Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pci-aspm.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
  37#include "pci.h"
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46
  47int pci_pci_problems;
  48EXPORT_SYMBOL(pci_pci_problems);
  49
  50unsigned int pci_pm_d3_delay;
  51
  52static void pci_pme_list_scan(struct work_struct *work);
  53
  54static LIST_HEAD(pci_pme_list);
  55static DEFINE_MUTEX(pci_pme_list_mutex);
  56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  57
  58struct pci_pme_device {
  59	struct list_head list;
  60	struct pci_dev *dev;
  61};
  62
  63#define PME_TIMEOUT 1000 /* How long between PME checks */
  64
  65static void pci_dev_d3_sleep(struct pci_dev *dev)
  66{
  67	unsigned int delay = dev->d3_delay;
  68
  69	if (delay < pci_pm_d3_delay)
  70		delay = pci_pm_d3_delay;
  71
  72	if (delay)
  73		msleep(delay);
  74}
  75
  76#ifdef CONFIG_PCI_DOMAINS
  77int pci_domains_supported = 1;
  78#endif
  79
  80#define DEFAULT_CARDBUS_IO_SIZE		(256)
  81#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  82/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  83unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  84unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  85
  86#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  87#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  88/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  91
  92#define DEFAULT_HOTPLUG_BUS_SIZE	1
  93unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  94
  95enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  96
  97/*
  98 * The default CLS is used if arch didn't set CLS explicitly and not
  99 * all pci devices agree on the same value.  Arch can override either
 100 * the dfl or actual value as it sees fit.  Don't forget this is
 101 * measured in 32-bit words, not bytes.
 102 */
 103u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 104u8 pci_cache_line_size;
 105
 106/*
 107 * If we set up a device for bus mastering, we need to check the latency
 108 * timer as certain BIOSes forget to set it properly.
 109 */
 110unsigned int pcibios_max_latency = 255;
 111
 112/* If set, the PCIe ARI capability will not be used. */
 113static bool pcie_ari_disabled;
 114
 115/* Disable bridge_d3 for all PCIe ports */
 116static bool pci_bridge_d3_disable;
 117/* Force bridge_d3 for all PCIe ports */
 118static bool pci_bridge_d3_force;
 119
 120static int __init pcie_port_pm_setup(char *str)
 121{
 122	if (!strcmp(str, "off"))
 123		pci_bridge_d3_disable = true;
 124	else if (!strcmp(str, "force"))
 125		pci_bridge_d3_force = true;
 126	return 1;
 127}
 128__setup("pcie_port_pm=", pcie_port_pm_setup);
 129
 130/* Time to wait after a reset for device to become responsive */
 131#define PCIE_RESET_READY_POLL_MS 60000
 132
 133/**
 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 135 * @bus: pointer to PCI bus structure to search
 136 *
 137 * Given a PCI bus, returns the highest PCI bus number present in the set
 138 * including the given PCI bus and its list of child PCI buses.
 139 */
 140unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 141{
 142	struct pci_bus *tmp;
 143	unsigned char max, n;
 144
 145	max = bus->busn_res.end;
 146	list_for_each_entry(tmp, &bus->children, node) {
 147		n = pci_bus_max_busnr(tmp);
 148		if (n > max)
 149			max = n;
 150	}
 151	return max;
 152}
 153EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 154
 155#ifdef CONFIG_HAS_IOMEM
 156void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 157{
 158	struct resource *res = &pdev->resource[bar];
 159
 160	/*
 161	 * Make sure the BAR is actually a memory resource, not an IO resource
 162	 */
 163	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 164		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 165		return NULL;
 166	}
 167	return ioremap_nocache(res->start, resource_size(res));
 168}
 169EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 170
 171void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 172{
 173	/*
 174	 * Make sure the BAR is actually a memory resource, not an IO resource
 175	 */
 176	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 177		WARN_ON(1);
 178		return NULL;
 179	}
 180	return ioremap_wc(pci_resource_start(pdev, bar),
 181			  pci_resource_len(pdev, bar));
 182}
 183EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 184#endif
 185
 
 186
 187static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 188				   u8 pos, int cap, int *ttl)
 189{
 190	u8 id;
 191	u16 ent;
 192
 193	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 194
 195	while ((*ttl)--) {
 
 196		if (pos < 0x40)
 197			break;
 198		pos &= ~3;
 199		pci_bus_read_config_word(bus, devfn, pos, &ent);
 200
 201		id = ent & 0xff;
 202		if (id == 0xff)
 203			break;
 204		if (id == cap)
 205			return pos;
 206		pos = (ent >> 8);
 207	}
 208	return 0;
 209}
 210
 211static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 212			       u8 pos, int cap)
 213{
 214	int ttl = PCI_FIND_CAP_TTL;
 215
 216	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 217}
 218
 219int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 220{
 221	return __pci_find_next_cap(dev->bus, dev->devfn,
 222				   pos + PCI_CAP_LIST_NEXT, cap);
 223}
 224EXPORT_SYMBOL_GPL(pci_find_next_capability);
 225
 226static int __pci_bus_find_cap_start(struct pci_bus *bus,
 227				    unsigned int devfn, u8 hdr_type)
 228{
 229	u16 status;
 230
 231	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 232	if (!(status & PCI_STATUS_CAP_LIST))
 233		return 0;
 234
 235	switch (hdr_type) {
 236	case PCI_HEADER_TYPE_NORMAL:
 237	case PCI_HEADER_TYPE_BRIDGE:
 238		return PCI_CAPABILITY_LIST;
 239	case PCI_HEADER_TYPE_CARDBUS:
 240		return PCI_CB_CAPABILITY_LIST;
 
 
 241	}
 242
 243	return 0;
 244}
 245
 246/**
 247 * pci_find_capability - query for devices' capabilities
 248 * @dev: PCI device to query
 249 * @cap: capability code
 250 *
 251 * Tell if a device supports a given PCI capability.
 252 * Returns the address of the requested capability structure within the
 253 * device's PCI configuration space or 0 in case the device does not
 254 * support it.  Possible values for @cap:
 255 *
 256 *  %PCI_CAP_ID_PM           Power Management
 257 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 258 *  %PCI_CAP_ID_VPD          Vital Product Data
 259 *  %PCI_CAP_ID_SLOTID       Slot Identification
 260 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 261 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 262 *  %PCI_CAP_ID_PCIX         PCI-X
 263 *  %PCI_CAP_ID_EXP          PCI Express
 264 */
 265int pci_find_capability(struct pci_dev *dev, int cap)
 266{
 267	int pos;
 268
 269	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 270	if (pos)
 271		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 272
 273	return pos;
 274}
 275EXPORT_SYMBOL(pci_find_capability);
 276
 277/**
 278 * pci_bus_find_capability - query for devices' capabilities
 279 * @bus:   the PCI bus to query
 280 * @devfn: PCI device to query
 281 * @cap:   capability code
 282 *
 283 * Like pci_find_capability() but works for pci devices that do not have a
 284 * pci_dev structure set up yet.
 285 *
 286 * Returns the address of the requested capability structure within the
 287 * device's PCI configuration space or 0 in case the device does not
 288 * support it.
 289 */
 290int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 291{
 292	int pos;
 293	u8 hdr_type;
 294
 295	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 296
 297	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 298	if (pos)
 299		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 300
 301	return pos;
 302}
 303EXPORT_SYMBOL(pci_bus_find_capability);
 304
 305/**
 306 * pci_find_next_ext_capability - Find an extended capability
 307 * @dev: PCI device to query
 308 * @start: address at which to start looking (0 to start at beginning of list)
 309 * @cap: capability code
 310 *
 311 * Returns the address of the next matching extended capability structure
 312 * within the device's PCI configuration space or 0 if the device does
 313 * not support it.  Some capabilities can occur several times, e.g., the
 314 * vendor-specific capability, and this provides a way to find them all.
 315 */
 316int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 317{
 318	u32 header;
 319	int ttl;
 320	int pos = PCI_CFG_SPACE_SIZE;
 321
 322	/* minimum 8 bytes per capability */
 323	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 324
 325	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 326		return 0;
 327
 328	if (start)
 329		pos = start;
 330
 331	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 332		return 0;
 333
 334	/*
 335	 * If we have no capabilities, this is indicated by cap ID,
 336	 * cap version and next pointer all being 0.
 337	 */
 338	if (header == 0)
 339		return 0;
 340
 341	while (ttl-- > 0) {
 342		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 343			return pos;
 344
 345		pos = PCI_EXT_CAP_NEXT(header);
 346		if (pos < PCI_CFG_SPACE_SIZE)
 347			break;
 348
 349		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 350			break;
 351	}
 352
 353	return 0;
 354}
 355EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 356
 357/**
 358 * pci_find_ext_capability - Find an extended capability
 359 * @dev: PCI device to query
 360 * @cap: capability code
 361 *
 362 * Returns the address of the requested extended capability structure
 363 * within the device's PCI configuration space or 0 if the device does
 364 * not support it.  Possible values for @cap:
 365 *
 366 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 367 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 368 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 369 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 370 */
 371int pci_find_ext_capability(struct pci_dev *dev, int cap)
 372{
 373	return pci_find_next_ext_capability(dev, 0, cap);
 374}
 375EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 376
 377static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 378{
 379	int rc, ttl = PCI_FIND_CAP_TTL;
 380	u8 cap, mask;
 381
 382	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 383		mask = HT_3BIT_CAP_MASK;
 384	else
 385		mask = HT_5BIT_CAP_MASK;
 386
 387	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 388				      PCI_CAP_ID_HT, &ttl);
 389	while (pos) {
 390		rc = pci_read_config_byte(dev, pos + 3, &cap);
 391		if (rc != PCIBIOS_SUCCESSFUL)
 392			return 0;
 393
 394		if ((cap & mask) == ht_cap)
 395			return pos;
 396
 397		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 398					      pos + PCI_CAP_LIST_NEXT,
 399					      PCI_CAP_ID_HT, &ttl);
 400	}
 401
 402	return 0;
 403}
 404/**
 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 406 * @dev: PCI device to query
 407 * @pos: Position from which to continue searching
 408 * @ht_cap: Hypertransport capability code
 409 *
 410 * To be used in conjunction with pci_find_ht_capability() to search for
 411 * all capabilities matching @ht_cap. @pos should always be a value returned
 412 * from pci_find_ht_capability().
 413 *
 414 * NB. To be 100% safe against broken PCI devices, the caller should take
 415 * steps to avoid an infinite loop.
 416 */
 417int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 418{
 419	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 420}
 421EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 422
 423/**
 424 * pci_find_ht_capability - query a device's Hypertransport capabilities
 425 * @dev: PCI device to query
 426 * @ht_cap: Hypertransport capability code
 427 *
 428 * Tell if a device supports a given Hypertransport capability.
 429 * Returns an address within the device's PCI configuration space
 430 * or 0 in case the device does not support the request capability.
 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 432 * which has a Hypertransport capability matching @ht_cap.
 433 */
 434int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 435{
 436	int pos;
 437
 438	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 439	if (pos)
 440		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 441
 442	return pos;
 443}
 444EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 445
 446/**
 447 * pci_find_parent_resource - return resource region of parent bus of given region
 448 * @dev: PCI device structure contains resources to be searched
 449 * @res: child resource record for which parent is sought
 450 *
 451 *  For given resource region of given device, return the resource
 452 *  region of parent bus the given region is contained in.
 453 */
 454struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 455					  struct resource *res)
 456{
 457	const struct pci_bus *bus = dev->bus;
 458	struct resource *r;
 459	int i;
 460
 461	pci_bus_for_each_resource(bus, r, i) {
 462		if (!r)
 463			continue;
 464		if (resource_contains(r, res)) {
 465
 466			/*
 467			 * If the window is prefetchable but the BAR is
 468			 * not, the allocator made a mistake.
 469			 */
 470			if (r->flags & IORESOURCE_PREFETCH &&
 471			    !(res->flags & IORESOURCE_PREFETCH))
 472				return NULL;
 473
 474			/*
 475			 * If we're below a transparent bridge, there may
 476			 * be both a positively-decoded aperture and a
 477			 * subtractively-decoded region that contain the BAR.
 478			 * We want the positively-decoded one, so this depends
 479			 * on pci_bus_for_each_resource() giving us those
 480			 * first.
 481			 */
 482			return r;
 483		}
 484	}
 485	return NULL;
 486}
 487EXPORT_SYMBOL(pci_find_parent_resource);
 488
 489/**
 490 * pci_find_resource - Return matching PCI device resource
 491 * @dev: PCI device to query
 492 * @res: Resource to look for
 493 *
 494 * Goes over standard PCI resources (BARs) and checks if the given resource
 495 * is partially or fully contained in any of them. In that case the
 496 * matching resource is returned, %NULL otherwise.
 497 */
 498struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 499{
 500	int i;
 501
 502	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 503		struct resource *r = &dev->resource[i];
 504
 505		if (r->start && resource_contains(r, res))
 506			return r;
 507	}
 508
 509	return NULL;
 510}
 511EXPORT_SYMBOL(pci_find_resource);
 512
 513/**
 514 * pci_find_pcie_root_port - return PCIe Root Port
 515 * @dev: PCI device to query
 516 *
 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 518 * for a given PCI Device.
 519 */
 520struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 521{
 522	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 523
 524	bridge = pci_upstream_bridge(dev);
 525	while (bridge && pci_is_pcie(bridge)) {
 526		highest_pcie_bridge = bridge;
 527		bridge = pci_upstream_bridge(bridge);
 528	}
 529
 530	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 531		return NULL;
 532
 533	return highest_pcie_bridge;
 534}
 535EXPORT_SYMBOL(pci_find_pcie_root_port);
 536
 537/**
 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 539 * @dev: the PCI device to operate on
 540 * @pos: config space offset of status word
 541 * @mask: mask of bit(s) to care about in status word
 542 *
 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 544 */
 545int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 546{
 547	int i;
 548
 549	/* Wait for Transaction Pending bit clean */
 550	for (i = 0; i < 4; i++) {
 551		u16 status;
 552		if (i)
 553			msleep((1 << (i - 1)) * 100);
 554
 555		pci_read_config_word(dev, pos, &status);
 556		if (!(status & mask))
 557			return 1;
 558	}
 559
 560	return 0;
 561}
 562
 563/**
 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 565 * @dev: PCI device to have its BARs restored
 566 *
 567 * Restore the BAR values for a given device, so as to make it
 568 * accessible by its driver.
 569 */
 570static void pci_restore_bars(struct pci_dev *dev)
 
 571{
 572	int i;
 573
 574	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 575		pci_update_resource(dev, i);
 576}
 577
 578static const struct pci_platform_pm_ops *pci_platform_pm;
 579
 580int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 581{
 582	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 583	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 584		return -EINVAL;
 585	pci_platform_pm = ops;
 586	return 0;
 587}
 588
 589static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 590{
 591	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 592}
 593
 594static inline int platform_pci_set_power_state(struct pci_dev *dev,
 595					       pci_power_t t)
 596{
 597	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 598}
 599
 600static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 601{
 602	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 603}
 604
 605static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 606{
 607	return pci_platform_pm ?
 608			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 609}
 610
 611static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 612{
 613	return pci_platform_pm ?
 614			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 615}
 616
 617static inline bool platform_pci_need_resume(struct pci_dev *dev)
 618{
 619	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 
 620}
 621
 622/**
 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 624 *                           given PCI device
 625 * @dev: PCI device to handle.
 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 627 *
 628 * RETURN VALUE:
 629 * -EINVAL if the requested state is invalid.
 630 * -EIO if device does not support PCI PM or its PM capabilities register has a
 631 * wrong version, or device doesn't support the requested state.
 632 * 0 if device already is in the requested state.
 633 * 0 if device's power state has been successfully changed.
 634 */
 635static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	u16 pmcsr;
 638	bool need_restore = false;
 639
 640	/* Check if we're already there */
 641	if (dev->current_state == state)
 642		return 0;
 643
 644	if (!dev->pm_cap)
 645		return -EIO;
 646
 647	if (state < PCI_D0 || state > PCI_D3hot)
 648		return -EINVAL;
 649
 650	/* Validate current state:
 651	 * Can enter D0 from any state, but if we can only go deeper
 652	 * to sleep if we're already in a low power state
 653	 */
 654	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 655	    && dev->current_state > state) {
 656		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 657			dev->current_state, state);
 658		return -EINVAL;
 659	}
 660
 661	/* check if this device supports the desired state */
 662	if ((state == PCI_D1 && !dev->d1_support)
 663	   || (state == PCI_D2 && !dev->d2_support))
 664		return -EIO;
 665
 666	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 667
 668	/* If we're (effectively) in D3, force entire word to 0.
 669	 * This doesn't affect PME_Status, disables PME_En, and
 670	 * sets PowerState to 0.
 671	 */
 672	switch (dev->current_state) {
 673	case PCI_D0:
 674	case PCI_D1:
 675	case PCI_D2:
 676		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 677		pmcsr |= state;
 678		break;
 679	case PCI_D3hot:
 680	case PCI_D3cold:
 681	case PCI_UNKNOWN: /* Boot-up */
 682		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 683		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 684			need_restore = true;
 685		/* Fall-through: force to D0 */
 686	default:
 687		pmcsr = 0;
 688		break;
 689	}
 690
 691	/* enter specified state */
 692	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 693
 694	/* Mandatory power management transition delays */
 695	/* see PCI PM 1.1 5.6.1 table 18 */
 696	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 697		pci_dev_d3_sleep(dev);
 698	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 699		udelay(PCI_PM_D2_DELAY);
 700
 701	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 702	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 703	if (dev->current_state != state && printk_ratelimit())
 704		pci_info(dev, "Refused to change power state, currently in D%d\n",
 705			 dev->current_state);
 706
 707	/*
 708	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 709	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 710	 * from D3hot to D0 _may_ perform an internal reset, thereby
 711	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 712	 * For example, at least some versions of the 3c905B and the
 713	 * 3c556B exhibit this behaviour.
 714	 *
 715	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 716	 * devices in a D3hot state at boot.  Consequently, we need to
 717	 * restore at least the BARs so that the device will be
 718	 * accessible to its driver.
 719	 */
 720	if (need_restore)
 721		pci_restore_bars(dev);
 722
 723	if (dev->bus->self)
 724		pcie_aspm_pm_state_change(dev->bus->self);
 725
 726	return 0;
 727}
 728
 729/**
 730 * pci_update_current_state - Read power state of given device and cache it
 
 731 * @dev: PCI device to handle.
 732 * @state: State to cache in case the device doesn't have the PM capability
 733 *
 734 * The power state is read from the PMCSR register, which however is
 735 * inaccessible in D3cold.  The platform firmware is therefore queried first
 736 * to detect accessibility of the register.  In case the platform firmware
 737 * reports an incorrect state or the device isn't power manageable by the
 738 * platform at all, we try to detect D3cold by testing accessibility of the
 739 * vendor ID in config space.
 740 */
 741void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 742{
 743	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 744	    !pci_device_is_present(dev)) {
 745		dev->current_state = PCI_D3cold;
 746	} else if (dev->pm_cap) {
 747		u16 pmcsr;
 748
 
 
 
 
 
 
 
 
 
 
 749		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 750		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 751	} else {
 752		dev->current_state = state;
 753	}
 754}
 755
 756/**
 757 * pci_power_up - Put the given device into D0 forcibly
 758 * @dev: PCI device to power up
 759 */
 760void pci_power_up(struct pci_dev *dev)
 761{
 762	if (platform_pci_power_manageable(dev))
 763		platform_pci_set_power_state(dev, PCI_D0);
 764
 765	pci_raw_set_power_state(dev, PCI_D0);
 766	pci_update_current_state(dev, PCI_D0);
 767}
 768
 769/**
 770 * pci_platform_power_transition - Use platform to change device power state
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 */
 774static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int error;
 777
 778	if (platform_pci_power_manageable(dev)) {
 779		error = platform_pci_set_power_state(dev, state);
 780		if (!error)
 781			pci_update_current_state(dev, state);
 782	} else
 783		error = -ENODEV;
 784
 785	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 786		dev->current_state = PCI_D0;
 787
 788	return error;
 789}
 790
 791/**
 792 * pci_wakeup - Wake up a PCI device
 793 * @pci_dev: Device to handle.
 794 * @ign: ignored parameter
 795 */
 796static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 797{
 798	pci_wakeup_event(pci_dev);
 799	pm_request_resume(&pci_dev->dev);
 800	return 0;
 801}
 802
 803/**
 804 * pci_wakeup_bus - Walk given bus and wake up devices on it
 805 * @bus: Top bus of the subtree to walk.
 806 */
 807void pci_wakeup_bus(struct pci_bus *bus)
 808{
 809	if (bus)
 810		pci_walk_bus(bus, pci_wakeup, NULL);
 811}
 812
 813/**
 814 * __pci_start_power_transition - Start power transition of a PCI device
 815 * @dev: PCI device to handle.
 816 * @state: State to put the device into.
 817 */
 818static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 819{
 820	if (state == PCI_D0) {
 821		pci_platform_power_transition(dev, PCI_D0);
 822		/*
 823		 * Mandatory power management transition delays, see
 824		 * PCI Express Base Specification Revision 2.0 Section
 825		 * 6.6.1: Conventional Reset.  Do not delay for
 826		 * devices powered on/off by corresponding bridge,
 827		 * because have already delayed for the bridge.
 828		 */
 829		if (dev->runtime_d3cold) {
 830			if (dev->d3cold_delay)
 831				msleep(dev->d3cold_delay);
 832			/*
 833			 * When powering on a bridge from D3cold, the
 834			 * whole hierarchy may be powered on into
 835			 * D0uninitialized state, resume them to give
 836			 * them a chance to suspend again
 837			 */
 838			pci_wakeup_bus(dev->subordinate);
 839		}
 840	}
 841}
 842
 843/**
 844 * __pci_dev_set_current_state - Set current state of a PCI device
 845 * @dev: Device to handle
 846 * @data: pointer to state to be set
 847 */
 848static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 849{
 850	pci_power_t state = *(pci_power_t *)data;
 851
 852	dev->current_state = state;
 853	return 0;
 854}
 855
 856/**
 857 * pci_bus_set_current_state - Walk given bus and set current state of devices
 858 * @bus: Top bus of the subtree to walk.
 859 * @state: state to be set
 860 */
 861void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 862{
 863	if (bus)
 864		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 865}
 866
 867/**
 868 * __pci_complete_power_transition - Complete power transition of a PCI device
 869 * @dev: PCI device to handle.
 870 * @state: State to put the device into.
 871 *
 872 * This function should not be called directly by device drivers.
 873 */
 874int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 875{
 876	int ret;
 877
 878	if (state <= PCI_D0)
 879		return -EINVAL;
 880	ret = pci_platform_power_transition(dev, state);
 881	/* Power off the bridge may power off the whole hierarchy */
 882	if (!ret && state == PCI_D3cold)
 883		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 884	return ret;
 885}
 886EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 887
 888/**
 889 * pci_set_power_state - Set the power state of a PCI device
 890 * @dev: PCI device to handle.
 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 892 *
 893 * Transition a device to a new power state, using the platform firmware and/or
 894 * the device's PCI PM registers.
 895 *
 896 * RETURN VALUE:
 897 * -EINVAL if the requested state is invalid.
 898 * -EIO if device does not support PCI PM or its PM capabilities register has a
 899 * wrong version, or device doesn't support the requested state.
 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 901 * 0 if device already is in the requested state.
 902 * 0 if the transition is to D3 but D3 is not supported.
 903 * 0 if device's power state has been successfully changed.
 904 */
 905int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 906{
 907	int error;
 908
 909	/* bound the state we're entering */
 910	if (state > PCI_D3cold)
 911		state = PCI_D3cold;
 912	else if (state < PCI_D0)
 913		state = PCI_D0;
 914	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 915		/*
 916		 * If the device or the parent bridge do not support PCI PM,
 917		 * ignore the request if we're doing anything other than putting
 918		 * it into D0 (which would only happen on boot).
 919		 */
 920		return 0;
 921
 922	/* Check if we're already there */
 923	if (dev->current_state == state)
 924		return 0;
 925
 926	__pci_start_power_transition(dev, state);
 927
 928	/* This device is quirked not to be put into D3, so
 929	   don't put it in D3 */
 930	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 931		return 0;
 932
 933	/*
 934	 * To put device in D3cold, we put device into D3hot in native
 935	 * way, then put device into D3cold with platform ops
 936	 */
 937	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 938					PCI_D3hot : state);
 939
 940	if (!__pci_complete_power_transition(dev, state))
 941		error = 0;
 
 
 
 
 
 
 942
 943	return error;
 944}
 945EXPORT_SYMBOL(pci_set_power_state);
 946
 947/**
 948 * pci_choose_state - Choose the power state of a PCI device
 949 * @dev: PCI device to be suspended
 950 * @state: target sleep state for the whole system. This is the value
 951 *	that is passed to suspend() function.
 952 *
 953 * Returns PCI power state suitable for given device and given system
 954 * message.
 955 */
 956
 957pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 958{
 959	pci_power_t ret;
 960
 961	if (!dev->pm_cap)
 962		return PCI_D0;
 963
 964	ret = platform_pci_choose_state(dev);
 965	if (ret != PCI_POWER_ERROR)
 966		return ret;
 967
 968	switch (state.event) {
 969	case PM_EVENT_ON:
 970		return PCI_D0;
 971	case PM_EVENT_FREEZE:
 972	case PM_EVENT_PRETHAW:
 973		/* REVISIT both freeze and pre-thaw "should" use D0 */
 974	case PM_EVENT_SUSPEND:
 975	case PM_EVENT_HIBERNATE:
 976		return PCI_D3hot;
 977	default:
 978		pci_info(dev, "unrecognized suspend event %d\n",
 979			 state.event);
 980		BUG();
 981	}
 982	return PCI_D0;
 983}
 
 984EXPORT_SYMBOL(pci_choose_state);
 985
 986#define PCI_EXP_SAVE_REGS	7
 987
 
 988static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 989						       u16 cap, bool extended)
 990{
 991	struct pci_cap_saved_state *tmp;
 992
 993	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 994		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 995			return tmp;
 996	}
 997	return NULL;
 998}
 999
1000struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001{
1002	return _pci_find_saved_cap(dev, cap, false);
1003}
1004
1005struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006{
1007	return _pci_find_saved_cap(dev, cap, true);
1008}
1009
1010static int pci_save_pcie_state(struct pci_dev *dev)
1011{
1012	int i = 0;
1013	struct pci_cap_saved_state *save_state;
1014	u16 *cap;
1015
1016	if (!pci_is_pcie(dev))
1017		return 0;
1018
1019	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020	if (!save_state) {
1021		pci_err(dev, "buffer not found in %s\n", __func__);
1022		return -ENOMEM;
1023	}
1024
1025	cap = (u16 *)&save_state->cap.data[0];
1026	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033
1034	return 0;
1035}
1036
1037static void pci_restore_pcie_state(struct pci_dev *dev)
1038{
1039	int i = 0;
1040	struct pci_cap_saved_state *save_state;
1041	u16 *cap;
1042
1043	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044	if (!save_state)
1045		return;
1046
1047	cap = (u16 *)&save_state->cap.data[0];
1048	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055}
1056
1057
1058static int pci_save_pcix_state(struct pci_dev *dev)
1059{
1060	int pos;
1061	struct pci_cap_saved_state *save_state;
1062
1063	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064	if (!pos)
1065		return 0;
1066
1067	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068	if (!save_state) {
1069		pci_err(dev, "buffer not found in %s\n", __func__);
1070		return -ENOMEM;
1071	}
1072
1073	pci_read_config_word(dev, pos + PCI_X_CMD,
1074			     (u16 *)save_state->cap.data);
1075
1076	return 0;
1077}
1078
1079static void pci_restore_pcix_state(struct pci_dev *dev)
1080{
1081	int i = 0, pos;
1082	struct pci_cap_saved_state *save_state;
1083	u16 *cap;
1084
1085	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087	if (!save_state || !pos)
1088		return;
1089	cap = (u16 *)&save_state->cap.data[0];
1090
1091	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092}
1093
1094
1095/**
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
1098 */
1099int pci_save_state(struct pci_dev *dev)
 
1100{
1101	int i;
1102	/* XXX: 100% dword access ok here? */
1103	for (i = 0; i < 16; i++)
1104		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105	dev->state_saved = true;
1106
1107	i = pci_save_pcie_state(dev);
1108	if (i != 0)
1109		return i;
1110
1111	i = pci_save_pcix_state(dev);
1112	if (i != 0)
1113		return i;
1114
1115	return pci_save_vc_state(dev);
 
1116}
1117EXPORT_SYMBOL(pci_save_state);
1118
1119static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120				     u32 saved_val, int retry)
1121{
1122	u32 val;
1123
1124	pci_read_config_dword(pdev, offset, &val);
1125	if (val == saved_val)
1126		return;
1127
1128	for (;;) {
1129		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130			offset, val, saved_val);
1131		pci_write_config_dword(pdev, offset, saved_val);
1132		if (retry-- <= 0)
1133			return;
1134
1135		pci_read_config_dword(pdev, offset, &val);
1136		if (val == saved_val)
1137			return;
1138
1139		mdelay(1);
1140	}
1141}
1142
1143static void pci_restore_config_space_range(struct pci_dev *pdev,
1144					   int start, int end, int retry)
1145{
1146	int index;
1147
1148	for (index = end; index >= start; index--)
1149		pci_restore_config_dword(pdev, 4 * index,
1150					 pdev->saved_config_space[index],
1151					 retry);
1152}
1153
1154static void pci_restore_config_space(struct pci_dev *pdev)
1155{
1156	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157		pci_restore_config_space_range(pdev, 10, 15, 0);
1158		/* Restore BARs before the command register. */
1159		pci_restore_config_space_range(pdev, 4, 9, 10);
1160		pci_restore_config_space_range(pdev, 0, 3, 0);
1161	} else {
1162		pci_restore_config_space_range(pdev, 0, 15, 0);
1163	}
1164}
1165
1166/**
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1169 */
1170void pci_restore_state(struct pci_dev *dev)
1171{
1172	if (!dev->state_saved)
1173		return;
1174
1175	/* PCI Express register must be restored first */
1176	pci_restore_pcie_state(dev);
1177	pci_restore_pasid_state(dev);
1178	pci_restore_pri_state(dev);
1179	pci_restore_ats_state(dev);
1180	pci_restore_vc_state(dev);
1181
1182	pci_cleanup_aer_error_status_regs(dev);
1183
1184	pci_restore_config_space(dev);
1185
1186	pci_restore_pcix_state(dev);
1187	pci_restore_msi_state(dev);
1188
1189	/* Restore ACS and IOV configuration state */
1190	pci_enable_acs(dev);
1191	pci_restore_iov_state(dev);
1192
1193	dev->state_saved = false;
1194}
1195EXPORT_SYMBOL(pci_restore_state);
1196
1197struct pci_saved_state {
1198	u32 config_space[16];
1199	struct pci_cap_saved_data cap[0];
1200};
1201
1202/**
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 *			   the device saved state.
1205 * @dev: PCI device that we're dealing with
1206 *
1207 * Return NULL if no state or error.
1208 */
1209struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210{
1211	struct pci_saved_state *state;
1212	struct pci_cap_saved_state *tmp;
1213	struct pci_cap_saved_data *cap;
1214	size_t size;
1215
1216	if (!dev->state_saved)
1217		return NULL;
1218
1219	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220
1221	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223
1224	state = kzalloc(size, GFP_KERNEL);
1225	if (!state)
1226		return NULL;
1227
1228	memcpy(state->config_space, dev->saved_config_space,
1229	       sizeof(state->config_space));
1230
1231	cap = state->cap;
1232	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234		memcpy(cap, &tmp->cap, len);
1235		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236	}
1237	/* Empty cap_save terminates list */
1238
1239	return state;
1240}
1241EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242
1243/**
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1247 */
1248int pci_load_saved_state(struct pci_dev *dev,
1249			 struct pci_saved_state *state)
1250{
1251	struct pci_cap_saved_data *cap;
1252
1253	dev->state_saved = false;
1254
1255	if (!state)
1256		return 0;
1257
1258	memcpy(dev->saved_config_space, state->config_space,
1259	       sizeof(state->config_space));
1260
1261	cap = state->cap;
1262	while (cap->size) {
1263		struct pci_cap_saved_state *tmp;
1264
1265		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266		if (!tmp || tmp->cap.size != cap->size)
1267			return -EINVAL;
1268
1269		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271		       sizeof(struct pci_cap_saved_data) + cap->size);
1272	}
1273
1274	dev->state_saved = true;
1275	return 0;
1276}
1277EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278
1279/**
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 *				   and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1284 */
1285int pci_load_and_free_saved_state(struct pci_dev *dev,
1286				  struct pci_saved_state **state)
1287{
1288	int ret = pci_load_saved_state(dev, *state);
1289	kfree(*state);
1290	*state = NULL;
1291	return ret;
1292}
1293EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294
1295int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296{
1297	return pci_enable_resources(dev, bars);
1298}
1299
1300static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301{
1302	int err;
1303	struct pci_dev *bridge;
1304	u16 cmd;
1305	u8 pin;
1306
1307	err = pci_set_power_state(dev, PCI_D0);
1308	if (err < 0 && err != -EIO)
1309		return err;
1310
1311	bridge = pci_upstream_bridge(dev);
1312	if (bridge)
1313		pcie_aspm_powersave_config_link(bridge);
1314
1315	err = pcibios_enable_device(dev, bars);
1316	if (err < 0)
1317		return err;
1318	pci_fixup_device(pci_fixup_enable, dev);
1319
1320	if (dev->msi_enabled || dev->msix_enabled)
1321		return 0;
1322
1323	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324	if (pin) {
1325		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327			pci_write_config_word(dev, PCI_COMMAND,
1328					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329	}
1330
1331	return 0;
1332}
1333
1334/**
1335 * pci_reenable_device - Resume abandoned device
1336 * @dev: PCI device to be resumed
1337 *
1338 *  Note this function is a backend of pci_default_resume and is not supposed
1339 *  to be called by normal code, write proper resume handler and use it instead.
1340 */
1341int pci_reenable_device(struct pci_dev *dev)
1342{
1343	if (pci_is_enabled(dev))
1344		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345	return 0;
1346}
1347EXPORT_SYMBOL(pci_reenable_device);
1348
1349static void pci_enable_bridge(struct pci_dev *dev)
1350{
1351	struct pci_dev *bridge;
1352	int retval;
1353
1354	bridge = pci_upstream_bridge(dev);
1355	if (bridge)
1356		pci_enable_bridge(bridge);
1357
1358	if (pci_is_enabled(dev)) {
1359		if (!dev->is_busmaster)
1360			pci_set_master(dev);
1361		return;
1362	}
1363
1364	retval = pci_enable_device(dev);
1365	if (retval)
1366		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367			retval);
1368	pci_set_master(dev);
1369}
1370
1371static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372{
1373	struct pci_dev *bridge;
1374	int err;
1375	int i, bars = 0;
1376
1377	/*
1378	 * Power state could be unknown at this point, either due to a fresh
1379	 * boot or a device removal call.  So get the current power state
1380	 * so that things like MSI message writing will behave as expected
1381	 * (e.g. if the device really is in D0 at enable time).
1382	 */
1383	if (dev->pm_cap) {
1384		u16 pmcsr;
1385		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387	}
1388
1389	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390		return 0;		/* already enabled */
1391
1392	bridge = pci_upstream_bridge(dev);
1393	if (bridge)
1394		pci_enable_bridge(bridge);
1395
1396	/* only skip sriov related */
1397	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398		if (dev->resource[i].flags & flags)
1399			bars |= (1 << i);
1400	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401		if (dev->resource[i].flags & flags)
1402			bars |= (1 << i);
1403
1404	err = do_pci_enable_device(dev, bars);
1405	if (err < 0)
1406		atomic_dec(&dev->enable_cnt);
1407	return err;
1408}
1409
1410/**
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1413 *
1414 *  Initialize device before it's used by a driver. Ask low-level code
1415 *  to enable I/O resources. Wake up the device if it was suspended.
1416 *  Beware, this function can fail.
1417 */
1418int pci_enable_device_io(struct pci_dev *dev)
1419{
1420	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421}
1422EXPORT_SYMBOL(pci_enable_device_io);
1423
1424/**
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1427 *
1428 *  Initialize device before it's used by a driver. Ask low-level code
1429 *  to enable Memory resources. Wake up the device if it was suspended.
1430 *  Beware, this function can fail.
1431 */
1432int pci_enable_device_mem(struct pci_dev *dev)
1433{
1434	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435}
1436EXPORT_SYMBOL(pci_enable_device_mem);
1437
1438/**
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1441 *
1442 *  Initialize device before it's used by a driver. Ask low-level code
1443 *  to enable I/O and memory. Wake up the device if it was suspended.
1444 *  Beware, this function can fail.
1445 *
1446 *  Note we don't actually enable the device many times if we call
1447 *  this function repeatedly (we just increment the count).
1448 */
1449int pci_enable_device(struct pci_dev *dev)
1450{
1451	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452}
1453EXPORT_SYMBOL(pci_enable_device);
1454
1455/*
1456 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately.  pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1460 */
1461struct pci_devres {
1462	unsigned int enabled:1;
1463	unsigned int pinned:1;
1464	unsigned int orig_intx:1;
1465	unsigned int restore_intx:1;
1466	unsigned int mwi:1;
1467	u32 region_mask;
1468};
1469
1470static void pcim_release(struct device *gendev, void *res)
1471{
1472	struct pci_dev *dev = to_pci_dev(gendev);
1473	struct pci_devres *this = res;
1474	int i;
1475
1476	if (dev->msi_enabled)
1477		pci_disable_msi(dev);
1478	if (dev->msix_enabled)
1479		pci_disable_msix(dev);
1480
1481	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482		if (this->region_mask & (1 << i))
1483			pci_release_region(dev, i);
1484
1485	if (this->mwi)
1486		pci_clear_mwi(dev);
1487
1488	if (this->restore_intx)
1489		pci_intx(dev, this->orig_intx);
1490
1491	if (this->enabled && !this->pinned)
1492		pci_disable_device(dev);
1493}
1494
1495static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496{
1497	struct pci_devres *dr, *new_dr;
1498
1499	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500	if (dr)
1501		return dr;
1502
1503	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504	if (!new_dr)
1505		return NULL;
1506	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507}
1508
1509static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510{
1511	if (pci_is_managed(pdev))
1512		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513	return NULL;
1514}
1515
1516/**
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1519 *
1520 * Managed pci_enable_device().
1521 */
1522int pcim_enable_device(struct pci_dev *pdev)
1523{
1524	struct pci_devres *dr;
1525	int rc;
1526
1527	dr = get_pci_dr(pdev);
1528	if (unlikely(!dr))
1529		return -ENOMEM;
1530	if (dr->enabled)
1531		return 0;
1532
1533	rc = pci_enable_device(pdev);
1534	if (!rc) {
1535		pdev->is_managed = 1;
1536		dr->enabled = 1;
1537	}
1538	return rc;
1539}
1540EXPORT_SYMBOL(pcim_enable_device);
1541
1542/**
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1545 *
1546 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547 * driver detach.  @pdev must have been enabled with
1548 * pcim_enable_device().
1549 */
1550void pcim_pin_device(struct pci_dev *pdev)
1551{
1552	struct pci_devres *dr;
1553
1554	dr = find_pci_dr(pdev);
1555	WARN_ON(!dr || !dr->enabled);
1556	if (dr)
1557		dr->pinned = 1;
1558}
1559EXPORT_SYMBOL(pcim_pin_device);
1560
1561/*
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1564 *
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1568 */
1569int __weak pcibios_add_device(struct pci_dev *dev)
1570{
1571	return 0;
1572}
1573
1574/**
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1577 *
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1581 */
1582void __weak pcibios_release_device(struct pci_dev *dev) {}
1583
1584/**
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1587 *
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1590 * override this.
1591 */
1592void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593
1594/**
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1598 *
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1602 */
1603void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604
1605static void do_pci_disable_device(struct pci_dev *dev)
1606{
1607	u16 pci_command;
1608
1609	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610	if (pci_command & PCI_COMMAND_MASTER) {
1611		pci_command &= ~PCI_COMMAND_MASTER;
1612		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613	}
1614
1615	pcibios_disable_device(dev);
1616}
1617
1618/**
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1621 *
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1624 */
1625void pci_disable_enabled_device(struct pci_dev *dev)
1626{
1627	if (pci_is_enabled(dev))
1628		do_pci_disable_device(dev);
1629}
1630
1631/**
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1634 *
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore.  This only involves disabling PCI bus-mastering, if active.
1637 *
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1640 */
1641void pci_disable_device(struct pci_dev *dev)
 
1642{
1643	struct pci_devres *dr;
1644
1645	dr = find_pci_dr(dev);
1646	if (dr)
1647		dr->enabled = 0;
1648
1649	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650		      "disabling already-disabled device");
1651
1652	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653		return;
1654
1655	do_pci_disable_device(dev);
1656
1657	dev->is_busmaster = 0;
1658}
1659EXPORT_SYMBOL(pci_disable_device);
1660
1661/**
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1665 *
1666 *
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1669 */
1670int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671					enum pcie_reset_state state)
1672{
1673	return -EINVAL;
1674}
1675
1676/**
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1680 *
1681 *
1682 * Sets the PCI reset state for the device.
1683 */
1684int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685{
1686	return pcibios_set_pcie_reset_state(dev, state);
1687}
1688EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689
1690/**
1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692 * @dev: PCIe root port or event collector.
1693 */
1694void pcie_clear_root_pme_status(struct pci_dev *dev)
1695{
1696	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697}
1698
1699/**
1700 * pci_check_pme_status - Check if given device has generated PME.
1701 * @dev: Device to check.
1702 *
1703 * Check the PME status of the device and if set, clear it and clear PME enable
1704 * (if set).  Return 'true' if PME status and PME enable were both set or
1705 * 'false' otherwise.
1706 */
1707bool pci_check_pme_status(struct pci_dev *dev)
1708{
1709	int pmcsr_pos;
1710	u16 pmcsr;
1711	bool ret = false;
1712
1713	if (!dev->pm_cap)
1714		return false;
1715
1716	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719		return false;
1720
1721	/* Clear PME status. */
1722	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724		/* Disable PME to avoid interrupt flood. */
1725		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726		ret = true;
1727	}
1728
1729	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730
1731	return ret;
1732}
1733
1734/**
1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736 * @dev: Device to handle.
1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738 *
1739 * Check if @dev has generated PME and queue a resume request for it in that
1740 * case.
1741 */
1742static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743{
1744	if (pme_poll_reset && dev->pme_poll)
1745		dev->pme_poll = false;
1746
1747	if (pci_check_pme_status(dev)) {
1748		pci_wakeup_event(dev);
1749		pm_request_resume(&dev->dev);
1750	}
1751	return 0;
1752}
1753
1754/**
1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756 * @bus: Top bus of the subtree to walk.
1757 */
1758void pci_pme_wakeup_bus(struct pci_bus *bus)
1759{
1760	if (bus)
1761		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762}
1763
1764
1765/**
1766 * pci_pme_capable - check the capability of PCI device to generate PME#
1767 * @dev: PCI device to handle.
1768 * @state: PCI state from which device will issue PME#.
1769 */
1770bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771{
1772	if (!dev->pm_cap)
1773		return false;
1774
1775	return !!(dev->pme_support & (1 << state));
1776}
1777EXPORT_SYMBOL(pci_pme_capable);
1778
1779static void pci_pme_list_scan(struct work_struct *work)
1780{
1781	struct pci_pme_device *pme_dev, *n;
1782
1783	mutex_lock(&pci_pme_list_mutex);
1784	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785		if (pme_dev->dev->pme_poll) {
1786			struct pci_dev *bridge;
1787
1788			bridge = pme_dev->dev->bus->self;
1789			/*
1790			 * If bridge is in low power state, the
1791			 * configuration space of subordinate devices
1792			 * may be not accessible
1793			 */
1794			if (bridge && bridge->current_state != PCI_D0)
1795				continue;
1796			pci_pme_wakeup(pme_dev->dev, NULL);
1797		} else {
1798			list_del(&pme_dev->list);
1799			kfree(pme_dev);
1800		}
1801	}
1802	if (!list_empty(&pci_pme_list))
1803		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804				   msecs_to_jiffies(PME_TIMEOUT));
1805	mutex_unlock(&pci_pme_list_mutex);
1806}
1807
1808static void __pci_pme_active(struct pci_dev *dev, bool enable)
 
 
 
 
 
 
 
 
1809{
1810	u16 pmcsr;
1811
1812	if (!dev->pme_support)
1813		return;
1814
1815	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816	/* Clear PME_Status by writing 1 to it and enable PME# */
1817	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818	if (!enable)
1819		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820
1821	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822}
1823
1824/**
1825 * pci_pme_restore - Restore PME configuration after config space restore.
1826 * @dev: PCI device to update.
1827 */
1828void pci_pme_restore(struct pci_dev *dev)
1829{
1830	u16 pmcsr;
1831
1832	if (!dev->pme_support)
1833		return;
1834
1835	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836	if (dev->wakeup_prepared) {
1837		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839	} else {
1840		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842	}
1843	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844}
1845
1846/**
1847 * pci_pme_active - enable or disable PCI device's PME# function
1848 * @dev: PCI device to handle.
1849 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850 *
1851 * The caller must verify that the device is capable of generating PME# before
1852 * calling this function with @enable equal to 'true'.
1853 */
1854void pci_pme_active(struct pci_dev *dev, bool enable)
1855{
1856	__pci_pme_active(dev, enable);
1857
1858	/*
1859	 * PCI (as opposed to PCIe) PME requires that the device have
1860	 * its PME# line hooked up correctly. Not all hardware vendors
1861	 * do this, so the PME never gets delivered and the device
1862	 * remains asleep. The easiest way around this is to
1863	 * periodically walk the list of suspended devices and check
1864	 * whether any have their PME flag set. The assumption is that
1865	 * we'll wake up often enough anyway that this won't be a huge
1866	 * hit, and the power savings from the devices will still be a
1867	 * win.
1868	 *
1869	 * Although PCIe uses in-band PME message instead of PME# line
1870	 * to report PME, PME does not work for some PCIe devices in
1871	 * reality.  For example, there are devices that set their PME
1872	 * status bits, but don't really bother to send a PME message;
1873	 * there are PCI Express Root Ports that don't bother to
1874	 * trigger interrupts when they receive PME messages from the
1875	 * devices below.  So PME poll is used for PCIe devices too.
1876	 */
1877
1878	if (dev->pme_poll) {
1879		struct pci_pme_device *pme_dev;
1880		if (enable) {
1881			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882					  GFP_KERNEL);
1883			if (!pme_dev) {
1884				pci_warn(dev, "can't enable PME#\n");
1885				return;
1886			}
1887			pme_dev->dev = dev;
1888			mutex_lock(&pci_pme_list_mutex);
1889			list_add(&pme_dev->list, &pci_pme_list);
1890			if (list_is_singular(&pci_pme_list))
1891				queue_delayed_work(system_freezable_wq,
1892						   &pci_pme_work,
1893						   msecs_to_jiffies(PME_TIMEOUT));
1894			mutex_unlock(&pci_pme_list_mutex);
1895		} else {
1896			mutex_lock(&pci_pme_list_mutex);
1897			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898				if (pme_dev->dev == dev) {
1899					list_del(&pme_dev->list);
1900					kfree(pme_dev);
1901					break;
1902				}
1903			}
1904			mutex_unlock(&pci_pme_list_mutex);
1905		}
1906	}
1907
1908	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909}
1910EXPORT_SYMBOL(pci_pme_active);
1911
1912/**
1913 * __pci_enable_wake - enable PCI device as wakeup event source
1914 * @dev: PCI device affected
1915 * @state: PCI state from which device will issue wakeup events
 
1916 * @enable: True to enable event generation; false to disable
1917 *
1918 * This enables the device as a wakeup event source, or disables it.
1919 * When such events involves platform-specific hooks, those hooks are
1920 * called automatically by this routine.
1921 *
1922 * Devices with legacy power management (no standard PCI PM capabilities)
1923 * always require such platform hooks.
1924 *
1925 * RETURN VALUE:
1926 * 0 is returned on success
1927 * -EINVAL is returned if device is not supposed to wake up the system
1928 * Error code depending on the platform is returned if both the platform and
1929 * the native mechanism fail to enable the generation of wake-up events
1930 */
1931static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
 
1932{
1933	int ret = 0;
1934
1935	/*
1936	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937	 * but that is set up elsewhere, so skip them.
1938	 */
1939	if (pci_has_subordinate(dev))
1940		return 0;
1941
1942	/* Don't do the same thing twice in a row for one device. */
1943	if (!!enable == !!dev->wakeup_prepared)
1944		return 0;
1945
1946	/*
1947	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950	 */
1951
1952	if (enable) {
1953		int error;
1954
1955		if (pci_pme_capable(dev, state))
1956			pci_pme_active(dev, true);
1957		else
1958			ret = 1;
1959		error = platform_pci_set_wakeup(dev, true);
 
1960		if (ret)
1961			ret = error;
1962		if (!ret)
1963			dev->wakeup_prepared = true;
1964	} else {
1965		platform_pci_set_wakeup(dev, false);
 
 
 
1966		pci_pme_active(dev, false);
1967		dev->wakeup_prepared = false;
1968	}
1969
1970	return ret;
1971}
1972
1973/**
1974 * pci_enable_wake - change wakeup settings for a PCI device
1975 * @pci_dev: Target device
1976 * @state: PCI state from which device will issue wakeup events
1977 * @enable: Whether or not to enable event generation
1978 *
1979 * If @enable is set, check device_may_wakeup() for the device before calling
1980 * __pci_enable_wake() for it.
1981 */
1982int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1983{
1984	if (enable && !device_may_wakeup(&pci_dev->dev))
1985		return -EINVAL;
1986
1987	return __pci_enable_wake(pci_dev, state, enable);
1988}
1989EXPORT_SYMBOL(pci_enable_wake);
1990
1991/**
1992 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1993 * @dev: PCI device to prepare
1994 * @enable: True to enable wake-up event generation; false to disable
1995 *
1996 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1997 * and this function allows them to set that up cleanly - pci_enable_wake()
1998 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1999 * ordering constraints.
2000 *
2001 * This function only returns error code if the device is not allowed to wake
2002 * up the system from sleep or it is not capable of generating PME# from both
2003 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2004 */
2005int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2006{
2007	return pci_pme_capable(dev, PCI_D3cold) ?
2008			pci_enable_wake(dev, PCI_D3cold, enable) :
2009			pci_enable_wake(dev, PCI_D3hot, enable);
2010}
2011EXPORT_SYMBOL(pci_wake_from_d3);
2012
2013/**
2014 * pci_target_state - find an appropriate low power state for a given PCI dev
2015 * @dev: PCI device
2016 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2017 *
2018 * Use underlying platform code to find a supported low power state for @dev.
2019 * If the platform can't manage @dev, return the deepest state from which it
2020 * can generate wake events, based on any available PME info.
2021 */
2022static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2023{
2024	pci_power_t target_state = PCI_D3hot;
2025
2026	if (platform_pci_power_manageable(dev)) {
2027		/*
2028		 * Call the platform to choose the target state of the device
2029		 * and enable wake-up from this state if supported.
2030		 */
2031		pci_power_t state = platform_pci_choose_state(dev);
2032
2033		switch (state) {
2034		case PCI_POWER_ERROR:
2035		case PCI_UNKNOWN:
2036			break;
2037		case PCI_D1:
2038		case PCI_D2:
2039			if (pci_no_d1d2(dev))
2040				break;
2041		default:
2042			target_state = state;
2043		}
2044
2045		return target_state;
2046	}
2047
2048	if (!dev->pm_cap)
2049		target_state = PCI_D0;
2050
2051	/*
2052	 * If the device is in D3cold even though it's not power-manageable by
2053	 * the platform, it may have been powered down by non-standard means.
2054	 * Best to let it slumber.
2055	 */
2056	if (dev->current_state == PCI_D3cold)
2057		target_state = PCI_D3cold;
2058
2059	if (wakeup) {
2060		/*
2061		 * Find the deepest state from which the device can generate
2062		 * wake-up events, make it the target state and enable device
2063		 * to generate PME#.
2064		 */
2065		if (dev->pme_support) {
2066			while (target_state
2067			      && !(dev->pme_support & (1 << target_state)))
2068				target_state--;
2069		}
2070	}
2071
2072	return target_state;
2073}
2074
2075/**
2076 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2077 * @dev: Device to handle.
2078 *
2079 * Choose the power state appropriate for the device depending on whether
2080 * it can wake up the system and/or is power manageable by the platform
2081 * (PCI_D3hot is the default) and put the device into that state.
2082 */
2083int pci_prepare_to_sleep(struct pci_dev *dev)
2084{
2085	bool wakeup = device_may_wakeup(&dev->dev);
2086	pci_power_t target_state = pci_target_state(dev, wakeup);
2087	int error;
2088
2089	if (target_state == PCI_POWER_ERROR)
2090		return -EIO;
2091
2092	pci_enable_wake(dev, target_state, wakeup);
 
 
 
 
2093
2094	error = pci_set_power_state(dev, target_state);
2095
2096	if (error)
2097		pci_enable_wake(dev, target_state, false);
2098
2099	return error;
2100}
2101EXPORT_SYMBOL(pci_prepare_to_sleep);
2102
2103/**
2104 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2105 * @dev: Device to handle.
2106 *
2107 * Disable device's system wake-up capability and put it into D0.
2108 */
2109int pci_back_from_sleep(struct pci_dev *dev)
2110{
2111	pci_enable_wake(dev, PCI_D0, false);
2112	return pci_set_power_state(dev, PCI_D0);
2113}
2114EXPORT_SYMBOL(pci_back_from_sleep);
2115
2116/**
2117 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2118 * @dev: PCI device being suspended.
2119 *
2120 * Prepare @dev to generate wake-up events at run time and put it into a low
2121 * power state.
2122 */
2123int pci_finish_runtime_suspend(struct pci_dev *dev)
2124{
2125	pci_power_t target_state;
2126	int error;
2127
2128	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2129	if (target_state == PCI_POWER_ERROR)
2130		return -EIO;
2131
2132	dev->runtime_d3cold = target_state == PCI_D3cold;
2133
2134	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2135
2136	error = pci_set_power_state(dev, target_state);
2137
2138	if (error) {
2139		pci_enable_wake(dev, target_state, false);
2140		dev->runtime_d3cold = false;
2141	}
2142
2143	return error;
2144}
2145
2146/**
2147 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2148 * @dev: Device to check.
2149 *
2150 * Return true if the device itself is capable of generating wake-up events
2151 * (through the platform or using the native PCIe PME) or if the device supports
2152 * PME and one of its upstream bridges can generate wake-up events.
2153 */
2154bool pci_dev_run_wake(struct pci_dev *dev)
2155{
2156	struct pci_bus *bus = dev->bus;
2157
2158	if (!dev->pme_support)
2159		return false;
2160
2161	/* PME-capable in principle, but not from the target power state */
2162	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2163		return false;
2164
2165	if (device_can_wakeup(&dev->dev))
2166		return true;
2167
2168	while (bus->parent) {
2169		struct pci_dev *bridge = bus->self;
2170
2171		if (device_can_wakeup(&bridge->dev))
2172			return true;
2173
2174		bus = bus->parent;
2175	}
2176
2177	/* We have reached the root bus. */
2178	if (bus->bridge)
2179		return device_can_wakeup(bus->bridge);
2180
2181	return false;
2182}
2183EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2184
2185/**
2186 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2187 * @pci_dev: Device to check.
2188 *
2189 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2190 * reconfigured due to wakeup settings difference between system and runtime
2191 * suspend and the current power state of it is suitable for the upcoming
2192 * (system) transition.
2193 *
2194 * If the device is not configured for system wakeup, disable PME for it before
2195 * returning 'true' to prevent it from waking up the system unnecessarily.
2196 */
2197bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2198{
2199	struct device *dev = &pci_dev->dev;
2200	bool wakeup = device_may_wakeup(dev);
2201
2202	if (!pm_runtime_suspended(dev)
2203	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2204	    || platform_pci_need_resume(pci_dev))
2205		return false;
2206
2207	/*
2208	 * At this point the device is good to go unless it's been configured
2209	 * to generate PME at the runtime suspend time, but it is not supposed
2210	 * to wake up the system.  In that case, simply disable PME for it
2211	 * (it will have to be re-enabled on exit from system resume).
2212	 *
2213	 * If the device's power state is D3cold and the platform check above
2214	 * hasn't triggered, the device's configuration is suitable and we don't
2215	 * need to manipulate it at all.
2216	 */
2217	spin_lock_irq(&dev->power.lock);
2218
2219	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2220	    !wakeup)
2221		__pci_pme_active(pci_dev, false);
2222
2223	spin_unlock_irq(&dev->power.lock);
2224	return true;
2225}
2226
2227/**
2228 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2229 * @pci_dev: Device to handle.
2230 *
2231 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2232 * it might have been disabled during the prepare phase of system suspend if
2233 * the device was not configured for system wakeup.
2234 */
2235void pci_dev_complete_resume(struct pci_dev *pci_dev)
2236{
2237	struct device *dev = &pci_dev->dev;
2238
2239	if (!pci_dev_run_wake(pci_dev))
2240		return;
2241
2242	spin_lock_irq(&dev->power.lock);
2243
2244	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2245		__pci_pme_active(pci_dev, true);
2246
2247	spin_unlock_irq(&dev->power.lock);
2248}
2249
2250void pci_config_pm_runtime_get(struct pci_dev *pdev)
2251{
2252	struct device *dev = &pdev->dev;
2253	struct device *parent = dev->parent;
2254
2255	if (parent)
2256		pm_runtime_get_sync(parent);
2257	pm_runtime_get_noresume(dev);
2258	/*
2259	 * pdev->current_state is set to PCI_D3cold during suspending,
2260	 * so wait until suspending completes
2261	 */
2262	pm_runtime_barrier(dev);
2263	/*
2264	 * Only need to resume devices in D3cold, because config
2265	 * registers are still accessible for devices suspended but
2266	 * not in D3cold.
2267	 */
2268	if (pdev->current_state == PCI_D3cold)
2269		pm_runtime_resume(dev);
2270}
2271
2272void pci_config_pm_runtime_put(struct pci_dev *pdev)
2273{
2274	struct device *dev = &pdev->dev;
2275	struct device *parent = dev->parent;
2276
2277	pm_runtime_put(dev);
2278	if (parent)
2279		pm_runtime_put_sync(parent);
2280}
2281
2282/**
2283 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2284 * @bridge: Bridge to check
2285 *
2286 * This function checks if it is possible to move the bridge to D3.
2287 * Currently we only allow D3 for recent enough PCIe ports.
2288 */
2289bool pci_bridge_d3_possible(struct pci_dev *bridge)
2290{
2291	if (!pci_is_pcie(bridge))
2292		return false;
2293
2294	switch (pci_pcie_type(bridge)) {
2295	case PCI_EXP_TYPE_ROOT_PORT:
2296	case PCI_EXP_TYPE_UPSTREAM:
2297	case PCI_EXP_TYPE_DOWNSTREAM:
2298		if (pci_bridge_d3_disable)
2299			return false;
2300
2301		/*
2302		 * Hotplug interrupts cannot be delivered if the link is down,
2303		 * so parents of a hotplug port must stay awake. In addition,
2304		 * hotplug ports handled by firmware in System Management Mode
2305		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2306		 * For simplicity, disallow in general for now.
2307		 */
2308		if (bridge->is_hotplug_bridge)
2309			return false;
2310
2311		if (pci_bridge_d3_force)
2312			return true;
2313
2314		/*
2315		 * It should be safe to put PCIe ports from 2015 or newer
2316		 * to D3.
2317		 */
2318		if (dmi_get_bios_year() >= 2015)
2319			return true;
2320		break;
2321	}
2322
2323	return false;
2324}
2325
2326static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2327{
2328	bool *d3cold_ok = data;
2329
2330	if (/* The device needs to be allowed to go D3cold ... */
2331	    dev->no_d3cold || !dev->d3cold_allowed ||
2332
2333	    /* ... and if it is wakeup capable to do so from D3cold. */
2334	    (device_may_wakeup(&dev->dev) &&
2335	     !pci_pme_capable(dev, PCI_D3cold)) ||
2336
2337	    /* If it is a bridge it must be allowed to go to D3. */
2338	    !pci_power_manageable(dev))
2339
2340		*d3cold_ok = false;
2341
2342	return !*d3cold_ok;
2343}
2344
2345/*
2346 * pci_bridge_d3_update - Update bridge D3 capabilities
2347 * @dev: PCI device which is changed
2348 *
2349 * Update upstream bridge PM capabilities accordingly depending on if the
2350 * device PM configuration was changed or the device is being removed.  The
2351 * change is also propagated upstream.
2352 */
2353void pci_bridge_d3_update(struct pci_dev *dev)
2354{
2355	bool remove = !device_is_registered(&dev->dev);
2356	struct pci_dev *bridge;
2357	bool d3cold_ok = true;
2358
2359	bridge = pci_upstream_bridge(dev);
2360	if (!bridge || !pci_bridge_d3_possible(bridge))
2361		return;
2362
2363	/*
2364	 * If D3 is currently allowed for the bridge, removing one of its
2365	 * children won't change that.
2366	 */
2367	if (remove && bridge->bridge_d3)
2368		return;
2369
2370	/*
2371	 * If D3 is currently allowed for the bridge and a child is added or
2372	 * changed, disallowance of D3 can only be caused by that child, so
2373	 * we only need to check that single device, not any of its siblings.
2374	 *
2375	 * If D3 is currently not allowed for the bridge, checking the device
2376	 * first may allow us to skip checking its siblings.
2377	 */
2378	if (!remove)
2379		pci_dev_check_d3cold(dev, &d3cold_ok);
2380
2381	/*
2382	 * If D3 is currently not allowed for the bridge, this may be caused
2383	 * either by the device being changed/removed or any of its siblings,
2384	 * so we need to go through all children to find out if one of them
2385	 * continues to block D3.
2386	 */
2387	if (d3cold_ok && !bridge->bridge_d3)
2388		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2389			     &d3cold_ok);
2390
2391	if (bridge->bridge_d3 != d3cold_ok) {
2392		bridge->bridge_d3 = d3cold_ok;
2393		/* Propagate change to upstream bridges */
2394		pci_bridge_d3_update(bridge);
2395	}
2396}
2397
2398/**
2399 * pci_d3cold_enable - Enable D3cold for device
2400 * @dev: PCI device to handle
2401 *
2402 * This function can be used in drivers to enable D3cold from the device
2403 * they handle.  It also updates upstream PCI bridge PM capabilities
2404 * accordingly.
2405 */
2406void pci_d3cold_enable(struct pci_dev *dev)
2407{
2408	if (dev->no_d3cold) {
2409		dev->no_d3cold = false;
2410		pci_bridge_d3_update(dev);
2411	}
2412}
2413EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2414
2415/**
2416 * pci_d3cold_disable - Disable D3cold for device
2417 * @dev: PCI device to handle
2418 *
2419 * This function can be used in drivers to disable D3cold from the device
2420 * they handle.  It also updates upstream PCI bridge PM capabilities
2421 * accordingly.
2422 */
2423void pci_d3cold_disable(struct pci_dev *dev)
2424{
2425	if (!dev->no_d3cold) {
2426		dev->no_d3cold = true;
2427		pci_bridge_d3_update(dev);
2428	}
2429}
2430EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2431
2432/**
2433 * pci_pm_init - Initialize PM functions of given PCI device
2434 * @dev: PCI device to handle.
2435 */
2436void pci_pm_init(struct pci_dev *dev)
2437{
2438	int pm;
2439	u16 pmc;
2440
2441	pm_runtime_forbid(&dev->dev);
2442	pm_runtime_set_active(&dev->dev);
2443	pm_runtime_enable(&dev->dev);
2444	device_enable_async_suspend(&dev->dev);
2445	dev->wakeup_prepared = false;
2446
2447	dev->pm_cap = 0;
2448	dev->pme_support = 0;
2449
2450	/* find PCI PM capability in list */
2451	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2452	if (!pm)
2453		return;
2454	/* Check device's ability to generate PME# */
2455	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2456
2457	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2458		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2459			pmc & PCI_PM_CAP_VER_MASK);
2460		return;
2461	}
2462
2463	dev->pm_cap = pm;
2464	dev->d3_delay = PCI_PM_D3_WAIT;
2465	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2466	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2467	dev->d3cold_allowed = true;
2468
2469	dev->d1_support = false;
2470	dev->d2_support = false;
2471	if (!pci_no_d1d2(dev)) {
2472		if (pmc & PCI_PM_CAP_D1)
2473			dev->d1_support = true;
2474		if (pmc & PCI_PM_CAP_D2)
2475			dev->d2_support = true;
2476
2477		if (dev->d1_support || dev->d2_support)
2478			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2479				   dev->d1_support ? " D1" : "",
2480				   dev->d2_support ? " D2" : "");
2481	}
2482
2483	pmc &= PCI_PM_CAP_PME_MASK;
2484	if (pmc) {
2485		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
 
2486			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2487			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2488			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2489			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2490			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2491		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2492		dev->pme_poll = true;
2493		/*
2494		 * Make device's PM flags reflect the wake-up capability, but
2495		 * let the user space enable it to wake up the system as needed.
2496		 */
2497		device_set_wakeup_capable(&dev->dev, true);
2498		/* Disable the PME# generation functionality */
2499		pci_pme_active(dev, false);
2500	}
2501}
2502
2503static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2504{
2505	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2506
2507	switch (prop) {
2508	case PCI_EA_P_MEM:
2509	case PCI_EA_P_VF_MEM:
2510		flags |= IORESOURCE_MEM;
2511		break;
2512	case PCI_EA_P_MEM_PREFETCH:
2513	case PCI_EA_P_VF_MEM_PREFETCH:
2514		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2515		break;
2516	case PCI_EA_P_IO:
2517		flags |= IORESOURCE_IO;
2518		break;
2519	default:
2520		return 0;
2521	}
2522
2523	return flags;
2524}
2525
2526static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2527					    u8 prop)
2528{
2529	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2530		return &dev->resource[bei];
2531#ifdef CONFIG_PCI_IOV
2532	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2533		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2534		return &dev->resource[PCI_IOV_RESOURCES +
2535				      bei - PCI_EA_BEI_VF_BAR0];
2536#endif
2537	else if (bei == PCI_EA_BEI_ROM)
2538		return &dev->resource[PCI_ROM_RESOURCE];
2539	else
2540		return NULL;
2541}
2542
2543/* Read an Enhanced Allocation (EA) entry */
2544static int pci_ea_read(struct pci_dev *dev, int offset)
2545{
2546	struct resource *res;
2547	int ent_size, ent_offset = offset;
2548	resource_size_t start, end;
2549	unsigned long flags;
2550	u32 dw0, bei, base, max_offset;
2551	u8 prop;
2552	bool support_64 = (sizeof(resource_size_t) >= 8);
2553
2554	pci_read_config_dword(dev, ent_offset, &dw0);
2555	ent_offset += 4;
2556
2557	/* Entry size field indicates DWORDs after 1st */
2558	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2559
2560	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2561		goto out;
2562
2563	bei = (dw0 & PCI_EA_BEI) >> 4;
2564	prop = (dw0 & PCI_EA_PP) >> 8;
2565
2566	/*
2567	 * If the Property is in the reserved range, try the Secondary
2568	 * Property instead.
2569	 */
2570	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2571		prop = (dw0 & PCI_EA_SP) >> 16;
2572	if (prop > PCI_EA_P_BRIDGE_IO)
2573		goto out;
2574
2575	res = pci_ea_get_resource(dev, bei, prop);
2576	if (!res) {
2577		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2578		goto out;
2579	}
2580
2581	flags = pci_ea_flags(dev, prop);
2582	if (!flags) {
2583		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2584		goto out;
2585	}
2586
2587	/* Read Base */
2588	pci_read_config_dword(dev, ent_offset, &base);
2589	start = (base & PCI_EA_FIELD_MASK);
2590	ent_offset += 4;
2591
2592	/* Read MaxOffset */
2593	pci_read_config_dword(dev, ent_offset, &max_offset);
2594	ent_offset += 4;
2595
2596	/* Read Base MSBs (if 64-bit entry) */
2597	if (base & PCI_EA_IS_64) {
2598		u32 base_upper;
2599
2600		pci_read_config_dword(dev, ent_offset, &base_upper);
2601		ent_offset += 4;
2602
2603		flags |= IORESOURCE_MEM_64;
2604
2605		/* entry starts above 32-bit boundary, can't use */
2606		if (!support_64 && base_upper)
2607			goto out;
2608
2609		if (support_64)
2610			start |= ((u64)base_upper << 32);
2611	}
2612
2613	end = start + (max_offset | 0x03);
2614
2615	/* Read MaxOffset MSBs (if 64-bit entry) */
2616	if (max_offset & PCI_EA_IS_64) {
2617		u32 max_offset_upper;
2618
2619		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2620		ent_offset += 4;
2621
2622		flags |= IORESOURCE_MEM_64;
2623
2624		/* entry too big, can't use */
2625		if (!support_64 && max_offset_upper)
2626			goto out;
2627
2628		if (support_64)
2629			end += ((u64)max_offset_upper << 32);
2630	}
2631
2632	if (end < start) {
2633		pci_err(dev, "EA Entry crosses address boundary\n");
2634		goto out;
2635	}
2636
2637	if (ent_size != ent_offset - offset) {
2638		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2639			ent_size, ent_offset - offset);
2640		goto out;
2641	}
2642
2643	res->name = pci_name(dev);
2644	res->start = start;
2645	res->end = end;
2646	res->flags = flags;
2647
2648	if (bei <= PCI_EA_BEI_BAR5)
2649		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2650			   bei, res, prop);
2651	else if (bei == PCI_EA_BEI_ROM)
2652		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2653			   res, prop);
2654	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2655		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2656			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2657	else
2658		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2659			   bei, res, prop);
2660
2661out:
2662	return offset + ent_size;
2663}
2664
2665/* Enhanced Allocation Initialization */
2666void pci_ea_init(struct pci_dev *dev)
2667{
2668	int ea;
2669	u8 num_ent;
2670	int offset;
2671	int i;
2672
2673	/* find PCI EA capability in list */
2674	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2675	if (!ea)
2676		return;
2677
2678	/* determine the number of entries */
2679	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2680					&num_ent);
2681	num_ent &= PCI_EA_NUM_ENT_MASK;
2682
2683	offset = ea + PCI_EA_FIRST_ENT;
2684
2685	/* Skip DWORD 2 for type 1 functions */
2686	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2687		offset += 4;
2688
2689	/* parse each EA entry */
2690	for (i = 0; i < num_ent; ++i)
2691		offset = pci_ea_read(dev, offset);
2692}
2693
2694static void pci_add_saved_cap(struct pci_dev *pci_dev,
2695	struct pci_cap_saved_state *new_cap)
2696{
2697	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2698}
2699
2700/**
2701 * _pci_add_cap_save_buffer - allocate buffer for saving given
2702 *                            capability registers
2703 * @dev: the PCI device
2704 * @cap: the capability to allocate the buffer for
2705 * @extended: Standard or Extended capability ID
2706 * @size: requested size of the buffer
2707 */
2708static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2709				    bool extended, unsigned int size)
2710{
2711	int pos;
2712	struct pci_cap_saved_state *save_state;
2713
2714	if (extended)
2715		pos = pci_find_ext_capability(dev, cap);
2716	else
2717		pos = pci_find_capability(dev, cap);
2718
2719	if (!pos)
2720		return 0;
2721
2722	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2723	if (!save_state)
2724		return -ENOMEM;
2725
2726	save_state->cap.cap_nr = cap;
2727	save_state->cap.cap_extended = extended;
2728	save_state->cap.size = size;
2729	pci_add_saved_cap(dev, save_state);
2730
2731	return 0;
2732}
2733
2734int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2735{
2736	return _pci_add_cap_save_buffer(dev, cap, false, size);
2737}
2738
2739int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2740{
2741	return _pci_add_cap_save_buffer(dev, cap, true, size);
2742}
2743
2744/**
2745 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2746 * @dev: the PCI device
2747 */
2748void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2749{
2750	int error;
2751
2752	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2753					PCI_EXP_SAVE_REGS * sizeof(u16));
2754	if (error)
2755		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
 
2756
2757	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2758	if (error)
2759		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
 
2760
2761	pci_allocate_vc_save_buffers(dev);
2762}
2763
2764void pci_free_cap_save_buffers(struct pci_dev *dev)
2765{
2766	struct pci_cap_saved_state *tmp;
2767	struct hlist_node *n;
2768
2769	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2770		kfree(tmp);
2771}
2772
2773/**
2774 * pci_configure_ari - enable or disable ARI forwarding
2775 * @dev: the PCI device
2776 *
2777 * If @dev and its upstream bridge both support ARI, enable ARI in the
2778 * bridge.  Otherwise, disable ARI in the bridge.
2779 */
2780void pci_configure_ari(struct pci_dev *dev)
2781{
2782	u32 cap;
2783	struct pci_dev *bridge;
2784
2785	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2786		return;
2787
2788	bridge = dev->bus->self;
2789	if (!bridge)
2790		return;
2791
2792	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2793	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2794		return;
2795
2796	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2797		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2798					 PCI_EXP_DEVCTL2_ARI);
2799		bridge->ari_enabled = 1;
2800	} else {
2801		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2802					   PCI_EXP_DEVCTL2_ARI);
2803		bridge->ari_enabled = 0;
2804	}
2805}
2806
2807static int pci_acs_enable;
2808
2809/**
2810 * pci_request_acs - ask for ACS to be enabled if supported
2811 */
2812void pci_request_acs(void)
2813{
2814	pci_acs_enable = 1;
2815}
2816
2817/**
2818 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2819 * @dev: the PCI device
2820 */
2821static void pci_std_enable_acs(struct pci_dev *dev)
2822{
2823	int pos;
2824	u16 cap;
2825	u16 ctrl;
2826
2827	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2828	if (!pos)
2829		return;
2830
2831	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2832	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2833
2834	/* Source Validation */
2835	ctrl |= (cap & PCI_ACS_SV);
2836
2837	/* P2P Request Redirect */
2838	ctrl |= (cap & PCI_ACS_RR);
2839
2840	/* P2P Completion Redirect */
2841	ctrl |= (cap & PCI_ACS_CR);
2842
2843	/* Upstream Forwarding */
2844	ctrl |= (cap & PCI_ACS_UF);
2845
2846	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 
 
2847}
2848
2849/**
2850 * pci_enable_acs - enable ACS if hardware support it
2851 * @dev: the PCI device
2852 */
2853void pci_enable_acs(struct pci_dev *dev)
2854{
2855	if (!pci_acs_enable)
2856		return;
2857
2858	if (!pci_dev_specific_enable_acs(dev))
2859		return;
2860
2861	pci_std_enable_acs(dev);
2862}
2863
2864static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2865{
2866	int pos;
2867	u16 cap, ctrl;
2868
2869	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2870	if (!pos)
2871		return false;
2872
2873	/*
2874	 * Except for egress control, capabilities are either required
2875	 * or only required if controllable.  Features missing from the
2876	 * capability field can therefore be assumed as hard-wired enabled.
2877	 */
2878	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2879	acs_flags &= (cap | PCI_ACS_EC);
2880
2881	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2882	return (ctrl & acs_flags) == acs_flags;
2883}
2884
2885/**
2886 * pci_acs_enabled - test ACS against required flags for a given device
2887 * @pdev: device to test
2888 * @acs_flags: required PCI ACS flags
2889 *
2890 * Return true if the device supports the provided flags.  Automatically
2891 * filters out flags that are not implemented on multifunction devices.
2892 *
2893 * Note that this interface checks the effective ACS capabilities of the
2894 * device rather than the actual capabilities.  For instance, most single
2895 * function endpoints are not required to support ACS because they have no
2896 * opportunity for peer-to-peer access.  We therefore return 'true'
2897 * regardless of whether the device exposes an ACS capability.  This makes
2898 * it much easier for callers of this function to ignore the actual type
2899 * or topology of the device when testing ACS support.
2900 */
2901bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2902{
2903	int ret;
2904
2905	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2906	if (ret >= 0)
2907		return ret > 0;
2908
2909	/*
2910	 * Conventional PCI and PCI-X devices never support ACS, either
2911	 * effectively or actually.  The shared bus topology implies that
2912	 * any device on the bus can receive or snoop DMA.
2913	 */
2914	if (!pci_is_pcie(pdev))
2915		return false;
2916
2917	switch (pci_pcie_type(pdev)) {
2918	/*
2919	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2920	 * but since their primary interface is PCI/X, we conservatively
2921	 * handle them as we would a non-PCIe device.
2922	 */
2923	case PCI_EXP_TYPE_PCIE_BRIDGE:
2924	/*
2925	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2926	 * applicable... must never implement an ACS Extended Capability...".
2927	 * This seems arbitrary, but we take a conservative interpretation
2928	 * of this statement.
2929	 */
2930	case PCI_EXP_TYPE_PCI_BRIDGE:
2931	case PCI_EXP_TYPE_RC_EC:
2932		return false;
2933	/*
2934	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2935	 * implement ACS in order to indicate their peer-to-peer capabilities,
2936	 * regardless of whether they are single- or multi-function devices.
2937	 */
2938	case PCI_EXP_TYPE_DOWNSTREAM:
2939	case PCI_EXP_TYPE_ROOT_PORT:
2940		return pci_acs_flags_enabled(pdev, acs_flags);
2941	/*
2942	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2943	 * implemented by the remaining PCIe types to indicate peer-to-peer
2944	 * capabilities, but only when they are part of a multifunction
2945	 * device.  The footnote for section 6.12 indicates the specific
2946	 * PCIe types included here.
2947	 */
2948	case PCI_EXP_TYPE_ENDPOINT:
2949	case PCI_EXP_TYPE_UPSTREAM:
2950	case PCI_EXP_TYPE_LEG_END:
2951	case PCI_EXP_TYPE_RC_END:
2952		if (!pdev->multifunction)
2953			break;
2954
2955		return pci_acs_flags_enabled(pdev, acs_flags);
2956	}
2957
2958	/*
2959	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2960	 * to single function devices with the exception of downstream ports.
2961	 */
2962	return true;
2963}
2964
2965/**
2966 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2967 * @start: starting downstream device
2968 * @end: ending upstream device or NULL to search to the root bus
2969 * @acs_flags: required flags
2970 *
2971 * Walk up a device tree from start to end testing PCI ACS support.  If
2972 * any step along the way does not support the required flags, return false.
2973 */
2974bool pci_acs_path_enabled(struct pci_dev *start,
2975			  struct pci_dev *end, u16 acs_flags)
2976{
2977	struct pci_dev *pdev, *parent = start;
2978
2979	do {
2980		pdev = parent;
2981
2982		if (!pci_acs_enabled(pdev, acs_flags))
2983			return false;
2984
2985		if (pci_is_root_bus(pdev->bus))
2986			return (end == NULL);
2987
2988		parent = pdev->bus->self;
2989	} while (pdev != end);
2990
2991	return true;
2992}
2993
2994/**
2995 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2996 * @pdev: PCI device
2997 * @bar: BAR to find
2998 *
2999 * Helper to find the position of the ctrl register for a BAR.
3000 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3001 * Returns -ENOENT if no ctrl register for the BAR could be found.
3002 */
3003static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3004{
3005	unsigned int pos, nbars, i;
3006	u32 ctrl;
3007
3008	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3009	if (!pos)
3010		return -ENOTSUPP;
3011
3012	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3013	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3014		    PCI_REBAR_CTRL_NBAR_SHIFT;
3015
3016	for (i = 0; i < nbars; i++, pos += 8) {
3017		int bar_idx;
3018
3019		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3020		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3021		if (bar_idx == bar)
3022			return pos;
3023	}
3024
3025	return -ENOENT;
3026}
3027
3028/**
3029 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3030 * @pdev: PCI device
3031 * @bar: BAR to query
3032 *
3033 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3034 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3035 */
3036u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3037{
3038	int pos;
3039	u32 cap;
3040
3041	pos = pci_rebar_find_pos(pdev, bar);
3042	if (pos < 0)
3043		return 0;
3044
3045	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3046	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3047}
3048
3049/**
3050 * pci_rebar_get_current_size - get the current size of a BAR
3051 * @pdev: PCI device
3052 * @bar: BAR to set size to
3053 *
3054 * Read the size of a BAR from the resizable BAR config.
3055 * Returns size if found or negative error code.
3056 */
3057int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3058{
3059	int pos;
3060	u32 ctrl;
3061
3062	pos = pci_rebar_find_pos(pdev, bar);
3063	if (pos < 0)
3064		return pos;
3065
3066	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3067	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3068}
3069
3070/**
3071 * pci_rebar_set_size - set a new size for a BAR
3072 * @pdev: PCI device
3073 * @bar: BAR to set size to
3074 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3075 *
3076 * Set the new size of a BAR as defined in the spec.
3077 * Returns zero if resizing was successful, error code otherwise.
3078 */
3079int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3080{
3081	int pos;
3082	u32 ctrl;
3083
3084	pos = pci_rebar_find_pos(pdev, bar);
3085	if (pos < 0)
3086		return pos;
3087
3088	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3089	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3090	ctrl |= size << 8;
3091	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3092	return 0;
3093}
3094
3095/**
3096 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3097 * @dev: the PCI device
3098 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3099 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3100 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3101 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3102 *
3103 * Return 0 if all upstream bridges support AtomicOp routing, egress
3104 * blocking is disabled on all upstream ports, and the root port supports
3105 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3106 * AtomicOp completion), or negative otherwise.
3107 */
3108int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3109{
3110	struct pci_bus *bus = dev->bus;
3111	struct pci_dev *bridge;
3112	u32 cap, ctl2;
3113
3114	if (!pci_is_pcie(dev))
3115		return -EINVAL;
3116
3117	/*
3118	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3119	 * AtomicOp requesters.  For now, we only support endpoints as
3120	 * requesters and root ports as completers.  No endpoints as
3121	 * completers, and no peer-to-peer.
3122	 */
3123
3124	switch (pci_pcie_type(dev)) {
3125	case PCI_EXP_TYPE_ENDPOINT:
3126	case PCI_EXP_TYPE_LEG_END:
3127	case PCI_EXP_TYPE_RC_END:
3128		break;
3129	default:
3130		return -EINVAL;
3131	}
3132
3133	while (bus->parent) {
3134		bridge = bus->self;
3135
3136		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3137
3138		switch (pci_pcie_type(bridge)) {
3139		/* Ensure switch ports support AtomicOp routing */
3140		case PCI_EXP_TYPE_UPSTREAM:
3141		case PCI_EXP_TYPE_DOWNSTREAM:
3142			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3143				return -EINVAL;
3144			break;
3145
3146		/* Ensure root port supports all the sizes we care about */
3147		case PCI_EXP_TYPE_ROOT_PORT:
3148			if ((cap & cap_mask) != cap_mask)
3149				return -EINVAL;
3150			break;
3151		}
3152
3153		/* Ensure upstream ports don't block AtomicOps on egress */
3154		if (!bridge->has_secondary_link) {
3155			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3156						   &ctl2);
3157			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3158				return -EINVAL;
3159		}
3160
3161		bus = bus->parent;
3162	}
3163
3164	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3165				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3166	return 0;
3167}
3168EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3169
3170/**
3171 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3172 * @dev: the PCI device
3173 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3174 *
3175 * Perform INTx swizzling for a device behind one level of bridge.  This is
3176 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3177 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3178 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3179 * the PCI Express Base Specification, Revision 2.1)
3180 */
3181u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3182{
3183	int slot;
3184
3185	if (pci_ari_enabled(dev->bus))
3186		slot = 0;
3187	else
3188		slot = PCI_SLOT(dev->devfn);
3189
3190	return (((pin - 1) + slot) % 4) + 1;
3191}
3192
3193int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
 
3194{
3195	u8 pin;
3196
3197	pin = dev->pin;
3198	if (!pin)
3199		return -1;
3200
3201	while (!pci_is_root_bus(dev->bus)) {
3202		pin = pci_swizzle_interrupt_pin(dev, pin);
3203		dev = dev->bus->self;
3204	}
3205	*bridge = dev;
3206	return pin;
3207}
3208
3209/**
3210 * pci_common_swizzle - swizzle INTx all the way to root bridge
3211 * @dev: the PCI device
3212 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3213 *
3214 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3215 * bridges all the way up to a PCI root bus.
3216 */
3217u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3218{
3219	u8 pin = *pinp;
3220
3221	while (!pci_is_root_bus(dev->bus)) {
3222		pin = pci_swizzle_interrupt_pin(dev, pin);
3223		dev = dev->bus->self;
3224	}
3225	*pinp = pin;
3226	return PCI_SLOT(dev->devfn);
3227}
3228EXPORT_SYMBOL_GPL(pci_common_swizzle);
3229
3230/**
3231 *	pci_release_region - Release a PCI bar
3232 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3233 *	@bar: BAR to release
3234 *
3235 *	Releases the PCI I/O and memory resources previously reserved by a
3236 *	successful call to pci_request_region.  Call this function only
3237 *	after all use of the PCI regions has ceased.
3238 */
3239void pci_release_region(struct pci_dev *pdev, int bar)
3240{
3241	struct pci_devres *dr;
3242
3243	if (pci_resource_len(pdev, bar) == 0)
3244		return;
3245	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3246		release_region(pci_resource_start(pdev, bar),
3247				pci_resource_len(pdev, bar));
3248	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3249		release_mem_region(pci_resource_start(pdev, bar),
3250				pci_resource_len(pdev, bar));
3251
3252	dr = find_pci_dr(pdev);
3253	if (dr)
3254		dr->region_mask &= ~(1 << bar);
3255}
3256EXPORT_SYMBOL(pci_release_region);
3257
3258/**
3259 *	__pci_request_region - Reserved PCI I/O and memory resource
3260 *	@pdev: PCI device whose resources are to be reserved
3261 *	@bar: BAR to be reserved
3262 *	@res_name: Name to be associated with resource.
3263 *	@exclusive: whether the region access is exclusive or not
3264 *
3265 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3266 *	being reserved by owner @res_name.  Do not access any
3267 *	address inside the PCI regions unless this call returns
3268 *	successfully.
3269 *
3270 *	If @exclusive is set, then the region is marked so that userspace
3271 *	is explicitly not allowed to map the resource via /dev/mem or
3272 *	sysfs MMIO access.
3273 *
3274 *	Returns 0 on success, or %EBUSY on error.  A warning
3275 *	message is also printed on failure.
3276 */
3277static int __pci_request_region(struct pci_dev *pdev, int bar,
3278				const char *res_name, int exclusive)
3279{
3280	struct pci_devres *dr;
3281
3282	if (pci_resource_len(pdev, bar) == 0)
3283		return 0;
3284
3285	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3286		if (!request_region(pci_resource_start(pdev, bar),
3287			    pci_resource_len(pdev, bar), res_name))
3288			goto err_out;
3289	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
 
3290		if (!__request_mem_region(pci_resource_start(pdev, bar),
3291					pci_resource_len(pdev, bar), res_name,
3292					exclusive))
3293			goto err_out;
3294	}
3295
3296	dr = find_pci_dr(pdev);
3297	if (dr)
3298		dr->region_mask |= 1 << bar;
3299
3300	return 0;
3301
3302err_out:
3303	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3304		 &pdev->resource[bar]);
3305	return -EBUSY;
3306}
3307
3308/**
3309 *	pci_request_region - Reserve PCI I/O and memory resource
3310 *	@pdev: PCI device whose resources are to be reserved
3311 *	@bar: BAR to be reserved
3312 *	@res_name: Name to be associated with resource
3313 *
3314 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3315 *	being reserved by owner @res_name.  Do not access any
3316 *	address inside the PCI regions unless this call returns
3317 *	successfully.
3318 *
3319 *	Returns 0 on success, or %EBUSY on error.  A warning
3320 *	message is also printed on failure.
3321 */
3322int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3323{
3324	return __pci_request_region(pdev, bar, res_name, 0);
3325}
3326EXPORT_SYMBOL(pci_request_region);
3327
3328/**
3329 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3330 *	@pdev: PCI device whose resources are to be reserved
3331 *	@bar: BAR to be reserved
3332 *	@res_name: Name to be associated with resource.
3333 *
3334 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3335 *	being reserved by owner @res_name.  Do not access any
3336 *	address inside the PCI regions unless this call returns
3337 *	successfully.
3338 *
3339 *	Returns 0 on success, or %EBUSY on error.  A warning
3340 *	message is also printed on failure.
3341 *
3342 *	The key difference that _exclusive makes it that userspace is
3343 *	explicitly not allowed to map the resource via /dev/mem or
3344 *	sysfs.
3345 */
3346int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3347				 const char *res_name)
3348{
3349	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3350}
3351EXPORT_SYMBOL(pci_request_region_exclusive);
3352
3353/**
3354 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3355 * @pdev: PCI device whose resources were previously reserved
3356 * @bars: Bitmask of BARs to be released
3357 *
3358 * Release selected PCI I/O and memory resources previously reserved.
3359 * Call this function only after all use of the PCI regions has ceased.
3360 */
3361void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3362{
3363	int i;
3364
3365	for (i = 0; i < 6; i++)
3366		if (bars & (1 << i))
3367			pci_release_region(pdev, i);
3368}
3369EXPORT_SYMBOL(pci_release_selected_regions);
3370
3371static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372					  const char *res_name, int excl)
3373{
3374	int i;
3375
3376	for (i = 0; i < 6; i++)
3377		if (bars & (1 << i))
3378			if (__pci_request_region(pdev, i, res_name, excl))
3379				goto err_out;
3380	return 0;
3381
3382err_out:
3383	while (--i >= 0)
3384		if (bars & (1 << i))
3385			pci_release_region(pdev, i);
3386
3387	return -EBUSY;
3388}
3389
3390
3391/**
3392 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3393 * @pdev: PCI device whose resources are to be reserved
3394 * @bars: Bitmask of BARs to be requested
3395 * @res_name: Name to be associated with resource
3396 */
3397int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3398				 const char *res_name)
3399{
3400	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3401}
3402EXPORT_SYMBOL(pci_request_selected_regions);
3403
3404int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3405					   const char *res_name)
3406{
3407	return __pci_request_selected_regions(pdev, bars, res_name,
3408			IORESOURCE_EXCLUSIVE);
3409}
3410EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3411
3412/**
3413 *	pci_release_regions - Release reserved PCI I/O and memory resources
3414 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3415 *
3416 *	Releases all PCI I/O and memory resources previously reserved by a
3417 *	successful call to pci_request_regions.  Call this function only
3418 *	after all use of the PCI regions has ceased.
3419 */
3420
3421void pci_release_regions(struct pci_dev *pdev)
3422{
3423	pci_release_selected_regions(pdev, (1 << 6) - 1);
3424}
3425EXPORT_SYMBOL(pci_release_regions);
3426
3427/**
3428 *	pci_request_regions - Reserved PCI I/O and memory resources
3429 *	@pdev: PCI device whose resources are to be reserved
3430 *	@res_name: Name to be associated with resource.
3431 *
3432 *	Mark all PCI regions associated with PCI device @pdev as
3433 *	being reserved by owner @res_name.  Do not access any
3434 *	address inside the PCI regions unless this call returns
3435 *	successfully.
3436 *
3437 *	Returns 0 on success, or %EBUSY on error.  A warning
3438 *	message is also printed on failure.
3439 */
3440int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3441{
3442	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3443}
3444EXPORT_SYMBOL(pci_request_regions);
3445
3446/**
3447 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3448 *	@pdev: PCI device whose resources are to be reserved
3449 *	@res_name: Name to be associated with resource.
3450 *
3451 *	Mark all PCI regions associated with PCI device @pdev as
3452 *	being reserved by owner @res_name.  Do not access any
3453 *	address inside the PCI regions unless this call returns
3454 *	successfully.
3455 *
3456 *	pci_request_regions_exclusive() will mark the region so that
3457 *	/dev/mem and the sysfs MMIO access will not be allowed.
3458 *
3459 *	Returns 0 on success, or %EBUSY on error.  A warning
3460 *	message is also printed on failure.
3461 */
3462int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3463{
3464	return pci_request_selected_regions_exclusive(pdev,
3465					((1 << 6) - 1), res_name);
3466}
3467EXPORT_SYMBOL(pci_request_regions_exclusive);
3468
3469/*
3470 * Record the PCI IO range (expressed as CPU physical address + size).
3471 * Return a negative value if an error has occured, zero otherwise
3472 */
3473int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3474			resource_size_t	size)
3475{
3476	int ret = 0;
3477#ifdef PCI_IOBASE
3478	struct logic_pio_hwaddr *range;
3479
3480	if (!size || addr + size < addr)
3481		return -EINVAL;
3482
3483	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3484	if (!range)
3485		return -ENOMEM;
3486
3487	range->fwnode = fwnode;
3488	range->size = size;
3489	range->hw_start = addr;
3490	range->flags = LOGIC_PIO_CPU_MMIO;
3491
3492	ret = logic_pio_register_range(range);
3493	if (ret)
3494		kfree(range);
3495#endif
3496
3497	return ret;
3498}
3499
3500phys_addr_t pci_pio_to_address(unsigned long pio)
3501{
3502	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3503
3504#ifdef PCI_IOBASE
3505	if (pio >= MMIO_UPPER_LIMIT)
3506		return address;
3507
3508	address = logic_pio_to_hwaddr(pio);
3509#endif
3510
3511	return address;
3512}
3513
3514unsigned long __weak pci_address_to_pio(phys_addr_t address)
3515{
3516#ifdef PCI_IOBASE
3517	return logic_pio_trans_cpuaddr(address);
3518#else
3519	if (address > IO_SPACE_LIMIT)
3520		return (unsigned long)-1;
3521
3522	return (unsigned long) address;
3523#endif
3524}
3525
3526/**
3527 *	pci_remap_iospace - Remap the memory mapped I/O space
3528 *	@res: Resource describing the I/O space
3529 *	@phys_addr: physical address of range to be mapped
3530 *
3531 *	Remap the memory mapped I/O space described by the @res
3532 *	and the CPU physical address @phys_addr into virtual address space.
3533 *	Only architectures that have memory mapped IO functions defined
3534 *	(and the PCI_IOBASE value defined) should call this function.
3535 */
3536int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3537{
3538#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3539	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3540
3541	if (!(res->flags & IORESOURCE_IO))
3542		return -EINVAL;
3543
3544	if (res->end > IO_SPACE_LIMIT)
3545		return -EINVAL;
3546
3547	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3548				  pgprot_device(PAGE_KERNEL));
3549#else
3550	/* this architecture does not have memory mapped I/O space,
3551	   so this function should never be called */
3552	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3553	return -ENODEV;
3554#endif
3555}
3556EXPORT_SYMBOL(pci_remap_iospace);
3557
3558/**
3559 *	pci_unmap_iospace - Unmap the memory mapped I/O space
3560 *	@res: resource to be unmapped
3561 *
3562 *	Unmap the CPU virtual address @res from virtual address space.
3563 *	Only architectures that have memory mapped IO functions defined
3564 *	(and the PCI_IOBASE value defined) should call this function.
3565 */
3566void pci_unmap_iospace(struct resource *res)
3567{
3568#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3569	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3570
3571	unmap_kernel_range(vaddr, resource_size(res));
3572#endif
3573}
3574EXPORT_SYMBOL(pci_unmap_iospace);
3575
3576/**
3577 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3578 * @dev: Generic device to remap IO address for
3579 * @offset: Resource address to map
3580 * @size: Size of map
3581 *
3582 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3583 * detach.
3584 */
3585void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3586				      resource_size_t offset,
3587				      resource_size_t size)
3588{
3589	void __iomem **ptr, *addr;
3590
3591	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3592	if (!ptr)
3593		return NULL;
3594
3595	addr = pci_remap_cfgspace(offset, size);
3596	if (addr) {
3597		*ptr = addr;
3598		devres_add(dev, ptr);
3599	} else
3600		devres_free(ptr);
3601
3602	return addr;
3603}
3604EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3605
3606/**
3607 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3608 * @dev: generic device to handle the resource for
3609 * @res: configuration space resource to be handled
3610 *
3611 * Checks that a resource is a valid memory region, requests the memory
3612 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3613 * proper PCI configuration space memory attributes are guaranteed.
3614 *
3615 * All operations are managed and will be undone on driver detach.
3616 *
3617 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3618 * on failure. Usage example::
3619 *
3620 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3621 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3622 *	if (IS_ERR(base))
3623 *		return PTR_ERR(base);
3624 */
3625void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3626					  struct resource *res)
3627{
3628	resource_size_t size;
3629	const char *name;
3630	void __iomem *dest_ptr;
3631
3632	BUG_ON(!dev);
3633
3634	if (!res || resource_type(res) != IORESOURCE_MEM) {
3635		dev_err(dev, "invalid resource\n");
3636		return IOMEM_ERR_PTR(-EINVAL);
3637	}
3638
3639	size = resource_size(res);
3640	name = res->name ?: dev_name(dev);
3641
3642	if (!devm_request_mem_region(dev, res->start, size, name)) {
3643		dev_err(dev, "can't request region for resource %pR\n", res);
3644		return IOMEM_ERR_PTR(-EBUSY);
3645	}
3646
3647	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3648	if (!dest_ptr) {
3649		dev_err(dev, "ioremap failed for resource %pR\n", res);
3650		devm_release_mem_region(dev, res->start, size);
3651		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3652	}
3653
3654	return dest_ptr;
3655}
3656EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3657
3658static void __pci_set_master(struct pci_dev *dev, bool enable)
3659{
3660	u16 old_cmd, cmd;
3661
3662	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3663	if (enable)
3664		cmd = old_cmd | PCI_COMMAND_MASTER;
3665	else
3666		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3667	if (cmd != old_cmd) {
3668		pci_dbg(dev, "%s bus mastering\n",
3669			enable ? "enabling" : "disabling");
3670		pci_write_config_word(dev, PCI_COMMAND, cmd);
3671	}
3672	dev->is_busmaster = enable;
3673}
3674
3675/**
3676 * pcibios_setup - process "pci=" kernel boot arguments
3677 * @str: string used to pass in "pci=" kernel boot arguments
3678 *
3679 * Process kernel boot arguments.  This is the default implementation.
3680 * Architecture specific implementations can override this as necessary.
3681 */
3682char * __weak __init pcibios_setup(char *str)
3683{
3684	return str;
3685}
3686
3687/**
3688 * pcibios_set_master - enable PCI bus-mastering for device dev
3689 * @dev: the PCI device to enable
3690 *
3691 * Enables PCI bus-mastering for the device.  This is the default
3692 * implementation.  Architecture specific implementations can override
3693 * this if necessary.
3694 */
3695void __weak pcibios_set_master(struct pci_dev *dev)
3696{
3697	u8 lat;
3698
3699	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3700	if (pci_is_pcie(dev))
3701		return;
3702
3703	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3704	if (lat < 16)
3705		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3706	else if (lat > pcibios_max_latency)
3707		lat = pcibios_max_latency;
3708	else
3709		return;
3710
3711	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3712}
3713
3714/**
3715 * pci_set_master - enables bus-mastering for device dev
3716 * @dev: the PCI device to enable
3717 *
3718 * Enables bus-mastering on the device and calls pcibios_set_master()
3719 * to do the needed arch specific settings.
3720 */
3721void pci_set_master(struct pci_dev *dev)
3722{
3723	__pci_set_master(dev, true);
3724	pcibios_set_master(dev);
3725}
3726EXPORT_SYMBOL(pci_set_master);
3727
3728/**
3729 * pci_clear_master - disables bus-mastering for device dev
3730 * @dev: the PCI device to disable
3731 */
3732void pci_clear_master(struct pci_dev *dev)
3733{
3734	__pci_set_master(dev, false);
3735}
3736EXPORT_SYMBOL(pci_clear_master);
3737
3738/**
3739 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3740 * @dev: the PCI device for which MWI is to be enabled
3741 *
3742 * Helper function for pci_set_mwi.
3743 * Originally copied from drivers/net/acenic.c.
3744 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3745 *
3746 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3747 */
3748int pci_set_cacheline_size(struct pci_dev *dev)
3749{
3750	u8 cacheline_size;
3751
3752	if (!pci_cache_line_size)
3753		return -EINVAL;
3754
3755	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3756	   equal to or multiple of the right value. */
3757	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3758	if (cacheline_size >= pci_cache_line_size &&
3759	    (cacheline_size % pci_cache_line_size) == 0)
3760		return 0;
3761
3762	/* Write the correct value. */
3763	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3764	/* Read it back. */
3765	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3766	if (cacheline_size == pci_cache_line_size)
3767		return 0;
3768
3769	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3770		   pci_cache_line_size << 2);
3771
3772	return -EINVAL;
3773}
3774EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776/**
3777 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3778 * @dev: the PCI device for which MWI is enabled
3779 *
3780 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3781 *
3782 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3783 */
3784int pci_set_mwi(struct pci_dev *dev)
 
3785{
3786#ifdef PCI_DISABLE_MWI
3787	return 0;
3788#else
3789	int rc;
3790	u16 cmd;
3791
3792	rc = pci_set_cacheline_size(dev);
3793	if (rc)
3794		return rc;
3795
3796	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3797	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3798		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3799		cmd |= PCI_COMMAND_INVALIDATE;
3800		pci_write_config_word(dev, PCI_COMMAND, cmd);
3801	}
3802	return 0;
3803#endif
3804}
3805EXPORT_SYMBOL(pci_set_mwi);
3806
3807/**
3808 * pcim_set_mwi - a device-managed pci_set_mwi()
3809 * @dev: the PCI device for which MWI is enabled
3810 *
3811 * Managed pci_set_mwi().
3812 *
3813 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3814 */
3815int pcim_set_mwi(struct pci_dev *dev)
3816{
3817	struct pci_devres *dr;
3818
3819	dr = find_pci_dr(dev);
3820	if (!dr)
3821		return -ENOMEM;
3822
3823	dr->mwi = 1;
3824	return pci_set_mwi(dev);
3825}
3826EXPORT_SYMBOL(pcim_set_mwi);
3827
3828/**
3829 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3830 * @dev: the PCI device for which MWI is enabled
3831 *
3832 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3833 * Callers are not required to check the return value.
3834 *
3835 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3836 */
3837int pci_try_set_mwi(struct pci_dev *dev)
3838{
3839#ifdef PCI_DISABLE_MWI
3840	return 0;
3841#else
3842	return pci_set_mwi(dev);
3843#endif
3844}
3845EXPORT_SYMBOL(pci_try_set_mwi);
3846
3847/**
3848 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3849 * @dev: the PCI device to disable
3850 *
3851 * Disables PCI Memory-Write-Invalidate transaction on the device
3852 */
3853void pci_clear_mwi(struct pci_dev *dev)
 
3854{
3855#ifndef PCI_DISABLE_MWI
3856	u16 cmd;
3857
3858	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3859	if (cmd & PCI_COMMAND_INVALIDATE) {
3860		cmd &= ~PCI_COMMAND_INVALIDATE;
3861		pci_write_config_word(dev, PCI_COMMAND, cmd);
3862	}
3863#endif
3864}
3865EXPORT_SYMBOL(pci_clear_mwi);
3866
3867/**
3868 * pci_intx - enables/disables PCI INTx for device dev
3869 * @pdev: the PCI device to operate on
3870 * @enable: boolean: whether to enable or disable PCI INTx
3871 *
3872 * Enables/disables PCI INTx for device dev
3873 */
3874void pci_intx(struct pci_dev *pdev, int enable)
 
3875{
3876	u16 pci_command, new;
3877
3878	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3879
3880	if (enable)
3881		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3882	else
3883		new = pci_command | PCI_COMMAND_INTX_DISABLE;
 
3884
3885	if (new != pci_command) {
3886		struct pci_devres *dr;
3887
3888		pci_write_config_word(pdev, PCI_COMMAND, new);
3889
3890		dr = find_pci_dr(pdev);
3891		if (dr && !dr->restore_intx) {
3892			dr->restore_intx = 1;
3893			dr->orig_intx = !enable;
3894		}
3895	}
3896}
3897EXPORT_SYMBOL_GPL(pci_intx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898
3899static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3900{
3901	struct pci_bus *bus = dev->bus;
3902	bool mask_updated = true;
3903	u32 cmd_status_dword;
3904	u16 origcmd, newcmd;
3905	unsigned long flags;
3906	bool irq_pending;
3907
3908	/*
3909	 * We do a single dword read to retrieve both command and status.
3910	 * Document assumptions that make this possible.
3911	 */
3912	BUILD_BUG_ON(PCI_COMMAND % 4);
3913	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3914
3915	raw_spin_lock_irqsave(&pci_lock, flags);
3916
3917	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3918
3919	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3920
3921	/*
3922	 * Check interrupt status register to see whether our device
3923	 * triggered the interrupt (when masking) or the next IRQ is
3924	 * already pending (when unmasking).
3925	 */
3926	if (mask != irq_pending) {
3927		mask_updated = false;
3928		goto done;
3929	}
3930
3931	origcmd = cmd_status_dword;
3932	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3933	if (mask)
3934		newcmd |= PCI_COMMAND_INTX_DISABLE;
3935	if (newcmd != origcmd)
3936		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3937
3938done:
3939	raw_spin_unlock_irqrestore(&pci_lock, flags);
3940
3941	return mask_updated;
3942}
3943
3944/**
3945 * pci_check_and_mask_intx - mask INTx on pending interrupt
3946 * @dev: the PCI device to operate on
3947 *
3948 * Check if the device dev has its INTx line asserted, mask it and
3949 * return true in that case. False is returned if no interrupt was
3950 * pending.
3951 */
3952bool pci_check_and_mask_intx(struct pci_dev *dev)
3953{
3954	return pci_check_and_set_intx_mask(dev, true);
3955}
3956EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3957
3958/**
3959 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3960 * @dev: the PCI device to operate on
3961 *
3962 * Check if the device dev has its INTx line asserted, unmask it if not
3963 * and return true. False is returned and the mask remains active if
3964 * there was still an interrupt pending.
3965 */
3966bool pci_check_and_unmask_intx(struct pci_dev *dev)
3967{
3968	return pci_check_and_set_intx_mask(dev, false);
3969}
3970EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3971
3972/**
3973 * pci_wait_for_pending_transaction - waits for pending transaction
3974 * @dev: the PCI device to operate on
3975 *
3976 * Return 0 if transaction is pending 1 otherwise.
 
 
3977 */
3978int pci_wait_for_pending_transaction(struct pci_dev *dev)
3979{
3980	if (!pci_is_pcie(dev))
3981		return 1;
3982
3983	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3984				    PCI_EXP_DEVSTA_TRPND);
3985}
3986EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3987
3988static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3989{
3990	int delay = 1;
3991	u32 id;
3992
3993	/*
3994	 * After reset, the device should not silently discard config
3995	 * requests, but it may still indicate that it needs more time by
3996	 * responding to them with CRS completions.  The Root Port will
3997	 * generally synthesize ~0 data to complete the read (except when
3998	 * CRS SV is enabled and the read was for the Vendor ID; in that
3999	 * case it synthesizes 0x0001 data).
4000	 *
4001	 * Wait for the device to return a non-CRS completion.  Read the
4002	 * Command register instead of Vendor ID so we don't have to
4003	 * contend with the CRS SV value.
4004	 */
4005	pci_read_config_dword(dev, PCI_COMMAND, &id);
4006	while (id == ~0) {
4007		if (delay > timeout) {
4008			pci_warn(dev, "not ready %dms after %s; giving up\n",
4009				 delay - 1, reset_type);
4010			return -ENOTTY;
4011		}
4012
4013		if (delay > 1000)
4014			pci_info(dev, "not ready %dms after %s; waiting\n",
4015				 delay - 1, reset_type);
4016
4017		msleep(delay);
4018		delay *= 2;
4019		pci_read_config_dword(dev, PCI_COMMAND, &id);
4020	}
 
 
4021
4022	if (delay > 1000)
4023		pci_info(dev, "ready %dms after %s\n", delay - 1,
4024			 reset_type);
 
 
4025
4026	return 0;
 
 
4027}
 
4028
4029/**
4030 * pcie_has_flr - check if a device supports function level resets
4031 * @dev:	device to check
4032 *
4033 * Returns true if the device advertises support for PCIe function level
4034 * resets.
4035 */
4036static bool pcie_has_flr(struct pci_dev *dev)
4037{
4038	u32 cap;
4039
4040	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4041		return false;
4042
4043	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4044	return cap & PCI_EXP_DEVCAP_FLR;
4045}
 
4046
4047/**
4048 * pcie_flr - initiate a PCIe function level reset
4049 * @dev:	device to reset
4050 *
4051 * Initiate a function level reset on @dev.  The caller should ensure the
4052 * device supports FLR before calling this function, e.g. by using the
4053 * pcie_has_flr() helper.
4054 */
4055int pcie_flr(struct pci_dev *dev)
4056{
 
 
 
 
 
 
 
 
 
4057	if (!pci_wait_for_pending_transaction(dev))
4058		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4059
4060	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4061
4062	/*
4063	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4064	 * 100ms, but may silently discard requests while the FLR is in
4065	 * progress.  Wait 100ms before trying to access the device.
4066	 */
4067	msleep(100);
4068
4069	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4070}
4071EXPORT_SYMBOL_GPL(pcie_flr);
4072
4073static int pci_af_flr(struct pci_dev *dev, int probe)
4074{
4075	int pos;
4076	u8 cap;
4077
4078	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4079	if (!pos)
4080		return -ENOTTY;
4081
4082	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4083		return -ENOTTY;
4084
4085	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4086	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4087		return -ENOTTY;
4088
4089	if (probe)
4090		return 0;
4091
4092	/*
4093	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4094	 * is used, so we use the conrol offset rather than status and shift
4095	 * the test bit to match.
4096	 */
4097	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4098				 PCI_AF_STATUS_TP << 8))
4099		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4100
4101	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
 
4102
4103	/*
4104	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4105	 * updated 27 July 2006; a device must complete an FLR within
4106	 * 100ms, but may silently discard requests while the FLR is in
4107	 * progress.  Wait 100ms before trying to access the device.
4108	 */
4109	msleep(100);
4110
4111	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4112}
4113
4114/**
4115 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4116 * @dev: Device to reset.
4117 * @probe: If set, only check if the device can be reset this way.
4118 *
4119 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4120 * unset, it will be reinitialized internally when going from PCI_D3hot to
4121 * PCI_D0.  If that's the case and the device is not in a low-power state
4122 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4123 *
4124 * NOTE: This causes the caller to sleep for twice the device power transition
4125 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4126 * by default (i.e. unless the @dev's d3_delay field has a different value).
4127 * Moreover, only devices in D0 can be reset by this function.
4128 */
4129static int pci_pm_reset(struct pci_dev *dev, int probe)
4130{
4131	u16 csr;
4132
4133	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4134		return -ENOTTY;
4135
4136	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4137	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4138		return -ENOTTY;
4139
4140	if (probe)
4141		return 0;
4142
4143	if (dev->current_state != PCI_D0)
4144		return -EINVAL;
4145
4146	csr &= ~PCI_PM_CTRL_STATE_MASK;
4147	csr |= PCI_D3hot;
4148	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4149	pci_dev_d3_sleep(dev);
4150
4151	csr &= ~PCI_PM_CTRL_STATE_MASK;
4152	csr |= PCI_D0;
4153	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4154	pci_dev_d3_sleep(dev);
4155
4156	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4157}
4158
4159void pci_reset_secondary_bus(struct pci_dev *dev)
 
 
 
 
 
 
 
4160{
4161	u16 ctrl;
4162
4163	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4164	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4165	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4166
4167	/*
4168	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4169	 * this to 2ms to ensure that we meet the minimum requirement.
4170	 */
4171	msleep(2);
4172
4173	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4174	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4175
4176	/*
4177	 * Trhfa for conventional PCI is 2^25 clock cycles.
4178	 * Assuming a minimum 33MHz clock this results in a 1s
4179	 * delay before we can consider subordinate devices to
4180	 * be re-initialized.  PCIe has some ways to shorten this,
4181	 * but we don't make use of them yet.
4182	 */
4183	ssleep(1);
4184}
4185
4186void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4187{
4188	pci_reset_secondary_bus(dev);
4189}
4190
4191/**
4192 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4193 * @dev: Bridge device
4194 *
4195 * Use the bridge control register to assert reset on the secondary bus.
4196 * Devices on the secondary bus are left in power-on state.
4197 */
4198int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4199{
4200	pcibios_reset_secondary_bus(dev);
4201
4202	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4203}
4204EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4205
4206static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4207{
4208	struct pci_dev *pdev;
4209
4210	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4211	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4212		return -ENOTTY;
4213
4214	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4215		if (pdev != dev)
4216			return -ENOTTY;
4217
4218	if (probe)
4219		return 0;
4220
4221	pci_reset_bridge_secondary_bus(dev->bus->self);
4222
4223	return 0;
4224}
4225
4226static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4227{
4228	int rc = -ENOTTY;
4229
4230	if (!hotplug || !try_module_get(hotplug->ops->owner))
4231		return rc;
4232
4233	if (hotplug->ops->reset_slot)
4234		rc = hotplug->ops->reset_slot(hotplug, probe);
4235
4236	module_put(hotplug->ops->owner);
4237
4238	return rc;
4239}
4240
4241static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4242{
4243	struct pci_dev *pdev;
4244
4245	if (dev->subordinate || !dev->slot ||
4246	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4247		return -ENOTTY;
4248
4249	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4250		if (pdev != dev && pdev->slot == dev->slot)
4251			return -ENOTTY;
4252
4253	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4254}
4255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256static void pci_dev_lock(struct pci_dev *dev)
4257{
4258	pci_cfg_access_lock(dev);
4259	/* block PM suspend, driver probe, etc. */
4260	device_lock(&dev->dev);
4261}
4262
4263/* Return 1 on successful lock, 0 on contention */
4264static int pci_dev_trylock(struct pci_dev *dev)
4265{
4266	if (pci_cfg_access_trylock(dev)) {
4267		if (device_trylock(&dev->dev))
4268			return 1;
4269		pci_cfg_access_unlock(dev);
4270	}
4271
4272	return 0;
4273}
4274
4275static void pci_dev_unlock(struct pci_dev *dev)
4276{
4277	device_unlock(&dev->dev);
4278	pci_cfg_access_unlock(dev);
4279}
4280
4281static void pci_dev_save_and_disable(struct pci_dev *dev)
4282{
4283	const struct pci_error_handlers *err_handler =
4284			dev->driver ? dev->driver->err_handler : NULL;
4285
4286	/*
4287	 * dev->driver->err_handler->reset_prepare() is protected against
4288	 * races with ->remove() by the device lock, which must be held by
4289	 * the caller.
4290	 */
4291	if (err_handler && err_handler->reset_prepare)
4292		err_handler->reset_prepare(dev);
4293
4294	/*
4295	 * Wake-up device prior to save.  PM registers default to D0 after
4296	 * reset and a simple register restore doesn't reliably return
4297	 * to a non-D0 state anyway.
4298	 */
4299	pci_set_power_state(dev, PCI_D0);
4300
4301	pci_save_state(dev);
4302	/*
4303	 * Disable the device by clearing the Command register, except for
4304	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4305	 * BARs, but also prevents the device from being Bus Master, preventing
4306	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4307	 * compliant devices, INTx-disable prevents legacy interrupts.
4308	 */
4309	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4310}
4311
4312static void pci_dev_restore(struct pci_dev *dev)
4313{
4314	const struct pci_error_handlers *err_handler =
4315			dev->driver ? dev->driver->err_handler : NULL;
4316
4317	pci_restore_state(dev);
 
4318
4319	/*
4320	 * dev->driver->err_handler->reset_done() is protected against
4321	 * races with ->remove() by the device lock, which must be held by
4322	 * the caller.
4323	 */
4324	if (err_handler && err_handler->reset_done)
4325		err_handler->reset_done(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4326}
 
4327
4328/**
4329 * __pci_reset_function_locked - reset a PCI device function while holding
4330 * the @dev mutex lock.
4331 * @dev: PCI device to reset
4332 *
4333 * Some devices allow an individual function to be reset without affecting
4334 * other functions in the same device.  The PCI device must be responsive
4335 * to PCI config space in order to use this function.
4336 *
4337 * The device function is presumed to be unused and the caller is holding
4338 * the device mutex lock when this function is called.
4339 * Resetting the device will make the contents of PCI configuration space
4340 * random, so any caller of this must be prepared to reinitialise the
4341 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4342 * etc.
4343 *
4344 * Returns 0 if the device function was successfully reset or negative if the
4345 * device doesn't support resetting a single function.
4346 */
4347int __pci_reset_function_locked(struct pci_dev *dev)
4348{
4349	int rc;
4350
4351	might_sleep();
4352
4353	/*
4354	 * A reset method returns -ENOTTY if it doesn't support this device
4355	 * and we should try the next method.
4356	 *
4357	 * If it returns 0 (success), we're finished.  If it returns any
4358	 * other error, we're also finished: this indicates that further
4359	 * reset mechanisms might be broken on the device.
4360	 */
4361	rc = pci_dev_specific_reset(dev, 0);
4362	if (rc != -ENOTTY)
4363		return rc;
4364	if (pcie_has_flr(dev)) {
4365		rc = pcie_flr(dev);
4366		if (rc != -ENOTTY)
4367			return rc;
4368	}
4369	rc = pci_af_flr(dev, 0);
4370	if (rc != -ENOTTY)
4371		return rc;
4372	rc = pci_pm_reset(dev, 0);
4373	if (rc != -ENOTTY)
4374		return rc;
4375	rc = pci_dev_reset_slot_function(dev, 0);
4376	if (rc != -ENOTTY)
4377		return rc;
4378	return pci_parent_bus_reset(dev, 0);
4379}
4380EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4381
4382/**
4383 * pci_probe_reset_function - check whether the device can be safely reset
4384 * @dev: PCI device to reset
4385 *
4386 * Some devices allow an individual function to be reset without affecting
4387 * other functions in the same device.  The PCI device must be responsive
4388 * to PCI config space in order to use this function.
4389 *
4390 * Returns 0 if the device function can be reset or negative if the
4391 * device doesn't support resetting a single function.
4392 */
4393int pci_probe_reset_function(struct pci_dev *dev)
4394{
4395	int rc;
4396
4397	might_sleep();
4398
4399	rc = pci_dev_specific_reset(dev, 1);
4400	if (rc != -ENOTTY)
4401		return rc;
4402	if (pcie_has_flr(dev))
4403		return 0;
4404	rc = pci_af_flr(dev, 1);
4405	if (rc != -ENOTTY)
4406		return rc;
4407	rc = pci_pm_reset(dev, 1);
4408	if (rc != -ENOTTY)
4409		return rc;
4410	rc = pci_dev_reset_slot_function(dev, 1);
4411	if (rc != -ENOTTY)
4412		return rc;
4413
4414	return pci_parent_bus_reset(dev, 1);
4415}
4416
4417/**
4418 * pci_reset_function - quiesce and reset a PCI device function
4419 * @dev: PCI device to reset
4420 *
4421 * Some devices allow an individual function to be reset without affecting
4422 * other functions in the same device.  The PCI device must be responsive
4423 * to PCI config space in order to use this function.
4424 *
4425 * This function does not just reset the PCI portion of a device, but
4426 * clears all the state associated with the device.  This function differs
4427 * from __pci_reset_function_locked() in that it saves and restores device state
4428 * over the reset and takes the PCI device lock.
4429 *
4430 * Returns 0 if the device function was successfully reset or negative if the
4431 * device doesn't support resetting a single function.
4432 */
4433int pci_reset_function(struct pci_dev *dev)
4434{
4435	int rc;
4436
4437	if (!dev->reset_fn)
4438		return -ENOTTY;
 
4439
4440	pci_dev_lock(dev);
4441	pci_dev_save_and_disable(dev);
4442
4443	rc = __pci_reset_function_locked(dev);
4444
4445	pci_dev_restore(dev);
4446	pci_dev_unlock(dev);
4447
4448	return rc;
4449}
4450EXPORT_SYMBOL_GPL(pci_reset_function);
4451
4452/**
4453 * pci_reset_function_locked - quiesce and reset a PCI device function
4454 * @dev: PCI device to reset
4455 *
4456 * Some devices allow an individual function to be reset without affecting
4457 * other functions in the same device.  The PCI device must be responsive
4458 * to PCI config space in order to use this function.
4459 *
4460 * This function does not just reset the PCI portion of a device, but
4461 * clears all the state associated with the device.  This function differs
4462 * from __pci_reset_function_locked() in that it saves and restores device state
4463 * over the reset.  It also differs from pci_reset_function() in that it
4464 * requires the PCI device lock to be held.
4465 *
4466 * Returns 0 if the device function was successfully reset or negative if the
4467 * device doesn't support resetting a single function.
4468 */
4469int pci_reset_function_locked(struct pci_dev *dev)
4470{
4471	int rc;
4472
4473	if (!dev->reset_fn)
4474		return -ENOTTY;
4475
4476	pci_dev_save_and_disable(dev);
4477
4478	rc = __pci_reset_function_locked(dev);
4479
4480	pci_dev_restore(dev);
4481
4482	return rc;
4483}
4484EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4485
4486/**
4487 * pci_try_reset_function - quiesce and reset a PCI device function
4488 * @dev: PCI device to reset
4489 *
4490 * Same as above, except return -EAGAIN if unable to lock device.
4491 */
4492int pci_try_reset_function(struct pci_dev *dev)
4493{
4494	int rc;
4495
4496	if (!dev->reset_fn)
4497		return -ENOTTY;
4498
4499	if (!pci_dev_trylock(dev))
4500		return -EAGAIN;
4501
4502	pci_dev_save_and_disable(dev);
4503	rc = __pci_reset_function_locked(dev);
 
 
 
 
 
 
4504	pci_dev_restore(dev);
4505	pci_dev_unlock(dev);
4506
4507	return rc;
4508}
4509EXPORT_SYMBOL_GPL(pci_try_reset_function);
4510
4511/* Do any devices on or below this bus prevent a bus reset? */
4512static bool pci_bus_resetable(struct pci_bus *bus)
4513{
4514	struct pci_dev *dev;
4515
4516
4517	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4518		return false;
4519
4520	list_for_each_entry(dev, &bus->devices, bus_list) {
4521		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4522		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4523			return false;
4524	}
4525
4526	return true;
4527}
4528
4529/* Lock devices from the top of the tree down */
4530static void pci_bus_lock(struct pci_bus *bus)
4531{
4532	struct pci_dev *dev;
4533
4534	list_for_each_entry(dev, &bus->devices, bus_list) {
4535		pci_dev_lock(dev);
4536		if (dev->subordinate)
4537			pci_bus_lock(dev->subordinate);
4538	}
4539}
4540
4541/* Unlock devices from the bottom of the tree up */
4542static void pci_bus_unlock(struct pci_bus *bus)
4543{
4544	struct pci_dev *dev;
4545
4546	list_for_each_entry(dev, &bus->devices, bus_list) {
4547		if (dev->subordinate)
4548			pci_bus_unlock(dev->subordinate);
4549		pci_dev_unlock(dev);
4550	}
4551}
4552
4553/* Return 1 on successful lock, 0 on contention */
4554static int pci_bus_trylock(struct pci_bus *bus)
4555{
4556	struct pci_dev *dev;
4557
4558	list_for_each_entry(dev, &bus->devices, bus_list) {
4559		if (!pci_dev_trylock(dev))
4560			goto unlock;
4561		if (dev->subordinate) {
4562			if (!pci_bus_trylock(dev->subordinate)) {
4563				pci_dev_unlock(dev);
4564				goto unlock;
4565			}
4566		}
4567	}
4568	return 1;
4569
4570unlock:
4571	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4572		if (dev->subordinate)
4573			pci_bus_unlock(dev->subordinate);
4574		pci_dev_unlock(dev);
4575	}
4576	return 0;
4577}
4578
4579/* Do any devices on or below this slot prevent a bus reset? */
4580static bool pci_slot_resetable(struct pci_slot *slot)
4581{
4582	struct pci_dev *dev;
4583
4584	if (slot->bus->self &&
4585	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4586		return false;
4587
4588	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4589		if (!dev->slot || dev->slot != slot)
4590			continue;
4591		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4592		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4593			return false;
4594	}
4595
4596	return true;
4597}
4598
4599/* Lock devices from the top of the tree down */
4600static void pci_slot_lock(struct pci_slot *slot)
4601{
4602	struct pci_dev *dev;
4603
4604	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605		if (!dev->slot || dev->slot != slot)
4606			continue;
4607		pci_dev_lock(dev);
4608		if (dev->subordinate)
4609			pci_bus_lock(dev->subordinate);
4610	}
4611}
4612
4613/* Unlock devices from the bottom of the tree up */
4614static void pci_slot_unlock(struct pci_slot *slot)
4615{
4616	struct pci_dev *dev;
4617
4618	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4619		if (!dev->slot || dev->slot != slot)
4620			continue;
4621		if (dev->subordinate)
4622			pci_bus_unlock(dev->subordinate);
4623		pci_dev_unlock(dev);
4624	}
4625}
4626
4627/* Return 1 on successful lock, 0 on contention */
4628static int pci_slot_trylock(struct pci_slot *slot)
4629{
4630	struct pci_dev *dev;
4631
4632	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4633		if (!dev->slot || dev->slot != slot)
4634			continue;
4635		if (!pci_dev_trylock(dev))
4636			goto unlock;
4637		if (dev->subordinate) {
4638			if (!pci_bus_trylock(dev->subordinate)) {
4639				pci_dev_unlock(dev);
4640				goto unlock;
4641			}
4642		}
4643	}
4644	return 1;
4645
4646unlock:
4647	list_for_each_entry_continue_reverse(dev,
4648					     &slot->bus->devices, bus_list) {
4649		if (!dev->slot || dev->slot != slot)
4650			continue;
4651		if (dev->subordinate)
4652			pci_bus_unlock(dev->subordinate);
4653		pci_dev_unlock(dev);
4654	}
4655	return 0;
4656}
4657
4658/* Save and disable devices from the top of the tree down */
4659static void pci_bus_save_and_disable(struct pci_bus *bus)
4660{
4661	struct pci_dev *dev;
4662
4663	list_for_each_entry(dev, &bus->devices, bus_list) {
4664		pci_dev_lock(dev);
4665		pci_dev_save_and_disable(dev);
4666		pci_dev_unlock(dev);
4667		if (dev->subordinate)
4668			pci_bus_save_and_disable(dev->subordinate);
4669	}
4670}
4671
4672/*
4673 * Restore devices from top of the tree down - parent bridges need to be
4674 * restored before we can get to subordinate devices.
4675 */
4676static void pci_bus_restore(struct pci_bus *bus)
4677{
4678	struct pci_dev *dev;
4679
4680	list_for_each_entry(dev, &bus->devices, bus_list) {
4681		pci_dev_lock(dev);
4682		pci_dev_restore(dev);
4683		pci_dev_unlock(dev);
4684		if (dev->subordinate)
4685			pci_bus_restore(dev->subordinate);
4686	}
4687}
4688
4689/* Save and disable devices from the top of the tree down */
4690static void pci_slot_save_and_disable(struct pci_slot *slot)
4691{
4692	struct pci_dev *dev;
4693
4694	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695		if (!dev->slot || dev->slot != slot)
4696			continue;
4697		pci_dev_save_and_disable(dev);
4698		if (dev->subordinate)
4699			pci_bus_save_and_disable(dev->subordinate);
4700	}
4701}
4702
4703/*
4704 * Restore devices from top of the tree down - parent bridges need to be
4705 * restored before we can get to subordinate devices.
4706 */
4707static void pci_slot_restore(struct pci_slot *slot)
4708{
4709	struct pci_dev *dev;
4710
4711	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4712		if (!dev->slot || dev->slot != slot)
4713			continue;
4714		pci_dev_lock(dev);
4715		pci_dev_restore(dev);
4716		pci_dev_unlock(dev);
4717		if (dev->subordinate)
4718			pci_bus_restore(dev->subordinate);
4719	}
4720}
4721
4722static int pci_slot_reset(struct pci_slot *slot, int probe)
4723{
4724	int rc;
4725
4726	if (!slot || !pci_slot_resetable(slot))
4727		return -ENOTTY;
4728
4729	if (!probe)
4730		pci_slot_lock(slot);
4731
4732	might_sleep();
4733
4734	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4735
4736	if (!probe)
4737		pci_slot_unlock(slot);
4738
4739	return rc;
4740}
4741
4742/**
4743 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4744 * @slot: PCI slot to probe
4745 *
4746 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4747 */
4748int pci_probe_reset_slot(struct pci_slot *slot)
4749{
4750	return pci_slot_reset(slot, 1);
4751}
4752EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4753
4754/**
4755 * pci_reset_slot - reset a PCI slot
4756 * @slot: PCI slot to reset
4757 *
4758 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4759 * independent of other slots.  For instance, some slots may support slot power
4760 * control.  In the case of a 1:1 bus to slot architecture, this function may
4761 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4762 * Generally a slot reset should be attempted before a bus reset.  All of the
4763 * function of the slot and any subordinate buses behind the slot are reset
4764 * through this function.  PCI config space of all devices in the slot and
4765 * behind the slot is saved before and restored after reset.
4766 *
4767 * Return 0 on success, non-zero on error.
4768 */
4769int pci_reset_slot(struct pci_slot *slot)
4770{
4771	int rc;
4772
4773	rc = pci_slot_reset(slot, 1);
4774	if (rc)
4775		return rc;
4776
4777	pci_slot_save_and_disable(slot);
4778
4779	rc = pci_slot_reset(slot, 0);
4780
4781	pci_slot_restore(slot);
4782
4783	return rc;
4784}
4785EXPORT_SYMBOL_GPL(pci_reset_slot);
4786
4787/**
4788 * pci_try_reset_slot - Try to reset a PCI slot
4789 * @slot: PCI slot to reset
4790 *
4791 * Same as above except return -EAGAIN if the slot cannot be locked
4792 */
4793int pci_try_reset_slot(struct pci_slot *slot)
4794{
4795	int rc;
4796
4797	rc = pci_slot_reset(slot, 1);
4798	if (rc)
4799		return rc;
4800
4801	pci_slot_save_and_disable(slot);
4802
4803	if (pci_slot_trylock(slot)) {
4804		might_sleep();
4805		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4806		pci_slot_unlock(slot);
4807	} else
4808		rc = -EAGAIN;
4809
4810	pci_slot_restore(slot);
4811
4812	return rc;
4813}
4814EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4815
4816static int pci_bus_reset(struct pci_bus *bus, int probe)
4817{
4818	if (!bus->self || !pci_bus_resetable(bus))
4819		return -ENOTTY;
4820
4821	if (probe)
4822		return 0;
4823
4824	pci_bus_lock(bus);
4825
4826	might_sleep();
4827
4828	pci_reset_bridge_secondary_bus(bus->self);
4829
4830	pci_bus_unlock(bus);
4831
4832	return 0;
4833}
4834
4835/**
4836 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4837 * @bus: PCI bus to probe
4838 *
4839 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4840 */
4841int pci_probe_reset_bus(struct pci_bus *bus)
4842{
4843	return pci_bus_reset(bus, 1);
4844}
4845EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4846
4847/**
4848 * pci_reset_bus - reset a PCI bus
4849 * @bus: top level PCI bus to reset
4850 *
4851 * Do a bus reset on the given bus and any subordinate buses, saving
4852 * and restoring state of all devices.
4853 *
4854 * Return 0 on success, non-zero on error.
4855 */
4856int pci_reset_bus(struct pci_bus *bus)
4857{
4858	int rc;
4859
4860	rc = pci_bus_reset(bus, 1);
4861	if (rc)
4862		return rc;
4863
4864	pci_bus_save_and_disable(bus);
4865
4866	rc = pci_bus_reset(bus, 0);
4867
4868	pci_bus_restore(bus);
4869
4870	return rc;
4871}
4872EXPORT_SYMBOL_GPL(pci_reset_bus);
4873
4874/**
4875 * pci_try_reset_bus - Try to reset a PCI bus
4876 * @bus: top level PCI bus to reset
4877 *
4878 * Same as above except return -EAGAIN if the bus cannot be locked
4879 */
4880int pci_try_reset_bus(struct pci_bus *bus)
4881{
4882	int rc;
4883
4884	rc = pci_bus_reset(bus, 1);
4885	if (rc)
4886		return rc;
4887
4888	pci_bus_save_and_disable(bus);
4889
4890	if (pci_bus_trylock(bus)) {
4891		might_sleep();
4892		pci_reset_bridge_secondary_bus(bus->self);
4893		pci_bus_unlock(bus);
4894	} else
4895		rc = -EAGAIN;
4896
4897	pci_bus_restore(bus);
4898
4899	return rc;
4900}
4901EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4902
4903/**
4904 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4905 * @dev: PCI device to query
4906 *
4907 * Returns mmrbc: maximum designed memory read count in bytes
4908 *    or appropriate error value.
4909 */
4910int pcix_get_max_mmrbc(struct pci_dev *dev)
4911{
4912	int cap;
4913	u32 stat;
4914
4915	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4916	if (!cap)
4917		return -EINVAL;
4918
4919	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4920		return -EINVAL;
4921
4922	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4923}
4924EXPORT_SYMBOL(pcix_get_max_mmrbc);
4925
4926/**
4927 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4928 * @dev: PCI device to query
4929 *
4930 * Returns mmrbc: maximum memory read count in bytes
4931 *    or appropriate error value.
4932 */
4933int pcix_get_mmrbc(struct pci_dev *dev)
4934{
4935	int cap;
4936	u16 cmd;
4937
4938	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4939	if (!cap)
4940		return -EINVAL;
4941
4942	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4943		return -EINVAL;
4944
4945	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4946}
4947EXPORT_SYMBOL(pcix_get_mmrbc);
4948
4949/**
4950 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4951 * @dev: PCI device to query
4952 * @mmrbc: maximum memory read count in bytes
4953 *    valid values are 512, 1024, 2048, 4096
4954 *
4955 * If possible sets maximum memory read byte count, some bridges have erratas
4956 * that prevent this.
4957 */
4958int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4959{
4960	int cap;
4961	u32 stat, v, o;
4962	u16 cmd;
4963
4964	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4965		return -EINVAL;
4966
4967	v = ffs(mmrbc) - 10;
4968
4969	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4970	if (!cap)
4971		return -EINVAL;
4972
4973	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4974		return -EINVAL;
4975
4976	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4977		return -E2BIG;
4978
4979	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4980		return -EINVAL;
4981
4982	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4983	if (o != v) {
4984		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4985			return -EIO;
4986
4987		cmd &= ~PCI_X_CMD_MAX_READ;
4988		cmd |= v << 2;
4989		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4990			return -EIO;
4991	}
4992	return 0;
4993}
4994EXPORT_SYMBOL(pcix_set_mmrbc);
4995
4996/**
4997 * pcie_get_readrq - get PCI Express read request size
4998 * @dev: PCI device to query
4999 *
5000 * Returns maximum memory read request in bytes
5001 *    or appropriate error value.
5002 */
5003int pcie_get_readrq(struct pci_dev *dev)
5004{
5005	u16 ctl;
5006
5007	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5008
5009	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5010}
5011EXPORT_SYMBOL(pcie_get_readrq);
5012
5013/**
5014 * pcie_set_readrq - set PCI Express maximum memory read request
5015 * @dev: PCI device to query
5016 * @rq: maximum memory read count in bytes
5017 *    valid values are 128, 256, 512, 1024, 2048, 4096
5018 *
5019 * If possible sets maximum memory read request in bytes
5020 */
5021int pcie_set_readrq(struct pci_dev *dev, int rq)
5022{
5023	u16 v;
5024
5025	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5026		return -EINVAL;
5027
5028	/*
5029	 * If using the "performance" PCIe config, we clamp the
5030	 * read rq size to the max packet size to prevent the
5031	 * host bridge generating requests larger than we can
5032	 * cope with
5033	 */
5034	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5035		int mps = pcie_get_mps(dev);
5036
5037		if (mps < rq)
5038			rq = mps;
5039	}
5040
5041	v = (ffs(rq) - 8) << 12;
5042
5043	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5044						  PCI_EXP_DEVCTL_READRQ, v);
5045}
5046EXPORT_SYMBOL(pcie_set_readrq);
5047
5048/**
5049 * pcie_get_mps - get PCI Express maximum payload size
5050 * @dev: PCI device to query
5051 *
5052 * Returns maximum payload size in bytes
5053 */
5054int pcie_get_mps(struct pci_dev *dev)
5055{
5056	u16 ctl;
5057
5058	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5059
5060	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5061}
5062EXPORT_SYMBOL(pcie_get_mps);
5063
5064/**
5065 * pcie_set_mps - set PCI Express maximum payload size
5066 * @dev: PCI device to query
5067 * @mps: maximum payload size in bytes
5068 *    valid values are 128, 256, 512, 1024, 2048, 4096
5069 *
5070 * If possible sets maximum payload size
5071 */
5072int pcie_set_mps(struct pci_dev *dev, int mps)
5073{
5074	u16 v;
5075
5076	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5077		return -EINVAL;
5078
5079	v = ffs(mps) - 8;
5080	if (v > dev->pcie_mpss)
5081		return -EINVAL;
5082	v <<= 5;
5083
5084	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5085						  PCI_EXP_DEVCTL_PAYLOAD, v);
5086}
5087EXPORT_SYMBOL(pcie_set_mps);
5088
5089/**
5090 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5091 * @dev: PCI device to query
5092 * @speed: storage for minimum speed
5093 * @width: storage for minimum width
5094 *
5095 * This function will walk up the PCI device chain and determine the minimum
5096 * link width and speed of the device.
5097 */
5098int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5099			  enum pcie_link_width *width)
5100{
5101	int ret;
5102
5103	*speed = PCI_SPEED_UNKNOWN;
5104	*width = PCIE_LNK_WIDTH_UNKNOWN;
5105
5106	while (dev) {
5107		u16 lnksta;
5108		enum pci_bus_speed next_speed;
5109		enum pcie_link_width next_width;
5110
5111		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5112		if (ret)
5113			return ret;
5114
5115		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5116		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5117			PCI_EXP_LNKSTA_NLW_SHIFT;
5118
5119		if (next_speed < *speed)
5120			*speed = next_speed;
5121
5122		if (next_width < *width)
5123			*width = next_width;
5124
5125		dev = dev->bus->self;
5126	}
5127
5128	return 0;
5129}
5130EXPORT_SYMBOL(pcie_get_minimum_link);
5131
5132/**
5133 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5134 *			      device and its bandwidth limitation
5135 * @dev: PCI device to query
5136 * @limiting_dev: storage for device causing the bandwidth limitation
5137 * @speed: storage for speed of limiting device
5138 * @width: storage for width of limiting device
5139 *
5140 * Walk up the PCI device chain and find the point where the minimum
5141 * bandwidth is available.  Return the bandwidth available there and (if
5142 * limiting_dev, speed, and width pointers are supplied) information about
5143 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5144 * raw bandwidth.
5145 */
5146u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5147			     enum pci_bus_speed *speed,
5148			     enum pcie_link_width *width)
5149{
5150	u16 lnksta;
5151	enum pci_bus_speed next_speed;
5152	enum pcie_link_width next_width;
5153	u32 bw, next_bw;
5154
5155	if (speed)
5156		*speed = PCI_SPEED_UNKNOWN;
5157	if (width)
5158		*width = PCIE_LNK_WIDTH_UNKNOWN;
5159
5160	bw = 0;
5161
5162	while (dev) {
5163		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5164
5165		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5166		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5167			PCI_EXP_LNKSTA_NLW_SHIFT;
5168
5169		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5170
5171		/* Check if current device limits the total bandwidth */
5172		if (!bw || next_bw <= bw) {
5173			bw = next_bw;
5174
5175			if (limiting_dev)
5176				*limiting_dev = dev;
5177			if (speed)
5178				*speed = next_speed;
5179			if (width)
5180				*width = next_width;
5181		}
5182
5183		dev = pci_upstream_bridge(dev);
5184	}
5185
5186	return bw;
5187}
5188EXPORT_SYMBOL(pcie_bandwidth_available);
5189
5190/**
5191 * pcie_get_speed_cap - query for the PCI device's link speed capability
5192 * @dev: PCI device to query
5193 *
5194 * Query the PCI device speed capability.  Return the maximum link speed
5195 * supported by the device.
5196 */
5197enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5198{
5199	u32 lnkcap2, lnkcap;
5200
5201	/*
5202	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5203	 * Speeds Vector in Link Capabilities 2 when supported, falling
5204	 * back to Max Link Speed in Link Capabilities otherwise.
5205	 */
5206	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5207	if (lnkcap2) { /* PCIe r3.0-compliant */
5208		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5209			return PCIE_SPEED_16_0GT;
5210		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5211			return PCIE_SPEED_8_0GT;
5212		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5213			return PCIE_SPEED_5_0GT;
5214		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5215			return PCIE_SPEED_2_5GT;
5216		return PCI_SPEED_UNKNOWN;
5217	}
5218
5219	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5220	if (lnkcap) {
5221		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5222			return PCIE_SPEED_16_0GT;
5223		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5224			return PCIE_SPEED_8_0GT;
5225		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5226			return PCIE_SPEED_5_0GT;
5227		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5228			return PCIE_SPEED_2_5GT;
5229	}
5230
5231	return PCI_SPEED_UNKNOWN;
5232}
5233
5234/**
5235 * pcie_get_width_cap - query for the PCI device's link width capability
5236 * @dev: PCI device to query
5237 *
5238 * Query the PCI device width capability.  Return the maximum link width
5239 * supported by the device.
5240 */
5241enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5242{
5243	u32 lnkcap;
5244
5245	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5246	if (lnkcap)
5247		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5248
5249	return PCIE_LNK_WIDTH_UNKNOWN;
5250}
5251
5252/**
5253 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5254 * @dev: PCI device
5255 * @speed: storage for link speed
5256 * @width: storage for link width
5257 *
5258 * Calculate a PCI device's link bandwidth by querying for its link speed
5259 * and width, multiplying them, and applying encoding overhead.  The result
5260 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5261 */
5262u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5263			   enum pcie_link_width *width)
5264{
5265	*speed = pcie_get_speed_cap(dev);
5266	*width = pcie_get_width_cap(dev);
5267
5268	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5269		return 0;
5270
5271	return *width * PCIE_SPEED2MBS_ENC(*speed);
5272}
5273
5274/**
5275 * pcie_print_link_status - Report the PCI device's link speed and width
5276 * @dev: PCI device to query
5277 *
5278 * Report the available bandwidth at the device.  If this is less than the
5279 * device is capable of, report the device's maximum possible bandwidth and
5280 * the upstream link that limits its performance to less than that.
5281 */
5282void pcie_print_link_status(struct pci_dev *dev)
5283{
5284	enum pcie_link_width width, width_cap;
5285	enum pci_bus_speed speed, speed_cap;
5286	struct pci_dev *limiting_dev = NULL;
5287	u32 bw_avail, bw_cap;
5288
5289	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5290	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5291
5292	if (bw_avail >= bw_cap)
5293		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5294			 bw_cap / 1000, bw_cap % 1000,
5295			 PCIE_SPEED2STR(speed_cap), width_cap);
5296	else
5297		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5298			 bw_avail / 1000, bw_avail % 1000,
5299			 PCIE_SPEED2STR(speed), width,
5300			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5301			 bw_cap / 1000, bw_cap % 1000,
5302			 PCIE_SPEED2STR(speed_cap), width_cap);
5303}
5304EXPORT_SYMBOL(pcie_print_link_status);
5305
5306/**
5307 * pci_select_bars - Make BAR mask from the type of resource
5308 * @dev: the PCI device for which BAR mask is made
5309 * @flags: resource type mask to be selected
5310 *
5311 * This helper routine makes bar mask from the type of resource.
5312 */
5313int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5314{
5315	int i, bars = 0;
5316	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5317		if (pci_resource_flags(dev, i) & flags)
5318			bars |= (1 << i);
5319	return bars;
5320}
5321EXPORT_SYMBOL(pci_select_bars);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5322
5323/* Some architectures require additional programming to enable VGA */
5324static arch_set_vga_state_t arch_set_vga_state;
5325
5326void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5327{
5328	arch_set_vga_state = func;	/* NULL disables */
5329}
5330
5331static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5332				  unsigned int command_bits, u32 flags)
5333{
5334	if (arch_set_vga_state)
5335		return arch_set_vga_state(dev, decode, command_bits,
5336						flags);
5337	return 0;
5338}
5339
5340/**
5341 * pci_set_vga_state - set VGA decode state on device and parents if requested
5342 * @dev: the PCI device
5343 * @decode: true = enable decoding, false = disable decoding
5344 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5345 * @flags: traverse ancestors and change bridges
5346 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5347 */
5348int pci_set_vga_state(struct pci_dev *dev, bool decode,
5349		      unsigned int command_bits, u32 flags)
5350{
5351	struct pci_bus *bus;
5352	struct pci_dev *bridge;
5353	u16 cmd;
5354	int rc;
5355
5356	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5357
5358	/* ARCH specific VGA enables */
5359	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5360	if (rc)
5361		return rc;
5362
5363	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5364		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5365		if (decode == true)
5366			cmd |= command_bits;
5367		else
5368			cmd &= ~command_bits;
5369		pci_write_config_word(dev, PCI_COMMAND, cmd);
5370	}
5371
5372	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5373		return 0;
5374
5375	bus = dev->bus;
5376	while (bus) {
5377		bridge = bus->self;
5378		if (bridge) {
5379			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5380					     &cmd);
5381			if (decode == true)
5382				cmd |= PCI_BRIDGE_CTL_VGA;
5383			else
5384				cmd &= ~PCI_BRIDGE_CTL_VGA;
5385			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5386					      cmd);
5387		}
5388		bus = bus->parent;
5389	}
5390	return 0;
5391}
5392
5393/**
5394 * pci_add_dma_alias - Add a DMA devfn alias for a device
5395 * @dev: the PCI device for which alias is added
5396 * @devfn: alias slot and function
5397 *
5398 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5399 * It should be called early, preferably as PCI fixup header quirk.
5400 */
5401void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5402{
5403	if (!dev->dma_alias_mask)
5404		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5405					      sizeof(long), GFP_KERNEL);
5406	if (!dev->dma_alias_mask) {
5407		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5408		return;
5409	}
5410
5411	set_bit(devfn, dev->dma_alias_mask);
5412	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5413		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5414}
5415
5416bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5417{
5418	return (dev1->dma_alias_mask &&
5419		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5420	       (dev2->dma_alias_mask &&
5421		test_bit(dev1->devfn, dev2->dma_alias_mask));
5422}
5423
5424bool pci_device_is_present(struct pci_dev *pdev)
5425{
5426	u32 v;
5427
5428	if (pci_dev_is_disconnected(pdev))
5429		return false;
5430	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5431}
5432EXPORT_SYMBOL_GPL(pci_device_is_present);
5433
5434void pci_ignore_hotplug(struct pci_dev *dev)
5435{
5436	struct pci_dev *bridge = dev->bus->self;
5437
5438	dev->ignore_hotplug = 1;
5439	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5440	if (bridge)
5441		bridge->ignore_hotplug = 1;
5442}
5443EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5444
5445resource_size_t __weak pcibios_default_alignment(void)
5446{
5447	return 0;
5448}
5449
5450#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5451static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5452static DEFINE_SPINLOCK(resource_alignment_lock);
5453
5454/**
5455 * pci_specified_resource_alignment - get resource alignment specified by user.
5456 * @dev: the PCI device to get
5457 * @resize: whether or not to change resources' size when reassigning alignment
5458 *
5459 * RETURNS: Resource alignment if it is specified.
5460 *          Zero if it is not specified.
5461 */
5462static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5463							bool *resize)
5464{
5465	int seg, bus, slot, func, align_order, count;
5466	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5467	resource_size_t align = pcibios_default_alignment();
5468	char *p;
5469
5470	spin_lock(&resource_alignment_lock);
5471	p = resource_alignment_param;
5472	if (!*p && !align)
5473		goto out;
5474	if (pci_has_flag(PCI_PROBE_ONLY)) {
5475		align = 0;
5476		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5477		goto out;
5478	}
5479
5480	while (*p) {
5481		count = 0;
5482		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5483							p[count] == '@') {
5484			p += count + 1;
5485		} else {
5486			align_order = -1;
5487		}
5488		if (strncmp(p, "pci:", 4) == 0) {
5489			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5490			p += 4;
5491			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5492				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5493				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5494					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5495						p);
5496					break;
5497				}
5498				subsystem_vendor = subsystem_device = 0;
5499			}
5500			p += count;
5501			if ((!vendor || (vendor == dev->vendor)) &&
5502				(!device || (device == dev->device)) &&
5503				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5504				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5505				*resize = true;
5506				if (align_order == -1)
5507					align = PAGE_SIZE;
5508				else
5509					align = 1 << align_order;
5510				/* Found */
5511				break;
5512			}
5513		}
5514		else {
5515			if (sscanf(p, "%x:%x:%x.%x%n",
5516				&seg, &bus, &slot, &func, &count) != 4) {
5517				seg = 0;
5518				if (sscanf(p, "%x:%x.%x%n",
5519						&bus, &slot, &func, &count) != 3) {
5520					/* Invalid format */
5521					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5522						p);
5523					break;
5524				}
5525			}
5526			p += count;
5527			if (seg == pci_domain_nr(dev->bus) &&
5528				bus == dev->bus->number &&
5529				slot == PCI_SLOT(dev->devfn) &&
5530				func == PCI_FUNC(dev->devfn)) {
5531				*resize = true;
5532				if (align_order == -1)
5533					align = PAGE_SIZE;
5534				else
5535					align = 1 << align_order;
5536				/* Found */
5537				break;
5538			}
 
 
5539		}
5540		if (*p != ';' && *p != ',') {
5541			/* End of param or invalid format */
5542			break;
5543		}
5544		p++;
5545	}
5546out:
5547	spin_unlock(&resource_alignment_lock);
5548	return align;
5549}
5550
5551static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5552					   resource_size_t align, bool resize)
5553{
5554	struct resource *r = &dev->resource[bar];
5555	resource_size_t size;
5556
5557	if (!(r->flags & IORESOURCE_MEM))
5558		return;
5559
5560	if (r->flags & IORESOURCE_PCI_FIXED) {
5561		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5562			 bar, r, (unsigned long long)align);
5563		return;
5564	}
5565
5566	size = resource_size(r);
5567	if (size >= align)
5568		return;
5569
5570	/*
5571	 * Increase the alignment of the resource.  There are two ways we
5572	 * can do this:
5573	 *
5574	 * 1) Increase the size of the resource.  BARs are aligned on their
5575	 *    size, so when we reallocate space for this resource, we'll
5576	 *    allocate it with the larger alignment.  This also prevents
5577	 *    assignment of any other BARs inside the alignment region, so
5578	 *    if we're requesting page alignment, this means no other BARs
5579	 *    will share the page.
5580	 *
5581	 *    The disadvantage is that this makes the resource larger than
5582	 *    the hardware BAR, which may break drivers that compute things
5583	 *    based on the resource size, e.g., to find registers at a
5584	 *    fixed offset before the end of the BAR.
5585	 *
5586	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5587	 *    set r->start to the desired alignment.  By itself this
5588	 *    doesn't prevent other BARs being put inside the alignment
5589	 *    region, but if we realign *every* resource of every device in
5590	 *    the system, none of them will share an alignment region.
5591	 *
5592	 * When the user has requested alignment for only some devices via
5593	 * the "pci=resource_alignment" argument, "resize" is true and we
5594	 * use the first method.  Otherwise we assume we're aligning all
5595	 * devices and we use the second.
5596	 */
5597
5598	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5599		 bar, r, (unsigned long long)align);
5600
5601	if (resize) {
5602		r->start = 0;
5603		r->end = align - 1;
5604	} else {
5605		r->flags &= ~IORESOURCE_SIZEALIGN;
5606		r->flags |= IORESOURCE_STARTALIGN;
5607		r->start = align;
5608		r->end = r->start + size - 1;
5609	}
5610	r->flags |= IORESOURCE_UNSET;
5611}
5612
5613/*
5614 * This function disables memory decoding and releases memory resources
5615 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5616 * It also rounds up size to specified alignment.
5617 * Later on, the kernel will assign page-aligned memory resource back
5618 * to the device.
5619 */
5620void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5621{
5622	int i;
5623	struct resource *r;
5624	resource_size_t align;
5625	u16 command;
5626	bool resize = false;
5627
5628	/*
5629	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5630	 * 3.4.1.11.  Their resources are allocated from the space
5631	 * described by the VF BARx register in the PF's SR-IOV capability.
5632	 * We can't influence their alignment here.
5633	 */
5634	if (dev->is_virtfn)
5635		return;
5636
5637	/* check if specified PCI is target device to reassign */
5638	align = pci_specified_resource_alignment(dev, &resize);
5639	if (!align)
5640		return;
5641
5642	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5643	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5644		pci_warn(dev, "Can't reassign resources to host bridge\n");
 
5645		return;
5646	}
5647
 
 
5648	pci_read_config_word(dev, PCI_COMMAND, &command);
5649	command &= ~PCI_COMMAND_MEMORY;
5650	pci_write_config_word(dev, PCI_COMMAND, command);
5651
5652	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5653		pci_request_resource_alignment(dev, i, align, resize);
5654
5655	/*
5656	 * Need to disable bridge's resource window,
 
 
 
 
 
 
 
 
 
 
 
5657	 * to enable the kernel to reassign new resource
5658	 * window later on.
5659	 */
5660	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5661	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5662		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5663			r = &dev->resource[i];
5664			if (!(r->flags & IORESOURCE_MEM))
5665				continue;
5666			r->flags |= IORESOURCE_UNSET;
5667			r->end = resource_size(r) - 1;
5668			r->start = 0;
5669		}
5670		pci_disable_bridge_window(dev);
5671	}
5672}
5673
5674static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5675{
5676	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5677		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5678	spin_lock(&resource_alignment_lock);
5679	strncpy(resource_alignment_param, buf, count);
5680	resource_alignment_param[count] = '\0';
5681	spin_unlock(&resource_alignment_lock);
5682	return count;
5683}
5684
5685static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5686{
5687	size_t count;
5688	spin_lock(&resource_alignment_lock);
5689	count = snprintf(buf, size, "%s", resource_alignment_param);
5690	spin_unlock(&resource_alignment_lock);
5691	return count;
5692}
5693
5694static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5695{
5696	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5697}
5698
5699static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5700					const char *buf, size_t count)
5701{
5702	return pci_set_resource_alignment_param(buf, count);
5703}
5704
5705static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5706					pci_resource_alignment_store);
5707
5708static int __init pci_resource_alignment_sysfs_init(void)
5709{
5710	return bus_create_file(&pci_bus_type,
5711					&bus_attr_resource_alignment);
5712}
 
5713late_initcall(pci_resource_alignment_sysfs_init);
5714
5715static void pci_no_domains(void)
5716{
5717#ifdef CONFIG_PCI_DOMAINS
5718	pci_domains_supported = 0;
5719#endif
5720}
5721
5722#ifdef CONFIG_PCI_DOMAINS
5723static atomic_t __domain_nr = ATOMIC_INIT(-1);
5724
5725int pci_get_new_domain_nr(void)
5726{
5727	return atomic_inc_return(&__domain_nr);
5728}
5729
5730#ifdef CONFIG_PCI_DOMAINS_GENERIC
5731static int of_pci_bus_find_domain_nr(struct device *parent)
5732{
5733	static int use_dt_domains = -1;
5734	int domain = -1;
5735
5736	if (parent)
5737		domain = of_get_pci_domain_nr(parent->of_node);
5738	/*
5739	 * Check DT domain and use_dt_domains values.
5740	 *
5741	 * If DT domain property is valid (domain >= 0) and
5742	 * use_dt_domains != 0, the DT assignment is valid since this means
5743	 * we have not previously allocated a domain number by using
5744	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5745	 * 1, to indicate that we have just assigned a domain number from
5746	 * DT.
5747	 *
5748	 * If DT domain property value is not valid (ie domain < 0), and we
5749	 * have not previously assigned a domain number from DT
5750	 * (use_dt_domains != 1) we should assign a domain number by
5751	 * using the:
5752	 *
5753	 * pci_get_new_domain_nr()
5754	 *
5755	 * API and update the use_dt_domains value to keep track of method we
5756	 * are using to assign domain numbers (use_dt_domains = 0).
5757	 *
5758	 * All other combinations imply we have a platform that is trying
5759	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5760	 * which is a recipe for domain mishandling and it is prevented by
5761	 * invalidating the domain value (domain = -1) and printing a
5762	 * corresponding error.
5763	 */
5764	if (domain >= 0 && use_dt_domains) {
5765		use_dt_domains = 1;
5766	} else if (domain < 0 && use_dt_domains != 1) {
5767		use_dt_domains = 0;
5768		domain = pci_get_new_domain_nr();
5769	} else {
5770		if (parent)
5771			pr_err("Node %pOF has ", parent->of_node);
5772		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5773		domain = -1;
5774	}
5775
5776	return domain;
5777}
5778
5779int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5780{
5781	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5782			       acpi_pci_bus_find_domain_nr(bus);
5783}
5784#endif
5785#endif
5786
5787/**
5788 * pci_ext_cfg_avail - can we access extended PCI config space?
5789 *
5790 * Returns 1 if we can access PCI extended config space (offsets
5791 * greater than 0xff). This is the default implementation. Architecture
5792 * implementations can override this.
5793 */
5794int __weak pci_ext_cfg_avail(void)
5795{
5796	return 1;
5797}
5798
5799void __weak pci_fixup_cardbus(struct pci_bus *bus)
5800{
5801}
5802EXPORT_SYMBOL(pci_fixup_cardbus);
5803
5804static int __init pci_setup(char *str)
5805{
5806	while (str) {
5807		char *k = strchr(str, ',');
5808		if (k)
5809			*k++ = 0;
5810		if (*str && (str = pcibios_setup(str)) && *str) {
5811			if (!strcmp(str, "nomsi")) {
5812				pci_no_msi();
5813			} else if (!strcmp(str, "noaer")) {
5814				pci_no_aer();
5815			} else if (!strncmp(str, "realloc=", 8)) {
5816				pci_realloc_get_opt(str + 8);
5817			} else if (!strncmp(str, "realloc", 7)) {
5818				pci_realloc_get_opt("on");
5819			} else if (!strcmp(str, "nodomains")) {
5820				pci_no_domains();
5821			} else if (!strncmp(str, "noari", 5)) {
5822				pcie_ari_disabled = true;
5823			} else if (!strncmp(str, "cbiosize=", 9)) {
5824				pci_cardbus_io_size = memparse(str + 9, &str);
5825			} else if (!strncmp(str, "cbmemsize=", 10)) {
5826				pci_cardbus_mem_size = memparse(str + 10, &str);
5827			} else if (!strncmp(str, "resource_alignment=", 19)) {
5828				pci_set_resource_alignment_param(str + 19,
5829							strlen(str + 19));
5830			} else if (!strncmp(str, "ecrc=", 5)) {
5831				pcie_ecrc_get_policy(str + 5);
5832			} else if (!strncmp(str, "hpiosize=", 9)) {
5833				pci_hotplug_io_size = memparse(str + 9, &str);
5834			} else if (!strncmp(str, "hpmemsize=", 10)) {
5835				pci_hotplug_mem_size = memparse(str + 10, &str);
5836			} else if (!strncmp(str, "hpbussize=", 10)) {
5837				pci_hotplug_bus_size =
5838					simple_strtoul(str + 10, &str, 0);
5839				if (pci_hotplug_bus_size > 0xff)
5840					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5841			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5842				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5843			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5844				pcie_bus_config = PCIE_BUS_SAFE;
5845			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5846				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5847			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5848				pcie_bus_config = PCIE_BUS_PEER2PEER;
5849			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5850				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5851			} else {
5852				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5853						str);
5854			}
5855		}
5856		str = k;
5857	}
5858	return 0;
5859}
5860early_param("pci", pci_setup);
v3.15
 
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
 
  12#include <linux/init.h>
 
 
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
 
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pci_hotplug.h>
  26#include <asm-generic/pci-bridge.h>
 
  27#include <asm/setup.h>
 
 
  28#include "pci.h"
  29
  30const char *pci_power_names[] = {
  31	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  32};
  33EXPORT_SYMBOL_GPL(pci_power_names);
  34
  35int isa_dma_bridge_buggy;
  36EXPORT_SYMBOL(isa_dma_bridge_buggy);
  37
  38int pci_pci_problems;
  39EXPORT_SYMBOL(pci_pci_problems);
  40
  41unsigned int pci_pm_d3_delay;
  42
  43static void pci_pme_list_scan(struct work_struct *work);
  44
  45static LIST_HEAD(pci_pme_list);
  46static DEFINE_MUTEX(pci_pme_list_mutex);
  47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  48
  49struct pci_pme_device {
  50	struct list_head list;
  51	struct pci_dev *dev;
  52};
  53
  54#define PME_TIMEOUT 1000 /* How long between PME checks */
  55
  56static void pci_dev_d3_sleep(struct pci_dev *dev)
  57{
  58	unsigned int delay = dev->d3_delay;
  59
  60	if (delay < pci_pm_d3_delay)
  61		delay = pci_pm_d3_delay;
  62
  63	msleep(delay);
 
  64}
  65
  66#ifdef CONFIG_PCI_DOMAINS
  67int pci_domains_supported = 1;
  68#endif
  69
  70#define DEFAULT_CARDBUS_IO_SIZE		(256)
  71#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  75
  76#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  77#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  79unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  81
  82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 
 
 
  83
  84/*
  85 * The default CLS is used if arch didn't set CLS explicitly and not
  86 * all pci devices agree on the same value.  Arch can override either
  87 * the dfl or actual value as it sees fit.  Don't forget this is
  88 * measured in 32-bit words, not bytes.
  89 */
  90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  91u8 pci_cache_line_size;
  92
  93/*
  94 * If we set up a device for bus mastering, we need to check the latency
  95 * timer as certain BIOSes forget to set it properly.
  96 */
  97unsigned int pcibios_max_latency = 255;
  98
  99/* If set, the PCIe ARI capability will not be used. */
 100static bool pcie_ari_disabled;
 101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102/**
 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 104 * @bus: pointer to PCI bus structure to search
 105 *
 106 * Given a PCI bus, returns the highest PCI bus number present in the set
 107 * including the given PCI bus and its list of child PCI buses.
 108 */
 109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 110{
 111	struct pci_bus *tmp;
 112	unsigned char max, n;
 113
 114	max = bus->busn_res.end;
 115	list_for_each_entry(tmp, &bus->children, node) {
 116		n = pci_bus_max_busnr(tmp);
 117		if(n > max)
 118			max = n;
 119	}
 120	return max;
 121}
 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 123
 124#ifdef CONFIG_HAS_IOMEM
 125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 126{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127	/*
 128	 * Make sure the BAR is actually a memory resource, not an IO resource
 129	 */
 130	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 131		WARN_ON(1);
 132		return NULL;
 133	}
 134	return ioremap_nocache(pci_resource_start(pdev, bar),
 135				     pci_resource_len(pdev, bar));
 136}
 137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 138#endif
 139
 140#define PCI_FIND_CAP_TTL	48
 141
 142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 143				   u8 pos, int cap, int *ttl)
 144{
 145	u8 id;
 
 
 
 146
 147	while ((*ttl)--) {
 148		pci_bus_read_config_byte(bus, devfn, pos, &pos);
 149		if (pos < 0x40)
 150			break;
 151		pos &= ~3;
 152		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 153					 &id);
 
 154		if (id == 0xff)
 155			break;
 156		if (id == cap)
 157			return pos;
 158		pos += PCI_CAP_LIST_NEXT;
 159	}
 160	return 0;
 161}
 162
 163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 164			       u8 pos, int cap)
 165{
 166	int ttl = PCI_FIND_CAP_TTL;
 167
 168	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 169}
 170
 171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 172{
 173	return __pci_find_next_cap(dev->bus, dev->devfn,
 174				   pos + PCI_CAP_LIST_NEXT, cap);
 175}
 176EXPORT_SYMBOL_GPL(pci_find_next_capability);
 177
 178static int __pci_bus_find_cap_start(struct pci_bus *bus,
 179				    unsigned int devfn, u8 hdr_type)
 180{
 181	u16 status;
 182
 183	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 184	if (!(status & PCI_STATUS_CAP_LIST))
 185		return 0;
 186
 187	switch (hdr_type) {
 188	case PCI_HEADER_TYPE_NORMAL:
 189	case PCI_HEADER_TYPE_BRIDGE:
 190		return PCI_CAPABILITY_LIST;
 191	case PCI_HEADER_TYPE_CARDBUS:
 192		return PCI_CB_CAPABILITY_LIST;
 193	default:
 194		return 0;
 195	}
 196
 197	return 0;
 198}
 199
 200/**
 201 * pci_find_capability - query for devices' capabilities
 202 * @dev: PCI device to query
 203 * @cap: capability code
 204 *
 205 * Tell if a device supports a given PCI capability.
 206 * Returns the address of the requested capability structure within the
 207 * device's PCI configuration space or 0 in case the device does not
 208 * support it.  Possible values for @cap:
 209 *
 210 *  %PCI_CAP_ID_PM           Power Management
 211 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 212 *  %PCI_CAP_ID_VPD          Vital Product Data
 213 *  %PCI_CAP_ID_SLOTID       Slot Identification
 214 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 215 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 216 *  %PCI_CAP_ID_PCIX         PCI-X
 217 *  %PCI_CAP_ID_EXP          PCI Express
 218 */
 219int pci_find_capability(struct pci_dev *dev, int cap)
 220{
 221	int pos;
 222
 223	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 224	if (pos)
 225		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 226
 227	return pos;
 228}
 
 229
 230/**
 231 * pci_bus_find_capability - query for devices' capabilities
 232 * @bus:   the PCI bus to query
 233 * @devfn: PCI device to query
 234 * @cap:   capability code
 235 *
 236 * Like pci_find_capability() but works for pci devices that do not have a
 237 * pci_dev structure set up yet.
 238 *
 239 * Returns the address of the requested capability structure within the
 240 * device's PCI configuration space or 0 in case the device does not
 241 * support it.
 242 */
 243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 244{
 245	int pos;
 246	u8 hdr_type;
 247
 248	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 249
 250	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 251	if (pos)
 252		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 253
 254	return pos;
 255}
 
 256
 257/**
 258 * pci_find_next_ext_capability - Find an extended capability
 259 * @dev: PCI device to query
 260 * @start: address at which to start looking (0 to start at beginning of list)
 261 * @cap: capability code
 262 *
 263 * Returns the address of the next matching extended capability structure
 264 * within the device's PCI configuration space or 0 if the device does
 265 * not support it.  Some capabilities can occur several times, e.g., the
 266 * vendor-specific capability, and this provides a way to find them all.
 267 */
 268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 269{
 270	u32 header;
 271	int ttl;
 272	int pos = PCI_CFG_SPACE_SIZE;
 273
 274	/* minimum 8 bytes per capability */
 275	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 276
 277	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 278		return 0;
 279
 280	if (start)
 281		pos = start;
 282
 283	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 284		return 0;
 285
 286	/*
 287	 * If we have no capabilities, this is indicated by cap ID,
 288	 * cap version and next pointer all being 0.
 289	 */
 290	if (header == 0)
 291		return 0;
 292
 293	while (ttl-- > 0) {
 294		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 295			return pos;
 296
 297		pos = PCI_EXT_CAP_NEXT(header);
 298		if (pos < PCI_CFG_SPACE_SIZE)
 299			break;
 300
 301		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 302			break;
 303	}
 304
 305	return 0;
 306}
 307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 308
 309/**
 310 * pci_find_ext_capability - Find an extended capability
 311 * @dev: PCI device to query
 312 * @cap: capability code
 313 *
 314 * Returns the address of the requested extended capability structure
 315 * within the device's PCI configuration space or 0 if the device does
 316 * not support it.  Possible values for @cap:
 317 *
 318 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 319 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 320 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 321 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 322 */
 323int pci_find_ext_capability(struct pci_dev *dev, int cap)
 324{
 325	return pci_find_next_ext_capability(dev, 0, cap);
 326}
 327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 328
 329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 330{
 331	int rc, ttl = PCI_FIND_CAP_TTL;
 332	u8 cap, mask;
 333
 334	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 335		mask = HT_3BIT_CAP_MASK;
 336	else
 337		mask = HT_5BIT_CAP_MASK;
 338
 339	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 340				      PCI_CAP_ID_HT, &ttl);
 341	while (pos) {
 342		rc = pci_read_config_byte(dev, pos + 3, &cap);
 343		if (rc != PCIBIOS_SUCCESSFUL)
 344			return 0;
 345
 346		if ((cap & mask) == ht_cap)
 347			return pos;
 348
 349		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 350					      pos + PCI_CAP_LIST_NEXT,
 351					      PCI_CAP_ID_HT, &ttl);
 352	}
 353
 354	return 0;
 355}
 356/**
 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 358 * @dev: PCI device to query
 359 * @pos: Position from which to continue searching
 360 * @ht_cap: Hypertransport capability code
 361 *
 362 * To be used in conjunction with pci_find_ht_capability() to search for
 363 * all capabilities matching @ht_cap. @pos should always be a value returned
 364 * from pci_find_ht_capability().
 365 *
 366 * NB. To be 100% safe against broken PCI devices, the caller should take
 367 * steps to avoid an infinite loop.
 368 */
 369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 370{
 371	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 372}
 373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 374
 375/**
 376 * pci_find_ht_capability - query a device's Hypertransport capabilities
 377 * @dev: PCI device to query
 378 * @ht_cap: Hypertransport capability code
 379 *
 380 * Tell if a device supports a given Hypertransport capability.
 381 * Returns an address within the device's PCI configuration space
 382 * or 0 in case the device does not support the request capability.
 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 384 * which has a Hypertransport capability matching @ht_cap.
 385 */
 386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 387{
 388	int pos;
 389
 390	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 391	if (pos)
 392		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 393
 394	return pos;
 395}
 396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 397
 398/**
 399 * pci_find_parent_resource - return resource region of parent bus of given region
 400 * @dev: PCI device structure contains resources to be searched
 401 * @res: child resource record for which parent is sought
 402 *
 403 *  For given resource region of given device, return the resource
 404 *  region of parent bus the given region is contained in.
 405 */
 406struct resource *
 407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 408{
 409	const struct pci_bus *bus = dev->bus;
 410	struct resource *r;
 411	int i;
 412
 413	pci_bus_for_each_resource(bus, r, i) {
 414		if (!r)
 415			continue;
 416		if (res->start && resource_contains(r, res)) {
 417
 418			/*
 419			 * If the window is prefetchable but the BAR is
 420			 * not, the allocator made a mistake.
 421			 */
 422			if (r->flags & IORESOURCE_PREFETCH &&
 423			    !(res->flags & IORESOURCE_PREFETCH))
 424				return NULL;
 425
 426			/*
 427			 * If we're below a transparent bridge, there may
 428			 * be both a positively-decoded aperture and a
 429			 * subtractively-decoded region that contain the BAR.
 430			 * We want the positively-decoded one, so this depends
 431			 * on pci_bus_for_each_resource() giving us those
 432			 * first.
 433			 */
 434			return r;
 435		}
 436	}
 437	return NULL;
 438}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440/**
 441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 442 * @dev: the PCI device to operate on
 443 * @pos: config space offset of status word
 444 * @mask: mask of bit(s) to care about in status word
 445 *
 446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 447 */
 448int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 449{
 450	int i;
 451
 452	/* Wait for Transaction Pending bit clean */
 453	for (i = 0; i < 4; i++) {
 454		u16 status;
 455		if (i)
 456			msleep((1 << (i - 1)) * 100);
 457
 458		pci_read_config_word(dev, pos, &status);
 459		if (!(status & mask))
 460			return 1;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 468 * @dev: PCI device to have its BARs restored
 469 *
 470 * Restore the BAR values for a given device, so as to make it
 471 * accessible by its driver.
 472 */
 473static void
 474pci_restore_bars(struct pci_dev *dev)
 475{
 476	int i;
 477
 478	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 479		pci_update_resource(dev, i);
 480}
 481
 482static struct pci_platform_pm_ops *pci_platform_pm;
 483
 484int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 485{
 486	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 487	    || !ops->sleep_wake)
 488		return -EINVAL;
 489	pci_platform_pm = ops;
 490	return 0;
 491}
 492
 493static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 494{
 495	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 496}
 497
 498static inline int platform_pci_set_power_state(struct pci_dev *dev,
 499                                                pci_power_t t)
 500{
 501	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 502}
 503
 
 
 
 
 
 504static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 505{
 506	return pci_platform_pm ?
 507			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 508}
 509
 510static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 511{
 512	return pci_platform_pm ?
 513			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 514}
 515
 516static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 517{
 518	return pci_platform_pm ?
 519			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 520}
 521
 522/**
 523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 524 *                           given PCI device
 525 * @dev: PCI device to handle.
 526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 527 *
 528 * RETURN VALUE:
 529 * -EINVAL if the requested state is invalid.
 530 * -EIO if device does not support PCI PM or its PM capabilities register has a
 531 * wrong version, or device doesn't support the requested state.
 532 * 0 if device already is in the requested state.
 533 * 0 if device's power state has been successfully changed.
 534 */
 535static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 536{
 537	u16 pmcsr;
 538	bool need_restore = false;
 539
 540	/* Check if we're already there */
 541	if (dev->current_state == state)
 542		return 0;
 543
 544	if (!dev->pm_cap)
 545		return -EIO;
 546
 547	if (state < PCI_D0 || state > PCI_D3hot)
 548		return -EINVAL;
 549
 550	/* Validate current state:
 551	 * Can enter D0 from any state, but if we can only go deeper
 552	 * to sleep if we're already in a low power state
 553	 */
 554	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 555	    && dev->current_state > state) {
 556		dev_err(&dev->dev, "invalid power transition "
 557			"(from state %d to %d)\n", dev->current_state, state);
 558		return -EINVAL;
 559	}
 560
 561	/* check if this device supports the desired state */
 562	if ((state == PCI_D1 && !dev->d1_support)
 563	   || (state == PCI_D2 && !dev->d2_support))
 564		return -EIO;
 565
 566	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 567
 568	/* If we're (effectively) in D3, force entire word to 0.
 569	 * This doesn't affect PME_Status, disables PME_En, and
 570	 * sets PowerState to 0.
 571	 */
 572	switch (dev->current_state) {
 573	case PCI_D0:
 574	case PCI_D1:
 575	case PCI_D2:
 576		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 577		pmcsr |= state;
 578		break;
 579	case PCI_D3hot:
 580	case PCI_D3cold:
 581	case PCI_UNKNOWN: /* Boot-up */
 582		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 583		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 584			need_restore = true;
 585		/* Fall-through: force to D0 */
 586	default:
 587		pmcsr = 0;
 588		break;
 589	}
 590
 591	/* enter specified state */
 592	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 593
 594	/* Mandatory power management transition delays */
 595	/* see PCI PM 1.1 5.6.1 table 18 */
 596	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 597		pci_dev_d3_sleep(dev);
 598	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 599		udelay(PCI_PM_D2_DELAY);
 600
 601	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 602	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 603	if (dev->current_state != state && printk_ratelimit())
 604		dev_info(&dev->dev, "Refused to change power state, "
 605			"currently in D%d\n", dev->current_state);
 606
 607	/*
 608	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 609	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 610	 * from D3hot to D0 _may_ perform an internal reset, thereby
 611	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 612	 * For example, at least some versions of the 3c905B and the
 613	 * 3c556B exhibit this behaviour.
 614	 *
 615	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 616	 * devices in a D3hot state at boot.  Consequently, we need to
 617	 * restore at least the BARs so that the device will be
 618	 * accessible to its driver.
 619	 */
 620	if (need_restore)
 621		pci_restore_bars(dev);
 622
 623	if (dev->bus->self)
 624		pcie_aspm_pm_state_change(dev->bus->self);
 625
 626	return 0;
 627}
 628
 629/**
 630 * pci_update_current_state - Read PCI power state of given device from its
 631 *                            PCI PM registers and cache it
 632 * @dev: PCI device to handle.
 633 * @state: State to cache in case the device doesn't have the PM capability
 
 
 
 
 
 
 
 634 */
 635void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	if (dev->pm_cap) {
 
 
 
 638		u16 pmcsr;
 639
 640		/*
 641		 * Configuration space is not accessible for device in
 642		 * D3cold, so just keep or set D3cold for safety
 643		 */
 644		if (dev->current_state == PCI_D3cold)
 645			return;
 646		if (state == PCI_D3cold) {
 647			dev->current_state = PCI_D3cold;
 648			return;
 649		}
 650		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 651		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 652	} else {
 653		dev->current_state = state;
 654	}
 655}
 656
 657/**
 658 * pci_power_up - Put the given device into D0 forcibly
 659 * @dev: PCI device to power up
 660 */
 661void pci_power_up(struct pci_dev *dev)
 662{
 663	if (platform_pci_power_manageable(dev))
 664		platform_pci_set_power_state(dev, PCI_D0);
 665
 666	pci_raw_set_power_state(dev, PCI_D0);
 667	pci_update_current_state(dev, PCI_D0);
 668}
 669
 670/**
 671 * pci_platform_power_transition - Use platform to change device power state
 672 * @dev: PCI device to handle.
 673 * @state: State to put the device into.
 674 */
 675static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 676{
 677	int error;
 678
 679	if (platform_pci_power_manageable(dev)) {
 680		error = platform_pci_set_power_state(dev, state);
 681		if (!error)
 682			pci_update_current_state(dev, state);
 683	} else
 684		error = -ENODEV;
 685
 686	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 687		dev->current_state = PCI_D0;
 688
 689	return error;
 690}
 691
 692/**
 693 * pci_wakeup - Wake up a PCI device
 694 * @pci_dev: Device to handle.
 695 * @ign: ignored parameter
 696 */
 697static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 698{
 699	pci_wakeup_event(pci_dev);
 700	pm_request_resume(&pci_dev->dev);
 701	return 0;
 702}
 703
 704/**
 705 * pci_wakeup_bus - Walk given bus and wake up devices on it
 706 * @bus: Top bus of the subtree to walk.
 707 */
 708static void pci_wakeup_bus(struct pci_bus *bus)
 709{
 710	if (bus)
 711		pci_walk_bus(bus, pci_wakeup, NULL);
 712}
 713
 714/**
 715 * __pci_start_power_transition - Start power transition of a PCI device
 716 * @dev: PCI device to handle.
 717 * @state: State to put the device into.
 718 */
 719static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 720{
 721	if (state == PCI_D0) {
 722		pci_platform_power_transition(dev, PCI_D0);
 723		/*
 724		 * Mandatory power management transition delays, see
 725		 * PCI Express Base Specification Revision 2.0 Section
 726		 * 6.6.1: Conventional Reset.  Do not delay for
 727		 * devices powered on/off by corresponding bridge,
 728		 * because have already delayed for the bridge.
 729		 */
 730		if (dev->runtime_d3cold) {
 731			msleep(dev->d3cold_delay);
 
 732			/*
 733			 * When powering on a bridge from D3cold, the
 734			 * whole hierarchy may be powered on into
 735			 * D0uninitialized state, resume them to give
 736			 * them a chance to suspend again
 737			 */
 738			pci_wakeup_bus(dev->subordinate);
 739		}
 740	}
 741}
 742
 743/**
 744 * __pci_dev_set_current_state - Set current state of a PCI device
 745 * @dev: Device to handle
 746 * @data: pointer to state to be set
 747 */
 748static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 749{
 750	pci_power_t state = *(pci_power_t *)data;
 751
 752	dev->current_state = state;
 753	return 0;
 754}
 755
 756/**
 757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 758 * @bus: Top bus of the subtree to walk.
 759 * @state: state to be set
 760 */
 761static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 762{
 763	if (bus)
 764		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 765}
 766
 767/**
 768 * __pci_complete_power_transition - Complete power transition of a PCI device
 769 * @dev: PCI device to handle.
 770 * @state: State to put the device into.
 771 *
 772 * This function should not be called directly by device drivers.
 773 */
 774int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int ret;
 777
 778	if (state <= PCI_D0)
 779		return -EINVAL;
 780	ret = pci_platform_power_transition(dev, state);
 781	/* Power off the bridge may power off the whole hierarchy */
 782	if (!ret && state == PCI_D3cold)
 783		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 784	return ret;
 785}
 786EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 787
 788/**
 789 * pci_set_power_state - Set the power state of a PCI device
 790 * @dev: PCI device to handle.
 791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 792 *
 793 * Transition a device to a new power state, using the platform firmware and/or
 794 * the device's PCI PM registers.
 795 *
 796 * RETURN VALUE:
 797 * -EINVAL if the requested state is invalid.
 798 * -EIO if device does not support PCI PM or its PM capabilities register has a
 799 * wrong version, or device doesn't support the requested state.
 
 800 * 0 if device already is in the requested state.
 
 801 * 0 if device's power state has been successfully changed.
 802 */
 803int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 804{
 805	int error;
 806
 807	/* bound the state we're entering */
 808	if (state > PCI_D3cold)
 809		state = PCI_D3cold;
 810	else if (state < PCI_D0)
 811		state = PCI_D0;
 812	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 813		/*
 814		 * If the device or the parent bridge do not support PCI PM,
 815		 * ignore the request if we're doing anything other than putting
 816		 * it into D0 (which would only happen on boot).
 817		 */
 818		return 0;
 819
 820	/* Check if we're already there */
 821	if (dev->current_state == state)
 822		return 0;
 823
 824	__pci_start_power_transition(dev, state);
 825
 826	/* This device is quirked not to be put into D3, so
 827	   don't put it in D3 */
 828	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 829		return 0;
 830
 831	/*
 832	 * To put device in D3cold, we put device into D3hot in native
 833	 * way, then put device into D3cold with platform ops
 834	 */
 835	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 836					PCI_D3hot : state);
 837
 838	if (!__pci_complete_power_transition(dev, state))
 839		error = 0;
 840	/*
 841	 * When aspm_policy is "powersave" this call ensures
 842	 * that ASPM is configured.
 843	 */
 844	if (!error && dev->bus->self)
 845		pcie_aspm_powersave_config_link(dev->bus->self);
 846
 847	return error;
 848}
 
 849
 850/**
 851 * pci_choose_state - Choose the power state of a PCI device
 852 * @dev: PCI device to be suspended
 853 * @state: target sleep state for the whole system. This is the value
 854 *	that is passed to suspend() function.
 855 *
 856 * Returns PCI power state suitable for given device and given system
 857 * message.
 858 */
 859
 860pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 861{
 862	pci_power_t ret;
 863
 864	if (!dev->pm_cap)
 865		return PCI_D0;
 866
 867	ret = platform_pci_choose_state(dev);
 868	if (ret != PCI_POWER_ERROR)
 869		return ret;
 870
 871	switch (state.event) {
 872	case PM_EVENT_ON:
 873		return PCI_D0;
 874	case PM_EVENT_FREEZE:
 875	case PM_EVENT_PRETHAW:
 876		/* REVISIT both freeze and pre-thaw "should" use D0 */
 877	case PM_EVENT_SUSPEND:
 878	case PM_EVENT_HIBERNATE:
 879		return PCI_D3hot;
 880	default:
 881		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 882			 state.event);
 883		BUG();
 884	}
 885	return PCI_D0;
 886}
 887
 888EXPORT_SYMBOL(pci_choose_state);
 889
 890#define PCI_EXP_SAVE_REGS	7
 891
 892
 893static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 894						       u16 cap, bool extended)
 895{
 896	struct pci_cap_saved_state *tmp;
 897
 898	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 899		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 900			return tmp;
 901	}
 902	return NULL;
 903}
 904
 905struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 906{
 907	return _pci_find_saved_cap(dev, cap, false);
 908}
 909
 910struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 911{
 912	return _pci_find_saved_cap(dev, cap, true);
 913}
 914
 915static int pci_save_pcie_state(struct pci_dev *dev)
 916{
 917	int i = 0;
 918	struct pci_cap_saved_state *save_state;
 919	u16 *cap;
 920
 921	if (!pci_is_pcie(dev))
 922		return 0;
 923
 924	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 925	if (!save_state) {
 926		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 927		return -ENOMEM;
 928	}
 929
 930	cap = (u16 *)&save_state->cap.data[0];
 931	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 932	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 933	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 934	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 935	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 936	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 937	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 938
 939	return 0;
 940}
 941
 942static void pci_restore_pcie_state(struct pci_dev *dev)
 943{
 944	int i = 0;
 945	struct pci_cap_saved_state *save_state;
 946	u16 *cap;
 947
 948	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 949	if (!save_state)
 950		return;
 951
 952	cap = (u16 *)&save_state->cap.data[0];
 953	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 954	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 955	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 956	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 957	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 958	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 959	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 960}
 961
 962
 963static int pci_save_pcix_state(struct pci_dev *dev)
 964{
 965	int pos;
 966	struct pci_cap_saved_state *save_state;
 967
 968	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 969	if (pos <= 0)
 970		return 0;
 971
 972	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 973	if (!save_state) {
 974		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 975		return -ENOMEM;
 976	}
 977
 978	pci_read_config_word(dev, pos + PCI_X_CMD,
 979			     (u16 *)save_state->cap.data);
 980
 981	return 0;
 982}
 983
 984static void pci_restore_pcix_state(struct pci_dev *dev)
 985{
 986	int i = 0, pos;
 987	struct pci_cap_saved_state *save_state;
 988	u16 *cap;
 989
 990	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 991	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 992	if (!save_state || pos <= 0)
 993		return;
 994	cap = (u16 *)&save_state->cap.data[0];
 995
 996	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 997}
 998
 999
1000/**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004int
1005pci_save_state(struct pci_dev *dev)
1006{
1007	int i;
1008	/* XXX: 100% dword access ok here? */
1009	for (i = 0; i < 16; i++)
1010		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011	dev->state_saved = true;
1012	if ((i = pci_save_pcie_state(dev)) != 0)
 
 
1013		return i;
1014	if ((i = pci_save_pcix_state(dev)) != 0)
 
 
1015		return i;
1016	if ((i = pci_save_vc_state(dev)) != 0)
1017		return i;
1018	return 0;
1019}
 
1020
1021static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022				     u32 saved_val, int retry)
1023{
1024	u32 val;
1025
1026	pci_read_config_dword(pdev, offset, &val);
1027	if (val == saved_val)
1028		return;
1029
1030	for (;;) {
1031		dev_dbg(&pdev->dev, "restoring config space at offset "
1032			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033		pci_write_config_dword(pdev, offset, saved_val);
1034		if (retry-- <= 0)
1035			return;
1036
1037		pci_read_config_dword(pdev, offset, &val);
1038		if (val == saved_val)
1039			return;
1040
1041		mdelay(1);
1042	}
1043}
1044
1045static void pci_restore_config_space_range(struct pci_dev *pdev,
1046					   int start, int end, int retry)
1047{
1048	int index;
1049
1050	for (index = end; index >= start; index--)
1051		pci_restore_config_dword(pdev, 4 * index,
1052					 pdev->saved_config_space[index],
1053					 retry);
1054}
1055
1056static void pci_restore_config_space(struct pci_dev *pdev)
1057{
1058	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059		pci_restore_config_space_range(pdev, 10, 15, 0);
1060		/* Restore BARs before the command register. */
1061		pci_restore_config_space_range(pdev, 4, 9, 10);
1062		pci_restore_config_space_range(pdev, 0, 3, 0);
1063	} else {
1064		pci_restore_config_space_range(pdev, 0, 15, 0);
1065	}
1066}
1067
1068/**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072void pci_restore_state(struct pci_dev *dev)
1073{
1074	if (!dev->state_saved)
1075		return;
1076
1077	/* PCI Express register must be restored first */
1078	pci_restore_pcie_state(dev);
 
 
1079	pci_restore_ats_state(dev);
1080	pci_restore_vc_state(dev);
1081
 
 
1082	pci_restore_config_space(dev);
1083
1084	pci_restore_pcix_state(dev);
1085	pci_restore_msi_state(dev);
 
 
 
1086	pci_restore_iov_state(dev);
1087
1088	dev->state_saved = false;
1089}
 
1090
1091struct pci_saved_state {
1092	u32 config_space[16];
1093	struct pci_cap_saved_data cap[0];
1094};
1095
1096/**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 *			   the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104{
1105	struct pci_saved_state *state;
1106	struct pci_cap_saved_state *tmp;
1107	struct pci_cap_saved_data *cap;
1108	size_t size;
1109
1110	if (!dev->state_saved)
1111		return NULL;
1112
1113	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118	state = kzalloc(size, GFP_KERNEL);
1119	if (!state)
1120		return NULL;
1121
1122	memcpy(state->config_space, dev->saved_config_space,
1123	       sizeof(state->config_space));
1124
1125	cap = state->cap;
1126	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128		memcpy(cap, &tmp->cap, len);
1129		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130	}
1131	/* Empty cap_save terminates list */
1132
1133	return state;
1134}
1135EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137/**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142static int pci_load_saved_state(struct pci_dev *dev,
1143				struct pci_saved_state *state)
1144{
1145	struct pci_cap_saved_data *cap;
1146
1147	dev->state_saved = false;
1148
1149	if (!state)
1150		return 0;
1151
1152	memcpy(dev->saved_config_space, state->config_space,
1153	       sizeof(state->config_space));
1154
1155	cap = state->cap;
1156	while (cap->size) {
1157		struct pci_cap_saved_state *tmp;
1158
1159		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160		if (!tmp || tmp->cap.size != cap->size)
1161			return -EINVAL;
1162
1163		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165		       sizeof(struct pci_cap_saved_data) + cap->size);
1166	}
1167
1168	dev->state_saved = true;
1169	return 0;
1170}
 
1171
1172/**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 *				   and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178int pci_load_and_free_saved_state(struct pci_dev *dev,
1179				  struct pci_saved_state **state)
1180{
1181	int ret = pci_load_saved_state(dev, *state);
1182	kfree(*state);
1183	*state = NULL;
1184	return ret;
1185}
1186EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189{
1190	return pci_enable_resources(dev, bars);
1191}
1192
1193static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194{
1195	int err;
 
1196	u16 cmd;
1197	u8 pin;
1198
1199	err = pci_set_power_state(dev, PCI_D0);
1200	if (err < 0 && err != -EIO)
1201		return err;
 
 
 
 
 
1202	err = pcibios_enable_device(dev, bars);
1203	if (err < 0)
1204		return err;
1205	pci_fixup_device(pci_fixup_enable, dev);
1206
1207	if (dev->msi_enabled || dev->msix_enabled)
1208		return 0;
1209
1210	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211	if (pin) {
1212		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213		if (cmd & PCI_COMMAND_INTX_DISABLE)
1214			pci_write_config_word(dev, PCI_COMMAND,
1215					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1216	}
1217
1218	return 0;
1219}
1220
1221/**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 *  Note this function is a backend of pci_default_resume and is not supposed
1226 *  to be called by normal code, write proper resume handler and use it instead.
1227 */
1228int pci_reenable_device(struct pci_dev *dev)
1229{
1230	if (pci_is_enabled(dev))
1231		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232	return 0;
1233}
 
1234
1235static void pci_enable_bridge(struct pci_dev *dev)
1236{
1237	struct pci_dev *bridge;
1238	int retval;
1239
1240	bridge = pci_upstream_bridge(dev);
1241	if (bridge)
1242		pci_enable_bridge(bridge);
1243
1244	if (pci_is_enabled(dev)) {
1245		if (!dev->is_busmaster)
1246			pci_set_master(dev);
1247		return;
1248	}
1249
1250	retval = pci_enable_device(dev);
1251	if (retval)
1252		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253			retval);
1254	pci_set_master(dev);
1255}
1256
1257static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258{
1259	struct pci_dev *bridge;
1260	int err;
1261	int i, bars = 0;
1262
1263	/*
1264	 * Power state could be unknown at this point, either due to a fresh
1265	 * boot or a device removal call.  So get the current power state
1266	 * so that things like MSI message writing will behave as expected
1267	 * (e.g. if the device really is in D0 at enable time).
1268	 */
1269	if (dev->pm_cap) {
1270		u16 pmcsr;
1271		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273	}
1274
1275	if (atomic_inc_return(&dev->enable_cnt) > 1)
1276		return 0;		/* already enabled */
1277
1278	bridge = pci_upstream_bridge(dev);
1279	if (bridge)
1280		pci_enable_bridge(bridge);
1281
1282	/* only skip sriov related */
1283	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284		if (dev->resource[i].flags & flags)
1285			bars |= (1 << i);
1286	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287		if (dev->resource[i].flags & flags)
1288			bars |= (1 << i);
1289
1290	err = do_pci_enable_device(dev, bars);
1291	if (err < 0)
1292		atomic_dec(&dev->enable_cnt);
1293	return err;
1294}
1295
1296/**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 *  Initialize device before it's used by a driver. Ask low-level code
1301 *  to enable I/O resources. Wake up the device if it was suspended.
1302 *  Beware, this function can fail.
1303 */
1304int pci_enable_device_io(struct pci_dev *dev)
1305{
1306	return pci_enable_device_flags(dev, IORESOURCE_IO);
1307}
 
1308
1309/**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 *  Initialize device before it's used by a driver. Ask low-level code
1314 *  to enable Memory resources. Wake up the device if it was suspended.
1315 *  Beware, this function can fail.
1316 */
1317int pci_enable_device_mem(struct pci_dev *dev)
1318{
1319	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320}
 
1321
1322/**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 *  Initialize device before it's used by a driver. Ask low-level code
1327 *  to enable I/O and memory. Wake up the device if it was suspended.
1328 *  Beware, this function can fail.
1329 *
1330 *  Note we don't actually enable the device many times if we call
1331 *  this function repeatedly (we just increment the count).
1332 */
1333int pci_enable_device(struct pci_dev *dev)
1334{
1335	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336}
 
1337
1338/*
1339 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately.  pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344struct pci_devres {
1345	unsigned int enabled:1;
1346	unsigned int pinned:1;
1347	unsigned int orig_intx:1;
1348	unsigned int restore_intx:1;
 
1349	u32 region_mask;
1350};
1351
1352static void pcim_release(struct device *gendev, void *res)
1353{
1354	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355	struct pci_devres *this = res;
1356	int i;
1357
1358	if (dev->msi_enabled)
1359		pci_disable_msi(dev);
1360	if (dev->msix_enabled)
1361		pci_disable_msix(dev);
1362
1363	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364		if (this->region_mask & (1 << i))
1365			pci_release_region(dev, i);
1366
 
 
 
1367	if (this->restore_intx)
1368		pci_intx(dev, this->orig_intx);
1369
1370	if (this->enabled && !this->pinned)
1371		pci_disable_device(dev);
1372}
1373
1374static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375{
1376	struct pci_devres *dr, *new_dr;
1377
1378	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379	if (dr)
1380		return dr;
1381
1382	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383	if (!new_dr)
1384		return NULL;
1385	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386}
1387
1388static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389{
1390	if (pci_is_managed(pdev))
1391		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392	return NULL;
1393}
1394
1395/**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401int pcim_enable_device(struct pci_dev *pdev)
1402{
1403	struct pci_devres *dr;
1404	int rc;
1405
1406	dr = get_pci_dr(pdev);
1407	if (unlikely(!dr))
1408		return -ENOMEM;
1409	if (dr->enabled)
1410		return 0;
1411
1412	rc = pci_enable_device(pdev);
1413	if (!rc) {
1414		pdev->is_managed = 1;
1415		dr->enabled = 1;
1416	}
1417	return rc;
1418}
 
1419
1420/**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1425 * driver detach.  @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428void pcim_pin_device(struct pci_dev *pdev)
1429{
1430	struct pci_devres *dr;
1431
1432	dr = find_pci_dr(pdev);
1433	WARN_ON(!dr || !dr->enabled);
1434	if (dr)
1435		dr->pinned = 1;
1436}
 
1437
1438/*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446int __weak pcibios_add_device (struct pci_dev *dev)
1447{
1448	return 0;
1449}
1450
1451/**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461/**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469void __weak pcibios_disable_device (struct pci_dev *dev) {}
 
 
 
 
 
 
 
 
 
 
 
1470
1471static void do_pci_disable_device(struct pci_dev *dev)
1472{
1473	u16 pci_command;
1474
1475	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476	if (pci_command & PCI_COMMAND_MASTER) {
1477		pci_command &= ~PCI_COMMAND_MASTER;
1478		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479	}
1480
1481	pcibios_disable_device(dev);
1482}
1483
1484/**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491void pci_disable_enabled_device(struct pci_dev *dev)
1492{
1493	if (pci_is_enabled(dev))
1494		do_pci_disable_device(dev);
1495}
1496
1497/**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore.  This only involves disabling PCI bus-mastering, if active.
1503 *
1504 * Note we don't actually disable the device until all callers of
1505 * pci_enable_device() have called pci_disable_device().
1506 */
1507void
1508pci_disable_device(struct pci_dev *dev)
1509{
1510	struct pci_devres *dr;
1511
1512	dr = find_pci_dr(dev);
1513	if (dr)
1514		dr->enabled = 0;
1515
1516	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517		      "disabling already-disabled device");
1518
1519	if (atomic_dec_return(&dev->enable_cnt) != 0)
1520		return;
1521
1522	do_pci_disable_device(dev);
1523
1524	dev->is_busmaster = 0;
1525}
 
1526
1527/**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
1529 * @dev: the PCIe device reset
1530 * @state: Reset state to enter into
1531 *
1532 *
1533 * Sets the PCIe reset state for the device. This is the default
1534 * implementation. Architecture implementations can override this.
1535 */
1536int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537					enum pcie_reset_state state)
1538{
1539	return -EINVAL;
1540}
1541
1542/**
1543 * pci_set_pcie_reset_state - set reset state for device dev
1544 * @dev: the PCIe device reset
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551{
1552	return pcibios_set_pcie_reset_state(dev, state);
1553}
 
 
 
 
 
 
 
 
 
 
1554
1555/**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set).  Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563bool pci_check_pme_status(struct pci_dev *dev)
1564{
1565	int pmcsr_pos;
1566	u16 pmcsr;
1567	bool ret = false;
1568
1569	if (!dev->pm_cap)
1570		return false;
1571
1572	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575		return false;
1576
1577	/* Clear PME status. */
1578	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580		/* Disable PME to avoid interrupt flood. */
1581		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582		ret = true;
1583	}
1584
1585	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587	return ret;
1588}
1589
1590/**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
1598static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599{
1600	if (pme_poll_reset && dev->pme_poll)
1601		dev->pme_poll = false;
1602
1603	if (pci_check_pme_status(dev)) {
1604		pci_wakeup_event(dev);
1605		pm_request_resume(&dev->dev);
1606	}
1607	return 0;
1608}
1609
1610/**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614void pci_pme_wakeup_bus(struct pci_bus *bus)
1615{
1616	if (bus)
1617		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618}
1619
1620
1621/**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
1624 * @state: PCI state from which device will issue PME#.
1625 */
1626bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627{
1628	if (!dev->pm_cap)
1629		return false;
1630
1631	return !!(dev->pme_support & (1 << state));
1632}
 
1633
1634static void pci_pme_list_scan(struct work_struct *work)
1635{
1636	struct pci_pme_device *pme_dev, *n;
1637
1638	mutex_lock(&pci_pme_list_mutex);
1639	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640		if (pme_dev->dev->pme_poll) {
1641			struct pci_dev *bridge;
1642
1643			bridge = pme_dev->dev->bus->self;
1644			/*
1645			 * If bridge is in low power state, the
1646			 * configuration space of subordinate devices
1647			 * may be not accessible
1648			 */
1649			if (bridge && bridge->current_state != PCI_D0)
1650				continue;
1651			pci_pme_wakeup(pme_dev->dev, NULL);
1652		} else {
1653			list_del(&pme_dev->list);
1654			kfree(pme_dev);
1655		}
1656	}
1657	if (!list_empty(&pci_pme_list))
1658		schedule_delayed_work(&pci_pme_work,
1659				      msecs_to_jiffies(PME_TIMEOUT));
1660	mutex_unlock(&pci_pme_list_mutex);
1661}
1662
1663/**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
1671void pci_pme_active(struct pci_dev *dev, bool enable)
1672{
1673	u16 pmcsr;
1674
1675	if (!dev->pme_support)
1676		return;
1677
1678	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679	/* Clear PME_Status by writing 1 to it and enable PME# */
1680	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681	if (!enable)
1682		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
1684	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685
1686	/*
1687	 * PCI (as opposed to PCIe) PME requires that the device have
1688	 * its PME# line hooked up correctly. Not all hardware vendors
1689	 * do this, so the PME never gets delivered and the device
1690	 * remains asleep. The easiest way around this is to
1691	 * periodically walk the list of suspended devices and check
1692	 * whether any have their PME flag set. The assumption is that
1693	 * we'll wake up often enough anyway that this won't be a huge
1694	 * hit, and the power savings from the devices will still be a
1695	 * win.
1696	 *
1697	 * Although PCIe uses in-band PME message instead of PME# line
1698	 * to report PME, PME does not work for some PCIe devices in
1699	 * reality.  For example, there are devices that set their PME
1700	 * status bits, but don't really bother to send a PME message;
1701	 * there are PCI Express Root Ports that don't bother to
1702	 * trigger interrupts when they receive PME messages from the
1703	 * devices below.  So PME poll is used for PCIe devices too.
1704	 */
1705
1706	if (dev->pme_poll) {
1707		struct pci_pme_device *pme_dev;
1708		if (enable) {
1709			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710					  GFP_KERNEL);
1711			if (!pme_dev) {
1712				dev_warn(&dev->dev, "can't enable PME#\n");
1713				return;
1714			}
1715			pme_dev->dev = dev;
1716			mutex_lock(&pci_pme_list_mutex);
1717			list_add(&pme_dev->list, &pci_pme_list);
1718			if (list_is_singular(&pci_pme_list))
1719				schedule_delayed_work(&pci_pme_work,
1720						      msecs_to_jiffies(PME_TIMEOUT));
 
1721			mutex_unlock(&pci_pme_list_mutex);
1722		} else {
1723			mutex_lock(&pci_pme_list_mutex);
1724			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725				if (pme_dev->dev == dev) {
1726					list_del(&pme_dev->list);
1727					kfree(pme_dev);
1728					break;
1729				}
1730			}
1731			mutex_unlock(&pci_pme_list_mutex);
1732		}
1733	}
1734
1735	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736}
 
1737
1738/**
1739 * __pci_enable_wake - enable PCI device as wakeup event source
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
1742 * @runtime: True if the events are to be generated at run time
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
1750 * always require such platform hooks.
1751 *
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1757 */
1758int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759		      bool runtime, bool enable)
1760{
1761	int ret = 0;
1762
1763	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764		return -EINVAL;
 
 
 
 
1765
1766	/* Don't do the same thing twice in a row for one device. */
1767	if (!!enable == !!dev->wakeup_prepared)
1768		return 0;
1769
1770	/*
1771	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773	 * enable.  To disable wake-up we call the platform first, for symmetry.
1774	 */
1775
1776	if (enable) {
1777		int error;
1778
1779		if (pci_pme_capable(dev, state))
1780			pci_pme_active(dev, true);
1781		else
1782			ret = 1;
1783		error = runtime ? platform_pci_run_wake(dev, true) :
1784					platform_pci_sleep_wake(dev, true);
1785		if (ret)
1786			ret = error;
1787		if (!ret)
1788			dev->wakeup_prepared = true;
1789	} else {
1790		if (runtime)
1791			platform_pci_run_wake(dev, false);
1792		else
1793			platform_pci_sleep_wake(dev, false);
1794		pci_pme_active(dev, false);
1795		dev->wakeup_prepared = false;
1796	}
1797
1798	return ret;
1799}
1800EXPORT_SYMBOL(__pci_enable_wake);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801
1802/**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817{
1818	return pci_pme_capable(dev, PCI_D3cold) ?
1819			pci_enable_wake(dev, PCI_D3cold, enable) :
1820			pci_enable_wake(dev, PCI_D3hot, enable);
1821}
 
1822
1823/**
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
 
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
1830 */
1831static pci_power_t pci_target_state(struct pci_dev *dev)
1832{
1833	pci_power_t target_state = PCI_D3hot;
1834
1835	if (platform_pci_power_manageable(dev)) {
1836		/*
1837		 * Call the platform to choose the target state of the device
1838		 * and enable wake-up from this state if supported.
1839		 */
1840		pci_power_t state = platform_pci_choose_state(dev);
1841
1842		switch (state) {
1843		case PCI_POWER_ERROR:
1844		case PCI_UNKNOWN:
1845			break;
1846		case PCI_D1:
1847		case PCI_D2:
1848			if (pci_no_d1d2(dev))
1849				break;
1850		default:
1851			target_state = state;
1852		}
1853	} else if (!dev->pm_cap) {
 
 
 
 
1854		target_state = PCI_D0;
1855	} else if (device_may_wakeup(&dev->dev)) {
 
 
 
 
 
 
 
 
 
1856		/*
1857		 * Find the deepest state from which the device can generate
1858		 * wake-up events, make it the target state and enable device
1859		 * to generate PME#.
1860		 */
1861		if (dev->pme_support) {
1862			while (target_state
1863			      && !(dev->pme_support & (1 << target_state)))
1864				target_state--;
1865		}
1866	}
1867
1868	return target_state;
1869}
1870
1871/**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879int pci_prepare_to_sleep(struct pci_dev *dev)
1880{
1881	pci_power_t target_state = pci_target_state(dev);
 
1882	int error;
1883
1884	if (target_state == PCI_POWER_ERROR)
1885		return -EIO;
1886
1887	/* D3cold during system suspend/hibernate is not supported */
1888	if (target_state > PCI_D3hot)
1889		target_state = PCI_D3hot;
1890
1891	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892
1893	error = pci_set_power_state(dev, target_state);
1894
1895	if (error)
1896		pci_enable_wake(dev, target_state, false);
1897
1898	return error;
1899}
 
1900
1901/**
1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903 * @dev: Device to handle.
1904 *
1905 * Disable device's system wake-up capability and put it into D0.
1906 */
1907int pci_back_from_sleep(struct pci_dev *dev)
1908{
1909	pci_enable_wake(dev, PCI_D0, false);
1910	return pci_set_power_state(dev, PCI_D0);
1911}
 
1912
1913/**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920int pci_finish_runtime_suspend(struct pci_dev *dev)
1921{
1922	pci_power_t target_state = pci_target_state(dev);
1923	int error;
1924
 
1925	if (target_state == PCI_POWER_ERROR)
1926		return -EIO;
1927
1928	dev->runtime_d3cold = target_state == PCI_D3cold;
1929
1930	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932	error = pci_set_power_state(dev, target_state);
1933
1934	if (error) {
1935		__pci_enable_wake(dev, target_state, true, false);
1936		dev->runtime_d3cold = false;
1937	}
1938
1939	return error;
1940}
1941
1942/**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
1946 * Return true if the device itself is capable of generating wake-up events
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950bool pci_dev_run_wake(struct pci_dev *dev)
1951{
1952	struct pci_bus *bus = dev->bus;
1953
1954	if (device_run_wake(&dev->dev))
1955		return true;
1956
1957	if (!dev->pme_support)
 
1958		return false;
1959
 
 
 
1960	while (bus->parent) {
1961		struct pci_dev *bridge = bus->self;
1962
1963		if (device_run_wake(&bridge->dev))
1964			return true;
1965
1966		bus = bus->parent;
1967	}
1968
1969	/* We have reached the root bus. */
1970	if (bus->bridge)
1971		return device_run_wake(bus->bridge);
1972
1973	return false;
1974}
1975EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978{
1979	struct device *dev = &pdev->dev;
1980	struct device *parent = dev->parent;
1981
1982	if (parent)
1983		pm_runtime_get_sync(parent);
1984	pm_runtime_get_noresume(dev);
1985	/*
1986	 * pdev->current_state is set to PCI_D3cold during suspending,
1987	 * so wait until suspending completes
1988	 */
1989	pm_runtime_barrier(dev);
1990	/*
1991	 * Only need to resume devices in D3cold, because config
1992	 * registers are still accessible for devices suspended but
1993	 * not in D3cold.
1994	 */
1995	if (pdev->current_state == PCI_D3cold)
1996		pm_runtime_resume(dev);
1997}
1998
1999void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000{
2001	struct device *dev = &pdev->dev;
2002	struct device *parent = dev->parent;
2003
2004	pm_runtime_put(dev);
2005	if (parent)
2006		pm_runtime_put_sync(parent);
2007}
2008
2009/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013void pci_pm_init(struct pci_dev *dev)
2014{
2015	int pm;
2016	u16 pmc;
2017
2018	pm_runtime_forbid(&dev->dev);
2019	pm_runtime_set_active(&dev->dev);
2020	pm_runtime_enable(&dev->dev);
2021	device_enable_async_suspend(&dev->dev);
2022	dev->wakeup_prepared = false;
2023
2024	dev->pm_cap = 0;
2025	dev->pme_support = 0;
2026
2027	/* find PCI PM capability in list */
2028	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029	if (!pm)
2030		return;
2031	/* Check device's ability to generate PME# */
2032	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033
2034	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036			pmc & PCI_PM_CAP_VER_MASK);
2037		return;
2038	}
2039
2040	dev->pm_cap = pm;
2041	dev->d3_delay = PCI_PM_D3_WAIT;
2042	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
 
2043	dev->d3cold_allowed = true;
2044
2045	dev->d1_support = false;
2046	dev->d2_support = false;
2047	if (!pci_no_d1d2(dev)) {
2048		if (pmc & PCI_PM_CAP_D1)
2049			dev->d1_support = true;
2050		if (pmc & PCI_PM_CAP_D2)
2051			dev->d2_support = true;
2052
2053		if (dev->d1_support || dev->d2_support)
2054			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055				   dev->d1_support ? " D1" : "",
2056				   dev->d2_support ? " D2" : "");
2057	}
2058
2059	pmc &= PCI_PM_CAP_PME_MASK;
2060	if (pmc) {
2061		dev_printk(KERN_DEBUG, &dev->dev,
2062			 "PME# supported from%s%s%s%s%s\n",
2063			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069		dev->pme_poll = true;
2070		/*
2071		 * Make device's PM flags reflect the wake-up capability, but
2072		 * let the user space enable it to wake up the system as needed.
2073		 */
2074		device_set_wakeup_capable(&dev->dev, true);
2075		/* Disable the PME# generation functionality */
2076		pci_pme_active(dev, false);
2077	}
2078}
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081	struct pci_cap_saved_state *new_cap)
2082{
2083	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084}
2085
2086/**
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 *                            capability registers
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
2091 * @extended: Standard or Extended capability ID
2092 * @size: requested size of the buffer
2093 */
2094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095				    bool extended, unsigned int size)
2096{
2097	int pos;
2098	struct pci_cap_saved_state *save_state;
2099
2100	if (extended)
2101		pos = pci_find_ext_capability(dev, cap);
2102	else
2103		pos = pci_find_capability(dev, cap);
2104
2105	if (pos <= 0)
2106		return 0;
2107
2108	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109	if (!save_state)
2110		return -ENOMEM;
2111
2112	save_state->cap.cap_nr = cap;
2113	save_state->cap.cap_extended = extended;
2114	save_state->cap.size = size;
2115	pci_add_saved_cap(dev, save_state);
2116
2117	return 0;
2118}
2119
2120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121{
2122	return _pci_add_cap_save_buffer(dev, cap, false, size);
2123}
2124
2125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126{
2127	return _pci_add_cap_save_buffer(dev, cap, true, size);
2128}
2129
2130/**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135{
2136	int error;
2137
2138	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139					PCI_EXP_SAVE_REGS * sizeof(u16));
2140	if (error)
2141		dev_err(&dev->dev,
2142			"unable to preallocate PCI Express save buffer\n");
2143
2144	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145	if (error)
2146		dev_err(&dev->dev,
2147			"unable to preallocate PCI-X save buffer\n");
2148
2149	pci_allocate_vc_save_buffers(dev);
2150}
2151
2152void pci_free_cap_save_buffers(struct pci_dev *dev)
2153{
2154	struct pci_cap_saved_state *tmp;
2155	struct hlist_node *n;
2156
2157	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158		kfree(tmp);
2159}
2160
2161/**
2162 * pci_configure_ari - enable or disable ARI forwarding
2163 * @dev: the PCI device
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge.  Otherwise, disable ARI in the bridge.
2167 */
2168void pci_configure_ari(struct pci_dev *dev)
2169{
2170	u32 cap;
2171	struct pci_dev *bridge;
2172
2173	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174		return;
2175
2176	bridge = dev->bus->self;
2177	if (!bridge)
2178		return;
2179
2180	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2181	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182		return;
2183
2184	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186					 PCI_EXP_DEVCTL2_ARI);
2187		bridge->ari_enabled = 1;
2188	} else {
2189		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190					   PCI_EXP_DEVCTL2_ARI);
2191		bridge->ari_enabled = 0;
2192	}
2193}
2194
2195static int pci_acs_enable;
2196
2197/**
2198 * pci_request_acs - ask for ACS to be enabled if supported
2199 */
2200void pci_request_acs(void)
2201{
2202	pci_acs_enable = 1;
2203}
2204
2205/**
2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207 * @dev: the PCI device
2208 */
2209static int pci_std_enable_acs(struct pci_dev *dev)
2210{
2211	int pos;
2212	u16 cap;
2213	u16 ctrl;
2214
2215	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216	if (!pos)
2217		return -ENODEV;
2218
2219	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221
2222	/* Source Validation */
2223	ctrl |= (cap & PCI_ACS_SV);
2224
2225	/* P2P Request Redirect */
2226	ctrl |= (cap & PCI_ACS_RR);
2227
2228	/* P2P Completion Redirect */
2229	ctrl |= (cap & PCI_ACS_CR);
2230
2231	/* Upstream Forwarding */
2232	ctrl |= (cap & PCI_ACS_UF);
2233
2234	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2235
2236	return 0;
2237}
2238
2239/**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
2242 */
2243void pci_enable_acs(struct pci_dev *dev)
2244{
2245	if (!pci_acs_enable)
2246		return;
2247
2248	if (!pci_std_enable_acs(dev))
2249		return;
2250
2251	pci_dev_specific_enable_acs(dev);
2252}
2253
2254static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255{
2256	int pos;
2257	u16 cap, ctrl;
2258
2259	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260	if (!pos)
2261		return false;
2262
2263	/*
2264	 * Except for egress control, capabilities are either required
2265	 * or only required if controllable.  Features missing from the
2266	 * capability field can therefore be assumed as hard-wired enabled.
2267	 */
2268	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269	acs_flags &= (cap | PCI_ACS_EC);
2270
2271	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272	return (ctrl & acs_flags) == acs_flags;
2273}
2274
2275/**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags.  Automatically
2281 * filters out flags that are not implemented on multifunction devices.
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities.  For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access.  We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability.  This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
2290 */
2291bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292{
2293	int ret;
2294
2295	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296	if (ret >= 0)
2297		return ret > 0;
2298
2299	/*
2300	 * Conventional PCI and PCI-X devices never support ACS, either
2301	 * effectively or actually.  The shared bus topology implies that
2302	 * any device on the bus can receive or snoop DMA.
2303	 */
2304	if (!pci_is_pcie(pdev))
2305		return false;
2306
2307	switch (pci_pcie_type(pdev)) {
2308	/*
2309	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310	 * but since their primary interface is PCI/X, we conservatively
2311	 * handle them as we would a non-PCIe device.
2312	 */
2313	case PCI_EXP_TYPE_PCIE_BRIDGE:
2314	/*
2315	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2316	 * applicable... must never implement an ACS Extended Capability...".
2317	 * This seems arbitrary, but we take a conservative interpretation
2318	 * of this statement.
2319	 */
2320	case PCI_EXP_TYPE_PCI_BRIDGE:
2321	case PCI_EXP_TYPE_RC_EC:
2322		return false;
2323	/*
2324	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325	 * implement ACS in order to indicate their peer-to-peer capabilities,
2326	 * regardless of whether they are single- or multi-function devices.
2327	 */
2328	case PCI_EXP_TYPE_DOWNSTREAM:
2329	case PCI_EXP_TYPE_ROOT_PORT:
2330		return pci_acs_flags_enabled(pdev, acs_flags);
2331	/*
2332	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333	 * implemented by the remaining PCIe types to indicate peer-to-peer
2334	 * capabilities, but only when they are part of a multifunction
2335	 * device.  The footnote for section 6.12 indicates the specific
2336	 * PCIe types included here.
2337	 */
2338	case PCI_EXP_TYPE_ENDPOINT:
2339	case PCI_EXP_TYPE_UPSTREAM:
2340	case PCI_EXP_TYPE_LEG_END:
2341	case PCI_EXP_TYPE_RC_END:
2342		if (!pdev->multifunction)
2343			break;
2344
2345		return pci_acs_flags_enabled(pdev, acs_flags);
2346	}
2347
2348	/*
2349	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350	 * to single function devices with the exception of downstream ports.
2351	 */
2352	return true;
2353}
2354
2355/**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support.  If
2362 * any step along the way does not support the required flags, return false.
2363 */
2364bool pci_acs_path_enabled(struct pci_dev *start,
2365			  struct pci_dev *end, u16 acs_flags)
2366{
2367	struct pci_dev *pdev, *parent = start;
2368
2369	do {
2370		pdev = parent;
2371
2372		if (!pci_acs_enabled(pdev, acs_flags))
2373			return false;
2374
2375		if (pci_is_root_bus(pdev->bus))
2376			return (end == NULL);
2377
2378		parent = pdev->bus->self;
2379	} while (pdev != end);
2380
2381	return true;
2382}
2383
2384/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge.  This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
2394 */
2395u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396{
2397	int slot;
2398
2399	if (pci_ari_enabled(dev->bus))
2400		slot = 0;
2401	else
2402		slot = PCI_SLOT(dev->devfn);
2403
2404	return (((pin - 1) + slot) % 4) + 1;
2405}
2406
2407int
2408pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409{
2410	u8 pin;
2411
2412	pin = dev->pin;
2413	if (!pin)
2414		return -1;
2415
2416	while (!pci_is_root_bus(dev->bus)) {
2417		pin = pci_swizzle_interrupt_pin(dev, pin);
2418		dev = dev->bus->self;
2419	}
2420	*bridge = dev;
2421	return pin;
2422}
2423
2424/**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433{
2434	u8 pin = *pinp;
2435
2436	while (!pci_is_root_bus(dev->bus)) {
2437		pin = pci_swizzle_interrupt_pin(dev, pin);
2438		dev = dev->bus->self;
2439	}
2440	*pinp = pin;
2441	return PCI_SLOT(dev->devfn);
2442}
 
2443
2444/**
2445 *	pci_release_region - Release a PCI bar
2446 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2447 *	@bar: BAR to release
2448 *
2449 *	Releases the PCI I/O and memory resources previously reserved by a
2450 *	successful call to pci_request_region.  Call this function only
2451 *	after all use of the PCI regions has ceased.
2452 */
2453void pci_release_region(struct pci_dev *pdev, int bar)
2454{
2455	struct pci_devres *dr;
2456
2457	if (pci_resource_len(pdev, bar) == 0)
2458		return;
2459	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460		release_region(pci_resource_start(pdev, bar),
2461				pci_resource_len(pdev, bar));
2462	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463		release_mem_region(pci_resource_start(pdev, bar),
2464				pci_resource_len(pdev, bar));
2465
2466	dr = find_pci_dr(pdev);
2467	if (dr)
2468		dr->region_mask &= ~(1 << bar);
2469}
 
2470
2471/**
2472 *	__pci_request_region - Reserved PCI I/O and memory resource
2473 *	@pdev: PCI device whose resources are to be reserved
2474 *	@bar: BAR to be reserved
2475 *	@res_name: Name to be associated with resource.
2476 *	@exclusive: whether the region access is exclusive or not
2477 *
2478 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2479 *	being reserved by owner @res_name.  Do not access any
2480 *	address inside the PCI regions unless this call returns
2481 *	successfully.
2482 *
2483 *	If @exclusive is set, then the region is marked so that userspace
2484 *	is explicitly not allowed to map the resource via /dev/mem or
2485 *	sysfs MMIO access.
2486 *
2487 *	Returns 0 on success, or %EBUSY on error.  A warning
2488 *	message is also printed on failure.
2489 */
2490static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491									int exclusive)
2492{
2493	struct pci_devres *dr;
2494
2495	if (pci_resource_len(pdev, bar) == 0)
2496		return 0;
2497
2498	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499		if (!request_region(pci_resource_start(pdev, bar),
2500			    pci_resource_len(pdev, bar), res_name))
2501			goto err_out;
2502	}
2503	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504		if (!__request_mem_region(pci_resource_start(pdev, bar),
2505					pci_resource_len(pdev, bar), res_name,
2506					exclusive))
2507			goto err_out;
2508	}
2509
2510	dr = find_pci_dr(pdev);
2511	if (dr)
2512		dr->region_mask |= 1 << bar;
2513
2514	return 0;
2515
2516err_out:
2517	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518		 &pdev->resource[bar]);
2519	return -EBUSY;
2520}
2521
2522/**
2523 *	pci_request_region - Reserve PCI I/O and memory resource
2524 *	@pdev: PCI device whose resources are to be reserved
2525 *	@bar: BAR to be reserved
2526 *	@res_name: Name to be associated with resource
2527 *
2528 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2529 *	being reserved by owner @res_name.  Do not access any
2530 *	address inside the PCI regions unless this call returns
2531 *	successfully.
2532 *
2533 *	Returns 0 on success, or %EBUSY on error.  A warning
2534 *	message is also printed on failure.
2535 */
2536int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538	return __pci_request_region(pdev, bar, res_name, 0);
2539}
 
2540
2541/**
2542 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 *	@pdev: PCI device whose resources are to be reserved
2544 *	@bar: BAR to be reserved
2545 *	@res_name: Name to be associated with resource.
2546 *
2547 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2548 *	being reserved by owner @res_name.  Do not access any
2549 *	address inside the PCI regions unless this call returns
2550 *	successfully.
2551 *
2552 *	Returns 0 on success, or %EBUSY on error.  A warning
2553 *	message is also printed on failure.
2554 *
2555 *	The key difference that _exclusive makes it that userspace is
2556 *	explicitly not allowed to map the resource via /dev/mem or
2557 *	sysfs.
2558 */
2559int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
 
2560{
2561	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562}
 
 
2563/**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572{
2573	int i;
2574
2575	for (i = 0; i < 6; i++)
2576		if (bars & (1 << i))
2577			pci_release_region(pdev, i);
2578}
 
2579
2580static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581				 const char *res_name, int excl)
2582{
2583	int i;
2584
2585	for (i = 0; i < 6; i++)
2586		if (bars & (1 << i))
2587			if (__pci_request_region(pdev, i, res_name, excl))
2588				goto err_out;
2589	return 0;
2590
2591err_out:
2592	while(--i >= 0)
2593		if (bars & (1 << i))
2594			pci_release_region(pdev, i);
2595
2596	return -EBUSY;
2597}
2598
2599
2600/**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607				 const char *res_name)
2608{
2609	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610}
 
2611
2612int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613				 int bars, const char *res_name)
2614{
2615	return __pci_request_selected_regions(pdev, bars, res_name,
2616			IORESOURCE_EXCLUSIVE);
2617}
 
2618
2619/**
2620 *	pci_release_regions - Release reserved PCI I/O and memory resources
2621 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 *	Releases all PCI I/O and memory resources previously reserved by a
2624 *	successful call to pci_request_regions.  Call this function only
2625 *	after all use of the PCI regions has ceased.
2626 */
2627
2628void pci_release_regions(struct pci_dev *pdev)
2629{
2630	pci_release_selected_regions(pdev, (1 << 6) - 1);
2631}
 
2632
2633/**
2634 *	pci_request_regions - Reserved PCI I/O and memory resources
2635 *	@pdev: PCI device whose resources are to be reserved
2636 *	@res_name: Name to be associated with resource.
2637 *
2638 *	Mark all PCI regions associated with PCI device @pdev as
2639 *	being reserved by owner @res_name.  Do not access any
2640 *	address inside the PCI regions unless this call returns
2641 *	successfully.
2642 *
2643 *	Returns 0 on success, or %EBUSY on error.  A warning
2644 *	message is also printed on failure.
2645 */
2646int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647{
2648	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649}
 
2650
2651/**
2652 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 *	@pdev: PCI device whose resources are to be reserved
2654 *	@res_name: Name to be associated with resource.
2655 *
2656 *	Mark all PCI regions associated with PCI device @pdev as
2657 *	being reserved by owner @res_name.  Do not access any
2658 *	address inside the PCI regions unless this call returns
2659 *	successfully.
2660 *
2661 *	pci_request_regions_exclusive() will mark the region so that
2662 *	/dev/mem and the sysfs MMIO access will not be allowed.
2663 *
2664 *	Returns 0 on success, or %EBUSY on error.  A warning
2665 *	message is also printed on failure.
2666 */
2667int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668{
2669	return pci_request_selected_regions_exclusive(pdev,
2670					((1 << 6) - 1), res_name);
2671}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2672
2673static void __pci_set_master(struct pci_dev *dev, bool enable)
2674{
2675	u16 old_cmd, cmd;
2676
2677	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678	if (enable)
2679		cmd = old_cmd | PCI_COMMAND_MASTER;
2680	else
2681		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682	if (cmd != old_cmd) {
2683		dev_dbg(&dev->dev, "%s bus mastering\n",
2684			enable ? "enabling" : "disabling");
2685		pci_write_config_word(dev, PCI_COMMAND, cmd);
2686	}
2687	dev->is_busmaster = enable;
2688}
2689
2690/**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments.  This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697char * __weak __init pcibios_setup(char *str)
2698{
2699	return str;
2700}
2701
2702/**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device.  This is the default
2707 * implementation.  Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710void __weak pcibios_set_master(struct pci_dev *dev)
2711{
2712	u8 lat;
2713
2714	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715	if (pci_is_pcie(dev))
2716		return;
2717
2718	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719	if (lat < 16)
2720		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721	else if (lat > pcibios_max_latency)
2722		lat = pcibios_max_latency;
2723	else
2724		return;
2725
2726	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727}
2728
2729/**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
2736void pci_set_master(struct pci_dev *dev)
2737{
2738	__pci_set_master(dev, true);
2739	pcibios_set_master(dev);
2740}
 
2741
2742/**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746void pci_clear_master(struct pci_dev *dev)
2747{
2748	__pci_set_master(dev, false);
2749}
 
2750
2751/**
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
2754 *
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
2761int pci_set_cacheline_size(struct pci_dev *dev)
2762{
2763	u8 cacheline_size;
2764
2765	if (!pci_cache_line_size)
2766		return -EINVAL;
2767
2768	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769	   equal to or multiple of the right value. */
2770	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771	if (cacheline_size >= pci_cache_line_size &&
2772	    (cacheline_size % pci_cache_line_size) == 0)
2773		return 0;
2774
2775	/* Write the correct value. */
2776	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777	/* Read it back. */
2778	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779	if (cacheline_size == pci_cache_line_size)
2780		return 0;
2781
2782	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783		   "supported\n", pci_cache_line_size << 2);
2784
2785	return -EINVAL;
2786}
2787EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789#ifdef PCI_DISABLE_MWI
2790int pci_set_mwi(struct pci_dev *dev)
2791{
2792	return 0;
2793}
2794
2795int pci_try_set_mwi(struct pci_dev *dev)
2796{
2797	return 0;
2798}
2799
2800void pci_clear_mwi(struct pci_dev *dev)
2801{
2802}
2803
2804#else
2805
2806/**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814int
2815pci_set_mwi(struct pci_dev *dev)
2816{
 
 
 
2817	int rc;
2818	u16 cmd;
2819
2820	rc = pci_set_cacheline_size(dev);
2821	if (rc)
2822		return rc;
2823
2824	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827		cmd |= PCI_COMMAND_INVALIDATE;
2828		pci_write_config_word(dev, PCI_COMMAND, cmd);
2829	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830
2831	return 0;
 
2832}
 
2833
2834/**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843int pci_try_set_mwi(struct pci_dev *dev)
2844{
2845	int rc = pci_set_mwi(dev);
2846	return rc;
 
 
 
2847}
 
2848
2849/**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855void
2856pci_clear_mwi(struct pci_dev *dev)
2857{
 
2858	u16 cmd;
2859
2860	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861	if (cmd & PCI_COMMAND_INVALIDATE) {
2862		cmd &= ~PCI_COMMAND_INVALIDATE;
2863		pci_write_config_word(dev, PCI_COMMAND, cmd);
2864	}
 
2865}
2866#endif /* ! PCI_DISABLE_MWI */
2867
2868/**
2869 * pci_intx - enables/disables PCI INTx for device dev
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875void
2876pci_intx(struct pci_dev *pdev, int enable)
2877{
2878	u16 pci_command, new;
2879
2880	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882	if (enable) {
2883		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884	} else {
2885		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886	}
2887
2888	if (new != pci_command) {
2889		struct pci_devres *dr;
2890
2891		pci_write_config_word(pdev, PCI_COMMAND, new);
2892
2893		dr = find_pci_dr(pdev);
2894		if (dr && !dr->restore_intx) {
2895			dr->restore_intx = 1;
2896			dr->orig_intx = !enable;
2897		}
2898	}
2899}
2900
2901/**
2902 * pci_intx_mask_supported - probe for INTx masking support
2903 * @dev: the PCI device to operate on
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908bool pci_intx_mask_supported(struct pci_dev *dev)
2909{
2910	bool mask_supported = false;
2911	u16 orig, new;
2912
2913	if (dev->broken_intx_masking)
2914		return false;
2915
2916	pci_cfg_access_lock(dev);
2917
2918	pci_read_config_word(dev, PCI_COMMAND, &orig);
2919	pci_write_config_word(dev, PCI_COMMAND,
2920			      orig ^ PCI_COMMAND_INTX_DISABLE);
2921	pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923	/*
2924	 * There's no way to protect against hardware bugs or detect them
2925	 * reliably, but as long as we know what the value should be, let's
2926	 * go ahead and check it.
2927	 */
2928	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929		dev_err(&dev->dev, "Command register changed from "
2930			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932		mask_supported = true;
2933		pci_write_config_word(dev, PCI_COMMAND, orig);
2934	}
2935
2936	pci_cfg_access_unlock(dev);
2937	return mask_supported;
2938}
2939EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942{
2943	struct pci_bus *bus = dev->bus;
2944	bool mask_updated = true;
2945	u32 cmd_status_dword;
2946	u16 origcmd, newcmd;
2947	unsigned long flags;
2948	bool irq_pending;
2949
2950	/*
2951	 * We do a single dword read to retrieve both command and status.
2952	 * Document assumptions that make this possible.
2953	 */
2954	BUILD_BUG_ON(PCI_COMMAND % 4);
2955	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957	raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963	/*
2964	 * Check interrupt status register to see whether our device
2965	 * triggered the interrupt (when masking) or the next IRQ is
2966	 * already pending (when unmasking).
2967	 */
2968	if (mask != irq_pending) {
2969		mask_updated = false;
2970		goto done;
2971	}
2972
2973	origcmd = cmd_status_dword;
2974	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975	if (mask)
2976		newcmd |= PCI_COMMAND_INTX_DISABLE;
2977	if (newcmd != origcmd)
2978		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980done:
2981	raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983	return mask_updated;
2984}
2985
2986/**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994bool pci_check_and_mask_intx(struct pci_dev *dev)
2995{
2996	return pci_check_and_set_intx_mask(dev, true);
2997}
2998EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000/**
3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002 * @dev: the PCI device to operate on
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009{
3010	return pci_check_and_set_intx_mask(dev, false);
3011}
3012EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
3014/**
3015 * pci_msi_off - disables any MSI or MSI-X capabilities
3016 * @dev: the PCI device to operate on
3017 *
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
3021 */
3022void pci_msi_off(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
3023{
3024	int pos;
3025	u16 control;
3026
3027	/*
3028	 * This looks like it could go in msi.c, but we need it even when
3029	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3030	 * dev->msi_cap or dev->msix_cap here.
 
 
 
 
 
 
 
3031	 */
3032	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033	if (pos) {
3034		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035		control &= ~PCI_MSI_FLAGS_ENABLE;
3036		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037	}
3038	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039	if (pos) {
3040		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041		control &= ~PCI_MSIX_FLAGS_ENABLE;
3042		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
 
 
 
 
3043	}
3044}
3045EXPORT_SYMBOL_GPL(pci_msi_off);
3046
3047int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048{
3049	return dma_set_max_seg_size(&dev->dev, size);
3050}
3051EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052
3053int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054{
3055	return dma_set_seg_boundary(&dev->dev, mask);
3056}
3057EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058
3059/**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
 
3064 */
3065int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066{
3067	if (!pci_is_pcie(dev))
3068		return 1;
 
 
3069
3070	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3071				    PCI_EXP_DEVSTA_TRPND);
3072}
3073EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3074
3075static int pcie_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
3076{
3077	u32 cap;
3078
3079	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3080	if (!(cap & PCI_EXP_DEVCAP_FLR))
3081		return -ENOTTY;
3082
3083	if (probe)
3084		return 0;
3085
3086	if (!pci_wait_for_pending_transaction(dev))
3087		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3088
3089	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3090
 
 
 
 
 
3091	msleep(100);
3092
3093	return 0;
3094}
 
3095
3096static int pci_af_flr(struct pci_dev *dev, int probe)
3097{
3098	int pos;
3099	u8 cap;
3100
3101	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3102	if (!pos)
3103		return -ENOTTY;
3104
 
 
 
3105	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3106	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3107		return -ENOTTY;
3108
3109	if (probe)
3110		return 0;
3111
3112	/* Wait for Transaction Pending bit clean */
3113	if (pci_wait_for_pending(dev, pos + PCI_AF_STATUS, PCI_AF_STATUS_TP))
3114		goto clear;
 
 
 
 
 
3115
3116	dev_err(&dev->dev, "transaction is not cleared; "
3117			"proceeding with reset anyway\n");
3118
3119clear:
3120	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
 
 
 
 
3121	msleep(100);
3122
3123	return 0;
3124}
3125
3126/**
3127 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3128 * @dev: Device to reset.
3129 * @probe: If set, only check if the device can be reset this way.
3130 *
3131 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3132 * unset, it will be reinitialized internally when going from PCI_D3hot to
3133 * PCI_D0.  If that's the case and the device is not in a low-power state
3134 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3135 *
3136 * NOTE: This causes the caller to sleep for twice the device power transition
3137 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3138 * by default (i.e. unless the @dev's d3_delay field has a different value).
3139 * Moreover, only devices in D0 can be reset by this function.
3140 */
3141static int pci_pm_reset(struct pci_dev *dev, int probe)
3142{
3143	u16 csr;
3144
3145	if (!dev->pm_cap)
3146		return -ENOTTY;
3147
3148	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3149	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3150		return -ENOTTY;
3151
3152	if (probe)
3153		return 0;
3154
3155	if (dev->current_state != PCI_D0)
3156		return -EINVAL;
3157
3158	csr &= ~PCI_PM_CTRL_STATE_MASK;
3159	csr |= PCI_D3hot;
3160	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3161	pci_dev_d3_sleep(dev);
3162
3163	csr &= ~PCI_PM_CTRL_STATE_MASK;
3164	csr |= PCI_D0;
3165	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3166	pci_dev_d3_sleep(dev);
3167
3168	return 0;
3169}
3170
3171/**
3172 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3173 * @dev: Bridge device
3174 *
3175 * Use the bridge control register to assert reset on the secondary bus.
3176 * Devices on the secondary bus are left in power-on state.
3177 */
3178void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3179{
3180	u16 ctrl;
3181
3182	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3183	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3184	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
3185	/*
3186	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3187	 * this to 2ms to ensure that we meet the minimum requirement.
3188	 */
3189	msleep(2);
3190
3191	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3192	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3193
3194	/*
3195	 * Trhfa for conventional PCI is 2^25 clock cycles.
3196	 * Assuming a minimum 33MHz clock this results in a 1s
3197	 * delay before we can consider subordinate devices to
3198	 * be re-initialized.  PCIe has some ways to shorten this,
3199	 * but we don't make use of them yet.
3200	 */
3201	ssleep(1);
3202}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3204
3205static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206{
3207	struct pci_dev *pdev;
3208
3209	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
 
3210		return -ENOTTY;
3211
3212	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3213		if (pdev != dev)
3214			return -ENOTTY;
3215
3216	if (probe)
3217		return 0;
3218
3219	pci_reset_bridge_secondary_bus(dev->bus->self);
3220
3221	return 0;
3222}
3223
3224static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3225{
3226	int rc = -ENOTTY;
3227
3228	if (!hotplug || !try_module_get(hotplug->ops->owner))
3229		return rc;
3230
3231	if (hotplug->ops->reset_slot)
3232		rc = hotplug->ops->reset_slot(hotplug, probe);
3233
3234	module_put(hotplug->ops->owner);
3235
3236	return rc;
3237}
3238
3239static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3240{
3241	struct pci_dev *pdev;
3242
3243	if (dev->subordinate || !dev->slot)
 
3244		return -ENOTTY;
3245
3246	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3247		if (pdev != dev && pdev->slot == dev->slot)
3248			return -ENOTTY;
3249
3250	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3251}
3252
3253static int __pci_dev_reset(struct pci_dev *dev, int probe)
3254{
3255	int rc;
3256
3257	might_sleep();
3258
3259	rc = pci_dev_specific_reset(dev, probe);
3260	if (rc != -ENOTTY)
3261		goto done;
3262
3263	rc = pcie_flr(dev, probe);
3264	if (rc != -ENOTTY)
3265		goto done;
3266
3267	rc = pci_af_flr(dev, probe);
3268	if (rc != -ENOTTY)
3269		goto done;
3270
3271	rc = pci_pm_reset(dev, probe);
3272	if (rc != -ENOTTY)
3273		goto done;
3274
3275	rc = pci_dev_reset_slot_function(dev, probe);
3276	if (rc != -ENOTTY)
3277		goto done;
3278
3279	rc = pci_parent_bus_reset(dev, probe);
3280done:
3281	return rc;
3282}
3283
3284static void pci_dev_lock(struct pci_dev *dev)
3285{
3286	pci_cfg_access_lock(dev);
3287	/* block PM suspend, driver probe, etc. */
3288	device_lock(&dev->dev);
3289}
3290
3291/* Return 1 on successful lock, 0 on contention */
3292static int pci_dev_trylock(struct pci_dev *dev)
3293{
3294	if (pci_cfg_access_trylock(dev)) {
3295		if (device_trylock(&dev->dev))
3296			return 1;
3297		pci_cfg_access_unlock(dev);
3298	}
3299
3300	return 0;
3301}
3302
3303static void pci_dev_unlock(struct pci_dev *dev)
3304{
3305	device_unlock(&dev->dev);
3306	pci_cfg_access_unlock(dev);
3307}
3308
3309static void pci_dev_save_and_disable(struct pci_dev *dev)
3310{
 
 
 
 
 
 
 
 
 
 
 
3311	/*
3312	 * Wake-up device prior to save.  PM registers default to D0 after
3313	 * reset and a simple register restore doesn't reliably return
3314	 * to a non-D0 state anyway.
3315	 */
3316	pci_set_power_state(dev, PCI_D0);
3317
3318	pci_save_state(dev);
3319	/*
3320	 * Disable the device by clearing the Command register, except for
3321	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3322	 * BARs, but also prevents the device from being Bus Master, preventing
3323	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3324	 * compliant devices, INTx-disable prevents legacy interrupts.
3325	 */
3326	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3327}
3328
3329static void pci_dev_restore(struct pci_dev *dev)
3330{
 
 
 
3331	pci_restore_state(dev);
3332}
3333
3334static int pci_dev_reset(struct pci_dev *dev, int probe)
3335{
3336	int rc;
3337
3338	if (!probe)
3339		pci_dev_lock(dev);
3340
3341	rc = __pci_dev_reset(dev, probe);
3342
3343	if (!probe)
3344		pci_dev_unlock(dev);
3345
3346	return rc;
3347}
3348/**
3349 * __pci_reset_function - reset a PCI device function
3350 * @dev: PCI device to reset
3351 *
3352 * Some devices allow an individual function to be reset without affecting
3353 * other functions in the same device.  The PCI device must be responsive
3354 * to PCI config space in order to use this function.
3355 *
3356 * The device function is presumed to be unused when this function is called.
3357 * Resetting the device will make the contents of PCI configuration space
3358 * random, so any caller of this must be prepared to reinitialise the
3359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3360 * etc.
3361 *
3362 * Returns 0 if the device function was successfully reset or negative if the
3363 * device doesn't support resetting a single function.
3364 */
3365int __pci_reset_function(struct pci_dev *dev)
3366{
3367	return pci_dev_reset(dev, 0);
3368}
3369EXPORT_SYMBOL_GPL(__pci_reset_function);
3370
3371/**
3372 * __pci_reset_function_locked - reset a PCI device function while holding
3373 * the @dev mutex lock.
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device.  The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused and the caller is holding
3381 * the device mutex lock when this function is called.
3382 * Resetting the device will make the contents of PCI configuration space
3383 * random, so any caller of this must be prepared to reinitialise the
3384 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3385 * etc.
3386 *
3387 * Returns 0 if the device function was successfully reset or negative if the
3388 * device doesn't support resetting a single function.
3389 */
3390int __pci_reset_function_locked(struct pci_dev *dev)
3391{
3392	return __pci_dev_reset(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3393}
3394EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3395
3396/**
3397 * pci_probe_reset_function - check whether the device can be safely reset
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device.  The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * Returns 0 if the device function can be reset or negative if the
3405 * device doesn't support resetting a single function.
3406 */
3407int pci_probe_reset_function(struct pci_dev *dev)
3408{
3409	return pci_dev_reset(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410}
3411
3412/**
3413 * pci_reset_function - quiesce and reset a PCI device function
3414 * @dev: PCI device to reset
3415 *
3416 * Some devices allow an individual function to be reset without affecting
3417 * other functions in the same device.  The PCI device must be responsive
3418 * to PCI config space in order to use this function.
3419 *
3420 * This function does not just reset the PCI portion of a device, but
3421 * clears all the state associated with the device.  This function differs
3422 * from __pci_reset_function in that it saves and restores device state
3423 * over the reset.
3424 *
3425 * Returns 0 if the device function was successfully reset or negative if the
3426 * device doesn't support resetting a single function.
3427 */
3428int pci_reset_function(struct pci_dev *dev)
3429{
3430	int rc;
3431
3432	rc = pci_dev_reset(dev, 1);
3433	if (rc)
3434		return rc;
3435
 
3436	pci_dev_save_and_disable(dev);
3437
3438	rc = pci_dev_reset(dev, 0);
3439
3440	pci_dev_restore(dev);
 
3441
3442	return rc;
3443}
3444EXPORT_SYMBOL_GPL(pci_reset_function);
3445
3446/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3447 * pci_try_reset_function - quiesce and reset a PCI device function
3448 * @dev: PCI device to reset
3449 *
3450 * Same as above, except return -EAGAIN if unable to lock device.
3451 */
3452int pci_try_reset_function(struct pci_dev *dev)
3453{
3454	int rc;
3455
3456	rc = pci_dev_reset(dev, 1);
3457	if (rc)
3458		return rc;
 
 
3459
3460	pci_dev_save_and_disable(dev);
3461
3462	if (pci_dev_trylock(dev)) {
3463		rc = __pci_dev_reset(dev, 0);
3464		pci_dev_unlock(dev);
3465	} else
3466		rc = -EAGAIN;
3467
3468	pci_dev_restore(dev);
 
3469
3470	return rc;
3471}
3472EXPORT_SYMBOL_GPL(pci_try_reset_function);
3473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3474/* Lock devices from the top of the tree down */
3475static void pci_bus_lock(struct pci_bus *bus)
3476{
3477	struct pci_dev *dev;
3478
3479	list_for_each_entry(dev, &bus->devices, bus_list) {
3480		pci_dev_lock(dev);
3481		if (dev->subordinate)
3482			pci_bus_lock(dev->subordinate);
3483	}
3484}
3485
3486/* Unlock devices from the bottom of the tree up */
3487static void pci_bus_unlock(struct pci_bus *bus)
3488{
3489	struct pci_dev *dev;
3490
3491	list_for_each_entry(dev, &bus->devices, bus_list) {
3492		if (dev->subordinate)
3493			pci_bus_unlock(dev->subordinate);
3494		pci_dev_unlock(dev);
3495	}
3496}
3497
3498/* Return 1 on successful lock, 0 on contention */
3499static int pci_bus_trylock(struct pci_bus *bus)
3500{
3501	struct pci_dev *dev;
3502
3503	list_for_each_entry(dev, &bus->devices, bus_list) {
3504		if (!pci_dev_trylock(dev))
3505			goto unlock;
3506		if (dev->subordinate) {
3507			if (!pci_bus_trylock(dev->subordinate)) {
3508				pci_dev_unlock(dev);
3509				goto unlock;
3510			}
3511		}
3512	}
3513	return 1;
3514
3515unlock:
3516	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3517		if (dev->subordinate)
3518			pci_bus_unlock(dev->subordinate);
3519		pci_dev_unlock(dev);
3520	}
3521	return 0;
3522}
3523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524/* Lock devices from the top of the tree down */
3525static void pci_slot_lock(struct pci_slot *slot)
3526{
3527	struct pci_dev *dev;
3528
3529	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3530		if (!dev->slot || dev->slot != slot)
3531			continue;
3532		pci_dev_lock(dev);
3533		if (dev->subordinate)
3534			pci_bus_lock(dev->subordinate);
3535	}
3536}
3537
3538/* Unlock devices from the bottom of the tree up */
3539static void pci_slot_unlock(struct pci_slot *slot)
3540{
3541	struct pci_dev *dev;
3542
3543	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3544		if (!dev->slot || dev->slot != slot)
3545			continue;
3546		if (dev->subordinate)
3547			pci_bus_unlock(dev->subordinate);
3548		pci_dev_unlock(dev);
3549	}
3550}
3551
3552/* Return 1 on successful lock, 0 on contention */
3553static int pci_slot_trylock(struct pci_slot *slot)
3554{
3555	struct pci_dev *dev;
3556
3557	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3558		if (!dev->slot || dev->slot != slot)
3559			continue;
3560		if (!pci_dev_trylock(dev))
3561			goto unlock;
3562		if (dev->subordinate) {
3563			if (!pci_bus_trylock(dev->subordinate)) {
3564				pci_dev_unlock(dev);
3565				goto unlock;
3566			}
3567		}
3568	}
3569	return 1;
3570
3571unlock:
3572	list_for_each_entry_continue_reverse(dev,
3573					     &slot->bus->devices, bus_list) {
3574		if (!dev->slot || dev->slot != slot)
3575			continue;
3576		if (dev->subordinate)
3577			pci_bus_unlock(dev->subordinate);
3578		pci_dev_unlock(dev);
3579	}
3580	return 0;
3581}
3582
3583/* Save and disable devices from the top of the tree down */
3584static void pci_bus_save_and_disable(struct pci_bus *bus)
3585{
3586	struct pci_dev *dev;
3587
3588	list_for_each_entry(dev, &bus->devices, bus_list) {
 
3589		pci_dev_save_and_disable(dev);
 
3590		if (dev->subordinate)
3591			pci_bus_save_and_disable(dev->subordinate);
3592	}
3593}
3594
3595/*
3596 * Restore devices from top of the tree down - parent bridges need to be
3597 * restored before we can get to subordinate devices.
3598 */
3599static void pci_bus_restore(struct pci_bus *bus)
3600{
3601	struct pci_dev *dev;
3602
3603	list_for_each_entry(dev, &bus->devices, bus_list) {
 
3604		pci_dev_restore(dev);
 
3605		if (dev->subordinate)
3606			pci_bus_restore(dev->subordinate);
3607	}
3608}
3609
3610/* Save and disable devices from the top of the tree down */
3611static void pci_slot_save_and_disable(struct pci_slot *slot)
3612{
3613	struct pci_dev *dev;
3614
3615	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3616		if (!dev->slot || dev->slot != slot)
3617			continue;
3618		pci_dev_save_and_disable(dev);
3619		if (dev->subordinate)
3620			pci_bus_save_and_disable(dev->subordinate);
3621	}
3622}
3623
3624/*
3625 * Restore devices from top of the tree down - parent bridges need to be
3626 * restored before we can get to subordinate devices.
3627 */
3628static void pci_slot_restore(struct pci_slot *slot)
3629{
3630	struct pci_dev *dev;
3631
3632	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633		if (!dev->slot || dev->slot != slot)
3634			continue;
 
3635		pci_dev_restore(dev);
 
3636		if (dev->subordinate)
3637			pci_bus_restore(dev->subordinate);
3638	}
3639}
3640
3641static int pci_slot_reset(struct pci_slot *slot, int probe)
3642{
3643	int rc;
3644
3645	if (!slot)
3646		return -ENOTTY;
3647
3648	if (!probe)
3649		pci_slot_lock(slot);
3650
3651	might_sleep();
3652
3653	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3654
3655	if (!probe)
3656		pci_slot_unlock(slot);
3657
3658	return rc;
3659}
3660
3661/**
3662 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3663 * @slot: PCI slot to probe
3664 *
3665 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3666 */
3667int pci_probe_reset_slot(struct pci_slot *slot)
3668{
3669	return pci_slot_reset(slot, 1);
3670}
3671EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3672
3673/**
3674 * pci_reset_slot - reset a PCI slot
3675 * @slot: PCI slot to reset
3676 *
3677 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3678 * independent of other slots.  For instance, some slots may support slot power
3679 * control.  In the case of a 1:1 bus to slot architecture, this function may
3680 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3681 * Generally a slot reset should be attempted before a bus reset.  All of the
3682 * function of the slot and any subordinate buses behind the slot are reset
3683 * through this function.  PCI config space of all devices in the slot and
3684 * behind the slot is saved before and restored after reset.
3685 *
3686 * Return 0 on success, non-zero on error.
3687 */
3688int pci_reset_slot(struct pci_slot *slot)
3689{
3690	int rc;
3691
3692	rc = pci_slot_reset(slot, 1);
3693	if (rc)
3694		return rc;
3695
3696	pci_slot_save_and_disable(slot);
3697
3698	rc = pci_slot_reset(slot, 0);
3699
3700	pci_slot_restore(slot);
3701
3702	return rc;
3703}
3704EXPORT_SYMBOL_GPL(pci_reset_slot);
3705
3706/**
3707 * pci_try_reset_slot - Try to reset a PCI slot
3708 * @slot: PCI slot to reset
3709 *
3710 * Same as above except return -EAGAIN if the slot cannot be locked
3711 */
3712int pci_try_reset_slot(struct pci_slot *slot)
3713{
3714	int rc;
3715
3716	rc = pci_slot_reset(slot, 1);
3717	if (rc)
3718		return rc;
3719
3720	pci_slot_save_and_disable(slot);
3721
3722	if (pci_slot_trylock(slot)) {
3723		might_sleep();
3724		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3725		pci_slot_unlock(slot);
3726	} else
3727		rc = -EAGAIN;
3728
3729	pci_slot_restore(slot);
3730
3731	return rc;
3732}
3733EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3734
3735static int pci_bus_reset(struct pci_bus *bus, int probe)
3736{
3737	if (!bus->self)
3738		return -ENOTTY;
3739
3740	if (probe)
3741		return 0;
3742
3743	pci_bus_lock(bus);
3744
3745	might_sleep();
3746
3747	pci_reset_bridge_secondary_bus(bus->self);
3748
3749	pci_bus_unlock(bus);
3750
3751	return 0;
3752}
3753
3754/**
3755 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3756 * @bus: PCI bus to probe
3757 *
3758 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3759 */
3760int pci_probe_reset_bus(struct pci_bus *bus)
3761{
3762	return pci_bus_reset(bus, 1);
3763}
3764EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3765
3766/**
3767 * pci_reset_bus - reset a PCI bus
3768 * @bus: top level PCI bus to reset
3769 *
3770 * Do a bus reset on the given bus and any subordinate buses, saving
3771 * and restoring state of all devices.
3772 *
3773 * Return 0 on success, non-zero on error.
3774 */
3775int pci_reset_bus(struct pci_bus *bus)
3776{
3777	int rc;
3778
3779	rc = pci_bus_reset(bus, 1);
3780	if (rc)
3781		return rc;
3782
3783	pci_bus_save_and_disable(bus);
3784
3785	rc = pci_bus_reset(bus, 0);
3786
3787	pci_bus_restore(bus);
3788
3789	return rc;
3790}
3791EXPORT_SYMBOL_GPL(pci_reset_bus);
3792
3793/**
3794 * pci_try_reset_bus - Try to reset a PCI bus
3795 * @bus: top level PCI bus to reset
3796 *
3797 * Same as above except return -EAGAIN if the bus cannot be locked
3798 */
3799int pci_try_reset_bus(struct pci_bus *bus)
3800{
3801	int rc;
3802
3803	rc = pci_bus_reset(bus, 1);
3804	if (rc)
3805		return rc;
3806
3807	pci_bus_save_and_disable(bus);
3808
3809	if (pci_bus_trylock(bus)) {
3810		might_sleep();
3811		pci_reset_bridge_secondary_bus(bus->self);
3812		pci_bus_unlock(bus);
3813	} else
3814		rc = -EAGAIN;
3815
3816	pci_bus_restore(bus);
3817
3818	return rc;
3819}
3820EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3821
3822/**
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3825 *
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 *    or appropriate error value.
3828 */
3829int pcix_get_max_mmrbc(struct pci_dev *dev)
3830{
3831	int cap;
3832	u32 stat;
3833
3834	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835	if (!cap)
3836		return -EINVAL;
3837
3838	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839		return -EINVAL;
3840
3841	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3842}
3843EXPORT_SYMBOL(pcix_get_max_mmrbc);
3844
3845/**
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3848 *
3849 * Returns mmrbc: maximum memory read count in bytes
3850 *    or appropriate error value.
3851 */
3852int pcix_get_mmrbc(struct pci_dev *dev)
3853{
3854	int cap;
3855	u16 cmd;
3856
3857	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858	if (!cap)
3859		return -EINVAL;
3860
3861	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862		return -EINVAL;
3863
3864	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3865}
3866EXPORT_SYMBOL(pcix_get_mmrbc);
3867
3868/**
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 *    valid values are 512, 1024, 2048, 4096
3873 *
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3876 */
3877int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3878{
3879	int cap;
3880	u32 stat, v, o;
3881	u16 cmd;
3882
3883	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884		return -EINVAL;
3885
3886	v = ffs(mmrbc) - 10;
3887
3888	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889	if (!cap)
3890		return -EINVAL;
3891
3892	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893		return -EINVAL;
3894
3895	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896		return -E2BIG;
3897
3898	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899		return -EINVAL;
3900
3901	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902	if (o != v) {
3903		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3904			return -EIO;
3905
3906		cmd &= ~PCI_X_CMD_MAX_READ;
3907		cmd |= v << 2;
3908		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909			return -EIO;
3910	}
3911	return 0;
3912}
3913EXPORT_SYMBOL(pcix_set_mmrbc);
3914
3915/**
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3918 *
3919 * Returns maximum memory read request in bytes
3920 *    or appropriate error value.
3921 */
3922int pcie_get_readrq(struct pci_dev *dev)
3923{
3924	u16 ctl;
3925
3926	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3927
3928	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3929}
3930EXPORT_SYMBOL(pcie_get_readrq);
3931
3932/**
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 *    valid values are 128, 256, 512, 1024, 2048, 4096
3937 *
3938 * If possible sets maximum memory read request in bytes
3939 */
3940int pcie_set_readrq(struct pci_dev *dev, int rq)
3941{
3942	u16 v;
3943
3944	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945		return -EINVAL;
3946
3947	/*
3948	 * If using the "performance" PCIe config, we clamp the
3949	 * read rq size to the max packet size to prevent the
3950	 * host bridge generating requests larger than we can
3951	 * cope with
3952	 */
3953	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954		int mps = pcie_get_mps(dev);
3955
3956		if (mps < rq)
3957			rq = mps;
3958	}
3959
3960	v = (ffs(rq) - 8) << 12;
3961
3962	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963						  PCI_EXP_DEVCTL_READRQ, v);
3964}
3965EXPORT_SYMBOL(pcie_set_readrq);
3966
3967/**
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3970 *
3971 * Returns maximum payload size in bytes
3972 */
3973int pcie_get_mps(struct pci_dev *dev)
3974{
3975	u16 ctl;
3976
3977	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3978
3979	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3980}
3981EXPORT_SYMBOL(pcie_get_mps);
3982
3983/**
3984 * pcie_set_mps - set PCI Express maximum payload size
3985 * @dev: PCI device to query
3986 * @mps: maximum payload size in bytes
3987 *    valid values are 128, 256, 512, 1024, 2048, 4096
3988 *
3989 * If possible sets maximum payload size
3990 */
3991int pcie_set_mps(struct pci_dev *dev, int mps)
3992{
3993	u16 v;
3994
3995	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3996		return -EINVAL;
3997
3998	v = ffs(mps) - 8;
3999	if (v > dev->pcie_mpss)
4000		return -EINVAL;
4001	v <<= 5;
4002
4003	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4004						  PCI_EXP_DEVCTL_PAYLOAD, v);
4005}
4006EXPORT_SYMBOL(pcie_set_mps);
4007
4008/**
4009 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4010 * @dev: PCI device to query
4011 * @speed: storage for minimum speed
4012 * @width: storage for minimum width
4013 *
4014 * This function will walk up the PCI device chain and determine the minimum
4015 * link width and speed of the device.
4016 */
4017int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4018			  enum pcie_link_width *width)
4019{
4020	int ret;
4021
4022	*speed = PCI_SPEED_UNKNOWN;
4023	*width = PCIE_LNK_WIDTH_UNKNOWN;
4024
4025	while (dev) {
4026		u16 lnksta;
4027		enum pci_bus_speed next_speed;
4028		enum pcie_link_width next_width;
4029
4030		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4031		if (ret)
4032			return ret;
4033
4034		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4035		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4036			PCI_EXP_LNKSTA_NLW_SHIFT;
4037
4038		if (next_speed < *speed)
4039			*speed = next_speed;
4040
4041		if (next_width < *width)
4042			*width = next_width;
4043
4044		dev = dev->bus->self;
4045	}
4046
4047	return 0;
4048}
4049EXPORT_SYMBOL(pcie_get_minimum_link);
4050
4051/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052 * pci_select_bars - Make BAR mask from the type of resource
4053 * @dev: the PCI device for which BAR mask is made
4054 * @flags: resource type mask to be selected
4055 *
4056 * This helper routine makes bar mask from the type of resource.
4057 */
4058int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4059{
4060	int i, bars = 0;
4061	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4062		if (pci_resource_flags(dev, i) & flags)
4063			bars |= (1 << i);
4064	return bars;
4065}
4066
4067/**
4068 * pci_resource_bar - get position of the BAR associated with a resource
4069 * @dev: the PCI device
4070 * @resno: the resource number
4071 * @type: the BAR type to be filled in
4072 *
4073 * Returns BAR position in config space, or 0 if the BAR is invalid.
4074 */
4075int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4076{
4077	int reg;
4078
4079	if (resno < PCI_ROM_RESOURCE) {
4080		*type = pci_bar_unknown;
4081		return PCI_BASE_ADDRESS_0 + 4 * resno;
4082	} else if (resno == PCI_ROM_RESOURCE) {
4083		*type = pci_bar_mem32;
4084		return dev->rom_base_reg;
4085	} else if (resno < PCI_BRIDGE_RESOURCES) {
4086		/* device specific resource */
4087		reg = pci_iov_resource_bar(dev, resno, type);
4088		if (reg)
4089			return reg;
4090	}
4091
4092	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4093	return 0;
4094}
4095
4096/* Some architectures require additional programming to enable VGA */
4097static arch_set_vga_state_t arch_set_vga_state;
4098
4099void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4100{
4101	arch_set_vga_state = func;	/* NULL disables */
4102}
4103
4104static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4105		      unsigned int command_bits, u32 flags)
4106{
4107	if (arch_set_vga_state)
4108		return arch_set_vga_state(dev, decode, command_bits,
4109						flags);
4110	return 0;
4111}
4112
4113/**
4114 * pci_set_vga_state - set VGA decode state on device and parents if requested
4115 * @dev: the PCI device
4116 * @decode: true = enable decoding, false = disable decoding
4117 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4118 * @flags: traverse ancestors and change bridges
4119 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4120 */
4121int pci_set_vga_state(struct pci_dev *dev, bool decode,
4122		      unsigned int command_bits, u32 flags)
4123{
4124	struct pci_bus *bus;
4125	struct pci_dev *bridge;
4126	u16 cmd;
4127	int rc;
4128
4129	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4130
4131	/* ARCH specific VGA enables */
4132	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4133	if (rc)
4134		return rc;
4135
4136	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4137		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4138		if (decode == true)
4139			cmd |= command_bits;
4140		else
4141			cmd &= ~command_bits;
4142		pci_write_config_word(dev, PCI_COMMAND, cmd);
4143	}
4144
4145	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4146		return 0;
4147
4148	bus = dev->bus;
4149	while (bus) {
4150		bridge = bus->self;
4151		if (bridge) {
4152			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4153					     &cmd);
4154			if (decode == true)
4155				cmd |= PCI_BRIDGE_CTL_VGA;
4156			else
4157				cmd &= ~PCI_BRIDGE_CTL_VGA;
4158			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4159					      cmd);
4160		}
4161		bus = bus->parent;
4162	}
4163	return 0;
4164}
4165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4166bool pci_device_is_present(struct pci_dev *pdev)
4167{
4168	u32 v;
4169
 
 
4170	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4171}
4172EXPORT_SYMBOL_GPL(pci_device_is_present);
4173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4174#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4175static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4176static DEFINE_SPINLOCK(resource_alignment_lock);
4177
4178/**
4179 * pci_specified_resource_alignment - get resource alignment specified by user.
4180 * @dev: the PCI device to get
 
4181 *
4182 * RETURNS: Resource alignment if it is specified.
4183 *          Zero if it is not specified.
4184 */
4185static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
 
4186{
4187	int seg, bus, slot, func, align_order, count;
4188	resource_size_t align = 0;
 
4189	char *p;
4190
4191	spin_lock(&resource_alignment_lock);
4192	p = resource_alignment_param;
 
 
 
 
 
 
 
 
4193	while (*p) {
4194		count = 0;
4195		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4196							p[count] == '@') {
4197			p += count + 1;
4198		} else {
4199			align_order = -1;
4200		}
4201		if (sscanf(p, "%x:%x:%x.%x%n",
4202			&seg, &bus, &slot, &func, &count) != 4) {
4203			seg = 0;
4204			if (sscanf(p, "%x:%x.%x%n",
4205					&bus, &slot, &func, &count) != 3) {
4206				/* Invalid format */
4207				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4208					p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4209				break;
4210			}
4211		}
4212		p += count;
4213		if (seg == pci_domain_nr(dev->bus) &&
4214			bus == dev->bus->number &&
4215			slot == PCI_SLOT(dev->devfn) &&
4216			func == PCI_FUNC(dev->devfn)) {
4217			if (align_order == -1) {
4218				align = PAGE_SIZE;
4219			} else {
4220				align = 1 << align_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4221			}
4222			/* Found */
4223			break;
4224		}
4225		if (*p != ';' && *p != ',') {
4226			/* End of param or invalid format */
4227			break;
4228		}
4229		p++;
4230	}
 
4231	spin_unlock(&resource_alignment_lock);
4232	return align;
4233}
4234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4235/*
4236 * This function disables memory decoding and releases memory resources
4237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4238 * It also rounds up size to specified alignment.
4239 * Later on, the kernel will assign page-aligned memory resource back
4240 * to the device.
4241 */
4242void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4243{
4244	int i;
4245	struct resource *r;
4246	resource_size_t align, size;
4247	u16 command;
 
 
 
 
 
 
 
 
 
 
4248
4249	/* check if specified PCI is target device to reassign */
4250	align = pci_specified_resource_alignment(dev);
4251	if (!align)
4252		return;
4253
4254	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4255	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4256		dev_warn(&dev->dev,
4257			"Can't reassign resources to host bridge.\n");
4258		return;
4259	}
4260
4261	dev_info(&dev->dev,
4262		"Disabling memory decoding and releasing memory resources.\n");
4263	pci_read_config_word(dev, PCI_COMMAND, &command);
4264	command &= ~PCI_COMMAND_MEMORY;
4265	pci_write_config_word(dev, PCI_COMMAND, command);
4266
4267	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4268		r = &dev->resource[i];
4269		if (!(r->flags & IORESOURCE_MEM))
4270			continue;
4271		size = resource_size(r);
4272		if (size < align) {
4273			size = align;
4274			dev_info(&dev->dev,
4275				"Rounding up size of resource #%d to %#llx.\n",
4276				i, (unsigned long long)size);
4277		}
4278		r->flags |= IORESOURCE_UNSET;
4279		r->end = size - 1;
4280		r->start = 0;
4281	}
4282	/* Need to disable bridge's resource window,
4283	 * to enable the kernel to reassign new resource
4284	 * window later on.
4285	 */
4286	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4287	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4288		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4289			r = &dev->resource[i];
4290			if (!(r->flags & IORESOURCE_MEM))
4291				continue;
4292			r->flags |= IORESOURCE_UNSET;
4293			r->end = resource_size(r) - 1;
4294			r->start = 0;
4295		}
4296		pci_disable_bridge_window(dev);
4297	}
4298}
4299
4300static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4301{
4302	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4303		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4304	spin_lock(&resource_alignment_lock);
4305	strncpy(resource_alignment_param, buf, count);
4306	resource_alignment_param[count] = '\0';
4307	spin_unlock(&resource_alignment_lock);
4308	return count;
4309}
4310
4311static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4312{
4313	size_t count;
4314	spin_lock(&resource_alignment_lock);
4315	count = snprintf(buf, size, "%s", resource_alignment_param);
4316	spin_unlock(&resource_alignment_lock);
4317	return count;
4318}
4319
4320static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4321{
4322	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4323}
4324
4325static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4326					const char *buf, size_t count)
4327{
4328	return pci_set_resource_alignment_param(buf, count);
4329}
4330
4331BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4332					pci_resource_alignment_store);
4333
4334static int __init pci_resource_alignment_sysfs_init(void)
4335{
4336	return bus_create_file(&pci_bus_type,
4337					&bus_attr_resource_alignment);
4338}
4339
4340late_initcall(pci_resource_alignment_sysfs_init);
4341
4342static void pci_no_domains(void)
4343{
4344#ifdef CONFIG_PCI_DOMAINS
4345	pci_domains_supported = 0;
4346#endif
4347}
4348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4349/**
4350 * pci_ext_cfg_avail - can we access extended PCI config space?
4351 *
4352 * Returns 1 if we can access PCI extended config space (offsets
4353 * greater than 0xff). This is the default implementation. Architecture
4354 * implementations can override this.
4355 */
4356int __weak pci_ext_cfg_avail(void)
4357{
4358	return 1;
4359}
4360
4361void __weak pci_fixup_cardbus(struct pci_bus *bus)
4362{
4363}
4364EXPORT_SYMBOL(pci_fixup_cardbus);
4365
4366static int __init pci_setup(char *str)
4367{
4368	while (str) {
4369		char *k = strchr(str, ',');
4370		if (k)
4371			*k++ = 0;
4372		if (*str && (str = pcibios_setup(str)) && *str) {
4373			if (!strcmp(str, "nomsi")) {
4374				pci_no_msi();
4375			} else if (!strcmp(str, "noaer")) {
4376				pci_no_aer();
4377			} else if (!strncmp(str, "realloc=", 8)) {
4378				pci_realloc_get_opt(str + 8);
4379			} else if (!strncmp(str, "realloc", 7)) {
4380				pci_realloc_get_opt("on");
4381			} else if (!strcmp(str, "nodomains")) {
4382				pci_no_domains();
4383			} else if (!strncmp(str, "noari", 5)) {
4384				pcie_ari_disabled = true;
4385			} else if (!strncmp(str, "cbiosize=", 9)) {
4386				pci_cardbus_io_size = memparse(str + 9, &str);
4387			} else if (!strncmp(str, "cbmemsize=", 10)) {
4388				pci_cardbus_mem_size = memparse(str + 10, &str);
4389			} else if (!strncmp(str, "resource_alignment=", 19)) {
4390				pci_set_resource_alignment_param(str + 19,
4391							strlen(str + 19));
4392			} else if (!strncmp(str, "ecrc=", 5)) {
4393				pcie_ecrc_get_policy(str + 5);
4394			} else if (!strncmp(str, "hpiosize=", 9)) {
4395				pci_hotplug_io_size = memparse(str + 9, &str);
4396			} else if (!strncmp(str, "hpmemsize=", 10)) {
4397				pci_hotplug_mem_size = memparse(str + 10, &str);
 
 
 
 
 
4398			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4399				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4400			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4401				pcie_bus_config = PCIE_BUS_SAFE;
4402			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4403				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4404			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4405				pcie_bus_config = PCIE_BUS_PEER2PEER;
4406			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4407				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4408			} else {
4409				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4410						str);
4411			}
4412		}
4413		str = k;
4414	}
4415	return 0;
4416}
4417early_param("pci", pci_setup);
4418
4419EXPORT_SYMBOL(pci_reenable_device);
4420EXPORT_SYMBOL(pci_enable_device_io);
4421EXPORT_SYMBOL(pci_enable_device_mem);
4422EXPORT_SYMBOL(pci_enable_device);
4423EXPORT_SYMBOL(pcim_enable_device);
4424EXPORT_SYMBOL(pcim_pin_device);
4425EXPORT_SYMBOL(pci_disable_device);
4426EXPORT_SYMBOL(pci_find_capability);
4427EXPORT_SYMBOL(pci_bus_find_capability);
4428EXPORT_SYMBOL(pci_release_regions);
4429EXPORT_SYMBOL(pci_request_regions);
4430EXPORT_SYMBOL(pci_request_regions_exclusive);
4431EXPORT_SYMBOL(pci_release_region);
4432EXPORT_SYMBOL(pci_request_region);
4433EXPORT_SYMBOL(pci_request_region_exclusive);
4434EXPORT_SYMBOL(pci_release_selected_regions);
4435EXPORT_SYMBOL(pci_request_selected_regions);
4436EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4437EXPORT_SYMBOL(pci_set_master);
4438EXPORT_SYMBOL(pci_clear_master);
4439EXPORT_SYMBOL(pci_set_mwi);
4440EXPORT_SYMBOL(pci_try_set_mwi);
4441EXPORT_SYMBOL(pci_clear_mwi);
4442EXPORT_SYMBOL_GPL(pci_intx);
4443EXPORT_SYMBOL(pci_assign_resource);
4444EXPORT_SYMBOL(pci_find_parent_resource);
4445EXPORT_SYMBOL(pci_select_bars);
4446
4447EXPORT_SYMBOL(pci_set_power_state);
4448EXPORT_SYMBOL(pci_save_state);
4449EXPORT_SYMBOL(pci_restore_state);
4450EXPORT_SYMBOL(pci_pme_capable);
4451EXPORT_SYMBOL(pci_pme_active);
4452EXPORT_SYMBOL(pci_wake_from_d3);
4453EXPORT_SYMBOL(pci_prepare_to_sleep);
4454EXPORT_SYMBOL(pci_back_from_sleep);
4455EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);