Loading...
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/sched.h>
26#include <linux/init.h>
27#include <linux/list.h>
28#include <linux/pci.h>
29#include <linux/iommu.h>
30#include <linux/proc_fs.h>
31#include <linux/rbtree.h>
32#include <linux/reboot.h>
33#include <linux/seq_file.h>
34#include <linux/spinlock.h>
35#include <linux/export.h>
36#include <linux/of.h>
37
38#include <linux/atomic.h>
39#include <asm/debugfs.h>
40#include <asm/eeh.h>
41#include <asm/eeh_event.h>
42#include <asm/io.h>
43#include <asm/iommu.h>
44#include <asm/machdep.h>
45#include <asm/ppc-pci.h>
46#include <asm/rtas.h>
47#include <asm/pte-walk.h>
48
49
50/** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121/* Lock to protect passed flags */
122static DEFINE_MUTEX(eeh_dev_mutex);
123
124/* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128#define EEH_PCI_REGS_LOG_LEN 8192
129static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131/*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144};
145
146static struct eeh_stats eeh_stats;
147
148static int __init eeh_setup(char *str)
149{
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156}
157__setup("eeh=", eeh_setup);
158
159/*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
164static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165{
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 pdn->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 pdn->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
196 }
197
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208 }
209
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
223
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
230 }
231
232 }
233
234 pr_warn("%s\n", buffer);
235 }
236
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
250
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
257 }
258 }
259
260 pr_warn("%s\n", buffer);
261 }
262
263 return n;
264}
265
266static void *eeh_dump_pe_log(void *data, void *flag)
267{
268 struct eeh_pe *pe = data;
269 struct eeh_dev *edev, *tmp;
270 size_t *plen = flag;
271
272 eeh_pe_for_each_dev(pe, edev, tmp)
273 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274 EEH_PCI_REGS_LOG_LEN - *plen);
275
276 return NULL;
277}
278
279/**
280 * eeh_slot_error_detail - Generate combined log including driver log and error log
281 * @pe: EEH PE
282 * @severity: temporary or permanent error log
283 *
284 * This routine should be called to generate the combined log, which
285 * is comprised of driver log and error log. The driver log is figured
286 * out from the config space of the corresponding PCI device, while
287 * the error log is fetched through platform dependent function call.
288 */
289void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
290{
291 size_t loglen = 0;
292
293 /*
294 * When the PHB is fenced or dead, it's pointless to collect
295 * the data from PCI config space because it should return
296 * 0xFF's. For ER, we still retrieve the data from the PCI
297 * config space.
298 *
299 * For pHyp, we have to enable IO for log retrieval. Otherwise,
300 * 0xFF's is always returned from PCI config space.
301 *
302 * When the @severity is EEH_LOG_PERM, the PE is going to be
303 * removed. Prior to that, the drivers for devices included in
304 * the PE will be closed. The drivers rely on working IO path
305 * to bring the devices to quiet state. Otherwise, PCI traffic
306 * from those devices after they are removed is like to cause
307 * another unexpected EEH error.
308 */
309 if (!(pe->type & EEH_PE_PHB)) {
310 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
311 severity == EEH_LOG_PERM)
312 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313
314 /*
315 * The config space of some PCI devices can't be accessed
316 * when their PEs are in frozen state. Otherwise, fenced
317 * PHB might be seen. Those PEs are identified with flag
318 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 * is set automatically when the PE is put to EEH_PE_ISOLATED.
320 *
321 * Restoring BARs possibly triggers PCI config access in
322 * (OPAL) firmware and then causes fenced PHB. If the
323 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 * pointless to restore BARs and dump config space.
325 */
326 eeh_ops->configure_bridge(pe);
327 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 eeh_pe_restore_bars(pe);
329
330 pci_regs_buf[0] = 0;
331 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332 }
333 }
334
335 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336}
337
338/**
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
341 *
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
344 */
345static inline unsigned long eeh_token_to_phys(unsigned long token)
346{
347 pte_t *ptep;
348 unsigned long pa;
349 int hugepage_shift;
350
351 /*
352 * We won't find hugepages here(this is iomem). Hence we are not
353 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 * page table free, because of init_mm.
355 */
356 ptep = find_init_mm_pte(token, &hugepage_shift);
357 if (!ptep)
358 return token;
359 WARN_ON(hugepage_shift);
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362 return pa | (token & (PAGE_SIZE-1));
363}
364
365/*
366 * On PowerNV platform, we might already have fenced PHB there.
367 * For that case, it's meaningless to recover frozen PE. Intead,
368 * We have to handle fenced PHB firstly.
369 */
370static int eeh_phb_check_failure(struct eeh_pe *pe)
371{
372 struct eeh_pe *phb_pe;
373 unsigned long flags;
374 int ret;
375
376 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377 return -EPERM;
378
379 /* Find the PHB PE */
380 phb_pe = eeh_phb_pe_get(pe->phb);
381 if (!phb_pe) {
382 pr_warn("%s Can't find PE for PHB#%x\n",
383 __func__, pe->phb->global_number);
384 return -EEXIST;
385 }
386
387 /* If the PHB has been in problematic state */
388 eeh_serialize_lock(&flags);
389 if (phb_pe->state & EEH_PE_ISOLATED) {
390 ret = 0;
391 goto out;
392 }
393
394 /* Check PHB state */
395 ret = eeh_ops->get_state(phb_pe, NULL);
396 if ((ret < 0) ||
397 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
398 ret = 0;
399 goto out;
400 }
401
402 /* Isolate the PHB and send event */
403 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
404 eeh_serialize_unlock(flags);
405
406 pr_err("EEH: PHB#%x failure detected, location: %s\n",
407 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
408 dump_stack();
409 eeh_send_failure_event(phb_pe);
410
411 return 1;
412out:
413 eeh_serialize_unlock(flags);
414 return ret;
415}
416
417/**
418 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
419 * @edev: eeh device
420 *
421 * Check for an EEH failure for the given device node. Call this
422 * routine if the result of a read was all 0xff's and you want to
423 * find out if this is due to an EEH slot freeze. This routine
424 * will query firmware for the EEH status.
425 *
426 * Returns 0 if there has not been an EEH error; otherwise returns
427 * a non-zero value and queues up a slot isolation event notification.
428 *
429 * It is safe to call this routine in an interrupt context.
430 */
431int eeh_dev_check_failure(struct eeh_dev *edev)
432{
433 int ret;
434 unsigned long flags;
435 struct device_node *dn;
436 struct pci_dev *dev;
437 struct eeh_pe *pe, *parent_pe, *phb_pe;
438 int rc = 0;
439 const char *location = NULL;
440
441 eeh_stats.total_mmio_ffs++;
442
443 if (!eeh_enabled())
444 return 0;
445
446 if (!edev) {
447 eeh_stats.no_dn++;
448 return 0;
449 }
450 dev = eeh_dev_to_pci_dev(edev);
451 pe = eeh_dev_to_pe(edev);
452
453 /* Access to IO BARs might get this far and still not want checking. */
454 if (!pe) {
455 eeh_stats.ignored_check++;
456 pr_debug("EEH: Ignored check for %s\n",
457 eeh_pci_name(dev));
458 return 0;
459 }
460
461 if (!pe->addr && !pe->config_addr) {
462 eeh_stats.no_cfg_addr++;
463 return 0;
464 }
465
466 /*
467 * On PowerNV platform, we might already have fenced PHB
468 * there and we need take care of that firstly.
469 */
470 ret = eeh_phb_check_failure(pe);
471 if (ret > 0)
472 return ret;
473
474 /*
475 * If the PE isn't owned by us, we shouldn't check the
476 * state. Instead, let the owner handle it if the PE has
477 * been frozen.
478 */
479 if (eeh_pe_passed(pe))
480 return 0;
481
482 /* If we already have a pending isolation event for this
483 * slot, we know it's bad already, we don't need to check.
484 * Do this checking under a lock; as multiple PCI devices
485 * in one slot might report errors simultaneously, and we
486 * only want one error recovery routine running.
487 */
488 eeh_serialize_lock(&flags);
489 rc = 1;
490 if (pe->state & EEH_PE_ISOLATED) {
491 pe->check_count++;
492 if (pe->check_count % EEH_MAX_FAILS == 0) {
493 dn = pci_device_to_OF_node(dev);
494 if (dn)
495 location = of_get_property(dn, "ibm,loc-code",
496 NULL);
497 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
498 "location=%s driver=%s pci addr=%s\n",
499 pe->check_count,
500 location ? location : "unknown",
501 eeh_driver_name(dev), eeh_pci_name(dev));
502 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
503 eeh_driver_name(dev));
504 dump_stack();
505 }
506 goto dn_unlock;
507 }
508
509 /*
510 * Now test for an EEH failure. This is VERY expensive.
511 * Note that the eeh_config_addr may be a parent device
512 * in the case of a device behind a bridge, or it may be
513 * function zero of a multi-function device.
514 * In any case they must share a common PHB.
515 */
516 ret = eeh_ops->get_state(pe, NULL);
517
518 /* Note that config-io to empty slots may fail;
519 * they are empty when they don't have children.
520 * We will punt with the following conditions: Failure to get
521 * PE's state, EEH not support and Permanently unavailable
522 * state, PE is in good state.
523 */
524 if ((ret < 0) ||
525 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
526 eeh_stats.false_positives++;
527 pe->false_positives++;
528 rc = 0;
529 goto dn_unlock;
530 }
531
532 /*
533 * It should be corner case that the parent PE has been
534 * put into frozen state as well. We should take care
535 * that at first.
536 */
537 parent_pe = pe->parent;
538 while (parent_pe) {
539 /* Hit the ceiling ? */
540 if (parent_pe->type & EEH_PE_PHB)
541 break;
542
543 /* Frozen parent PE ? */
544 ret = eeh_ops->get_state(parent_pe, NULL);
545 if (ret > 0 && !eeh_state_active(ret))
546 pe = parent_pe;
547
548 /* Next parent level */
549 parent_pe = parent_pe->parent;
550 }
551
552 eeh_stats.slot_resets++;
553
554 /* Avoid repeated reports of this failure, including problems
555 * with other functions on this device, and functions under
556 * bridges.
557 */
558 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
559 eeh_serialize_unlock(flags);
560
561 /* Most EEH events are due to device driver bugs. Having
562 * a stack trace will help the device-driver authors figure
563 * out what happened. So print that out.
564 */
565 phb_pe = eeh_phb_pe_get(pe->phb);
566 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
567 pe->phb->global_number, pe->addr);
568 pr_err("EEH: PE location: %s, PHB location: %s\n",
569 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
570 dump_stack();
571
572 eeh_send_failure_event(pe);
573
574 return 1;
575
576dn_unlock:
577 eeh_serialize_unlock(flags);
578 return rc;
579}
580
581EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
582
583/**
584 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
585 * @token: I/O address
586 *
587 * Check for an EEH failure at the given I/O address. Call this
588 * routine if the result of a read was all 0xff's and you want to
589 * find out if this is due to an EEH slot freeze event. This routine
590 * will query firmware for the EEH status.
591 *
592 * Note this routine is safe to call in an interrupt context.
593 */
594int eeh_check_failure(const volatile void __iomem *token)
595{
596 unsigned long addr;
597 struct eeh_dev *edev;
598
599 /* Finding the phys addr + pci device; this is pretty quick. */
600 addr = eeh_token_to_phys((unsigned long __force) token);
601 edev = eeh_addr_cache_get_dev(addr);
602 if (!edev) {
603 eeh_stats.no_device++;
604 return 0;
605 }
606
607 return eeh_dev_check_failure(edev);
608}
609EXPORT_SYMBOL(eeh_check_failure);
610
611
612/**
613 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
614 * @pe: EEH PE
615 *
616 * This routine should be called to reenable frozen MMIO or DMA
617 * so that it would work correctly again. It's useful while doing
618 * recovery or log collection on the indicated device.
619 */
620int eeh_pci_enable(struct eeh_pe *pe, int function)
621{
622 int active_flag, rc;
623
624 /*
625 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
626 * Also, it's pointless to enable them on unfrozen PE. So
627 * we have to check before enabling IO or DMA.
628 */
629 switch (function) {
630 case EEH_OPT_THAW_MMIO:
631 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
632 break;
633 case EEH_OPT_THAW_DMA:
634 active_flag = EEH_STATE_DMA_ACTIVE;
635 break;
636 case EEH_OPT_DISABLE:
637 case EEH_OPT_ENABLE:
638 case EEH_OPT_FREEZE_PE:
639 active_flag = 0;
640 break;
641 default:
642 pr_warn("%s: Invalid function %d\n",
643 __func__, function);
644 return -EINVAL;
645 }
646
647 /*
648 * Check if IO or DMA has been enabled before
649 * enabling them.
650 */
651 if (active_flag) {
652 rc = eeh_ops->get_state(pe, NULL);
653 if (rc < 0)
654 return rc;
655
656 /* Needn't enable it at all */
657 if (rc == EEH_STATE_NOT_SUPPORT)
658 return 0;
659
660 /* It's already enabled */
661 if (rc & active_flag)
662 return 0;
663 }
664
665
666 /* Issue the request */
667 rc = eeh_ops->set_option(pe, function);
668 if (rc)
669 pr_warn("%s: Unexpected state change %d on "
670 "PHB#%x-PE#%x, err=%d\n",
671 __func__, function, pe->phb->global_number,
672 pe->addr, rc);
673
674 /* Check if the request is finished successfully */
675 if (active_flag) {
676 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
677 if (rc < 0)
678 return rc;
679
680 if (rc & active_flag)
681 return 0;
682
683 return -EIO;
684 }
685
686 return rc;
687}
688
689static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
690{
691 struct eeh_dev *edev = data;
692 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
693 struct pci_dev *dev = userdata;
694
695 /*
696 * The caller should have disabled and saved the
697 * state for the specified device
698 */
699 if (!pdev || pdev == dev)
700 return NULL;
701
702 /* Ensure we have D0 power state */
703 pci_set_power_state(pdev, PCI_D0);
704
705 /* Save device state */
706 pci_save_state(pdev);
707
708 /*
709 * Disable device to avoid any DMA traffic and
710 * interrupt from the device
711 */
712 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
713
714 return NULL;
715}
716
717static void *eeh_restore_dev_state(void *data, void *userdata)
718{
719 struct eeh_dev *edev = data;
720 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
721 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
722 struct pci_dev *dev = userdata;
723
724 if (!pdev)
725 return NULL;
726
727 /* Apply customization from firmware */
728 if (pdn && eeh_ops->restore_config)
729 eeh_ops->restore_config(pdn);
730
731 /* The caller should restore state for the specified device */
732 if (pdev != dev)
733 pci_restore_state(pdev);
734
735 return NULL;
736}
737
738int eeh_restore_vf_config(struct pci_dn *pdn)
739{
740 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
741 u32 devctl, cmd, cap2, aer_capctl;
742 int old_mps;
743
744 if (edev->pcie_cap) {
745 /* Restore MPS */
746 old_mps = (ffs(pdn->mps) - 8) << 5;
747 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
748 2, &devctl);
749 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
750 devctl |= old_mps;
751 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
752 2, devctl);
753
754 /* Disable Completion Timeout if possible */
755 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
756 4, &cap2);
757 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
758 eeh_ops->read_config(pdn,
759 edev->pcie_cap + PCI_EXP_DEVCTL2,
760 4, &cap2);
761 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
762 eeh_ops->write_config(pdn,
763 edev->pcie_cap + PCI_EXP_DEVCTL2,
764 4, cap2);
765 }
766 }
767
768 /* Enable SERR and parity checking */
769 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
770 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
771 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
772
773 /* Enable report various errors */
774 if (edev->pcie_cap) {
775 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
776 2, &devctl);
777 devctl &= ~PCI_EXP_DEVCTL_CERE;
778 devctl |= (PCI_EXP_DEVCTL_NFERE |
779 PCI_EXP_DEVCTL_FERE |
780 PCI_EXP_DEVCTL_URRE);
781 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
782 2, devctl);
783 }
784
785 /* Enable ECRC generation and check */
786 if (edev->pcie_cap && edev->aer_cap) {
787 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
788 4, &aer_capctl);
789 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
790 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
791 4, aer_capctl);
792 }
793
794 return 0;
795}
796
797/**
798 * pcibios_set_pcie_reset_state - Set PCI-E reset state
799 * @dev: pci device struct
800 * @state: reset state to enter
801 *
802 * Return value:
803 * 0 if success
804 */
805int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
806{
807 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
808 struct eeh_pe *pe = eeh_dev_to_pe(edev);
809
810 if (!pe) {
811 pr_err("%s: No PE found on PCI device %s\n",
812 __func__, pci_name(dev));
813 return -EINVAL;
814 }
815
816 switch (state) {
817 case pcie_deassert_reset:
818 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
819 eeh_unfreeze_pe(pe, false);
820 if (!(pe->type & EEH_PE_VF))
821 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
822 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
823 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
824 break;
825 case pcie_hot_reset:
826 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
827 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
828 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
829 if (!(pe->type & EEH_PE_VF))
830 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
831 eeh_ops->reset(pe, EEH_RESET_HOT);
832 break;
833 case pcie_warm_reset:
834 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
835 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
836 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
837 if (!(pe->type & EEH_PE_VF))
838 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
839 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
840 break;
841 default:
842 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
843 return -EINVAL;
844 };
845
846 return 0;
847}
848
849/**
850 * eeh_set_pe_freset - Check the required reset for the indicated device
851 * @data: EEH device
852 * @flag: return value
853 *
854 * Each device might have its preferred reset type: fundamental or
855 * hot reset. The routine is used to collected the information for
856 * the indicated device and its children so that the bunch of the
857 * devices could be reset properly.
858 */
859static void *eeh_set_dev_freset(void *data, void *flag)
860{
861 struct pci_dev *dev;
862 unsigned int *freset = (unsigned int *)flag;
863 struct eeh_dev *edev = (struct eeh_dev *)data;
864
865 dev = eeh_dev_to_pci_dev(edev);
866 if (dev)
867 *freset |= dev->needs_freset;
868
869 return NULL;
870}
871
872/**
873 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
874 * @pe: EEH PE
875 *
876 * This function executes a full reset procedure on a PE, including setting
877 * the appropriate flags, performing a fundamental or hot reset, and then
878 * deactivating the reset status. It is designed to be used within the EEH
879 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
880 * only performs a single operation at a time.
881 *
882 * This function will attempt to reset a PE three times before failing.
883 */
884int eeh_pe_reset_full(struct eeh_pe *pe)
885{
886 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
887 int type = EEH_RESET_HOT;
888 unsigned int freset = 0;
889 int i, state, ret;
890
891 /*
892 * Determine the type of reset to perform - hot or fundamental.
893 * Hot reset is the default operation, unless any device under the
894 * PE requires a fundamental reset.
895 */
896 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
897
898 if (freset)
899 type = EEH_RESET_FUNDAMENTAL;
900
901 /* Mark the PE as in reset state and block config space accesses */
902 eeh_pe_state_mark(pe, reset_state);
903
904 /* Make three attempts at resetting the bus */
905 for (i = 0; i < 3; i++) {
906 ret = eeh_pe_reset(pe, type);
907 if (ret)
908 break;
909
910 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
911 if (ret)
912 break;
913
914 /* Wait until the PE is in a functioning state */
915 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
916 if (eeh_state_active(state))
917 break;
918
919 if (state < 0) {
920 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
921 __func__, pe->phb->global_number, pe->addr);
922 ret = -ENOTRECOVERABLE;
923 break;
924 }
925
926 /* Set error in case this is our last attempt */
927 ret = -EIO;
928 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
929 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
930 }
931
932 eeh_pe_state_clear(pe, reset_state);
933 return ret;
934}
935
936/**
937 * eeh_save_bars - Save device bars
938 * @edev: PCI device associated EEH device
939 *
940 * Save the values of the device bars. Unlike the restore
941 * routine, this routine is *not* recursive. This is because
942 * PCI devices are added individually; but, for the restore,
943 * an entire slot is reset at a time.
944 */
945void eeh_save_bars(struct eeh_dev *edev)
946{
947 struct pci_dn *pdn;
948 int i;
949
950 pdn = eeh_dev_to_pdn(edev);
951 if (!pdn)
952 return;
953
954 for (i = 0; i < 16; i++)
955 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
956
957 /*
958 * For PCI bridges including root port, we need enable bus
959 * master explicitly. Otherwise, it can't fetch IODA table
960 * entries correctly. So we cache the bit in advance so that
961 * we can restore it after reset, either PHB range or PE range.
962 */
963 if (edev->mode & EEH_DEV_BRIDGE)
964 edev->config_space[1] |= PCI_COMMAND_MASTER;
965}
966
967/**
968 * eeh_ops_register - Register platform dependent EEH operations
969 * @ops: platform dependent EEH operations
970 *
971 * Register the platform dependent EEH operation callback
972 * functions. The platform should call this function before
973 * any other EEH operations.
974 */
975int __init eeh_ops_register(struct eeh_ops *ops)
976{
977 if (!ops->name) {
978 pr_warn("%s: Invalid EEH ops name for %p\n",
979 __func__, ops);
980 return -EINVAL;
981 }
982
983 if (eeh_ops && eeh_ops != ops) {
984 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
985 __func__, eeh_ops->name, ops->name);
986 return -EEXIST;
987 }
988
989 eeh_ops = ops;
990
991 return 0;
992}
993
994/**
995 * eeh_ops_unregister - Unreigster platform dependent EEH operations
996 * @name: name of EEH platform operations
997 *
998 * Unregister the platform dependent EEH operation callback
999 * functions.
1000 */
1001int __exit eeh_ops_unregister(const char *name)
1002{
1003 if (!name || !strlen(name)) {
1004 pr_warn("%s: Invalid EEH ops name\n",
1005 __func__);
1006 return -EINVAL;
1007 }
1008
1009 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1010 eeh_ops = NULL;
1011 return 0;
1012 }
1013
1014 return -EEXIST;
1015}
1016
1017static int eeh_reboot_notifier(struct notifier_block *nb,
1018 unsigned long action, void *unused)
1019{
1020 eeh_clear_flag(EEH_ENABLED);
1021 return NOTIFY_DONE;
1022}
1023
1024static struct notifier_block eeh_reboot_nb = {
1025 .notifier_call = eeh_reboot_notifier,
1026};
1027
1028void eeh_probe_devices(void)
1029{
1030 struct pci_controller *hose, *tmp;
1031 struct pci_dn *pdn;
1032
1033 /* Enable EEH for all adapters */
1034 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1035 pdn = hose->pci_data;
1036 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1037 }
1038}
1039
1040/**
1041 * eeh_init - EEH initialization
1042 *
1043 * Initialize EEH by trying to enable it for all of the adapters in the system.
1044 * As a side effect we can determine here if eeh is supported at all.
1045 * Note that we leave EEH on so failed config cycles won't cause a machine
1046 * check. If a user turns off EEH for a particular adapter they are really
1047 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1048 * grant access to a slot if EEH isn't enabled, and so we always enable
1049 * EEH for all slots/all devices.
1050 *
1051 * The eeh-force-off option disables EEH checking globally, for all slots.
1052 * Even if force-off is set, the EEH hardware is still enabled, so that
1053 * newer systems can boot.
1054 */
1055static int eeh_init(void)
1056{
1057 struct pci_controller *hose, *tmp;
1058 int ret = 0;
1059
1060 /* Register reboot notifier */
1061 ret = register_reboot_notifier(&eeh_reboot_nb);
1062 if (ret) {
1063 pr_warn("%s: Failed to register notifier (%d)\n",
1064 __func__, ret);
1065 return ret;
1066 }
1067
1068 /* call platform initialization function */
1069 if (!eeh_ops) {
1070 pr_warn("%s: Platform EEH operation not found\n",
1071 __func__);
1072 return -EEXIST;
1073 } else if ((ret = eeh_ops->init()))
1074 return ret;
1075
1076 /* Initialize PHB PEs */
1077 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1078 eeh_dev_phb_init_dynamic(hose);
1079
1080 /* Initialize EEH event */
1081 ret = eeh_event_init();
1082 if (ret)
1083 return ret;
1084
1085 eeh_probe_devices();
1086
1087 if (eeh_enabled())
1088 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1089 else
1090 pr_info("EEH: No capable adapters found\n");
1091
1092 return ret;
1093}
1094
1095core_initcall_sync(eeh_init);
1096
1097/**
1098 * eeh_add_device_early - Enable EEH for the indicated device node
1099 * @pdn: PCI device node for which to set up EEH
1100 *
1101 * This routine must be used to perform EEH initialization for PCI
1102 * devices that were added after system boot (e.g. hotplug, dlpar).
1103 * This routine must be called before any i/o is performed to the
1104 * adapter (inluding any config-space i/o).
1105 * Whether this actually enables EEH or not for this device depends
1106 * on the CEC architecture, type of the device, on earlier boot
1107 * command-line arguments & etc.
1108 */
1109void eeh_add_device_early(struct pci_dn *pdn)
1110{
1111 struct pci_controller *phb = pdn ? pdn->phb : NULL;
1112 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1113
1114 if (!edev)
1115 return;
1116
1117 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1118 return;
1119
1120 /* USB Bus children of PCI devices will not have BUID's */
1121 if (NULL == phb ||
1122 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1123 return;
1124
1125 eeh_ops->probe(pdn, NULL);
1126}
1127
1128/**
1129 * eeh_add_device_tree_early - Enable EEH for the indicated device
1130 * @pdn: PCI device node
1131 *
1132 * This routine must be used to perform EEH initialization for the
1133 * indicated PCI device that was added after system boot (e.g.
1134 * hotplug, dlpar).
1135 */
1136void eeh_add_device_tree_early(struct pci_dn *pdn)
1137{
1138 struct pci_dn *n;
1139
1140 if (!pdn)
1141 return;
1142
1143 list_for_each_entry(n, &pdn->child_list, list)
1144 eeh_add_device_tree_early(n);
1145 eeh_add_device_early(pdn);
1146}
1147EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1148
1149/**
1150 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1151 * @dev: pci device for which to set up EEH
1152 *
1153 * This routine must be used to complete EEH initialization for PCI
1154 * devices that were added after system boot (e.g. hotplug, dlpar).
1155 */
1156void eeh_add_device_late(struct pci_dev *dev)
1157{
1158 struct pci_dn *pdn;
1159 struct eeh_dev *edev;
1160
1161 if (!dev || !eeh_enabled())
1162 return;
1163
1164 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1165
1166 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1167 edev = pdn_to_eeh_dev(pdn);
1168 if (edev->pdev == dev) {
1169 pr_debug("EEH: Already referenced !\n");
1170 return;
1171 }
1172
1173 /*
1174 * The EEH cache might not be removed correctly because of
1175 * unbalanced kref to the device during unplug time, which
1176 * relies on pcibios_release_device(). So we have to remove
1177 * that here explicitly.
1178 */
1179 if (edev->pdev) {
1180 eeh_rmv_from_parent_pe(edev);
1181 eeh_addr_cache_rmv_dev(edev->pdev);
1182 eeh_sysfs_remove_device(edev->pdev);
1183 edev->mode &= ~EEH_DEV_SYSFS;
1184
1185 /*
1186 * We definitely should have the PCI device removed
1187 * though it wasn't correctly. So we needn't call
1188 * into error handler afterwards.
1189 */
1190 edev->mode |= EEH_DEV_NO_HANDLER;
1191
1192 edev->pdev = NULL;
1193 dev->dev.archdata.edev = NULL;
1194 }
1195
1196 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1197 eeh_ops->probe(pdn, NULL);
1198
1199 edev->pdev = dev;
1200 dev->dev.archdata.edev = edev;
1201
1202 eeh_addr_cache_insert_dev(dev);
1203}
1204
1205/**
1206 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1207 * @bus: PCI bus
1208 *
1209 * This routine must be used to perform EEH initialization for PCI
1210 * devices which are attached to the indicated PCI bus. The PCI bus
1211 * is added after system boot through hotplug or dlpar.
1212 */
1213void eeh_add_device_tree_late(struct pci_bus *bus)
1214{
1215 struct pci_dev *dev;
1216
1217 list_for_each_entry(dev, &bus->devices, bus_list) {
1218 eeh_add_device_late(dev);
1219 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1220 struct pci_bus *subbus = dev->subordinate;
1221 if (subbus)
1222 eeh_add_device_tree_late(subbus);
1223 }
1224 }
1225}
1226EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1227
1228/**
1229 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1230 * @bus: PCI bus
1231 *
1232 * This routine must be used to add EEH sysfs files for PCI
1233 * devices which are attached to the indicated PCI bus. The PCI bus
1234 * is added after system boot through hotplug or dlpar.
1235 */
1236void eeh_add_sysfs_files(struct pci_bus *bus)
1237{
1238 struct pci_dev *dev;
1239
1240 list_for_each_entry(dev, &bus->devices, bus_list) {
1241 eeh_sysfs_add_device(dev);
1242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1243 struct pci_bus *subbus = dev->subordinate;
1244 if (subbus)
1245 eeh_add_sysfs_files(subbus);
1246 }
1247 }
1248}
1249EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1250
1251/**
1252 * eeh_remove_device - Undo EEH setup for the indicated pci device
1253 * @dev: pci device to be removed
1254 *
1255 * This routine should be called when a device is removed from
1256 * a running system (e.g. by hotplug or dlpar). It unregisters
1257 * the PCI device from the EEH subsystem. I/O errors affecting
1258 * this device will no longer be detected after this call; thus,
1259 * i/o errors affecting this slot may leave this device unusable.
1260 */
1261void eeh_remove_device(struct pci_dev *dev)
1262{
1263 struct eeh_dev *edev;
1264
1265 if (!dev || !eeh_enabled())
1266 return;
1267 edev = pci_dev_to_eeh_dev(dev);
1268
1269 /* Unregister the device with the EEH/PCI address search system */
1270 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1271
1272 if (!edev || !edev->pdev || !edev->pe) {
1273 pr_debug("EEH: Not referenced !\n");
1274 return;
1275 }
1276
1277 /*
1278 * During the hotplug for EEH error recovery, we need the EEH
1279 * device attached to the parent PE in order for BAR restore
1280 * a bit later. So we keep it for BAR restore and remove it
1281 * from the parent PE during the BAR resotre.
1282 */
1283 edev->pdev = NULL;
1284
1285 /*
1286 * The flag "in_error" is used to trace EEH devices for VFs
1287 * in error state or not. It's set in eeh_report_error(). If
1288 * it's not set, eeh_report_{reset,resume}() won't be called
1289 * for the VF EEH device.
1290 */
1291 edev->in_error = false;
1292 dev->dev.archdata.edev = NULL;
1293 if (!(edev->pe->state & EEH_PE_KEEP))
1294 eeh_rmv_from_parent_pe(edev);
1295 else
1296 edev->mode |= EEH_DEV_DISCONNECTED;
1297
1298 /*
1299 * We're removing from the PCI subsystem, that means
1300 * the PCI device driver can't support EEH or not
1301 * well. So we rely on hotplug completely to do recovery
1302 * for the specific PCI device.
1303 */
1304 edev->mode |= EEH_DEV_NO_HANDLER;
1305
1306 eeh_addr_cache_rmv_dev(dev);
1307 eeh_sysfs_remove_device(dev);
1308 edev->mode &= ~EEH_DEV_SYSFS;
1309}
1310
1311int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1312{
1313 int ret;
1314
1315 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1316 if (ret) {
1317 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1318 __func__, ret, pe->phb->global_number, pe->addr);
1319 return ret;
1320 }
1321
1322 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1323 if (ret) {
1324 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1325 __func__, ret, pe->phb->global_number, pe->addr);
1326 return ret;
1327 }
1328
1329 /* Clear software isolated state */
1330 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1331 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1332
1333 return ret;
1334}
1335
1336
1337static struct pci_device_id eeh_reset_ids[] = {
1338 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1339 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1340 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1341 { 0 }
1342};
1343
1344static int eeh_pe_change_owner(struct eeh_pe *pe)
1345{
1346 struct eeh_dev *edev, *tmp;
1347 struct pci_dev *pdev;
1348 struct pci_device_id *id;
1349 int ret;
1350
1351 /* Check PE state */
1352 ret = eeh_ops->get_state(pe, NULL);
1353 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1354 return 0;
1355
1356 /* Unfrozen PE, nothing to do */
1357 if (eeh_state_active(ret))
1358 return 0;
1359
1360 /* Frozen PE, check if it needs PE level reset */
1361 eeh_pe_for_each_dev(pe, edev, tmp) {
1362 pdev = eeh_dev_to_pci_dev(edev);
1363 if (!pdev)
1364 continue;
1365
1366 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1367 if (id->vendor != PCI_ANY_ID &&
1368 id->vendor != pdev->vendor)
1369 continue;
1370 if (id->device != PCI_ANY_ID &&
1371 id->device != pdev->device)
1372 continue;
1373 if (id->subvendor != PCI_ANY_ID &&
1374 id->subvendor != pdev->subsystem_vendor)
1375 continue;
1376 if (id->subdevice != PCI_ANY_ID &&
1377 id->subdevice != pdev->subsystem_device)
1378 continue;
1379
1380 return eeh_pe_reset_and_recover(pe);
1381 }
1382 }
1383
1384 return eeh_unfreeze_pe(pe, true);
1385}
1386
1387/**
1388 * eeh_dev_open - Increase count of pass through devices for PE
1389 * @pdev: PCI device
1390 *
1391 * Increase count of passed through devices for the indicated
1392 * PE. In the result, the EEH errors detected on the PE won't be
1393 * reported. The PE owner will be responsible for detection
1394 * and recovery.
1395 */
1396int eeh_dev_open(struct pci_dev *pdev)
1397{
1398 struct eeh_dev *edev;
1399 int ret = -ENODEV;
1400
1401 mutex_lock(&eeh_dev_mutex);
1402
1403 /* No PCI device ? */
1404 if (!pdev)
1405 goto out;
1406
1407 /* No EEH device or PE ? */
1408 edev = pci_dev_to_eeh_dev(pdev);
1409 if (!edev || !edev->pe)
1410 goto out;
1411
1412 /*
1413 * The PE might have been put into frozen state, but we
1414 * didn't detect that yet. The passed through PCI devices
1415 * in frozen PE won't work properly. Clear the frozen state
1416 * in advance.
1417 */
1418 ret = eeh_pe_change_owner(edev->pe);
1419 if (ret)
1420 goto out;
1421
1422 /* Increase PE's pass through count */
1423 atomic_inc(&edev->pe->pass_dev_cnt);
1424 mutex_unlock(&eeh_dev_mutex);
1425
1426 return 0;
1427out:
1428 mutex_unlock(&eeh_dev_mutex);
1429 return ret;
1430}
1431EXPORT_SYMBOL_GPL(eeh_dev_open);
1432
1433/**
1434 * eeh_dev_release - Decrease count of pass through devices for PE
1435 * @pdev: PCI device
1436 *
1437 * Decrease count of pass through devices for the indicated PE. If
1438 * there is no passed through device in PE, the EEH errors detected
1439 * on the PE will be reported and handled as usual.
1440 */
1441void eeh_dev_release(struct pci_dev *pdev)
1442{
1443 struct eeh_dev *edev;
1444
1445 mutex_lock(&eeh_dev_mutex);
1446
1447 /* No PCI device ? */
1448 if (!pdev)
1449 goto out;
1450
1451 /* No EEH device ? */
1452 edev = pci_dev_to_eeh_dev(pdev);
1453 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1454 goto out;
1455
1456 /* Decrease PE's pass through count */
1457 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1458 eeh_pe_change_owner(edev->pe);
1459out:
1460 mutex_unlock(&eeh_dev_mutex);
1461}
1462EXPORT_SYMBOL(eeh_dev_release);
1463
1464#ifdef CONFIG_IOMMU_API
1465
1466static int dev_has_iommu_table(struct device *dev, void *data)
1467{
1468 struct pci_dev *pdev = to_pci_dev(dev);
1469 struct pci_dev **ppdev = data;
1470
1471 if (!dev)
1472 return 0;
1473
1474 if (dev->iommu_group) {
1475 *ppdev = pdev;
1476 return 1;
1477 }
1478
1479 return 0;
1480}
1481
1482/**
1483 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1484 * @group: IOMMU group
1485 *
1486 * The routine is called to convert IOMMU group to EEH PE.
1487 */
1488struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1489{
1490 struct pci_dev *pdev = NULL;
1491 struct eeh_dev *edev;
1492 int ret;
1493
1494 /* No IOMMU group ? */
1495 if (!group)
1496 return NULL;
1497
1498 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1499 if (!ret || !pdev)
1500 return NULL;
1501
1502 /* No EEH device or PE ? */
1503 edev = pci_dev_to_eeh_dev(pdev);
1504 if (!edev || !edev->pe)
1505 return NULL;
1506
1507 return edev->pe;
1508}
1509EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1510
1511#endif /* CONFIG_IOMMU_API */
1512
1513/**
1514 * eeh_pe_set_option - Set options for the indicated PE
1515 * @pe: EEH PE
1516 * @option: requested option
1517 *
1518 * The routine is called to enable or disable EEH functionality
1519 * on the indicated PE, to enable IO or DMA for the frozen PE.
1520 */
1521int eeh_pe_set_option(struct eeh_pe *pe, int option)
1522{
1523 int ret = 0;
1524
1525 /* Invalid PE ? */
1526 if (!pe)
1527 return -ENODEV;
1528
1529 /*
1530 * EEH functionality could possibly be disabled, just
1531 * return error for the case. And the EEH functinality
1532 * isn't expected to be disabled on one specific PE.
1533 */
1534 switch (option) {
1535 case EEH_OPT_ENABLE:
1536 if (eeh_enabled()) {
1537 ret = eeh_pe_change_owner(pe);
1538 break;
1539 }
1540 ret = -EIO;
1541 break;
1542 case EEH_OPT_DISABLE:
1543 break;
1544 case EEH_OPT_THAW_MMIO:
1545 case EEH_OPT_THAW_DMA:
1546 case EEH_OPT_FREEZE_PE:
1547 if (!eeh_ops || !eeh_ops->set_option) {
1548 ret = -ENOENT;
1549 break;
1550 }
1551
1552 ret = eeh_pci_enable(pe, option);
1553 break;
1554 default:
1555 pr_debug("%s: Option %d out of range (%d, %d)\n",
1556 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1557 ret = -EINVAL;
1558 }
1559
1560 return ret;
1561}
1562EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1563
1564/**
1565 * eeh_pe_get_state - Retrieve PE's state
1566 * @pe: EEH PE
1567 *
1568 * Retrieve the PE's state, which includes 3 aspects: enabled
1569 * DMA, enabled IO and asserted reset.
1570 */
1571int eeh_pe_get_state(struct eeh_pe *pe)
1572{
1573 int result, ret = 0;
1574 bool rst_active, dma_en, mmio_en;
1575
1576 /* Existing PE ? */
1577 if (!pe)
1578 return -ENODEV;
1579
1580 if (!eeh_ops || !eeh_ops->get_state)
1581 return -ENOENT;
1582
1583 /*
1584 * If the parent PE is owned by the host kernel and is undergoing
1585 * error recovery, we should return the PE state as temporarily
1586 * unavailable so that the error recovery on the guest is suspended
1587 * until the recovery completes on the host.
1588 */
1589 if (pe->parent &&
1590 !(pe->state & EEH_PE_REMOVED) &&
1591 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1592 return EEH_PE_STATE_UNAVAIL;
1593
1594 result = eeh_ops->get_state(pe, NULL);
1595 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1596 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1597 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1598
1599 if (rst_active)
1600 ret = EEH_PE_STATE_RESET;
1601 else if (dma_en && mmio_en)
1602 ret = EEH_PE_STATE_NORMAL;
1603 else if (!dma_en && !mmio_en)
1604 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1605 else if (!dma_en && mmio_en)
1606 ret = EEH_PE_STATE_STOPPED_DMA;
1607 else
1608 ret = EEH_PE_STATE_UNAVAIL;
1609
1610 return ret;
1611}
1612EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1613
1614static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1615{
1616 struct eeh_dev *edev, *tmp;
1617 struct pci_dev *pdev;
1618 int ret = 0;
1619
1620 /* Restore config space */
1621 eeh_pe_restore_bars(pe);
1622
1623 /*
1624 * Reenable PCI devices as the devices passed
1625 * through are always enabled before the reset.
1626 */
1627 eeh_pe_for_each_dev(pe, edev, tmp) {
1628 pdev = eeh_dev_to_pci_dev(edev);
1629 if (!pdev)
1630 continue;
1631
1632 ret = pci_reenable_device(pdev);
1633 if (ret) {
1634 pr_warn("%s: Failure %d reenabling %s\n",
1635 __func__, ret, pci_name(pdev));
1636 return ret;
1637 }
1638 }
1639
1640 /* The PE is still in frozen state */
1641 return eeh_unfreeze_pe(pe, true);
1642}
1643
1644
1645/**
1646 * eeh_pe_reset - Issue PE reset according to specified type
1647 * @pe: EEH PE
1648 * @option: reset type
1649 *
1650 * The routine is called to reset the specified PE with the
1651 * indicated type, either fundamental reset or hot reset.
1652 * PE reset is the most important part for error recovery.
1653 */
1654int eeh_pe_reset(struct eeh_pe *pe, int option)
1655{
1656 int ret = 0;
1657
1658 /* Invalid PE ? */
1659 if (!pe)
1660 return -ENODEV;
1661
1662 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1663 return -ENOENT;
1664
1665 switch (option) {
1666 case EEH_RESET_DEACTIVATE:
1667 ret = eeh_ops->reset(pe, option);
1668 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1669 if (ret)
1670 break;
1671
1672 ret = eeh_pe_reenable_devices(pe);
1673 break;
1674 case EEH_RESET_HOT:
1675 case EEH_RESET_FUNDAMENTAL:
1676 /*
1677 * Proactively freeze the PE to drop all MMIO access
1678 * during reset, which should be banned as it's always
1679 * cause recursive EEH error.
1680 */
1681 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1682
1683 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1684 ret = eeh_ops->reset(pe, option);
1685 break;
1686 default:
1687 pr_debug("%s: Unsupported option %d\n",
1688 __func__, option);
1689 ret = -EINVAL;
1690 }
1691
1692 return ret;
1693}
1694EXPORT_SYMBOL_GPL(eeh_pe_reset);
1695
1696/**
1697 * eeh_pe_configure - Configure PCI bridges after PE reset
1698 * @pe: EEH PE
1699 *
1700 * The routine is called to restore the PCI config space for
1701 * those PCI devices, especially PCI bridges affected by PE
1702 * reset issued previously.
1703 */
1704int eeh_pe_configure(struct eeh_pe *pe)
1705{
1706 int ret = 0;
1707
1708 /* Invalid PE ? */
1709 if (!pe)
1710 return -ENODEV;
1711
1712 return ret;
1713}
1714EXPORT_SYMBOL_GPL(eeh_pe_configure);
1715
1716/**
1717 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1718 * @pe: the indicated PE
1719 * @type: error type
1720 * @function: error function
1721 * @addr: address
1722 * @mask: address mask
1723 *
1724 * The routine is called to inject the specified PCI error, which
1725 * is determined by @type and @function, to the indicated PE for
1726 * testing purpose.
1727 */
1728int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1729 unsigned long addr, unsigned long mask)
1730{
1731 /* Invalid PE ? */
1732 if (!pe)
1733 return -ENODEV;
1734
1735 /* Unsupported operation ? */
1736 if (!eeh_ops || !eeh_ops->err_inject)
1737 return -ENOENT;
1738
1739 /* Check on PCI error type */
1740 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1741 return -EINVAL;
1742
1743 /* Check on PCI error function */
1744 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1745 return -EINVAL;
1746
1747 return eeh_ops->err_inject(pe, type, func, addr, mask);
1748}
1749EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1750
1751static int proc_eeh_show(struct seq_file *m, void *v)
1752{
1753 if (!eeh_enabled()) {
1754 seq_printf(m, "EEH Subsystem is globally disabled\n");
1755 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1756 } else {
1757 seq_printf(m, "EEH Subsystem is enabled\n");
1758 seq_printf(m,
1759 "no device=%llu\n"
1760 "no device node=%llu\n"
1761 "no config address=%llu\n"
1762 "check not wanted=%llu\n"
1763 "eeh_total_mmio_ffs=%llu\n"
1764 "eeh_false_positives=%llu\n"
1765 "eeh_slot_resets=%llu\n",
1766 eeh_stats.no_device,
1767 eeh_stats.no_dn,
1768 eeh_stats.no_cfg_addr,
1769 eeh_stats.ignored_check,
1770 eeh_stats.total_mmio_ffs,
1771 eeh_stats.false_positives,
1772 eeh_stats.slot_resets);
1773 }
1774
1775 return 0;
1776}
1777
1778static int proc_eeh_open(struct inode *inode, struct file *file)
1779{
1780 return single_open(file, proc_eeh_show, NULL);
1781}
1782
1783static const struct file_operations proc_eeh_operations = {
1784 .open = proc_eeh_open,
1785 .read = seq_read,
1786 .llseek = seq_lseek,
1787 .release = single_release,
1788};
1789
1790#ifdef CONFIG_DEBUG_FS
1791static int eeh_enable_dbgfs_set(void *data, u64 val)
1792{
1793 if (val)
1794 eeh_clear_flag(EEH_FORCE_DISABLED);
1795 else
1796 eeh_add_flag(EEH_FORCE_DISABLED);
1797
1798 return 0;
1799}
1800
1801static int eeh_enable_dbgfs_get(void *data, u64 *val)
1802{
1803 if (eeh_enabled())
1804 *val = 0x1ul;
1805 else
1806 *val = 0x0ul;
1807 return 0;
1808}
1809
1810static int eeh_freeze_dbgfs_set(void *data, u64 val)
1811{
1812 eeh_max_freezes = val;
1813 return 0;
1814}
1815
1816static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1817{
1818 *val = eeh_max_freezes;
1819 return 0;
1820}
1821
1822DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1823 eeh_enable_dbgfs_set, "0x%llx\n");
1824DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1825 eeh_freeze_dbgfs_set, "0x%llx\n");
1826#endif
1827
1828static int __init eeh_init_proc(void)
1829{
1830 if (machine_is(pseries) || machine_is(powernv)) {
1831 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1832#ifdef CONFIG_DEBUG_FS
1833 debugfs_create_file("eeh_enable", 0600,
1834 powerpc_debugfs_root, NULL,
1835 &eeh_enable_dbgfs_ops);
1836 debugfs_create_file("eeh_max_freezes", 0600,
1837 powerpc_debugfs_root, NULL,
1838 &eeh_freeze_dbgfs_ops);
1839#endif
1840 }
1841
1842 return 0;
1843}
1844__initcall(eeh_init_proc);
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/sched.h>
26#include <linux/init.h>
27#include <linux/list.h>
28#include <linux/pci.h>
29#include <linux/proc_fs.h>
30#include <linux/rbtree.h>
31#include <linux/reboot.h>
32#include <linux/seq_file.h>
33#include <linux/spinlock.h>
34#include <linux/export.h>
35#include <linux/of.h>
36
37#include <linux/atomic.h>
38#include <asm/eeh.h>
39#include <asm/eeh_event.h>
40#include <asm/io.h>
41#include <asm/machdep.h>
42#include <asm/ppc-pci.h>
43#include <asm/rtas.h>
44
45
46/** Overview:
47 * EEH, or "Extended Error Handling" is a PCI bridge technology for
48 * dealing with PCI bus errors that can't be dealt with within the
49 * usual PCI framework, except by check-stopping the CPU. Systems
50 * that are designed for high-availability/reliability cannot afford
51 * to crash due to a "mere" PCI error, thus the need for EEH.
52 * An EEH-capable bridge operates by converting a detected error
53 * into a "slot freeze", taking the PCI adapter off-line, making
54 * the slot behave, from the OS'es point of view, as if the slot
55 * were "empty": all reads return 0xff's and all writes are silently
56 * ignored. EEH slot isolation events can be triggered by parity
57 * errors on the address or data busses (e.g. during posted writes),
58 * which in turn might be caused by low voltage on the bus, dust,
59 * vibration, humidity, radioactivity or plain-old failed hardware.
60 *
61 * Note, however, that one of the leading causes of EEH slot
62 * freeze events are buggy device drivers, buggy device microcode,
63 * or buggy device hardware. This is because any attempt by the
64 * device to bus-master data to a memory address that is not
65 * assigned to the device will trigger a slot freeze. (The idea
66 * is to prevent devices-gone-wild from corrupting system memory).
67 * Buggy hardware/drivers will have a miserable time co-existing
68 * with EEH.
69 *
70 * Ideally, a PCI device driver, when suspecting that an isolation
71 * event has occurred (e.g. by reading 0xff's), will then ask EEH
72 * whether this is the case, and then take appropriate steps to
73 * reset the PCI slot, the PCI device, and then resume operations.
74 * However, until that day, the checking is done here, with the
75 * eeh_check_failure() routine embedded in the MMIO macros. If
76 * the slot is found to be isolated, an "EEH Event" is synthesized
77 * and sent out for processing.
78 */
79
80/* If a device driver keeps reading an MMIO register in an interrupt
81 * handler after a slot isolation event, it might be broken.
82 * This sets the threshold for how many read attempts we allow
83 * before printing an error message.
84 */
85#define EEH_MAX_FAILS 2100000
86
87/* Time to wait for a PCI slot to report status, in milliseconds */
88#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
89
90/* Platform dependent EEH operations */
91struct eeh_ops *eeh_ops = NULL;
92
93bool eeh_subsystem_enabled = false;
94EXPORT_SYMBOL(eeh_subsystem_enabled);
95
96/*
97 * EEH probe mode support. The intention is to support multiple
98 * platforms for EEH. Some platforms like pSeries do PCI emunation
99 * based on device tree. However, other platforms like powernv probe
100 * PCI devices from hardware. The flag is used to distinguish that.
101 * In addition, struct eeh_ops::probe would be invoked for particular
102 * OF node or PCI device so that the corresponding PE would be created
103 * there.
104 */
105int eeh_probe_mode;
106
107/* Lock to avoid races due to multiple reports of an error */
108DEFINE_RAW_SPINLOCK(confirm_error_lock);
109
110/* Buffer for reporting pci register dumps. Its here in BSS, and
111 * not dynamically alloced, so that it ends up in RMO where RTAS
112 * can access it.
113 */
114#define EEH_PCI_REGS_LOG_LEN 4096
115static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
116
117/*
118 * The struct is used to maintain the EEH global statistic
119 * information. Besides, the EEH global statistics will be
120 * exported to user space through procfs
121 */
122struct eeh_stats {
123 u64 no_device; /* PCI device not found */
124 u64 no_dn; /* OF node not found */
125 u64 no_cfg_addr; /* Config address not found */
126 u64 ignored_check; /* EEH check skipped */
127 u64 total_mmio_ffs; /* Total EEH checks */
128 u64 false_positives; /* Unnecessary EEH checks */
129 u64 slot_resets; /* PE reset */
130};
131
132static struct eeh_stats eeh_stats;
133
134#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
135
136/**
137 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
138 * @edev: device to report data for
139 * @buf: point to buffer in which to log
140 * @len: amount of room in buffer
141 *
142 * This routine captures assorted PCI configuration space data,
143 * and puts them into a buffer for RTAS error logging.
144 */
145static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
146{
147 struct device_node *dn = eeh_dev_to_of_node(edev);
148 struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
149 u32 cfg;
150 int cap, i;
151 int n = 0;
152
153 n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
154 printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
155
156 eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
157 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
158 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
159
160 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
161 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
162 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
163
164 if (!dev) {
165 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
166 return n;
167 }
168
169 /* Gather bridge-specific registers */
170 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
171 eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
172 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
173 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
174
175 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
176 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
177 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
178 }
179
180 /* Dump out the PCI-X command and status regs */
181 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
182 if (cap) {
183 eeh_ops->read_config(dn, cap, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
185 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
186
187 eeh_ops->read_config(dn, cap+4, 4, &cfg);
188 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
189 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
190 }
191
192 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
193 if (pci_is_pcie(dev)) {
194 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
195 printk(KERN_WARNING
196 "EEH: PCI-E capabilities and status follow:\n");
197
198 for (i=0; i<=8; i++) {
199 eeh_ops->read_config(dn, dev->pcie_cap+4*i, 4, &cfg);
200 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
201 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
202 }
203
204 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
205 if (cap) {
206 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
207 printk(KERN_WARNING
208 "EEH: PCI-E AER capability register set follows:\n");
209
210 for (i=0; i<14; i++) {
211 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
212 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
213 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
214 }
215 }
216 }
217
218 return n;
219}
220
221/**
222 * eeh_slot_error_detail - Generate combined log including driver log and error log
223 * @pe: EEH PE
224 * @severity: temporary or permanent error log
225 *
226 * This routine should be called to generate the combined log, which
227 * is comprised of driver log and error log. The driver log is figured
228 * out from the config space of the corresponding PCI device, while
229 * the error log is fetched through platform dependent function call.
230 */
231void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
232{
233 size_t loglen = 0;
234 struct eeh_dev *edev, *tmp;
235 bool valid_cfg_log = true;
236
237 /*
238 * When the PHB is fenced or dead, it's pointless to collect
239 * the data from PCI config space because it should return
240 * 0xFF's. For ER, we still retrieve the data from the PCI
241 * config space.
242 */
243 if (eeh_probe_mode_dev() &&
244 (pe->type & EEH_PE_PHB) &&
245 (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)))
246 valid_cfg_log = false;
247
248 if (valid_cfg_log) {
249 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
250 eeh_ops->configure_bridge(pe);
251 eeh_pe_restore_bars(pe);
252
253 pci_regs_buf[0] = 0;
254 eeh_pe_for_each_dev(pe, edev, tmp) {
255 loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
256 EEH_PCI_REGS_LOG_LEN - loglen);
257 }
258 }
259
260 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
261}
262
263/**
264 * eeh_token_to_phys - Convert EEH address token to phys address
265 * @token: I/O token, should be address in the form 0xA....
266 *
267 * This routine should be called to convert virtual I/O address
268 * to physical one.
269 */
270static inline unsigned long eeh_token_to_phys(unsigned long token)
271{
272 pte_t *ptep;
273 unsigned long pa;
274 int hugepage_shift;
275
276 /*
277 * We won't find hugepages here, iomem
278 */
279 ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
280 if (!ptep)
281 return token;
282 WARN_ON(hugepage_shift);
283 pa = pte_pfn(*ptep) << PAGE_SHIFT;
284
285 return pa | (token & (PAGE_SIZE-1));
286}
287
288/*
289 * On PowerNV platform, we might already have fenced PHB there.
290 * For that case, it's meaningless to recover frozen PE. Intead,
291 * We have to handle fenced PHB firstly.
292 */
293static int eeh_phb_check_failure(struct eeh_pe *pe)
294{
295 struct eeh_pe *phb_pe;
296 unsigned long flags;
297 int ret;
298
299 if (!eeh_probe_mode_dev())
300 return -EPERM;
301
302 /* Find the PHB PE */
303 phb_pe = eeh_phb_pe_get(pe->phb);
304 if (!phb_pe) {
305 pr_warning("%s Can't find PE for PHB#%d\n",
306 __func__, pe->phb->global_number);
307 return -EEXIST;
308 }
309
310 /* If the PHB has been in problematic state */
311 eeh_serialize_lock(&flags);
312 if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) {
313 ret = 0;
314 goto out;
315 }
316
317 /* Check PHB state */
318 ret = eeh_ops->get_state(phb_pe, NULL);
319 if ((ret < 0) ||
320 (ret == EEH_STATE_NOT_SUPPORT) ||
321 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
322 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
323 ret = 0;
324 goto out;
325 }
326
327 /* Isolate the PHB and send event */
328 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
329 eeh_serialize_unlock(flags);
330
331 pr_err("EEH: PHB#%x failure detected\n",
332 phb_pe->phb->global_number);
333 dump_stack();
334 eeh_send_failure_event(phb_pe);
335
336 return 1;
337out:
338 eeh_serialize_unlock(flags);
339 return ret;
340}
341
342/**
343 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
344 * @edev: eeh device
345 *
346 * Check for an EEH failure for the given device node. Call this
347 * routine if the result of a read was all 0xff's and you want to
348 * find out if this is due to an EEH slot freeze. This routine
349 * will query firmware for the EEH status.
350 *
351 * Returns 0 if there has not been an EEH error; otherwise returns
352 * a non-zero value and queues up a slot isolation event notification.
353 *
354 * It is safe to call this routine in an interrupt context.
355 */
356int eeh_dev_check_failure(struct eeh_dev *edev)
357{
358 int ret;
359 unsigned long flags;
360 struct device_node *dn;
361 struct pci_dev *dev;
362 struct eeh_pe *pe;
363 int rc = 0;
364 const char *location;
365
366 eeh_stats.total_mmio_ffs++;
367
368 if (!eeh_enabled())
369 return 0;
370
371 if (!edev) {
372 eeh_stats.no_dn++;
373 return 0;
374 }
375 dn = eeh_dev_to_of_node(edev);
376 dev = eeh_dev_to_pci_dev(edev);
377 pe = edev->pe;
378
379 /* Access to IO BARs might get this far and still not want checking. */
380 if (!pe) {
381 eeh_stats.ignored_check++;
382 pr_debug("EEH: Ignored check for %s %s\n",
383 eeh_pci_name(dev), dn->full_name);
384 return 0;
385 }
386
387 if (!pe->addr && !pe->config_addr) {
388 eeh_stats.no_cfg_addr++;
389 return 0;
390 }
391
392 /*
393 * On PowerNV platform, we might already have fenced PHB
394 * there and we need take care of that firstly.
395 */
396 ret = eeh_phb_check_failure(pe);
397 if (ret > 0)
398 return ret;
399
400 /* If we already have a pending isolation event for this
401 * slot, we know it's bad already, we don't need to check.
402 * Do this checking under a lock; as multiple PCI devices
403 * in one slot might report errors simultaneously, and we
404 * only want one error recovery routine running.
405 */
406 eeh_serialize_lock(&flags);
407 rc = 1;
408 if (pe->state & EEH_PE_ISOLATED) {
409 pe->check_count++;
410 if (pe->check_count % EEH_MAX_FAILS == 0) {
411 location = of_get_property(dn, "ibm,loc-code", NULL);
412 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
413 "location=%s driver=%s pci addr=%s\n",
414 pe->check_count, location,
415 eeh_driver_name(dev), eeh_pci_name(dev));
416 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
417 eeh_driver_name(dev));
418 dump_stack();
419 }
420 goto dn_unlock;
421 }
422
423 /*
424 * Now test for an EEH failure. This is VERY expensive.
425 * Note that the eeh_config_addr may be a parent device
426 * in the case of a device behind a bridge, or it may be
427 * function zero of a multi-function device.
428 * In any case they must share a common PHB.
429 */
430 ret = eeh_ops->get_state(pe, NULL);
431
432 /* Note that config-io to empty slots may fail;
433 * they are empty when they don't have children.
434 * We will punt with the following conditions: Failure to get
435 * PE's state, EEH not support and Permanently unavailable
436 * state, PE is in good state.
437 */
438 if ((ret < 0) ||
439 (ret == EEH_STATE_NOT_SUPPORT) ||
440 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
441 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
442 eeh_stats.false_positives++;
443 pe->false_positives++;
444 rc = 0;
445 goto dn_unlock;
446 }
447
448 eeh_stats.slot_resets++;
449
450 /* Avoid repeated reports of this failure, including problems
451 * with other functions on this device, and functions under
452 * bridges.
453 */
454 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
455 eeh_serialize_unlock(flags);
456
457 /* Most EEH events are due to device driver bugs. Having
458 * a stack trace will help the device-driver authors figure
459 * out what happened. So print that out.
460 */
461 pr_err("EEH: Frozen PE#%x detected on PHB#%x\n",
462 pe->addr, pe->phb->global_number);
463 dump_stack();
464
465 eeh_send_failure_event(pe);
466
467 return 1;
468
469dn_unlock:
470 eeh_serialize_unlock(flags);
471 return rc;
472}
473
474EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
475
476/**
477 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
478 * @token: I/O token, should be address in the form 0xA....
479 * @val: value, should be all 1's (XXX why do we need this arg??)
480 *
481 * Check for an EEH failure at the given token address. Call this
482 * routine if the result of a read was all 0xff's and you want to
483 * find out if this is due to an EEH slot freeze event. This routine
484 * will query firmware for the EEH status.
485 *
486 * Note this routine is safe to call in an interrupt context.
487 */
488unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
489{
490 unsigned long addr;
491 struct eeh_dev *edev;
492
493 /* Finding the phys addr + pci device; this is pretty quick. */
494 addr = eeh_token_to_phys((unsigned long __force) token);
495 edev = eeh_addr_cache_get_dev(addr);
496 if (!edev) {
497 eeh_stats.no_device++;
498 return val;
499 }
500
501 eeh_dev_check_failure(edev);
502 return val;
503}
504
505EXPORT_SYMBOL(eeh_check_failure);
506
507
508/**
509 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
510 * @pe: EEH PE
511 *
512 * This routine should be called to reenable frozen MMIO or DMA
513 * so that it would work correctly again. It's useful while doing
514 * recovery or log collection on the indicated device.
515 */
516int eeh_pci_enable(struct eeh_pe *pe, int function)
517{
518 int rc;
519
520 rc = eeh_ops->set_option(pe, function);
521 if (rc)
522 pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n",
523 __func__, function, pe->phb->global_number, pe->addr, rc);
524
525 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
526 if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
527 (function == EEH_OPT_THAW_MMIO))
528 return 0;
529
530 return rc;
531}
532
533/**
534 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
535 * @dev: pci device struct
536 * @state: reset state to enter
537 *
538 * Return value:
539 * 0 if success
540 */
541int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
542{
543 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
544 struct eeh_pe *pe = edev->pe;
545
546 if (!pe) {
547 pr_err("%s: No PE found on PCI device %s\n",
548 __func__, pci_name(dev));
549 return -EINVAL;
550 }
551
552 switch (state) {
553 case pcie_deassert_reset:
554 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
555 break;
556 case pcie_hot_reset:
557 eeh_ops->reset(pe, EEH_RESET_HOT);
558 break;
559 case pcie_warm_reset:
560 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
561 break;
562 default:
563 return -EINVAL;
564 };
565
566 return 0;
567}
568
569/**
570 * eeh_set_pe_freset - Check the required reset for the indicated device
571 * @data: EEH device
572 * @flag: return value
573 *
574 * Each device might have its preferred reset type: fundamental or
575 * hot reset. The routine is used to collected the information for
576 * the indicated device and its children so that the bunch of the
577 * devices could be reset properly.
578 */
579static void *eeh_set_dev_freset(void *data, void *flag)
580{
581 struct pci_dev *dev;
582 unsigned int *freset = (unsigned int *)flag;
583 struct eeh_dev *edev = (struct eeh_dev *)data;
584
585 dev = eeh_dev_to_pci_dev(edev);
586 if (dev)
587 *freset |= dev->needs_freset;
588
589 return NULL;
590}
591
592/**
593 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
594 * @pe: EEH PE
595 *
596 * Assert the PCI #RST line for 1/4 second.
597 */
598static void eeh_reset_pe_once(struct eeh_pe *pe)
599{
600 unsigned int freset = 0;
601
602 /* Determine type of EEH reset required for
603 * Partitionable Endpoint, a hot-reset (1)
604 * or a fundamental reset (3).
605 * A fundamental reset required by any device under
606 * Partitionable Endpoint trumps hot-reset.
607 */
608 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
609
610 if (freset)
611 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
612 else
613 eeh_ops->reset(pe, EEH_RESET_HOT);
614
615 /* The PCI bus requires that the reset be held high for at least
616 * a 100 milliseconds. We wait a bit longer 'just in case'.
617 */
618#define PCI_BUS_RST_HOLD_TIME_MSEC 250
619 msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
620
621 /* We might get hit with another EEH freeze as soon as the
622 * pci slot reset line is dropped. Make sure we don't miss
623 * these, and clear the flag now.
624 */
625 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
626
627 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
628
629 /* After a PCI slot has been reset, the PCI Express spec requires
630 * a 1.5 second idle time for the bus to stabilize, before starting
631 * up traffic.
632 */
633#define PCI_BUS_SETTLE_TIME_MSEC 1800
634 msleep(PCI_BUS_SETTLE_TIME_MSEC);
635}
636
637/**
638 * eeh_reset_pe - Reset the indicated PE
639 * @pe: EEH PE
640 *
641 * This routine should be called to reset indicated device, including
642 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
643 * might be involved as well.
644 */
645int eeh_reset_pe(struct eeh_pe *pe)
646{
647 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
648 int i, rc;
649
650 /* Take three shots at resetting the bus */
651 for (i=0; i<3; i++) {
652 eeh_reset_pe_once(pe);
653
654 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
655 if ((rc & flags) == flags)
656 return 0;
657
658 if (rc < 0) {
659 pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
660 __func__, pe->phb->global_number, pe->addr);
661 return -1;
662 }
663 pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
664 i+1, pe->phb->global_number, pe->addr, rc);
665 }
666
667 return -1;
668}
669
670/**
671 * eeh_save_bars - Save device bars
672 * @edev: PCI device associated EEH device
673 *
674 * Save the values of the device bars. Unlike the restore
675 * routine, this routine is *not* recursive. This is because
676 * PCI devices are added individually; but, for the restore,
677 * an entire slot is reset at a time.
678 */
679void eeh_save_bars(struct eeh_dev *edev)
680{
681 int i;
682 struct device_node *dn;
683
684 if (!edev)
685 return;
686 dn = eeh_dev_to_of_node(edev);
687
688 for (i = 0; i < 16; i++)
689 eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
690
691 /*
692 * For PCI bridges including root port, we need enable bus
693 * master explicitly. Otherwise, it can't fetch IODA table
694 * entries correctly. So we cache the bit in advance so that
695 * we can restore it after reset, either PHB range or PE range.
696 */
697 if (edev->mode & EEH_DEV_BRIDGE)
698 edev->config_space[1] |= PCI_COMMAND_MASTER;
699}
700
701/**
702 * eeh_ops_register - Register platform dependent EEH operations
703 * @ops: platform dependent EEH operations
704 *
705 * Register the platform dependent EEH operation callback
706 * functions. The platform should call this function before
707 * any other EEH operations.
708 */
709int __init eeh_ops_register(struct eeh_ops *ops)
710{
711 if (!ops->name) {
712 pr_warning("%s: Invalid EEH ops name for %p\n",
713 __func__, ops);
714 return -EINVAL;
715 }
716
717 if (eeh_ops && eeh_ops != ops) {
718 pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
719 __func__, eeh_ops->name, ops->name);
720 return -EEXIST;
721 }
722
723 eeh_ops = ops;
724
725 return 0;
726}
727
728/**
729 * eeh_ops_unregister - Unreigster platform dependent EEH operations
730 * @name: name of EEH platform operations
731 *
732 * Unregister the platform dependent EEH operation callback
733 * functions.
734 */
735int __exit eeh_ops_unregister(const char *name)
736{
737 if (!name || !strlen(name)) {
738 pr_warning("%s: Invalid EEH ops name\n",
739 __func__);
740 return -EINVAL;
741 }
742
743 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
744 eeh_ops = NULL;
745 return 0;
746 }
747
748 return -EEXIST;
749}
750
751static int eeh_reboot_notifier(struct notifier_block *nb,
752 unsigned long action, void *unused)
753{
754 eeh_set_enable(false);
755 return NOTIFY_DONE;
756}
757
758static struct notifier_block eeh_reboot_nb = {
759 .notifier_call = eeh_reboot_notifier,
760};
761
762/**
763 * eeh_init - EEH initialization
764 *
765 * Initialize EEH by trying to enable it for all of the adapters in the system.
766 * As a side effect we can determine here if eeh is supported at all.
767 * Note that we leave EEH on so failed config cycles won't cause a machine
768 * check. If a user turns off EEH for a particular adapter they are really
769 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
770 * grant access to a slot if EEH isn't enabled, and so we always enable
771 * EEH for all slots/all devices.
772 *
773 * The eeh-force-off option disables EEH checking globally, for all slots.
774 * Even if force-off is set, the EEH hardware is still enabled, so that
775 * newer systems can boot.
776 */
777int eeh_init(void)
778{
779 struct pci_controller *hose, *tmp;
780 struct device_node *phb;
781 static int cnt = 0;
782 int ret = 0;
783
784 /*
785 * We have to delay the initialization on PowerNV after
786 * the PCI hierarchy tree has been built because the PEs
787 * are figured out based on PCI devices instead of device
788 * tree nodes
789 */
790 if (machine_is(powernv) && cnt++ <= 0)
791 return ret;
792
793 /* Register reboot notifier */
794 ret = register_reboot_notifier(&eeh_reboot_nb);
795 if (ret) {
796 pr_warn("%s: Failed to register notifier (%d)\n",
797 __func__, ret);
798 return ret;
799 }
800
801 /* call platform initialization function */
802 if (!eeh_ops) {
803 pr_warning("%s: Platform EEH operation not found\n",
804 __func__);
805 return -EEXIST;
806 } else if ((ret = eeh_ops->init())) {
807 pr_warning("%s: Failed to call platform init function (%d)\n",
808 __func__, ret);
809 return ret;
810 }
811
812 /* Initialize EEH event */
813 ret = eeh_event_init();
814 if (ret)
815 return ret;
816
817 /* Enable EEH for all adapters */
818 if (eeh_probe_mode_devtree()) {
819 list_for_each_entry_safe(hose, tmp,
820 &hose_list, list_node) {
821 phb = hose->dn;
822 traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
823 }
824 } else if (eeh_probe_mode_dev()) {
825 list_for_each_entry_safe(hose, tmp,
826 &hose_list, list_node)
827 pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
828 } else {
829 pr_warning("%s: Invalid probe mode %d\n",
830 __func__, eeh_probe_mode);
831 return -EINVAL;
832 }
833
834 /*
835 * Call platform post-initialization. Actually, It's good chance
836 * to inform platform that EEH is ready to supply service if the
837 * I/O cache stuff has been built up.
838 */
839 if (eeh_ops->post_init) {
840 ret = eeh_ops->post_init();
841 if (ret)
842 return ret;
843 }
844
845 if (eeh_enabled())
846 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
847 else
848 pr_warning("EEH: No capable adapters found\n");
849
850 return ret;
851}
852
853core_initcall_sync(eeh_init);
854
855/**
856 * eeh_add_device_early - Enable EEH for the indicated device_node
857 * @dn: device node for which to set up EEH
858 *
859 * This routine must be used to perform EEH initialization for PCI
860 * devices that were added after system boot (e.g. hotplug, dlpar).
861 * This routine must be called before any i/o is performed to the
862 * adapter (inluding any config-space i/o).
863 * Whether this actually enables EEH or not for this device depends
864 * on the CEC architecture, type of the device, on earlier boot
865 * command-line arguments & etc.
866 */
867void eeh_add_device_early(struct device_node *dn)
868{
869 struct pci_controller *phb;
870
871 /*
872 * If we're doing EEH probe based on PCI device, we
873 * would delay the probe until late stage because
874 * the PCI device isn't available this moment.
875 */
876 if (!eeh_probe_mode_devtree())
877 return;
878
879 if (!of_node_to_eeh_dev(dn))
880 return;
881 phb = of_node_to_eeh_dev(dn)->phb;
882
883 /* USB Bus children of PCI devices will not have BUID's */
884 if (NULL == phb || 0 == phb->buid)
885 return;
886
887 eeh_ops->of_probe(dn, NULL);
888}
889
890/**
891 * eeh_add_device_tree_early - Enable EEH for the indicated device
892 * @dn: device node
893 *
894 * This routine must be used to perform EEH initialization for the
895 * indicated PCI device that was added after system boot (e.g.
896 * hotplug, dlpar).
897 */
898void eeh_add_device_tree_early(struct device_node *dn)
899{
900 struct device_node *sib;
901
902 for_each_child_of_node(dn, sib)
903 eeh_add_device_tree_early(sib);
904 eeh_add_device_early(dn);
905}
906EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
907
908/**
909 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
910 * @dev: pci device for which to set up EEH
911 *
912 * This routine must be used to complete EEH initialization for PCI
913 * devices that were added after system boot (e.g. hotplug, dlpar).
914 */
915void eeh_add_device_late(struct pci_dev *dev)
916{
917 struct device_node *dn;
918 struct eeh_dev *edev;
919
920 if (!dev || !eeh_enabled())
921 return;
922
923 pr_debug("EEH: Adding device %s\n", pci_name(dev));
924
925 dn = pci_device_to_OF_node(dev);
926 edev = of_node_to_eeh_dev(dn);
927 if (edev->pdev == dev) {
928 pr_debug("EEH: Already referenced !\n");
929 return;
930 }
931
932 /*
933 * The EEH cache might not be removed correctly because of
934 * unbalanced kref to the device during unplug time, which
935 * relies on pcibios_release_device(). So we have to remove
936 * that here explicitly.
937 */
938 if (edev->pdev) {
939 eeh_rmv_from_parent_pe(edev);
940 eeh_addr_cache_rmv_dev(edev->pdev);
941 eeh_sysfs_remove_device(edev->pdev);
942 edev->mode &= ~EEH_DEV_SYSFS;
943
944 /*
945 * We definitely should have the PCI device removed
946 * though it wasn't correctly. So we needn't call
947 * into error handler afterwards.
948 */
949 edev->mode |= EEH_DEV_NO_HANDLER;
950
951 edev->pdev = NULL;
952 dev->dev.archdata.edev = NULL;
953 }
954
955 edev->pdev = dev;
956 dev->dev.archdata.edev = edev;
957
958 /*
959 * We have to do the EEH probe here because the PCI device
960 * hasn't been created yet in the early stage.
961 */
962 if (eeh_probe_mode_dev())
963 eeh_ops->dev_probe(dev, NULL);
964
965 eeh_addr_cache_insert_dev(dev);
966}
967
968/**
969 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
970 * @bus: PCI bus
971 *
972 * This routine must be used to perform EEH initialization for PCI
973 * devices which are attached to the indicated PCI bus. The PCI bus
974 * is added after system boot through hotplug or dlpar.
975 */
976void eeh_add_device_tree_late(struct pci_bus *bus)
977{
978 struct pci_dev *dev;
979
980 list_for_each_entry(dev, &bus->devices, bus_list) {
981 eeh_add_device_late(dev);
982 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
983 struct pci_bus *subbus = dev->subordinate;
984 if (subbus)
985 eeh_add_device_tree_late(subbus);
986 }
987 }
988}
989EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
990
991/**
992 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
993 * @bus: PCI bus
994 *
995 * This routine must be used to add EEH sysfs files for PCI
996 * devices which are attached to the indicated PCI bus. The PCI bus
997 * is added after system boot through hotplug or dlpar.
998 */
999void eeh_add_sysfs_files(struct pci_bus *bus)
1000{
1001 struct pci_dev *dev;
1002
1003 list_for_each_entry(dev, &bus->devices, bus_list) {
1004 eeh_sysfs_add_device(dev);
1005 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1006 struct pci_bus *subbus = dev->subordinate;
1007 if (subbus)
1008 eeh_add_sysfs_files(subbus);
1009 }
1010 }
1011}
1012EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1013
1014/**
1015 * eeh_remove_device - Undo EEH setup for the indicated pci device
1016 * @dev: pci device to be removed
1017 *
1018 * This routine should be called when a device is removed from
1019 * a running system (e.g. by hotplug or dlpar). It unregisters
1020 * the PCI device from the EEH subsystem. I/O errors affecting
1021 * this device will no longer be detected after this call; thus,
1022 * i/o errors affecting this slot may leave this device unusable.
1023 */
1024void eeh_remove_device(struct pci_dev *dev)
1025{
1026 struct eeh_dev *edev;
1027
1028 if (!dev || !eeh_enabled())
1029 return;
1030 edev = pci_dev_to_eeh_dev(dev);
1031
1032 /* Unregister the device with the EEH/PCI address search system */
1033 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1034
1035 if (!edev || !edev->pdev || !edev->pe) {
1036 pr_debug("EEH: Not referenced !\n");
1037 return;
1038 }
1039
1040 /*
1041 * During the hotplug for EEH error recovery, we need the EEH
1042 * device attached to the parent PE in order for BAR restore
1043 * a bit later. So we keep it for BAR restore and remove it
1044 * from the parent PE during the BAR resotre.
1045 */
1046 edev->pdev = NULL;
1047 dev->dev.archdata.edev = NULL;
1048 if (!(edev->pe->state & EEH_PE_KEEP))
1049 eeh_rmv_from_parent_pe(edev);
1050 else
1051 edev->mode |= EEH_DEV_DISCONNECTED;
1052
1053 /*
1054 * We're removing from the PCI subsystem, that means
1055 * the PCI device driver can't support EEH or not
1056 * well. So we rely on hotplug completely to do recovery
1057 * for the specific PCI device.
1058 */
1059 edev->mode |= EEH_DEV_NO_HANDLER;
1060
1061 eeh_addr_cache_rmv_dev(dev);
1062 eeh_sysfs_remove_device(dev);
1063 edev->mode &= ~EEH_DEV_SYSFS;
1064}
1065
1066static int proc_eeh_show(struct seq_file *m, void *v)
1067{
1068 if (!eeh_enabled()) {
1069 seq_printf(m, "EEH Subsystem is globally disabled\n");
1070 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1071 } else {
1072 seq_printf(m, "EEH Subsystem is enabled\n");
1073 seq_printf(m,
1074 "no device=%llu\n"
1075 "no device node=%llu\n"
1076 "no config address=%llu\n"
1077 "check not wanted=%llu\n"
1078 "eeh_total_mmio_ffs=%llu\n"
1079 "eeh_false_positives=%llu\n"
1080 "eeh_slot_resets=%llu\n",
1081 eeh_stats.no_device,
1082 eeh_stats.no_dn,
1083 eeh_stats.no_cfg_addr,
1084 eeh_stats.ignored_check,
1085 eeh_stats.total_mmio_ffs,
1086 eeh_stats.false_positives,
1087 eeh_stats.slot_resets);
1088 }
1089
1090 return 0;
1091}
1092
1093static int proc_eeh_open(struct inode *inode, struct file *file)
1094{
1095 return single_open(file, proc_eeh_show, NULL);
1096}
1097
1098static const struct file_operations proc_eeh_operations = {
1099 .open = proc_eeh_open,
1100 .read = seq_read,
1101 .llseek = seq_lseek,
1102 .release = single_release,
1103};
1104
1105static int __init eeh_init_proc(void)
1106{
1107 if (machine_is(pseries) || machine_is(powernv))
1108 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1109 return 0;
1110}
1111__initcall(eeh_init_proc);