Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/bootmem.h>
22
23#include <asm/fpu.h>
24#include <asm/page.h>
25#include <asm/cacheflush.h>
26#include <asm/mmu_context.h>
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#define CREATE_TRACE_POINTS
36#include "trace.h"
37
38#ifndef VECTORSPACING
39#define VECTORSPACING 0x100 /* for EI/VI mode */
40#endif
41
42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62#ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71#endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77};
78
79bool kvm_trace_guest_mode_change;
80
81int kvm_guest_mode_change_trace_reg(void)
82{
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85}
86
87void kvm_guest_mode_change_trace_unreg(void)
88{
89 kvm_trace_guest_mode_change = 0;
90}
91
92/*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97{
98 return !!(vcpu->arch.pending_exceptions);
99}
100
101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102{
103 return false;
104}
105
106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107{
108 return 1;
109}
110
111int kvm_arch_hardware_enable(void)
112{
113 return kvm_mips_callbacks->hardware_enable();
114}
115
116void kvm_arch_hardware_disable(void)
117{
118 kvm_mips_callbacks->hardware_disable();
119}
120
121int kvm_arch_hardware_setup(void)
122{
123 return 0;
124}
125
126void kvm_arch_check_processor_compat(void *rtn)
127{
128 *(int *)rtn = 0;
129}
130
131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132{
133 switch (type) {
134#ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136#else
137 case KVM_VM_MIPS_TE:
138#endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
143 };
144
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
149
150 return 0;
151}
152
153bool kvm_arch_has_vcpu_debugfs(void)
154{
155 return false;
156}
157
158int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
159{
160 return 0;
161}
162
163void kvm_mips_free_vcpus(struct kvm *kvm)
164{
165 unsigned int i;
166 struct kvm_vcpu *vcpu;
167
168 kvm_for_each_vcpu(i, vcpu, kvm) {
169 kvm_arch_vcpu_free(vcpu);
170 }
171
172 mutex_lock(&kvm->lock);
173
174 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175 kvm->vcpus[i] = NULL;
176
177 atomic_set(&kvm->online_vcpus, 0);
178
179 mutex_unlock(&kvm->lock);
180}
181
182static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183{
184 /* It should always be safe to remove after flushing the whole range */
185 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187}
188
189void kvm_arch_destroy_vm(struct kvm *kvm)
190{
191 kvm_mips_free_vcpus(kvm);
192 kvm_mips_free_gpa_pt(kvm);
193}
194
195long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196 unsigned long arg)
197{
198 return -ENOIOCTLCMD;
199}
200
201int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
202 unsigned long npages)
203{
204 return 0;
205}
206
207void kvm_arch_flush_shadow_all(struct kvm *kvm)
208{
209 /* Flush whole GPA */
210 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
211
212 /* Let implementation do the rest */
213 kvm_mips_callbacks->flush_shadow_all(kvm);
214}
215
216void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
217 struct kvm_memory_slot *slot)
218{
219 /*
220 * The slot has been made invalid (ready for moving or deletion), so we
221 * need to ensure that it can no longer be accessed by any guest VCPUs.
222 */
223
224 spin_lock(&kvm->mmu_lock);
225 /* Flush slot from GPA */
226 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
227 slot->base_gfn + slot->npages - 1);
228 /* Let implementation do the rest */
229 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
230 spin_unlock(&kvm->mmu_lock);
231}
232
233int kvm_arch_prepare_memory_region(struct kvm *kvm,
234 struct kvm_memory_slot *memslot,
235 const struct kvm_userspace_memory_region *mem,
236 enum kvm_mr_change change)
237{
238 return 0;
239}
240
241void kvm_arch_commit_memory_region(struct kvm *kvm,
242 const struct kvm_userspace_memory_region *mem,
243 const struct kvm_memory_slot *old,
244 const struct kvm_memory_slot *new,
245 enum kvm_mr_change change)
246{
247 int needs_flush;
248
249 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
250 __func__, kvm, mem->slot, mem->guest_phys_addr,
251 mem->memory_size, mem->userspace_addr);
252
253 /*
254 * If dirty page logging is enabled, write protect all pages in the slot
255 * ready for dirty logging.
256 *
257 * There is no need to do this in any of the following cases:
258 * CREATE: No dirty mappings will already exist.
259 * MOVE/DELETE: The old mappings will already have been cleaned up by
260 * kvm_arch_flush_shadow_memslot()
261 */
262 if (change == KVM_MR_FLAGS_ONLY &&
263 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
264 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
265 spin_lock(&kvm->mmu_lock);
266 /* Write protect GPA page table entries */
267 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
268 new->base_gfn + new->npages - 1);
269 /* Let implementation do the rest */
270 if (needs_flush)
271 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
272 spin_unlock(&kvm->mmu_lock);
273 }
274}
275
276static inline void dump_handler(const char *symbol, void *start, void *end)
277{
278 u32 *p;
279
280 pr_debug("LEAF(%s)\n", symbol);
281
282 pr_debug("\t.set push\n");
283 pr_debug("\t.set noreorder\n");
284
285 for (p = start; p < (u32 *)end; ++p)
286 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
287
288 pr_debug("\t.set\tpop\n");
289
290 pr_debug("\tEND(%s)\n", symbol);
291}
292
293struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
294{
295 int err, size;
296 void *gebase, *p, *handler, *refill_start, *refill_end;
297 int i;
298
299 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
300
301 if (!vcpu) {
302 err = -ENOMEM;
303 goto out;
304 }
305
306 err = kvm_vcpu_init(vcpu, kvm, id);
307
308 if (err)
309 goto out_free_cpu;
310
311 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
312
313 /*
314 * Allocate space for host mode exception handlers that handle
315 * guest mode exits
316 */
317 if (cpu_has_veic || cpu_has_vint)
318 size = 0x200 + VECTORSPACING * 64;
319 else
320 size = 0x4000;
321
322 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
323
324 if (!gebase) {
325 err = -ENOMEM;
326 goto out_uninit_cpu;
327 }
328 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
329 ALIGN(size, PAGE_SIZE), gebase);
330
331 /*
332 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
333 * limits us to the low 512MB of physical address space. If the memory
334 * we allocate is out of range, just give up now.
335 */
336 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
337 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
338 gebase);
339 err = -ENOMEM;
340 goto out_free_gebase;
341 }
342
343 /* Save new ebase */
344 vcpu->arch.guest_ebase = gebase;
345
346 /* Build guest exception vectors dynamically in unmapped memory */
347 handler = gebase + 0x2000;
348
349 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
350 refill_start = gebase;
351 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
352 refill_start += 0x080;
353 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
354
355 /* General Exception Entry point */
356 kvm_mips_build_exception(gebase + 0x180, handler);
357
358 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
359 for (i = 0; i < 8; i++) {
360 kvm_debug("L1 Vectored handler @ %p\n",
361 gebase + 0x200 + (i * VECTORSPACING));
362 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
363 handler);
364 }
365
366 /* General exit handler */
367 p = handler;
368 p = kvm_mips_build_exit(p);
369
370 /* Guest entry routine */
371 vcpu->arch.vcpu_run = p;
372 p = kvm_mips_build_vcpu_run(p);
373
374 /* Dump the generated code */
375 pr_debug("#include <asm/asm.h>\n");
376 pr_debug("#include <asm/regdef.h>\n");
377 pr_debug("\n");
378 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
379 dump_handler("kvm_tlb_refill", refill_start, refill_end);
380 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
381 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
382
383 /* Invalidate the icache for these ranges */
384 flush_icache_range((unsigned long)gebase,
385 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
386
387 /*
388 * Allocate comm page for guest kernel, a TLB will be reserved for
389 * mapping GVA @ 0xFFFF8000 to this page
390 */
391 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
392
393 if (!vcpu->arch.kseg0_commpage) {
394 err = -ENOMEM;
395 goto out_free_gebase;
396 }
397
398 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
399 kvm_mips_commpage_init(vcpu);
400
401 /* Init */
402 vcpu->arch.last_sched_cpu = -1;
403 vcpu->arch.last_exec_cpu = -1;
404
405 return vcpu;
406
407out_free_gebase:
408 kfree(gebase);
409
410out_uninit_cpu:
411 kvm_vcpu_uninit(vcpu);
412
413out_free_cpu:
414 kfree(vcpu);
415
416out:
417 return ERR_PTR(err);
418}
419
420void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
421{
422 hrtimer_cancel(&vcpu->arch.comparecount_timer);
423
424 kvm_vcpu_uninit(vcpu);
425
426 kvm_mips_dump_stats(vcpu);
427
428 kvm_mmu_free_memory_caches(vcpu);
429 kfree(vcpu->arch.guest_ebase);
430 kfree(vcpu->arch.kseg0_commpage);
431 kfree(vcpu);
432}
433
434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
435{
436 kvm_arch_vcpu_free(vcpu);
437}
438
439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
440 struct kvm_guest_debug *dbg)
441{
442 return -ENOIOCTLCMD;
443}
444
445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
446{
447 int r = -EINTR;
448
449 vcpu_load(vcpu);
450
451 kvm_sigset_activate(vcpu);
452
453 if (vcpu->mmio_needed) {
454 if (!vcpu->mmio_is_write)
455 kvm_mips_complete_mmio_load(vcpu, run);
456 vcpu->mmio_needed = 0;
457 }
458
459 if (run->immediate_exit)
460 goto out;
461
462 lose_fpu(1);
463
464 local_irq_disable();
465 guest_enter_irqoff();
466 trace_kvm_enter(vcpu);
467
468 /*
469 * Make sure the read of VCPU requests in vcpu_run() callback is not
470 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
471 * flush request while the requester sees the VCPU as outside of guest
472 * mode and not needing an IPI.
473 */
474 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
475
476 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
477
478 trace_kvm_out(vcpu);
479 guest_exit_irqoff();
480 local_irq_enable();
481
482out:
483 kvm_sigset_deactivate(vcpu);
484
485 vcpu_put(vcpu);
486 return r;
487}
488
489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
490 struct kvm_mips_interrupt *irq)
491{
492 int intr = (int)irq->irq;
493 struct kvm_vcpu *dvcpu = NULL;
494
495 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
496 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
497 (int)intr);
498
499 if (irq->cpu == -1)
500 dvcpu = vcpu;
501 else
502 dvcpu = vcpu->kvm->vcpus[irq->cpu];
503
504 if (intr == 2 || intr == 3 || intr == 4) {
505 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
506
507 } else if (intr == -2 || intr == -3 || intr == -4) {
508 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
509 } else {
510 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
511 irq->cpu, irq->irq);
512 return -EINVAL;
513 }
514
515 dvcpu->arch.wait = 0;
516
517 if (swq_has_sleeper(&dvcpu->wq))
518 swake_up(&dvcpu->wq);
519
520 return 0;
521}
522
523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524 struct kvm_mp_state *mp_state)
525{
526 return -ENOIOCTLCMD;
527}
528
529int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
530 struct kvm_mp_state *mp_state)
531{
532 return -ENOIOCTLCMD;
533}
534
535static u64 kvm_mips_get_one_regs[] = {
536 KVM_REG_MIPS_R0,
537 KVM_REG_MIPS_R1,
538 KVM_REG_MIPS_R2,
539 KVM_REG_MIPS_R3,
540 KVM_REG_MIPS_R4,
541 KVM_REG_MIPS_R5,
542 KVM_REG_MIPS_R6,
543 KVM_REG_MIPS_R7,
544 KVM_REG_MIPS_R8,
545 KVM_REG_MIPS_R9,
546 KVM_REG_MIPS_R10,
547 KVM_REG_MIPS_R11,
548 KVM_REG_MIPS_R12,
549 KVM_REG_MIPS_R13,
550 KVM_REG_MIPS_R14,
551 KVM_REG_MIPS_R15,
552 KVM_REG_MIPS_R16,
553 KVM_REG_MIPS_R17,
554 KVM_REG_MIPS_R18,
555 KVM_REG_MIPS_R19,
556 KVM_REG_MIPS_R20,
557 KVM_REG_MIPS_R21,
558 KVM_REG_MIPS_R22,
559 KVM_REG_MIPS_R23,
560 KVM_REG_MIPS_R24,
561 KVM_REG_MIPS_R25,
562 KVM_REG_MIPS_R26,
563 KVM_REG_MIPS_R27,
564 KVM_REG_MIPS_R28,
565 KVM_REG_MIPS_R29,
566 KVM_REG_MIPS_R30,
567 KVM_REG_MIPS_R31,
568
569#ifndef CONFIG_CPU_MIPSR6
570 KVM_REG_MIPS_HI,
571 KVM_REG_MIPS_LO,
572#endif
573 KVM_REG_MIPS_PC,
574};
575
576static u64 kvm_mips_get_one_regs_fpu[] = {
577 KVM_REG_MIPS_FCR_IR,
578 KVM_REG_MIPS_FCR_CSR,
579};
580
581static u64 kvm_mips_get_one_regs_msa[] = {
582 KVM_REG_MIPS_MSA_IR,
583 KVM_REG_MIPS_MSA_CSR,
584};
585
586static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
587{
588 unsigned long ret;
589
590 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
591 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
592 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
593 /* odd doubles */
594 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
595 ret += 16;
596 }
597 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
598 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
599 ret += kvm_mips_callbacks->num_regs(vcpu);
600
601 return ret;
602}
603
604static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
605{
606 u64 index;
607 unsigned int i;
608
609 if (copy_to_user(indices, kvm_mips_get_one_regs,
610 sizeof(kvm_mips_get_one_regs)))
611 return -EFAULT;
612 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
613
614 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
615 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
616 sizeof(kvm_mips_get_one_regs_fpu)))
617 return -EFAULT;
618 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
619
620 for (i = 0; i < 32; ++i) {
621 index = KVM_REG_MIPS_FPR_32(i);
622 if (copy_to_user(indices, &index, sizeof(index)))
623 return -EFAULT;
624 ++indices;
625
626 /* skip odd doubles if no F64 */
627 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
628 continue;
629
630 index = KVM_REG_MIPS_FPR_64(i);
631 if (copy_to_user(indices, &index, sizeof(index)))
632 return -EFAULT;
633 ++indices;
634 }
635 }
636
637 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
638 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
639 sizeof(kvm_mips_get_one_regs_msa)))
640 return -EFAULT;
641 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
642
643 for (i = 0; i < 32; ++i) {
644 index = KVM_REG_MIPS_VEC_128(i);
645 if (copy_to_user(indices, &index, sizeof(index)))
646 return -EFAULT;
647 ++indices;
648 }
649 }
650
651 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
652}
653
654static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
655 const struct kvm_one_reg *reg)
656{
657 struct mips_coproc *cop0 = vcpu->arch.cop0;
658 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
659 int ret;
660 s64 v;
661 s64 vs[2];
662 unsigned int idx;
663
664 switch (reg->id) {
665 /* General purpose registers */
666 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
667 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
668 break;
669#ifndef CONFIG_CPU_MIPSR6
670 case KVM_REG_MIPS_HI:
671 v = (long)vcpu->arch.hi;
672 break;
673 case KVM_REG_MIPS_LO:
674 v = (long)vcpu->arch.lo;
675 break;
676#endif
677 case KVM_REG_MIPS_PC:
678 v = (long)vcpu->arch.pc;
679 break;
680
681 /* Floating point registers */
682 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
683 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684 return -EINVAL;
685 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
686 /* Odd singles in top of even double when FR=0 */
687 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
688 v = get_fpr32(&fpu->fpr[idx], 0);
689 else
690 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
691 break;
692 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
693 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
694 return -EINVAL;
695 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
696 /* Can't access odd doubles in FR=0 mode */
697 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
698 return -EINVAL;
699 v = get_fpr64(&fpu->fpr[idx], 0);
700 break;
701 case KVM_REG_MIPS_FCR_IR:
702 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703 return -EINVAL;
704 v = boot_cpu_data.fpu_id;
705 break;
706 case KVM_REG_MIPS_FCR_CSR:
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 v = fpu->fcr31;
710 break;
711
712 /* MIPS SIMD Architecture (MSA) registers */
713 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
714 if (!kvm_mips_guest_has_msa(&vcpu->arch))
715 return -EINVAL;
716 /* Can't access MSA registers in FR=0 mode */
717 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
718 return -EINVAL;
719 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
720#ifdef CONFIG_CPU_LITTLE_ENDIAN
721 /* least significant byte first */
722 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
723 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
724#else
725 /* most significant byte first */
726 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
727 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
728#endif
729 break;
730 case KVM_REG_MIPS_MSA_IR:
731 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732 return -EINVAL;
733 v = boot_cpu_data.msa_id;
734 break;
735 case KVM_REG_MIPS_MSA_CSR:
736 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737 return -EINVAL;
738 v = fpu->msacsr;
739 break;
740
741 /* registers to be handled specially */
742 default:
743 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
744 if (ret)
745 return ret;
746 break;
747 }
748 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
749 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
750
751 return put_user(v, uaddr64);
752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
753 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
754 u32 v32 = (u32)v;
755
756 return put_user(v32, uaddr32);
757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
758 void __user *uaddr = (void __user *)(long)reg->addr;
759
760 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
761 } else {
762 return -EINVAL;
763 }
764}
765
766static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
767 const struct kvm_one_reg *reg)
768{
769 struct mips_coproc *cop0 = vcpu->arch.cop0;
770 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
771 s64 v;
772 s64 vs[2];
773 unsigned int idx;
774
775 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
776 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
777
778 if (get_user(v, uaddr64) != 0)
779 return -EFAULT;
780 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
781 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
782 s32 v32;
783
784 if (get_user(v32, uaddr32) != 0)
785 return -EFAULT;
786 v = (s64)v32;
787 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
788 void __user *uaddr = (void __user *)(long)reg->addr;
789
790 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
791 } else {
792 return -EINVAL;
793 }
794
795 switch (reg->id) {
796 /* General purpose registers */
797 case KVM_REG_MIPS_R0:
798 /* Silently ignore requests to set $0 */
799 break;
800 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
801 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
802 break;
803#ifndef CONFIG_CPU_MIPSR6
804 case KVM_REG_MIPS_HI:
805 vcpu->arch.hi = v;
806 break;
807 case KVM_REG_MIPS_LO:
808 vcpu->arch.lo = v;
809 break;
810#endif
811 case KVM_REG_MIPS_PC:
812 vcpu->arch.pc = v;
813 break;
814
815 /* Floating point registers */
816 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
817 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818 return -EINVAL;
819 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
820 /* Odd singles in top of even double when FR=0 */
821 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
822 set_fpr32(&fpu->fpr[idx], 0, v);
823 else
824 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
825 break;
826 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
827 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
828 return -EINVAL;
829 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
830 /* Can't access odd doubles in FR=0 mode */
831 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
832 return -EINVAL;
833 set_fpr64(&fpu->fpr[idx], 0, v);
834 break;
835 case KVM_REG_MIPS_FCR_IR:
836 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837 return -EINVAL;
838 /* Read-only */
839 break;
840 case KVM_REG_MIPS_FCR_CSR:
841 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842 return -EINVAL;
843 fpu->fcr31 = v;
844 break;
845
846 /* MIPS SIMD Architecture (MSA) registers */
847 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
848 if (!kvm_mips_guest_has_msa(&vcpu->arch))
849 return -EINVAL;
850 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
851#ifdef CONFIG_CPU_LITTLE_ENDIAN
852 /* least significant byte first */
853 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
854 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
855#else
856 /* most significant byte first */
857 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
858 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
859#endif
860 break;
861 case KVM_REG_MIPS_MSA_IR:
862 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863 return -EINVAL;
864 /* Read-only */
865 break;
866 case KVM_REG_MIPS_MSA_CSR:
867 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868 return -EINVAL;
869 fpu->msacsr = v;
870 break;
871
872 /* registers to be handled specially */
873 default:
874 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
875 }
876 return 0;
877}
878
879static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
880 struct kvm_enable_cap *cap)
881{
882 int r = 0;
883
884 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
885 return -EINVAL;
886 if (cap->flags)
887 return -EINVAL;
888 if (cap->args[0])
889 return -EINVAL;
890
891 switch (cap->cap) {
892 case KVM_CAP_MIPS_FPU:
893 vcpu->arch.fpu_enabled = true;
894 break;
895 case KVM_CAP_MIPS_MSA:
896 vcpu->arch.msa_enabled = true;
897 break;
898 default:
899 r = -EINVAL;
900 break;
901 }
902
903 return r;
904}
905
906long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
907 unsigned long arg)
908{
909 struct kvm_vcpu *vcpu = filp->private_data;
910 void __user *argp = (void __user *)arg;
911
912 if (ioctl == KVM_INTERRUPT) {
913 struct kvm_mips_interrupt irq;
914
915 if (copy_from_user(&irq, argp, sizeof(irq)))
916 return -EFAULT;
917 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
918 irq.irq);
919
920 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
921 }
922
923 return -ENOIOCTLCMD;
924}
925
926long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
927 unsigned long arg)
928{
929 struct kvm_vcpu *vcpu = filp->private_data;
930 void __user *argp = (void __user *)arg;
931 long r;
932
933 vcpu_load(vcpu);
934
935 switch (ioctl) {
936 case KVM_SET_ONE_REG:
937 case KVM_GET_ONE_REG: {
938 struct kvm_one_reg reg;
939
940 r = -EFAULT;
941 if (copy_from_user(®, argp, sizeof(reg)))
942 break;
943 if (ioctl == KVM_SET_ONE_REG)
944 r = kvm_mips_set_reg(vcpu, ®);
945 else
946 r = kvm_mips_get_reg(vcpu, ®);
947 break;
948 }
949 case KVM_GET_REG_LIST: {
950 struct kvm_reg_list __user *user_list = argp;
951 struct kvm_reg_list reg_list;
952 unsigned n;
953
954 r = -EFAULT;
955 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
956 break;
957 n = reg_list.n;
958 reg_list.n = kvm_mips_num_regs(vcpu);
959 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
960 break;
961 r = -E2BIG;
962 if (n < reg_list.n)
963 break;
964 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
965 break;
966 }
967 case KVM_ENABLE_CAP: {
968 struct kvm_enable_cap cap;
969
970 r = -EFAULT;
971 if (copy_from_user(&cap, argp, sizeof(cap)))
972 break;
973 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
974 break;
975 }
976 default:
977 r = -ENOIOCTLCMD;
978 }
979
980 vcpu_put(vcpu);
981 return r;
982}
983
984/**
985 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
986 * @kvm: kvm instance
987 * @log: slot id and address to which we copy the log
988 *
989 * Steps 1-4 below provide general overview of dirty page logging. See
990 * kvm_get_dirty_log_protect() function description for additional details.
991 *
992 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
993 * always flush the TLB (step 4) even if previous step failed and the dirty
994 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
995 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
996 * writes will be marked dirty for next log read.
997 *
998 * 1. Take a snapshot of the bit and clear it if needed.
999 * 2. Write protect the corresponding page.
1000 * 3. Copy the snapshot to the userspace.
1001 * 4. Flush TLB's if needed.
1002 */
1003int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1004{
1005 struct kvm_memslots *slots;
1006 struct kvm_memory_slot *memslot;
1007 bool is_dirty = false;
1008 int r;
1009
1010 mutex_lock(&kvm->slots_lock);
1011
1012 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1013
1014 if (is_dirty) {
1015 slots = kvm_memslots(kvm);
1016 memslot = id_to_memslot(slots, log->slot);
1017
1018 /* Let implementation handle TLB/GVA invalidation */
1019 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1020 }
1021
1022 mutex_unlock(&kvm->slots_lock);
1023 return r;
1024}
1025
1026long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1027{
1028 long r;
1029
1030 switch (ioctl) {
1031 default:
1032 r = -ENOIOCTLCMD;
1033 }
1034
1035 return r;
1036}
1037
1038int kvm_arch_init(void *opaque)
1039{
1040 if (kvm_mips_callbacks) {
1041 kvm_err("kvm: module already exists\n");
1042 return -EEXIST;
1043 }
1044
1045 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1046}
1047
1048void kvm_arch_exit(void)
1049{
1050 kvm_mips_callbacks = NULL;
1051}
1052
1053int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1054 struct kvm_sregs *sregs)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1060 struct kvm_sregs *sregs)
1061{
1062 return -ENOIOCTLCMD;
1063}
1064
1065void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1066{
1067}
1068
1069int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070{
1071 return -ENOIOCTLCMD;
1072}
1073
1074int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1075{
1076 return -ENOIOCTLCMD;
1077}
1078
1079int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1080{
1081 return VM_FAULT_SIGBUS;
1082}
1083
1084int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1085{
1086 int r;
1087
1088 switch (ext) {
1089 case KVM_CAP_ONE_REG:
1090 case KVM_CAP_ENABLE_CAP:
1091 case KVM_CAP_READONLY_MEM:
1092 case KVM_CAP_SYNC_MMU:
1093 case KVM_CAP_IMMEDIATE_EXIT:
1094 r = 1;
1095 break;
1096 case KVM_CAP_NR_VCPUS:
1097 r = num_online_cpus();
1098 break;
1099 case KVM_CAP_MAX_VCPUS:
1100 r = KVM_MAX_VCPUS;
1101 break;
1102 case KVM_CAP_MIPS_FPU:
1103 /* We don't handle systems with inconsistent cpu_has_fpu */
1104 r = !!raw_cpu_has_fpu;
1105 break;
1106 case KVM_CAP_MIPS_MSA:
1107 /*
1108 * We don't support MSA vector partitioning yet:
1109 * 1) It would require explicit support which can't be tested
1110 * yet due to lack of support in current hardware.
1111 * 2) It extends the state that would need to be saved/restored
1112 * by e.g. QEMU for migration.
1113 *
1114 * When vector partitioning hardware becomes available, support
1115 * could be added by requiring a flag when enabling
1116 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1117 * to save/restore the appropriate extra state.
1118 */
1119 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1120 break;
1121 default:
1122 r = kvm_mips_callbacks->check_extension(kvm, ext);
1123 break;
1124 }
1125 return r;
1126}
1127
1128int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1129{
1130 return kvm_mips_pending_timer(vcpu) ||
1131 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1132}
1133
1134int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1135{
1136 int i;
1137 struct mips_coproc *cop0;
1138
1139 if (!vcpu)
1140 return -1;
1141
1142 kvm_debug("VCPU Register Dump:\n");
1143 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1144 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1145
1146 for (i = 0; i < 32; i += 4) {
1147 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1148 vcpu->arch.gprs[i],
1149 vcpu->arch.gprs[i + 1],
1150 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1151 }
1152 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1153 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1154
1155 cop0 = vcpu->arch.cop0;
1156 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1157 kvm_read_c0_guest_status(cop0),
1158 kvm_read_c0_guest_cause(cop0));
1159
1160 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1161
1162 return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167 int i;
1168
1169 vcpu_load(vcpu);
1170
1171 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172 vcpu->arch.gprs[i] = regs->gpr[i];
1173 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1174 vcpu->arch.hi = regs->hi;
1175 vcpu->arch.lo = regs->lo;
1176 vcpu->arch.pc = regs->pc;
1177
1178 vcpu_put(vcpu);
1179 return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1183{
1184 int i;
1185
1186 vcpu_load(vcpu);
1187
1188 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1189 regs->gpr[i] = vcpu->arch.gprs[i];
1190
1191 regs->hi = vcpu->arch.hi;
1192 regs->lo = vcpu->arch.lo;
1193 regs->pc = vcpu->arch.pc;
1194
1195 vcpu_put(vcpu);
1196 return 0;
1197}
1198
1199static void kvm_mips_comparecount_func(unsigned long data)
1200{
1201 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1202
1203 kvm_mips_callbacks->queue_timer_int(vcpu);
1204
1205 vcpu->arch.wait = 0;
1206 if (swq_has_sleeper(&vcpu->wq))
1207 swake_up(&vcpu->wq);
1208}
1209
1210/* low level hrtimer wake routine */
1211static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1212{
1213 struct kvm_vcpu *vcpu;
1214
1215 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1216 kvm_mips_comparecount_func((unsigned long) vcpu);
1217 return kvm_mips_count_timeout(vcpu);
1218}
1219
1220int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1221{
1222 int err;
1223
1224 err = kvm_mips_callbacks->vcpu_init(vcpu);
1225 if (err)
1226 return err;
1227
1228 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1229 HRTIMER_MODE_REL);
1230 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1231 return 0;
1232}
1233
1234void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1235{
1236 kvm_mips_callbacks->vcpu_uninit(vcpu);
1237}
1238
1239int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1240 struct kvm_translation *tr)
1241{
1242 return 0;
1243}
1244
1245/* Initial guest state */
1246int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1247{
1248 return kvm_mips_callbacks->vcpu_setup(vcpu);
1249}
1250
1251static void kvm_mips_set_c0_status(void)
1252{
1253 u32 status = read_c0_status();
1254
1255 if (cpu_has_dsp)
1256 status |= (ST0_MX);
1257
1258 write_c0_status(status);
1259 ehb();
1260}
1261
1262/*
1263 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1264 */
1265int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1266{
1267 u32 cause = vcpu->arch.host_cp0_cause;
1268 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1269 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1270 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1271 enum emulation_result er = EMULATE_DONE;
1272 u32 inst;
1273 int ret = RESUME_GUEST;
1274
1275 vcpu->mode = OUTSIDE_GUEST_MODE;
1276
1277 /* re-enable HTW before enabling interrupts */
1278 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1279 htw_start();
1280
1281 /* Set a default exit reason */
1282 run->exit_reason = KVM_EXIT_UNKNOWN;
1283 run->ready_for_interrupt_injection = 1;
1284
1285 /*
1286 * Set the appropriate status bits based on host CPU features,
1287 * before we hit the scheduler
1288 */
1289 kvm_mips_set_c0_status();
1290
1291 local_irq_enable();
1292
1293 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1294 cause, opc, run, vcpu);
1295 trace_kvm_exit(vcpu, exccode);
1296
1297 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1298 /*
1299 * Do a privilege check, if in UM most of these exit conditions
1300 * end up causing an exception to be delivered to the Guest
1301 * Kernel
1302 */
1303 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1304 if (er == EMULATE_PRIV_FAIL) {
1305 goto skip_emul;
1306 } else if (er == EMULATE_FAIL) {
1307 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1308 ret = RESUME_HOST;
1309 goto skip_emul;
1310 }
1311 }
1312
1313 switch (exccode) {
1314 case EXCCODE_INT:
1315 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1316
1317 ++vcpu->stat.int_exits;
1318
1319 if (need_resched())
1320 cond_resched();
1321
1322 ret = RESUME_GUEST;
1323 break;
1324
1325 case EXCCODE_CPU:
1326 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1327
1328 ++vcpu->stat.cop_unusable_exits;
1329 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1330 /* XXXKYMA: Might need to return to user space */
1331 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1332 ret = RESUME_HOST;
1333 break;
1334
1335 case EXCCODE_MOD:
1336 ++vcpu->stat.tlbmod_exits;
1337 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1338 break;
1339
1340 case EXCCODE_TLBS:
1341 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1342 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1343 badvaddr);
1344
1345 ++vcpu->stat.tlbmiss_st_exits;
1346 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1347 break;
1348
1349 case EXCCODE_TLBL:
1350 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1351 cause, opc, badvaddr);
1352
1353 ++vcpu->stat.tlbmiss_ld_exits;
1354 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1355 break;
1356
1357 case EXCCODE_ADES:
1358 ++vcpu->stat.addrerr_st_exits;
1359 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1360 break;
1361
1362 case EXCCODE_ADEL:
1363 ++vcpu->stat.addrerr_ld_exits;
1364 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1365 break;
1366
1367 case EXCCODE_SYS:
1368 ++vcpu->stat.syscall_exits;
1369 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1370 break;
1371
1372 case EXCCODE_RI:
1373 ++vcpu->stat.resvd_inst_exits;
1374 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1375 break;
1376
1377 case EXCCODE_BP:
1378 ++vcpu->stat.break_inst_exits;
1379 ret = kvm_mips_callbacks->handle_break(vcpu);
1380 break;
1381
1382 case EXCCODE_TR:
1383 ++vcpu->stat.trap_inst_exits;
1384 ret = kvm_mips_callbacks->handle_trap(vcpu);
1385 break;
1386
1387 case EXCCODE_MSAFPE:
1388 ++vcpu->stat.msa_fpe_exits;
1389 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1390 break;
1391
1392 case EXCCODE_FPE:
1393 ++vcpu->stat.fpe_exits;
1394 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1395 break;
1396
1397 case EXCCODE_MSADIS:
1398 ++vcpu->stat.msa_disabled_exits;
1399 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1400 break;
1401
1402 case EXCCODE_GE:
1403 /* defer exit accounting to handler */
1404 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1405 break;
1406
1407 default:
1408 if (cause & CAUSEF_BD)
1409 opc += 1;
1410 inst = 0;
1411 kvm_get_badinstr(opc, vcpu, &inst);
1412 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1413 exccode, opc, inst, badvaddr,
1414 kvm_read_c0_guest_status(vcpu->arch.cop0));
1415 kvm_arch_vcpu_dump_regs(vcpu);
1416 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1417 ret = RESUME_HOST;
1418 break;
1419
1420 }
1421
1422skip_emul:
1423 local_irq_disable();
1424
1425 if (ret == RESUME_GUEST)
1426 kvm_vz_acquire_htimer(vcpu);
1427
1428 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1429 kvm_mips_deliver_interrupts(vcpu, cause);
1430
1431 if (!(ret & RESUME_HOST)) {
1432 /* Only check for signals if not already exiting to userspace */
1433 if (signal_pending(current)) {
1434 run->exit_reason = KVM_EXIT_INTR;
1435 ret = (-EINTR << 2) | RESUME_HOST;
1436 ++vcpu->stat.signal_exits;
1437 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1438 }
1439 }
1440
1441 if (ret == RESUME_GUEST) {
1442 trace_kvm_reenter(vcpu);
1443
1444 /*
1445 * Make sure the read of VCPU requests in vcpu_reenter()
1446 * callback is not reordered ahead of the write to vcpu->mode,
1447 * or we could miss a TLB flush request while the requester sees
1448 * the VCPU as outside of guest mode and not needing an IPI.
1449 */
1450 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1451
1452 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1453
1454 /*
1455 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1456 * is live), restore FCR31 / MSACSR.
1457 *
1458 * This should be before returning to the guest exception
1459 * vector, as it may well cause an [MSA] FP exception if there
1460 * are pending exception bits unmasked. (see
1461 * kvm_mips_csr_die_notifier() for how that is handled).
1462 */
1463 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1464 read_c0_status() & ST0_CU1)
1465 __kvm_restore_fcsr(&vcpu->arch);
1466
1467 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1468 read_c0_config5() & MIPS_CONF5_MSAEN)
1469 __kvm_restore_msacsr(&vcpu->arch);
1470 }
1471
1472 /* Disable HTW before returning to guest or host */
1473 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1474 htw_stop();
1475
1476 return ret;
1477}
1478
1479/* Enable FPU for guest and restore context */
1480void kvm_own_fpu(struct kvm_vcpu *vcpu)
1481{
1482 struct mips_coproc *cop0 = vcpu->arch.cop0;
1483 unsigned int sr, cfg5;
1484
1485 preempt_disable();
1486
1487 sr = kvm_read_c0_guest_status(cop0);
1488
1489 /*
1490 * If MSA state is already live, it is undefined how it interacts with
1491 * FR=0 FPU state, and we don't want to hit reserved instruction
1492 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1493 * play it safe and save it first.
1494 *
1495 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1496 * get called when guest CU1 is set, however we can't trust the guest
1497 * not to clobber the status register directly via the commpage.
1498 */
1499 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1500 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1501 kvm_lose_fpu(vcpu);
1502
1503 /*
1504 * Enable FPU for guest
1505 * We set FR and FRE according to guest context
1506 */
1507 change_c0_status(ST0_CU1 | ST0_FR, sr);
1508 if (cpu_has_fre) {
1509 cfg5 = kvm_read_c0_guest_config5(cop0);
1510 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1511 }
1512 enable_fpu_hazard();
1513
1514 /* If guest FPU state not active, restore it now */
1515 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1516 __kvm_restore_fpu(&vcpu->arch);
1517 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1518 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1519 } else {
1520 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1521 }
1522
1523 preempt_enable();
1524}
1525
1526#ifdef CONFIG_CPU_HAS_MSA
1527/* Enable MSA for guest and restore context */
1528void kvm_own_msa(struct kvm_vcpu *vcpu)
1529{
1530 struct mips_coproc *cop0 = vcpu->arch.cop0;
1531 unsigned int sr, cfg5;
1532
1533 preempt_disable();
1534
1535 /*
1536 * Enable FPU if enabled in guest, since we're restoring FPU context
1537 * anyway. We set FR and FRE according to guest context.
1538 */
1539 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1540 sr = kvm_read_c0_guest_status(cop0);
1541
1542 /*
1543 * If FR=0 FPU state is already live, it is undefined how it
1544 * interacts with MSA state, so play it safe and save it first.
1545 */
1546 if (!(sr & ST0_FR) &&
1547 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1548 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1549 kvm_lose_fpu(vcpu);
1550
1551 change_c0_status(ST0_CU1 | ST0_FR, sr);
1552 if (sr & ST0_CU1 && cpu_has_fre) {
1553 cfg5 = kvm_read_c0_guest_config5(cop0);
1554 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1555 }
1556 }
1557
1558 /* Enable MSA for guest */
1559 set_c0_config5(MIPS_CONF5_MSAEN);
1560 enable_fpu_hazard();
1561
1562 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1563 case KVM_MIPS_AUX_FPU:
1564 /*
1565 * Guest FPU state already loaded, only restore upper MSA state
1566 */
1567 __kvm_restore_msa_upper(&vcpu->arch);
1568 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1569 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1570 break;
1571 case 0:
1572 /* Neither FPU or MSA already active, restore full MSA state */
1573 __kvm_restore_msa(&vcpu->arch);
1574 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1575 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1576 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1577 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1578 KVM_TRACE_AUX_FPU_MSA);
1579 break;
1580 default:
1581 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1582 break;
1583 }
1584
1585 preempt_enable();
1586}
1587#endif
1588
1589/* Drop FPU & MSA without saving it */
1590void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1591{
1592 preempt_disable();
1593 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1594 disable_msa();
1595 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1596 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1597 }
1598 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1599 clear_c0_status(ST0_CU1 | ST0_FR);
1600 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1601 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1602 }
1603 preempt_enable();
1604}
1605
1606/* Save and disable FPU & MSA */
1607void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1608{
1609 /*
1610 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1611 * is disabled in guest context (software), but the register state in
1612 * the hardware may still be in use.
1613 * This is why we explicitly re-enable the hardware before saving.
1614 */
1615
1616 preempt_disable();
1617 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1618 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1619 set_c0_config5(MIPS_CONF5_MSAEN);
1620 enable_fpu_hazard();
1621 }
1622
1623 __kvm_save_msa(&vcpu->arch);
1624 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1625
1626 /* Disable MSA & FPU */
1627 disable_msa();
1628 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1629 clear_c0_status(ST0_CU1 | ST0_FR);
1630 disable_fpu_hazard();
1631 }
1632 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1633 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1634 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635 set_c0_status(ST0_CU1);
1636 enable_fpu_hazard();
1637 }
1638
1639 __kvm_save_fpu(&vcpu->arch);
1640 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1641 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1642
1643 /* Disable FPU */
1644 clear_c0_status(ST0_CU1 | ST0_FR);
1645 disable_fpu_hazard();
1646 }
1647 preempt_enable();
1648}
1649
1650/*
1651 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1652 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1653 * exception if cause bits are set in the value being written.
1654 */
1655static int kvm_mips_csr_die_notify(struct notifier_block *self,
1656 unsigned long cmd, void *ptr)
1657{
1658 struct die_args *args = (struct die_args *)ptr;
1659 struct pt_regs *regs = args->regs;
1660 unsigned long pc;
1661
1662 /* Only interested in FPE and MSAFPE */
1663 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1664 return NOTIFY_DONE;
1665
1666 /* Return immediately if guest context isn't active */
1667 if (!(current->flags & PF_VCPU))
1668 return NOTIFY_DONE;
1669
1670 /* Should never get here from user mode */
1671 BUG_ON(user_mode(regs));
1672
1673 pc = instruction_pointer(regs);
1674 switch (cmd) {
1675 case DIE_FP:
1676 /* match 2nd instruction in __kvm_restore_fcsr */
1677 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1678 return NOTIFY_DONE;
1679 break;
1680 case DIE_MSAFP:
1681 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1682 if (!cpu_has_msa ||
1683 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1684 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1685 return NOTIFY_DONE;
1686 break;
1687 }
1688
1689 /* Move PC forward a little and continue executing */
1690 instruction_pointer(regs) += 4;
1691
1692 return NOTIFY_STOP;
1693}
1694
1695static struct notifier_block kvm_mips_csr_die_notifier = {
1696 .notifier_call = kvm_mips_csr_die_notify,
1697};
1698
1699static int __init kvm_mips_init(void)
1700{
1701 int ret;
1702
1703 ret = kvm_mips_entry_setup();
1704 if (ret)
1705 return ret;
1706
1707 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1708
1709 if (ret)
1710 return ret;
1711
1712 register_die_notifier(&kvm_mips_csr_die_notifier);
1713
1714 return 0;
1715}
1716
1717static void __exit kvm_mips_exit(void)
1718{
1719 kvm_exit();
1720
1721 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1722}
1723
1724module_init(kvm_mips_init);
1725module_exit(kvm_mips_exit);
1726
1727EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/kdebug.h>
15#include <linux/module.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/bootmem.h>
19#include <asm/fpu.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/mmu_context.h>
23#include <asm/pgtable.h>
24
25#include <linux/kvm_host.h>
26
27#include "interrupt.h"
28#include "commpage.h"
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#ifndef VECTORSPACING
34#define VECTORSPACING 0x100 /* for EI/VI mode */
35#endif
36
37#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
60 {NULL}
61};
62
63static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
64{
65 int i;
66
67 for_each_possible_cpu(i) {
68 vcpu->arch.guest_kernel_asid[i] = 0;
69 vcpu->arch.guest_user_asid[i] = 0;
70 }
71
72 return 0;
73}
74
75/*
76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77 * Config7, so we are "runnable" if interrupts are pending
78 */
79int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
80{
81 return !!(vcpu->arch.pending_exceptions);
82}
83
84int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
85{
86 return 1;
87}
88
89int kvm_arch_hardware_enable(void)
90{
91 return 0;
92}
93
94int kvm_arch_hardware_setup(void)
95{
96 return 0;
97}
98
99void kvm_arch_check_processor_compat(void *rtn)
100{
101 *(int *)rtn = 0;
102}
103
104static void kvm_mips_init_tlbs(struct kvm *kvm)
105{
106 unsigned long wired;
107
108 /*
109 * Add a wired entry to the TLB, it is used to map the commpage to
110 * the Guest kernel
111 */
112 wired = read_c0_wired();
113 write_c0_wired(wired + 1);
114 mtc0_tlbw_hazard();
115 kvm->arch.commpage_tlb = wired;
116
117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 kvm->arch.commpage_tlb);
119}
120
121static void kvm_mips_init_vm_percpu(void *arg)
122{
123 struct kvm *kvm = (struct kvm *)arg;
124
125 kvm_mips_init_tlbs(kvm);
126 kvm_mips_callbacks->vm_init(kvm);
127
128}
129
130int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131{
132 if (atomic_inc_return(&kvm_mips_instance) == 1) {
133 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134 __func__);
135 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136 }
137
138 return 0;
139}
140
141void kvm_mips_free_vcpus(struct kvm *kvm)
142{
143 unsigned int i;
144 struct kvm_vcpu *vcpu;
145
146 /* Put the pages we reserved for the guest pmap */
147 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
150 }
151 kfree(kvm->arch.guest_pmap);
152
153 kvm_for_each_vcpu(i, vcpu, kvm) {
154 kvm_arch_vcpu_free(vcpu);
155 }
156
157 mutex_lock(&kvm->lock);
158
159 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160 kvm->vcpus[i] = NULL;
161
162 atomic_set(&kvm->online_vcpus, 0);
163
164 mutex_unlock(&kvm->lock);
165}
166
167static void kvm_mips_uninit_tlbs(void *arg)
168{
169 /* Restore wired count */
170 write_c0_wired(0);
171 mtc0_tlbw_hazard();
172 /* Clear out all the TLBs */
173 kvm_local_flush_tlb_all();
174}
175
176void kvm_arch_destroy_vm(struct kvm *kvm)
177{
178 kvm_mips_free_vcpus(kvm);
179
180 /* If this is the last instance, restore wired count */
181 if (atomic_dec_return(&kvm_mips_instance) == 0) {
182 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183 __func__);
184 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
185 }
186}
187
188long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
189 unsigned long arg)
190{
191 return -ENOIOCTLCMD;
192}
193
194int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195 unsigned long npages)
196{
197 return 0;
198}
199
200int kvm_arch_prepare_memory_region(struct kvm *kvm,
201 struct kvm_memory_slot *memslot,
202 const struct kvm_userspace_memory_region *mem,
203 enum kvm_mr_change change)
204{
205 return 0;
206}
207
208void kvm_arch_commit_memory_region(struct kvm *kvm,
209 const struct kvm_userspace_memory_region *mem,
210 const struct kvm_memory_slot *old,
211 const struct kvm_memory_slot *new,
212 enum kvm_mr_change change)
213{
214 unsigned long npages = 0;
215 int i;
216
217 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218 __func__, kvm, mem->slot, mem->guest_phys_addr,
219 mem->memory_size, mem->userspace_addr);
220
221 /* Setup Guest PMAP table */
222 if (!kvm->arch.guest_pmap) {
223 if (mem->slot == 0)
224 npages = mem->memory_size >> PAGE_SHIFT;
225
226 if (npages) {
227 kvm->arch.guest_pmap_npages = npages;
228 kvm->arch.guest_pmap =
229 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
230
231 if (!kvm->arch.guest_pmap) {
232 kvm_err("Failed to allocate guest PMAP\n");
233 return;
234 }
235
236 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237 npages, kvm->arch.guest_pmap);
238
239 /* Now setup the page table */
240 for (i = 0; i < npages; i++)
241 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
242 }
243 }
244}
245
246struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247{
248 int err, size, offset;
249 void *gebase;
250 int i;
251
252 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253
254 if (!vcpu) {
255 err = -ENOMEM;
256 goto out;
257 }
258
259 err = kvm_vcpu_init(vcpu, kvm, id);
260
261 if (err)
262 goto out_free_cpu;
263
264 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265
266 /*
267 * Allocate space for host mode exception handlers that handle
268 * guest mode exits
269 */
270 if (cpu_has_veic || cpu_has_vint)
271 size = 0x200 + VECTORSPACING * 64;
272 else
273 size = 0x4000;
274
275 /* Save Linux EBASE */
276 vcpu->arch.host_ebase = (void *)read_c0_ebase();
277
278 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
279
280 if (!gebase) {
281 err = -ENOMEM;
282 goto out_uninit_cpu;
283 }
284 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285 ALIGN(size, PAGE_SIZE), gebase);
286
287 /* Save new ebase */
288 vcpu->arch.guest_ebase = gebase;
289
290 /* Copy L1 Guest Exception handler to correct offset */
291
292 /* TLB Refill, EXL = 0 */
293 memcpy(gebase, mips32_exception,
294 mips32_exceptionEnd - mips32_exception);
295
296 /* General Exception Entry point */
297 memcpy(gebase + 0x180, mips32_exception,
298 mips32_exceptionEnd - mips32_exception);
299
300 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
301 for (i = 0; i < 8; i++) {
302 kvm_debug("L1 Vectored handler @ %p\n",
303 gebase + 0x200 + (i * VECTORSPACING));
304 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305 mips32_exceptionEnd - mips32_exception);
306 }
307
308 /* General handler, relocate to unmapped space for sanity's sake */
309 offset = 0x2000;
310 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311 gebase + offset,
312 mips32_GuestExceptionEnd - mips32_GuestException);
313
314 memcpy(gebase + offset, mips32_GuestException,
315 mips32_GuestExceptionEnd - mips32_GuestException);
316
317 /* Invalidate the icache for these ranges */
318 local_flush_icache_range((unsigned long)gebase,
319 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
320
321 /*
322 * Allocate comm page for guest kernel, a TLB will be reserved for
323 * mapping GVA @ 0xFFFF8000 to this page
324 */
325 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
326
327 if (!vcpu->arch.kseg0_commpage) {
328 err = -ENOMEM;
329 goto out_free_gebase;
330 }
331
332 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
333 kvm_mips_commpage_init(vcpu);
334
335 /* Init */
336 vcpu->arch.last_sched_cpu = -1;
337
338 /* Start off the timer */
339 kvm_mips_init_count(vcpu);
340
341 return vcpu;
342
343out_free_gebase:
344 kfree(gebase);
345
346out_uninit_cpu:
347 kvm_vcpu_uninit(vcpu);
348
349out_free_cpu:
350 kfree(vcpu);
351
352out:
353 return ERR_PTR(err);
354}
355
356void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
357{
358 hrtimer_cancel(&vcpu->arch.comparecount_timer);
359
360 kvm_vcpu_uninit(vcpu);
361
362 kvm_mips_dump_stats(vcpu);
363
364 kfree(vcpu->arch.guest_ebase);
365 kfree(vcpu->arch.kseg0_commpage);
366 kfree(vcpu);
367}
368
369void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
370{
371 kvm_arch_vcpu_free(vcpu);
372}
373
374int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
375 struct kvm_guest_debug *dbg)
376{
377 return -ENOIOCTLCMD;
378}
379
380int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
381{
382 int r = 0;
383 sigset_t sigsaved;
384
385 if (vcpu->sigset_active)
386 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
387
388 if (vcpu->mmio_needed) {
389 if (!vcpu->mmio_is_write)
390 kvm_mips_complete_mmio_load(vcpu, run);
391 vcpu->mmio_needed = 0;
392 }
393
394 lose_fpu(1);
395
396 local_irq_disable();
397 /* Check if we have any exceptions/interrupts pending */
398 kvm_mips_deliver_interrupts(vcpu,
399 kvm_read_c0_guest_cause(vcpu->arch.cop0));
400
401 __kvm_guest_enter();
402
403 /* Disable hardware page table walking while in guest */
404 htw_stop();
405
406 r = __kvm_mips_vcpu_run(run, vcpu);
407
408 /* Re-enable HTW before enabling interrupts */
409 htw_start();
410
411 __kvm_guest_exit();
412 local_irq_enable();
413
414 if (vcpu->sigset_active)
415 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
416
417 return r;
418}
419
420int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
421 struct kvm_mips_interrupt *irq)
422{
423 int intr = (int)irq->irq;
424 struct kvm_vcpu *dvcpu = NULL;
425
426 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
427 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
428 (int)intr);
429
430 if (irq->cpu == -1)
431 dvcpu = vcpu;
432 else
433 dvcpu = vcpu->kvm->vcpus[irq->cpu];
434
435 if (intr == 2 || intr == 3 || intr == 4) {
436 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
437
438 } else if (intr == -2 || intr == -3 || intr == -4) {
439 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
440 } else {
441 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
442 irq->cpu, irq->irq);
443 return -EINVAL;
444 }
445
446 dvcpu->arch.wait = 0;
447
448 if (swait_active(&dvcpu->wq))
449 swake_up(&dvcpu->wq);
450
451 return 0;
452}
453
454int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
455 struct kvm_mp_state *mp_state)
456{
457 return -ENOIOCTLCMD;
458}
459
460int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
461 struct kvm_mp_state *mp_state)
462{
463 return -ENOIOCTLCMD;
464}
465
466static u64 kvm_mips_get_one_regs[] = {
467 KVM_REG_MIPS_R0,
468 KVM_REG_MIPS_R1,
469 KVM_REG_MIPS_R2,
470 KVM_REG_MIPS_R3,
471 KVM_REG_MIPS_R4,
472 KVM_REG_MIPS_R5,
473 KVM_REG_MIPS_R6,
474 KVM_REG_MIPS_R7,
475 KVM_REG_MIPS_R8,
476 KVM_REG_MIPS_R9,
477 KVM_REG_MIPS_R10,
478 KVM_REG_MIPS_R11,
479 KVM_REG_MIPS_R12,
480 KVM_REG_MIPS_R13,
481 KVM_REG_MIPS_R14,
482 KVM_REG_MIPS_R15,
483 KVM_REG_MIPS_R16,
484 KVM_REG_MIPS_R17,
485 KVM_REG_MIPS_R18,
486 KVM_REG_MIPS_R19,
487 KVM_REG_MIPS_R20,
488 KVM_REG_MIPS_R21,
489 KVM_REG_MIPS_R22,
490 KVM_REG_MIPS_R23,
491 KVM_REG_MIPS_R24,
492 KVM_REG_MIPS_R25,
493 KVM_REG_MIPS_R26,
494 KVM_REG_MIPS_R27,
495 KVM_REG_MIPS_R28,
496 KVM_REG_MIPS_R29,
497 KVM_REG_MIPS_R30,
498 KVM_REG_MIPS_R31,
499
500 KVM_REG_MIPS_HI,
501 KVM_REG_MIPS_LO,
502 KVM_REG_MIPS_PC,
503
504 KVM_REG_MIPS_CP0_INDEX,
505 KVM_REG_MIPS_CP0_CONTEXT,
506 KVM_REG_MIPS_CP0_USERLOCAL,
507 KVM_REG_MIPS_CP0_PAGEMASK,
508 KVM_REG_MIPS_CP0_WIRED,
509 KVM_REG_MIPS_CP0_HWRENA,
510 KVM_REG_MIPS_CP0_BADVADDR,
511 KVM_REG_MIPS_CP0_COUNT,
512 KVM_REG_MIPS_CP0_ENTRYHI,
513 KVM_REG_MIPS_CP0_COMPARE,
514 KVM_REG_MIPS_CP0_STATUS,
515 KVM_REG_MIPS_CP0_CAUSE,
516 KVM_REG_MIPS_CP0_EPC,
517 KVM_REG_MIPS_CP0_PRID,
518 KVM_REG_MIPS_CP0_CONFIG,
519 KVM_REG_MIPS_CP0_CONFIG1,
520 KVM_REG_MIPS_CP0_CONFIG2,
521 KVM_REG_MIPS_CP0_CONFIG3,
522 KVM_REG_MIPS_CP0_CONFIG4,
523 KVM_REG_MIPS_CP0_CONFIG5,
524 KVM_REG_MIPS_CP0_CONFIG7,
525 KVM_REG_MIPS_CP0_ERROREPC,
526
527 KVM_REG_MIPS_COUNT_CTL,
528 KVM_REG_MIPS_COUNT_RESUME,
529 KVM_REG_MIPS_COUNT_HZ,
530};
531
532static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
533 const struct kvm_one_reg *reg)
534{
535 struct mips_coproc *cop0 = vcpu->arch.cop0;
536 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
537 int ret;
538 s64 v;
539 s64 vs[2];
540 unsigned int idx;
541
542 switch (reg->id) {
543 /* General purpose registers */
544 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
545 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
546 break;
547 case KVM_REG_MIPS_HI:
548 v = (long)vcpu->arch.hi;
549 break;
550 case KVM_REG_MIPS_LO:
551 v = (long)vcpu->arch.lo;
552 break;
553 case KVM_REG_MIPS_PC:
554 v = (long)vcpu->arch.pc;
555 break;
556
557 /* Floating point registers */
558 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
559 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
560 return -EINVAL;
561 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
562 /* Odd singles in top of even double when FR=0 */
563 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
564 v = get_fpr32(&fpu->fpr[idx], 0);
565 else
566 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
567 break;
568 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
569 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
570 return -EINVAL;
571 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
572 /* Can't access odd doubles in FR=0 mode */
573 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
574 return -EINVAL;
575 v = get_fpr64(&fpu->fpr[idx], 0);
576 break;
577 case KVM_REG_MIPS_FCR_IR:
578 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579 return -EINVAL;
580 v = boot_cpu_data.fpu_id;
581 break;
582 case KVM_REG_MIPS_FCR_CSR:
583 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
584 return -EINVAL;
585 v = fpu->fcr31;
586 break;
587
588 /* MIPS SIMD Architecture (MSA) registers */
589 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
590 if (!kvm_mips_guest_has_msa(&vcpu->arch))
591 return -EINVAL;
592 /* Can't access MSA registers in FR=0 mode */
593 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
594 return -EINVAL;
595 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
596#ifdef CONFIG_CPU_LITTLE_ENDIAN
597 /* least significant byte first */
598 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
599 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
600#else
601 /* most significant byte first */
602 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
603 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
604#endif
605 break;
606 case KVM_REG_MIPS_MSA_IR:
607 if (!kvm_mips_guest_has_msa(&vcpu->arch))
608 return -EINVAL;
609 v = boot_cpu_data.msa_id;
610 break;
611 case KVM_REG_MIPS_MSA_CSR:
612 if (!kvm_mips_guest_has_msa(&vcpu->arch))
613 return -EINVAL;
614 v = fpu->msacsr;
615 break;
616
617 /* Co-processor 0 registers */
618 case KVM_REG_MIPS_CP0_INDEX:
619 v = (long)kvm_read_c0_guest_index(cop0);
620 break;
621 case KVM_REG_MIPS_CP0_CONTEXT:
622 v = (long)kvm_read_c0_guest_context(cop0);
623 break;
624 case KVM_REG_MIPS_CP0_USERLOCAL:
625 v = (long)kvm_read_c0_guest_userlocal(cop0);
626 break;
627 case KVM_REG_MIPS_CP0_PAGEMASK:
628 v = (long)kvm_read_c0_guest_pagemask(cop0);
629 break;
630 case KVM_REG_MIPS_CP0_WIRED:
631 v = (long)kvm_read_c0_guest_wired(cop0);
632 break;
633 case KVM_REG_MIPS_CP0_HWRENA:
634 v = (long)kvm_read_c0_guest_hwrena(cop0);
635 break;
636 case KVM_REG_MIPS_CP0_BADVADDR:
637 v = (long)kvm_read_c0_guest_badvaddr(cop0);
638 break;
639 case KVM_REG_MIPS_CP0_ENTRYHI:
640 v = (long)kvm_read_c0_guest_entryhi(cop0);
641 break;
642 case KVM_REG_MIPS_CP0_COMPARE:
643 v = (long)kvm_read_c0_guest_compare(cop0);
644 break;
645 case KVM_REG_MIPS_CP0_STATUS:
646 v = (long)kvm_read_c0_guest_status(cop0);
647 break;
648 case KVM_REG_MIPS_CP0_CAUSE:
649 v = (long)kvm_read_c0_guest_cause(cop0);
650 break;
651 case KVM_REG_MIPS_CP0_EPC:
652 v = (long)kvm_read_c0_guest_epc(cop0);
653 break;
654 case KVM_REG_MIPS_CP0_PRID:
655 v = (long)kvm_read_c0_guest_prid(cop0);
656 break;
657 case KVM_REG_MIPS_CP0_CONFIG:
658 v = (long)kvm_read_c0_guest_config(cop0);
659 break;
660 case KVM_REG_MIPS_CP0_CONFIG1:
661 v = (long)kvm_read_c0_guest_config1(cop0);
662 break;
663 case KVM_REG_MIPS_CP0_CONFIG2:
664 v = (long)kvm_read_c0_guest_config2(cop0);
665 break;
666 case KVM_REG_MIPS_CP0_CONFIG3:
667 v = (long)kvm_read_c0_guest_config3(cop0);
668 break;
669 case KVM_REG_MIPS_CP0_CONFIG4:
670 v = (long)kvm_read_c0_guest_config4(cop0);
671 break;
672 case KVM_REG_MIPS_CP0_CONFIG5:
673 v = (long)kvm_read_c0_guest_config5(cop0);
674 break;
675 case KVM_REG_MIPS_CP0_CONFIG7:
676 v = (long)kvm_read_c0_guest_config7(cop0);
677 break;
678 case KVM_REG_MIPS_CP0_ERROREPC:
679 v = (long)kvm_read_c0_guest_errorepc(cop0);
680 break;
681 /* registers to be handled specially */
682 case KVM_REG_MIPS_CP0_COUNT:
683 case KVM_REG_MIPS_COUNT_CTL:
684 case KVM_REG_MIPS_COUNT_RESUME:
685 case KVM_REG_MIPS_COUNT_HZ:
686 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
687 if (ret)
688 return ret;
689 break;
690 default:
691 return -EINVAL;
692 }
693 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
694 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
695
696 return put_user(v, uaddr64);
697 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
698 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
699 u32 v32 = (u32)v;
700
701 return put_user(v32, uaddr32);
702 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
703 void __user *uaddr = (void __user *)(long)reg->addr;
704
705 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
706 } else {
707 return -EINVAL;
708 }
709}
710
711static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
712 const struct kvm_one_reg *reg)
713{
714 struct mips_coproc *cop0 = vcpu->arch.cop0;
715 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
716 s64 v;
717 s64 vs[2];
718 unsigned int idx;
719
720 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
721 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
722
723 if (get_user(v, uaddr64) != 0)
724 return -EFAULT;
725 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
726 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
727 s32 v32;
728
729 if (get_user(v32, uaddr32) != 0)
730 return -EFAULT;
731 v = (s64)v32;
732 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
733 void __user *uaddr = (void __user *)(long)reg->addr;
734
735 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
736 } else {
737 return -EINVAL;
738 }
739
740 switch (reg->id) {
741 /* General purpose registers */
742 case KVM_REG_MIPS_R0:
743 /* Silently ignore requests to set $0 */
744 break;
745 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
746 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
747 break;
748 case KVM_REG_MIPS_HI:
749 vcpu->arch.hi = v;
750 break;
751 case KVM_REG_MIPS_LO:
752 vcpu->arch.lo = v;
753 break;
754 case KVM_REG_MIPS_PC:
755 vcpu->arch.pc = v;
756 break;
757
758 /* Floating point registers */
759 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
760 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
761 return -EINVAL;
762 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
763 /* Odd singles in top of even double when FR=0 */
764 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
765 set_fpr32(&fpu->fpr[idx], 0, v);
766 else
767 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
768 break;
769 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
770 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
771 return -EINVAL;
772 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
773 /* Can't access odd doubles in FR=0 mode */
774 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
775 return -EINVAL;
776 set_fpr64(&fpu->fpr[idx], 0, v);
777 break;
778 case KVM_REG_MIPS_FCR_IR:
779 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780 return -EINVAL;
781 /* Read-only */
782 break;
783 case KVM_REG_MIPS_FCR_CSR:
784 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
785 return -EINVAL;
786 fpu->fcr31 = v;
787 break;
788
789 /* MIPS SIMD Architecture (MSA) registers */
790 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
791 if (!kvm_mips_guest_has_msa(&vcpu->arch))
792 return -EINVAL;
793 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
794#ifdef CONFIG_CPU_LITTLE_ENDIAN
795 /* least significant byte first */
796 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
797 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
798#else
799 /* most significant byte first */
800 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
801 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
802#endif
803 break;
804 case KVM_REG_MIPS_MSA_IR:
805 if (!kvm_mips_guest_has_msa(&vcpu->arch))
806 return -EINVAL;
807 /* Read-only */
808 break;
809 case KVM_REG_MIPS_MSA_CSR:
810 if (!kvm_mips_guest_has_msa(&vcpu->arch))
811 return -EINVAL;
812 fpu->msacsr = v;
813 break;
814
815 /* Co-processor 0 registers */
816 case KVM_REG_MIPS_CP0_INDEX:
817 kvm_write_c0_guest_index(cop0, v);
818 break;
819 case KVM_REG_MIPS_CP0_CONTEXT:
820 kvm_write_c0_guest_context(cop0, v);
821 break;
822 case KVM_REG_MIPS_CP0_USERLOCAL:
823 kvm_write_c0_guest_userlocal(cop0, v);
824 break;
825 case KVM_REG_MIPS_CP0_PAGEMASK:
826 kvm_write_c0_guest_pagemask(cop0, v);
827 break;
828 case KVM_REG_MIPS_CP0_WIRED:
829 kvm_write_c0_guest_wired(cop0, v);
830 break;
831 case KVM_REG_MIPS_CP0_HWRENA:
832 kvm_write_c0_guest_hwrena(cop0, v);
833 break;
834 case KVM_REG_MIPS_CP0_BADVADDR:
835 kvm_write_c0_guest_badvaddr(cop0, v);
836 break;
837 case KVM_REG_MIPS_CP0_ENTRYHI:
838 kvm_write_c0_guest_entryhi(cop0, v);
839 break;
840 case KVM_REG_MIPS_CP0_STATUS:
841 kvm_write_c0_guest_status(cop0, v);
842 break;
843 case KVM_REG_MIPS_CP0_EPC:
844 kvm_write_c0_guest_epc(cop0, v);
845 break;
846 case KVM_REG_MIPS_CP0_PRID:
847 kvm_write_c0_guest_prid(cop0, v);
848 break;
849 case KVM_REG_MIPS_CP0_ERROREPC:
850 kvm_write_c0_guest_errorepc(cop0, v);
851 break;
852 /* registers to be handled specially */
853 case KVM_REG_MIPS_CP0_COUNT:
854 case KVM_REG_MIPS_CP0_COMPARE:
855 case KVM_REG_MIPS_CP0_CAUSE:
856 case KVM_REG_MIPS_CP0_CONFIG:
857 case KVM_REG_MIPS_CP0_CONFIG1:
858 case KVM_REG_MIPS_CP0_CONFIG2:
859 case KVM_REG_MIPS_CP0_CONFIG3:
860 case KVM_REG_MIPS_CP0_CONFIG4:
861 case KVM_REG_MIPS_CP0_CONFIG5:
862 case KVM_REG_MIPS_COUNT_CTL:
863 case KVM_REG_MIPS_COUNT_RESUME:
864 case KVM_REG_MIPS_COUNT_HZ:
865 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
866 default:
867 return -EINVAL;
868 }
869 return 0;
870}
871
872static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
873 struct kvm_enable_cap *cap)
874{
875 int r = 0;
876
877 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
878 return -EINVAL;
879 if (cap->flags)
880 return -EINVAL;
881 if (cap->args[0])
882 return -EINVAL;
883
884 switch (cap->cap) {
885 case KVM_CAP_MIPS_FPU:
886 vcpu->arch.fpu_enabled = true;
887 break;
888 case KVM_CAP_MIPS_MSA:
889 vcpu->arch.msa_enabled = true;
890 break;
891 default:
892 r = -EINVAL;
893 break;
894 }
895
896 return r;
897}
898
899long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
900 unsigned long arg)
901{
902 struct kvm_vcpu *vcpu = filp->private_data;
903 void __user *argp = (void __user *)arg;
904 long r;
905
906 switch (ioctl) {
907 case KVM_SET_ONE_REG:
908 case KVM_GET_ONE_REG: {
909 struct kvm_one_reg reg;
910
911 if (copy_from_user(®, argp, sizeof(reg)))
912 return -EFAULT;
913 if (ioctl == KVM_SET_ONE_REG)
914 return kvm_mips_set_reg(vcpu, ®);
915 else
916 return kvm_mips_get_reg(vcpu, ®);
917 }
918 case KVM_GET_REG_LIST: {
919 struct kvm_reg_list __user *user_list = argp;
920 u64 __user *reg_dest;
921 struct kvm_reg_list reg_list;
922 unsigned n;
923
924 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
925 return -EFAULT;
926 n = reg_list.n;
927 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
928 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
929 return -EFAULT;
930 if (n < reg_list.n)
931 return -E2BIG;
932 reg_dest = user_list->reg;
933 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
934 sizeof(kvm_mips_get_one_regs)))
935 return -EFAULT;
936 return 0;
937 }
938 case KVM_NMI:
939 /* Treat the NMI as a CPU reset */
940 r = kvm_mips_reset_vcpu(vcpu);
941 break;
942 case KVM_INTERRUPT:
943 {
944 struct kvm_mips_interrupt irq;
945
946 r = -EFAULT;
947 if (copy_from_user(&irq, argp, sizeof(irq)))
948 goto out;
949
950 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
951 irq.irq);
952
953 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
954 break;
955 }
956 case KVM_ENABLE_CAP: {
957 struct kvm_enable_cap cap;
958
959 r = -EFAULT;
960 if (copy_from_user(&cap, argp, sizeof(cap)))
961 goto out;
962 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
963 break;
964 }
965 default:
966 r = -ENOIOCTLCMD;
967 }
968
969out:
970 return r;
971}
972
973/* Get (and clear) the dirty memory log for a memory slot. */
974int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
975{
976 struct kvm_memslots *slots;
977 struct kvm_memory_slot *memslot;
978 unsigned long ga, ga_end;
979 int is_dirty = 0;
980 int r;
981 unsigned long n;
982
983 mutex_lock(&kvm->slots_lock);
984
985 r = kvm_get_dirty_log(kvm, log, &is_dirty);
986 if (r)
987 goto out;
988
989 /* If nothing is dirty, don't bother messing with page tables. */
990 if (is_dirty) {
991 slots = kvm_memslots(kvm);
992 memslot = id_to_memslot(slots, log->slot);
993
994 ga = memslot->base_gfn << PAGE_SHIFT;
995 ga_end = ga + (memslot->npages << PAGE_SHIFT);
996
997 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
998 ga_end);
999
1000 n = kvm_dirty_bitmap_bytes(memslot);
1001 memset(memslot->dirty_bitmap, 0, n);
1002 }
1003
1004 r = 0;
1005out:
1006 mutex_unlock(&kvm->slots_lock);
1007 return r;
1008
1009}
1010
1011long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1012{
1013 long r;
1014
1015 switch (ioctl) {
1016 default:
1017 r = -ENOIOCTLCMD;
1018 }
1019
1020 return r;
1021}
1022
1023int kvm_arch_init(void *opaque)
1024{
1025 if (kvm_mips_callbacks) {
1026 kvm_err("kvm: module already exists\n");
1027 return -EEXIST;
1028 }
1029
1030 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1031}
1032
1033void kvm_arch_exit(void)
1034{
1035 kvm_mips_callbacks = NULL;
1036}
1037
1038int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1039 struct kvm_sregs *sregs)
1040{
1041 return -ENOIOCTLCMD;
1042}
1043
1044int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1045 struct kvm_sregs *sregs)
1046{
1047 return -ENOIOCTLCMD;
1048}
1049
1050void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1051{
1052}
1053
1054int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1060{
1061 return -ENOIOCTLCMD;
1062}
1063
1064int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1065{
1066 return VM_FAULT_SIGBUS;
1067}
1068
1069int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1070{
1071 int r;
1072
1073 switch (ext) {
1074 case KVM_CAP_ONE_REG:
1075 case KVM_CAP_ENABLE_CAP:
1076 r = 1;
1077 break;
1078 case KVM_CAP_COALESCED_MMIO:
1079 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1080 break;
1081 case KVM_CAP_MIPS_FPU:
1082 r = !!cpu_has_fpu;
1083 break;
1084 case KVM_CAP_MIPS_MSA:
1085 /*
1086 * We don't support MSA vector partitioning yet:
1087 * 1) It would require explicit support which can't be tested
1088 * yet due to lack of support in current hardware.
1089 * 2) It extends the state that would need to be saved/restored
1090 * by e.g. QEMU for migration.
1091 *
1092 * When vector partitioning hardware becomes available, support
1093 * could be added by requiring a flag when enabling
1094 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1095 * to save/restore the appropriate extra state.
1096 */
1097 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1098 break;
1099 default:
1100 r = 0;
1101 break;
1102 }
1103 return r;
1104}
1105
1106int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1107{
1108 return kvm_mips_pending_timer(vcpu);
1109}
1110
1111int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1112{
1113 int i;
1114 struct mips_coproc *cop0;
1115
1116 if (!vcpu)
1117 return -1;
1118
1119 kvm_debug("VCPU Register Dump:\n");
1120 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1121 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1122
1123 for (i = 0; i < 32; i += 4) {
1124 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1125 vcpu->arch.gprs[i],
1126 vcpu->arch.gprs[i + 1],
1127 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1128 }
1129 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1130 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1131
1132 cop0 = vcpu->arch.cop0;
1133 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1134 kvm_read_c0_guest_status(cop0),
1135 kvm_read_c0_guest_cause(cop0));
1136
1137 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1138
1139 return 0;
1140}
1141
1142int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143{
1144 int i;
1145
1146 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1147 vcpu->arch.gprs[i] = regs->gpr[i];
1148 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1149 vcpu->arch.hi = regs->hi;
1150 vcpu->arch.lo = regs->lo;
1151 vcpu->arch.pc = regs->pc;
1152
1153 return 0;
1154}
1155
1156int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157{
1158 int i;
1159
1160 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1161 regs->gpr[i] = vcpu->arch.gprs[i];
1162
1163 regs->hi = vcpu->arch.hi;
1164 regs->lo = vcpu->arch.lo;
1165 regs->pc = vcpu->arch.pc;
1166
1167 return 0;
1168}
1169
1170static void kvm_mips_comparecount_func(unsigned long data)
1171{
1172 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1173
1174 kvm_mips_callbacks->queue_timer_int(vcpu);
1175
1176 vcpu->arch.wait = 0;
1177 if (swait_active(&vcpu->wq))
1178 swake_up(&vcpu->wq);
1179}
1180
1181/* low level hrtimer wake routine */
1182static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1183{
1184 struct kvm_vcpu *vcpu;
1185
1186 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1187 kvm_mips_comparecount_func((unsigned long) vcpu);
1188 return kvm_mips_count_timeout(vcpu);
1189}
1190
1191int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1192{
1193 kvm_mips_callbacks->vcpu_init(vcpu);
1194 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1195 HRTIMER_MODE_REL);
1196 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1197 return 0;
1198}
1199
1200int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1201 struct kvm_translation *tr)
1202{
1203 return 0;
1204}
1205
1206/* Initial guest state */
1207int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1208{
1209 return kvm_mips_callbacks->vcpu_setup(vcpu);
1210}
1211
1212static void kvm_mips_set_c0_status(void)
1213{
1214 uint32_t status = read_c0_status();
1215
1216 if (cpu_has_dsp)
1217 status |= (ST0_MX);
1218
1219 write_c0_status(status);
1220 ehb();
1221}
1222
1223/*
1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1225 */
1226int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1227{
1228 uint32_t cause = vcpu->arch.host_cp0_cause;
1229 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1230 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1231 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1232 enum emulation_result er = EMULATE_DONE;
1233 int ret = RESUME_GUEST;
1234
1235 /* re-enable HTW before enabling interrupts */
1236 htw_start();
1237
1238 /* Set a default exit reason */
1239 run->exit_reason = KVM_EXIT_UNKNOWN;
1240 run->ready_for_interrupt_injection = 1;
1241
1242 /*
1243 * Set the appropriate status bits based on host CPU features,
1244 * before we hit the scheduler
1245 */
1246 kvm_mips_set_c0_status();
1247
1248 local_irq_enable();
1249
1250 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1251 cause, opc, run, vcpu);
1252
1253 /*
1254 * Do a privilege check, if in UM most of these exit conditions end up
1255 * causing an exception to be delivered to the Guest Kernel
1256 */
1257 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1258 if (er == EMULATE_PRIV_FAIL) {
1259 goto skip_emul;
1260 } else if (er == EMULATE_FAIL) {
1261 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1262 ret = RESUME_HOST;
1263 goto skip_emul;
1264 }
1265
1266 switch (exccode) {
1267 case EXCCODE_INT:
1268 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1269
1270 ++vcpu->stat.int_exits;
1271 trace_kvm_exit(vcpu, INT_EXITS);
1272
1273 if (need_resched())
1274 cond_resched();
1275
1276 ret = RESUME_GUEST;
1277 break;
1278
1279 case EXCCODE_CPU:
1280 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1281
1282 ++vcpu->stat.cop_unusable_exits;
1283 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1284 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1285 /* XXXKYMA: Might need to return to user space */
1286 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1287 ret = RESUME_HOST;
1288 break;
1289
1290 case EXCCODE_MOD:
1291 ++vcpu->stat.tlbmod_exits;
1292 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1293 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1294 break;
1295
1296 case EXCCODE_TLBS:
1297 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1298 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1299 badvaddr);
1300
1301 ++vcpu->stat.tlbmiss_st_exits;
1302 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1303 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1304 break;
1305
1306 case EXCCODE_TLBL:
1307 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1308 cause, opc, badvaddr);
1309
1310 ++vcpu->stat.tlbmiss_ld_exits;
1311 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1312 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1313 break;
1314
1315 case EXCCODE_ADES:
1316 ++vcpu->stat.addrerr_st_exits;
1317 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1318 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1319 break;
1320
1321 case EXCCODE_ADEL:
1322 ++vcpu->stat.addrerr_ld_exits;
1323 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1324 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1325 break;
1326
1327 case EXCCODE_SYS:
1328 ++vcpu->stat.syscall_exits;
1329 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1330 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1331 break;
1332
1333 case EXCCODE_RI:
1334 ++vcpu->stat.resvd_inst_exits;
1335 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1336 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1337 break;
1338
1339 case EXCCODE_BP:
1340 ++vcpu->stat.break_inst_exits;
1341 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1342 ret = kvm_mips_callbacks->handle_break(vcpu);
1343 break;
1344
1345 case EXCCODE_TR:
1346 ++vcpu->stat.trap_inst_exits;
1347 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1348 ret = kvm_mips_callbacks->handle_trap(vcpu);
1349 break;
1350
1351 case EXCCODE_MSAFPE:
1352 ++vcpu->stat.msa_fpe_exits;
1353 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1354 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1355 break;
1356
1357 case EXCCODE_FPE:
1358 ++vcpu->stat.fpe_exits;
1359 trace_kvm_exit(vcpu, FPE_EXITS);
1360 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1361 break;
1362
1363 case EXCCODE_MSADIS:
1364 ++vcpu->stat.msa_disabled_exits;
1365 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1366 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1367 break;
1368
1369 default:
1370 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1371 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1372 kvm_read_c0_guest_status(vcpu->arch.cop0));
1373 kvm_arch_vcpu_dump_regs(vcpu);
1374 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1375 ret = RESUME_HOST;
1376 break;
1377
1378 }
1379
1380skip_emul:
1381 local_irq_disable();
1382
1383 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1384 kvm_mips_deliver_interrupts(vcpu, cause);
1385
1386 if (!(ret & RESUME_HOST)) {
1387 /* Only check for signals if not already exiting to userspace */
1388 if (signal_pending(current)) {
1389 run->exit_reason = KVM_EXIT_INTR;
1390 ret = (-EINTR << 2) | RESUME_HOST;
1391 ++vcpu->stat.signal_exits;
1392 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1393 }
1394 }
1395
1396 if (ret == RESUME_GUEST) {
1397 /*
1398 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1399 * is live), restore FCR31 / MSACSR.
1400 *
1401 * This should be before returning to the guest exception
1402 * vector, as it may well cause an [MSA] FP exception if there
1403 * are pending exception bits unmasked. (see
1404 * kvm_mips_csr_die_notifier() for how that is handled).
1405 */
1406 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1407 read_c0_status() & ST0_CU1)
1408 __kvm_restore_fcsr(&vcpu->arch);
1409
1410 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1411 read_c0_config5() & MIPS_CONF5_MSAEN)
1412 __kvm_restore_msacsr(&vcpu->arch);
1413 }
1414
1415 /* Disable HTW before returning to guest or host */
1416 htw_stop();
1417
1418 return ret;
1419}
1420
1421/* Enable FPU for guest and restore context */
1422void kvm_own_fpu(struct kvm_vcpu *vcpu)
1423{
1424 struct mips_coproc *cop0 = vcpu->arch.cop0;
1425 unsigned int sr, cfg5;
1426
1427 preempt_disable();
1428
1429 sr = kvm_read_c0_guest_status(cop0);
1430
1431 /*
1432 * If MSA state is already live, it is undefined how it interacts with
1433 * FR=0 FPU state, and we don't want to hit reserved instruction
1434 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1435 * play it safe and save it first.
1436 *
1437 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1438 * get called when guest CU1 is set, however we can't trust the guest
1439 * not to clobber the status register directly via the commpage.
1440 */
1441 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1442 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1443 kvm_lose_fpu(vcpu);
1444
1445 /*
1446 * Enable FPU for guest
1447 * We set FR and FRE according to guest context
1448 */
1449 change_c0_status(ST0_CU1 | ST0_FR, sr);
1450 if (cpu_has_fre) {
1451 cfg5 = kvm_read_c0_guest_config5(cop0);
1452 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1453 }
1454 enable_fpu_hazard();
1455
1456 /* If guest FPU state not active, restore it now */
1457 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1458 __kvm_restore_fpu(&vcpu->arch);
1459 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1460 }
1461
1462 preempt_enable();
1463}
1464
1465#ifdef CONFIG_CPU_HAS_MSA
1466/* Enable MSA for guest and restore context */
1467void kvm_own_msa(struct kvm_vcpu *vcpu)
1468{
1469 struct mips_coproc *cop0 = vcpu->arch.cop0;
1470 unsigned int sr, cfg5;
1471
1472 preempt_disable();
1473
1474 /*
1475 * Enable FPU if enabled in guest, since we're restoring FPU context
1476 * anyway. We set FR and FRE according to guest context.
1477 */
1478 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1479 sr = kvm_read_c0_guest_status(cop0);
1480
1481 /*
1482 * If FR=0 FPU state is already live, it is undefined how it
1483 * interacts with MSA state, so play it safe and save it first.
1484 */
1485 if (!(sr & ST0_FR) &&
1486 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1487 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1488 kvm_lose_fpu(vcpu);
1489
1490 change_c0_status(ST0_CU1 | ST0_FR, sr);
1491 if (sr & ST0_CU1 && cpu_has_fre) {
1492 cfg5 = kvm_read_c0_guest_config5(cop0);
1493 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494 }
1495 }
1496
1497 /* Enable MSA for guest */
1498 set_c0_config5(MIPS_CONF5_MSAEN);
1499 enable_fpu_hazard();
1500
1501 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1502 case KVM_MIPS_FPU_FPU:
1503 /*
1504 * Guest FPU state already loaded, only restore upper MSA state
1505 */
1506 __kvm_restore_msa_upper(&vcpu->arch);
1507 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1508 break;
1509 case 0:
1510 /* Neither FPU or MSA already active, restore full MSA state */
1511 __kvm_restore_msa(&vcpu->arch);
1512 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1513 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1514 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1515 break;
1516 default:
1517 break;
1518 }
1519
1520 preempt_enable();
1521}
1522#endif
1523
1524/* Drop FPU & MSA without saving it */
1525void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1526{
1527 preempt_disable();
1528 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1529 disable_msa();
1530 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1531 }
1532 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1533 clear_c0_status(ST0_CU1 | ST0_FR);
1534 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1535 }
1536 preempt_enable();
1537}
1538
1539/* Save and disable FPU & MSA */
1540void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1541{
1542 /*
1543 * FPU & MSA get disabled in root context (hardware) when it is disabled
1544 * in guest context (software), but the register state in the hardware
1545 * may still be in use. This is why we explicitly re-enable the hardware
1546 * before saving.
1547 */
1548
1549 preempt_disable();
1550 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1551 set_c0_config5(MIPS_CONF5_MSAEN);
1552 enable_fpu_hazard();
1553
1554 __kvm_save_msa(&vcpu->arch);
1555
1556 /* Disable MSA & FPU */
1557 disable_msa();
1558 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1559 clear_c0_status(ST0_CU1 | ST0_FR);
1560 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1561 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1562 set_c0_status(ST0_CU1);
1563 enable_fpu_hazard();
1564
1565 __kvm_save_fpu(&vcpu->arch);
1566 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1567
1568 /* Disable FPU */
1569 clear_c0_status(ST0_CU1 | ST0_FR);
1570 }
1571 preempt_enable();
1572}
1573
1574/*
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1578 */
1579static int kvm_mips_csr_die_notify(struct notifier_block *self,
1580 unsigned long cmd, void *ptr)
1581{
1582 struct die_args *args = (struct die_args *)ptr;
1583 struct pt_regs *regs = args->regs;
1584 unsigned long pc;
1585
1586 /* Only interested in FPE and MSAFPE */
1587 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1588 return NOTIFY_DONE;
1589
1590 /* Return immediately if guest context isn't active */
1591 if (!(current->flags & PF_VCPU))
1592 return NOTIFY_DONE;
1593
1594 /* Should never get here from user mode */
1595 BUG_ON(user_mode(regs));
1596
1597 pc = instruction_pointer(regs);
1598 switch (cmd) {
1599 case DIE_FP:
1600 /* match 2nd instruction in __kvm_restore_fcsr */
1601 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602 return NOTIFY_DONE;
1603 break;
1604 case DIE_MSAFP:
1605 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1606 if (!cpu_has_msa ||
1607 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1608 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1609 return NOTIFY_DONE;
1610 break;
1611 }
1612
1613 /* Move PC forward a little and continue executing */
1614 instruction_pointer(regs) += 4;
1615
1616 return NOTIFY_STOP;
1617}
1618
1619static struct notifier_block kvm_mips_csr_die_notifier = {
1620 .notifier_call = kvm_mips_csr_die_notify,
1621};
1622
1623static int __init kvm_mips_init(void)
1624{
1625 int ret;
1626
1627 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1628
1629 if (ret)
1630 return ret;
1631
1632 register_die_notifier(&kvm_mips_csr_die_notifier);
1633
1634 /*
1635 * On MIPS, kernel modules are executed from "mapped space", which
1636 * requires TLBs. The TLB handling code is statically linked with
1637 * the rest of the kernel (tlb.c) to avoid the possibility of
1638 * double faulting. The issue is that the TLB code references
1639 * routines that are part of the the KVM module, which are only
1640 * available once the module is loaded.
1641 */
1642 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1643 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1644 kvm_mips_is_error_pfn = is_error_pfn;
1645
1646 return 0;
1647}
1648
1649static void __exit kvm_mips_exit(void)
1650{
1651 kvm_exit();
1652
1653 kvm_mips_gfn_to_pfn = NULL;
1654 kvm_mips_release_pfn_clean = NULL;
1655 kvm_mips_is_error_pfn = NULL;
1656
1657 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1658}
1659
1660module_init(kvm_mips_init);
1661module_exit(kvm_mips_exit);
1662
1663EXPORT_TRACEPOINT_SYMBOL(kvm_exit);