818
 819/**
 820 * __pci_complete_power_transition - Complete power transition of a PCI device
 821 * @dev: PCI device to handle.
 822 * @state: State to put the device into.
 823 *
 824 * This function should not be called directly by device drivers.
 825 */
 826int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 827{
 828	int ret;
 829
 830	if (state <= PCI_D0)
 831		return -EINVAL;
 832	ret = pci_platform_power_transition(dev, state);
 833	/* Power off the bridge may power off the whole hierarchy */
 834	if (!ret && state == PCI_D3cold)
 835		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 836	return ret;
 837}
 838EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 839
 840/**
 841 * pci_set_power_state - Set the power state of a PCI device
 842 * @dev: PCI device to handle.
 843 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 844 *
 845 * Transition a device to a new power state, using the platform firmware and/or
 846 * the device's PCI PM registers.
 847 *
 848 * RETURN VALUE:
 849 * -EINVAL if the requested state is invalid.
 850 * -EIO if device does not support PCI PM or its PM capabilities register has a
 851 * wrong version, or device doesn't support the requested state.
 
 852 * 0 if device already is in the requested state.
 
 853 * 0 if device's power state has been successfully changed.
 854 */
 855int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 856{
 857	int error;
 858
 859	/* bound the state we're entering */
 860	if (state > PCI_D3cold)
 861		state = PCI_D3cold;
 862	else if (state < PCI_D0)
 863		state = PCI_D0;
 864	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 865		/*
 866		 * If the device or the parent bridge do not support PCI PM,
 867		 * ignore the request if we're doing anything other than putting
 868		 * it into D0 (which would only happen on boot).
 869		 */
 870		return 0;
 871
 872	/* Check if we're already there */
 873	if (dev->current_state == state)
 874		return 0;
 875
 876	__pci_start_power_transition(dev, state);
 877
 878	/* This device is quirked not to be put into D3, so
 879	   don't put it in D3 */
 880	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 881		return 0;
 882
 883	/*
 884	 * To put device in D3cold, we put device into D3hot in native
 885	 * way, then put device into D3cold with platform ops
 886	 */
 887	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 888					PCI_D3hot : state);
 889
 890	if (!__pci_complete_power_transition(dev, state))
 891		error = 0;
 892
 893	return error;
 894}
 895EXPORT_SYMBOL(pci_set_power_state);
 896
 897/**
 898 * pci_choose_state - Choose the power state of a PCI device
 899 * @dev: PCI device to be suspended
 900 * @state: target sleep state for the whole system. This is the value
 901 *	that is passed to suspend() function.
 902 *
 903 * Returns PCI power state suitable for given device and given system
 904 * message.
 905 */
 906
 907pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 908{
 909	pci_power_t ret;
 910
 911	if (!dev->pm_cap)
 912		return PCI_D0;
 913
 914	ret = platform_pci_choose_state(dev);
 915	if (ret != PCI_POWER_ERROR)
 916		return ret;
 917
 918	switch (state.event) {
 919	case PM_EVENT_ON:
 920		return PCI_D0;
 921	case PM_EVENT_FREEZE:
 922	case PM_EVENT_PRETHAW:
 923		/* REVISIT both freeze and pre-thaw "should" use D0 */
 924	case PM_EVENT_SUSPEND:
 925	case PM_EVENT_HIBERNATE:
 926		return PCI_D3hot;
 927	default:
 928		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 929			 state.event);
 930		BUG();
 931	}
 932	return PCI_D0;
 933}
 934EXPORT_SYMBOL(pci_choose_state);
 935
 936#define PCI_EXP_SAVE_REGS	7
 937
 938static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 939						       u16 cap, bool extended)
 940{
 941	struct pci_cap_saved_state *tmp;
 942
 943	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 944		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 945			return tmp;
 946	}
 947	return NULL;
 948}
 949
 950struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 951{
 952	return _pci_find_saved_cap(dev, cap, false);
 953}
 954
 955struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 956{
 957	return _pci_find_saved_cap(dev, cap, true);
 958}
 959
 960static int pci_save_pcie_state(struct pci_dev *dev)
 961{
 962	int i = 0;
 963	struct pci_cap_saved_state *save_state;
 964	u16 *cap;
 965
 966	if (!pci_is_pcie(dev))
 967		return 0;
 968
 969	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 970	if (!save_state) {
 971		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 972		return -ENOMEM;
 973	}
 974
 975	cap = (u16 *)&save_state->cap.data[0];
 976	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 977	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 978	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 979	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 980	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 981	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 982	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 983
 984	return 0;
 985}
 986
 987static void pci_restore_pcie_state(struct pci_dev *dev)
 988{
 989	int i = 0;
 990	struct pci_cap_saved_state *save_state;
 991	u16 *cap;
 992
 993	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 994	if (!save_state)
 995		return;
 996
 997	cap = (u16 *)&save_state->cap.data[0];
 998	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 999	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1000	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1001	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1002	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1003	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1004	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1005}
1006
1007
1008static int pci_save_pcix_state(struct pci_dev *dev)
1009{
1010	int pos;
1011	struct pci_cap_saved_state *save_state;
1012
1013	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1014	if (!pos)
1015		return 0;
1016
1017	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1018	if (!save_state) {
1019		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1020		return -ENOMEM;
1021	}
1022
1023	pci_read_config_word(dev, pos + PCI_X_CMD,
1024			     (u16 *)save_state->cap.data);
1025
1026	return 0;
1027}
1028
1029static void pci_restore_pcix_state(struct pci_dev *dev)
1030{
1031	int i = 0, pos;
1032	struct pci_cap_saved_state *save_state;
1033	u16 *cap;
1034
1035	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1036	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1037	if (!save_state || !pos)
1038		return;
1039	cap = (u16 *)&save_state->cap.data[0];
1040
1041	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1042}
1043
1044
1045/**
1046 * pci_save_state - save the PCI configuration space of a device before suspending
1047 * @dev: - PCI device that we're dealing with
1048 */
1049int pci_save_state(struct pci_dev *dev)
1050{
1051	int i;
1052	/* XXX: 100% dword access ok here? */
1053	for (i = 0; i < 16; i++)
1054		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1055	dev->state_saved = true;
1056
1057	i = pci_save_pcie_state(dev);
1058	if (i != 0)
1059		return i;
1060
1061	i = pci_save_pcix_state(dev);
1062	if (i != 0)
1063		return i;
1064
1065	return pci_save_vc_state(dev);
1066}
1067EXPORT_SYMBOL(pci_save_state);
1068
1069static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1070				     u32 saved_val, int retry)
1071{
1072	u32 val;
1073
1074	pci_read_config_dword(pdev, offset, &val);
1075	if (val == saved_val)
1076		return;
1077
1078	for (;;) {
1079		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1080			offset, val, saved_val);
1081		pci_write_config_dword(pdev, offset, saved_val);
1082		if (retry-- <= 0)
1083			return;
1084
1085		pci_read_config_dword(pdev, offset, &val);
1086		if (val == saved_val)
1087			return;
1088
1089		mdelay(1);
1090	}
1091}
1092
1093static void pci_restore_config_space_range(struct pci_dev *pdev,
1094					   int start, int end, int retry)
1095{
1096	int index;
1097
1098	for (index = end; index >= start; index--)
1099		pci_restore_config_dword(pdev, 4 * index,
1100					 pdev->saved_config_space[index],
1101					 retry);
1102}
1103
1104static void pci_restore_config_space(struct pci_dev *pdev)
1105{
1106	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1107		pci_restore_config_space_range(pdev, 10, 15, 0);
1108		/* Restore BARs before the command register. */
1109		pci_restore_config_space_range(pdev, 4, 9, 10);
1110		pci_restore_config_space_range(pdev, 0, 3, 0);
1111	} else {
1112		pci_restore_config_space_range(pdev, 0, 15, 0);
1113	}
1114}
1115
1116/**
1117 * pci_restore_state - Restore the saved state of a PCI device
1118 * @dev: - PCI device that we're dealing with
1119 */
1120void pci_restore_state(struct pci_dev *dev)
1121{
1122	if (!dev->state_saved)
1123		return;
1124
1125	/* PCI Express register must be restored first */
1126	pci_restore_pcie_state(dev);
 
 
1127	pci_restore_ats_state(dev);
1128	pci_restore_vc_state(dev);
1129
1130	pci_cleanup_aer_error_status_regs(dev);
1131
1132	pci_restore_config_space(dev);
1133
1134	pci_restore_pcix_state(dev);
1135	pci_restore_msi_state(dev);
1136
1137	/* Restore ACS and IOV configuration state */
1138	pci_enable_acs(dev);
1139	pci_restore_iov_state(dev);
1140
1141	dev->state_saved = false;
1142}
1143EXPORT_SYMBOL(pci_restore_state);
1144
1145struct pci_saved_state {
1146	u32 config_space[16];
1147	struct pci_cap_saved_data cap[0];
1148};
1149
1150/**
1151 * pci_store_saved_state - Allocate and return an opaque struct containing
1152 *			   the device saved state.
1153 * @dev: PCI device that we're dealing with
1154 *
1155 * Return NULL if no state or error.
1156 */
1157struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1158{
1159	struct pci_saved_state *state;
1160	struct pci_cap_saved_state *tmp;
1161	struct pci_cap_saved_data *cap;
1162	size_t size;
1163
1164	if (!dev->state_saved)
1165		return NULL;
1166
1167	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1168
1169	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1170		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1171
1172	state = kzalloc(size, GFP_KERNEL);
1173	if (!state)
1174		return NULL;
1175
1176	memcpy(state->config_space, dev->saved_config_space,
1177	       sizeof(state->config_space));
1178
1179	cap = state->cap;
1180	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1181		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1182		memcpy(cap, &tmp->cap, len);
1183		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1184	}
1185	/* Empty cap_save terminates list */
1186
1187	return state;
1188}
1189EXPORT_SYMBOL_GPL(pci_store_saved_state);
1190
1191/**
1192 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1193 * @dev: PCI device that we're dealing with
1194 * @state: Saved state returned from pci_store_saved_state()
1195 */
1196int pci_load_saved_state(struct pci_dev *dev,
1197			 struct pci_saved_state *state)
1198{
1199	struct pci_cap_saved_data *cap;
1200
1201	dev->state_saved = false;
1202
1203	if (!state)
1204		return 0;
1205
1206	memcpy(dev->saved_config_space, state->config_space,
1207	       sizeof(state->config_space));
1208
1209	cap = state->cap;
1210	while (cap->size) {
1211		struct pci_cap_saved_state *tmp;
1212
1213		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1214		if (!tmp || tmp->cap.size != cap->size)
1215			return -EINVAL;
1216
1217		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1218		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1219		       sizeof(struct pci_cap_saved_data) + cap->size);
1220	}
1221
1222	dev->state_saved = true;
1223	return 0;
1224}
1225EXPORT_SYMBOL_GPL(pci_load_saved_state);
1226
1227/**
1228 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1229 *				   and free the memory allocated for it.
1230 * @dev: PCI device that we're dealing with
1231 * @state: Pointer to saved state returned from pci_store_saved_state()
1232 */
1233int pci_load_and_free_saved_state(struct pci_dev *dev,
1234				  struct pci_saved_state **state)
1235{
1236	int ret = pci_load_saved_state(dev, *state);
1237	kfree(*state);
1238	*state = NULL;
1239	return ret;
1240}
1241EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1242
1243int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1244{
1245	return pci_enable_resources(dev, bars);
1246}
1247
1248static int do_pci_enable_device(struct pci_dev *dev, int bars)
1249{
1250	int err;
1251	struct pci_dev *bridge;
1252	u16 cmd;
1253	u8 pin;
1254
1255	err = pci_set_power_state(dev, PCI_D0);
1256	if (err < 0 && err != -EIO)
1257		return err;
1258
1259	bridge = pci_upstream_bridge(dev);
1260	if (bridge)
1261		pcie_aspm_powersave_config_link(bridge);
1262
1263	err = pcibios_enable_device(dev, bars);
1264	if (err < 0)
1265		return err;
1266	pci_fixup_device(pci_fixup_enable, dev);
1267
1268	if (dev->msi_enabled || dev->msix_enabled)
1269		return 0;
1270
1271	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1272	if (pin) {
1273		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1274		if (cmd & PCI_COMMAND_INTX_DISABLE)
1275			pci_write_config_word(dev, PCI_COMMAND,
1276					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1277	}
1278
1279	return 0;
1280}
1281
1282/**
1283 * pci_reenable_device - Resume abandoned device
1284 * @dev: PCI device to be resumed
1285 *
1286 *  Note this function is a backend of pci_default_resume and is not supposed
1287 *  to be called by normal code, write proper resume handler and use it instead.
1288 */
1289int pci_reenable_device(struct pci_dev *dev)
1290{
1291	if (pci_is_enabled(dev))
1292		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1293	return 0;
1294}
1295EXPORT_SYMBOL(pci_reenable_device);
1296
1297static void pci_enable_bridge(struct pci_dev *dev)
1298{
1299	struct pci_dev *bridge;
1300	int retval;
1301
1302	bridge = pci_upstream_bridge(dev);
1303	if (bridge)
1304		pci_enable_bridge(bridge);
1305
1306	if (pci_is_enabled(dev)) {
1307		if (!dev->is_busmaster)
1308			pci_set_master(dev);
1309		return;
1310	}
1311
1312	retval = pci_enable_device(dev);
1313	if (retval)
1314		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1315			retval);
1316	pci_set_master(dev);
1317}
1318
1319static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1320{
1321	struct pci_dev *bridge;
1322	int err;
1323	int i, bars = 0;
1324
1325	/*
1326	 * Power state could be unknown at this point, either due to a fresh
1327	 * boot or a device removal call.  So get the current power state
1328	 * so that things like MSI message writing will behave as expected
1329	 * (e.g. if the device really is in D0 at enable time).
1330	 */
1331	if (dev->pm_cap) {
1332		u16 pmcsr;
1333		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1334		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1335	}
1336
1337	if (atomic_inc_return(&dev->enable_cnt) > 1)
1338		return 0;		/* already enabled */
1339
1340	bridge = pci_upstream_bridge(dev);
1341	if (bridge)
1342		pci_enable_bridge(bridge);
1343
1344	/* only skip sriov related */
1345	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1346		if (dev->resource[i].flags & flags)
1347			bars |= (1 << i);
1348	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1349		if (dev->resource[i].flags & flags)
1350			bars |= (1 << i);
1351
1352	err = do_pci_enable_device(dev, bars);
1353	if (err < 0)
1354		atomic_dec(&dev->enable_cnt);
1355	return err;
1356}
1357
1358/**
1359 * pci_enable_device_io - Initialize a device for use with IO space
1360 * @dev: PCI device to be initialized
1361 *
1362 *  Initialize device before it's used by a driver. Ask low-level code
1363 *  to enable I/O resources. Wake up the device if it was suspended.
1364 *  Beware, this function can fail.
1365 */
1366int pci_enable_device_io(struct pci_dev *dev)
1367{
1368	return pci_enable_device_flags(dev, IORESOURCE_IO);
1369}
1370EXPORT_SYMBOL(pci_enable_device_io);
1371
1372/**
1373 * pci_enable_device_mem - Initialize a device for use with Memory space
1374 * @dev: PCI device to be initialized
1375 *
1376 *  Initialize device before it's used by a driver. Ask low-level code
1377 *  to enable Memory resources. Wake up the device if it was suspended.
1378 *  Beware, this function can fail.
1379 */
1380int pci_enable_device_mem(struct pci_dev *dev)
1381{
1382	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1383}
1384EXPORT_SYMBOL(pci_enable_device_mem);
1385
1386/**
1387 * pci_enable_device - Initialize device before it's used by a driver.
1388 * @dev: PCI device to be initialized
1389 *
1390 *  Initialize device before it's used by a driver. Ask low-level code
1391 *  to enable I/O and memory. Wake up the device if it was suspended.
1392 *  Beware, this function can fail.
1393 *
1394 *  Note we don't actually enable the device many times if we call
1395 *  this function repeatedly (we just increment the count).
1396 */
1397int pci_enable_device(struct pci_dev *dev)
1398{
1399	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1400}
1401EXPORT_SYMBOL(pci_enable_device);
1402
1403/*
1404 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1405 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1406 * there's no need to track it separately.  pci_devres is initialized
1407 * when a device is enabled using managed PCI device enable interface.
1408 */
1409struct pci_devres {
1410	unsigned int enabled:1;
1411	unsigned int pinned:1;
1412	unsigned int orig_intx:1;
1413	unsigned int restore_intx:1;
 
1414	u32 region_mask;
1415};
1416
1417static void pcim_release(struct device *gendev, void *res)
1418{
1419	struct pci_dev *dev = to_pci_dev(gendev);
1420	struct pci_devres *this = res;
1421	int i;
1422
1423	if (dev->msi_enabled)
1424		pci_disable_msi(dev);
1425	if (dev->msix_enabled)
1426		pci_disable_msix(dev);
1427
1428	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1429		if (this->region_mask & (1 << i))
1430			pci_release_region(dev, i);
1431
 
 
 
1432	if (this->restore_intx)
1433		pci_intx(dev, this->orig_intx);
1434
1435	if (this->enabled && !this->pinned)
1436		pci_disable_device(dev);
1437}
1438
1439static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1440{
1441	struct pci_devres *dr, *new_dr;
1442
1443	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1444	if (dr)
1445		return dr;
1446
1447	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1448	if (!new_dr)
1449		return NULL;
1450	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1451}
1452
1453static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1454{
1455	if (pci_is_managed(pdev))
1456		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1457	return NULL;
1458}
1459
1460/**
1461 * pcim_enable_device - Managed pci_enable_device()
1462 * @pdev: PCI device to be initialized
1463 *
1464 * Managed pci_enable_device().
1465 */
1466int pcim_enable_device(struct pci_dev *pdev)
1467{
1468	struct pci_devres *dr;
1469	int rc;
1470
1471	dr = get_pci_dr(pdev);
1472	if (unlikely(!dr))
1473		return -ENOMEM;
1474	if (dr->enabled)
1475		return 0;
1476
1477	rc = pci_enable_device(pdev);
1478	if (!rc) {
1479		pdev->is_managed = 1;
1480		dr->enabled = 1;
1481	}
1482	return rc;
1483}
1484EXPORT_SYMBOL(pcim_enable_device);
1485
1486/**
1487 * pcim_pin_device - Pin managed PCI device
1488 * @pdev: PCI device to pin
1489 *
1490 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1491 * driver detach.  @pdev must have been enabled with
1492 * pcim_enable_device().
1493 */
1494void pcim_pin_device(struct pci_dev *pdev)
1495{
1496	struct pci_devres *dr;
1497
1498	dr = find_pci_dr(pdev);
1499	WARN_ON(!dr || !dr->enabled);
1500	if (dr)
1501		dr->pinned = 1;
1502}
1503EXPORT_SYMBOL(pcim_pin_device);
1504
1505/*
1506 * pcibios_add_device - provide arch specific hooks when adding device dev
1507 * @dev: the PCI device being added
1508 *
1509 * Permits the platform to provide architecture specific functionality when
1510 * devices are added. This is the default implementation. Architecture
1511 * implementations can override this.
1512 */
1513int __weak pcibios_add_device(struct pci_dev *dev)
1514{
1515	return 0;
1516}
1517
1518/**
1519 * pcibios_release_device - provide arch specific hooks when releasing device dev
1520 * @dev: the PCI device being released
1521 *
1522 * Permits the platform to provide architecture specific functionality when
1523 * devices are released. This is the default implementation. Architecture
1524 * implementations can override this.
1525 */
1526void __weak pcibios_release_device(struct pci_dev *dev) {}
1527
1528/**
1529 * pcibios_disable_device - disable arch specific PCI resources for device dev
1530 * @dev: the PCI device to disable
1531 *
1532 * Disables architecture specific PCI resources for the device. This
1533 * is the default implementation. Architecture implementations can
1534 * override this.
1535 */
1536void __weak pcibios_disable_device(struct pci_dev *dev) {}
1537
1538/**
1539 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1540 * @irq: ISA IRQ to penalize
1541 * @active: IRQ active or not
1542 *
1543 * Permits the platform to provide architecture-specific functionality when
1544 * penalizing ISA IRQs. This is the default implementation. Architecture
1545 * implementations can override this.
1546 */
1547void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1548
1549static void do_pci_disable_device(struct pci_dev *dev)
1550{
1551	u16 pci_command;
1552
1553	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1554	if (pci_command & PCI_COMMAND_MASTER) {
1555		pci_command &= ~PCI_COMMAND_MASTER;
1556		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1557	}
1558
1559	pcibios_disable_device(dev);
1560}
1561
1562/**
1563 * pci_disable_enabled_device - Disable device without updating enable_cnt
1564 * @dev: PCI device to disable
1565 *
1566 * NOTE: This function is a backend of PCI power management routines and is
1567 * not supposed to be called drivers.
1568 */
1569void pci_disable_enabled_device(struct pci_dev *dev)
1570{
1571	if (pci_is_enabled(dev))
1572		do_pci_disable_device(dev);
1573}
1574
1575/**
1576 * pci_disable_device - Disable PCI device after use
1577 * @dev: PCI device to be disabled
1578 *
1579 * Signal to the system that the PCI device is not in use by the system
1580 * anymore.  This only involves disabling PCI bus-mastering, if active.
1581 *
1582 * Note we don't actually disable the device until all callers of
1583 * pci_enable_device() have called pci_disable_device().
1584 */
1585void pci_disable_device(struct pci_dev *dev)
1586{
1587	struct pci_devres *dr;
1588
1589	dr = find_pci_dr(dev);
1590	if (dr)
1591		dr->enabled = 0;
1592
1593	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1594		      "disabling already-disabled device");
1595
1596	if (atomic_dec_return(&dev->enable_cnt) != 0)
1597		return;
1598
1599	do_pci_disable_device(dev);
1600
1601	dev->is_busmaster = 0;
1602}
1603EXPORT_SYMBOL(pci_disable_device);
1604
1605/**
1606 * pcibios_set_pcie_reset_state - set reset state for device dev
1607 * @dev: the PCIe device reset
1608 * @state: Reset state to enter into
1609 *
1610 *
1611 * Sets the PCIe reset state for the device. This is the default
1612 * implementation. Architecture implementations can override this.
1613 */
1614int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1615					enum pcie_reset_state state)
1616{
1617	return -EINVAL;
1618}
1619
1620/**
1621 * pci_set_pcie_reset_state - set reset state for device dev
1622 * @dev: the PCIe device reset
1623 * @state: Reset state to enter into
1624 *
1625 *
1626 * Sets the PCI reset state for the device.
1627 */
1628int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1629{
1630	return pcibios_set_pcie_reset_state(dev, state);
1631}
1632EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1633
1634/**
 
 
 
 
 
 
 
 
 
1635 * pci_check_pme_status - Check if given device has generated PME.
1636 * @dev: Device to check.
1637 *
1638 * Check the PME status of the device and if set, clear it and clear PME enable
1639 * (if set).  Return 'true' if PME status and PME enable were both set or
1640 * 'false' otherwise.
1641 */
1642bool pci_check_pme_status(struct pci_dev *dev)
1643{
1644	int pmcsr_pos;
1645	u16 pmcsr;
1646	bool ret = false;
1647
1648	if (!dev->pm_cap)
1649		return false;
1650
1651	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1652	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1653	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1654		return false;
1655
1656	/* Clear PME status. */
1657	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1658	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1659		/* Disable PME to avoid interrupt flood. */
1660		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1661		ret = true;
1662	}
1663
1664	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1665
1666	return ret;
1667}
1668
1669/**
1670 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1671 * @dev: Device to handle.
1672 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1673 *
1674 * Check if @dev has generated PME and queue a resume request for it in that
1675 * case.
1676 */
1677static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1678{
1679	if (pme_poll_reset && dev->pme_poll)
1680		dev->pme_poll = false;
1681
1682	if (pci_check_pme_status(dev)) {
1683		pci_wakeup_event(dev);
1684		pm_request_resume(&dev->dev);
1685	}
1686	return 0;
1687}
1688
1689/**
1690 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1691 * @bus: Top bus of the subtree to walk.
1692 */
1693void pci_pme_wakeup_bus(struct pci_bus *bus)
1694{
1695	if (bus)
1696		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1697}
1698
1699
1700/**
1701 * pci_pme_capable - check the capability of PCI device to generate PME#
1702 * @dev: PCI device to handle.
1703 * @state: PCI state from which device will issue PME#.
1704 */
1705bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1706{
1707	if (!dev->pm_cap)
1708		return false;
1709
1710	return !!(dev->pme_support & (1 << state));
1711}
1712EXPORT_SYMBOL(pci_pme_capable);
1713
1714static void pci_pme_list_scan(struct work_struct *work)
1715{
1716	struct pci_pme_device *pme_dev, *n;
1717
1718	mutex_lock(&pci_pme_list_mutex);
1719	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1720		if (pme_dev->dev->pme_poll) {
1721			struct pci_dev *bridge;
1722
1723			bridge = pme_dev->dev->bus->self;
1724			/*
1725			 * If bridge is in low power state, the
1726			 * configuration space of subordinate devices
1727			 * may be not accessible
1728			 */
1729			if (bridge && bridge->current_state != PCI_D0)
1730				continue;
1731			pci_pme_wakeup(pme_dev->dev, NULL);
1732		} else {
1733			list_del(&pme_dev->list);
1734			kfree(pme_dev);
1735		}
1736	}
1737	if (!list_empty(&pci_pme_list))
1738		schedule_delayed_work(&pci_pme_work,
1739				      msecs_to_jiffies(PME_TIMEOUT));
1740	mutex_unlock(&pci_pme_list_mutex);
1741}
1742
1743static void __pci_pme_active(struct pci_dev *dev, bool enable)
1744{
1745	u16 pmcsr;
1746
1747	if (!dev->pme_support)
1748		return;
1749
1750	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1751	/* Clear PME_Status by writing 1 to it and enable PME# */
1752	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1753	if (!enable)
1754		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1755
1756	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1757}
1758
1759/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760 * pci_pme_active - enable or disable PCI device's PME# function
1761 * @dev: PCI device to handle.
1762 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1763 *
1764 * The caller must verify that the device is capable of generating PME# before
1765 * calling this function with @enable equal to 'true'.
1766 */
1767void pci_pme_active(struct pci_dev *dev, bool enable)
1768{
1769	__pci_pme_active(dev, enable);
1770
1771	/*
1772	 * PCI (as opposed to PCIe) PME requires that the device have
1773	 * its PME# line hooked up correctly. Not all hardware vendors
1774	 * do this, so the PME never gets delivered and the device
1775	 * remains asleep. The easiest way around this is to
1776	 * periodically walk the list of suspended devices and check
1777	 * whether any have their PME flag set. The assumption is that
1778	 * we'll wake up often enough anyway that this won't be a huge
1779	 * hit, and the power savings from the devices will still be a
1780	 * win.
1781	 *
1782	 * Although PCIe uses in-band PME message instead of PME# line
1783	 * to report PME, PME does not work for some PCIe devices in
1784	 * reality.  For example, there are devices that set their PME
1785	 * status bits, but don't really bother to send a PME message;
1786	 * there are PCI Express Root Ports that don't bother to
1787	 * trigger interrupts when they receive PME messages from the
1788	 * devices below.  So PME poll is used for PCIe devices too.
1789	 */
1790
1791	if (dev->pme_poll) {
1792		struct pci_pme_device *pme_dev;
1793		if (enable) {
1794			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1795					  GFP_KERNEL);
1796			if (!pme_dev) {
1797				dev_warn(&dev->dev, "can't enable PME#\n");
1798				return;
1799			}
1800			pme_dev->dev = dev;
1801			mutex_lock(&pci_pme_list_mutex);
1802			list_add(&pme_dev->list, &pci_pme_list);
1803			if (list_is_singular(&pci_pme_list))
1804				schedule_delayed_work(&pci_pme_work,
1805						      msecs_to_jiffies(PME_TIMEOUT));
 
1806			mutex_unlock(&pci_pme_list_mutex);
1807		} else {
1808			mutex_lock(&pci_pme_list_mutex);
1809			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1810				if (pme_dev->dev == dev) {
1811					list_del(&pme_dev->list);
1812					kfree(pme_dev);
1813					break;
1814				}
1815			}
1816			mutex_unlock(&pci_pme_list_mutex);
1817		}
1818	}
1819
1820	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1821}
1822EXPORT_SYMBOL(pci_pme_active);
1823
1824/**
1825 * __pci_enable_wake - enable PCI device as wakeup event source
1826 * @dev: PCI device affected
1827 * @state: PCI state from which device will issue wakeup events
1828 * @runtime: True if the events are to be generated at run time
1829 * @enable: True to enable event generation; false to disable
1830 *
1831 * This enables the device as a wakeup event source, or disables it.
1832 * When such events involves platform-specific hooks, those hooks are
1833 * called automatically by this routine.
1834 *
1835 * Devices with legacy power management (no standard PCI PM capabilities)
1836 * always require such platform hooks.
1837 *
1838 * RETURN VALUE:
1839 * 0 is returned on success
1840 * -EINVAL is returned if device is not supposed to wake up the system
1841 * Error code depending on the platform is returned if both the platform and
1842 * the native mechanism fail to enable the generation of wake-up events
1843 */
1844int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1845		      bool runtime, bool enable)
1846{
1847	int ret = 0;
1848
1849	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1850		return -EINVAL;
 
 
 
 
1851
1852	/* Don't do the same thing twice in a row for one device. */
1853	if (!!enable == !!dev->wakeup_prepared)
1854		return 0;
1855
1856	/*
1857	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1858	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1859	 * enable.  To disable wake-up we call the platform first, for symmetry.
1860	 */
1861
1862	if (enable) {
1863		int error;
1864
1865		if (pci_pme_capable(dev, state))
1866			pci_pme_active(dev, true);
1867		else
1868			ret = 1;
1869		error = runtime ? platform_pci_run_wake(dev, true) :
1870					platform_pci_sleep_wake(dev, true);
1871		if (ret)
1872			ret = error;
1873		if (!ret)
1874			dev->wakeup_prepared = true;
1875	} else {
1876		if (runtime)
1877			platform_pci_run_wake(dev, false);
1878		else
1879			platform_pci_sleep_wake(dev, false);
1880		pci_pme_active(dev, false);
1881		dev->wakeup_prepared = false;
1882	}
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL(__pci_enable_wake);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887
1888/**
1889 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1890 * @dev: PCI device to prepare
1891 * @enable: True to enable wake-up event generation; false to disable
1892 *
1893 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1894 * and this function allows them to set that up cleanly - pci_enable_wake()
1895 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1896 * ordering constraints.
1897 *
1898 * This function only returns error code if the device is not capable of
1899 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1900 * enable wake-up power for it.
1901 */
1902int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1903{
1904	return pci_pme_capable(dev, PCI_D3cold) ?
1905			pci_enable_wake(dev, PCI_D3cold, enable) :
1906			pci_enable_wake(dev, PCI_D3hot, enable);
1907}
1908EXPORT_SYMBOL(pci_wake_from_d3);
1909
1910/**
1911 * pci_target_state - find an appropriate low power state for a given PCI dev
1912 * @dev: PCI device
 
1913 *
1914 * Use underlying platform code to find a supported low power state for @dev.
1915 * If the platform can't manage @dev, return the deepest state from which it
1916 * can generate wake events, based on any available PME info.
1917 */
1918static pci_power_t pci_target_state(struct pci_dev *dev)
1919{
1920	pci_power_t target_state = PCI_D3hot;
1921
1922	if (platform_pci_power_manageable(dev)) {
1923		/*
1924		 * Call the platform to choose the target state of the device
1925		 * and enable wake-up from this state if supported.
1926		 */
1927		pci_power_t state = platform_pci_choose_state(dev);
1928
1929		switch (state) {
1930		case PCI_POWER_ERROR:
1931		case PCI_UNKNOWN:
1932			break;
1933		case PCI_D1:
1934		case PCI_D2:
1935			if (pci_no_d1d2(dev))
1936				break;
1937		default:
1938			target_state = state;
1939		}
1940	} else if (!dev->pm_cap) {
 
 
 
 
1941		target_state = PCI_D0;
1942	} else if (device_may_wakeup(&dev->dev)) {
 
 
 
 
 
 
 
 
 
1943		/*
1944		 * Find the deepest state from which the device can generate
1945		 * wake-up events, make it the target state and enable device
1946		 * to generate PME#.
1947		 */
1948		if (dev->pme_support) {
1949			while (target_state
1950			      && !(dev->pme_support & (1 << target_state)))
1951				target_state--;
1952		}
1953	}
1954
1955	return target_state;
1956}
1957
1958/**
1959 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1960 * @dev: Device to handle.
1961 *
1962 * Choose the power state appropriate for the device depending on whether
1963 * it can wake up the system and/or is power manageable by the platform
1964 * (PCI_D3hot is the default) and put the device into that state.
1965 */
1966int pci_prepare_to_sleep(struct pci_dev *dev)
1967{
1968	pci_power_t target_state = pci_target_state(dev);
 
1969	int error;
1970
1971	if (target_state == PCI_POWER_ERROR)
1972		return -EIO;
1973
1974	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1975
1976	error = pci_set_power_state(dev, target_state);
1977
1978	if (error)
1979		pci_enable_wake(dev, target_state, false);
1980
1981	return error;
1982}
1983EXPORT_SYMBOL(pci_prepare_to_sleep);
1984
1985/**
1986 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1987 * @dev: Device to handle.
1988 *
1989 * Disable device's system wake-up capability and put it into D0.
1990 */
1991int pci_back_from_sleep(struct pci_dev *dev)
1992{
1993	pci_enable_wake(dev, PCI_D0, false);
1994	return pci_set_power_state(dev, PCI_D0);
1995}
1996EXPORT_SYMBOL(pci_back_from_sleep);
1997
1998/**
1999 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2000 * @dev: PCI device being suspended.
2001 *
2002 * Prepare @dev to generate wake-up events at run time and put it into a low
2003 * power state.
2004 */
2005int pci_finish_runtime_suspend(struct pci_dev *dev)
2006{
2007	pci_power_t target_state = pci_target_state(dev);
2008	int error;
2009
 
2010	if (target_state == PCI_POWER_ERROR)
2011		return -EIO;
2012
2013	dev->runtime_d3cold = target_state == PCI_D3cold;
2014
2015	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2016
2017	error = pci_set_power_state(dev, target_state);
2018
2019	if (error) {
2020		__pci_enable_wake(dev, target_state, true, false);
2021		dev->runtime_d3cold = false;
2022	}
2023
2024	return error;
2025}
2026
2027/**
2028 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2029 * @dev: Device to check.
2030 *
2031 * Return true if the device itself is capable of generating wake-up events
2032 * (through the platform or using the native PCIe PME) or if the device supports
2033 * PME and one of its upstream bridges can generate wake-up events.
2034 */
2035bool pci_dev_run_wake(struct pci_dev *dev)
2036{
2037	struct pci_bus *bus = dev->bus;
2038
2039	if (device_run_wake(&dev->dev))
2040		return true;
2041
2042	if (!dev->pme_support)
 
2043		return false;
2044
 
 
 
2045	while (bus->parent) {
2046		struct pci_dev *bridge = bus->self;
2047
2048		if (device_run_wake(&bridge->dev))
2049			return true;
2050
2051		bus = bus->parent;
2052	}
2053
2054	/* We have reached the root bus. */
2055	if (bus->bridge)
2056		return device_run_wake(bus->bridge);
2057
2058	return false;
2059}
2060EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2061
2062/**
2063 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2064 * @pci_dev: Device to check.
2065 *
2066 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2067 * reconfigured due to wakeup settings difference between system and runtime
2068 * suspend and the current power state of it is suitable for the upcoming
2069 * (system) transition.
2070 *
2071 * If the device is not configured for system wakeup, disable PME for it before
2072 * returning 'true' to prevent it from waking up the system unnecessarily.
2073 */
2074bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2075{
2076	struct device *dev = &pci_dev->dev;
 
2077
2078	if (!pm_runtime_suspended(dev)
2079	    || pci_target_state(pci_dev) != pci_dev->current_state
2080	    || platform_pci_need_resume(pci_dev))
2081		return false;
2082
2083	/*
2084	 * At this point the device is good to go unless it's been configured
2085	 * to generate PME at the runtime suspend time, but it is not supposed
2086	 * to wake up the system.  In that case, simply disable PME for it
2087	 * (it will have to be re-enabled on exit from system resume).
2088	 *
2089	 * If the device's power state is D3cold and the platform check above
2090	 * hasn't triggered, the device's configuration is suitable and we don't
2091	 * need to manipulate it at all.
2092	 */
2093	spin_lock_irq(&dev->power.lock);
2094
2095	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2096	    !device_may_wakeup(dev))
2097		__pci_pme_active(pci_dev, false);
2098
2099	spin_unlock_irq(&dev->power.lock);
2100	return true;
2101}
2102
2103/**
2104 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2105 * @pci_dev: Device to handle.
2106 *
2107 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2108 * it might have been disabled during the prepare phase of system suspend if
2109 * the device was not configured for system wakeup.
2110 */
2111void pci_dev_complete_resume(struct pci_dev *pci_dev)
2112{
2113	struct device *dev = &pci_dev->dev;
2114
2115	if (!pci_dev_run_wake(pci_dev))
2116		return;
2117
2118	spin_lock_irq(&dev->power.lock);
2119
2120	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2121		__pci_pme_active(pci_dev, true);
2122
2123	spin_unlock_irq(&dev->power.lock);
2124}
2125
2126void pci_config_pm_runtime_get(struct pci_dev *pdev)
2127{
2128	struct device *dev = &pdev->dev;
2129	struct device *parent = dev->parent;
2130
2131	if (parent)
2132		pm_runtime_get_sync(parent);
2133	pm_runtime_get_noresume(dev);
2134	/*
2135	 * pdev->current_state is set to PCI_D3cold during suspending,
2136	 * so wait until suspending completes
2137	 */
2138	pm_runtime_barrier(dev);
2139	/*
2140	 * Only need to resume devices in D3cold, because config
2141	 * registers are still accessible for devices suspended but
2142	 * not in D3cold.
2143	 */
2144	if (pdev->current_state == PCI_D3cold)
2145		pm_runtime_resume(dev);
2146}
2147
2148void pci_config_pm_runtime_put(struct pci_dev *pdev)
2149{
2150	struct device *dev = &pdev->dev;
2151	struct device *parent = dev->parent;
2152
2153	pm_runtime_put(dev);
2154	if (parent)
2155		pm_runtime_put_sync(parent);
2156}
2157
2158/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159 * pci_pm_init - Initialize PM functions of given PCI device
2160 * @dev: PCI device to handle.
2161 */
2162void pci_pm_init(struct pci_dev *dev)
2163{
2164	int pm;
2165	u16 pmc;
2166
2167	pm_runtime_forbid(&dev->dev);
2168	pm_runtime_set_active(&dev->dev);
2169	pm_runtime_enable(&dev->dev);
2170	device_enable_async_suspend(&dev->dev);
2171	dev->wakeup_prepared = false;
2172
2173	dev->pm_cap = 0;
2174	dev->pme_support = 0;
2175
2176	/* find PCI PM capability in list */
2177	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2178	if (!pm)
2179		return;
2180	/* Check device's ability to generate PME# */
2181	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2182
2183	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2184		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2185			pmc & PCI_PM_CAP_VER_MASK);
2186		return;
2187	}
2188
2189	dev->pm_cap = pm;
2190	dev->d3_delay = PCI_PM_D3_WAIT;
2191	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
 
2192	dev->d3cold_allowed = true;
2193
2194	dev->d1_support = false;
2195	dev->d2_support = false;
2196	if (!pci_no_d1d2(dev)) {
2197		if (pmc & PCI_PM_CAP_D1)
2198			dev->d1_support = true;
2199		if (pmc & PCI_PM_CAP_D2)
2200			dev->d2_support = true;
2201
2202		if (dev->d1_support || dev->d2_support)
2203			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2204				   dev->d1_support ? " D1" : "",
2205				   dev->d2_support ? " D2" : "");
2206	}
2207
2208	pmc &= PCI_PM_CAP_PME_MASK;
2209	if (pmc) {
2210		dev_printk(KERN_DEBUG, &dev->dev,
2211			 "PME# supported from%s%s%s%s%s\n",
2212			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2213			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2214			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2215			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2216			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2217		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2218		dev->pme_poll = true;
2219		/*
2220		 * Make device's PM flags reflect the wake-up capability, but
2221		 * let the user space enable it to wake up the system as needed.
2222		 */
2223		device_set_wakeup_capable(&dev->dev, true);
2224		/* Disable the PME# generation functionality */
2225		pci_pme_active(dev, false);
2226	}
2227}
2228
2229static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2230{
2231	unsigned long flags = IORESOURCE_PCI_FIXED;
2232
2233	switch (prop) {
2234	case PCI_EA_P_MEM:
2235	case PCI_EA_P_VF_MEM:
2236		flags |= IORESOURCE_MEM;
2237		break;
2238	case PCI_EA_P_MEM_PREFETCH:
2239	case PCI_EA_P_VF_MEM_PREFETCH:
2240		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2241		break;
2242	case PCI_EA_P_IO:
2243		flags |= IORESOURCE_IO;
2244		break;
2245	default:
2246		return 0;
2247	}
2248
2249	return flags;
2250}
2251
2252static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2253					    u8 prop)
2254{
2255	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2256		return &dev->resource[bei];
2257#ifdef CONFIG_PCI_IOV
2258	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2259		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2260		return &dev->resource[PCI_IOV_RESOURCES +
2261				      bei - PCI_EA_BEI_VF_BAR0];
2262#endif
2263	else if (bei == PCI_EA_BEI_ROM)
2264		return &dev->resource[PCI_ROM_RESOURCE];
2265	else
2266		return NULL;
2267}
2268
2269/* Read an Enhanced Allocation (EA) entry */
2270static int pci_ea_read(struct pci_dev *dev, int offset)
2271{
2272	struct resource *res;
2273	int ent_size, ent_offset = offset;
2274	resource_size_t start, end;
2275	unsigned long flags;
2276	u32 dw0, bei, base, max_offset;
2277	u8 prop;
2278	bool support_64 = (sizeof(resource_size_t) >= 8);
2279
2280	pci_read_config_dword(dev, ent_offset, &dw0);
2281	ent_offset += 4;
2282
2283	/* Entry size field indicates DWORDs after 1st */
2284	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2285
2286	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2287		goto out;
2288
2289	bei = (dw0 & PCI_EA_BEI) >> 4;
2290	prop = (dw0 & PCI_EA_PP) >> 8;
2291
2292	/*
2293	 * If the Property is in the reserved range, try the Secondary
2294	 * Property instead.
2295	 */
2296	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2297		prop = (dw0 & PCI_EA_SP) >> 16;
2298	if (prop > PCI_EA_P_BRIDGE_IO)
2299		goto out;
2300
2301	res = pci_ea_get_resource(dev, bei, prop);
2302	if (!res) {
2303		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2304		goto out;
2305	}
2306
2307	flags = pci_ea_flags(dev, prop);
2308	if (!flags) {
2309		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2310		goto out;
2311	}
2312
2313	/* Read Base */
2314	pci_read_config_dword(dev, ent_offset, &base);
2315	start = (base & PCI_EA_FIELD_MASK);
2316	ent_offset += 4;
2317
2318	/* Read MaxOffset */
2319	pci_read_config_dword(dev, ent_offset, &max_offset);
2320	ent_offset += 4;
2321
2322	/* Read Base MSBs (if 64-bit entry) */
2323	if (base & PCI_EA_IS_64) {
2324		u32 base_upper;
2325
2326		pci_read_config_dword(dev, ent_offset, &base_upper);
2327		ent_offset += 4;
2328
2329		flags |= IORESOURCE_MEM_64;
2330
2331		/* entry starts above 32-bit boundary, can't use */
2332		if (!support_64 && base_upper)
2333			goto out;
2334
2335		if (support_64)
2336			start |= ((u64)base_upper << 32);
2337	}
2338
2339	end = start + (max_offset | 0x03);
2340
2341	/* Read MaxOffset MSBs (if 64-bit entry) */
2342	if (max_offset & PCI_EA_IS_64) {
2343		u32 max_offset_upper;
2344
2345		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2346		ent_offset += 4;
2347
2348		flags |= IORESOURCE_MEM_64;
2349
2350		/* entry too big, can't use */
2351		if (!support_64 && max_offset_upper)
2352			goto out;
2353
2354		if (support_64)
2355			end += ((u64)max_offset_upper << 32);
2356	}
2357
2358	if (end < start) {
2359		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2360		goto out;
2361	}
2362
2363	if (ent_size != ent_offset - offset) {
2364		dev_err(&dev->dev,
2365			"EA Entry Size (%d) does not match length read (%d)\n",
2366			ent_size, ent_offset - offset);
2367		goto out;
2368	}
2369
2370	res->name = pci_name(dev);
2371	res->start = start;
2372	res->end = end;
2373	res->flags = flags;
2374
2375	if (bei <= PCI_EA_BEI_BAR5)
2376		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2377			   bei, res, prop);
2378	else if (bei == PCI_EA_BEI_ROM)
2379		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2380			   res, prop);
2381	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2382		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2383			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2384	else
2385		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2386			   bei, res, prop);
2387
2388out:
2389	return offset + ent_size;
2390}
2391
2392/* Enhanced Allocation Initalization */
2393void pci_ea_init(struct pci_dev *dev)
2394{
2395	int ea;
2396	u8 num_ent;
2397	int offset;
2398	int i;
2399
2400	/* find PCI EA capability in list */
2401	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2402	if (!ea)
2403		return;
2404
2405	/* determine the number of entries */
2406	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2407					&num_ent);
2408	num_ent &= PCI_EA_NUM_ENT_MASK;
2409
2410	offset = ea + PCI_EA_FIRST_ENT;
2411
2412	/* Skip DWORD 2 for type 1 functions */
2413	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2414		offset += 4;
2415
2416	/* parse each EA entry */
2417	for (i = 0; i < num_ent; ++i)
2418		offset = pci_ea_read(dev, offset);
2419}
2420
2421static void pci_add_saved_cap(struct pci_dev *pci_dev,
2422	struct pci_cap_saved_state *new_cap)
2423{
2424	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2425}
2426
2427/**
2428 * _pci_add_cap_save_buffer - allocate buffer for saving given
2429 *                            capability registers
2430 * @dev: the PCI device
2431 * @cap: the capability to allocate the buffer for
2432 * @extended: Standard or Extended capability ID
2433 * @size: requested size of the buffer
2434 */
2435static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2436				    bool extended, unsigned int size)
2437{
2438	int pos;
2439	struct pci_cap_saved_state *save_state;
2440
2441	if (extended)
2442		pos = pci_find_ext_capability(dev, cap);
2443	else
2444		pos = pci_find_capability(dev, cap);
2445
2446	if (!pos)
2447		return 0;
2448
2449	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2450	if (!save_state)
2451		return -ENOMEM;
2452
2453	save_state->cap.cap_nr = cap;
2454	save_state->cap.cap_extended = extended;
2455	save_state->cap.size = size;
2456	pci_add_saved_cap(dev, save_state);
2457
2458	return 0;
2459}
2460
2461int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2462{
2463	return _pci_add_cap_save_buffer(dev, cap, false, size);
2464}
2465
2466int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2467{
2468	return _pci_add_cap_save_buffer(dev, cap, true, size);
2469}
2470
2471/**
2472 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2473 * @dev: the PCI device
2474 */
2475void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2476{
2477	int error;
2478
2479	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2480					PCI_EXP_SAVE_REGS * sizeof(u16));
2481	if (error)
2482		dev_err(&dev->dev,
2483			"unable to preallocate PCI Express save buffer\n");
2484
2485	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2486	if (error)
2487		dev_err(&dev->dev,
2488			"unable to preallocate PCI-X save buffer\n");
2489
2490	pci_allocate_vc_save_buffers(dev);
2491}
2492
2493void pci_free_cap_save_buffers(struct pci_dev *dev)
2494{
2495	struct pci_cap_saved_state *tmp;
2496	struct hlist_node *n;
2497
2498	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2499		kfree(tmp);
2500}
2501
2502/**
2503 * pci_configure_ari - enable or disable ARI forwarding
2504 * @dev: the PCI device
2505 *
2506 * If @dev and its upstream bridge both support ARI, enable ARI in the
2507 * bridge.  Otherwise, disable ARI in the bridge.
2508 */
2509void pci_configure_ari(struct pci_dev *dev)
2510{
2511	u32 cap;
2512	struct pci_dev *bridge;
2513
2514	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2515		return;
2516
2517	bridge = dev->bus->self;
2518	if (!bridge)
2519		return;
2520
2521	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2522	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2523		return;
2524
2525	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2526		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2527					 PCI_EXP_DEVCTL2_ARI);
2528		bridge->ari_enabled = 1;
2529	} else {
2530		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2531					   PCI_EXP_DEVCTL2_ARI);
2532		bridge->ari_enabled = 0;
2533	}
2534}
2535
2536static int pci_acs_enable;
2537
2538/**
2539 * pci_request_acs - ask for ACS to be enabled if supported
2540 */
2541void pci_request_acs(void)
2542{
2543	pci_acs_enable = 1;
2544}
2545
2546/**
2547 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2548 * @dev: the PCI device
2549 */
2550static int pci_std_enable_acs(struct pci_dev *dev)
2551{
2552	int pos;
2553	u16 cap;
2554	u16 ctrl;
2555
2556	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2557	if (!pos)
2558		return -ENODEV;
2559
2560	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2561	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2562
2563	/* Source Validation */
2564	ctrl |= (cap & PCI_ACS_SV);
2565
2566	/* P2P Request Redirect */
2567	ctrl |= (cap & PCI_ACS_RR);
2568
2569	/* P2P Completion Redirect */
2570	ctrl |= (cap & PCI_ACS_CR);
2571
2572	/* Upstream Forwarding */
2573	ctrl |= (cap & PCI_ACS_UF);
2574
2575	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2576
2577	return 0;
2578}
2579
2580/**
2581 * pci_enable_acs - enable ACS if hardware support it
2582 * @dev: the PCI device
2583 */
2584void pci_enable_acs(struct pci_dev *dev)
2585{
2586	if (!pci_acs_enable)
2587		return;
2588
2589	if (!pci_std_enable_acs(dev))
2590		return;
2591
2592	pci_dev_specific_enable_acs(dev);
2593}
2594
2595static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2596{
2597	int pos;
2598	u16 cap, ctrl;
2599
2600	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2601	if (!pos)
2602		return false;
2603
2604	/*
2605	 * Except for egress control, capabilities are either required
2606	 * or only required if controllable.  Features missing from the
2607	 * capability field can therefore be assumed as hard-wired enabled.
2608	 */
2609	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2610	acs_flags &= (cap | PCI_ACS_EC);
2611
2612	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2613	return (ctrl & acs_flags) == acs_flags;
2614}
2615
2616/**
2617 * pci_acs_enabled - test ACS against required flags for a given device
2618 * @pdev: device to test
2619 * @acs_flags: required PCI ACS flags
2620 *
2621 * Return true if the device supports the provided flags.  Automatically
2622 * filters out flags that are not implemented on multifunction devices.
2623 *
2624 * Note that this interface checks the effective ACS capabilities of the
2625 * device rather than the actual capabilities.  For instance, most single
2626 * function endpoints are not required to support ACS because they have no
2627 * opportunity for peer-to-peer access.  We therefore return 'true'
2628 * regardless of whether the device exposes an ACS capability.  This makes
2629 * it much easier for callers of this function to ignore the actual type
2630 * or topology of the device when testing ACS support.
2631 */
2632bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2633{
2634	int ret;
2635
2636	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2637	if (ret >= 0)
2638		return ret > 0;
2639
2640	/*
2641	 * Conventional PCI and PCI-X devices never support ACS, either
2642	 * effectively or actually.  The shared bus topology implies that
2643	 * any device on the bus can receive or snoop DMA.
2644	 */
2645	if (!pci_is_pcie(pdev))
2646		return false;
2647
2648	switch (pci_pcie_type(pdev)) {
2649	/*
2650	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2651	 * but since their primary interface is PCI/X, we conservatively
2652	 * handle them as we would a non-PCIe device.
2653	 */
2654	case PCI_EXP_TYPE_PCIE_BRIDGE:
2655	/*
2656	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2657	 * applicable... must never implement an ACS Extended Capability...".
2658	 * This seems arbitrary, but we take a conservative interpretation
2659	 * of this statement.
2660	 */
2661	case PCI_EXP_TYPE_PCI_BRIDGE:
2662	case PCI_EXP_TYPE_RC_EC:
2663		return false;
2664	/*
2665	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2666	 * implement ACS in order to indicate their peer-to-peer capabilities,
2667	 * regardless of whether they are single- or multi-function devices.
2668	 */
2669	case PCI_EXP_TYPE_DOWNSTREAM:
2670	case PCI_EXP_TYPE_ROOT_PORT:
2671		return pci_acs_flags_enabled(pdev, acs_flags);
2672	/*
2673	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2674	 * implemented by the remaining PCIe types to indicate peer-to-peer
2675	 * capabilities, but only when they are part of a multifunction
2676	 * device.  The footnote for section 6.12 indicates the specific
2677	 * PCIe types included here.
2678	 */
2679	case PCI_EXP_TYPE_ENDPOINT:
2680	case PCI_EXP_TYPE_UPSTREAM:
2681	case PCI_EXP_TYPE_LEG_END:
2682	case PCI_EXP_TYPE_RC_END:
2683		if (!pdev->multifunction)
2684			break;
2685
2686		return pci_acs_flags_enabled(pdev, acs_flags);
2687	}
2688
2689	/*
2690	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2691	 * to single function devices with the exception of downstream ports.
2692	 */
2693	return true;
2694}
2695
2696/**
2697 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2698 * @start: starting downstream device
2699 * @end: ending upstream device or NULL to search to the root bus
2700 * @acs_flags: required flags
2701 *
2702 * Walk up a device tree from start to end testing PCI ACS support.  If
2703 * any step along the way does not support the required flags, return false.
2704 */
2705bool pci_acs_path_enabled(struct pci_dev *start,
2706			  struct pci_dev *end, u16 acs_flags)
2707{
2708	struct pci_dev *pdev, *parent = start;
2709
2710	do {
2711		pdev = parent;
2712
2713		if (!pci_acs_enabled(pdev, acs_flags))
2714			return false;
2715
2716		if (pci_is_root_bus(pdev->bus))
2717			return (end == NULL);
2718
2719		parent = pdev->bus->self;
2720	} while (pdev != end);
2721
2722	return true;
2723}
2724
2725/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2727 * @dev: the PCI device
2728 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2729 *
2730 * Perform INTx swizzling for a device behind one level of bridge.  This is
2731 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2732 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2733 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2734 * the PCI Express Base Specification, Revision 2.1)
2735 */
2736u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2737{
2738	int slot;
2739
2740	if (pci_ari_enabled(dev->bus))
2741		slot = 0;
2742	else
2743		slot = PCI_SLOT(dev->devfn);
2744
2745	return (((pin - 1) + slot) % 4) + 1;
2746}
2747
2748int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2749{
2750	u8 pin;
2751
2752	pin = dev->pin;
2753	if (!pin)
2754		return -1;
2755
2756	while (!pci_is_root_bus(dev->bus)) {
2757		pin = pci_swizzle_interrupt_pin(dev, pin);
2758		dev = dev->bus->self;
2759	}
2760	*bridge = dev;
2761	return pin;
2762}
2763
2764/**
2765 * pci_common_swizzle - swizzle INTx all the way to root bridge
2766 * @dev: the PCI device
2767 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2768 *
2769 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2770 * bridges all the way up to a PCI root bus.
2771 */
2772u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2773{
2774	u8 pin = *pinp;
2775
2776	while (!pci_is_root_bus(dev->bus)) {
2777		pin = pci_swizzle_interrupt_pin(dev, pin);
2778		dev = dev->bus->self;
2779	}
2780	*pinp = pin;
2781	return PCI_SLOT(dev->devfn);
2782}
2783EXPORT_SYMBOL_GPL(pci_common_swizzle);
2784
2785/**
2786 *	pci_release_region - Release a PCI bar
2787 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2788 *	@bar: BAR to release
2789 *
2790 *	Releases the PCI I/O and memory resources previously reserved by a
2791 *	successful call to pci_request_region.  Call this function only
2792 *	after all use of the PCI regions has ceased.
2793 */
2794void pci_release_region(struct pci_dev *pdev, int bar)
2795{
2796	struct pci_devres *dr;
2797
2798	if (pci_resource_len(pdev, bar) == 0)
2799		return;
2800	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2801		release_region(pci_resource_start(pdev, bar),
2802				pci_resource_len(pdev, bar));
2803	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2804		release_mem_region(pci_resource_start(pdev, bar),
2805				pci_resource_len(pdev, bar));
2806
2807	dr = find_pci_dr(pdev);
2808	if (dr)
2809		dr->region_mask &= ~(1 << bar);
2810}
2811EXPORT_SYMBOL(pci_release_region);
2812
2813/**
2814 *	__pci_request_region - Reserved PCI I/O and memory resource
2815 *	@pdev: PCI device whose resources are to be reserved
2816 *	@bar: BAR to be reserved
2817 *	@res_name: Name to be associated with resource.
2818 *	@exclusive: whether the region access is exclusive or not
2819 *
2820 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2821 *	being reserved by owner @res_name.  Do not access any
2822 *	address inside the PCI regions unless this call returns
2823 *	successfully.
2824 *
2825 *	If @exclusive is set, then the region is marked so that userspace
2826 *	is explicitly not allowed to map the resource via /dev/mem or
2827 *	sysfs MMIO access.
2828 *
2829 *	Returns 0 on success, or %EBUSY on error.  A warning
2830 *	message is also printed on failure.
2831 */
2832static int __pci_request_region(struct pci_dev *pdev, int bar,
2833				const char *res_name, int exclusive)
2834{
2835	struct pci_devres *dr;
2836
2837	if (pci_resource_len(pdev, bar) == 0)
2838		return 0;
2839
2840	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2841		if (!request_region(pci_resource_start(pdev, bar),
2842			    pci_resource_len(pdev, bar), res_name))
2843			goto err_out;
2844	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2845		if (!__request_mem_region(pci_resource_start(pdev, bar),
2846					pci_resource_len(pdev, bar), res_name,
2847					exclusive))
2848			goto err_out;
2849	}
2850
2851	dr = find_pci_dr(pdev);
2852	if (dr)
2853		dr->region_mask |= 1 << bar;
2854
2855	return 0;
2856
2857err_out:
2858	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2859		 &pdev->resource[bar]);
2860	return -EBUSY;
2861}
2862
2863/**
2864 *	pci_request_region - Reserve PCI I/O and memory resource
2865 *	@pdev: PCI device whose resources are to be reserved
2866 *	@bar: BAR to be reserved
2867 *	@res_name: Name to be associated with resource
2868 *
2869 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2870 *	being reserved by owner @res_name.  Do not access any
2871 *	address inside the PCI regions unless this call returns
2872 *	successfully.
2873 *
2874 *	Returns 0 on success, or %EBUSY on error.  A warning
2875 *	message is also printed on failure.
2876 */
2877int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2878{
2879	return __pci_request_region(pdev, bar, res_name, 0);
2880}
2881EXPORT_SYMBOL(pci_request_region);
2882
2883/**
2884 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2885 *	@pdev: PCI device whose resources are to be reserved
2886 *	@bar: BAR to be reserved
2887 *	@res_name: Name to be associated with resource.
2888 *
2889 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2890 *	being reserved by owner @res_name.  Do not access any
2891 *	address inside the PCI regions unless this call returns
2892 *	successfully.
2893 *
2894 *	Returns 0 on success, or %EBUSY on error.  A warning
2895 *	message is also printed on failure.
2896 *
2897 *	The key difference that _exclusive makes it that userspace is
2898 *	explicitly not allowed to map the resource via /dev/mem or
2899 *	sysfs.
2900 */
2901int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2902				 const char *res_name)
2903{
2904	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2905}
2906EXPORT_SYMBOL(pci_request_region_exclusive);
2907
2908/**
2909 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2910 * @pdev: PCI device whose resources were previously reserved
2911 * @bars: Bitmask of BARs to be released
2912 *
2913 * Release selected PCI I/O and memory resources previously reserved.
2914 * Call this function only after all use of the PCI regions has ceased.
2915 */
2916void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2917{
2918	int i;
2919
2920	for (i = 0; i < 6; i++)
2921		if (bars & (1 << i))
2922			pci_release_region(pdev, i);
2923}
2924EXPORT_SYMBOL(pci_release_selected_regions);
2925
2926static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2927					  const char *res_name, int excl)
2928{
2929	int i;
2930
2931	for (i = 0; i < 6; i++)
2932		if (bars & (1 << i))
2933			if (__pci_request_region(pdev, i, res_name, excl))
2934				goto err_out;
2935	return 0;
2936
2937err_out:
2938	while (--i >= 0)
2939		if (bars & (1 << i))
2940			pci_release_region(pdev, i);
2941
2942	return -EBUSY;
2943}
2944
2945
2946/**
2947 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2948 * @pdev: PCI device whose resources are to be reserved
2949 * @bars: Bitmask of BARs to be requested
2950 * @res_name: Name to be associated with resource
2951 */
2952int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2953				 const char *res_name)
2954{
2955	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2956}
2957EXPORT_SYMBOL(pci_request_selected_regions);
2958
2959int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2960					   const char *res_name)
2961{
2962	return __pci_request_selected_regions(pdev, bars, res_name,
2963			IORESOURCE_EXCLUSIVE);
2964}
2965EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2966
2967/**
2968 *	pci_release_regions - Release reserved PCI I/O and memory resources
2969 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2970 *
2971 *	Releases all PCI I/O and memory resources previously reserved by a
2972 *	successful call to pci_request_regions.  Call this function only
2973 *	after all use of the PCI regions has ceased.
2974 */
2975
2976void pci_release_regions(struct pci_dev *pdev)
2977{
2978	pci_release_selected_regions(pdev, (1 << 6) - 1);
2979}
2980EXPORT_SYMBOL(pci_release_regions);
2981
2982/**
2983 *	pci_request_regions - Reserved PCI I/O and memory resources
2984 *	@pdev: PCI device whose resources are to be reserved
2985 *	@res_name: Name to be associated with resource.
2986 *
2987 *	Mark all PCI regions associated with PCI device @pdev as
2988 *	being reserved by owner @res_name.  Do not access any
2989 *	address inside the PCI regions unless this call returns
2990 *	successfully.
2991 *
2992 *	Returns 0 on success, or %EBUSY on error.  A warning
2993 *	message is also printed on failure.
2994 */
2995int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2996{
2997	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2998}
2999EXPORT_SYMBOL(pci_request_regions);
3000
3001/**
3002 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3003 *	@pdev: PCI device whose resources are to be reserved
3004 *	@res_name: Name to be associated with resource.
3005 *
3006 *	Mark all PCI regions associated with PCI device @pdev as
3007 *	being reserved by owner @res_name.  Do not access any
3008 *	address inside the PCI regions unless this call returns
3009 *	successfully.
3010 *
3011 *	pci_request_regions_exclusive() will mark the region so that
3012 *	/dev/mem and the sysfs MMIO access will not be allowed.
3013 *
3014 *	Returns 0 on success, or %EBUSY on error.  A warning
3015 *	message is also printed on failure.
3016 */
3017int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3018{
3019	return pci_request_selected_regions_exclusive(pdev,
3020					((1 << 6) - 1), res_name);
3021}
3022EXPORT_SYMBOL(pci_request_regions_exclusive);
3023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3024/**
3025 *	pci_remap_iospace - Remap the memory mapped I/O space
3026 *	@res: Resource describing the I/O space
3027 *	@phys_addr: physical address of range to be mapped
3028 *
3029 *	Remap the memory mapped I/O space described by the @res
3030 *	and the CPU physical address @phys_addr into virtual address space.
3031 *	Only architectures that have memory mapped IO functions defined
3032 *	(and the PCI_IOBASE value defined) should call this function.
3033 */
3034int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3035{
3036#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3037	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3038
3039	if (!(res->flags & IORESOURCE_IO))
3040		return -EINVAL;
3041
3042	if (res->end > IO_SPACE_LIMIT)
3043		return -EINVAL;
3044
3045	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3046				  pgprot_device(PAGE_KERNEL));
3047#else
3048	/* this architecture does not have memory mapped I/O space,
3049	   so this function should never be called */
3050	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3051	return -ENODEV;
3052#endif
3053}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054
3055static void __pci_set_master(struct pci_dev *dev, bool enable)
3056{
3057	u16 old_cmd, cmd;
3058
3059	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3060	if (enable)
3061		cmd = old_cmd | PCI_COMMAND_MASTER;
3062	else
3063		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3064	if (cmd != old_cmd) {
3065		dev_dbg(&dev->dev, "%s bus mastering\n",
3066			enable ? "enabling" : "disabling");
3067		pci_write_config_word(dev, PCI_COMMAND, cmd);
3068	}
3069	dev->is_busmaster = enable;
3070}
3071
3072/**
3073 * pcibios_setup - process "pci=" kernel boot arguments
3074 * @str: string used to pass in "pci=" kernel boot arguments
3075 *
3076 * Process kernel boot arguments.  This is the default implementation.
3077 * Architecture specific implementations can override this as necessary.
3078 */
3079char * __weak __init pcibios_setup(char *str)
3080{
3081	return str;
3082}
3083
3084/**
3085 * pcibios_set_master - enable PCI bus-mastering for device dev
3086 * @dev: the PCI device to enable
3087 *
3088 * Enables PCI bus-mastering for the device.  This is the default
3089 * implementation.  Architecture specific implementations can override
3090 * this if necessary.
3091 */
3092void __weak pcibios_set_master(struct pci_dev *dev)
3093{
3094	u8 lat;
3095
3096	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3097	if (pci_is_pcie(dev))
3098		return;
3099
3100	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3101	if (lat < 16)
3102		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3103	else if (lat > pcibios_max_latency)
3104		lat = pcibios_max_latency;
3105	else
3106		return;
3107
3108	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3109}
3110
3111/**
3112 * pci_set_master - enables bus-mastering for device dev
3113 * @dev: the PCI device to enable
3114 *
3115 * Enables bus-mastering on the device and calls pcibios_set_master()
3116 * to do the needed arch specific settings.
3117 */
3118void pci_set_master(struct pci_dev *dev)
3119{
3120	__pci_set_master(dev, true);
3121	pcibios_set_master(dev);
3122}
3123EXPORT_SYMBOL(pci_set_master);
3124
3125/**
3126 * pci_clear_master - disables bus-mastering for device dev
3127 * @dev: the PCI device to disable
3128 */
3129void pci_clear_master(struct pci_dev *dev)
3130{
3131	__pci_set_master(dev, false);
3132}
3133EXPORT_SYMBOL(pci_clear_master);
3134
3135/**
3136 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3137 * @dev: the PCI device for which MWI is to be enabled
3138 *
3139 * Helper function for pci_set_mwi.
3140 * Originally copied from drivers/net/acenic.c.
3141 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3142 *
3143 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3144 */
3145int pci_set_cacheline_size(struct pci_dev *dev)
3146{
3147	u8 cacheline_size;
3148
3149	if (!pci_cache_line_size)
3150		return -EINVAL;
3151
3152	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3153	   equal to or multiple of the right value. */
3154	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3155	if (cacheline_size >= pci_cache_line_size &&
3156	    (cacheline_size % pci_cache_line_size) == 0)
3157		return 0;
3158
3159	/* Write the correct value. */
3160	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3161	/* Read it back. */
3162	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3163	if (cacheline_size == pci_cache_line_size)
3164		return 0;
3165
3166	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3167		   pci_cache_line_size << 2);
3168
3169	return -EINVAL;
3170}
3171EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3172
3173/**
3174 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3175 * @dev: the PCI device for which MWI is enabled
3176 *
3177 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3178 *
3179 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3180 */
3181int pci_set_mwi(struct pci_dev *dev)
3182{
3183#ifdef PCI_DISABLE_MWI
3184	return 0;
3185#else
3186	int rc;
3187	u16 cmd;
3188
3189	rc = pci_set_cacheline_size(dev);
3190	if (rc)
3191		return rc;
3192
3193	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3194	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3195		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3196		cmd |= PCI_COMMAND_INVALIDATE;
3197		pci_write_config_word(dev, PCI_COMMAND, cmd);
3198	}
3199	return 0;
3200#endif
3201}
3202EXPORT_SYMBOL(pci_set_mwi);
3203
3204/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3205 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3206 * @dev: the PCI device for which MWI is enabled
3207 *
3208 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3209 * Callers are not required to check the return value.
3210 *
3211 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3212 */
3213int pci_try_set_mwi(struct pci_dev *dev)
3214{
3215#ifdef PCI_DISABLE_MWI
3216	return 0;
3217#else
3218	return pci_set_mwi(dev);
3219#endif
3220}
3221EXPORT_SYMBOL(pci_try_set_mwi);
3222
3223/**
3224 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3225 * @dev: the PCI device to disable
3226 *
3227 * Disables PCI Memory-Write-Invalidate transaction on the device
3228 */
3229void pci_clear_mwi(struct pci_dev *dev)
3230{
3231#ifndef PCI_DISABLE_MWI
3232	u16 cmd;
3233
3234	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3235	if (cmd & PCI_COMMAND_INVALIDATE) {
3236		cmd &= ~PCI_COMMAND_INVALIDATE;
3237		pci_write_config_word(dev, PCI_COMMAND, cmd);
3238	}
3239#endif
3240}
3241EXPORT_SYMBOL(pci_clear_mwi);
3242
3243/**
3244 * pci_intx - enables/disables PCI INTx for device dev
3245 * @pdev: the PCI device to operate on
3246 * @enable: boolean: whether to enable or disable PCI INTx
3247 *
3248 * Enables/disables PCI INTx for device dev
3249 */
3250void pci_intx(struct pci_dev *pdev, int enable)
3251{
3252	u16 pci_command, new;
3253
3254	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3255
3256	if (enable)
3257		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3258	else
3259		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3260
3261	if (new != pci_command) {
3262		struct pci_devres *dr;
3263
3264		pci_write_config_word(pdev, PCI_COMMAND, new);
3265
3266		dr = find_pci_dr(pdev);
3267		if (dr && !dr->restore_intx) {
3268			dr->restore_intx = 1;
3269			dr->orig_intx = !enable;
3270		}
3271	}
3272}
3273EXPORT_SYMBOL_GPL(pci_intx);
3274
3275/**
3276 * pci_intx_mask_supported - probe for INTx masking support
3277 * @dev: the PCI device to operate on
3278 *
3279 * Check if the device dev support INTx masking via the config space
3280 * command word.
3281 */
3282bool pci_intx_mask_supported(struct pci_dev *dev)
3283{
3284	bool mask_supported = false;
3285	u16 orig, new;
3286
3287	if (dev->broken_intx_masking)
3288		return false;
3289
3290	pci_cfg_access_lock(dev);
3291
3292	pci_read_config_word(dev, PCI_COMMAND, &orig);
3293	pci_write_config_word(dev, PCI_COMMAND,
3294			      orig ^ PCI_COMMAND_INTX_DISABLE);
3295	pci_read_config_word(dev, PCI_COMMAND, &new);
3296
3297	/*
3298	 * There's no way to protect against hardware bugs or detect them
3299	 * reliably, but as long as we know what the value should be, let's
3300	 * go ahead and check it.
3301	 */
3302	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3303		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3304			orig, new);
3305	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3306		mask_supported = true;
3307		pci_write_config_word(dev, PCI_COMMAND, orig);
3308	}
3309
3310	pci_cfg_access_unlock(dev);
3311	return mask_supported;
3312}
3313EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3314
3315static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3316{
3317	struct pci_bus *bus = dev->bus;
3318	bool mask_updated = true;
3319	u32 cmd_status_dword;
3320	u16 origcmd, newcmd;
3321	unsigned long flags;
3322	bool irq_pending;
3323
3324	/*
3325	 * We do a single dword read to retrieve both command and status.
3326	 * Document assumptions that make this possible.
3327	 */
3328	BUILD_BUG_ON(PCI_COMMAND % 4);
3329	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3330
3331	raw_spin_lock_irqsave(&pci_lock, flags);
3332
3333	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3334
3335	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3336
3337	/*
3338	 * Check interrupt status register to see whether our device
3339	 * triggered the interrupt (when masking) or the next IRQ is
3340	 * already pending (when unmasking).
3341	 */
3342	if (mask != irq_pending) {
3343		mask_updated = false;
3344		goto done;
3345	}
3346
3347	origcmd = cmd_status_dword;
3348	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3349	if (mask)
3350		newcmd |= PCI_COMMAND_INTX_DISABLE;
3351	if (newcmd != origcmd)
3352		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3353
3354done:
3355	raw_spin_unlock_irqrestore(&pci_lock, flags);
3356
3357	return mask_updated;
3358}
3359
3360/**
3361 * pci_check_and_mask_intx - mask INTx on pending interrupt
3362 * @dev: the PCI device to operate on
3363 *
3364 * Check if the device dev has its INTx line asserted, mask it and
3365 * return true in that case. False is returned if not interrupt was
3366 * pending.
3367 */
3368bool pci_check_and_mask_intx(struct pci_dev *dev)
3369{
3370	return pci_check_and_set_intx_mask(dev, true);
3371}
3372EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3373
3374/**
3375 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3376 * @dev: the PCI device to operate on
3377 *
3378 * Check if the device dev has its INTx line asserted, unmask it if not
3379 * and return true. False is returned and the mask remains active if
3380 * there was still an interrupt pending.
3381 */
3382bool pci_check_and_unmask_intx(struct pci_dev *dev)
3383{
3384	return pci_check_and_set_intx_mask(dev, false);
3385}
3386EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3387
3388/**
3389 * pci_wait_for_pending_transaction - waits for pending transaction
3390 * @dev: the PCI device to operate on
3391 *
3392 * Return 0 if transaction is pending 1 otherwise.
3393 */
3394int pci_wait_for_pending_transaction(struct pci_dev *dev)
3395{
3396	if (!pci_is_pcie(dev))
3397		return 1;
3398
3399	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3400				    PCI_EXP_DEVSTA_TRPND);
3401}
3402EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3403
3404/*
3405 * We should only need to wait 100ms after FLR, but some devices take longer.
3406 * Wait for up to 1000ms for config space to return something other than -1.
3407 * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3408 * dword because VFs don't implement the 1st dword.
3409 */
3410static void pci_flr_wait(struct pci_dev *dev)
3411{
3412	int i = 0;
3413	u32 id;
3414
3415	do {
3416		msleep(100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417		pci_read_config_dword(dev, PCI_COMMAND, &id);
3418	} while (i++ < 10 && id == ~0);
3419
3420	if (id == ~0)
3421		dev_warn(&dev->dev, "Failed to return from FLR\n");
3422	else if (i > 1)
3423		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3424			 (i - 1) * 100);
3425}
3426
3427static int pcie_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
3428{
3429	u32 cap;
3430
 
 
 
3431	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3432	if (!(cap & PCI_EXP_DEVCAP_FLR))
3433		return -ENOTTY;
3434
3435	if (probe)
3436		return 0;
3437
 
 
 
 
 
 
 
 
 
 
3438	if (!pci_wait_for_pending_transaction(dev))
3439		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3440
3441	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3442	pci_flr_wait(dev);
3443	return 0;
 
 
 
 
 
 
 
3444}
 
3445
3446static int pci_af_flr(struct pci_dev *dev, int probe)
3447{
3448	int pos;
3449	u8 cap;
3450
3451	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3452	if (!pos)
3453		return -ENOTTY;
3454
 
 
 
3455	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3456	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3457		return -ENOTTY;
3458
3459	if (probe)
3460		return 0;
3461
3462	/*
3463	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3464	 * is used, so we use the conrol offset rather than status and shift
3465	 * the test bit to match.
3466	 */
3467	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3468				 PCI_AF_STATUS_TP << 8))
3469		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3470
3471	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3472	pci_flr_wait(dev);
3473	return 0;
 
 
 
 
 
 
 
 
3474}
3475
3476/**
3477 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3478 * @dev: Device to reset.
3479 * @probe: If set, only check if the device can be reset this way.
3480 *
3481 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3482 * unset, it will be reinitialized internally when going from PCI_D3hot to
3483 * PCI_D0.  If that's the case and the device is not in a low-power state
3484 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3485 *
3486 * NOTE: This causes the caller to sleep for twice the device power transition
3487 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3488 * by default (i.e. unless the @dev's d3_delay field has a different value).
3489 * Moreover, only devices in D0 can be reset by this function.
3490 */
3491static int pci_pm_reset(struct pci_dev *dev, int probe)
3492{
3493	u16 csr;
3494
3495	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3496		return -ENOTTY;
3497
3498	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3499	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3500		return -ENOTTY;
3501
3502	if (probe)
3503		return 0;
3504
3505	if (dev->current_state != PCI_D0)
3506		return -EINVAL;
3507
3508	csr &= ~PCI_PM_CTRL_STATE_MASK;
3509	csr |= PCI_D3hot;
3510	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3511	pci_dev_d3_sleep(dev);
3512
3513	csr &= ~PCI_PM_CTRL_STATE_MASK;
3514	csr |= PCI_D0;
3515	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3516	pci_dev_d3_sleep(dev);
3517
3518	return 0;
3519}
3520
3521void pci_reset_secondary_bus(struct pci_dev *dev)
3522{
3523	u16 ctrl;
3524
3525	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3526	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3527	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
3528	/*
3529	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3530	 * this to 2ms to ensure that we meet the minimum requirement.
3531	 */
3532	msleep(2);
3533
3534	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3535	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3536
3537	/*
3538	 * Trhfa for conventional PCI is 2^25 clock cycles.
3539	 * Assuming a minimum 33MHz clock this results in a 1s
3540	 * delay before we can consider subordinate devices to
3541	 * be re-initialized.  PCIe has some ways to shorten this,
3542	 * but we don't make use of them yet.
3543	 */
3544	ssleep(1);
3545}
3546
3547void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3548{
3549	pci_reset_secondary_bus(dev);
3550}
3551
3552/**
3553 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3554 * @dev: Bridge device
3555 *
3556 * Use the bridge control register to assert reset on the secondary bus.
3557 * Devices on the secondary bus are left in power-on state.
3558 */
3559void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3560{
3561	pcibios_reset_secondary_bus(dev);
 
 
3562}
3563EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3564
3565static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3566{
3567	struct pci_dev *pdev;
3568
3569	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3570	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3571		return -ENOTTY;
3572
3573	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3574		if (pdev != dev)
3575			return -ENOTTY;
3576
3577	if (probe)
3578		return 0;
3579
3580	pci_reset_bridge_secondary_bus(dev->bus->self);
3581
3582	return 0;
3583}
3584
3585static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3586{
3587	int rc = -ENOTTY;
3588
3589	if (!hotplug || !try_module_get(hotplug->ops->owner))
3590		return rc;
3591
3592	if (hotplug->ops->reset_slot)
3593		rc = hotplug->ops->reset_slot(hotplug, probe);
3594
3595	module_put(hotplug->ops->owner);
3596
3597	return rc;
3598}
3599
3600static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3601{
3602	struct pci_dev *pdev;
3603
3604	if (dev->subordinate || !dev->slot ||
3605	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3606		return -ENOTTY;
3607
3608	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3609		if (pdev != dev && pdev->slot == dev->slot)
3610			return -ENOTTY;
3611
3612	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3613}
3614
3615static int __pci_dev_reset(struct pci_dev *dev, int probe)
3616{
3617	int rc;
3618
3619	might_sleep();
3620
3621	rc = pci_dev_specific_reset(dev, probe);
3622	if (rc != -ENOTTY)
3623		goto done;
3624
3625	rc = pcie_flr(dev, probe);
3626	if (rc != -ENOTTY)
3627		goto done;
3628
3629	rc = pci_af_flr(dev, probe);
3630	if (rc != -ENOTTY)
3631		goto done;
3632
3633	rc = pci_pm_reset(dev, probe);
3634	if (rc != -ENOTTY)
3635		goto done;
3636
3637	rc = pci_dev_reset_slot_function(dev, probe);
3638	if (rc != -ENOTTY)
3639		goto done;
3640
3641	rc = pci_parent_bus_reset(dev, probe);
3642done:
3643	return rc;
3644}
3645
3646static void pci_dev_lock(struct pci_dev *dev)
3647{
3648	pci_cfg_access_lock(dev);
3649	/* block PM suspend, driver probe, etc. */
3650	device_lock(&dev->dev);
3651}
3652
3653/* Return 1 on successful lock, 0 on contention */
3654static int pci_dev_trylock(struct pci_dev *dev)
3655{
3656	if (pci_cfg_access_trylock(dev)) {
3657		if (device_trylock(&dev->dev))
3658			return 1;
3659		pci_cfg_access_unlock(dev);
3660	}
3661
3662	return 0;
3663}
3664
3665static void pci_dev_unlock(struct pci_dev *dev)
3666{
3667	device_unlock(&dev->dev);
3668	pci_cfg_access_unlock(dev);
3669}
3670
3671/**
3672 * pci_reset_notify - notify device driver of reset
3673 * @dev: device to be notified of reset
3674 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3675 *           completed
3676 *
3677 * Must be called prior to device access being disabled and after device
3678 * access is restored.
3679 */
3680static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3681{
3682	const struct pci_error_handlers *err_handler =
3683			dev->driver ? dev->driver->err_handler : NULL;
3684	if (err_handler && err_handler->reset_notify)
3685		err_handler->reset_notify(dev, prepare);
3686}
3687
3688static void pci_dev_save_and_disable(struct pci_dev *dev)
3689{
3690	pci_reset_notify(dev, true);
 
 
 
 
3691
3692	/*
3693	 * Wake-up device prior to save.  PM registers default to D0 after
3694	 * reset and a simple register restore doesn't reliably return
3695	 * to a non-D0 state anyway.
3696	 */
3697	pci_set_power_state(dev, PCI_D0);
3698
3699	pci_save_state(dev);
3700	/*
3701	 * Disable the device by clearing the Command register, except for
3702	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3703	 * BARs, but also prevents the device from being Bus Master, preventing
3704	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3705	 * compliant devices, INTx-disable prevents legacy interrupts.
3706	 */
3707	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3708}
3709
3710static void pci_dev_restore(struct pci_dev *dev)
3711{
 
 
 
3712	pci_restore_state(dev);
3713	pci_reset_notify(dev, false);
3714}
3715
3716static int pci_dev_reset(struct pci_dev *dev, int probe)
3717{
3718	int rc;
3719
3720	if (!probe)
3721		pci_dev_lock(dev);
3722
3723	rc = __pci_dev_reset(dev, probe);
3724
3725	if (!probe)
3726		pci_dev_unlock(dev);
3727
3728	return rc;
3729}
3730
3731/**
3732 * __pci_reset_function - reset a PCI device function
 
3733 * @dev: PCI device to reset
3734 *
3735 * Some devices allow an individual function to be reset without affecting
3736 * other functions in the same device.  The PCI device must be responsive
3737 * to PCI config space in order to use this function.
3738 *
3739 * The device function is presumed to be unused when this function is called.
 
3740 * Resetting the device will make the contents of PCI configuration space
3741 * random, so any caller of this must be prepared to reinitialise the
3742 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3743 * etc.
3744 *
3745 * Returns 0 if the device function was successfully reset or negative if the
3746 * device doesn't support resetting a single function.
3747 */
3748int __pci_reset_function(struct pci_dev *dev)
3749{
3750	return pci_dev_reset(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751}
3752EXPORT_SYMBOL_GPL(__pci_reset_function);
3753
3754/**
3755 * __pci_reset_function_locked - reset a PCI device function while holding
3756 * the @dev mutex lock.
3757 * @dev: PCI device to reset
3758 *
3759 * Some devices allow an individual function to be reset without affecting
3760 * other functions in the same device.  The PCI device must be responsive
3761 * to PCI config space in order to use this function.
3762 *
3763 * The device function is presumed to be unused and the caller is holding
3764 * the device mutex lock when this function is called.
3765 * Resetting the device will make the contents of PCI configuration space
3766 * random, so any caller of this must be prepared to reinitialise the
3767 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3768 * etc.
3769 *
3770 * Returns 0 if the device function was successfully reset or negative if the
3771 * device doesn't support resetting a single function.
3772 */
3773int __pci_reset_function_locked(struct pci_dev *dev)
3774{
3775	return __pci_dev_reset(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776}
3777EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3778
3779/**
3780 * pci_probe_reset_function - check whether the device can be safely reset
3781 * @dev: PCI device to reset
3782 *
3783 * Some devices allow an individual function to be reset without affecting
3784 * other functions in the same device.  The PCI device must be responsive
3785 * to PCI config space in order to use this function.
3786 *
3787 * Returns 0 if the device function can be reset or negative if the
 
 
 
 
 
3788 * device doesn't support resetting a single function.
3789 */
3790int pci_probe_reset_function(struct pci_dev *dev)
3791{
3792	return pci_dev_reset(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
3793}
 
3794
3795/**
3796 * pci_reset_function - quiesce and reset a PCI device function
3797 * @dev: PCI device to reset
3798 *
3799 * Some devices allow an individual function to be reset without affecting
3800 * other functions in the same device.  The PCI device must be responsive
3801 * to PCI config space in order to use this function.
3802 *
3803 * This function does not just reset the PCI portion of a device, but
3804 * clears all the state associated with the device.  This function differs
3805 * from __pci_reset_function in that it saves and restores device state
3806 * over the reset.
 
3807 *
3808 * Returns 0 if the device function was successfully reset or negative if the
3809 * device doesn't support resetting a single function.
3810 */
3811int pci_reset_function(struct pci_dev *dev)
3812{
3813	int rc;
3814
3815	rc = pci_dev_reset(dev, 1);
3816	if (rc)
3817		return rc;
3818
3819	pci_dev_save_and_disable(dev);
3820
3821	rc = pci_dev_reset(dev, 0);
3822
3823	pci_dev_restore(dev);
3824
3825	return rc;
3826}
3827EXPORT_SYMBOL_GPL(pci_reset_function);
3828
3829/**
3830 * pci_try_reset_function - quiesce and reset a PCI device function
3831 * @dev: PCI device to reset
3832 *
3833 * Same as above, except return -EAGAIN if unable to lock device.
3834 */
3835int pci_try_reset_function(struct pci_dev *dev)
3836{
3837	int rc;
3838
3839	rc = pci_dev_reset(dev, 1);
3840	if (rc)
3841		return rc;
 
 
3842
3843	pci_dev_save_and_disable(dev);
3844
3845	if (pci_dev_trylock(dev)) {
3846		rc = __pci_dev_reset(dev, 0);
3847		pci_dev_unlock(dev);
3848	} else
3849		rc = -EAGAIN;
3850
3851	pci_dev_restore(dev);
 
3852
3853	return rc;
3854}
3855EXPORT_SYMBOL_GPL(pci_try_reset_function);
3856
3857/* Do any devices on or below this bus prevent a bus reset? */
3858static bool pci_bus_resetable(struct pci_bus *bus)
3859{
3860	struct pci_dev *dev;
3861
 
 
 
 
3862	list_for_each_entry(dev, &bus->devices, bus_list) {
3863		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3864		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3865			return false;
3866	}
3867
3868	return true;
3869}
3870
3871/* Lock devices from the top of the tree down */
3872static void pci_bus_lock(struct pci_bus *bus)
3873{
3874	struct pci_dev *dev;
3875
3876	list_for_each_entry(dev, &bus->devices, bus_list) {
3877		pci_dev_lock(dev);
3878		if (dev->subordinate)
3879			pci_bus_lock(dev->subordinate);
3880	}
3881}
3882
3883/* Unlock devices from the bottom of the tree up */
3884static void pci_bus_unlock(struct pci_bus *bus)
3885{
3886	struct pci_dev *dev;
3887
3888	list_for_each_entry(dev, &bus->devices, bus_list) {
3889		if (dev->subordinate)
3890			pci_bus_unlock(dev->subordinate);
3891		pci_dev_unlock(dev);
3892	}
3893}
3894
3895/* Return 1 on successful lock, 0 on contention */
3896static int pci_bus_trylock(struct pci_bus *bus)
3897{
3898	struct pci_dev *dev;
3899
3900	list_for_each_entry(dev, &bus->devices, bus_list) {
3901		if (!pci_dev_trylock(dev))
3902			goto unlock;
3903		if (dev->subordinate) {
3904			if (!pci_bus_trylock(dev->subordinate)) {
3905				pci_dev_unlock(dev);
3906				goto unlock;
3907			}
3908		}
3909	}
3910	return 1;
3911
3912unlock:
3913	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3914		if (dev->subordinate)
3915			pci_bus_unlock(dev->subordinate);
3916		pci_dev_unlock(dev);
3917	}
3918	return 0;
3919}
3920
3921/* Do any devices on or below this slot prevent a bus reset? */
3922static bool pci_slot_resetable(struct pci_slot *slot)
3923{
3924	struct pci_dev *dev;
3925
 
 
 
 
3926	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3927		if (!dev->slot || dev->slot != slot)
3928			continue;
3929		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3930		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3931			return false;
3932	}
3933
3934	return true;
3935}
3936
3937/* Lock devices from the top of the tree down */
3938static void pci_slot_lock(struct pci_slot *slot)
3939{
3940	struct pci_dev *dev;
3941
3942	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3943		if (!dev->slot || dev->slot != slot)
3944			continue;
3945		pci_dev_lock(dev);
3946		if (dev->subordinate)
3947			pci_bus_lock(dev->subordinate);
3948	}
3949}
3950
3951/* Unlock devices from the bottom of the tree up */
3952static void pci_slot_unlock(struct pci_slot *slot)
3953{
3954	struct pci_dev *dev;
3955
3956	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3957		if (!dev->slot || dev->slot != slot)
3958			continue;
3959		if (dev->subordinate)
3960			pci_bus_unlock(dev->subordinate);
3961		pci_dev_unlock(dev);
3962	}
3963}
3964
3965/* Return 1 on successful lock, 0 on contention */
3966static int pci_slot_trylock(struct pci_slot *slot)
3967{
3968	struct pci_dev *dev;
3969
3970	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3971		if (!dev->slot || dev->slot != slot)
3972			continue;
3973		if (!pci_dev_trylock(dev))
3974			goto unlock;
3975		if (dev->subordinate) {
3976			if (!pci_bus_trylock(dev->subordinate)) {
3977				pci_dev_unlock(dev);
3978				goto unlock;
3979			}
3980		}
3981	}
3982	return 1;
3983
3984unlock:
3985	list_for_each_entry_continue_reverse(dev,
3986					     &slot->bus->devices, bus_list) {
3987		if (!dev->slot || dev->slot != slot)
3988			continue;
3989		if (dev->subordinate)
3990			pci_bus_unlock(dev->subordinate);
3991		pci_dev_unlock(dev);
3992	}
3993	return 0;
3994}
3995
3996/* Save and disable devices from the top of the tree down */
3997static void pci_bus_save_and_disable(struct pci_bus *bus)
3998{
3999	struct pci_dev *dev;
4000
4001	list_for_each_entry(dev, &bus->devices, bus_list) {
 
4002		pci_dev_save_and_disable(dev);
 
4003		if (dev->subordinate)
4004			pci_bus_save_and_disable(dev->subordinate);
4005	}
4006}
4007
4008/*
4009 * Restore devices from top of the tree down - parent bridges need to be
4010 * restored before we can get to subordinate devices.
4011 */
4012static void pci_bus_restore(struct pci_bus *bus)
4013{
4014	struct pci_dev *dev;
4015
4016	list_for_each_entry(dev, &bus->devices, bus_list) {
 
4017		pci_dev_restore(dev);
 
4018		if (dev->subordinate)
4019			pci_bus_restore(dev->subordinate);
4020	}
4021}
4022
4023/* Save and disable devices from the top of the tree down */
4024static void pci_slot_save_and_disable(struct pci_slot *slot)
4025{
4026	struct pci_dev *dev;
4027
4028	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4029		if (!dev->slot || dev->slot != slot)
4030			continue;
4031		pci_dev_save_and_disable(dev);
4032		if (dev->subordinate)
4033			pci_bus_save_and_disable(dev->subordinate);
4034	}
4035}
4036
4037/*
4038 * Restore devices from top of the tree down - parent bridges need to be
4039 * restored before we can get to subordinate devices.
4040 */
4041static void pci_slot_restore(struct pci_slot *slot)
4042{
4043	struct pci_dev *dev;
4044
4045	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4046		if (!dev->slot || dev->slot != slot)
4047			continue;
 
4048		pci_dev_restore(dev);
 
4049		if (dev->subordinate)
4050			pci_bus_restore(dev->subordinate);
4051	}
4052}
4053
4054static int pci_slot_reset(struct pci_slot *slot, int probe)
4055{
4056	int rc;
4057
4058	if (!slot || !pci_slot_resetable(slot))
4059		return -ENOTTY;
4060
4061	if (!probe)
4062		pci_slot_lock(slot);
4063
4064	might_sleep();
4065
4066	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4067
4068	if (!probe)
4069		pci_slot_unlock(slot);
4070
4071	return rc;
4072}
4073
4074/**
4075 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4076 * @slot: PCI slot to probe
4077 *
4078 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4079 */
4080int pci_probe_reset_slot(struct pci_slot *slot)
4081{
4082	return pci_slot_reset(slot, 1);
4083}
4084EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4085
4086/**
4087 * pci_reset_slot - reset a PCI slot
4088 * @slot: PCI slot to reset
4089 *
4090 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4091 * independent of other slots.  For instance, some slots may support slot power
4092 * control.  In the case of a 1:1 bus to slot architecture, this function may
4093 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4094 * Generally a slot reset should be attempted before a bus reset.  All of the
4095 * function of the slot and any subordinate buses behind the slot are reset
4096 * through this function.  PCI config space of all devices in the slot and
4097 * behind the slot is saved before and restored after reset.
4098 *
4099 * Return 0 on success, non-zero on error.
4100 */
4101int pci_reset_slot(struct pci_slot *slot)
4102{
4103	int rc;
4104
4105	rc = pci_slot_reset(slot, 1);
4106	if (rc)
4107		return rc;
4108
4109	pci_slot_save_and_disable(slot);
4110
4111	rc = pci_slot_reset(slot, 0);
4112
4113	pci_slot_restore(slot);
4114
4115	return rc;
4116}
4117EXPORT_SYMBOL_GPL(pci_reset_slot);
4118
4119/**
4120 * pci_try_reset_slot - Try to reset a PCI slot
4121 * @slot: PCI slot to reset
4122 *
4123 * Same as above except return -EAGAIN if the slot cannot be locked
4124 */
4125int pci_try_reset_slot(struct pci_slot *slot)
4126{
4127	int rc;
4128
4129	rc = pci_slot_reset(slot, 1);
4130	if (rc)
4131		return rc;
4132
4133	pci_slot_save_and_disable(slot);
4134
4135	if (pci_slot_trylock(slot)) {
4136		might_sleep();
4137		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4138		pci_slot_unlock(slot);
4139	} else
4140		rc = -EAGAIN;
4141
4142	pci_slot_restore(slot);
4143
4144	return rc;
4145}
4146EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4147
4148static int pci_bus_reset(struct pci_bus *bus, int probe)
4149{
4150	if (!bus->self || !pci_bus_resetable(bus))
4151		return -ENOTTY;
4152
4153	if (probe)
4154		return 0;
4155
4156	pci_bus_lock(bus);
4157
4158	might_sleep();
4159
4160	pci_reset_bridge_secondary_bus(bus->self);
4161
4162	pci_bus_unlock(bus);
4163
4164	return 0;
4165}
4166
4167/**
4168 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4169 * @bus: PCI bus to probe
4170 *
4171 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4172 */
4173int pci_probe_reset_bus(struct pci_bus *bus)
4174{
4175	return pci_bus_reset(bus, 1);
4176}
4177EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4178
4179/**
4180 * pci_reset_bus - reset a PCI bus
4181 * @bus: top level PCI bus to reset
4182 *
4183 * Do a bus reset on the given bus and any subordinate buses, saving
4184 * and restoring state of all devices.
4185 *
4186 * Return 0 on success, non-zero on error.
4187 */
4188int pci_reset_bus(struct pci_bus *bus)
4189{
4190	int rc;
4191
4192	rc = pci_bus_reset(bus, 1);
4193	if (rc)
4194		return rc;
4195
4196	pci_bus_save_and_disable(bus);
4197
4198	rc = pci_bus_reset(bus, 0);
4199
4200	pci_bus_restore(bus);
4201
4202	return rc;
4203}
4204EXPORT_SYMBOL_GPL(pci_reset_bus);
4205
4206/**
4207 * pci_try_reset_bus - Try to reset a PCI bus
4208 * @bus: top level PCI bus to reset
4209 *
4210 * Same as above except return -EAGAIN if the bus cannot be locked
4211 */
4212int pci_try_reset_bus(struct pci_bus *bus)
4213{
4214	int rc;
4215
4216	rc = pci_bus_reset(bus, 1);
4217	if (rc)
4218		return rc;
4219
4220	pci_bus_save_and_disable(bus);
4221
4222	if (pci_bus_trylock(bus)) {
4223		might_sleep();
4224		pci_reset_bridge_secondary_bus(bus->self);
4225		pci_bus_unlock(bus);
4226	} else
4227		rc = -EAGAIN;
4228
4229	pci_bus_restore(bus);
4230
4231	return rc;
4232}
4233EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4234
4235/**
4236 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4237 * @dev: PCI device to query
4238 *
4239 * Returns mmrbc: maximum designed memory read count in bytes
4240 *    or appropriate error value.
4241 */
4242int pcix_get_max_mmrbc(struct pci_dev *dev)
4243{
4244	int cap;
4245	u32 stat;
4246
4247	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4248	if (!cap)
4249		return -EINVAL;
4250
4251	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4252		return -EINVAL;
4253
4254	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4255}
4256EXPORT_SYMBOL(pcix_get_max_mmrbc);
4257
4258/**
4259 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4260 * @dev: PCI device to query
4261 *
4262 * Returns mmrbc: maximum memory read count in bytes
4263 *    or appropriate error value.
4264 */
4265int pcix_get_mmrbc(struct pci_dev *dev)
4266{
4267	int cap;
4268	u16 cmd;
4269
4270	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4271	if (!cap)
4272		return -EINVAL;
4273
4274	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4275		return -EINVAL;
4276
4277	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4278}
4279EXPORT_SYMBOL(pcix_get_mmrbc);
4280
4281/**
4282 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4283 * @dev: PCI device to query
4284 * @mmrbc: maximum memory read count in bytes
4285 *    valid values are 512, 1024, 2048, 4096
4286 *
4287 * If possible sets maximum memory read byte count, some bridges have erratas
4288 * that prevent this.
4289 */
4290int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4291{
4292	int cap;
4293	u32 stat, v, o;
4294	u16 cmd;
4295
4296	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4297		return -EINVAL;
4298
4299	v = ffs(mmrbc) - 10;
4300
4301	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4302	if (!cap)
4303		return -EINVAL;
4304
4305	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4306		return -EINVAL;
4307
4308	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4309		return -E2BIG;
4310
4311	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4312		return -EINVAL;
4313
4314	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4315	if (o != v) {
4316		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4317			return -EIO;
4318
4319		cmd &= ~PCI_X_CMD_MAX_READ;
4320		cmd |= v << 2;
4321		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4322			return -EIO;
4323	}
4324	return 0;
4325}
4326EXPORT_SYMBOL(pcix_set_mmrbc);
4327
4328/**
4329 * pcie_get_readrq - get PCI Express read request size
4330 * @dev: PCI device to query
4331 *
4332 * Returns maximum memory read request in bytes
4333 *    or appropriate error value.
4334 */
4335int pcie_get_readrq(struct pci_dev *dev)
4336{
4337	u16 ctl;
4338
4339	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4340
4341	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4342}
4343EXPORT_SYMBOL(pcie_get_readrq);
4344
4345/**
4346 * pcie_set_readrq - set PCI Express maximum memory read request
4347 * @dev: PCI device to query
4348 * @rq: maximum memory read count in bytes
4349 *    valid values are 128, 256, 512, 1024, 2048, 4096
4350 *
4351 * If possible sets maximum memory read request in bytes
4352 */
4353int pcie_set_readrq(struct pci_dev *dev, int rq)
4354{
4355	u16 v;
4356
4357	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4358		return -EINVAL;
4359
4360	/*
4361	 * If using the "performance" PCIe config, we clamp the
4362	 * read rq size to the max packet size to prevent the
4363	 * host bridge generating requests larger than we can
4364	 * cope with
4365	 */
4366	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4367		int mps = pcie_get_mps(dev);
4368
4369		if (mps < rq)
4370			rq = mps;
4371	}
4372
4373	v = (ffs(rq) - 8) << 12;
4374
4375	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4376						  PCI_EXP_DEVCTL_READRQ, v);
4377}
4378EXPORT_SYMBOL(pcie_set_readrq);
4379
4380/**
4381 * pcie_get_mps - get PCI Express maximum payload size
4382 * @dev: PCI device to query
4383 *
4384 * Returns maximum payload size in bytes
4385 */
4386int pcie_get_mps(struct pci_dev *dev)
4387{
4388	u16 ctl;
4389
4390	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4391
4392	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4393}
4394EXPORT_SYMBOL(pcie_get_mps);
4395
4396/**
4397 * pcie_set_mps - set PCI Express maximum payload size
4398 * @dev: PCI device to query
4399 * @mps: maximum payload size in bytes
4400 *    valid values are 128, 256, 512, 1024, 2048, 4096
4401 *
4402 * If possible sets maximum payload size
4403 */
4404int pcie_set_mps(struct pci_dev *dev, int mps)
4405{
4406	u16 v;
4407
4408	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4409		return -EINVAL;
4410
4411	v = ffs(mps) - 8;
4412	if (v > dev->pcie_mpss)
4413		return -EINVAL;
4414	v <<= 5;
4415
4416	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4417						  PCI_EXP_DEVCTL_PAYLOAD, v);
4418}
4419EXPORT_SYMBOL(pcie_set_mps);
4420
4421/**
4422 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4423 * @dev: PCI device to query
4424 * @speed: storage for minimum speed
4425 * @width: storage for minimum width
4426 *
4427 * This function will walk up the PCI device chain and determine the minimum
4428 * link width and speed of the device.
4429 */
4430int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4431			  enum pcie_link_width *width)
4432{
4433	int ret;
4434
4435	*speed = PCI_SPEED_UNKNOWN;
4436	*width = PCIE_LNK_WIDTH_UNKNOWN;
4437
4438	while (dev) {
4439		u16 lnksta;
4440		enum pci_bus_speed next_speed;
4441		enum pcie_link_width next_width;
4442
4443		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4444		if (ret)
4445			return ret;
4446
4447		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4448		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4449			PCI_EXP_LNKSTA_NLW_SHIFT;
4450
4451		if (next_speed < *speed)
4452			*speed = next_speed;
4453
4454		if (next_width < *width)
4455			*width = next_width;
4456
4457		dev = dev->bus->self;
4458	}
4459
4460	return 0;
4461}
4462EXPORT_SYMBOL(pcie_get_minimum_link);
4463
4464/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4465 * pci_select_bars - Make BAR mask from the type of resource
4466 * @dev: the PCI device for which BAR mask is made
4467 * @flags: resource type mask to be selected
4468 *
4469 * This helper routine makes bar mask from the type of resource.
4470 */
4471int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4472{
4473	int i, bars = 0;
4474	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4475		if (pci_resource_flags(dev, i) & flags)
4476			bars |= (1 << i);
4477	return bars;
4478}
4479EXPORT_SYMBOL(pci_select_bars);
4480
4481/**
4482 * pci_resource_bar - get position of the BAR associated with a resource
4483 * @dev: the PCI device
4484 * @resno: the resource number
4485 * @type: the BAR type to be filled in
4486 *
4487 * Returns BAR position in config space, or 0 if the BAR is invalid.
4488 */
4489int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4490{
4491	int reg;
4492
4493	if (resno < PCI_ROM_RESOURCE) {
4494		*type = pci_bar_unknown;
4495		return PCI_BASE_ADDRESS_0 + 4 * resno;
4496	} else if (resno == PCI_ROM_RESOURCE) {
4497		*type = pci_bar_mem32;
4498		return dev->rom_base_reg;
4499	} else if (resno < PCI_BRIDGE_RESOURCES) {
4500		/* device specific resource */
4501		*type = pci_bar_unknown;
4502		reg = pci_iov_resource_bar(dev, resno);
4503		if (reg)
4504			return reg;
4505	}
4506
4507	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4508	return 0;
4509}
4510
4511/* Some architectures require additional programming to enable VGA */
4512static arch_set_vga_state_t arch_set_vga_state;
4513
4514void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4515{
4516	arch_set_vga_state = func;	/* NULL disables */
4517}
4518
4519static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4520				  unsigned int command_bits, u32 flags)
4521{
4522	if (arch_set_vga_state)
4523		return arch_set_vga_state(dev, decode, command_bits,
4524						flags);
4525	return 0;
4526}
4527
4528/**
4529 * pci_set_vga_state - set VGA decode state on device and parents if requested
4530 * @dev: the PCI device
4531 * @decode: true = enable decoding, false = disable decoding
4532 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4533 * @flags: traverse ancestors and change bridges
4534 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4535 */
4536int pci_set_vga_state(struct pci_dev *dev, bool decode,
4537		      unsigned int command_bits, u32 flags)
4538{
4539	struct pci_bus *bus;
4540	struct pci_dev *bridge;
4541	u16 cmd;
4542	int rc;
4543
4544	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4545
4546	/* ARCH specific VGA enables */
4547	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4548	if (rc)
4549		return rc;
4550
4551	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4552		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4553		if (decode == true)
4554			cmd |= command_bits;
4555		else
4556			cmd &= ~command_bits;
4557		pci_write_config_word(dev, PCI_COMMAND, cmd);
4558	}
4559
4560	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4561		return 0;
4562
4563	bus = dev->bus;
4564	while (bus) {
4565		bridge = bus->self;
4566		if (bridge) {
4567			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4568					     &cmd);
4569			if (decode == true)
4570				cmd |= PCI_BRIDGE_CTL_VGA;
4571			else
4572				cmd &= ~PCI_BRIDGE_CTL_VGA;
4573			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4574					      cmd);
4575		}
4576		bus = bus->parent;
4577	}
4578	return 0;
4579}
4580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4581bool pci_device_is_present(struct pci_dev *pdev)
4582{
4583	u32 v;
4584
 
 
4585	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4586}
4587EXPORT_SYMBOL_GPL(pci_device_is_present);
4588
4589void pci_ignore_hotplug(struct pci_dev *dev)
4590{
4591	struct pci_dev *bridge = dev->bus->self;
4592
4593	dev->ignore_hotplug = 1;
4594	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4595	if (bridge)
4596		bridge->ignore_hotplug = 1;
4597}
4598EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4599
 
 
 
 
 
4600#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4601static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4602static DEFINE_SPINLOCK(resource_alignment_lock);
4603
4604/**
4605 * pci_specified_resource_alignment - get resource alignment specified by user.
4606 * @dev: the PCI device to get
 
4607 *
4608 * RETURNS: Resource alignment if it is specified.
4609 *          Zero if it is not specified.
4610 */
4611static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
 
4612{
4613	int seg, bus, slot, func, align_order, count;
4614	resource_size_t align = 0;
 
4615	char *p;
4616
4617	spin_lock(&resource_alignment_lock);
4618	p = resource_alignment_param;
 
 
 
 
 
 
 
 
4619	while (*p) {
4620		count = 0;
4621		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4622							p[count] == '@') {
4623			p += count + 1;
4624		} else {
4625			align_order = -1;
4626		}
4627		if (sscanf(p, "%x:%x:%x.%x%n",
4628			&seg, &bus, &slot, &func, &count) != 4) {
4629			seg = 0;
4630			if (sscanf(p, "%x:%x.%x%n",
4631					&bus, &slot, &func, &count) != 3) {
4632				/* Invalid format */
4633				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4634					p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4635				break;
4636			}
4637		}
4638		p += count;
4639		if (seg == pci_domain_nr(dev->bus) &&
4640			bus == dev->bus->number &&
4641			slot == PCI_SLOT(dev->devfn) &&
4642			func == PCI_FUNC(dev->devfn)) {
4643			if (align_order == -1)
4644				align = PAGE_SIZE;
4645			else
4646				align = 1 << align_order;
4647			/* Found */
4648			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649		}
4650		if (*p != ';' && *p != ',') {
4651			/* End of param or invalid format */
4652			break;
4653		}
4654		p++;
4655	}
 
4656	spin_unlock(&resource_alignment_lock);
4657	return align;
4658}
4659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4660/*
4661 * This function disables memory decoding and releases memory resources
4662 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4663 * It also rounds up size to specified alignment.
4664 * Later on, the kernel will assign page-aligned memory resource back
4665 * to the device.
4666 */
4667void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4668{
4669	int i;
4670	struct resource *r;
4671	resource_size_t align, size;
4672	u16 command;
 
 
 
 
 
 
 
 
 
 
4673
4674	/* check if specified PCI is target device to reassign */
4675	align = pci_specified_resource_alignment(dev);
4676	if (!align)
4677		return;
4678
4679	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4680	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4681		dev_warn(&dev->dev,
4682			"Can't reassign resources to host bridge.\n");
4683		return;
4684	}
4685
4686	dev_info(&dev->dev,
4687		"Disabling memory decoding and releasing memory resources.\n");
4688	pci_read_config_word(dev, PCI_COMMAND, &command);
4689	command &= ~PCI_COMMAND_MEMORY;
4690	pci_write_config_word(dev, PCI_COMMAND, command);
4691
4692	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4693		r = &dev->resource[i];
4694		if (!(r->flags & IORESOURCE_MEM))
4695			continue;
4696		size = resource_size(r);
4697		if (size < align) {
4698			size = align;
4699			dev_info(&dev->dev,
4700				"Rounding up size of resource #%d to %#llx.\n",
4701				i, (unsigned long long)size);
4702		}
4703		r->flags |= IORESOURCE_UNSET;
4704		r->end = size - 1;
4705		r->start = 0;
4706	}
4707	/* Need to disable bridge's resource window,
4708	 * to enable the kernel to reassign new resource
4709	 * window later on.
4710	 */
4711	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4712	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4713		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4714			r = &dev->resource[i];
4715			if (!(r->flags & IORESOURCE_MEM))
4716				continue;
4717			r->flags |= IORESOURCE_UNSET;
4718			r->end = resource_size(r) - 1;
4719			r->start = 0;
4720		}
4721		pci_disable_bridge_window(dev);
4722	}
4723}
4724
4725static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4726{
4727	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4728		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4729	spin_lock(&resource_alignment_lock);
4730	strncpy(resource_alignment_param, buf, count);
4731	resource_alignment_param[count] = '\0';
4732	spin_unlock(&resource_alignment_lock);
4733	return count;
4734}
4735
4736static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4737{
4738	size_t count;
4739	spin_lock(&resource_alignment_lock);
4740	count = snprintf(buf, size, "%s", resource_alignment_param);
4741	spin_unlock(&resource_alignment_lock);
4742	return count;
4743}
4744
4745static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4746{
4747	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4748}
4749
4750static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4751					const char *buf, size_t count)
4752{
4753	return pci_set_resource_alignment_param(buf, count);
4754}
4755
4756BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4757					pci_resource_alignment_store);
4758
4759static int __init pci_resource_alignment_sysfs_init(void)
4760{
4761	return bus_create_file(&pci_bus_type,
4762					&bus_attr_resource_alignment);
4763}
4764late_initcall(pci_resource_alignment_sysfs_init);
4765
4766static void pci_no_domains(void)
4767{
4768#ifdef CONFIG_PCI_DOMAINS
4769	pci_domains_supported = 0;
4770#endif
4771}
4772
4773#ifdef CONFIG_PCI_DOMAINS
4774static atomic_t __domain_nr = ATOMIC_INIT(-1);
4775
4776int pci_get_new_domain_nr(void)
4777{
4778	return atomic_inc_return(&__domain_nr);
4779}
4780
4781#ifdef CONFIG_PCI_DOMAINS_GENERIC
4782void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4783{
4784	static int use_dt_domains = -1;
4785	int domain = -1;
4786
4787	if (parent)
4788		domain = of_get_pci_domain_nr(parent->of_node);
4789	/*
4790	 * Check DT domain and use_dt_domains values.
4791	 *
4792	 * If DT domain property is valid (domain >= 0) and
4793	 * use_dt_domains != 0, the DT assignment is valid since this means
4794	 * we have not previously allocated a domain number by using
4795	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4796	 * 1, to indicate that we have just assigned a domain number from
4797	 * DT.
4798	 *
4799	 * If DT domain property value is not valid (ie domain < 0), and we
4800	 * have not previously assigned a domain number from DT
4801	 * (use_dt_domains != 1) we should assign a domain number by
4802	 * using the:
4803	 *
4804	 * pci_get_new_domain_nr()
4805	 *
4806	 * API and update the use_dt_domains value to keep track of method we
4807	 * are using to assign domain numbers (use_dt_domains = 0).
4808	 *
4809	 * All other combinations imply we have a platform that is trying
4810	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4811	 * which is a recipe for domain mishandling and it is prevented by
4812	 * invalidating the domain value (domain = -1) and printing a
4813	 * corresponding error.
4814	 */
4815	if (domain >= 0 && use_dt_domains) {
4816		use_dt_domains = 1;
4817	} else if (domain < 0 && use_dt_domains != 1) {
4818		use_dt_domains = 0;
4819		domain = pci_get_new_domain_nr();
4820	} else {
4821		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4822			parent->of_node->full_name);
 
4823		domain = -1;
4824	}
4825
4826	bus->domain_nr = domain;
 
 
 
 
 
 
4827}
4828#endif
4829#endif
4830
4831/**
4832 * pci_ext_cfg_avail - can we access extended PCI config space?
4833 *
4834 * Returns 1 if we can access PCI extended config space (offsets
4835 * greater than 0xff). This is the default implementation. Architecture
4836 * implementations can override this.
4837 */
4838int __weak pci_ext_cfg_avail(void)
4839{
4840	return 1;
4841}
4842
4843void __weak pci_fixup_cardbus(struct pci_bus *bus)
4844{
4845}
4846EXPORT_SYMBOL(pci_fixup_cardbus);
4847
4848static int __init pci_setup(char *str)
4849{
4850	while (str) {
4851		char *k = strchr(str, ',');
4852		if (k)
4853			*k++ = 0;
4854		if (*str && (str = pcibios_setup(str)) && *str) {
4855			if (!strcmp(str, "nomsi")) {
4856				pci_no_msi();
4857			} else if (!strcmp(str, "noaer")) {
4858				pci_no_aer();
4859			} else if (!strncmp(str, "realloc=", 8)) {
4860				pci_realloc_get_opt(str + 8);
4861			} else if (!strncmp(str, "realloc", 7)) {
4862				pci_realloc_get_opt("on");
4863			} else if (!strcmp(str, "nodomains")) {
4864				pci_no_domains();
4865			} else if (!strncmp(str, "noari", 5)) {
4866				pcie_ari_disabled = true;
4867			} else if (!strncmp(str, "cbiosize=", 9)) {
4868				pci_cardbus_io_size = memparse(str + 9, &str);
4869			} else if (!strncmp(str, "cbmemsize=", 10)) {
4870				pci_cardbus_mem_size = memparse(str + 10, &str);
4871			} else if (!strncmp(str, "resource_alignment=", 19)) {
4872				pci_set_resource_alignment_param(str + 19,
4873							strlen(str + 19));
4874			} else if (!strncmp(str, "ecrc=", 5)) {
4875				pcie_ecrc_get_policy(str + 5);
4876			} else if (!strncmp(str, "hpiosize=", 9)) {
4877				pci_hotplug_io_size = memparse(str + 9, &str);
4878			} else if (!strncmp(str, "hpmemsize=", 10)) {
4879				pci_hotplug_mem_size = memparse(str + 10, &str);
 
 
 
 
 
4880			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4881				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4882			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4883				pcie_bus_config = PCIE_BUS_SAFE;
4884			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4885				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4886			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4887				pcie_bus_config = PCIE_BUS_PEER2PEER;
4888			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4889				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4890			} else {
4891				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4892						str);
4893			}
4894		}
4895		str = k;
4896	}
4897	return 0;
4898}
4899early_param("pci", pci_setup);