Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42	struct llist_head list;
  43	struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52	struct llist_node *t, *llnode;
  53
  54	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  55		__vunmap((void *)llnode, 1);
 
 
  56}
  57
  58/*** Page table manipulation functions ***/
  59
  60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  61{
  62	pte_t *pte;
  63
  64	pte = pte_offset_kernel(pmd, addr);
  65	do {
  66		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  67		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  68	} while (pte++, addr += PAGE_SIZE, addr != end);
  69}
  70
  71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  72{
  73	pmd_t *pmd;
  74	unsigned long next;
  75
  76	pmd = pmd_offset(pud, addr);
  77	do {
  78		next = pmd_addr_end(addr, end);
  79		if (pmd_clear_huge(pmd))
  80			continue;
  81		if (pmd_none_or_clear_bad(pmd))
  82			continue;
  83		vunmap_pte_range(pmd, addr, next);
  84	} while (pmd++, addr = next, addr != end);
  85}
  86
  87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  88{
  89	pud_t *pud;
  90	unsigned long next;
  91
  92	pud = pud_offset(p4d, addr);
  93	do {
  94		next = pud_addr_end(addr, end);
  95		if (pud_clear_huge(pud))
  96			continue;
  97		if (pud_none_or_clear_bad(pud))
  98			continue;
  99		vunmap_pmd_range(pud, addr, next);
 100	} while (pud++, addr = next, addr != end);
 101}
 102
 103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 104{
 105	p4d_t *p4d;
 106	unsigned long next;
 107
 108	p4d = p4d_offset(pgd, addr);
 109	do {
 110		next = p4d_addr_end(addr, end);
 111		if (p4d_clear_huge(p4d))
 112			continue;
 113		if (p4d_none_or_clear_bad(p4d))
 114			continue;
 115		vunmap_pud_range(p4d, addr, next);
 116	} while (p4d++, addr = next, addr != end);
 117}
 118
 119static void vunmap_page_range(unsigned long addr, unsigned long end)
 120{
 121	pgd_t *pgd;
 122	unsigned long next;
 123
 124	BUG_ON(addr >= end);
 125	pgd = pgd_offset_k(addr);
 126	do {
 127		next = pgd_addr_end(addr, end);
 128		if (pgd_none_or_clear_bad(pgd))
 129			continue;
 130		vunmap_p4d_range(pgd, addr, next);
 131	} while (pgd++, addr = next, addr != end);
 132}
 133
 134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 135		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 136{
 137	pte_t *pte;
 138
 139	/*
 140	 * nr is a running index into the array which helps higher level
 141	 * callers keep track of where we're up to.
 142	 */
 143
 144	pte = pte_alloc_kernel(pmd, addr);
 145	if (!pte)
 146		return -ENOMEM;
 147	do {
 148		struct page *page = pages[*nr];
 149
 150		if (WARN_ON(!pte_none(*pte)))
 151			return -EBUSY;
 152		if (WARN_ON(!page))
 153			return -ENOMEM;
 154		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 155		(*nr)++;
 156	} while (pte++, addr += PAGE_SIZE, addr != end);
 157	return 0;
 158}
 159
 160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 161		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 162{
 163	pmd_t *pmd;
 164	unsigned long next;
 165
 166	pmd = pmd_alloc(&init_mm, pud, addr);
 167	if (!pmd)
 168		return -ENOMEM;
 169	do {
 170		next = pmd_addr_end(addr, end);
 171		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 172			return -ENOMEM;
 173	} while (pmd++, addr = next, addr != end);
 174	return 0;
 175}
 176
 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 178		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 179{
 180	pud_t *pud;
 181	unsigned long next;
 182
 183	pud = pud_alloc(&init_mm, p4d, addr);
 184	if (!pud)
 185		return -ENOMEM;
 186	do {
 187		next = pud_addr_end(addr, end);
 188		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 189			return -ENOMEM;
 190	} while (pud++, addr = next, addr != end);
 191	return 0;
 192}
 193
 194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 195		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 196{
 197	p4d_t *p4d;
 198	unsigned long next;
 199
 200	p4d = p4d_alloc(&init_mm, pgd, addr);
 201	if (!p4d)
 202		return -ENOMEM;
 203	do {
 204		next = p4d_addr_end(addr, end);
 205		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 206			return -ENOMEM;
 207	} while (p4d++, addr = next, addr != end);
 208	return 0;
 209}
 210
 211/*
 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 213 * will have pfns corresponding to the "pages" array.
 214 *
 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 216 */
 217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 218				   pgprot_t prot, struct page **pages)
 219{
 220	pgd_t *pgd;
 221	unsigned long next;
 222	unsigned long addr = start;
 223	int err = 0;
 224	int nr = 0;
 225
 226	BUG_ON(addr >= end);
 227	pgd = pgd_offset_k(addr);
 228	do {
 229		next = pgd_addr_end(addr, end);
 230		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 231		if (err)
 232			return err;
 233	} while (pgd++, addr = next, addr != end);
 234
 235	return nr;
 236}
 237
 238static int vmap_page_range(unsigned long start, unsigned long end,
 239			   pgprot_t prot, struct page **pages)
 240{
 241	int ret;
 242
 243	ret = vmap_page_range_noflush(start, end, prot, pages);
 244	flush_cache_vmap(start, end);
 245	return ret;
 246}
 247
 248int is_vmalloc_or_module_addr(const void *x)
 249{
 250	/*
 251	 * ARM, x86-64 and sparc64 put modules in a special place,
 252	 * and fall back on vmalloc() if that fails. Others
 253	 * just put it in the vmalloc space.
 254	 */
 255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 256	unsigned long addr = (unsigned long)x;
 257	if (addr >= MODULES_VADDR && addr < MODULES_END)
 258		return 1;
 259#endif
 260	return is_vmalloc_addr(x);
 261}
 262
 263/*
 264 * Walk a vmap address to the struct page it maps.
 265 */
 266struct page *vmalloc_to_page(const void *vmalloc_addr)
 267{
 268	unsigned long addr = (unsigned long) vmalloc_addr;
 269	struct page *page = NULL;
 270	pgd_t *pgd = pgd_offset_k(addr);
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *ptep, pte;
 275
 276	/*
 277	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 278	 * architectures that do not vmalloc module space
 279	 */
 280	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 281
 282	if (pgd_none(*pgd))
 283		return NULL;
 284	p4d = p4d_offset(pgd, addr);
 285	if (p4d_none(*p4d))
 286		return NULL;
 287	pud = pud_offset(p4d, addr);
 288
 289	/*
 290	 * Don't dereference bad PUD or PMD (below) entries. This will also
 291	 * identify huge mappings, which we may encounter on architectures
 292	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 293	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 294	 * not [unambiguously] associated with a struct page, so there is
 295	 * no correct value to return for them.
 296	 */
 297	WARN_ON_ONCE(pud_bad(*pud));
 298	if (pud_none(*pud) || pud_bad(*pud))
 299		return NULL;
 300	pmd = pmd_offset(pud, addr);
 301	WARN_ON_ONCE(pmd_bad(*pmd));
 302	if (pmd_none(*pmd) || pmd_bad(*pmd))
 303		return NULL;
 304
 305	ptep = pte_offset_map(pmd, addr);
 306	pte = *ptep;
 307	if (pte_present(pte))
 308		page = pte_page(pte);
 309	pte_unmap(ptep);
 310	return page;
 311}
 312EXPORT_SYMBOL(vmalloc_to_page);
 313
 314/*
 315 * Map a vmalloc()-space virtual address to the physical page frame number.
 316 */
 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 318{
 319	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 320}
 321EXPORT_SYMBOL(vmalloc_to_pfn);
 322
 323
 324/*** Global kva allocator ***/
 325
 326#define VM_LAZY_FREE	0x02
 
 327#define VM_VM_AREA	0x04
 328
 329static DEFINE_SPINLOCK(vmap_area_lock);
 330/* Export for kexec only */
 331LIST_HEAD(vmap_area_list);
 332static LLIST_HEAD(vmap_purge_list);
 333static struct rb_root vmap_area_root = RB_ROOT;
 334
 335/* The vmap cache globals are protected by vmap_area_lock */
 336static struct rb_node *free_vmap_cache;
 337static unsigned long cached_hole_size;
 338static unsigned long cached_vstart;
 339static unsigned long cached_align;
 340
 341static unsigned long vmap_area_pcpu_hole;
 342
 343static struct vmap_area *__find_vmap_area(unsigned long addr)
 344{
 345	struct rb_node *n = vmap_area_root.rb_node;
 346
 347	while (n) {
 348		struct vmap_area *va;
 349
 350		va = rb_entry(n, struct vmap_area, rb_node);
 351		if (addr < va->va_start)
 352			n = n->rb_left;
 353		else if (addr >= va->va_end)
 354			n = n->rb_right;
 355		else
 356			return va;
 357	}
 358
 359	return NULL;
 360}
 361
 362static void __insert_vmap_area(struct vmap_area *va)
 363{
 364	struct rb_node **p = &vmap_area_root.rb_node;
 365	struct rb_node *parent = NULL;
 366	struct rb_node *tmp;
 367
 368	while (*p) {
 369		struct vmap_area *tmp_va;
 370
 371		parent = *p;
 372		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 373		if (va->va_start < tmp_va->va_end)
 374			p = &(*p)->rb_left;
 375		else if (va->va_end > tmp_va->va_start)
 376			p = &(*p)->rb_right;
 377		else
 378			BUG();
 379	}
 380
 381	rb_link_node(&va->rb_node, parent, p);
 382	rb_insert_color(&va->rb_node, &vmap_area_root);
 383
 384	/* address-sort this list */
 385	tmp = rb_prev(&va->rb_node);
 386	if (tmp) {
 387		struct vmap_area *prev;
 388		prev = rb_entry(tmp, struct vmap_area, rb_node);
 389		list_add_rcu(&va->list, &prev->list);
 390	} else
 391		list_add_rcu(&va->list, &vmap_area_list);
 392}
 393
 394static void purge_vmap_area_lazy(void);
 395
 396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 397
 398/*
 399 * Allocate a region of KVA of the specified size and alignment, within the
 400 * vstart and vend.
 401 */
 402static struct vmap_area *alloc_vmap_area(unsigned long size,
 403				unsigned long align,
 404				unsigned long vstart, unsigned long vend,
 405				int node, gfp_t gfp_mask)
 406{
 407	struct vmap_area *va;
 408	struct rb_node *n;
 409	unsigned long addr;
 410	int purged = 0;
 411	struct vmap_area *first;
 412
 413	BUG_ON(!size);
 414	BUG_ON(offset_in_page(size));
 415	BUG_ON(!is_power_of_2(align));
 416
 417	might_sleep();
 418
 419	va = kmalloc_node(sizeof(struct vmap_area),
 420			gfp_mask & GFP_RECLAIM_MASK, node);
 421	if (unlikely(!va))
 422		return ERR_PTR(-ENOMEM);
 423
 424	/*
 425	 * Only scan the relevant parts containing pointers to other objects
 426	 * to avoid false negatives.
 427	 */
 428	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 429
 430retry:
 431	spin_lock(&vmap_area_lock);
 432	/*
 433	 * Invalidate cache if we have more permissive parameters.
 434	 * cached_hole_size notes the largest hole noticed _below_
 435	 * the vmap_area cached in free_vmap_cache: if size fits
 436	 * into that hole, we want to scan from vstart to reuse
 437	 * the hole instead of allocating above free_vmap_cache.
 438	 * Note that __free_vmap_area may update free_vmap_cache
 439	 * without updating cached_hole_size or cached_align.
 440	 */
 441	if (!free_vmap_cache ||
 442			size < cached_hole_size ||
 443			vstart < cached_vstart ||
 444			align < cached_align) {
 445nocache:
 446		cached_hole_size = 0;
 447		free_vmap_cache = NULL;
 448	}
 449	/* record if we encounter less permissive parameters */
 450	cached_vstart = vstart;
 451	cached_align = align;
 452
 453	/* find starting point for our search */
 454	if (free_vmap_cache) {
 455		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 456		addr = ALIGN(first->va_end, align);
 457		if (addr < vstart)
 458			goto nocache;
 459		if (addr + size < addr)
 460			goto overflow;
 461
 462	} else {
 463		addr = ALIGN(vstart, align);
 464		if (addr + size < addr)
 465			goto overflow;
 466
 467		n = vmap_area_root.rb_node;
 468		first = NULL;
 469
 470		while (n) {
 471			struct vmap_area *tmp;
 472			tmp = rb_entry(n, struct vmap_area, rb_node);
 473			if (tmp->va_end >= addr) {
 474				first = tmp;
 475				if (tmp->va_start <= addr)
 476					break;
 477				n = n->rb_left;
 478			} else
 479				n = n->rb_right;
 480		}
 481
 482		if (!first)
 483			goto found;
 484	}
 485
 486	/* from the starting point, walk areas until a suitable hole is found */
 487	while (addr + size > first->va_start && addr + size <= vend) {
 488		if (addr + cached_hole_size < first->va_start)
 489			cached_hole_size = first->va_start - addr;
 490		addr = ALIGN(first->va_end, align);
 491		if (addr + size < addr)
 492			goto overflow;
 493
 494		if (list_is_last(&first->list, &vmap_area_list))
 495			goto found;
 496
 497		first = list_next_entry(first, list);
 
 498	}
 499
 500found:
 501	if (addr + size > vend)
 502		goto overflow;
 503
 504	va->va_start = addr;
 505	va->va_end = addr + size;
 506	va->flags = 0;
 507	__insert_vmap_area(va);
 508	free_vmap_cache = &va->rb_node;
 509	spin_unlock(&vmap_area_lock);
 510
 511	BUG_ON(!IS_ALIGNED(va->va_start, align));
 512	BUG_ON(va->va_start < vstart);
 513	BUG_ON(va->va_end > vend);
 514
 515	return va;
 516
 517overflow:
 518	spin_unlock(&vmap_area_lock);
 519	if (!purged) {
 520		purge_vmap_area_lazy();
 521		purged = 1;
 522		goto retry;
 523	}
 524
 525	if (gfpflags_allow_blocking(gfp_mask)) {
 526		unsigned long freed = 0;
 527		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 528		if (freed > 0) {
 529			purged = 0;
 530			goto retry;
 531		}
 532	}
 533
 534	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 535		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 536			size);
 537	kfree(va);
 538	return ERR_PTR(-EBUSY);
 539}
 540
 541int register_vmap_purge_notifier(struct notifier_block *nb)
 542{
 543	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 544}
 545EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 546
 547int unregister_vmap_purge_notifier(struct notifier_block *nb)
 548{
 549	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 550}
 551EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 552
 553static void __free_vmap_area(struct vmap_area *va)
 554{
 555	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 556
 557	if (free_vmap_cache) {
 558		if (va->va_end < cached_vstart) {
 559			free_vmap_cache = NULL;
 560		} else {
 561			struct vmap_area *cache;
 562			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 563			if (va->va_start <= cache->va_start) {
 564				free_vmap_cache = rb_prev(&va->rb_node);
 565				/*
 566				 * We don't try to update cached_hole_size or
 567				 * cached_align, but it won't go very wrong.
 568				 */
 569			}
 570		}
 571	}
 572	rb_erase(&va->rb_node, &vmap_area_root);
 573	RB_CLEAR_NODE(&va->rb_node);
 574	list_del_rcu(&va->list);
 575
 576	/*
 577	 * Track the highest possible candidate for pcpu area
 578	 * allocation.  Areas outside of vmalloc area can be returned
 579	 * here too, consider only end addresses which fall inside
 580	 * vmalloc area proper.
 581	 */
 582	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 583		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 584
 585	kfree_rcu(va, rcu_head);
 586}
 587
 588/*
 589 * Free a region of KVA allocated by alloc_vmap_area
 590 */
 591static void free_vmap_area(struct vmap_area *va)
 592{
 593	spin_lock(&vmap_area_lock);
 594	__free_vmap_area(va);
 595	spin_unlock(&vmap_area_lock);
 596}
 597
 598/*
 599 * Clear the pagetable entries of a given vmap_area
 600 */
 601static void unmap_vmap_area(struct vmap_area *va)
 602{
 603	vunmap_page_range(va->va_start, va->va_end);
 604}
 605
 606static void vmap_debug_free_range(unsigned long start, unsigned long end)
 607{
 608	/*
 609	 * Unmap page tables and force a TLB flush immediately if pagealloc
 610	 * debugging is enabled.  This catches use after free bugs similarly to
 611	 * those in linear kernel virtual address space after a page has been
 612	 * freed.
 613	 *
 614	 * All the lazy freeing logic is still retained, in order to minimise
 615	 * intrusiveness of this debugging feature.
 616	 *
 617	 * This is going to be *slow* (linear kernel virtual address debugging
 618	 * doesn't do a broadcast TLB flush so it is a lot faster).
 
 619	 */
 620	if (debug_pagealloc_enabled()) {
 621		vunmap_page_range(start, end);
 622		flush_tlb_kernel_range(start, end);
 623	}
 624}
 625
 626/*
 627 * lazy_max_pages is the maximum amount of virtual address space we gather up
 628 * before attempting to purge with a TLB flush.
 629 *
 630 * There is a tradeoff here: a larger number will cover more kernel page tables
 631 * and take slightly longer to purge, but it will linearly reduce the number of
 632 * global TLB flushes that must be performed. It would seem natural to scale
 633 * this number up linearly with the number of CPUs (because vmapping activity
 634 * could also scale linearly with the number of CPUs), however it is likely
 635 * that in practice, workloads might be constrained in other ways that mean
 636 * vmap activity will not scale linearly with CPUs. Also, I want to be
 637 * conservative and not introduce a big latency on huge systems, so go with
 638 * a less aggressive log scale. It will still be an improvement over the old
 639 * code, and it will be simple to change the scale factor if we find that it
 640 * becomes a problem on bigger systems.
 641 */
 642static unsigned long lazy_max_pages(void)
 643{
 644	unsigned int log;
 645
 646	log = fls(num_online_cpus());
 647
 648	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 649}
 650
 651static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 652
 653/*
 654 * Serialize vmap purging.  There is no actual criticial section protected
 655 * by this look, but we want to avoid concurrent calls for performance
 656 * reasons and to make the pcpu_get_vm_areas more deterministic.
 657 */
 658static DEFINE_MUTEX(vmap_purge_lock);
 659
 660/* for per-CPU blocks */
 661static void purge_fragmented_blocks_allcpus(void);
 662
 663/*
 664 * called before a call to iounmap() if the caller wants vm_area_struct's
 665 * immediately freed.
 666 */
 667void set_iounmap_nonlazy(void)
 668{
 669	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 670}
 671
 672/*
 673 * Purges all lazily-freed vmap areas.
 
 
 
 
 
 
 
 674 */
 675static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 
 676{
 677	struct llist_node *valist;
 
 678	struct vmap_area *va;
 679	struct vmap_area *n_va;
 680	bool do_free = false;
 681
 682	lockdep_assert_held(&vmap_purge_lock);
 
 
 
 
 
 
 
 
 
 683
 684	valist = llist_del_all(&vmap_purge_list);
 685	llist_for_each_entry(va, valist, purge_list) {
 686		if (va->va_start < start)
 687			start = va->va_start;
 688		if (va->va_end > end)
 689			end = va->va_end;
 690		do_free = true;
 691	}
 692
 693	if (!do_free)
 694		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 695
 696	flush_tlb_kernel_range(start, end);
 
 697
 698	spin_lock(&vmap_area_lock);
 699	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 700		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 701
 702		__free_vmap_area(va);
 703		atomic_sub(nr, &vmap_lazy_nr);
 704		cond_resched_lock(&vmap_area_lock);
 
 
 705	}
 706	spin_unlock(&vmap_area_lock);
 707	return true;
 708}
 709
 710/*
 711 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 712 * is already purging.
 713 */
 714static void try_purge_vmap_area_lazy(void)
 715{
 716	if (mutex_trylock(&vmap_purge_lock)) {
 717		__purge_vmap_area_lazy(ULONG_MAX, 0);
 718		mutex_unlock(&vmap_purge_lock);
 719	}
 720}
 721
 722/*
 723 * Kick off a purge of the outstanding lazy areas.
 724 */
 725static void purge_vmap_area_lazy(void)
 726{
 727	mutex_lock(&vmap_purge_lock);
 728	purge_fragmented_blocks_allcpus();
 729	__purge_vmap_area_lazy(ULONG_MAX, 0);
 730	mutex_unlock(&vmap_purge_lock);
 731}
 732
 733/*
 734 * Free a vmap area, caller ensuring that the area has been unmapped
 735 * and flush_cache_vunmap had been called for the correct range
 736 * previously.
 737 */
 738static void free_vmap_area_noflush(struct vmap_area *va)
 739{
 740	int nr_lazy;
 741
 742	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 743				    &vmap_lazy_nr);
 744
 745	/* After this point, we may free va at any time */
 746	llist_add(&va->purge_list, &vmap_purge_list);
 747
 748	if (unlikely(nr_lazy > lazy_max_pages()))
 749		try_purge_vmap_area_lazy();
 750}
 751
 752/*
 
 
 
 
 
 
 
 
 
 
 753 * Free and unmap a vmap area
 754 */
 755static void free_unmap_vmap_area(struct vmap_area *va)
 756{
 757	flush_cache_vunmap(va->va_start, va->va_end);
 758	unmap_vmap_area(va);
 759	free_vmap_area_noflush(va);
 760}
 761
 762static struct vmap_area *find_vmap_area(unsigned long addr)
 763{
 764	struct vmap_area *va;
 765
 766	spin_lock(&vmap_area_lock);
 767	va = __find_vmap_area(addr);
 768	spin_unlock(&vmap_area_lock);
 769
 770	return va;
 771}
 772
 
 
 
 
 
 
 
 
 
 
 773/*** Per cpu kva allocator ***/
 774
 775/*
 776 * vmap space is limited especially on 32 bit architectures. Ensure there is
 777 * room for at least 16 percpu vmap blocks per CPU.
 778 */
 779/*
 780 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 781 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 782 * instead (we just need a rough idea)
 783 */
 784#if BITS_PER_LONG == 32
 785#define VMALLOC_SPACE		(128UL*1024*1024)
 786#else
 787#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 788#endif
 789
 790#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 791#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 792#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 793#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 794#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 795#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 796#define VMAP_BBMAP_BITS		\
 797		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 798		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 799			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 800
 801#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 802
 803static bool vmap_initialized __read_mostly = false;
 804
 805struct vmap_block_queue {
 806	spinlock_t lock;
 807	struct list_head free;
 808};
 809
 810struct vmap_block {
 811	spinlock_t lock;
 812	struct vmap_area *va;
 813	unsigned long free, dirty;
 814	unsigned long dirty_min, dirty_max; /*< dirty range */
 815	struct list_head free_list;
 816	struct rcu_head rcu_head;
 817	struct list_head purge;
 818};
 819
 820/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 821static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 822
 823/*
 824 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 825 * in the free path. Could get rid of this if we change the API to return a
 826 * "cookie" from alloc, to be passed to free. But no big deal yet.
 827 */
 828static DEFINE_SPINLOCK(vmap_block_tree_lock);
 829static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 830
 831/*
 832 * We should probably have a fallback mechanism to allocate virtual memory
 833 * out of partially filled vmap blocks. However vmap block sizing should be
 834 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 835 * big problem.
 836 */
 837
 838static unsigned long addr_to_vb_idx(unsigned long addr)
 839{
 840	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 841	addr /= VMAP_BLOCK_SIZE;
 842	return addr;
 843}
 844
 845static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 846{
 847	unsigned long addr;
 848
 849	addr = va_start + (pages_off << PAGE_SHIFT);
 850	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 851	return (void *)addr;
 852}
 853
 854/**
 855 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 856 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 857 * @order:    how many 2^order pages should be occupied in newly allocated block
 858 * @gfp_mask: flags for the page level allocator
 859 *
 860 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 861 */
 862static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 863{
 864	struct vmap_block_queue *vbq;
 865	struct vmap_block *vb;
 866	struct vmap_area *va;
 867	unsigned long vb_idx;
 868	int node, err;
 869	void *vaddr;
 870
 871	node = numa_node_id();
 872
 873	vb = kmalloc_node(sizeof(struct vmap_block),
 874			gfp_mask & GFP_RECLAIM_MASK, node);
 875	if (unlikely(!vb))
 876		return ERR_PTR(-ENOMEM);
 877
 878	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 879					VMALLOC_START, VMALLOC_END,
 880					node, gfp_mask);
 881	if (IS_ERR(va)) {
 882		kfree(vb);
 883		return ERR_CAST(va);
 884	}
 885
 886	err = radix_tree_preload(gfp_mask);
 887	if (unlikely(err)) {
 888		kfree(vb);
 889		free_vmap_area(va);
 890		return ERR_PTR(err);
 891	}
 892
 893	vaddr = vmap_block_vaddr(va->va_start, 0);
 894	spin_lock_init(&vb->lock);
 895	vb->va = va;
 896	/* At least something should be left free */
 897	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 898	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 899	vb->dirty = 0;
 900	vb->dirty_min = VMAP_BBMAP_BITS;
 901	vb->dirty_max = 0;
 902	INIT_LIST_HEAD(&vb->free_list);
 903
 904	vb_idx = addr_to_vb_idx(va->va_start);
 905	spin_lock(&vmap_block_tree_lock);
 906	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 907	spin_unlock(&vmap_block_tree_lock);
 908	BUG_ON(err);
 909	radix_tree_preload_end();
 910
 911	vbq = &get_cpu_var(vmap_block_queue);
 912	spin_lock(&vbq->lock);
 913	list_add_tail_rcu(&vb->free_list, &vbq->free);
 914	spin_unlock(&vbq->lock);
 915	put_cpu_var(vmap_block_queue);
 916
 917	return vaddr;
 918}
 919
 920static void free_vmap_block(struct vmap_block *vb)
 921{
 922	struct vmap_block *tmp;
 923	unsigned long vb_idx;
 924
 925	vb_idx = addr_to_vb_idx(vb->va->va_start);
 926	spin_lock(&vmap_block_tree_lock);
 927	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 928	spin_unlock(&vmap_block_tree_lock);
 929	BUG_ON(tmp != vb);
 930
 931	free_vmap_area_noflush(vb->va);
 932	kfree_rcu(vb, rcu_head);
 933}
 934
 935static void purge_fragmented_blocks(int cpu)
 936{
 937	LIST_HEAD(purge);
 938	struct vmap_block *vb;
 939	struct vmap_block *n_vb;
 940	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 941
 942	rcu_read_lock();
 943	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 944
 945		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 946			continue;
 947
 948		spin_lock(&vb->lock);
 949		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 950			vb->free = 0; /* prevent further allocs after releasing lock */
 951			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 952			vb->dirty_min = 0;
 953			vb->dirty_max = VMAP_BBMAP_BITS;
 954			spin_lock(&vbq->lock);
 955			list_del_rcu(&vb->free_list);
 956			spin_unlock(&vbq->lock);
 957			spin_unlock(&vb->lock);
 958			list_add_tail(&vb->purge, &purge);
 959		} else
 960			spin_unlock(&vb->lock);
 961	}
 962	rcu_read_unlock();
 963
 964	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 965		list_del(&vb->purge);
 966		free_vmap_block(vb);
 967	}
 968}
 969
 970static void purge_fragmented_blocks_allcpus(void)
 971{
 972	int cpu;
 973
 974	for_each_possible_cpu(cpu)
 975		purge_fragmented_blocks(cpu);
 976}
 977
 978static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 979{
 980	struct vmap_block_queue *vbq;
 981	struct vmap_block *vb;
 982	void *vaddr = NULL;
 983	unsigned int order;
 984
 985	BUG_ON(offset_in_page(size));
 986	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 987	if (WARN_ON(size == 0)) {
 988		/*
 989		 * Allocating 0 bytes isn't what caller wants since
 990		 * get_order(0) returns funny result. Just warn and terminate
 991		 * early.
 992		 */
 993		return NULL;
 994	}
 995	order = get_order(size);
 996
 
 997	rcu_read_lock();
 998	vbq = &get_cpu_var(vmap_block_queue);
 999	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1000		unsigned long pages_off;
1001
1002		spin_lock(&vb->lock);
1003		if (vb->free < (1UL << order)) {
1004			spin_unlock(&vb->lock);
1005			continue;
1006		}
1007
1008		pages_off = VMAP_BBMAP_BITS - vb->free;
1009		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 
 
1010		vb->free -= 1UL << order;
1011		if (vb->free == 0) {
1012			spin_lock(&vbq->lock);
1013			list_del_rcu(&vb->free_list);
1014			spin_unlock(&vbq->lock);
1015		}
1016
1017		spin_unlock(&vb->lock);
1018		break;
 
 
1019	}
1020
1021	put_cpu_var(vmap_block_queue);
1022	rcu_read_unlock();
1023
1024	/* Allocate new block if nothing was found */
1025	if (!vaddr)
1026		vaddr = new_vmap_block(order, gfp_mask);
 
 
 
1027
1028	return vaddr;
1029}
1030
1031static void vb_free(const void *addr, unsigned long size)
1032{
1033	unsigned long offset;
1034	unsigned long vb_idx;
1035	unsigned int order;
1036	struct vmap_block *vb;
1037
1038	BUG_ON(offset_in_page(size));
1039	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1040
1041	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1042
1043	order = get_order(size);
1044
1045	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1046	offset >>= PAGE_SHIFT;
1047
1048	vb_idx = addr_to_vb_idx((unsigned long)addr);
1049	rcu_read_lock();
1050	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1051	rcu_read_unlock();
1052	BUG_ON(!vb);
1053
1054	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1055
1056	spin_lock(&vb->lock);
1057
1058	/* Expand dirty range */
1059	vb->dirty_min = min(vb->dirty_min, offset);
1060	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1061
1062	vb->dirty += 1UL << order;
1063	if (vb->dirty == VMAP_BBMAP_BITS) {
1064		BUG_ON(vb->free);
1065		spin_unlock(&vb->lock);
1066		free_vmap_block(vb);
1067	} else
1068		spin_unlock(&vb->lock);
1069}
1070
1071/**
1072 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1073 *
1074 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1075 * to amortize TLB flushing overheads. What this means is that any page you
1076 * have now, may, in a former life, have been mapped into kernel virtual
1077 * address by the vmap layer and so there might be some CPUs with TLB entries
1078 * still referencing that page (additional to the regular 1:1 kernel mapping).
1079 *
1080 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1081 * be sure that none of the pages we have control over will have any aliases
1082 * from the vmap layer.
1083 */
1084void vm_unmap_aliases(void)
1085{
1086	unsigned long start = ULONG_MAX, end = 0;
1087	int cpu;
1088	int flush = 0;
1089
1090	if (unlikely(!vmap_initialized))
1091		return;
1092
1093	might_sleep();
1094
1095	for_each_possible_cpu(cpu) {
1096		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1097		struct vmap_block *vb;
1098
1099		rcu_read_lock();
1100		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1101			spin_lock(&vb->lock);
1102			if (vb->dirty) {
1103				unsigned long va_start = vb->va->va_start;
1104				unsigned long s, e;
1105
1106				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1107				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1108
1109				start = min(s, start);
1110				end   = max(e, end);
1111
 
 
1112				flush = 1;
 
 
 
 
 
1113			}
1114			spin_unlock(&vb->lock);
1115		}
1116		rcu_read_unlock();
1117	}
1118
1119	mutex_lock(&vmap_purge_lock);
1120	purge_fragmented_blocks_allcpus();
1121	if (!__purge_vmap_area_lazy(start, end) && flush)
1122		flush_tlb_kernel_range(start, end);
1123	mutex_unlock(&vmap_purge_lock);
1124}
1125EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1126
1127/**
1128 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1129 * @mem: the pointer returned by vm_map_ram
1130 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1131 */
1132void vm_unmap_ram(const void *mem, unsigned int count)
1133{
1134	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1135	unsigned long addr = (unsigned long)mem;
1136	struct vmap_area *va;
1137
1138	might_sleep();
1139	BUG_ON(!addr);
1140	BUG_ON(addr < VMALLOC_START);
1141	BUG_ON(addr > VMALLOC_END);
1142	BUG_ON(!PAGE_ALIGNED(addr));
1143
1144	debug_check_no_locks_freed(mem, size);
1145	vmap_debug_free_range(addr, addr+size);
1146
1147	if (likely(count <= VMAP_MAX_ALLOC)) {
1148		vb_free(mem, size);
1149		return;
1150	}
1151
1152	va = find_vmap_area(addr);
1153	BUG_ON(!va);
1154	free_unmap_vmap_area(va);
1155}
1156EXPORT_SYMBOL(vm_unmap_ram);
1157
1158/**
1159 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1160 * @pages: an array of pointers to the pages to be mapped
1161 * @count: number of pages
1162 * @node: prefer to allocate data structures on this node
1163 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1164 *
1165 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1166 * faster than vmap so it's good.  But if you mix long-life and short-life
1167 * objects with vm_map_ram(), it could consume lots of address space through
1168 * fragmentation (especially on a 32bit machine).  You could see failures in
1169 * the end.  Please use this function for short-lived objects.
1170 *
1171 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1172 */
1173void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1174{
1175	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1176	unsigned long addr;
1177	void *mem;
1178
1179	if (likely(count <= VMAP_MAX_ALLOC)) {
1180		mem = vb_alloc(size, GFP_KERNEL);
1181		if (IS_ERR(mem))
1182			return NULL;
1183		addr = (unsigned long)mem;
1184	} else {
1185		struct vmap_area *va;
1186		va = alloc_vmap_area(size, PAGE_SIZE,
1187				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1188		if (IS_ERR(va))
1189			return NULL;
1190
1191		addr = va->va_start;
1192		mem = (void *)addr;
1193	}
1194	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1195		vm_unmap_ram(mem, count);
1196		return NULL;
1197	}
1198	return mem;
1199}
1200EXPORT_SYMBOL(vm_map_ram);
1201
1202static struct vm_struct *vmlist __initdata;
1203/**
1204 * vm_area_add_early - add vmap area early during boot
1205 * @vm: vm_struct to add
1206 *
1207 * This function is used to add fixed kernel vm area to vmlist before
1208 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1209 * should contain proper values and the other fields should be zero.
1210 *
1211 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1212 */
1213void __init vm_area_add_early(struct vm_struct *vm)
1214{
1215	struct vm_struct *tmp, **p;
1216
1217	BUG_ON(vmap_initialized);
1218	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219		if (tmp->addr >= vm->addr) {
1220			BUG_ON(tmp->addr < vm->addr + vm->size);
1221			break;
1222		} else
1223			BUG_ON(tmp->addr + tmp->size > vm->addr);
1224	}
1225	vm->next = *p;
1226	*p = vm;
1227}
1228
1229/**
1230 * vm_area_register_early - register vmap area early during boot
1231 * @vm: vm_struct to register
1232 * @align: requested alignment
1233 *
1234 * This function is used to register kernel vm area before
1235 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1236 * proper values on entry and other fields should be zero.  On return,
1237 * vm->addr contains the allocated address.
1238 *
1239 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1240 */
1241void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1242{
1243	static size_t vm_init_off __initdata;
1244	unsigned long addr;
1245
1246	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1247	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1248
1249	vm->addr = (void *)addr;
1250
1251	vm_area_add_early(vm);
1252}
1253
1254void __init vmalloc_init(void)
1255{
1256	struct vmap_area *va;
1257	struct vm_struct *tmp;
1258	int i;
1259
1260	for_each_possible_cpu(i) {
1261		struct vmap_block_queue *vbq;
1262		struct vfree_deferred *p;
1263
1264		vbq = &per_cpu(vmap_block_queue, i);
1265		spin_lock_init(&vbq->lock);
1266		INIT_LIST_HEAD(&vbq->free);
1267		p = &per_cpu(vfree_deferred, i);
1268		init_llist_head(&p->list);
1269		INIT_WORK(&p->wq, free_work);
1270	}
1271
1272	/* Import existing vmlist entries. */
1273	for (tmp = vmlist; tmp; tmp = tmp->next) {
1274		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1275		va->flags = VM_VM_AREA;
1276		va->va_start = (unsigned long)tmp->addr;
1277		va->va_end = va->va_start + tmp->size;
1278		va->vm = tmp;
1279		__insert_vmap_area(va);
1280	}
1281
1282	vmap_area_pcpu_hole = VMALLOC_END;
1283
1284	vmap_initialized = true;
1285}
1286
1287/**
1288 * map_kernel_range_noflush - map kernel VM area with the specified pages
1289 * @addr: start of the VM area to map
1290 * @size: size of the VM area to map
1291 * @prot: page protection flags to use
1292 * @pages: pages to map
1293 *
1294 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1295 * specify should have been allocated using get_vm_area() and its
1296 * friends.
1297 *
1298 * NOTE:
1299 * This function does NOT do any cache flushing.  The caller is
1300 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1301 * before calling this function.
1302 *
1303 * RETURNS:
1304 * The number of pages mapped on success, -errno on failure.
1305 */
1306int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1307			     pgprot_t prot, struct page **pages)
1308{
1309	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1310}
1311
1312/**
1313 * unmap_kernel_range_noflush - unmap kernel VM area
1314 * @addr: start of the VM area to unmap
1315 * @size: size of the VM area to unmap
1316 *
1317 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1318 * specify should have been allocated using get_vm_area() and its
1319 * friends.
1320 *
1321 * NOTE:
1322 * This function does NOT do any cache flushing.  The caller is
1323 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1324 * before calling this function and flush_tlb_kernel_range() after.
1325 */
1326void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1327{
1328	vunmap_page_range(addr, addr + size);
1329}
1330EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1331
1332/**
1333 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1334 * @addr: start of the VM area to unmap
1335 * @size: size of the VM area to unmap
1336 *
1337 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1338 * the unmapping and tlb after.
1339 */
1340void unmap_kernel_range(unsigned long addr, unsigned long size)
1341{
1342	unsigned long end = addr + size;
1343
1344	flush_cache_vunmap(addr, end);
1345	vunmap_page_range(addr, end);
1346	flush_tlb_kernel_range(addr, end);
1347}
1348EXPORT_SYMBOL_GPL(unmap_kernel_range);
1349
1350int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1351{
1352	unsigned long addr = (unsigned long)area->addr;
1353	unsigned long end = addr + get_vm_area_size(area);
1354	int err;
1355
1356	err = vmap_page_range(addr, end, prot, pages);
 
 
 
 
1357
1358	return err > 0 ? 0 : err;
1359}
1360EXPORT_SYMBOL_GPL(map_vm_area);
1361
1362static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1363			      unsigned long flags, const void *caller)
1364{
1365	spin_lock(&vmap_area_lock);
1366	vm->flags = flags;
1367	vm->addr = (void *)va->va_start;
1368	vm->size = va->va_end - va->va_start;
1369	vm->caller = caller;
1370	va->vm = vm;
1371	va->flags |= VM_VM_AREA;
1372	spin_unlock(&vmap_area_lock);
1373}
1374
1375static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1376{
1377	/*
1378	 * Before removing VM_UNINITIALIZED,
1379	 * we should make sure that vm has proper values.
1380	 * Pair with smp_rmb() in show_numa_info().
1381	 */
1382	smp_wmb();
1383	vm->flags &= ~VM_UNINITIALIZED;
1384}
1385
1386static struct vm_struct *__get_vm_area_node(unsigned long size,
1387		unsigned long align, unsigned long flags, unsigned long start,
1388		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1389{
1390	struct vmap_area *va;
1391	struct vm_struct *area;
1392
1393	BUG_ON(in_interrupt());
 
 
 
1394	size = PAGE_ALIGN(size);
1395	if (unlikely(!size))
1396		return NULL;
1397
1398	if (flags & VM_IOREMAP)
1399		align = 1ul << clamp_t(int, get_count_order_long(size),
1400				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1401
1402	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1403	if (unlikely(!area))
1404		return NULL;
1405
1406	if (!(flags & VM_NO_GUARD))
1407		size += PAGE_SIZE;
 
 
1408
1409	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1410	if (IS_ERR(va)) {
1411		kfree(area);
1412		return NULL;
1413	}
1414
1415	setup_vmalloc_vm(area, va, flags, caller);
1416
1417	return area;
1418}
1419
1420struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1421				unsigned long start, unsigned long end)
1422{
1423	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424				  GFP_KERNEL, __builtin_return_address(0));
1425}
1426EXPORT_SYMBOL_GPL(__get_vm_area);
1427
1428struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1429				       unsigned long start, unsigned long end,
1430				       const void *caller)
1431{
1432	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1433				  GFP_KERNEL, caller);
1434}
1435
1436/**
1437 *	get_vm_area  -  reserve a contiguous kernel virtual area
1438 *	@size:		size of the area
1439 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1440 *
1441 *	Search an area of @size in the kernel virtual mapping area,
1442 *	and reserved it for out purposes.  Returns the area descriptor
1443 *	on success or %NULL on failure.
1444 */
1445struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1446{
1447	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448				  NUMA_NO_NODE, GFP_KERNEL,
1449				  __builtin_return_address(0));
1450}
1451
1452struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1453				const void *caller)
1454{
1455	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1456				  NUMA_NO_NODE, GFP_KERNEL, caller);
1457}
1458
1459/**
1460 *	find_vm_area  -  find a continuous kernel virtual area
1461 *	@addr:		base address
1462 *
1463 *	Search for the kernel VM area starting at @addr, and return it.
1464 *	It is up to the caller to do all required locking to keep the returned
1465 *	pointer valid.
1466 */
1467struct vm_struct *find_vm_area(const void *addr)
1468{
1469	struct vmap_area *va;
1470
1471	va = find_vmap_area((unsigned long)addr);
1472	if (va && va->flags & VM_VM_AREA)
1473		return va->vm;
1474
1475	return NULL;
1476}
1477
1478/**
1479 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1480 *	@addr:		base address
1481 *
1482 *	Search for the kernel VM area starting at @addr, and remove it.
1483 *	This function returns the found VM area, but using it is NOT safe
1484 *	on SMP machines, except for its size or flags.
1485 */
1486struct vm_struct *remove_vm_area(const void *addr)
1487{
1488	struct vmap_area *va;
1489
1490	might_sleep();
1491
1492	va = find_vmap_area((unsigned long)addr);
1493	if (va && va->flags & VM_VM_AREA) {
1494		struct vm_struct *vm = va->vm;
1495
1496		spin_lock(&vmap_area_lock);
1497		va->vm = NULL;
1498		va->flags &= ~VM_VM_AREA;
1499		va->flags |= VM_LAZY_FREE;
1500		spin_unlock(&vmap_area_lock);
1501
1502		vmap_debug_free_range(va->va_start, va->va_end);
1503		kasan_free_shadow(vm);
1504		free_unmap_vmap_area(va);
 
1505
1506		return vm;
1507	}
1508	return NULL;
1509}
1510
1511static void __vunmap(const void *addr, int deallocate_pages)
1512{
1513	struct vm_struct *area;
1514
1515	if (!addr)
1516		return;
1517
1518	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519			addr))
1520		return;
1521
1522	area = remove_vm_area(addr);
1523	if (unlikely(!area)) {
1524		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525				addr);
1526		return;
1527	}
1528
1529	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531
1532	if (deallocate_pages) {
1533		int i;
1534
1535		for (i = 0; i < area->nr_pages; i++) {
1536			struct page *page = area->pages[i];
1537
1538			BUG_ON(!page);
1539			__free_pages(page, 0);
1540		}
1541
1542		kvfree(area->pages);
 
 
 
1543	}
1544
1545	kfree(area);
1546	return;
1547}
1548
1549static inline void __vfree_deferred(const void *addr)
1550{
1551	/*
1552	 * Use raw_cpu_ptr() because this can be called from preemptible
1553	 * context. Preemption is absolutely fine here, because the llist_add()
1554	 * implementation is lockless, so it works even if we are adding to
1555	 * nother cpu's list.  schedule_work() should be fine with this too.
1556	 */
1557	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1558
1559	if (llist_add((struct llist_node *)addr, &p->list))
1560		schedule_work(&p->wq);
1561}
1562
1563/**
1564 *	vfree_atomic  -  release memory allocated by vmalloc()
1565 *	@addr:		memory base address
1566 *
1567 *	This one is just like vfree() but can be called in any atomic context
1568 *	except NMIs.
1569 */
1570void vfree_atomic(const void *addr)
1571{
1572	BUG_ON(in_nmi());
1573
1574	kmemleak_free(addr);
1575
1576	if (!addr)
1577		return;
1578	__vfree_deferred(addr);
1579}
1580
1581/**
1582 *	vfree  -  release memory allocated by vmalloc()
1583 *	@addr:		memory base address
1584 *
1585 *	Free the virtually continuous memory area starting at @addr, as
1586 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1587 *	NULL, no operation is performed.
1588 *
1589 *	Must not be called in NMI context (strictly speaking, only if we don't
1590 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1591 *	conventions for vfree() arch-depenedent would be a really bad idea)
1592 *
1593 *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1594 */
1595void vfree(const void *addr)
1596{
1597	BUG_ON(in_nmi());
1598
1599	kmemleak_free(addr);
1600
1601	if (!addr)
1602		return;
1603	if (unlikely(in_interrupt()))
1604		__vfree_deferred(addr);
1605	else
 
 
1606		__vunmap(addr, 1);
1607}
1608EXPORT_SYMBOL(vfree);
1609
1610/**
1611 *	vunmap  -  release virtual mapping obtained by vmap()
1612 *	@addr:		memory base address
1613 *
1614 *	Free the virtually contiguous memory area starting at @addr,
1615 *	which was created from the page array passed to vmap().
1616 *
1617 *	Must not be called in interrupt context.
1618 */
1619void vunmap(const void *addr)
1620{
1621	BUG_ON(in_interrupt());
1622	might_sleep();
1623	if (addr)
1624		__vunmap(addr, 0);
1625}
1626EXPORT_SYMBOL(vunmap);
1627
1628/**
1629 *	vmap  -  map an array of pages into virtually contiguous space
1630 *	@pages:		array of page pointers
1631 *	@count:		number of pages to map
1632 *	@flags:		vm_area->flags
1633 *	@prot:		page protection for the mapping
1634 *
1635 *	Maps @count pages from @pages into contiguous kernel virtual
1636 *	space.
1637 */
1638void *vmap(struct page **pages, unsigned int count,
1639		unsigned long flags, pgprot_t prot)
1640{
1641	struct vm_struct *area;
1642	unsigned long size;		/* In bytes */
1643
1644	might_sleep();
1645
1646	if (count > totalram_pages)
1647		return NULL;
1648
1649	size = (unsigned long)count << PAGE_SHIFT;
1650	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1651	if (!area)
1652		return NULL;
1653
1654	if (map_vm_area(area, prot, pages)) {
1655		vunmap(area->addr);
1656		return NULL;
1657	}
1658
1659	return area->addr;
1660}
1661EXPORT_SYMBOL(vmap);
1662
1663static void *__vmalloc_node(unsigned long size, unsigned long align,
1664			    gfp_t gfp_mask, pgprot_t prot,
1665			    int node, const void *caller);
1666static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1667				 pgprot_t prot, int node)
1668{
 
1669	struct page **pages;
1670	unsigned int nr_pages, array_size, i;
1671	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1672	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1673	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1674					0 :
1675					__GFP_HIGHMEM;
1676
1677	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1678	array_size = (nr_pages * sizeof(struct page *));
1679
1680	area->nr_pages = nr_pages;
1681	/* Please note that the recursion is strictly bounded. */
1682	if (array_size > PAGE_SIZE) {
1683		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1684				PAGE_KERNEL, node, area->caller);
 
1685	} else {
1686		pages = kmalloc_node(array_size, nested_gfp, node);
1687	}
1688	area->pages = pages;
1689	if (!area->pages) {
1690		remove_vm_area(area->addr);
1691		kfree(area);
1692		return NULL;
1693	}
1694
1695	for (i = 0; i < area->nr_pages; i++) {
1696		struct page *page;
 
1697
1698		if (node == NUMA_NO_NODE)
1699			page = alloc_page(alloc_mask|highmem_mask);
1700		else
1701			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1702
1703		if (unlikely(!page)) {
1704			/* Successfully allocated i pages, free them in __vunmap() */
1705			area->nr_pages = i;
1706			goto fail;
1707		}
1708		area->pages[i] = page;
1709		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1710			cond_resched();
1711	}
1712
1713	if (map_vm_area(area, prot, pages))
1714		goto fail;
1715	return area->addr;
1716
1717fail:
1718	warn_alloc(gfp_mask, NULL,
1719			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1720			  (area->nr_pages*PAGE_SIZE), area->size);
1721	vfree(area->addr);
1722	return NULL;
1723}
1724
1725/**
1726 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1727 *	@size:		allocation size
1728 *	@align:		desired alignment
1729 *	@start:		vm area range start
1730 *	@end:		vm area range end
1731 *	@gfp_mask:	flags for the page level allocator
1732 *	@prot:		protection mask for the allocated pages
1733 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1734 *	@node:		node to use for allocation or NUMA_NO_NODE
1735 *	@caller:	caller's return address
1736 *
1737 *	Allocate enough pages to cover @size from the page level
1738 *	allocator with @gfp_mask flags.  Map them into contiguous
1739 *	kernel virtual space, using a pagetable protection of @prot.
1740 */
1741void *__vmalloc_node_range(unsigned long size, unsigned long align,
1742			unsigned long start, unsigned long end, gfp_t gfp_mask,
1743			pgprot_t prot, unsigned long vm_flags, int node,
1744			const void *caller)
1745{
1746	struct vm_struct *area;
1747	void *addr;
1748	unsigned long real_size = size;
1749
1750	size = PAGE_ALIGN(size);
1751	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1752		goto fail;
1753
1754	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1755				vm_flags, start, end, node, gfp_mask, caller);
1756	if (!area)
1757		goto fail;
1758
1759	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1760	if (!addr)
1761		return NULL;
1762
1763	/*
1764	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1765	 * flag. It means that vm_struct is not fully initialized.
1766	 * Now, it is fully initialized, so remove this flag here.
1767	 */
1768	clear_vm_uninitialized_flag(area);
1769
1770	kmemleak_vmalloc(area, size, gfp_mask);
 
 
 
 
 
1771
1772	return addr;
1773
1774fail:
1775	warn_alloc(gfp_mask, NULL,
1776			  "vmalloc: allocation failure: %lu bytes", real_size);
 
1777	return NULL;
1778}
1779
1780/**
1781 *	__vmalloc_node  -  allocate virtually contiguous memory
1782 *	@size:		allocation size
1783 *	@align:		desired alignment
1784 *	@gfp_mask:	flags for the page level allocator
1785 *	@prot:		protection mask for the allocated pages
1786 *	@node:		node to use for allocation or NUMA_NO_NODE
1787 *	@caller:	caller's return address
1788 *
1789 *	Allocate enough pages to cover @size from the page level
1790 *	allocator with @gfp_mask flags.  Map them into contiguous
1791 *	kernel virtual space, using a pagetable protection of @prot.
1792 *
1793 *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1794 *	and __GFP_NOFAIL are not supported
1795 *
1796 *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1797 *	with mm people.
1798 *
1799 */
1800static void *__vmalloc_node(unsigned long size, unsigned long align,
1801			    gfp_t gfp_mask, pgprot_t prot,
1802			    int node, const void *caller)
1803{
1804	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1805				gfp_mask, prot, 0, node, caller);
1806}
1807
1808void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1809{
1810	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1811				__builtin_return_address(0));
1812}
1813EXPORT_SYMBOL(__vmalloc);
1814
1815static inline void *__vmalloc_node_flags(unsigned long size,
1816					int node, gfp_t flags)
1817{
1818	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1819					node, __builtin_return_address(0));
1820}
1821
1822
1823void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1824				  void *caller)
1825{
1826	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1827}
1828
1829/**
1830 *	vmalloc  -  allocate virtually contiguous memory
1831 *	@size:		allocation size
1832 *	Allocate enough pages to cover @size from the page level
1833 *	allocator and map them into contiguous kernel virtual space.
1834 *
1835 *	For tight control over page level allocator and protection flags
1836 *	use __vmalloc() instead.
1837 */
1838void *vmalloc(unsigned long size)
1839{
1840	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841				    GFP_KERNEL);
1842}
1843EXPORT_SYMBOL(vmalloc);
1844
1845/**
1846 *	vzalloc - allocate virtually contiguous memory with zero fill
1847 *	@size:	allocation size
1848 *	Allocate enough pages to cover @size from the page level
1849 *	allocator and map them into contiguous kernel virtual space.
1850 *	The memory allocated is set to zero.
1851 *
1852 *	For tight control over page level allocator and protection flags
1853 *	use __vmalloc() instead.
1854 */
1855void *vzalloc(unsigned long size)
1856{
1857	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1858				GFP_KERNEL | __GFP_ZERO);
1859}
1860EXPORT_SYMBOL(vzalloc);
1861
1862/**
1863 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1864 * @size: allocation size
1865 *
1866 * The resulting memory area is zeroed so it can be mapped to userspace
1867 * without leaking data.
1868 */
1869void *vmalloc_user(unsigned long size)
1870{
1871	struct vm_struct *area;
1872	void *ret;
1873
1874	ret = __vmalloc_node(size, SHMLBA,
1875			     GFP_KERNEL | __GFP_ZERO,
1876			     PAGE_KERNEL, NUMA_NO_NODE,
1877			     __builtin_return_address(0));
1878	if (ret) {
1879		area = find_vm_area(ret);
1880		area->flags |= VM_USERMAP;
1881	}
1882	return ret;
1883}
1884EXPORT_SYMBOL(vmalloc_user);
1885
1886/**
1887 *	vmalloc_node  -  allocate memory on a specific node
1888 *	@size:		allocation size
1889 *	@node:		numa node
1890 *
1891 *	Allocate enough pages to cover @size from the page level
1892 *	allocator and map them into contiguous kernel virtual space.
1893 *
1894 *	For tight control over page level allocator and protection flags
1895 *	use __vmalloc() instead.
1896 */
1897void *vmalloc_node(unsigned long size, int node)
1898{
1899	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1900					node, __builtin_return_address(0));
1901}
1902EXPORT_SYMBOL(vmalloc_node);
1903
1904/**
1905 * vzalloc_node - allocate memory on a specific node with zero fill
1906 * @size:	allocation size
1907 * @node:	numa node
1908 *
1909 * Allocate enough pages to cover @size from the page level
1910 * allocator and map them into contiguous kernel virtual space.
1911 * The memory allocated is set to zero.
1912 *
1913 * For tight control over page level allocator and protection flags
1914 * use __vmalloc_node() instead.
1915 */
1916void *vzalloc_node(unsigned long size, int node)
1917{
1918	return __vmalloc_node_flags(size, node,
1919			 GFP_KERNEL | __GFP_ZERO);
1920}
1921EXPORT_SYMBOL(vzalloc_node);
1922
1923#ifndef PAGE_KERNEL_EXEC
1924# define PAGE_KERNEL_EXEC PAGE_KERNEL
1925#endif
1926
1927/**
1928 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1929 *	@size:		allocation size
1930 *
1931 *	Kernel-internal function to allocate enough pages to cover @size
1932 *	the page level allocator and map them into contiguous and
1933 *	executable kernel virtual space.
1934 *
1935 *	For tight control over page level allocator and protection flags
1936 *	use __vmalloc() instead.
1937 */
1938
1939void *vmalloc_exec(unsigned long size)
1940{
1941	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1942			      NUMA_NO_NODE, __builtin_return_address(0));
1943}
1944
1945#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1946#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1947#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1948#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1949#else
1950/*
1951 * 64b systems should always have either DMA or DMA32 zones. For others
1952 * GFP_DMA32 should do the right thing and use the normal zone.
1953 */
1954#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955#endif
1956
1957/**
1958 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1959 *	@size:		allocation size
1960 *
1961 *	Allocate enough 32bit PA addressable pages to cover @size from the
1962 *	page level allocator and map them into contiguous kernel virtual space.
1963 */
1964void *vmalloc_32(unsigned long size)
1965{
1966	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1967			      NUMA_NO_NODE, __builtin_return_address(0));
1968}
1969EXPORT_SYMBOL(vmalloc_32);
1970
1971/**
1972 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1973 *	@size:		allocation size
1974 *
1975 * The resulting memory area is 32bit addressable and zeroed so it can be
1976 * mapped to userspace without leaking data.
1977 */
1978void *vmalloc_32_user(unsigned long size)
1979{
1980	struct vm_struct *area;
1981	void *ret;
1982
1983	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1984			     NUMA_NO_NODE, __builtin_return_address(0));
1985	if (ret) {
1986		area = find_vm_area(ret);
1987		area->flags |= VM_USERMAP;
1988	}
1989	return ret;
1990}
1991EXPORT_SYMBOL(vmalloc_32_user);
1992
1993/*
1994 * small helper routine , copy contents to buf from addr.
1995 * If the page is not present, fill zero.
1996 */
1997
1998static int aligned_vread(char *buf, char *addr, unsigned long count)
1999{
2000	struct page *p;
2001	int copied = 0;
2002
2003	while (count) {
2004		unsigned long offset, length;
2005
2006		offset = offset_in_page(addr);
2007		length = PAGE_SIZE - offset;
2008		if (length > count)
2009			length = count;
2010		p = vmalloc_to_page(addr);
2011		/*
2012		 * To do safe access to this _mapped_ area, we need
2013		 * lock. But adding lock here means that we need to add
2014		 * overhead of vmalloc()/vfree() calles for this _debug_
2015		 * interface, rarely used. Instead of that, we'll use
2016		 * kmap() and get small overhead in this access function.
2017		 */
2018		if (p) {
2019			/*
2020			 * we can expect USER0 is not used (see vread/vwrite's
2021			 * function description)
2022			 */
2023			void *map = kmap_atomic(p);
2024			memcpy(buf, map + offset, length);
2025			kunmap_atomic(map);
2026		} else
2027			memset(buf, 0, length);
2028
2029		addr += length;
2030		buf += length;
2031		copied += length;
2032		count -= length;
2033	}
2034	return copied;
2035}
2036
2037static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2038{
2039	struct page *p;
2040	int copied = 0;
2041
2042	while (count) {
2043		unsigned long offset, length;
2044
2045		offset = offset_in_page(addr);
2046		length = PAGE_SIZE - offset;
2047		if (length > count)
2048			length = count;
2049		p = vmalloc_to_page(addr);
2050		/*
2051		 * To do safe access to this _mapped_ area, we need
2052		 * lock. But adding lock here means that we need to add
2053		 * overhead of vmalloc()/vfree() calles for this _debug_
2054		 * interface, rarely used. Instead of that, we'll use
2055		 * kmap() and get small overhead in this access function.
2056		 */
2057		if (p) {
2058			/*
2059			 * we can expect USER0 is not used (see vread/vwrite's
2060			 * function description)
2061			 */
2062			void *map = kmap_atomic(p);
2063			memcpy(map + offset, buf, length);
2064			kunmap_atomic(map);
2065		}
2066		addr += length;
2067		buf += length;
2068		copied += length;
2069		count -= length;
2070	}
2071	return copied;
2072}
2073
2074/**
2075 *	vread() -  read vmalloc area in a safe way.
2076 *	@buf:		buffer for reading data
2077 *	@addr:		vm address.
2078 *	@count:		number of bytes to be read.
2079 *
2080 *	Returns # of bytes which addr and buf should be increased.
2081 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2082 *	includes any intersect with alive vmalloc area.
2083 *
2084 *	This function checks that addr is a valid vmalloc'ed area, and
2085 *	copy data from that area to a given buffer. If the given memory range
2086 *	of [addr...addr+count) includes some valid address, data is copied to
2087 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2088 *	IOREMAP area is treated as memory hole and no copy is done.
2089 *
2090 *	If [addr...addr+count) doesn't includes any intersects with alive
2091 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2092 *
2093 *	Note: In usual ops, vread() is never necessary because the caller
2094 *	should know vmalloc() area is valid and can use memcpy().
2095 *	This is for routines which have to access vmalloc area without
2096 *	any informaion, as /dev/kmem.
2097 *
2098 */
2099
2100long vread(char *buf, char *addr, unsigned long count)
2101{
2102	struct vmap_area *va;
2103	struct vm_struct *vm;
2104	char *vaddr, *buf_start = buf;
2105	unsigned long buflen = count;
2106	unsigned long n;
2107
2108	/* Don't allow overflow */
2109	if ((unsigned long) addr + count < count)
2110		count = -(unsigned long) addr;
2111
2112	spin_lock(&vmap_area_lock);
2113	list_for_each_entry(va, &vmap_area_list, list) {
2114		if (!count)
2115			break;
2116
2117		if (!(va->flags & VM_VM_AREA))
2118			continue;
2119
2120		vm = va->vm;
2121		vaddr = (char *) vm->addr;
2122		if (addr >= vaddr + get_vm_area_size(vm))
2123			continue;
2124		while (addr < vaddr) {
2125			if (count == 0)
2126				goto finished;
2127			*buf = '\0';
2128			buf++;
2129			addr++;
2130			count--;
2131		}
2132		n = vaddr + get_vm_area_size(vm) - addr;
2133		if (n > count)
2134			n = count;
2135		if (!(vm->flags & VM_IOREMAP))
2136			aligned_vread(buf, addr, n);
2137		else /* IOREMAP area is treated as memory hole */
2138			memset(buf, 0, n);
2139		buf += n;
2140		addr += n;
2141		count -= n;
2142	}
2143finished:
2144	spin_unlock(&vmap_area_lock);
2145
2146	if (buf == buf_start)
2147		return 0;
2148	/* zero-fill memory holes */
2149	if (buf != buf_start + buflen)
2150		memset(buf, 0, buflen - (buf - buf_start));
2151
2152	return buflen;
2153}
2154
2155/**
2156 *	vwrite() -  write vmalloc area in a safe way.
2157 *	@buf:		buffer for source data
2158 *	@addr:		vm address.
2159 *	@count:		number of bytes to be read.
2160 *
2161 *	Returns # of bytes which addr and buf should be incresed.
2162 *	(same number to @count).
2163 *	If [addr...addr+count) doesn't includes any intersect with valid
2164 *	vmalloc area, returns 0.
2165 *
2166 *	This function checks that addr is a valid vmalloc'ed area, and
2167 *	copy data from a buffer to the given addr. If specified range of
2168 *	[addr...addr+count) includes some valid address, data is copied from
2169 *	proper area of @buf. If there are memory holes, no copy to hole.
2170 *	IOREMAP area is treated as memory hole and no copy is done.
2171 *
2172 *	If [addr...addr+count) doesn't includes any intersects with alive
2173 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2174 *
2175 *	Note: In usual ops, vwrite() is never necessary because the caller
2176 *	should know vmalloc() area is valid and can use memcpy().
2177 *	This is for routines which have to access vmalloc area without
2178 *	any informaion, as /dev/kmem.
2179 */
2180
2181long vwrite(char *buf, char *addr, unsigned long count)
2182{
2183	struct vmap_area *va;
2184	struct vm_struct *vm;
2185	char *vaddr;
2186	unsigned long n, buflen;
2187	int copied = 0;
2188
2189	/* Don't allow overflow */
2190	if ((unsigned long) addr + count < count)
2191		count = -(unsigned long) addr;
2192	buflen = count;
2193
2194	spin_lock(&vmap_area_lock);
2195	list_for_each_entry(va, &vmap_area_list, list) {
2196		if (!count)
2197			break;
2198
2199		if (!(va->flags & VM_VM_AREA))
2200			continue;
2201
2202		vm = va->vm;
2203		vaddr = (char *) vm->addr;
2204		if (addr >= vaddr + get_vm_area_size(vm))
2205			continue;
2206		while (addr < vaddr) {
2207			if (count == 0)
2208				goto finished;
2209			buf++;
2210			addr++;
2211			count--;
2212		}
2213		n = vaddr + get_vm_area_size(vm) - addr;
2214		if (n > count)
2215			n = count;
2216		if (!(vm->flags & VM_IOREMAP)) {
2217			aligned_vwrite(buf, addr, n);
2218			copied++;
2219		}
2220		buf += n;
2221		addr += n;
2222		count -= n;
2223	}
2224finished:
2225	spin_unlock(&vmap_area_lock);
2226	if (!copied)
2227		return 0;
2228	return buflen;
2229}
2230
2231/**
2232 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2233 *	@vma:		vma to cover
2234 *	@uaddr:		target user address to start at
2235 *	@kaddr:		virtual address of vmalloc kernel memory
2236 *	@size:		size of map area
2237 *
2238 *	Returns:	0 for success, -Exxx on failure
2239 *
2240 *	This function checks that @kaddr is a valid vmalloc'ed area,
2241 *	and that it is big enough to cover the range starting at
2242 *	@uaddr in @vma. Will return failure if that criteria isn't
2243 *	met.
2244 *
2245 *	Similar to remap_pfn_range() (see mm/memory.c)
2246 */
2247int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2248				void *kaddr, unsigned long size)
2249{
2250	struct vm_struct *area;
2251
2252	size = PAGE_ALIGN(size);
2253
2254	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2255		return -EINVAL;
2256
2257	area = find_vm_area(kaddr);
2258	if (!area)
2259		return -EINVAL;
2260
2261	if (!(area->flags & VM_USERMAP))
2262		return -EINVAL;
2263
2264	if (kaddr + size > area->addr + area->size)
2265		return -EINVAL;
2266
2267	do {
2268		struct page *page = vmalloc_to_page(kaddr);
2269		int ret;
2270
2271		ret = vm_insert_page(vma, uaddr, page);
2272		if (ret)
2273			return ret;
2274
2275		uaddr += PAGE_SIZE;
2276		kaddr += PAGE_SIZE;
2277		size -= PAGE_SIZE;
2278	} while (size > 0);
2279
2280	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2281
2282	return 0;
2283}
2284EXPORT_SYMBOL(remap_vmalloc_range_partial);
2285
2286/**
2287 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2288 *	@vma:		vma to cover (map full range of vma)
2289 *	@addr:		vmalloc memory
2290 *	@pgoff:		number of pages into addr before first page to map
2291 *
2292 *	Returns:	0 for success, -Exxx on failure
2293 *
2294 *	This function checks that addr is a valid vmalloc'ed area, and
2295 *	that it is big enough to cover the vma. Will return failure if
2296 *	that criteria isn't met.
2297 *
2298 *	Similar to remap_pfn_range() (see mm/memory.c)
2299 */
2300int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2301						unsigned long pgoff)
2302{
2303	return remap_vmalloc_range_partial(vma, vma->vm_start,
2304					   addr + (pgoff << PAGE_SHIFT),
2305					   vma->vm_end - vma->vm_start);
2306}
2307EXPORT_SYMBOL(remap_vmalloc_range);
2308
2309/*
2310 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2311 * have one.
2312 */
2313void __weak vmalloc_sync_all(void)
2314{
2315}
2316
2317
2318static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2319{
2320	pte_t ***p = data;
2321
2322	if (p) {
2323		*(*p) = pte;
2324		(*p)++;
2325	}
2326	return 0;
2327}
2328
2329/**
2330 *	alloc_vm_area - allocate a range of kernel address space
2331 *	@size:		size of the area
2332 *	@ptes:		returns the PTEs for the address space
2333 *
2334 *	Returns:	NULL on failure, vm_struct on success
2335 *
2336 *	This function reserves a range of kernel address space, and
2337 *	allocates pagetables to map that range.  No actual mappings
2338 *	are created.
2339 *
2340 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2341 *	allocated for the VM area are returned.
2342 */
2343struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2344{
2345	struct vm_struct *area;
2346
2347	area = get_vm_area_caller(size, VM_IOREMAP,
2348				__builtin_return_address(0));
2349	if (area == NULL)
2350		return NULL;
2351
2352	/*
2353	 * This ensures that page tables are constructed for this region
2354	 * of kernel virtual address space and mapped into init_mm.
2355	 */
2356	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2357				size, f, ptes ? &ptes : NULL)) {
2358		free_vm_area(area);
2359		return NULL;
2360	}
2361
2362	return area;
2363}
2364EXPORT_SYMBOL_GPL(alloc_vm_area);
2365
2366void free_vm_area(struct vm_struct *area)
2367{
2368	struct vm_struct *ret;
2369	ret = remove_vm_area(area->addr);
2370	BUG_ON(ret != area);
2371	kfree(area);
2372}
2373EXPORT_SYMBOL_GPL(free_vm_area);
2374
2375#ifdef CONFIG_SMP
2376static struct vmap_area *node_to_va(struct rb_node *n)
2377{
2378	return rb_entry_safe(n, struct vmap_area, rb_node);
2379}
2380
2381/**
2382 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2383 * @end: target address
2384 * @pnext: out arg for the next vmap_area
2385 * @pprev: out arg for the previous vmap_area
2386 *
2387 * Returns: %true if either or both of next and prev are found,
2388 *	    %false if no vmap_area exists
2389 *
2390 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2391 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2392 */
2393static bool pvm_find_next_prev(unsigned long end,
2394			       struct vmap_area **pnext,
2395			       struct vmap_area **pprev)
2396{
2397	struct rb_node *n = vmap_area_root.rb_node;
2398	struct vmap_area *va = NULL;
2399
2400	while (n) {
2401		va = rb_entry(n, struct vmap_area, rb_node);
2402		if (end < va->va_end)
2403			n = n->rb_left;
2404		else if (end > va->va_end)
2405			n = n->rb_right;
2406		else
2407			break;
2408	}
2409
2410	if (!va)
2411		return false;
2412
2413	if (va->va_end > end) {
2414		*pnext = va;
2415		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2416	} else {
2417		*pprev = va;
2418		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2419	}
2420	return true;
2421}
2422
2423/**
2424 * pvm_determine_end - find the highest aligned address between two vmap_areas
2425 * @pnext: in/out arg for the next vmap_area
2426 * @pprev: in/out arg for the previous vmap_area
2427 * @align: alignment
2428 *
2429 * Returns: determined end address
2430 *
2431 * Find the highest aligned address between *@pnext and *@pprev below
2432 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2433 * down address is between the end addresses of the two vmap_areas.
2434 *
2435 * Please note that the address returned by this function may fall
2436 * inside *@pnext vmap_area.  The caller is responsible for checking
2437 * that.
2438 */
2439static unsigned long pvm_determine_end(struct vmap_area **pnext,
2440				       struct vmap_area **pprev,
2441				       unsigned long align)
2442{
2443	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2444	unsigned long addr;
2445
2446	if (*pnext)
2447		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2448	else
2449		addr = vmalloc_end;
2450
2451	while (*pprev && (*pprev)->va_end > addr) {
2452		*pnext = *pprev;
2453		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2454	}
2455
2456	return addr;
2457}
2458
2459/**
2460 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2461 * @offsets: array containing offset of each area
2462 * @sizes: array containing size of each area
2463 * @nr_vms: the number of areas to allocate
2464 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2465 *
2466 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2467 *	    vm_structs on success, %NULL on failure
2468 *
2469 * Percpu allocator wants to use congruent vm areas so that it can
2470 * maintain the offsets among percpu areas.  This function allocates
2471 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2472 * be scattered pretty far, distance between two areas easily going up
2473 * to gigabytes.  To avoid interacting with regular vmallocs, these
2474 * areas are allocated from top.
2475 *
2476 * Despite its complicated look, this allocator is rather simple.  It
2477 * does everything top-down and scans areas from the end looking for
2478 * matching slot.  While scanning, if any of the areas overlaps with
2479 * existing vmap_area, the base address is pulled down to fit the
2480 * area.  Scanning is repeated till all the areas fit and then all
2481 * necessary data structures are inserted and the result is returned.
2482 */
2483struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2484				     const size_t *sizes, int nr_vms,
2485				     size_t align)
2486{
2487	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2488	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2489	struct vmap_area **vas, *prev, *next;
2490	struct vm_struct **vms;
2491	int area, area2, last_area, term_area;
2492	unsigned long base, start, end, last_end;
2493	bool purged = false;
2494
2495	/* verify parameters and allocate data structures */
2496	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2497	for (last_area = 0, area = 0; area < nr_vms; area++) {
2498		start = offsets[area];
2499		end = start + sizes[area];
2500
2501		/* is everything aligned properly? */
2502		BUG_ON(!IS_ALIGNED(offsets[area], align));
2503		BUG_ON(!IS_ALIGNED(sizes[area], align));
2504
2505		/* detect the area with the highest address */
2506		if (start > offsets[last_area])
2507			last_area = area;
2508
2509		for (area2 = area + 1; area2 < nr_vms; area2++) {
2510			unsigned long start2 = offsets[area2];
2511			unsigned long end2 = start2 + sizes[area2];
2512
2513			BUG_ON(start2 < end && start < end2);
 
 
 
 
2514		}
2515	}
2516	last_end = offsets[last_area] + sizes[last_area];
2517
2518	if (vmalloc_end - vmalloc_start < last_end) {
2519		WARN_ON(true);
2520		return NULL;
2521	}
2522
2523	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2524	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2525	if (!vas || !vms)
2526		goto err_free2;
2527
2528	for (area = 0; area < nr_vms; area++) {
2529		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2530		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2531		if (!vas[area] || !vms[area])
2532			goto err_free;
2533	}
2534retry:
2535	spin_lock(&vmap_area_lock);
2536
2537	/* start scanning - we scan from the top, begin with the last area */
2538	area = term_area = last_area;
2539	start = offsets[area];
2540	end = start + sizes[area];
2541
2542	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2543		base = vmalloc_end - last_end;
2544		goto found;
2545	}
2546	base = pvm_determine_end(&next, &prev, align) - end;
2547
2548	while (true) {
2549		BUG_ON(next && next->va_end <= base + end);
2550		BUG_ON(prev && prev->va_end > base + end);
2551
2552		/*
2553		 * base might have underflowed, add last_end before
2554		 * comparing.
2555		 */
2556		if (base + last_end < vmalloc_start + last_end) {
2557			spin_unlock(&vmap_area_lock);
2558			if (!purged) {
2559				purge_vmap_area_lazy();
2560				purged = true;
2561				goto retry;
2562			}
2563			goto err_free;
2564		}
2565
2566		/*
2567		 * If next overlaps, move base downwards so that it's
2568		 * right below next and then recheck.
2569		 */
2570		if (next && next->va_start < base + end) {
2571			base = pvm_determine_end(&next, &prev, align) - end;
2572			term_area = area;
2573			continue;
2574		}
2575
2576		/*
2577		 * If prev overlaps, shift down next and prev and move
2578		 * base so that it's right below new next and then
2579		 * recheck.
2580		 */
2581		if (prev && prev->va_end > base + start)  {
2582			next = prev;
2583			prev = node_to_va(rb_prev(&next->rb_node));
2584			base = pvm_determine_end(&next, &prev, align) - end;
2585			term_area = area;
2586			continue;
2587		}
2588
2589		/*
2590		 * This area fits, move on to the previous one.  If
2591		 * the previous one is the terminal one, we're done.
2592		 */
2593		area = (area + nr_vms - 1) % nr_vms;
2594		if (area == term_area)
2595			break;
2596		start = offsets[area];
2597		end = start + sizes[area];
2598		pvm_find_next_prev(base + end, &next, &prev);
2599	}
2600found:
2601	/* we've found a fitting base, insert all va's */
2602	for (area = 0; area < nr_vms; area++) {
2603		struct vmap_area *va = vas[area];
2604
2605		va->va_start = base + offsets[area];
2606		va->va_end = va->va_start + sizes[area];
2607		__insert_vmap_area(va);
2608	}
2609
2610	vmap_area_pcpu_hole = base + offsets[last_area];
2611
2612	spin_unlock(&vmap_area_lock);
2613
2614	/* insert all vm's */
2615	for (area = 0; area < nr_vms; area++)
2616		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2617				 pcpu_get_vm_areas);
2618
2619	kfree(vas);
2620	return vms;
2621
2622err_free:
2623	for (area = 0; area < nr_vms; area++) {
2624		kfree(vas[area]);
2625		kfree(vms[area]);
2626	}
2627err_free2:
2628	kfree(vas);
2629	kfree(vms);
2630	return NULL;
2631}
2632
2633/**
2634 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2635 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2636 * @nr_vms: the number of allocated areas
2637 *
2638 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2639 */
2640void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2641{
2642	int i;
2643
2644	for (i = 0; i < nr_vms; i++)
2645		free_vm_area(vms[i]);
2646	kfree(vms);
2647}
2648#endif	/* CONFIG_SMP */
2649
2650#ifdef CONFIG_PROC_FS
2651static void *s_start(struct seq_file *m, loff_t *pos)
2652	__acquires(&vmap_area_lock)
2653{
 
 
 
2654	spin_lock(&vmap_area_lock);
2655	return seq_list_start(&vmap_area_list, *pos);
 
 
 
 
 
 
 
 
 
2656}
2657
2658static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2659{
2660	return seq_list_next(p, &vmap_area_list, pos);
 
 
 
 
 
 
 
2661}
2662
2663static void s_stop(struct seq_file *m, void *p)
2664	__releases(&vmap_area_lock)
2665{
2666	spin_unlock(&vmap_area_lock);
2667}
2668
2669static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2670{
2671	if (IS_ENABLED(CONFIG_NUMA)) {
2672		unsigned int nr, *counters = m->private;
2673
2674		if (!counters)
2675			return;
2676
2677		if (v->flags & VM_UNINITIALIZED)
2678			return;
2679		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2680		smp_rmb();
 
 
2681
2682		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2683
2684		for (nr = 0; nr < v->nr_pages; nr++)
2685			counters[page_to_nid(v->pages[nr])]++;
2686
2687		for_each_node_state(nr, N_HIGH_MEMORY)
2688			if (counters[nr])
2689				seq_printf(m, " N%u=%u", nr, counters[nr]);
2690	}
2691}
2692
2693static int s_show(struct seq_file *m, void *p)
2694{
2695	struct vmap_area *va;
2696	struct vm_struct *v;
2697
2698	va = list_entry(p, struct vmap_area, list);
2699
2700	/*
2701	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2702	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2703	 */
2704	if (!(va->flags & VM_VM_AREA)) {
2705		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2706			(void *)va->va_start, (void *)va->va_end,
2707			va->va_end - va->va_start,
2708			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2709
2710		return 0;
2711	}
2712
2713	v = va->vm;
2714
2715	seq_printf(m, "0x%pK-0x%pK %7ld",
2716		v->addr, v->addr + v->size, v->size);
2717
2718	if (v->caller)
2719		seq_printf(m, " %pS", v->caller);
2720
2721	if (v->nr_pages)
2722		seq_printf(m, " pages=%d", v->nr_pages);
2723
2724	if (v->phys_addr)
2725		seq_printf(m, " phys=%pa", &v->phys_addr);
2726
2727	if (v->flags & VM_IOREMAP)
2728		seq_puts(m, " ioremap");
2729
2730	if (v->flags & VM_ALLOC)
2731		seq_puts(m, " vmalloc");
2732
2733	if (v->flags & VM_MAP)
2734		seq_puts(m, " vmap");
2735
2736	if (v->flags & VM_USERMAP)
2737		seq_puts(m, " user");
2738
2739	if (is_vmalloc_addr(v->pages))
2740		seq_puts(m, " vpages");
2741
2742	show_numa_info(m, v);
2743	seq_putc(m, '\n');
2744	return 0;
2745}
2746
2747static const struct seq_operations vmalloc_op = {
2748	.start = s_start,
2749	.next = s_next,
2750	.stop = s_stop,
2751	.show = s_show,
2752};
2753
2754static int vmalloc_open(struct inode *inode, struct file *file)
2755{
2756	if (IS_ENABLED(CONFIG_NUMA))
2757		return seq_open_private(file, &vmalloc_op,
2758					nr_node_ids * sizeof(unsigned int));
2759	else
2760		return seq_open(file, &vmalloc_op);
 
 
 
 
 
 
 
 
 
 
2761}
2762
2763static const struct file_operations proc_vmalloc_operations = {
2764	.open		= vmalloc_open,
2765	.read		= seq_read,
2766	.llseek		= seq_lseek,
2767	.release	= seq_release_private,
2768};
2769
2770static int __init proc_vmalloc_init(void)
2771{
2772	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2773	return 0;
2774}
2775module_init(proc_vmalloc_init);
2776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2777#endif
2778
v3.15
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
 
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/compiler.h>
  31#include <linux/llist.h>
 
  32
  33#include <asm/uaccess.h>
  34#include <asm/tlbflush.h>
  35#include <asm/shmparam.h>
  36
 
 
  37struct vfree_deferred {
  38	struct llist_head list;
  39	struct work_struct wq;
  40};
  41static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42
  43static void __vunmap(const void *, int);
  44
  45static void free_work(struct work_struct *w)
  46{
  47	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  48	struct llist_node *llnode = llist_del_all(&p->list);
  49	while (llnode) {
  50		void *p = llnode;
  51		llnode = llist_next(llnode);
  52		__vunmap(p, 1);
  53	}
  54}
  55
  56/*** Page table manipulation functions ***/
  57
  58static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  59{
  60	pte_t *pte;
  61
  62	pte = pte_offset_kernel(pmd, addr);
  63	do {
  64		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  65		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  66	} while (pte++, addr += PAGE_SIZE, addr != end);
  67}
  68
  69static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  70{
  71	pmd_t *pmd;
  72	unsigned long next;
  73
  74	pmd = pmd_offset(pud, addr);
  75	do {
  76		next = pmd_addr_end(addr, end);
 
 
  77		if (pmd_none_or_clear_bad(pmd))
  78			continue;
  79		vunmap_pte_range(pmd, addr, next);
  80	} while (pmd++, addr = next, addr != end);
  81}
  82
  83static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  84{
  85	pud_t *pud;
  86	unsigned long next;
  87
  88	pud = pud_offset(pgd, addr);
  89	do {
  90		next = pud_addr_end(addr, end);
 
 
  91		if (pud_none_or_clear_bad(pud))
  92			continue;
  93		vunmap_pmd_range(pud, addr, next);
  94	} while (pud++, addr = next, addr != end);
  95}
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97static void vunmap_page_range(unsigned long addr, unsigned long end)
  98{
  99	pgd_t *pgd;
 100	unsigned long next;
 101
 102	BUG_ON(addr >= end);
 103	pgd = pgd_offset_k(addr);
 104	do {
 105		next = pgd_addr_end(addr, end);
 106		if (pgd_none_or_clear_bad(pgd))
 107			continue;
 108		vunmap_pud_range(pgd, addr, next);
 109	} while (pgd++, addr = next, addr != end);
 110}
 111
 112static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 113		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 114{
 115	pte_t *pte;
 116
 117	/*
 118	 * nr is a running index into the array which helps higher level
 119	 * callers keep track of where we're up to.
 120	 */
 121
 122	pte = pte_alloc_kernel(pmd, addr);
 123	if (!pte)
 124		return -ENOMEM;
 125	do {
 126		struct page *page = pages[*nr];
 127
 128		if (WARN_ON(!pte_none(*pte)))
 129			return -EBUSY;
 130		if (WARN_ON(!page))
 131			return -ENOMEM;
 132		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 133		(*nr)++;
 134	} while (pte++, addr += PAGE_SIZE, addr != end);
 135	return 0;
 136}
 137
 138static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 139		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 140{
 141	pmd_t *pmd;
 142	unsigned long next;
 143
 144	pmd = pmd_alloc(&init_mm, pud, addr);
 145	if (!pmd)
 146		return -ENOMEM;
 147	do {
 148		next = pmd_addr_end(addr, end);
 149		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 150			return -ENOMEM;
 151	} while (pmd++, addr = next, addr != end);
 152	return 0;
 153}
 154
 155static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 156		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 157{
 158	pud_t *pud;
 159	unsigned long next;
 160
 161	pud = pud_alloc(&init_mm, pgd, addr);
 162	if (!pud)
 163		return -ENOMEM;
 164	do {
 165		next = pud_addr_end(addr, end);
 166		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 167			return -ENOMEM;
 168	} while (pud++, addr = next, addr != end);
 169	return 0;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/*
 173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 174 * will have pfns corresponding to the "pages" array.
 175 *
 176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 177 */
 178static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 179				   pgprot_t prot, struct page **pages)
 180{
 181	pgd_t *pgd;
 182	unsigned long next;
 183	unsigned long addr = start;
 184	int err = 0;
 185	int nr = 0;
 186
 187	BUG_ON(addr >= end);
 188	pgd = pgd_offset_k(addr);
 189	do {
 190		next = pgd_addr_end(addr, end);
 191		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 192		if (err)
 193			return err;
 194	} while (pgd++, addr = next, addr != end);
 195
 196	return nr;
 197}
 198
 199static int vmap_page_range(unsigned long start, unsigned long end,
 200			   pgprot_t prot, struct page **pages)
 201{
 202	int ret;
 203
 204	ret = vmap_page_range_noflush(start, end, prot, pages);
 205	flush_cache_vmap(start, end);
 206	return ret;
 207}
 208
 209int is_vmalloc_or_module_addr(const void *x)
 210{
 211	/*
 212	 * ARM, x86-64 and sparc64 put modules in a special place,
 213	 * and fall back on vmalloc() if that fails. Others
 214	 * just put it in the vmalloc space.
 215	 */
 216#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 217	unsigned long addr = (unsigned long)x;
 218	if (addr >= MODULES_VADDR && addr < MODULES_END)
 219		return 1;
 220#endif
 221	return is_vmalloc_addr(x);
 222}
 223
 224/*
 225 * Walk a vmap address to the struct page it maps.
 226 */
 227struct page *vmalloc_to_page(const void *vmalloc_addr)
 228{
 229	unsigned long addr = (unsigned long) vmalloc_addr;
 230	struct page *page = NULL;
 231	pgd_t *pgd = pgd_offset_k(addr);
 
 
 
 
 232
 233	/*
 234	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 235	 * architectures that do not vmalloc module space
 236	 */
 237	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 238
 239	if (!pgd_none(*pgd)) {
 240		pud_t *pud = pud_offset(pgd, addr);
 241		if (!pud_none(*pud)) {
 242			pmd_t *pmd = pmd_offset(pud, addr);
 243			if (!pmd_none(*pmd)) {
 244				pte_t *ptep, pte;
 245
 246				ptep = pte_offset_map(pmd, addr);
 247				pte = *ptep;
 248				if (pte_present(pte))
 249					page = pte_page(pte);
 250				pte_unmap(ptep);
 251			}
 252		}
 253	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 254	return page;
 255}
 256EXPORT_SYMBOL(vmalloc_to_page);
 257
 258/*
 259 * Map a vmalloc()-space virtual address to the physical page frame number.
 260 */
 261unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 262{
 263	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 264}
 265EXPORT_SYMBOL(vmalloc_to_pfn);
 266
 267
 268/*** Global kva allocator ***/
 269
 270#define VM_LAZY_FREE	0x01
 271#define VM_LAZY_FREEING	0x02
 272#define VM_VM_AREA	0x04
 273
 274static DEFINE_SPINLOCK(vmap_area_lock);
 275/* Export for kexec only */
 276LIST_HEAD(vmap_area_list);
 
 277static struct rb_root vmap_area_root = RB_ROOT;
 278
 279/* The vmap cache globals are protected by vmap_area_lock */
 280static struct rb_node *free_vmap_cache;
 281static unsigned long cached_hole_size;
 282static unsigned long cached_vstart;
 283static unsigned long cached_align;
 284
 285static unsigned long vmap_area_pcpu_hole;
 286
 287static struct vmap_area *__find_vmap_area(unsigned long addr)
 288{
 289	struct rb_node *n = vmap_area_root.rb_node;
 290
 291	while (n) {
 292		struct vmap_area *va;
 293
 294		va = rb_entry(n, struct vmap_area, rb_node);
 295		if (addr < va->va_start)
 296			n = n->rb_left;
 297		else if (addr >= va->va_end)
 298			n = n->rb_right;
 299		else
 300			return va;
 301	}
 302
 303	return NULL;
 304}
 305
 306static void __insert_vmap_area(struct vmap_area *va)
 307{
 308	struct rb_node **p = &vmap_area_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct rb_node *tmp;
 311
 312	while (*p) {
 313		struct vmap_area *tmp_va;
 314
 315		parent = *p;
 316		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 317		if (va->va_start < tmp_va->va_end)
 318			p = &(*p)->rb_left;
 319		else if (va->va_end > tmp_va->va_start)
 320			p = &(*p)->rb_right;
 321		else
 322			BUG();
 323	}
 324
 325	rb_link_node(&va->rb_node, parent, p);
 326	rb_insert_color(&va->rb_node, &vmap_area_root);
 327
 328	/* address-sort this list */
 329	tmp = rb_prev(&va->rb_node);
 330	if (tmp) {
 331		struct vmap_area *prev;
 332		prev = rb_entry(tmp, struct vmap_area, rb_node);
 333		list_add_rcu(&va->list, &prev->list);
 334	} else
 335		list_add_rcu(&va->list, &vmap_area_list);
 336}
 337
 338static void purge_vmap_area_lazy(void);
 339
 
 
 340/*
 341 * Allocate a region of KVA of the specified size and alignment, within the
 342 * vstart and vend.
 343 */
 344static struct vmap_area *alloc_vmap_area(unsigned long size,
 345				unsigned long align,
 346				unsigned long vstart, unsigned long vend,
 347				int node, gfp_t gfp_mask)
 348{
 349	struct vmap_area *va;
 350	struct rb_node *n;
 351	unsigned long addr;
 352	int purged = 0;
 353	struct vmap_area *first;
 354
 355	BUG_ON(!size);
 356	BUG_ON(size & ~PAGE_MASK);
 357	BUG_ON(!is_power_of_2(align));
 358
 
 
 359	va = kmalloc_node(sizeof(struct vmap_area),
 360			gfp_mask & GFP_RECLAIM_MASK, node);
 361	if (unlikely(!va))
 362		return ERR_PTR(-ENOMEM);
 363
 364	/*
 365	 * Only scan the relevant parts containing pointers to other objects
 366	 * to avoid false negatives.
 367	 */
 368	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 369
 370retry:
 371	spin_lock(&vmap_area_lock);
 372	/*
 373	 * Invalidate cache if we have more permissive parameters.
 374	 * cached_hole_size notes the largest hole noticed _below_
 375	 * the vmap_area cached in free_vmap_cache: if size fits
 376	 * into that hole, we want to scan from vstart to reuse
 377	 * the hole instead of allocating above free_vmap_cache.
 378	 * Note that __free_vmap_area may update free_vmap_cache
 379	 * without updating cached_hole_size or cached_align.
 380	 */
 381	if (!free_vmap_cache ||
 382			size < cached_hole_size ||
 383			vstart < cached_vstart ||
 384			align < cached_align) {
 385nocache:
 386		cached_hole_size = 0;
 387		free_vmap_cache = NULL;
 388	}
 389	/* record if we encounter less permissive parameters */
 390	cached_vstart = vstart;
 391	cached_align = align;
 392
 393	/* find starting point for our search */
 394	if (free_vmap_cache) {
 395		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 396		addr = ALIGN(first->va_end, align);
 397		if (addr < vstart)
 398			goto nocache;
 399		if (addr + size < addr)
 400			goto overflow;
 401
 402	} else {
 403		addr = ALIGN(vstart, align);
 404		if (addr + size < addr)
 405			goto overflow;
 406
 407		n = vmap_area_root.rb_node;
 408		first = NULL;
 409
 410		while (n) {
 411			struct vmap_area *tmp;
 412			tmp = rb_entry(n, struct vmap_area, rb_node);
 413			if (tmp->va_end >= addr) {
 414				first = tmp;
 415				if (tmp->va_start <= addr)
 416					break;
 417				n = n->rb_left;
 418			} else
 419				n = n->rb_right;
 420		}
 421
 422		if (!first)
 423			goto found;
 424	}
 425
 426	/* from the starting point, walk areas until a suitable hole is found */
 427	while (addr + size > first->va_start && addr + size <= vend) {
 428		if (addr + cached_hole_size < first->va_start)
 429			cached_hole_size = first->va_start - addr;
 430		addr = ALIGN(first->va_end, align);
 431		if (addr + size < addr)
 432			goto overflow;
 433
 434		if (list_is_last(&first->list, &vmap_area_list))
 435			goto found;
 436
 437		first = list_entry(first->list.next,
 438				struct vmap_area, list);
 439	}
 440
 441found:
 442	if (addr + size > vend)
 443		goto overflow;
 444
 445	va->va_start = addr;
 446	va->va_end = addr + size;
 447	va->flags = 0;
 448	__insert_vmap_area(va);
 449	free_vmap_cache = &va->rb_node;
 450	spin_unlock(&vmap_area_lock);
 451
 452	BUG_ON(va->va_start & (align-1));
 453	BUG_ON(va->va_start < vstart);
 454	BUG_ON(va->va_end > vend);
 455
 456	return va;
 457
 458overflow:
 459	spin_unlock(&vmap_area_lock);
 460	if (!purged) {
 461		purge_vmap_area_lazy();
 462		purged = 1;
 463		goto retry;
 464	}
 465	if (printk_ratelimit())
 466		printk(KERN_WARNING
 467			"vmap allocation for size %lu failed: "
 468			"use vmalloc=<size> to increase size.\n", size);
 
 
 
 
 
 
 
 
 
 469	kfree(va);
 470	return ERR_PTR(-EBUSY);
 471}
 472
 
 
 
 
 
 
 
 
 
 
 
 
 473static void __free_vmap_area(struct vmap_area *va)
 474{
 475	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 476
 477	if (free_vmap_cache) {
 478		if (va->va_end < cached_vstart) {
 479			free_vmap_cache = NULL;
 480		} else {
 481			struct vmap_area *cache;
 482			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 483			if (va->va_start <= cache->va_start) {
 484				free_vmap_cache = rb_prev(&va->rb_node);
 485				/*
 486				 * We don't try to update cached_hole_size or
 487				 * cached_align, but it won't go very wrong.
 488				 */
 489			}
 490		}
 491	}
 492	rb_erase(&va->rb_node, &vmap_area_root);
 493	RB_CLEAR_NODE(&va->rb_node);
 494	list_del_rcu(&va->list);
 495
 496	/*
 497	 * Track the highest possible candidate for pcpu area
 498	 * allocation.  Areas outside of vmalloc area can be returned
 499	 * here too, consider only end addresses which fall inside
 500	 * vmalloc area proper.
 501	 */
 502	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 503		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 504
 505	kfree_rcu(va, rcu_head);
 506}
 507
 508/*
 509 * Free a region of KVA allocated by alloc_vmap_area
 510 */
 511static void free_vmap_area(struct vmap_area *va)
 512{
 513	spin_lock(&vmap_area_lock);
 514	__free_vmap_area(va);
 515	spin_unlock(&vmap_area_lock);
 516}
 517
 518/*
 519 * Clear the pagetable entries of a given vmap_area
 520 */
 521static void unmap_vmap_area(struct vmap_area *va)
 522{
 523	vunmap_page_range(va->va_start, va->va_end);
 524}
 525
 526static void vmap_debug_free_range(unsigned long start, unsigned long end)
 527{
 528	/*
 529	 * Unmap page tables and force a TLB flush immediately if
 530	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 531	 * bugs similarly to those in linear kernel virtual address
 532	 * space after a page has been freed.
 533	 *
 534	 * All the lazy freeing logic is still retained, in order to
 535	 * minimise intrusiveness of this debugging feature.
 536	 *
 537	 * This is going to be *slow* (linear kernel virtual address
 538	 * debugging doesn't do a broadcast TLB flush so it is a lot
 539	 * faster).
 540	 */
 541#ifdef CONFIG_DEBUG_PAGEALLOC
 542	vunmap_page_range(start, end);
 543	flush_tlb_kernel_range(start, end);
 544#endif
 545}
 546
 547/*
 548 * lazy_max_pages is the maximum amount of virtual address space we gather up
 549 * before attempting to purge with a TLB flush.
 550 *
 551 * There is a tradeoff here: a larger number will cover more kernel page tables
 552 * and take slightly longer to purge, but it will linearly reduce the number of
 553 * global TLB flushes that must be performed. It would seem natural to scale
 554 * this number up linearly with the number of CPUs (because vmapping activity
 555 * could also scale linearly with the number of CPUs), however it is likely
 556 * that in practice, workloads might be constrained in other ways that mean
 557 * vmap activity will not scale linearly with CPUs. Also, I want to be
 558 * conservative and not introduce a big latency on huge systems, so go with
 559 * a less aggressive log scale. It will still be an improvement over the old
 560 * code, and it will be simple to change the scale factor if we find that it
 561 * becomes a problem on bigger systems.
 562 */
 563static unsigned long lazy_max_pages(void)
 564{
 565	unsigned int log;
 566
 567	log = fls(num_online_cpus());
 568
 569	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 570}
 571
 572static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 573
 
 
 
 
 
 
 
 574/* for per-CPU blocks */
 575static void purge_fragmented_blocks_allcpus(void);
 576
 577/*
 578 * called before a call to iounmap() if the caller wants vm_area_struct's
 579 * immediately freed.
 580 */
 581void set_iounmap_nonlazy(void)
 582{
 583	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 584}
 585
 586/*
 587 * Purges all lazily-freed vmap areas.
 588 *
 589 * If sync is 0 then don't purge if there is already a purge in progress.
 590 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 591 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 592 * their own TLB flushing).
 593 * Returns with *start = min(*start, lowest purged address)
 594 *              *end = max(*end, highest purged address)
 595 */
 596static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 597					int sync, int force_flush)
 598{
 599	static DEFINE_SPINLOCK(purge_lock);
 600	LIST_HEAD(valist);
 601	struct vmap_area *va;
 602	struct vmap_area *n_va;
 603	int nr = 0;
 604
 605	/*
 606	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 607	 * should not expect such behaviour. This just simplifies locking for
 608	 * the case that isn't actually used at the moment anyway.
 609	 */
 610	if (!sync && !force_flush) {
 611		if (!spin_trylock(&purge_lock))
 612			return;
 613	} else
 614		spin_lock(&purge_lock);
 615
 616	if (sync)
 617		purge_fragmented_blocks_allcpus();
 
 
 
 
 
 
 618
 619	rcu_read_lock();
 620	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 621		if (va->flags & VM_LAZY_FREE) {
 622			if (va->va_start < *start)
 623				*start = va->va_start;
 624			if (va->va_end > *end)
 625				*end = va->va_end;
 626			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 627			list_add_tail(&va->purge_list, &valist);
 628			va->flags |= VM_LAZY_FREEING;
 629			va->flags &= ~VM_LAZY_FREE;
 630		}
 631	}
 632	rcu_read_unlock();
 633
 634	if (nr)
 635		atomic_sub(nr, &vmap_lazy_nr);
 636
 637	if (nr || force_flush)
 638		flush_tlb_kernel_range(*start, *end);
 
 639
 640	if (nr) {
 641		spin_lock(&vmap_area_lock);
 642		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 643			__free_vmap_area(va);
 644		spin_unlock(&vmap_area_lock);
 645	}
 646	spin_unlock(&purge_lock);
 
 647}
 648
 649/*
 650 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 651 * is already purging.
 652 */
 653static void try_purge_vmap_area_lazy(void)
 654{
 655	unsigned long start = ULONG_MAX, end = 0;
 656
 657	__purge_vmap_area_lazy(&start, &end, 0, 0);
 
 658}
 659
 660/*
 661 * Kick off a purge of the outstanding lazy areas.
 662 */
 663static void purge_vmap_area_lazy(void)
 664{
 665	unsigned long start = ULONG_MAX, end = 0;
 666
 667	__purge_vmap_area_lazy(&start, &end, 1, 0);
 
 668}
 669
 670/*
 671 * Free a vmap area, caller ensuring that the area has been unmapped
 672 * and flush_cache_vunmap had been called for the correct range
 673 * previously.
 674 */
 675static void free_vmap_area_noflush(struct vmap_area *va)
 676{
 677	va->flags |= VM_LAZY_FREE;
 678	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 679	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 
 
 
 
 
 
 680		try_purge_vmap_area_lazy();
 681}
 682
 683/*
 684 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 685 * called for the correct range previously.
 686 */
 687static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 688{
 689	unmap_vmap_area(va);
 690	free_vmap_area_noflush(va);
 691}
 692
 693/*
 694 * Free and unmap a vmap area
 695 */
 696static void free_unmap_vmap_area(struct vmap_area *va)
 697{
 698	flush_cache_vunmap(va->va_start, va->va_end);
 699	free_unmap_vmap_area_noflush(va);
 
 700}
 701
 702static struct vmap_area *find_vmap_area(unsigned long addr)
 703{
 704	struct vmap_area *va;
 705
 706	spin_lock(&vmap_area_lock);
 707	va = __find_vmap_area(addr);
 708	spin_unlock(&vmap_area_lock);
 709
 710	return va;
 711}
 712
 713static void free_unmap_vmap_area_addr(unsigned long addr)
 714{
 715	struct vmap_area *va;
 716
 717	va = find_vmap_area(addr);
 718	BUG_ON(!va);
 719	free_unmap_vmap_area(va);
 720}
 721
 722
 723/*** Per cpu kva allocator ***/
 724
 725/*
 726 * vmap space is limited especially on 32 bit architectures. Ensure there is
 727 * room for at least 16 percpu vmap blocks per CPU.
 728 */
 729/*
 730 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 731 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 732 * instead (we just need a rough idea)
 733 */
 734#if BITS_PER_LONG == 32
 735#define VMALLOC_SPACE		(128UL*1024*1024)
 736#else
 737#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 738#endif
 739
 740#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 741#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 742#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 743#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 744#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 745#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 746#define VMAP_BBMAP_BITS		\
 747		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 748		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 749			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 750
 751#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 752
 753static bool vmap_initialized __read_mostly = false;
 754
 755struct vmap_block_queue {
 756	spinlock_t lock;
 757	struct list_head free;
 758};
 759
 760struct vmap_block {
 761	spinlock_t lock;
 762	struct vmap_area *va;
 763	unsigned long free, dirty;
 764	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 765	struct list_head free_list;
 766	struct rcu_head rcu_head;
 767	struct list_head purge;
 768};
 769
 770/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 771static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 772
 773/*
 774 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 775 * in the free path. Could get rid of this if we change the API to return a
 776 * "cookie" from alloc, to be passed to free. But no big deal yet.
 777 */
 778static DEFINE_SPINLOCK(vmap_block_tree_lock);
 779static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 780
 781/*
 782 * We should probably have a fallback mechanism to allocate virtual memory
 783 * out of partially filled vmap blocks. However vmap block sizing should be
 784 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 785 * big problem.
 786 */
 787
 788static unsigned long addr_to_vb_idx(unsigned long addr)
 789{
 790	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 791	addr /= VMAP_BLOCK_SIZE;
 792	return addr;
 793}
 794
 795static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 797	struct vmap_block_queue *vbq;
 798	struct vmap_block *vb;
 799	struct vmap_area *va;
 800	unsigned long vb_idx;
 801	int node, err;
 
 802
 803	node = numa_node_id();
 804
 805	vb = kmalloc_node(sizeof(struct vmap_block),
 806			gfp_mask & GFP_RECLAIM_MASK, node);
 807	if (unlikely(!vb))
 808		return ERR_PTR(-ENOMEM);
 809
 810	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 811					VMALLOC_START, VMALLOC_END,
 812					node, gfp_mask);
 813	if (IS_ERR(va)) {
 814		kfree(vb);
 815		return ERR_CAST(va);
 816	}
 817
 818	err = radix_tree_preload(gfp_mask);
 819	if (unlikely(err)) {
 820		kfree(vb);
 821		free_vmap_area(va);
 822		return ERR_PTR(err);
 823	}
 824
 
 825	spin_lock_init(&vb->lock);
 826	vb->va = va;
 827	vb->free = VMAP_BBMAP_BITS;
 
 
 828	vb->dirty = 0;
 829	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 
 830	INIT_LIST_HEAD(&vb->free_list);
 831
 832	vb_idx = addr_to_vb_idx(va->va_start);
 833	spin_lock(&vmap_block_tree_lock);
 834	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 835	spin_unlock(&vmap_block_tree_lock);
 836	BUG_ON(err);
 837	radix_tree_preload_end();
 838
 839	vbq = &get_cpu_var(vmap_block_queue);
 840	spin_lock(&vbq->lock);
 841	list_add_rcu(&vb->free_list, &vbq->free);
 842	spin_unlock(&vbq->lock);
 843	put_cpu_var(vmap_block_queue);
 844
 845	return vb;
 846}
 847
 848static void free_vmap_block(struct vmap_block *vb)
 849{
 850	struct vmap_block *tmp;
 851	unsigned long vb_idx;
 852
 853	vb_idx = addr_to_vb_idx(vb->va->va_start);
 854	spin_lock(&vmap_block_tree_lock);
 855	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 856	spin_unlock(&vmap_block_tree_lock);
 857	BUG_ON(tmp != vb);
 858
 859	free_vmap_area_noflush(vb->va);
 860	kfree_rcu(vb, rcu_head);
 861}
 862
 863static void purge_fragmented_blocks(int cpu)
 864{
 865	LIST_HEAD(purge);
 866	struct vmap_block *vb;
 867	struct vmap_block *n_vb;
 868	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 869
 870	rcu_read_lock();
 871	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 872
 873		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 874			continue;
 875
 876		spin_lock(&vb->lock);
 877		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 878			vb->free = 0; /* prevent further allocs after releasing lock */
 879			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 880			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 
 881			spin_lock(&vbq->lock);
 882			list_del_rcu(&vb->free_list);
 883			spin_unlock(&vbq->lock);
 884			spin_unlock(&vb->lock);
 885			list_add_tail(&vb->purge, &purge);
 886		} else
 887			spin_unlock(&vb->lock);
 888	}
 889	rcu_read_unlock();
 890
 891	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 892		list_del(&vb->purge);
 893		free_vmap_block(vb);
 894	}
 895}
 896
 897static void purge_fragmented_blocks_allcpus(void)
 898{
 899	int cpu;
 900
 901	for_each_possible_cpu(cpu)
 902		purge_fragmented_blocks(cpu);
 903}
 904
 905static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 906{
 907	struct vmap_block_queue *vbq;
 908	struct vmap_block *vb;
 909	unsigned long addr = 0;
 910	unsigned int order;
 911
 912	BUG_ON(size & ~PAGE_MASK);
 913	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 914	if (WARN_ON(size == 0)) {
 915		/*
 916		 * Allocating 0 bytes isn't what caller wants since
 917		 * get_order(0) returns funny result. Just warn and terminate
 918		 * early.
 919		 */
 920		return NULL;
 921	}
 922	order = get_order(size);
 923
 924again:
 925	rcu_read_lock();
 926	vbq = &get_cpu_var(vmap_block_queue);
 927	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 928		int i;
 929
 930		spin_lock(&vb->lock);
 931		if (vb->free < 1UL << order)
 932			goto next;
 
 
 933
 934		i = VMAP_BBMAP_BITS - vb->free;
 935		addr = vb->va->va_start + (i << PAGE_SHIFT);
 936		BUG_ON(addr_to_vb_idx(addr) !=
 937				addr_to_vb_idx(vb->va->va_start));
 938		vb->free -= 1UL << order;
 939		if (vb->free == 0) {
 940			spin_lock(&vbq->lock);
 941			list_del_rcu(&vb->free_list);
 942			spin_unlock(&vbq->lock);
 943		}
 
 944		spin_unlock(&vb->lock);
 945		break;
 946next:
 947		spin_unlock(&vb->lock);
 948	}
 949
 950	put_cpu_var(vmap_block_queue);
 951	rcu_read_unlock();
 952
 953	if (!addr) {
 954		vb = new_vmap_block(gfp_mask);
 955		if (IS_ERR(vb))
 956			return vb;
 957		goto again;
 958	}
 959
 960	return (void *)addr;
 961}
 962
 963static void vb_free(const void *addr, unsigned long size)
 964{
 965	unsigned long offset;
 966	unsigned long vb_idx;
 967	unsigned int order;
 968	struct vmap_block *vb;
 969
 970	BUG_ON(size & ~PAGE_MASK);
 971	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 972
 973	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 974
 975	order = get_order(size);
 976
 977	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 
 978
 979	vb_idx = addr_to_vb_idx((unsigned long)addr);
 980	rcu_read_lock();
 981	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 982	rcu_read_unlock();
 983	BUG_ON(!vb);
 984
 985	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 986
 987	spin_lock(&vb->lock);
 988	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 
 
 
 989
 990	vb->dirty += 1UL << order;
 991	if (vb->dirty == VMAP_BBMAP_BITS) {
 992		BUG_ON(vb->free);
 993		spin_unlock(&vb->lock);
 994		free_vmap_block(vb);
 995	} else
 996		spin_unlock(&vb->lock);
 997}
 998
 999/**
1000 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1001 *
1002 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1003 * to amortize TLB flushing overheads. What this means is that any page you
1004 * have now, may, in a former life, have been mapped into kernel virtual
1005 * address by the vmap layer and so there might be some CPUs with TLB entries
1006 * still referencing that page (additional to the regular 1:1 kernel mapping).
1007 *
1008 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1009 * be sure that none of the pages we have control over will have any aliases
1010 * from the vmap layer.
1011 */
1012void vm_unmap_aliases(void)
1013{
1014	unsigned long start = ULONG_MAX, end = 0;
1015	int cpu;
1016	int flush = 0;
1017
1018	if (unlikely(!vmap_initialized))
1019		return;
1020
 
 
1021	for_each_possible_cpu(cpu) {
1022		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1023		struct vmap_block *vb;
1024
1025		rcu_read_lock();
1026		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027			int i, j;
1028
1029			spin_lock(&vb->lock);
1030			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031			if (i < VMAP_BBMAP_BITS) {
1032				unsigned long s, e;
1033
1034				j = find_last_bit(vb->dirty_map,
1035							VMAP_BBMAP_BITS);
1036				j = j + 1; /* need exclusive index */
 
 
1037
1038				s = vb->va->va_start + (i << PAGE_SHIFT);
1039				e = vb->va->va_start + (j << PAGE_SHIFT);
1040				flush = 1;
1041
1042				if (s < start)
1043					start = s;
1044				if (e > end)
1045					end = e;
1046			}
1047			spin_unlock(&vb->lock);
1048		}
1049		rcu_read_unlock();
1050	}
1051
1052	__purge_vmap_area_lazy(&start, &end, 1, flush);
 
 
 
 
1053}
1054EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055
1056/**
1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058 * @mem: the pointer returned by vm_map_ram
1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060 */
1061void vm_unmap_ram(const void *mem, unsigned int count)
1062{
1063	unsigned long size = count << PAGE_SHIFT;
1064	unsigned long addr = (unsigned long)mem;
 
1065
 
1066	BUG_ON(!addr);
1067	BUG_ON(addr < VMALLOC_START);
1068	BUG_ON(addr > VMALLOC_END);
1069	BUG_ON(addr & (PAGE_SIZE-1));
1070
1071	debug_check_no_locks_freed(mem, size);
1072	vmap_debug_free_range(addr, addr+size);
1073
1074	if (likely(count <= VMAP_MAX_ALLOC))
1075		vb_free(mem, size);
1076	else
1077		free_unmap_vmap_area_addr(addr);
 
 
 
 
1078}
1079EXPORT_SYMBOL(vm_unmap_ram);
1080
1081/**
1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083 * @pages: an array of pointers to the pages to be mapped
1084 * @count: number of pages
1085 * @node: prefer to allocate data structures on this node
1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 *
1088 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1089 * faster than vmap so it's good.  But if you mix long-life and short-life
1090 * objects with vm_map_ram(), it could consume lots of address space through
1091 * fragmentation (especially on a 32bit machine).  You could see failures in
1092 * the end.  Please use this function for short-lived objects.
1093 *
1094 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1095 */
1096void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1097{
1098	unsigned long size = count << PAGE_SHIFT;
1099	unsigned long addr;
1100	void *mem;
1101
1102	if (likely(count <= VMAP_MAX_ALLOC)) {
1103		mem = vb_alloc(size, GFP_KERNEL);
1104		if (IS_ERR(mem))
1105			return NULL;
1106		addr = (unsigned long)mem;
1107	} else {
1108		struct vmap_area *va;
1109		va = alloc_vmap_area(size, PAGE_SIZE,
1110				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1111		if (IS_ERR(va))
1112			return NULL;
1113
1114		addr = va->va_start;
1115		mem = (void *)addr;
1116	}
1117	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1118		vm_unmap_ram(mem, count);
1119		return NULL;
1120	}
1121	return mem;
1122}
1123EXPORT_SYMBOL(vm_map_ram);
1124
1125static struct vm_struct *vmlist __initdata;
1126/**
1127 * vm_area_add_early - add vmap area early during boot
1128 * @vm: vm_struct to add
1129 *
1130 * This function is used to add fixed kernel vm area to vmlist before
1131 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1132 * should contain proper values and the other fields should be zero.
1133 *
1134 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1135 */
1136void __init vm_area_add_early(struct vm_struct *vm)
1137{
1138	struct vm_struct *tmp, **p;
1139
1140	BUG_ON(vmap_initialized);
1141	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1142		if (tmp->addr >= vm->addr) {
1143			BUG_ON(tmp->addr < vm->addr + vm->size);
1144			break;
1145		} else
1146			BUG_ON(tmp->addr + tmp->size > vm->addr);
1147	}
1148	vm->next = *p;
1149	*p = vm;
1150}
1151
1152/**
1153 * vm_area_register_early - register vmap area early during boot
1154 * @vm: vm_struct to register
1155 * @align: requested alignment
1156 *
1157 * This function is used to register kernel vm area before
1158 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1159 * proper values on entry and other fields should be zero.  On return,
1160 * vm->addr contains the allocated address.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1165{
1166	static size_t vm_init_off __initdata;
1167	unsigned long addr;
1168
1169	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1170	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1171
1172	vm->addr = (void *)addr;
1173
1174	vm_area_add_early(vm);
1175}
1176
1177void __init vmalloc_init(void)
1178{
1179	struct vmap_area *va;
1180	struct vm_struct *tmp;
1181	int i;
1182
1183	for_each_possible_cpu(i) {
1184		struct vmap_block_queue *vbq;
1185		struct vfree_deferred *p;
1186
1187		vbq = &per_cpu(vmap_block_queue, i);
1188		spin_lock_init(&vbq->lock);
1189		INIT_LIST_HEAD(&vbq->free);
1190		p = &per_cpu(vfree_deferred, i);
1191		init_llist_head(&p->list);
1192		INIT_WORK(&p->wq, free_work);
1193	}
1194
1195	/* Import existing vmlist entries. */
1196	for (tmp = vmlist; tmp; tmp = tmp->next) {
1197		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1198		va->flags = VM_VM_AREA;
1199		va->va_start = (unsigned long)tmp->addr;
1200		va->va_end = va->va_start + tmp->size;
1201		va->vm = tmp;
1202		__insert_vmap_area(va);
1203	}
1204
1205	vmap_area_pcpu_hole = VMALLOC_END;
1206
1207	vmap_initialized = true;
1208}
1209
1210/**
1211 * map_kernel_range_noflush - map kernel VM area with the specified pages
1212 * @addr: start of the VM area to map
1213 * @size: size of the VM area to map
1214 * @prot: page protection flags to use
1215 * @pages: pages to map
1216 *
1217 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing.  The caller is
1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224 * before calling this function.
1225 *
1226 * RETURNS:
1227 * The number of pages mapped on success, -errno on failure.
1228 */
1229int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230			     pgprot_t prot, struct page **pages)
1231{
1232	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233}
1234
1235/**
1236 * unmap_kernel_range_noflush - unmap kernel VM area
1237 * @addr: start of the VM area to unmap
1238 * @size: size of the VM area to unmap
1239 *
1240 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1241 * specify should have been allocated using get_vm_area() and its
1242 * friends.
1243 *
1244 * NOTE:
1245 * This function does NOT do any cache flushing.  The caller is
1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247 * before calling this function and flush_tlb_kernel_range() after.
1248 */
1249void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250{
1251	vunmap_page_range(addr, addr + size);
1252}
1253EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1254
1255/**
1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261 * the unmapping and tlb after.
1262 */
1263void unmap_kernel_range(unsigned long addr, unsigned long size)
1264{
1265	unsigned long end = addr + size;
1266
1267	flush_cache_vunmap(addr, end);
1268	vunmap_page_range(addr, end);
1269	flush_tlb_kernel_range(addr, end);
1270}
 
1271
1272int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1273{
1274	unsigned long addr = (unsigned long)area->addr;
1275	unsigned long end = addr + get_vm_area_size(area);
1276	int err;
1277
1278	err = vmap_page_range(addr, end, prot, *pages);
1279	if (err > 0) {
1280		*pages += err;
1281		err = 0;
1282	}
1283
1284	return err;
1285}
1286EXPORT_SYMBOL_GPL(map_vm_area);
1287
1288static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1289			      unsigned long flags, const void *caller)
1290{
1291	spin_lock(&vmap_area_lock);
1292	vm->flags = flags;
1293	vm->addr = (void *)va->va_start;
1294	vm->size = va->va_end - va->va_start;
1295	vm->caller = caller;
1296	va->vm = vm;
1297	va->flags |= VM_VM_AREA;
1298	spin_unlock(&vmap_area_lock);
1299}
1300
1301static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1302{
1303	/*
1304	 * Before removing VM_UNINITIALIZED,
1305	 * we should make sure that vm has proper values.
1306	 * Pair with smp_rmb() in show_numa_info().
1307	 */
1308	smp_wmb();
1309	vm->flags &= ~VM_UNINITIALIZED;
1310}
1311
1312static struct vm_struct *__get_vm_area_node(unsigned long size,
1313		unsigned long align, unsigned long flags, unsigned long start,
1314		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1315{
1316	struct vmap_area *va;
1317	struct vm_struct *area;
1318
1319	BUG_ON(in_interrupt());
1320	if (flags & VM_IOREMAP)
1321		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1322
1323	size = PAGE_ALIGN(size);
1324	if (unlikely(!size))
1325		return NULL;
1326
 
 
 
 
1327	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1328	if (unlikely(!area))
1329		return NULL;
1330
1331	/*
1332	 * We always allocate a guard page.
1333	 */
1334	size += PAGE_SIZE;
1335
1336	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1337	if (IS_ERR(va)) {
1338		kfree(area);
1339		return NULL;
1340	}
1341
1342	setup_vmalloc_vm(area, va, flags, caller);
1343
1344	return area;
1345}
1346
1347struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1348				unsigned long start, unsigned long end)
1349{
1350	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351				  GFP_KERNEL, __builtin_return_address(0));
1352}
1353EXPORT_SYMBOL_GPL(__get_vm_area);
1354
1355struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1356				       unsigned long start, unsigned long end,
1357				       const void *caller)
1358{
1359	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1360				  GFP_KERNEL, caller);
1361}
1362
1363/**
1364 *	get_vm_area  -  reserve a contiguous kernel virtual area
1365 *	@size:		size of the area
1366 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1367 *
1368 *	Search an area of @size in the kernel virtual mapping area,
1369 *	and reserved it for out purposes.  Returns the area descriptor
1370 *	on success or %NULL on failure.
1371 */
1372struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1373{
1374	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375				  NUMA_NO_NODE, GFP_KERNEL,
1376				  __builtin_return_address(0));
1377}
1378
1379struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1380				const void *caller)
1381{
1382	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1383				  NUMA_NO_NODE, GFP_KERNEL, caller);
1384}
1385
1386/**
1387 *	find_vm_area  -  find a continuous kernel virtual area
1388 *	@addr:		base address
1389 *
1390 *	Search for the kernel VM area starting at @addr, and return it.
1391 *	It is up to the caller to do all required locking to keep the returned
1392 *	pointer valid.
1393 */
1394struct vm_struct *find_vm_area(const void *addr)
1395{
1396	struct vmap_area *va;
1397
1398	va = find_vmap_area((unsigned long)addr);
1399	if (va && va->flags & VM_VM_AREA)
1400		return va->vm;
1401
1402	return NULL;
1403}
1404
1405/**
1406 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1407 *	@addr:		base address
1408 *
1409 *	Search for the kernel VM area starting at @addr, and remove it.
1410 *	This function returns the found VM area, but using it is NOT safe
1411 *	on SMP machines, except for its size or flags.
1412 */
1413struct vm_struct *remove_vm_area(const void *addr)
1414{
1415	struct vmap_area *va;
1416
 
 
1417	va = find_vmap_area((unsigned long)addr);
1418	if (va && va->flags & VM_VM_AREA) {
1419		struct vm_struct *vm = va->vm;
1420
1421		spin_lock(&vmap_area_lock);
1422		va->vm = NULL;
1423		va->flags &= ~VM_VM_AREA;
 
1424		spin_unlock(&vmap_area_lock);
1425
1426		vmap_debug_free_range(va->va_start, va->va_end);
 
1427		free_unmap_vmap_area(va);
1428		vm->size -= PAGE_SIZE;
1429
1430		return vm;
1431	}
1432	return NULL;
1433}
1434
1435static void __vunmap(const void *addr, int deallocate_pages)
1436{
1437	struct vm_struct *area;
1438
1439	if (!addr)
1440		return;
1441
1442	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1443			addr))
1444		return;
1445
1446	area = remove_vm_area(addr);
1447	if (unlikely(!area)) {
1448		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1449				addr);
1450		return;
1451	}
1452
1453	debug_check_no_locks_freed(addr, area->size);
1454	debug_check_no_obj_freed(addr, area->size);
1455
1456	if (deallocate_pages) {
1457		int i;
1458
1459		for (i = 0; i < area->nr_pages; i++) {
1460			struct page *page = area->pages[i];
1461
1462			BUG_ON(!page);
1463			__free_page(page);
1464		}
1465
1466		if (area->flags & VM_VPAGES)
1467			vfree(area->pages);
1468		else
1469			kfree(area->pages);
1470	}
1471
1472	kfree(area);
1473	return;
1474}
1475 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476/**
1477 *	vfree  -  release memory allocated by vmalloc()
1478 *	@addr:		memory base address
1479 *
1480 *	Free the virtually continuous memory area starting at @addr, as
1481 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1482 *	NULL, no operation is performed.
1483 *
1484 *	Must not be called in NMI context (strictly speaking, only if we don't
1485 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1486 *	conventions for vfree() arch-depenedent would be a really bad idea)
1487 *
1488 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1489 */
1490void vfree(const void *addr)
1491{
1492	BUG_ON(in_nmi());
1493
1494	kmemleak_free(addr);
1495
1496	if (!addr)
1497		return;
1498	if (unlikely(in_interrupt())) {
1499		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1500		if (llist_add((struct llist_node *)addr, &p->list))
1501			schedule_work(&p->wq);
1502	} else
1503		__vunmap(addr, 1);
1504}
1505EXPORT_SYMBOL(vfree);
1506
1507/**
1508 *	vunmap  -  release virtual mapping obtained by vmap()
1509 *	@addr:		memory base address
1510 *
1511 *	Free the virtually contiguous memory area starting at @addr,
1512 *	which was created from the page array passed to vmap().
1513 *
1514 *	Must not be called in interrupt context.
1515 */
1516void vunmap(const void *addr)
1517{
1518	BUG_ON(in_interrupt());
1519	might_sleep();
1520	if (addr)
1521		__vunmap(addr, 0);
1522}
1523EXPORT_SYMBOL(vunmap);
1524
1525/**
1526 *	vmap  -  map an array of pages into virtually contiguous space
1527 *	@pages:		array of page pointers
1528 *	@count:		number of pages to map
1529 *	@flags:		vm_area->flags
1530 *	@prot:		page protection for the mapping
1531 *
1532 *	Maps @count pages from @pages into contiguous kernel virtual
1533 *	space.
1534 */
1535void *vmap(struct page **pages, unsigned int count,
1536		unsigned long flags, pgprot_t prot)
1537{
1538	struct vm_struct *area;
 
1539
1540	might_sleep();
1541
1542	if (count > totalram_pages)
1543		return NULL;
1544
1545	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1546					__builtin_return_address(0));
1547	if (!area)
1548		return NULL;
1549
1550	if (map_vm_area(area, prot, &pages)) {
1551		vunmap(area->addr);
1552		return NULL;
1553	}
1554
1555	return area->addr;
1556}
1557EXPORT_SYMBOL(vmap);
1558
1559static void *__vmalloc_node(unsigned long size, unsigned long align,
1560			    gfp_t gfp_mask, pgprot_t prot,
1561			    int node, const void *caller);
1562static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1563				 pgprot_t prot, int node)
1564{
1565	const int order = 0;
1566	struct page **pages;
1567	unsigned int nr_pages, array_size, i;
1568	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 
 
 
 
1569
1570	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1571	array_size = (nr_pages * sizeof(struct page *));
1572
1573	area->nr_pages = nr_pages;
1574	/* Please note that the recursion is strictly bounded. */
1575	if (array_size > PAGE_SIZE) {
1576		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1577				PAGE_KERNEL, node, area->caller);
1578		area->flags |= VM_VPAGES;
1579	} else {
1580		pages = kmalloc_node(array_size, nested_gfp, node);
1581	}
1582	area->pages = pages;
1583	if (!area->pages) {
1584		remove_vm_area(area->addr);
1585		kfree(area);
1586		return NULL;
1587	}
1588
1589	for (i = 0; i < area->nr_pages; i++) {
1590		struct page *page;
1591		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1592
1593		if (node == NUMA_NO_NODE)
1594			page = alloc_page(tmp_mask);
1595		else
1596			page = alloc_pages_node(node, tmp_mask, order);
1597
1598		if (unlikely(!page)) {
1599			/* Successfully allocated i pages, free them in __vunmap() */
1600			area->nr_pages = i;
1601			goto fail;
1602		}
1603		area->pages[i] = page;
 
 
1604	}
1605
1606	if (map_vm_area(area, prot, &pages))
1607		goto fail;
1608	return area->addr;
1609
1610fail:
1611	warn_alloc_failed(gfp_mask, order,
1612			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1613			  (area->nr_pages*PAGE_SIZE), area->size);
1614	vfree(area->addr);
1615	return NULL;
1616}
1617
1618/**
1619 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1620 *	@size:		allocation size
1621 *	@align:		desired alignment
1622 *	@start:		vm area range start
1623 *	@end:		vm area range end
1624 *	@gfp_mask:	flags for the page level allocator
1625 *	@prot:		protection mask for the allocated pages
 
1626 *	@node:		node to use for allocation or NUMA_NO_NODE
1627 *	@caller:	caller's return address
1628 *
1629 *	Allocate enough pages to cover @size from the page level
1630 *	allocator with @gfp_mask flags.  Map them into contiguous
1631 *	kernel virtual space, using a pagetable protection of @prot.
1632 */
1633void *__vmalloc_node_range(unsigned long size, unsigned long align,
1634			unsigned long start, unsigned long end, gfp_t gfp_mask,
1635			pgprot_t prot, int node, const void *caller)
 
1636{
1637	struct vm_struct *area;
1638	void *addr;
1639	unsigned long real_size = size;
1640
1641	size = PAGE_ALIGN(size);
1642	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1643		goto fail;
1644
1645	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1646				  start, end, node, gfp_mask, caller);
1647	if (!area)
1648		goto fail;
1649
1650	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1651	if (!addr)
1652		return NULL;
1653
1654	/*
1655	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1656	 * flag. It means that vm_struct is not fully initialized.
1657	 * Now, it is fully initialized, so remove this flag here.
1658	 */
1659	clear_vm_uninitialized_flag(area);
1660
1661	/*
1662	 * A ref_count = 2 is needed because vm_struct allocated in
1663	 * __get_vm_area_node() contains a reference to the virtual address of
1664	 * the vmalloc'ed block.
1665	 */
1666	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1667
1668	return addr;
1669
1670fail:
1671	warn_alloc_failed(gfp_mask, 0,
1672			  "vmalloc: allocation failure: %lu bytes\n",
1673			  real_size);
1674	return NULL;
1675}
1676
1677/**
1678 *	__vmalloc_node  -  allocate virtually contiguous memory
1679 *	@size:		allocation size
1680 *	@align:		desired alignment
1681 *	@gfp_mask:	flags for the page level allocator
1682 *	@prot:		protection mask for the allocated pages
1683 *	@node:		node to use for allocation or NUMA_NO_NODE
1684 *	@caller:	caller's return address
1685 *
1686 *	Allocate enough pages to cover @size from the page level
1687 *	allocator with @gfp_mask flags.  Map them into contiguous
1688 *	kernel virtual space, using a pagetable protection of @prot.
 
 
 
 
 
 
 
1689 */
1690static void *__vmalloc_node(unsigned long size, unsigned long align,
1691			    gfp_t gfp_mask, pgprot_t prot,
1692			    int node, const void *caller)
1693{
1694	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1695				gfp_mask, prot, node, caller);
1696}
1697
1698void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1699{
1700	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1701				__builtin_return_address(0));
1702}
1703EXPORT_SYMBOL(__vmalloc);
1704
1705static inline void *__vmalloc_node_flags(unsigned long size,
1706					int node, gfp_t flags)
1707{
1708	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1709					node, __builtin_return_address(0));
1710}
1711
 
 
 
 
 
 
 
1712/**
1713 *	vmalloc  -  allocate virtually contiguous memory
1714 *	@size:		allocation size
1715 *	Allocate enough pages to cover @size from the page level
1716 *	allocator and map them into contiguous kernel virtual space.
1717 *
1718 *	For tight control over page level allocator and protection flags
1719 *	use __vmalloc() instead.
1720 */
1721void *vmalloc(unsigned long size)
1722{
1723	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1724				    GFP_KERNEL | __GFP_HIGHMEM);
1725}
1726EXPORT_SYMBOL(vmalloc);
1727
1728/**
1729 *	vzalloc - allocate virtually contiguous memory with zero fill
1730 *	@size:	allocation size
1731 *	Allocate enough pages to cover @size from the page level
1732 *	allocator and map them into contiguous kernel virtual space.
1733 *	The memory allocated is set to zero.
1734 *
1735 *	For tight control over page level allocator and protection flags
1736 *	use __vmalloc() instead.
1737 */
1738void *vzalloc(unsigned long size)
1739{
1740	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1741				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1742}
1743EXPORT_SYMBOL(vzalloc);
1744
1745/**
1746 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1747 * @size: allocation size
1748 *
1749 * The resulting memory area is zeroed so it can be mapped to userspace
1750 * without leaking data.
1751 */
1752void *vmalloc_user(unsigned long size)
1753{
1754	struct vm_struct *area;
1755	void *ret;
1756
1757	ret = __vmalloc_node(size, SHMLBA,
1758			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1759			     PAGE_KERNEL, NUMA_NO_NODE,
1760			     __builtin_return_address(0));
1761	if (ret) {
1762		area = find_vm_area(ret);
1763		area->flags |= VM_USERMAP;
1764	}
1765	return ret;
1766}
1767EXPORT_SYMBOL(vmalloc_user);
1768
1769/**
1770 *	vmalloc_node  -  allocate memory on a specific node
1771 *	@size:		allocation size
1772 *	@node:		numa node
1773 *
1774 *	Allocate enough pages to cover @size from the page level
1775 *	allocator and map them into contiguous kernel virtual space.
1776 *
1777 *	For tight control over page level allocator and protection flags
1778 *	use __vmalloc() instead.
1779 */
1780void *vmalloc_node(unsigned long size, int node)
1781{
1782	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1783					node, __builtin_return_address(0));
1784}
1785EXPORT_SYMBOL(vmalloc_node);
1786
1787/**
1788 * vzalloc_node - allocate memory on a specific node with zero fill
1789 * @size:	allocation size
1790 * @node:	numa node
1791 *
1792 * Allocate enough pages to cover @size from the page level
1793 * allocator and map them into contiguous kernel virtual space.
1794 * The memory allocated is set to zero.
1795 *
1796 * For tight control over page level allocator and protection flags
1797 * use __vmalloc_node() instead.
1798 */
1799void *vzalloc_node(unsigned long size, int node)
1800{
1801	return __vmalloc_node_flags(size, node,
1802			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1803}
1804EXPORT_SYMBOL(vzalloc_node);
1805
1806#ifndef PAGE_KERNEL_EXEC
1807# define PAGE_KERNEL_EXEC PAGE_KERNEL
1808#endif
1809
1810/**
1811 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1812 *	@size:		allocation size
1813 *
1814 *	Kernel-internal function to allocate enough pages to cover @size
1815 *	the page level allocator and map them into contiguous and
1816 *	executable kernel virtual space.
1817 *
1818 *	For tight control over page level allocator and protection flags
1819 *	use __vmalloc() instead.
1820 */
1821
1822void *vmalloc_exec(unsigned long size)
1823{
1824	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1825			      NUMA_NO_NODE, __builtin_return_address(0));
1826}
1827
1828#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1829#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1830#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1831#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1832#else
1833#define GFP_VMALLOC32 GFP_KERNEL
 
 
 
 
1834#endif
1835
1836/**
1837 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1838 *	@size:		allocation size
1839 *
1840 *	Allocate enough 32bit PA addressable pages to cover @size from the
1841 *	page level allocator and map them into contiguous kernel virtual space.
1842 */
1843void *vmalloc_32(unsigned long size)
1844{
1845	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1846			      NUMA_NO_NODE, __builtin_return_address(0));
1847}
1848EXPORT_SYMBOL(vmalloc_32);
1849
1850/**
1851 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1852 *	@size:		allocation size
1853 *
1854 * The resulting memory area is 32bit addressable and zeroed so it can be
1855 * mapped to userspace without leaking data.
1856 */
1857void *vmalloc_32_user(unsigned long size)
1858{
1859	struct vm_struct *area;
1860	void *ret;
1861
1862	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1863			     NUMA_NO_NODE, __builtin_return_address(0));
1864	if (ret) {
1865		area = find_vm_area(ret);
1866		area->flags |= VM_USERMAP;
1867	}
1868	return ret;
1869}
1870EXPORT_SYMBOL(vmalloc_32_user);
1871
1872/*
1873 * small helper routine , copy contents to buf from addr.
1874 * If the page is not present, fill zero.
1875 */
1876
1877static int aligned_vread(char *buf, char *addr, unsigned long count)
1878{
1879	struct page *p;
1880	int copied = 0;
1881
1882	while (count) {
1883		unsigned long offset, length;
1884
1885		offset = (unsigned long)addr & ~PAGE_MASK;
1886		length = PAGE_SIZE - offset;
1887		if (length > count)
1888			length = count;
1889		p = vmalloc_to_page(addr);
1890		/*
1891		 * To do safe access to this _mapped_ area, we need
1892		 * lock. But adding lock here means that we need to add
1893		 * overhead of vmalloc()/vfree() calles for this _debug_
1894		 * interface, rarely used. Instead of that, we'll use
1895		 * kmap() and get small overhead in this access function.
1896		 */
1897		if (p) {
1898			/*
1899			 * we can expect USER0 is not used (see vread/vwrite's
1900			 * function description)
1901			 */
1902			void *map = kmap_atomic(p);
1903			memcpy(buf, map + offset, length);
1904			kunmap_atomic(map);
1905		} else
1906			memset(buf, 0, length);
1907
1908		addr += length;
1909		buf += length;
1910		copied += length;
1911		count -= length;
1912	}
1913	return copied;
1914}
1915
1916static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1917{
1918	struct page *p;
1919	int copied = 0;
1920
1921	while (count) {
1922		unsigned long offset, length;
1923
1924		offset = (unsigned long)addr & ~PAGE_MASK;
1925		length = PAGE_SIZE - offset;
1926		if (length > count)
1927			length = count;
1928		p = vmalloc_to_page(addr);
1929		/*
1930		 * To do safe access to this _mapped_ area, we need
1931		 * lock. But adding lock here means that we need to add
1932		 * overhead of vmalloc()/vfree() calles for this _debug_
1933		 * interface, rarely used. Instead of that, we'll use
1934		 * kmap() and get small overhead in this access function.
1935		 */
1936		if (p) {
1937			/*
1938			 * we can expect USER0 is not used (see vread/vwrite's
1939			 * function description)
1940			 */
1941			void *map = kmap_atomic(p);
1942			memcpy(map + offset, buf, length);
1943			kunmap_atomic(map);
1944		}
1945		addr += length;
1946		buf += length;
1947		copied += length;
1948		count -= length;
1949	}
1950	return copied;
1951}
1952
1953/**
1954 *	vread() -  read vmalloc area in a safe way.
1955 *	@buf:		buffer for reading data
1956 *	@addr:		vm address.
1957 *	@count:		number of bytes to be read.
1958 *
1959 *	Returns # of bytes which addr and buf should be increased.
1960 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1961 *	includes any intersect with alive vmalloc area.
1962 *
1963 *	This function checks that addr is a valid vmalloc'ed area, and
1964 *	copy data from that area to a given buffer. If the given memory range
1965 *	of [addr...addr+count) includes some valid address, data is copied to
1966 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1967 *	IOREMAP area is treated as memory hole and no copy is done.
1968 *
1969 *	If [addr...addr+count) doesn't includes any intersects with alive
1970 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1971 *
1972 *	Note: In usual ops, vread() is never necessary because the caller
1973 *	should know vmalloc() area is valid and can use memcpy().
1974 *	This is for routines which have to access vmalloc area without
1975 *	any informaion, as /dev/kmem.
1976 *
1977 */
1978
1979long vread(char *buf, char *addr, unsigned long count)
1980{
1981	struct vmap_area *va;
1982	struct vm_struct *vm;
1983	char *vaddr, *buf_start = buf;
1984	unsigned long buflen = count;
1985	unsigned long n;
1986
1987	/* Don't allow overflow */
1988	if ((unsigned long) addr + count < count)
1989		count = -(unsigned long) addr;
1990
1991	spin_lock(&vmap_area_lock);
1992	list_for_each_entry(va, &vmap_area_list, list) {
1993		if (!count)
1994			break;
1995
1996		if (!(va->flags & VM_VM_AREA))
1997			continue;
1998
1999		vm = va->vm;
2000		vaddr = (char *) vm->addr;
2001		if (addr >= vaddr + get_vm_area_size(vm))
2002			continue;
2003		while (addr < vaddr) {
2004			if (count == 0)
2005				goto finished;
2006			*buf = '\0';
2007			buf++;
2008			addr++;
2009			count--;
2010		}
2011		n = vaddr + get_vm_area_size(vm) - addr;
2012		if (n > count)
2013			n = count;
2014		if (!(vm->flags & VM_IOREMAP))
2015			aligned_vread(buf, addr, n);
2016		else /* IOREMAP area is treated as memory hole */
2017			memset(buf, 0, n);
2018		buf += n;
2019		addr += n;
2020		count -= n;
2021	}
2022finished:
2023	spin_unlock(&vmap_area_lock);
2024
2025	if (buf == buf_start)
2026		return 0;
2027	/* zero-fill memory holes */
2028	if (buf != buf_start + buflen)
2029		memset(buf, 0, buflen - (buf - buf_start));
2030
2031	return buflen;
2032}
2033
2034/**
2035 *	vwrite() -  write vmalloc area in a safe way.
2036 *	@buf:		buffer for source data
2037 *	@addr:		vm address.
2038 *	@count:		number of bytes to be read.
2039 *
2040 *	Returns # of bytes which addr and buf should be incresed.
2041 *	(same number to @count).
2042 *	If [addr...addr+count) doesn't includes any intersect with valid
2043 *	vmalloc area, returns 0.
2044 *
2045 *	This function checks that addr is a valid vmalloc'ed area, and
2046 *	copy data from a buffer to the given addr. If specified range of
2047 *	[addr...addr+count) includes some valid address, data is copied from
2048 *	proper area of @buf. If there are memory holes, no copy to hole.
2049 *	IOREMAP area is treated as memory hole and no copy is done.
2050 *
2051 *	If [addr...addr+count) doesn't includes any intersects with alive
2052 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2053 *
2054 *	Note: In usual ops, vwrite() is never necessary because the caller
2055 *	should know vmalloc() area is valid and can use memcpy().
2056 *	This is for routines which have to access vmalloc area without
2057 *	any informaion, as /dev/kmem.
2058 */
2059
2060long vwrite(char *buf, char *addr, unsigned long count)
2061{
2062	struct vmap_area *va;
2063	struct vm_struct *vm;
2064	char *vaddr;
2065	unsigned long n, buflen;
2066	int copied = 0;
2067
2068	/* Don't allow overflow */
2069	if ((unsigned long) addr + count < count)
2070		count = -(unsigned long) addr;
2071	buflen = count;
2072
2073	spin_lock(&vmap_area_lock);
2074	list_for_each_entry(va, &vmap_area_list, list) {
2075		if (!count)
2076			break;
2077
2078		if (!(va->flags & VM_VM_AREA))
2079			continue;
2080
2081		vm = va->vm;
2082		vaddr = (char *) vm->addr;
2083		if (addr >= vaddr + get_vm_area_size(vm))
2084			continue;
2085		while (addr < vaddr) {
2086			if (count == 0)
2087				goto finished;
2088			buf++;
2089			addr++;
2090			count--;
2091		}
2092		n = vaddr + get_vm_area_size(vm) - addr;
2093		if (n > count)
2094			n = count;
2095		if (!(vm->flags & VM_IOREMAP)) {
2096			aligned_vwrite(buf, addr, n);
2097			copied++;
2098		}
2099		buf += n;
2100		addr += n;
2101		count -= n;
2102	}
2103finished:
2104	spin_unlock(&vmap_area_lock);
2105	if (!copied)
2106		return 0;
2107	return buflen;
2108}
2109
2110/**
2111 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2112 *	@vma:		vma to cover
2113 *	@uaddr:		target user address to start at
2114 *	@kaddr:		virtual address of vmalloc kernel memory
2115 *	@size:		size of map area
2116 *
2117 *	Returns:	0 for success, -Exxx on failure
2118 *
2119 *	This function checks that @kaddr is a valid vmalloc'ed area,
2120 *	and that it is big enough to cover the range starting at
2121 *	@uaddr in @vma. Will return failure if that criteria isn't
2122 *	met.
2123 *
2124 *	Similar to remap_pfn_range() (see mm/memory.c)
2125 */
2126int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2127				void *kaddr, unsigned long size)
2128{
2129	struct vm_struct *area;
2130
2131	size = PAGE_ALIGN(size);
2132
2133	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2134		return -EINVAL;
2135
2136	area = find_vm_area(kaddr);
2137	if (!area)
2138		return -EINVAL;
2139
2140	if (!(area->flags & VM_USERMAP))
2141		return -EINVAL;
2142
2143	if (kaddr + size > area->addr + area->size)
2144		return -EINVAL;
2145
2146	do {
2147		struct page *page = vmalloc_to_page(kaddr);
2148		int ret;
2149
2150		ret = vm_insert_page(vma, uaddr, page);
2151		if (ret)
2152			return ret;
2153
2154		uaddr += PAGE_SIZE;
2155		kaddr += PAGE_SIZE;
2156		size -= PAGE_SIZE;
2157	} while (size > 0);
2158
2159	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2160
2161	return 0;
2162}
2163EXPORT_SYMBOL(remap_vmalloc_range_partial);
2164
2165/**
2166 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2167 *	@vma:		vma to cover (map full range of vma)
2168 *	@addr:		vmalloc memory
2169 *	@pgoff:		number of pages into addr before first page to map
2170 *
2171 *	Returns:	0 for success, -Exxx on failure
2172 *
2173 *	This function checks that addr is a valid vmalloc'ed area, and
2174 *	that it is big enough to cover the vma. Will return failure if
2175 *	that criteria isn't met.
2176 *
2177 *	Similar to remap_pfn_range() (see mm/memory.c)
2178 */
2179int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2180						unsigned long pgoff)
2181{
2182	return remap_vmalloc_range_partial(vma, vma->vm_start,
2183					   addr + (pgoff << PAGE_SHIFT),
2184					   vma->vm_end - vma->vm_start);
2185}
2186EXPORT_SYMBOL(remap_vmalloc_range);
2187
2188/*
2189 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2190 * have one.
2191 */
2192void __weak vmalloc_sync_all(void)
2193{
2194}
2195
2196
2197static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2198{
2199	pte_t ***p = data;
2200
2201	if (p) {
2202		*(*p) = pte;
2203		(*p)++;
2204	}
2205	return 0;
2206}
2207
2208/**
2209 *	alloc_vm_area - allocate a range of kernel address space
2210 *	@size:		size of the area
2211 *	@ptes:		returns the PTEs for the address space
2212 *
2213 *	Returns:	NULL on failure, vm_struct on success
2214 *
2215 *	This function reserves a range of kernel address space, and
2216 *	allocates pagetables to map that range.  No actual mappings
2217 *	are created.
2218 *
2219 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2220 *	allocated for the VM area are returned.
2221 */
2222struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2223{
2224	struct vm_struct *area;
2225
2226	area = get_vm_area_caller(size, VM_IOREMAP,
2227				__builtin_return_address(0));
2228	if (area == NULL)
2229		return NULL;
2230
2231	/*
2232	 * This ensures that page tables are constructed for this region
2233	 * of kernel virtual address space and mapped into init_mm.
2234	 */
2235	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2236				size, f, ptes ? &ptes : NULL)) {
2237		free_vm_area(area);
2238		return NULL;
2239	}
2240
2241	return area;
2242}
2243EXPORT_SYMBOL_GPL(alloc_vm_area);
2244
2245void free_vm_area(struct vm_struct *area)
2246{
2247	struct vm_struct *ret;
2248	ret = remove_vm_area(area->addr);
2249	BUG_ON(ret != area);
2250	kfree(area);
2251}
2252EXPORT_SYMBOL_GPL(free_vm_area);
2253
2254#ifdef CONFIG_SMP
2255static struct vmap_area *node_to_va(struct rb_node *n)
2256{
2257	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2258}
2259
2260/**
2261 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2262 * @end: target address
2263 * @pnext: out arg for the next vmap_area
2264 * @pprev: out arg for the previous vmap_area
2265 *
2266 * Returns: %true if either or both of next and prev are found,
2267 *	    %false if no vmap_area exists
2268 *
2269 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2270 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2271 */
2272static bool pvm_find_next_prev(unsigned long end,
2273			       struct vmap_area **pnext,
2274			       struct vmap_area **pprev)
2275{
2276	struct rb_node *n = vmap_area_root.rb_node;
2277	struct vmap_area *va = NULL;
2278
2279	while (n) {
2280		va = rb_entry(n, struct vmap_area, rb_node);
2281		if (end < va->va_end)
2282			n = n->rb_left;
2283		else if (end > va->va_end)
2284			n = n->rb_right;
2285		else
2286			break;
2287	}
2288
2289	if (!va)
2290		return false;
2291
2292	if (va->va_end > end) {
2293		*pnext = va;
2294		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2295	} else {
2296		*pprev = va;
2297		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2298	}
2299	return true;
2300}
2301
2302/**
2303 * pvm_determine_end - find the highest aligned address between two vmap_areas
2304 * @pnext: in/out arg for the next vmap_area
2305 * @pprev: in/out arg for the previous vmap_area
2306 * @align: alignment
2307 *
2308 * Returns: determined end address
2309 *
2310 * Find the highest aligned address between *@pnext and *@pprev below
2311 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2312 * down address is between the end addresses of the two vmap_areas.
2313 *
2314 * Please note that the address returned by this function may fall
2315 * inside *@pnext vmap_area.  The caller is responsible for checking
2316 * that.
2317 */
2318static unsigned long pvm_determine_end(struct vmap_area **pnext,
2319				       struct vmap_area **pprev,
2320				       unsigned long align)
2321{
2322	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2323	unsigned long addr;
2324
2325	if (*pnext)
2326		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2327	else
2328		addr = vmalloc_end;
2329
2330	while (*pprev && (*pprev)->va_end > addr) {
2331		*pnext = *pprev;
2332		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333	}
2334
2335	return addr;
2336}
2337
2338/**
2339 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2340 * @offsets: array containing offset of each area
2341 * @sizes: array containing size of each area
2342 * @nr_vms: the number of areas to allocate
2343 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2344 *
2345 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2346 *	    vm_structs on success, %NULL on failure
2347 *
2348 * Percpu allocator wants to use congruent vm areas so that it can
2349 * maintain the offsets among percpu areas.  This function allocates
2350 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2351 * be scattered pretty far, distance between two areas easily going up
2352 * to gigabytes.  To avoid interacting with regular vmallocs, these
2353 * areas are allocated from top.
2354 *
2355 * Despite its complicated look, this allocator is rather simple.  It
2356 * does everything top-down and scans areas from the end looking for
2357 * matching slot.  While scanning, if any of the areas overlaps with
2358 * existing vmap_area, the base address is pulled down to fit the
2359 * area.  Scanning is repeated till all the areas fit and then all
2360 * necessary data structres are inserted and the result is returned.
2361 */
2362struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2363				     const size_t *sizes, int nr_vms,
2364				     size_t align)
2365{
2366	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2367	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2368	struct vmap_area **vas, *prev, *next;
2369	struct vm_struct **vms;
2370	int area, area2, last_area, term_area;
2371	unsigned long base, start, end, last_end;
2372	bool purged = false;
2373
2374	/* verify parameters and allocate data structures */
2375	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2376	for (last_area = 0, area = 0; area < nr_vms; area++) {
2377		start = offsets[area];
2378		end = start + sizes[area];
2379
2380		/* is everything aligned properly? */
2381		BUG_ON(!IS_ALIGNED(offsets[area], align));
2382		BUG_ON(!IS_ALIGNED(sizes[area], align));
2383
2384		/* detect the area with the highest address */
2385		if (start > offsets[last_area])
2386			last_area = area;
2387
2388		for (area2 = 0; area2 < nr_vms; area2++) {
2389			unsigned long start2 = offsets[area2];
2390			unsigned long end2 = start2 + sizes[area2];
2391
2392			if (area2 == area)
2393				continue;
2394
2395			BUG_ON(start2 >= start && start2 < end);
2396			BUG_ON(end2 <= end && end2 > start);
2397		}
2398	}
2399	last_end = offsets[last_area] + sizes[last_area];
2400
2401	if (vmalloc_end - vmalloc_start < last_end) {
2402		WARN_ON(true);
2403		return NULL;
2404	}
2405
2406	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2407	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2408	if (!vas || !vms)
2409		goto err_free2;
2410
2411	for (area = 0; area < nr_vms; area++) {
2412		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2413		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2414		if (!vas[area] || !vms[area])
2415			goto err_free;
2416	}
2417retry:
2418	spin_lock(&vmap_area_lock);
2419
2420	/* start scanning - we scan from the top, begin with the last area */
2421	area = term_area = last_area;
2422	start = offsets[area];
2423	end = start + sizes[area];
2424
2425	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2426		base = vmalloc_end - last_end;
2427		goto found;
2428	}
2429	base = pvm_determine_end(&next, &prev, align) - end;
2430
2431	while (true) {
2432		BUG_ON(next && next->va_end <= base + end);
2433		BUG_ON(prev && prev->va_end > base + end);
2434
2435		/*
2436		 * base might have underflowed, add last_end before
2437		 * comparing.
2438		 */
2439		if (base + last_end < vmalloc_start + last_end) {
2440			spin_unlock(&vmap_area_lock);
2441			if (!purged) {
2442				purge_vmap_area_lazy();
2443				purged = true;
2444				goto retry;
2445			}
2446			goto err_free;
2447		}
2448
2449		/*
2450		 * If next overlaps, move base downwards so that it's
2451		 * right below next and then recheck.
2452		 */
2453		if (next && next->va_start < base + end) {
2454			base = pvm_determine_end(&next, &prev, align) - end;
2455			term_area = area;
2456			continue;
2457		}
2458
2459		/*
2460		 * If prev overlaps, shift down next and prev and move
2461		 * base so that it's right below new next and then
2462		 * recheck.
2463		 */
2464		if (prev && prev->va_end > base + start)  {
2465			next = prev;
2466			prev = node_to_va(rb_prev(&next->rb_node));
2467			base = pvm_determine_end(&next, &prev, align) - end;
2468			term_area = area;
2469			continue;
2470		}
2471
2472		/*
2473		 * This area fits, move on to the previous one.  If
2474		 * the previous one is the terminal one, we're done.
2475		 */
2476		area = (area + nr_vms - 1) % nr_vms;
2477		if (area == term_area)
2478			break;
2479		start = offsets[area];
2480		end = start + sizes[area];
2481		pvm_find_next_prev(base + end, &next, &prev);
2482	}
2483found:
2484	/* we've found a fitting base, insert all va's */
2485	for (area = 0; area < nr_vms; area++) {
2486		struct vmap_area *va = vas[area];
2487
2488		va->va_start = base + offsets[area];
2489		va->va_end = va->va_start + sizes[area];
2490		__insert_vmap_area(va);
2491	}
2492
2493	vmap_area_pcpu_hole = base + offsets[last_area];
2494
2495	spin_unlock(&vmap_area_lock);
2496
2497	/* insert all vm's */
2498	for (area = 0; area < nr_vms; area++)
2499		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2500				 pcpu_get_vm_areas);
2501
2502	kfree(vas);
2503	return vms;
2504
2505err_free:
2506	for (area = 0; area < nr_vms; area++) {
2507		kfree(vas[area]);
2508		kfree(vms[area]);
2509	}
2510err_free2:
2511	kfree(vas);
2512	kfree(vms);
2513	return NULL;
2514}
2515
2516/**
2517 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2518 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2519 * @nr_vms: the number of allocated areas
2520 *
2521 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2522 */
2523void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2524{
2525	int i;
2526
2527	for (i = 0; i < nr_vms; i++)
2528		free_vm_area(vms[i]);
2529	kfree(vms);
2530}
2531#endif	/* CONFIG_SMP */
2532
2533#ifdef CONFIG_PROC_FS
2534static void *s_start(struct seq_file *m, loff_t *pos)
2535	__acquires(&vmap_area_lock)
2536{
2537	loff_t n = *pos;
2538	struct vmap_area *va;
2539
2540	spin_lock(&vmap_area_lock);
2541	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2542	while (n > 0 && &va->list != &vmap_area_list) {
2543		n--;
2544		va = list_entry(va->list.next, typeof(*va), list);
2545	}
2546	if (!n && &va->list != &vmap_area_list)
2547		return va;
2548
2549	return NULL;
2550
2551}
2552
2553static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2554{
2555	struct vmap_area *va = p, *next;
2556
2557	++*pos;
2558	next = list_entry(va->list.next, typeof(*va), list);
2559	if (&next->list != &vmap_area_list)
2560		return next;
2561
2562	return NULL;
2563}
2564
2565static void s_stop(struct seq_file *m, void *p)
2566	__releases(&vmap_area_lock)
2567{
2568	spin_unlock(&vmap_area_lock);
2569}
2570
2571static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2572{
2573	if (IS_ENABLED(CONFIG_NUMA)) {
2574		unsigned int nr, *counters = m->private;
2575
2576		if (!counters)
2577			return;
2578
 
 
2579		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2580		smp_rmb();
2581		if (v->flags & VM_UNINITIALIZED)
2582			return;
2583
2584		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2585
2586		for (nr = 0; nr < v->nr_pages; nr++)
2587			counters[page_to_nid(v->pages[nr])]++;
2588
2589		for_each_node_state(nr, N_HIGH_MEMORY)
2590			if (counters[nr])
2591				seq_printf(m, " N%u=%u", nr, counters[nr]);
2592	}
2593}
2594
2595static int s_show(struct seq_file *m, void *p)
2596{
2597	struct vmap_area *va = p;
2598	struct vm_struct *v;
2599
 
 
2600	/*
2601	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2602	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2603	 */
2604	if (!(va->flags & VM_VM_AREA))
 
 
 
 
 
2605		return 0;
 
2606
2607	v = va->vm;
2608
2609	seq_printf(m, "0x%pK-0x%pK %7ld",
2610		v->addr, v->addr + v->size, v->size);
2611
2612	if (v->caller)
2613		seq_printf(m, " %pS", v->caller);
2614
2615	if (v->nr_pages)
2616		seq_printf(m, " pages=%d", v->nr_pages);
2617
2618	if (v->phys_addr)
2619		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2620
2621	if (v->flags & VM_IOREMAP)
2622		seq_printf(m, " ioremap");
2623
2624	if (v->flags & VM_ALLOC)
2625		seq_printf(m, " vmalloc");
2626
2627	if (v->flags & VM_MAP)
2628		seq_printf(m, " vmap");
2629
2630	if (v->flags & VM_USERMAP)
2631		seq_printf(m, " user");
2632
2633	if (v->flags & VM_VPAGES)
2634		seq_printf(m, " vpages");
2635
2636	show_numa_info(m, v);
2637	seq_putc(m, '\n');
2638	return 0;
2639}
2640
2641static const struct seq_operations vmalloc_op = {
2642	.start = s_start,
2643	.next = s_next,
2644	.stop = s_stop,
2645	.show = s_show,
2646};
2647
2648static int vmalloc_open(struct inode *inode, struct file *file)
2649{
2650	unsigned int *ptr = NULL;
2651	int ret;
2652
2653	if (IS_ENABLED(CONFIG_NUMA)) {
2654		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2655		if (ptr == NULL)
2656			return -ENOMEM;
2657	}
2658	ret = seq_open(file, &vmalloc_op);
2659	if (!ret) {
2660		struct seq_file *m = file->private_data;
2661		m->private = ptr;
2662	} else
2663		kfree(ptr);
2664	return ret;
2665}
2666
2667static const struct file_operations proc_vmalloc_operations = {
2668	.open		= vmalloc_open,
2669	.read		= seq_read,
2670	.llseek		= seq_lseek,
2671	.release	= seq_release_private,
2672};
2673
2674static int __init proc_vmalloc_init(void)
2675{
2676	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2677	return 0;
2678}
2679module_init(proc_vmalloc_init);
2680
2681void get_vmalloc_info(struct vmalloc_info *vmi)
2682{
2683	struct vmap_area *va;
2684	unsigned long free_area_size;
2685	unsigned long prev_end;
2686
2687	vmi->used = 0;
2688	vmi->largest_chunk = 0;
2689
2690	prev_end = VMALLOC_START;
2691
2692	spin_lock(&vmap_area_lock);
2693
2694	if (list_empty(&vmap_area_list)) {
2695		vmi->largest_chunk = VMALLOC_TOTAL;
2696		goto out;
2697	}
2698
2699	list_for_each_entry(va, &vmap_area_list, list) {
2700		unsigned long addr = va->va_start;
2701
2702		/*
2703		 * Some archs keep another range for modules in vmalloc space
2704		 */
2705		if (addr < VMALLOC_START)
2706			continue;
2707		if (addr >= VMALLOC_END)
2708			break;
2709
2710		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2711			continue;
2712
2713		vmi->used += (va->va_end - va->va_start);
2714
2715		free_area_size = addr - prev_end;
2716		if (vmi->largest_chunk < free_area_size)
2717			vmi->largest_chunk = free_area_size;
2718
2719		prev_end = va->va_end;
2720	}
2721
2722	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2723		vmi->largest_chunk = VMALLOC_END - prev_end;
2724
2725out:
2726	spin_unlock(&vmap_area_lock);
2727}
2728#endif
2729