Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48static umode_t udf_convert_permissions(struct fileEntry *);
49static int udf_update_inode(struct inode *, int);
50static int udf_sync_inode(struct inode *inode);
51static int udf_alloc_i_data(struct inode *inode, size_t size);
52static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64static void __udf_clear_extent_cache(struct inode *inode)
65{
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72}
73
74/* Invalidate extent cache */
75static void udf_clear_extent_cache(struct inode *inode)
76{
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82}
83
84/* Return contents of extent cache */
85static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87{
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104}
105
106/* Add extent to extent cache */
107static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109{
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128}
129
130void udf_evict_inode(struct inode *inode)
131{
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156}
157
158static void udf_write_failed(struct address_space *mapping, loff_t to)
159{
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173}
174
175static int udf_writepage(struct page *page, struct writeback_control *wbc)
176{
177 return block_write_full_page(page, udf_get_block, wbc);
178}
179
180static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182{
183 return mpage_writepages(mapping, wbc, udf_get_block);
184}
185
186static int udf_readpage(struct file *file, struct page *page)
187{
188 return mpage_readpage(page, udf_get_block);
189}
190
191static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193{
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195}
196
197static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200{
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207}
208
209static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210{
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221}
222
223static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224{
225 return generic_block_bmap(mapping, block, udf_get_block);
226}
227
228const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237};
238
239/*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245int udf_expand_file_adinicb(struct inode *inode)
246{
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317}
318
319struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
321{
322 udf_pblk_t newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409}
410
411static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413{
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447}
448
449static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
451{
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471}
472
473/* Extend the file by 'blocks' blocks, return the number of extents added */
474static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478{
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597}
598
599static int udf_extend_file(struct inode *inode, loff_t newsize)
600{
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651out:
652 brelse(epos.bh);
653 return err;
654}
655
656static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658{
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879}
880
881static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
884{
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943}
944
945static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948{
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039}
1040
1041static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043{
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138}
1139
1140static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143{
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151 laarr[i].extLength);
1152 } else if (startnum < endnum) {
1153 for (i = 0; i < (endnum - startnum); i++) {
1154 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155 laarr[i].extLength);
1156 udf_next_aext(inode, epos, &laarr[i].extLocation,
1157 &laarr[i].extLength, 1);
1158 start++;
1159 }
1160 }
1161
1162 for (i = start; i < endnum; i++) {
1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165 laarr[i].extLength, 1);
1166 }
1167}
1168
1169struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170 int create, int *err)
1171{
1172 struct buffer_head *bh = NULL;
1173
1174 bh = udf_getblk(inode, block, create, err);
1175 if (!bh)
1176 return NULL;
1177
1178 if (buffer_uptodate(bh))
1179 return bh;
1180
1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183 wait_on_buffer(bh);
1184 if (buffer_uptodate(bh))
1185 return bh;
1186
1187 brelse(bh);
1188 *err = -EIO;
1189 return NULL;
1190}
1191
1192int udf_setsize(struct inode *inode, loff_t newsize)
1193{
1194 int err;
1195 struct udf_inode_info *iinfo;
1196 unsigned int bsize = i_blocksize(inode);
1197
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199 S_ISLNK(inode->i_mode)))
1200 return -EINVAL;
1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202 return -EPERM;
1203
1204 iinfo = UDF_I(inode);
1205 if (newsize > inode->i_size) {
1206 down_write(&iinfo->i_data_sem);
1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 if (bsize <
1209 (udf_file_entry_alloc_offset(inode) + newsize)) {
1210 err = udf_expand_file_adinicb(inode);
1211 if (err)
1212 return err;
1213 down_write(&iinfo->i_data_sem);
1214 } else {
1215 iinfo->i_lenAlloc = newsize;
1216 goto set_size;
1217 }
1218 }
1219 err = udf_extend_file(inode, newsize);
1220 if (err) {
1221 up_write(&iinfo->i_data_sem);
1222 return err;
1223 }
1224set_size:
1225 up_write(&iinfo->i_data_sem);
1226 truncate_setsize(inode, newsize);
1227 } else {
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 down_write(&iinfo->i_data_sem);
1230 udf_clear_extent_cache(inode);
1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232 0x00, bsize - newsize -
1233 udf_file_entry_alloc_offset(inode));
1234 iinfo->i_lenAlloc = newsize;
1235 truncate_setsize(inode, newsize);
1236 up_write(&iinfo->i_data_sem);
1237 goto update_time;
1238 }
1239 err = block_truncate_page(inode->i_mapping, newsize,
1240 udf_get_block);
1241 if (err)
1242 return err;
1243 truncate_setsize(inode, newsize);
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 udf_truncate_extents(inode);
1247 up_write(&iinfo->i_data_sem);
1248 }
1249update_time:
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 if (IS_SYNC(inode))
1252 udf_sync_inode(inode);
1253 else
1254 mark_inode_dirty(inode);
1255 return 0;
1256}
1257
1258/*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263#define UDF_MAX_ICB_NESTING 1024
1264
1265static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266{
1267 struct buffer_head *bh = NULL;
1268 struct fileEntry *fe;
1269 struct extendedFileEntry *efe;
1270 uint16_t ident;
1271 struct udf_inode_info *iinfo = UDF_I(inode);
1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273 struct kernel_lb_addr *iloc = &iinfo->i_location;
1274 unsigned int link_count;
1275 unsigned int indirections = 0;
1276 int bs = inode->i_sb->s_blocksize;
1277 int ret = -EIO;
1278 uint32_t uid, gid;
1279
1280reread:
1281 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1282 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1283 iloc->partitionReferenceNum, sbi->s_partitions);
1284 return -EIO;
1285 }
1286
1287 if (iloc->logicalBlockNum >=
1288 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1289 udf_debug("block=%u, partition=%u out of range\n",
1290 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1291 return -EIO;
1292 }
1293
1294 /*
1295 * Set defaults, but the inode is still incomplete!
1296 * Note: get_new_inode() sets the following on a new inode:
1297 * i_sb = sb
1298 * i_no = ino
1299 * i_flags = sb->s_flags
1300 * i_state = 0
1301 * clean_inode(): zero fills and sets
1302 * i_count = 1
1303 * i_nlink = 1
1304 * i_op = NULL;
1305 */
1306 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307 if (!bh) {
1308 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1309 return -EIO;
1310 }
1311
1312 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1313 ident != TAG_IDENT_USE) {
1314 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1315 inode->i_ino, ident);
1316 goto out;
1317 }
1318
1319 fe = (struct fileEntry *)bh->b_data;
1320 efe = (struct extendedFileEntry *)bh->b_data;
1321
1322 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1323 struct buffer_head *ibh;
1324
1325 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1326 if (ident == TAG_IDENT_IE && ibh) {
1327 struct kernel_lb_addr loc;
1328 struct indirectEntry *ie;
1329
1330 ie = (struct indirectEntry *)ibh->b_data;
1331 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332
1333 if (ie->indirectICB.extLength) {
1334 brelse(ibh);
1335 memcpy(&iinfo->i_location, &loc,
1336 sizeof(struct kernel_lb_addr));
1337 if (++indirections > UDF_MAX_ICB_NESTING) {
1338 udf_err(inode->i_sb,
1339 "too many ICBs in ICB hierarchy"
1340 " (max %d supported)\n",
1341 UDF_MAX_ICB_NESTING);
1342 goto out;
1343 }
1344 brelse(bh);
1345 goto reread;
1346 }
1347 }
1348 brelse(ibh);
1349 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1350 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1351 le16_to_cpu(fe->icbTag.strategyType));
1352 goto out;
1353 }
1354 if (fe->icbTag.strategyType == cpu_to_le16(4))
1355 iinfo->i_strat4096 = 0;
1356 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1357 iinfo->i_strat4096 = 1;
1358
1359 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1360 ICBTAG_FLAG_AD_MASK;
1361 iinfo->i_unique = 0;
1362 iinfo->i_lenEAttr = 0;
1363 iinfo->i_lenExtents = 0;
1364 iinfo->i_lenAlloc = 0;
1365 iinfo->i_next_alloc_block = 0;
1366 iinfo->i_next_alloc_goal = 0;
1367 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1368 iinfo->i_efe = 1;
1369 iinfo->i_use = 0;
1370 ret = udf_alloc_i_data(inode, bs -
1371 sizeof(struct extendedFileEntry));
1372 if (ret)
1373 goto out;
1374 memcpy(iinfo->i_ext.i_data,
1375 bh->b_data + sizeof(struct extendedFileEntry),
1376 bs - sizeof(struct extendedFileEntry));
1377 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1378 iinfo->i_efe = 0;
1379 iinfo->i_use = 0;
1380 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1381 if (ret)
1382 goto out;
1383 memcpy(iinfo->i_ext.i_data,
1384 bh->b_data + sizeof(struct fileEntry),
1385 bs - sizeof(struct fileEntry));
1386 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1387 iinfo->i_efe = 0;
1388 iinfo->i_use = 1;
1389 iinfo->i_lenAlloc = le32_to_cpu(
1390 ((struct unallocSpaceEntry *)bh->b_data)->
1391 lengthAllocDescs);
1392 ret = udf_alloc_i_data(inode, bs -
1393 sizeof(struct unallocSpaceEntry));
1394 if (ret)
1395 goto out;
1396 memcpy(iinfo->i_ext.i_data,
1397 bh->b_data + sizeof(struct unallocSpaceEntry),
1398 bs - sizeof(struct unallocSpaceEntry));
1399 return 0;
1400 }
1401
1402 ret = -EIO;
1403 read_lock(&sbi->s_cred_lock);
1404 uid = le32_to_cpu(fe->uid);
1405 if (uid == UDF_INVALID_ID ||
1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407 inode->i_uid = sbi->s_uid;
1408 else
1409 i_uid_write(inode, uid);
1410
1411 gid = le32_to_cpu(fe->gid);
1412 if (gid == UDF_INVALID_ID ||
1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1414 inode->i_gid = sbi->s_gid;
1415 else
1416 i_gid_write(inode, gid);
1417
1418 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1419 sbi->s_fmode != UDF_INVALID_MODE)
1420 inode->i_mode = sbi->s_fmode;
1421 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1422 sbi->s_dmode != UDF_INVALID_MODE)
1423 inode->i_mode = sbi->s_dmode;
1424 else
1425 inode->i_mode = udf_convert_permissions(fe);
1426 inode->i_mode &= ~sbi->s_umask;
1427 read_unlock(&sbi->s_cred_lock);
1428
1429 link_count = le16_to_cpu(fe->fileLinkCount);
1430 if (!link_count) {
1431 if (!hidden_inode) {
1432 ret = -ESTALE;
1433 goto out;
1434 }
1435 link_count = 1;
1436 }
1437 set_nlink(inode, link_count);
1438
1439 inode->i_size = le64_to_cpu(fe->informationLength);
1440 iinfo->i_lenExtents = inode->i_size;
1441
1442 if (iinfo->i_efe == 0) {
1443 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1444 (inode->i_sb->s_blocksize_bits - 9);
1445
1446 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1447 inode->i_atime = sbi->s_record_time;
1448
1449 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1450 fe->modificationTime))
1451 inode->i_mtime = sbi->s_record_time;
1452
1453 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1454 inode->i_ctime = sbi->s_record_time;
1455
1456 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1457 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1458 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1459 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1460 } else {
1461 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1462 (inode->i_sb->s_blocksize_bits - 9);
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1465 inode->i_atime = sbi->s_record_time;
1466
1467 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1468 efe->modificationTime))
1469 inode->i_mtime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1472 iinfo->i_crtime = sbi->s_record_time;
1473
1474 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1475 inode->i_ctime = sbi->s_record_time;
1476
1477 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1478 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1479 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1480 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1481 }
1482 inode->i_generation = iinfo->i_unique;
1483
1484 /*
1485 * Sanity check length of allocation descriptors and extended attrs to
1486 * avoid integer overflows
1487 */
1488 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1489 goto out;
1490 /* Now do exact checks */
1491 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1492 goto out;
1493 /* Sanity checks for files in ICB so that we don't get confused later */
1494 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1495 /*
1496 * For file in ICB data is stored in allocation descriptor
1497 * so sizes should match
1498 */
1499 if (iinfo->i_lenAlloc != inode->i_size)
1500 goto out;
1501 /* File in ICB has to fit in there... */
1502 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1503 goto out;
1504 }
1505
1506 switch (fe->icbTag.fileType) {
1507 case ICBTAG_FILE_TYPE_DIRECTORY:
1508 inode->i_op = &udf_dir_inode_operations;
1509 inode->i_fop = &udf_dir_operations;
1510 inode->i_mode |= S_IFDIR;
1511 inc_nlink(inode);
1512 break;
1513 case ICBTAG_FILE_TYPE_REALTIME:
1514 case ICBTAG_FILE_TYPE_REGULAR:
1515 case ICBTAG_FILE_TYPE_UNDEF:
1516 case ICBTAG_FILE_TYPE_VAT20:
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1518 inode->i_data.a_ops = &udf_adinicb_aops;
1519 else
1520 inode->i_data.a_ops = &udf_aops;
1521 inode->i_op = &udf_file_inode_operations;
1522 inode->i_fop = &udf_file_operations;
1523 inode->i_mode |= S_IFREG;
1524 break;
1525 case ICBTAG_FILE_TYPE_BLOCK:
1526 inode->i_mode |= S_IFBLK;
1527 break;
1528 case ICBTAG_FILE_TYPE_CHAR:
1529 inode->i_mode |= S_IFCHR;
1530 break;
1531 case ICBTAG_FILE_TYPE_FIFO:
1532 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1533 break;
1534 case ICBTAG_FILE_TYPE_SOCKET:
1535 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1536 break;
1537 case ICBTAG_FILE_TYPE_SYMLINK:
1538 inode->i_data.a_ops = &udf_symlink_aops;
1539 inode->i_op = &udf_symlink_inode_operations;
1540 inode_nohighmem(inode);
1541 inode->i_mode = S_IFLNK | 0777;
1542 break;
1543 case ICBTAG_FILE_TYPE_MAIN:
1544 udf_debug("METADATA FILE-----\n");
1545 break;
1546 case ICBTAG_FILE_TYPE_MIRROR:
1547 udf_debug("METADATA MIRROR FILE-----\n");
1548 break;
1549 case ICBTAG_FILE_TYPE_BITMAP:
1550 udf_debug("METADATA BITMAP FILE-----\n");
1551 break;
1552 default:
1553 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1554 inode->i_ino, fe->icbTag.fileType);
1555 goto out;
1556 }
1557 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1558 struct deviceSpec *dsea =
1559 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1560 if (dsea) {
1561 init_special_inode(inode, inode->i_mode,
1562 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1563 le32_to_cpu(dsea->minorDeviceIdent)));
1564 /* Developer ID ??? */
1565 } else
1566 goto out;
1567 }
1568 ret = 0;
1569out:
1570 brelse(bh);
1571 return ret;
1572}
1573
1574static int udf_alloc_i_data(struct inode *inode, size_t size)
1575{
1576 struct udf_inode_info *iinfo = UDF_I(inode);
1577 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1578 if (!iinfo->i_ext.i_data)
1579 return -ENOMEM;
1580 return 0;
1581}
1582
1583static umode_t udf_convert_permissions(struct fileEntry *fe)
1584{
1585 umode_t mode;
1586 uint32_t permissions;
1587 uint32_t flags;
1588
1589 permissions = le32_to_cpu(fe->permissions);
1590 flags = le16_to_cpu(fe->icbTag.flags);
1591
1592 mode = ((permissions) & 0007) |
1593 ((permissions >> 2) & 0070) |
1594 ((permissions >> 4) & 0700) |
1595 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1596 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1597 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1598
1599 return mode;
1600}
1601
1602int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1603{
1604 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1605}
1606
1607static int udf_sync_inode(struct inode *inode)
1608{
1609 return udf_update_inode(inode, 1);
1610}
1611
1612static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1613{
1614 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1615 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1616 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1617 iinfo->i_crtime = time;
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622 struct buffer_head *bh = NULL;
1623 struct fileEntry *fe;
1624 struct extendedFileEntry *efe;
1625 uint64_t lb_recorded;
1626 uint32_t udfperms;
1627 uint16_t icbflags;
1628 uint16_t crclen;
1629 int err = 0;
1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632 struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634 bh = udf_tgetblk(inode->i_sb,
1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636 if (!bh) {
1637 udf_debug("getblk failure\n");
1638 return -EIO;
1639 }
1640
1641 lock_buffer(bh);
1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643 fe = (struct fileEntry *)bh->b_data;
1644 efe = (struct extendedFileEntry *)bh->b_data;
1645
1646 if (iinfo->i_use) {
1647 struct unallocSpaceEntry *use =
1648 (struct unallocSpaceEntry *)bh->b_data;
1649
1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653 sizeof(struct unallocSpaceEntry));
1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655 crclen = sizeof(struct unallocSpaceEntry);
1656
1657 goto finish;
1658 }
1659
1660 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1662 else
1663 fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1667 else
1668 fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670 udfperms = ((inode->i_mode & 0007)) |
1671 ((inode->i_mode & 0070) << 2) |
1672 ((inode->i_mode & 0700) << 4);
1673
1674 udfperms |= (le32_to_cpu(fe->permissions) &
1675 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678 fe->permissions = cpu_to_le32(udfperms);
1679
1680 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682 else
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685 fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688 struct regid *eid;
1689 struct deviceSpec *dsea =
1690 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691 if (!dsea) {
1692 dsea = (struct deviceSpec *)
1693 udf_add_extendedattr(inode,
1694 sizeof(struct deviceSpec) +
1695 sizeof(struct regid), 12, 0x3);
1696 dsea->attrType = cpu_to_le32(12);
1697 dsea->attrSubtype = 1;
1698 dsea->attrLength = cpu_to_le32(
1699 sizeof(struct deviceSpec) +
1700 sizeof(struct regid));
1701 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702 }
1703 eid = (struct regid *)dsea->impUse;
1704 memset(eid, 0, sizeof(*eid));
1705 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710 }
1711
1712 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713 lb_recorded = 0; /* No extents => no blocks! */
1714 else
1715 lb_recorded =
1716 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717 (blocksize_bits - 9);
1718
1719 if (iinfo->i_efe == 0) {
1720 memcpy(bh->b_data + sizeof(struct fileEntry),
1721 iinfo->i_ext.i_data,
1722 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737 crclen = sizeof(struct fileEntry);
1738 } else {
1739 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740 iinfo->i_ext.i_data,
1741 inode->i_sb->s_blocksize -
1742 sizeof(struct extendedFileEntry));
1743 efe->objectSize = cpu_to_le64(inode->i_size);
1744 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746 udf_adjust_time(iinfo, inode->i_atime);
1747 udf_adjust_time(iinfo, inode->i_mtime);
1748 udf_adjust_time(iinfo, inode->i_ctime);
1749
1750 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1751 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1752 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1753 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1754
1755 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1756 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1757 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1758 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1759 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1760 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1761 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1762 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1763 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1764 crclen = sizeof(struct extendedFileEntry);
1765 }
1766
1767finish:
1768 if (iinfo->i_strat4096) {
1769 fe->icbTag.strategyType = cpu_to_le16(4096);
1770 fe->icbTag.strategyParameter = cpu_to_le16(1);
1771 fe->icbTag.numEntries = cpu_to_le16(2);
1772 } else {
1773 fe->icbTag.strategyType = cpu_to_le16(4);
1774 fe->icbTag.numEntries = cpu_to_le16(1);
1775 }
1776
1777 if (iinfo->i_use)
1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1779 else if (S_ISDIR(inode->i_mode))
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1781 else if (S_ISREG(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1783 else if (S_ISLNK(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1785 else if (S_ISBLK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1787 else if (S_ISCHR(inode->i_mode))
1788 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1789 else if (S_ISFIFO(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1791 else if (S_ISSOCK(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1793
1794 icbflags = iinfo->i_alloc_type |
1795 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1796 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1797 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1798 (le16_to_cpu(fe->icbTag.flags) &
1799 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1800 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1801
1802 fe->icbTag.flags = cpu_to_le16(icbflags);
1803 if (sbi->s_udfrev >= 0x0200)
1804 fe->descTag.descVersion = cpu_to_le16(3);
1805 else
1806 fe->descTag.descVersion = cpu_to_le16(2);
1807 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1808 fe->descTag.tagLocation = cpu_to_le32(
1809 iinfo->i_location.logicalBlockNum);
1810 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1811 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1812 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1813 crclen));
1814 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1815
1816 set_buffer_uptodate(bh);
1817 unlock_buffer(bh);
1818
1819 /* write the data blocks */
1820 mark_buffer_dirty(bh);
1821 if (do_sync) {
1822 sync_dirty_buffer(bh);
1823 if (buffer_write_io_error(bh)) {
1824 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825 inode->i_ino);
1826 err = -EIO;
1827 }
1828 }
1829 brelse(bh);
1830
1831 return err;
1832}
1833
1834struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1835 bool hidden_inode)
1836{
1837 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1838 struct inode *inode = iget_locked(sb, block);
1839 int err;
1840
1841 if (!inode)
1842 return ERR_PTR(-ENOMEM);
1843
1844 if (!(inode->i_state & I_NEW))
1845 return inode;
1846
1847 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1848 err = udf_read_inode(inode, hidden_inode);
1849 if (err < 0) {
1850 iget_failed(inode);
1851 return ERR_PTR(err);
1852 }
1853 unlock_new_inode(inode);
1854
1855 return inode;
1856}
1857
1858int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1859 struct extent_position *epos)
1860{
1861 struct super_block *sb = inode->i_sb;
1862 struct buffer_head *bh;
1863 struct allocExtDesc *aed;
1864 struct extent_position nepos;
1865 struct kernel_lb_addr neloc;
1866 int ver, adsize;
1867
1868 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1869 adsize = sizeof(struct short_ad);
1870 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1871 adsize = sizeof(struct long_ad);
1872 else
1873 return -EIO;
1874
1875 neloc.logicalBlockNum = block;
1876 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1877
1878 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1879 if (!bh)
1880 return -EIO;
1881 lock_buffer(bh);
1882 memset(bh->b_data, 0x00, sb->s_blocksize);
1883 set_buffer_uptodate(bh);
1884 unlock_buffer(bh);
1885 mark_buffer_dirty_inode(bh, inode);
1886
1887 aed = (struct allocExtDesc *)(bh->b_data);
1888 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1889 aed->previousAllocExtLocation =
1890 cpu_to_le32(epos->block.logicalBlockNum);
1891 }
1892 aed->lengthAllocDescs = cpu_to_le32(0);
1893 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1894 ver = 3;
1895 else
1896 ver = 2;
1897 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1898 sizeof(struct tag));
1899
1900 nepos.block = neloc;
1901 nepos.offset = sizeof(struct allocExtDesc);
1902 nepos.bh = bh;
1903
1904 /*
1905 * Do we have to copy current last extent to make space for indirect
1906 * one?
1907 */
1908 if (epos->offset + adsize > sb->s_blocksize) {
1909 struct kernel_lb_addr cp_loc;
1910 uint32_t cp_len;
1911 int cp_type;
1912
1913 epos->offset -= adsize;
1914 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1915 cp_len |= ((uint32_t)cp_type) << 30;
1916
1917 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1918 udf_write_aext(inode, epos, &nepos.block,
1919 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920 } else {
1921 __udf_add_aext(inode, epos, &nepos.block,
1922 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923 }
1924
1925 brelse(epos->bh);
1926 *epos = nepos;
1927
1928 return 0;
1929}
1930
1931/*
1932 * Append extent at the given position - should be the first free one in inode
1933 * / indirect extent. This function assumes there is enough space in the inode
1934 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1935 */
1936int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1937 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1938{
1939 struct udf_inode_info *iinfo = UDF_I(inode);
1940 struct allocExtDesc *aed;
1941 int adsize;
1942
1943 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1944 adsize = sizeof(struct short_ad);
1945 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1946 adsize = sizeof(struct long_ad);
1947 else
1948 return -EIO;
1949
1950 if (!epos->bh) {
1951 WARN_ON(iinfo->i_lenAlloc !=
1952 epos->offset - udf_file_entry_alloc_offset(inode));
1953 } else {
1954 aed = (struct allocExtDesc *)epos->bh->b_data;
1955 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1956 epos->offset - sizeof(struct allocExtDesc));
1957 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1958 }
1959
1960 udf_write_aext(inode, epos, eloc, elen, inc);
1961
1962 if (!epos->bh) {
1963 iinfo->i_lenAlloc += adsize;
1964 mark_inode_dirty(inode);
1965 } else {
1966 aed = (struct allocExtDesc *)epos->bh->b_data;
1967 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1968 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1969 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1970 udf_update_tag(epos->bh->b_data,
1971 epos->offset + (inc ? 0 : adsize));
1972 else
1973 udf_update_tag(epos->bh->b_data,
1974 sizeof(struct allocExtDesc));
1975 mark_buffer_dirty_inode(epos->bh, inode);
1976 }
1977
1978 return 0;
1979}
1980
1981/*
1982 * Append extent at given position - should be the first free one in inode
1983 * / indirect extent. Takes care of allocating and linking indirect blocks.
1984 */
1985int udf_add_aext(struct inode *inode, struct extent_position *epos,
1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988 int adsize;
1989 struct super_block *sb = inode->i_sb;
1990
1991 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992 adsize = sizeof(struct short_ad);
1993 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994 adsize = sizeof(struct long_ad);
1995 else
1996 return -EIO;
1997
1998 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1999 int err;
2000 udf_pblk_t new_block;
2001
2002 new_block = udf_new_block(sb, NULL,
2003 epos->block.partitionReferenceNum,
2004 epos->block.logicalBlockNum, &err);
2005 if (!new_block)
2006 return -ENOSPC;
2007
2008 err = udf_setup_indirect_aext(inode, new_block, epos);
2009 if (err)
2010 return err;
2011 }
2012
2013 return __udf_add_aext(inode, epos, eloc, elen, inc);
2014}
2015
2016void udf_write_aext(struct inode *inode, struct extent_position *epos,
2017 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2018{
2019 int adsize;
2020 uint8_t *ptr;
2021 struct short_ad *sad;
2022 struct long_ad *lad;
2023 struct udf_inode_info *iinfo = UDF_I(inode);
2024
2025 if (!epos->bh)
2026 ptr = iinfo->i_ext.i_data + epos->offset -
2027 udf_file_entry_alloc_offset(inode) +
2028 iinfo->i_lenEAttr;
2029 else
2030 ptr = epos->bh->b_data + epos->offset;
2031
2032 switch (iinfo->i_alloc_type) {
2033 case ICBTAG_FLAG_AD_SHORT:
2034 sad = (struct short_ad *)ptr;
2035 sad->extLength = cpu_to_le32(elen);
2036 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2037 adsize = sizeof(struct short_ad);
2038 break;
2039 case ICBTAG_FLAG_AD_LONG:
2040 lad = (struct long_ad *)ptr;
2041 lad->extLength = cpu_to_le32(elen);
2042 lad->extLocation = cpu_to_lelb(*eloc);
2043 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2044 adsize = sizeof(struct long_ad);
2045 break;
2046 default:
2047 return;
2048 }
2049
2050 if (epos->bh) {
2051 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2052 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2053 struct allocExtDesc *aed =
2054 (struct allocExtDesc *)epos->bh->b_data;
2055 udf_update_tag(epos->bh->b_data,
2056 le32_to_cpu(aed->lengthAllocDescs) +
2057 sizeof(struct allocExtDesc));
2058 }
2059 mark_buffer_dirty_inode(epos->bh, inode);
2060 } else {
2061 mark_inode_dirty(inode);
2062 }
2063
2064 if (inc)
2065 epos->offset += adsize;
2066}
2067
2068/*
2069 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2070 * someone does some weird stuff.
2071 */
2072#define UDF_MAX_INDIR_EXTS 16
2073
2074int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2075 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2076{
2077 int8_t etype;
2078 unsigned int indirections = 0;
2079
2080 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2081 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2082 udf_pblk_t block;
2083
2084 if (++indirections > UDF_MAX_INDIR_EXTS) {
2085 udf_err(inode->i_sb,
2086 "too many indirect extents in inode %lu\n",
2087 inode->i_ino);
2088 return -1;
2089 }
2090
2091 epos->block = *eloc;
2092 epos->offset = sizeof(struct allocExtDesc);
2093 brelse(epos->bh);
2094 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2095 epos->bh = udf_tread(inode->i_sb, block);
2096 if (!epos->bh) {
2097 udf_debug("reading block %u failed!\n", block);
2098 return -1;
2099 }
2100 }
2101
2102 return etype;
2103}
2104
2105int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2106 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2107{
2108 int alen;
2109 int8_t etype;
2110 uint8_t *ptr;
2111 struct short_ad *sad;
2112 struct long_ad *lad;
2113 struct udf_inode_info *iinfo = UDF_I(inode);
2114
2115 if (!epos->bh) {
2116 if (!epos->offset)
2117 epos->offset = udf_file_entry_alloc_offset(inode);
2118 ptr = iinfo->i_ext.i_data + epos->offset -
2119 udf_file_entry_alloc_offset(inode) +
2120 iinfo->i_lenEAttr;
2121 alen = udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenAlloc;
2123 } else {
2124 if (!epos->offset)
2125 epos->offset = sizeof(struct allocExtDesc);
2126 ptr = epos->bh->b_data + epos->offset;
2127 alen = sizeof(struct allocExtDesc) +
2128 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2129 lengthAllocDescs);
2130 }
2131
2132 switch (iinfo->i_alloc_type) {
2133 case ICBTAG_FLAG_AD_SHORT:
2134 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2135 if (!sad)
2136 return -1;
2137 etype = le32_to_cpu(sad->extLength) >> 30;
2138 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2139 eloc->partitionReferenceNum =
2140 iinfo->i_location.partitionReferenceNum;
2141 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2142 break;
2143 case ICBTAG_FLAG_AD_LONG:
2144 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2145 if (!lad)
2146 return -1;
2147 etype = le32_to_cpu(lad->extLength) >> 30;
2148 *eloc = lelb_to_cpu(lad->extLocation);
2149 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2150 break;
2151 default:
2152 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2153 return -1;
2154 }
2155
2156 return etype;
2157}
2158
2159static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2160 struct kernel_lb_addr neloc, uint32_t nelen)
2161{
2162 struct kernel_lb_addr oeloc;
2163 uint32_t oelen;
2164 int8_t etype;
2165
2166 if (epos.bh)
2167 get_bh(epos.bh);
2168
2169 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2170 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2171 neloc = oeloc;
2172 nelen = (etype << 30) | oelen;
2173 }
2174 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2175 brelse(epos.bh);
2176
2177 return (nelen >> 30);
2178}
2179
2180int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr eloc, uint32_t elen)
2182{
2183 struct extent_position oepos;
2184 int adsize;
2185 int8_t etype;
2186 struct allocExtDesc *aed;
2187 struct udf_inode_info *iinfo;
2188
2189 if (epos.bh) {
2190 get_bh(epos.bh);
2191 get_bh(epos.bh);
2192 }
2193
2194 iinfo = UDF_I(inode);
2195 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2196 adsize = sizeof(struct short_ad);
2197 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2198 adsize = sizeof(struct long_ad);
2199 else
2200 adsize = 0;
2201
2202 oepos = epos;
2203 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2204 return -1;
2205
2206 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2207 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2208 if (oepos.bh != epos.bh) {
2209 oepos.block = epos.block;
2210 brelse(oepos.bh);
2211 get_bh(epos.bh);
2212 oepos.bh = epos.bh;
2213 oepos.offset = epos.offset - adsize;
2214 }
2215 }
2216 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2217 elen = 0;
2218
2219 if (epos.bh != oepos.bh) {
2220 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2221 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2223 if (!oepos.bh) {
2224 iinfo->i_lenAlloc -= (adsize * 2);
2225 mark_inode_dirty(inode);
2226 } else {
2227 aed = (struct allocExtDesc *)oepos.bh->b_data;
2228 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2229 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2230 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2231 udf_update_tag(oepos.bh->b_data,
2232 oepos.offset - (2 * adsize));
2233 else
2234 udf_update_tag(oepos.bh->b_data,
2235 sizeof(struct allocExtDesc));
2236 mark_buffer_dirty_inode(oepos.bh, inode);
2237 }
2238 } else {
2239 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2240 if (!oepos.bh) {
2241 iinfo->i_lenAlloc -= adsize;
2242 mark_inode_dirty(inode);
2243 } else {
2244 aed = (struct allocExtDesc *)oepos.bh->b_data;
2245 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2246 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2247 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2248 udf_update_tag(oepos.bh->b_data,
2249 epos.offset - adsize);
2250 else
2251 udf_update_tag(oepos.bh->b_data,
2252 sizeof(struct allocExtDesc));
2253 mark_buffer_dirty_inode(oepos.bh, inode);
2254 }
2255 }
2256
2257 brelse(epos.bh);
2258 brelse(oepos.bh);
2259
2260 return (elen >> 30);
2261}
2262
2263int8_t inode_bmap(struct inode *inode, sector_t block,
2264 struct extent_position *pos, struct kernel_lb_addr *eloc,
2265 uint32_t *elen, sector_t *offset)
2266{
2267 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2268 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2269 int8_t etype;
2270 struct udf_inode_info *iinfo;
2271
2272 iinfo = UDF_I(inode);
2273 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2274 pos->offset = 0;
2275 pos->block = iinfo->i_location;
2276 pos->bh = NULL;
2277 }
2278 *elen = 0;
2279 do {
2280 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2281 if (etype == -1) {
2282 *offset = (bcount - lbcount) >> blocksize_bits;
2283 iinfo->i_lenExtents = lbcount;
2284 return -1;
2285 }
2286 lbcount += *elen;
2287 } while (lbcount <= bcount);
2288 /* update extent cache */
2289 udf_update_extent_cache(inode, lbcount - *elen, pos);
2290 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2291
2292 return etype;
2293}
2294
2295udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2296{
2297 struct kernel_lb_addr eloc;
2298 uint32_t elen;
2299 sector_t offset;
2300 struct extent_position epos = {};
2301 udf_pblk_t ret;
2302
2303 down_read(&UDF_I(inode)->i_data_sem);
2304
2305 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2306 (EXT_RECORDED_ALLOCATED >> 30))
2307 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2308 else
2309 ret = 0;
2310
2311 up_read(&UDF_I(inode)->i_data_sem);
2312 brelse(epos.bh);
2313
2314 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2315 return udf_fixed_to_variable(ret);
2316 else
2317 return ret;
2318}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46MODULE_AUTHOR("Ben Fennema");
47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48MODULE_LICENSE("GPL");
49
50#define EXTENT_MERGE_SIZE 5
51
52static umode_t udf_convert_permissions(struct fileEntry *);
53static int udf_update_inode(struct inode *, int);
54static int udf_sync_inode(struct inode *inode);
55static int udf_alloc_i_data(struct inode *inode, size_t size);
56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos, int next_epos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos,
124 sizeof(struct extent_position));
125 iinfo->cached_extent.lstart = estart;
126 if (next_epos)
127 switch (iinfo->i_alloc_type) {
128 case ICBTAG_FLAG_AD_SHORT:
129 iinfo->cached_extent.epos.offset -=
130 sizeof(struct short_ad);
131 break;
132 case ICBTAG_FLAG_AD_LONG:
133 iinfo->cached_extent.epos.offset -=
134 sizeof(struct long_ad);
135 }
136 spin_unlock(&iinfo->i_extent_cache_lock);
137}
138
139void udf_evict_inode(struct inode *inode)
140{
141 struct udf_inode_info *iinfo = UDF_I(inode);
142 int want_delete = 0;
143
144 if (!inode->i_nlink && !is_bad_inode(inode)) {
145 want_delete = 1;
146 udf_setsize(inode, 0);
147 udf_update_inode(inode, IS_SYNC(inode));
148 }
149 truncate_inode_pages_final(&inode->i_data);
150 invalidate_inode_buffers(inode);
151 clear_inode(inode);
152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153 inode->i_size != iinfo->i_lenExtents) {
154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 inode->i_ino, inode->i_mode,
156 (unsigned long long)inode->i_size,
157 (unsigned long long)iinfo->i_lenExtents);
158 }
159 kfree(iinfo->i_ext.i_data);
160 iinfo->i_ext.i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_writepage(struct page *page, struct writeback_control *wbc)
185{
186 return block_write_full_page(page, udf_get_block, wbc);
187}
188
189static int udf_writepages(struct address_space *mapping,
190 struct writeback_control *wbc)
191{
192 return mpage_writepages(mapping, wbc, udf_get_block);
193}
194
195static int udf_readpage(struct file *file, struct page *page)
196{
197 return mpage_readpage(page, udf_get_block);
198}
199
200static int udf_readpages(struct file *file, struct address_space *mapping,
201 struct list_head *pages, unsigned nr_pages)
202{
203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readpages = udf_readpages,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260 struct writeback_control udf_wbc = {
261 .sync_mode = WB_SYNC_NONE,
262 .nr_to_write = 1,
263 };
264
265 WARN_ON_ONCE(!inode_is_locked(inode));
266 if (!iinfo->i_lenAlloc) {
267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269 else
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271 /* from now on we have normal address_space methods */
272 inode->i_data.a_ops = &udf_aops;
273 up_write(&iinfo->i_data_sem);
274 mark_inode_dirty(inode);
275 return 0;
276 }
277 /*
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
280 */
281 up_write(&iinfo->i_data_sem);
282
283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284 if (!page)
285 return -ENOMEM;
286
287 if (!PageUptodate(page)) {
288 kaddr = kmap(page);
289 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290 PAGE_SIZE - iinfo->i_lenAlloc);
291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292 iinfo->i_lenAlloc);
293 flush_dcache_page(page);
294 SetPageUptodate(page);
295 kunmap(page);
296 }
297 down_write(&iinfo->i_data_sem);
298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299 iinfo->i_lenAlloc);
300 iinfo->i_lenAlloc = 0;
301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303 else
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305 /* from now on we have normal address_space methods */
306 inode->i_data.a_ops = &udf_aops;
307 up_write(&iinfo->i_data_sem);
308 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 kaddr = kmap(page);
313 down_write(&iinfo->i_data_sem);
314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315 inode->i_size);
316 kunmap(page);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329 int *err)
330{
331 int newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403 iinfo->i_lenAlloc);
404 iinfo->i_lenAlloc = 0;
405 eloc.logicalBlockNum = *block;
406 eloc.partitionReferenceNum =
407 iinfo->i_location.partitionReferenceNum;
408 iinfo->i_lenExtents = inode->i_size;
409 epos.bh = NULL;
410 epos.block = iinfo->i_location;
411 epos.offset = udf_file_entry_alloc_offset(inode);
412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413 /* UniqueID stuff */
414
415 brelse(epos.bh);
416 mark_inode_dirty(inode);
417 return dbh;
418}
419
420static int udf_get_block(struct inode *inode, sector_t block,
421 struct buffer_head *bh_result, int create)
422{
423 int err, new;
424 sector_t phys = 0;
425 struct udf_inode_info *iinfo;
426
427 if (!create) {
428 phys = udf_block_map(inode, block);
429 if (phys)
430 map_bh(bh_result, inode->i_sb, phys);
431 return 0;
432 }
433
434 err = -EIO;
435 new = 0;
436 iinfo = UDF_I(inode);
437
438 down_write(&iinfo->i_data_sem);
439 if (block == iinfo->i_next_alloc_block + 1) {
440 iinfo->i_next_alloc_block++;
441 iinfo->i_next_alloc_goal++;
442 }
443
444 udf_clear_extent_cache(inode);
445 phys = inode_getblk(inode, block, &err, &new);
446 if (!phys)
447 goto abort;
448
449 if (new)
450 set_buffer_new(bh_result);
451 map_bh(bh_result, inode->i_sb, phys);
452
453abort:
454 up_write(&iinfo->i_data_sem);
455 return err;
456}
457
458static struct buffer_head *udf_getblk(struct inode *inode, long block,
459 int create, int *err)
460{
461 struct buffer_head *bh;
462 struct buffer_head dummy;
463
464 dummy.b_state = 0;
465 dummy.b_blocknr = -1000;
466 *err = udf_get_block(inode, block, &dummy, create);
467 if (!*err && buffer_mapped(&dummy)) {
468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469 if (buffer_new(&dummy)) {
470 lock_buffer(bh);
471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472 set_buffer_uptodate(bh);
473 unlock_buffer(bh);
474 mark_buffer_dirty_inode(bh, inode);
475 }
476 return bh;
477 }
478
479 return NULL;
480}
481
482/* Extend the file by 'blocks' blocks, return the number of extents added */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 sector_t blocks)
487{
488 sector_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 int prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!blocks && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = ((1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531 sb->s_blocksize_bits;
532 if (add > blocks)
533 add = blocks;
534 blocks -= add;
535 last_ext->extLength += add << sb->s_blocksize_bits;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548 /*
549 * We've rewritten the last extent but there may be empty
550 * indirect extent after it - enter it.
551 */
552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
553 }
554
555 /* Managed to do everything necessary? */
556 if (!blocks)
557 goto out;
558
559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
560 last_ext->extLocation.logicalBlockNum = 0;
561 last_ext->extLocation.partitionReferenceNum = 0;
562 add = (1 << (30-sb->s_blocksize_bits)) - 1;
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 (add << sb->s_blocksize_bits);
565
566 /* Create enough extents to cover the whole hole */
567 while (blocks > add) {
568 blocks -= add;
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575 if (blocks) {
576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
577 (blocks << sb->s_blocksize_bits);
578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 last_ext->extLength, 1);
580 if (err)
581 return err;
582 count++;
583 }
584
585out:
586 /* Do we have some preallocated blocks saved? */
587 if (prealloc_len) {
588 err = udf_add_aext(inode, last_pos, &prealloc_loc,
589 prealloc_len, 1);
590 if (err)
591 return err;
592 last_ext->extLocation = prealloc_loc;
593 last_ext->extLength = prealloc_len;
594 count++;
595 }
596
597 /* last_pos should point to the last written extent... */
598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 last_pos->offset -= sizeof(struct short_ad);
600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 last_pos->offset -= sizeof(struct long_ad);
602 else
603 return -EIO;
604
605 return count;
606}
607
608static int udf_extend_file(struct inode *inode, loff_t newsize)
609{
610
611 struct extent_position epos;
612 struct kernel_lb_addr eloc;
613 uint32_t elen;
614 int8_t etype;
615 struct super_block *sb = inode->i_sb;
616 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
617 int adsize;
618 struct udf_inode_info *iinfo = UDF_I(inode);
619 struct kernel_long_ad extent;
620 int err;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
630
631 /* File has extent covering the new size (could happen when extending
632 * inside a block)? */
633 if (etype != -1)
634 return 0;
635 if (newsize & (sb->s_blocksize - 1))
636 offset++;
637 /* Extended file just to the boundary of the last file block? */
638 if (offset == 0)
639 return 0;
640
641 /* Truncate is extending the file by 'offset' blocks */
642 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
643 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
644 /* File has no extents at all or has empty last
645 * indirect extent! Create a fake extent... */
646 extent.extLocation.logicalBlockNum = 0;
647 extent.extLocation.partitionReferenceNum = 0;
648 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
649 } else {
650 epos.offset -= adsize;
651 etype = udf_next_aext(inode, &epos, &extent.extLocation,
652 &extent.extLength, 0);
653 extent.extLength |= etype << 30;
654 }
655 err = udf_do_extend_file(inode, &epos, &extent, offset);
656 if (err < 0)
657 goto out;
658 err = 0;
659 iinfo->i_lenExtents = newsize;
660out:
661 brelse(epos.bh);
662 return err;
663}
664
665static sector_t inode_getblk(struct inode *inode, sector_t block,
666 int *err, int *new)
667{
668 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
669 struct extent_position prev_epos, cur_epos, next_epos;
670 int count = 0, startnum = 0, endnum = 0;
671 uint32_t elen = 0, tmpelen;
672 struct kernel_lb_addr eloc, tmpeloc;
673 int c = 1;
674 loff_t lbcount = 0, b_off = 0;
675 uint32_t newblocknum, newblock;
676 sector_t offset = 0;
677 int8_t etype;
678 struct udf_inode_info *iinfo = UDF_I(inode);
679 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
680 int lastblock = 0;
681 bool isBeyondEOF;
682
683 *err = 0;
684 *new = 0;
685 prev_epos.offset = udf_file_entry_alloc_offset(inode);
686 prev_epos.block = iinfo->i_location;
687 prev_epos.bh = NULL;
688 cur_epos = next_epos = prev_epos;
689 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
690
691 /* find the extent which contains the block we are looking for.
692 alternate between laarr[0] and laarr[1] for locations of the
693 current extent, and the previous extent */
694 do {
695 if (prev_epos.bh != cur_epos.bh) {
696 brelse(prev_epos.bh);
697 get_bh(cur_epos.bh);
698 prev_epos.bh = cur_epos.bh;
699 }
700 if (cur_epos.bh != next_epos.bh) {
701 brelse(cur_epos.bh);
702 get_bh(next_epos.bh);
703 cur_epos.bh = next_epos.bh;
704 }
705
706 lbcount += elen;
707
708 prev_epos.block = cur_epos.block;
709 cur_epos.block = next_epos.block;
710
711 prev_epos.offset = cur_epos.offset;
712 cur_epos.offset = next_epos.offset;
713
714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
715 if (etype == -1)
716 break;
717
718 c = !c;
719
720 laarr[c].extLength = (etype << 30) | elen;
721 laarr[c].extLocation = eloc;
722
723 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
724 pgoal = eloc.logicalBlockNum +
725 ((elen + inode->i_sb->s_blocksize - 1) >>
726 inode->i_sb->s_blocksize_bits);
727
728 count++;
729 } while (lbcount + elen <= b_off);
730
731 b_off -= lbcount;
732 offset = b_off >> inode->i_sb->s_blocksize_bits;
733 /*
734 * Move prev_epos and cur_epos into indirect extent if we are at
735 * the pointer to it
736 */
737 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
738 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
739
740 /* if the extent is allocated and recorded, return the block
741 if the extent is not a multiple of the blocksize, round up */
742
743 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
744 if (elen & (inode->i_sb->s_blocksize - 1)) {
745 elen = EXT_RECORDED_ALLOCATED |
746 ((elen + inode->i_sb->s_blocksize - 1) &
747 ~(inode->i_sb->s_blocksize - 1));
748 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
749 }
750 brelse(prev_epos.bh);
751 brelse(cur_epos.bh);
752 brelse(next_epos.bh);
753 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
754 return newblock;
755 }
756
757 /* Are we beyond EOF? */
758 if (etype == -1) {
759 int ret;
760 isBeyondEOF = true;
761 if (count) {
762 if (c)
763 laarr[0] = laarr[1];
764 startnum = 1;
765 } else {
766 /* Create a fake extent when there's not one */
767 memset(&laarr[0].extLocation, 0x00,
768 sizeof(struct kernel_lb_addr));
769 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
770 /* Will udf_do_extend_file() create real extent from
771 a fake one? */
772 startnum = (offset > 0);
773 }
774 /* Create extents for the hole between EOF and offset */
775 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
776 if (ret < 0) {
777 brelse(prev_epos.bh);
778 brelse(cur_epos.bh);
779 brelse(next_epos.bh);
780 *err = ret;
781 return 0;
782 }
783 c = 0;
784 offset = 0;
785 count += ret;
786 /* We are not covered by a preallocated extent? */
787 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
788 EXT_NOT_RECORDED_ALLOCATED) {
789 /* Is there any real extent? - otherwise we overwrite
790 * the fake one... */
791 if (count)
792 c = !c;
793 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
794 inode->i_sb->s_blocksize;
795 memset(&laarr[c].extLocation, 0x00,
796 sizeof(struct kernel_lb_addr));
797 count++;
798 }
799 endnum = c + 1;
800 lastblock = 1;
801 } else {
802 isBeyondEOF = false;
803 endnum = startnum = ((count > 2) ? 2 : count);
804
805 /* if the current extent is in position 0,
806 swap it with the previous */
807 if (!c && count != 1) {
808 laarr[2] = laarr[0];
809 laarr[0] = laarr[1];
810 laarr[1] = laarr[2];
811 c = 1;
812 }
813
814 /* if the current block is located in an extent,
815 read the next extent */
816 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
817 if (etype != -1) {
818 laarr[c + 1].extLength = (etype << 30) | elen;
819 laarr[c + 1].extLocation = eloc;
820 count++;
821 startnum++;
822 endnum++;
823 } else
824 lastblock = 1;
825 }
826
827 /* if the current extent is not recorded but allocated, get the
828 * block in the extent corresponding to the requested block */
829 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
831 else { /* otherwise, allocate a new block */
832 if (iinfo->i_next_alloc_block == block)
833 goal = iinfo->i_next_alloc_goal;
834
835 if (!goal) {
836 if (!(goal = pgoal)) /* XXX: what was intended here? */
837 goal = iinfo->i_location.logicalBlockNum + 1;
838 }
839
840 newblocknum = udf_new_block(inode->i_sb, inode,
841 iinfo->i_location.partitionReferenceNum,
842 goal, err);
843 if (!newblocknum) {
844 brelse(prev_epos.bh);
845 brelse(cur_epos.bh);
846 brelse(next_epos.bh);
847 *err = -ENOSPC;
848 return 0;
849 }
850 if (isBeyondEOF)
851 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
852 }
853
854 /* if the extent the requsted block is located in contains multiple
855 * blocks, split the extent into at most three extents. blocks prior
856 * to requested block, requested block, and blocks after requested
857 * block */
858 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
859
860#ifdef UDF_PREALLOCATE
861 /* We preallocate blocks only for regular files. It also makes sense
862 * for directories but there's a problem when to drop the
863 * preallocation. We might use some delayed work for that but I feel
864 * it's overengineering for a filesystem like UDF. */
865 if (S_ISREG(inode->i_mode))
866 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
867#endif
868
869 /* merge any continuous blocks in laarr */
870 udf_merge_extents(inode, laarr, &endnum);
871
872 /* write back the new extents, inserting new extents if the new number
873 * of extents is greater than the old number, and deleting extents if
874 * the new number of extents is less than the old number */
875 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
876
877 brelse(prev_epos.bh);
878 brelse(cur_epos.bh);
879 brelse(next_epos.bh);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 return 0;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_time(inode);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896
897 return newblock;
898}
899
900static void udf_split_extents(struct inode *inode, int *c, int offset,
901 int newblocknum,
902 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
903 int *endnum)
904{
905 unsigned long blocksize = inode->i_sb->s_blocksize;
906 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
907
908 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
909 (laarr[*c].extLength >> 30) ==
910 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
911 int curr = *c;
912 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
913 blocksize - 1) >> blocksize_bits;
914 int8_t etype = (laarr[curr].extLength >> 30);
915
916 if (blen == 1)
917 ;
918 else if (!offset || blen == offset + 1) {
919 laarr[curr + 2] = laarr[curr + 1];
920 laarr[curr + 1] = laarr[curr];
921 } else {
922 laarr[curr + 3] = laarr[curr + 1];
923 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
924 }
925
926 if (offset) {
927 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
928 udf_free_blocks(inode->i_sb, inode,
929 &laarr[curr].extLocation,
930 0, offset);
931 laarr[curr].extLength =
932 EXT_NOT_RECORDED_NOT_ALLOCATED |
933 (offset << blocksize_bits);
934 laarr[curr].extLocation.logicalBlockNum = 0;
935 laarr[curr].extLocation.
936 partitionReferenceNum = 0;
937 } else
938 laarr[curr].extLength = (etype << 30) |
939 (offset << blocksize_bits);
940 curr++;
941 (*c)++;
942 (*endnum)++;
943 }
944
945 laarr[curr].extLocation.logicalBlockNum = newblocknum;
946 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
947 laarr[curr].extLocation.partitionReferenceNum =
948 UDF_I(inode)->i_location.partitionReferenceNum;
949 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
950 blocksize;
951 curr++;
952
953 if (blen != offset + 1) {
954 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
955 laarr[curr].extLocation.logicalBlockNum +=
956 offset + 1;
957 laarr[curr].extLength = (etype << 30) |
958 ((blen - (offset + 1)) << blocksize_bits);
959 curr++;
960 (*endnum)++;
961 }
962 }
963}
964
965static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
966 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
967 int *endnum)
968{
969 int start, length = 0, currlength = 0, i;
970
971 if (*endnum >= (c + 1)) {
972 if (!lastblock)
973 return;
974 else
975 start = c;
976 } else {
977 if ((laarr[c + 1].extLength >> 30) ==
978 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
979 start = c + 1;
980 length = currlength =
981 (((laarr[c + 1].extLength &
982 UDF_EXTENT_LENGTH_MASK) +
983 inode->i_sb->s_blocksize - 1) >>
984 inode->i_sb->s_blocksize_bits);
985 } else
986 start = c;
987 }
988
989 for (i = start + 1; i <= *endnum; i++) {
990 if (i == *endnum) {
991 if (lastblock)
992 length += UDF_DEFAULT_PREALLOC_BLOCKS;
993 } else if ((laarr[i].extLength >> 30) ==
994 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
995 length += (((laarr[i].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 break;
1001 }
1002
1003 if (length) {
1004 int next = laarr[start].extLocation.logicalBlockNum +
1005 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1006 inode->i_sb->s_blocksize - 1) >>
1007 inode->i_sb->s_blocksize_bits);
1008 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1009 laarr[start].extLocation.partitionReferenceNum,
1010 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1011 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1012 currlength);
1013 if (numalloc) {
1014 if (start == (c + 1))
1015 laarr[start].extLength +=
1016 (numalloc <<
1017 inode->i_sb->s_blocksize_bits);
1018 else {
1019 memmove(&laarr[c + 2], &laarr[c + 1],
1020 sizeof(struct long_ad) * (*endnum - (c + 1)));
1021 (*endnum)++;
1022 laarr[c + 1].extLocation.logicalBlockNum = next;
1023 laarr[c + 1].extLocation.partitionReferenceNum =
1024 laarr[c].extLocation.
1025 partitionReferenceNum;
1026 laarr[c + 1].extLength =
1027 EXT_NOT_RECORDED_ALLOCATED |
1028 (numalloc <<
1029 inode->i_sb->s_blocksize_bits);
1030 start = c + 1;
1031 }
1032
1033 for (i = start + 1; numalloc && i < *endnum; i++) {
1034 int elen = ((laarr[i].extLength &
1035 UDF_EXTENT_LENGTH_MASK) +
1036 inode->i_sb->s_blocksize - 1) >>
1037 inode->i_sb->s_blocksize_bits;
1038
1039 if (elen > numalloc) {
1040 laarr[i].extLength -=
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 numalloc = 0;
1044 } else {
1045 numalloc -= elen;
1046 if (*endnum > (i + 1))
1047 memmove(&laarr[i],
1048 &laarr[i + 1],
1049 sizeof(struct long_ad) *
1050 (*endnum - (i + 1)));
1051 i--;
1052 (*endnum)--;
1053 }
1054 }
1055 UDF_I(inode)->i_lenExtents +=
1056 numalloc << inode->i_sb->s_blocksize_bits;
1057 }
1058 }
1059}
1060
1061static void udf_merge_extents(struct inode *inode,
1062 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1063 int *endnum)
1064{
1065 int i;
1066 unsigned long blocksize = inode->i_sb->s_blocksize;
1067 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1068
1069 for (i = 0; i < (*endnum - 1); i++) {
1070 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1071 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1072
1073 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1074 (((li->extLength >> 30) ==
1075 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1076 ((lip1->extLocation.logicalBlockNum -
1077 li->extLocation.logicalBlockNum) ==
1078 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1079 blocksize - 1) >> blocksize_bits)))) {
1080
1081 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1084 lip1->extLength = (lip1->extLength -
1085 (li->extLength &
1086 UDF_EXTENT_LENGTH_MASK) +
1087 UDF_EXTENT_LENGTH_MASK) &
1088 ~(blocksize - 1);
1089 li->extLength = (li->extLength &
1090 UDF_EXTENT_FLAG_MASK) +
1091 (UDF_EXTENT_LENGTH_MASK + 1) -
1092 blocksize;
1093 lip1->extLocation.logicalBlockNum =
1094 li->extLocation.logicalBlockNum +
1095 ((li->extLength &
1096 UDF_EXTENT_LENGTH_MASK) >>
1097 blocksize_bits);
1098 } else {
1099 li->extLength = lip1->extLength +
1100 (((li->extLength &
1101 UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~(blocksize - 1));
1103 if (*endnum > (i + 2))
1104 memmove(&laarr[i + 1], &laarr[i + 2],
1105 sizeof(struct long_ad) *
1106 (*endnum - (i + 2)));
1107 i--;
1108 (*endnum)--;
1109 }
1110 } else if (((li->extLength >> 30) ==
1111 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1112 ((lip1->extLength >> 30) ==
1113 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1114 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1115 ((li->extLength &
1116 UDF_EXTENT_LENGTH_MASK) +
1117 blocksize - 1) >> blocksize_bits);
1118 li->extLocation.logicalBlockNum = 0;
1119 li->extLocation.partitionReferenceNum = 0;
1120
1121 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1124 lip1->extLength = (lip1->extLength -
1125 (li->extLength &
1126 UDF_EXTENT_LENGTH_MASK) +
1127 UDF_EXTENT_LENGTH_MASK) &
1128 ~(blocksize - 1);
1129 li->extLength = (li->extLength &
1130 UDF_EXTENT_FLAG_MASK) +
1131 (UDF_EXTENT_LENGTH_MASK + 1) -
1132 blocksize;
1133 } else {
1134 li->extLength = lip1->extLength +
1135 (((li->extLength &
1136 UDF_EXTENT_LENGTH_MASK) +
1137 blocksize - 1) & ~(blocksize - 1));
1138 if (*endnum > (i + 2))
1139 memmove(&laarr[i + 1], &laarr[i + 2],
1140 sizeof(struct long_ad) *
1141 (*endnum - (i + 2)));
1142 i--;
1143 (*endnum)--;
1144 }
1145 } else if ((li->extLength >> 30) ==
1146 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1147 udf_free_blocks(inode->i_sb, inode,
1148 &li->extLocation, 0,
1149 ((li->extLength &
1150 UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) >> blocksize_bits);
1152 li->extLocation.logicalBlockNum = 0;
1153 li->extLocation.partitionReferenceNum = 0;
1154 li->extLength = (li->extLength &
1155 UDF_EXTENT_LENGTH_MASK) |
1156 EXT_NOT_RECORDED_NOT_ALLOCATED;
1157 }
1158 }
1159}
1160
1161static void udf_update_extents(struct inode *inode,
1162 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1173 laarr[i].extLength);
1174 } else if (startnum < endnum) {
1175 for (i = 0; i < (endnum - startnum); i++) {
1176 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1177 laarr[i].extLength);
1178 udf_next_aext(inode, epos, &laarr[i].extLocation,
1179 &laarr[i].extLength, 1);
1180 start++;
1181 }
1182 }
1183
1184 for (i = start; i < endnum; i++) {
1185 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1186 udf_write_aext(inode, epos, &laarr[i].extLocation,
1187 laarr[i].extLength, 1);
1188 }
1189}
1190
1191struct buffer_head *udf_bread(struct inode *inode, int block,
1192 int create, int *err)
1193{
1194 struct buffer_head *bh = NULL;
1195
1196 bh = udf_getblk(inode, block, create, err);
1197 if (!bh)
1198 return NULL;
1199
1200 if (buffer_uptodate(bh))
1201 return bh;
1202
1203 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1204
1205 wait_on_buffer(bh);
1206 if (buffer_uptodate(bh))
1207 return bh;
1208
1209 brelse(bh);
1210 *err = -EIO;
1211 return NULL;
1212}
1213
1214int udf_setsize(struct inode *inode, loff_t newsize)
1215{
1216 int err;
1217 struct udf_inode_info *iinfo;
1218 int bsize = 1 << inode->i_blkbits;
1219
1220 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221 S_ISLNK(inode->i_mode)))
1222 return -EINVAL;
1223 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224 return -EPERM;
1225
1226 iinfo = UDF_I(inode);
1227 if (newsize > inode->i_size) {
1228 down_write(&iinfo->i_data_sem);
1229 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230 if (bsize <
1231 (udf_file_entry_alloc_offset(inode) + newsize)) {
1232 err = udf_expand_file_adinicb(inode);
1233 if (err)
1234 return err;
1235 down_write(&iinfo->i_data_sem);
1236 } else {
1237 iinfo->i_lenAlloc = newsize;
1238 goto set_size;
1239 }
1240 }
1241 err = udf_extend_file(inode, newsize);
1242 if (err) {
1243 up_write(&iinfo->i_data_sem);
1244 return err;
1245 }
1246set_size:
1247 truncate_setsize(inode, newsize);
1248 up_write(&iinfo->i_data_sem);
1249 } else {
1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251 down_write(&iinfo->i_data_sem);
1252 udf_clear_extent_cache(inode);
1253 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1254 0x00, bsize - newsize -
1255 udf_file_entry_alloc_offset(inode));
1256 iinfo->i_lenAlloc = newsize;
1257 truncate_setsize(inode, newsize);
1258 up_write(&iinfo->i_data_sem);
1259 goto update_time;
1260 }
1261 err = block_truncate_page(inode->i_mapping, newsize,
1262 udf_get_block);
1263 if (err)
1264 return err;
1265 down_write(&iinfo->i_data_sem);
1266 udf_clear_extent_cache(inode);
1267 truncate_setsize(inode, newsize);
1268 udf_truncate_extents(inode);
1269 up_write(&iinfo->i_data_sem);
1270 }
1271update_time:
1272 inode->i_mtime = inode->i_ctime = current_time(inode);
1273 if (IS_SYNC(inode))
1274 udf_sync_inode(inode);
1275 else
1276 mark_inode_dirty(inode);
1277 return 0;
1278}
1279
1280/*
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1284 */
1285#define UDF_MAX_ICB_NESTING 1024
1286
1287static int udf_read_inode(struct inode *inode, bool hidden_inode)
1288{
1289 struct buffer_head *bh = NULL;
1290 struct fileEntry *fe;
1291 struct extendedFileEntry *efe;
1292 uint16_t ident;
1293 struct udf_inode_info *iinfo = UDF_I(inode);
1294 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1295 struct kernel_lb_addr *iloc = &iinfo->i_location;
1296 unsigned int link_count;
1297 unsigned int indirections = 0;
1298 int bs = inode->i_sb->s_blocksize;
1299 int ret = -EIO;
1300
1301reread:
1302 if (iloc->logicalBlockNum >=
1303 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1304 udf_debug("block=%d, partition=%d out of range\n",
1305 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1306 return -EIO;
1307 }
1308
1309 /*
1310 * Set defaults, but the inode is still incomplete!
1311 * Note: get_new_inode() sets the following on a new inode:
1312 * i_sb = sb
1313 * i_no = ino
1314 * i_flags = sb->s_flags
1315 * i_state = 0
1316 * clean_inode(): zero fills and sets
1317 * i_count = 1
1318 * i_nlink = 1
1319 * i_op = NULL;
1320 */
1321 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1322 if (!bh) {
1323 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1324 return -EIO;
1325 }
1326
1327 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1328 ident != TAG_IDENT_USE) {
1329 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1330 inode->i_ino, ident);
1331 goto out;
1332 }
1333
1334 fe = (struct fileEntry *)bh->b_data;
1335 efe = (struct extendedFileEntry *)bh->b_data;
1336
1337 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1338 struct buffer_head *ibh;
1339
1340 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1341 if (ident == TAG_IDENT_IE && ibh) {
1342 struct kernel_lb_addr loc;
1343 struct indirectEntry *ie;
1344
1345 ie = (struct indirectEntry *)ibh->b_data;
1346 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1347
1348 if (ie->indirectICB.extLength) {
1349 brelse(ibh);
1350 memcpy(&iinfo->i_location, &loc,
1351 sizeof(struct kernel_lb_addr));
1352 if (++indirections > UDF_MAX_ICB_NESTING) {
1353 udf_err(inode->i_sb,
1354 "too many ICBs in ICB hierarchy"
1355 " (max %d supported)\n",
1356 UDF_MAX_ICB_NESTING);
1357 goto out;
1358 }
1359 brelse(bh);
1360 goto reread;
1361 }
1362 }
1363 brelse(ibh);
1364 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1365 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1366 le16_to_cpu(fe->icbTag.strategyType));
1367 goto out;
1368 }
1369 if (fe->icbTag.strategyType == cpu_to_le16(4))
1370 iinfo->i_strat4096 = 0;
1371 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372 iinfo->i_strat4096 = 1;
1373
1374 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1375 ICBTAG_FLAG_AD_MASK;
1376 iinfo->i_unique = 0;
1377 iinfo->i_lenEAttr = 0;
1378 iinfo->i_lenExtents = 0;
1379 iinfo->i_lenAlloc = 0;
1380 iinfo->i_next_alloc_block = 0;
1381 iinfo->i_next_alloc_goal = 0;
1382 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1383 iinfo->i_efe = 1;
1384 iinfo->i_use = 0;
1385 ret = udf_alloc_i_data(inode, bs -
1386 sizeof(struct extendedFileEntry));
1387 if (ret)
1388 goto out;
1389 memcpy(iinfo->i_ext.i_data,
1390 bh->b_data + sizeof(struct extendedFileEntry),
1391 bs - sizeof(struct extendedFileEntry));
1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1393 iinfo->i_efe = 0;
1394 iinfo->i_use = 0;
1395 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1396 if (ret)
1397 goto out;
1398 memcpy(iinfo->i_ext.i_data,
1399 bh->b_data + sizeof(struct fileEntry),
1400 bs - sizeof(struct fileEntry));
1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402 iinfo->i_efe = 0;
1403 iinfo->i_use = 1;
1404 iinfo->i_lenAlloc = le32_to_cpu(
1405 ((struct unallocSpaceEntry *)bh->b_data)->
1406 lengthAllocDescs);
1407 ret = udf_alloc_i_data(inode, bs -
1408 sizeof(struct unallocSpaceEntry));
1409 if (ret)
1410 goto out;
1411 memcpy(iinfo->i_ext.i_data,
1412 bh->b_data + sizeof(struct unallocSpaceEntry),
1413 bs - sizeof(struct unallocSpaceEntry));
1414 return 0;
1415 }
1416
1417 ret = -EIO;
1418 read_lock(&sbi->s_cred_lock);
1419 i_uid_write(inode, le32_to_cpu(fe->uid));
1420 if (!uid_valid(inode->i_uid) ||
1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1423 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1424
1425 i_gid_write(inode, le32_to_cpu(fe->gid));
1426 if (!gid_valid(inode->i_gid) ||
1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1429 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1430
1431 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1432 sbi->s_fmode != UDF_INVALID_MODE)
1433 inode->i_mode = sbi->s_fmode;
1434 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1435 sbi->s_dmode != UDF_INVALID_MODE)
1436 inode->i_mode = sbi->s_dmode;
1437 else
1438 inode->i_mode = udf_convert_permissions(fe);
1439 inode->i_mode &= ~sbi->s_umask;
1440 read_unlock(&sbi->s_cred_lock);
1441
1442 link_count = le16_to_cpu(fe->fileLinkCount);
1443 if (!link_count) {
1444 if (!hidden_inode) {
1445 ret = -ESTALE;
1446 goto out;
1447 }
1448 link_count = 1;
1449 }
1450 set_nlink(inode, link_count);
1451
1452 inode->i_size = le64_to_cpu(fe->informationLength);
1453 iinfo->i_lenExtents = inode->i_size;
1454
1455 if (iinfo->i_efe == 0) {
1456 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1457 (inode->i_sb->s_blocksize_bits - 9);
1458
1459 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1460 inode->i_atime = sbi->s_record_time;
1461
1462 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1463 fe->modificationTime))
1464 inode->i_mtime = sbi->s_record_time;
1465
1466 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1467 inode->i_ctime = sbi->s_record_time;
1468
1469 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1470 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1471 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1472 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1473 } else {
1474 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1475 (inode->i_sb->s_blocksize_bits - 9);
1476
1477 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1478 inode->i_atime = sbi->s_record_time;
1479
1480 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1481 efe->modificationTime))
1482 inode->i_mtime = sbi->s_record_time;
1483
1484 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1485 iinfo->i_crtime = sbi->s_record_time;
1486
1487 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1488 inode->i_ctime = sbi->s_record_time;
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494 }
1495 inode->i_generation = iinfo->i_unique;
1496
1497 /*
1498 * Sanity check length of allocation descriptors and extended attrs to
1499 * avoid integer overflows
1500 */
1501 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1502 goto out;
1503 /* Now do exact checks */
1504 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1505 goto out;
1506 /* Sanity checks for files in ICB so that we don't get confused later */
1507 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1508 /*
1509 * For file in ICB data is stored in allocation descriptor
1510 * so sizes should match
1511 */
1512 if (iinfo->i_lenAlloc != inode->i_size)
1513 goto out;
1514 /* File in ICB has to fit in there... */
1515 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1516 goto out;
1517 }
1518
1519 switch (fe->icbTag.fileType) {
1520 case ICBTAG_FILE_TYPE_DIRECTORY:
1521 inode->i_op = &udf_dir_inode_operations;
1522 inode->i_fop = &udf_dir_operations;
1523 inode->i_mode |= S_IFDIR;
1524 inc_nlink(inode);
1525 break;
1526 case ICBTAG_FILE_TYPE_REALTIME:
1527 case ICBTAG_FILE_TYPE_REGULAR:
1528 case ICBTAG_FILE_TYPE_UNDEF:
1529 case ICBTAG_FILE_TYPE_VAT20:
1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1531 inode->i_data.a_ops = &udf_adinicb_aops;
1532 else
1533 inode->i_data.a_ops = &udf_aops;
1534 inode->i_op = &udf_file_inode_operations;
1535 inode->i_fop = &udf_file_operations;
1536 inode->i_mode |= S_IFREG;
1537 break;
1538 case ICBTAG_FILE_TYPE_BLOCK:
1539 inode->i_mode |= S_IFBLK;
1540 break;
1541 case ICBTAG_FILE_TYPE_CHAR:
1542 inode->i_mode |= S_IFCHR;
1543 break;
1544 case ICBTAG_FILE_TYPE_FIFO:
1545 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1546 break;
1547 case ICBTAG_FILE_TYPE_SOCKET:
1548 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1549 break;
1550 case ICBTAG_FILE_TYPE_SYMLINK:
1551 inode->i_data.a_ops = &udf_symlink_aops;
1552 inode->i_op = &page_symlink_inode_operations;
1553 inode_nohighmem(inode);
1554 inode->i_mode = S_IFLNK | S_IRWXUGO;
1555 break;
1556 case ICBTAG_FILE_TYPE_MAIN:
1557 udf_debug("METADATA FILE-----\n");
1558 break;
1559 case ICBTAG_FILE_TYPE_MIRROR:
1560 udf_debug("METADATA MIRROR FILE-----\n");
1561 break;
1562 case ICBTAG_FILE_TYPE_BITMAP:
1563 udf_debug("METADATA BITMAP FILE-----\n");
1564 break;
1565 default:
1566 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1567 inode->i_ino, fe->icbTag.fileType);
1568 goto out;
1569 }
1570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571 struct deviceSpec *dsea =
1572 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573 if (dsea) {
1574 init_special_inode(inode, inode->i_mode,
1575 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1576 le32_to_cpu(dsea->minorDeviceIdent)));
1577 /* Developer ID ??? */
1578 } else
1579 goto out;
1580 }
1581 ret = 0;
1582out:
1583 brelse(bh);
1584 return ret;
1585}
1586
1587static int udf_alloc_i_data(struct inode *inode, size_t size)
1588{
1589 struct udf_inode_info *iinfo = UDF_I(inode);
1590 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1591
1592 if (!iinfo->i_ext.i_data) {
1593 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1594 inode->i_ino);
1595 return -ENOMEM;
1596 }
1597
1598 return 0;
1599}
1600
1601static umode_t udf_convert_permissions(struct fileEntry *fe)
1602{
1603 umode_t mode;
1604 uint32_t permissions;
1605 uint32_t flags;
1606
1607 permissions = le32_to_cpu(fe->permissions);
1608 flags = le16_to_cpu(fe->icbTag.flags);
1609
1610 mode = ((permissions) & S_IRWXO) |
1611 ((permissions >> 2) & S_IRWXG) |
1612 ((permissions >> 4) & S_IRWXU) |
1613 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1614 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1615 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1616
1617 return mode;
1618}
1619
1620int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1621{
1622 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1623}
1624
1625static int udf_sync_inode(struct inode *inode)
1626{
1627 return udf_update_inode(inode, 1);
1628}
1629
1630static int udf_update_inode(struct inode *inode, int do_sync)
1631{
1632 struct buffer_head *bh = NULL;
1633 struct fileEntry *fe;
1634 struct extendedFileEntry *efe;
1635 uint64_t lb_recorded;
1636 uint32_t udfperms;
1637 uint16_t icbflags;
1638 uint16_t crclen;
1639 int err = 0;
1640 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1641 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1642 struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644 bh = udf_tgetblk(inode->i_sb,
1645 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1646 if (!bh) {
1647 udf_debug("getblk failure\n");
1648 return -EIO;
1649 }
1650
1651 lock_buffer(bh);
1652 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1653 fe = (struct fileEntry *)bh->b_data;
1654 efe = (struct extendedFileEntry *)bh->b_data;
1655
1656 if (iinfo->i_use) {
1657 struct unallocSpaceEntry *use =
1658 (struct unallocSpaceEntry *)bh->b_data;
1659
1660 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1661 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1662 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1663 sizeof(struct unallocSpaceEntry));
1664 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1665 crclen = sizeof(struct unallocSpaceEntry);
1666
1667 goto finish;
1668 }
1669
1670 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671 fe->uid = cpu_to_le32(-1);
1672 else
1673 fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676 fe->gid = cpu_to_le32(-1);
1677 else
1678 fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680 udfperms = ((inode->i_mode & S_IRWXO)) |
1681 ((inode->i_mode & S_IRWXG) << 2) |
1682 ((inode->i_mode & S_IRWXU) << 4);
1683
1684 udfperms |= (le32_to_cpu(fe->permissions) &
1685 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688 fe->permissions = cpu_to_le32(udfperms);
1689
1690 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692 else
1693 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695 fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698 struct regid *eid;
1699 struct deviceSpec *dsea =
1700 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701 if (!dsea) {
1702 dsea = (struct deviceSpec *)
1703 udf_add_extendedattr(inode,
1704 sizeof(struct deviceSpec) +
1705 sizeof(struct regid), 12, 0x3);
1706 dsea->attrType = cpu_to_le32(12);
1707 dsea->attrSubtype = 1;
1708 dsea->attrLength = cpu_to_le32(
1709 sizeof(struct deviceSpec) +
1710 sizeof(struct regid));
1711 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712 }
1713 eid = (struct regid *)dsea->impUse;
1714 memset(eid, 0, sizeof(struct regid));
1715 strcpy(eid->ident, UDF_ID_DEVELOPER);
1716 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720 }
1721
1722 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723 lb_recorded = 0; /* No extents => no blocks! */
1724 else
1725 lb_recorded =
1726 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727 (blocksize_bits - 9);
1728
1729 if (iinfo->i_efe == 0) {
1730 memcpy(bh->b_data + sizeof(struct fileEntry),
1731 iinfo->i_ext.i_data,
1732 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738 memset(&(fe->impIdent), 0, sizeof(struct regid));
1739 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747 crclen = sizeof(struct fileEntry);
1748 } else {
1749 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750 iinfo->i_ext.i_data,
1751 inode->i_sb->s_blocksize -
1752 sizeof(struct extendedFileEntry));
1753 efe->objectSize = cpu_to_le64(inode->i_size);
1754 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759 iinfo->i_crtime = inode->i_atime;
1760
1761 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764 iinfo->i_crtime = inode->i_mtime;
1765
1766 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769 iinfo->i_crtime = inode->i_ctime;
1770
1771 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776 memset(&(efe->impIdent), 0, sizeof(struct regid));
1777 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785 crclen = sizeof(struct extendedFileEntry);
1786 }
1787
1788finish:
1789 if (iinfo->i_strat4096) {
1790 fe->icbTag.strategyType = cpu_to_le16(4096);
1791 fe->icbTag.strategyParameter = cpu_to_le16(1);
1792 fe->icbTag.numEntries = cpu_to_le16(2);
1793 } else {
1794 fe->icbTag.strategyType = cpu_to_le16(4);
1795 fe->icbTag.numEntries = cpu_to_le16(1);
1796 }
1797
1798 if (iinfo->i_use)
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1800 else if (S_ISDIR(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1802 else if (S_ISREG(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1804 else if (S_ISLNK(inode->i_mode))
1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1806 else if (S_ISBLK(inode->i_mode))
1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1808 else if (S_ISCHR(inode->i_mode))
1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1810 else if (S_ISFIFO(inode->i_mode))
1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1812 else if (S_ISSOCK(inode->i_mode))
1813 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1814
1815 icbflags = iinfo->i_alloc_type |
1816 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1817 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1818 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1819 (le16_to_cpu(fe->icbTag.flags) &
1820 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1821 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1822
1823 fe->icbTag.flags = cpu_to_le16(icbflags);
1824 if (sbi->s_udfrev >= 0x0200)
1825 fe->descTag.descVersion = cpu_to_le16(3);
1826 else
1827 fe->descTag.descVersion = cpu_to_le16(2);
1828 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1829 fe->descTag.tagLocation = cpu_to_le32(
1830 iinfo->i_location.logicalBlockNum);
1831 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1832 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1833 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1834 crclen));
1835 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1836
1837 set_buffer_uptodate(bh);
1838 unlock_buffer(bh);
1839
1840 /* write the data blocks */
1841 mark_buffer_dirty(bh);
1842 if (do_sync) {
1843 sync_dirty_buffer(bh);
1844 if (buffer_write_io_error(bh)) {
1845 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1846 inode->i_ino);
1847 err = -EIO;
1848 }
1849 }
1850 brelse(bh);
1851
1852 return err;
1853}
1854
1855struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1856 bool hidden_inode)
1857{
1858 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1859 struct inode *inode = iget_locked(sb, block);
1860 int err;
1861
1862 if (!inode)
1863 return ERR_PTR(-ENOMEM);
1864
1865 if (!(inode->i_state & I_NEW))
1866 return inode;
1867
1868 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1869 err = udf_read_inode(inode, hidden_inode);
1870 if (err < 0) {
1871 iget_failed(inode);
1872 return ERR_PTR(err);
1873 }
1874 unlock_new_inode(inode);
1875
1876 return inode;
1877}
1878
1879int udf_setup_indirect_aext(struct inode *inode, int block,
1880 struct extent_position *epos)
1881{
1882 struct super_block *sb = inode->i_sb;
1883 struct buffer_head *bh;
1884 struct allocExtDesc *aed;
1885 struct extent_position nepos;
1886 struct kernel_lb_addr neloc;
1887 int ver, adsize;
1888
1889 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1890 adsize = sizeof(struct short_ad);
1891 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1892 adsize = sizeof(struct long_ad);
1893 else
1894 return -EIO;
1895
1896 neloc.logicalBlockNum = block;
1897 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1898
1899 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1900 if (!bh)
1901 return -EIO;
1902 lock_buffer(bh);
1903 memset(bh->b_data, 0x00, sb->s_blocksize);
1904 set_buffer_uptodate(bh);
1905 unlock_buffer(bh);
1906 mark_buffer_dirty_inode(bh, inode);
1907
1908 aed = (struct allocExtDesc *)(bh->b_data);
1909 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1910 aed->previousAllocExtLocation =
1911 cpu_to_le32(epos->block.logicalBlockNum);
1912 }
1913 aed->lengthAllocDescs = cpu_to_le32(0);
1914 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1915 ver = 3;
1916 else
1917 ver = 2;
1918 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1919 sizeof(struct tag));
1920
1921 nepos.block = neloc;
1922 nepos.offset = sizeof(struct allocExtDesc);
1923 nepos.bh = bh;
1924
1925 /*
1926 * Do we have to copy current last extent to make space for indirect
1927 * one?
1928 */
1929 if (epos->offset + adsize > sb->s_blocksize) {
1930 struct kernel_lb_addr cp_loc;
1931 uint32_t cp_len;
1932 int cp_type;
1933
1934 epos->offset -= adsize;
1935 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1936 cp_len |= ((uint32_t)cp_type) << 30;
1937
1938 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1939 udf_write_aext(inode, epos, &nepos.block,
1940 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1941 } else {
1942 __udf_add_aext(inode, epos, &nepos.block,
1943 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1944 }
1945
1946 brelse(epos->bh);
1947 *epos = nepos;
1948
1949 return 0;
1950}
1951
1952/*
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1956 */
1957int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1958 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1959{
1960 struct udf_inode_info *iinfo = UDF_I(inode);
1961 struct allocExtDesc *aed;
1962 int adsize;
1963
1964 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965 adsize = sizeof(struct short_ad);
1966 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967 adsize = sizeof(struct long_ad);
1968 else
1969 return -EIO;
1970
1971 if (!epos->bh) {
1972 WARN_ON(iinfo->i_lenAlloc !=
1973 epos->offset - udf_file_entry_alloc_offset(inode));
1974 } else {
1975 aed = (struct allocExtDesc *)epos->bh->b_data;
1976 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1977 epos->offset - sizeof(struct allocExtDesc));
1978 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1979 }
1980
1981 udf_write_aext(inode, epos, eloc, elen, inc);
1982
1983 if (!epos->bh) {
1984 iinfo->i_lenAlloc += adsize;
1985 mark_inode_dirty(inode);
1986 } else {
1987 aed = (struct allocExtDesc *)epos->bh->b_data;
1988 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1989 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1990 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1991 udf_update_tag(epos->bh->b_data,
1992 epos->offset + (inc ? 0 : adsize));
1993 else
1994 udf_update_tag(epos->bh->b_data,
1995 sizeof(struct allocExtDesc));
1996 mark_buffer_dirty_inode(epos->bh, inode);
1997 }
1998
1999 return 0;
2000}
2001
2002/*
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2005 */
2006int udf_add_aext(struct inode *inode, struct extent_position *epos,
2007 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008{
2009 int adsize;
2010 struct super_block *sb = inode->i_sb;
2011
2012 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2020 int err;
2021 int new_block;
2022
2023 new_block = udf_new_block(sb, NULL,
2024 epos->block.partitionReferenceNum,
2025 epos->block.logicalBlockNum, &err);
2026 if (!new_block)
2027 return -ENOSPC;
2028
2029 err = udf_setup_indirect_aext(inode, new_block, epos);
2030 if (err)
2031 return err;
2032 }
2033
2034 return __udf_add_aext(inode, epos, eloc, elen, inc);
2035}
2036
2037void udf_write_aext(struct inode *inode, struct extent_position *epos,
2038 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2039{
2040 int adsize;
2041 uint8_t *ptr;
2042 struct short_ad *sad;
2043 struct long_ad *lad;
2044 struct udf_inode_info *iinfo = UDF_I(inode);
2045
2046 if (!epos->bh)
2047 ptr = iinfo->i_ext.i_data + epos->offset -
2048 udf_file_entry_alloc_offset(inode) +
2049 iinfo->i_lenEAttr;
2050 else
2051 ptr = epos->bh->b_data + epos->offset;
2052
2053 switch (iinfo->i_alloc_type) {
2054 case ICBTAG_FLAG_AD_SHORT:
2055 sad = (struct short_ad *)ptr;
2056 sad->extLength = cpu_to_le32(elen);
2057 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2058 adsize = sizeof(struct short_ad);
2059 break;
2060 case ICBTAG_FLAG_AD_LONG:
2061 lad = (struct long_ad *)ptr;
2062 lad->extLength = cpu_to_le32(elen);
2063 lad->extLocation = cpu_to_lelb(*eloc);
2064 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2065 adsize = sizeof(struct long_ad);
2066 break;
2067 default:
2068 return;
2069 }
2070
2071 if (epos->bh) {
2072 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2073 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2074 struct allocExtDesc *aed =
2075 (struct allocExtDesc *)epos->bh->b_data;
2076 udf_update_tag(epos->bh->b_data,
2077 le32_to_cpu(aed->lengthAllocDescs) +
2078 sizeof(struct allocExtDesc));
2079 }
2080 mark_buffer_dirty_inode(epos->bh, inode);
2081 } else {
2082 mark_inode_dirty(inode);
2083 }
2084
2085 if (inc)
2086 epos->offset += adsize;
2087}
2088
2089/*
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2092 */
2093#define UDF_MAX_INDIR_EXTS 16
2094
2095int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2096 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097{
2098 int8_t etype;
2099 unsigned int indirections = 0;
2100
2101 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2102 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2103 int block;
2104
2105 if (++indirections > UDF_MAX_INDIR_EXTS) {
2106 udf_err(inode->i_sb,
2107 "too many indirect extents in inode %lu\n",
2108 inode->i_ino);
2109 return -1;
2110 }
2111
2112 epos->block = *eloc;
2113 epos->offset = sizeof(struct allocExtDesc);
2114 brelse(epos->bh);
2115 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2116 epos->bh = udf_tread(inode->i_sb, block);
2117 if (!epos->bh) {
2118 udf_debug("reading block %d failed!\n", block);
2119 return -1;
2120 }
2121 }
2122
2123 return etype;
2124}
2125
2126int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2127 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2128{
2129 int alen;
2130 int8_t etype;
2131 uint8_t *ptr;
2132 struct short_ad *sad;
2133 struct long_ad *lad;
2134 struct udf_inode_info *iinfo = UDF_I(inode);
2135
2136 if (!epos->bh) {
2137 if (!epos->offset)
2138 epos->offset = udf_file_entry_alloc_offset(inode);
2139 ptr = iinfo->i_ext.i_data + epos->offset -
2140 udf_file_entry_alloc_offset(inode) +
2141 iinfo->i_lenEAttr;
2142 alen = udf_file_entry_alloc_offset(inode) +
2143 iinfo->i_lenAlloc;
2144 } else {
2145 if (!epos->offset)
2146 epos->offset = sizeof(struct allocExtDesc);
2147 ptr = epos->bh->b_data + epos->offset;
2148 alen = sizeof(struct allocExtDesc) +
2149 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2150 lengthAllocDescs);
2151 }
2152
2153 switch (iinfo->i_alloc_type) {
2154 case ICBTAG_FLAG_AD_SHORT:
2155 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2156 if (!sad)
2157 return -1;
2158 etype = le32_to_cpu(sad->extLength) >> 30;
2159 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2160 eloc->partitionReferenceNum =
2161 iinfo->i_location.partitionReferenceNum;
2162 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2163 break;
2164 case ICBTAG_FLAG_AD_LONG:
2165 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2166 if (!lad)
2167 return -1;
2168 etype = le32_to_cpu(lad->extLength) >> 30;
2169 *eloc = lelb_to_cpu(lad->extLocation);
2170 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2171 break;
2172 default:
2173 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2174 return -1;
2175 }
2176
2177 return etype;
2178}
2179
2180static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr neloc, uint32_t nelen)
2182{
2183 struct kernel_lb_addr oeloc;
2184 uint32_t oelen;
2185 int8_t etype;
2186
2187 if (epos.bh)
2188 get_bh(epos.bh);
2189
2190 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2191 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2192 neloc = oeloc;
2193 nelen = (etype << 30) | oelen;
2194 }
2195 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2196 brelse(epos.bh);
2197
2198 return (nelen >> 30);
2199}
2200
2201int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2202 struct kernel_lb_addr eloc, uint32_t elen)
2203{
2204 struct extent_position oepos;
2205 int adsize;
2206 int8_t etype;
2207 struct allocExtDesc *aed;
2208 struct udf_inode_info *iinfo;
2209
2210 if (epos.bh) {
2211 get_bh(epos.bh);
2212 get_bh(epos.bh);
2213 }
2214
2215 iinfo = UDF_I(inode);
2216 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217 adsize = sizeof(struct short_ad);
2218 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219 adsize = sizeof(struct long_ad);
2220 else
2221 adsize = 0;
2222
2223 oepos = epos;
2224 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225 return -1;
2226
2227 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229 if (oepos.bh != epos.bh) {
2230 oepos.block = epos.block;
2231 brelse(oepos.bh);
2232 get_bh(epos.bh);
2233 oepos.bh = epos.bh;
2234 oepos.offset = epos.offset - adsize;
2235 }
2236 }
2237 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238 elen = 0;
2239
2240 if (epos.bh != oepos.bh) {
2241 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244 if (!oepos.bh) {
2245 iinfo->i_lenAlloc -= (adsize * 2);
2246 mark_inode_dirty(inode);
2247 } else {
2248 aed = (struct allocExtDesc *)oepos.bh->b_data;
2249 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252 udf_update_tag(oepos.bh->b_data,
2253 oepos.offset - (2 * adsize));
2254 else
2255 udf_update_tag(oepos.bh->b_data,
2256 sizeof(struct allocExtDesc));
2257 mark_buffer_dirty_inode(oepos.bh, inode);
2258 }
2259 } else {
2260 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261 if (!oepos.bh) {
2262 iinfo->i_lenAlloc -= adsize;
2263 mark_inode_dirty(inode);
2264 } else {
2265 aed = (struct allocExtDesc *)oepos.bh->b_data;
2266 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269 udf_update_tag(oepos.bh->b_data,
2270 epos.offset - adsize);
2271 else
2272 udf_update_tag(oepos.bh->b_data,
2273 sizeof(struct allocExtDesc));
2274 mark_buffer_dirty_inode(oepos.bh, inode);
2275 }
2276 }
2277
2278 brelse(epos.bh);
2279 brelse(oepos.bh);
2280
2281 return (elen >> 30);
2282}
2283
2284int8_t inode_bmap(struct inode *inode, sector_t block,
2285 struct extent_position *pos, struct kernel_lb_addr *eloc,
2286 uint32_t *elen, sector_t *offset)
2287{
2288 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289 loff_t lbcount = 0, bcount =
2290 (loff_t) block << blocksize_bits;
2291 int8_t etype;
2292 struct udf_inode_info *iinfo;
2293
2294 iinfo = UDF_I(inode);
2295 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2296 pos->offset = 0;
2297 pos->block = iinfo->i_location;
2298 pos->bh = NULL;
2299 }
2300 *elen = 0;
2301 do {
2302 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2303 if (etype == -1) {
2304 *offset = (bcount - lbcount) >> blocksize_bits;
2305 iinfo->i_lenExtents = lbcount;
2306 return -1;
2307 }
2308 lbcount += *elen;
2309 } while (lbcount <= bcount);
2310 /* update extent cache */
2311 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2312 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2313
2314 return etype;
2315}
2316
2317long udf_block_map(struct inode *inode, sector_t block)
2318{
2319 struct kernel_lb_addr eloc;
2320 uint32_t elen;
2321 sector_t offset;
2322 struct extent_position epos = {};
2323 int ret;
2324
2325 down_read(&UDF_I(inode)->i_data_sem);
2326
2327 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2328 (EXT_RECORDED_ALLOCATED >> 30))
2329 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2330 else
2331 ret = 0;
2332
2333 up_read(&UDF_I(inode)->i_data_sem);
2334 brelse(epos.bh);
2335
2336 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2337 return udf_fixed_to_variable(ret);
2338 else
2339 return ret;
2340}