Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2014 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25/* ethtool support for igb */
  26
  27#include <linux/vmalloc.h>
  28#include <linux/netdevice.h>
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/if_ether.h>
  33#include <linux/ethtool.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/highmem.h>
  38#include <linux/mdio.h>
  39
  40#include "igb.h"
  41
  42struct igb_stats {
  43	char stat_string[ETH_GSTRING_LEN];
  44	int sizeof_stat;
  45	int stat_offset;
  46};
  47
  48#define IGB_STAT(_name, _stat) { \
  49	.stat_string = _name, \
  50	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  51	.stat_offset = offsetof(struct igb_adapter, _stat) \
  52}
  53static const struct igb_stats igb_gstrings_stats[] = {
  54	IGB_STAT("rx_packets", stats.gprc),
  55	IGB_STAT("tx_packets", stats.gptc),
  56	IGB_STAT("rx_bytes", stats.gorc),
  57	IGB_STAT("tx_bytes", stats.gotc),
  58	IGB_STAT("rx_broadcast", stats.bprc),
  59	IGB_STAT("tx_broadcast", stats.bptc),
  60	IGB_STAT("rx_multicast", stats.mprc),
  61	IGB_STAT("tx_multicast", stats.mptc),
  62	IGB_STAT("multicast", stats.mprc),
  63	IGB_STAT("collisions", stats.colc),
  64	IGB_STAT("rx_crc_errors", stats.crcerrs),
  65	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  66	IGB_STAT("rx_missed_errors", stats.mpc),
  67	IGB_STAT("tx_aborted_errors", stats.ecol),
  68	IGB_STAT("tx_carrier_errors", stats.tncrs),
  69	IGB_STAT("tx_window_errors", stats.latecol),
  70	IGB_STAT("tx_abort_late_coll", stats.latecol),
  71	IGB_STAT("tx_deferred_ok", stats.dc),
  72	IGB_STAT("tx_single_coll_ok", stats.scc),
  73	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  74	IGB_STAT("tx_timeout_count", tx_timeout_count),
  75	IGB_STAT("rx_long_length_errors", stats.roc),
  76	IGB_STAT("rx_short_length_errors", stats.ruc),
  77	IGB_STAT("rx_align_errors", stats.algnerrc),
  78	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  79	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  81	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  83	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	IGB_STAT("rx_long_byte_count", stats.gorc),
  85	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  86	IGB_STAT("tx_smbus", stats.mgptc),
  87	IGB_STAT("rx_smbus", stats.mgprc),
  88	IGB_STAT("dropped_smbus", stats.mgpdc),
  89	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  90	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  91	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  92	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  93	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  94	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  95	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  96};
  97
  98#define IGB_NETDEV_STAT(_net_stat) { \
  99	.stat_string = __stringify(_net_stat), \
 100	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
 101	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 102}
 103static const struct igb_stats igb_gstrings_net_stats[] = {
 104	IGB_NETDEV_STAT(rx_errors),
 105	IGB_NETDEV_STAT(tx_errors),
 106	IGB_NETDEV_STAT(tx_dropped),
 107	IGB_NETDEV_STAT(rx_length_errors),
 108	IGB_NETDEV_STAT(rx_over_errors),
 109	IGB_NETDEV_STAT(rx_frame_errors),
 110	IGB_NETDEV_STAT(rx_fifo_errors),
 111	IGB_NETDEV_STAT(tx_fifo_errors),
 112	IGB_NETDEV_STAT(tx_heartbeat_errors)
 113};
 114
 115#define IGB_GLOBAL_STATS_LEN	\
 116	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 117#define IGB_NETDEV_STATS_LEN	\
 118	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 119#define IGB_RX_QUEUE_STATS_LEN \
 120	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 121
 122#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 123
 124#define IGB_QUEUE_STATS_LEN \
 125	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 126	  IGB_RX_QUEUE_STATS_LEN) + \
 127	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 128	  IGB_TX_QUEUE_STATS_LEN))
 129#define IGB_STATS_LEN \
 130	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 131
 132enum igb_diagnostics_results {
 133	TEST_REG = 0,
 134	TEST_EEP,
 135	TEST_IRQ,
 136	TEST_LOOP,
 137	TEST_LINK
 138};
 139
 140static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 141	[TEST_REG]  = "Register test  (offline)",
 142	[TEST_EEP]  = "Eeprom test    (offline)",
 143	[TEST_IRQ]  = "Interrupt test (offline)",
 144	[TEST_LOOP] = "Loopback test  (offline)",
 145	[TEST_LINK] = "Link test   (on/offline)"
 146};
 147#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 148
 149static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 150#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
 151	"legacy-rx",
 152};
 153
 154#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 155
 156static int igb_get_link_ksettings(struct net_device *netdev,
 157				  struct ethtool_link_ksettings *cmd)
 158{
 159	struct igb_adapter *adapter = netdev_priv(netdev);
 160	struct e1000_hw *hw = &adapter->hw;
 161	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 162	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 163	u32 status;
 164	u32 speed;
 165	u32 supported, advertising;
 166
 167	status = rd32(E1000_STATUS);
 168	if (hw->phy.media_type == e1000_media_type_copper) {
 169
 170		supported = (SUPPORTED_10baseT_Half |
 171			     SUPPORTED_10baseT_Full |
 172			     SUPPORTED_100baseT_Half |
 173			     SUPPORTED_100baseT_Full |
 174			     SUPPORTED_1000baseT_Full|
 175			     SUPPORTED_Autoneg |
 176			     SUPPORTED_TP |
 177			     SUPPORTED_Pause);
 178		advertising = ADVERTISED_TP;
 179
 180		if (hw->mac.autoneg == 1) {
 181			advertising |= ADVERTISED_Autoneg;
 182			/* the e1000 autoneg seems to match ethtool nicely */
 183			advertising |= hw->phy.autoneg_advertised;
 184		}
 185
 186		cmd->base.port = PORT_TP;
 187		cmd->base.phy_address = hw->phy.addr;
 
 188	} else {
 189		supported = (SUPPORTED_FIBRE |
 190			     SUPPORTED_1000baseKX_Full |
 191			     SUPPORTED_Autoneg |
 192			     SUPPORTED_Pause);
 193		advertising = (ADVERTISED_FIBRE |
 194			       ADVERTISED_1000baseKX_Full);
 195		if (hw->mac.type == e1000_i354) {
 196			if ((hw->device_id ==
 197			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 198			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 199				supported |= SUPPORTED_2500baseX_Full;
 200				supported &= ~SUPPORTED_1000baseKX_Full;
 201				advertising |= ADVERTISED_2500baseX_Full;
 202				advertising &= ~ADVERTISED_1000baseKX_Full;
 
 
 203			}
 204		}
 205		if (eth_flags->e100_base_fx) {
 206			supported |= SUPPORTED_100baseT_Full;
 207			advertising |= ADVERTISED_100baseT_Full;
 208		}
 209		if (hw->mac.autoneg == 1)
 210			advertising |= ADVERTISED_Autoneg;
 211
 212		cmd->base.port = PORT_FIBRE;
 
 213	}
 214	if (hw->mac.autoneg != 1)
 215		advertising &= ~(ADVERTISED_Pause |
 216				 ADVERTISED_Asym_Pause);
 217
 218	switch (hw->fc.requested_mode) {
 219	case e1000_fc_full:
 220		advertising |= ADVERTISED_Pause;
 221		break;
 222	case e1000_fc_rx_pause:
 223		advertising |= (ADVERTISED_Pause |
 224				ADVERTISED_Asym_Pause);
 225		break;
 226	case e1000_fc_tx_pause:
 227		advertising |=  ADVERTISED_Asym_Pause;
 228		break;
 229	default:
 230		advertising &= ~(ADVERTISED_Pause |
 231				 ADVERTISED_Asym_Pause);
 232	}
 233	if (status & E1000_STATUS_LU) {
 234		if ((status & E1000_STATUS_2P5_SKU) &&
 235		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 236			speed = SPEED_2500;
 237		} else if (status & E1000_STATUS_SPEED_1000) {
 238			speed = SPEED_1000;
 239		} else if (status & E1000_STATUS_SPEED_100) {
 240			speed = SPEED_100;
 241		} else {
 242			speed = SPEED_10;
 243		}
 244		if ((status & E1000_STATUS_FD) ||
 245		    hw->phy.media_type != e1000_media_type_copper)
 246			cmd->base.duplex = DUPLEX_FULL;
 247		else
 248			cmd->base.duplex = DUPLEX_HALF;
 249	} else {
 250		speed = SPEED_UNKNOWN;
 251		cmd->base.duplex = DUPLEX_UNKNOWN;
 252	}
 253	cmd->base.speed = speed;
 254	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 255	    hw->mac.autoneg)
 256		cmd->base.autoneg = AUTONEG_ENABLE;
 257	else
 258		cmd->base.autoneg = AUTONEG_DISABLE;
 259
 260	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 261	if (hw->phy.media_type == e1000_media_type_copper)
 262		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 263						      ETH_TP_MDI;
 264	else
 265		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 266
 267	if (hw->phy.mdix == AUTO_ALL_MODES)
 268		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 269	else
 270		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 271
 272	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 273						supported);
 274	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 275						advertising);
 276
 277	return 0;
 278}
 279
 280static int igb_set_link_ksettings(struct net_device *netdev,
 281				  const struct ethtool_link_ksettings *cmd)
 282{
 283	struct igb_adapter *adapter = netdev_priv(netdev);
 284	struct e1000_hw *hw = &adapter->hw;
 285	u32 advertising;
 286
 287	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 288	 * cannot be changed
 289	 */
 290	if (igb_check_reset_block(hw)) {
 291		dev_err(&adapter->pdev->dev,
 292			"Cannot change link characteristics when SoL/IDER is active.\n");
 293		return -EINVAL;
 294	}
 295
 296	/* MDI setting is only allowed when autoneg enabled because
 297	 * some hardware doesn't allow MDI setting when speed or
 298	 * duplex is forced.
 299	 */
 300	if (cmd->base.eth_tp_mdix_ctrl) {
 301		if (hw->phy.media_type != e1000_media_type_copper)
 302			return -EOPNOTSUPP;
 303
 304		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 305		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 306			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 307			return -EINVAL;
 308		}
 309	}
 310
 311	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 312		usleep_range(1000, 2000);
 313
 314	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 315						cmd->link_modes.advertising);
 316
 317	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 318		hw->mac.autoneg = 1;
 319		if (hw->phy.media_type == e1000_media_type_fiber) {
 320			hw->phy.autoneg_advertised = advertising |
 321						     ADVERTISED_FIBRE |
 322						     ADVERTISED_Autoneg;
 323			switch (adapter->link_speed) {
 324			case SPEED_2500:
 325				hw->phy.autoneg_advertised =
 326					ADVERTISED_2500baseX_Full;
 327				break;
 328			case SPEED_1000:
 329				hw->phy.autoneg_advertised =
 330					ADVERTISED_1000baseT_Full;
 331				break;
 332			case SPEED_100:
 333				hw->phy.autoneg_advertised =
 334					ADVERTISED_100baseT_Full;
 335				break;
 336			default:
 337				break;
 338			}
 339		} else {
 340			hw->phy.autoneg_advertised = advertising |
 341						     ADVERTISED_TP |
 342						     ADVERTISED_Autoneg;
 343		}
 344		advertising = hw->phy.autoneg_advertised;
 345		if (adapter->fc_autoneg)
 346			hw->fc.requested_mode = e1000_fc_default;
 347	} else {
 348		u32 speed = cmd->base.speed;
 349		/* calling this overrides forced MDI setting */
 350		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 351			clear_bit(__IGB_RESETTING, &adapter->state);
 352			return -EINVAL;
 353		}
 354	}
 355
 356	/* MDI-X => 2; MDI => 1; Auto => 3 */
 357	if (cmd->base.eth_tp_mdix_ctrl) {
 358		/* fix up the value for auto (3 => 0) as zero is mapped
 359		 * internally to auto
 360		 */
 361		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 362			hw->phy.mdix = AUTO_ALL_MODES;
 363		else
 364			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 365	}
 366
 367	/* reset the link */
 368	if (netif_running(adapter->netdev)) {
 369		igb_down(adapter);
 370		igb_up(adapter);
 371	} else
 372		igb_reset(adapter);
 373
 374	clear_bit(__IGB_RESETTING, &adapter->state);
 375	return 0;
 376}
 377
 378static u32 igb_get_link(struct net_device *netdev)
 379{
 380	struct igb_adapter *adapter = netdev_priv(netdev);
 381	struct e1000_mac_info *mac = &adapter->hw.mac;
 382
 383	/* If the link is not reported up to netdev, interrupts are disabled,
 384	 * and so the physical link state may have changed since we last
 385	 * looked. Set get_link_status to make sure that the true link
 386	 * state is interrogated, rather than pulling a cached and possibly
 387	 * stale link state from the driver.
 388	 */
 389	if (!netif_carrier_ok(netdev))
 390		mac->get_link_status = 1;
 391
 392	return igb_has_link(adapter);
 393}
 394
 395static void igb_get_pauseparam(struct net_device *netdev,
 396			       struct ethtool_pauseparam *pause)
 397{
 398	struct igb_adapter *adapter = netdev_priv(netdev);
 399	struct e1000_hw *hw = &adapter->hw;
 400
 401	pause->autoneg =
 402		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 403
 404	if (hw->fc.current_mode == e1000_fc_rx_pause)
 405		pause->rx_pause = 1;
 406	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 407		pause->tx_pause = 1;
 408	else if (hw->fc.current_mode == e1000_fc_full) {
 409		pause->rx_pause = 1;
 410		pause->tx_pause = 1;
 411	}
 412}
 413
 414static int igb_set_pauseparam(struct net_device *netdev,
 415			      struct ethtool_pauseparam *pause)
 416{
 417	struct igb_adapter *adapter = netdev_priv(netdev);
 418	struct e1000_hw *hw = &adapter->hw;
 419	int retval = 0;
 420
 421	/* 100basefx does not support setting link flow control */
 422	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 423		return -EINVAL;
 424
 425	adapter->fc_autoneg = pause->autoneg;
 426
 427	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 428		usleep_range(1000, 2000);
 429
 430	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 431		hw->fc.requested_mode = e1000_fc_default;
 432		if (netif_running(adapter->netdev)) {
 433			igb_down(adapter);
 434			igb_up(adapter);
 435		} else {
 436			igb_reset(adapter);
 437		}
 438	} else {
 439		if (pause->rx_pause && pause->tx_pause)
 440			hw->fc.requested_mode = e1000_fc_full;
 441		else if (pause->rx_pause && !pause->tx_pause)
 442			hw->fc.requested_mode = e1000_fc_rx_pause;
 443		else if (!pause->rx_pause && pause->tx_pause)
 444			hw->fc.requested_mode = e1000_fc_tx_pause;
 445		else if (!pause->rx_pause && !pause->tx_pause)
 446			hw->fc.requested_mode = e1000_fc_none;
 447
 448		hw->fc.current_mode = hw->fc.requested_mode;
 449
 450		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 451			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 452	}
 453
 454	clear_bit(__IGB_RESETTING, &adapter->state);
 455	return retval;
 456}
 457
 458static u32 igb_get_msglevel(struct net_device *netdev)
 459{
 460	struct igb_adapter *adapter = netdev_priv(netdev);
 461	return adapter->msg_enable;
 462}
 463
 464static void igb_set_msglevel(struct net_device *netdev, u32 data)
 465{
 466	struct igb_adapter *adapter = netdev_priv(netdev);
 467	adapter->msg_enable = data;
 468}
 469
 470static int igb_get_regs_len(struct net_device *netdev)
 471{
 472#define IGB_REGS_LEN 739
 473	return IGB_REGS_LEN * sizeof(u32);
 474}
 475
 476static void igb_get_regs(struct net_device *netdev,
 477			 struct ethtool_regs *regs, void *p)
 478{
 479	struct igb_adapter *adapter = netdev_priv(netdev);
 480	struct e1000_hw *hw = &adapter->hw;
 481	u32 *regs_buff = p;
 482	u8 i;
 483
 484	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 485
 486	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 487
 488	/* General Registers */
 489	regs_buff[0] = rd32(E1000_CTRL);
 490	regs_buff[1] = rd32(E1000_STATUS);
 491	regs_buff[2] = rd32(E1000_CTRL_EXT);
 492	regs_buff[3] = rd32(E1000_MDIC);
 493	regs_buff[4] = rd32(E1000_SCTL);
 494	regs_buff[5] = rd32(E1000_CONNSW);
 495	regs_buff[6] = rd32(E1000_VET);
 496	regs_buff[7] = rd32(E1000_LEDCTL);
 497	regs_buff[8] = rd32(E1000_PBA);
 498	regs_buff[9] = rd32(E1000_PBS);
 499	regs_buff[10] = rd32(E1000_FRTIMER);
 500	regs_buff[11] = rd32(E1000_TCPTIMER);
 501
 502	/* NVM Register */
 503	regs_buff[12] = rd32(E1000_EECD);
 504
 505	/* Interrupt */
 506	/* Reading EICS for EICR because they read the
 507	 * same but EICS does not clear on read
 508	 */
 509	regs_buff[13] = rd32(E1000_EICS);
 510	regs_buff[14] = rd32(E1000_EICS);
 511	regs_buff[15] = rd32(E1000_EIMS);
 512	regs_buff[16] = rd32(E1000_EIMC);
 513	regs_buff[17] = rd32(E1000_EIAC);
 514	regs_buff[18] = rd32(E1000_EIAM);
 515	/* Reading ICS for ICR because they read the
 516	 * same but ICS does not clear on read
 517	 */
 518	regs_buff[19] = rd32(E1000_ICS);
 519	regs_buff[20] = rd32(E1000_ICS);
 520	regs_buff[21] = rd32(E1000_IMS);
 521	regs_buff[22] = rd32(E1000_IMC);
 522	regs_buff[23] = rd32(E1000_IAC);
 523	regs_buff[24] = rd32(E1000_IAM);
 524	regs_buff[25] = rd32(E1000_IMIRVP);
 525
 526	/* Flow Control */
 527	regs_buff[26] = rd32(E1000_FCAL);
 528	regs_buff[27] = rd32(E1000_FCAH);
 529	regs_buff[28] = rd32(E1000_FCTTV);
 530	regs_buff[29] = rd32(E1000_FCRTL);
 531	regs_buff[30] = rd32(E1000_FCRTH);
 532	regs_buff[31] = rd32(E1000_FCRTV);
 533
 534	/* Receive */
 535	regs_buff[32] = rd32(E1000_RCTL);
 536	regs_buff[33] = rd32(E1000_RXCSUM);
 537	regs_buff[34] = rd32(E1000_RLPML);
 538	regs_buff[35] = rd32(E1000_RFCTL);
 539	regs_buff[36] = rd32(E1000_MRQC);
 540	regs_buff[37] = rd32(E1000_VT_CTL);
 541
 542	/* Transmit */
 543	regs_buff[38] = rd32(E1000_TCTL);
 544	regs_buff[39] = rd32(E1000_TCTL_EXT);
 545	regs_buff[40] = rd32(E1000_TIPG);
 546	regs_buff[41] = rd32(E1000_DTXCTL);
 547
 548	/* Wake Up */
 549	regs_buff[42] = rd32(E1000_WUC);
 550	regs_buff[43] = rd32(E1000_WUFC);
 551	regs_buff[44] = rd32(E1000_WUS);
 552	regs_buff[45] = rd32(E1000_IPAV);
 553	regs_buff[46] = rd32(E1000_WUPL);
 554
 555	/* MAC */
 556	regs_buff[47] = rd32(E1000_PCS_CFG0);
 557	regs_buff[48] = rd32(E1000_PCS_LCTL);
 558	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 559	regs_buff[50] = rd32(E1000_PCS_ANADV);
 560	regs_buff[51] = rd32(E1000_PCS_LPAB);
 561	regs_buff[52] = rd32(E1000_PCS_NPTX);
 562	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 563
 564	/* Statistics */
 565	regs_buff[54] = adapter->stats.crcerrs;
 566	regs_buff[55] = adapter->stats.algnerrc;
 567	regs_buff[56] = adapter->stats.symerrs;
 568	regs_buff[57] = adapter->stats.rxerrc;
 569	regs_buff[58] = adapter->stats.mpc;
 570	regs_buff[59] = adapter->stats.scc;
 571	regs_buff[60] = adapter->stats.ecol;
 572	regs_buff[61] = adapter->stats.mcc;
 573	regs_buff[62] = adapter->stats.latecol;
 574	regs_buff[63] = adapter->stats.colc;
 575	regs_buff[64] = adapter->stats.dc;
 576	regs_buff[65] = adapter->stats.tncrs;
 577	regs_buff[66] = adapter->stats.sec;
 578	regs_buff[67] = adapter->stats.htdpmc;
 579	regs_buff[68] = adapter->stats.rlec;
 580	regs_buff[69] = adapter->stats.xonrxc;
 581	regs_buff[70] = adapter->stats.xontxc;
 582	regs_buff[71] = adapter->stats.xoffrxc;
 583	regs_buff[72] = adapter->stats.xofftxc;
 584	regs_buff[73] = adapter->stats.fcruc;
 585	regs_buff[74] = adapter->stats.prc64;
 586	regs_buff[75] = adapter->stats.prc127;
 587	regs_buff[76] = adapter->stats.prc255;
 588	regs_buff[77] = adapter->stats.prc511;
 589	regs_buff[78] = adapter->stats.prc1023;
 590	regs_buff[79] = adapter->stats.prc1522;
 591	regs_buff[80] = adapter->stats.gprc;
 592	regs_buff[81] = adapter->stats.bprc;
 593	regs_buff[82] = adapter->stats.mprc;
 594	regs_buff[83] = adapter->stats.gptc;
 595	regs_buff[84] = adapter->stats.gorc;
 596	regs_buff[86] = adapter->stats.gotc;
 597	regs_buff[88] = adapter->stats.rnbc;
 598	regs_buff[89] = adapter->stats.ruc;
 599	regs_buff[90] = adapter->stats.rfc;
 600	regs_buff[91] = adapter->stats.roc;
 601	regs_buff[92] = adapter->stats.rjc;
 602	regs_buff[93] = adapter->stats.mgprc;
 603	regs_buff[94] = adapter->stats.mgpdc;
 604	regs_buff[95] = adapter->stats.mgptc;
 605	regs_buff[96] = adapter->stats.tor;
 606	regs_buff[98] = adapter->stats.tot;
 607	regs_buff[100] = adapter->stats.tpr;
 608	regs_buff[101] = adapter->stats.tpt;
 609	regs_buff[102] = adapter->stats.ptc64;
 610	regs_buff[103] = adapter->stats.ptc127;
 611	regs_buff[104] = adapter->stats.ptc255;
 612	regs_buff[105] = adapter->stats.ptc511;
 613	regs_buff[106] = adapter->stats.ptc1023;
 614	regs_buff[107] = adapter->stats.ptc1522;
 615	regs_buff[108] = adapter->stats.mptc;
 616	regs_buff[109] = adapter->stats.bptc;
 617	regs_buff[110] = adapter->stats.tsctc;
 618	regs_buff[111] = adapter->stats.iac;
 619	regs_buff[112] = adapter->stats.rpthc;
 620	regs_buff[113] = adapter->stats.hgptc;
 621	regs_buff[114] = adapter->stats.hgorc;
 622	regs_buff[116] = adapter->stats.hgotc;
 623	regs_buff[118] = adapter->stats.lenerrs;
 624	regs_buff[119] = adapter->stats.scvpc;
 625	regs_buff[120] = adapter->stats.hrmpc;
 626
 627	for (i = 0; i < 4; i++)
 628		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 629	for (i = 0; i < 4; i++)
 630		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 631	for (i = 0; i < 4; i++)
 632		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 633	for (i = 0; i < 4; i++)
 634		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 635	for (i = 0; i < 4; i++)
 636		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 637	for (i = 0; i < 4; i++)
 638		regs_buff[141 + i] = rd32(E1000_RDH(i));
 639	for (i = 0; i < 4; i++)
 640		regs_buff[145 + i] = rd32(E1000_RDT(i));
 641	for (i = 0; i < 4; i++)
 642		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 643
 644	for (i = 0; i < 10; i++)
 645		regs_buff[153 + i] = rd32(E1000_EITR(i));
 646	for (i = 0; i < 8; i++)
 647		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 648	for (i = 0; i < 8; i++)
 649		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 650	for (i = 0; i < 16; i++)
 651		regs_buff[179 + i] = rd32(E1000_RAL(i));
 652	for (i = 0; i < 16; i++)
 653		regs_buff[195 + i] = rd32(E1000_RAH(i));
 654
 655	for (i = 0; i < 4; i++)
 656		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 657	for (i = 0; i < 4; i++)
 658		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 661	for (i = 0; i < 4; i++)
 662		regs_buff[223 + i] = rd32(E1000_TDH(i));
 663	for (i = 0; i < 4; i++)
 664		regs_buff[227 + i] = rd32(E1000_TDT(i));
 665	for (i = 0; i < 4; i++)
 666		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 667	for (i = 0; i < 4; i++)
 668		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 669	for (i = 0; i < 4; i++)
 670		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 671	for (i = 0; i < 4; i++)
 672		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 673
 674	for (i = 0; i < 4; i++)
 675		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 676	for (i = 0; i < 4; i++)
 677		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 678	for (i = 0; i < 32; i++)
 679		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 680	for (i = 0; i < 128; i++)
 681		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 682	for (i = 0; i < 128; i++)
 683		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 684	for (i = 0; i < 4; i++)
 685		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 686
 687	regs_buff[547] = rd32(E1000_TDFH);
 688	regs_buff[548] = rd32(E1000_TDFT);
 689	regs_buff[549] = rd32(E1000_TDFHS);
 690	regs_buff[550] = rd32(E1000_TDFPC);
 691
 692	if (hw->mac.type > e1000_82580) {
 693		regs_buff[551] = adapter->stats.o2bgptc;
 694		regs_buff[552] = adapter->stats.b2ospc;
 695		regs_buff[553] = adapter->stats.o2bspc;
 696		regs_buff[554] = adapter->stats.b2ogprc;
 697	}
 698
 699	if (hw->mac.type != e1000_82576)
 700		return;
 701	for (i = 0; i < 12; i++)
 702		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 703	for (i = 0; i < 4; i++)
 704		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 705	for (i = 0; i < 12; i++)
 706		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 707	for (i = 0; i < 12; i++)
 708		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 709	for (i = 0; i < 12; i++)
 710		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 711	for (i = 0; i < 12; i++)
 712		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 713	for (i = 0; i < 12; i++)
 714		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 715	for (i = 0; i < 12; i++)
 716		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 717
 718	for (i = 0; i < 12; i++)
 719		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 720	for (i = 0; i < 12; i++)
 721		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 722	for (i = 0; i < 12; i++)
 723		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 724	for (i = 0; i < 12; i++)
 725		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 726	for (i = 0; i < 12; i++)
 727		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 728	for (i = 0; i < 12; i++)
 729		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 730	for (i = 0; i < 12; i++)
 731		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 732	for (i = 0; i < 12; i++)
 733		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 734}
 735
 736static int igb_get_eeprom_len(struct net_device *netdev)
 737{
 738	struct igb_adapter *adapter = netdev_priv(netdev);
 739	return adapter->hw.nvm.word_size * 2;
 740}
 741
 742static int igb_get_eeprom(struct net_device *netdev,
 743			  struct ethtool_eeprom *eeprom, u8 *bytes)
 744{
 745	struct igb_adapter *adapter = netdev_priv(netdev);
 746	struct e1000_hw *hw = &adapter->hw;
 747	u16 *eeprom_buff;
 748	int first_word, last_word;
 749	int ret_val = 0;
 750	u16 i;
 751
 752	if (eeprom->len == 0)
 753		return -EINVAL;
 754
 755	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 756
 757	first_word = eeprom->offset >> 1;
 758	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 759
 760	eeprom_buff = kmalloc(sizeof(u16) *
 761			(last_word - first_word + 1), GFP_KERNEL);
 762	if (!eeprom_buff)
 763		return -ENOMEM;
 764
 765	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 766		ret_val = hw->nvm.ops.read(hw, first_word,
 767					   last_word - first_word + 1,
 768					   eeprom_buff);
 769	else {
 770		for (i = 0; i < last_word - first_word + 1; i++) {
 771			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 772						   &eeprom_buff[i]);
 773			if (ret_val)
 774				break;
 775		}
 776	}
 777
 778	/* Device's eeprom is always little-endian, word addressable */
 779	for (i = 0; i < last_word - first_word + 1; i++)
 780		le16_to_cpus(&eeprom_buff[i]);
 781
 782	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 783			eeprom->len);
 784	kfree(eeprom_buff);
 785
 786	return ret_val;
 787}
 788
 789static int igb_set_eeprom(struct net_device *netdev,
 790			  struct ethtool_eeprom *eeprom, u8 *bytes)
 791{
 792	struct igb_adapter *adapter = netdev_priv(netdev);
 793	struct e1000_hw *hw = &adapter->hw;
 794	u16 *eeprom_buff;
 795	void *ptr;
 796	int max_len, first_word, last_word, ret_val = 0;
 797	u16 i;
 798
 799	if (eeprom->len == 0)
 800		return -EOPNOTSUPP;
 801
 802	if ((hw->mac.type >= e1000_i210) &&
 803	    !igb_get_flash_presence_i210(hw)) {
 804		return -EOPNOTSUPP;
 805	}
 806
 807	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 808		return -EFAULT;
 809
 810	max_len = hw->nvm.word_size * 2;
 811
 812	first_word = eeprom->offset >> 1;
 813	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 814	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 815	if (!eeprom_buff)
 816		return -ENOMEM;
 817
 818	ptr = (void *)eeprom_buff;
 819
 820	if (eeprom->offset & 1) {
 821		/* need read/modify/write of first changed EEPROM word
 822		 * only the second byte of the word is being modified
 823		 */
 824		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 825					    &eeprom_buff[0]);
 826		ptr++;
 827	}
 828	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 829		/* need read/modify/write of last changed EEPROM word
 830		 * only the first byte of the word is being modified
 831		 */
 832		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 833				   &eeprom_buff[last_word - first_word]);
 834	}
 835
 836	/* Device's eeprom is always little-endian, word addressable */
 837	for (i = 0; i < last_word - first_word + 1; i++)
 838		le16_to_cpus(&eeprom_buff[i]);
 839
 840	memcpy(ptr, bytes, eeprom->len);
 841
 842	for (i = 0; i < last_word - first_word + 1; i++)
 843		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 844
 845	ret_val = hw->nvm.ops.write(hw, first_word,
 846				    last_word - first_word + 1, eeprom_buff);
 847
 848	/* Update the checksum if nvm write succeeded */
 849	if (ret_val == 0)
 850		hw->nvm.ops.update(hw);
 851
 852	igb_set_fw_version(adapter);
 853	kfree(eeprom_buff);
 854	return ret_val;
 855}
 856
 857static void igb_get_drvinfo(struct net_device *netdev,
 858			    struct ethtool_drvinfo *drvinfo)
 859{
 860	struct igb_adapter *adapter = netdev_priv(netdev);
 861
 862	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 863	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 864
 865	/* EEPROM image version # is reported as firmware version # for
 866	 * 82575 controllers
 867	 */
 868	strlcpy(drvinfo->fw_version, adapter->fw_version,
 869		sizeof(drvinfo->fw_version));
 870	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 871		sizeof(drvinfo->bus_info));
 872
 873	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 874}
 875
 876static void igb_get_ringparam(struct net_device *netdev,
 877			      struct ethtool_ringparam *ring)
 878{
 879	struct igb_adapter *adapter = netdev_priv(netdev);
 880
 881	ring->rx_max_pending = IGB_MAX_RXD;
 882	ring->tx_max_pending = IGB_MAX_TXD;
 883	ring->rx_pending = adapter->rx_ring_count;
 884	ring->tx_pending = adapter->tx_ring_count;
 885}
 886
 887static int igb_set_ringparam(struct net_device *netdev,
 888			     struct ethtool_ringparam *ring)
 889{
 890	struct igb_adapter *adapter = netdev_priv(netdev);
 891	struct igb_ring *temp_ring;
 892	int i, err = 0;
 893	u16 new_rx_count, new_tx_count;
 894
 895	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 896		return -EINVAL;
 897
 898	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 899	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 900	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 901
 902	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 903	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 904	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 905
 906	if ((new_tx_count == adapter->tx_ring_count) &&
 907	    (new_rx_count == adapter->rx_ring_count)) {
 908		/* nothing to do */
 909		return 0;
 910	}
 911
 912	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 913		usleep_range(1000, 2000);
 914
 915	if (!netif_running(adapter->netdev)) {
 916		for (i = 0; i < adapter->num_tx_queues; i++)
 917			adapter->tx_ring[i]->count = new_tx_count;
 918		for (i = 0; i < adapter->num_rx_queues; i++)
 919			adapter->rx_ring[i]->count = new_rx_count;
 920		adapter->tx_ring_count = new_tx_count;
 921		adapter->rx_ring_count = new_rx_count;
 922		goto clear_reset;
 923	}
 924
 925	if (adapter->num_tx_queues > adapter->num_rx_queues)
 926		temp_ring = vmalloc(adapter->num_tx_queues *
 927				    sizeof(struct igb_ring));
 928	else
 929		temp_ring = vmalloc(adapter->num_rx_queues *
 930				    sizeof(struct igb_ring));
 931
 932	if (!temp_ring) {
 933		err = -ENOMEM;
 934		goto clear_reset;
 935	}
 936
 937	igb_down(adapter);
 938
 939	/* We can't just free everything and then setup again,
 940	 * because the ISRs in MSI-X mode get passed pointers
 941	 * to the Tx and Rx ring structs.
 942	 */
 943	if (new_tx_count != adapter->tx_ring_count) {
 944		for (i = 0; i < adapter->num_tx_queues; i++) {
 945			memcpy(&temp_ring[i], adapter->tx_ring[i],
 946			       sizeof(struct igb_ring));
 947
 948			temp_ring[i].count = new_tx_count;
 949			err = igb_setup_tx_resources(&temp_ring[i]);
 950			if (err) {
 951				while (i) {
 952					i--;
 953					igb_free_tx_resources(&temp_ring[i]);
 954				}
 955				goto err_setup;
 956			}
 957		}
 958
 959		for (i = 0; i < adapter->num_tx_queues; i++) {
 960			igb_free_tx_resources(adapter->tx_ring[i]);
 961
 962			memcpy(adapter->tx_ring[i], &temp_ring[i],
 963			       sizeof(struct igb_ring));
 964		}
 965
 966		adapter->tx_ring_count = new_tx_count;
 967	}
 968
 969	if (new_rx_count != adapter->rx_ring_count) {
 970		for (i = 0; i < adapter->num_rx_queues; i++) {
 971			memcpy(&temp_ring[i], adapter->rx_ring[i],
 972			       sizeof(struct igb_ring));
 973
 974			temp_ring[i].count = new_rx_count;
 975			err = igb_setup_rx_resources(&temp_ring[i]);
 976			if (err) {
 977				while (i) {
 978					i--;
 979					igb_free_rx_resources(&temp_ring[i]);
 980				}
 981				goto err_setup;
 982			}
 983
 984		}
 985
 986		for (i = 0; i < adapter->num_rx_queues; i++) {
 987			igb_free_rx_resources(adapter->rx_ring[i]);
 988
 989			memcpy(adapter->rx_ring[i], &temp_ring[i],
 990			       sizeof(struct igb_ring));
 991		}
 992
 993		adapter->rx_ring_count = new_rx_count;
 994	}
 995err_setup:
 996	igb_up(adapter);
 997	vfree(temp_ring);
 998clear_reset:
 999	clear_bit(__IGB_RESETTING, &adapter->state);
1000	return err;
1001}
1002
1003/* ethtool register test data */
1004struct igb_reg_test {
1005	u16 reg;
1006	u16 reg_offset;
1007	u16 array_len;
1008	u16 test_type;
1009	u32 mask;
1010	u32 write;
1011};
1012
1013/* In the hardware, registers are laid out either singly, in arrays
1014 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1015 * most tests take place on arrays or single registers (handled
1016 * as a single-element array) and special-case the tables.
1017 * Table tests are always pattern tests.
1018 *
1019 * We also make provision for some required setup steps by specifying
1020 * registers to be written without any read-back testing.
1021 */
1022
1023#define PATTERN_TEST	1
1024#define SET_READ_TEST	2
1025#define WRITE_NO_TEST	3
1026#define TABLE32_TEST	4
1027#define TABLE64_TEST_LO	5
1028#define TABLE64_TEST_HI	6
1029
1030/* i210 reg test */
1031static struct igb_reg_test reg_test_i210[] = {
1032	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1033	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1034	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1038	/* RDH is read-only for i210, only test RDT. */
1039	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1041	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1043	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1049	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1050	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1051	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1052						0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1054						0x900FFFFF, 0xFFFFFFFF },
1055	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1056						0xFFFFFFFF, 0xFFFFFFFF },
1057	{ 0, 0, 0, 0, 0 }
1058};
1059
1060/* i350 reg test */
1061static struct igb_reg_test reg_test_i350[] = {
1062	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1064	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1065	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1066	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1070	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1072	/* RDH is read-only for i350, only test RDT. */
1073	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1076	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1077	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1078	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1084	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1088	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1089	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1090	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1091						0xFFFFFFFF, 0xFFFFFFFF },
1092	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1093						0xC3FFFFFF, 0xFFFFFFFF },
1094	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1095						0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1097						0xC3FFFFFF, 0xFFFFFFFF },
1098	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1099						0xFFFFFFFF, 0xFFFFFFFF },
1100	{ 0, 0, 0, 0 }
1101};
1102
1103/* 82580 reg test */
1104static struct igb_reg_test reg_test_82580[] = {
1105	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1107	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1108	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1109	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1113	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1114	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1115	/* RDH is read-only for 82580, only test RDT. */
1116	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1119	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1121	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1128	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1129	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1131	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1132	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1133	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1134						0xFFFFFFFF, 0xFFFFFFFF },
1135	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1136						0x83FFFFFF, 0xFFFFFFFF },
1137	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1138						0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1140						0x83FFFFFF, 0xFFFFFFFF },
1141	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1142						0xFFFFFFFF, 0xFFFFFFFF },
1143	{ 0, 0, 0, 0 }
1144};
1145
1146/* 82576 reg test */
1147static struct igb_reg_test reg_test_82576[] = {
1148	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1150	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1151	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158	/* Enable all RX queues before testing. */
1159	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1160	  E1000_RXDCTL_QUEUE_ENABLE },
1161	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1162	  E1000_RXDCTL_QUEUE_ENABLE },
1163	/* RDH is read-only for 82576, only test RDT. */
1164	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1165	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1166	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1167	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1168	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1169	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1170	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1171	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1177	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1179	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1180	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1181	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1183	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1184	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1185	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186	{ 0, 0, 0, 0 }
1187};
1188
1189/* 82575 register test */
1190static struct igb_reg_test reg_test_82575[] = {
1191	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1193	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1194	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1195	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1196	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1197	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1198	/* Enable all four RX queues before testing. */
1199	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1200	  E1000_RXDCTL_QUEUE_ENABLE },
1201	/* RDH is read-only for 82575, only test RDT. */
1202	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1204	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1205	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1206	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1207	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1208	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1209	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1210	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1212	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1213	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1214	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1215	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1216	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1217	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1218	{ 0, 0, 0, 0 }
1219};
1220
1221static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1222			     int reg, u32 mask, u32 write)
1223{
1224	struct e1000_hw *hw = &adapter->hw;
1225	u32 pat, val;
1226	static const u32 _test[] = {
1227		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1228	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1229		wr32(reg, (_test[pat] & write));
1230		val = rd32(reg) & mask;
1231		if (val != (_test[pat] & write & mask)) {
1232			dev_err(&adapter->pdev->dev,
1233				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1234				reg, val, (_test[pat] & write & mask));
1235			*data = reg;
1236			return true;
1237		}
1238	}
1239
1240	return false;
1241}
1242
1243static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1244			      int reg, u32 mask, u32 write)
1245{
1246	struct e1000_hw *hw = &adapter->hw;
1247	u32 val;
1248
1249	wr32(reg, write & mask);
1250	val = rd32(reg);
1251	if ((write & mask) != (val & mask)) {
1252		dev_err(&adapter->pdev->dev,
1253			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1254			reg, (val & mask), (write & mask));
1255		*data = reg;
1256		return true;
1257	}
1258
1259	return false;
1260}
1261
1262#define REG_PATTERN_TEST(reg, mask, write) \
1263	do { \
1264		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1265			return 1; \
1266	} while (0)
1267
1268#define REG_SET_AND_CHECK(reg, mask, write) \
1269	do { \
1270		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1271			return 1; \
1272	} while (0)
1273
1274static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1275{
1276	struct e1000_hw *hw = &adapter->hw;
1277	struct igb_reg_test *test;
1278	u32 value, before, after;
1279	u32 i, toggle;
1280
1281	switch (adapter->hw.mac.type) {
1282	case e1000_i350:
1283	case e1000_i354:
1284		test = reg_test_i350;
1285		toggle = 0x7FEFF3FF;
1286		break;
1287	case e1000_i210:
1288	case e1000_i211:
1289		test = reg_test_i210;
1290		toggle = 0x7FEFF3FF;
1291		break;
1292	case e1000_82580:
1293		test = reg_test_82580;
1294		toggle = 0x7FEFF3FF;
1295		break;
1296	case e1000_82576:
1297		test = reg_test_82576;
1298		toggle = 0x7FFFF3FF;
1299		break;
1300	default:
1301		test = reg_test_82575;
1302		toggle = 0x7FFFF3FF;
1303		break;
1304	}
1305
1306	/* Because the status register is such a special case,
1307	 * we handle it separately from the rest of the register
1308	 * tests.  Some bits are read-only, some toggle, and some
1309	 * are writable on newer MACs.
1310	 */
1311	before = rd32(E1000_STATUS);
1312	value = (rd32(E1000_STATUS) & toggle);
1313	wr32(E1000_STATUS, toggle);
1314	after = rd32(E1000_STATUS) & toggle;
1315	if (value != after) {
1316		dev_err(&adapter->pdev->dev,
1317			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1318			after, value);
1319		*data = 1;
1320		return 1;
1321	}
1322	/* restore previous status */
1323	wr32(E1000_STATUS, before);
1324
1325	/* Perform the remainder of the register test, looping through
1326	 * the test table until we either fail or reach the null entry.
1327	 */
1328	while (test->reg) {
1329		for (i = 0; i < test->array_len; i++) {
1330			switch (test->test_type) {
1331			case PATTERN_TEST:
1332				REG_PATTERN_TEST(test->reg +
1333						(i * test->reg_offset),
1334						test->mask,
1335						test->write);
1336				break;
1337			case SET_READ_TEST:
1338				REG_SET_AND_CHECK(test->reg +
1339						(i * test->reg_offset),
1340						test->mask,
1341						test->write);
1342				break;
1343			case WRITE_NO_TEST:
1344				writel(test->write,
1345				    (adapter->hw.hw_addr + test->reg)
1346					+ (i * test->reg_offset));
1347				break;
1348			case TABLE32_TEST:
1349				REG_PATTERN_TEST(test->reg + (i * 4),
1350						test->mask,
1351						test->write);
1352				break;
1353			case TABLE64_TEST_LO:
1354				REG_PATTERN_TEST(test->reg + (i * 8),
1355						test->mask,
1356						test->write);
1357				break;
1358			case TABLE64_TEST_HI:
1359				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1360						test->mask,
1361						test->write);
1362				break;
1363			}
1364		}
1365		test++;
1366	}
1367
1368	*data = 0;
1369	return 0;
1370}
1371
1372static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1373{
1374	struct e1000_hw *hw = &adapter->hw;
1375
1376	*data = 0;
1377
1378	/* Validate eeprom on all parts but flashless */
1379	switch (hw->mac.type) {
1380	case e1000_i210:
1381	case e1000_i211:
1382		if (igb_get_flash_presence_i210(hw)) {
1383			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1384				*data = 2;
1385		}
1386		break;
1387	default:
1388		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1389			*data = 2;
1390		break;
1391	}
1392
1393	return *data;
1394}
1395
1396static irqreturn_t igb_test_intr(int irq, void *data)
1397{
1398	struct igb_adapter *adapter = (struct igb_adapter *) data;
1399	struct e1000_hw *hw = &adapter->hw;
1400
1401	adapter->test_icr |= rd32(E1000_ICR);
1402
1403	return IRQ_HANDLED;
1404}
1405
1406static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1407{
1408	struct e1000_hw *hw = &adapter->hw;
1409	struct net_device *netdev = adapter->netdev;
1410	u32 mask, ics_mask, i = 0, shared_int = true;
1411	u32 irq = adapter->pdev->irq;
1412
1413	*data = 0;
1414
1415	/* Hook up test interrupt handler just for this test */
1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417		if (request_irq(adapter->msix_entries[0].vector,
1418				igb_test_intr, 0, netdev->name, adapter)) {
1419			*data = 1;
1420			return -1;
1421		}
1422	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1423		shared_int = false;
1424		if (request_irq(irq,
1425				igb_test_intr, 0, netdev->name, adapter)) {
1426			*data = 1;
1427			return -1;
1428		}
1429	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1430				netdev->name, adapter)) {
1431		shared_int = false;
1432	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1433		 netdev->name, adapter)) {
1434		*data = 1;
1435		return -1;
1436	}
1437	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1438		(shared_int ? "shared" : "unshared"));
1439
1440	/* Disable all the interrupts */
1441	wr32(E1000_IMC, ~0);
1442	wrfl();
1443	usleep_range(10000, 11000);
1444
1445	/* Define all writable bits for ICS */
1446	switch (hw->mac.type) {
1447	case e1000_82575:
1448		ics_mask = 0x37F47EDD;
1449		break;
1450	case e1000_82576:
1451		ics_mask = 0x77D4FBFD;
1452		break;
1453	case e1000_82580:
1454		ics_mask = 0x77DCFED5;
1455		break;
1456	case e1000_i350:
1457	case e1000_i354:
1458	case e1000_i210:
1459	case e1000_i211:
1460		ics_mask = 0x77DCFED5;
1461		break;
1462	default:
1463		ics_mask = 0x7FFFFFFF;
1464		break;
1465	}
1466
1467	/* Test each interrupt */
1468	for (; i < 31; i++) {
1469		/* Interrupt to test */
1470		mask = BIT(i);
1471
1472		if (!(mask & ics_mask))
1473			continue;
1474
1475		if (!shared_int) {
1476			/* Disable the interrupt to be reported in
1477			 * the cause register and then force the same
1478			 * interrupt and see if one gets posted.  If
1479			 * an interrupt was posted to the bus, the
1480			 * test failed.
1481			 */
1482			adapter->test_icr = 0;
1483
1484			/* Flush any pending interrupts */
1485			wr32(E1000_ICR, ~0);
1486
1487			wr32(E1000_IMC, mask);
1488			wr32(E1000_ICS, mask);
1489			wrfl();
1490			usleep_range(10000, 11000);
1491
1492			if (adapter->test_icr & mask) {
1493				*data = 3;
1494				break;
1495			}
1496		}
1497
1498		/* Enable the interrupt to be reported in
1499		 * the cause register and then force the same
1500		 * interrupt and see if one gets posted.  If
1501		 * an interrupt was not posted to the bus, the
1502		 * test failed.
1503		 */
1504		adapter->test_icr = 0;
1505
1506		/* Flush any pending interrupts */
1507		wr32(E1000_ICR, ~0);
1508
1509		wr32(E1000_IMS, mask);
1510		wr32(E1000_ICS, mask);
1511		wrfl();
1512		usleep_range(10000, 11000);
1513
1514		if (!(adapter->test_icr & mask)) {
1515			*data = 4;
1516			break;
1517		}
1518
1519		if (!shared_int) {
1520			/* Disable the other interrupts to be reported in
1521			 * the cause register and then force the other
1522			 * interrupts and see if any get posted.  If
1523			 * an interrupt was posted to the bus, the
1524			 * test failed.
1525			 */
1526			adapter->test_icr = 0;
1527
1528			/* Flush any pending interrupts */
1529			wr32(E1000_ICR, ~0);
1530
1531			wr32(E1000_IMC, ~mask);
1532			wr32(E1000_ICS, ~mask);
1533			wrfl();
1534			usleep_range(10000, 11000);
1535
1536			if (adapter->test_icr & mask) {
1537				*data = 5;
1538				break;
1539			}
1540		}
1541	}
1542
1543	/* Disable all the interrupts */
1544	wr32(E1000_IMC, ~0);
1545	wrfl();
1546	usleep_range(10000, 11000);
1547
1548	/* Unhook test interrupt handler */
1549	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1550		free_irq(adapter->msix_entries[0].vector, adapter);
1551	else
1552		free_irq(irq, adapter);
1553
1554	return *data;
1555}
1556
1557static void igb_free_desc_rings(struct igb_adapter *adapter)
1558{
1559	igb_free_tx_resources(&adapter->test_tx_ring);
1560	igb_free_rx_resources(&adapter->test_rx_ring);
1561}
1562
1563static int igb_setup_desc_rings(struct igb_adapter *adapter)
1564{
1565	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1566	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1567	struct e1000_hw *hw = &adapter->hw;
1568	int ret_val;
1569
1570	/* Setup Tx descriptor ring and Tx buffers */
1571	tx_ring->count = IGB_DEFAULT_TXD;
1572	tx_ring->dev = &adapter->pdev->dev;
1573	tx_ring->netdev = adapter->netdev;
1574	tx_ring->reg_idx = adapter->vfs_allocated_count;
1575
1576	if (igb_setup_tx_resources(tx_ring)) {
1577		ret_val = 1;
1578		goto err_nomem;
1579	}
1580
1581	igb_setup_tctl(adapter);
1582	igb_configure_tx_ring(adapter, tx_ring);
1583
1584	/* Setup Rx descriptor ring and Rx buffers */
1585	rx_ring->count = IGB_DEFAULT_RXD;
1586	rx_ring->dev = &adapter->pdev->dev;
1587	rx_ring->netdev = adapter->netdev;
1588	rx_ring->reg_idx = adapter->vfs_allocated_count;
1589
1590	if (igb_setup_rx_resources(rx_ring)) {
1591		ret_val = 3;
1592		goto err_nomem;
1593	}
1594
1595	/* set the default queue to queue 0 of PF */
1596	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1597
1598	/* enable receive ring */
1599	igb_setup_rctl(adapter);
1600	igb_configure_rx_ring(adapter, rx_ring);
1601
1602	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1603
1604	return 0;
1605
1606err_nomem:
1607	igb_free_desc_rings(adapter);
1608	return ret_val;
1609}
1610
1611static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1612{
1613	struct e1000_hw *hw = &adapter->hw;
1614
1615	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1616	igb_write_phy_reg(hw, 29, 0x001F);
1617	igb_write_phy_reg(hw, 30, 0x8FFC);
1618	igb_write_phy_reg(hw, 29, 0x001A);
1619	igb_write_phy_reg(hw, 30, 0x8FF0);
1620}
1621
1622static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1623{
1624	struct e1000_hw *hw = &adapter->hw;
1625	u32 ctrl_reg = 0;
1626
1627	hw->mac.autoneg = false;
1628
1629	if (hw->phy.type == e1000_phy_m88) {
1630		if (hw->phy.id != I210_I_PHY_ID) {
1631			/* Auto-MDI/MDIX Off */
1632			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1633			/* reset to update Auto-MDI/MDIX */
1634			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1635			/* autoneg off */
1636			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1637		} else {
1638			/* force 1000, set loopback  */
1639			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1640			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1641		}
1642	} else if (hw->phy.type == e1000_phy_82580) {
1643		/* enable MII loopback */
1644		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1645	}
1646
1647	/* add small delay to avoid loopback test failure */
1648	msleep(50);
1649
1650	/* force 1000, set loopback */
1651	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1652
1653	/* Now set up the MAC to the same speed/duplex as the PHY. */
1654	ctrl_reg = rd32(E1000_CTRL);
1655	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1656	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1657		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1658		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1659		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1660		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1661
1662	if (hw->phy.type == e1000_phy_m88)
1663		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1664
1665	wr32(E1000_CTRL, ctrl_reg);
1666
1667	/* Disable the receiver on the PHY so when a cable is plugged in, the
1668	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1669	 */
1670	if (hw->phy.type == e1000_phy_m88)
1671		igb_phy_disable_receiver(adapter);
1672
1673	mdelay(500);
1674	return 0;
1675}
1676
1677static int igb_set_phy_loopback(struct igb_adapter *adapter)
1678{
1679	return igb_integrated_phy_loopback(adapter);
1680}
1681
1682static int igb_setup_loopback_test(struct igb_adapter *adapter)
1683{
1684	struct e1000_hw *hw = &adapter->hw;
1685	u32 reg;
1686
1687	reg = rd32(E1000_CTRL_EXT);
1688
1689	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1690	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1691		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1692		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1693		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1694		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1695		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1696		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1697			/* Enable DH89xxCC MPHY for near end loopback */
1698			reg = rd32(E1000_MPHY_ADDR_CTL);
1699			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1700			E1000_MPHY_PCS_CLK_REG_OFFSET;
1701			wr32(E1000_MPHY_ADDR_CTL, reg);
1702
1703			reg = rd32(E1000_MPHY_DATA);
1704			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1705			wr32(E1000_MPHY_DATA, reg);
1706		}
1707
1708		reg = rd32(E1000_RCTL);
1709		reg |= E1000_RCTL_LBM_TCVR;
1710		wr32(E1000_RCTL, reg);
1711
1712		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1713
1714		reg = rd32(E1000_CTRL);
1715		reg &= ~(E1000_CTRL_RFCE |
1716			 E1000_CTRL_TFCE |
1717			 E1000_CTRL_LRST);
1718		reg |= E1000_CTRL_SLU |
1719		       E1000_CTRL_FD;
1720		wr32(E1000_CTRL, reg);
1721
1722		/* Unset switch control to serdes energy detect */
1723		reg = rd32(E1000_CONNSW);
1724		reg &= ~E1000_CONNSW_ENRGSRC;
1725		wr32(E1000_CONNSW, reg);
1726
1727		/* Unset sigdetect for SERDES loopback on
1728		 * 82580 and newer devices.
1729		 */
1730		if (hw->mac.type >= e1000_82580) {
1731			reg = rd32(E1000_PCS_CFG0);
1732			reg |= E1000_PCS_CFG_IGN_SD;
1733			wr32(E1000_PCS_CFG0, reg);
1734		}
1735
1736		/* Set PCS register for forced speed */
1737		reg = rd32(E1000_PCS_LCTL);
1738		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1739		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1740		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1741		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1742		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1743		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1744		wr32(E1000_PCS_LCTL, reg);
1745
1746		return 0;
1747	}
1748
1749	return igb_set_phy_loopback(adapter);
1750}
1751
1752static void igb_loopback_cleanup(struct igb_adapter *adapter)
1753{
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 rctl;
1756	u16 phy_reg;
1757
1758	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1759	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1760	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1761	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1762	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1763		u32 reg;
1764
1765		/* Disable near end loopback on DH89xxCC */
1766		reg = rd32(E1000_MPHY_ADDR_CTL);
1767		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1768		E1000_MPHY_PCS_CLK_REG_OFFSET;
1769		wr32(E1000_MPHY_ADDR_CTL, reg);
1770
1771		reg = rd32(E1000_MPHY_DATA);
1772		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1773		wr32(E1000_MPHY_DATA, reg);
1774	}
1775
1776	rctl = rd32(E1000_RCTL);
1777	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1778	wr32(E1000_RCTL, rctl);
1779
1780	hw->mac.autoneg = true;
1781	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1782	if (phy_reg & MII_CR_LOOPBACK) {
1783		phy_reg &= ~MII_CR_LOOPBACK;
1784		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1785		igb_phy_sw_reset(hw);
1786	}
1787}
1788
1789static void igb_create_lbtest_frame(struct sk_buff *skb,
1790				    unsigned int frame_size)
1791{
1792	memset(skb->data, 0xFF, frame_size);
1793	frame_size /= 2;
1794	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1795	memset(&skb->data[frame_size + 10], 0xBE, 1);
1796	memset(&skb->data[frame_size + 12], 0xAF, 1);
1797}
1798
1799static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1800				  unsigned int frame_size)
1801{
1802	unsigned char *data;
1803	bool match = true;
1804
1805	frame_size >>= 1;
1806
1807	data = kmap(rx_buffer->page);
1808
1809	if (data[3] != 0xFF ||
1810	    data[frame_size + 10] != 0xBE ||
1811	    data[frame_size + 12] != 0xAF)
1812		match = false;
1813
1814	kunmap(rx_buffer->page);
1815
1816	return match;
1817}
1818
1819static int igb_clean_test_rings(struct igb_ring *rx_ring,
1820				struct igb_ring *tx_ring,
1821				unsigned int size)
1822{
1823	union e1000_adv_rx_desc *rx_desc;
1824	struct igb_rx_buffer *rx_buffer_info;
1825	struct igb_tx_buffer *tx_buffer_info;
1826	u16 rx_ntc, tx_ntc, count = 0;
1827
1828	/* initialize next to clean and descriptor values */
1829	rx_ntc = rx_ring->next_to_clean;
1830	tx_ntc = tx_ring->next_to_clean;
1831	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1832
1833	while (rx_desc->wb.upper.length) {
1834		/* check Rx buffer */
1835		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1836
1837		/* sync Rx buffer for CPU read */
1838		dma_sync_single_for_cpu(rx_ring->dev,
1839					rx_buffer_info->dma,
1840					size,
1841					DMA_FROM_DEVICE);
1842
1843		/* verify contents of skb */
1844		if (igb_check_lbtest_frame(rx_buffer_info, size))
1845			count++;
1846
1847		/* sync Rx buffer for device write */
1848		dma_sync_single_for_device(rx_ring->dev,
1849					   rx_buffer_info->dma,
1850					   size,
1851					   DMA_FROM_DEVICE);
1852
1853		/* unmap buffer on Tx side */
1854		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1855
1856		/* Free all the Tx ring sk_buffs */
1857		dev_kfree_skb_any(tx_buffer_info->skb);
1858
1859		/* unmap skb header data */
1860		dma_unmap_single(tx_ring->dev,
1861				 dma_unmap_addr(tx_buffer_info, dma),
1862				 dma_unmap_len(tx_buffer_info, len),
1863				 DMA_TO_DEVICE);
1864		dma_unmap_len_set(tx_buffer_info, len, 0);
1865
1866		/* increment Rx/Tx next to clean counters */
1867		rx_ntc++;
1868		if (rx_ntc == rx_ring->count)
1869			rx_ntc = 0;
1870		tx_ntc++;
1871		if (tx_ntc == tx_ring->count)
1872			tx_ntc = 0;
1873
1874		/* fetch next descriptor */
1875		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1876	}
1877
1878	netdev_tx_reset_queue(txring_txq(tx_ring));
1879
1880	/* re-map buffers to ring, store next to clean values */
1881	igb_alloc_rx_buffers(rx_ring, count);
1882	rx_ring->next_to_clean = rx_ntc;
1883	tx_ring->next_to_clean = tx_ntc;
1884
1885	return count;
1886}
1887
1888static int igb_run_loopback_test(struct igb_adapter *adapter)
1889{
1890	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1891	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1892	u16 i, j, lc, good_cnt;
1893	int ret_val = 0;
1894	unsigned int size = IGB_RX_HDR_LEN;
1895	netdev_tx_t tx_ret_val;
1896	struct sk_buff *skb;
1897
1898	/* allocate test skb */
1899	skb = alloc_skb(size, GFP_KERNEL);
1900	if (!skb)
1901		return 11;
1902
1903	/* place data into test skb */
1904	igb_create_lbtest_frame(skb, size);
1905	skb_put(skb, size);
1906
1907	/* Calculate the loop count based on the largest descriptor ring
1908	 * The idea is to wrap the largest ring a number of times using 64
1909	 * send/receive pairs during each loop
1910	 */
1911
1912	if (rx_ring->count <= tx_ring->count)
1913		lc = ((tx_ring->count / 64) * 2) + 1;
1914	else
1915		lc = ((rx_ring->count / 64) * 2) + 1;
1916
1917	for (j = 0; j <= lc; j++) { /* loop count loop */
1918		/* reset count of good packets */
1919		good_cnt = 0;
1920
1921		/* place 64 packets on the transmit queue*/
1922		for (i = 0; i < 64; i++) {
1923			skb_get(skb);
1924			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1925			if (tx_ret_val == NETDEV_TX_OK)
1926				good_cnt++;
1927		}
1928
1929		if (good_cnt != 64) {
1930			ret_val = 12;
1931			break;
1932		}
1933
1934		/* allow 200 milliseconds for packets to go from Tx to Rx */
1935		msleep(200);
1936
1937		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1938		if (good_cnt != 64) {
1939			ret_val = 13;
1940			break;
1941		}
1942	} /* end loop count loop */
1943
1944	/* free the original skb */
1945	kfree_skb(skb);
1946
1947	return ret_val;
1948}
1949
1950static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1951{
1952	/* PHY loopback cannot be performed if SoL/IDER
1953	 * sessions are active
1954	 */
1955	if (igb_check_reset_block(&adapter->hw)) {
1956		dev_err(&adapter->pdev->dev,
1957			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1958		*data = 0;
1959		goto out;
1960	}
1961
1962	if (adapter->hw.mac.type == e1000_i354) {
1963		dev_info(&adapter->pdev->dev,
1964			"Loopback test not supported on i354.\n");
1965		*data = 0;
1966		goto out;
1967	}
1968	*data = igb_setup_desc_rings(adapter);
1969	if (*data)
1970		goto out;
1971	*data = igb_setup_loopback_test(adapter);
1972	if (*data)
1973		goto err_loopback;
1974	*data = igb_run_loopback_test(adapter);
1975	igb_loopback_cleanup(adapter);
1976
1977err_loopback:
1978	igb_free_desc_rings(adapter);
1979out:
1980	return *data;
1981}
1982
1983static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1984{
1985	struct e1000_hw *hw = &adapter->hw;
1986	*data = 0;
1987	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1988		int i = 0;
1989
1990		hw->mac.serdes_has_link = false;
1991
1992		/* On some blade server designs, link establishment
1993		 * could take as long as 2-3 minutes
1994		 */
1995		do {
1996			hw->mac.ops.check_for_link(&adapter->hw);
1997			if (hw->mac.serdes_has_link)
1998				return *data;
1999			msleep(20);
2000		} while (i++ < 3750);
2001
2002		*data = 1;
2003	} else {
2004		hw->mac.ops.check_for_link(&adapter->hw);
2005		if (hw->mac.autoneg)
2006			msleep(5000);
2007
2008		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2009			*data = 1;
2010	}
2011	return *data;
2012}
2013
2014static void igb_diag_test(struct net_device *netdev,
2015			  struct ethtool_test *eth_test, u64 *data)
2016{
2017	struct igb_adapter *adapter = netdev_priv(netdev);
2018	u16 autoneg_advertised;
2019	u8 forced_speed_duplex, autoneg;
2020	bool if_running = netif_running(netdev);
2021
2022	set_bit(__IGB_TESTING, &adapter->state);
2023
2024	/* can't do offline tests on media switching devices */
2025	if (adapter->hw.dev_spec._82575.mas_capable)
2026		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2027	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2028		/* Offline tests */
2029
2030		/* save speed, duplex, autoneg settings */
2031		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2032		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2033		autoneg = adapter->hw.mac.autoneg;
2034
2035		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2036
2037		/* power up link for link test */
2038		igb_power_up_link(adapter);
2039
2040		/* Link test performed before hardware reset so autoneg doesn't
2041		 * interfere with test result
2042		 */
2043		if (igb_link_test(adapter, &data[TEST_LINK]))
2044			eth_test->flags |= ETH_TEST_FL_FAILED;
2045
2046		if (if_running)
2047			/* indicate we're in test mode */
2048			igb_close(netdev);
2049		else
2050			igb_reset(adapter);
2051
2052		if (igb_reg_test(adapter, &data[TEST_REG]))
2053			eth_test->flags |= ETH_TEST_FL_FAILED;
2054
2055		igb_reset(adapter);
2056		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2057			eth_test->flags |= ETH_TEST_FL_FAILED;
2058
2059		igb_reset(adapter);
2060		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2061			eth_test->flags |= ETH_TEST_FL_FAILED;
2062
2063		igb_reset(adapter);
2064		/* power up link for loopback test */
2065		igb_power_up_link(adapter);
2066		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2067			eth_test->flags |= ETH_TEST_FL_FAILED;
2068
2069		/* restore speed, duplex, autoneg settings */
2070		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2071		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2072		adapter->hw.mac.autoneg = autoneg;
2073
2074		/* force this routine to wait until autoneg complete/timeout */
2075		adapter->hw.phy.autoneg_wait_to_complete = true;
2076		igb_reset(adapter);
2077		adapter->hw.phy.autoneg_wait_to_complete = false;
2078
2079		clear_bit(__IGB_TESTING, &adapter->state);
2080		if (if_running)
2081			igb_open(netdev);
2082	} else {
2083		dev_info(&adapter->pdev->dev, "online testing starting\n");
2084
2085		/* PHY is powered down when interface is down */
2086		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2087			eth_test->flags |= ETH_TEST_FL_FAILED;
2088		else
2089			data[TEST_LINK] = 0;
2090
2091		/* Online tests aren't run; pass by default */
2092		data[TEST_REG] = 0;
2093		data[TEST_EEP] = 0;
2094		data[TEST_IRQ] = 0;
2095		data[TEST_LOOP] = 0;
2096
2097		clear_bit(__IGB_TESTING, &adapter->state);
2098	}
2099	msleep_interruptible(4 * 1000);
2100}
2101
2102static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2103{
2104	struct igb_adapter *adapter = netdev_priv(netdev);
2105
2106	wol->wolopts = 0;
2107
2108	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2109		return;
2110
2111	wol->supported = WAKE_UCAST | WAKE_MCAST |
2112			 WAKE_BCAST | WAKE_MAGIC |
2113			 WAKE_PHY;
2114
2115	/* apply any specific unsupported masks here */
2116	switch (adapter->hw.device_id) {
2117	default:
2118		break;
2119	}
2120
2121	if (adapter->wol & E1000_WUFC_EX)
2122		wol->wolopts |= WAKE_UCAST;
2123	if (adapter->wol & E1000_WUFC_MC)
2124		wol->wolopts |= WAKE_MCAST;
2125	if (adapter->wol & E1000_WUFC_BC)
2126		wol->wolopts |= WAKE_BCAST;
2127	if (adapter->wol & E1000_WUFC_MAG)
2128		wol->wolopts |= WAKE_MAGIC;
2129	if (adapter->wol & E1000_WUFC_LNKC)
2130		wol->wolopts |= WAKE_PHY;
2131}
2132
2133static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2134{
2135	struct igb_adapter *adapter = netdev_priv(netdev);
2136
2137	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2138		return -EOPNOTSUPP;
2139
2140	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2141		return wol->wolopts ? -EOPNOTSUPP : 0;
2142
2143	/* these settings will always override what we currently have */
2144	adapter->wol = 0;
2145
2146	if (wol->wolopts & WAKE_UCAST)
2147		adapter->wol |= E1000_WUFC_EX;
2148	if (wol->wolopts & WAKE_MCAST)
2149		adapter->wol |= E1000_WUFC_MC;
2150	if (wol->wolopts & WAKE_BCAST)
2151		adapter->wol |= E1000_WUFC_BC;
2152	if (wol->wolopts & WAKE_MAGIC)
2153		adapter->wol |= E1000_WUFC_MAG;
2154	if (wol->wolopts & WAKE_PHY)
2155		adapter->wol |= E1000_WUFC_LNKC;
2156	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2157
2158	return 0;
2159}
2160
2161/* bit defines for adapter->led_status */
2162#define IGB_LED_ON		0
2163
2164static int igb_set_phys_id(struct net_device *netdev,
2165			   enum ethtool_phys_id_state state)
2166{
2167	struct igb_adapter *adapter = netdev_priv(netdev);
2168	struct e1000_hw *hw = &adapter->hw;
2169
2170	switch (state) {
2171	case ETHTOOL_ID_ACTIVE:
2172		igb_blink_led(hw);
2173		return 2;
2174	case ETHTOOL_ID_ON:
2175		igb_blink_led(hw);
2176		break;
2177	case ETHTOOL_ID_OFF:
2178		igb_led_off(hw);
2179		break;
2180	case ETHTOOL_ID_INACTIVE:
2181		igb_led_off(hw);
2182		clear_bit(IGB_LED_ON, &adapter->led_status);
2183		igb_cleanup_led(hw);
2184		break;
2185	}
2186
2187	return 0;
2188}
2189
2190static int igb_set_coalesce(struct net_device *netdev,
2191			    struct ethtool_coalesce *ec)
2192{
2193	struct igb_adapter *adapter = netdev_priv(netdev);
2194	int i;
2195
2196	if (ec->rx_max_coalesced_frames ||
2197	    ec->rx_coalesce_usecs_irq ||
2198	    ec->rx_max_coalesced_frames_irq ||
2199	    ec->tx_max_coalesced_frames ||
2200	    ec->tx_coalesce_usecs_irq ||
2201	    ec->stats_block_coalesce_usecs ||
2202	    ec->use_adaptive_rx_coalesce ||
2203	    ec->use_adaptive_tx_coalesce ||
2204	    ec->pkt_rate_low ||
2205	    ec->rx_coalesce_usecs_low ||
2206	    ec->rx_max_coalesced_frames_low ||
2207	    ec->tx_coalesce_usecs_low ||
2208	    ec->tx_max_coalesced_frames_low ||
2209	    ec->pkt_rate_high ||
2210	    ec->rx_coalesce_usecs_high ||
2211	    ec->rx_max_coalesced_frames_high ||
2212	    ec->tx_coalesce_usecs_high ||
2213	    ec->tx_max_coalesced_frames_high ||
2214	    ec->rate_sample_interval)
2215		return -ENOTSUPP;
2216
2217	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2218	    ((ec->rx_coalesce_usecs > 3) &&
2219	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2220	    (ec->rx_coalesce_usecs == 2))
2221		return -EINVAL;
2222
2223	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2224	    ((ec->tx_coalesce_usecs > 3) &&
2225	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2226	    (ec->tx_coalesce_usecs == 2))
2227		return -EINVAL;
2228
2229	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2230		return -EINVAL;
2231
2232	/* If ITR is disabled, disable DMAC */
2233	if (ec->rx_coalesce_usecs == 0) {
2234		if (adapter->flags & IGB_FLAG_DMAC)
2235			adapter->flags &= ~IGB_FLAG_DMAC;
2236	}
2237
2238	/* convert to rate of irq's per second */
2239	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2240		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2241	else
2242		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2243
2244	/* convert to rate of irq's per second */
2245	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2246		adapter->tx_itr_setting = adapter->rx_itr_setting;
2247	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2248		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2249	else
2250		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2251
2252	for (i = 0; i < adapter->num_q_vectors; i++) {
2253		struct igb_q_vector *q_vector = adapter->q_vector[i];
2254		q_vector->tx.work_limit = adapter->tx_work_limit;
2255		if (q_vector->rx.ring)
2256			q_vector->itr_val = adapter->rx_itr_setting;
2257		else
2258			q_vector->itr_val = adapter->tx_itr_setting;
2259		if (q_vector->itr_val && q_vector->itr_val <= 3)
2260			q_vector->itr_val = IGB_START_ITR;
2261		q_vector->set_itr = 1;
2262	}
2263
2264	return 0;
2265}
2266
2267static int igb_get_coalesce(struct net_device *netdev,
2268			    struct ethtool_coalesce *ec)
2269{
2270	struct igb_adapter *adapter = netdev_priv(netdev);
2271
2272	if (adapter->rx_itr_setting <= 3)
2273		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2274	else
2275		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2276
2277	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2278		if (adapter->tx_itr_setting <= 3)
2279			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2280		else
2281			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2282	}
2283
2284	return 0;
2285}
2286
2287static int igb_nway_reset(struct net_device *netdev)
2288{
2289	struct igb_adapter *adapter = netdev_priv(netdev);
2290	if (netif_running(netdev))
2291		igb_reinit_locked(adapter);
2292	return 0;
2293}
2294
2295static int igb_get_sset_count(struct net_device *netdev, int sset)
2296{
2297	switch (sset) {
2298	case ETH_SS_STATS:
2299		return IGB_STATS_LEN;
2300	case ETH_SS_TEST:
2301		return IGB_TEST_LEN;
2302	case ETH_SS_PRIV_FLAGS:
2303		return IGB_PRIV_FLAGS_STR_LEN;
2304	default:
2305		return -ENOTSUPP;
2306	}
2307}
2308
2309static void igb_get_ethtool_stats(struct net_device *netdev,
2310				  struct ethtool_stats *stats, u64 *data)
2311{
2312	struct igb_adapter *adapter = netdev_priv(netdev);
2313	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2314	unsigned int start;
2315	struct igb_ring *ring;
2316	int i, j;
2317	char *p;
2318
2319	spin_lock(&adapter->stats64_lock);
2320	igb_update_stats(adapter);
2321
2322	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2323		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2324		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2325			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2326	}
2327	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2328		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2329		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2330			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2331	}
2332	for (j = 0; j < adapter->num_tx_queues; j++) {
2333		u64	restart2;
2334
2335		ring = adapter->tx_ring[j];
2336		do {
2337			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2338			data[i]   = ring->tx_stats.packets;
2339			data[i+1] = ring->tx_stats.bytes;
2340			data[i+2] = ring->tx_stats.restart_queue;
2341		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2342		do {
2343			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2344			restart2  = ring->tx_stats.restart_queue2;
2345		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2346		data[i+2] += restart2;
2347
2348		i += IGB_TX_QUEUE_STATS_LEN;
2349	}
2350	for (j = 0; j < adapter->num_rx_queues; j++) {
2351		ring = adapter->rx_ring[j];
2352		do {
2353			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2354			data[i]   = ring->rx_stats.packets;
2355			data[i+1] = ring->rx_stats.bytes;
2356			data[i+2] = ring->rx_stats.drops;
2357			data[i+3] = ring->rx_stats.csum_err;
2358			data[i+4] = ring->rx_stats.alloc_failed;
2359		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2360		i += IGB_RX_QUEUE_STATS_LEN;
2361	}
2362	spin_unlock(&adapter->stats64_lock);
2363}
2364
2365static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2366{
2367	struct igb_adapter *adapter = netdev_priv(netdev);
2368	u8 *p = data;
2369	int i;
2370
2371	switch (stringset) {
2372	case ETH_SS_TEST:
2373		memcpy(data, *igb_gstrings_test,
2374			IGB_TEST_LEN*ETH_GSTRING_LEN);
2375		break;
2376	case ETH_SS_STATS:
2377		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2378			memcpy(p, igb_gstrings_stats[i].stat_string,
2379			       ETH_GSTRING_LEN);
2380			p += ETH_GSTRING_LEN;
2381		}
2382		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2383			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2384			       ETH_GSTRING_LEN);
2385			p += ETH_GSTRING_LEN;
2386		}
2387		for (i = 0; i < adapter->num_tx_queues; i++) {
2388			sprintf(p, "tx_queue_%u_packets", i);
2389			p += ETH_GSTRING_LEN;
2390			sprintf(p, "tx_queue_%u_bytes", i);
2391			p += ETH_GSTRING_LEN;
2392			sprintf(p, "tx_queue_%u_restart", i);
2393			p += ETH_GSTRING_LEN;
2394		}
2395		for (i = 0; i < adapter->num_rx_queues; i++) {
2396			sprintf(p, "rx_queue_%u_packets", i);
2397			p += ETH_GSTRING_LEN;
2398			sprintf(p, "rx_queue_%u_bytes", i);
2399			p += ETH_GSTRING_LEN;
2400			sprintf(p, "rx_queue_%u_drops", i);
2401			p += ETH_GSTRING_LEN;
2402			sprintf(p, "rx_queue_%u_csum_err", i);
2403			p += ETH_GSTRING_LEN;
2404			sprintf(p, "rx_queue_%u_alloc_failed", i);
2405			p += ETH_GSTRING_LEN;
2406		}
2407		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2408		break;
2409	case ETH_SS_PRIV_FLAGS:
2410		memcpy(data, igb_priv_flags_strings,
2411		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2412		break;
2413	}
2414}
2415
2416static int igb_get_ts_info(struct net_device *dev,
2417			   struct ethtool_ts_info *info)
2418{
2419	struct igb_adapter *adapter = netdev_priv(dev);
2420
2421	if (adapter->ptp_clock)
2422		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2423	else
2424		info->phc_index = -1;
2425
2426	switch (adapter->hw.mac.type) {
2427	case e1000_82575:
2428		info->so_timestamping =
2429			SOF_TIMESTAMPING_TX_SOFTWARE |
2430			SOF_TIMESTAMPING_RX_SOFTWARE |
2431			SOF_TIMESTAMPING_SOFTWARE;
2432		return 0;
2433	case e1000_82576:
2434	case e1000_82580:
2435	case e1000_i350:
2436	case e1000_i354:
2437	case e1000_i210:
2438	case e1000_i211:
2439		info->so_timestamping =
2440			SOF_TIMESTAMPING_TX_SOFTWARE |
2441			SOF_TIMESTAMPING_RX_SOFTWARE |
2442			SOF_TIMESTAMPING_SOFTWARE |
2443			SOF_TIMESTAMPING_TX_HARDWARE |
2444			SOF_TIMESTAMPING_RX_HARDWARE |
2445			SOF_TIMESTAMPING_RAW_HARDWARE;
2446
2447		info->tx_types =
2448			BIT(HWTSTAMP_TX_OFF) |
2449			BIT(HWTSTAMP_TX_ON);
2450
2451		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2452
2453		/* 82576 does not support timestamping all packets. */
2454		if (adapter->hw.mac.type >= e1000_82580)
2455			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2456		else
2457			info->rx_filters |=
2458				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2459				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2460				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2461
2462		return 0;
2463	default:
2464		return -EOPNOTSUPP;
2465	}
2466}
2467
2468#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2469static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2470				     struct ethtool_rxnfc *cmd)
2471{
2472	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2473	struct igb_nfc_filter *rule = NULL;
2474
2475	/* report total rule count */
2476	cmd->data = IGB_MAX_RXNFC_FILTERS;
2477
2478	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2479		if (fsp->location <= rule->sw_idx)
2480			break;
2481	}
2482
2483	if (!rule || fsp->location != rule->sw_idx)
2484		return -EINVAL;
2485
2486	if (rule->filter.match_flags) {
2487		fsp->flow_type = ETHER_FLOW;
2488		fsp->ring_cookie = rule->action;
2489		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2490			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2491			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2492		}
2493		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2494			fsp->flow_type |= FLOW_EXT;
2495			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2496			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2497		}
2498		return 0;
2499	}
2500	return -EINVAL;
2501}
2502
2503static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2504				   struct ethtool_rxnfc *cmd,
2505				   u32 *rule_locs)
2506{
2507	struct igb_nfc_filter *rule;
2508	int cnt = 0;
2509
2510	/* report total rule count */
2511	cmd->data = IGB_MAX_RXNFC_FILTERS;
2512
2513	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2514		if (cnt == cmd->rule_cnt)
2515			return -EMSGSIZE;
2516		rule_locs[cnt] = rule->sw_idx;
2517		cnt++;
2518	}
2519
2520	cmd->rule_cnt = cnt;
2521
2522	return 0;
2523}
2524
2525static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2526				 struct ethtool_rxnfc *cmd)
2527{
2528	cmd->data = 0;
2529
2530	/* Report default options for RSS on igb */
2531	switch (cmd->flow_type) {
2532	case TCP_V4_FLOW:
2533		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534		/* Fall through */
2535	case UDP_V4_FLOW:
2536		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2537			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538		/* Fall through */
2539	case SCTP_V4_FLOW:
2540	case AH_ESP_V4_FLOW:
2541	case AH_V4_FLOW:
2542	case ESP_V4_FLOW:
2543	case IPV4_FLOW:
2544		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545		break;
2546	case TCP_V6_FLOW:
2547		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2548		/* Fall through */
2549	case UDP_V6_FLOW:
2550		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2551			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2552		/* Fall through */
2553	case SCTP_V6_FLOW:
2554	case AH_ESP_V6_FLOW:
2555	case AH_V6_FLOW:
2556	case ESP_V6_FLOW:
2557	case IPV6_FLOW:
2558		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2559		break;
2560	default:
2561		return -EINVAL;
2562	}
2563
2564	return 0;
2565}
2566
2567static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2568			 u32 *rule_locs)
2569{
2570	struct igb_adapter *adapter = netdev_priv(dev);
2571	int ret = -EOPNOTSUPP;
2572
2573	switch (cmd->cmd) {
2574	case ETHTOOL_GRXRINGS:
2575		cmd->data = adapter->num_rx_queues;
2576		ret = 0;
2577		break;
2578	case ETHTOOL_GRXCLSRLCNT:
2579		cmd->rule_cnt = adapter->nfc_filter_count;
2580		ret = 0;
2581		break;
2582	case ETHTOOL_GRXCLSRULE:
2583		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2584		break;
2585	case ETHTOOL_GRXCLSRLALL:
2586		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2587		break;
2588	case ETHTOOL_GRXFH:
2589		ret = igb_get_rss_hash_opts(adapter, cmd);
2590		break;
2591	default:
2592		break;
2593	}
2594
2595	return ret;
2596}
2597
2598#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2599		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2600static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2601				struct ethtool_rxnfc *nfc)
2602{
2603	u32 flags = adapter->flags;
2604
2605	/* RSS does not support anything other than hashing
2606	 * to queues on src and dst IPs and ports
2607	 */
2608	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2609			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2610		return -EINVAL;
2611
2612	switch (nfc->flow_type) {
2613	case TCP_V4_FLOW:
2614	case TCP_V6_FLOW:
2615		if (!(nfc->data & RXH_IP_SRC) ||
2616		    !(nfc->data & RXH_IP_DST) ||
2617		    !(nfc->data & RXH_L4_B_0_1) ||
2618		    !(nfc->data & RXH_L4_B_2_3))
2619			return -EINVAL;
2620		break;
2621	case UDP_V4_FLOW:
2622		if (!(nfc->data & RXH_IP_SRC) ||
2623		    !(nfc->data & RXH_IP_DST))
2624			return -EINVAL;
2625		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2626		case 0:
2627			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2628			break;
2629		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2630			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2631			break;
2632		default:
2633			return -EINVAL;
2634		}
2635		break;
2636	case UDP_V6_FLOW:
2637		if (!(nfc->data & RXH_IP_SRC) ||
2638		    !(nfc->data & RXH_IP_DST))
2639			return -EINVAL;
2640		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2641		case 0:
2642			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2643			break;
2644		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2645			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2646			break;
2647		default:
2648			return -EINVAL;
2649		}
2650		break;
2651	case AH_ESP_V4_FLOW:
2652	case AH_V4_FLOW:
2653	case ESP_V4_FLOW:
2654	case SCTP_V4_FLOW:
2655	case AH_ESP_V6_FLOW:
2656	case AH_V6_FLOW:
2657	case ESP_V6_FLOW:
2658	case SCTP_V6_FLOW:
2659		if (!(nfc->data & RXH_IP_SRC) ||
2660		    !(nfc->data & RXH_IP_DST) ||
2661		    (nfc->data & RXH_L4_B_0_1) ||
2662		    (nfc->data & RXH_L4_B_2_3))
2663			return -EINVAL;
2664		break;
2665	default:
2666		return -EINVAL;
2667	}
2668
2669	/* if we changed something we need to update flags */
2670	if (flags != adapter->flags) {
2671		struct e1000_hw *hw = &adapter->hw;
2672		u32 mrqc = rd32(E1000_MRQC);
2673
2674		if ((flags & UDP_RSS_FLAGS) &&
2675		    !(adapter->flags & UDP_RSS_FLAGS))
2676			dev_err(&adapter->pdev->dev,
2677				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2678
2679		adapter->flags = flags;
2680
2681		/* Perform hash on these packet types */
2682		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2683			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2684			E1000_MRQC_RSS_FIELD_IPV6 |
2685			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2686
2687		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2688			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2689
2690		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2691			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2692
2693		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2694			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2695
2696		wr32(E1000_MRQC, mrqc);
2697	}
2698
2699	return 0;
2700}
2701
2702static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2703					struct igb_nfc_filter *input)
2704{
2705	struct e1000_hw *hw = &adapter->hw;
2706	u8 i;
2707	u32 etqf;
2708	u16 etype;
2709
2710	/* find an empty etype filter register */
2711	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2712		if (!adapter->etype_bitmap[i])
2713			break;
2714	}
2715	if (i == MAX_ETYPE_FILTER) {
2716		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2717		return -EINVAL;
2718	}
2719
2720	adapter->etype_bitmap[i] = true;
2721
2722	etqf = rd32(E1000_ETQF(i));
2723	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2724
2725	etqf |= E1000_ETQF_FILTER_ENABLE;
2726	etqf &= ~E1000_ETQF_ETYPE_MASK;
2727	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2728
2729	etqf &= ~E1000_ETQF_QUEUE_MASK;
2730	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2731		& E1000_ETQF_QUEUE_MASK);
2732	etqf |= E1000_ETQF_QUEUE_ENABLE;
2733
2734	wr32(E1000_ETQF(i), etqf);
2735
2736	input->etype_reg_index = i;
2737
2738	return 0;
2739}
2740
2741static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2742					    struct igb_nfc_filter *input)
2743{
2744	struct e1000_hw *hw = &adapter->hw;
2745	u8 vlan_priority;
2746	u16 queue_index;
2747	u32 vlapqf;
2748
2749	vlapqf = rd32(E1000_VLAPQF);
2750	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2751				>> VLAN_PRIO_SHIFT;
2752	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2753
2754	/* check whether this vlan prio is already set */
2755	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2756	    (queue_index != input->action)) {
2757		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2758		return -EEXIST;
2759	}
2760
2761	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2762	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2763
2764	wr32(E1000_VLAPQF, vlapqf);
2765
2766	return 0;
2767}
2768
2769int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2770{
2771	int err = -EINVAL;
2772
2773	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2774		err = igb_rxnfc_write_etype_filter(adapter, input);
2775		if (err)
2776			return err;
2777	}
2778
2779	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2780		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2781
2782	return err;
2783}
2784
2785static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2786					u16 reg_index)
2787{
2788	struct e1000_hw *hw = &adapter->hw;
2789	u32 etqf = rd32(E1000_ETQF(reg_index));
2790
2791	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2792	etqf &= ~E1000_ETQF_QUEUE_MASK;
2793	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2794
2795	wr32(E1000_ETQF(reg_index), etqf);
2796
2797	adapter->etype_bitmap[reg_index] = false;
2798}
2799
2800static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2801				       u16 vlan_tci)
2802{
2803	struct e1000_hw *hw = &adapter->hw;
2804	u8 vlan_priority;
2805	u32 vlapqf;
2806
2807	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2808
2809	vlapqf = rd32(E1000_VLAPQF);
2810	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2811	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2812						E1000_VLAPQF_QUEUE_MASK);
2813
2814	wr32(E1000_VLAPQF, vlapqf);
2815}
2816
2817int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2818{
2819	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2820		igb_clear_etype_filter_regs(adapter,
2821					    input->etype_reg_index);
2822
2823	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2824		igb_clear_vlan_prio_filter(adapter,
2825					   ntohs(input->filter.vlan_tci));
2826
2827	return 0;
2828}
2829
2830static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2831					struct igb_nfc_filter *input,
2832					u16 sw_idx)
2833{
2834	struct igb_nfc_filter *rule, *parent;
2835	int err = -EINVAL;
2836
2837	parent = NULL;
2838	rule = NULL;
2839
2840	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2841		/* hash found, or no matching entry */
2842		if (rule->sw_idx >= sw_idx)
2843			break;
2844		parent = rule;
2845	}
2846
2847	/* if there is an old rule occupying our place remove it */
2848	if (rule && (rule->sw_idx == sw_idx)) {
2849		if (!input)
2850			err = igb_erase_filter(adapter, rule);
2851
2852		hlist_del(&rule->nfc_node);
2853		kfree(rule);
2854		adapter->nfc_filter_count--;
2855	}
2856
2857	/* If no input this was a delete, err should be 0 if a rule was
2858	 * successfully found and removed from the list else -EINVAL
2859	 */
2860	if (!input)
2861		return err;
2862
2863	/* initialize node */
2864	INIT_HLIST_NODE(&input->nfc_node);
2865
2866	/* add filter to the list */
2867	if (parent)
2868		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2869	else
2870		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2871
2872	/* update counts */
2873	adapter->nfc_filter_count++;
2874
2875	return 0;
2876}
2877
2878static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2879				     struct ethtool_rxnfc *cmd)
2880{
2881	struct net_device *netdev = adapter->netdev;
2882	struct ethtool_rx_flow_spec *fsp =
2883		(struct ethtool_rx_flow_spec *)&cmd->fs;
2884	struct igb_nfc_filter *input, *rule;
2885	int err = 0;
2886
2887	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2888		return -EOPNOTSUPP;
2889
2890	/* Don't allow programming if the action is a queue greater than
2891	 * the number of online Rx queues.
2892	 */
2893	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2894	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2895		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2896		return -EINVAL;
2897	}
2898
2899	/* Don't allow indexes to exist outside of available space */
2900	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2901		dev_err(&adapter->pdev->dev, "Location out of range\n");
2902		return -EINVAL;
2903	}
2904
2905	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2906		return -EINVAL;
2907
2908	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2909	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2910		return -EINVAL;
2911
2912	input = kzalloc(sizeof(*input), GFP_KERNEL);
2913	if (!input)
2914		return -ENOMEM;
2915
2916	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2917		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2918		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2919	}
2920
2921	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2922		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2923			err = -EINVAL;
2924			goto err_out;
2925		}
2926		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2927		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2928	}
2929
2930	input->action = fsp->ring_cookie;
2931	input->sw_idx = fsp->location;
2932
2933	spin_lock(&adapter->nfc_lock);
2934
2935	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2936		if (!memcmp(&input->filter, &rule->filter,
2937			    sizeof(input->filter))) {
2938			err = -EEXIST;
2939			dev_err(&adapter->pdev->dev,
2940				"ethtool: this filter is already set\n");
2941			goto err_out_w_lock;
2942		}
2943	}
2944
2945	err = igb_add_filter(adapter, input);
2946	if (err)
2947		goto err_out_w_lock;
2948
2949	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2950
2951	spin_unlock(&adapter->nfc_lock);
2952	return 0;
2953
2954err_out_w_lock:
2955	spin_unlock(&adapter->nfc_lock);
2956err_out:
2957	kfree(input);
2958	return err;
2959}
2960
2961static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2962				     struct ethtool_rxnfc *cmd)
2963{
2964	struct ethtool_rx_flow_spec *fsp =
2965		(struct ethtool_rx_flow_spec *)&cmd->fs;
2966	int err;
2967
2968	spin_lock(&adapter->nfc_lock);
2969	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2970	spin_unlock(&adapter->nfc_lock);
2971
2972	return err;
2973}
2974
2975static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2976{
2977	struct igb_adapter *adapter = netdev_priv(dev);
2978	int ret = -EOPNOTSUPP;
2979
2980	switch (cmd->cmd) {
2981	case ETHTOOL_SRXFH:
2982		ret = igb_set_rss_hash_opt(adapter, cmd);
2983		break;
2984	case ETHTOOL_SRXCLSRLINS:
2985		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2986		break;
2987	case ETHTOOL_SRXCLSRLDEL:
2988		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2989	default:
2990		break;
2991	}
2992
2993	return ret;
2994}
2995
2996static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2997{
2998	struct igb_adapter *adapter = netdev_priv(netdev);
2999	struct e1000_hw *hw = &adapter->hw;
3000	u32 ret_val;
3001	u16 phy_data;
3002
3003	if ((hw->mac.type < e1000_i350) ||
3004	    (hw->phy.media_type != e1000_media_type_copper))
3005		return -EOPNOTSUPP;
3006
3007	edata->supported = (SUPPORTED_1000baseT_Full |
3008			    SUPPORTED_100baseT_Full);
3009	if (!hw->dev_spec._82575.eee_disable)
3010		edata->advertised =
3011			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3012
3013	/* The IPCNFG and EEER registers are not supported on I354. */
3014	if (hw->mac.type == e1000_i354) {
3015		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3016	} else {
3017		u32 eeer;
3018
3019		eeer = rd32(E1000_EEER);
3020
3021		/* EEE status on negotiated link */
3022		if (eeer & E1000_EEER_EEE_NEG)
3023			edata->eee_active = true;
3024
3025		if (eeer & E1000_EEER_TX_LPI_EN)
3026			edata->tx_lpi_enabled = true;
3027	}
3028
3029	/* EEE Link Partner Advertised */
3030	switch (hw->mac.type) {
3031	case e1000_i350:
3032		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3033					   &phy_data);
3034		if (ret_val)
3035			return -ENODATA;
3036
3037		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3038		break;
3039	case e1000_i354:
3040	case e1000_i210:
3041	case e1000_i211:
3042		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3043					     E1000_EEE_LP_ADV_DEV_I210,
3044					     &phy_data);
3045		if (ret_val)
3046			return -ENODATA;
3047
3048		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3049
3050		break;
3051	default:
3052		break;
3053	}
3054
3055	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3056
3057	if ((hw->mac.type == e1000_i354) &&
3058	    (edata->eee_enabled))
3059		edata->tx_lpi_enabled = true;
3060
3061	/* Report correct negotiated EEE status for devices that
3062	 * wrongly report EEE at half-duplex
3063	 */
3064	if (adapter->link_duplex == HALF_DUPLEX) {
3065		edata->eee_enabled = false;
3066		edata->eee_active = false;
3067		edata->tx_lpi_enabled = false;
3068		edata->advertised &= ~edata->advertised;
3069	}
3070
3071	return 0;
3072}
3073
3074static int igb_set_eee(struct net_device *netdev,
3075		       struct ethtool_eee *edata)
3076{
3077	struct igb_adapter *adapter = netdev_priv(netdev);
3078	struct e1000_hw *hw = &adapter->hw;
3079	struct ethtool_eee eee_curr;
3080	bool adv1g_eee = true, adv100m_eee = true;
3081	s32 ret_val;
3082
3083	if ((hw->mac.type < e1000_i350) ||
3084	    (hw->phy.media_type != e1000_media_type_copper))
3085		return -EOPNOTSUPP;
3086
3087	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3088
3089	ret_val = igb_get_eee(netdev, &eee_curr);
3090	if (ret_val)
3091		return ret_val;
3092
3093	if (eee_curr.eee_enabled) {
3094		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3095			dev_err(&adapter->pdev->dev,
3096				"Setting EEE tx-lpi is not supported\n");
3097			return -EINVAL;
3098		}
3099
3100		/* Tx LPI timer is not implemented currently */
3101		if (edata->tx_lpi_timer) {
3102			dev_err(&adapter->pdev->dev,
3103				"Setting EEE Tx LPI timer is not supported\n");
3104			return -EINVAL;
3105		}
3106
3107		if (!edata->advertised || (edata->advertised &
3108		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3109			dev_err(&adapter->pdev->dev,
3110				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3111			return -EINVAL;
3112		}
3113		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3114		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3115
3116	} else if (!edata->eee_enabled) {
3117		dev_err(&adapter->pdev->dev,
3118			"Setting EEE options are not supported with EEE disabled\n");
3119			return -EINVAL;
3120		}
3121
3122	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3123	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3124		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3125		adapter->flags |= IGB_FLAG_EEE;
3126
3127		/* reset link */
3128		if (netif_running(netdev))
3129			igb_reinit_locked(adapter);
3130		else
3131			igb_reset(adapter);
3132	}
3133
3134	if (hw->mac.type == e1000_i354)
3135		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3136	else
3137		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3138
3139	if (ret_val) {
3140		dev_err(&adapter->pdev->dev,
3141			"Problem setting EEE advertisement options\n");
3142		return -EINVAL;
3143	}
3144
3145	return 0;
3146}
3147
3148static int igb_get_module_info(struct net_device *netdev,
3149			       struct ethtool_modinfo *modinfo)
3150{
3151	struct igb_adapter *adapter = netdev_priv(netdev);
3152	struct e1000_hw *hw = &adapter->hw;
3153	u32 status = 0;
3154	u16 sff8472_rev, addr_mode;
3155	bool page_swap = false;
3156
3157	if ((hw->phy.media_type == e1000_media_type_copper) ||
3158	    (hw->phy.media_type == e1000_media_type_unknown))
3159		return -EOPNOTSUPP;
3160
3161	/* Check whether we support SFF-8472 or not */
3162	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3163	if (status)
3164		return -EIO;
3165
3166	/* addressing mode is not supported */
3167	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3168	if (status)
3169		return -EIO;
3170
3171	/* addressing mode is not supported */
3172	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3173		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3174		page_swap = true;
3175	}
3176
3177	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3178		/* We have an SFP, but it does not support SFF-8472 */
3179		modinfo->type = ETH_MODULE_SFF_8079;
3180		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3181	} else {
3182		/* We have an SFP which supports a revision of SFF-8472 */
3183		modinfo->type = ETH_MODULE_SFF_8472;
3184		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3185	}
3186
3187	return 0;
3188}
3189
3190static int igb_get_module_eeprom(struct net_device *netdev,
3191				 struct ethtool_eeprom *ee, u8 *data)
3192{
3193	struct igb_adapter *adapter = netdev_priv(netdev);
3194	struct e1000_hw *hw = &adapter->hw;
3195	u32 status = 0;
3196	u16 *dataword;
3197	u16 first_word, last_word;
3198	int i = 0;
3199
3200	if (ee->len == 0)
3201		return -EINVAL;
3202
3203	first_word = ee->offset >> 1;
3204	last_word = (ee->offset + ee->len - 1) >> 1;
3205
3206	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3207			   GFP_KERNEL);
3208	if (!dataword)
3209		return -ENOMEM;
3210
3211	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3212	for (i = 0; i < last_word - first_word + 1; i++) {
3213		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3214					      &dataword[i]);
3215		if (status) {
3216			/* Error occurred while reading module */
3217			kfree(dataword);
3218			return -EIO;
3219		}
3220
3221		be16_to_cpus(&dataword[i]);
3222	}
3223
3224	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3225	kfree(dataword);
3226
3227	return 0;
3228}
3229
3230static int igb_ethtool_begin(struct net_device *netdev)
3231{
3232	struct igb_adapter *adapter = netdev_priv(netdev);
3233	pm_runtime_get_sync(&adapter->pdev->dev);
3234	return 0;
3235}
3236
3237static void igb_ethtool_complete(struct net_device *netdev)
3238{
3239	struct igb_adapter *adapter = netdev_priv(netdev);
3240	pm_runtime_put(&adapter->pdev->dev);
3241}
3242
3243static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3244{
3245	return IGB_RETA_SIZE;
3246}
3247
3248static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3249			u8 *hfunc)
3250{
3251	struct igb_adapter *adapter = netdev_priv(netdev);
3252	int i;
3253
3254	if (hfunc)
3255		*hfunc = ETH_RSS_HASH_TOP;
3256	if (!indir)
3257		return 0;
3258	for (i = 0; i < IGB_RETA_SIZE; i++)
3259		indir[i] = adapter->rss_indir_tbl[i];
3260
3261	return 0;
3262}
3263
3264void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3265{
3266	struct e1000_hw *hw = &adapter->hw;
3267	u32 reg = E1000_RETA(0);
3268	u32 shift = 0;
3269	int i = 0;
3270
3271	switch (hw->mac.type) {
3272	case e1000_82575:
3273		shift = 6;
3274		break;
3275	case e1000_82576:
3276		/* 82576 supports 2 RSS queues for SR-IOV */
3277		if (adapter->vfs_allocated_count)
3278			shift = 3;
3279		break;
3280	default:
3281		break;
3282	}
3283
3284	while (i < IGB_RETA_SIZE) {
3285		u32 val = 0;
3286		int j;
3287
3288		for (j = 3; j >= 0; j--) {
3289			val <<= 8;
3290			val |= adapter->rss_indir_tbl[i + j];
3291		}
3292
3293		wr32(reg, val << shift);
3294		reg += 4;
3295		i += 4;
3296	}
3297}
3298
3299static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3300			const u8 *key, const u8 hfunc)
3301{
3302	struct igb_adapter *adapter = netdev_priv(netdev);
3303	struct e1000_hw *hw = &adapter->hw;
3304	int i;
3305	u32 num_queues;
3306
3307	/* We do not allow change in unsupported parameters */
3308	if (key ||
3309	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3310		return -EOPNOTSUPP;
3311	if (!indir)
3312		return 0;
3313
3314	num_queues = adapter->rss_queues;
3315
3316	switch (hw->mac.type) {
3317	case e1000_82576:
3318		/* 82576 supports 2 RSS queues for SR-IOV */
3319		if (adapter->vfs_allocated_count)
3320			num_queues = 2;
3321		break;
3322	default:
3323		break;
3324	}
3325
3326	/* Verify user input. */
3327	for (i = 0; i < IGB_RETA_SIZE; i++)
3328		if (indir[i] >= num_queues)
3329			return -EINVAL;
3330
3331
3332	for (i = 0; i < IGB_RETA_SIZE; i++)
3333		adapter->rss_indir_tbl[i] = indir[i];
3334
3335	igb_write_rss_indir_tbl(adapter);
3336
3337	return 0;
3338}
3339
3340static unsigned int igb_max_channels(struct igb_adapter *adapter)
3341{
3342	return igb_get_max_rss_queues(adapter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343}
3344
3345static void igb_get_channels(struct net_device *netdev,
3346			     struct ethtool_channels *ch)
3347{
3348	struct igb_adapter *adapter = netdev_priv(netdev);
3349
3350	/* Report maximum channels */
3351	ch->max_combined = igb_max_channels(adapter);
3352
3353	/* Report info for other vector */
3354	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3355		ch->max_other = NON_Q_VECTORS;
3356		ch->other_count = NON_Q_VECTORS;
3357	}
3358
3359	ch->combined_count = adapter->rss_queues;
3360}
3361
3362static int igb_set_channels(struct net_device *netdev,
3363			    struct ethtool_channels *ch)
3364{
3365	struct igb_adapter *adapter = netdev_priv(netdev);
3366	unsigned int count = ch->combined_count;
3367	unsigned int max_combined = 0;
3368
3369	/* Verify they are not requesting separate vectors */
3370	if (!count || ch->rx_count || ch->tx_count)
3371		return -EINVAL;
3372
3373	/* Verify other_count is valid and has not been changed */
3374	if (ch->other_count != NON_Q_VECTORS)
3375		return -EINVAL;
3376
3377	/* Verify the number of channels doesn't exceed hw limits */
3378	max_combined = igb_max_channels(adapter);
3379	if (count > max_combined)
3380		return -EINVAL;
3381
3382	if (count != adapter->rss_queues) {
3383		adapter->rss_queues = count;
3384		igb_set_flag_queue_pairs(adapter, max_combined);
3385
3386		/* Hardware has to reinitialize queues and interrupts to
3387		 * match the new configuration.
3388		 */
3389		return igb_reinit_queues(adapter);
3390	}
3391
3392	return 0;
3393}
3394
3395static u32 igb_get_priv_flags(struct net_device *netdev)
3396{
3397	struct igb_adapter *adapter = netdev_priv(netdev);
3398	u32 priv_flags = 0;
3399
3400	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3401		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3402
3403	return priv_flags;
3404}
3405
3406static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3407{
3408	struct igb_adapter *adapter = netdev_priv(netdev);
3409	unsigned int flags = adapter->flags;
3410
3411	flags &= ~IGB_FLAG_RX_LEGACY;
3412	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3413		flags |= IGB_FLAG_RX_LEGACY;
3414
3415	if (flags != adapter->flags) {
3416		adapter->flags = flags;
3417
3418		/* reset interface to repopulate queues */
3419		if (netif_running(netdev))
3420			igb_reinit_locked(adapter);
3421	}
3422
3423	return 0;
3424}
3425
3426static const struct ethtool_ops igb_ethtool_ops = {
 
 
3427	.get_drvinfo		= igb_get_drvinfo,
3428	.get_regs_len		= igb_get_regs_len,
3429	.get_regs		= igb_get_regs,
3430	.get_wol		= igb_get_wol,
3431	.set_wol		= igb_set_wol,
3432	.get_msglevel		= igb_get_msglevel,
3433	.set_msglevel		= igb_set_msglevel,
3434	.nway_reset		= igb_nway_reset,
3435	.get_link		= igb_get_link,
3436	.get_eeprom_len		= igb_get_eeprom_len,
3437	.get_eeprom		= igb_get_eeprom,
3438	.set_eeprom		= igb_set_eeprom,
3439	.get_ringparam		= igb_get_ringparam,
3440	.set_ringparam		= igb_set_ringparam,
3441	.get_pauseparam		= igb_get_pauseparam,
3442	.set_pauseparam		= igb_set_pauseparam,
3443	.self_test		= igb_diag_test,
3444	.get_strings		= igb_get_strings,
3445	.set_phys_id		= igb_set_phys_id,
3446	.get_sset_count		= igb_get_sset_count,
3447	.get_ethtool_stats	= igb_get_ethtool_stats,
3448	.get_coalesce		= igb_get_coalesce,
3449	.set_coalesce		= igb_set_coalesce,
3450	.get_ts_info		= igb_get_ts_info,
3451	.get_rxnfc		= igb_get_rxnfc,
3452	.set_rxnfc		= igb_set_rxnfc,
3453	.get_eee		= igb_get_eee,
3454	.set_eee		= igb_set_eee,
3455	.get_module_info	= igb_get_module_info,
3456	.get_module_eeprom	= igb_get_module_eeprom,
3457	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3458	.get_rxfh		= igb_get_rxfh,
3459	.set_rxfh		= igb_set_rxfh,
3460	.get_channels		= igb_get_channels,
3461	.set_channels		= igb_set_channels,
3462	.get_priv_flags		= igb_get_priv_flags,
3463	.set_priv_flags		= igb_set_priv_flags,
3464	.begin			= igb_ethtool_begin,
3465	.complete		= igb_ethtool_complete,
3466	.get_link_ksettings	= igb_get_link_ksettings,
3467	.set_link_ksettings	= igb_set_link_ksettings,
3468};
3469
3470void igb_set_ethtool_ops(struct net_device *netdev)
3471{
3472	netdev->ethtool_ops = &igb_ethtool_ops;
3473}
v4.10.11
 
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24/* ethtool support for igb */
  25
  26#include <linux/vmalloc.h>
  27#include <linux/netdevice.h>
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/if_ether.h>
  32#include <linux/ethtool.h>
  33#include <linux/sched.h>
  34#include <linux/slab.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/highmem.h>
  37#include <linux/mdio.h>
  38
  39#include "igb.h"
  40
  41struct igb_stats {
  42	char stat_string[ETH_GSTRING_LEN];
  43	int sizeof_stat;
  44	int stat_offset;
  45};
  46
  47#define IGB_STAT(_name, _stat) { \
  48	.stat_string = _name, \
  49	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  50	.stat_offset = offsetof(struct igb_adapter, _stat) \
  51}
  52static const struct igb_stats igb_gstrings_stats[] = {
  53	IGB_STAT("rx_packets", stats.gprc),
  54	IGB_STAT("tx_packets", stats.gptc),
  55	IGB_STAT("rx_bytes", stats.gorc),
  56	IGB_STAT("tx_bytes", stats.gotc),
  57	IGB_STAT("rx_broadcast", stats.bprc),
  58	IGB_STAT("tx_broadcast", stats.bptc),
  59	IGB_STAT("rx_multicast", stats.mprc),
  60	IGB_STAT("tx_multicast", stats.mptc),
  61	IGB_STAT("multicast", stats.mprc),
  62	IGB_STAT("collisions", stats.colc),
  63	IGB_STAT("rx_crc_errors", stats.crcerrs),
  64	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  65	IGB_STAT("rx_missed_errors", stats.mpc),
  66	IGB_STAT("tx_aborted_errors", stats.ecol),
  67	IGB_STAT("tx_carrier_errors", stats.tncrs),
  68	IGB_STAT("tx_window_errors", stats.latecol),
  69	IGB_STAT("tx_abort_late_coll", stats.latecol),
  70	IGB_STAT("tx_deferred_ok", stats.dc),
  71	IGB_STAT("tx_single_coll_ok", stats.scc),
  72	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  73	IGB_STAT("tx_timeout_count", tx_timeout_count),
  74	IGB_STAT("rx_long_length_errors", stats.roc),
  75	IGB_STAT("rx_short_length_errors", stats.ruc),
  76	IGB_STAT("rx_align_errors", stats.algnerrc),
  77	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  78	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  79	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  80	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  81	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  82	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  83	IGB_STAT("rx_long_byte_count", stats.gorc),
  84	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  85	IGB_STAT("tx_smbus", stats.mgptc),
  86	IGB_STAT("rx_smbus", stats.mgprc),
  87	IGB_STAT("dropped_smbus", stats.mgpdc),
  88	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  89	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  90	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  91	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  92	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
 
  93	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94};
  95
  96#define IGB_NETDEV_STAT(_net_stat) { \
  97	.stat_string = __stringify(_net_stat), \
  98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 100}
 101static const struct igb_stats igb_gstrings_net_stats[] = {
 102	IGB_NETDEV_STAT(rx_errors),
 103	IGB_NETDEV_STAT(tx_errors),
 104	IGB_NETDEV_STAT(tx_dropped),
 105	IGB_NETDEV_STAT(rx_length_errors),
 106	IGB_NETDEV_STAT(rx_over_errors),
 107	IGB_NETDEV_STAT(rx_frame_errors),
 108	IGB_NETDEV_STAT(rx_fifo_errors),
 109	IGB_NETDEV_STAT(tx_fifo_errors),
 110	IGB_NETDEV_STAT(tx_heartbeat_errors)
 111};
 112
 113#define IGB_GLOBAL_STATS_LEN	\
 114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 115#define IGB_NETDEV_STATS_LEN	\
 116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 117#define IGB_RX_QUEUE_STATS_LEN \
 118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 119
 120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 121
 122#define IGB_QUEUE_STATS_LEN \
 123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 124	  IGB_RX_QUEUE_STATS_LEN) + \
 125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 126	  IGB_TX_QUEUE_STATS_LEN))
 127#define IGB_STATS_LEN \
 128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 129
 130enum igb_diagnostics_results {
 131	TEST_REG = 0,
 132	TEST_EEP,
 133	TEST_IRQ,
 134	TEST_LOOP,
 135	TEST_LINK
 136};
 137
 138static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 139	[TEST_REG]  = "Register test  (offline)",
 140	[TEST_EEP]  = "Eeprom test    (offline)",
 141	[TEST_IRQ]  = "Interrupt test (offline)",
 142	[TEST_LOOP] = "Loopback test  (offline)",
 143	[TEST_LINK] = "Link test   (on/offline)"
 144};
 145#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 146
 147static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 
 
 
 
 
 
 
 148{
 149	struct igb_adapter *adapter = netdev_priv(netdev);
 150	struct e1000_hw *hw = &adapter->hw;
 151	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 152	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 153	u32 status;
 154	u32 speed;
 
 155
 156	status = rd32(E1000_STATUS);
 157	if (hw->phy.media_type == e1000_media_type_copper) {
 158
 159		ecmd->supported = (SUPPORTED_10baseT_Half |
 160				   SUPPORTED_10baseT_Full |
 161				   SUPPORTED_100baseT_Half |
 162				   SUPPORTED_100baseT_Full |
 163				   SUPPORTED_1000baseT_Full|
 164				   SUPPORTED_Autoneg |
 165				   SUPPORTED_TP |
 166				   SUPPORTED_Pause);
 167		ecmd->advertising = ADVERTISED_TP;
 168
 169		if (hw->mac.autoneg == 1) {
 170			ecmd->advertising |= ADVERTISED_Autoneg;
 171			/* the e1000 autoneg seems to match ethtool nicely */
 172			ecmd->advertising |= hw->phy.autoneg_advertised;
 173		}
 174
 175		ecmd->port = PORT_TP;
 176		ecmd->phy_address = hw->phy.addr;
 177		ecmd->transceiver = XCVR_INTERNAL;
 178	} else {
 179		ecmd->supported = (SUPPORTED_FIBRE |
 180				   SUPPORTED_1000baseKX_Full |
 181				   SUPPORTED_Autoneg |
 182				   SUPPORTED_Pause);
 183		ecmd->advertising = (ADVERTISED_FIBRE |
 184				     ADVERTISED_1000baseKX_Full);
 185		if (hw->mac.type == e1000_i354) {
 186			if ((hw->device_id ==
 187			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 188			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 189				ecmd->supported |= SUPPORTED_2500baseX_Full;
 190				ecmd->supported &=
 191					~SUPPORTED_1000baseKX_Full;
 192				ecmd->advertising |= ADVERTISED_2500baseX_Full;
 193				ecmd->advertising &=
 194					~ADVERTISED_1000baseKX_Full;
 195			}
 196		}
 197		if (eth_flags->e100_base_fx) {
 198			ecmd->supported |= SUPPORTED_100baseT_Full;
 199			ecmd->advertising |= ADVERTISED_100baseT_Full;
 200		}
 201		if (hw->mac.autoneg == 1)
 202			ecmd->advertising |= ADVERTISED_Autoneg;
 203
 204		ecmd->port = PORT_FIBRE;
 205		ecmd->transceiver = XCVR_EXTERNAL;
 206	}
 207	if (hw->mac.autoneg != 1)
 208		ecmd->advertising &= ~(ADVERTISED_Pause |
 209				       ADVERTISED_Asym_Pause);
 210
 211	switch (hw->fc.requested_mode) {
 212	case e1000_fc_full:
 213		ecmd->advertising |= ADVERTISED_Pause;
 214		break;
 215	case e1000_fc_rx_pause:
 216		ecmd->advertising |= (ADVERTISED_Pause |
 217				      ADVERTISED_Asym_Pause);
 218		break;
 219	case e1000_fc_tx_pause:
 220		ecmd->advertising |=  ADVERTISED_Asym_Pause;
 221		break;
 222	default:
 223		ecmd->advertising &= ~(ADVERTISED_Pause |
 224				       ADVERTISED_Asym_Pause);
 225	}
 226	if (status & E1000_STATUS_LU) {
 227		if ((status & E1000_STATUS_2P5_SKU) &&
 228		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 229			speed = SPEED_2500;
 230		} else if (status & E1000_STATUS_SPEED_1000) {
 231			speed = SPEED_1000;
 232		} else if (status & E1000_STATUS_SPEED_100) {
 233			speed = SPEED_100;
 234		} else {
 235			speed = SPEED_10;
 236		}
 237		if ((status & E1000_STATUS_FD) ||
 238		    hw->phy.media_type != e1000_media_type_copper)
 239			ecmd->duplex = DUPLEX_FULL;
 240		else
 241			ecmd->duplex = DUPLEX_HALF;
 242	} else {
 243		speed = SPEED_UNKNOWN;
 244		ecmd->duplex = DUPLEX_UNKNOWN;
 245	}
 246	ethtool_cmd_speed_set(ecmd, speed);
 247	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 248	    hw->mac.autoneg)
 249		ecmd->autoneg = AUTONEG_ENABLE;
 250	else
 251		ecmd->autoneg = AUTONEG_DISABLE;
 252
 253	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 254	if (hw->phy.media_type == e1000_media_type_copper)
 255		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 256						      ETH_TP_MDI;
 257	else
 258		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 259
 260	if (hw->phy.mdix == AUTO_ALL_MODES)
 261		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 262	else
 263		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
 
 
 
 
 
 264
 265	return 0;
 266}
 267
 268static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 269{
 270	struct igb_adapter *adapter = netdev_priv(netdev);
 271	struct e1000_hw *hw = &adapter->hw;
 
 272
 273	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 274	 * cannot be changed
 275	 */
 276	if (igb_check_reset_block(hw)) {
 277		dev_err(&adapter->pdev->dev,
 278			"Cannot change link characteristics when SoL/IDER is active.\n");
 279		return -EINVAL;
 280	}
 281
 282	/* MDI setting is only allowed when autoneg enabled because
 283	 * some hardware doesn't allow MDI setting when speed or
 284	 * duplex is forced.
 285	 */
 286	if (ecmd->eth_tp_mdix_ctrl) {
 287		if (hw->phy.media_type != e1000_media_type_copper)
 288			return -EOPNOTSUPP;
 289
 290		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 291		    (ecmd->autoneg != AUTONEG_ENABLE)) {
 292			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 293			return -EINVAL;
 294		}
 295	}
 296
 297	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 298		usleep_range(1000, 2000);
 299
 300	if (ecmd->autoneg == AUTONEG_ENABLE) {
 
 
 
 301		hw->mac.autoneg = 1;
 302		if (hw->phy.media_type == e1000_media_type_fiber) {
 303			hw->phy.autoneg_advertised = ecmd->advertising |
 304						     ADVERTISED_FIBRE |
 305						     ADVERTISED_Autoneg;
 306			switch (adapter->link_speed) {
 307			case SPEED_2500:
 308				hw->phy.autoneg_advertised =
 309					ADVERTISED_2500baseX_Full;
 310				break;
 311			case SPEED_1000:
 312				hw->phy.autoneg_advertised =
 313					ADVERTISED_1000baseT_Full;
 314				break;
 315			case SPEED_100:
 316				hw->phy.autoneg_advertised =
 317					ADVERTISED_100baseT_Full;
 318				break;
 319			default:
 320				break;
 321			}
 322		} else {
 323			hw->phy.autoneg_advertised = ecmd->advertising |
 324						     ADVERTISED_TP |
 325						     ADVERTISED_Autoneg;
 326		}
 327		ecmd->advertising = hw->phy.autoneg_advertised;
 328		if (adapter->fc_autoneg)
 329			hw->fc.requested_mode = e1000_fc_default;
 330	} else {
 331		u32 speed = ethtool_cmd_speed(ecmd);
 332		/* calling this overrides forced MDI setting */
 333		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 334			clear_bit(__IGB_RESETTING, &adapter->state);
 335			return -EINVAL;
 336		}
 337	}
 338
 339	/* MDI-X => 2; MDI => 1; Auto => 3 */
 340	if (ecmd->eth_tp_mdix_ctrl) {
 341		/* fix up the value for auto (3 => 0) as zero is mapped
 342		 * internally to auto
 343		 */
 344		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 345			hw->phy.mdix = AUTO_ALL_MODES;
 346		else
 347			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
 348	}
 349
 350	/* reset the link */
 351	if (netif_running(adapter->netdev)) {
 352		igb_down(adapter);
 353		igb_up(adapter);
 354	} else
 355		igb_reset(adapter);
 356
 357	clear_bit(__IGB_RESETTING, &adapter->state);
 358	return 0;
 359}
 360
 361static u32 igb_get_link(struct net_device *netdev)
 362{
 363	struct igb_adapter *adapter = netdev_priv(netdev);
 364	struct e1000_mac_info *mac = &adapter->hw.mac;
 365
 366	/* If the link is not reported up to netdev, interrupts are disabled,
 367	 * and so the physical link state may have changed since we last
 368	 * looked. Set get_link_status to make sure that the true link
 369	 * state is interrogated, rather than pulling a cached and possibly
 370	 * stale link state from the driver.
 371	 */
 372	if (!netif_carrier_ok(netdev))
 373		mac->get_link_status = 1;
 374
 375	return igb_has_link(adapter);
 376}
 377
 378static void igb_get_pauseparam(struct net_device *netdev,
 379			       struct ethtool_pauseparam *pause)
 380{
 381	struct igb_adapter *adapter = netdev_priv(netdev);
 382	struct e1000_hw *hw = &adapter->hw;
 383
 384	pause->autoneg =
 385		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 386
 387	if (hw->fc.current_mode == e1000_fc_rx_pause)
 388		pause->rx_pause = 1;
 389	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 390		pause->tx_pause = 1;
 391	else if (hw->fc.current_mode == e1000_fc_full) {
 392		pause->rx_pause = 1;
 393		pause->tx_pause = 1;
 394	}
 395}
 396
 397static int igb_set_pauseparam(struct net_device *netdev,
 398			      struct ethtool_pauseparam *pause)
 399{
 400	struct igb_adapter *adapter = netdev_priv(netdev);
 401	struct e1000_hw *hw = &adapter->hw;
 402	int retval = 0;
 403
 404	/* 100basefx does not support setting link flow control */
 405	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 406		return -EINVAL;
 407
 408	adapter->fc_autoneg = pause->autoneg;
 409
 410	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 411		usleep_range(1000, 2000);
 412
 413	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 414		hw->fc.requested_mode = e1000_fc_default;
 415		if (netif_running(adapter->netdev)) {
 416			igb_down(adapter);
 417			igb_up(adapter);
 418		} else {
 419			igb_reset(adapter);
 420		}
 421	} else {
 422		if (pause->rx_pause && pause->tx_pause)
 423			hw->fc.requested_mode = e1000_fc_full;
 424		else if (pause->rx_pause && !pause->tx_pause)
 425			hw->fc.requested_mode = e1000_fc_rx_pause;
 426		else if (!pause->rx_pause && pause->tx_pause)
 427			hw->fc.requested_mode = e1000_fc_tx_pause;
 428		else if (!pause->rx_pause && !pause->tx_pause)
 429			hw->fc.requested_mode = e1000_fc_none;
 430
 431		hw->fc.current_mode = hw->fc.requested_mode;
 432
 433		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 434			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 435	}
 436
 437	clear_bit(__IGB_RESETTING, &adapter->state);
 438	return retval;
 439}
 440
 441static u32 igb_get_msglevel(struct net_device *netdev)
 442{
 443	struct igb_adapter *adapter = netdev_priv(netdev);
 444	return adapter->msg_enable;
 445}
 446
 447static void igb_set_msglevel(struct net_device *netdev, u32 data)
 448{
 449	struct igb_adapter *adapter = netdev_priv(netdev);
 450	adapter->msg_enable = data;
 451}
 452
 453static int igb_get_regs_len(struct net_device *netdev)
 454{
 455#define IGB_REGS_LEN 739
 456	return IGB_REGS_LEN * sizeof(u32);
 457}
 458
 459static void igb_get_regs(struct net_device *netdev,
 460			 struct ethtool_regs *regs, void *p)
 461{
 462	struct igb_adapter *adapter = netdev_priv(netdev);
 463	struct e1000_hw *hw = &adapter->hw;
 464	u32 *regs_buff = p;
 465	u8 i;
 466
 467	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 468
 469	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 470
 471	/* General Registers */
 472	regs_buff[0] = rd32(E1000_CTRL);
 473	regs_buff[1] = rd32(E1000_STATUS);
 474	regs_buff[2] = rd32(E1000_CTRL_EXT);
 475	regs_buff[3] = rd32(E1000_MDIC);
 476	regs_buff[4] = rd32(E1000_SCTL);
 477	regs_buff[5] = rd32(E1000_CONNSW);
 478	regs_buff[6] = rd32(E1000_VET);
 479	regs_buff[7] = rd32(E1000_LEDCTL);
 480	regs_buff[8] = rd32(E1000_PBA);
 481	regs_buff[9] = rd32(E1000_PBS);
 482	regs_buff[10] = rd32(E1000_FRTIMER);
 483	regs_buff[11] = rd32(E1000_TCPTIMER);
 484
 485	/* NVM Register */
 486	regs_buff[12] = rd32(E1000_EECD);
 487
 488	/* Interrupt */
 489	/* Reading EICS for EICR because they read the
 490	 * same but EICS does not clear on read
 491	 */
 492	regs_buff[13] = rd32(E1000_EICS);
 493	regs_buff[14] = rd32(E1000_EICS);
 494	regs_buff[15] = rd32(E1000_EIMS);
 495	regs_buff[16] = rd32(E1000_EIMC);
 496	regs_buff[17] = rd32(E1000_EIAC);
 497	regs_buff[18] = rd32(E1000_EIAM);
 498	/* Reading ICS for ICR because they read the
 499	 * same but ICS does not clear on read
 500	 */
 501	regs_buff[19] = rd32(E1000_ICS);
 502	regs_buff[20] = rd32(E1000_ICS);
 503	regs_buff[21] = rd32(E1000_IMS);
 504	regs_buff[22] = rd32(E1000_IMC);
 505	regs_buff[23] = rd32(E1000_IAC);
 506	regs_buff[24] = rd32(E1000_IAM);
 507	regs_buff[25] = rd32(E1000_IMIRVP);
 508
 509	/* Flow Control */
 510	regs_buff[26] = rd32(E1000_FCAL);
 511	regs_buff[27] = rd32(E1000_FCAH);
 512	regs_buff[28] = rd32(E1000_FCTTV);
 513	regs_buff[29] = rd32(E1000_FCRTL);
 514	regs_buff[30] = rd32(E1000_FCRTH);
 515	regs_buff[31] = rd32(E1000_FCRTV);
 516
 517	/* Receive */
 518	regs_buff[32] = rd32(E1000_RCTL);
 519	regs_buff[33] = rd32(E1000_RXCSUM);
 520	regs_buff[34] = rd32(E1000_RLPML);
 521	regs_buff[35] = rd32(E1000_RFCTL);
 522	regs_buff[36] = rd32(E1000_MRQC);
 523	regs_buff[37] = rd32(E1000_VT_CTL);
 524
 525	/* Transmit */
 526	regs_buff[38] = rd32(E1000_TCTL);
 527	regs_buff[39] = rd32(E1000_TCTL_EXT);
 528	regs_buff[40] = rd32(E1000_TIPG);
 529	regs_buff[41] = rd32(E1000_DTXCTL);
 530
 531	/* Wake Up */
 532	regs_buff[42] = rd32(E1000_WUC);
 533	regs_buff[43] = rd32(E1000_WUFC);
 534	regs_buff[44] = rd32(E1000_WUS);
 535	regs_buff[45] = rd32(E1000_IPAV);
 536	regs_buff[46] = rd32(E1000_WUPL);
 537
 538	/* MAC */
 539	regs_buff[47] = rd32(E1000_PCS_CFG0);
 540	regs_buff[48] = rd32(E1000_PCS_LCTL);
 541	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 542	regs_buff[50] = rd32(E1000_PCS_ANADV);
 543	regs_buff[51] = rd32(E1000_PCS_LPAB);
 544	regs_buff[52] = rd32(E1000_PCS_NPTX);
 545	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 546
 547	/* Statistics */
 548	regs_buff[54] = adapter->stats.crcerrs;
 549	regs_buff[55] = adapter->stats.algnerrc;
 550	regs_buff[56] = adapter->stats.symerrs;
 551	regs_buff[57] = adapter->stats.rxerrc;
 552	regs_buff[58] = adapter->stats.mpc;
 553	regs_buff[59] = adapter->stats.scc;
 554	regs_buff[60] = adapter->stats.ecol;
 555	regs_buff[61] = adapter->stats.mcc;
 556	regs_buff[62] = adapter->stats.latecol;
 557	regs_buff[63] = adapter->stats.colc;
 558	regs_buff[64] = adapter->stats.dc;
 559	regs_buff[65] = adapter->stats.tncrs;
 560	regs_buff[66] = adapter->stats.sec;
 561	regs_buff[67] = adapter->stats.htdpmc;
 562	regs_buff[68] = adapter->stats.rlec;
 563	regs_buff[69] = adapter->stats.xonrxc;
 564	regs_buff[70] = adapter->stats.xontxc;
 565	regs_buff[71] = adapter->stats.xoffrxc;
 566	regs_buff[72] = adapter->stats.xofftxc;
 567	regs_buff[73] = adapter->stats.fcruc;
 568	regs_buff[74] = adapter->stats.prc64;
 569	regs_buff[75] = adapter->stats.prc127;
 570	regs_buff[76] = adapter->stats.prc255;
 571	regs_buff[77] = adapter->stats.prc511;
 572	regs_buff[78] = adapter->stats.prc1023;
 573	regs_buff[79] = adapter->stats.prc1522;
 574	regs_buff[80] = adapter->stats.gprc;
 575	regs_buff[81] = adapter->stats.bprc;
 576	regs_buff[82] = adapter->stats.mprc;
 577	regs_buff[83] = adapter->stats.gptc;
 578	regs_buff[84] = adapter->stats.gorc;
 579	regs_buff[86] = adapter->stats.gotc;
 580	regs_buff[88] = adapter->stats.rnbc;
 581	regs_buff[89] = adapter->stats.ruc;
 582	regs_buff[90] = adapter->stats.rfc;
 583	regs_buff[91] = adapter->stats.roc;
 584	regs_buff[92] = adapter->stats.rjc;
 585	regs_buff[93] = adapter->stats.mgprc;
 586	regs_buff[94] = adapter->stats.mgpdc;
 587	regs_buff[95] = adapter->stats.mgptc;
 588	regs_buff[96] = adapter->stats.tor;
 589	regs_buff[98] = adapter->stats.tot;
 590	regs_buff[100] = adapter->stats.tpr;
 591	regs_buff[101] = adapter->stats.tpt;
 592	regs_buff[102] = adapter->stats.ptc64;
 593	regs_buff[103] = adapter->stats.ptc127;
 594	regs_buff[104] = adapter->stats.ptc255;
 595	regs_buff[105] = adapter->stats.ptc511;
 596	regs_buff[106] = adapter->stats.ptc1023;
 597	regs_buff[107] = adapter->stats.ptc1522;
 598	regs_buff[108] = adapter->stats.mptc;
 599	regs_buff[109] = adapter->stats.bptc;
 600	regs_buff[110] = adapter->stats.tsctc;
 601	regs_buff[111] = adapter->stats.iac;
 602	regs_buff[112] = adapter->stats.rpthc;
 603	regs_buff[113] = adapter->stats.hgptc;
 604	regs_buff[114] = adapter->stats.hgorc;
 605	regs_buff[116] = adapter->stats.hgotc;
 606	regs_buff[118] = adapter->stats.lenerrs;
 607	regs_buff[119] = adapter->stats.scvpc;
 608	regs_buff[120] = adapter->stats.hrmpc;
 609
 610	for (i = 0; i < 4; i++)
 611		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 612	for (i = 0; i < 4; i++)
 613		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 614	for (i = 0; i < 4; i++)
 615		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 616	for (i = 0; i < 4; i++)
 617		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 618	for (i = 0; i < 4; i++)
 619		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 620	for (i = 0; i < 4; i++)
 621		regs_buff[141 + i] = rd32(E1000_RDH(i));
 622	for (i = 0; i < 4; i++)
 623		regs_buff[145 + i] = rd32(E1000_RDT(i));
 624	for (i = 0; i < 4; i++)
 625		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 626
 627	for (i = 0; i < 10; i++)
 628		regs_buff[153 + i] = rd32(E1000_EITR(i));
 629	for (i = 0; i < 8; i++)
 630		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 631	for (i = 0; i < 8; i++)
 632		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 633	for (i = 0; i < 16; i++)
 634		regs_buff[179 + i] = rd32(E1000_RAL(i));
 635	for (i = 0; i < 16; i++)
 636		regs_buff[195 + i] = rd32(E1000_RAH(i));
 637
 638	for (i = 0; i < 4; i++)
 639		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 640	for (i = 0; i < 4; i++)
 641		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 642	for (i = 0; i < 4; i++)
 643		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 644	for (i = 0; i < 4; i++)
 645		regs_buff[223 + i] = rd32(E1000_TDH(i));
 646	for (i = 0; i < 4; i++)
 647		regs_buff[227 + i] = rd32(E1000_TDT(i));
 648	for (i = 0; i < 4; i++)
 649		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 650	for (i = 0; i < 4; i++)
 651		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 652	for (i = 0; i < 4; i++)
 653		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 654	for (i = 0; i < 4; i++)
 655		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 656
 657	for (i = 0; i < 4; i++)
 658		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 661	for (i = 0; i < 32; i++)
 662		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 663	for (i = 0; i < 128; i++)
 664		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 665	for (i = 0; i < 128; i++)
 666		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 667	for (i = 0; i < 4; i++)
 668		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 669
 670	regs_buff[547] = rd32(E1000_TDFH);
 671	regs_buff[548] = rd32(E1000_TDFT);
 672	regs_buff[549] = rd32(E1000_TDFHS);
 673	regs_buff[550] = rd32(E1000_TDFPC);
 674
 675	if (hw->mac.type > e1000_82580) {
 676		regs_buff[551] = adapter->stats.o2bgptc;
 677		regs_buff[552] = adapter->stats.b2ospc;
 678		regs_buff[553] = adapter->stats.o2bspc;
 679		regs_buff[554] = adapter->stats.b2ogprc;
 680	}
 681
 682	if (hw->mac.type != e1000_82576)
 683		return;
 684	for (i = 0; i < 12; i++)
 685		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 686	for (i = 0; i < 4; i++)
 687		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 688	for (i = 0; i < 12; i++)
 689		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 690	for (i = 0; i < 12; i++)
 691		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 692	for (i = 0; i < 12; i++)
 693		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 694	for (i = 0; i < 12; i++)
 695		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 696	for (i = 0; i < 12; i++)
 697		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 698	for (i = 0; i < 12; i++)
 699		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 700
 701	for (i = 0; i < 12; i++)
 702		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 703	for (i = 0; i < 12; i++)
 704		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 705	for (i = 0; i < 12; i++)
 706		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 707	for (i = 0; i < 12; i++)
 708		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 709	for (i = 0; i < 12; i++)
 710		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 711	for (i = 0; i < 12; i++)
 712		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 713	for (i = 0; i < 12; i++)
 714		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 715	for (i = 0; i < 12; i++)
 716		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 717}
 718
 719static int igb_get_eeprom_len(struct net_device *netdev)
 720{
 721	struct igb_adapter *adapter = netdev_priv(netdev);
 722	return adapter->hw.nvm.word_size * 2;
 723}
 724
 725static int igb_get_eeprom(struct net_device *netdev,
 726			  struct ethtool_eeprom *eeprom, u8 *bytes)
 727{
 728	struct igb_adapter *adapter = netdev_priv(netdev);
 729	struct e1000_hw *hw = &adapter->hw;
 730	u16 *eeprom_buff;
 731	int first_word, last_word;
 732	int ret_val = 0;
 733	u16 i;
 734
 735	if (eeprom->len == 0)
 736		return -EINVAL;
 737
 738	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 739
 740	first_word = eeprom->offset >> 1;
 741	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 742
 743	eeprom_buff = kmalloc(sizeof(u16) *
 744			(last_word - first_word + 1), GFP_KERNEL);
 745	if (!eeprom_buff)
 746		return -ENOMEM;
 747
 748	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 749		ret_val = hw->nvm.ops.read(hw, first_word,
 750					   last_word - first_word + 1,
 751					   eeprom_buff);
 752	else {
 753		for (i = 0; i < last_word - first_word + 1; i++) {
 754			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 755						   &eeprom_buff[i]);
 756			if (ret_val)
 757				break;
 758		}
 759	}
 760
 761	/* Device's eeprom is always little-endian, word addressable */
 762	for (i = 0; i < last_word - first_word + 1; i++)
 763		le16_to_cpus(&eeprom_buff[i]);
 764
 765	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 766			eeprom->len);
 767	kfree(eeprom_buff);
 768
 769	return ret_val;
 770}
 771
 772static int igb_set_eeprom(struct net_device *netdev,
 773			  struct ethtool_eeprom *eeprom, u8 *bytes)
 774{
 775	struct igb_adapter *adapter = netdev_priv(netdev);
 776	struct e1000_hw *hw = &adapter->hw;
 777	u16 *eeprom_buff;
 778	void *ptr;
 779	int max_len, first_word, last_word, ret_val = 0;
 780	u16 i;
 781
 782	if (eeprom->len == 0)
 783		return -EOPNOTSUPP;
 784
 785	if ((hw->mac.type >= e1000_i210) &&
 786	    !igb_get_flash_presence_i210(hw)) {
 787		return -EOPNOTSUPP;
 788	}
 789
 790	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 791		return -EFAULT;
 792
 793	max_len = hw->nvm.word_size * 2;
 794
 795	first_word = eeprom->offset >> 1;
 796	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 797	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 798	if (!eeprom_buff)
 799		return -ENOMEM;
 800
 801	ptr = (void *)eeprom_buff;
 802
 803	if (eeprom->offset & 1) {
 804		/* need read/modify/write of first changed EEPROM word
 805		 * only the second byte of the word is being modified
 806		 */
 807		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 808					    &eeprom_buff[0]);
 809		ptr++;
 810	}
 811	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 812		/* need read/modify/write of last changed EEPROM word
 813		 * only the first byte of the word is being modified
 814		 */
 815		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 816				   &eeprom_buff[last_word - first_word]);
 817	}
 818
 819	/* Device's eeprom is always little-endian, word addressable */
 820	for (i = 0; i < last_word - first_word + 1; i++)
 821		le16_to_cpus(&eeprom_buff[i]);
 822
 823	memcpy(ptr, bytes, eeprom->len);
 824
 825	for (i = 0; i < last_word - first_word + 1; i++)
 826		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 827
 828	ret_val = hw->nvm.ops.write(hw, first_word,
 829				    last_word - first_word + 1, eeprom_buff);
 830
 831	/* Update the checksum if nvm write succeeded */
 832	if (ret_val == 0)
 833		hw->nvm.ops.update(hw);
 834
 835	igb_set_fw_version(adapter);
 836	kfree(eeprom_buff);
 837	return ret_val;
 838}
 839
 840static void igb_get_drvinfo(struct net_device *netdev,
 841			    struct ethtool_drvinfo *drvinfo)
 842{
 843	struct igb_adapter *adapter = netdev_priv(netdev);
 844
 845	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 846	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 847
 848	/* EEPROM image version # is reported as firmware version # for
 849	 * 82575 controllers
 850	 */
 851	strlcpy(drvinfo->fw_version, adapter->fw_version,
 852		sizeof(drvinfo->fw_version));
 853	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 854		sizeof(drvinfo->bus_info));
 
 
 855}
 856
 857static void igb_get_ringparam(struct net_device *netdev,
 858			      struct ethtool_ringparam *ring)
 859{
 860	struct igb_adapter *adapter = netdev_priv(netdev);
 861
 862	ring->rx_max_pending = IGB_MAX_RXD;
 863	ring->tx_max_pending = IGB_MAX_TXD;
 864	ring->rx_pending = adapter->rx_ring_count;
 865	ring->tx_pending = adapter->tx_ring_count;
 866}
 867
 868static int igb_set_ringparam(struct net_device *netdev,
 869			     struct ethtool_ringparam *ring)
 870{
 871	struct igb_adapter *adapter = netdev_priv(netdev);
 872	struct igb_ring *temp_ring;
 873	int i, err = 0;
 874	u16 new_rx_count, new_tx_count;
 875
 876	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 877		return -EINVAL;
 878
 879	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 880	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 881	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 882
 883	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 884	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 885	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 886
 887	if ((new_tx_count == adapter->tx_ring_count) &&
 888	    (new_rx_count == adapter->rx_ring_count)) {
 889		/* nothing to do */
 890		return 0;
 891	}
 892
 893	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 894		usleep_range(1000, 2000);
 895
 896	if (!netif_running(adapter->netdev)) {
 897		for (i = 0; i < adapter->num_tx_queues; i++)
 898			adapter->tx_ring[i]->count = new_tx_count;
 899		for (i = 0; i < adapter->num_rx_queues; i++)
 900			adapter->rx_ring[i]->count = new_rx_count;
 901		adapter->tx_ring_count = new_tx_count;
 902		adapter->rx_ring_count = new_rx_count;
 903		goto clear_reset;
 904	}
 905
 906	if (adapter->num_tx_queues > adapter->num_rx_queues)
 907		temp_ring = vmalloc(adapter->num_tx_queues *
 908				    sizeof(struct igb_ring));
 909	else
 910		temp_ring = vmalloc(adapter->num_rx_queues *
 911				    sizeof(struct igb_ring));
 912
 913	if (!temp_ring) {
 914		err = -ENOMEM;
 915		goto clear_reset;
 916	}
 917
 918	igb_down(adapter);
 919
 920	/* We can't just free everything and then setup again,
 921	 * because the ISRs in MSI-X mode get passed pointers
 922	 * to the Tx and Rx ring structs.
 923	 */
 924	if (new_tx_count != adapter->tx_ring_count) {
 925		for (i = 0; i < adapter->num_tx_queues; i++) {
 926			memcpy(&temp_ring[i], adapter->tx_ring[i],
 927			       sizeof(struct igb_ring));
 928
 929			temp_ring[i].count = new_tx_count;
 930			err = igb_setup_tx_resources(&temp_ring[i]);
 931			if (err) {
 932				while (i) {
 933					i--;
 934					igb_free_tx_resources(&temp_ring[i]);
 935				}
 936				goto err_setup;
 937			}
 938		}
 939
 940		for (i = 0; i < adapter->num_tx_queues; i++) {
 941			igb_free_tx_resources(adapter->tx_ring[i]);
 942
 943			memcpy(adapter->tx_ring[i], &temp_ring[i],
 944			       sizeof(struct igb_ring));
 945		}
 946
 947		adapter->tx_ring_count = new_tx_count;
 948	}
 949
 950	if (new_rx_count != adapter->rx_ring_count) {
 951		for (i = 0; i < adapter->num_rx_queues; i++) {
 952			memcpy(&temp_ring[i], adapter->rx_ring[i],
 953			       sizeof(struct igb_ring));
 954
 955			temp_ring[i].count = new_rx_count;
 956			err = igb_setup_rx_resources(&temp_ring[i]);
 957			if (err) {
 958				while (i) {
 959					i--;
 960					igb_free_rx_resources(&temp_ring[i]);
 961				}
 962				goto err_setup;
 963			}
 964
 965		}
 966
 967		for (i = 0; i < adapter->num_rx_queues; i++) {
 968			igb_free_rx_resources(adapter->rx_ring[i]);
 969
 970			memcpy(adapter->rx_ring[i], &temp_ring[i],
 971			       sizeof(struct igb_ring));
 972		}
 973
 974		adapter->rx_ring_count = new_rx_count;
 975	}
 976err_setup:
 977	igb_up(adapter);
 978	vfree(temp_ring);
 979clear_reset:
 980	clear_bit(__IGB_RESETTING, &adapter->state);
 981	return err;
 982}
 983
 984/* ethtool register test data */
 985struct igb_reg_test {
 986	u16 reg;
 987	u16 reg_offset;
 988	u16 array_len;
 989	u16 test_type;
 990	u32 mask;
 991	u32 write;
 992};
 993
 994/* In the hardware, registers are laid out either singly, in arrays
 995 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 996 * most tests take place on arrays or single registers (handled
 997 * as a single-element array) and special-case the tables.
 998 * Table tests are always pattern tests.
 999 *
1000 * We also make provision for some required setup steps by specifying
1001 * registers to be written without any read-back testing.
1002 */
1003
1004#define PATTERN_TEST	1
1005#define SET_READ_TEST	2
1006#define WRITE_NO_TEST	3
1007#define TABLE32_TEST	4
1008#define TABLE64_TEST_LO	5
1009#define TABLE64_TEST_HI	6
1010
1011/* i210 reg test */
1012static struct igb_reg_test reg_test_i210[] = {
1013	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1015	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1017	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1019	/* RDH is read-only for i210, only test RDT. */
1020	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1022	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1024	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1025	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1027	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1028	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1029	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1030	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1031	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1033						0xFFFFFFFF, 0xFFFFFFFF },
1034	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1035						0x900FFFFF, 0xFFFFFFFF },
1036	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1037						0xFFFFFFFF, 0xFFFFFFFF },
1038	{ 0, 0, 0, 0, 0 }
1039};
1040
1041/* i350 reg test */
1042static struct igb_reg_test reg_test_i350[] = {
1043	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1045	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1047	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1048	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1050	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053	/* RDH is read-only for i350, only test RDT. */
1054	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1057	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1059	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1063	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1064	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1065	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1068	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1069	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1070	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1072						0xFFFFFFFF, 0xFFFFFFFF },
1073	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1074						0xC3FFFFFF, 0xFFFFFFFF },
1075	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1076						0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1078						0xC3FFFFFF, 0xFFFFFFFF },
1079	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1080						0xFFFFFFFF, 0xFFFFFFFF },
1081	{ 0, 0, 0, 0 }
1082};
1083
1084/* 82580 reg test */
1085static struct igb_reg_test reg_test_82580[] = {
1086	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1088	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1091	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1092	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1093	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096	/* RDH is read-only for 82580, only test RDT. */
1097	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1100	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1102	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1103	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1105	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1106	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1108	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1111	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1112	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1113	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1114	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1115						0xFFFFFFFF, 0xFFFFFFFF },
1116	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1117						0x83FFFFFF, 0xFFFFFFFF },
1118	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1119						0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1121						0x83FFFFFF, 0xFFFFFFFF },
1122	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1123						0xFFFFFFFF, 0xFFFFFFFF },
1124	{ 0, 0, 0, 0 }
1125};
1126
1127/* 82576 reg test */
1128static struct igb_reg_test reg_test_82576[] = {
1129	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1131	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1134	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1136	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1137	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1139	/* Enable all RX queues before testing. */
1140	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1141	  E1000_RXDCTL_QUEUE_ENABLE },
1142	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1143	  E1000_RXDCTL_QUEUE_ENABLE },
1144	/* RDH is read-only for 82576, only test RDT. */
1145	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1146	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1148	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1149	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1150	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1151	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1152	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1159	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1160	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1161	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1162	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1163	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1164	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1165	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1166	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ 0, 0, 0, 0 }
1168};
1169
1170/* 82575 register test */
1171static struct igb_reg_test reg_test_82575[] = {
1172	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1174	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179	/* Enable all four RX queues before testing. */
1180	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1181	  E1000_RXDCTL_QUEUE_ENABLE },
1182	/* RDH is read-only for 82575, only test RDT. */
1183	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1184	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1185	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1186	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1187	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1188	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1189	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1191	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1192	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1193	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1194	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1195	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1196	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1197	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1198	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1199	{ 0, 0, 0, 0 }
1200};
1201
1202static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1203			     int reg, u32 mask, u32 write)
1204{
1205	struct e1000_hw *hw = &adapter->hw;
1206	u32 pat, val;
1207	static const u32 _test[] = {
1208		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1209	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1210		wr32(reg, (_test[pat] & write));
1211		val = rd32(reg) & mask;
1212		if (val != (_test[pat] & write & mask)) {
1213			dev_err(&adapter->pdev->dev,
1214				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1215				reg, val, (_test[pat] & write & mask));
1216			*data = reg;
1217			return true;
1218		}
1219	}
1220
1221	return false;
1222}
1223
1224static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1225			      int reg, u32 mask, u32 write)
1226{
1227	struct e1000_hw *hw = &adapter->hw;
1228	u32 val;
1229
1230	wr32(reg, write & mask);
1231	val = rd32(reg);
1232	if ((write & mask) != (val & mask)) {
1233		dev_err(&adapter->pdev->dev,
1234			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1235			reg, (val & mask), (write & mask));
1236		*data = reg;
1237		return true;
1238	}
1239
1240	return false;
1241}
1242
1243#define REG_PATTERN_TEST(reg, mask, write) \
1244	do { \
1245		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1246			return 1; \
1247	} while (0)
1248
1249#define REG_SET_AND_CHECK(reg, mask, write) \
1250	do { \
1251		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1252			return 1; \
1253	} while (0)
1254
1255static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1256{
1257	struct e1000_hw *hw = &adapter->hw;
1258	struct igb_reg_test *test;
1259	u32 value, before, after;
1260	u32 i, toggle;
1261
1262	switch (adapter->hw.mac.type) {
1263	case e1000_i350:
1264	case e1000_i354:
1265		test = reg_test_i350;
1266		toggle = 0x7FEFF3FF;
1267		break;
1268	case e1000_i210:
1269	case e1000_i211:
1270		test = reg_test_i210;
1271		toggle = 0x7FEFF3FF;
1272		break;
1273	case e1000_82580:
1274		test = reg_test_82580;
1275		toggle = 0x7FEFF3FF;
1276		break;
1277	case e1000_82576:
1278		test = reg_test_82576;
1279		toggle = 0x7FFFF3FF;
1280		break;
1281	default:
1282		test = reg_test_82575;
1283		toggle = 0x7FFFF3FF;
1284		break;
1285	}
1286
1287	/* Because the status register is such a special case,
1288	 * we handle it separately from the rest of the register
1289	 * tests.  Some bits are read-only, some toggle, and some
1290	 * are writable on newer MACs.
1291	 */
1292	before = rd32(E1000_STATUS);
1293	value = (rd32(E1000_STATUS) & toggle);
1294	wr32(E1000_STATUS, toggle);
1295	after = rd32(E1000_STATUS) & toggle;
1296	if (value != after) {
1297		dev_err(&adapter->pdev->dev,
1298			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1299			after, value);
1300		*data = 1;
1301		return 1;
1302	}
1303	/* restore previous status */
1304	wr32(E1000_STATUS, before);
1305
1306	/* Perform the remainder of the register test, looping through
1307	 * the test table until we either fail or reach the null entry.
1308	 */
1309	while (test->reg) {
1310		for (i = 0; i < test->array_len; i++) {
1311			switch (test->test_type) {
1312			case PATTERN_TEST:
1313				REG_PATTERN_TEST(test->reg +
1314						(i * test->reg_offset),
1315						test->mask,
1316						test->write);
1317				break;
1318			case SET_READ_TEST:
1319				REG_SET_AND_CHECK(test->reg +
1320						(i * test->reg_offset),
1321						test->mask,
1322						test->write);
1323				break;
1324			case WRITE_NO_TEST:
1325				writel(test->write,
1326				    (adapter->hw.hw_addr + test->reg)
1327					+ (i * test->reg_offset));
1328				break;
1329			case TABLE32_TEST:
1330				REG_PATTERN_TEST(test->reg + (i * 4),
1331						test->mask,
1332						test->write);
1333				break;
1334			case TABLE64_TEST_LO:
1335				REG_PATTERN_TEST(test->reg + (i * 8),
1336						test->mask,
1337						test->write);
1338				break;
1339			case TABLE64_TEST_HI:
1340				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1341						test->mask,
1342						test->write);
1343				break;
1344			}
1345		}
1346		test++;
1347	}
1348
1349	*data = 0;
1350	return 0;
1351}
1352
1353static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1354{
1355	struct e1000_hw *hw = &adapter->hw;
1356
1357	*data = 0;
1358
1359	/* Validate eeprom on all parts but flashless */
1360	switch (hw->mac.type) {
1361	case e1000_i210:
1362	case e1000_i211:
1363		if (igb_get_flash_presence_i210(hw)) {
1364			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1365				*data = 2;
1366		}
1367		break;
1368	default:
1369		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1370			*data = 2;
1371		break;
1372	}
1373
1374	return *data;
1375}
1376
1377static irqreturn_t igb_test_intr(int irq, void *data)
1378{
1379	struct igb_adapter *adapter = (struct igb_adapter *) data;
1380	struct e1000_hw *hw = &adapter->hw;
1381
1382	adapter->test_icr |= rd32(E1000_ICR);
1383
1384	return IRQ_HANDLED;
1385}
1386
1387static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1388{
1389	struct e1000_hw *hw = &adapter->hw;
1390	struct net_device *netdev = adapter->netdev;
1391	u32 mask, ics_mask, i = 0, shared_int = true;
1392	u32 irq = adapter->pdev->irq;
1393
1394	*data = 0;
1395
1396	/* Hook up test interrupt handler just for this test */
1397	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1398		if (request_irq(adapter->msix_entries[0].vector,
1399				igb_test_intr, 0, netdev->name, adapter)) {
1400			*data = 1;
1401			return -1;
1402		}
1403	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1404		shared_int = false;
1405		if (request_irq(irq,
1406				igb_test_intr, 0, netdev->name, adapter)) {
1407			*data = 1;
1408			return -1;
1409		}
1410	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1411				netdev->name, adapter)) {
1412		shared_int = false;
1413	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1414		 netdev->name, adapter)) {
1415		*data = 1;
1416		return -1;
1417	}
1418	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1419		(shared_int ? "shared" : "unshared"));
1420
1421	/* Disable all the interrupts */
1422	wr32(E1000_IMC, ~0);
1423	wrfl();
1424	usleep_range(10000, 11000);
1425
1426	/* Define all writable bits for ICS */
1427	switch (hw->mac.type) {
1428	case e1000_82575:
1429		ics_mask = 0x37F47EDD;
1430		break;
1431	case e1000_82576:
1432		ics_mask = 0x77D4FBFD;
1433		break;
1434	case e1000_82580:
1435		ics_mask = 0x77DCFED5;
1436		break;
1437	case e1000_i350:
1438	case e1000_i354:
1439	case e1000_i210:
1440	case e1000_i211:
1441		ics_mask = 0x77DCFED5;
1442		break;
1443	default:
1444		ics_mask = 0x7FFFFFFF;
1445		break;
1446	}
1447
1448	/* Test each interrupt */
1449	for (; i < 31; i++) {
1450		/* Interrupt to test */
1451		mask = BIT(i);
1452
1453		if (!(mask & ics_mask))
1454			continue;
1455
1456		if (!shared_int) {
1457			/* Disable the interrupt to be reported in
1458			 * the cause register and then force the same
1459			 * interrupt and see if one gets posted.  If
1460			 * an interrupt was posted to the bus, the
1461			 * test failed.
1462			 */
1463			adapter->test_icr = 0;
1464
1465			/* Flush any pending interrupts */
1466			wr32(E1000_ICR, ~0);
1467
1468			wr32(E1000_IMC, mask);
1469			wr32(E1000_ICS, mask);
1470			wrfl();
1471			usleep_range(10000, 11000);
1472
1473			if (adapter->test_icr & mask) {
1474				*data = 3;
1475				break;
1476			}
1477		}
1478
1479		/* Enable the interrupt to be reported in
1480		 * the cause register and then force the same
1481		 * interrupt and see if one gets posted.  If
1482		 * an interrupt was not posted to the bus, the
1483		 * test failed.
1484		 */
1485		adapter->test_icr = 0;
1486
1487		/* Flush any pending interrupts */
1488		wr32(E1000_ICR, ~0);
1489
1490		wr32(E1000_IMS, mask);
1491		wr32(E1000_ICS, mask);
1492		wrfl();
1493		usleep_range(10000, 11000);
1494
1495		if (!(adapter->test_icr & mask)) {
1496			*data = 4;
1497			break;
1498		}
1499
1500		if (!shared_int) {
1501			/* Disable the other interrupts to be reported in
1502			 * the cause register and then force the other
1503			 * interrupts and see if any get posted.  If
1504			 * an interrupt was posted to the bus, the
1505			 * test failed.
1506			 */
1507			adapter->test_icr = 0;
1508
1509			/* Flush any pending interrupts */
1510			wr32(E1000_ICR, ~0);
1511
1512			wr32(E1000_IMC, ~mask);
1513			wr32(E1000_ICS, ~mask);
1514			wrfl();
1515			usleep_range(10000, 11000);
1516
1517			if (adapter->test_icr & mask) {
1518				*data = 5;
1519				break;
1520			}
1521		}
1522	}
1523
1524	/* Disable all the interrupts */
1525	wr32(E1000_IMC, ~0);
1526	wrfl();
1527	usleep_range(10000, 11000);
1528
1529	/* Unhook test interrupt handler */
1530	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1531		free_irq(adapter->msix_entries[0].vector, adapter);
1532	else
1533		free_irq(irq, adapter);
1534
1535	return *data;
1536}
1537
1538static void igb_free_desc_rings(struct igb_adapter *adapter)
1539{
1540	igb_free_tx_resources(&adapter->test_tx_ring);
1541	igb_free_rx_resources(&adapter->test_rx_ring);
1542}
1543
1544static int igb_setup_desc_rings(struct igb_adapter *adapter)
1545{
1546	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1547	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1548	struct e1000_hw *hw = &adapter->hw;
1549	int ret_val;
1550
1551	/* Setup Tx descriptor ring and Tx buffers */
1552	tx_ring->count = IGB_DEFAULT_TXD;
1553	tx_ring->dev = &adapter->pdev->dev;
1554	tx_ring->netdev = adapter->netdev;
1555	tx_ring->reg_idx = adapter->vfs_allocated_count;
1556
1557	if (igb_setup_tx_resources(tx_ring)) {
1558		ret_val = 1;
1559		goto err_nomem;
1560	}
1561
1562	igb_setup_tctl(adapter);
1563	igb_configure_tx_ring(adapter, tx_ring);
1564
1565	/* Setup Rx descriptor ring and Rx buffers */
1566	rx_ring->count = IGB_DEFAULT_RXD;
1567	rx_ring->dev = &adapter->pdev->dev;
1568	rx_ring->netdev = adapter->netdev;
1569	rx_ring->reg_idx = adapter->vfs_allocated_count;
1570
1571	if (igb_setup_rx_resources(rx_ring)) {
1572		ret_val = 3;
1573		goto err_nomem;
1574	}
1575
1576	/* set the default queue to queue 0 of PF */
1577	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1578
1579	/* enable receive ring */
1580	igb_setup_rctl(adapter);
1581	igb_configure_rx_ring(adapter, rx_ring);
1582
1583	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1584
1585	return 0;
1586
1587err_nomem:
1588	igb_free_desc_rings(adapter);
1589	return ret_val;
1590}
1591
1592static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1593{
1594	struct e1000_hw *hw = &adapter->hw;
1595
1596	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1597	igb_write_phy_reg(hw, 29, 0x001F);
1598	igb_write_phy_reg(hw, 30, 0x8FFC);
1599	igb_write_phy_reg(hw, 29, 0x001A);
1600	igb_write_phy_reg(hw, 30, 0x8FF0);
1601}
1602
1603static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1604{
1605	struct e1000_hw *hw = &adapter->hw;
1606	u32 ctrl_reg = 0;
1607
1608	hw->mac.autoneg = false;
1609
1610	if (hw->phy.type == e1000_phy_m88) {
1611		if (hw->phy.id != I210_I_PHY_ID) {
1612			/* Auto-MDI/MDIX Off */
1613			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1614			/* reset to update Auto-MDI/MDIX */
1615			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1616			/* autoneg off */
1617			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1618		} else {
1619			/* force 1000, set loopback  */
1620			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1621			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1622		}
1623	} else if (hw->phy.type == e1000_phy_82580) {
1624		/* enable MII loopback */
1625		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1626	}
1627
1628	/* add small delay to avoid loopback test failure */
1629	msleep(50);
1630
1631	/* force 1000, set loopback */
1632	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1633
1634	/* Now set up the MAC to the same speed/duplex as the PHY. */
1635	ctrl_reg = rd32(E1000_CTRL);
1636	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1637	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1638		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1639		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1640		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1641		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1642
1643	if (hw->phy.type == e1000_phy_m88)
1644		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1645
1646	wr32(E1000_CTRL, ctrl_reg);
1647
1648	/* Disable the receiver on the PHY so when a cable is plugged in, the
1649	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1650	 */
1651	if (hw->phy.type == e1000_phy_m88)
1652		igb_phy_disable_receiver(adapter);
1653
1654	mdelay(500);
1655	return 0;
1656}
1657
1658static int igb_set_phy_loopback(struct igb_adapter *adapter)
1659{
1660	return igb_integrated_phy_loopback(adapter);
1661}
1662
1663static int igb_setup_loopback_test(struct igb_adapter *adapter)
1664{
1665	struct e1000_hw *hw = &adapter->hw;
1666	u32 reg;
1667
1668	reg = rd32(E1000_CTRL_EXT);
1669
1670	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1671	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1672		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1673		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1674		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1675		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1676		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1677		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1678			/* Enable DH89xxCC MPHY for near end loopback */
1679			reg = rd32(E1000_MPHY_ADDR_CTL);
1680			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1681			E1000_MPHY_PCS_CLK_REG_OFFSET;
1682			wr32(E1000_MPHY_ADDR_CTL, reg);
1683
1684			reg = rd32(E1000_MPHY_DATA);
1685			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1686			wr32(E1000_MPHY_DATA, reg);
1687		}
1688
1689		reg = rd32(E1000_RCTL);
1690		reg |= E1000_RCTL_LBM_TCVR;
1691		wr32(E1000_RCTL, reg);
1692
1693		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1694
1695		reg = rd32(E1000_CTRL);
1696		reg &= ~(E1000_CTRL_RFCE |
1697			 E1000_CTRL_TFCE |
1698			 E1000_CTRL_LRST);
1699		reg |= E1000_CTRL_SLU |
1700		       E1000_CTRL_FD;
1701		wr32(E1000_CTRL, reg);
1702
1703		/* Unset switch control to serdes energy detect */
1704		reg = rd32(E1000_CONNSW);
1705		reg &= ~E1000_CONNSW_ENRGSRC;
1706		wr32(E1000_CONNSW, reg);
1707
1708		/* Unset sigdetect for SERDES loopback on
1709		 * 82580 and newer devices.
1710		 */
1711		if (hw->mac.type >= e1000_82580) {
1712			reg = rd32(E1000_PCS_CFG0);
1713			reg |= E1000_PCS_CFG_IGN_SD;
1714			wr32(E1000_PCS_CFG0, reg);
1715		}
1716
1717		/* Set PCS register for forced speed */
1718		reg = rd32(E1000_PCS_LCTL);
1719		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1720		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1721		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1722		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1723		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1724		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1725		wr32(E1000_PCS_LCTL, reg);
1726
1727		return 0;
1728	}
1729
1730	return igb_set_phy_loopback(adapter);
1731}
1732
1733static void igb_loopback_cleanup(struct igb_adapter *adapter)
1734{
1735	struct e1000_hw *hw = &adapter->hw;
1736	u32 rctl;
1737	u16 phy_reg;
1738
1739	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1740	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1741	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1742	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1743	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1744		u32 reg;
1745
1746		/* Disable near end loopback on DH89xxCC */
1747		reg = rd32(E1000_MPHY_ADDR_CTL);
1748		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1749		E1000_MPHY_PCS_CLK_REG_OFFSET;
1750		wr32(E1000_MPHY_ADDR_CTL, reg);
1751
1752		reg = rd32(E1000_MPHY_DATA);
1753		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1754		wr32(E1000_MPHY_DATA, reg);
1755	}
1756
1757	rctl = rd32(E1000_RCTL);
1758	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1759	wr32(E1000_RCTL, rctl);
1760
1761	hw->mac.autoneg = true;
1762	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1763	if (phy_reg & MII_CR_LOOPBACK) {
1764		phy_reg &= ~MII_CR_LOOPBACK;
1765		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1766		igb_phy_sw_reset(hw);
1767	}
1768}
1769
1770static void igb_create_lbtest_frame(struct sk_buff *skb,
1771				    unsigned int frame_size)
1772{
1773	memset(skb->data, 0xFF, frame_size);
1774	frame_size /= 2;
1775	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1776	memset(&skb->data[frame_size + 10], 0xBE, 1);
1777	memset(&skb->data[frame_size + 12], 0xAF, 1);
1778}
1779
1780static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1781				  unsigned int frame_size)
1782{
1783	unsigned char *data;
1784	bool match = true;
1785
1786	frame_size >>= 1;
1787
1788	data = kmap(rx_buffer->page);
1789
1790	if (data[3] != 0xFF ||
1791	    data[frame_size + 10] != 0xBE ||
1792	    data[frame_size + 12] != 0xAF)
1793		match = false;
1794
1795	kunmap(rx_buffer->page);
1796
1797	return match;
1798}
1799
1800static int igb_clean_test_rings(struct igb_ring *rx_ring,
1801				struct igb_ring *tx_ring,
1802				unsigned int size)
1803{
1804	union e1000_adv_rx_desc *rx_desc;
1805	struct igb_rx_buffer *rx_buffer_info;
1806	struct igb_tx_buffer *tx_buffer_info;
1807	u16 rx_ntc, tx_ntc, count = 0;
1808
1809	/* initialize next to clean and descriptor values */
1810	rx_ntc = rx_ring->next_to_clean;
1811	tx_ntc = tx_ring->next_to_clean;
1812	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1813
1814	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1815		/* check Rx buffer */
1816		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1817
1818		/* sync Rx buffer for CPU read */
1819		dma_sync_single_for_cpu(rx_ring->dev,
1820					rx_buffer_info->dma,
1821					IGB_RX_BUFSZ,
1822					DMA_FROM_DEVICE);
1823
1824		/* verify contents of skb */
1825		if (igb_check_lbtest_frame(rx_buffer_info, size))
1826			count++;
1827
1828		/* sync Rx buffer for device write */
1829		dma_sync_single_for_device(rx_ring->dev,
1830					   rx_buffer_info->dma,
1831					   IGB_RX_BUFSZ,
1832					   DMA_FROM_DEVICE);
1833
1834		/* unmap buffer on Tx side */
1835		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1836		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
 
 
 
 
 
 
 
 
 
1837
1838		/* increment Rx/Tx next to clean counters */
1839		rx_ntc++;
1840		if (rx_ntc == rx_ring->count)
1841			rx_ntc = 0;
1842		tx_ntc++;
1843		if (tx_ntc == tx_ring->count)
1844			tx_ntc = 0;
1845
1846		/* fetch next descriptor */
1847		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1848	}
1849
1850	netdev_tx_reset_queue(txring_txq(tx_ring));
1851
1852	/* re-map buffers to ring, store next to clean values */
1853	igb_alloc_rx_buffers(rx_ring, count);
1854	rx_ring->next_to_clean = rx_ntc;
1855	tx_ring->next_to_clean = tx_ntc;
1856
1857	return count;
1858}
1859
1860static int igb_run_loopback_test(struct igb_adapter *adapter)
1861{
1862	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1863	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1864	u16 i, j, lc, good_cnt;
1865	int ret_val = 0;
1866	unsigned int size = IGB_RX_HDR_LEN;
1867	netdev_tx_t tx_ret_val;
1868	struct sk_buff *skb;
1869
1870	/* allocate test skb */
1871	skb = alloc_skb(size, GFP_KERNEL);
1872	if (!skb)
1873		return 11;
1874
1875	/* place data into test skb */
1876	igb_create_lbtest_frame(skb, size);
1877	skb_put(skb, size);
1878
1879	/* Calculate the loop count based on the largest descriptor ring
1880	 * The idea is to wrap the largest ring a number of times using 64
1881	 * send/receive pairs during each loop
1882	 */
1883
1884	if (rx_ring->count <= tx_ring->count)
1885		lc = ((tx_ring->count / 64) * 2) + 1;
1886	else
1887		lc = ((rx_ring->count / 64) * 2) + 1;
1888
1889	for (j = 0; j <= lc; j++) { /* loop count loop */
1890		/* reset count of good packets */
1891		good_cnt = 0;
1892
1893		/* place 64 packets on the transmit queue*/
1894		for (i = 0; i < 64; i++) {
1895			skb_get(skb);
1896			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1897			if (tx_ret_val == NETDEV_TX_OK)
1898				good_cnt++;
1899		}
1900
1901		if (good_cnt != 64) {
1902			ret_val = 12;
1903			break;
1904		}
1905
1906		/* allow 200 milliseconds for packets to go from Tx to Rx */
1907		msleep(200);
1908
1909		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1910		if (good_cnt != 64) {
1911			ret_val = 13;
1912			break;
1913		}
1914	} /* end loop count loop */
1915
1916	/* free the original skb */
1917	kfree_skb(skb);
1918
1919	return ret_val;
1920}
1921
1922static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1923{
1924	/* PHY loopback cannot be performed if SoL/IDER
1925	 * sessions are active
1926	 */
1927	if (igb_check_reset_block(&adapter->hw)) {
1928		dev_err(&adapter->pdev->dev,
1929			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1930		*data = 0;
1931		goto out;
1932	}
1933
1934	if (adapter->hw.mac.type == e1000_i354) {
1935		dev_info(&adapter->pdev->dev,
1936			"Loopback test not supported on i354.\n");
1937		*data = 0;
1938		goto out;
1939	}
1940	*data = igb_setup_desc_rings(adapter);
1941	if (*data)
1942		goto out;
1943	*data = igb_setup_loopback_test(adapter);
1944	if (*data)
1945		goto err_loopback;
1946	*data = igb_run_loopback_test(adapter);
1947	igb_loopback_cleanup(adapter);
1948
1949err_loopback:
1950	igb_free_desc_rings(adapter);
1951out:
1952	return *data;
1953}
1954
1955static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1956{
1957	struct e1000_hw *hw = &adapter->hw;
1958	*data = 0;
1959	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1960		int i = 0;
1961
1962		hw->mac.serdes_has_link = false;
1963
1964		/* On some blade server designs, link establishment
1965		 * could take as long as 2-3 minutes
1966		 */
1967		do {
1968			hw->mac.ops.check_for_link(&adapter->hw);
1969			if (hw->mac.serdes_has_link)
1970				return *data;
1971			msleep(20);
1972		} while (i++ < 3750);
1973
1974		*data = 1;
1975	} else {
1976		hw->mac.ops.check_for_link(&adapter->hw);
1977		if (hw->mac.autoneg)
1978			msleep(5000);
1979
1980		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1981			*data = 1;
1982	}
1983	return *data;
1984}
1985
1986static void igb_diag_test(struct net_device *netdev,
1987			  struct ethtool_test *eth_test, u64 *data)
1988{
1989	struct igb_adapter *adapter = netdev_priv(netdev);
1990	u16 autoneg_advertised;
1991	u8 forced_speed_duplex, autoneg;
1992	bool if_running = netif_running(netdev);
1993
1994	set_bit(__IGB_TESTING, &adapter->state);
1995
1996	/* can't do offline tests on media switching devices */
1997	if (adapter->hw.dev_spec._82575.mas_capable)
1998		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1999	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2000		/* Offline tests */
2001
2002		/* save speed, duplex, autoneg settings */
2003		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2004		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2005		autoneg = adapter->hw.mac.autoneg;
2006
2007		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2008
2009		/* power up link for link test */
2010		igb_power_up_link(adapter);
2011
2012		/* Link test performed before hardware reset so autoneg doesn't
2013		 * interfere with test result
2014		 */
2015		if (igb_link_test(adapter, &data[TEST_LINK]))
2016			eth_test->flags |= ETH_TEST_FL_FAILED;
2017
2018		if (if_running)
2019			/* indicate we're in test mode */
2020			igb_close(netdev);
2021		else
2022			igb_reset(adapter);
2023
2024		if (igb_reg_test(adapter, &data[TEST_REG]))
2025			eth_test->flags |= ETH_TEST_FL_FAILED;
2026
2027		igb_reset(adapter);
2028		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2029			eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031		igb_reset(adapter);
2032		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2033			eth_test->flags |= ETH_TEST_FL_FAILED;
2034
2035		igb_reset(adapter);
2036		/* power up link for loopback test */
2037		igb_power_up_link(adapter);
2038		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2039			eth_test->flags |= ETH_TEST_FL_FAILED;
2040
2041		/* restore speed, duplex, autoneg settings */
2042		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2043		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2044		adapter->hw.mac.autoneg = autoneg;
2045
2046		/* force this routine to wait until autoneg complete/timeout */
2047		adapter->hw.phy.autoneg_wait_to_complete = true;
2048		igb_reset(adapter);
2049		adapter->hw.phy.autoneg_wait_to_complete = false;
2050
2051		clear_bit(__IGB_TESTING, &adapter->state);
2052		if (if_running)
2053			igb_open(netdev);
2054	} else {
2055		dev_info(&adapter->pdev->dev, "online testing starting\n");
2056
2057		/* PHY is powered down when interface is down */
2058		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2059			eth_test->flags |= ETH_TEST_FL_FAILED;
2060		else
2061			data[TEST_LINK] = 0;
2062
2063		/* Online tests aren't run; pass by default */
2064		data[TEST_REG] = 0;
2065		data[TEST_EEP] = 0;
2066		data[TEST_IRQ] = 0;
2067		data[TEST_LOOP] = 0;
2068
2069		clear_bit(__IGB_TESTING, &adapter->state);
2070	}
2071	msleep_interruptible(4 * 1000);
2072}
2073
2074static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2075{
2076	struct igb_adapter *adapter = netdev_priv(netdev);
2077
2078	wol->wolopts = 0;
2079
2080	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2081		return;
2082
2083	wol->supported = WAKE_UCAST | WAKE_MCAST |
2084			 WAKE_BCAST | WAKE_MAGIC |
2085			 WAKE_PHY;
2086
2087	/* apply any specific unsupported masks here */
2088	switch (adapter->hw.device_id) {
2089	default:
2090		break;
2091	}
2092
2093	if (adapter->wol & E1000_WUFC_EX)
2094		wol->wolopts |= WAKE_UCAST;
2095	if (adapter->wol & E1000_WUFC_MC)
2096		wol->wolopts |= WAKE_MCAST;
2097	if (adapter->wol & E1000_WUFC_BC)
2098		wol->wolopts |= WAKE_BCAST;
2099	if (adapter->wol & E1000_WUFC_MAG)
2100		wol->wolopts |= WAKE_MAGIC;
2101	if (adapter->wol & E1000_WUFC_LNKC)
2102		wol->wolopts |= WAKE_PHY;
2103}
2104
2105static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2106{
2107	struct igb_adapter *adapter = netdev_priv(netdev);
2108
2109	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2110		return -EOPNOTSUPP;
2111
2112	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2113		return wol->wolopts ? -EOPNOTSUPP : 0;
2114
2115	/* these settings will always override what we currently have */
2116	adapter->wol = 0;
2117
2118	if (wol->wolopts & WAKE_UCAST)
2119		adapter->wol |= E1000_WUFC_EX;
2120	if (wol->wolopts & WAKE_MCAST)
2121		adapter->wol |= E1000_WUFC_MC;
2122	if (wol->wolopts & WAKE_BCAST)
2123		adapter->wol |= E1000_WUFC_BC;
2124	if (wol->wolopts & WAKE_MAGIC)
2125		adapter->wol |= E1000_WUFC_MAG;
2126	if (wol->wolopts & WAKE_PHY)
2127		adapter->wol |= E1000_WUFC_LNKC;
2128	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2129
2130	return 0;
2131}
2132
2133/* bit defines for adapter->led_status */
2134#define IGB_LED_ON		0
2135
2136static int igb_set_phys_id(struct net_device *netdev,
2137			   enum ethtool_phys_id_state state)
2138{
2139	struct igb_adapter *adapter = netdev_priv(netdev);
2140	struct e1000_hw *hw = &adapter->hw;
2141
2142	switch (state) {
2143	case ETHTOOL_ID_ACTIVE:
2144		igb_blink_led(hw);
2145		return 2;
2146	case ETHTOOL_ID_ON:
2147		igb_blink_led(hw);
2148		break;
2149	case ETHTOOL_ID_OFF:
2150		igb_led_off(hw);
2151		break;
2152	case ETHTOOL_ID_INACTIVE:
2153		igb_led_off(hw);
2154		clear_bit(IGB_LED_ON, &adapter->led_status);
2155		igb_cleanup_led(hw);
2156		break;
2157	}
2158
2159	return 0;
2160}
2161
2162static int igb_set_coalesce(struct net_device *netdev,
2163			    struct ethtool_coalesce *ec)
2164{
2165	struct igb_adapter *adapter = netdev_priv(netdev);
2166	int i;
2167
2168	if (ec->rx_max_coalesced_frames ||
2169	    ec->rx_coalesce_usecs_irq ||
2170	    ec->rx_max_coalesced_frames_irq ||
2171	    ec->tx_max_coalesced_frames ||
2172	    ec->tx_coalesce_usecs_irq ||
2173	    ec->stats_block_coalesce_usecs ||
2174	    ec->use_adaptive_rx_coalesce ||
2175	    ec->use_adaptive_tx_coalesce ||
2176	    ec->pkt_rate_low ||
2177	    ec->rx_coalesce_usecs_low ||
2178	    ec->rx_max_coalesced_frames_low ||
2179	    ec->tx_coalesce_usecs_low ||
2180	    ec->tx_max_coalesced_frames_low ||
2181	    ec->pkt_rate_high ||
2182	    ec->rx_coalesce_usecs_high ||
2183	    ec->rx_max_coalesced_frames_high ||
2184	    ec->tx_coalesce_usecs_high ||
2185	    ec->tx_max_coalesced_frames_high ||
2186	    ec->rate_sample_interval)
2187		return -ENOTSUPP;
2188
2189	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2190	    ((ec->rx_coalesce_usecs > 3) &&
2191	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2192	    (ec->rx_coalesce_usecs == 2))
2193		return -EINVAL;
2194
2195	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2196	    ((ec->tx_coalesce_usecs > 3) &&
2197	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2198	    (ec->tx_coalesce_usecs == 2))
2199		return -EINVAL;
2200
2201	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2202		return -EINVAL;
2203
2204	/* If ITR is disabled, disable DMAC */
2205	if (ec->rx_coalesce_usecs == 0) {
2206		if (adapter->flags & IGB_FLAG_DMAC)
2207			adapter->flags &= ~IGB_FLAG_DMAC;
2208	}
2209
2210	/* convert to rate of irq's per second */
2211	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2212		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2213	else
2214		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2215
2216	/* convert to rate of irq's per second */
2217	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2218		adapter->tx_itr_setting = adapter->rx_itr_setting;
2219	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2220		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2221	else
2222		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2223
2224	for (i = 0; i < adapter->num_q_vectors; i++) {
2225		struct igb_q_vector *q_vector = adapter->q_vector[i];
2226		q_vector->tx.work_limit = adapter->tx_work_limit;
2227		if (q_vector->rx.ring)
2228			q_vector->itr_val = adapter->rx_itr_setting;
2229		else
2230			q_vector->itr_val = adapter->tx_itr_setting;
2231		if (q_vector->itr_val && q_vector->itr_val <= 3)
2232			q_vector->itr_val = IGB_START_ITR;
2233		q_vector->set_itr = 1;
2234	}
2235
2236	return 0;
2237}
2238
2239static int igb_get_coalesce(struct net_device *netdev,
2240			    struct ethtool_coalesce *ec)
2241{
2242	struct igb_adapter *adapter = netdev_priv(netdev);
2243
2244	if (adapter->rx_itr_setting <= 3)
2245		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2246	else
2247		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2248
2249	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2250		if (adapter->tx_itr_setting <= 3)
2251			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2252		else
2253			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2254	}
2255
2256	return 0;
2257}
2258
2259static int igb_nway_reset(struct net_device *netdev)
2260{
2261	struct igb_adapter *adapter = netdev_priv(netdev);
2262	if (netif_running(netdev))
2263		igb_reinit_locked(adapter);
2264	return 0;
2265}
2266
2267static int igb_get_sset_count(struct net_device *netdev, int sset)
2268{
2269	switch (sset) {
2270	case ETH_SS_STATS:
2271		return IGB_STATS_LEN;
2272	case ETH_SS_TEST:
2273		return IGB_TEST_LEN;
 
 
2274	default:
2275		return -ENOTSUPP;
2276	}
2277}
2278
2279static void igb_get_ethtool_stats(struct net_device *netdev,
2280				  struct ethtool_stats *stats, u64 *data)
2281{
2282	struct igb_adapter *adapter = netdev_priv(netdev);
2283	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2284	unsigned int start;
2285	struct igb_ring *ring;
2286	int i, j;
2287	char *p;
2288
2289	spin_lock(&adapter->stats64_lock);
2290	igb_update_stats(adapter, net_stats);
2291
2292	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2293		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2294		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2295			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2296	}
2297	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2298		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2299		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2300			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2301	}
2302	for (j = 0; j < adapter->num_tx_queues; j++) {
2303		u64	restart2;
2304
2305		ring = adapter->tx_ring[j];
2306		do {
2307			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2308			data[i]   = ring->tx_stats.packets;
2309			data[i+1] = ring->tx_stats.bytes;
2310			data[i+2] = ring->tx_stats.restart_queue;
2311		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2312		do {
2313			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2314			restart2  = ring->tx_stats.restart_queue2;
2315		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2316		data[i+2] += restart2;
2317
2318		i += IGB_TX_QUEUE_STATS_LEN;
2319	}
2320	for (j = 0; j < adapter->num_rx_queues; j++) {
2321		ring = adapter->rx_ring[j];
2322		do {
2323			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2324			data[i]   = ring->rx_stats.packets;
2325			data[i+1] = ring->rx_stats.bytes;
2326			data[i+2] = ring->rx_stats.drops;
2327			data[i+3] = ring->rx_stats.csum_err;
2328			data[i+4] = ring->rx_stats.alloc_failed;
2329		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2330		i += IGB_RX_QUEUE_STATS_LEN;
2331	}
2332	spin_unlock(&adapter->stats64_lock);
2333}
2334
2335static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2336{
2337	struct igb_adapter *adapter = netdev_priv(netdev);
2338	u8 *p = data;
2339	int i;
2340
2341	switch (stringset) {
2342	case ETH_SS_TEST:
2343		memcpy(data, *igb_gstrings_test,
2344			IGB_TEST_LEN*ETH_GSTRING_LEN);
2345		break;
2346	case ETH_SS_STATS:
2347		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2348			memcpy(p, igb_gstrings_stats[i].stat_string,
2349			       ETH_GSTRING_LEN);
2350			p += ETH_GSTRING_LEN;
2351		}
2352		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2353			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2354			       ETH_GSTRING_LEN);
2355			p += ETH_GSTRING_LEN;
2356		}
2357		for (i = 0; i < adapter->num_tx_queues; i++) {
2358			sprintf(p, "tx_queue_%u_packets", i);
2359			p += ETH_GSTRING_LEN;
2360			sprintf(p, "tx_queue_%u_bytes", i);
2361			p += ETH_GSTRING_LEN;
2362			sprintf(p, "tx_queue_%u_restart", i);
2363			p += ETH_GSTRING_LEN;
2364		}
2365		for (i = 0; i < adapter->num_rx_queues; i++) {
2366			sprintf(p, "rx_queue_%u_packets", i);
2367			p += ETH_GSTRING_LEN;
2368			sprintf(p, "rx_queue_%u_bytes", i);
2369			p += ETH_GSTRING_LEN;
2370			sprintf(p, "rx_queue_%u_drops", i);
2371			p += ETH_GSTRING_LEN;
2372			sprintf(p, "rx_queue_%u_csum_err", i);
2373			p += ETH_GSTRING_LEN;
2374			sprintf(p, "rx_queue_%u_alloc_failed", i);
2375			p += ETH_GSTRING_LEN;
2376		}
2377		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2378		break;
 
 
 
 
2379	}
2380}
2381
2382static int igb_get_ts_info(struct net_device *dev,
2383			   struct ethtool_ts_info *info)
2384{
2385	struct igb_adapter *adapter = netdev_priv(dev);
2386
2387	if (adapter->ptp_clock)
2388		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2389	else
2390		info->phc_index = -1;
2391
2392	switch (adapter->hw.mac.type) {
2393	case e1000_82575:
2394		info->so_timestamping =
2395			SOF_TIMESTAMPING_TX_SOFTWARE |
2396			SOF_TIMESTAMPING_RX_SOFTWARE |
2397			SOF_TIMESTAMPING_SOFTWARE;
2398		return 0;
2399	case e1000_82576:
2400	case e1000_82580:
2401	case e1000_i350:
2402	case e1000_i354:
2403	case e1000_i210:
2404	case e1000_i211:
2405		info->so_timestamping =
2406			SOF_TIMESTAMPING_TX_SOFTWARE |
2407			SOF_TIMESTAMPING_RX_SOFTWARE |
2408			SOF_TIMESTAMPING_SOFTWARE |
2409			SOF_TIMESTAMPING_TX_HARDWARE |
2410			SOF_TIMESTAMPING_RX_HARDWARE |
2411			SOF_TIMESTAMPING_RAW_HARDWARE;
2412
2413		info->tx_types =
2414			BIT(HWTSTAMP_TX_OFF) |
2415			BIT(HWTSTAMP_TX_ON);
2416
2417		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2418
2419		/* 82576 does not support timestamping all packets. */
2420		if (adapter->hw.mac.type >= e1000_82580)
2421			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2422		else
2423			info->rx_filters |=
2424				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2425				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2426				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2427
2428		return 0;
2429	default:
2430		return -EOPNOTSUPP;
2431	}
2432}
2433
2434#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2435static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2436				     struct ethtool_rxnfc *cmd)
2437{
2438	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2439	struct igb_nfc_filter *rule = NULL;
2440
2441	/* report total rule count */
2442	cmd->data = IGB_MAX_RXNFC_FILTERS;
2443
2444	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2445		if (fsp->location <= rule->sw_idx)
2446			break;
2447	}
2448
2449	if (!rule || fsp->location != rule->sw_idx)
2450		return -EINVAL;
2451
2452	if (rule->filter.match_flags) {
2453		fsp->flow_type = ETHER_FLOW;
2454		fsp->ring_cookie = rule->action;
2455		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2456			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2457			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2458		}
2459		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2460			fsp->flow_type |= FLOW_EXT;
2461			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2462			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2463		}
2464		return 0;
2465	}
2466	return -EINVAL;
2467}
2468
2469static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2470				   struct ethtool_rxnfc *cmd,
2471				   u32 *rule_locs)
2472{
2473	struct igb_nfc_filter *rule;
2474	int cnt = 0;
2475
2476	/* report total rule count */
2477	cmd->data = IGB_MAX_RXNFC_FILTERS;
2478
2479	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2480		if (cnt == cmd->rule_cnt)
2481			return -EMSGSIZE;
2482		rule_locs[cnt] = rule->sw_idx;
2483		cnt++;
2484	}
2485
2486	cmd->rule_cnt = cnt;
2487
2488	return 0;
2489}
2490
2491static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2492				 struct ethtool_rxnfc *cmd)
2493{
2494	cmd->data = 0;
2495
2496	/* Report default options for RSS on igb */
2497	switch (cmd->flow_type) {
2498	case TCP_V4_FLOW:
2499		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2500		/* Fall through */
2501	case UDP_V4_FLOW:
2502		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2503			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2504		/* Fall through */
2505	case SCTP_V4_FLOW:
2506	case AH_ESP_V4_FLOW:
2507	case AH_V4_FLOW:
2508	case ESP_V4_FLOW:
2509	case IPV4_FLOW:
2510		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2511		break;
2512	case TCP_V6_FLOW:
2513		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2514		/* Fall through */
2515	case UDP_V6_FLOW:
2516		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2517			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2518		/* Fall through */
2519	case SCTP_V6_FLOW:
2520	case AH_ESP_V6_FLOW:
2521	case AH_V6_FLOW:
2522	case ESP_V6_FLOW:
2523	case IPV6_FLOW:
2524		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2525		break;
2526	default:
2527		return -EINVAL;
2528	}
2529
2530	return 0;
2531}
2532
2533static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2534			 u32 *rule_locs)
2535{
2536	struct igb_adapter *adapter = netdev_priv(dev);
2537	int ret = -EOPNOTSUPP;
2538
2539	switch (cmd->cmd) {
2540	case ETHTOOL_GRXRINGS:
2541		cmd->data = adapter->num_rx_queues;
2542		ret = 0;
2543		break;
2544	case ETHTOOL_GRXCLSRLCNT:
2545		cmd->rule_cnt = adapter->nfc_filter_count;
2546		ret = 0;
2547		break;
2548	case ETHTOOL_GRXCLSRULE:
2549		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2550		break;
2551	case ETHTOOL_GRXCLSRLALL:
2552		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2553		break;
2554	case ETHTOOL_GRXFH:
2555		ret = igb_get_rss_hash_opts(adapter, cmd);
2556		break;
2557	default:
2558		break;
2559	}
2560
2561	return ret;
2562}
2563
2564#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2565		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2566static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2567				struct ethtool_rxnfc *nfc)
2568{
2569	u32 flags = adapter->flags;
2570
2571	/* RSS does not support anything other than hashing
2572	 * to queues on src and dst IPs and ports
2573	 */
2574	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2575			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2576		return -EINVAL;
2577
2578	switch (nfc->flow_type) {
2579	case TCP_V4_FLOW:
2580	case TCP_V6_FLOW:
2581		if (!(nfc->data & RXH_IP_SRC) ||
2582		    !(nfc->data & RXH_IP_DST) ||
2583		    !(nfc->data & RXH_L4_B_0_1) ||
2584		    !(nfc->data & RXH_L4_B_2_3))
2585			return -EINVAL;
2586		break;
2587	case UDP_V4_FLOW:
2588		if (!(nfc->data & RXH_IP_SRC) ||
2589		    !(nfc->data & RXH_IP_DST))
2590			return -EINVAL;
2591		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2592		case 0:
2593			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2594			break;
2595		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2596			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2597			break;
2598		default:
2599			return -EINVAL;
2600		}
2601		break;
2602	case UDP_V6_FLOW:
2603		if (!(nfc->data & RXH_IP_SRC) ||
2604		    !(nfc->data & RXH_IP_DST))
2605			return -EINVAL;
2606		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2607		case 0:
2608			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2609			break;
2610		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2611			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2612			break;
2613		default:
2614			return -EINVAL;
2615		}
2616		break;
2617	case AH_ESP_V4_FLOW:
2618	case AH_V4_FLOW:
2619	case ESP_V4_FLOW:
2620	case SCTP_V4_FLOW:
2621	case AH_ESP_V6_FLOW:
2622	case AH_V6_FLOW:
2623	case ESP_V6_FLOW:
2624	case SCTP_V6_FLOW:
2625		if (!(nfc->data & RXH_IP_SRC) ||
2626		    !(nfc->data & RXH_IP_DST) ||
2627		    (nfc->data & RXH_L4_B_0_1) ||
2628		    (nfc->data & RXH_L4_B_2_3))
2629			return -EINVAL;
2630		break;
2631	default:
2632		return -EINVAL;
2633	}
2634
2635	/* if we changed something we need to update flags */
2636	if (flags != adapter->flags) {
2637		struct e1000_hw *hw = &adapter->hw;
2638		u32 mrqc = rd32(E1000_MRQC);
2639
2640		if ((flags & UDP_RSS_FLAGS) &&
2641		    !(adapter->flags & UDP_RSS_FLAGS))
2642			dev_err(&adapter->pdev->dev,
2643				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2644
2645		adapter->flags = flags;
2646
2647		/* Perform hash on these packet types */
2648		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2649			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2650			E1000_MRQC_RSS_FIELD_IPV6 |
2651			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2652
2653		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2654			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2655
2656		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2657			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2658
2659		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2660			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2661
2662		wr32(E1000_MRQC, mrqc);
2663	}
2664
2665	return 0;
2666}
2667
2668static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2669					struct igb_nfc_filter *input)
2670{
2671	struct e1000_hw *hw = &adapter->hw;
2672	u8 i;
2673	u32 etqf;
2674	u16 etype;
2675
2676	/* find an empty etype filter register */
2677	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2678		if (!adapter->etype_bitmap[i])
2679			break;
2680	}
2681	if (i == MAX_ETYPE_FILTER) {
2682		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2683		return -EINVAL;
2684	}
2685
2686	adapter->etype_bitmap[i] = true;
2687
2688	etqf = rd32(E1000_ETQF(i));
2689	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2690
2691	etqf |= E1000_ETQF_FILTER_ENABLE;
2692	etqf &= ~E1000_ETQF_ETYPE_MASK;
2693	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2694
2695	etqf &= ~E1000_ETQF_QUEUE_MASK;
2696	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2697		& E1000_ETQF_QUEUE_MASK);
2698	etqf |= E1000_ETQF_QUEUE_ENABLE;
2699
2700	wr32(E1000_ETQF(i), etqf);
2701
2702	input->etype_reg_index = i;
2703
2704	return 0;
2705}
2706
2707static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2708					    struct igb_nfc_filter *input)
2709{
2710	struct e1000_hw *hw = &adapter->hw;
2711	u8 vlan_priority;
2712	u16 queue_index;
2713	u32 vlapqf;
2714
2715	vlapqf = rd32(E1000_VLAPQF);
2716	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2717				>> VLAN_PRIO_SHIFT;
2718	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2719
2720	/* check whether this vlan prio is already set */
2721	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2722	    (queue_index != input->action)) {
2723		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2724		return -EEXIST;
2725	}
2726
2727	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2728	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2729
2730	wr32(E1000_VLAPQF, vlapqf);
2731
2732	return 0;
2733}
2734
2735int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2736{
2737	int err = -EINVAL;
2738
2739	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2740		err = igb_rxnfc_write_etype_filter(adapter, input);
2741		if (err)
2742			return err;
2743	}
2744
2745	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2746		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2747
2748	return err;
2749}
2750
2751static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2752					u16 reg_index)
2753{
2754	struct e1000_hw *hw = &adapter->hw;
2755	u32 etqf = rd32(E1000_ETQF(reg_index));
2756
2757	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2758	etqf &= ~E1000_ETQF_QUEUE_MASK;
2759	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2760
2761	wr32(E1000_ETQF(reg_index), etqf);
2762
2763	adapter->etype_bitmap[reg_index] = false;
2764}
2765
2766static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2767				       u16 vlan_tci)
2768{
2769	struct e1000_hw *hw = &adapter->hw;
2770	u8 vlan_priority;
2771	u32 vlapqf;
2772
2773	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2774
2775	vlapqf = rd32(E1000_VLAPQF);
2776	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2777	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2778						E1000_VLAPQF_QUEUE_MASK);
2779
2780	wr32(E1000_VLAPQF, vlapqf);
2781}
2782
2783int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2784{
2785	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2786		igb_clear_etype_filter_regs(adapter,
2787					    input->etype_reg_index);
2788
2789	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790		igb_clear_vlan_prio_filter(adapter,
2791					   ntohs(input->filter.vlan_tci));
2792
2793	return 0;
2794}
2795
2796static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2797					struct igb_nfc_filter *input,
2798					u16 sw_idx)
2799{
2800	struct igb_nfc_filter *rule, *parent;
2801	int err = -EINVAL;
2802
2803	parent = NULL;
2804	rule = NULL;
2805
2806	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2807		/* hash found, or no matching entry */
2808		if (rule->sw_idx >= sw_idx)
2809			break;
2810		parent = rule;
2811	}
2812
2813	/* if there is an old rule occupying our place remove it */
2814	if (rule && (rule->sw_idx == sw_idx)) {
2815		if (!input)
2816			err = igb_erase_filter(adapter, rule);
2817
2818		hlist_del(&rule->nfc_node);
2819		kfree(rule);
2820		adapter->nfc_filter_count--;
2821	}
2822
2823	/* If no input this was a delete, err should be 0 if a rule was
2824	 * successfully found and removed from the list else -EINVAL
2825	 */
2826	if (!input)
2827		return err;
2828
2829	/* initialize node */
2830	INIT_HLIST_NODE(&input->nfc_node);
2831
2832	/* add filter to the list */
2833	if (parent)
2834		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2835	else
2836		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2837
2838	/* update counts */
2839	adapter->nfc_filter_count++;
2840
2841	return 0;
2842}
2843
2844static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2845				     struct ethtool_rxnfc *cmd)
2846{
2847	struct net_device *netdev = adapter->netdev;
2848	struct ethtool_rx_flow_spec *fsp =
2849		(struct ethtool_rx_flow_spec *)&cmd->fs;
2850	struct igb_nfc_filter *input, *rule;
2851	int err = 0;
2852
2853	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2854		return -EOPNOTSUPP;
2855
2856	/* Don't allow programming if the action is a queue greater than
2857	 * the number of online Rx queues.
2858	 */
2859	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2860	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2861		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2862		return -EINVAL;
2863	}
2864
2865	/* Don't allow indexes to exist outside of available space */
2866	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2867		dev_err(&adapter->pdev->dev, "Location out of range\n");
2868		return -EINVAL;
2869	}
2870
2871	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2872		return -EINVAL;
2873
2874	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2875	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2876		return -EINVAL;
2877
2878	input = kzalloc(sizeof(*input), GFP_KERNEL);
2879	if (!input)
2880		return -ENOMEM;
2881
2882	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2883		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2884		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2885	}
2886
2887	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2888		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2889			err = -EINVAL;
2890			goto err_out;
2891		}
2892		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2893		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2894	}
2895
2896	input->action = fsp->ring_cookie;
2897	input->sw_idx = fsp->location;
2898
2899	spin_lock(&adapter->nfc_lock);
2900
2901	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2902		if (!memcmp(&input->filter, &rule->filter,
2903			    sizeof(input->filter))) {
2904			err = -EEXIST;
2905			dev_err(&adapter->pdev->dev,
2906				"ethtool: this filter is already set\n");
2907			goto err_out_w_lock;
2908		}
2909	}
2910
2911	err = igb_add_filter(adapter, input);
2912	if (err)
2913		goto err_out_w_lock;
2914
2915	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2916
2917	spin_unlock(&adapter->nfc_lock);
2918	return 0;
2919
2920err_out_w_lock:
2921	spin_unlock(&adapter->nfc_lock);
2922err_out:
2923	kfree(input);
2924	return err;
2925}
2926
2927static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2928				     struct ethtool_rxnfc *cmd)
2929{
2930	struct ethtool_rx_flow_spec *fsp =
2931		(struct ethtool_rx_flow_spec *)&cmd->fs;
2932	int err;
2933
2934	spin_lock(&adapter->nfc_lock);
2935	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2936	spin_unlock(&adapter->nfc_lock);
2937
2938	return err;
2939}
2940
2941static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2942{
2943	struct igb_adapter *adapter = netdev_priv(dev);
2944	int ret = -EOPNOTSUPP;
2945
2946	switch (cmd->cmd) {
2947	case ETHTOOL_SRXFH:
2948		ret = igb_set_rss_hash_opt(adapter, cmd);
2949		break;
2950	case ETHTOOL_SRXCLSRLINS:
2951		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2952		break;
2953	case ETHTOOL_SRXCLSRLDEL:
2954		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2955	default:
2956		break;
2957	}
2958
2959	return ret;
2960}
2961
2962static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2963{
2964	struct igb_adapter *adapter = netdev_priv(netdev);
2965	struct e1000_hw *hw = &adapter->hw;
2966	u32 ret_val;
2967	u16 phy_data;
2968
2969	if ((hw->mac.type < e1000_i350) ||
2970	    (hw->phy.media_type != e1000_media_type_copper))
2971		return -EOPNOTSUPP;
2972
2973	edata->supported = (SUPPORTED_1000baseT_Full |
2974			    SUPPORTED_100baseT_Full);
2975	if (!hw->dev_spec._82575.eee_disable)
2976		edata->advertised =
2977			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2978
2979	/* The IPCNFG and EEER registers are not supported on I354. */
2980	if (hw->mac.type == e1000_i354) {
2981		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2982	} else {
2983		u32 eeer;
2984
2985		eeer = rd32(E1000_EEER);
2986
2987		/* EEE status on negotiated link */
2988		if (eeer & E1000_EEER_EEE_NEG)
2989			edata->eee_active = true;
2990
2991		if (eeer & E1000_EEER_TX_LPI_EN)
2992			edata->tx_lpi_enabled = true;
2993	}
2994
2995	/* EEE Link Partner Advertised */
2996	switch (hw->mac.type) {
2997	case e1000_i350:
2998		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2999					   &phy_data);
3000		if (ret_val)
3001			return -ENODATA;
3002
3003		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3004		break;
3005	case e1000_i354:
3006	case e1000_i210:
3007	case e1000_i211:
3008		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3009					     E1000_EEE_LP_ADV_DEV_I210,
3010					     &phy_data);
3011		if (ret_val)
3012			return -ENODATA;
3013
3014		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3015
3016		break;
3017	default:
3018		break;
3019	}
3020
3021	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3022
3023	if ((hw->mac.type == e1000_i354) &&
3024	    (edata->eee_enabled))
3025		edata->tx_lpi_enabled = true;
3026
3027	/* Report correct negotiated EEE status for devices that
3028	 * wrongly report EEE at half-duplex
3029	 */
3030	if (adapter->link_duplex == HALF_DUPLEX) {
3031		edata->eee_enabled = false;
3032		edata->eee_active = false;
3033		edata->tx_lpi_enabled = false;
3034		edata->advertised &= ~edata->advertised;
3035	}
3036
3037	return 0;
3038}
3039
3040static int igb_set_eee(struct net_device *netdev,
3041		       struct ethtool_eee *edata)
3042{
3043	struct igb_adapter *adapter = netdev_priv(netdev);
3044	struct e1000_hw *hw = &adapter->hw;
3045	struct ethtool_eee eee_curr;
3046	bool adv1g_eee = true, adv100m_eee = true;
3047	s32 ret_val;
3048
3049	if ((hw->mac.type < e1000_i350) ||
3050	    (hw->phy.media_type != e1000_media_type_copper))
3051		return -EOPNOTSUPP;
3052
3053	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3054
3055	ret_val = igb_get_eee(netdev, &eee_curr);
3056	if (ret_val)
3057		return ret_val;
3058
3059	if (eee_curr.eee_enabled) {
3060		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3061			dev_err(&adapter->pdev->dev,
3062				"Setting EEE tx-lpi is not supported\n");
3063			return -EINVAL;
3064		}
3065
3066		/* Tx LPI timer is not implemented currently */
3067		if (edata->tx_lpi_timer) {
3068			dev_err(&adapter->pdev->dev,
3069				"Setting EEE Tx LPI timer is not supported\n");
3070			return -EINVAL;
3071		}
3072
3073		if (!edata->advertised || (edata->advertised &
3074		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3075			dev_err(&adapter->pdev->dev,
3076				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3077			return -EINVAL;
3078		}
3079		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3080		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3081
3082	} else if (!edata->eee_enabled) {
3083		dev_err(&adapter->pdev->dev,
3084			"Setting EEE options are not supported with EEE disabled\n");
3085			return -EINVAL;
3086		}
3087
3088	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3089	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3090		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3091		adapter->flags |= IGB_FLAG_EEE;
3092
3093		/* reset link */
3094		if (netif_running(netdev))
3095			igb_reinit_locked(adapter);
3096		else
3097			igb_reset(adapter);
3098	}
3099
3100	if (hw->mac.type == e1000_i354)
3101		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3102	else
3103		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3104
3105	if (ret_val) {
3106		dev_err(&adapter->pdev->dev,
3107			"Problem setting EEE advertisement options\n");
3108		return -EINVAL;
3109	}
3110
3111	return 0;
3112}
3113
3114static int igb_get_module_info(struct net_device *netdev,
3115			       struct ethtool_modinfo *modinfo)
3116{
3117	struct igb_adapter *adapter = netdev_priv(netdev);
3118	struct e1000_hw *hw = &adapter->hw;
3119	u32 status = 0;
3120	u16 sff8472_rev, addr_mode;
3121	bool page_swap = false;
3122
3123	if ((hw->phy.media_type == e1000_media_type_copper) ||
3124	    (hw->phy.media_type == e1000_media_type_unknown))
3125		return -EOPNOTSUPP;
3126
3127	/* Check whether we support SFF-8472 or not */
3128	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3129	if (status)
3130		return -EIO;
3131
3132	/* addressing mode is not supported */
3133	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3134	if (status)
3135		return -EIO;
3136
3137	/* addressing mode is not supported */
3138	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3139		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3140		page_swap = true;
3141	}
3142
3143	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3144		/* We have an SFP, but it does not support SFF-8472 */
3145		modinfo->type = ETH_MODULE_SFF_8079;
3146		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3147	} else {
3148		/* We have an SFP which supports a revision of SFF-8472 */
3149		modinfo->type = ETH_MODULE_SFF_8472;
3150		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3151	}
3152
3153	return 0;
3154}
3155
3156static int igb_get_module_eeprom(struct net_device *netdev,
3157				 struct ethtool_eeprom *ee, u8 *data)
3158{
3159	struct igb_adapter *adapter = netdev_priv(netdev);
3160	struct e1000_hw *hw = &adapter->hw;
3161	u32 status = 0;
3162	u16 *dataword;
3163	u16 first_word, last_word;
3164	int i = 0;
3165
3166	if (ee->len == 0)
3167		return -EINVAL;
3168
3169	first_word = ee->offset >> 1;
3170	last_word = (ee->offset + ee->len - 1) >> 1;
3171
3172	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3173			   GFP_KERNEL);
3174	if (!dataword)
3175		return -ENOMEM;
3176
3177	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3178	for (i = 0; i < last_word - first_word + 1; i++) {
3179		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3180					      &dataword[i]);
3181		if (status) {
3182			/* Error occurred while reading module */
3183			kfree(dataword);
3184			return -EIO;
3185		}
3186
3187		be16_to_cpus(&dataword[i]);
3188	}
3189
3190	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3191	kfree(dataword);
3192
3193	return 0;
3194}
3195
3196static int igb_ethtool_begin(struct net_device *netdev)
3197{
3198	struct igb_adapter *adapter = netdev_priv(netdev);
3199	pm_runtime_get_sync(&adapter->pdev->dev);
3200	return 0;
3201}
3202
3203static void igb_ethtool_complete(struct net_device *netdev)
3204{
3205	struct igb_adapter *adapter = netdev_priv(netdev);
3206	pm_runtime_put(&adapter->pdev->dev);
3207}
3208
3209static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3210{
3211	return IGB_RETA_SIZE;
3212}
3213
3214static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3215			u8 *hfunc)
3216{
3217	struct igb_adapter *adapter = netdev_priv(netdev);
3218	int i;
3219
3220	if (hfunc)
3221		*hfunc = ETH_RSS_HASH_TOP;
3222	if (!indir)
3223		return 0;
3224	for (i = 0; i < IGB_RETA_SIZE; i++)
3225		indir[i] = adapter->rss_indir_tbl[i];
3226
3227	return 0;
3228}
3229
3230void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3231{
3232	struct e1000_hw *hw = &adapter->hw;
3233	u32 reg = E1000_RETA(0);
3234	u32 shift = 0;
3235	int i = 0;
3236
3237	switch (hw->mac.type) {
3238	case e1000_82575:
3239		shift = 6;
3240		break;
3241	case e1000_82576:
3242		/* 82576 supports 2 RSS queues for SR-IOV */
3243		if (adapter->vfs_allocated_count)
3244			shift = 3;
3245		break;
3246	default:
3247		break;
3248	}
3249
3250	while (i < IGB_RETA_SIZE) {
3251		u32 val = 0;
3252		int j;
3253
3254		for (j = 3; j >= 0; j--) {
3255			val <<= 8;
3256			val |= adapter->rss_indir_tbl[i + j];
3257		}
3258
3259		wr32(reg, val << shift);
3260		reg += 4;
3261		i += 4;
3262	}
3263}
3264
3265static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3266			const u8 *key, const u8 hfunc)
3267{
3268	struct igb_adapter *adapter = netdev_priv(netdev);
3269	struct e1000_hw *hw = &adapter->hw;
3270	int i;
3271	u32 num_queues;
3272
3273	/* We do not allow change in unsupported parameters */
3274	if (key ||
3275	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3276		return -EOPNOTSUPP;
3277	if (!indir)
3278		return 0;
3279
3280	num_queues = adapter->rss_queues;
3281
3282	switch (hw->mac.type) {
3283	case e1000_82576:
3284		/* 82576 supports 2 RSS queues for SR-IOV */
3285		if (adapter->vfs_allocated_count)
3286			num_queues = 2;
3287		break;
3288	default:
3289		break;
3290	}
3291
3292	/* Verify user input. */
3293	for (i = 0; i < IGB_RETA_SIZE; i++)
3294		if (indir[i] >= num_queues)
3295			return -EINVAL;
3296
3297
3298	for (i = 0; i < IGB_RETA_SIZE; i++)
3299		adapter->rss_indir_tbl[i] = indir[i];
3300
3301	igb_write_rss_indir_tbl(adapter);
3302
3303	return 0;
3304}
3305
3306static unsigned int igb_max_channels(struct igb_adapter *adapter)
3307{
3308	struct e1000_hw *hw = &adapter->hw;
3309	unsigned int max_combined = 0;
3310
3311	switch (hw->mac.type) {
3312	case e1000_i211:
3313		max_combined = IGB_MAX_RX_QUEUES_I211;
3314		break;
3315	case e1000_82575:
3316	case e1000_i210:
3317		max_combined = IGB_MAX_RX_QUEUES_82575;
3318		break;
3319	case e1000_i350:
3320		if (!!adapter->vfs_allocated_count) {
3321			max_combined = 1;
3322			break;
3323		}
3324		/* fall through */
3325	case e1000_82576:
3326		if (!!adapter->vfs_allocated_count) {
3327			max_combined = 2;
3328			break;
3329		}
3330		/* fall through */
3331	case e1000_82580:
3332	case e1000_i354:
3333	default:
3334		max_combined = IGB_MAX_RX_QUEUES;
3335		break;
3336	}
3337
3338	return max_combined;
3339}
3340
3341static void igb_get_channels(struct net_device *netdev,
3342			     struct ethtool_channels *ch)
3343{
3344	struct igb_adapter *adapter = netdev_priv(netdev);
3345
3346	/* Report maximum channels */
3347	ch->max_combined = igb_max_channels(adapter);
3348
3349	/* Report info for other vector */
3350	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3351		ch->max_other = NON_Q_VECTORS;
3352		ch->other_count = NON_Q_VECTORS;
3353	}
3354
3355	ch->combined_count = adapter->rss_queues;
3356}
3357
3358static int igb_set_channels(struct net_device *netdev,
3359			    struct ethtool_channels *ch)
3360{
3361	struct igb_adapter *adapter = netdev_priv(netdev);
3362	unsigned int count = ch->combined_count;
3363	unsigned int max_combined = 0;
3364
3365	/* Verify they are not requesting separate vectors */
3366	if (!count || ch->rx_count || ch->tx_count)
3367		return -EINVAL;
3368
3369	/* Verify other_count is valid and has not been changed */
3370	if (ch->other_count != NON_Q_VECTORS)
3371		return -EINVAL;
3372
3373	/* Verify the number of channels doesn't exceed hw limits */
3374	max_combined = igb_max_channels(adapter);
3375	if (count > max_combined)
3376		return -EINVAL;
3377
3378	if (count != adapter->rss_queues) {
3379		adapter->rss_queues = count;
3380		igb_set_flag_queue_pairs(adapter, max_combined);
3381
3382		/* Hardware has to reinitialize queues and interrupts to
3383		 * match the new configuration.
3384		 */
3385		return igb_reinit_queues(adapter);
3386	}
3387
3388	return 0;
3389}
3390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391static const struct ethtool_ops igb_ethtool_ops = {
3392	.get_settings		= igb_get_settings,
3393	.set_settings		= igb_set_settings,
3394	.get_drvinfo		= igb_get_drvinfo,
3395	.get_regs_len		= igb_get_regs_len,
3396	.get_regs		= igb_get_regs,
3397	.get_wol		= igb_get_wol,
3398	.set_wol		= igb_set_wol,
3399	.get_msglevel		= igb_get_msglevel,
3400	.set_msglevel		= igb_set_msglevel,
3401	.nway_reset		= igb_nway_reset,
3402	.get_link		= igb_get_link,
3403	.get_eeprom_len		= igb_get_eeprom_len,
3404	.get_eeprom		= igb_get_eeprom,
3405	.set_eeprom		= igb_set_eeprom,
3406	.get_ringparam		= igb_get_ringparam,
3407	.set_ringparam		= igb_set_ringparam,
3408	.get_pauseparam		= igb_get_pauseparam,
3409	.set_pauseparam		= igb_set_pauseparam,
3410	.self_test		= igb_diag_test,
3411	.get_strings		= igb_get_strings,
3412	.set_phys_id		= igb_set_phys_id,
3413	.get_sset_count		= igb_get_sset_count,
3414	.get_ethtool_stats	= igb_get_ethtool_stats,
3415	.get_coalesce		= igb_get_coalesce,
3416	.set_coalesce		= igb_set_coalesce,
3417	.get_ts_info		= igb_get_ts_info,
3418	.get_rxnfc		= igb_get_rxnfc,
3419	.set_rxnfc		= igb_set_rxnfc,
3420	.get_eee		= igb_get_eee,
3421	.set_eee		= igb_set_eee,
3422	.get_module_info	= igb_get_module_info,
3423	.get_module_eeprom	= igb_get_module_eeprom,
3424	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3425	.get_rxfh		= igb_get_rxfh,
3426	.set_rxfh		= igb_set_rxfh,
3427	.get_channels		= igb_get_channels,
3428	.set_channels		= igb_set_channels,
 
 
3429	.begin			= igb_ethtool_begin,
3430	.complete		= igb_ethtool_complete,
 
 
3431};
3432
3433void igb_set_ethtool_ops(struct net_device *netdev)
3434{
3435	netdev->ethtool_ops = &igb_ethtool_ops;
3436}