Loading...
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/sched.h>
26#include <linux/init.h>
27#include <linux/list.h>
28#include <linux/pci.h>
29#include <linux/iommu.h>
30#include <linux/proc_fs.h>
31#include <linux/rbtree.h>
32#include <linux/reboot.h>
33#include <linux/seq_file.h>
34#include <linux/spinlock.h>
35#include <linux/export.h>
36#include <linux/of.h>
37
38#include <linux/atomic.h>
39#include <asm/debugfs.h>
40#include <asm/eeh.h>
41#include <asm/eeh_event.h>
42#include <asm/io.h>
43#include <asm/iommu.h>
44#include <asm/machdep.h>
45#include <asm/ppc-pci.h>
46#include <asm/rtas.h>
47#include <asm/pte-walk.h>
48
49
50/** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121/* Lock to protect passed flags */
122static DEFINE_MUTEX(eeh_dev_mutex);
123
124/* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128#define EEH_PCI_REGS_LOG_LEN 8192
129static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131/*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144};
145
146static struct eeh_stats eeh_stats;
147
148static int __init eeh_setup(char *str)
149{
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156}
157__setup("eeh=", eeh_setup);
158
159/*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
164static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165{
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 pdn->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 pdn->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
196 }
197
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208 }
209
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
223
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
230 }
231
232 }
233
234 pr_warn("%s\n", buffer);
235 }
236
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
250
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
257 }
258 }
259
260 pr_warn("%s\n", buffer);
261 }
262
263 return n;
264}
265
266static void *eeh_dump_pe_log(void *data, void *flag)
267{
268 struct eeh_pe *pe = data;
269 struct eeh_dev *edev, *tmp;
270 size_t *plen = flag;
271
272 eeh_pe_for_each_dev(pe, edev, tmp)
273 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274 EEH_PCI_REGS_LOG_LEN - *plen);
275
276 return NULL;
277}
278
279/**
280 * eeh_slot_error_detail - Generate combined log including driver log and error log
281 * @pe: EEH PE
282 * @severity: temporary or permanent error log
283 *
284 * This routine should be called to generate the combined log, which
285 * is comprised of driver log and error log. The driver log is figured
286 * out from the config space of the corresponding PCI device, while
287 * the error log is fetched through platform dependent function call.
288 */
289void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
290{
291 size_t loglen = 0;
292
293 /*
294 * When the PHB is fenced or dead, it's pointless to collect
295 * the data from PCI config space because it should return
296 * 0xFF's. For ER, we still retrieve the data from the PCI
297 * config space.
298 *
299 * For pHyp, we have to enable IO for log retrieval. Otherwise,
300 * 0xFF's is always returned from PCI config space.
301 *
302 * When the @severity is EEH_LOG_PERM, the PE is going to be
303 * removed. Prior to that, the drivers for devices included in
304 * the PE will be closed. The drivers rely on working IO path
305 * to bring the devices to quiet state. Otherwise, PCI traffic
306 * from those devices after they are removed is like to cause
307 * another unexpected EEH error.
308 */
309 if (!(pe->type & EEH_PE_PHB)) {
310 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
311 severity == EEH_LOG_PERM)
312 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313
314 /*
315 * The config space of some PCI devices can't be accessed
316 * when their PEs are in frozen state. Otherwise, fenced
317 * PHB might be seen. Those PEs are identified with flag
318 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 * is set automatically when the PE is put to EEH_PE_ISOLATED.
320 *
321 * Restoring BARs possibly triggers PCI config access in
322 * (OPAL) firmware and then causes fenced PHB. If the
323 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 * pointless to restore BARs and dump config space.
325 */
326 eeh_ops->configure_bridge(pe);
327 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 eeh_pe_restore_bars(pe);
329
330 pci_regs_buf[0] = 0;
331 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332 }
333 }
334
335 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336}
337
338/**
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
341 *
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
344 */
345static inline unsigned long eeh_token_to_phys(unsigned long token)
346{
347 pte_t *ptep;
348 unsigned long pa;
349 int hugepage_shift;
350
351 /*
352 * We won't find hugepages here(this is iomem). Hence we are not
353 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 * page table free, because of init_mm.
355 */
356 ptep = find_init_mm_pte(token, &hugepage_shift);
357 if (!ptep)
358 return token;
359 WARN_ON(hugepage_shift);
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362 return pa | (token & (PAGE_SIZE-1));
363}
364
365/*
366 * On PowerNV platform, we might already have fenced PHB there.
367 * For that case, it's meaningless to recover frozen PE. Intead,
368 * We have to handle fenced PHB firstly.
369 */
370static int eeh_phb_check_failure(struct eeh_pe *pe)
371{
372 struct eeh_pe *phb_pe;
373 unsigned long flags;
374 int ret;
375
376 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377 return -EPERM;
378
379 /* Find the PHB PE */
380 phb_pe = eeh_phb_pe_get(pe->phb);
381 if (!phb_pe) {
382 pr_warn("%s Can't find PE for PHB#%x\n",
383 __func__, pe->phb->global_number);
384 return -EEXIST;
385 }
386
387 /* If the PHB has been in problematic state */
388 eeh_serialize_lock(&flags);
389 if (phb_pe->state & EEH_PE_ISOLATED) {
390 ret = 0;
391 goto out;
392 }
393
394 /* Check PHB state */
395 ret = eeh_ops->get_state(phb_pe, NULL);
396 if ((ret < 0) ||
397 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
398 ret = 0;
399 goto out;
400 }
401
402 /* Isolate the PHB and send event */
403 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
404 eeh_serialize_unlock(flags);
405
406 pr_err("EEH: PHB#%x failure detected, location: %s\n",
407 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
408 dump_stack();
409 eeh_send_failure_event(phb_pe);
410
411 return 1;
412out:
413 eeh_serialize_unlock(flags);
414 return ret;
415}
416
417/**
418 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
419 * @edev: eeh device
420 *
421 * Check for an EEH failure for the given device node. Call this
422 * routine if the result of a read was all 0xff's and you want to
423 * find out if this is due to an EEH slot freeze. This routine
424 * will query firmware for the EEH status.
425 *
426 * Returns 0 if there has not been an EEH error; otherwise returns
427 * a non-zero value and queues up a slot isolation event notification.
428 *
429 * It is safe to call this routine in an interrupt context.
430 */
431int eeh_dev_check_failure(struct eeh_dev *edev)
432{
433 int ret;
434 unsigned long flags;
435 struct device_node *dn;
436 struct pci_dev *dev;
437 struct eeh_pe *pe, *parent_pe, *phb_pe;
438 int rc = 0;
439 const char *location = NULL;
440
441 eeh_stats.total_mmio_ffs++;
442
443 if (!eeh_enabled())
444 return 0;
445
446 if (!edev) {
447 eeh_stats.no_dn++;
448 return 0;
449 }
450 dev = eeh_dev_to_pci_dev(edev);
451 pe = eeh_dev_to_pe(edev);
452
453 /* Access to IO BARs might get this far and still not want checking. */
454 if (!pe) {
455 eeh_stats.ignored_check++;
456 pr_debug("EEH: Ignored check for %s\n",
457 eeh_pci_name(dev));
458 return 0;
459 }
460
461 if (!pe->addr && !pe->config_addr) {
462 eeh_stats.no_cfg_addr++;
463 return 0;
464 }
465
466 /*
467 * On PowerNV platform, we might already have fenced PHB
468 * there and we need take care of that firstly.
469 */
470 ret = eeh_phb_check_failure(pe);
471 if (ret > 0)
472 return ret;
473
474 /*
475 * If the PE isn't owned by us, we shouldn't check the
476 * state. Instead, let the owner handle it if the PE has
477 * been frozen.
478 */
479 if (eeh_pe_passed(pe))
480 return 0;
481
482 /* If we already have a pending isolation event for this
483 * slot, we know it's bad already, we don't need to check.
484 * Do this checking under a lock; as multiple PCI devices
485 * in one slot might report errors simultaneously, and we
486 * only want one error recovery routine running.
487 */
488 eeh_serialize_lock(&flags);
489 rc = 1;
490 if (pe->state & EEH_PE_ISOLATED) {
491 pe->check_count++;
492 if (pe->check_count % EEH_MAX_FAILS == 0) {
493 dn = pci_device_to_OF_node(dev);
494 if (dn)
495 location = of_get_property(dn, "ibm,loc-code",
496 NULL);
497 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
498 "location=%s driver=%s pci addr=%s\n",
499 pe->check_count,
500 location ? location : "unknown",
501 eeh_driver_name(dev), eeh_pci_name(dev));
502 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
503 eeh_driver_name(dev));
504 dump_stack();
505 }
506 goto dn_unlock;
507 }
508
509 /*
510 * Now test for an EEH failure. This is VERY expensive.
511 * Note that the eeh_config_addr may be a parent device
512 * in the case of a device behind a bridge, or it may be
513 * function zero of a multi-function device.
514 * In any case they must share a common PHB.
515 */
516 ret = eeh_ops->get_state(pe, NULL);
517
518 /* Note that config-io to empty slots may fail;
519 * they are empty when they don't have children.
520 * We will punt with the following conditions: Failure to get
521 * PE's state, EEH not support and Permanently unavailable
522 * state, PE is in good state.
523 */
524 if ((ret < 0) ||
525 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
526 eeh_stats.false_positives++;
527 pe->false_positives++;
528 rc = 0;
529 goto dn_unlock;
530 }
531
532 /*
533 * It should be corner case that the parent PE has been
534 * put into frozen state as well. We should take care
535 * that at first.
536 */
537 parent_pe = pe->parent;
538 while (parent_pe) {
539 /* Hit the ceiling ? */
540 if (parent_pe->type & EEH_PE_PHB)
541 break;
542
543 /* Frozen parent PE ? */
544 ret = eeh_ops->get_state(parent_pe, NULL);
545 if (ret > 0 && !eeh_state_active(ret))
546 pe = parent_pe;
547
548 /* Next parent level */
549 parent_pe = parent_pe->parent;
550 }
551
552 eeh_stats.slot_resets++;
553
554 /* Avoid repeated reports of this failure, including problems
555 * with other functions on this device, and functions under
556 * bridges.
557 */
558 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
559 eeh_serialize_unlock(flags);
560
561 /* Most EEH events are due to device driver bugs. Having
562 * a stack trace will help the device-driver authors figure
563 * out what happened. So print that out.
564 */
565 phb_pe = eeh_phb_pe_get(pe->phb);
566 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
567 pe->phb->global_number, pe->addr);
568 pr_err("EEH: PE location: %s, PHB location: %s\n",
569 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
570 dump_stack();
571
572 eeh_send_failure_event(pe);
573
574 return 1;
575
576dn_unlock:
577 eeh_serialize_unlock(flags);
578 return rc;
579}
580
581EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
582
583/**
584 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
585 * @token: I/O address
586 *
587 * Check for an EEH failure at the given I/O address. Call this
588 * routine if the result of a read was all 0xff's and you want to
589 * find out if this is due to an EEH slot freeze event. This routine
590 * will query firmware for the EEH status.
591 *
592 * Note this routine is safe to call in an interrupt context.
593 */
594int eeh_check_failure(const volatile void __iomem *token)
595{
596 unsigned long addr;
597 struct eeh_dev *edev;
598
599 /* Finding the phys addr + pci device; this is pretty quick. */
600 addr = eeh_token_to_phys((unsigned long __force) token);
601 edev = eeh_addr_cache_get_dev(addr);
602 if (!edev) {
603 eeh_stats.no_device++;
604 return 0;
605 }
606
607 return eeh_dev_check_failure(edev);
608}
609EXPORT_SYMBOL(eeh_check_failure);
610
611
612/**
613 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
614 * @pe: EEH PE
615 *
616 * This routine should be called to reenable frozen MMIO or DMA
617 * so that it would work correctly again. It's useful while doing
618 * recovery or log collection on the indicated device.
619 */
620int eeh_pci_enable(struct eeh_pe *pe, int function)
621{
622 int active_flag, rc;
623
624 /*
625 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
626 * Also, it's pointless to enable them on unfrozen PE. So
627 * we have to check before enabling IO or DMA.
628 */
629 switch (function) {
630 case EEH_OPT_THAW_MMIO:
631 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
632 break;
633 case EEH_OPT_THAW_DMA:
634 active_flag = EEH_STATE_DMA_ACTIVE;
635 break;
636 case EEH_OPT_DISABLE:
637 case EEH_OPT_ENABLE:
638 case EEH_OPT_FREEZE_PE:
639 active_flag = 0;
640 break;
641 default:
642 pr_warn("%s: Invalid function %d\n",
643 __func__, function);
644 return -EINVAL;
645 }
646
647 /*
648 * Check if IO or DMA has been enabled before
649 * enabling them.
650 */
651 if (active_flag) {
652 rc = eeh_ops->get_state(pe, NULL);
653 if (rc < 0)
654 return rc;
655
656 /* Needn't enable it at all */
657 if (rc == EEH_STATE_NOT_SUPPORT)
658 return 0;
659
660 /* It's already enabled */
661 if (rc & active_flag)
662 return 0;
663 }
664
665
666 /* Issue the request */
667 rc = eeh_ops->set_option(pe, function);
668 if (rc)
669 pr_warn("%s: Unexpected state change %d on "
670 "PHB#%x-PE#%x, err=%d\n",
671 __func__, function, pe->phb->global_number,
672 pe->addr, rc);
673
674 /* Check if the request is finished successfully */
675 if (active_flag) {
676 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
677 if (rc < 0)
678 return rc;
679
680 if (rc & active_flag)
681 return 0;
682
683 return -EIO;
684 }
685
686 return rc;
687}
688
689static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
690{
691 struct eeh_dev *edev = data;
692 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
693 struct pci_dev *dev = userdata;
694
695 /*
696 * The caller should have disabled and saved the
697 * state for the specified device
698 */
699 if (!pdev || pdev == dev)
700 return NULL;
701
702 /* Ensure we have D0 power state */
703 pci_set_power_state(pdev, PCI_D0);
704
705 /* Save device state */
706 pci_save_state(pdev);
707
708 /*
709 * Disable device to avoid any DMA traffic and
710 * interrupt from the device
711 */
712 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
713
714 return NULL;
715}
716
717static void *eeh_restore_dev_state(void *data, void *userdata)
718{
719 struct eeh_dev *edev = data;
720 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
721 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
722 struct pci_dev *dev = userdata;
723
724 if (!pdev)
725 return NULL;
726
727 /* Apply customization from firmware */
728 if (pdn && eeh_ops->restore_config)
729 eeh_ops->restore_config(pdn);
730
731 /* The caller should restore state for the specified device */
732 if (pdev != dev)
733 pci_restore_state(pdev);
734
735 return NULL;
736}
737
738int eeh_restore_vf_config(struct pci_dn *pdn)
739{
740 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
741 u32 devctl, cmd, cap2, aer_capctl;
742 int old_mps;
743
744 if (edev->pcie_cap) {
745 /* Restore MPS */
746 old_mps = (ffs(pdn->mps) - 8) << 5;
747 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
748 2, &devctl);
749 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
750 devctl |= old_mps;
751 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
752 2, devctl);
753
754 /* Disable Completion Timeout if possible */
755 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
756 4, &cap2);
757 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
758 eeh_ops->read_config(pdn,
759 edev->pcie_cap + PCI_EXP_DEVCTL2,
760 4, &cap2);
761 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
762 eeh_ops->write_config(pdn,
763 edev->pcie_cap + PCI_EXP_DEVCTL2,
764 4, cap2);
765 }
766 }
767
768 /* Enable SERR and parity checking */
769 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
770 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
771 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
772
773 /* Enable report various errors */
774 if (edev->pcie_cap) {
775 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
776 2, &devctl);
777 devctl &= ~PCI_EXP_DEVCTL_CERE;
778 devctl |= (PCI_EXP_DEVCTL_NFERE |
779 PCI_EXP_DEVCTL_FERE |
780 PCI_EXP_DEVCTL_URRE);
781 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
782 2, devctl);
783 }
784
785 /* Enable ECRC generation and check */
786 if (edev->pcie_cap && edev->aer_cap) {
787 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
788 4, &aer_capctl);
789 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
790 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
791 4, aer_capctl);
792 }
793
794 return 0;
795}
796
797/**
798 * pcibios_set_pcie_reset_state - Set PCI-E reset state
799 * @dev: pci device struct
800 * @state: reset state to enter
801 *
802 * Return value:
803 * 0 if success
804 */
805int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
806{
807 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
808 struct eeh_pe *pe = eeh_dev_to_pe(edev);
809
810 if (!pe) {
811 pr_err("%s: No PE found on PCI device %s\n",
812 __func__, pci_name(dev));
813 return -EINVAL;
814 }
815
816 switch (state) {
817 case pcie_deassert_reset:
818 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
819 eeh_unfreeze_pe(pe, false);
820 if (!(pe->type & EEH_PE_VF))
821 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
822 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
823 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
824 break;
825 case pcie_hot_reset:
826 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
827 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
828 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
829 if (!(pe->type & EEH_PE_VF))
830 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
831 eeh_ops->reset(pe, EEH_RESET_HOT);
832 break;
833 case pcie_warm_reset:
834 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
835 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
836 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
837 if (!(pe->type & EEH_PE_VF))
838 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
839 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
840 break;
841 default:
842 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
843 return -EINVAL;
844 };
845
846 return 0;
847}
848
849/**
850 * eeh_set_pe_freset - Check the required reset for the indicated device
851 * @data: EEH device
852 * @flag: return value
853 *
854 * Each device might have its preferred reset type: fundamental or
855 * hot reset. The routine is used to collected the information for
856 * the indicated device and its children so that the bunch of the
857 * devices could be reset properly.
858 */
859static void *eeh_set_dev_freset(void *data, void *flag)
860{
861 struct pci_dev *dev;
862 unsigned int *freset = (unsigned int *)flag;
863 struct eeh_dev *edev = (struct eeh_dev *)data;
864
865 dev = eeh_dev_to_pci_dev(edev);
866 if (dev)
867 *freset |= dev->needs_freset;
868
869 return NULL;
870}
871
872/**
873 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
874 * @pe: EEH PE
875 *
876 * This function executes a full reset procedure on a PE, including setting
877 * the appropriate flags, performing a fundamental or hot reset, and then
878 * deactivating the reset status. It is designed to be used within the EEH
879 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
880 * only performs a single operation at a time.
881 *
882 * This function will attempt to reset a PE three times before failing.
883 */
884int eeh_pe_reset_full(struct eeh_pe *pe)
885{
886 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
887 int type = EEH_RESET_HOT;
888 unsigned int freset = 0;
889 int i, state, ret;
890
891 /*
892 * Determine the type of reset to perform - hot or fundamental.
893 * Hot reset is the default operation, unless any device under the
894 * PE requires a fundamental reset.
895 */
896 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
897
898 if (freset)
899 type = EEH_RESET_FUNDAMENTAL;
900
901 /* Mark the PE as in reset state and block config space accesses */
902 eeh_pe_state_mark(pe, reset_state);
903
904 /* Make three attempts at resetting the bus */
905 for (i = 0; i < 3; i++) {
906 ret = eeh_pe_reset(pe, type);
907 if (ret)
908 break;
909
910 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
911 if (ret)
912 break;
913
914 /* Wait until the PE is in a functioning state */
915 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
916 if (eeh_state_active(state))
917 break;
918
919 if (state < 0) {
920 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
921 __func__, pe->phb->global_number, pe->addr);
922 ret = -ENOTRECOVERABLE;
923 break;
924 }
925
926 /* Set error in case this is our last attempt */
927 ret = -EIO;
928 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
929 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
930 }
931
932 eeh_pe_state_clear(pe, reset_state);
933 return ret;
934}
935
936/**
937 * eeh_save_bars - Save device bars
938 * @edev: PCI device associated EEH device
939 *
940 * Save the values of the device bars. Unlike the restore
941 * routine, this routine is *not* recursive. This is because
942 * PCI devices are added individually; but, for the restore,
943 * an entire slot is reset at a time.
944 */
945void eeh_save_bars(struct eeh_dev *edev)
946{
947 struct pci_dn *pdn;
948 int i;
949
950 pdn = eeh_dev_to_pdn(edev);
951 if (!pdn)
952 return;
953
954 for (i = 0; i < 16; i++)
955 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
956
957 /*
958 * For PCI bridges including root port, we need enable bus
959 * master explicitly. Otherwise, it can't fetch IODA table
960 * entries correctly. So we cache the bit in advance so that
961 * we can restore it after reset, either PHB range or PE range.
962 */
963 if (edev->mode & EEH_DEV_BRIDGE)
964 edev->config_space[1] |= PCI_COMMAND_MASTER;
965}
966
967/**
968 * eeh_ops_register - Register platform dependent EEH operations
969 * @ops: platform dependent EEH operations
970 *
971 * Register the platform dependent EEH operation callback
972 * functions. The platform should call this function before
973 * any other EEH operations.
974 */
975int __init eeh_ops_register(struct eeh_ops *ops)
976{
977 if (!ops->name) {
978 pr_warn("%s: Invalid EEH ops name for %p\n",
979 __func__, ops);
980 return -EINVAL;
981 }
982
983 if (eeh_ops && eeh_ops != ops) {
984 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
985 __func__, eeh_ops->name, ops->name);
986 return -EEXIST;
987 }
988
989 eeh_ops = ops;
990
991 return 0;
992}
993
994/**
995 * eeh_ops_unregister - Unreigster platform dependent EEH operations
996 * @name: name of EEH platform operations
997 *
998 * Unregister the platform dependent EEH operation callback
999 * functions.
1000 */
1001int __exit eeh_ops_unregister(const char *name)
1002{
1003 if (!name || !strlen(name)) {
1004 pr_warn("%s: Invalid EEH ops name\n",
1005 __func__);
1006 return -EINVAL;
1007 }
1008
1009 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1010 eeh_ops = NULL;
1011 return 0;
1012 }
1013
1014 return -EEXIST;
1015}
1016
1017static int eeh_reboot_notifier(struct notifier_block *nb,
1018 unsigned long action, void *unused)
1019{
1020 eeh_clear_flag(EEH_ENABLED);
1021 return NOTIFY_DONE;
1022}
1023
1024static struct notifier_block eeh_reboot_nb = {
1025 .notifier_call = eeh_reboot_notifier,
1026};
1027
1028void eeh_probe_devices(void)
1029{
1030 struct pci_controller *hose, *tmp;
1031 struct pci_dn *pdn;
1032
1033 /* Enable EEH for all adapters */
1034 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1035 pdn = hose->pci_data;
1036 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1037 }
1038}
1039
1040/**
1041 * eeh_init - EEH initialization
1042 *
1043 * Initialize EEH by trying to enable it for all of the adapters in the system.
1044 * As a side effect we can determine here if eeh is supported at all.
1045 * Note that we leave EEH on so failed config cycles won't cause a machine
1046 * check. If a user turns off EEH for a particular adapter they are really
1047 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1048 * grant access to a slot if EEH isn't enabled, and so we always enable
1049 * EEH for all slots/all devices.
1050 *
1051 * The eeh-force-off option disables EEH checking globally, for all slots.
1052 * Even if force-off is set, the EEH hardware is still enabled, so that
1053 * newer systems can boot.
1054 */
1055static int eeh_init(void)
1056{
1057 struct pci_controller *hose, *tmp;
1058 int ret = 0;
1059
1060 /* Register reboot notifier */
1061 ret = register_reboot_notifier(&eeh_reboot_nb);
1062 if (ret) {
1063 pr_warn("%s: Failed to register notifier (%d)\n",
1064 __func__, ret);
1065 return ret;
1066 }
1067
1068 /* call platform initialization function */
1069 if (!eeh_ops) {
1070 pr_warn("%s: Platform EEH operation not found\n",
1071 __func__);
1072 return -EEXIST;
1073 } else if ((ret = eeh_ops->init()))
1074 return ret;
1075
1076 /* Initialize PHB PEs */
1077 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1078 eeh_dev_phb_init_dynamic(hose);
1079
1080 /* Initialize EEH event */
1081 ret = eeh_event_init();
1082 if (ret)
1083 return ret;
1084
1085 eeh_probe_devices();
1086
1087 if (eeh_enabled())
1088 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1089 else
1090 pr_info("EEH: No capable adapters found\n");
1091
1092 return ret;
1093}
1094
1095core_initcall_sync(eeh_init);
1096
1097/**
1098 * eeh_add_device_early - Enable EEH for the indicated device node
1099 * @pdn: PCI device node for which to set up EEH
1100 *
1101 * This routine must be used to perform EEH initialization for PCI
1102 * devices that were added after system boot (e.g. hotplug, dlpar).
1103 * This routine must be called before any i/o is performed to the
1104 * adapter (inluding any config-space i/o).
1105 * Whether this actually enables EEH or not for this device depends
1106 * on the CEC architecture, type of the device, on earlier boot
1107 * command-line arguments & etc.
1108 */
1109void eeh_add_device_early(struct pci_dn *pdn)
1110{
1111 struct pci_controller *phb = pdn ? pdn->phb : NULL;
1112 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1113
1114 if (!edev)
1115 return;
1116
1117 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1118 return;
1119
1120 /* USB Bus children of PCI devices will not have BUID's */
1121 if (NULL == phb ||
1122 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1123 return;
1124
1125 eeh_ops->probe(pdn, NULL);
1126}
1127
1128/**
1129 * eeh_add_device_tree_early - Enable EEH for the indicated device
1130 * @pdn: PCI device node
1131 *
1132 * This routine must be used to perform EEH initialization for the
1133 * indicated PCI device that was added after system boot (e.g.
1134 * hotplug, dlpar).
1135 */
1136void eeh_add_device_tree_early(struct pci_dn *pdn)
1137{
1138 struct pci_dn *n;
1139
1140 if (!pdn)
1141 return;
1142
1143 list_for_each_entry(n, &pdn->child_list, list)
1144 eeh_add_device_tree_early(n);
1145 eeh_add_device_early(pdn);
1146}
1147EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1148
1149/**
1150 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1151 * @dev: pci device for which to set up EEH
1152 *
1153 * This routine must be used to complete EEH initialization for PCI
1154 * devices that were added after system boot (e.g. hotplug, dlpar).
1155 */
1156void eeh_add_device_late(struct pci_dev *dev)
1157{
1158 struct pci_dn *pdn;
1159 struct eeh_dev *edev;
1160
1161 if (!dev || !eeh_enabled())
1162 return;
1163
1164 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1165
1166 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1167 edev = pdn_to_eeh_dev(pdn);
1168 if (edev->pdev == dev) {
1169 pr_debug("EEH: Already referenced !\n");
1170 return;
1171 }
1172
1173 /*
1174 * The EEH cache might not be removed correctly because of
1175 * unbalanced kref to the device during unplug time, which
1176 * relies on pcibios_release_device(). So we have to remove
1177 * that here explicitly.
1178 */
1179 if (edev->pdev) {
1180 eeh_rmv_from_parent_pe(edev);
1181 eeh_addr_cache_rmv_dev(edev->pdev);
1182 eeh_sysfs_remove_device(edev->pdev);
1183 edev->mode &= ~EEH_DEV_SYSFS;
1184
1185 /*
1186 * We definitely should have the PCI device removed
1187 * though it wasn't correctly. So we needn't call
1188 * into error handler afterwards.
1189 */
1190 edev->mode |= EEH_DEV_NO_HANDLER;
1191
1192 edev->pdev = NULL;
1193 dev->dev.archdata.edev = NULL;
1194 }
1195
1196 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1197 eeh_ops->probe(pdn, NULL);
1198
1199 edev->pdev = dev;
1200 dev->dev.archdata.edev = edev;
1201
1202 eeh_addr_cache_insert_dev(dev);
1203}
1204
1205/**
1206 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1207 * @bus: PCI bus
1208 *
1209 * This routine must be used to perform EEH initialization for PCI
1210 * devices which are attached to the indicated PCI bus. The PCI bus
1211 * is added after system boot through hotplug or dlpar.
1212 */
1213void eeh_add_device_tree_late(struct pci_bus *bus)
1214{
1215 struct pci_dev *dev;
1216
1217 list_for_each_entry(dev, &bus->devices, bus_list) {
1218 eeh_add_device_late(dev);
1219 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1220 struct pci_bus *subbus = dev->subordinate;
1221 if (subbus)
1222 eeh_add_device_tree_late(subbus);
1223 }
1224 }
1225}
1226EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1227
1228/**
1229 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1230 * @bus: PCI bus
1231 *
1232 * This routine must be used to add EEH sysfs files for PCI
1233 * devices which are attached to the indicated PCI bus. The PCI bus
1234 * is added after system boot through hotplug or dlpar.
1235 */
1236void eeh_add_sysfs_files(struct pci_bus *bus)
1237{
1238 struct pci_dev *dev;
1239
1240 list_for_each_entry(dev, &bus->devices, bus_list) {
1241 eeh_sysfs_add_device(dev);
1242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1243 struct pci_bus *subbus = dev->subordinate;
1244 if (subbus)
1245 eeh_add_sysfs_files(subbus);
1246 }
1247 }
1248}
1249EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1250
1251/**
1252 * eeh_remove_device - Undo EEH setup for the indicated pci device
1253 * @dev: pci device to be removed
1254 *
1255 * This routine should be called when a device is removed from
1256 * a running system (e.g. by hotplug or dlpar). It unregisters
1257 * the PCI device from the EEH subsystem. I/O errors affecting
1258 * this device will no longer be detected after this call; thus,
1259 * i/o errors affecting this slot may leave this device unusable.
1260 */
1261void eeh_remove_device(struct pci_dev *dev)
1262{
1263 struct eeh_dev *edev;
1264
1265 if (!dev || !eeh_enabled())
1266 return;
1267 edev = pci_dev_to_eeh_dev(dev);
1268
1269 /* Unregister the device with the EEH/PCI address search system */
1270 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1271
1272 if (!edev || !edev->pdev || !edev->pe) {
1273 pr_debug("EEH: Not referenced !\n");
1274 return;
1275 }
1276
1277 /*
1278 * During the hotplug for EEH error recovery, we need the EEH
1279 * device attached to the parent PE in order for BAR restore
1280 * a bit later. So we keep it for BAR restore and remove it
1281 * from the parent PE during the BAR resotre.
1282 */
1283 edev->pdev = NULL;
1284
1285 /*
1286 * The flag "in_error" is used to trace EEH devices for VFs
1287 * in error state or not. It's set in eeh_report_error(). If
1288 * it's not set, eeh_report_{reset,resume}() won't be called
1289 * for the VF EEH device.
1290 */
1291 edev->in_error = false;
1292 dev->dev.archdata.edev = NULL;
1293 if (!(edev->pe->state & EEH_PE_KEEP))
1294 eeh_rmv_from_parent_pe(edev);
1295 else
1296 edev->mode |= EEH_DEV_DISCONNECTED;
1297
1298 /*
1299 * We're removing from the PCI subsystem, that means
1300 * the PCI device driver can't support EEH or not
1301 * well. So we rely on hotplug completely to do recovery
1302 * for the specific PCI device.
1303 */
1304 edev->mode |= EEH_DEV_NO_HANDLER;
1305
1306 eeh_addr_cache_rmv_dev(dev);
1307 eeh_sysfs_remove_device(dev);
1308 edev->mode &= ~EEH_DEV_SYSFS;
1309}
1310
1311int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1312{
1313 int ret;
1314
1315 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1316 if (ret) {
1317 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1318 __func__, ret, pe->phb->global_number, pe->addr);
1319 return ret;
1320 }
1321
1322 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1323 if (ret) {
1324 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1325 __func__, ret, pe->phb->global_number, pe->addr);
1326 return ret;
1327 }
1328
1329 /* Clear software isolated state */
1330 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1331 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1332
1333 return ret;
1334}
1335
1336
1337static struct pci_device_id eeh_reset_ids[] = {
1338 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1339 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1340 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1341 { 0 }
1342};
1343
1344static int eeh_pe_change_owner(struct eeh_pe *pe)
1345{
1346 struct eeh_dev *edev, *tmp;
1347 struct pci_dev *pdev;
1348 struct pci_device_id *id;
1349 int ret;
1350
1351 /* Check PE state */
1352 ret = eeh_ops->get_state(pe, NULL);
1353 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1354 return 0;
1355
1356 /* Unfrozen PE, nothing to do */
1357 if (eeh_state_active(ret))
1358 return 0;
1359
1360 /* Frozen PE, check if it needs PE level reset */
1361 eeh_pe_for_each_dev(pe, edev, tmp) {
1362 pdev = eeh_dev_to_pci_dev(edev);
1363 if (!pdev)
1364 continue;
1365
1366 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1367 if (id->vendor != PCI_ANY_ID &&
1368 id->vendor != pdev->vendor)
1369 continue;
1370 if (id->device != PCI_ANY_ID &&
1371 id->device != pdev->device)
1372 continue;
1373 if (id->subvendor != PCI_ANY_ID &&
1374 id->subvendor != pdev->subsystem_vendor)
1375 continue;
1376 if (id->subdevice != PCI_ANY_ID &&
1377 id->subdevice != pdev->subsystem_device)
1378 continue;
1379
1380 return eeh_pe_reset_and_recover(pe);
1381 }
1382 }
1383
1384 return eeh_unfreeze_pe(pe, true);
1385}
1386
1387/**
1388 * eeh_dev_open - Increase count of pass through devices for PE
1389 * @pdev: PCI device
1390 *
1391 * Increase count of passed through devices for the indicated
1392 * PE. In the result, the EEH errors detected on the PE won't be
1393 * reported. The PE owner will be responsible for detection
1394 * and recovery.
1395 */
1396int eeh_dev_open(struct pci_dev *pdev)
1397{
1398 struct eeh_dev *edev;
1399 int ret = -ENODEV;
1400
1401 mutex_lock(&eeh_dev_mutex);
1402
1403 /* No PCI device ? */
1404 if (!pdev)
1405 goto out;
1406
1407 /* No EEH device or PE ? */
1408 edev = pci_dev_to_eeh_dev(pdev);
1409 if (!edev || !edev->pe)
1410 goto out;
1411
1412 /*
1413 * The PE might have been put into frozen state, but we
1414 * didn't detect that yet. The passed through PCI devices
1415 * in frozen PE won't work properly. Clear the frozen state
1416 * in advance.
1417 */
1418 ret = eeh_pe_change_owner(edev->pe);
1419 if (ret)
1420 goto out;
1421
1422 /* Increase PE's pass through count */
1423 atomic_inc(&edev->pe->pass_dev_cnt);
1424 mutex_unlock(&eeh_dev_mutex);
1425
1426 return 0;
1427out:
1428 mutex_unlock(&eeh_dev_mutex);
1429 return ret;
1430}
1431EXPORT_SYMBOL_GPL(eeh_dev_open);
1432
1433/**
1434 * eeh_dev_release - Decrease count of pass through devices for PE
1435 * @pdev: PCI device
1436 *
1437 * Decrease count of pass through devices for the indicated PE. If
1438 * there is no passed through device in PE, the EEH errors detected
1439 * on the PE will be reported and handled as usual.
1440 */
1441void eeh_dev_release(struct pci_dev *pdev)
1442{
1443 struct eeh_dev *edev;
1444
1445 mutex_lock(&eeh_dev_mutex);
1446
1447 /* No PCI device ? */
1448 if (!pdev)
1449 goto out;
1450
1451 /* No EEH device ? */
1452 edev = pci_dev_to_eeh_dev(pdev);
1453 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1454 goto out;
1455
1456 /* Decrease PE's pass through count */
1457 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1458 eeh_pe_change_owner(edev->pe);
1459out:
1460 mutex_unlock(&eeh_dev_mutex);
1461}
1462EXPORT_SYMBOL(eeh_dev_release);
1463
1464#ifdef CONFIG_IOMMU_API
1465
1466static int dev_has_iommu_table(struct device *dev, void *data)
1467{
1468 struct pci_dev *pdev = to_pci_dev(dev);
1469 struct pci_dev **ppdev = data;
1470
1471 if (!dev)
1472 return 0;
1473
1474 if (dev->iommu_group) {
1475 *ppdev = pdev;
1476 return 1;
1477 }
1478
1479 return 0;
1480}
1481
1482/**
1483 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1484 * @group: IOMMU group
1485 *
1486 * The routine is called to convert IOMMU group to EEH PE.
1487 */
1488struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1489{
1490 struct pci_dev *pdev = NULL;
1491 struct eeh_dev *edev;
1492 int ret;
1493
1494 /* No IOMMU group ? */
1495 if (!group)
1496 return NULL;
1497
1498 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1499 if (!ret || !pdev)
1500 return NULL;
1501
1502 /* No EEH device or PE ? */
1503 edev = pci_dev_to_eeh_dev(pdev);
1504 if (!edev || !edev->pe)
1505 return NULL;
1506
1507 return edev->pe;
1508}
1509EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1510
1511#endif /* CONFIG_IOMMU_API */
1512
1513/**
1514 * eeh_pe_set_option - Set options for the indicated PE
1515 * @pe: EEH PE
1516 * @option: requested option
1517 *
1518 * The routine is called to enable or disable EEH functionality
1519 * on the indicated PE, to enable IO or DMA for the frozen PE.
1520 */
1521int eeh_pe_set_option(struct eeh_pe *pe, int option)
1522{
1523 int ret = 0;
1524
1525 /* Invalid PE ? */
1526 if (!pe)
1527 return -ENODEV;
1528
1529 /*
1530 * EEH functionality could possibly be disabled, just
1531 * return error for the case. And the EEH functinality
1532 * isn't expected to be disabled on one specific PE.
1533 */
1534 switch (option) {
1535 case EEH_OPT_ENABLE:
1536 if (eeh_enabled()) {
1537 ret = eeh_pe_change_owner(pe);
1538 break;
1539 }
1540 ret = -EIO;
1541 break;
1542 case EEH_OPT_DISABLE:
1543 break;
1544 case EEH_OPT_THAW_MMIO:
1545 case EEH_OPT_THAW_DMA:
1546 case EEH_OPT_FREEZE_PE:
1547 if (!eeh_ops || !eeh_ops->set_option) {
1548 ret = -ENOENT;
1549 break;
1550 }
1551
1552 ret = eeh_pci_enable(pe, option);
1553 break;
1554 default:
1555 pr_debug("%s: Option %d out of range (%d, %d)\n",
1556 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1557 ret = -EINVAL;
1558 }
1559
1560 return ret;
1561}
1562EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1563
1564/**
1565 * eeh_pe_get_state - Retrieve PE's state
1566 * @pe: EEH PE
1567 *
1568 * Retrieve the PE's state, which includes 3 aspects: enabled
1569 * DMA, enabled IO and asserted reset.
1570 */
1571int eeh_pe_get_state(struct eeh_pe *pe)
1572{
1573 int result, ret = 0;
1574 bool rst_active, dma_en, mmio_en;
1575
1576 /* Existing PE ? */
1577 if (!pe)
1578 return -ENODEV;
1579
1580 if (!eeh_ops || !eeh_ops->get_state)
1581 return -ENOENT;
1582
1583 /*
1584 * If the parent PE is owned by the host kernel and is undergoing
1585 * error recovery, we should return the PE state as temporarily
1586 * unavailable so that the error recovery on the guest is suspended
1587 * until the recovery completes on the host.
1588 */
1589 if (pe->parent &&
1590 !(pe->state & EEH_PE_REMOVED) &&
1591 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1592 return EEH_PE_STATE_UNAVAIL;
1593
1594 result = eeh_ops->get_state(pe, NULL);
1595 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1596 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1597 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1598
1599 if (rst_active)
1600 ret = EEH_PE_STATE_RESET;
1601 else if (dma_en && mmio_en)
1602 ret = EEH_PE_STATE_NORMAL;
1603 else if (!dma_en && !mmio_en)
1604 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1605 else if (!dma_en && mmio_en)
1606 ret = EEH_PE_STATE_STOPPED_DMA;
1607 else
1608 ret = EEH_PE_STATE_UNAVAIL;
1609
1610 return ret;
1611}
1612EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1613
1614static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1615{
1616 struct eeh_dev *edev, *tmp;
1617 struct pci_dev *pdev;
1618 int ret = 0;
1619
1620 /* Restore config space */
1621 eeh_pe_restore_bars(pe);
1622
1623 /*
1624 * Reenable PCI devices as the devices passed
1625 * through are always enabled before the reset.
1626 */
1627 eeh_pe_for_each_dev(pe, edev, tmp) {
1628 pdev = eeh_dev_to_pci_dev(edev);
1629 if (!pdev)
1630 continue;
1631
1632 ret = pci_reenable_device(pdev);
1633 if (ret) {
1634 pr_warn("%s: Failure %d reenabling %s\n",
1635 __func__, ret, pci_name(pdev));
1636 return ret;
1637 }
1638 }
1639
1640 /* The PE is still in frozen state */
1641 return eeh_unfreeze_pe(pe, true);
1642}
1643
1644
1645/**
1646 * eeh_pe_reset - Issue PE reset according to specified type
1647 * @pe: EEH PE
1648 * @option: reset type
1649 *
1650 * The routine is called to reset the specified PE with the
1651 * indicated type, either fundamental reset or hot reset.
1652 * PE reset is the most important part for error recovery.
1653 */
1654int eeh_pe_reset(struct eeh_pe *pe, int option)
1655{
1656 int ret = 0;
1657
1658 /* Invalid PE ? */
1659 if (!pe)
1660 return -ENODEV;
1661
1662 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1663 return -ENOENT;
1664
1665 switch (option) {
1666 case EEH_RESET_DEACTIVATE:
1667 ret = eeh_ops->reset(pe, option);
1668 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1669 if (ret)
1670 break;
1671
1672 ret = eeh_pe_reenable_devices(pe);
1673 break;
1674 case EEH_RESET_HOT:
1675 case EEH_RESET_FUNDAMENTAL:
1676 /*
1677 * Proactively freeze the PE to drop all MMIO access
1678 * during reset, which should be banned as it's always
1679 * cause recursive EEH error.
1680 */
1681 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1682
1683 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1684 ret = eeh_ops->reset(pe, option);
1685 break;
1686 default:
1687 pr_debug("%s: Unsupported option %d\n",
1688 __func__, option);
1689 ret = -EINVAL;
1690 }
1691
1692 return ret;
1693}
1694EXPORT_SYMBOL_GPL(eeh_pe_reset);
1695
1696/**
1697 * eeh_pe_configure - Configure PCI bridges after PE reset
1698 * @pe: EEH PE
1699 *
1700 * The routine is called to restore the PCI config space for
1701 * those PCI devices, especially PCI bridges affected by PE
1702 * reset issued previously.
1703 */
1704int eeh_pe_configure(struct eeh_pe *pe)
1705{
1706 int ret = 0;
1707
1708 /* Invalid PE ? */
1709 if (!pe)
1710 return -ENODEV;
1711
1712 return ret;
1713}
1714EXPORT_SYMBOL_GPL(eeh_pe_configure);
1715
1716/**
1717 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1718 * @pe: the indicated PE
1719 * @type: error type
1720 * @function: error function
1721 * @addr: address
1722 * @mask: address mask
1723 *
1724 * The routine is called to inject the specified PCI error, which
1725 * is determined by @type and @function, to the indicated PE for
1726 * testing purpose.
1727 */
1728int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1729 unsigned long addr, unsigned long mask)
1730{
1731 /* Invalid PE ? */
1732 if (!pe)
1733 return -ENODEV;
1734
1735 /* Unsupported operation ? */
1736 if (!eeh_ops || !eeh_ops->err_inject)
1737 return -ENOENT;
1738
1739 /* Check on PCI error type */
1740 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1741 return -EINVAL;
1742
1743 /* Check on PCI error function */
1744 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1745 return -EINVAL;
1746
1747 return eeh_ops->err_inject(pe, type, func, addr, mask);
1748}
1749EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1750
1751static int proc_eeh_show(struct seq_file *m, void *v)
1752{
1753 if (!eeh_enabled()) {
1754 seq_printf(m, "EEH Subsystem is globally disabled\n");
1755 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1756 } else {
1757 seq_printf(m, "EEH Subsystem is enabled\n");
1758 seq_printf(m,
1759 "no device=%llu\n"
1760 "no device node=%llu\n"
1761 "no config address=%llu\n"
1762 "check not wanted=%llu\n"
1763 "eeh_total_mmio_ffs=%llu\n"
1764 "eeh_false_positives=%llu\n"
1765 "eeh_slot_resets=%llu\n",
1766 eeh_stats.no_device,
1767 eeh_stats.no_dn,
1768 eeh_stats.no_cfg_addr,
1769 eeh_stats.ignored_check,
1770 eeh_stats.total_mmio_ffs,
1771 eeh_stats.false_positives,
1772 eeh_stats.slot_resets);
1773 }
1774
1775 return 0;
1776}
1777
1778static int proc_eeh_open(struct inode *inode, struct file *file)
1779{
1780 return single_open(file, proc_eeh_show, NULL);
1781}
1782
1783static const struct file_operations proc_eeh_operations = {
1784 .open = proc_eeh_open,
1785 .read = seq_read,
1786 .llseek = seq_lseek,
1787 .release = single_release,
1788};
1789
1790#ifdef CONFIG_DEBUG_FS
1791static int eeh_enable_dbgfs_set(void *data, u64 val)
1792{
1793 if (val)
1794 eeh_clear_flag(EEH_FORCE_DISABLED);
1795 else
1796 eeh_add_flag(EEH_FORCE_DISABLED);
1797
1798 return 0;
1799}
1800
1801static int eeh_enable_dbgfs_get(void *data, u64 *val)
1802{
1803 if (eeh_enabled())
1804 *val = 0x1ul;
1805 else
1806 *val = 0x0ul;
1807 return 0;
1808}
1809
1810static int eeh_freeze_dbgfs_set(void *data, u64 val)
1811{
1812 eeh_max_freezes = val;
1813 return 0;
1814}
1815
1816static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1817{
1818 *val = eeh_max_freezes;
1819 return 0;
1820}
1821
1822DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1823 eeh_enable_dbgfs_set, "0x%llx\n");
1824DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1825 eeh_freeze_dbgfs_set, "0x%llx\n");
1826#endif
1827
1828static int __init eeh_init_proc(void)
1829{
1830 if (machine_is(pseries) || machine_is(powernv)) {
1831 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1832#ifdef CONFIG_DEBUG_FS
1833 debugfs_create_file("eeh_enable", 0600,
1834 powerpc_debugfs_root, NULL,
1835 &eeh_enable_dbgfs_ops);
1836 debugfs_create_file("eeh_max_freezes", 0600,
1837 powerpc_debugfs_root, NULL,
1838 &eeh_freeze_dbgfs_ops);
1839#endif
1840 }
1841
1842 return 0;
1843}
1844__initcall(eeh_init_proc);
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/debugfs.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/pci.h>
30#include <linux/iommu.h>
31#include <linux/proc_fs.h>
32#include <linux/rbtree.h>
33#include <linux/reboot.h>
34#include <linux/seq_file.h>
35#include <linux/spinlock.h>
36#include <linux/export.h>
37#include <linux/of.h>
38
39#include <linux/atomic.h>
40#include <asm/debug.h>
41#include <asm/eeh.h>
42#include <asm/eeh_event.h>
43#include <asm/io.h>
44#include <asm/iommu.h>
45#include <asm/machdep.h>
46#include <asm/ppc-pci.h>
47#include <asm/rtas.h>
48
49
50/** Overview:
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
120/* Lock to protect passed flags */
121static DEFINE_MUTEX(eeh_dev_mutex);
122
123/* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127#define EEH_PCI_REGS_LOG_LEN 8192
128static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130/*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
143};
144
145static struct eeh_stats eeh_stats;
146
147static int __init eeh_setup(char *str)
148{
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
153
154 return 1;
155}
156__setup("eeh=", eeh_setup);
157
158/*
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
162 */
163static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164{
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
170
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
195 }
196
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 }
208
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
214
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
222
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
229 }
230
231 }
232
233 pr_warn("%s\n", buffer);
234 }
235
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
241
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
249
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
256 }
257 }
258
259 pr_warn("%s\n", buffer);
260 }
261
262 return n;
263}
264
265static void *eeh_dump_pe_log(void *data, void *flag)
266{
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 eeh_pe_for_each_dev(pe, edev, tmp)
272 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
273 EEH_PCI_REGS_LOG_LEN - *plen);
274
275 return NULL;
276}
277
278/**
279 * eeh_slot_error_detail - Generate combined log including driver log and error log
280 * @pe: EEH PE
281 * @severity: temporary or permanent error log
282 *
283 * This routine should be called to generate the combined log, which
284 * is comprised of driver log and error log. The driver log is figured
285 * out from the config space of the corresponding PCI device, while
286 * the error log is fetched through platform dependent function call.
287 */
288void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
289{
290 size_t loglen = 0;
291
292 /*
293 * When the PHB is fenced or dead, it's pointless to collect
294 * the data from PCI config space because it should return
295 * 0xFF's. For ER, we still retrieve the data from the PCI
296 * config space.
297 *
298 * For pHyp, we have to enable IO for log retrieval. Otherwise,
299 * 0xFF's is always returned from PCI config space.
300 */
301 if (!(pe->type & EEH_PE_PHB)) {
302 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
303 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
304
305 /*
306 * The config space of some PCI devices can't be accessed
307 * when their PEs are in frozen state. Otherwise, fenced
308 * PHB might be seen. Those PEs are identified with flag
309 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
310 * is set automatically when the PE is put to EEH_PE_ISOLATED.
311 *
312 * Restoring BARs possibly triggers PCI config access in
313 * (OPAL) firmware and then causes fenced PHB. If the
314 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
315 * pointless to restore BARs and dump config space.
316 */
317 eeh_ops->configure_bridge(pe);
318 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
319 eeh_pe_restore_bars(pe);
320
321 pci_regs_buf[0] = 0;
322 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
323 }
324 }
325
326 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
327}
328
329/**
330 * eeh_token_to_phys - Convert EEH address token to phys address
331 * @token: I/O token, should be address in the form 0xA....
332 *
333 * This routine should be called to convert virtual I/O address
334 * to physical one.
335 */
336static inline unsigned long eeh_token_to_phys(unsigned long token)
337{
338 pte_t *ptep;
339 unsigned long pa;
340 int hugepage_shift;
341
342 /*
343 * We won't find hugepages here(this is iomem). Hence we are not
344 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
345 * page table free, because of init_mm.
346 */
347 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
348 NULL, &hugepage_shift);
349 if (!ptep)
350 return token;
351 WARN_ON(hugepage_shift);
352 pa = pte_pfn(*ptep) << PAGE_SHIFT;
353
354 return pa | (token & (PAGE_SIZE-1));
355}
356
357/*
358 * On PowerNV platform, we might already have fenced PHB there.
359 * For that case, it's meaningless to recover frozen PE. Intead,
360 * We have to handle fenced PHB firstly.
361 */
362static int eeh_phb_check_failure(struct eeh_pe *pe)
363{
364 struct eeh_pe *phb_pe;
365 unsigned long flags;
366 int ret;
367
368 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
369 return -EPERM;
370
371 /* Find the PHB PE */
372 phb_pe = eeh_phb_pe_get(pe->phb);
373 if (!phb_pe) {
374 pr_warn("%s Can't find PE for PHB#%d\n",
375 __func__, pe->phb->global_number);
376 return -EEXIST;
377 }
378
379 /* If the PHB has been in problematic state */
380 eeh_serialize_lock(&flags);
381 if (phb_pe->state & EEH_PE_ISOLATED) {
382 ret = 0;
383 goto out;
384 }
385
386 /* Check PHB state */
387 ret = eeh_ops->get_state(phb_pe, NULL);
388 if ((ret < 0) ||
389 (ret == EEH_STATE_NOT_SUPPORT) ||
390 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
391 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
392 ret = 0;
393 goto out;
394 }
395
396 /* Isolate the PHB and send event */
397 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
398 eeh_serialize_unlock(flags);
399
400 pr_err("EEH: PHB#%x failure detected, location: %s\n",
401 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
402 dump_stack();
403 eeh_send_failure_event(phb_pe);
404
405 return 1;
406out:
407 eeh_serialize_unlock(flags);
408 return ret;
409}
410
411/**
412 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
413 * @edev: eeh device
414 *
415 * Check for an EEH failure for the given device node. Call this
416 * routine if the result of a read was all 0xff's and you want to
417 * find out if this is due to an EEH slot freeze. This routine
418 * will query firmware for the EEH status.
419 *
420 * Returns 0 if there has not been an EEH error; otherwise returns
421 * a non-zero value and queues up a slot isolation event notification.
422 *
423 * It is safe to call this routine in an interrupt context.
424 */
425int eeh_dev_check_failure(struct eeh_dev *edev)
426{
427 int ret;
428 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
429 unsigned long flags;
430 struct pci_dn *pdn;
431 struct pci_dev *dev;
432 struct eeh_pe *pe, *parent_pe, *phb_pe;
433 int rc = 0;
434 const char *location = NULL;
435
436 eeh_stats.total_mmio_ffs++;
437
438 if (!eeh_enabled())
439 return 0;
440
441 if (!edev) {
442 eeh_stats.no_dn++;
443 return 0;
444 }
445 dev = eeh_dev_to_pci_dev(edev);
446 pe = eeh_dev_to_pe(edev);
447
448 /* Access to IO BARs might get this far and still not want checking. */
449 if (!pe) {
450 eeh_stats.ignored_check++;
451 pr_debug("EEH: Ignored check for %s\n",
452 eeh_pci_name(dev));
453 return 0;
454 }
455
456 if (!pe->addr && !pe->config_addr) {
457 eeh_stats.no_cfg_addr++;
458 return 0;
459 }
460
461 /*
462 * On PowerNV platform, we might already have fenced PHB
463 * there and we need take care of that firstly.
464 */
465 ret = eeh_phb_check_failure(pe);
466 if (ret > 0)
467 return ret;
468
469 /*
470 * If the PE isn't owned by us, we shouldn't check the
471 * state. Instead, let the owner handle it if the PE has
472 * been frozen.
473 */
474 if (eeh_pe_passed(pe))
475 return 0;
476
477 /* If we already have a pending isolation event for this
478 * slot, we know it's bad already, we don't need to check.
479 * Do this checking under a lock; as multiple PCI devices
480 * in one slot might report errors simultaneously, and we
481 * only want one error recovery routine running.
482 */
483 eeh_serialize_lock(&flags);
484 rc = 1;
485 if (pe->state & EEH_PE_ISOLATED) {
486 pe->check_count++;
487 if (pe->check_count % EEH_MAX_FAILS == 0) {
488 pdn = eeh_dev_to_pdn(edev);
489 if (pdn->node)
490 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
491 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
492 "location=%s driver=%s pci addr=%s\n",
493 pe->check_count,
494 location ? location : "unknown",
495 eeh_driver_name(dev), eeh_pci_name(dev));
496 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
497 eeh_driver_name(dev));
498 dump_stack();
499 }
500 goto dn_unlock;
501 }
502
503 /*
504 * Now test for an EEH failure. This is VERY expensive.
505 * Note that the eeh_config_addr may be a parent device
506 * in the case of a device behind a bridge, or it may be
507 * function zero of a multi-function device.
508 * In any case they must share a common PHB.
509 */
510 ret = eeh_ops->get_state(pe, NULL);
511
512 /* Note that config-io to empty slots may fail;
513 * they are empty when they don't have children.
514 * We will punt with the following conditions: Failure to get
515 * PE's state, EEH not support and Permanently unavailable
516 * state, PE is in good state.
517 */
518 if ((ret < 0) ||
519 (ret == EEH_STATE_NOT_SUPPORT) ||
520 ((ret & active_flags) == active_flags)) {
521 eeh_stats.false_positives++;
522 pe->false_positives++;
523 rc = 0;
524 goto dn_unlock;
525 }
526
527 /*
528 * It should be corner case that the parent PE has been
529 * put into frozen state as well. We should take care
530 * that at first.
531 */
532 parent_pe = pe->parent;
533 while (parent_pe) {
534 /* Hit the ceiling ? */
535 if (parent_pe->type & EEH_PE_PHB)
536 break;
537
538 /* Frozen parent PE ? */
539 ret = eeh_ops->get_state(parent_pe, NULL);
540 if (ret > 0 &&
541 (ret & active_flags) != active_flags)
542 pe = parent_pe;
543
544 /* Next parent level */
545 parent_pe = parent_pe->parent;
546 }
547
548 eeh_stats.slot_resets++;
549
550 /* Avoid repeated reports of this failure, including problems
551 * with other functions on this device, and functions under
552 * bridges.
553 */
554 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
555 eeh_serialize_unlock(flags);
556
557 /* Most EEH events are due to device driver bugs. Having
558 * a stack trace will help the device-driver authors figure
559 * out what happened. So print that out.
560 */
561 phb_pe = eeh_phb_pe_get(pe->phb);
562 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
563 pe->phb->global_number, pe->addr);
564 pr_err("EEH: PE location: %s, PHB location: %s\n",
565 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
566 dump_stack();
567
568 eeh_send_failure_event(pe);
569
570 return 1;
571
572dn_unlock:
573 eeh_serialize_unlock(flags);
574 return rc;
575}
576
577EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
578
579/**
580 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
581 * @token: I/O address
582 *
583 * Check for an EEH failure at the given I/O address. Call this
584 * routine if the result of a read was all 0xff's and you want to
585 * find out if this is due to an EEH slot freeze event. This routine
586 * will query firmware for the EEH status.
587 *
588 * Note this routine is safe to call in an interrupt context.
589 */
590int eeh_check_failure(const volatile void __iomem *token)
591{
592 unsigned long addr;
593 struct eeh_dev *edev;
594
595 /* Finding the phys addr + pci device; this is pretty quick. */
596 addr = eeh_token_to_phys((unsigned long __force) token);
597 edev = eeh_addr_cache_get_dev(addr);
598 if (!edev) {
599 eeh_stats.no_device++;
600 return 0;
601 }
602
603 return eeh_dev_check_failure(edev);
604}
605EXPORT_SYMBOL(eeh_check_failure);
606
607
608/**
609 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
610 * @pe: EEH PE
611 *
612 * This routine should be called to reenable frozen MMIO or DMA
613 * so that it would work correctly again. It's useful while doing
614 * recovery or log collection on the indicated device.
615 */
616int eeh_pci_enable(struct eeh_pe *pe, int function)
617{
618 int active_flag, rc;
619
620 /*
621 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
622 * Also, it's pointless to enable them on unfrozen PE. So
623 * we have to check before enabling IO or DMA.
624 */
625 switch (function) {
626 case EEH_OPT_THAW_MMIO:
627 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
628 break;
629 case EEH_OPT_THAW_DMA:
630 active_flag = EEH_STATE_DMA_ACTIVE;
631 break;
632 case EEH_OPT_DISABLE:
633 case EEH_OPT_ENABLE:
634 case EEH_OPT_FREEZE_PE:
635 active_flag = 0;
636 break;
637 default:
638 pr_warn("%s: Invalid function %d\n",
639 __func__, function);
640 return -EINVAL;
641 }
642
643 /*
644 * Check if IO or DMA has been enabled before
645 * enabling them.
646 */
647 if (active_flag) {
648 rc = eeh_ops->get_state(pe, NULL);
649 if (rc < 0)
650 return rc;
651
652 /* Needn't enable it at all */
653 if (rc == EEH_STATE_NOT_SUPPORT)
654 return 0;
655
656 /* It's already enabled */
657 if (rc & active_flag)
658 return 0;
659 }
660
661
662 /* Issue the request */
663 rc = eeh_ops->set_option(pe, function);
664 if (rc)
665 pr_warn("%s: Unexpected state change %d on "
666 "PHB#%d-PE#%x, err=%d\n",
667 __func__, function, pe->phb->global_number,
668 pe->addr, rc);
669
670 /* Check if the request is finished successfully */
671 if (active_flag) {
672 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
673 if (rc < 0)
674 return rc;
675
676 if (rc & active_flag)
677 return 0;
678
679 return -EIO;
680 }
681
682 return rc;
683}
684
685static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
686{
687 struct eeh_dev *edev = data;
688 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
689 struct pci_dev *dev = userdata;
690
691 /*
692 * The caller should have disabled and saved the
693 * state for the specified device
694 */
695 if (!pdev || pdev == dev)
696 return NULL;
697
698 /* Ensure we have D0 power state */
699 pci_set_power_state(pdev, PCI_D0);
700
701 /* Save device state */
702 pci_save_state(pdev);
703
704 /*
705 * Disable device to avoid any DMA traffic and
706 * interrupt from the device
707 */
708 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
709
710 return NULL;
711}
712
713static void *eeh_restore_dev_state(void *data, void *userdata)
714{
715 struct eeh_dev *edev = data;
716 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
717 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
718 struct pci_dev *dev = userdata;
719
720 if (!pdev)
721 return NULL;
722
723 /* Apply customization from firmware */
724 if (pdn && eeh_ops->restore_config)
725 eeh_ops->restore_config(pdn);
726
727 /* The caller should restore state for the specified device */
728 if (pdev != dev)
729 pci_restore_state(pdev);
730
731 return NULL;
732}
733
734/**
735 * pcibios_set_pcie_reset_state - Set PCI-E reset state
736 * @dev: pci device struct
737 * @state: reset state to enter
738 *
739 * Return value:
740 * 0 if success
741 */
742int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
743{
744 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
745 struct eeh_pe *pe = eeh_dev_to_pe(edev);
746
747 if (!pe) {
748 pr_err("%s: No PE found on PCI device %s\n",
749 __func__, pci_name(dev));
750 return -EINVAL;
751 }
752
753 switch (state) {
754 case pcie_deassert_reset:
755 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
756 eeh_unfreeze_pe(pe, false);
757 if (!(pe->type & EEH_PE_VF))
758 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
759 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
760 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
761 break;
762 case pcie_hot_reset:
763 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
764 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
765 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
766 if (!(pe->type & EEH_PE_VF))
767 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
768 eeh_ops->reset(pe, EEH_RESET_HOT);
769 break;
770 case pcie_warm_reset:
771 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
772 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
773 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
774 if (!(pe->type & EEH_PE_VF))
775 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
776 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
777 break;
778 default:
779 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
780 return -EINVAL;
781 };
782
783 return 0;
784}
785
786/**
787 * eeh_set_pe_freset - Check the required reset for the indicated device
788 * @data: EEH device
789 * @flag: return value
790 *
791 * Each device might have its preferred reset type: fundamental or
792 * hot reset. The routine is used to collected the information for
793 * the indicated device and its children so that the bunch of the
794 * devices could be reset properly.
795 */
796static void *eeh_set_dev_freset(void *data, void *flag)
797{
798 struct pci_dev *dev;
799 unsigned int *freset = (unsigned int *)flag;
800 struct eeh_dev *edev = (struct eeh_dev *)data;
801
802 dev = eeh_dev_to_pci_dev(edev);
803 if (dev)
804 *freset |= dev->needs_freset;
805
806 return NULL;
807}
808
809/**
810 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
811 * @pe: EEH PE
812 *
813 * Assert the PCI #RST line for 1/4 second.
814 */
815static void eeh_reset_pe_once(struct eeh_pe *pe)
816{
817 unsigned int freset = 0;
818
819 /* Determine type of EEH reset required for
820 * Partitionable Endpoint, a hot-reset (1)
821 * or a fundamental reset (3).
822 * A fundamental reset required by any device under
823 * Partitionable Endpoint trumps hot-reset.
824 */
825 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
826
827 if (freset)
828 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
829 else
830 eeh_ops->reset(pe, EEH_RESET_HOT);
831
832 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
833}
834
835/**
836 * eeh_reset_pe - Reset the indicated PE
837 * @pe: EEH PE
838 *
839 * This routine should be called to reset indicated device, including
840 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
841 * might be involved as well.
842 */
843int eeh_reset_pe(struct eeh_pe *pe)
844{
845 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
846 int i, state, ret;
847
848 /* Mark as reset and block config space */
849 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
850
851 /* Take three shots at resetting the bus */
852 for (i = 0; i < 3; i++) {
853 eeh_reset_pe_once(pe);
854
855 /*
856 * EEH_PE_ISOLATED is expected to be removed after
857 * BAR restore.
858 */
859 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
860 if ((state & flags) == flags) {
861 ret = 0;
862 goto out;
863 }
864
865 if (state < 0) {
866 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
867 __func__, pe->phb->global_number, pe->addr);
868 ret = -ENOTRECOVERABLE;
869 goto out;
870 }
871
872 /* We might run out of credits */
873 ret = -EIO;
874 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
875 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
876 }
877
878out:
879 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
880 return ret;
881}
882
883/**
884 * eeh_save_bars - Save device bars
885 * @edev: PCI device associated EEH device
886 *
887 * Save the values of the device bars. Unlike the restore
888 * routine, this routine is *not* recursive. This is because
889 * PCI devices are added individually; but, for the restore,
890 * an entire slot is reset at a time.
891 */
892void eeh_save_bars(struct eeh_dev *edev)
893{
894 struct pci_dn *pdn;
895 int i;
896
897 pdn = eeh_dev_to_pdn(edev);
898 if (!pdn)
899 return;
900
901 for (i = 0; i < 16; i++)
902 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
903
904 /*
905 * For PCI bridges including root port, we need enable bus
906 * master explicitly. Otherwise, it can't fetch IODA table
907 * entries correctly. So we cache the bit in advance so that
908 * we can restore it after reset, either PHB range or PE range.
909 */
910 if (edev->mode & EEH_DEV_BRIDGE)
911 edev->config_space[1] |= PCI_COMMAND_MASTER;
912}
913
914/**
915 * eeh_ops_register - Register platform dependent EEH operations
916 * @ops: platform dependent EEH operations
917 *
918 * Register the platform dependent EEH operation callback
919 * functions. The platform should call this function before
920 * any other EEH operations.
921 */
922int __init eeh_ops_register(struct eeh_ops *ops)
923{
924 if (!ops->name) {
925 pr_warn("%s: Invalid EEH ops name for %p\n",
926 __func__, ops);
927 return -EINVAL;
928 }
929
930 if (eeh_ops && eeh_ops != ops) {
931 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
932 __func__, eeh_ops->name, ops->name);
933 return -EEXIST;
934 }
935
936 eeh_ops = ops;
937
938 return 0;
939}
940
941/**
942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
943 * @name: name of EEH platform operations
944 *
945 * Unregister the platform dependent EEH operation callback
946 * functions.
947 */
948int __exit eeh_ops_unregister(const char *name)
949{
950 if (!name || !strlen(name)) {
951 pr_warn("%s: Invalid EEH ops name\n",
952 __func__);
953 return -EINVAL;
954 }
955
956 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
957 eeh_ops = NULL;
958 return 0;
959 }
960
961 return -EEXIST;
962}
963
964static int eeh_reboot_notifier(struct notifier_block *nb,
965 unsigned long action, void *unused)
966{
967 eeh_clear_flag(EEH_ENABLED);
968 return NOTIFY_DONE;
969}
970
971static struct notifier_block eeh_reboot_nb = {
972 .notifier_call = eeh_reboot_notifier,
973};
974
975/**
976 * eeh_init - EEH initialization
977 *
978 * Initialize EEH by trying to enable it for all of the adapters in the system.
979 * As a side effect we can determine here if eeh is supported at all.
980 * Note that we leave EEH on so failed config cycles won't cause a machine
981 * check. If a user turns off EEH for a particular adapter they are really
982 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
983 * grant access to a slot if EEH isn't enabled, and so we always enable
984 * EEH for all slots/all devices.
985 *
986 * The eeh-force-off option disables EEH checking globally, for all slots.
987 * Even if force-off is set, the EEH hardware is still enabled, so that
988 * newer systems can boot.
989 */
990int eeh_init(void)
991{
992 struct pci_controller *hose, *tmp;
993 struct pci_dn *pdn;
994 static int cnt = 0;
995 int ret = 0;
996
997 /*
998 * We have to delay the initialization on PowerNV after
999 * the PCI hierarchy tree has been built because the PEs
1000 * are figured out based on PCI devices instead of device
1001 * tree nodes
1002 */
1003 if (machine_is(powernv) && cnt++ <= 0)
1004 return ret;
1005
1006 /* Register reboot notifier */
1007 ret = register_reboot_notifier(&eeh_reboot_nb);
1008 if (ret) {
1009 pr_warn("%s: Failed to register notifier (%d)\n",
1010 __func__, ret);
1011 return ret;
1012 }
1013
1014 /* call platform initialization function */
1015 if (!eeh_ops) {
1016 pr_warn("%s: Platform EEH operation not found\n",
1017 __func__);
1018 return -EEXIST;
1019 } else if ((ret = eeh_ops->init()))
1020 return ret;
1021
1022 /* Initialize EEH event */
1023 ret = eeh_event_init();
1024 if (ret)
1025 return ret;
1026
1027 /* Enable EEH for all adapters */
1028 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029 pdn = hose->pci_data;
1030 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1031 }
1032
1033 /*
1034 * Call platform post-initialization. Actually, It's good chance
1035 * to inform platform that EEH is ready to supply service if the
1036 * I/O cache stuff has been built up.
1037 */
1038 if (eeh_ops->post_init) {
1039 ret = eeh_ops->post_init();
1040 if (ret)
1041 return ret;
1042 }
1043
1044 if (eeh_enabled())
1045 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046 else
1047 pr_warn("EEH: No capable adapters found\n");
1048
1049 return ret;
1050}
1051
1052core_initcall_sync(eeh_init);
1053
1054/**
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1057 *
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1065 */
1066void eeh_add_device_early(struct pci_dn *pdn)
1067{
1068 struct pci_controller *phb;
1069 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1070
1071 if (!edev || !eeh_enabled())
1072 return;
1073
1074 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075 return;
1076
1077 /* USB Bus children of PCI devices will not have BUID's */
1078 phb = edev->phb;
1079 if (NULL == phb ||
1080 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081 return;
1082
1083 eeh_ops->probe(pdn, NULL);
1084}
1085
1086/**
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1089 *
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1093 */
1094void eeh_add_device_tree_early(struct pci_dn *pdn)
1095{
1096 struct pci_dn *n;
1097
1098 if (!pdn)
1099 return;
1100
1101 list_for_each_entry(n, &pdn->child_list, list)
1102 eeh_add_device_tree_early(n);
1103 eeh_add_device_early(pdn);
1104}
1105EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1106
1107/**
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1110 *
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1113 */
1114void eeh_add_device_late(struct pci_dev *dev)
1115{
1116 struct pci_dn *pdn;
1117 struct eeh_dev *edev;
1118
1119 if (!dev || !eeh_enabled())
1120 return;
1121
1122 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1123
1124 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125 edev = pdn_to_eeh_dev(pdn);
1126 if (edev->pdev == dev) {
1127 pr_debug("EEH: Already referenced !\n");
1128 return;
1129 }
1130
1131 /*
1132 * The EEH cache might not be removed correctly because of
1133 * unbalanced kref to the device during unplug time, which
1134 * relies on pcibios_release_device(). So we have to remove
1135 * that here explicitly.
1136 */
1137 if (edev->pdev) {
1138 eeh_rmv_from_parent_pe(edev);
1139 eeh_addr_cache_rmv_dev(edev->pdev);
1140 eeh_sysfs_remove_device(edev->pdev);
1141 edev->mode &= ~EEH_DEV_SYSFS;
1142
1143 /*
1144 * We definitely should have the PCI device removed
1145 * though it wasn't correctly. So we needn't call
1146 * into error handler afterwards.
1147 */
1148 edev->mode |= EEH_DEV_NO_HANDLER;
1149
1150 edev->pdev = NULL;
1151 dev->dev.archdata.edev = NULL;
1152 }
1153
1154 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155 eeh_ops->probe(pdn, NULL);
1156
1157 edev->pdev = dev;
1158 dev->dev.archdata.edev = edev;
1159
1160 eeh_addr_cache_insert_dev(dev);
1161}
1162
1163/**
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1166 *
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1170 */
1171void eeh_add_device_tree_late(struct pci_bus *bus)
1172{
1173 struct pci_dev *dev;
1174
1175 list_for_each_entry(dev, &bus->devices, bus_list) {
1176 eeh_add_device_late(dev);
1177 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178 struct pci_bus *subbus = dev->subordinate;
1179 if (subbus)
1180 eeh_add_device_tree_late(subbus);
1181 }
1182 }
1183}
1184EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1185
1186/**
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1189 *
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1193 */
1194void eeh_add_sysfs_files(struct pci_bus *bus)
1195{
1196 struct pci_dev *dev;
1197
1198 list_for_each_entry(dev, &bus->devices, bus_list) {
1199 eeh_sysfs_add_device(dev);
1200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201 struct pci_bus *subbus = dev->subordinate;
1202 if (subbus)
1203 eeh_add_sysfs_files(subbus);
1204 }
1205 }
1206}
1207EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1208
1209/**
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1212 *
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar). It unregisters
1215 * the PCI device from the EEH subsystem. I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1218 */
1219void eeh_remove_device(struct pci_dev *dev)
1220{
1221 struct eeh_dev *edev;
1222
1223 if (!dev || !eeh_enabled())
1224 return;
1225 edev = pci_dev_to_eeh_dev(dev);
1226
1227 /* Unregister the device with the EEH/PCI address search system */
1228 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1229
1230 if (!edev || !edev->pdev || !edev->pe) {
1231 pr_debug("EEH: Not referenced !\n");
1232 return;
1233 }
1234
1235 /*
1236 * During the hotplug for EEH error recovery, we need the EEH
1237 * device attached to the parent PE in order for BAR restore
1238 * a bit later. So we keep it for BAR restore and remove it
1239 * from the parent PE during the BAR resotre.
1240 */
1241 edev->pdev = NULL;
1242
1243 /*
1244 * The flag "in_error" is used to trace EEH devices for VFs
1245 * in error state or not. It's set in eeh_report_error(). If
1246 * it's not set, eeh_report_{reset,resume}() won't be called
1247 * for the VF EEH device.
1248 */
1249 edev->in_error = false;
1250 dev->dev.archdata.edev = NULL;
1251 if (!(edev->pe->state & EEH_PE_KEEP))
1252 eeh_rmv_from_parent_pe(edev);
1253 else
1254 edev->mode |= EEH_DEV_DISCONNECTED;
1255
1256 /*
1257 * We're removing from the PCI subsystem, that means
1258 * the PCI device driver can't support EEH or not
1259 * well. So we rely on hotplug completely to do recovery
1260 * for the specific PCI device.
1261 */
1262 edev->mode |= EEH_DEV_NO_HANDLER;
1263
1264 eeh_addr_cache_rmv_dev(dev);
1265 eeh_sysfs_remove_device(dev);
1266 edev->mode &= ~EEH_DEV_SYSFS;
1267}
1268
1269int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1270{
1271 int ret;
1272
1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274 if (ret) {
1275 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276 __func__, ret, pe->phb->global_number, pe->addr);
1277 return ret;
1278 }
1279
1280 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281 if (ret) {
1282 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283 __func__, ret, pe->phb->global_number, pe->addr);
1284 return ret;
1285 }
1286
1287 /* Clear software isolated state */
1288 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1290
1291 return ret;
1292}
1293
1294
1295static struct pci_device_id eeh_reset_ids[] = {
1296 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1297 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299 { 0 }
1300};
1301
1302static int eeh_pe_change_owner(struct eeh_pe *pe)
1303{
1304 struct eeh_dev *edev, *tmp;
1305 struct pci_dev *pdev;
1306 struct pci_device_id *id;
1307 int flags, ret;
1308
1309 /* Check PE state */
1310 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311 ret = eeh_ops->get_state(pe, NULL);
1312 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313 return 0;
1314
1315 /* Unfrozen PE, nothing to do */
1316 if ((ret & flags) == flags)
1317 return 0;
1318
1319 /* Frozen PE, check if it needs PE level reset */
1320 eeh_pe_for_each_dev(pe, edev, tmp) {
1321 pdev = eeh_dev_to_pci_dev(edev);
1322 if (!pdev)
1323 continue;
1324
1325 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326 if (id->vendor != PCI_ANY_ID &&
1327 id->vendor != pdev->vendor)
1328 continue;
1329 if (id->device != PCI_ANY_ID &&
1330 id->device != pdev->device)
1331 continue;
1332 if (id->subvendor != PCI_ANY_ID &&
1333 id->subvendor != pdev->subsystem_vendor)
1334 continue;
1335 if (id->subdevice != PCI_ANY_ID &&
1336 id->subdevice != pdev->subsystem_device)
1337 continue;
1338
1339 goto reset;
1340 }
1341 }
1342
1343 return eeh_unfreeze_pe(pe, true);
1344
1345reset:
1346 return eeh_pe_reset_and_recover(pe);
1347}
1348
1349/**
1350 * eeh_dev_open - Increase count of pass through devices for PE
1351 * @pdev: PCI device
1352 *
1353 * Increase count of passed through devices for the indicated
1354 * PE. In the result, the EEH errors detected on the PE won't be
1355 * reported. The PE owner will be responsible for detection
1356 * and recovery.
1357 */
1358int eeh_dev_open(struct pci_dev *pdev)
1359{
1360 struct eeh_dev *edev;
1361 int ret = -ENODEV;
1362
1363 mutex_lock(&eeh_dev_mutex);
1364
1365 /* No PCI device ? */
1366 if (!pdev)
1367 goto out;
1368
1369 /* No EEH device or PE ? */
1370 edev = pci_dev_to_eeh_dev(pdev);
1371 if (!edev || !edev->pe)
1372 goto out;
1373
1374 /*
1375 * The PE might have been put into frozen state, but we
1376 * didn't detect that yet. The passed through PCI devices
1377 * in frozen PE won't work properly. Clear the frozen state
1378 * in advance.
1379 */
1380 ret = eeh_pe_change_owner(edev->pe);
1381 if (ret)
1382 goto out;
1383
1384 /* Increase PE's pass through count */
1385 atomic_inc(&edev->pe->pass_dev_cnt);
1386 mutex_unlock(&eeh_dev_mutex);
1387
1388 return 0;
1389out:
1390 mutex_unlock(&eeh_dev_mutex);
1391 return ret;
1392}
1393EXPORT_SYMBOL_GPL(eeh_dev_open);
1394
1395/**
1396 * eeh_dev_release - Decrease count of pass through devices for PE
1397 * @pdev: PCI device
1398 *
1399 * Decrease count of pass through devices for the indicated PE. If
1400 * there is no passed through device in PE, the EEH errors detected
1401 * on the PE will be reported and handled as usual.
1402 */
1403void eeh_dev_release(struct pci_dev *pdev)
1404{
1405 struct eeh_dev *edev;
1406
1407 mutex_lock(&eeh_dev_mutex);
1408
1409 /* No PCI device ? */
1410 if (!pdev)
1411 goto out;
1412
1413 /* No EEH device ? */
1414 edev = pci_dev_to_eeh_dev(pdev);
1415 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1416 goto out;
1417
1418 /* Decrease PE's pass through count */
1419 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1420 eeh_pe_change_owner(edev->pe);
1421out:
1422 mutex_unlock(&eeh_dev_mutex);
1423}
1424EXPORT_SYMBOL(eeh_dev_release);
1425
1426#ifdef CONFIG_IOMMU_API
1427
1428static int dev_has_iommu_table(struct device *dev, void *data)
1429{
1430 struct pci_dev *pdev = to_pci_dev(dev);
1431 struct pci_dev **ppdev = data;
1432
1433 if (!dev)
1434 return 0;
1435
1436 if (dev->iommu_group) {
1437 *ppdev = pdev;
1438 return 1;
1439 }
1440
1441 return 0;
1442}
1443
1444/**
1445 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446 * @group: IOMMU group
1447 *
1448 * The routine is called to convert IOMMU group to EEH PE.
1449 */
1450struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1451{
1452 struct pci_dev *pdev = NULL;
1453 struct eeh_dev *edev;
1454 int ret;
1455
1456 /* No IOMMU group ? */
1457 if (!group)
1458 return NULL;
1459
1460 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461 if (!ret || !pdev)
1462 return NULL;
1463
1464 /* No EEH device or PE ? */
1465 edev = pci_dev_to_eeh_dev(pdev);
1466 if (!edev || !edev->pe)
1467 return NULL;
1468
1469 return edev->pe;
1470}
1471EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1472
1473#endif /* CONFIG_IOMMU_API */
1474
1475/**
1476 * eeh_pe_set_option - Set options for the indicated PE
1477 * @pe: EEH PE
1478 * @option: requested option
1479 *
1480 * The routine is called to enable or disable EEH functionality
1481 * on the indicated PE, to enable IO or DMA for the frozen PE.
1482 */
1483int eeh_pe_set_option(struct eeh_pe *pe, int option)
1484{
1485 int ret = 0;
1486
1487 /* Invalid PE ? */
1488 if (!pe)
1489 return -ENODEV;
1490
1491 /*
1492 * EEH functionality could possibly be disabled, just
1493 * return error for the case. And the EEH functinality
1494 * isn't expected to be disabled on one specific PE.
1495 */
1496 switch (option) {
1497 case EEH_OPT_ENABLE:
1498 if (eeh_enabled()) {
1499 ret = eeh_pe_change_owner(pe);
1500 break;
1501 }
1502 ret = -EIO;
1503 break;
1504 case EEH_OPT_DISABLE:
1505 break;
1506 case EEH_OPT_THAW_MMIO:
1507 case EEH_OPT_THAW_DMA:
1508 if (!eeh_ops || !eeh_ops->set_option) {
1509 ret = -ENOENT;
1510 break;
1511 }
1512
1513 ret = eeh_pci_enable(pe, option);
1514 break;
1515 default:
1516 pr_debug("%s: Option %d out of range (%d, %d)\n",
1517 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518 ret = -EINVAL;
1519 }
1520
1521 return ret;
1522}
1523EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524
1525/**
1526 * eeh_pe_get_state - Retrieve PE's state
1527 * @pe: EEH PE
1528 *
1529 * Retrieve the PE's state, which includes 3 aspects: enabled
1530 * DMA, enabled IO and asserted reset.
1531 */
1532int eeh_pe_get_state(struct eeh_pe *pe)
1533{
1534 int result, ret = 0;
1535 bool rst_active, dma_en, mmio_en;
1536
1537 /* Existing PE ? */
1538 if (!pe)
1539 return -ENODEV;
1540
1541 if (!eeh_ops || !eeh_ops->get_state)
1542 return -ENOENT;
1543
1544 /*
1545 * If the parent PE is owned by the host kernel and is undergoing
1546 * error recovery, we should return the PE state as temporarily
1547 * unavailable so that the error recovery on the guest is suspended
1548 * until the recovery completes on the host.
1549 */
1550 if (pe->parent &&
1551 !(pe->state & EEH_PE_REMOVED) &&
1552 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1553 return EEH_PE_STATE_UNAVAIL;
1554
1555 result = eeh_ops->get_state(pe, NULL);
1556 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1557 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1558 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1559
1560 if (rst_active)
1561 ret = EEH_PE_STATE_RESET;
1562 else if (dma_en && mmio_en)
1563 ret = EEH_PE_STATE_NORMAL;
1564 else if (!dma_en && !mmio_en)
1565 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1566 else if (!dma_en && mmio_en)
1567 ret = EEH_PE_STATE_STOPPED_DMA;
1568 else
1569 ret = EEH_PE_STATE_UNAVAIL;
1570
1571 return ret;
1572}
1573EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1574
1575static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1576{
1577 struct eeh_dev *edev, *tmp;
1578 struct pci_dev *pdev;
1579 int ret = 0;
1580
1581 /* Restore config space */
1582 eeh_pe_restore_bars(pe);
1583
1584 /*
1585 * Reenable PCI devices as the devices passed
1586 * through are always enabled before the reset.
1587 */
1588 eeh_pe_for_each_dev(pe, edev, tmp) {
1589 pdev = eeh_dev_to_pci_dev(edev);
1590 if (!pdev)
1591 continue;
1592
1593 ret = pci_reenable_device(pdev);
1594 if (ret) {
1595 pr_warn("%s: Failure %d reenabling %s\n",
1596 __func__, ret, pci_name(pdev));
1597 return ret;
1598 }
1599 }
1600
1601 /* The PE is still in frozen state */
1602 return eeh_unfreeze_pe(pe, true);
1603}
1604
1605/**
1606 * eeh_pe_reset - Issue PE reset according to specified type
1607 * @pe: EEH PE
1608 * @option: reset type
1609 *
1610 * The routine is called to reset the specified PE with the
1611 * indicated type, either fundamental reset or hot reset.
1612 * PE reset is the most important part for error recovery.
1613 */
1614int eeh_pe_reset(struct eeh_pe *pe, int option)
1615{
1616 int ret = 0;
1617
1618 /* Invalid PE ? */
1619 if (!pe)
1620 return -ENODEV;
1621
1622 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1623 return -ENOENT;
1624
1625 switch (option) {
1626 case EEH_RESET_DEACTIVATE:
1627 ret = eeh_ops->reset(pe, option);
1628 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1629 if (ret)
1630 break;
1631
1632 ret = eeh_pe_reenable_devices(pe);
1633 break;
1634 case EEH_RESET_HOT:
1635 case EEH_RESET_FUNDAMENTAL:
1636 /*
1637 * Proactively freeze the PE to drop all MMIO access
1638 * during reset, which should be banned as it's always
1639 * cause recursive EEH error.
1640 */
1641 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1642
1643 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1644 ret = eeh_ops->reset(pe, option);
1645 break;
1646 default:
1647 pr_debug("%s: Unsupported option %d\n",
1648 __func__, option);
1649 ret = -EINVAL;
1650 }
1651
1652 return ret;
1653}
1654EXPORT_SYMBOL_GPL(eeh_pe_reset);
1655
1656/**
1657 * eeh_pe_configure - Configure PCI bridges after PE reset
1658 * @pe: EEH PE
1659 *
1660 * The routine is called to restore the PCI config space for
1661 * those PCI devices, especially PCI bridges affected by PE
1662 * reset issued previously.
1663 */
1664int eeh_pe_configure(struct eeh_pe *pe)
1665{
1666 int ret = 0;
1667
1668 /* Invalid PE ? */
1669 if (!pe)
1670 return -ENODEV;
1671
1672 return ret;
1673}
1674EXPORT_SYMBOL_GPL(eeh_pe_configure);
1675
1676/**
1677 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1678 * @pe: the indicated PE
1679 * @type: error type
1680 * @function: error function
1681 * @addr: address
1682 * @mask: address mask
1683 *
1684 * The routine is called to inject the specified PCI error, which
1685 * is determined by @type and @function, to the indicated PE for
1686 * testing purpose.
1687 */
1688int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1689 unsigned long addr, unsigned long mask)
1690{
1691 /* Invalid PE ? */
1692 if (!pe)
1693 return -ENODEV;
1694
1695 /* Unsupported operation ? */
1696 if (!eeh_ops || !eeh_ops->err_inject)
1697 return -ENOENT;
1698
1699 /* Check on PCI error type */
1700 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1701 return -EINVAL;
1702
1703 /* Check on PCI error function */
1704 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1705 return -EINVAL;
1706
1707 return eeh_ops->err_inject(pe, type, func, addr, mask);
1708}
1709EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1710
1711static int proc_eeh_show(struct seq_file *m, void *v)
1712{
1713 if (!eeh_enabled()) {
1714 seq_printf(m, "EEH Subsystem is globally disabled\n");
1715 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1716 } else {
1717 seq_printf(m, "EEH Subsystem is enabled\n");
1718 seq_printf(m,
1719 "no device=%llu\n"
1720 "no device node=%llu\n"
1721 "no config address=%llu\n"
1722 "check not wanted=%llu\n"
1723 "eeh_total_mmio_ffs=%llu\n"
1724 "eeh_false_positives=%llu\n"
1725 "eeh_slot_resets=%llu\n",
1726 eeh_stats.no_device,
1727 eeh_stats.no_dn,
1728 eeh_stats.no_cfg_addr,
1729 eeh_stats.ignored_check,
1730 eeh_stats.total_mmio_ffs,
1731 eeh_stats.false_positives,
1732 eeh_stats.slot_resets);
1733 }
1734
1735 return 0;
1736}
1737
1738static int proc_eeh_open(struct inode *inode, struct file *file)
1739{
1740 return single_open(file, proc_eeh_show, NULL);
1741}
1742
1743static const struct file_operations proc_eeh_operations = {
1744 .open = proc_eeh_open,
1745 .read = seq_read,
1746 .llseek = seq_lseek,
1747 .release = single_release,
1748};
1749
1750#ifdef CONFIG_DEBUG_FS
1751static int eeh_enable_dbgfs_set(void *data, u64 val)
1752{
1753 if (val)
1754 eeh_clear_flag(EEH_FORCE_DISABLED);
1755 else
1756 eeh_add_flag(EEH_FORCE_DISABLED);
1757
1758 /* Notify the backend */
1759 if (eeh_ops->post_init)
1760 eeh_ops->post_init();
1761
1762 return 0;
1763}
1764
1765static int eeh_enable_dbgfs_get(void *data, u64 *val)
1766{
1767 if (eeh_enabled())
1768 *val = 0x1ul;
1769 else
1770 *val = 0x0ul;
1771 return 0;
1772}
1773
1774static int eeh_freeze_dbgfs_set(void *data, u64 val)
1775{
1776 eeh_max_freezes = val;
1777 return 0;
1778}
1779
1780static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1781{
1782 *val = eeh_max_freezes;
1783 return 0;
1784}
1785
1786DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1787 eeh_enable_dbgfs_set, "0x%llx\n");
1788DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1789 eeh_freeze_dbgfs_set, "0x%llx\n");
1790#endif
1791
1792static int __init eeh_init_proc(void)
1793{
1794 if (machine_is(pseries) || machine_is(powernv)) {
1795 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1796#ifdef CONFIG_DEBUG_FS
1797 debugfs_create_file("eeh_enable", 0600,
1798 powerpc_debugfs_root, NULL,
1799 &eeh_enable_dbgfs_ops);
1800 debugfs_create_file("eeh_max_freezes", 0600,
1801 powerpc_debugfs_root, NULL,
1802 &eeh_freeze_dbgfs_ops);
1803#endif
1804 }
1805
1806 return 0;
1807}
1808__initcall(eeh_init_proc);