Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42	struct llist_head list;
  43	struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52	struct llist_node *t, *llnode;
  53
  54	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  55		__vunmap((void *)llnode, 1);
 
 
  56}
  57
  58/*** Page table manipulation functions ***/
  59
  60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  61{
  62	pte_t *pte;
  63
  64	pte = pte_offset_kernel(pmd, addr);
  65	do {
  66		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  67		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  68	} while (pte++, addr += PAGE_SIZE, addr != end);
  69}
  70
  71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  72{
  73	pmd_t *pmd;
  74	unsigned long next;
  75
  76	pmd = pmd_offset(pud, addr);
  77	do {
  78		next = pmd_addr_end(addr, end);
  79		if (pmd_clear_huge(pmd))
  80			continue;
  81		if (pmd_none_or_clear_bad(pmd))
  82			continue;
  83		vunmap_pte_range(pmd, addr, next);
  84	} while (pmd++, addr = next, addr != end);
  85}
  86
  87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  88{
  89	pud_t *pud;
  90	unsigned long next;
  91
  92	pud = pud_offset(p4d, addr);
  93	do {
  94		next = pud_addr_end(addr, end);
  95		if (pud_clear_huge(pud))
  96			continue;
  97		if (pud_none_or_clear_bad(pud))
  98			continue;
  99		vunmap_pmd_range(pud, addr, next);
 100	} while (pud++, addr = next, addr != end);
 101}
 102
 103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 104{
 105	p4d_t *p4d;
 106	unsigned long next;
 107
 108	p4d = p4d_offset(pgd, addr);
 109	do {
 110		next = p4d_addr_end(addr, end);
 111		if (p4d_clear_huge(p4d))
 112			continue;
 113		if (p4d_none_or_clear_bad(p4d))
 114			continue;
 115		vunmap_pud_range(p4d, addr, next);
 116	} while (p4d++, addr = next, addr != end);
 117}
 118
 119static void vunmap_page_range(unsigned long addr, unsigned long end)
 120{
 121	pgd_t *pgd;
 122	unsigned long next;
 123
 124	BUG_ON(addr >= end);
 125	pgd = pgd_offset_k(addr);
 126	do {
 127		next = pgd_addr_end(addr, end);
 128		if (pgd_none_or_clear_bad(pgd))
 129			continue;
 130		vunmap_p4d_range(pgd, addr, next);
 131	} while (pgd++, addr = next, addr != end);
 132}
 133
 134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 135		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 136{
 137	pte_t *pte;
 138
 139	/*
 140	 * nr is a running index into the array which helps higher level
 141	 * callers keep track of where we're up to.
 142	 */
 143
 144	pte = pte_alloc_kernel(pmd, addr);
 145	if (!pte)
 146		return -ENOMEM;
 147	do {
 148		struct page *page = pages[*nr];
 149
 150		if (WARN_ON(!pte_none(*pte)))
 151			return -EBUSY;
 152		if (WARN_ON(!page))
 153			return -ENOMEM;
 154		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 155		(*nr)++;
 156	} while (pte++, addr += PAGE_SIZE, addr != end);
 157	return 0;
 158}
 159
 160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 161		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 162{
 163	pmd_t *pmd;
 164	unsigned long next;
 165
 166	pmd = pmd_alloc(&init_mm, pud, addr);
 167	if (!pmd)
 168		return -ENOMEM;
 169	do {
 170		next = pmd_addr_end(addr, end);
 171		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 172			return -ENOMEM;
 173	} while (pmd++, addr = next, addr != end);
 174	return 0;
 175}
 176
 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 178		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 179{
 180	pud_t *pud;
 181	unsigned long next;
 182
 183	pud = pud_alloc(&init_mm, p4d, addr);
 184	if (!pud)
 185		return -ENOMEM;
 186	do {
 187		next = pud_addr_end(addr, end);
 188		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 189			return -ENOMEM;
 190	} while (pud++, addr = next, addr != end);
 191	return 0;
 192}
 193
 194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 195		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 196{
 197	p4d_t *p4d;
 198	unsigned long next;
 199
 200	p4d = p4d_alloc(&init_mm, pgd, addr);
 201	if (!p4d)
 202		return -ENOMEM;
 203	do {
 204		next = p4d_addr_end(addr, end);
 205		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 206			return -ENOMEM;
 207	} while (p4d++, addr = next, addr != end);
 208	return 0;
 209}
 210
 211/*
 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 213 * will have pfns corresponding to the "pages" array.
 214 *
 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 216 */
 217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 218				   pgprot_t prot, struct page **pages)
 219{
 220	pgd_t *pgd;
 221	unsigned long next;
 222	unsigned long addr = start;
 223	int err = 0;
 224	int nr = 0;
 225
 226	BUG_ON(addr >= end);
 227	pgd = pgd_offset_k(addr);
 228	do {
 229		next = pgd_addr_end(addr, end);
 230		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 231		if (err)
 232			return err;
 233	} while (pgd++, addr = next, addr != end);
 234
 235	return nr;
 236}
 237
 238static int vmap_page_range(unsigned long start, unsigned long end,
 239			   pgprot_t prot, struct page **pages)
 240{
 241	int ret;
 242
 243	ret = vmap_page_range_noflush(start, end, prot, pages);
 244	flush_cache_vmap(start, end);
 245	return ret;
 246}
 247
 248int is_vmalloc_or_module_addr(const void *x)
 249{
 250	/*
 251	 * ARM, x86-64 and sparc64 put modules in a special place,
 252	 * and fall back on vmalloc() if that fails. Others
 253	 * just put it in the vmalloc space.
 254	 */
 255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 256	unsigned long addr = (unsigned long)x;
 257	if (addr >= MODULES_VADDR && addr < MODULES_END)
 258		return 1;
 259#endif
 260	return is_vmalloc_addr(x);
 261}
 262
 263/*
 264 * Walk a vmap address to the struct page it maps.
 265 */
 266struct page *vmalloc_to_page(const void *vmalloc_addr)
 267{
 268	unsigned long addr = (unsigned long) vmalloc_addr;
 269	struct page *page = NULL;
 270	pgd_t *pgd = pgd_offset_k(addr);
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *ptep, pte;
 275
 276	/*
 277	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 278	 * architectures that do not vmalloc module space
 279	 */
 280	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 281
 282	if (pgd_none(*pgd))
 283		return NULL;
 284	p4d = p4d_offset(pgd, addr);
 285	if (p4d_none(*p4d))
 286		return NULL;
 287	pud = pud_offset(p4d, addr);
 288
 289	/*
 290	 * Don't dereference bad PUD or PMD (below) entries. This will also
 291	 * identify huge mappings, which we may encounter on architectures
 292	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 293	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 294	 * not [unambiguously] associated with a struct page, so there is
 295	 * no correct value to return for them.
 296	 */
 297	WARN_ON_ONCE(pud_bad(*pud));
 298	if (pud_none(*pud) || pud_bad(*pud))
 299		return NULL;
 300	pmd = pmd_offset(pud, addr);
 301	WARN_ON_ONCE(pmd_bad(*pmd));
 302	if (pmd_none(*pmd) || pmd_bad(*pmd))
 303		return NULL;
 304
 305	ptep = pte_offset_map(pmd, addr);
 306	pte = *ptep;
 307	if (pte_present(pte))
 308		page = pte_page(pte);
 309	pte_unmap(ptep);
 310	return page;
 311}
 312EXPORT_SYMBOL(vmalloc_to_page);
 313
 314/*
 315 * Map a vmalloc()-space virtual address to the physical page frame number.
 316 */
 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 318{
 319	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 320}
 321EXPORT_SYMBOL(vmalloc_to_pfn);
 322
 323
 324/*** Global kva allocator ***/
 325
 326#define VM_LAZY_FREE	0x02
 327#define VM_VM_AREA	0x04
 328
 329static DEFINE_SPINLOCK(vmap_area_lock);
 330/* Export for kexec only */
 331LIST_HEAD(vmap_area_list);
 332static LLIST_HEAD(vmap_purge_list);
 333static struct rb_root vmap_area_root = RB_ROOT;
 334
 335/* The vmap cache globals are protected by vmap_area_lock */
 336static struct rb_node *free_vmap_cache;
 337static unsigned long cached_hole_size;
 338static unsigned long cached_vstart;
 339static unsigned long cached_align;
 340
 341static unsigned long vmap_area_pcpu_hole;
 342
 343static struct vmap_area *__find_vmap_area(unsigned long addr)
 344{
 345	struct rb_node *n = vmap_area_root.rb_node;
 346
 347	while (n) {
 348		struct vmap_area *va;
 349
 350		va = rb_entry(n, struct vmap_area, rb_node);
 351		if (addr < va->va_start)
 352			n = n->rb_left;
 353		else if (addr >= va->va_end)
 354			n = n->rb_right;
 355		else
 356			return va;
 357	}
 358
 359	return NULL;
 360}
 361
 362static void __insert_vmap_area(struct vmap_area *va)
 363{
 364	struct rb_node **p = &vmap_area_root.rb_node;
 365	struct rb_node *parent = NULL;
 366	struct rb_node *tmp;
 367
 368	while (*p) {
 369		struct vmap_area *tmp_va;
 370
 371		parent = *p;
 372		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 373		if (va->va_start < tmp_va->va_end)
 374			p = &(*p)->rb_left;
 375		else if (va->va_end > tmp_va->va_start)
 376			p = &(*p)->rb_right;
 377		else
 378			BUG();
 379	}
 380
 381	rb_link_node(&va->rb_node, parent, p);
 382	rb_insert_color(&va->rb_node, &vmap_area_root);
 383
 384	/* address-sort this list */
 385	tmp = rb_prev(&va->rb_node);
 386	if (tmp) {
 387		struct vmap_area *prev;
 388		prev = rb_entry(tmp, struct vmap_area, rb_node);
 389		list_add_rcu(&va->list, &prev->list);
 390	} else
 391		list_add_rcu(&va->list, &vmap_area_list);
 392}
 393
 394static void purge_vmap_area_lazy(void);
 395
 396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 397
 398/*
 399 * Allocate a region of KVA of the specified size and alignment, within the
 400 * vstart and vend.
 401 */
 402static struct vmap_area *alloc_vmap_area(unsigned long size,
 403				unsigned long align,
 404				unsigned long vstart, unsigned long vend,
 405				int node, gfp_t gfp_mask)
 406{
 407	struct vmap_area *va;
 408	struct rb_node *n;
 409	unsigned long addr;
 410	int purged = 0;
 411	struct vmap_area *first;
 412
 413	BUG_ON(!size);
 414	BUG_ON(offset_in_page(size));
 415	BUG_ON(!is_power_of_2(align));
 416
 417	might_sleep();
 418
 419	va = kmalloc_node(sizeof(struct vmap_area),
 420			gfp_mask & GFP_RECLAIM_MASK, node);
 421	if (unlikely(!va))
 422		return ERR_PTR(-ENOMEM);
 423
 424	/*
 425	 * Only scan the relevant parts containing pointers to other objects
 426	 * to avoid false negatives.
 427	 */
 428	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 429
 430retry:
 431	spin_lock(&vmap_area_lock);
 432	/*
 433	 * Invalidate cache if we have more permissive parameters.
 434	 * cached_hole_size notes the largest hole noticed _below_
 435	 * the vmap_area cached in free_vmap_cache: if size fits
 436	 * into that hole, we want to scan from vstart to reuse
 437	 * the hole instead of allocating above free_vmap_cache.
 438	 * Note that __free_vmap_area may update free_vmap_cache
 439	 * without updating cached_hole_size or cached_align.
 440	 */
 441	if (!free_vmap_cache ||
 442			size < cached_hole_size ||
 443			vstart < cached_vstart ||
 444			align < cached_align) {
 445nocache:
 446		cached_hole_size = 0;
 447		free_vmap_cache = NULL;
 448	}
 449	/* record if we encounter less permissive parameters */
 450	cached_vstart = vstart;
 451	cached_align = align;
 452
 453	/* find starting point for our search */
 454	if (free_vmap_cache) {
 455		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 456		addr = ALIGN(first->va_end, align);
 457		if (addr < vstart)
 458			goto nocache;
 459		if (addr + size < addr)
 460			goto overflow;
 461
 462	} else {
 463		addr = ALIGN(vstart, align);
 464		if (addr + size < addr)
 465			goto overflow;
 466
 467		n = vmap_area_root.rb_node;
 468		first = NULL;
 469
 470		while (n) {
 471			struct vmap_area *tmp;
 472			tmp = rb_entry(n, struct vmap_area, rb_node);
 473			if (tmp->va_end >= addr) {
 474				first = tmp;
 475				if (tmp->va_start <= addr)
 476					break;
 477				n = n->rb_left;
 478			} else
 479				n = n->rb_right;
 480		}
 481
 482		if (!first)
 483			goto found;
 484	}
 485
 486	/* from the starting point, walk areas until a suitable hole is found */
 487	while (addr + size > first->va_start && addr + size <= vend) {
 488		if (addr + cached_hole_size < first->va_start)
 489			cached_hole_size = first->va_start - addr;
 490		addr = ALIGN(first->va_end, align);
 491		if (addr + size < addr)
 492			goto overflow;
 493
 494		if (list_is_last(&first->list, &vmap_area_list))
 495			goto found;
 496
 497		first = list_next_entry(first, list);
 498	}
 499
 500found:
 501	if (addr + size > vend)
 502		goto overflow;
 503
 504	va->va_start = addr;
 505	va->va_end = addr + size;
 506	va->flags = 0;
 507	__insert_vmap_area(va);
 508	free_vmap_cache = &va->rb_node;
 509	spin_unlock(&vmap_area_lock);
 510
 511	BUG_ON(!IS_ALIGNED(va->va_start, align));
 512	BUG_ON(va->va_start < vstart);
 513	BUG_ON(va->va_end > vend);
 514
 515	return va;
 516
 517overflow:
 518	spin_unlock(&vmap_area_lock);
 519	if (!purged) {
 520		purge_vmap_area_lazy();
 521		purged = 1;
 522		goto retry;
 523	}
 524
 525	if (gfpflags_allow_blocking(gfp_mask)) {
 526		unsigned long freed = 0;
 527		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 528		if (freed > 0) {
 529			purged = 0;
 530			goto retry;
 531		}
 532	}
 533
 534	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 535		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 536			size);
 537	kfree(va);
 538	return ERR_PTR(-EBUSY);
 539}
 540
 541int register_vmap_purge_notifier(struct notifier_block *nb)
 542{
 543	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 544}
 545EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 546
 547int unregister_vmap_purge_notifier(struct notifier_block *nb)
 548{
 549	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 550}
 551EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 552
 553static void __free_vmap_area(struct vmap_area *va)
 554{
 555	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 556
 557	if (free_vmap_cache) {
 558		if (va->va_end < cached_vstart) {
 559			free_vmap_cache = NULL;
 560		} else {
 561			struct vmap_area *cache;
 562			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 563			if (va->va_start <= cache->va_start) {
 564				free_vmap_cache = rb_prev(&va->rb_node);
 565				/*
 566				 * We don't try to update cached_hole_size or
 567				 * cached_align, but it won't go very wrong.
 568				 */
 569			}
 570		}
 571	}
 572	rb_erase(&va->rb_node, &vmap_area_root);
 573	RB_CLEAR_NODE(&va->rb_node);
 574	list_del_rcu(&va->list);
 575
 576	/*
 577	 * Track the highest possible candidate for pcpu area
 578	 * allocation.  Areas outside of vmalloc area can be returned
 579	 * here too, consider only end addresses which fall inside
 580	 * vmalloc area proper.
 581	 */
 582	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 583		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 584
 585	kfree_rcu(va, rcu_head);
 586}
 587
 588/*
 589 * Free a region of KVA allocated by alloc_vmap_area
 590 */
 591static void free_vmap_area(struct vmap_area *va)
 592{
 593	spin_lock(&vmap_area_lock);
 594	__free_vmap_area(va);
 595	spin_unlock(&vmap_area_lock);
 596}
 597
 598/*
 599 * Clear the pagetable entries of a given vmap_area
 600 */
 601static void unmap_vmap_area(struct vmap_area *va)
 602{
 603	vunmap_page_range(va->va_start, va->va_end);
 604}
 605
 606static void vmap_debug_free_range(unsigned long start, unsigned long end)
 607{
 608	/*
 609	 * Unmap page tables and force a TLB flush immediately if pagealloc
 610	 * debugging is enabled.  This catches use after free bugs similarly to
 611	 * those in linear kernel virtual address space after a page has been
 612	 * freed.
 613	 *
 614	 * All the lazy freeing logic is still retained, in order to minimise
 615	 * intrusiveness of this debugging feature.
 616	 *
 617	 * This is going to be *slow* (linear kernel virtual address debugging
 618	 * doesn't do a broadcast TLB flush so it is a lot faster).
 619	 */
 620	if (debug_pagealloc_enabled()) {
 621		vunmap_page_range(start, end);
 622		flush_tlb_kernel_range(start, end);
 623	}
 624}
 625
 626/*
 627 * lazy_max_pages is the maximum amount of virtual address space we gather up
 628 * before attempting to purge with a TLB flush.
 629 *
 630 * There is a tradeoff here: a larger number will cover more kernel page tables
 631 * and take slightly longer to purge, but it will linearly reduce the number of
 632 * global TLB flushes that must be performed. It would seem natural to scale
 633 * this number up linearly with the number of CPUs (because vmapping activity
 634 * could also scale linearly with the number of CPUs), however it is likely
 635 * that in practice, workloads might be constrained in other ways that mean
 636 * vmap activity will not scale linearly with CPUs. Also, I want to be
 637 * conservative and not introduce a big latency on huge systems, so go with
 638 * a less aggressive log scale. It will still be an improvement over the old
 639 * code, and it will be simple to change the scale factor if we find that it
 640 * becomes a problem on bigger systems.
 641 */
 642static unsigned long lazy_max_pages(void)
 643{
 644	unsigned int log;
 645
 646	log = fls(num_online_cpus());
 647
 648	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 649}
 650
 651static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 652
 653/*
 654 * Serialize vmap purging.  There is no actual criticial section protected
 655 * by this look, but we want to avoid concurrent calls for performance
 656 * reasons and to make the pcpu_get_vm_areas more deterministic.
 657 */
 658static DEFINE_MUTEX(vmap_purge_lock);
 659
 660/* for per-CPU blocks */
 661static void purge_fragmented_blocks_allcpus(void);
 662
 663/*
 664 * called before a call to iounmap() if the caller wants vm_area_struct's
 665 * immediately freed.
 666 */
 667void set_iounmap_nonlazy(void)
 668{
 669	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 670}
 671
 672/*
 673 * Purges all lazily-freed vmap areas.
 674 */
 675static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 676{
 677	struct llist_node *valist;
 678	struct vmap_area *va;
 679	struct vmap_area *n_va;
 680	bool do_free = false;
 681
 682	lockdep_assert_held(&vmap_purge_lock);
 683
 684	valist = llist_del_all(&vmap_purge_list);
 685	llist_for_each_entry(va, valist, purge_list) {
 686		if (va->va_start < start)
 687			start = va->va_start;
 688		if (va->va_end > end)
 689			end = va->va_end;
 690		do_free = true;
 691	}
 692
 693	if (!do_free)
 694		return false;
 695
 696	flush_tlb_kernel_range(start, end);
 697
 698	spin_lock(&vmap_area_lock);
 699	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 700		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 701
 702		__free_vmap_area(va);
 703		atomic_sub(nr, &vmap_lazy_nr);
 704		cond_resched_lock(&vmap_area_lock);
 705	}
 706	spin_unlock(&vmap_area_lock);
 707	return true;
 708}
 709
 710/*
 711 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 712 * is already purging.
 713 */
 714static void try_purge_vmap_area_lazy(void)
 715{
 716	if (mutex_trylock(&vmap_purge_lock)) {
 717		__purge_vmap_area_lazy(ULONG_MAX, 0);
 718		mutex_unlock(&vmap_purge_lock);
 719	}
 720}
 721
 722/*
 723 * Kick off a purge of the outstanding lazy areas.
 724 */
 725static void purge_vmap_area_lazy(void)
 726{
 727	mutex_lock(&vmap_purge_lock);
 728	purge_fragmented_blocks_allcpus();
 729	__purge_vmap_area_lazy(ULONG_MAX, 0);
 730	mutex_unlock(&vmap_purge_lock);
 731}
 732
 733/*
 734 * Free a vmap area, caller ensuring that the area has been unmapped
 735 * and flush_cache_vunmap had been called for the correct range
 736 * previously.
 737 */
 738static void free_vmap_area_noflush(struct vmap_area *va)
 739{
 740	int nr_lazy;
 741
 742	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 743				    &vmap_lazy_nr);
 744
 745	/* After this point, we may free va at any time */
 746	llist_add(&va->purge_list, &vmap_purge_list);
 747
 748	if (unlikely(nr_lazy > lazy_max_pages()))
 749		try_purge_vmap_area_lazy();
 750}
 751
 752/*
 753 * Free and unmap a vmap area
 754 */
 755static void free_unmap_vmap_area(struct vmap_area *va)
 756{
 757	flush_cache_vunmap(va->va_start, va->va_end);
 758	unmap_vmap_area(va);
 759	free_vmap_area_noflush(va);
 760}
 761
 762static struct vmap_area *find_vmap_area(unsigned long addr)
 763{
 764	struct vmap_area *va;
 765
 766	spin_lock(&vmap_area_lock);
 767	va = __find_vmap_area(addr);
 768	spin_unlock(&vmap_area_lock);
 769
 770	return va;
 771}
 772
 773/*** Per cpu kva allocator ***/
 774
 775/*
 776 * vmap space is limited especially on 32 bit architectures. Ensure there is
 777 * room for at least 16 percpu vmap blocks per CPU.
 778 */
 779/*
 780 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 781 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 782 * instead (we just need a rough idea)
 783 */
 784#if BITS_PER_LONG == 32
 785#define VMALLOC_SPACE		(128UL*1024*1024)
 786#else
 787#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 788#endif
 789
 790#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 791#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 792#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 793#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 794#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 795#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 796#define VMAP_BBMAP_BITS		\
 797		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 798		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 799			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 800
 801#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 802
 803static bool vmap_initialized __read_mostly = false;
 804
 805struct vmap_block_queue {
 806	spinlock_t lock;
 807	struct list_head free;
 808};
 809
 810struct vmap_block {
 811	spinlock_t lock;
 812	struct vmap_area *va;
 813	unsigned long free, dirty;
 814	unsigned long dirty_min, dirty_max; /*< dirty range */
 815	struct list_head free_list;
 816	struct rcu_head rcu_head;
 817	struct list_head purge;
 818};
 819
 820/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 821static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 822
 823/*
 824 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 825 * in the free path. Could get rid of this if we change the API to return a
 826 * "cookie" from alloc, to be passed to free. But no big deal yet.
 827 */
 828static DEFINE_SPINLOCK(vmap_block_tree_lock);
 829static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 830
 831/*
 832 * We should probably have a fallback mechanism to allocate virtual memory
 833 * out of partially filled vmap blocks. However vmap block sizing should be
 834 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 835 * big problem.
 836 */
 837
 838static unsigned long addr_to_vb_idx(unsigned long addr)
 839{
 840	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 841	addr /= VMAP_BLOCK_SIZE;
 842	return addr;
 843}
 844
 845static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 846{
 847	unsigned long addr;
 848
 849	addr = va_start + (pages_off << PAGE_SHIFT);
 850	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 851	return (void *)addr;
 852}
 853
 854/**
 855 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 856 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 857 * @order:    how many 2^order pages should be occupied in newly allocated block
 858 * @gfp_mask: flags for the page level allocator
 859 *
 860 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 861 */
 862static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 863{
 864	struct vmap_block_queue *vbq;
 865	struct vmap_block *vb;
 866	struct vmap_area *va;
 867	unsigned long vb_idx;
 868	int node, err;
 869	void *vaddr;
 870
 871	node = numa_node_id();
 872
 873	vb = kmalloc_node(sizeof(struct vmap_block),
 874			gfp_mask & GFP_RECLAIM_MASK, node);
 875	if (unlikely(!vb))
 876		return ERR_PTR(-ENOMEM);
 877
 878	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 879					VMALLOC_START, VMALLOC_END,
 880					node, gfp_mask);
 881	if (IS_ERR(va)) {
 882		kfree(vb);
 883		return ERR_CAST(va);
 884	}
 885
 886	err = radix_tree_preload(gfp_mask);
 887	if (unlikely(err)) {
 888		kfree(vb);
 889		free_vmap_area(va);
 890		return ERR_PTR(err);
 891	}
 892
 893	vaddr = vmap_block_vaddr(va->va_start, 0);
 894	spin_lock_init(&vb->lock);
 895	vb->va = va;
 896	/* At least something should be left free */
 897	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 898	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 899	vb->dirty = 0;
 900	vb->dirty_min = VMAP_BBMAP_BITS;
 901	vb->dirty_max = 0;
 902	INIT_LIST_HEAD(&vb->free_list);
 903
 904	vb_idx = addr_to_vb_idx(va->va_start);
 905	spin_lock(&vmap_block_tree_lock);
 906	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 907	spin_unlock(&vmap_block_tree_lock);
 908	BUG_ON(err);
 909	radix_tree_preload_end();
 910
 911	vbq = &get_cpu_var(vmap_block_queue);
 912	spin_lock(&vbq->lock);
 913	list_add_tail_rcu(&vb->free_list, &vbq->free);
 914	spin_unlock(&vbq->lock);
 915	put_cpu_var(vmap_block_queue);
 916
 917	return vaddr;
 918}
 919
 920static void free_vmap_block(struct vmap_block *vb)
 921{
 922	struct vmap_block *tmp;
 923	unsigned long vb_idx;
 924
 925	vb_idx = addr_to_vb_idx(vb->va->va_start);
 926	spin_lock(&vmap_block_tree_lock);
 927	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 928	spin_unlock(&vmap_block_tree_lock);
 929	BUG_ON(tmp != vb);
 930
 931	free_vmap_area_noflush(vb->va);
 932	kfree_rcu(vb, rcu_head);
 933}
 934
 935static void purge_fragmented_blocks(int cpu)
 936{
 937	LIST_HEAD(purge);
 938	struct vmap_block *vb;
 939	struct vmap_block *n_vb;
 940	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 941
 942	rcu_read_lock();
 943	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 944
 945		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 946			continue;
 947
 948		spin_lock(&vb->lock);
 949		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 950			vb->free = 0; /* prevent further allocs after releasing lock */
 951			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 952			vb->dirty_min = 0;
 953			vb->dirty_max = VMAP_BBMAP_BITS;
 954			spin_lock(&vbq->lock);
 955			list_del_rcu(&vb->free_list);
 956			spin_unlock(&vbq->lock);
 957			spin_unlock(&vb->lock);
 958			list_add_tail(&vb->purge, &purge);
 959		} else
 960			spin_unlock(&vb->lock);
 961	}
 962	rcu_read_unlock();
 963
 964	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 965		list_del(&vb->purge);
 966		free_vmap_block(vb);
 967	}
 968}
 969
 970static void purge_fragmented_blocks_allcpus(void)
 971{
 972	int cpu;
 973
 974	for_each_possible_cpu(cpu)
 975		purge_fragmented_blocks(cpu);
 976}
 977
 978static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 979{
 980	struct vmap_block_queue *vbq;
 981	struct vmap_block *vb;
 982	void *vaddr = NULL;
 983	unsigned int order;
 984
 985	BUG_ON(offset_in_page(size));
 986	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 987	if (WARN_ON(size == 0)) {
 988		/*
 989		 * Allocating 0 bytes isn't what caller wants since
 990		 * get_order(0) returns funny result. Just warn and terminate
 991		 * early.
 992		 */
 993		return NULL;
 994	}
 995	order = get_order(size);
 996
 997	rcu_read_lock();
 998	vbq = &get_cpu_var(vmap_block_queue);
 999	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1000		unsigned long pages_off;
1001
1002		spin_lock(&vb->lock);
1003		if (vb->free < (1UL << order)) {
1004			spin_unlock(&vb->lock);
1005			continue;
1006		}
1007
1008		pages_off = VMAP_BBMAP_BITS - vb->free;
1009		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1010		vb->free -= 1UL << order;
1011		if (vb->free == 0) {
1012			spin_lock(&vbq->lock);
1013			list_del_rcu(&vb->free_list);
1014			spin_unlock(&vbq->lock);
1015		}
1016
1017		spin_unlock(&vb->lock);
1018		break;
1019	}
1020
1021	put_cpu_var(vmap_block_queue);
1022	rcu_read_unlock();
1023
1024	/* Allocate new block if nothing was found */
1025	if (!vaddr)
1026		vaddr = new_vmap_block(order, gfp_mask);
1027
1028	return vaddr;
1029}
1030
1031static void vb_free(const void *addr, unsigned long size)
1032{
1033	unsigned long offset;
1034	unsigned long vb_idx;
1035	unsigned int order;
1036	struct vmap_block *vb;
1037
1038	BUG_ON(offset_in_page(size));
1039	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1040
1041	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1042
1043	order = get_order(size);
1044
1045	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1046	offset >>= PAGE_SHIFT;
1047
1048	vb_idx = addr_to_vb_idx((unsigned long)addr);
1049	rcu_read_lock();
1050	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1051	rcu_read_unlock();
1052	BUG_ON(!vb);
1053
1054	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1055
1056	spin_lock(&vb->lock);
1057
1058	/* Expand dirty range */
1059	vb->dirty_min = min(vb->dirty_min, offset);
1060	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1061
1062	vb->dirty += 1UL << order;
1063	if (vb->dirty == VMAP_BBMAP_BITS) {
1064		BUG_ON(vb->free);
1065		spin_unlock(&vb->lock);
1066		free_vmap_block(vb);
1067	} else
1068		spin_unlock(&vb->lock);
1069}
1070
1071/**
1072 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1073 *
1074 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1075 * to amortize TLB flushing overheads. What this means is that any page you
1076 * have now, may, in a former life, have been mapped into kernel virtual
1077 * address by the vmap layer and so there might be some CPUs with TLB entries
1078 * still referencing that page (additional to the regular 1:1 kernel mapping).
1079 *
1080 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1081 * be sure that none of the pages we have control over will have any aliases
1082 * from the vmap layer.
1083 */
1084void vm_unmap_aliases(void)
1085{
1086	unsigned long start = ULONG_MAX, end = 0;
1087	int cpu;
1088	int flush = 0;
1089
1090	if (unlikely(!vmap_initialized))
1091		return;
1092
1093	might_sleep();
1094
1095	for_each_possible_cpu(cpu) {
1096		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1097		struct vmap_block *vb;
1098
1099		rcu_read_lock();
1100		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1101			spin_lock(&vb->lock);
1102			if (vb->dirty) {
1103				unsigned long va_start = vb->va->va_start;
1104				unsigned long s, e;
1105
1106				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1107				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1108
1109				start = min(s, start);
1110				end   = max(e, end);
1111
1112				flush = 1;
1113			}
1114			spin_unlock(&vb->lock);
1115		}
1116		rcu_read_unlock();
1117	}
1118
1119	mutex_lock(&vmap_purge_lock);
1120	purge_fragmented_blocks_allcpus();
1121	if (!__purge_vmap_area_lazy(start, end) && flush)
1122		flush_tlb_kernel_range(start, end);
1123	mutex_unlock(&vmap_purge_lock);
1124}
1125EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1126
1127/**
1128 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1129 * @mem: the pointer returned by vm_map_ram
1130 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1131 */
1132void vm_unmap_ram(const void *mem, unsigned int count)
1133{
1134	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1135	unsigned long addr = (unsigned long)mem;
1136	struct vmap_area *va;
1137
1138	might_sleep();
1139	BUG_ON(!addr);
1140	BUG_ON(addr < VMALLOC_START);
1141	BUG_ON(addr > VMALLOC_END);
1142	BUG_ON(!PAGE_ALIGNED(addr));
1143
1144	debug_check_no_locks_freed(mem, size);
1145	vmap_debug_free_range(addr, addr+size);
1146
1147	if (likely(count <= VMAP_MAX_ALLOC)) {
1148		vb_free(mem, size);
1149		return;
1150	}
1151
1152	va = find_vmap_area(addr);
1153	BUG_ON(!va);
1154	free_unmap_vmap_area(va);
1155}
1156EXPORT_SYMBOL(vm_unmap_ram);
1157
1158/**
1159 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1160 * @pages: an array of pointers to the pages to be mapped
1161 * @count: number of pages
1162 * @node: prefer to allocate data structures on this node
1163 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1164 *
1165 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1166 * faster than vmap so it's good.  But if you mix long-life and short-life
1167 * objects with vm_map_ram(), it could consume lots of address space through
1168 * fragmentation (especially on a 32bit machine).  You could see failures in
1169 * the end.  Please use this function for short-lived objects.
1170 *
1171 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1172 */
1173void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1174{
1175	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1176	unsigned long addr;
1177	void *mem;
1178
1179	if (likely(count <= VMAP_MAX_ALLOC)) {
1180		mem = vb_alloc(size, GFP_KERNEL);
1181		if (IS_ERR(mem))
1182			return NULL;
1183		addr = (unsigned long)mem;
1184	} else {
1185		struct vmap_area *va;
1186		va = alloc_vmap_area(size, PAGE_SIZE,
1187				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1188		if (IS_ERR(va))
1189			return NULL;
1190
1191		addr = va->va_start;
1192		mem = (void *)addr;
1193	}
1194	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1195		vm_unmap_ram(mem, count);
1196		return NULL;
1197	}
1198	return mem;
1199}
1200EXPORT_SYMBOL(vm_map_ram);
1201
1202static struct vm_struct *vmlist __initdata;
1203/**
1204 * vm_area_add_early - add vmap area early during boot
1205 * @vm: vm_struct to add
1206 *
1207 * This function is used to add fixed kernel vm area to vmlist before
1208 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1209 * should contain proper values and the other fields should be zero.
1210 *
1211 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1212 */
1213void __init vm_area_add_early(struct vm_struct *vm)
1214{
1215	struct vm_struct *tmp, **p;
1216
1217	BUG_ON(vmap_initialized);
1218	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219		if (tmp->addr >= vm->addr) {
1220			BUG_ON(tmp->addr < vm->addr + vm->size);
1221			break;
1222		} else
1223			BUG_ON(tmp->addr + tmp->size > vm->addr);
1224	}
1225	vm->next = *p;
1226	*p = vm;
1227}
1228
1229/**
1230 * vm_area_register_early - register vmap area early during boot
1231 * @vm: vm_struct to register
1232 * @align: requested alignment
1233 *
1234 * This function is used to register kernel vm area before
1235 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1236 * proper values on entry and other fields should be zero.  On return,
1237 * vm->addr contains the allocated address.
1238 *
1239 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1240 */
1241void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1242{
1243	static size_t vm_init_off __initdata;
1244	unsigned long addr;
1245
1246	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1247	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1248
1249	vm->addr = (void *)addr;
1250
1251	vm_area_add_early(vm);
1252}
1253
1254void __init vmalloc_init(void)
1255{
1256	struct vmap_area *va;
1257	struct vm_struct *tmp;
1258	int i;
1259
1260	for_each_possible_cpu(i) {
1261		struct vmap_block_queue *vbq;
1262		struct vfree_deferred *p;
1263
1264		vbq = &per_cpu(vmap_block_queue, i);
1265		spin_lock_init(&vbq->lock);
1266		INIT_LIST_HEAD(&vbq->free);
1267		p = &per_cpu(vfree_deferred, i);
1268		init_llist_head(&p->list);
1269		INIT_WORK(&p->wq, free_work);
1270	}
1271
1272	/* Import existing vmlist entries. */
1273	for (tmp = vmlist; tmp; tmp = tmp->next) {
1274		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1275		va->flags = VM_VM_AREA;
1276		va->va_start = (unsigned long)tmp->addr;
1277		va->va_end = va->va_start + tmp->size;
1278		va->vm = tmp;
1279		__insert_vmap_area(va);
1280	}
1281
1282	vmap_area_pcpu_hole = VMALLOC_END;
1283
1284	vmap_initialized = true;
1285}
1286
1287/**
1288 * map_kernel_range_noflush - map kernel VM area with the specified pages
1289 * @addr: start of the VM area to map
1290 * @size: size of the VM area to map
1291 * @prot: page protection flags to use
1292 * @pages: pages to map
1293 *
1294 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1295 * specify should have been allocated using get_vm_area() and its
1296 * friends.
1297 *
1298 * NOTE:
1299 * This function does NOT do any cache flushing.  The caller is
1300 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1301 * before calling this function.
1302 *
1303 * RETURNS:
1304 * The number of pages mapped on success, -errno on failure.
1305 */
1306int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1307			     pgprot_t prot, struct page **pages)
1308{
1309	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1310}
1311
1312/**
1313 * unmap_kernel_range_noflush - unmap kernel VM area
1314 * @addr: start of the VM area to unmap
1315 * @size: size of the VM area to unmap
1316 *
1317 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1318 * specify should have been allocated using get_vm_area() and its
1319 * friends.
1320 *
1321 * NOTE:
1322 * This function does NOT do any cache flushing.  The caller is
1323 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1324 * before calling this function and flush_tlb_kernel_range() after.
1325 */
1326void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1327{
1328	vunmap_page_range(addr, addr + size);
1329}
1330EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1331
1332/**
1333 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1334 * @addr: start of the VM area to unmap
1335 * @size: size of the VM area to unmap
1336 *
1337 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1338 * the unmapping and tlb after.
1339 */
1340void unmap_kernel_range(unsigned long addr, unsigned long size)
1341{
1342	unsigned long end = addr + size;
1343
1344	flush_cache_vunmap(addr, end);
1345	vunmap_page_range(addr, end);
1346	flush_tlb_kernel_range(addr, end);
1347}
1348EXPORT_SYMBOL_GPL(unmap_kernel_range);
1349
1350int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1351{
1352	unsigned long addr = (unsigned long)area->addr;
1353	unsigned long end = addr + get_vm_area_size(area);
1354	int err;
1355
1356	err = vmap_page_range(addr, end, prot, pages);
1357
1358	return err > 0 ? 0 : err;
1359}
1360EXPORT_SYMBOL_GPL(map_vm_area);
1361
1362static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1363			      unsigned long flags, const void *caller)
1364{
1365	spin_lock(&vmap_area_lock);
1366	vm->flags = flags;
1367	vm->addr = (void *)va->va_start;
1368	vm->size = va->va_end - va->va_start;
1369	vm->caller = caller;
1370	va->vm = vm;
1371	va->flags |= VM_VM_AREA;
1372	spin_unlock(&vmap_area_lock);
1373}
1374
1375static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1376{
1377	/*
1378	 * Before removing VM_UNINITIALIZED,
1379	 * we should make sure that vm has proper values.
1380	 * Pair with smp_rmb() in show_numa_info().
1381	 */
1382	smp_wmb();
1383	vm->flags &= ~VM_UNINITIALIZED;
1384}
1385
1386static struct vm_struct *__get_vm_area_node(unsigned long size,
1387		unsigned long align, unsigned long flags, unsigned long start,
1388		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1389{
1390	struct vmap_area *va;
1391	struct vm_struct *area;
1392
1393	BUG_ON(in_interrupt());
1394	size = PAGE_ALIGN(size);
1395	if (unlikely(!size))
1396		return NULL;
1397
1398	if (flags & VM_IOREMAP)
1399		align = 1ul << clamp_t(int, get_count_order_long(size),
1400				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1401
1402	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1403	if (unlikely(!area))
1404		return NULL;
1405
1406	if (!(flags & VM_NO_GUARD))
1407		size += PAGE_SIZE;
1408
1409	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1410	if (IS_ERR(va)) {
1411		kfree(area);
1412		return NULL;
1413	}
1414
1415	setup_vmalloc_vm(area, va, flags, caller);
1416
1417	return area;
1418}
1419
1420struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1421				unsigned long start, unsigned long end)
1422{
1423	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424				  GFP_KERNEL, __builtin_return_address(0));
1425}
1426EXPORT_SYMBOL_GPL(__get_vm_area);
1427
1428struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1429				       unsigned long start, unsigned long end,
1430				       const void *caller)
1431{
1432	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1433				  GFP_KERNEL, caller);
1434}
1435
1436/**
1437 *	get_vm_area  -  reserve a contiguous kernel virtual area
1438 *	@size:		size of the area
1439 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1440 *
1441 *	Search an area of @size in the kernel virtual mapping area,
1442 *	and reserved it for out purposes.  Returns the area descriptor
1443 *	on success or %NULL on failure.
1444 */
1445struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1446{
1447	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448				  NUMA_NO_NODE, GFP_KERNEL,
1449				  __builtin_return_address(0));
1450}
1451
1452struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1453				const void *caller)
1454{
1455	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1456				  NUMA_NO_NODE, GFP_KERNEL, caller);
1457}
1458
1459/**
1460 *	find_vm_area  -  find a continuous kernel virtual area
1461 *	@addr:		base address
1462 *
1463 *	Search for the kernel VM area starting at @addr, and return it.
1464 *	It is up to the caller to do all required locking to keep the returned
1465 *	pointer valid.
1466 */
1467struct vm_struct *find_vm_area(const void *addr)
1468{
1469	struct vmap_area *va;
1470
1471	va = find_vmap_area((unsigned long)addr);
1472	if (va && va->flags & VM_VM_AREA)
1473		return va->vm;
1474
1475	return NULL;
1476}
1477
1478/**
1479 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1480 *	@addr:		base address
1481 *
1482 *	Search for the kernel VM area starting at @addr, and remove it.
1483 *	This function returns the found VM area, but using it is NOT safe
1484 *	on SMP machines, except for its size or flags.
1485 */
1486struct vm_struct *remove_vm_area(const void *addr)
1487{
1488	struct vmap_area *va;
1489
1490	might_sleep();
1491
1492	va = find_vmap_area((unsigned long)addr);
1493	if (va && va->flags & VM_VM_AREA) {
1494		struct vm_struct *vm = va->vm;
1495
1496		spin_lock(&vmap_area_lock);
1497		va->vm = NULL;
1498		va->flags &= ~VM_VM_AREA;
1499		va->flags |= VM_LAZY_FREE;
1500		spin_unlock(&vmap_area_lock);
1501
1502		vmap_debug_free_range(va->va_start, va->va_end);
1503		kasan_free_shadow(vm);
1504		free_unmap_vmap_area(va);
1505
1506		return vm;
1507	}
1508	return NULL;
1509}
1510
1511static void __vunmap(const void *addr, int deallocate_pages)
1512{
1513	struct vm_struct *area;
1514
1515	if (!addr)
1516		return;
1517
1518	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519			addr))
1520		return;
1521
1522	area = remove_vm_area(addr);
1523	if (unlikely(!area)) {
1524		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525				addr);
1526		return;
1527	}
1528
1529	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531
1532	if (deallocate_pages) {
1533		int i;
1534
1535		for (i = 0; i < area->nr_pages; i++) {
1536			struct page *page = area->pages[i];
1537
1538			BUG_ON(!page);
1539			__free_pages(page, 0);
1540		}
1541
1542		kvfree(area->pages);
1543	}
1544
1545	kfree(area);
1546	return;
1547}
1548
1549static inline void __vfree_deferred(const void *addr)
1550{
1551	/*
1552	 * Use raw_cpu_ptr() because this can be called from preemptible
1553	 * context. Preemption is absolutely fine here, because the llist_add()
1554	 * implementation is lockless, so it works even if we are adding to
1555	 * nother cpu's list.  schedule_work() should be fine with this too.
1556	 */
1557	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1558
1559	if (llist_add((struct llist_node *)addr, &p->list))
1560		schedule_work(&p->wq);
1561}
1562
1563/**
1564 *	vfree_atomic  -  release memory allocated by vmalloc()
1565 *	@addr:		memory base address
1566 *
1567 *	This one is just like vfree() but can be called in any atomic context
1568 *	except NMIs.
1569 */
1570void vfree_atomic(const void *addr)
1571{
1572	BUG_ON(in_nmi());
1573
1574	kmemleak_free(addr);
1575
1576	if (!addr)
1577		return;
1578	__vfree_deferred(addr);
1579}
1580
1581/**
1582 *	vfree  -  release memory allocated by vmalloc()
1583 *	@addr:		memory base address
1584 *
1585 *	Free the virtually continuous memory area starting at @addr, as
1586 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1587 *	NULL, no operation is performed.
1588 *
1589 *	Must not be called in NMI context (strictly speaking, only if we don't
1590 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1591 *	conventions for vfree() arch-depenedent would be a really bad idea)
1592 *
1593 *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1594 */
1595void vfree(const void *addr)
1596{
1597	BUG_ON(in_nmi());
1598
1599	kmemleak_free(addr);
1600
1601	if (!addr)
1602		return;
1603	if (unlikely(in_interrupt()))
1604		__vfree_deferred(addr);
1605	else
1606		__vunmap(addr, 1);
1607}
1608EXPORT_SYMBOL(vfree);
1609
1610/**
1611 *	vunmap  -  release virtual mapping obtained by vmap()
1612 *	@addr:		memory base address
1613 *
1614 *	Free the virtually contiguous memory area starting at @addr,
1615 *	which was created from the page array passed to vmap().
1616 *
1617 *	Must not be called in interrupt context.
1618 */
1619void vunmap(const void *addr)
1620{
1621	BUG_ON(in_interrupt());
1622	might_sleep();
1623	if (addr)
1624		__vunmap(addr, 0);
1625}
1626EXPORT_SYMBOL(vunmap);
1627
1628/**
1629 *	vmap  -  map an array of pages into virtually contiguous space
1630 *	@pages:		array of page pointers
1631 *	@count:		number of pages to map
1632 *	@flags:		vm_area->flags
1633 *	@prot:		page protection for the mapping
1634 *
1635 *	Maps @count pages from @pages into contiguous kernel virtual
1636 *	space.
1637 */
1638void *vmap(struct page **pages, unsigned int count,
1639		unsigned long flags, pgprot_t prot)
1640{
1641	struct vm_struct *area;
1642	unsigned long size;		/* In bytes */
1643
1644	might_sleep();
1645
1646	if (count > totalram_pages)
1647		return NULL;
1648
1649	size = (unsigned long)count << PAGE_SHIFT;
1650	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1651	if (!area)
1652		return NULL;
1653
1654	if (map_vm_area(area, prot, pages)) {
1655		vunmap(area->addr);
1656		return NULL;
1657	}
1658
1659	return area->addr;
1660}
1661EXPORT_SYMBOL(vmap);
1662
1663static void *__vmalloc_node(unsigned long size, unsigned long align,
1664			    gfp_t gfp_mask, pgprot_t prot,
1665			    int node, const void *caller);
1666static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1667				 pgprot_t prot, int node)
1668{
1669	struct page **pages;
1670	unsigned int nr_pages, array_size, i;
1671	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1672	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1673	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1674					0 :
1675					__GFP_HIGHMEM;
1676
1677	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1678	array_size = (nr_pages * sizeof(struct page *));
1679
1680	area->nr_pages = nr_pages;
1681	/* Please note that the recursion is strictly bounded. */
1682	if (array_size > PAGE_SIZE) {
1683		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1684				PAGE_KERNEL, node, area->caller);
1685	} else {
1686		pages = kmalloc_node(array_size, nested_gfp, node);
1687	}
1688	area->pages = pages;
1689	if (!area->pages) {
1690		remove_vm_area(area->addr);
1691		kfree(area);
1692		return NULL;
1693	}
1694
1695	for (i = 0; i < area->nr_pages; i++) {
1696		struct page *page;
1697
1698		if (node == NUMA_NO_NODE)
1699			page = alloc_page(alloc_mask|highmem_mask);
1700		else
1701			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1702
1703		if (unlikely(!page)) {
1704			/* Successfully allocated i pages, free them in __vunmap() */
1705			area->nr_pages = i;
1706			goto fail;
1707		}
1708		area->pages[i] = page;
1709		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1710			cond_resched();
1711	}
1712
1713	if (map_vm_area(area, prot, pages))
1714		goto fail;
1715	return area->addr;
1716
1717fail:
1718	warn_alloc(gfp_mask, NULL,
1719			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1720			  (area->nr_pages*PAGE_SIZE), area->size);
1721	vfree(area->addr);
1722	return NULL;
1723}
1724
1725/**
1726 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1727 *	@size:		allocation size
1728 *	@align:		desired alignment
1729 *	@start:		vm area range start
1730 *	@end:		vm area range end
1731 *	@gfp_mask:	flags for the page level allocator
1732 *	@prot:		protection mask for the allocated pages
1733 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1734 *	@node:		node to use for allocation or NUMA_NO_NODE
1735 *	@caller:	caller's return address
1736 *
1737 *	Allocate enough pages to cover @size from the page level
1738 *	allocator with @gfp_mask flags.  Map them into contiguous
1739 *	kernel virtual space, using a pagetable protection of @prot.
1740 */
1741void *__vmalloc_node_range(unsigned long size, unsigned long align,
1742			unsigned long start, unsigned long end, gfp_t gfp_mask,
1743			pgprot_t prot, unsigned long vm_flags, int node,
1744			const void *caller)
1745{
1746	struct vm_struct *area;
1747	void *addr;
1748	unsigned long real_size = size;
1749
1750	size = PAGE_ALIGN(size);
1751	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1752		goto fail;
1753
1754	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1755				vm_flags, start, end, node, gfp_mask, caller);
1756	if (!area)
1757		goto fail;
1758
1759	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1760	if (!addr)
1761		return NULL;
1762
1763	/*
1764	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1765	 * flag. It means that vm_struct is not fully initialized.
1766	 * Now, it is fully initialized, so remove this flag here.
1767	 */
1768	clear_vm_uninitialized_flag(area);
1769
1770	kmemleak_vmalloc(area, size, gfp_mask);
 
 
 
 
 
1771
1772	return addr;
1773
1774fail:
1775	warn_alloc(gfp_mask, NULL,
1776			  "vmalloc: allocation failure: %lu bytes", real_size);
1777	return NULL;
1778}
1779
1780/**
1781 *	__vmalloc_node  -  allocate virtually contiguous memory
1782 *	@size:		allocation size
1783 *	@align:		desired alignment
1784 *	@gfp_mask:	flags for the page level allocator
1785 *	@prot:		protection mask for the allocated pages
1786 *	@node:		node to use for allocation or NUMA_NO_NODE
1787 *	@caller:	caller's return address
1788 *
1789 *	Allocate enough pages to cover @size from the page level
1790 *	allocator with @gfp_mask flags.  Map them into contiguous
1791 *	kernel virtual space, using a pagetable protection of @prot.
1792 *
1793 *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1794 *	and __GFP_NOFAIL are not supported
1795 *
1796 *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1797 *	with mm people.
1798 *
1799 */
1800static void *__vmalloc_node(unsigned long size, unsigned long align,
1801			    gfp_t gfp_mask, pgprot_t prot,
1802			    int node, const void *caller)
1803{
1804	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1805				gfp_mask, prot, 0, node, caller);
1806}
1807
1808void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1809{
1810	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1811				__builtin_return_address(0));
1812}
1813EXPORT_SYMBOL(__vmalloc);
1814
1815static inline void *__vmalloc_node_flags(unsigned long size,
1816					int node, gfp_t flags)
1817{
1818	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1819					node, __builtin_return_address(0));
1820}
1821
1822
1823void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1824				  void *caller)
1825{
1826	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1827}
1828
1829/**
1830 *	vmalloc  -  allocate virtually contiguous memory
1831 *	@size:		allocation size
1832 *	Allocate enough pages to cover @size from the page level
1833 *	allocator and map them into contiguous kernel virtual space.
1834 *
1835 *	For tight control over page level allocator and protection flags
1836 *	use __vmalloc() instead.
1837 */
1838void *vmalloc(unsigned long size)
1839{
1840	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841				    GFP_KERNEL);
1842}
1843EXPORT_SYMBOL(vmalloc);
1844
1845/**
1846 *	vzalloc - allocate virtually contiguous memory with zero fill
1847 *	@size:	allocation size
1848 *	Allocate enough pages to cover @size from the page level
1849 *	allocator and map them into contiguous kernel virtual space.
1850 *	The memory allocated is set to zero.
1851 *
1852 *	For tight control over page level allocator and protection flags
1853 *	use __vmalloc() instead.
1854 */
1855void *vzalloc(unsigned long size)
1856{
1857	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1858				GFP_KERNEL | __GFP_ZERO);
1859}
1860EXPORT_SYMBOL(vzalloc);
1861
1862/**
1863 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1864 * @size: allocation size
1865 *
1866 * The resulting memory area is zeroed so it can be mapped to userspace
1867 * without leaking data.
1868 */
1869void *vmalloc_user(unsigned long size)
1870{
1871	struct vm_struct *area;
1872	void *ret;
1873
1874	ret = __vmalloc_node(size, SHMLBA,
1875			     GFP_KERNEL | __GFP_ZERO,
1876			     PAGE_KERNEL, NUMA_NO_NODE,
1877			     __builtin_return_address(0));
1878	if (ret) {
1879		area = find_vm_area(ret);
1880		area->flags |= VM_USERMAP;
1881	}
1882	return ret;
1883}
1884EXPORT_SYMBOL(vmalloc_user);
1885
1886/**
1887 *	vmalloc_node  -  allocate memory on a specific node
1888 *	@size:		allocation size
1889 *	@node:		numa node
1890 *
1891 *	Allocate enough pages to cover @size from the page level
1892 *	allocator and map them into contiguous kernel virtual space.
1893 *
1894 *	For tight control over page level allocator and protection flags
1895 *	use __vmalloc() instead.
1896 */
1897void *vmalloc_node(unsigned long size, int node)
1898{
1899	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1900					node, __builtin_return_address(0));
1901}
1902EXPORT_SYMBOL(vmalloc_node);
1903
1904/**
1905 * vzalloc_node - allocate memory on a specific node with zero fill
1906 * @size:	allocation size
1907 * @node:	numa node
1908 *
1909 * Allocate enough pages to cover @size from the page level
1910 * allocator and map them into contiguous kernel virtual space.
1911 * The memory allocated is set to zero.
1912 *
1913 * For tight control over page level allocator and protection flags
1914 * use __vmalloc_node() instead.
1915 */
1916void *vzalloc_node(unsigned long size, int node)
1917{
1918	return __vmalloc_node_flags(size, node,
1919			 GFP_KERNEL | __GFP_ZERO);
1920}
1921EXPORT_SYMBOL(vzalloc_node);
1922
1923#ifndef PAGE_KERNEL_EXEC
1924# define PAGE_KERNEL_EXEC PAGE_KERNEL
1925#endif
1926
1927/**
1928 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1929 *	@size:		allocation size
1930 *
1931 *	Kernel-internal function to allocate enough pages to cover @size
1932 *	the page level allocator and map them into contiguous and
1933 *	executable kernel virtual space.
1934 *
1935 *	For tight control over page level allocator and protection flags
1936 *	use __vmalloc() instead.
1937 */
1938
1939void *vmalloc_exec(unsigned long size)
1940{
1941	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1942			      NUMA_NO_NODE, __builtin_return_address(0));
1943}
1944
1945#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1946#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1947#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1948#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1949#else
1950/*
1951 * 64b systems should always have either DMA or DMA32 zones. For others
1952 * GFP_DMA32 should do the right thing and use the normal zone.
1953 */
1954#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955#endif
1956
1957/**
1958 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1959 *	@size:		allocation size
1960 *
1961 *	Allocate enough 32bit PA addressable pages to cover @size from the
1962 *	page level allocator and map them into contiguous kernel virtual space.
1963 */
1964void *vmalloc_32(unsigned long size)
1965{
1966	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1967			      NUMA_NO_NODE, __builtin_return_address(0));
1968}
1969EXPORT_SYMBOL(vmalloc_32);
1970
1971/**
1972 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1973 *	@size:		allocation size
1974 *
1975 * The resulting memory area is 32bit addressable and zeroed so it can be
1976 * mapped to userspace without leaking data.
1977 */
1978void *vmalloc_32_user(unsigned long size)
1979{
1980	struct vm_struct *area;
1981	void *ret;
1982
1983	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1984			     NUMA_NO_NODE, __builtin_return_address(0));
1985	if (ret) {
1986		area = find_vm_area(ret);
1987		area->flags |= VM_USERMAP;
1988	}
1989	return ret;
1990}
1991EXPORT_SYMBOL(vmalloc_32_user);
1992
1993/*
1994 * small helper routine , copy contents to buf from addr.
1995 * If the page is not present, fill zero.
1996 */
1997
1998static int aligned_vread(char *buf, char *addr, unsigned long count)
1999{
2000	struct page *p;
2001	int copied = 0;
2002
2003	while (count) {
2004		unsigned long offset, length;
2005
2006		offset = offset_in_page(addr);
2007		length = PAGE_SIZE - offset;
2008		if (length > count)
2009			length = count;
2010		p = vmalloc_to_page(addr);
2011		/*
2012		 * To do safe access to this _mapped_ area, we need
2013		 * lock. But adding lock here means that we need to add
2014		 * overhead of vmalloc()/vfree() calles for this _debug_
2015		 * interface, rarely used. Instead of that, we'll use
2016		 * kmap() and get small overhead in this access function.
2017		 */
2018		if (p) {
2019			/*
2020			 * we can expect USER0 is not used (see vread/vwrite's
2021			 * function description)
2022			 */
2023			void *map = kmap_atomic(p);
2024			memcpy(buf, map + offset, length);
2025			kunmap_atomic(map);
2026		} else
2027			memset(buf, 0, length);
2028
2029		addr += length;
2030		buf += length;
2031		copied += length;
2032		count -= length;
2033	}
2034	return copied;
2035}
2036
2037static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2038{
2039	struct page *p;
2040	int copied = 0;
2041
2042	while (count) {
2043		unsigned long offset, length;
2044
2045		offset = offset_in_page(addr);
2046		length = PAGE_SIZE - offset;
2047		if (length > count)
2048			length = count;
2049		p = vmalloc_to_page(addr);
2050		/*
2051		 * To do safe access to this _mapped_ area, we need
2052		 * lock. But adding lock here means that we need to add
2053		 * overhead of vmalloc()/vfree() calles for this _debug_
2054		 * interface, rarely used. Instead of that, we'll use
2055		 * kmap() and get small overhead in this access function.
2056		 */
2057		if (p) {
2058			/*
2059			 * we can expect USER0 is not used (see vread/vwrite's
2060			 * function description)
2061			 */
2062			void *map = kmap_atomic(p);
2063			memcpy(map + offset, buf, length);
2064			kunmap_atomic(map);
2065		}
2066		addr += length;
2067		buf += length;
2068		copied += length;
2069		count -= length;
2070	}
2071	return copied;
2072}
2073
2074/**
2075 *	vread() -  read vmalloc area in a safe way.
2076 *	@buf:		buffer for reading data
2077 *	@addr:		vm address.
2078 *	@count:		number of bytes to be read.
2079 *
2080 *	Returns # of bytes which addr and buf should be increased.
2081 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2082 *	includes any intersect with alive vmalloc area.
2083 *
2084 *	This function checks that addr is a valid vmalloc'ed area, and
2085 *	copy data from that area to a given buffer. If the given memory range
2086 *	of [addr...addr+count) includes some valid address, data is copied to
2087 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2088 *	IOREMAP area is treated as memory hole and no copy is done.
2089 *
2090 *	If [addr...addr+count) doesn't includes any intersects with alive
2091 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2092 *
2093 *	Note: In usual ops, vread() is never necessary because the caller
2094 *	should know vmalloc() area is valid and can use memcpy().
2095 *	This is for routines which have to access vmalloc area without
2096 *	any informaion, as /dev/kmem.
2097 *
2098 */
2099
2100long vread(char *buf, char *addr, unsigned long count)
2101{
2102	struct vmap_area *va;
2103	struct vm_struct *vm;
2104	char *vaddr, *buf_start = buf;
2105	unsigned long buflen = count;
2106	unsigned long n;
2107
2108	/* Don't allow overflow */
2109	if ((unsigned long) addr + count < count)
2110		count = -(unsigned long) addr;
2111
2112	spin_lock(&vmap_area_lock);
2113	list_for_each_entry(va, &vmap_area_list, list) {
2114		if (!count)
2115			break;
2116
2117		if (!(va->flags & VM_VM_AREA))
2118			continue;
2119
2120		vm = va->vm;
2121		vaddr = (char *) vm->addr;
2122		if (addr >= vaddr + get_vm_area_size(vm))
2123			continue;
2124		while (addr < vaddr) {
2125			if (count == 0)
2126				goto finished;
2127			*buf = '\0';
2128			buf++;
2129			addr++;
2130			count--;
2131		}
2132		n = vaddr + get_vm_area_size(vm) - addr;
2133		if (n > count)
2134			n = count;
2135		if (!(vm->flags & VM_IOREMAP))
2136			aligned_vread(buf, addr, n);
2137		else /* IOREMAP area is treated as memory hole */
2138			memset(buf, 0, n);
2139		buf += n;
2140		addr += n;
2141		count -= n;
2142	}
2143finished:
2144	spin_unlock(&vmap_area_lock);
2145
2146	if (buf == buf_start)
2147		return 0;
2148	/* zero-fill memory holes */
2149	if (buf != buf_start + buflen)
2150		memset(buf, 0, buflen - (buf - buf_start));
2151
2152	return buflen;
2153}
2154
2155/**
2156 *	vwrite() -  write vmalloc area in a safe way.
2157 *	@buf:		buffer for source data
2158 *	@addr:		vm address.
2159 *	@count:		number of bytes to be read.
2160 *
2161 *	Returns # of bytes which addr and buf should be incresed.
2162 *	(same number to @count).
2163 *	If [addr...addr+count) doesn't includes any intersect with valid
2164 *	vmalloc area, returns 0.
2165 *
2166 *	This function checks that addr is a valid vmalloc'ed area, and
2167 *	copy data from a buffer to the given addr. If specified range of
2168 *	[addr...addr+count) includes some valid address, data is copied from
2169 *	proper area of @buf. If there are memory holes, no copy to hole.
2170 *	IOREMAP area is treated as memory hole and no copy is done.
2171 *
2172 *	If [addr...addr+count) doesn't includes any intersects with alive
2173 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2174 *
2175 *	Note: In usual ops, vwrite() is never necessary because the caller
2176 *	should know vmalloc() area is valid and can use memcpy().
2177 *	This is for routines which have to access vmalloc area without
2178 *	any informaion, as /dev/kmem.
2179 */
2180
2181long vwrite(char *buf, char *addr, unsigned long count)
2182{
2183	struct vmap_area *va;
2184	struct vm_struct *vm;
2185	char *vaddr;
2186	unsigned long n, buflen;
2187	int copied = 0;
2188
2189	/* Don't allow overflow */
2190	if ((unsigned long) addr + count < count)
2191		count = -(unsigned long) addr;
2192	buflen = count;
2193
2194	spin_lock(&vmap_area_lock);
2195	list_for_each_entry(va, &vmap_area_list, list) {
2196		if (!count)
2197			break;
2198
2199		if (!(va->flags & VM_VM_AREA))
2200			continue;
2201
2202		vm = va->vm;
2203		vaddr = (char *) vm->addr;
2204		if (addr >= vaddr + get_vm_area_size(vm))
2205			continue;
2206		while (addr < vaddr) {
2207			if (count == 0)
2208				goto finished;
2209			buf++;
2210			addr++;
2211			count--;
2212		}
2213		n = vaddr + get_vm_area_size(vm) - addr;
2214		if (n > count)
2215			n = count;
2216		if (!(vm->flags & VM_IOREMAP)) {
2217			aligned_vwrite(buf, addr, n);
2218			copied++;
2219		}
2220		buf += n;
2221		addr += n;
2222		count -= n;
2223	}
2224finished:
2225	spin_unlock(&vmap_area_lock);
2226	if (!copied)
2227		return 0;
2228	return buflen;
2229}
2230
2231/**
2232 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2233 *	@vma:		vma to cover
2234 *	@uaddr:		target user address to start at
2235 *	@kaddr:		virtual address of vmalloc kernel memory
2236 *	@size:		size of map area
2237 *
2238 *	Returns:	0 for success, -Exxx on failure
2239 *
2240 *	This function checks that @kaddr is a valid vmalloc'ed area,
2241 *	and that it is big enough to cover the range starting at
2242 *	@uaddr in @vma. Will return failure if that criteria isn't
2243 *	met.
2244 *
2245 *	Similar to remap_pfn_range() (see mm/memory.c)
2246 */
2247int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2248				void *kaddr, unsigned long size)
2249{
2250	struct vm_struct *area;
2251
2252	size = PAGE_ALIGN(size);
2253
2254	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2255		return -EINVAL;
2256
2257	area = find_vm_area(kaddr);
2258	if (!area)
2259		return -EINVAL;
2260
2261	if (!(area->flags & VM_USERMAP))
2262		return -EINVAL;
2263
2264	if (kaddr + size > area->addr + area->size)
2265		return -EINVAL;
2266
2267	do {
2268		struct page *page = vmalloc_to_page(kaddr);
2269		int ret;
2270
2271		ret = vm_insert_page(vma, uaddr, page);
2272		if (ret)
2273			return ret;
2274
2275		uaddr += PAGE_SIZE;
2276		kaddr += PAGE_SIZE;
2277		size -= PAGE_SIZE;
2278	} while (size > 0);
2279
2280	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2281
2282	return 0;
2283}
2284EXPORT_SYMBOL(remap_vmalloc_range_partial);
2285
2286/**
2287 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2288 *	@vma:		vma to cover (map full range of vma)
2289 *	@addr:		vmalloc memory
2290 *	@pgoff:		number of pages into addr before first page to map
2291 *
2292 *	Returns:	0 for success, -Exxx on failure
2293 *
2294 *	This function checks that addr is a valid vmalloc'ed area, and
2295 *	that it is big enough to cover the vma. Will return failure if
2296 *	that criteria isn't met.
2297 *
2298 *	Similar to remap_pfn_range() (see mm/memory.c)
2299 */
2300int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2301						unsigned long pgoff)
2302{
2303	return remap_vmalloc_range_partial(vma, vma->vm_start,
2304					   addr + (pgoff << PAGE_SHIFT),
2305					   vma->vm_end - vma->vm_start);
2306}
2307EXPORT_SYMBOL(remap_vmalloc_range);
2308
2309/*
2310 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2311 * have one.
2312 */
2313void __weak vmalloc_sync_all(void)
2314{
2315}
2316
2317
2318static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2319{
2320	pte_t ***p = data;
2321
2322	if (p) {
2323		*(*p) = pte;
2324		(*p)++;
2325	}
2326	return 0;
2327}
2328
2329/**
2330 *	alloc_vm_area - allocate a range of kernel address space
2331 *	@size:		size of the area
2332 *	@ptes:		returns the PTEs for the address space
2333 *
2334 *	Returns:	NULL on failure, vm_struct on success
2335 *
2336 *	This function reserves a range of kernel address space, and
2337 *	allocates pagetables to map that range.  No actual mappings
2338 *	are created.
2339 *
2340 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2341 *	allocated for the VM area are returned.
2342 */
2343struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2344{
2345	struct vm_struct *area;
2346
2347	area = get_vm_area_caller(size, VM_IOREMAP,
2348				__builtin_return_address(0));
2349	if (area == NULL)
2350		return NULL;
2351
2352	/*
2353	 * This ensures that page tables are constructed for this region
2354	 * of kernel virtual address space and mapped into init_mm.
2355	 */
2356	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2357				size, f, ptes ? &ptes : NULL)) {
2358		free_vm_area(area);
2359		return NULL;
2360	}
2361
2362	return area;
2363}
2364EXPORT_SYMBOL_GPL(alloc_vm_area);
2365
2366void free_vm_area(struct vm_struct *area)
2367{
2368	struct vm_struct *ret;
2369	ret = remove_vm_area(area->addr);
2370	BUG_ON(ret != area);
2371	kfree(area);
2372}
2373EXPORT_SYMBOL_GPL(free_vm_area);
2374
2375#ifdef CONFIG_SMP
2376static struct vmap_area *node_to_va(struct rb_node *n)
2377{
2378	return rb_entry_safe(n, struct vmap_area, rb_node);
2379}
2380
2381/**
2382 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2383 * @end: target address
2384 * @pnext: out arg for the next vmap_area
2385 * @pprev: out arg for the previous vmap_area
2386 *
2387 * Returns: %true if either or both of next and prev are found,
2388 *	    %false if no vmap_area exists
2389 *
2390 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2391 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2392 */
2393static bool pvm_find_next_prev(unsigned long end,
2394			       struct vmap_area **pnext,
2395			       struct vmap_area **pprev)
2396{
2397	struct rb_node *n = vmap_area_root.rb_node;
2398	struct vmap_area *va = NULL;
2399
2400	while (n) {
2401		va = rb_entry(n, struct vmap_area, rb_node);
2402		if (end < va->va_end)
2403			n = n->rb_left;
2404		else if (end > va->va_end)
2405			n = n->rb_right;
2406		else
2407			break;
2408	}
2409
2410	if (!va)
2411		return false;
2412
2413	if (va->va_end > end) {
2414		*pnext = va;
2415		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2416	} else {
2417		*pprev = va;
2418		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2419	}
2420	return true;
2421}
2422
2423/**
2424 * pvm_determine_end - find the highest aligned address between two vmap_areas
2425 * @pnext: in/out arg for the next vmap_area
2426 * @pprev: in/out arg for the previous vmap_area
2427 * @align: alignment
2428 *
2429 * Returns: determined end address
2430 *
2431 * Find the highest aligned address between *@pnext and *@pprev below
2432 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2433 * down address is between the end addresses of the two vmap_areas.
2434 *
2435 * Please note that the address returned by this function may fall
2436 * inside *@pnext vmap_area.  The caller is responsible for checking
2437 * that.
2438 */
2439static unsigned long pvm_determine_end(struct vmap_area **pnext,
2440				       struct vmap_area **pprev,
2441				       unsigned long align)
2442{
2443	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2444	unsigned long addr;
2445
2446	if (*pnext)
2447		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2448	else
2449		addr = vmalloc_end;
2450
2451	while (*pprev && (*pprev)->va_end > addr) {
2452		*pnext = *pprev;
2453		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2454	}
2455
2456	return addr;
2457}
2458
2459/**
2460 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2461 * @offsets: array containing offset of each area
2462 * @sizes: array containing size of each area
2463 * @nr_vms: the number of areas to allocate
2464 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2465 *
2466 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2467 *	    vm_structs on success, %NULL on failure
2468 *
2469 * Percpu allocator wants to use congruent vm areas so that it can
2470 * maintain the offsets among percpu areas.  This function allocates
2471 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2472 * be scattered pretty far, distance between two areas easily going up
2473 * to gigabytes.  To avoid interacting with regular vmallocs, these
2474 * areas are allocated from top.
2475 *
2476 * Despite its complicated look, this allocator is rather simple.  It
2477 * does everything top-down and scans areas from the end looking for
2478 * matching slot.  While scanning, if any of the areas overlaps with
2479 * existing vmap_area, the base address is pulled down to fit the
2480 * area.  Scanning is repeated till all the areas fit and then all
2481 * necessary data structures are inserted and the result is returned.
2482 */
2483struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2484				     const size_t *sizes, int nr_vms,
2485				     size_t align)
2486{
2487	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2488	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2489	struct vmap_area **vas, *prev, *next;
2490	struct vm_struct **vms;
2491	int area, area2, last_area, term_area;
2492	unsigned long base, start, end, last_end;
2493	bool purged = false;
2494
2495	/* verify parameters and allocate data structures */
2496	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2497	for (last_area = 0, area = 0; area < nr_vms; area++) {
2498		start = offsets[area];
2499		end = start + sizes[area];
2500
2501		/* is everything aligned properly? */
2502		BUG_ON(!IS_ALIGNED(offsets[area], align));
2503		BUG_ON(!IS_ALIGNED(sizes[area], align));
2504
2505		/* detect the area with the highest address */
2506		if (start > offsets[last_area])
2507			last_area = area;
2508
2509		for (area2 = area + 1; area2 < nr_vms; area2++) {
2510			unsigned long start2 = offsets[area2];
2511			unsigned long end2 = start2 + sizes[area2];
2512
2513			BUG_ON(start2 < end && start < end2);
 
 
 
 
2514		}
2515	}
2516	last_end = offsets[last_area] + sizes[last_area];
2517
2518	if (vmalloc_end - vmalloc_start < last_end) {
2519		WARN_ON(true);
2520		return NULL;
2521	}
2522
2523	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2524	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2525	if (!vas || !vms)
2526		goto err_free2;
2527
2528	for (area = 0; area < nr_vms; area++) {
2529		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2530		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2531		if (!vas[area] || !vms[area])
2532			goto err_free;
2533	}
2534retry:
2535	spin_lock(&vmap_area_lock);
2536
2537	/* start scanning - we scan from the top, begin with the last area */
2538	area = term_area = last_area;
2539	start = offsets[area];
2540	end = start + sizes[area];
2541
2542	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2543		base = vmalloc_end - last_end;
2544		goto found;
2545	}
2546	base = pvm_determine_end(&next, &prev, align) - end;
2547
2548	while (true) {
2549		BUG_ON(next && next->va_end <= base + end);
2550		BUG_ON(prev && prev->va_end > base + end);
2551
2552		/*
2553		 * base might have underflowed, add last_end before
2554		 * comparing.
2555		 */
2556		if (base + last_end < vmalloc_start + last_end) {
2557			spin_unlock(&vmap_area_lock);
2558			if (!purged) {
2559				purge_vmap_area_lazy();
2560				purged = true;
2561				goto retry;
2562			}
2563			goto err_free;
2564		}
2565
2566		/*
2567		 * If next overlaps, move base downwards so that it's
2568		 * right below next and then recheck.
2569		 */
2570		if (next && next->va_start < base + end) {
2571			base = pvm_determine_end(&next, &prev, align) - end;
2572			term_area = area;
2573			continue;
2574		}
2575
2576		/*
2577		 * If prev overlaps, shift down next and prev and move
2578		 * base so that it's right below new next and then
2579		 * recheck.
2580		 */
2581		if (prev && prev->va_end > base + start)  {
2582			next = prev;
2583			prev = node_to_va(rb_prev(&next->rb_node));
2584			base = pvm_determine_end(&next, &prev, align) - end;
2585			term_area = area;
2586			continue;
2587		}
2588
2589		/*
2590		 * This area fits, move on to the previous one.  If
2591		 * the previous one is the terminal one, we're done.
2592		 */
2593		area = (area + nr_vms - 1) % nr_vms;
2594		if (area == term_area)
2595			break;
2596		start = offsets[area];
2597		end = start + sizes[area];
2598		pvm_find_next_prev(base + end, &next, &prev);
2599	}
2600found:
2601	/* we've found a fitting base, insert all va's */
2602	for (area = 0; area < nr_vms; area++) {
2603		struct vmap_area *va = vas[area];
2604
2605		va->va_start = base + offsets[area];
2606		va->va_end = va->va_start + sizes[area];
2607		__insert_vmap_area(va);
2608	}
2609
2610	vmap_area_pcpu_hole = base + offsets[last_area];
2611
2612	spin_unlock(&vmap_area_lock);
2613
2614	/* insert all vm's */
2615	for (area = 0; area < nr_vms; area++)
2616		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2617				 pcpu_get_vm_areas);
2618
2619	kfree(vas);
2620	return vms;
2621
2622err_free:
2623	for (area = 0; area < nr_vms; area++) {
2624		kfree(vas[area]);
2625		kfree(vms[area]);
2626	}
2627err_free2:
2628	kfree(vas);
2629	kfree(vms);
2630	return NULL;
2631}
2632
2633/**
2634 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2635 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2636 * @nr_vms: the number of allocated areas
2637 *
2638 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2639 */
2640void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2641{
2642	int i;
2643
2644	for (i = 0; i < nr_vms; i++)
2645		free_vm_area(vms[i]);
2646	kfree(vms);
2647}
2648#endif	/* CONFIG_SMP */
2649
2650#ifdef CONFIG_PROC_FS
2651static void *s_start(struct seq_file *m, loff_t *pos)
2652	__acquires(&vmap_area_lock)
2653{
2654	spin_lock(&vmap_area_lock);
2655	return seq_list_start(&vmap_area_list, *pos);
2656}
2657
2658static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2659{
2660	return seq_list_next(p, &vmap_area_list, pos);
2661}
2662
2663static void s_stop(struct seq_file *m, void *p)
2664	__releases(&vmap_area_lock)
2665{
2666	spin_unlock(&vmap_area_lock);
2667}
2668
2669static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2670{
2671	if (IS_ENABLED(CONFIG_NUMA)) {
2672		unsigned int nr, *counters = m->private;
2673
2674		if (!counters)
2675			return;
2676
2677		if (v->flags & VM_UNINITIALIZED)
2678			return;
2679		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2680		smp_rmb();
2681
2682		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2683
2684		for (nr = 0; nr < v->nr_pages; nr++)
2685			counters[page_to_nid(v->pages[nr])]++;
2686
2687		for_each_node_state(nr, N_HIGH_MEMORY)
2688			if (counters[nr])
2689				seq_printf(m, " N%u=%u", nr, counters[nr]);
2690	}
2691}
2692
2693static int s_show(struct seq_file *m, void *p)
2694{
2695	struct vmap_area *va;
2696	struct vm_struct *v;
2697
2698	va = list_entry(p, struct vmap_area, list);
2699
2700	/*
2701	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2702	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2703	 */
2704	if (!(va->flags & VM_VM_AREA)) {
2705		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2706			(void *)va->va_start, (void *)va->va_end,
2707			va->va_end - va->va_start,
2708			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2709
2710		return 0;
2711	}
2712
2713	v = va->vm;
2714
2715	seq_printf(m, "0x%pK-0x%pK %7ld",
2716		v->addr, v->addr + v->size, v->size);
2717
2718	if (v->caller)
2719		seq_printf(m, " %pS", v->caller);
2720
2721	if (v->nr_pages)
2722		seq_printf(m, " pages=%d", v->nr_pages);
2723
2724	if (v->phys_addr)
2725		seq_printf(m, " phys=%pa", &v->phys_addr);
2726
2727	if (v->flags & VM_IOREMAP)
2728		seq_puts(m, " ioremap");
2729
2730	if (v->flags & VM_ALLOC)
2731		seq_puts(m, " vmalloc");
2732
2733	if (v->flags & VM_MAP)
2734		seq_puts(m, " vmap");
2735
2736	if (v->flags & VM_USERMAP)
2737		seq_puts(m, " user");
2738
2739	if (is_vmalloc_addr(v->pages))
2740		seq_puts(m, " vpages");
2741
2742	show_numa_info(m, v);
2743	seq_putc(m, '\n');
2744	return 0;
2745}
2746
2747static const struct seq_operations vmalloc_op = {
2748	.start = s_start,
2749	.next = s_next,
2750	.stop = s_stop,
2751	.show = s_show,
2752};
2753
2754static int vmalloc_open(struct inode *inode, struct file *file)
2755{
2756	if (IS_ENABLED(CONFIG_NUMA))
2757		return seq_open_private(file, &vmalloc_op,
2758					nr_node_ids * sizeof(unsigned int));
2759	else
2760		return seq_open(file, &vmalloc_op);
2761}
2762
2763static const struct file_operations proc_vmalloc_operations = {
2764	.open		= vmalloc_open,
2765	.read		= seq_read,
2766	.llseek		= seq_lseek,
2767	.release	= seq_release_private,
2768};
2769
2770static int __init proc_vmalloc_init(void)
2771{
2772	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2773	return 0;
2774}
2775module_init(proc_vmalloc_init);
2776
2777#endif
2778
v4.10.11
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42	struct llist_head list;
  43	struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52	struct llist_node *llnode = llist_del_all(&p->list);
  53	while (llnode) {
  54		void *p = llnode;
  55		llnode = llist_next(llnode);
  56		__vunmap(p, 1);
  57	}
  58}
  59
  60/*** Page table manipulation functions ***/
  61
  62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  63{
  64	pte_t *pte;
  65
  66	pte = pte_offset_kernel(pmd, addr);
  67	do {
  68		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  69		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  70	} while (pte++, addr += PAGE_SIZE, addr != end);
  71}
  72
  73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  74{
  75	pmd_t *pmd;
  76	unsigned long next;
  77
  78	pmd = pmd_offset(pud, addr);
  79	do {
  80		next = pmd_addr_end(addr, end);
  81		if (pmd_clear_huge(pmd))
  82			continue;
  83		if (pmd_none_or_clear_bad(pmd))
  84			continue;
  85		vunmap_pte_range(pmd, addr, next);
  86	} while (pmd++, addr = next, addr != end);
  87}
  88
  89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  90{
  91	pud_t *pud;
  92	unsigned long next;
  93
  94	pud = pud_offset(pgd, addr);
  95	do {
  96		next = pud_addr_end(addr, end);
  97		if (pud_clear_huge(pud))
  98			continue;
  99		if (pud_none_or_clear_bad(pud))
 100			continue;
 101		vunmap_pmd_range(pud, addr, next);
 102	} while (pud++, addr = next, addr != end);
 103}
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static void vunmap_page_range(unsigned long addr, unsigned long end)
 106{
 107	pgd_t *pgd;
 108	unsigned long next;
 109
 110	BUG_ON(addr >= end);
 111	pgd = pgd_offset_k(addr);
 112	do {
 113		next = pgd_addr_end(addr, end);
 114		if (pgd_none_or_clear_bad(pgd))
 115			continue;
 116		vunmap_pud_range(pgd, addr, next);
 117	} while (pgd++, addr = next, addr != end);
 118}
 119
 120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 121		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 122{
 123	pte_t *pte;
 124
 125	/*
 126	 * nr is a running index into the array which helps higher level
 127	 * callers keep track of where we're up to.
 128	 */
 129
 130	pte = pte_alloc_kernel(pmd, addr);
 131	if (!pte)
 132		return -ENOMEM;
 133	do {
 134		struct page *page = pages[*nr];
 135
 136		if (WARN_ON(!pte_none(*pte)))
 137			return -EBUSY;
 138		if (WARN_ON(!page))
 139			return -ENOMEM;
 140		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 141		(*nr)++;
 142	} while (pte++, addr += PAGE_SIZE, addr != end);
 143	return 0;
 144}
 145
 146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 147		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 148{
 149	pmd_t *pmd;
 150	unsigned long next;
 151
 152	pmd = pmd_alloc(&init_mm, pud, addr);
 153	if (!pmd)
 154		return -ENOMEM;
 155	do {
 156		next = pmd_addr_end(addr, end);
 157		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 158			return -ENOMEM;
 159	} while (pmd++, addr = next, addr != end);
 160	return 0;
 161}
 162
 163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166	pud_t *pud;
 167	unsigned long next;
 168
 169	pud = pud_alloc(&init_mm, pgd, addr);
 170	if (!pud)
 171		return -ENOMEM;
 172	do {
 173		next = pud_addr_end(addr, end);
 174		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pud++, addr = next, addr != end);
 177	return 0;
 178}
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180/*
 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 182 * will have pfns corresponding to the "pages" array.
 183 *
 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 185 */
 186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 187				   pgprot_t prot, struct page **pages)
 188{
 189	pgd_t *pgd;
 190	unsigned long next;
 191	unsigned long addr = start;
 192	int err = 0;
 193	int nr = 0;
 194
 195	BUG_ON(addr >= end);
 196	pgd = pgd_offset_k(addr);
 197	do {
 198		next = pgd_addr_end(addr, end);
 199		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 200		if (err)
 201			return err;
 202	} while (pgd++, addr = next, addr != end);
 203
 204	return nr;
 205}
 206
 207static int vmap_page_range(unsigned long start, unsigned long end,
 208			   pgprot_t prot, struct page **pages)
 209{
 210	int ret;
 211
 212	ret = vmap_page_range_noflush(start, end, prot, pages);
 213	flush_cache_vmap(start, end);
 214	return ret;
 215}
 216
 217int is_vmalloc_or_module_addr(const void *x)
 218{
 219	/*
 220	 * ARM, x86-64 and sparc64 put modules in a special place,
 221	 * and fall back on vmalloc() if that fails. Others
 222	 * just put it in the vmalloc space.
 223	 */
 224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 225	unsigned long addr = (unsigned long)x;
 226	if (addr >= MODULES_VADDR && addr < MODULES_END)
 227		return 1;
 228#endif
 229	return is_vmalloc_addr(x);
 230}
 231
 232/*
 233 * Walk a vmap address to the struct page it maps.
 234 */
 235struct page *vmalloc_to_page(const void *vmalloc_addr)
 236{
 237	unsigned long addr = (unsigned long) vmalloc_addr;
 238	struct page *page = NULL;
 239	pgd_t *pgd = pgd_offset_k(addr);
 
 
 
 
 240
 241	/*
 242	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 243	 * architectures that do not vmalloc module space
 244	 */
 245	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 246
 247	if (!pgd_none(*pgd)) {
 248		pud_t *pud = pud_offset(pgd, addr);
 249		if (!pud_none(*pud)) {
 250			pmd_t *pmd = pmd_offset(pud, addr);
 251			if (!pmd_none(*pmd)) {
 252				pte_t *ptep, pte;
 253
 254				ptep = pte_offset_map(pmd, addr);
 255				pte = *ptep;
 256				if (pte_present(pte))
 257					page = pte_page(pte);
 258				pte_unmap(ptep);
 259			}
 260		}
 261	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 262	return page;
 263}
 264EXPORT_SYMBOL(vmalloc_to_page);
 265
 266/*
 267 * Map a vmalloc()-space virtual address to the physical page frame number.
 268 */
 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 270{
 271	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 272}
 273EXPORT_SYMBOL(vmalloc_to_pfn);
 274
 275
 276/*** Global kva allocator ***/
 277
 
 278#define VM_VM_AREA	0x04
 279
 280static DEFINE_SPINLOCK(vmap_area_lock);
 281/* Export for kexec only */
 282LIST_HEAD(vmap_area_list);
 283static LLIST_HEAD(vmap_purge_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296	struct rb_node *n = vmap_area_root.rb_node;
 297
 298	while (n) {
 299		struct vmap_area *va;
 300
 301		va = rb_entry(n, struct vmap_area, rb_node);
 302		if (addr < va->va_start)
 303			n = n->rb_left;
 304		else if (addr >= va->va_end)
 305			n = n->rb_right;
 306		else
 307			return va;
 308	}
 309
 310	return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315	struct rb_node **p = &vmap_area_root.rb_node;
 316	struct rb_node *parent = NULL;
 317	struct rb_node *tmp;
 318
 319	while (*p) {
 320		struct vmap_area *tmp_va;
 321
 322		parent = *p;
 323		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324		if (va->va_start < tmp_va->va_end)
 325			p = &(*p)->rb_left;
 326		else if (va->va_end > tmp_va->va_start)
 327			p = &(*p)->rb_right;
 328		else
 329			BUG();
 330	}
 331
 332	rb_link_node(&va->rb_node, parent, p);
 333	rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335	/* address-sort this list */
 336	tmp = rb_prev(&va->rb_node);
 337	if (tmp) {
 338		struct vmap_area *prev;
 339		prev = rb_entry(tmp, struct vmap_area, rb_node);
 340		list_add_rcu(&va->list, &prev->list);
 341	} else
 342		list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 348
 349/*
 350 * Allocate a region of KVA of the specified size and alignment, within the
 351 * vstart and vend.
 352 */
 353static struct vmap_area *alloc_vmap_area(unsigned long size,
 354				unsigned long align,
 355				unsigned long vstart, unsigned long vend,
 356				int node, gfp_t gfp_mask)
 357{
 358	struct vmap_area *va;
 359	struct rb_node *n;
 360	unsigned long addr;
 361	int purged = 0;
 362	struct vmap_area *first;
 363
 364	BUG_ON(!size);
 365	BUG_ON(offset_in_page(size));
 366	BUG_ON(!is_power_of_2(align));
 367
 368	might_sleep();
 369
 370	va = kmalloc_node(sizeof(struct vmap_area),
 371			gfp_mask & GFP_RECLAIM_MASK, node);
 372	if (unlikely(!va))
 373		return ERR_PTR(-ENOMEM);
 374
 375	/*
 376	 * Only scan the relevant parts containing pointers to other objects
 377	 * to avoid false negatives.
 378	 */
 379	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 380
 381retry:
 382	spin_lock(&vmap_area_lock);
 383	/*
 384	 * Invalidate cache if we have more permissive parameters.
 385	 * cached_hole_size notes the largest hole noticed _below_
 386	 * the vmap_area cached in free_vmap_cache: if size fits
 387	 * into that hole, we want to scan from vstart to reuse
 388	 * the hole instead of allocating above free_vmap_cache.
 389	 * Note that __free_vmap_area may update free_vmap_cache
 390	 * without updating cached_hole_size or cached_align.
 391	 */
 392	if (!free_vmap_cache ||
 393			size < cached_hole_size ||
 394			vstart < cached_vstart ||
 395			align < cached_align) {
 396nocache:
 397		cached_hole_size = 0;
 398		free_vmap_cache = NULL;
 399	}
 400	/* record if we encounter less permissive parameters */
 401	cached_vstart = vstart;
 402	cached_align = align;
 403
 404	/* find starting point for our search */
 405	if (free_vmap_cache) {
 406		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 407		addr = ALIGN(first->va_end, align);
 408		if (addr < vstart)
 409			goto nocache;
 410		if (addr + size < addr)
 411			goto overflow;
 412
 413	} else {
 414		addr = ALIGN(vstart, align);
 415		if (addr + size < addr)
 416			goto overflow;
 417
 418		n = vmap_area_root.rb_node;
 419		first = NULL;
 420
 421		while (n) {
 422			struct vmap_area *tmp;
 423			tmp = rb_entry(n, struct vmap_area, rb_node);
 424			if (tmp->va_end >= addr) {
 425				first = tmp;
 426				if (tmp->va_start <= addr)
 427					break;
 428				n = n->rb_left;
 429			} else
 430				n = n->rb_right;
 431		}
 432
 433		if (!first)
 434			goto found;
 435	}
 436
 437	/* from the starting point, walk areas until a suitable hole is found */
 438	while (addr + size > first->va_start && addr + size <= vend) {
 439		if (addr + cached_hole_size < first->va_start)
 440			cached_hole_size = first->va_start - addr;
 441		addr = ALIGN(first->va_end, align);
 442		if (addr + size < addr)
 443			goto overflow;
 444
 445		if (list_is_last(&first->list, &vmap_area_list))
 446			goto found;
 447
 448		first = list_next_entry(first, list);
 449	}
 450
 451found:
 452	if (addr + size > vend)
 453		goto overflow;
 454
 455	va->va_start = addr;
 456	va->va_end = addr + size;
 457	va->flags = 0;
 458	__insert_vmap_area(va);
 459	free_vmap_cache = &va->rb_node;
 460	spin_unlock(&vmap_area_lock);
 461
 462	BUG_ON(!IS_ALIGNED(va->va_start, align));
 463	BUG_ON(va->va_start < vstart);
 464	BUG_ON(va->va_end > vend);
 465
 466	return va;
 467
 468overflow:
 469	spin_unlock(&vmap_area_lock);
 470	if (!purged) {
 471		purge_vmap_area_lazy();
 472		purged = 1;
 473		goto retry;
 474	}
 475
 476	if (gfpflags_allow_blocking(gfp_mask)) {
 477		unsigned long freed = 0;
 478		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 479		if (freed > 0) {
 480			purged = 0;
 481			goto retry;
 482		}
 483	}
 484
 485	if (printk_ratelimit())
 486		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 487			size);
 488	kfree(va);
 489	return ERR_PTR(-EBUSY);
 490}
 491
 492int register_vmap_purge_notifier(struct notifier_block *nb)
 493{
 494	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 495}
 496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 497
 498int unregister_vmap_purge_notifier(struct notifier_block *nb)
 499{
 500	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 501}
 502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 503
 504static void __free_vmap_area(struct vmap_area *va)
 505{
 506	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 507
 508	if (free_vmap_cache) {
 509		if (va->va_end < cached_vstart) {
 510			free_vmap_cache = NULL;
 511		} else {
 512			struct vmap_area *cache;
 513			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 514			if (va->va_start <= cache->va_start) {
 515				free_vmap_cache = rb_prev(&va->rb_node);
 516				/*
 517				 * We don't try to update cached_hole_size or
 518				 * cached_align, but it won't go very wrong.
 519				 */
 520			}
 521		}
 522	}
 523	rb_erase(&va->rb_node, &vmap_area_root);
 524	RB_CLEAR_NODE(&va->rb_node);
 525	list_del_rcu(&va->list);
 526
 527	/*
 528	 * Track the highest possible candidate for pcpu area
 529	 * allocation.  Areas outside of vmalloc area can be returned
 530	 * here too, consider only end addresses which fall inside
 531	 * vmalloc area proper.
 532	 */
 533	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 534		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 535
 536	kfree_rcu(va, rcu_head);
 537}
 538
 539/*
 540 * Free a region of KVA allocated by alloc_vmap_area
 541 */
 542static void free_vmap_area(struct vmap_area *va)
 543{
 544	spin_lock(&vmap_area_lock);
 545	__free_vmap_area(va);
 546	spin_unlock(&vmap_area_lock);
 547}
 548
 549/*
 550 * Clear the pagetable entries of a given vmap_area
 551 */
 552static void unmap_vmap_area(struct vmap_area *va)
 553{
 554	vunmap_page_range(va->va_start, va->va_end);
 555}
 556
 557static void vmap_debug_free_range(unsigned long start, unsigned long end)
 558{
 559	/*
 560	 * Unmap page tables and force a TLB flush immediately if pagealloc
 561	 * debugging is enabled.  This catches use after free bugs similarly to
 562	 * those in linear kernel virtual address space after a page has been
 563	 * freed.
 564	 *
 565	 * All the lazy freeing logic is still retained, in order to minimise
 566	 * intrusiveness of this debugging feature.
 567	 *
 568	 * This is going to be *slow* (linear kernel virtual address debugging
 569	 * doesn't do a broadcast TLB flush so it is a lot faster).
 570	 */
 571	if (debug_pagealloc_enabled()) {
 572		vunmap_page_range(start, end);
 573		flush_tlb_kernel_range(start, end);
 574	}
 575}
 576
 577/*
 578 * lazy_max_pages is the maximum amount of virtual address space we gather up
 579 * before attempting to purge with a TLB flush.
 580 *
 581 * There is a tradeoff here: a larger number will cover more kernel page tables
 582 * and take slightly longer to purge, but it will linearly reduce the number of
 583 * global TLB flushes that must be performed. It would seem natural to scale
 584 * this number up linearly with the number of CPUs (because vmapping activity
 585 * could also scale linearly with the number of CPUs), however it is likely
 586 * that in practice, workloads might be constrained in other ways that mean
 587 * vmap activity will not scale linearly with CPUs. Also, I want to be
 588 * conservative and not introduce a big latency on huge systems, so go with
 589 * a less aggressive log scale. It will still be an improvement over the old
 590 * code, and it will be simple to change the scale factor if we find that it
 591 * becomes a problem on bigger systems.
 592 */
 593static unsigned long lazy_max_pages(void)
 594{
 595	unsigned int log;
 596
 597	log = fls(num_online_cpus());
 598
 599	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 600}
 601
 602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 603
 604/*
 605 * Serialize vmap purging.  There is no actual criticial section protected
 606 * by this look, but we want to avoid concurrent calls for performance
 607 * reasons and to make the pcpu_get_vm_areas more deterministic.
 608 */
 609static DEFINE_MUTEX(vmap_purge_lock);
 610
 611/* for per-CPU blocks */
 612static void purge_fragmented_blocks_allcpus(void);
 613
 614/*
 615 * called before a call to iounmap() if the caller wants vm_area_struct's
 616 * immediately freed.
 617 */
 618void set_iounmap_nonlazy(void)
 619{
 620	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 621}
 622
 623/*
 624 * Purges all lazily-freed vmap areas.
 625 */
 626static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 627{
 628	struct llist_node *valist;
 629	struct vmap_area *va;
 630	struct vmap_area *n_va;
 631	bool do_free = false;
 632
 633	lockdep_assert_held(&vmap_purge_lock);
 634
 635	valist = llist_del_all(&vmap_purge_list);
 636	llist_for_each_entry(va, valist, purge_list) {
 637		if (va->va_start < start)
 638			start = va->va_start;
 639		if (va->va_end > end)
 640			end = va->va_end;
 641		do_free = true;
 642	}
 643
 644	if (!do_free)
 645		return false;
 646
 647	flush_tlb_kernel_range(start, end);
 648
 649	spin_lock(&vmap_area_lock);
 650	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 651		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 652
 653		__free_vmap_area(va);
 654		atomic_sub(nr, &vmap_lazy_nr);
 655		cond_resched_lock(&vmap_area_lock);
 656	}
 657	spin_unlock(&vmap_area_lock);
 658	return true;
 659}
 660
 661/*
 662 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 663 * is already purging.
 664 */
 665static void try_purge_vmap_area_lazy(void)
 666{
 667	if (mutex_trylock(&vmap_purge_lock)) {
 668		__purge_vmap_area_lazy(ULONG_MAX, 0);
 669		mutex_unlock(&vmap_purge_lock);
 670	}
 671}
 672
 673/*
 674 * Kick off a purge of the outstanding lazy areas.
 675 */
 676static void purge_vmap_area_lazy(void)
 677{
 678	mutex_lock(&vmap_purge_lock);
 679	purge_fragmented_blocks_allcpus();
 680	__purge_vmap_area_lazy(ULONG_MAX, 0);
 681	mutex_unlock(&vmap_purge_lock);
 682}
 683
 684/*
 685 * Free a vmap area, caller ensuring that the area has been unmapped
 686 * and flush_cache_vunmap had been called for the correct range
 687 * previously.
 688 */
 689static void free_vmap_area_noflush(struct vmap_area *va)
 690{
 691	int nr_lazy;
 692
 693	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 694				    &vmap_lazy_nr);
 695
 696	/* After this point, we may free va at any time */
 697	llist_add(&va->purge_list, &vmap_purge_list);
 698
 699	if (unlikely(nr_lazy > lazy_max_pages()))
 700		try_purge_vmap_area_lazy();
 701}
 702
 703/*
 704 * Free and unmap a vmap area
 705 */
 706static void free_unmap_vmap_area(struct vmap_area *va)
 707{
 708	flush_cache_vunmap(va->va_start, va->va_end);
 709	unmap_vmap_area(va);
 710	free_vmap_area_noflush(va);
 711}
 712
 713static struct vmap_area *find_vmap_area(unsigned long addr)
 714{
 715	struct vmap_area *va;
 716
 717	spin_lock(&vmap_area_lock);
 718	va = __find_vmap_area(addr);
 719	spin_unlock(&vmap_area_lock);
 720
 721	return va;
 722}
 723
 724/*** Per cpu kva allocator ***/
 725
 726/*
 727 * vmap space is limited especially on 32 bit architectures. Ensure there is
 728 * room for at least 16 percpu vmap blocks per CPU.
 729 */
 730/*
 731 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 732 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 733 * instead (we just need a rough idea)
 734 */
 735#if BITS_PER_LONG == 32
 736#define VMALLOC_SPACE		(128UL*1024*1024)
 737#else
 738#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 739#endif
 740
 741#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 742#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 743#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 744#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 745#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 746#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 747#define VMAP_BBMAP_BITS		\
 748		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 749		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 750			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 751
 752#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 753
 754static bool vmap_initialized __read_mostly = false;
 755
 756struct vmap_block_queue {
 757	spinlock_t lock;
 758	struct list_head free;
 759};
 760
 761struct vmap_block {
 762	spinlock_t lock;
 763	struct vmap_area *va;
 764	unsigned long free, dirty;
 765	unsigned long dirty_min, dirty_max; /*< dirty range */
 766	struct list_head free_list;
 767	struct rcu_head rcu_head;
 768	struct list_head purge;
 769};
 770
 771/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 772static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 773
 774/*
 775 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 776 * in the free path. Could get rid of this if we change the API to return a
 777 * "cookie" from alloc, to be passed to free. But no big deal yet.
 778 */
 779static DEFINE_SPINLOCK(vmap_block_tree_lock);
 780static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 781
 782/*
 783 * We should probably have a fallback mechanism to allocate virtual memory
 784 * out of partially filled vmap blocks. However vmap block sizing should be
 785 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 786 * big problem.
 787 */
 788
 789static unsigned long addr_to_vb_idx(unsigned long addr)
 790{
 791	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 792	addr /= VMAP_BLOCK_SIZE;
 793	return addr;
 794}
 795
 796static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 797{
 798	unsigned long addr;
 799
 800	addr = va_start + (pages_off << PAGE_SHIFT);
 801	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 802	return (void *)addr;
 803}
 804
 805/**
 806 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 807 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 808 * @order:    how many 2^order pages should be occupied in newly allocated block
 809 * @gfp_mask: flags for the page level allocator
 810 *
 811 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 812 */
 813static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 814{
 815	struct vmap_block_queue *vbq;
 816	struct vmap_block *vb;
 817	struct vmap_area *va;
 818	unsigned long vb_idx;
 819	int node, err;
 820	void *vaddr;
 821
 822	node = numa_node_id();
 823
 824	vb = kmalloc_node(sizeof(struct vmap_block),
 825			gfp_mask & GFP_RECLAIM_MASK, node);
 826	if (unlikely(!vb))
 827		return ERR_PTR(-ENOMEM);
 828
 829	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 830					VMALLOC_START, VMALLOC_END,
 831					node, gfp_mask);
 832	if (IS_ERR(va)) {
 833		kfree(vb);
 834		return ERR_CAST(va);
 835	}
 836
 837	err = radix_tree_preload(gfp_mask);
 838	if (unlikely(err)) {
 839		kfree(vb);
 840		free_vmap_area(va);
 841		return ERR_PTR(err);
 842	}
 843
 844	vaddr = vmap_block_vaddr(va->va_start, 0);
 845	spin_lock_init(&vb->lock);
 846	vb->va = va;
 847	/* At least something should be left free */
 848	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 849	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 850	vb->dirty = 0;
 851	vb->dirty_min = VMAP_BBMAP_BITS;
 852	vb->dirty_max = 0;
 853	INIT_LIST_HEAD(&vb->free_list);
 854
 855	vb_idx = addr_to_vb_idx(va->va_start);
 856	spin_lock(&vmap_block_tree_lock);
 857	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 858	spin_unlock(&vmap_block_tree_lock);
 859	BUG_ON(err);
 860	radix_tree_preload_end();
 861
 862	vbq = &get_cpu_var(vmap_block_queue);
 863	spin_lock(&vbq->lock);
 864	list_add_tail_rcu(&vb->free_list, &vbq->free);
 865	spin_unlock(&vbq->lock);
 866	put_cpu_var(vmap_block_queue);
 867
 868	return vaddr;
 869}
 870
 871static void free_vmap_block(struct vmap_block *vb)
 872{
 873	struct vmap_block *tmp;
 874	unsigned long vb_idx;
 875
 876	vb_idx = addr_to_vb_idx(vb->va->va_start);
 877	spin_lock(&vmap_block_tree_lock);
 878	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 879	spin_unlock(&vmap_block_tree_lock);
 880	BUG_ON(tmp != vb);
 881
 882	free_vmap_area_noflush(vb->va);
 883	kfree_rcu(vb, rcu_head);
 884}
 885
 886static void purge_fragmented_blocks(int cpu)
 887{
 888	LIST_HEAD(purge);
 889	struct vmap_block *vb;
 890	struct vmap_block *n_vb;
 891	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 892
 893	rcu_read_lock();
 894	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 895
 896		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 897			continue;
 898
 899		spin_lock(&vb->lock);
 900		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 901			vb->free = 0; /* prevent further allocs after releasing lock */
 902			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 903			vb->dirty_min = 0;
 904			vb->dirty_max = VMAP_BBMAP_BITS;
 905			spin_lock(&vbq->lock);
 906			list_del_rcu(&vb->free_list);
 907			spin_unlock(&vbq->lock);
 908			spin_unlock(&vb->lock);
 909			list_add_tail(&vb->purge, &purge);
 910		} else
 911			spin_unlock(&vb->lock);
 912	}
 913	rcu_read_unlock();
 914
 915	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 916		list_del(&vb->purge);
 917		free_vmap_block(vb);
 918	}
 919}
 920
 921static void purge_fragmented_blocks_allcpus(void)
 922{
 923	int cpu;
 924
 925	for_each_possible_cpu(cpu)
 926		purge_fragmented_blocks(cpu);
 927}
 928
 929static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 930{
 931	struct vmap_block_queue *vbq;
 932	struct vmap_block *vb;
 933	void *vaddr = NULL;
 934	unsigned int order;
 935
 936	BUG_ON(offset_in_page(size));
 937	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 938	if (WARN_ON(size == 0)) {
 939		/*
 940		 * Allocating 0 bytes isn't what caller wants since
 941		 * get_order(0) returns funny result. Just warn and terminate
 942		 * early.
 943		 */
 944		return NULL;
 945	}
 946	order = get_order(size);
 947
 948	rcu_read_lock();
 949	vbq = &get_cpu_var(vmap_block_queue);
 950	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 951		unsigned long pages_off;
 952
 953		spin_lock(&vb->lock);
 954		if (vb->free < (1UL << order)) {
 955			spin_unlock(&vb->lock);
 956			continue;
 957		}
 958
 959		pages_off = VMAP_BBMAP_BITS - vb->free;
 960		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 961		vb->free -= 1UL << order;
 962		if (vb->free == 0) {
 963			spin_lock(&vbq->lock);
 964			list_del_rcu(&vb->free_list);
 965			spin_unlock(&vbq->lock);
 966		}
 967
 968		spin_unlock(&vb->lock);
 969		break;
 970	}
 971
 972	put_cpu_var(vmap_block_queue);
 973	rcu_read_unlock();
 974
 975	/* Allocate new block if nothing was found */
 976	if (!vaddr)
 977		vaddr = new_vmap_block(order, gfp_mask);
 978
 979	return vaddr;
 980}
 981
 982static void vb_free(const void *addr, unsigned long size)
 983{
 984	unsigned long offset;
 985	unsigned long vb_idx;
 986	unsigned int order;
 987	struct vmap_block *vb;
 988
 989	BUG_ON(offset_in_page(size));
 990	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 991
 992	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 993
 994	order = get_order(size);
 995
 996	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 997	offset >>= PAGE_SHIFT;
 998
 999	vb_idx = addr_to_vb_idx((unsigned long)addr);
1000	rcu_read_lock();
1001	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002	rcu_read_unlock();
1003	BUG_ON(!vb);
1004
1005	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
1007	spin_lock(&vb->lock);
1008
1009	/* Expand dirty range */
1010	vb->dirty_min = min(vb->dirty_min, offset);
1011	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1012
1013	vb->dirty += 1UL << order;
1014	if (vb->dirty == VMAP_BBMAP_BITS) {
1015		BUG_ON(vb->free);
1016		spin_unlock(&vb->lock);
1017		free_vmap_block(vb);
1018	} else
1019		spin_unlock(&vb->lock);
1020}
1021
1022/**
1023 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1024 *
1025 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1026 * to amortize TLB flushing overheads. What this means is that any page you
1027 * have now, may, in a former life, have been mapped into kernel virtual
1028 * address by the vmap layer and so there might be some CPUs with TLB entries
1029 * still referencing that page (additional to the regular 1:1 kernel mapping).
1030 *
1031 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1032 * be sure that none of the pages we have control over will have any aliases
1033 * from the vmap layer.
1034 */
1035void vm_unmap_aliases(void)
1036{
1037	unsigned long start = ULONG_MAX, end = 0;
1038	int cpu;
1039	int flush = 0;
1040
1041	if (unlikely(!vmap_initialized))
1042		return;
1043
1044	might_sleep();
1045
1046	for_each_possible_cpu(cpu) {
1047		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048		struct vmap_block *vb;
1049
1050		rcu_read_lock();
1051		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1052			spin_lock(&vb->lock);
1053			if (vb->dirty) {
1054				unsigned long va_start = vb->va->va_start;
1055				unsigned long s, e;
1056
1057				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059
1060				start = min(s, start);
1061				end   = max(e, end);
1062
1063				flush = 1;
1064			}
1065			spin_unlock(&vb->lock);
1066		}
1067		rcu_read_unlock();
1068	}
1069
1070	mutex_lock(&vmap_purge_lock);
1071	purge_fragmented_blocks_allcpus();
1072	if (!__purge_vmap_area_lazy(start, end) && flush)
1073		flush_tlb_kernel_range(start, end);
1074	mutex_unlock(&vmap_purge_lock);
1075}
1076EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077
1078/**
1079 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1080 * @mem: the pointer returned by vm_map_ram
1081 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082 */
1083void vm_unmap_ram(const void *mem, unsigned int count)
1084{
1085	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1086	unsigned long addr = (unsigned long)mem;
1087	struct vmap_area *va;
1088
1089	might_sleep();
1090	BUG_ON(!addr);
1091	BUG_ON(addr < VMALLOC_START);
1092	BUG_ON(addr > VMALLOC_END);
1093	BUG_ON(!PAGE_ALIGNED(addr));
1094
1095	debug_check_no_locks_freed(mem, size);
1096	vmap_debug_free_range(addr, addr+size);
1097
1098	if (likely(count <= VMAP_MAX_ALLOC)) {
1099		vb_free(mem, size);
1100		return;
1101	}
1102
1103	va = find_vmap_area(addr);
1104	BUG_ON(!va);
1105	free_unmap_vmap_area(va);
1106}
1107EXPORT_SYMBOL(vm_unmap_ram);
1108
1109/**
1110 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1111 * @pages: an array of pointers to the pages to be mapped
1112 * @count: number of pages
1113 * @node: prefer to allocate data structures on this node
1114 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1115 *
1116 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1117 * faster than vmap so it's good.  But if you mix long-life and short-life
1118 * objects with vm_map_ram(), it could consume lots of address space through
1119 * fragmentation (especially on a 32bit machine).  You could see failures in
1120 * the end.  Please use this function for short-lived objects.
1121 *
1122 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1123 */
1124void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1125{
1126	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127	unsigned long addr;
1128	void *mem;
1129
1130	if (likely(count <= VMAP_MAX_ALLOC)) {
1131		mem = vb_alloc(size, GFP_KERNEL);
1132		if (IS_ERR(mem))
1133			return NULL;
1134		addr = (unsigned long)mem;
1135	} else {
1136		struct vmap_area *va;
1137		va = alloc_vmap_area(size, PAGE_SIZE,
1138				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1139		if (IS_ERR(va))
1140			return NULL;
1141
1142		addr = va->va_start;
1143		mem = (void *)addr;
1144	}
1145	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1146		vm_unmap_ram(mem, count);
1147		return NULL;
1148	}
1149	return mem;
1150}
1151EXPORT_SYMBOL(vm_map_ram);
1152
1153static struct vm_struct *vmlist __initdata;
1154/**
1155 * vm_area_add_early - add vmap area early during boot
1156 * @vm: vm_struct to add
1157 *
1158 * This function is used to add fixed kernel vm area to vmlist before
1159 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1160 * should contain proper values and the other fields should be zero.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_add_early(struct vm_struct *vm)
1165{
1166	struct vm_struct *tmp, **p;
1167
1168	BUG_ON(vmap_initialized);
1169	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1170		if (tmp->addr >= vm->addr) {
1171			BUG_ON(tmp->addr < vm->addr + vm->size);
1172			break;
1173		} else
1174			BUG_ON(tmp->addr + tmp->size > vm->addr);
1175	}
1176	vm->next = *p;
1177	*p = vm;
1178}
1179
1180/**
1181 * vm_area_register_early - register vmap area early during boot
1182 * @vm: vm_struct to register
1183 * @align: requested alignment
1184 *
1185 * This function is used to register kernel vm area before
1186 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1187 * proper values on entry and other fields should be zero.  On return,
1188 * vm->addr contains the allocated address.
1189 *
1190 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 */
1192void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1193{
1194	static size_t vm_init_off __initdata;
1195	unsigned long addr;
1196
1197	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1198	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1199
1200	vm->addr = (void *)addr;
1201
1202	vm_area_add_early(vm);
1203}
1204
1205void __init vmalloc_init(void)
1206{
1207	struct vmap_area *va;
1208	struct vm_struct *tmp;
1209	int i;
1210
1211	for_each_possible_cpu(i) {
1212		struct vmap_block_queue *vbq;
1213		struct vfree_deferred *p;
1214
1215		vbq = &per_cpu(vmap_block_queue, i);
1216		spin_lock_init(&vbq->lock);
1217		INIT_LIST_HEAD(&vbq->free);
1218		p = &per_cpu(vfree_deferred, i);
1219		init_llist_head(&p->list);
1220		INIT_WORK(&p->wq, free_work);
1221	}
1222
1223	/* Import existing vmlist entries. */
1224	for (tmp = vmlist; tmp; tmp = tmp->next) {
1225		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1226		va->flags = VM_VM_AREA;
1227		va->va_start = (unsigned long)tmp->addr;
1228		va->va_end = va->va_start + tmp->size;
1229		va->vm = tmp;
1230		__insert_vmap_area(va);
1231	}
1232
1233	vmap_area_pcpu_hole = VMALLOC_END;
1234
1235	vmap_initialized = true;
1236}
1237
1238/**
1239 * map_kernel_range_noflush - map kernel VM area with the specified pages
1240 * @addr: start of the VM area to map
1241 * @size: size of the VM area to map
1242 * @prot: page protection flags to use
1243 * @pages: pages to map
1244 *
1245 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1246 * specify should have been allocated using get_vm_area() and its
1247 * friends.
1248 *
1249 * NOTE:
1250 * This function does NOT do any cache flushing.  The caller is
1251 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1252 * before calling this function.
1253 *
1254 * RETURNS:
1255 * The number of pages mapped on success, -errno on failure.
1256 */
1257int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1258			     pgprot_t prot, struct page **pages)
1259{
1260	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261}
1262
1263/**
1264 * unmap_kernel_range_noflush - unmap kernel VM area
1265 * @addr: start of the VM area to unmap
1266 * @size: size of the VM area to unmap
1267 *
1268 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1269 * specify should have been allocated using get_vm_area() and its
1270 * friends.
1271 *
1272 * NOTE:
1273 * This function does NOT do any cache flushing.  The caller is
1274 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1275 * before calling this function and flush_tlb_kernel_range() after.
1276 */
1277void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1278{
1279	vunmap_page_range(addr, addr + size);
1280}
1281EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1282
1283/**
1284 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1285 * @addr: start of the VM area to unmap
1286 * @size: size of the VM area to unmap
1287 *
1288 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1289 * the unmapping and tlb after.
1290 */
1291void unmap_kernel_range(unsigned long addr, unsigned long size)
1292{
1293	unsigned long end = addr + size;
1294
1295	flush_cache_vunmap(addr, end);
1296	vunmap_page_range(addr, end);
1297	flush_tlb_kernel_range(addr, end);
1298}
1299EXPORT_SYMBOL_GPL(unmap_kernel_range);
1300
1301int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1302{
1303	unsigned long addr = (unsigned long)area->addr;
1304	unsigned long end = addr + get_vm_area_size(area);
1305	int err;
1306
1307	err = vmap_page_range(addr, end, prot, pages);
1308
1309	return err > 0 ? 0 : err;
1310}
1311EXPORT_SYMBOL_GPL(map_vm_area);
1312
1313static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1314			      unsigned long flags, const void *caller)
1315{
1316	spin_lock(&vmap_area_lock);
1317	vm->flags = flags;
1318	vm->addr = (void *)va->va_start;
1319	vm->size = va->va_end - va->va_start;
1320	vm->caller = caller;
1321	va->vm = vm;
1322	va->flags |= VM_VM_AREA;
1323	spin_unlock(&vmap_area_lock);
1324}
1325
1326static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1327{
1328	/*
1329	 * Before removing VM_UNINITIALIZED,
1330	 * we should make sure that vm has proper values.
1331	 * Pair with smp_rmb() in show_numa_info().
1332	 */
1333	smp_wmb();
1334	vm->flags &= ~VM_UNINITIALIZED;
1335}
1336
1337static struct vm_struct *__get_vm_area_node(unsigned long size,
1338		unsigned long align, unsigned long flags, unsigned long start,
1339		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1340{
1341	struct vmap_area *va;
1342	struct vm_struct *area;
1343
1344	BUG_ON(in_interrupt());
1345	size = PAGE_ALIGN(size);
1346	if (unlikely(!size))
1347		return NULL;
1348
1349	if (flags & VM_IOREMAP)
1350		align = 1ul << clamp_t(int, get_count_order_long(size),
1351				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1352
1353	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1354	if (unlikely(!area))
1355		return NULL;
1356
1357	if (!(flags & VM_NO_GUARD))
1358		size += PAGE_SIZE;
1359
1360	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1361	if (IS_ERR(va)) {
1362		kfree(area);
1363		return NULL;
1364	}
1365
1366	setup_vmalloc_vm(area, va, flags, caller);
1367
1368	return area;
1369}
1370
1371struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372				unsigned long start, unsigned long end)
1373{
1374	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375				  GFP_KERNEL, __builtin_return_address(0));
1376}
1377EXPORT_SYMBOL_GPL(__get_vm_area);
1378
1379struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380				       unsigned long start, unsigned long end,
1381				       const void *caller)
1382{
1383	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384				  GFP_KERNEL, caller);
1385}
1386
1387/**
1388 *	get_vm_area  -  reserve a contiguous kernel virtual area
1389 *	@size:		size of the area
1390 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1391 *
1392 *	Search an area of @size in the kernel virtual mapping area,
1393 *	and reserved it for out purposes.  Returns the area descriptor
1394 *	on success or %NULL on failure.
1395 */
1396struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397{
1398	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399				  NUMA_NO_NODE, GFP_KERNEL,
1400				  __builtin_return_address(0));
1401}
1402
1403struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1404				const void *caller)
1405{
1406	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1407				  NUMA_NO_NODE, GFP_KERNEL, caller);
1408}
1409
1410/**
1411 *	find_vm_area  -  find a continuous kernel virtual area
1412 *	@addr:		base address
1413 *
1414 *	Search for the kernel VM area starting at @addr, and return it.
1415 *	It is up to the caller to do all required locking to keep the returned
1416 *	pointer valid.
1417 */
1418struct vm_struct *find_vm_area(const void *addr)
1419{
1420	struct vmap_area *va;
1421
1422	va = find_vmap_area((unsigned long)addr);
1423	if (va && va->flags & VM_VM_AREA)
1424		return va->vm;
1425
1426	return NULL;
1427}
1428
1429/**
1430 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1431 *	@addr:		base address
1432 *
1433 *	Search for the kernel VM area starting at @addr, and remove it.
1434 *	This function returns the found VM area, but using it is NOT safe
1435 *	on SMP machines, except for its size or flags.
1436 */
1437struct vm_struct *remove_vm_area(const void *addr)
1438{
1439	struct vmap_area *va;
1440
1441	might_sleep();
1442
1443	va = find_vmap_area((unsigned long)addr);
1444	if (va && va->flags & VM_VM_AREA) {
1445		struct vm_struct *vm = va->vm;
1446
1447		spin_lock(&vmap_area_lock);
1448		va->vm = NULL;
1449		va->flags &= ~VM_VM_AREA;
 
1450		spin_unlock(&vmap_area_lock);
1451
1452		vmap_debug_free_range(va->va_start, va->va_end);
1453		kasan_free_shadow(vm);
1454		free_unmap_vmap_area(va);
1455
1456		return vm;
1457	}
1458	return NULL;
1459}
1460
1461static void __vunmap(const void *addr, int deallocate_pages)
1462{
1463	struct vm_struct *area;
1464
1465	if (!addr)
1466		return;
1467
1468	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1469			addr))
1470		return;
1471
1472	area = remove_vm_area(addr);
1473	if (unlikely(!area)) {
1474		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1475				addr);
1476		return;
1477	}
1478
1479	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1480	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1481
1482	if (deallocate_pages) {
1483		int i;
1484
1485		for (i = 0; i < area->nr_pages; i++) {
1486			struct page *page = area->pages[i];
1487
1488			BUG_ON(!page);
1489			__free_pages(page, 0);
1490		}
1491
1492		kvfree(area->pages);
1493	}
1494
1495	kfree(area);
1496	return;
1497}
1498
1499static inline void __vfree_deferred(const void *addr)
1500{
1501	/*
1502	 * Use raw_cpu_ptr() because this can be called from preemptible
1503	 * context. Preemption is absolutely fine here, because the llist_add()
1504	 * implementation is lockless, so it works even if we are adding to
1505	 * nother cpu's list.  schedule_work() should be fine with this too.
1506	 */
1507	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1508
1509	if (llist_add((struct llist_node *)addr, &p->list))
1510		schedule_work(&p->wq);
1511}
1512
1513/**
1514 *	vfree_atomic  -  release memory allocated by vmalloc()
1515 *	@addr:		memory base address
1516 *
1517 *	This one is just like vfree() but can be called in any atomic context
1518 *	except NMIs.
1519 */
1520void vfree_atomic(const void *addr)
1521{
1522	BUG_ON(in_nmi());
1523
1524	kmemleak_free(addr);
1525
1526	if (!addr)
1527		return;
1528	__vfree_deferred(addr);
1529}
1530
1531/**
1532 *	vfree  -  release memory allocated by vmalloc()
1533 *	@addr:		memory base address
1534 *
1535 *	Free the virtually continuous memory area starting at @addr, as
1536 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1537 *	NULL, no operation is performed.
1538 *
1539 *	Must not be called in NMI context (strictly speaking, only if we don't
1540 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1541 *	conventions for vfree() arch-depenedent would be a really bad idea)
1542 *
1543 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544 */
1545void vfree(const void *addr)
1546{
1547	BUG_ON(in_nmi());
1548
1549	kmemleak_free(addr);
1550
1551	if (!addr)
1552		return;
1553	if (unlikely(in_interrupt()))
1554		__vfree_deferred(addr);
1555	else
1556		__vunmap(addr, 1);
1557}
1558EXPORT_SYMBOL(vfree);
1559
1560/**
1561 *	vunmap  -  release virtual mapping obtained by vmap()
1562 *	@addr:		memory base address
1563 *
1564 *	Free the virtually contiguous memory area starting at @addr,
1565 *	which was created from the page array passed to vmap().
1566 *
1567 *	Must not be called in interrupt context.
1568 */
1569void vunmap(const void *addr)
1570{
1571	BUG_ON(in_interrupt());
1572	might_sleep();
1573	if (addr)
1574		__vunmap(addr, 0);
1575}
1576EXPORT_SYMBOL(vunmap);
1577
1578/**
1579 *	vmap  -  map an array of pages into virtually contiguous space
1580 *	@pages:		array of page pointers
1581 *	@count:		number of pages to map
1582 *	@flags:		vm_area->flags
1583 *	@prot:		page protection for the mapping
1584 *
1585 *	Maps @count pages from @pages into contiguous kernel virtual
1586 *	space.
1587 */
1588void *vmap(struct page **pages, unsigned int count,
1589		unsigned long flags, pgprot_t prot)
1590{
1591	struct vm_struct *area;
1592	unsigned long size;		/* In bytes */
1593
1594	might_sleep();
1595
1596	if (count > totalram_pages)
1597		return NULL;
1598
1599	size = (unsigned long)count << PAGE_SHIFT;
1600	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1601	if (!area)
1602		return NULL;
1603
1604	if (map_vm_area(area, prot, pages)) {
1605		vunmap(area->addr);
1606		return NULL;
1607	}
1608
1609	return area->addr;
1610}
1611EXPORT_SYMBOL(vmap);
1612
1613static void *__vmalloc_node(unsigned long size, unsigned long align,
1614			    gfp_t gfp_mask, pgprot_t prot,
1615			    int node, const void *caller);
1616static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1617				 pgprot_t prot, int node)
1618{
1619	struct page **pages;
1620	unsigned int nr_pages, array_size, i;
1621	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1622	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
 
 
 
1623
1624	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1625	array_size = (nr_pages * sizeof(struct page *));
1626
1627	area->nr_pages = nr_pages;
1628	/* Please note that the recursion is strictly bounded. */
1629	if (array_size > PAGE_SIZE) {
1630		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1631				PAGE_KERNEL, node, area->caller);
1632	} else {
1633		pages = kmalloc_node(array_size, nested_gfp, node);
1634	}
1635	area->pages = pages;
1636	if (!area->pages) {
1637		remove_vm_area(area->addr);
1638		kfree(area);
1639		return NULL;
1640	}
1641
1642	for (i = 0; i < area->nr_pages; i++) {
1643		struct page *page;
1644
1645		if (node == NUMA_NO_NODE)
1646			page = alloc_page(alloc_mask);
1647		else
1648			page = alloc_pages_node(node, alloc_mask, 0);
1649
1650		if (unlikely(!page)) {
1651			/* Successfully allocated i pages, free them in __vunmap() */
1652			area->nr_pages = i;
1653			goto fail;
1654		}
1655		area->pages[i] = page;
1656		if (gfpflags_allow_blocking(gfp_mask))
1657			cond_resched();
1658	}
1659
1660	if (map_vm_area(area, prot, pages))
1661		goto fail;
1662	return area->addr;
1663
1664fail:
1665	warn_alloc(gfp_mask,
1666			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1667			  (area->nr_pages*PAGE_SIZE), area->size);
1668	vfree(area->addr);
1669	return NULL;
1670}
1671
1672/**
1673 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1674 *	@size:		allocation size
1675 *	@align:		desired alignment
1676 *	@start:		vm area range start
1677 *	@end:		vm area range end
1678 *	@gfp_mask:	flags for the page level allocator
1679 *	@prot:		protection mask for the allocated pages
1680 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1681 *	@node:		node to use for allocation or NUMA_NO_NODE
1682 *	@caller:	caller's return address
1683 *
1684 *	Allocate enough pages to cover @size from the page level
1685 *	allocator with @gfp_mask flags.  Map them into contiguous
1686 *	kernel virtual space, using a pagetable protection of @prot.
1687 */
1688void *__vmalloc_node_range(unsigned long size, unsigned long align,
1689			unsigned long start, unsigned long end, gfp_t gfp_mask,
1690			pgprot_t prot, unsigned long vm_flags, int node,
1691			const void *caller)
1692{
1693	struct vm_struct *area;
1694	void *addr;
1695	unsigned long real_size = size;
1696
1697	size = PAGE_ALIGN(size);
1698	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1699		goto fail;
1700
1701	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1702				vm_flags, start, end, node, gfp_mask, caller);
1703	if (!area)
1704		goto fail;
1705
1706	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1707	if (!addr)
1708		return NULL;
1709
1710	/*
1711	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1712	 * flag. It means that vm_struct is not fully initialized.
1713	 * Now, it is fully initialized, so remove this flag here.
1714	 */
1715	clear_vm_uninitialized_flag(area);
1716
1717	/*
1718	 * A ref_count = 2 is needed because vm_struct allocated in
1719	 * __get_vm_area_node() contains a reference to the virtual address of
1720	 * the vmalloc'ed block.
1721	 */
1722	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1723
1724	return addr;
1725
1726fail:
1727	warn_alloc(gfp_mask,
1728			  "vmalloc: allocation failure: %lu bytes", real_size);
1729	return NULL;
1730}
1731
1732/**
1733 *	__vmalloc_node  -  allocate virtually contiguous memory
1734 *	@size:		allocation size
1735 *	@align:		desired alignment
1736 *	@gfp_mask:	flags for the page level allocator
1737 *	@prot:		protection mask for the allocated pages
1738 *	@node:		node to use for allocation or NUMA_NO_NODE
1739 *	@caller:	caller's return address
1740 *
1741 *	Allocate enough pages to cover @size from the page level
1742 *	allocator with @gfp_mask flags.  Map them into contiguous
1743 *	kernel virtual space, using a pagetable protection of @prot.
 
 
 
 
 
 
 
1744 */
1745static void *__vmalloc_node(unsigned long size, unsigned long align,
1746			    gfp_t gfp_mask, pgprot_t prot,
1747			    int node, const void *caller)
1748{
1749	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1750				gfp_mask, prot, 0, node, caller);
1751}
1752
1753void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1754{
1755	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1756				__builtin_return_address(0));
1757}
1758EXPORT_SYMBOL(__vmalloc);
1759
1760static inline void *__vmalloc_node_flags(unsigned long size,
1761					int node, gfp_t flags)
1762{
1763	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1764					node, __builtin_return_address(0));
1765}
1766
 
 
 
 
 
 
 
1767/**
1768 *	vmalloc  -  allocate virtually contiguous memory
1769 *	@size:		allocation size
1770 *	Allocate enough pages to cover @size from the page level
1771 *	allocator and map them into contiguous kernel virtual space.
1772 *
1773 *	For tight control over page level allocator and protection flags
1774 *	use __vmalloc() instead.
1775 */
1776void *vmalloc(unsigned long size)
1777{
1778	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1779				    GFP_KERNEL | __GFP_HIGHMEM);
1780}
1781EXPORT_SYMBOL(vmalloc);
1782
1783/**
1784 *	vzalloc - allocate virtually contiguous memory with zero fill
1785 *	@size:	allocation size
1786 *	Allocate enough pages to cover @size from the page level
1787 *	allocator and map them into contiguous kernel virtual space.
1788 *	The memory allocated is set to zero.
1789 *
1790 *	For tight control over page level allocator and protection flags
1791 *	use __vmalloc() instead.
1792 */
1793void *vzalloc(unsigned long size)
1794{
1795	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1796				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1797}
1798EXPORT_SYMBOL(vzalloc);
1799
1800/**
1801 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1802 * @size: allocation size
1803 *
1804 * The resulting memory area is zeroed so it can be mapped to userspace
1805 * without leaking data.
1806 */
1807void *vmalloc_user(unsigned long size)
1808{
1809	struct vm_struct *area;
1810	void *ret;
1811
1812	ret = __vmalloc_node(size, SHMLBA,
1813			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1814			     PAGE_KERNEL, NUMA_NO_NODE,
1815			     __builtin_return_address(0));
1816	if (ret) {
1817		area = find_vm_area(ret);
1818		area->flags |= VM_USERMAP;
1819	}
1820	return ret;
1821}
1822EXPORT_SYMBOL(vmalloc_user);
1823
1824/**
1825 *	vmalloc_node  -  allocate memory on a specific node
1826 *	@size:		allocation size
1827 *	@node:		numa node
1828 *
1829 *	Allocate enough pages to cover @size from the page level
1830 *	allocator and map them into contiguous kernel virtual space.
1831 *
1832 *	For tight control over page level allocator and protection flags
1833 *	use __vmalloc() instead.
1834 */
1835void *vmalloc_node(unsigned long size, int node)
1836{
1837	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1838					node, __builtin_return_address(0));
1839}
1840EXPORT_SYMBOL(vmalloc_node);
1841
1842/**
1843 * vzalloc_node - allocate memory on a specific node with zero fill
1844 * @size:	allocation size
1845 * @node:	numa node
1846 *
1847 * Allocate enough pages to cover @size from the page level
1848 * allocator and map them into contiguous kernel virtual space.
1849 * The memory allocated is set to zero.
1850 *
1851 * For tight control over page level allocator and protection flags
1852 * use __vmalloc_node() instead.
1853 */
1854void *vzalloc_node(unsigned long size, int node)
1855{
1856	return __vmalloc_node_flags(size, node,
1857			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1858}
1859EXPORT_SYMBOL(vzalloc_node);
1860
1861#ifndef PAGE_KERNEL_EXEC
1862# define PAGE_KERNEL_EXEC PAGE_KERNEL
1863#endif
1864
1865/**
1866 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1867 *	@size:		allocation size
1868 *
1869 *	Kernel-internal function to allocate enough pages to cover @size
1870 *	the page level allocator and map them into contiguous and
1871 *	executable kernel virtual space.
1872 *
1873 *	For tight control over page level allocator and protection flags
1874 *	use __vmalloc() instead.
1875 */
1876
1877void *vmalloc_exec(unsigned long size)
1878{
1879	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1880			      NUMA_NO_NODE, __builtin_return_address(0));
1881}
1882
1883#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1884#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1885#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1886#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1887#else
1888#define GFP_VMALLOC32 GFP_KERNEL
 
 
 
 
1889#endif
1890
1891/**
1892 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1893 *	@size:		allocation size
1894 *
1895 *	Allocate enough 32bit PA addressable pages to cover @size from the
1896 *	page level allocator and map them into contiguous kernel virtual space.
1897 */
1898void *vmalloc_32(unsigned long size)
1899{
1900	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1901			      NUMA_NO_NODE, __builtin_return_address(0));
1902}
1903EXPORT_SYMBOL(vmalloc_32);
1904
1905/**
1906 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1907 *	@size:		allocation size
1908 *
1909 * The resulting memory area is 32bit addressable and zeroed so it can be
1910 * mapped to userspace without leaking data.
1911 */
1912void *vmalloc_32_user(unsigned long size)
1913{
1914	struct vm_struct *area;
1915	void *ret;
1916
1917	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1918			     NUMA_NO_NODE, __builtin_return_address(0));
1919	if (ret) {
1920		area = find_vm_area(ret);
1921		area->flags |= VM_USERMAP;
1922	}
1923	return ret;
1924}
1925EXPORT_SYMBOL(vmalloc_32_user);
1926
1927/*
1928 * small helper routine , copy contents to buf from addr.
1929 * If the page is not present, fill zero.
1930 */
1931
1932static int aligned_vread(char *buf, char *addr, unsigned long count)
1933{
1934	struct page *p;
1935	int copied = 0;
1936
1937	while (count) {
1938		unsigned long offset, length;
1939
1940		offset = offset_in_page(addr);
1941		length = PAGE_SIZE - offset;
1942		if (length > count)
1943			length = count;
1944		p = vmalloc_to_page(addr);
1945		/*
1946		 * To do safe access to this _mapped_ area, we need
1947		 * lock. But adding lock here means that we need to add
1948		 * overhead of vmalloc()/vfree() calles for this _debug_
1949		 * interface, rarely used. Instead of that, we'll use
1950		 * kmap() and get small overhead in this access function.
1951		 */
1952		if (p) {
1953			/*
1954			 * we can expect USER0 is not used (see vread/vwrite's
1955			 * function description)
1956			 */
1957			void *map = kmap_atomic(p);
1958			memcpy(buf, map + offset, length);
1959			kunmap_atomic(map);
1960		} else
1961			memset(buf, 0, length);
1962
1963		addr += length;
1964		buf += length;
1965		copied += length;
1966		count -= length;
1967	}
1968	return copied;
1969}
1970
1971static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1972{
1973	struct page *p;
1974	int copied = 0;
1975
1976	while (count) {
1977		unsigned long offset, length;
1978
1979		offset = offset_in_page(addr);
1980		length = PAGE_SIZE - offset;
1981		if (length > count)
1982			length = count;
1983		p = vmalloc_to_page(addr);
1984		/*
1985		 * To do safe access to this _mapped_ area, we need
1986		 * lock. But adding lock here means that we need to add
1987		 * overhead of vmalloc()/vfree() calles for this _debug_
1988		 * interface, rarely used. Instead of that, we'll use
1989		 * kmap() and get small overhead in this access function.
1990		 */
1991		if (p) {
1992			/*
1993			 * we can expect USER0 is not used (see vread/vwrite's
1994			 * function description)
1995			 */
1996			void *map = kmap_atomic(p);
1997			memcpy(map + offset, buf, length);
1998			kunmap_atomic(map);
1999		}
2000		addr += length;
2001		buf += length;
2002		copied += length;
2003		count -= length;
2004	}
2005	return copied;
2006}
2007
2008/**
2009 *	vread() -  read vmalloc area in a safe way.
2010 *	@buf:		buffer for reading data
2011 *	@addr:		vm address.
2012 *	@count:		number of bytes to be read.
2013 *
2014 *	Returns # of bytes which addr and buf should be increased.
2015 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2016 *	includes any intersect with alive vmalloc area.
2017 *
2018 *	This function checks that addr is a valid vmalloc'ed area, and
2019 *	copy data from that area to a given buffer. If the given memory range
2020 *	of [addr...addr+count) includes some valid address, data is copied to
2021 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2022 *	IOREMAP area is treated as memory hole and no copy is done.
2023 *
2024 *	If [addr...addr+count) doesn't includes any intersects with alive
2025 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2026 *
2027 *	Note: In usual ops, vread() is never necessary because the caller
2028 *	should know vmalloc() area is valid and can use memcpy().
2029 *	This is for routines which have to access vmalloc area without
2030 *	any informaion, as /dev/kmem.
2031 *
2032 */
2033
2034long vread(char *buf, char *addr, unsigned long count)
2035{
2036	struct vmap_area *va;
2037	struct vm_struct *vm;
2038	char *vaddr, *buf_start = buf;
2039	unsigned long buflen = count;
2040	unsigned long n;
2041
2042	/* Don't allow overflow */
2043	if ((unsigned long) addr + count < count)
2044		count = -(unsigned long) addr;
2045
2046	spin_lock(&vmap_area_lock);
2047	list_for_each_entry(va, &vmap_area_list, list) {
2048		if (!count)
2049			break;
2050
2051		if (!(va->flags & VM_VM_AREA))
2052			continue;
2053
2054		vm = va->vm;
2055		vaddr = (char *) vm->addr;
2056		if (addr >= vaddr + get_vm_area_size(vm))
2057			continue;
2058		while (addr < vaddr) {
2059			if (count == 0)
2060				goto finished;
2061			*buf = '\0';
2062			buf++;
2063			addr++;
2064			count--;
2065		}
2066		n = vaddr + get_vm_area_size(vm) - addr;
2067		if (n > count)
2068			n = count;
2069		if (!(vm->flags & VM_IOREMAP))
2070			aligned_vread(buf, addr, n);
2071		else /* IOREMAP area is treated as memory hole */
2072			memset(buf, 0, n);
2073		buf += n;
2074		addr += n;
2075		count -= n;
2076	}
2077finished:
2078	spin_unlock(&vmap_area_lock);
2079
2080	if (buf == buf_start)
2081		return 0;
2082	/* zero-fill memory holes */
2083	if (buf != buf_start + buflen)
2084		memset(buf, 0, buflen - (buf - buf_start));
2085
2086	return buflen;
2087}
2088
2089/**
2090 *	vwrite() -  write vmalloc area in a safe way.
2091 *	@buf:		buffer for source data
2092 *	@addr:		vm address.
2093 *	@count:		number of bytes to be read.
2094 *
2095 *	Returns # of bytes which addr and buf should be incresed.
2096 *	(same number to @count).
2097 *	If [addr...addr+count) doesn't includes any intersect with valid
2098 *	vmalloc area, returns 0.
2099 *
2100 *	This function checks that addr is a valid vmalloc'ed area, and
2101 *	copy data from a buffer to the given addr. If specified range of
2102 *	[addr...addr+count) includes some valid address, data is copied from
2103 *	proper area of @buf. If there are memory holes, no copy to hole.
2104 *	IOREMAP area is treated as memory hole and no copy is done.
2105 *
2106 *	If [addr...addr+count) doesn't includes any intersects with alive
2107 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2108 *
2109 *	Note: In usual ops, vwrite() is never necessary because the caller
2110 *	should know vmalloc() area is valid and can use memcpy().
2111 *	This is for routines which have to access vmalloc area without
2112 *	any informaion, as /dev/kmem.
2113 */
2114
2115long vwrite(char *buf, char *addr, unsigned long count)
2116{
2117	struct vmap_area *va;
2118	struct vm_struct *vm;
2119	char *vaddr;
2120	unsigned long n, buflen;
2121	int copied = 0;
2122
2123	/* Don't allow overflow */
2124	if ((unsigned long) addr + count < count)
2125		count = -(unsigned long) addr;
2126	buflen = count;
2127
2128	spin_lock(&vmap_area_lock);
2129	list_for_each_entry(va, &vmap_area_list, list) {
2130		if (!count)
2131			break;
2132
2133		if (!(va->flags & VM_VM_AREA))
2134			continue;
2135
2136		vm = va->vm;
2137		vaddr = (char *) vm->addr;
2138		if (addr >= vaddr + get_vm_area_size(vm))
2139			continue;
2140		while (addr < vaddr) {
2141			if (count == 0)
2142				goto finished;
2143			buf++;
2144			addr++;
2145			count--;
2146		}
2147		n = vaddr + get_vm_area_size(vm) - addr;
2148		if (n > count)
2149			n = count;
2150		if (!(vm->flags & VM_IOREMAP)) {
2151			aligned_vwrite(buf, addr, n);
2152			copied++;
2153		}
2154		buf += n;
2155		addr += n;
2156		count -= n;
2157	}
2158finished:
2159	spin_unlock(&vmap_area_lock);
2160	if (!copied)
2161		return 0;
2162	return buflen;
2163}
2164
2165/**
2166 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2167 *	@vma:		vma to cover
2168 *	@uaddr:		target user address to start at
2169 *	@kaddr:		virtual address of vmalloc kernel memory
2170 *	@size:		size of map area
2171 *
2172 *	Returns:	0 for success, -Exxx on failure
2173 *
2174 *	This function checks that @kaddr is a valid vmalloc'ed area,
2175 *	and that it is big enough to cover the range starting at
2176 *	@uaddr in @vma. Will return failure if that criteria isn't
2177 *	met.
2178 *
2179 *	Similar to remap_pfn_range() (see mm/memory.c)
2180 */
2181int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2182				void *kaddr, unsigned long size)
2183{
2184	struct vm_struct *area;
2185
2186	size = PAGE_ALIGN(size);
2187
2188	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2189		return -EINVAL;
2190
2191	area = find_vm_area(kaddr);
2192	if (!area)
2193		return -EINVAL;
2194
2195	if (!(area->flags & VM_USERMAP))
2196		return -EINVAL;
2197
2198	if (kaddr + size > area->addr + area->size)
2199		return -EINVAL;
2200
2201	do {
2202		struct page *page = vmalloc_to_page(kaddr);
2203		int ret;
2204
2205		ret = vm_insert_page(vma, uaddr, page);
2206		if (ret)
2207			return ret;
2208
2209		uaddr += PAGE_SIZE;
2210		kaddr += PAGE_SIZE;
2211		size -= PAGE_SIZE;
2212	} while (size > 0);
2213
2214	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2215
2216	return 0;
2217}
2218EXPORT_SYMBOL(remap_vmalloc_range_partial);
2219
2220/**
2221 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2222 *	@vma:		vma to cover (map full range of vma)
2223 *	@addr:		vmalloc memory
2224 *	@pgoff:		number of pages into addr before first page to map
2225 *
2226 *	Returns:	0 for success, -Exxx on failure
2227 *
2228 *	This function checks that addr is a valid vmalloc'ed area, and
2229 *	that it is big enough to cover the vma. Will return failure if
2230 *	that criteria isn't met.
2231 *
2232 *	Similar to remap_pfn_range() (see mm/memory.c)
2233 */
2234int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2235						unsigned long pgoff)
2236{
2237	return remap_vmalloc_range_partial(vma, vma->vm_start,
2238					   addr + (pgoff << PAGE_SHIFT),
2239					   vma->vm_end - vma->vm_start);
2240}
2241EXPORT_SYMBOL(remap_vmalloc_range);
2242
2243/*
2244 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2245 * have one.
2246 */
2247void __weak vmalloc_sync_all(void)
2248{
2249}
2250
2251
2252static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2253{
2254	pte_t ***p = data;
2255
2256	if (p) {
2257		*(*p) = pte;
2258		(*p)++;
2259	}
2260	return 0;
2261}
2262
2263/**
2264 *	alloc_vm_area - allocate a range of kernel address space
2265 *	@size:		size of the area
2266 *	@ptes:		returns the PTEs for the address space
2267 *
2268 *	Returns:	NULL on failure, vm_struct on success
2269 *
2270 *	This function reserves a range of kernel address space, and
2271 *	allocates pagetables to map that range.  No actual mappings
2272 *	are created.
2273 *
2274 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2275 *	allocated for the VM area are returned.
2276 */
2277struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2278{
2279	struct vm_struct *area;
2280
2281	area = get_vm_area_caller(size, VM_IOREMAP,
2282				__builtin_return_address(0));
2283	if (area == NULL)
2284		return NULL;
2285
2286	/*
2287	 * This ensures that page tables are constructed for this region
2288	 * of kernel virtual address space and mapped into init_mm.
2289	 */
2290	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2291				size, f, ptes ? &ptes : NULL)) {
2292		free_vm_area(area);
2293		return NULL;
2294	}
2295
2296	return area;
2297}
2298EXPORT_SYMBOL_GPL(alloc_vm_area);
2299
2300void free_vm_area(struct vm_struct *area)
2301{
2302	struct vm_struct *ret;
2303	ret = remove_vm_area(area->addr);
2304	BUG_ON(ret != area);
2305	kfree(area);
2306}
2307EXPORT_SYMBOL_GPL(free_vm_area);
2308
2309#ifdef CONFIG_SMP
2310static struct vmap_area *node_to_va(struct rb_node *n)
2311{
2312	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2313}
2314
2315/**
2316 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2317 * @end: target address
2318 * @pnext: out arg for the next vmap_area
2319 * @pprev: out arg for the previous vmap_area
2320 *
2321 * Returns: %true if either or both of next and prev are found,
2322 *	    %false if no vmap_area exists
2323 *
2324 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2325 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2326 */
2327static bool pvm_find_next_prev(unsigned long end,
2328			       struct vmap_area **pnext,
2329			       struct vmap_area **pprev)
2330{
2331	struct rb_node *n = vmap_area_root.rb_node;
2332	struct vmap_area *va = NULL;
2333
2334	while (n) {
2335		va = rb_entry(n, struct vmap_area, rb_node);
2336		if (end < va->va_end)
2337			n = n->rb_left;
2338		else if (end > va->va_end)
2339			n = n->rb_right;
2340		else
2341			break;
2342	}
2343
2344	if (!va)
2345		return false;
2346
2347	if (va->va_end > end) {
2348		*pnext = va;
2349		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2350	} else {
2351		*pprev = va;
2352		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2353	}
2354	return true;
2355}
2356
2357/**
2358 * pvm_determine_end - find the highest aligned address between two vmap_areas
2359 * @pnext: in/out arg for the next vmap_area
2360 * @pprev: in/out arg for the previous vmap_area
2361 * @align: alignment
2362 *
2363 * Returns: determined end address
2364 *
2365 * Find the highest aligned address between *@pnext and *@pprev below
2366 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2367 * down address is between the end addresses of the two vmap_areas.
2368 *
2369 * Please note that the address returned by this function may fall
2370 * inside *@pnext vmap_area.  The caller is responsible for checking
2371 * that.
2372 */
2373static unsigned long pvm_determine_end(struct vmap_area **pnext,
2374				       struct vmap_area **pprev,
2375				       unsigned long align)
2376{
2377	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2378	unsigned long addr;
2379
2380	if (*pnext)
2381		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2382	else
2383		addr = vmalloc_end;
2384
2385	while (*pprev && (*pprev)->va_end > addr) {
2386		*pnext = *pprev;
2387		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2388	}
2389
2390	return addr;
2391}
2392
2393/**
2394 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2395 * @offsets: array containing offset of each area
2396 * @sizes: array containing size of each area
2397 * @nr_vms: the number of areas to allocate
2398 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2399 *
2400 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2401 *	    vm_structs on success, %NULL on failure
2402 *
2403 * Percpu allocator wants to use congruent vm areas so that it can
2404 * maintain the offsets among percpu areas.  This function allocates
2405 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2406 * be scattered pretty far, distance between two areas easily going up
2407 * to gigabytes.  To avoid interacting with regular vmallocs, these
2408 * areas are allocated from top.
2409 *
2410 * Despite its complicated look, this allocator is rather simple.  It
2411 * does everything top-down and scans areas from the end looking for
2412 * matching slot.  While scanning, if any of the areas overlaps with
2413 * existing vmap_area, the base address is pulled down to fit the
2414 * area.  Scanning is repeated till all the areas fit and then all
2415 * necessary data structres are inserted and the result is returned.
2416 */
2417struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2418				     const size_t *sizes, int nr_vms,
2419				     size_t align)
2420{
2421	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2422	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2423	struct vmap_area **vas, *prev, *next;
2424	struct vm_struct **vms;
2425	int area, area2, last_area, term_area;
2426	unsigned long base, start, end, last_end;
2427	bool purged = false;
2428
2429	/* verify parameters and allocate data structures */
2430	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2431	for (last_area = 0, area = 0; area < nr_vms; area++) {
2432		start = offsets[area];
2433		end = start + sizes[area];
2434
2435		/* is everything aligned properly? */
2436		BUG_ON(!IS_ALIGNED(offsets[area], align));
2437		BUG_ON(!IS_ALIGNED(sizes[area], align));
2438
2439		/* detect the area with the highest address */
2440		if (start > offsets[last_area])
2441			last_area = area;
2442
2443		for (area2 = 0; area2 < nr_vms; area2++) {
2444			unsigned long start2 = offsets[area2];
2445			unsigned long end2 = start2 + sizes[area2];
2446
2447			if (area2 == area)
2448				continue;
2449
2450			BUG_ON(start2 >= start && start2 < end);
2451			BUG_ON(end2 <= end && end2 > start);
2452		}
2453	}
2454	last_end = offsets[last_area] + sizes[last_area];
2455
2456	if (vmalloc_end - vmalloc_start < last_end) {
2457		WARN_ON(true);
2458		return NULL;
2459	}
2460
2461	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2462	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2463	if (!vas || !vms)
2464		goto err_free2;
2465
2466	for (area = 0; area < nr_vms; area++) {
2467		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2468		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2469		if (!vas[area] || !vms[area])
2470			goto err_free;
2471	}
2472retry:
2473	spin_lock(&vmap_area_lock);
2474
2475	/* start scanning - we scan from the top, begin with the last area */
2476	area = term_area = last_area;
2477	start = offsets[area];
2478	end = start + sizes[area];
2479
2480	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2481		base = vmalloc_end - last_end;
2482		goto found;
2483	}
2484	base = pvm_determine_end(&next, &prev, align) - end;
2485
2486	while (true) {
2487		BUG_ON(next && next->va_end <= base + end);
2488		BUG_ON(prev && prev->va_end > base + end);
2489
2490		/*
2491		 * base might have underflowed, add last_end before
2492		 * comparing.
2493		 */
2494		if (base + last_end < vmalloc_start + last_end) {
2495			spin_unlock(&vmap_area_lock);
2496			if (!purged) {
2497				purge_vmap_area_lazy();
2498				purged = true;
2499				goto retry;
2500			}
2501			goto err_free;
2502		}
2503
2504		/*
2505		 * If next overlaps, move base downwards so that it's
2506		 * right below next and then recheck.
2507		 */
2508		if (next && next->va_start < base + end) {
2509			base = pvm_determine_end(&next, &prev, align) - end;
2510			term_area = area;
2511			continue;
2512		}
2513
2514		/*
2515		 * If prev overlaps, shift down next and prev and move
2516		 * base so that it's right below new next and then
2517		 * recheck.
2518		 */
2519		if (prev && prev->va_end > base + start)  {
2520			next = prev;
2521			prev = node_to_va(rb_prev(&next->rb_node));
2522			base = pvm_determine_end(&next, &prev, align) - end;
2523			term_area = area;
2524			continue;
2525		}
2526
2527		/*
2528		 * This area fits, move on to the previous one.  If
2529		 * the previous one is the terminal one, we're done.
2530		 */
2531		area = (area + nr_vms - 1) % nr_vms;
2532		if (area == term_area)
2533			break;
2534		start = offsets[area];
2535		end = start + sizes[area];
2536		pvm_find_next_prev(base + end, &next, &prev);
2537	}
2538found:
2539	/* we've found a fitting base, insert all va's */
2540	for (area = 0; area < nr_vms; area++) {
2541		struct vmap_area *va = vas[area];
2542
2543		va->va_start = base + offsets[area];
2544		va->va_end = va->va_start + sizes[area];
2545		__insert_vmap_area(va);
2546	}
2547
2548	vmap_area_pcpu_hole = base + offsets[last_area];
2549
2550	spin_unlock(&vmap_area_lock);
2551
2552	/* insert all vm's */
2553	for (area = 0; area < nr_vms; area++)
2554		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2555				 pcpu_get_vm_areas);
2556
2557	kfree(vas);
2558	return vms;
2559
2560err_free:
2561	for (area = 0; area < nr_vms; area++) {
2562		kfree(vas[area]);
2563		kfree(vms[area]);
2564	}
2565err_free2:
2566	kfree(vas);
2567	kfree(vms);
2568	return NULL;
2569}
2570
2571/**
2572 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2573 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2574 * @nr_vms: the number of allocated areas
2575 *
2576 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2577 */
2578void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2579{
2580	int i;
2581
2582	for (i = 0; i < nr_vms; i++)
2583		free_vm_area(vms[i]);
2584	kfree(vms);
2585}
2586#endif	/* CONFIG_SMP */
2587
2588#ifdef CONFIG_PROC_FS
2589static void *s_start(struct seq_file *m, loff_t *pos)
2590	__acquires(&vmap_area_lock)
2591{
2592	spin_lock(&vmap_area_lock);
2593	return seq_list_start(&vmap_area_list, *pos);
2594}
2595
2596static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2597{
2598	return seq_list_next(p, &vmap_area_list, pos);
2599}
2600
2601static void s_stop(struct seq_file *m, void *p)
2602	__releases(&vmap_area_lock)
2603{
2604	spin_unlock(&vmap_area_lock);
2605}
2606
2607static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2608{
2609	if (IS_ENABLED(CONFIG_NUMA)) {
2610		unsigned int nr, *counters = m->private;
2611
2612		if (!counters)
2613			return;
2614
2615		if (v->flags & VM_UNINITIALIZED)
2616			return;
2617		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2618		smp_rmb();
2619
2620		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2621
2622		for (nr = 0; nr < v->nr_pages; nr++)
2623			counters[page_to_nid(v->pages[nr])]++;
2624
2625		for_each_node_state(nr, N_HIGH_MEMORY)
2626			if (counters[nr])
2627				seq_printf(m, " N%u=%u", nr, counters[nr]);
2628	}
2629}
2630
2631static int s_show(struct seq_file *m, void *p)
2632{
2633	struct vmap_area *va;
2634	struct vm_struct *v;
2635
2636	va = list_entry(p, struct vmap_area, list);
2637
2638	/*
2639	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2640	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2641	 */
2642	if (!(va->flags & VM_VM_AREA))
 
 
 
 
 
2643		return 0;
 
2644
2645	v = va->vm;
2646
2647	seq_printf(m, "0x%pK-0x%pK %7ld",
2648		v->addr, v->addr + v->size, v->size);
2649
2650	if (v->caller)
2651		seq_printf(m, " %pS", v->caller);
2652
2653	if (v->nr_pages)
2654		seq_printf(m, " pages=%d", v->nr_pages);
2655
2656	if (v->phys_addr)
2657		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2658
2659	if (v->flags & VM_IOREMAP)
2660		seq_puts(m, " ioremap");
2661
2662	if (v->flags & VM_ALLOC)
2663		seq_puts(m, " vmalloc");
2664
2665	if (v->flags & VM_MAP)
2666		seq_puts(m, " vmap");
2667
2668	if (v->flags & VM_USERMAP)
2669		seq_puts(m, " user");
2670
2671	if (is_vmalloc_addr(v->pages))
2672		seq_puts(m, " vpages");
2673
2674	show_numa_info(m, v);
2675	seq_putc(m, '\n');
2676	return 0;
2677}
2678
2679static const struct seq_operations vmalloc_op = {
2680	.start = s_start,
2681	.next = s_next,
2682	.stop = s_stop,
2683	.show = s_show,
2684};
2685
2686static int vmalloc_open(struct inode *inode, struct file *file)
2687{
2688	if (IS_ENABLED(CONFIG_NUMA))
2689		return seq_open_private(file, &vmalloc_op,
2690					nr_node_ids * sizeof(unsigned int));
2691	else
2692		return seq_open(file, &vmalloc_op);
2693}
2694
2695static const struct file_operations proc_vmalloc_operations = {
2696	.open		= vmalloc_open,
2697	.read		= seq_read,
2698	.llseek		= seq_lseek,
2699	.release	= seq_release_private,
2700};
2701
2702static int __init proc_vmalloc_init(void)
2703{
2704	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2705	return 0;
2706}
2707module_init(proc_vmalloc_init);
2708
2709#endif
2710