Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2014 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25/* ethtool support for igb */
  26
  27#include <linux/vmalloc.h>
  28#include <linux/netdevice.h>
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/if_ether.h>
  33#include <linux/ethtool.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/highmem.h>
  38#include <linux/mdio.h>
  39
  40#include "igb.h"
  41
  42struct igb_stats {
  43	char stat_string[ETH_GSTRING_LEN];
  44	int sizeof_stat;
  45	int stat_offset;
  46};
  47
  48#define IGB_STAT(_name, _stat) { \
  49	.stat_string = _name, \
  50	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  51	.stat_offset = offsetof(struct igb_adapter, _stat) \
  52}
  53static const struct igb_stats igb_gstrings_stats[] = {
  54	IGB_STAT("rx_packets", stats.gprc),
  55	IGB_STAT("tx_packets", stats.gptc),
  56	IGB_STAT("rx_bytes", stats.gorc),
  57	IGB_STAT("tx_bytes", stats.gotc),
  58	IGB_STAT("rx_broadcast", stats.bprc),
  59	IGB_STAT("tx_broadcast", stats.bptc),
  60	IGB_STAT("rx_multicast", stats.mprc),
  61	IGB_STAT("tx_multicast", stats.mptc),
  62	IGB_STAT("multicast", stats.mprc),
  63	IGB_STAT("collisions", stats.colc),
  64	IGB_STAT("rx_crc_errors", stats.crcerrs),
  65	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  66	IGB_STAT("rx_missed_errors", stats.mpc),
  67	IGB_STAT("tx_aborted_errors", stats.ecol),
  68	IGB_STAT("tx_carrier_errors", stats.tncrs),
  69	IGB_STAT("tx_window_errors", stats.latecol),
  70	IGB_STAT("tx_abort_late_coll", stats.latecol),
  71	IGB_STAT("tx_deferred_ok", stats.dc),
  72	IGB_STAT("tx_single_coll_ok", stats.scc),
  73	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  74	IGB_STAT("tx_timeout_count", tx_timeout_count),
  75	IGB_STAT("rx_long_length_errors", stats.roc),
  76	IGB_STAT("rx_short_length_errors", stats.ruc),
  77	IGB_STAT("rx_align_errors", stats.algnerrc),
  78	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  79	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  81	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  83	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	IGB_STAT("rx_long_byte_count", stats.gorc),
  85	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  86	IGB_STAT("tx_smbus", stats.mgptc),
  87	IGB_STAT("rx_smbus", stats.mgprc),
  88	IGB_STAT("dropped_smbus", stats.mgpdc),
  89	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  90	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  91	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  92	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  93	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  94	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  95	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  96};
  97
  98#define IGB_NETDEV_STAT(_net_stat) { \
  99	.stat_string = __stringify(_net_stat), \
 100	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
 101	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 102}
 103static const struct igb_stats igb_gstrings_net_stats[] = {
 104	IGB_NETDEV_STAT(rx_errors),
 105	IGB_NETDEV_STAT(tx_errors),
 106	IGB_NETDEV_STAT(tx_dropped),
 107	IGB_NETDEV_STAT(rx_length_errors),
 108	IGB_NETDEV_STAT(rx_over_errors),
 109	IGB_NETDEV_STAT(rx_frame_errors),
 110	IGB_NETDEV_STAT(rx_fifo_errors),
 111	IGB_NETDEV_STAT(tx_fifo_errors),
 112	IGB_NETDEV_STAT(tx_heartbeat_errors)
 113};
 114
 115#define IGB_GLOBAL_STATS_LEN	\
 116	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 117#define IGB_NETDEV_STATS_LEN	\
 118	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 119#define IGB_RX_QUEUE_STATS_LEN \
 120	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 121
 122#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 123
 124#define IGB_QUEUE_STATS_LEN \
 125	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 126	  IGB_RX_QUEUE_STATS_LEN) + \
 127	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 128	  IGB_TX_QUEUE_STATS_LEN))
 129#define IGB_STATS_LEN \
 130	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 131
 132enum igb_diagnostics_results {
 133	TEST_REG = 0,
 134	TEST_EEP,
 135	TEST_IRQ,
 136	TEST_LOOP,
 137	TEST_LINK
 138};
 139
 140static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 141	[TEST_REG]  = "Register test  (offline)",
 142	[TEST_EEP]  = "Eeprom test    (offline)",
 143	[TEST_IRQ]  = "Interrupt test (offline)",
 144	[TEST_LOOP] = "Loopback test  (offline)",
 145	[TEST_LINK] = "Link test   (on/offline)"
 146};
 147#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 148
 149static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 150#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
 151	"legacy-rx",
 152};
 153
 154#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 155
 156static int igb_get_link_ksettings(struct net_device *netdev,
 157				  struct ethtool_link_ksettings *cmd)
 158{
 159	struct igb_adapter *adapter = netdev_priv(netdev);
 160	struct e1000_hw *hw = &adapter->hw;
 161	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 162	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 163	u32 status;
 164	u32 speed;
 165	u32 supported, advertising;
 166
 167	status = rd32(E1000_STATUS);
 
 168	if (hw->phy.media_type == e1000_media_type_copper) {
 169
 170		supported = (SUPPORTED_10baseT_Half |
 171			     SUPPORTED_10baseT_Full |
 172			     SUPPORTED_100baseT_Half |
 173			     SUPPORTED_100baseT_Full |
 174			     SUPPORTED_1000baseT_Full|
 175			     SUPPORTED_Autoneg |
 176			     SUPPORTED_TP |
 177			     SUPPORTED_Pause);
 178		advertising = ADVERTISED_TP;
 179
 180		if (hw->mac.autoneg == 1) {
 181			advertising |= ADVERTISED_Autoneg;
 182			/* the e1000 autoneg seems to match ethtool nicely */
 183			advertising |= hw->phy.autoneg_advertised;
 184		}
 185
 186		cmd->base.port = PORT_TP;
 187		cmd->base.phy_address = hw->phy.addr;
 188	} else {
 189		supported = (SUPPORTED_FIBRE |
 190			     SUPPORTED_1000baseKX_Full |
 191			     SUPPORTED_Autoneg |
 192			     SUPPORTED_Pause);
 193		advertising = (ADVERTISED_FIBRE |
 194			       ADVERTISED_1000baseKX_Full);
 195		if (hw->mac.type == e1000_i354) {
 196			if ((hw->device_id ==
 197			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 198			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 199				supported |= SUPPORTED_2500baseX_Full;
 200				supported &= ~SUPPORTED_1000baseKX_Full;
 201				advertising |= ADVERTISED_2500baseX_Full;
 202				advertising &= ~ADVERTISED_1000baseKX_Full;
 203			}
 204		}
 205		if (eth_flags->e100_base_fx) {
 206			supported |= SUPPORTED_100baseT_Full;
 207			advertising |= ADVERTISED_100baseT_Full;
 208		}
 209		if (hw->mac.autoneg == 1)
 210			advertising |= ADVERTISED_Autoneg;
 211
 212		cmd->base.port = PORT_FIBRE;
 213	}
 214	if (hw->mac.autoneg != 1)
 215		advertising &= ~(ADVERTISED_Pause |
 216				 ADVERTISED_Asym_Pause);
 217
 218	switch (hw->fc.requested_mode) {
 219	case e1000_fc_full:
 220		advertising |= ADVERTISED_Pause;
 221		break;
 222	case e1000_fc_rx_pause:
 223		advertising |= (ADVERTISED_Pause |
 224				ADVERTISED_Asym_Pause);
 225		break;
 226	case e1000_fc_tx_pause:
 227		advertising |=  ADVERTISED_Asym_Pause;
 228		break;
 229	default:
 230		advertising &= ~(ADVERTISED_Pause |
 231				 ADVERTISED_Asym_Pause);
 232	}
 233	if (status & E1000_STATUS_LU) {
 234		if ((status & E1000_STATUS_2P5_SKU) &&
 235		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 236			speed = SPEED_2500;
 237		} else if (status & E1000_STATUS_SPEED_1000) {
 238			speed = SPEED_1000;
 239		} else if (status & E1000_STATUS_SPEED_100) {
 240			speed = SPEED_100;
 241		} else {
 242			speed = SPEED_10;
 243		}
 244		if ((status & E1000_STATUS_FD) ||
 245		    hw->phy.media_type != e1000_media_type_copper)
 246			cmd->base.duplex = DUPLEX_FULL;
 247		else
 248			cmd->base.duplex = DUPLEX_HALF;
 249	} else {
 250		speed = SPEED_UNKNOWN;
 251		cmd->base.duplex = DUPLEX_UNKNOWN;
 252	}
 253	cmd->base.speed = speed;
 254	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 255	    hw->mac.autoneg)
 256		cmd->base.autoneg = AUTONEG_ENABLE;
 257	else
 258		cmd->base.autoneg = AUTONEG_DISABLE;
 259
 260	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 261	if (hw->phy.media_type == e1000_media_type_copper)
 262		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 263						      ETH_TP_MDI;
 264	else
 265		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 266
 267	if (hw->phy.mdix == AUTO_ALL_MODES)
 268		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 269	else
 270		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 271
 272	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 273						supported);
 274	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 275						advertising);
 276
 277	return 0;
 278}
 279
 280static int igb_set_link_ksettings(struct net_device *netdev,
 281				  const struct ethtool_link_ksettings *cmd)
 282{
 283	struct igb_adapter *adapter = netdev_priv(netdev);
 284	struct e1000_hw *hw = &adapter->hw;
 285	u32 advertising;
 286
 287	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 288	 * cannot be changed
 289	 */
 290	if (igb_check_reset_block(hw)) {
 291		dev_err(&adapter->pdev->dev,
 292			"Cannot change link characteristics when SoL/IDER is active.\n");
 293		return -EINVAL;
 294	}
 295
 296	/* MDI setting is only allowed when autoneg enabled because
 297	 * some hardware doesn't allow MDI setting when speed or
 298	 * duplex is forced.
 299	 */
 300	if (cmd->base.eth_tp_mdix_ctrl) {
 301		if (hw->phy.media_type != e1000_media_type_copper)
 302			return -EOPNOTSUPP;
 303
 304		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 305		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 306			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 307			return -EINVAL;
 308		}
 309	}
 310
 311	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 312		usleep_range(1000, 2000);
 313
 314	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 315						cmd->link_modes.advertising);
 316
 317	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 318		hw->mac.autoneg = 1;
 319		if (hw->phy.media_type == e1000_media_type_fiber) {
 320			hw->phy.autoneg_advertised = advertising |
 321						     ADVERTISED_FIBRE |
 322						     ADVERTISED_Autoneg;
 323			switch (adapter->link_speed) {
 324			case SPEED_2500:
 325				hw->phy.autoneg_advertised =
 326					ADVERTISED_2500baseX_Full;
 327				break;
 328			case SPEED_1000:
 329				hw->phy.autoneg_advertised =
 330					ADVERTISED_1000baseT_Full;
 331				break;
 332			case SPEED_100:
 333				hw->phy.autoneg_advertised =
 334					ADVERTISED_100baseT_Full;
 335				break;
 336			default:
 337				break;
 338			}
 339		} else {
 340			hw->phy.autoneg_advertised = advertising |
 341						     ADVERTISED_TP |
 342						     ADVERTISED_Autoneg;
 343		}
 344		advertising = hw->phy.autoneg_advertised;
 345		if (adapter->fc_autoneg)
 346			hw->fc.requested_mode = e1000_fc_default;
 347	} else {
 348		u32 speed = cmd->base.speed;
 349		/* calling this overrides forced MDI setting */
 350		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 351			clear_bit(__IGB_RESETTING, &adapter->state);
 352			return -EINVAL;
 353		}
 354	}
 355
 356	/* MDI-X => 2; MDI => 1; Auto => 3 */
 357	if (cmd->base.eth_tp_mdix_ctrl) {
 358		/* fix up the value for auto (3 => 0) as zero is mapped
 359		 * internally to auto
 360		 */
 361		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 362			hw->phy.mdix = AUTO_ALL_MODES;
 363		else
 364			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 365	}
 366
 367	/* reset the link */
 368	if (netif_running(adapter->netdev)) {
 369		igb_down(adapter);
 370		igb_up(adapter);
 371	} else
 372		igb_reset(adapter);
 373
 374	clear_bit(__IGB_RESETTING, &adapter->state);
 375	return 0;
 376}
 377
 378static u32 igb_get_link(struct net_device *netdev)
 379{
 380	struct igb_adapter *adapter = netdev_priv(netdev);
 381	struct e1000_mac_info *mac = &adapter->hw.mac;
 382
 383	/* If the link is not reported up to netdev, interrupts are disabled,
 384	 * and so the physical link state may have changed since we last
 385	 * looked. Set get_link_status to make sure that the true link
 386	 * state is interrogated, rather than pulling a cached and possibly
 387	 * stale link state from the driver.
 388	 */
 389	if (!netif_carrier_ok(netdev))
 390		mac->get_link_status = 1;
 391
 392	return igb_has_link(adapter);
 393}
 394
 395static void igb_get_pauseparam(struct net_device *netdev,
 396			       struct ethtool_pauseparam *pause)
 397{
 398	struct igb_adapter *adapter = netdev_priv(netdev);
 399	struct e1000_hw *hw = &adapter->hw;
 400
 401	pause->autoneg =
 402		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 403
 404	if (hw->fc.current_mode == e1000_fc_rx_pause)
 405		pause->rx_pause = 1;
 406	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 407		pause->tx_pause = 1;
 408	else if (hw->fc.current_mode == e1000_fc_full) {
 409		pause->rx_pause = 1;
 410		pause->tx_pause = 1;
 411	}
 412}
 413
 414static int igb_set_pauseparam(struct net_device *netdev,
 415			      struct ethtool_pauseparam *pause)
 416{
 417	struct igb_adapter *adapter = netdev_priv(netdev);
 418	struct e1000_hw *hw = &adapter->hw;
 419	int retval = 0;
 
 420
 421	/* 100basefx does not support setting link flow control */
 422	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 423		return -EINVAL;
 424
 425	adapter->fc_autoneg = pause->autoneg;
 426
 427	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 428		usleep_range(1000, 2000);
 429
 430	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 431		hw->fc.requested_mode = e1000_fc_default;
 432		if (netif_running(adapter->netdev)) {
 433			igb_down(adapter);
 434			igb_up(adapter);
 435		} else {
 436			igb_reset(adapter);
 437		}
 438	} else {
 439		if (pause->rx_pause && pause->tx_pause)
 440			hw->fc.requested_mode = e1000_fc_full;
 441		else if (pause->rx_pause && !pause->tx_pause)
 442			hw->fc.requested_mode = e1000_fc_rx_pause;
 443		else if (!pause->rx_pause && pause->tx_pause)
 444			hw->fc.requested_mode = e1000_fc_tx_pause;
 445		else if (!pause->rx_pause && !pause->tx_pause)
 446			hw->fc.requested_mode = e1000_fc_none;
 447
 448		hw->fc.current_mode = hw->fc.requested_mode;
 449
 450		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 451			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 
 
 
 
 
 
 
 452	}
 453
 454	clear_bit(__IGB_RESETTING, &adapter->state);
 455	return retval;
 456}
 457
 458static u32 igb_get_msglevel(struct net_device *netdev)
 459{
 460	struct igb_adapter *adapter = netdev_priv(netdev);
 461	return adapter->msg_enable;
 462}
 463
 464static void igb_set_msglevel(struct net_device *netdev, u32 data)
 465{
 466	struct igb_adapter *adapter = netdev_priv(netdev);
 467	adapter->msg_enable = data;
 468}
 469
 470static int igb_get_regs_len(struct net_device *netdev)
 471{
 472#define IGB_REGS_LEN 739
 473	return IGB_REGS_LEN * sizeof(u32);
 474}
 475
 476static void igb_get_regs(struct net_device *netdev,
 477			 struct ethtool_regs *regs, void *p)
 478{
 479	struct igb_adapter *adapter = netdev_priv(netdev);
 480	struct e1000_hw *hw = &adapter->hw;
 481	u32 *regs_buff = p;
 482	u8 i;
 483
 484	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 485
 486	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 487
 488	/* General Registers */
 489	regs_buff[0] = rd32(E1000_CTRL);
 490	regs_buff[1] = rd32(E1000_STATUS);
 491	regs_buff[2] = rd32(E1000_CTRL_EXT);
 492	regs_buff[3] = rd32(E1000_MDIC);
 493	regs_buff[4] = rd32(E1000_SCTL);
 494	regs_buff[5] = rd32(E1000_CONNSW);
 495	regs_buff[6] = rd32(E1000_VET);
 496	regs_buff[7] = rd32(E1000_LEDCTL);
 497	regs_buff[8] = rd32(E1000_PBA);
 498	regs_buff[9] = rd32(E1000_PBS);
 499	regs_buff[10] = rd32(E1000_FRTIMER);
 500	regs_buff[11] = rd32(E1000_TCPTIMER);
 501
 502	/* NVM Register */
 503	regs_buff[12] = rd32(E1000_EECD);
 504
 505	/* Interrupt */
 506	/* Reading EICS for EICR because they read the
 507	 * same but EICS does not clear on read
 508	 */
 509	regs_buff[13] = rd32(E1000_EICS);
 510	regs_buff[14] = rd32(E1000_EICS);
 511	regs_buff[15] = rd32(E1000_EIMS);
 512	regs_buff[16] = rd32(E1000_EIMC);
 513	regs_buff[17] = rd32(E1000_EIAC);
 514	regs_buff[18] = rd32(E1000_EIAM);
 515	/* Reading ICS for ICR because they read the
 516	 * same but ICS does not clear on read
 517	 */
 518	regs_buff[19] = rd32(E1000_ICS);
 519	regs_buff[20] = rd32(E1000_ICS);
 520	regs_buff[21] = rd32(E1000_IMS);
 521	regs_buff[22] = rd32(E1000_IMC);
 522	regs_buff[23] = rd32(E1000_IAC);
 523	regs_buff[24] = rd32(E1000_IAM);
 524	regs_buff[25] = rd32(E1000_IMIRVP);
 525
 526	/* Flow Control */
 527	regs_buff[26] = rd32(E1000_FCAL);
 528	regs_buff[27] = rd32(E1000_FCAH);
 529	regs_buff[28] = rd32(E1000_FCTTV);
 530	regs_buff[29] = rd32(E1000_FCRTL);
 531	regs_buff[30] = rd32(E1000_FCRTH);
 532	regs_buff[31] = rd32(E1000_FCRTV);
 533
 534	/* Receive */
 535	regs_buff[32] = rd32(E1000_RCTL);
 536	regs_buff[33] = rd32(E1000_RXCSUM);
 537	regs_buff[34] = rd32(E1000_RLPML);
 538	regs_buff[35] = rd32(E1000_RFCTL);
 539	regs_buff[36] = rd32(E1000_MRQC);
 540	regs_buff[37] = rd32(E1000_VT_CTL);
 541
 542	/* Transmit */
 543	regs_buff[38] = rd32(E1000_TCTL);
 544	regs_buff[39] = rd32(E1000_TCTL_EXT);
 545	regs_buff[40] = rd32(E1000_TIPG);
 546	regs_buff[41] = rd32(E1000_DTXCTL);
 547
 548	/* Wake Up */
 549	regs_buff[42] = rd32(E1000_WUC);
 550	regs_buff[43] = rd32(E1000_WUFC);
 551	regs_buff[44] = rd32(E1000_WUS);
 552	regs_buff[45] = rd32(E1000_IPAV);
 553	regs_buff[46] = rd32(E1000_WUPL);
 554
 555	/* MAC */
 556	regs_buff[47] = rd32(E1000_PCS_CFG0);
 557	regs_buff[48] = rd32(E1000_PCS_LCTL);
 558	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 559	regs_buff[50] = rd32(E1000_PCS_ANADV);
 560	regs_buff[51] = rd32(E1000_PCS_LPAB);
 561	regs_buff[52] = rd32(E1000_PCS_NPTX);
 562	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 563
 564	/* Statistics */
 565	regs_buff[54] = adapter->stats.crcerrs;
 566	regs_buff[55] = adapter->stats.algnerrc;
 567	regs_buff[56] = adapter->stats.symerrs;
 568	regs_buff[57] = adapter->stats.rxerrc;
 569	regs_buff[58] = adapter->stats.mpc;
 570	regs_buff[59] = adapter->stats.scc;
 571	regs_buff[60] = adapter->stats.ecol;
 572	regs_buff[61] = adapter->stats.mcc;
 573	regs_buff[62] = adapter->stats.latecol;
 574	regs_buff[63] = adapter->stats.colc;
 575	regs_buff[64] = adapter->stats.dc;
 576	regs_buff[65] = adapter->stats.tncrs;
 577	regs_buff[66] = adapter->stats.sec;
 578	regs_buff[67] = adapter->stats.htdpmc;
 579	regs_buff[68] = adapter->stats.rlec;
 580	regs_buff[69] = adapter->stats.xonrxc;
 581	regs_buff[70] = adapter->stats.xontxc;
 582	regs_buff[71] = adapter->stats.xoffrxc;
 583	regs_buff[72] = adapter->stats.xofftxc;
 584	regs_buff[73] = adapter->stats.fcruc;
 585	regs_buff[74] = adapter->stats.prc64;
 586	regs_buff[75] = adapter->stats.prc127;
 587	regs_buff[76] = adapter->stats.prc255;
 588	regs_buff[77] = adapter->stats.prc511;
 589	regs_buff[78] = adapter->stats.prc1023;
 590	regs_buff[79] = adapter->stats.prc1522;
 591	regs_buff[80] = adapter->stats.gprc;
 592	regs_buff[81] = adapter->stats.bprc;
 593	regs_buff[82] = adapter->stats.mprc;
 594	regs_buff[83] = adapter->stats.gptc;
 595	regs_buff[84] = adapter->stats.gorc;
 596	regs_buff[86] = adapter->stats.gotc;
 597	regs_buff[88] = adapter->stats.rnbc;
 598	regs_buff[89] = adapter->stats.ruc;
 599	regs_buff[90] = adapter->stats.rfc;
 600	regs_buff[91] = adapter->stats.roc;
 601	regs_buff[92] = adapter->stats.rjc;
 602	regs_buff[93] = adapter->stats.mgprc;
 603	regs_buff[94] = adapter->stats.mgpdc;
 604	regs_buff[95] = adapter->stats.mgptc;
 605	regs_buff[96] = adapter->stats.tor;
 606	regs_buff[98] = adapter->stats.tot;
 607	regs_buff[100] = adapter->stats.tpr;
 608	regs_buff[101] = adapter->stats.tpt;
 609	regs_buff[102] = adapter->stats.ptc64;
 610	regs_buff[103] = adapter->stats.ptc127;
 611	regs_buff[104] = adapter->stats.ptc255;
 612	regs_buff[105] = adapter->stats.ptc511;
 613	regs_buff[106] = adapter->stats.ptc1023;
 614	regs_buff[107] = adapter->stats.ptc1522;
 615	regs_buff[108] = adapter->stats.mptc;
 616	regs_buff[109] = adapter->stats.bptc;
 617	regs_buff[110] = adapter->stats.tsctc;
 618	regs_buff[111] = adapter->stats.iac;
 619	regs_buff[112] = adapter->stats.rpthc;
 620	regs_buff[113] = adapter->stats.hgptc;
 621	regs_buff[114] = adapter->stats.hgorc;
 622	regs_buff[116] = adapter->stats.hgotc;
 623	regs_buff[118] = adapter->stats.lenerrs;
 624	regs_buff[119] = adapter->stats.scvpc;
 625	regs_buff[120] = adapter->stats.hrmpc;
 626
 627	for (i = 0; i < 4; i++)
 628		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 629	for (i = 0; i < 4; i++)
 630		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 631	for (i = 0; i < 4; i++)
 632		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 633	for (i = 0; i < 4; i++)
 634		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 635	for (i = 0; i < 4; i++)
 636		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 637	for (i = 0; i < 4; i++)
 638		regs_buff[141 + i] = rd32(E1000_RDH(i));
 639	for (i = 0; i < 4; i++)
 640		regs_buff[145 + i] = rd32(E1000_RDT(i));
 641	for (i = 0; i < 4; i++)
 642		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 643
 644	for (i = 0; i < 10; i++)
 645		regs_buff[153 + i] = rd32(E1000_EITR(i));
 646	for (i = 0; i < 8; i++)
 647		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 648	for (i = 0; i < 8; i++)
 649		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 650	for (i = 0; i < 16; i++)
 651		regs_buff[179 + i] = rd32(E1000_RAL(i));
 652	for (i = 0; i < 16; i++)
 653		regs_buff[195 + i] = rd32(E1000_RAH(i));
 654
 655	for (i = 0; i < 4; i++)
 656		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 657	for (i = 0; i < 4; i++)
 658		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 661	for (i = 0; i < 4; i++)
 662		regs_buff[223 + i] = rd32(E1000_TDH(i));
 663	for (i = 0; i < 4; i++)
 664		regs_buff[227 + i] = rd32(E1000_TDT(i));
 665	for (i = 0; i < 4; i++)
 666		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 667	for (i = 0; i < 4; i++)
 668		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 669	for (i = 0; i < 4; i++)
 670		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 671	for (i = 0; i < 4; i++)
 672		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 673
 674	for (i = 0; i < 4; i++)
 675		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 676	for (i = 0; i < 4; i++)
 677		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 678	for (i = 0; i < 32; i++)
 679		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 680	for (i = 0; i < 128; i++)
 681		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 682	for (i = 0; i < 128; i++)
 683		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 684	for (i = 0; i < 4; i++)
 685		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 686
 687	regs_buff[547] = rd32(E1000_TDFH);
 688	regs_buff[548] = rd32(E1000_TDFT);
 689	regs_buff[549] = rd32(E1000_TDFHS);
 690	regs_buff[550] = rd32(E1000_TDFPC);
 691
 692	if (hw->mac.type > e1000_82580) {
 693		regs_buff[551] = adapter->stats.o2bgptc;
 694		regs_buff[552] = adapter->stats.b2ospc;
 695		regs_buff[553] = adapter->stats.o2bspc;
 696		regs_buff[554] = adapter->stats.b2ogprc;
 697	}
 698
 699	if (hw->mac.type != e1000_82576)
 700		return;
 701	for (i = 0; i < 12; i++)
 702		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 703	for (i = 0; i < 4; i++)
 704		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 705	for (i = 0; i < 12; i++)
 706		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 707	for (i = 0; i < 12; i++)
 708		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 709	for (i = 0; i < 12; i++)
 710		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 711	for (i = 0; i < 12; i++)
 712		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 713	for (i = 0; i < 12; i++)
 714		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 715	for (i = 0; i < 12; i++)
 716		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 717
 718	for (i = 0; i < 12; i++)
 719		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 720	for (i = 0; i < 12; i++)
 721		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 722	for (i = 0; i < 12; i++)
 723		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 724	for (i = 0; i < 12; i++)
 725		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 726	for (i = 0; i < 12; i++)
 727		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 728	for (i = 0; i < 12; i++)
 729		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 730	for (i = 0; i < 12; i++)
 731		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 732	for (i = 0; i < 12; i++)
 733		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 
 
 
 734}
 735
 736static int igb_get_eeprom_len(struct net_device *netdev)
 737{
 738	struct igb_adapter *adapter = netdev_priv(netdev);
 739	return adapter->hw.nvm.word_size * 2;
 740}
 741
 742static int igb_get_eeprom(struct net_device *netdev,
 743			  struct ethtool_eeprom *eeprom, u8 *bytes)
 744{
 745	struct igb_adapter *adapter = netdev_priv(netdev);
 746	struct e1000_hw *hw = &adapter->hw;
 747	u16 *eeprom_buff;
 748	int first_word, last_word;
 749	int ret_val = 0;
 750	u16 i;
 751
 752	if (eeprom->len == 0)
 753		return -EINVAL;
 754
 755	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 756
 757	first_word = eeprom->offset >> 1;
 758	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 759
 760	eeprom_buff = kmalloc(sizeof(u16) *
 761			(last_word - first_word + 1), GFP_KERNEL);
 762	if (!eeprom_buff)
 763		return -ENOMEM;
 764
 765	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 766		ret_val = hw->nvm.ops.read(hw, first_word,
 767					   last_word - first_word + 1,
 768					   eeprom_buff);
 769	else {
 770		for (i = 0; i < last_word - first_word + 1; i++) {
 771			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 772						   &eeprom_buff[i]);
 773			if (ret_val)
 774				break;
 775		}
 776	}
 777
 778	/* Device's eeprom is always little-endian, word addressable */
 779	for (i = 0; i < last_word - first_word + 1; i++)
 780		le16_to_cpus(&eeprom_buff[i]);
 781
 782	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 783			eeprom->len);
 784	kfree(eeprom_buff);
 785
 786	return ret_val;
 787}
 788
 789static int igb_set_eeprom(struct net_device *netdev,
 790			  struct ethtool_eeprom *eeprom, u8 *bytes)
 791{
 792	struct igb_adapter *adapter = netdev_priv(netdev);
 793	struct e1000_hw *hw = &adapter->hw;
 794	u16 *eeprom_buff;
 795	void *ptr;
 796	int max_len, first_word, last_word, ret_val = 0;
 797	u16 i;
 798
 799	if (eeprom->len == 0)
 800		return -EOPNOTSUPP;
 801
 802	if ((hw->mac.type >= e1000_i210) &&
 803	    !igb_get_flash_presence_i210(hw)) {
 804		return -EOPNOTSUPP;
 805	}
 806
 807	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 808		return -EFAULT;
 809
 810	max_len = hw->nvm.word_size * 2;
 811
 812	first_word = eeprom->offset >> 1;
 813	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 814	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 815	if (!eeprom_buff)
 816		return -ENOMEM;
 817
 818	ptr = (void *)eeprom_buff;
 819
 820	if (eeprom->offset & 1) {
 821		/* need read/modify/write of first changed EEPROM word
 822		 * only the second byte of the word is being modified
 823		 */
 824		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 825					    &eeprom_buff[0]);
 826		ptr++;
 827	}
 828	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 829		/* need read/modify/write of last changed EEPROM word
 830		 * only the first byte of the word is being modified
 831		 */
 832		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 833				   &eeprom_buff[last_word - first_word]);
 834	}
 835
 836	/* Device's eeprom is always little-endian, word addressable */
 837	for (i = 0; i < last_word - first_word + 1; i++)
 838		le16_to_cpus(&eeprom_buff[i]);
 839
 840	memcpy(ptr, bytes, eeprom->len);
 841
 842	for (i = 0; i < last_word - first_word + 1; i++)
 843		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 844
 845	ret_val = hw->nvm.ops.write(hw, first_word,
 846				    last_word - first_word + 1, eeprom_buff);
 847
 848	/* Update the checksum if nvm write succeeded */
 849	if (ret_val == 0)
 850		hw->nvm.ops.update(hw);
 851
 852	igb_set_fw_version(adapter);
 853	kfree(eeprom_buff);
 854	return ret_val;
 855}
 856
 857static void igb_get_drvinfo(struct net_device *netdev,
 858			    struct ethtool_drvinfo *drvinfo)
 859{
 860	struct igb_adapter *adapter = netdev_priv(netdev);
 861
 862	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 863	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 864
 865	/* EEPROM image version # is reported as firmware version # for
 866	 * 82575 controllers
 867	 */
 868	strlcpy(drvinfo->fw_version, adapter->fw_version,
 869		sizeof(drvinfo->fw_version));
 870	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 871		sizeof(drvinfo->bus_info));
 872
 873	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 874}
 875
 876static void igb_get_ringparam(struct net_device *netdev,
 877			      struct ethtool_ringparam *ring)
 878{
 879	struct igb_adapter *adapter = netdev_priv(netdev);
 880
 881	ring->rx_max_pending = IGB_MAX_RXD;
 882	ring->tx_max_pending = IGB_MAX_TXD;
 883	ring->rx_pending = adapter->rx_ring_count;
 884	ring->tx_pending = adapter->tx_ring_count;
 885}
 886
 887static int igb_set_ringparam(struct net_device *netdev,
 888			     struct ethtool_ringparam *ring)
 889{
 890	struct igb_adapter *adapter = netdev_priv(netdev);
 891	struct igb_ring *temp_ring;
 892	int i, err = 0;
 893	u16 new_rx_count, new_tx_count;
 894
 895	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 896		return -EINVAL;
 897
 898	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 899	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 900	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 901
 902	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 903	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 904	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 905
 906	if ((new_tx_count == adapter->tx_ring_count) &&
 907	    (new_rx_count == adapter->rx_ring_count)) {
 908		/* nothing to do */
 909		return 0;
 910	}
 911
 912	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 913		usleep_range(1000, 2000);
 914
 915	if (!netif_running(adapter->netdev)) {
 916		for (i = 0; i < adapter->num_tx_queues; i++)
 917			adapter->tx_ring[i]->count = new_tx_count;
 918		for (i = 0; i < adapter->num_rx_queues; i++)
 919			adapter->rx_ring[i]->count = new_rx_count;
 920		adapter->tx_ring_count = new_tx_count;
 921		adapter->rx_ring_count = new_rx_count;
 922		goto clear_reset;
 923	}
 924
 925	if (adapter->num_tx_queues > adapter->num_rx_queues)
 926		temp_ring = vmalloc(adapter->num_tx_queues *
 927				    sizeof(struct igb_ring));
 928	else
 929		temp_ring = vmalloc(adapter->num_rx_queues *
 930				    sizeof(struct igb_ring));
 931
 932	if (!temp_ring) {
 933		err = -ENOMEM;
 934		goto clear_reset;
 935	}
 936
 937	igb_down(adapter);
 938
 939	/* We can't just free everything and then setup again,
 940	 * because the ISRs in MSI-X mode get passed pointers
 941	 * to the Tx and Rx ring structs.
 942	 */
 943	if (new_tx_count != adapter->tx_ring_count) {
 944		for (i = 0; i < adapter->num_tx_queues; i++) {
 945			memcpy(&temp_ring[i], adapter->tx_ring[i],
 946			       sizeof(struct igb_ring));
 947
 948			temp_ring[i].count = new_tx_count;
 949			err = igb_setup_tx_resources(&temp_ring[i]);
 950			if (err) {
 951				while (i) {
 952					i--;
 953					igb_free_tx_resources(&temp_ring[i]);
 954				}
 955				goto err_setup;
 956			}
 957		}
 958
 959		for (i = 0; i < adapter->num_tx_queues; i++) {
 960			igb_free_tx_resources(adapter->tx_ring[i]);
 961
 962			memcpy(adapter->tx_ring[i], &temp_ring[i],
 963			       sizeof(struct igb_ring));
 964		}
 965
 966		adapter->tx_ring_count = new_tx_count;
 967	}
 968
 969	if (new_rx_count != adapter->rx_ring_count) {
 970		for (i = 0; i < adapter->num_rx_queues; i++) {
 971			memcpy(&temp_ring[i], adapter->rx_ring[i],
 972			       sizeof(struct igb_ring));
 973
 974			temp_ring[i].count = new_rx_count;
 975			err = igb_setup_rx_resources(&temp_ring[i]);
 976			if (err) {
 977				while (i) {
 978					i--;
 979					igb_free_rx_resources(&temp_ring[i]);
 980				}
 981				goto err_setup;
 982			}
 983
 984		}
 985
 986		for (i = 0; i < adapter->num_rx_queues; i++) {
 987			igb_free_rx_resources(adapter->rx_ring[i]);
 988
 989			memcpy(adapter->rx_ring[i], &temp_ring[i],
 990			       sizeof(struct igb_ring));
 991		}
 992
 993		adapter->rx_ring_count = new_rx_count;
 994	}
 995err_setup:
 996	igb_up(adapter);
 997	vfree(temp_ring);
 998clear_reset:
 999	clear_bit(__IGB_RESETTING, &adapter->state);
1000	return err;
1001}
1002
1003/* ethtool register test data */
1004struct igb_reg_test {
1005	u16 reg;
1006	u16 reg_offset;
1007	u16 array_len;
1008	u16 test_type;
1009	u32 mask;
1010	u32 write;
1011};
1012
1013/* In the hardware, registers are laid out either singly, in arrays
1014 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1015 * most tests take place on arrays or single registers (handled
1016 * as a single-element array) and special-case the tables.
1017 * Table tests are always pattern tests.
1018 *
1019 * We also make provision for some required setup steps by specifying
1020 * registers to be written without any read-back testing.
1021 */
1022
1023#define PATTERN_TEST	1
1024#define SET_READ_TEST	2
1025#define WRITE_NO_TEST	3
1026#define TABLE32_TEST	4
1027#define TABLE64_TEST_LO	5
1028#define TABLE64_TEST_HI	6
1029
1030/* i210 reg test */
1031static struct igb_reg_test reg_test_i210[] = {
1032	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1033	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1034	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1038	/* RDH is read-only for i210, only test RDT. */
1039	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1041	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1043	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1049	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1050	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1051	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1052						0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1054						0x900FFFFF, 0xFFFFFFFF },
1055	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1056						0xFFFFFFFF, 0xFFFFFFFF },
1057	{ 0, 0, 0, 0, 0 }
1058};
1059
1060/* i350 reg test */
1061static struct igb_reg_test reg_test_i350[] = {
1062	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1064	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1065	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1066	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1070	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1072	/* RDH is read-only for i350, only test RDT. */
1073	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1076	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1077	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1078	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1084	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1088	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1089	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1090	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1091						0xFFFFFFFF, 0xFFFFFFFF },
1092	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1093						0xC3FFFFFF, 0xFFFFFFFF },
1094	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1095						0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1097						0xC3FFFFFF, 0xFFFFFFFF },
1098	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1099						0xFFFFFFFF, 0xFFFFFFFF },
1100	{ 0, 0, 0, 0 }
1101};
1102
1103/* 82580 reg test */
1104static struct igb_reg_test reg_test_82580[] = {
1105	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1107	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1108	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1109	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1113	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1114	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1115	/* RDH is read-only for 82580, only test RDT. */
1116	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1119	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1121	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1128	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1129	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1131	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1132	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1133	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1134						0xFFFFFFFF, 0xFFFFFFFF },
1135	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1136						0x83FFFFFF, 0xFFFFFFFF },
1137	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1138						0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1140						0x83FFFFFF, 0xFFFFFFFF },
1141	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1142						0xFFFFFFFF, 0xFFFFFFFF },
1143	{ 0, 0, 0, 0 }
1144};
1145
1146/* 82576 reg test */
1147static struct igb_reg_test reg_test_82576[] = {
1148	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1150	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1151	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158	/* Enable all RX queues before testing. */
1159	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1160	  E1000_RXDCTL_QUEUE_ENABLE },
1161	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1162	  E1000_RXDCTL_QUEUE_ENABLE },
1163	/* RDH is read-only for 82576, only test RDT. */
1164	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1165	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1166	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1167	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1168	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1169	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1170	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1171	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1177	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1179	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1180	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1181	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1183	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1184	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1185	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186	{ 0, 0, 0, 0 }
1187};
1188
1189/* 82575 register test */
1190static struct igb_reg_test reg_test_82575[] = {
1191	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1193	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1194	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1195	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1196	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1197	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1198	/* Enable all four RX queues before testing. */
1199	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1200	  E1000_RXDCTL_QUEUE_ENABLE },
1201	/* RDH is read-only for 82575, only test RDT. */
1202	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1204	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1205	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1206	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1207	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1208	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1209	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1210	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1212	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1213	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1214	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1215	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1216	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1217	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1218	{ 0, 0, 0, 0 }
1219};
1220
1221static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1222			     int reg, u32 mask, u32 write)
1223{
1224	struct e1000_hw *hw = &adapter->hw;
1225	u32 pat, val;
1226	static const u32 _test[] = {
1227		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1228	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1229		wr32(reg, (_test[pat] & write));
1230		val = rd32(reg) & mask;
1231		if (val != (_test[pat] & write & mask)) {
1232			dev_err(&adapter->pdev->dev,
1233				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1234				reg, val, (_test[pat] & write & mask));
1235			*data = reg;
1236			return true;
1237		}
1238	}
1239
1240	return false;
1241}
1242
1243static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1244			      int reg, u32 mask, u32 write)
1245{
1246	struct e1000_hw *hw = &adapter->hw;
1247	u32 val;
1248
1249	wr32(reg, write & mask);
1250	val = rd32(reg);
1251	if ((write & mask) != (val & mask)) {
1252		dev_err(&adapter->pdev->dev,
1253			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1254			reg, (val & mask), (write & mask));
1255		*data = reg;
1256		return true;
1257	}
1258
1259	return false;
1260}
1261
1262#define REG_PATTERN_TEST(reg, mask, write) \
1263	do { \
1264		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1265			return 1; \
1266	} while (0)
1267
1268#define REG_SET_AND_CHECK(reg, mask, write) \
1269	do { \
1270		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1271			return 1; \
1272	} while (0)
1273
1274static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1275{
1276	struct e1000_hw *hw = &adapter->hw;
1277	struct igb_reg_test *test;
1278	u32 value, before, after;
1279	u32 i, toggle;
1280
1281	switch (adapter->hw.mac.type) {
1282	case e1000_i350:
1283	case e1000_i354:
1284		test = reg_test_i350;
1285		toggle = 0x7FEFF3FF;
1286		break;
1287	case e1000_i210:
1288	case e1000_i211:
1289		test = reg_test_i210;
1290		toggle = 0x7FEFF3FF;
1291		break;
1292	case e1000_82580:
1293		test = reg_test_82580;
1294		toggle = 0x7FEFF3FF;
1295		break;
1296	case e1000_82576:
1297		test = reg_test_82576;
1298		toggle = 0x7FFFF3FF;
1299		break;
1300	default:
1301		test = reg_test_82575;
1302		toggle = 0x7FFFF3FF;
1303		break;
1304	}
1305
1306	/* Because the status register is such a special case,
1307	 * we handle it separately from the rest of the register
1308	 * tests.  Some bits are read-only, some toggle, and some
1309	 * are writable on newer MACs.
1310	 */
1311	before = rd32(E1000_STATUS);
1312	value = (rd32(E1000_STATUS) & toggle);
1313	wr32(E1000_STATUS, toggle);
1314	after = rd32(E1000_STATUS) & toggle;
1315	if (value != after) {
1316		dev_err(&adapter->pdev->dev,
1317			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1318			after, value);
1319		*data = 1;
1320		return 1;
1321	}
1322	/* restore previous status */
1323	wr32(E1000_STATUS, before);
1324
1325	/* Perform the remainder of the register test, looping through
1326	 * the test table until we either fail or reach the null entry.
1327	 */
1328	while (test->reg) {
1329		for (i = 0; i < test->array_len; i++) {
1330			switch (test->test_type) {
1331			case PATTERN_TEST:
1332				REG_PATTERN_TEST(test->reg +
1333						(i * test->reg_offset),
1334						test->mask,
1335						test->write);
1336				break;
1337			case SET_READ_TEST:
1338				REG_SET_AND_CHECK(test->reg +
1339						(i * test->reg_offset),
1340						test->mask,
1341						test->write);
1342				break;
1343			case WRITE_NO_TEST:
1344				writel(test->write,
1345				    (adapter->hw.hw_addr + test->reg)
1346					+ (i * test->reg_offset));
1347				break;
1348			case TABLE32_TEST:
1349				REG_PATTERN_TEST(test->reg + (i * 4),
1350						test->mask,
1351						test->write);
1352				break;
1353			case TABLE64_TEST_LO:
1354				REG_PATTERN_TEST(test->reg + (i * 8),
1355						test->mask,
1356						test->write);
1357				break;
1358			case TABLE64_TEST_HI:
1359				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1360						test->mask,
1361						test->write);
1362				break;
1363			}
1364		}
1365		test++;
1366	}
1367
1368	*data = 0;
1369	return 0;
1370}
1371
1372static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1373{
1374	struct e1000_hw *hw = &adapter->hw;
1375
1376	*data = 0;
1377
1378	/* Validate eeprom on all parts but flashless */
1379	switch (hw->mac.type) {
1380	case e1000_i210:
1381	case e1000_i211:
1382		if (igb_get_flash_presence_i210(hw)) {
1383			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1384				*data = 2;
1385		}
1386		break;
1387	default:
1388		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1389			*data = 2;
1390		break;
1391	}
1392
1393	return *data;
1394}
1395
1396static irqreturn_t igb_test_intr(int irq, void *data)
1397{
1398	struct igb_adapter *adapter = (struct igb_adapter *) data;
1399	struct e1000_hw *hw = &adapter->hw;
1400
1401	adapter->test_icr |= rd32(E1000_ICR);
1402
1403	return IRQ_HANDLED;
1404}
1405
1406static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1407{
1408	struct e1000_hw *hw = &adapter->hw;
1409	struct net_device *netdev = adapter->netdev;
1410	u32 mask, ics_mask, i = 0, shared_int = true;
1411	u32 irq = adapter->pdev->irq;
1412
1413	*data = 0;
1414
1415	/* Hook up test interrupt handler just for this test */
1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417		if (request_irq(adapter->msix_entries[0].vector,
1418				igb_test_intr, 0, netdev->name, adapter)) {
1419			*data = 1;
1420			return -1;
1421		}
1422	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1423		shared_int = false;
1424		if (request_irq(irq,
1425				igb_test_intr, 0, netdev->name, adapter)) {
1426			*data = 1;
1427			return -1;
1428		}
1429	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1430				netdev->name, adapter)) {
1431		shared_int = false;
1432	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1433		 netdev->name, adapter)) {
1434		*data = 1;
1435		return -1;
1436	}
1437	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1438		(shared_int ? "shared" : "unshared"));
1439
1440	/* Disable all the interrupts */
1441	wr32(E1000_IMC, ~0);
1442	wrfl();
1443	usleep_range(10000, 11000);
1444
1445	/* Define all writable bits for ICS */
1446	switch (hw->mac.type) {
1447	case e1000_82575:
1448		ics_mask = 0x37F47EDD;
1449		break;
1450	case e1000_82576:
1451		ics_mask = 0x77D4FBFD;
1452		break;
1453	case e1000_82580:
1454		ics_mask = 0x77DCFED5;
1455		break;
1456	case e1000_i350:
1457	case e1000_i354:
1458	case e1000_i210:
1459	case e1000_i211:
1460		ics_mask = 0x77DCFED5;
1461		break;
1462	default:
1463		ics_mask = 0x7FFFFFFF;
1464		break;
1465	}
1466
1467	/* Test each interrupt */
1468	for (; i < 31; i++) {
1469		/* Interrupt to test */
1470		mask = BIT(i);
1471
1472		if (!(mask & ics_mask))
1473			continue;
1474
1475		if (!shared_int) {
1476			/* Disable the interrupt to be reported in
1477			 * the cause register and then force the same
1478			 * interrupt and see if one gets posted.  If
1479			 * an interrupt was posted to the bus, the
1480			 * test failed.
1481			 */
1482			adapter->test_icr = 0;
1483
1484			/* Flush any pending interrupts */
1485			wr32(E1000_ICR, ~0);
1486
1487			wr32(E1000_IMC, mask);
1488			wr32(E1000_ICS, mask);
1489			wrfl();
1490			usleep_range(10000, 11000);
1491
1492			if (adapter->test_icr & mask) {
1493				*data = 3;
1494				break;
1495			}
1496		}
1497
1498		/* Enable the interrupt to be reported in
1499		 * the cause register and then force the same
1500		 * interrupt and see if one gets posted.  If
1501		 * an interrupt was not posted to the bus, the
1502		 * test failed.
1503		 */
1504		adapter->test_icr = 0;
1505
1506		/* Flush any pending interrupts */
1507		wr32(E1000_ICR, ~0);
1508
1509		wr32(E1000_IMS, mask);
1510		wr32(E1000_ICS, mask);
1511		wrfl();
1512		usleep_range(10000, 11000);
1513
1514		if (!(adapter->test_icr & mask)) {
1515			*data = 4;
1516			break;
1517		}
1518
1519		if (!shared_int) {
1520			/* Disable the other interrupts to be reported in
1521			 * the cause register and then force the other
1522			 * interrupts and see if any get posted.  If
1523			 * an interrupt was posted to the bus, the
1524			 * test failed.
1525			 */
1526			adapter->test_icr = 0;
1527
1528			/* Flush any pending interrupts */
1529			wr32(E1000_ICR, ~0);
1530
1531			wr32(E1000_IMC, ~mask);
1532			wr32(E1000_ICS, ~mask);
1533			wrfl();
1534			usleep_range(10000, 11000);
1535
1536			if (adapter->test_icr & mask) {
1537				*data = 5;
1538				break;
1539			}
1540		}
1541	}
1542
1543	/* Disable all the interrupts */
1544	wr32(E1000_IMC, ~0);
1545	wrfl();
1546	usleep_range(10000, 11000);
1547
1548	/* Unhook test interrupt handler */
1549	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1550		free_irq(adapter->msix_entries[0].vector, adapter);
1551	else
1552		free_irq(irq, adapter);
1553
1554	return *data;
1555}
1556
1557static void igb_free_desc_rings(struct igb_adapter *adapter)
1558{
1559	igb_free_tx_resources(&adapter->test_tx_ring);
1560	igb_free_rx_resources(&adapter->test_rx_ring);
1561}
1562
1563static int igb_setup_desc_rings(struct igb_adapter *adapter)
1564{
1565	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1566	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1567	struct e1000_hw *hw = &adapter->hw;
1568	int ret_val;
1569
1570	/* Setup Tx descriptor ring and Tx buffers */
1571	tx_ring->count = IGB_DEFAULT_TXD;
1572	tx_ring->dev = &adapter->pdev->dev;
1573	tx_ring->netdev = adapter->netdev;
1574	tx_ring->reg_idx = adapter->vfs_allocated_count;
1575
1576	if (igb_setup_tx_resources(tx_ring)) {
1577		ret_val = 1;
1578		goto err_nomem;
1579	}
1580
1581	igb_setup_tctl(adapter);
1582	igb_configure_tx_ring(adapter, tx_ring);
1583
1584	/* Setup Rx descriptor ring and Rx buffers */
1585	rx_ring->count = IGB_DEFAULT_RXD;
1586	rx_ring->dev = &adapter->pdev->dev;
1587	rx_ring->netdev = adapter->netdev;
1588	rx_ring->reg_idx = adapter->vfs_allocated_count;
1589
1590	if (igb_setup_rx_resources(rx_ring)) {
1591		ret_val = 3;
1592		goto err_nomem;
1593	}
1594
1595	/* set the default queue to queue 0 of PF */
1596	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1597
1598	/* enable receive ring */
1599	igb_setup_rctl(adapter);
1600	igb_configure_rx_ring(adapter, rx_ring);
1601
1602	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1603
1604	return 0;
1605
1606err_nomem:
1607	igb_free_desc_rings(adapter);
1608	return ret_val;
1609}
1610
1611static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1612{
1613	struct e1000_hw *hw = &adapter->hw;
1614
1615	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1616	igb_write_phy_reg(hw, 29, 0x001F);
1617	igb_write_phy_reg(hw, 30, 0x8FFC);
1618	igb_write_phy_reg(hw, 29, 0x001A);
1619	igb_write_phy_reg(hw, 30, 0x8FF0);
1620}
1621
1622static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1623{
1624	struct e1000_hw *hw = &adapter->hw;
1625	u32 ctrl_reg = 0;
1626
1627	hw->mac.autoneg = false;
1628
1629	if (hw->phy.type == e1000_phy_m88) {
1630		if (hw->phy.id != I210_I_PHY_ID) {
1631			/* Auto-MDI/MDIX Off */
1632			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1633			/* reset to update Auto-MDI/MDIX */
1634			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1635			/* autoneg off */
1636			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1637		} else {
1638			/* force 1000, set loopback  */
1639			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1640			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1641		}
1642	} else if (hw->phy.type == e1000_phy_82580) {
1643		/* enable MII loopback */
1644		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1645	}
1646
1647	/* add small delay to avoid loopback test failure */
1648	msleep(50);
1649
1650	/* force 1000, set loopback */
1651	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1652
1653	/* Now set up the MAC to the same speed/duplex as the PHY. */
1654	ctrl_reg = rd32(E1000_CTRL);
1655	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1656	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1657		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1658		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1659		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1660		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1661
1662	if (hw->phy.type == e1000_phy_m88)
1663		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1664
1665	wr32(E1000_CTRL, ctrl_reg);
1666
1667	/* Disable the receiver on the PHY so when a cable is plugged in, the
1668	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1669	 */
1670	if (hw->phy.type == e1000_phy_m88)
1671		igb_phy_disable_receiver(adapter);
1672
1673	mdelay(500);
1674	return 0;
1675}
1676
1677static int igb_set_phy_loopback(struct igb_adapter *adapter)
1678{
1679	return igb_integrated_phy_loopback(adapter);
1680}
1681
1682static int igb_setup_loopback_test(struct igb_adapter *adapter)
1683{
1684	struct e1000_hw *hw = &adapter->hw;
1685	u32 reg;
1686
1687	reg = rd32(E1000_CTRL_EXT);
1688
1689	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1690	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1691		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1692		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1693		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1694		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1695		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1696		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1697			/* Enable DH89xxCC MPHY for near end loopback */
1698			reg = rd32(E1000_MPHY_ADDR_CTL);
1699			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1700			E1000_MPHY_PCS_CLK_REG_OFFSET;
1701			wr32(E1000_MPHY_ADDR_CTL, reg);
1702
1703			reg = rd32(E1000_MPHY_DATA);
1704			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1705			wr32(E1000_MPHY_DATA, reg);
1706		}
1707
1708		reg = rd32(E1000_RCTL);
1709		reg |= E1000_RCTL_LBM_TCVR;
1710		wr32(E1000_RCTL, reg);
1711
1712		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1713
1714		reg = rd32(E1000_CTRL);
1715		reg &= ~(E1000_CTRL_RFCE |
1716			 E1000_CTRL_TFCE |
1717			 E1000_CTRL_LRST);
1718		reg |= E1000_CTRL_SLU |
1719		       E1000_CTRL_FD;
1720		wr32(E1000_CTRL, reg);
1721
1722		/* Unset switch control to serdes energy detect */
1723		reg = rd32(E1000_CONNSW);
1724		reg &= ~E1000_CONNSW_ENRGSRC;
1725		wr32(E1000_CONNSW, reg);
1726
1727		/* Unset sigdetect for SERDES loopback on
1728		 * 82580 and newer devices.
1729		 */
1730		if (hw->mac.type >= e1000_82580) {
1731			reg = rd32(E1000_PCS_CFG0);
1732			reg |= E1000_PCS_CFG_IGN_SD;
1733			wr32(E1000_PCS_CFG0, reg);
1734		}
1735
1736		/* Set PCS register for forced speed */
1737		reg = rd32(E1000_PCS_LCTL);
1738		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1739		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1740		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1741		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1742		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1743		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1744		wr32(E1000_PCS_LCTL, reg);
1745
1746		return 0;
1747	}
1748
1749	return igb_set_phy_loopback(adapter);
1750}
1751
1752static void igb_loopback_cleanup(struct igb_adapter *adapter)
1753{
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 rctl;
1756	u16 phy_reg;
1757
1758	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1759	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1760	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1761	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1762	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1763		u32 reg;
1764
1765		/* Disable near end loopback on DH89xxCC */
1766		reg = rd32(E1000_MPHY_ADDR_CTL);
1767		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1768		E1000_MPHY_PCS_CLK_REG_OFFSET;
1769		wr32(E1000_MPHY_ADDR_CTL, reg);
1770
1771		reg = rd32(E1000_MPHY_DATA);
1772		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1773		wr32(E1000_MPHY_DATA, reg);
1774	}
1775
1776	rctl = rd32(E1000_RCTL);
1777	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1778	wr32(E1000_RCTL, rctl);
1779
1780	hw->mac.autoneg = true;
1781	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1782	if (phy_reg & MII_CR_LOOPBACK) {
1783		phy_reg &= ~MII_CR_LOOPBACK;
1784		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1785		igb_phy_sw_reset(hw);
1786	}
1787}
1788
1789static void igb_create_lbtest_frame(struct sk_buff *skb,
1790				    unsigned int frame_size)
1791{
1792	memset(skb->data, 0xFF, frame_size);
1793	frame_size /= 2;
1794	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1795	memset(&skb->data[frame_size + 10], 0xBE, 1);
1796	memset(&skb->data[frame_size + 12], 0xAF, 1);
1797}
1798
1799static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1800				  unsigned int frame_size)
1801{
1802	unsigned char *data;
1803	bool match = true;
1804
1805	frame_size >>= 1;
1806
1807	data = kmap(rx_buffer->page);
1808
1809	if (data[3] != 0xFF ||
1810	    data[frame_size + 10] != 0xBE ||
1811	    data[frame_size + 12] != 0xAF)
1812		match = false;
1813
1814	kunmap(rx_buffer->page);
1815
1816	return match;
1817}
1818
1819static int igb_clean_test_rings(struct igb_ring *rx_ring,
1820				struct igb_ring *tx_ring,
1821				unsigned int size)
1822{
1823	union e1000_adv_rx_desc *rx_desc;
1824	struct igb_rx_buffer *rx_buffer_info;
1825	struct igb_tx_buffer *tx_buffer_info;
1826	u16 rx_ntc, tx_ntc, count = 0;
1827
1828	/* initialize next to clean and descriptor values */
1829	rx_ntc = rx_ring->next_to_clean;
1830	tx_ntc = tx_ring->next_to_clean;
1831	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1832
1833	while (rx_desc->wb.upper.length) {
1834		/* check Rx buffer */
1835		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1836
1837		/* sync Rx buffer for CPU read */
1838		dma_sync_single_for_cpu(rx_ring->dev,
1839					rx_buffer_info->dma,
1840					size,
1841					DMA_FROM_DEVICE);
1842
1843		/* verify contents of skb */
1844		if (igb_check_lbtest_frame(rx_buffer_info, size))
1845			count++;
1846
1847		/* sync Rx buffer for device write */
1848		dma_sync_single_for_device(rx_ring->dev,
1849					   rx_buffer_info->dma,
1850					   size,
1851					   DMA_FROM_DEVICE);
1852
1853		/* unmap buffer on Tx side */
1854		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1855
1856		/* Free all the Tx ring sk_buffs */
1857		dev_kfree_skb_any(tx_buffer_info->skb);
1858
1859		/* unmap skb header data */
1860		dma_unmap_single(tx_ring->dev,
1861				 dma_unmap_addr(tx_buffer_info, dma),
1862				 dma_unmap_len(tx_buffer_info, len),
1863				 DMA_TO_DEVICE);
1864		dma_unmap_len_set(tx_buffer_info, len, 0);
1865
1866		/* increment Rx/Tx next to clean counters */
1867		rx_ntc++;
1868		if (rx_ntc == rx_ring->count)
1869			rx_ntc = 0;
1870		tx_ntc++;
1871		if (tx_ntc == tx_ring->count)
1872			tx_ntc = 0;
1873
1874		/* fetch next descriptor */
1875		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1876	}
1877
1878	netdev_tx_reset_queue(txring_txq(tx_ring));
1879
1880	/* re-map buffers to ring, store next to clean values */
1881	igb_alloc_rx_buffers(rx_ring, count);
1882	rx_ring->next_to_clean = rx_ntc;
1883	tx_ring->next_to_clean = tx_ntc;
1884
1885	return count;
1886}
1887
1888static int igb_run_loopback_test(struct igb_adapter *adapter)
1889{
1890	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1891	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1892	u16 i, j, lc, good_cnt;
1893	int ret_val = 0;
1894	unsigned int size = IGB_RX_HDR_LEN;
1895	netdev_tx_t tx_ret_val;
1896	struct sk_buff *skb;
1897
1898	/* allocate test skb */
1899	skb = alloc_skb(size, GFP_KERNEL);
1900	if (!skb)
1901		return 11;
1902
1903	/* place data into test skb */
1904	igb_create_lbtest_frame(skb, size);
1905	skb_put(skb, size);
1906
1907	/* Calculate the loop count based on the largest descriptor ring
1908	 * The idea is to wrap the largest ring a number of times using 64
1909	 * send/receive pairs during each loop
1910	 */
1911
1912	if (rx_ring->count <= tx_ring->count)
1913		lc = ((tx_ring->count / 64) * 2) + 1;
1914	else
1915		lc = ((rx_ring->count / 64) * 2) + 1;
1916
1917	for (j = 0; j <= lc; j++) { /* loop count loop */
1918		/* reset count of good packets */
1919		good_cnt = 0;
1920
1921		/* place 64 packets on the transmit queue*/
1922		for (i = 0; i < 64; i++) {
1923			skb_get(skb);
1924			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1925			if (tx_ret_val == NETDEV_TX_OK)
1926				good_cnt++;
1927		}
1928
1929		if (good_cnt != 64) {
1930			ret_val = 12;
1931			break;
1932		}
1933
1934		/* allow 200 milliseconds for packets to go from Tx to Rx */
1935		msleep(200);
1936
1937		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1938		if (good_cnt != 64) {
1939			ret_val = 13;
1940			break;
1941		}
1942	} /* end loop count loop */
1943
1944	/* free the original skb */
1945	kfree_skb(skb);
1946
1947	return ret_val;
1948}
1949
1950static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1951{
1952	/* PHY loopback cannot be performed if SoL/IDER
1953	 * sessions are active
1954	 */
1955	if (igb_check_reset_block(&adapter->hw)) {
1956		dev_err(&adapter->pdev->dev,
1957			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1958		*data = 0;
1959		goto out;
1960	}
1961
1962	if (adapter->hw.mac.type == e1000_i354) {
1963		dev_info(&adapter->pdev->dev,
1964			"Loopback test not supported on i354.\n");
1965		*data = 0;
1966		goto out;
1967	}
1968	*data = igb_setup_desc_rings(adapter);
1969	if (*data)
1970		goto out;
1971	*data = igb_setup_loopback_test(adapter);
1972	if (*data)
1973		goto err_loopback;
1974	*data = igb_run_loopback_test(adapter);
1975	igb_loopback_cleanup(adapter);
1976
1977err_loopback:
1978	igb_free_desc_rings(adapter);
1979out:
1980	return *data;
1981}
1982
1983static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1984{
1985	struct e1000_hw *hw = &adapter->hw;
1986	*data = 0;
1987	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1988		int i = 0;
1989
1990		hw->mac.serdes_has_link = false;
1991
1992		/* On some blade server designs, link establishment
1993		 * could take as long as 2-3 minutes
1994		 */
1995		do {
1996			hw->mac.ops.check_for_link(&adapter->hw);
1997			if (hw->mac.serdes_has_link)
1998				return *data;
1999			msleep(20);
2000		} while (i++ < 3750);
2001
2002		*data = 1;
2003	} else {
2004		hw->mac.ops.check_for_link(&adapter->hw);
2005		if (hw->mac.autoneg)
2006			msleep(5000);
2007
2008		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2009			*data = 1;
2010	}
2011	return *data;
2012}
2013
2014static void igb_diag_test(struct net_device *netdev,
2015			  struct ethtool_test *eth_test, u64 *data)
2016{
2017	struct igb_adapter *adapter = netdev_priv(netdev);
2018	u16 autoneg_advertised;
2019	u8 forced_speed_duplex, autoneg;
2020	bool if_running = netif_running(netdev);
2021
2022	set_bit(__IGB_TESTING, &adapter->state);
2023
2024	/* can't do offline tests on media switching devices */
2025	if (adapter->hw.dev_spec._82575.mas_capable)
2026		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2027	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2028		/* Offline tests */
2029
2030		/* save speed, duplex, autoneg settings */
2031		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2032		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2033		autoneg = adapter->hw.mac.autoneg;
2034
2035		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2036
2037		/* power up link for link test */
2038		igb_power_up_link(adapter);
2039
2040		/* Link test performed before hardware reset so autoneg doesn't
2041		 * interfere with test result
2042		 */
2043		if (igb_link_test(adapter, &data[TEST_LINK]))
2044			eth_test->flags |= ETH_TEST_FL_FAILED;
2045
2046		if (if_running)
2047			/* indicate we're in test mode */
2048			igb_close(netdev);
2049		else
2050			igb_reset(adapter);
2051
2052		if (igb_reg_test(adapter, &data[TEST_REG]))
2053			eth_test->flags |= ETH_TEST_FL_FAILED;
2054
2055		igb_reset(adapter);
2056		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2057			eth_test->flags |= ETH_TEST_FL_FAILED;
2058
2059		igb_reset(adapter);
2060		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2061			eth_test->flags |= ETH_TEST_FL_FAILED;
2062
2063		igb_reset(adapter);
2064		/* power up link for loopback test */
2065		igb_power_up_link(adapter);
2066		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2067			eth_test->flags |= ETH_TEST_FL_FAILED;
2068
2069		/* restore speed, duplex, autoneg settings */
2070		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2071		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2072		adapter->hw.mac.autoneg = autoneg;
2073
2074		/* force this routine to wait until autoneg complete/timeout */
2075		adapter->hw.phy.autoneg_wait_to_complete = true;
2076		igb_reset(adapter);
2077		adapter->hw.phy.autoneg_wait_to_complete = false;
2078
2079		clear_bit(__IGB_TESTING, &adapter->state);
2080		if (if_running)
2081			igb_open(netdev);
2082	} else {
2083		dev_info(&adapter->pdev->dev, "online testing starting\n");
2084
2085		/* PHY is powered down when interface is down */
2086		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2087			eth_test->flags |= ETH_TEST_FL_FAILED;
2088		else
2089			data[TEST_LINK] = 0;
2090
2091		/* Online tests aren't run; pass by default */
2092		data[TEST_REG] = 0;
2093		data[TEST_EEP] = 0;
2094		data[TEST_IRQ] = 0;
2095		data[TEST_LOOP] = 0;
2096
2097		clear_bit(__IGB_TESTING, &adapter->state);
2098	}
2099	msleep_interruptible(4 * 1000);
2100}
2101
2102static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2103{
2104	struct igb_adapter *adapter = netdev_priv(netdev);
2105
2106	wol->wolopts = 0;
2107
2108	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2109		return;
2110
2111	wol->supported = WAKE_UCAST | WAKE_MCAST |
2112			 WAKE_BCAST | WAKE_MAGIC |
2113			 WAKE_PHY;
2114
2115	/* apply any specific unsupported masks here */
2116	switch (adapter->hw.device_id) {
2117	default:
2118		break;
2119	}
2120
2121	if (adapter->wol & E1000_WUFC_EX)
2122		wol->wolopts |= WAKE_UCAST;
2123	if (adapter->wol & E1000_WUFC_MC)
2124		wol->wolopts |= WAKE_MCAST;
2125	if (adapter->wol & E1000_WUFC_BC)
2126		wol->wolopts |= WAKE_BCAST;
2127	if (adapter->wol & E1000_WUFC_MAG)
2128		wol->wolopts |= WAKE_MAGIC;
2129	if (adapter->wol & E1000_WUFC_LNKC)
2130		wol->wolopts |= WAKE_PHY;
2131}
2132
2133static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2134{
2135	struct igb_adapter *adapter = netdev_priv(netdev);
2136
2137	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2138		return -EOPNOTSUPP;
2139
2140	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2141		return wol->wolopts ? -EOPNOTSUPP : 0;
2142
2143	/* these settings will always override what we currently have */
2144	adapter->wol = 0;
2145
2146	if (wol->wolopts & WAKE_UCAST)
2147		adapter->wol |= E1000_WUFC_EX;
2148	if (wol->wolopts & WAKE_MCAST)
2149		adapter->wol |= E1000_WUFC_MC;
2150	if (wol->wolopts & WAKE_BCAST)
2151		adapter->wol |= E1000_WUFC_BC;
2152	if (wol->wolopts & WAKE_MAGIC)
2153		adapter->wol |= E1000_WUFC_MAG;
2154	if (wol->wolopts & WAKE_PHY)
2155		adapter->wol |= E1000_WUFC_LNKC;
2156	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2157
2158	return 0;
2159}
2160
2161/* bit defines for adapter->led_status */
2162#define IGB_LED_ON		0
2163
2164static int igb_set_phys_id(struct net_device *netdev,
2165			   enum ethtool_phys_id_state state)
2166{
2167	struct igb_adapter *adapter = netdev_priv(netdev);
2168	struct e1000_hw *hw = &adapter->hw;
2169
2170	switch (state) {
2171	case ETHTOOL_ID_ACTIVE:
2172		igb_blink_led(hw);
2173		return 2;
2174	case ETHTOOL_ID_ON:
2175		igb_blink_led(hw);
2176		break;
2177	case ETHTOOL_ID_OFF:
2178		igb_led_off(hw);
2179		break;
2180	case ETHTOOL_ID_INACTIVE:
2181		igb_led_off(hw);
2182		clear_bit(IGB_LED_ON, &adapter->led_status);
2183		igb_cleanup_led(hw);
2184		break;
2185	}
2186
2187	return 0;
2188}
2189
2190static int igb_set_coalesce(struct net_device *netdev,
2191			    struct ethtool_coalesce *ec)
2192{
2193	struct igb_adapter *adapter = netdev_priv(netdev);
2194	int i;
2195
2196	if (ec->rx_max_coalesced_frames ||
2197	    ec->rx_coalesce_usecs_irq ||
2198	    ec->rx_max_coalesced_frames_irq ||
2199	    ec->tx_max_coalesced_frames ||
2200	    ec->tx_coalesce_usecs_irq ||
2201	    ec->stats_block_coalesce_usecs ||
2202	    ec->use_adaptive_rx_coalesce ||
2203	    ec->use_adaptive_tx_coalesce ||
2204	    ec->pkt_rate_low ||
2205	    ec->rx_coalesce_usecs_low ||
2206	    ec->rx_max_coalesced_frames_low ||
2207	    ec->tx_coalesce_usecs_low ||
2208	    ec->tx_max_coalesced_frames_low ||
2209	    ec->pkt_rate_high ||
2210	    ec->rx_coalesce_usecs_high ||
2211	    ec->rx_max_coalesced_frames_high ||
2212	    ec->tx_coalesce_usecs_high ||
2213	    ec->tx_max_coalesced_frames_high ||
2214	    ec->rate_sample_interval)
2215		return -ENOTSUPP;
2216
2217	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2218	    ((ec->rx_coalesce_usecs > 3) &&
2219	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2220	    (ec->rx_coalesce_usecs == 2))
2221		return -EINVAL;
2222
2223	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2224	    ((ec->tx_coalesce_usecs > 3) &&
2225	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2226	    (ec->tx_coalesce_usecs == 2))
2227		return -EINVAL;
2228
2229	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2230		return -EINVAL;
2231
2232	/* If ITR is disabled, disable DMAC */
2233	if (ec->rx_coalesce_usecs == 0) {
2234		if (adapter->flags & IGB_FLAG_DMAC)
2235			adapter->flags &= ~IGB_FLAG_DMAC;
2236	}
2237
2238	/* convert to rate of irq's per second */
2239	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2240		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2241	else
2242		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2243
2244	/* convert to rate of irq's per second */
2245	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2246		adapter->tx_itr_setting = adapter->rx_itr_setting;
2247	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2248		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2249	else
2250		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2251
2252	for (i = 0; i < adapter->num_q_vectors; i++) {
2253		struct igb_q_vector *q_vector = adapter->q_vector[i];
2254		q_vector->tx.work_limit = adapter->tx_work_limit;
2255		if (q_vector->rx.ring)
2256			q_vector->itr_val = adapter->rx_itr_setting;
2257		else
2258			q_vector->itr_val = adapter->tx_itr_setting;
2259		if (q_vector->itr_val && q_vector->itr_val <= 3)
2260			q_vector->itr_val = IGB_START_ITR;
2261		q_vector->set_itr = 1;
2262	}
2263
2264	return 0;
2265}
2266
2267static int igb_get_coalesce(struct net_device *netdev,
2268			    struct ethtool_coalesce *ec)
2269{
2270	struct igb_adapter *adapter = netdev_priv(netdev);
2271
2272	if (adapter->rx_itr_setting <= 3)
2273		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2274	else
2275		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2276
2277	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2278		if (adapter->tx_itr_setting <= 3)
2279			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2280		else
2281			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2282	}
2283
2284	return 0;
2285}
2286
2287static int igb_nway_reset(struct net_device *netdev)
2288{
2289	struct igb_adapter *adapter = netdev_priv(netdev);
2290	if (netif_running(netdev))
2291		igb_reinit_locked(adapter);
2292	return 0;
2293}
2294
2295static int igb_get_sset_count(struct net_device *netdev, int sset)
2296{
2297	switch (sset) {
2298	case ETH_SS_STATS:
2299		return IGB_STATS_LEN;
2300	case ETH_SS_TEST:
2301		return IGB_TEST_LEN;
2302	case ETH_SS_PRIV_FLAGS:
2303		return IGB_PRIV_FLAGS_STR_LEN;
2304	default:
2305		return -ENOTSUPP;
2306	}
2307}
2308
2309static void igb_get_ethtool_stats(struct net_device *netdev,
2310				  struct ethtool_stats *stats, u64 *data)
2311{
2312	struct igb_adapter *adapter = netdev_priv(netdev);
2313	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2314	unsigned int start;
2315	struct igb_ring *ring;
2316	int i, j;
2317	char *p;
2318
2319	spin_lock(&adapter->stats64_lock);
2320	igb_update_stats(adapter);
2321
2322	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2323		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2324		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2325			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2326	}
2327	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2328		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2329		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2330			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2331	}
2332	for (j = 0; j < adapter->num_tx_queues; j++) {
2333		u64	restart2;
2334
2335		ring = adapter->tx_ring[j];
2336		do {
2337			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2338			data[i]   = ring->tx_stats.packets;
2339			data[i+1] = ring->tx_stats.bytes;
2340			data[i+2] = ring->tx_stats.restart_queue;
2341		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2342		do {
2343			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2344			restart2  = ring->tx_stats.restart_queue2;
2345		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2346		data[i+2] += restart2;
2347
2348		i += IGB_TX_QUEUE_STATS_LEN;
2349	}
2350	for (j = 0; j < adapter->num_rx_queues; j++) {
2351		ring = adapter->rx_ring[j];
2352		do {
2353			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2354			data[i]   = ring->rx_stats.packets;
2355			data[i+1] = ring->rx_stats.bytes;
2356			data[i+2] = ring->rx_stats.drops;
2357			data[i+3] = ring->rx_stats.csum_err;
2358			data[i+4] = ring->rx_stats.alloc_failed;
2359		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2360		i += IGB_RX_QUEUE_STATS_LEN;
2361	}
2362	spin_unlock(&adapter->stats64_lock);
2363}
2364
2365static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2366{
2367	struct igb_adapter *adapter = netdev_priv(netdev);
2368	u8 *p = data;
2369	int i;
2370
2371	switch (stringset) {
2372	case ETH_SS_TEST:
2373		memcpy(data, *igb_gstrings_test,
2374			IGB_TEST_LEN*ETH_GSTRING_LEN);
2375		break;
2376	case ETH_SS_STATS:
2377		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2378			memcpy(p, igb_gstrings_stats[i].stat_string,
2379			       ETH_GSTRING_LEN);
2380			p += ETH_GSTRING_LEN;
2381		}
2382		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2383			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2384			       ETH_GSTRING_LEN);
2385			p += ETH_GSTRING_LEN;
2386		}
2387		for (i = 0; i < adapter->num_tx_queues; i++) {
2388			sprintf(p, "tx_queue_%u_packets", i);
2389			p += ETH_GSTRING_LEN;
2390			sprintf(p, "tx_queue_%u_bytes", i);
2391			p += ETH_GSTRING_LEN;
2392			sprintf(p, "tx_queue_%u_restart", i);
2393			p += ETH_GSTRING_LEN;
2394		}
2395		for (i = 0; i < adapter->num_rx_queues; i++) {
2396			sprintf(p, "rx_queue_%u_packets", i);
2397			p += ETH_GSTRING_LEN;
2398			sprintf(p, "rx_queue_%u_bytes", i);
2399			p += ETH_GSTRING_LEN;
2400			sprintf(p, "rx_queue_%u_drops", i);
2401			p += ETH_GSTRING_LEN;
2402			sprintf(p, "rx_queue_%u_csum_err", i);
2403			p += ETH_GSTRING_LEN;
2404			sprintf(p, "rx_queue_%u_alloc_failed", i);
2405			p += ETH_GSTRING_LEN;
2406		}
2407		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2408		break;
2409	case ETH_SS_PRIV_FLAGS:
2410		memcpy(data, igb_priv_flags_strings,
2411		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2412		break;
2413	}
2414}
2415
2416static int igb_get_ts_info(struct net_device *dev,
2417			   struct ethtool_ts_info *info)
2418{
2419	struct igb_adapter *adapter = netdev_priv(dev);
2420
2421	if (adapter->ptp_clock)
2422		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2423	else
2424		info->phc_index = -1;
2425
2426	switch (adapter->hw.mac.type) {
2427	case e1000_82575:
2428		info->so_timestamping =
2429			SOF_TIMESTAMPING_TX_SOFTWARE |
2430			SOF_TIMESTAMPING_RX_SOFTWARE |
2431			SOF_TIMESTAMPING_SOFTWARE;
2432		return 0;
2433	case e1000_82576:
2434	case e1000_82580:
2435	case e1000_i350:
2436	case e1000_i354:
2437	case e1000_i210:
2438	case e1000_i211:
2439		info->so_timestamping =
2440			SOF_TIMESTAMPING_TX_SOFTWARE |
2441			SOF_TIMESTAMPING_RX_SOFTWARE |
2442			SOF_TIMESTAMPING_SOFTWARE |
2443			SOF_TIMESTAMPING_TX_HARDWARE |
2444			SOF_TIMESTAMPING_RX_HARDWARE |
2445			SOF_TIMESTAMPING_RAW_HARDWARE;
2446
2447		info->tx_types =
2448			BIT(HWTSTAMP_TX_OFF) |
2449			BIT(HWTSTAMP_TX_ON);
2450
2451		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2452
2453		/* 82576 does not support timestamping all packets. */
2454		if (adapter->hw.mac.type >= e1000_82580)
2455			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2456		else
2457			info->rx_filters |=
2458				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2459				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2460				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2461
2462		return 0;
2463	default:
2464		return -EOPNOTSUPP;
2465	}
2466}
2467
2468#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2469static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2470				     struct ethtool_rxnfc *cmd)
2471{
2472	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2473	struct igb_nfc_filter *rule = NULL;
2474
2475	/* report total rule count */
2476	cmd->data = IGB_MAX_RXNFC_FILTERS;
2477
2478	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2479		if (fsp->location <= rule->sw_idx)
2480			break;
2481	}
2482
2483	if (!rule || fsp->location != rule->sw_idx)
2484		return -EINVAL;
2485
2486	if (rule->filter.match_flags) {
2487		fsp->flow_type = ETHER_FLOW;
2488		fsp->ring_cookie = rule->action;
2489		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2490			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2491			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2492		}
2493		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2494			fsp->flow_type |= FLOW_EXT;
2495			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2496			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2497		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498		return 0;
2499	}
2500	return -EINVAL;
2501}
2502
2503static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2504				   struct ethtool_rxnfc *cmd,
2505				   u32 *rule_locs)
2506{
2507	struct igb_nfc_filter *rule;
2508	int cnt = 0;
2509
2510	/* report total rule count */
2511	cmd->data = IGB_MAX_RXNFC_FILTERS;
2512
2513	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2514		if (cnt == cmd->rule_cnt)
2515			return -EMSGSIZE;
2516		rule_locs[cnt] = rule->sw_idx;
2517		cnt++;
2518	}
2519
2520	cmd->rule_cnt = cnt;
2521
2522	return 0;
2523}
2524
2525static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2526				 struct ethtool_rxnfc *cmd)
2527{
2528	cmd->data = 0;
2529
2530	/* Report default options for RSS on igb */
2531	switch (cmd->flow_type) {
2532	case TCP_V4_FLOW:
2533		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534		/* Fall through */
2535	case UDP_V4_FLOW:
2536		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2537			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538		/* Fall through */
2539	case SCTP_V4_FLOW:
2540	case AH_ESP_V4_FLOW:
2541	case AH_V4_FLOW:
2542	case ESP_V4_FLOW:
2543	case IPV4_FLOW:
2544		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545		break;
2546	case TCP_V6_FLOW:
2547		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2548		/* Fall through */
2549	case UDP_V6_FLOW:
2550		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2551			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2552		/* Fall through */
2553	case SCTP_V6_FLOW:
2554	case AH_ESP_V6_FLOW:
2555	case AH_V6_FLOW:
2556	case ESP_V6_FLOW:
2557	case IPV6_FLOW:
2558		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2559		break;
2560	default:
2561		return -EINVAL;
2562	}
2563
2564	return 0;
2565}
2566
2567static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2568			 u32 *rule_locs)
2569{
2570	struct igb_adapter *adapter = netdev_priv(dev);
2571	int ret = -EOPNOTSUPP;
2572
2573	switch (cmd->cmd) {
2574	case ETHTOOL_GRXRINGS:
2575		cmd->data = adapter->num_rx_queues;
2576		ret = 0;
2577		break;
2578	case ETHTOOL_GRXCLSRLCNT:
2579		cmd->rule_cnt = adapter->nfc_filter_count;
2580		ret = 0;
2581		break;
2582	case ETHTOOL_GRXCLSRULE:
2583		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2584		break;
2585	case ETHTOOL_GRXCLSRLALL:
2586		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2587		break;
2588	case ETHTOOL_GRXFH:
2589		ret = igb_get_rss_hash_opts(adapter, cmd);
2590		break;
2591	default:
2592		break;
2593	}
2594
2595	return ret;
2596}
2597
2598#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2599		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2600static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2601				struct ethtool_rxnfc *nfc)
2602{
2603	u32 flags = adapter->flags;
2604
2605	/* RSS does not support anything other than hashing
2606	 * to queues on src and dst IPs and ports
2607	 */
2608	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2609			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2610		return -EINVAL;
2611
2612	switch (nfc->flow_type) {
2613	case TCP_V4_FLOW:
2614	case TCP_V6_FLOW:
2615		if (!(nfc->data & RXH_IP_SRC) ||
2616		    !(nfc->data & RXH_IP_DST) ||
2617		    !(nfc->data & RXH_L4_B_0_1) ||
2618		    !(nfc->data & RXH_L4_B_2_3))
2619			return -EINVAL;
2620		break;
2621	case UDP_V4_FLOW:
2622		if (!(nfc->data & RXH_IP_SRC) ||
2623		    !(nfc->data & RXH_IP_DST))
2624			return -EINVAL;
2625		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2626		case 0:
2627			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2628			break;
2629		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2630			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2631			break;
2632		default:
2633			return -EINVAL;
2634		}
2635		break;
2636	case UDP_V6_FLOW:
2637		if (!(nfc->data & RXH_IP_SRC) ||
2638		    !(nfc->data & RXH_IP_DST))
2639			return -EINVAL;
2640		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2641		case 0:
2642			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2643			break;
2644		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2645			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2646			break;
2647		default:
2648			return -EINVAL;
2649		}
2650		break;
2651	case AH_ESP_V4_FLOW:
2652	case AH_V4_FLOW:
2653	case ESP_V4_FLOW:
2654	case SCTP_V4_FLOW:
2655	case AH_ESP_V6_FLOW:
2656	case AH_V6_FLOW:
2657	case ESP_V6_FLOW:
2658	case SCTP_V6_FLOW:
2659		if (!(nfc->data & RXH_IP_SRC) ||
2660		    !(nfc->data & RXH_IP_DST) ||
2661		    (nfc->data & RXH_L4_B_0_1) ||
2662		    (nfc->data & RXH_L4_B_2_3))
2663			return -EINVAL;
2664		break;
2665	default:
2666		return -EINVAL;
2667	}
2668
2669	/* if we changed something we need to update flags */
2670	if (flags != adapter->flags) {
2671		struct e1000_hw *hw = &adapter->hw;
2672		u32 mrqc = rd32(E1000_MRQC);
2673
2674		if ((flags & UDP_RSS_FLAGS) &&
2675		    !(adapter->flags & UDP_RSS_FLAGS))
2676			dev_err(&adapter->pdev->dev,
2677				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2678
2679		adapter->flags = flags;
2680
2681		/* Perform hash on these packet types */
2682		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2683			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2684			E1000_MRQC_RSS_FIELD_IPV6 |
2685			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2686
2687		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2688			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2689
2690		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2691			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2692
2693		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2694			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2695
2696		wr32(E1000_MRQC, mrqc);
2697	}
2698
2699	return 0;
2700}
2701
2702static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2703					struct igb_nfc_filter *input)
2704{
2705	struct e1000_hw *hw = &adapter->hw;
2706	u8 i;
2707	u32 etqf;
2708	u16 etype;
2709
2710	/* find an empty etype filter register */
2711	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2712		if (!adapter->etype_bitmap[i])
2713			break;
2714	}
2715	if (i == MAX_ETYPE_FILTER) {
2716		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2717		return -EINVAL;
2718	}
2719
2720	adapter->etype_bitmap[i] = true;
2721
2722	etqf = rd32(E1000_ETQF(i));
2723	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2724
2725	etqf |= E1000_ETQF_FILTER_ENABLE;
2726	etqf &= ~E1000_ETQF_ETYPE_MASK;
2727	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2728
2729	etqf &= ~E1000_ETQF_QUEUE_MASK;
2730	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2731		& E1000_ETQF_QUEUE_MASK);
2732	etqf |= E1000_ETQF_QUEUE_ENABLE;
2733
2734	wr32(E1000_ETQF(i), etqf);
2735
2736	input->etype_reg_index = i;
2737
2738	return 0;
2739}
2740
2741static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2742					    struct igb_nfc_filter *input)
2743{
2744	struct e1000_hw *hw = &adapter->hw;
2745	u8 vlan_priority;
2746	u16 queue_index;
2747	u32 vlapqf;
2748
2749	vlapqf = rd32(E1000_VLAPQF);
2750	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2751				>> VLAN_PRIO_SHIFT;
2752	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2753
2754	/* check whether this vlan prio is already set */
2755	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2756	    (queue_index != input->action)) {
2757		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2758		return -EEXIST;
2759	}
2760
2761	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2762	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2763
2764	wr32(E1000_VLAPQF, vlapqf);
2765
2766	return 0;
2767}
2768
2769int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2770{
 
2771	int err = -EINVAL;
2772
 
 
 
 
 
 
 
2773	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2774		err = igb_rxnfc_write_etype_filter(adapter, input);
2775		if (err)
2776			return err;
2777	}
2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2780		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2781
2782	return err;
2783}
2784
2785static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2786					u16 reg_index)
2787{
2788	struct e1000_hw *hw = &adapter->hw;
2789	u32 etqf = rd32(E1000_ETQF(reg_index));
2790
2791	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2792	etqf &= ~E1000_ETQF_QUEUE_MASK;
2793	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2794
2795	wr32(E1000_ETQF(reg_index), etqf);
2796
2797	adapter->etype_bitmap[reg_index] = false;
2798}
2799
2800static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2801				       u16 vlan_tci)
2802{
2803	struct e1000_hw *hw = &adapter->hw;
2804	u8 vlan_priority;
2805	u32 vlapqf;
2806
2807	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2808
2809	vlapqf = rd32(E1000_VLAPQF);
2810	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2811	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2812						E1000_VLAPQF_QUEUE_MASK);
2813
2814	wr32(E1000_VLAPQF, vlapqf);
2815}
2816
2817int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2818{
2819	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2820		igb_clear_etype_filter_regs(adapter,
2821					    input->etype_reg_index);
2822
2823	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2824		igb_clear_vlan_prio_filter(adapter,
2825					   ntohs(input->filter.vlan_tci));
2826
 
 
 
 
 
 
 
 
 
2827	return 0;
2828}
2829
2830static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2831					struct igb_nfc_filter *input,
2832					u16 sw_idx)
2833{
2834	struct igb_nfc_filter *rule, *parent;
2835	int err = -EINVAL;
2836
2837	parent = NULL;
2838	rule = NULL;
2839
2840	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2841		/* hash found, or no matching entry */
2842		if (rule->sw_idx >= sw_idx)
2843			break;
2844		parent = rule;
2845	}
2846
2847	/* if there is an old rule occupying our place remove it */
2848	if (rule && (rule->sw_idx == sw_idx)) {
2849		if (!input)
2850			err = igb_erase_filter(adapter, rule);
2851
2852		hlist_del(&rule->nfc_node);
2853		kfree(rule);
2854		adapter->nfc_filter_count--;
2855	}
2856
2857	/* If no input this was a delete, err should be 0 if a rule was
2858	 * successfully found and removed from the list else -EINVAL
2859	 */
2860	if (!input)
2861		return err;
2862
2863	/* initialize node */
2864	INIT_HLIST_NODE(&input->nfc_node);
2865
2866	/* add filter to the list */
2867	if (parent)
2868		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2869	else
2870		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2871
2872	/* update counts */
2873	adapter->nfc_filter_count++;
2874
2875	return 0;
2876}
2877
2878static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2879				     struct ethtool_rxnfc *cmd)
2880{
2881	struct net_device *netdev = adapter->netdev;
2882	struct ethtool_rx_flow_spec *fsp =
2883		(struct ethtool_rx_flow_spec *)&cmd->fs;
2884	struct igb_nfc_filter *input, *rule;
2885	int err = 0;
2886
2887	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2888		return -EOPNOTSUPP;
2889
2890	/* Don't allow programming if the action is a queue greater than
2891	 * the number of online Rx queues.
2892	 */
2893	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2894	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2895		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2896		return -EINVAL;
2897	}
2898
2899	/* Don't allow indexes to exist outside of available space */
2900	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2901		dev_err(&adapter->pdev->dev, "Location out of range\n");
2902		return -EINVAL;
2903	}
2904
2905	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2906		return -EINVAL;
2907
2908	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2909	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2910		return -EINVAL;
2911
2912	input = kzalloc(sizeof(*input), GFP_KERNEL);
2913	if (!input)
2914		return -ENOMEM;
2915
2916	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2917		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2918		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2919	}
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2922		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2923			err = -EINVAL;
2924			goto err_out;
2925		}
2926		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2927		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2928	}
2929
2930	input->action = fsp->ring_cookie;
2931	input->sw_idx = fsp->location;
2932
2933	spin_lock(&adapter->nfc_lock);
2934
2935	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2936		if (!memcmp(&input->filter, &rule->filter,
2937			    sizeof(input->filter))) {
2938			err = -EEXIST;
2939			dev_err(&adapter->pdev->dev,
2940				"ethtool: this filter is already set\n");
2941			goto err_out_w_lock;
2942		}
2943	}
2944
2945	err = igb_add_filter(adapter, input);
2946	if (err)
2947		goto err_out_w_lock;
2948
2949	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2950
2951	spin_unlock(&adapter->nfc_lock);
2952	return 0;
2953
2954err_out_w_lock:
2955	spin_unlock(&adapter->nfc_lock);
2956err_out:
2957	kfree(input);
2958	return err;
2959}
2960
2961static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2962				     struct ethtool_rxnfc *cmd)
2963{
2964	struct ethtool_rx_flow_spec *fsp =
2965		(struct ethtool_rx_flow_spec *)&cmd->fs;
2966	int err;
2967
2968	spin_lock(&adapter->nfc_lock);
2969	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2970	spin_unlock(&adapter->nfc_lock);
2971
2972	return err;
2973}
2974
2975static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2976{
2977	struct igb_adapter *adapter = netdev_priv(dev);
2978	int ret = -EOPNOTSUPP;
2979
2980	switch (cmd->cmd) {
2981	case ETHTOOL_SRXFH:
2982		ret = igb_set_rss_hash_opt(adapter, cmd);
2983		break;
2984	case ETHTOOL_SRXCLSRLINS:
2985		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2986		break;
2987	case ETHTOOL_SRXCLSRLDEL:
2988		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2989	default:
2990		break;
2991	}
2992
2993	return ret;
2994}
2995
2996static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2997{
2998	struct igb_adapter *adapter = netdev_priv(netdev);
2999	struct e1000_hw *hw = &adapter->hw;
3000	u32 ret_val;
3001	u16 phy_data;
3002
3003	if ((hw->mac.type < e1000_i350) ||
3004	    (hw->phy.media_type != e1000_media_type_copper))
3005		return -EOPNOTSUPP;
3006
3007	edata->supported = (SUPPORTED_1000baseT_Full |
3008			    SUPPORTED_100baseT_Full);
3009	if (!hw->dev_spec._82575.eee_disable)
3010		edata->advertised =
3011			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3012
3013	/* The IPCNFG and EEER registers are not supported on I354. */
3014	if (hw->mac.type == e1000_i354) {
3015		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3016	} else {
3017		u32 eeer;
3018
3019		eeer = rd32(E1000_EEER);
3020
3021		/* EEE status on negotiated link */
3022		if (eeer & E1000_EEER_EEE_NEG)
3023			edata->eee_active = true;
3024
3025		if (eeer & E1000_EEER_TX_LPI_EN)
3026			edata->tx_lpi_enabled = true;
3027	}
3028
3029	/* EEE Link Partner Advertised */
3030	switch (hw->mac.type) {
3031	case e1000_i350:
3032		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3033					   &phy_data);
3034		if (ret_val)
3035			return -ENODATA;
3036
3037		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3038		break;
3039	case e1000_i354:
3040	case e1000_i210:
3041	case e1000_i211:
3042		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3043					     E1000_EEE_LP_ADV_DEV_I210,
3044					     &phy_data);
3045		if (ret_val)
3046			return -ENODATA;
3047
3048		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3049
3050		break;
3051	default:
3052		break;
3053	}
3054
3055	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3056
3057	if ((hw->mac.type == e1000_i354) &&
3058	    (edata->eee_enabled))
3059		edata->tx_lpi_enabled = true;
3060
3061	/* Report correct negotiated EEE status for devices that
3062	 * wrongly report EEE at half-duplex
3063	 */
3064	if (adapter->link_duplex == HALF_DUPLEX) {
3065		edata->eee_enabled = false;
3066		edata->eee_active = false;
3067		edata->tx_lpi_enabled = false;
3068		edata->advertised &= ~edata->advertised;
3069	}
3070
3071	return 0;
3072}
3073
3074static int igb_set_eee(struct net_device *netdev,
3075		       struct ethtool_eee *edata)
3076{
3077	struct igb_adapter *adapter = netdev_priv(netdev);
3078	struct e1000_hw *hw = &adapter->hw;
3079	struct ethtool_eee eee_curr;
3080	bool adv1g_eee = true, adv100m_eee = true;
3081	s32 ret_val;
3082
3083	if ((hw->mac.type < e1000_i350) ||
3084	    (hw->phy.media_type != e1000_media_type_copper))
3085		return -EOPNOTSUPP;
3086
3087	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3088
3089	ret_val = igb_get_eee(netdev, &eee_curr);
3090	if (ret_val)
3091		return ret_val;
3092
3093	if (eee_curr.eee_enabled) {
3094		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3095			dev_err(&adapter->pdev->dev,
3096				"Setting EEE tx-lpi is not supported\n");
3097			return -EINVAL;
3098		}
3099
3100		/* Tx LPI timer is not implemented currently */
3101		if (edata->tx_lpi_timer) {
3102			dev_err(&adapter->pdev->dev,
3103				"Setting EEE Tx LPI timer is not supported\n");
3104			return -EINVAL;
3105		}
3106
3107		if (!edata->advertised || (edata->advertised &
3108		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3109			dev_err(&adapter->pdev->dev,
3110				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3111			return -EINVAL;
3112		}
3113		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3114		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3115
3116	} else if (!edata->eee_enabled) {
3117		dev_err(&adapter->pdev->dev,
3118			"Setting EEE options are not supported with EEE disabled\n");
3119			return -EINVAL;
3120		}
3121
3122	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3123	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3124		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3125		adapter->flags |= IGB_FLAG_EEE;
3126
3127		/* reset link */
3128		if (netif_running(netdev))
3129			igb_reinit_locked(adapter);
3130		else
3131			igb_reset(adapter);
3132	}
3133
3134	if (hw->mac.type == e1000_i354)
3135		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3136	else
3137		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3138
3139	if (ret_val) {
3140		dev_err(&adapter->pdev->dev,
3141			"Problem setting EEE advertisement options\n");
3142		return -EINVAL;
3143	}
3144
3145	return 0;
3146}
3147
3148static int igb_get_module_info(struct net_device *netdev,
3149			       struct ethtool_modinfo *modinfo)
3150{
3151	struct igb_adapter *adapter = netdev_priv(netdev);
3152	struct e1000_hw *hw = &adapter->hw;
3153	u32 status = 0;
3154	u16 sff8472_rev, addr_mode;
3155	bool page_swap = false;
3156
3157	if ((hw->phy.media_type == e1000_media_type_copper) ||
3158	    (hw->phy.media_type == e1000_media_type_unknown))
3159		return -EOPNOTSUPP;
3160
3161	/* Check whether we support SFF-8472 or not */
3162	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3163	if (status)
3164		return -EIO;
3165
3166	/* addressing mode is not supported */
3167	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3168	if (status)
3169		return -EIO;
3170
3171	/* addressing mode is not supported */
3172	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3173		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3174		page_swap = true;
3175	}
3176
3177	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3178		/* We have an SFP, but it does not support SFF-8472 */
3179		modinfo->type = ETH_MODULE_SFF_8079;
3180		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3181	} else {
3182		/* We have an SFP which supports a revision of SFF-8472 */
3183		modinfo->type = ETH_MODULE_SFF_8472;
3184		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3185	}
3186
3187	return 0;
3188}
3189
3190static int igb_get_module_eeprom(struct net_device *netdev,
3191				 struct ethtool_eeprom *ee, u8 *data)
3192{
3193	struct igb_adapter *adapter = netdev_priv(netdev);
3194	struct e1000_hw *hw = &adapter->hw;
3195	u32 status = 0;
3196	u16 *dataword;
3197	u16 first_word, last_word;
3198	int i = 0;
3199
3200	if (ee->len == 0)
3201		return -EINVAL;
3202
3203	first_word = ee->offset >> 1;
3204	last_word = (ee->offset + ee->len - 1) >> 1;
3205
3206	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3207			   GFP_KERNEL);
3208	if (!dataword)
3209		return -ENOMEM;
3210
3211	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3212	for (i = 0; i < last_word - first_word + 1; i++) {
3213		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3214					      &dataword[i]);
3215		if (status) {
3216			/* Error occurred while reading module */
3217			kfree(dataword);
3218			return -EIO;
3219		}
3220
3221		be16_to_cpus(&dataword[i]);
3222	}
3223
3224	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3225	kfree(dataword);
3226
3227	return 0;
3228}
3229
3230static int igb_ethtool_begin(struct net_device *netdev)
3231{
3232	struct igb_adapter *adapter = netdev_priv(netdev);
3233	pm_runtime_get_sync(&adapter->pdev->dev);
3234	return 0;
3235}
3236
3237static void igb_ethtool_complete(struct net_device *netdev)
3238{
3239	struct igb_adapter *adapter = netdev_priv(netdev);
3240	pm_runtime_put(&adapter->pdev->dev);
3241}
3242
3243static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3244{
3245	return IGB_RETA_SIZE;
3246}
3247
3248static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3249			u8 *hfunc)
3250{
3251	struct igb_adapter *adapter = netdev_priv(netdev);
3252	int i;
3253
3254	if (hfunc)
3255		*hfunc = ETH_RSS_HASH_TOP;
3256	if (!indir)
3257		return 0;
3258	for (i = 0; i < IGB_RETA_SIZE; i++)
3259		indir[i] = adapter->rss_indir_tbl[i];
3260
3261	return 0;
3262}
3263
3264void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3265{
3266	struct e1000_hw *hw = &adapter->hw;
3267	u32 reg = E1000_RETA(0);
3268	u32 shift = 0;
3269	int i = 0;
3270
3271	switch (hw->mac.type) {
3272	case e1000_82575:
3273		shift = 6;
3274		break;
3275	case e1000_82576:
3276		/* 82576 supports 2 RSS queues for SR-IOV */
3277		if (adapter->vfs_allocated_count)
3278			shift = 3;
3279		break;
3280	default:
3281		break;
3282	}
3283
3284	while (i < IGB_RETA_SIZE) {
3285		u32 val = 0;
3286		int j;
3287
3288		for (j = 3; j >= 0; j--) {
3289			val <<= 8;
3290			val |= adapter->rss_indir_tbl[i + j];
3291		}
3292
3293		wr32(reg, val << shift);
3294		reg += 4;
3295		i += 4;
3296	}
3297}
3298
3299static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3300			const u8 *key, const u8 hfunc)
3301{
3302	struct igb_adapter *adapter = netdev_priv(netdev);
3303	struct e1000_hw *hw = &adapter->hw;
3304	int i;
3305	u32 num_queues;
3306
3307	/* We do not allow change in unsupported parameters */
3308	if (key ||
3309	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3310		return -EOPNOTSUPP;
3311	if (!indir)
3312		return 0;
3313
3314	num_queues = adapter->rss_queues;
3315
3316	switch (hw->mac.type) {
3317	case e1000_82576:
3318		/* 82576 supports 2 RSS queues for SR-IOV */
3319		if (adapter->vfs_allocated_count)
3320			num_queues = 2;
3321		break;
3322	default:
3323		break;
3324	}
3325
3326	/* Verify user input. */
3327	for (i = 0; i < IGB_RETA_SIZE; i++)
3328		if (indir[i] >= num_queues)
3329			return -EINVAL;
3330
3331
3332	for (i = 0; i < IGB_RETA_SIZE; i++)
3333		adapter->rss_indir_tbl[i] = indir[i];
3334
3335	igb_write_rss_indir_tbl(adapter);
3336
3337	return 0;
3338}
3339
3340static unsigned int igb_max_channels(struct igb_adapter *adapter)
3341{
3342	return igb_get_max_rss_queues(adapter);
3343}
3344
3345static void igb_get_channels(struct net_device *netdev,
3346			     struct ethtool_channels *ch)
3347{
3348	struct igb_adapter *adapter = netdev_priv(netdev);
3349
3350	/* Report maximum channels */
3351	ch->max_combined = igb_max_channels(adapter);
3352
3353	/* Report info for other vector */
3354	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3355		ch->max_other = NON_Q_VECTORS;
3356		ch->other_count = NON_Q_VECTORS;
3357	}
3358
3359	ch->combined_count = adapter->rss_queues;
3360}
3361
3362static int igb_set_channels(struct net_device *netdev,
3363			    struct ethtool_channels *ch)
3364{
3365	struct igb_adapter *adapter = netdev_priv(netdev);
3366	unsigned int count = ch->combined_count;
3367	unsigned int max_combined = 0;
3368
3369	/* Verify they are not requesting separate vectors */
3370	if (!count || ch->rx_count || ch->tx_count)
3371		return -EINVAL;
3372
3373	/* Verify other_count is valid and has not been changed */
3374	if (ch->other_count != NON_Q_VECTORS)
3375		return -EINVAL;
3376
3377	/* Verify the number of channels doesn't exceed hw limits */
3378	max_combined = igb_max_channels(adapter);
3379	if (count > max_combined)
3380		return -EINVAL;
3381
3382	if (count != adapter->rss_queues) {
3383		adapter->rss_queues = count;
3384		igb_set_flag_queue_pairs(adapter, max_combined);
3385
3386		/* Hardware has to reinitialize queues and interrupts to
3387		 * match the new configuration.
3388		 */
3389		return igb_reinit_queues(adapter);
3390	}
3391
3392	return 0;
3393}
3394
3395static u32 igb_get_priv_flags(struct net_device *netdev)
3396{
3397	struct igb_adapter *adapter = netdev_priv(netdev);
3398	u32 priv_flags = 0;
3399
3400	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3401		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3402
3403	return priv_flags;
3404}
3405
3406static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3407{
3408	struct igb_adapter *adapter = netdev_priv(netdev);
3409	unsigned int flags = adapter->flags;
3410
3411	flags &= ~IGB_FLAG_RX_LEGACY;
3412	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3413		flags |= IGB_FLAG_RX_LEGACY;
3414
3415	if (flags != adapter->flags) {
3416		adapter->flags = flags;
3417
3418		/* reset interface to repopulate queues */
3419		if (netif_running(netdev))
3420			igb_reinit_locked(adapter);
3421	}
3422
3423	return 0;
3424}
3425
3426static const struct ethtool_ops igb_ethtool_ops = {
 
3427	.get_drvinfo		= igb_get_drvinfo,
3428	.get_regs_len		= igb_get_regs_len,
3429	.get_regs		= igb_get_regs,
3430	.get_wol		= igb_get_wol,
3431	.set_wol		= igb_set_wol,
3432	.get_msglevel		= igb_get_msglevel,
3433	.set_msglevel		= igb_set_msglevel,
3434	.nway_reset		= igb_nway_reset,
3435	.get_link		= igb_get_link,
3436	.get_eeprom_len		= igb_get_eeprom_len,
3437	.get_eeprom		= igb_get_eeprom,
3438	.set_eeprom		= igb_set_eeprom,
3439	.get_ringparam		= igb_get_ringparam,
3440	.set_ringparam		= igb_set_ringparam,
3441	.get_pauseparam		= igb_get_pauseparam,
3442	.set_pauseparam		= igb_set_pauseparam,
3443	.self_test		= igb_diag_test,
3444	.get_strings		= igb_get_strings,
3445	.set_phys_id		= igb_set_phys_id,
3446	.get_sset_count		= igb_get_sset_count,
3447	.get_ethtool_stats	= igb_get_ethtool_stats,
3448	.get_coalesce		= igb_get_coalesce,
3449	.set_coalesce		= igb_set_coalesce,
3450	.get_ts_info		= igb_get_ts_info,
3451	.get_rxnfc		= igb_get_rxnfc,
3452	.set_rxnfc		= igb_set_rxnfc,
3453	.get_eee		= igb_get_eee,
3454	.set_eee		= igb_set_eee,
3455	.get_module_info	= igb_get_module_info,
3456	.get_module_eeprom	= igb_get_module_eeprom,
3457	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3458	.get_rxfh		= igb_get_rxfh,
3459	.set_rxfh		= igb_set_rxfh,
3460	.get_channels		= igb_get_channels,
3461	.set_channels		= igb_set_channels,
3462	.get_priv_flags		= igb_get_priv_flags,
3463	.set_priv_flags		= igb_set_priv_flags,
3464	.begin			= igb_ethtool_begin,
3465	.complete		= igb_ethtool_complete,
3466	.get_link_ksettings	= igb_get_link_ksettings,
3467	.set_link_ksettings	= igb_set_link_ksettings,
3468};
3469
3470void igb_set_ethtool_ops(struct net_device *netdev)
3471{
3472	netdev->ethtool_ops = &igb_ethtool_ops;
3473}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for igb */
   5
   6#include <linux/vmalloc.h>
   7#include <linux/netdevice.h>
   8#include <linux/pci.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/if_ether.h>
  12#include <linux/ethtool.h>
  13#include <linux/sched.h>
  14#include <linux/slab.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/highmem.h>
  17#include <linux/mdio.h>
  18
  19#include "igb.h"
  20
  21struct igb_stats {
  22	char stat_string[ETH_GSTRING_LEN];
  23	int sizeof_stat;
  24	int stat_offset;
  25};
  26
  27#define IGB_STAT(_name, _stat) { \
  28	.stat_string = _name, \
  29	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
  30	.stat_offset = offsetof(struct igb_adapter, _stat) \
  31}
  32static const struct igb_stats igb_gstrings_stats[] = {
  33	IGB_STAT("rx_packets", stats.gprc),
  34	IGB_STAT("tx_packets", stats.gptc),
  35	IGB_STAT("rx_bytes", stats.gorc),
  36	IGB_STAT("tx_bytes", stats.gotc),
  37	IGB_STAT("rx_broadcast", stats.bprc),
  38	IGB_STAT("tx_broadcast", stats.bptc),
  39	IGB_STAT("rx_multicast", stats.mprc),
  40	IGB_STAT("tx_multicast", stats.mptc),
  41	IGB_STAT("multicast", stats.mprc),
  42	IGB_STAT("collisions", stats.colc),
  43	IGB_STAT("rx_crc_errors", stats.crcerrs),
  44	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  45	IGB_STAT("rx_missed_errors", stats.mpc),
  46	IGB_STAT("tx_aborted_errors", stats.ecol),
  47	IGB_STAT("tx_carrier_errors", stats.tncrs),
  48	IGB_STAT("tx_window_errors", stats.latecol),
  49	IGB_STAT("tx_abort_late_coll", stats.latecol),
  50	IGB_STAT("tx_deferred_ok", stats.dc),
  51	IGB_STAT("tx_single_coll_ok", stats.scc),
  52	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  53	IGB_STAT("tx_timeout_count", tx_timeout_count),
  54	IGB_STAT("rx_long_length_errors", stats.roc),
  55	IGB_STAT("rx_short_length_errors", stats.ruc),
  56	IGB_STAT("rx_align_errors", stats.algnerrc),
  57	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  58	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  59	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  60	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  61	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  62	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  63	IGB_STAT("rx_long_byte_count", stats.gorc),
  64	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  65	IGB_STAT("tx_smbus", stats.mgptc),
  66	IGB_STAT("rx_smbus", stats.mgprc),
  67	IGB_STAT("dropped_smbus", stats.mgpdc),
  68	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  69	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  70	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  71	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  72	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  73	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  74	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  75};
  76
  77#define IGB_NETDEV_STAT(_net_stat) { \
  78	.stat_string = __stringify(_net_stat), \
  79	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
  80	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  81}
  82static const struct igb_stats igb_gstrings_net_stats[] = {
  83	IGB_NETDEV_STAT(rx_errors),
  84	IGB_NETDEV_STAT(tx_errors),
  85	IGB_NETDEV_STAT(tx_dropped),
  86	IGB_NETDEV_STAT(rx_length_errors),
  87	IGB_NETDEV_STAT(rx_over_errors),
  88	IGB_NETDEV_STAT(rx_frame_errors),
  89	IGB_NETDEV_STAT(rx_fifo_errors),
  90	IGB_NETDEV_STAT(tx_fifo_errors),
  91	IGB_NETDEV_STAT(tx_heartbeat_errors)
  92};
  93
  94#define IGB_GLOBAL_STATS_LEN	\
  95	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  96#define IGB_NETDEV_STATS_LEN	\
  97	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  98#define IGB_RX_QUEUE_STATS_LEN \
  99	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 100
 101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 102
 103#define IGB_QUEUE_STATS_LEN \
 104	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 105	  IGB_RX_QUEUE_STATS_LEN) + \
 106	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 107	  IGB_TX_QUEUE_STATS_LEN))
 108#define IGB_STATS_LEN \
 109	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 110
 111enum igb_diagnostics_results {
 112	TEST_REG = 0,
 113	TEST_EEP,
 114	TEST_IRQ,
 115	TEST_LOOP,
 116	TEST_LINK
 117};
 118
 119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 120	[TEST_REG]  = "Register test  (offline)",
 121	[TEST_EEP]  = "Eeprom test    (offline)",
 122	[TEST_IRQ]  = "Interrupt test (offline)",
 123	[TEST_LOOP] = "Loopback test  (offline)",
 124	[TEST_LINK] = "Link test   (on/offline)"
 125};
 126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 127
 128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 129#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
 130	"legacy-rx",
 131};
 132
 133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 134
 135static int igb_get_link_ksettings(struct net_device *netdev,
 136				  struct ethtool_link_ksettings *cmd)
 137{
 138	struct igb_adapter *adapter = netdev_priv(netdev);
 139	struct e1000_hw *hw = &adapter->hw;
 140	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 141	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 142	u32 status;
 143	u32 speed;
 144	u32 supported, advertising;
 145
 146	status = pm_runtime_suspended(&adapter->pdev->dev) ?
 147		 0 : rd32(E1000_STATUS);
 148	if (hw->phy.media_type == e1000_media_type_copper) {
 149
 150		supported = (SUPPORTED_10baseT_Half |
 151			     SUPPORTED_10baseT_Full |
 152			     SUPPORTED_100baseT_Half |
 153			     SUPPORTED_100baseT_Full |
 154			     SUPPORTED_1000baseT_Full|
 155			     SUPPORTED_Autoneg |
 156			     SUPPORTED_TP |
 157			     SUPPORTED_Pause);
 158		advertising = ADVERTISED_TP;
 159
 160		if (hw->mac.autoneg == 1) {
 161			advertising |= ADVERTISED_Autoneg;
 162			/* the e1000 autoneg seems to match ethtool nicely */
 163			advertising |= hw->phy.autoneg_advertised;
 164		}
 165
 166		cmd->base.port = PORT_TP;
 167		cmd->base.phy_address = hw->phy.addr;
 168	} else {
 169		supported = (SUPPORTED_FIBRE |
 170			     SUPPORTED_1000baseKX_Full |
 171			     SUPPORTED_Autoneg |
 172			     SUPPORTED_Pause);
 173		advertising = (ADVERTISED_FIBRE |
 174			       ADVERTISED_1000baseKX_Full);
 175		if (hw->mac.type == e1000_i354) {
 176			if ((hw->device_id ==
 177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 179				supported |= SUPPORTED_2500baseX_Full;
 180				supported &= ~SUPPORTED_1000baseKX_Full;
 181				advertising |= ADVERTISED_2500baseX_Full;
 182				advertising &= ~ADVERTISED_1000baseKX_Full;
 183			}
 184		}
 185		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 186			supported |= SUPPORTED_100baseT_Full;
 187			advertising |= ADVERTISED_100baseT_Full;
 188		}
 189		if (hw->mac.autoneg == 1)
 190			advertising |= ADVERTISED_Autoneg;
 191
 192		cmd->base.port = PORT_FIBRE;
 193	}
 194	if (hw->mac.autoneg != 1)
 195		advertising &= ~(ADVERTISED_Pause |
 196				 ADVERTISED_Asym_Pause);
 197
 198	switch (hw->fc.requested_mode) {
 199	case e1000_fc_full:
 200		advertising |= ADVERTISED_Pause;
 201		break;
 202	case e1000_fc_rx_pause:
 203		advertising |= (ADVERTISED_Pause |
 204				ADVERTISED_Asym_Pause);
 205		break;
 206	case e1000_fc_tx_pause:
 207		advertising |=  ADVERTISED_Asym_Pause;
 208		break;
 209	default:
 210		advertising &= ~(ADVERTISED_Pause |
 211				 ADVERTISED_Asym_Pause);
 212	}
 213	if (status & E1000_STATUS_LU) {
 214		if ((status & E1000_STATUS_2P5_SKU) &&
 215		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 216			speed = SPEED_2500;
 217		} else if (status & E1000_STATUS_SPEED_1000) {
 218			speed = SPEED_1000;
 219		} else if (status & E1000_STATUS_SPEED_100) {
 220			speed = SPEED_100;
 221		} else {
 222			speed = SPEED_10;
 223		}
 224		if ((status & E1000_STATUS_FD) ||
 225		    hw->phy.media_type != e1000_media_type_copper)
 226			cmd->base.duplex = DUPLEX_FULL;
 227		else
 228			cmd->base.duplex = DUPLEX_HALF;
 229	} else {
 230		speed = SPEED_UNKNOWN;
 231		cmd->base.duplex = DUPLEX_UNKNOWN;
 232	}
 233	cmd->base.speed = speed;
 234	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 235	    hw->mac.autoneg)
 236		cmd->base.autoneg = AUTONEG_ENABLE;
 237	else
 238		cmd->base.autoneg = AUTONEG_DISABLE;
 239
 240	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 241	if (hw->phy.media_type == e1000_media_type_copper)
 242		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 243						      ETH_TP_MDI;
 244	else
 245		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 246
 247	if (hw->phy.mdix == AUTO_ALL_MODES)
 248		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 249	else
 250		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 251
 252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 253						supported);
 254	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 255						advertising);
 256
 257	return 0;
 258}
 259
 260static int igb_set_link_ksettings(struct net_device *netdev,
 261				  const struct ethtool_link_ksettings *cmd)
 262{
 263	struct igb_adapter *adapter = netdev_priv(netdev);
 264	struct e1000_hw *hw = &adapter->hw;
 265	u32 advertising;
 266
 267	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 268	 * cannot be changed
 269	 */
 270	if (igb_check_reset_block(hw)) {
 271		dev_err(&adapter->pdev->dev,
 272			"Cannot change link characteristics when SoL/IDER is active.\n");
 273		return -EINVAL;
 274	}
 275
 276	/* MDI setting is only allowed when autoneg enabled because
 277	 * some hardware doesn't allow MDI setting when speed or
 278	 * duplex is forced.
 279	 */
 280	if (cmd->base.eth_tp_mdix_ctrl) {
 281		if (hw->phy.media_type != e1000_media_type_copper)
 282			return -EOPNOTSUPP;
 283
 284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 286			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 287			return -EINVAL;
 288		}
 289	}
 290
 291	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 292		usleep_range(1000, 2000);
 293
 294	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 295						cmd->link_modes.advertising);
 296
 297	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 298		hw->mac.autoneg = 1;
 299		if (hw->phy.media_type == e1000_media_type_fiber) {
 300			hw->phy.autoneg_advertised = advertising |
 301						     ADVERTISED_FIBRE |
 302						     ADVERTISED_Autoneg;
 303			switch (adapter->link_speed) {
 304			case SPEED_2500:
 305				hw->phy.autoneg_advertised =
 306					ADVERTISED_2500baseX_Full;
 307				break;
 308			case SPEED_1000:
 309				hw->phy.autoneg_advertised =
 310					ADVERTISED_1000baseT_Full;
 311				break;
 312			case SPEED_100:
 313				hw->phy.autoneg_advertised =
 314					ADVERTISED_100baseT_Full;
 315				break;
 316			default:
 317				break;
 318			}
 319		} else {
 320			hw->phy.autoneg_advertised = advertising |
 321						     ADVERTISED_TP |
 322						     ADVERTISED_Autoneg;
 323		}
 324		advertising = hw->phy.autoneg_advertised;
 325		if (adapter->fc_autoneg)
 326			hw->fc.requested_mode = e1000_fc_default;
 327	} else {
 328		u32 speed = cmd->base.speed;
 329		/* calling this overrides forced MDI setting */
 330		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 331			clear_bit(__IGB_RESETTING, &adapter->state);
 332			return -EINVAL;
 333		}
 334	}
 335
 336	/* MDI-X => 2; MDI => 1; Auto => 3 */
 337	if (cmd->base.eth_tp_mdix_ctrl) {
 338		/* fix up the value for auto (3 => 0) as zero is mapped
 339		 * internally to auto
 340		 */
 341		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 342			hw->phy.mdix = AUTO_ALL_MODES;
 343		else
 344			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 345	}
 346
 347	/* reset the link */
 348	if (netif_running(adapter->netdev)) {
 349		igb_down(adapter);
 350		igb_up(adapter);
 351	} else
 352		igb_reset(adapter);
 353
 354	clear_bit(__IGB_RESETTING, &adapter->state);
 355	return 0;
 356}
 357
 358static u32 igb_get_link(struct net_device *netdev)
 359{
 360	struct igb_adapter *adapter = netdev_priv(netdev);
 361	struct e1000_mac_info *mac = &adapter->hw.mac;
 362
 363	/* If the link is not reported up to netdev, interrupts are disabled,
 364	 * and so the physical link state may have changed since we last
 365	 * looked. Set get_link_status to make sure that the true link
 366	 * state is interrogated, rather than pulling a cached and possibly
 367	 * stale link state from the driver.
 368	 */
 369	if (!netif_carrier_ok(netdev))
 370		mac->get_link_status = 1;
 371
 372	return igb_has_link(adapter);
 373}
 374
 375static void igb_get_pauseparam(struct net_device *netdev,
 376			       struct ethtool_pauseparam *pause)
 377{
 378	struct igb_adapter *adapter = netdev_priv(netdev);
 379	struct e1000_hw *hw = &adapter->hw;
 380
 381	pause->autoneg =
 382		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 383
 384	if (hw->fc.current_mode == e1000_fc_rx_pause)
 385		pause->rx_pause = 1;
 386	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 387		pause->tx_pause = 1;
 388	else if (hw->fc.current_mode == e1000_fc_full) {
 389		pause->rx_pause = 1;
 390		pause->tx_pause = 1;
 391	}
 392}
 393
 394static int igb_set_pauseparam(struct net_device *netdev,
 395			      struct ethtool_pauseparam *pause)
 396{
 397	struct igb_adapter *adapter = netdev_priv(netdev);
 398	struct e1000_hw *hw = &adapter->hw;
 399	int retval = 0;
 400	int i;
 401
 402	/* 100basefx does not support setting link flow control */
 403	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 404		return -EINVAL;
 405
 406	adapter->fc_autoneg = pause->autoneg;
 407
 408	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 409		usleep_range(1000, 2000);
 410
 411	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 412		hw->fc.requested_mode = e1000_fc_default;
 413		if (netif_running(adapter->netdev)) {
 414			igb_down(adapter);
 415			igb_up(adapter);
 416		} else {
 417			igb_reset(adapter);
 418		}
 419	} else {
 420		if (pause->rx_pause && pause->tx_pause)
 421			hw->fc.requested_mode = e1000_fc_full;
 422		else if (pause->rx_pause && !pause->tx_pause)
 423			hw->fc.requested_mode = e1000_fc_rx_pause;
 424		else if (!pause->rx_pause && pause->tx_pause)
 425			hw->fc.requested_mode = e1000_fc_tx_pause;
 426		else if (!pause->rx_pause && !pause->tx_pause)
 427			hw->fc.requested_mode = e1000_fc_none;
 428
 429		hw->fc.current_mode = hw->fc.requested_mode;
 430
 431		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 432			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 433
 434		/* Make sure SRRCTL considers new fc settings for each ring */
 435		for (i = 0; i < adapter->num_rx_queues; i++) {
 436			struct igb_ring *ring = adapter->rx_ring[i];
 437
 438			igb_setup_srrctl(adapter, ring);
 439		}
 440	}
 441
 442	clear_bit(__IGB_RESETTING, &adapter->state);
 443	return retval;
 444}
 445
 446static u32 igb_get_msglevel(struct net_device *netdev)
 447{
 448	struct igb_adapter *adapter = netdev_priv(netdev);
 449	return adapter->msg_enable;
 450}
 451
 452static void igb_set_msglevel(struct net_device *netdev, u32 data)
 453{
 454	struct igb_adapter *adapter = netdev_priv(netdev);
 455	adapter->msg_enable = data;
 456}
 457
 458static int igb_get_regs_len(struct net_device *netdev)
 459{
 460#define IGB_REGS_LEN 740
 461	return IGB_REGS_LEN * sizeof(u32);
 462}
 463
 464static void igb_get_regs(struct net_device *netdev,
 465			 struct ethtool_regs *regs, void *p)
 466{
 467	struct igb_adapter *adapter = netdev_priv(netdev);
 468	struct e1000_hw *hw = &adapter->hw;
 469	u32 *regs_buff = p;
 470	u8 i;
 471
 472	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 473
 474	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 475
 476	/* General Registers */
 477	regs_buff[0] = rd32(E1000_CTRL);
 478	regs_buff[1] = rd32(E1000_STATUS);
 479	regs_buff[2] = rd32(E1000_CTRL_EXT);
 480	regs_buff[3] = rd32(E1000_MDIC);
 481	regs_buff[4] = rd32(E1000_SCTL);
 482	regs_buff[5] = rd32(E1000_CONNSW);
 483	regs_buff[6] = rd32(E1000_VET);
 484	regs_buff[7] = rd32(E1000_LEDCTL);
 485	regs_buff[8] = rd32(E1000_PBA);
 486	regs_buff[9] = rd32(E1000_PBS);
 487	regs_buff[10] = rd32(E1000_FRTIMER);
 488	regs_buff[11] = rd32(E1000_TCPTIMER);
 489
 490	/* NVM Register */
 491	regs_buff[12] = rd32(E1000_EECD);
 492
 493	/* Interrupt */
 494	/* Reading EICS for EICR because they read the
 495	 * same but EICS does not clear on read
 496	 */
 497	regs_buff[13] = rd32(E1000_EICS);
 498	regs_buff[14] = rd32(E1000_EICS);
 499	regs_buff[15] = rd32(E1000_EIMS);
 500	regs_buff[16] = rd32(E1000_EIMC);
 501	regs_buff[17] = rd32(E1000_EIAC);
 502	regs_buff[18] = rd32(E1000_EIAM);
 503	/* Reading ICS for ICR because they read the
 504	 * same but ICS does not clear on read
 505	 */
 506	regs_buff[19] = rd32(E1000_ICS);
 507	regs_buff[20] = rd32(E1000_ICS);
 508	regs_buff[21] = rd32(E1000_IMS);
 509	regs_buff[22] = rd32(E1000_IMC);
 510	regs_buff[23] = rd32(E1000_IAC);
 511	regs_buff[24] = rd32(E1000_IAM);
 512	regs_buff[25] = rd32(E1000_IMIRVP);
 513
 514	/* Flow Control */
 515	regs_buff[26] = rd32(E1000_FCAL);
 516	regs_buff[27] = rd32(E1000_FCAH);
 517	regs_buff[28] = rd32(E1000_FCTTV);
 518	regs_buff[29] = rd32(E1000_FCRTL);
 519	regs_buff[30] = rd32(E1000_FCRTH);
 520	regs_buff[31] = rd32(E1000_FCRTV);
 521
 522	/* Receive */
 523	regs_buff[32] = rd32(E1000_RCTL);
 524	regs_buff[33] = rd32(E1000_RXCSUM);
 525	regs_buff[34] = rd32(E1000_RLPML);
 526	regs_buff[35] = rd32(E1000_RFCTL);
 527	regs_buff[36] = rd32(E1000_MRQC);
 528	regs_buff[37] = rd32(E1000_VT_CTL);
 529
 530	/* Transmit */
 531	regs_buff[38] = rd32(E1000_TCTL);
 532	regs_buff[39] = rd32(E1000_TCTL_EXT);
 533	regs_buff[40] = rd32(E1000_TIPG);
 534	regs_buff[41] = rd32(E1000_DTXCTL);
 535
 536	/* Wake Up */
 537	regs_buff[42] = rd32(E1000_WUC);
 538	regs_buff[43] = rd32(E1000_WUFC);
 539	regs_buff[44] = rd32(E1000_WUS);
 540	regs_buff[45] = rd32(E1000_IPAV);
 541	regs_buff[46] = rd32(E1000_WUPL);
 542
 543	/* MAC */
 544	regs_buff[47] = rd32(E1000_PCS_CFG0);
 545	regs_buff[48] = rd32(E1000_PCS_LCTL);
 546	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 547	regs_buff[50] = rd32(E1000_PCS_ANADV);
 548	regs_buff[51] = rd32(E1000_PCS_LPAB);
 549	regs_buff[52] = rd32(E1000_PCS_NPTX);
 550	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 551
 552	/* Statistics */
 553	regs_buff[54] = adapter->stats.crcerrs;
 554	regs_buff[55] = adapter->stats.algnerrc;
 555	regs_buff[56] = adapter->stats.symerrs;
 556	regs_buff[57] = adapter->stats.rxerrc;
 557	regs_buff[58] = adapter->stats.mpc;
 558	regs_buff[59] = adapter->stats.scc;
 559	regs_buff[60] = adapter->stats.ecol;
 560	regs_buff[61] = adapter->stats.mcc;
 561	regs_buff[62] = adapter->stats.latecol;
 562	regs_buff[63] = adapter->stats.colc;
 563	regs_buff[64] = adapter->stats.dc;
 564	regs_buff[65] = adapter->stats.tncrs;
 565	regs_buff[66] = adapter->stats.sec;
 566	regs_buff[67] = adapter->stats.htdpmc;
 567	regs_buff[68] = adapter->stats.rlec;
 568	regs_buff[69] = adapter->stats.xonrxc;
 569	regs_buff[70] = adapter->stats.xontxc;
 570	regs_buff[71] = adapter->stats.xoffrxc;
 571	regs_buff[72] = adapter->stats.xofftxc;
 572	regs_buff[73] = adapter->stats.fcruc;
 573	regs_buff[74] = adapter->stats.prc64;
 574	regs_buff[75] = adapter->stats.prc127;
 575	regs_buff[76] = adapter->stats.prc255;
 576	regs_buff[77] = adapter->stats.prc511;
 577	regs_buff[78] = adapter->stats.prc1023;
 578	regs_buff[79] = adapter->stats.prc1522;
 579	regs_buff[80] = adapter->stats.gprc;
 580	regs_buff[81] = adapter->stats.bprc;
 581	regs_buff[82] = adapter->stats.mprc;
 582	regs_buff[83] = adapter->stats.gptc;
 583	regs_buff[84] = adapter->stats.gorc;
 584	regs_buff[86] = adapter->stats.gotc;
 585	regs_buff[88] = adapter->stats.rnbc;
 586	regs_buff[89] = adapter->stats.ruc;
 587	regs_buff[90] = adapter->stats.rfc;
 588	regs_buff[91] = adapter->stats.roc;
 589	regs_buff[92] = adapter->stats.rjc;
 590	regs_buff[93] = adapter->stats.mgprc;
 591	regs_buff[94] = adapter->stats.mgpdc;
 592	regs_buff[95] = adapter->stats.mgptc;
 593	regs_buff[96] = adapter->stats.tor;
 594	regs_buff[98] = adapter->stats.tot;
 595	regs_buff[100] = adapter->stats.tpr;
 596	regs_buff[101] = adapter->stats.tpt;
 597	regs_buff[102] = adapter->stats.ptc64;
 598	regs_buff[103] = adapter->stats.ptc127;
 599	regs_buff[104] = adapter->stats.ptc255;
 600	regs_buff[105] = adapter->stats.ptc511;
 601	regs_buff[106] = adapter->stats.ptc1023;
 602	regs_buff[107] = adapter->stats.ptc1522;
 603	regs_buff[108] = adapter->stats.mptc;
 604	regs_buff[109] = adapter->stats.bptc;
 605	regs_buff[110] = adapter->stats.tsctc;
 606	regs_buff[111] = adapter->stats.iac;
 607	regs_buff[112] = adapter->stats.rpthc;
 608	regs_buff[113] = adapter->stats.hgptc;
 609	regs_buff[114] = adapter->stats.hgorc;
 610	regs_buff[116] = adapter->stats.hgotc;
 611	regs_buff[118] = adapter->stats.lenerrs;
 612	regs_buff[119] = adapter->stats.scvpc;
 613	regs_buff[120] = adapter->stats.hrmpc;
 614
 615	for (i = 0; i < 4; i++)
 616		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 617	for (i = 0; i < 4; i++)
 618		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 619	for (i = 0; i < 4; i++)
 620		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 621	for (i = 0; i < 4; i++)
 622		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 623	for (i = 0; i < 4; i++)
 624		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 625	for (i = 0; i < 4; i++)
 626		regs_buff[141 + i] = rd32(E1000_RDH(i));
 627	for (i = 0; i < 4; i++)
 628		regs_buff[145 + i] = rd32(E1000_RDT(i));
 629	for (i = 0; i < 4; i++)
 630		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 631
 632	for (i = 0; i < 10; i++)
 633		regs_buff[153 + i] = rd32(E1000_EITR(i));
 634	for (i = 0; i < 8; i++)
 635		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 636	for (i = 0; i < 8; i++)
 637		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 638	for (i = 0; i < 16; i++)
 639		regs_buff[179 + i] = rd32(E1000_RAL(i));
 640	for (i = 0; i < 16; i++)
 641		regs_buff[195 + i] = rd32(E1000_RAH(i));
 642
 643	for (i = 0; i < 4; i++)
 644		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 645	for (i = 0; i < 4; i++)
 646		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 647	for (i = 0; i < 4; i++)
 648		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 649	for (i = 0; i < 4; i++)
 650		regs_buff[223 + i] = rd32(E1000_TDH(i));
 651	for (i = 0; i < 4; i++)
 652		regs_buff[227 + i] = rd32(E1000_TDT(i));
 653	for (i = 0; i < 4; i++)
 654		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 655	for (i = 0; i < 4; i++)
 656		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 657	for (i = 0; i < 4; i++)
 658		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 661
 662	for (i = 0; i < 4; i++)
 663		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 664	for (i = 0; i < 4; i++)
 665		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 666	for (i = 0; i < 32; i++)
 667		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 668	for (i = 0; i < 128; i++)
 669		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 670	for (i = 0; i < 128; i++)
 671		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 672	for (i = 0; i < 4; i++)
 673		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 674
 675	regs_buff[547] = rd32(E1000_TDFH);
 676	regs_buff[548] = rd32(E1000_TDFT);
 677	regs_buff[549] = rd32(E1000_TDFHS);
 678	regs_buff[550] = rd32(E1000_TDFPC);
 679
 680	if (hw->mac.type > e1000_82580) {
 681		regs_buff[551] = adapter->stats.o2bgptc;
 682		regs_buff[552] = adapter->stats.b2ospc;
 683		regs_buff[553] = adapter->stats.o2bspc;
 684		regs_buff[554] = adapter->stats.b2ogprc;
 685	}
 686
 687	if (hw->mac.type == e1000_82576) {
 688		for (i = 0; i < 12; i++)
 689			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 690		for (i = 0; i < 4; i++)
 691			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 692		for (i = 0; i < 12; i++)
 693			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 694		for (i = 0; i < 12; i++)
 695			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 696		for (i = 0; i < 12; i++)
 697			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 698		for (i = 0; i < 12; i++)
 699			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 700		for (i = 0; i < 12; i++)
 701			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 702		for (i = 0; i < 12; i++)
 703			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 704
 705		for (i = 0; i < 12; i++)
 706			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 707		for (i = 0; i < 12; i++)
 708			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 709		for (i = 0; i < 12; i++)
 710			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 711		for (i = 0; i < 12; i++)
 712			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 713		for (i = 0; i < 12; i++)
 714			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 715		for (i = 0; i < 12; i++)
 716			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 717		for (i = 0; i < 12; i++)
 718			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 719		for (i = 0; i < 12; i++)
 720			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 721	}
 722
 723	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
 724		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
 725}
 726
 727static int igb_get_eeprom_len(struct net_device *netdev)
 728{
 729	struct igb_adapter *adapter = netdev_priv(netdev);
 730	return adapter->hw.nvm.word_size * 2;
 731}
 732
 733static int igb_get_eeprom(struct net_device *netdev,
 734			  struct ethtool_eeprom *eeprom, u8 *bytes)
 735{
 736	struct igb_adapter *adapter = netdev_priv(netdev);
 737	struct e1000_hw *hw = &adapter->hw;
 738	u16 *eeprom_buff;
 739	int first_word, last_word;
 740	int ret_val = 0;
 741	u16 i;
 742
 743	if (eeprom->len == 0)
 744		return -EINVAL;
 745
 746	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 747
 748	first_word = eeprom->offset >> 1;
 749	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 750
 751	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 752				    GFP_KERNEL);
 753	if (!eeprom_buff)
 754		return -ENOMEM;
 755
 756	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 757		ret_val = hw->nvm.ops.read(hw, first_word,
 758					   last_word - first_word + 1,
 759					   eeprom_buff);
 760	else {
 761		for (i = 0; i < last_word - first_word + 1; i++) {
 762			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 763						   &eeprom_buff[i]);
 764			if (ret_val)
 765				break;
 766		}
 767	}
 768
 769	/* Device's eeprom is always little-endian, word addressable */
 770	for (i = 0; i < last_word - first_word + 1; i++)
 771		le16_to_cpus(&eeprom_buff[i]);
 772
 773	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 774			eeprom->len);
 775	kfree(eeprom_buff);
 776
 777	return ret_val;
 778}
 779
 780static int igb_set_eeprom(struct net_device *netdev,
 781			  struct ethtool_eeprom *eeprom, u8 *bytes)
 782{
 783	struct igb_adapter *adapter = netdev_priv(netdev);
 784	struct e1000_hw *hw = &adapter->hw;
 785	u16 *eeprom_buff;
 786	void *ptr;
 787	int max_len, first_word, last_word, ret_val = 0;
 788	u16 i;
 789
 790	if (eeprom->len == 0)
 791		return -EOPNOTSUPP;
 792
 793	if ((hw->mac.type >= e1000_i210) &&
 794	    !igb_get_flash_presence_i210(hw)) {
 795		return -EOPNOTSUPP;
 796	}
 797
 798	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 799		return -EFAULT;
 800
 801	max_len = hw->nvm.word_size * 2;
 802
 803	first_word = eeprom->offset >> 1;
 804	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 805	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 806	if (!eeprom_buff)
 807		return -ENOMEM;
 808
 809	ptr = (void *)eeprom_buff;
 810
 811	if (eeprom->offset & 1) {
 812		/* need read/modify/write of first changed EEPROM word
 813		 * only the second byte of the word is being modified
 814		 */
 815		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 816					    &eeprom_buff[0]);
 817		ptr++;
 818	}
 819	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 820		/* need read/modify/write of last changed EEPROM word
 821		 * only the first byte of the word is being modified
 822		 */
 823		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 824				   &eeprom_buff[last_word - first_word]);
 825	}
 826
 827	/* Device's eeprom is always little-endian, word addressable */
 828	for (i = 0; i < last_word - first_word + 1; i++)
 829		le16_to_cpus(&eeprom_buff[i]);
 830
 831	memcpy(ptr, bytes, eeprom->len);
 832
 833	for (i = 0; i < last_word - first_word + 1; i++)
 834		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 835
 836	ret_val = hw->nvm.ops.write(hw, first_word,
 837				    last_word - first_word + 1, eeprom_buff);
 838
 839	/* Update the checksum if nvm write succeeded */
 840	if (ret_val == 0)
 841		hw->nvm.ops.update(hw);
 842
 843	igb_set_fw_version(adapter);
 844	kfree(eeprom_buff);
 845	return ret_val;
 846}
 847
 848static void igb_get_drvinfo(struct net_device *netdev,
 849			    struct ethtool_drvinfo *drvinfo)
 850{
 851	struct igb_adapter *adapter = netdev_priv(netdev);
 852
 853	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 
 854
 855	/* EEPROM image version # is reported as firmware version # for
 856	 * 82575 controllers
 857	 */
 858	strlcpy(drvinfo->fw_version, adapter->fw_version,
 859		sizeof(drvinfo->fw_version));
 860	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 861		sizeof(drvinfo->bus_info));
 862
 863	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 864}
 865
 866static void igb_get_ringparam(struct net_device *netdev,
 867			      struct ethtool_ringparam *ring)
 868{
 869	struct igb_adapter *adapter = netdev_priv(netdev);
 870
 871	ring->rx_max_pending = IGB_MAX_RXD;
 872	ring->tx_max_pending = IGB_MAX_TXD;
 873	ring->rx_pending = adapter->rx_ring_count;
 874	ring->tx_pending = adapter->tx_ring_count;
 875}
 876
 877static int igb_set_ringparam(struct net_device *netdev,
 878			     struct ethtool_ringparam *ring)
 879{
 880	struct igb_adapter *adapter = netdev_priv(netdev);
 881	struct igb_ring *temp_ring;
 882	int i, err = 0;
 883	u16 new_rx_count, new_tx_count;
 884
 885	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 886		return -EINVAL;
 887
 888	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 889	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 890	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 891
 892	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 893	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 894	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 895
 896	if ((new_tx_count == adapter->tx_ring_count) &&
 897	    (new_rx_count == adapter->rx_ring_count)) {
 898		/* nothing to do */
 899		return 0;
 900	}
 901
 902	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 903		usleep_range(1000, 2000);
 904
 905	if (!netif_running(adapter->netdev)) {
 906		for (i = 0; i < adapter->num_tx_queues; i++)
 907			adapter->tx_ring[i]->count = new_tx_count;
 908		for (i = 0; i < adapter->num_rx_queues; i++)
 909			adapter->rx_ring[i]->count = new_rx_count;
 910		adapter->tx_ring_count = new_tx_count;
 911		adapter->rx_ring_count = new_rx_count;
 912		goto clear_reset;
 913	}
 914
 915	if (adapter->num_tx_queues > adapter->num_rx_queues)
 916		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 917					       adapter->num_tx_queues));
 918	else
 919		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 920					       adapter->num_rx_queues));
 921
 922	if (!temp_ring) {
 923		err = -ENOMEM;
 924		goto clear_reset;
 925	}
 926
 927	igb_down(adapter);
 928
 929	/* We can't just free everything and then setup again,
 930	 * because the ISRs in MSI-X mode get passed pointers
 931	 * to the Tx and Rx ring structs.
 932	 */
 933	if (new_tx_count != adapter->tx_ring_count) {
 934		for (i = 0; i < adapter->num_tx_queues; i++) {
 935			memcpy(&temp_ring[i], adapter->tx_ring[i],
 936			       sizeof(struct igb_ring));
 937
 938			temp_ring[i].count = new_tx_count;
 939			err = igb_setup_tx_resources(&temp_ring[i]);
 940			if (err) {
 941				while (i) {
 942					i--;
 943					igb_free_tx_resources(&temp_ring[i]);
 944				}
 945				goto err_setup;
 946			}
 947		}
 948
 949		for (i = 0; i < adapter->num_tx_queues; i++) {
 950			igb_free_tx_resources(adapter->tx_ring[i]);
 951
 952			memcpy(adapter->tx_ring[i], &temp_ring[i],
 953			       sizeof(struct igb_ring));
 954		}
 955
 956		adapter->tx_ring_count = new_tx_count;
 957	}
 958
 959	if (new_rx_count != adapter->rx_ring_count) {
 960		for (i = 0; i < adapter->num_rx_queues; i++) {
 961			memcpy(&temp_ring[i], adapter->rx_ring[i],
 962			       sizeof(struct igb_ring));
 963
 964			temp_ring[i].count = new_rx_count;
 965			err = igb_setup_rx_resources(&temp_ring[i]);
 966			if (err) {
 967				while (i) {
 968					i--;
 969					igb_free_rx_resources(&temp_ring[i]);
 970				}
 971				goto err_setup;
 972			}
 973
 974		}
 975
 976		for (i = 0; i < adapter->num_rx_queues; i++) {
 977			igb_free_rx_resources(adapter->rx_ring[i]);
 978
 979			memcpy(adapter->rx_ring[i], &temp_ring[i],
 980			       sizeof(struct igb_ring));
 981		}
 982
 983		adapter->rx_ring_count = new_rx_count;
 984	}
 985err_setup:
 986	igb_up(adapter);
 987	vfree(temp_ring);
 988clear_reset:
 989	clear_bit(__IGB_RESETTING, &adapter->state);
 990	return err;
 991}
 992
 993/* ethtool register test data */
 994struct igb_reg_test {
 995	u16 reg;
 996	u16 reg_offset;
 997	u16 array_len;
 998	u16 test_type;
 999	u32 mask;
1000	u32 write;
1001};
1002
1003/* In the hardware, registers are laid out either singly, in arrays
1004 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1005 * most tests take place on arrays or single registers (handled
1006 * as a single-element array) and special-case the tables.
1007 * Table tests are always pattern tests.
1008 *
1009 * We also make provision for some required setup steps by specifying
1010 * registers to be written without any read-back testing.
1011 */
1012
1013#define PATTERN_TEST	1
1014#define SET_READ_TEST	2
1015#define WRITE_NO_TEST	3
1016#define TABLE32_TEST	4
1017#define TABLE64_TEST_LO	5
1018#define TABLE64_TEST_HI	6
1019
1020/* i210 reg test */
1021static struct igb_reg_test reg_test_i210[] = {
1022	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1024	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1025	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1028	/* RDH is read-only for i210, only test RDT. */
1029	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1031	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1032	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1033	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1034	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1036	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1038	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1039	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1040	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1041	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1042						0xFFFFFFFF, 0xFFFFFFFF },
1043	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1044						0x900FFFFF, 0xFFFFFFFF },
1045	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1046						0xFFFFFFFF, 0xFFFFFFFF },
1047	{ 0, 0, 0, 0, 0 }
1048};
1049
1050/* i350 reg test */
1051static struct igb_reg_test reg_test_i350[] = {
1052	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1056	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062	/* RDH is read-only for i350, only test RDT. */
1063	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1064	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1066	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1068	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1069	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1070	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1071	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1072	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1073	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1074	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1076	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1078	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1079	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1080	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1081						0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1083						0xC3FFFFFF, 0xFFFFFFFF },
1084	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1085						0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1087						0xC3FFFFFF, 0xFFFFFFFF },
1088	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1089						0xFFFFFFFF, 0xFFFFFFFF },
1090	{ 0, 0, 0, 0 }
1091};
1092
1093/* 82580 reg test */
1094static struct igb_reg_test reg_test_82580[] = {
1095	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1097	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1098	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1100	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1101	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1102	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1103	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1105	/* RDH is read-only for 82580, only test RDT. */
1106	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1107	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1109	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1111	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1112	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1114	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1115	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1117	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1119	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1120	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1121	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1122	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1123	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1124						0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1126						0x83FFFFFF, 0xFFFFFFFF },
1127	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1128						0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1130						0x83FFFFFF, 0xFFFFFFFF },
1131	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1132						0xFFFFFFFF, 0xFFFFFFFF },
1133	{ 0, 0, 0, 0 }
1134};
1135
1136/* 82576 reg test */
1137static struct igb_reg_test reg_test_82576[] = {
1138	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1140	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1141	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1145	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148	/* Enable all RX queues before testing. */
1149	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1150	  E1000_RXDCTL_QUEUE_ENABLE },
1151	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1152	  E1000_RXDCTL_QUEUE_ENABLE },
1153	/* RDH is read-only for 82576, only test RDT. */
1154	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1155	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1156	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1157	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1158	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1159	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1161	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1164	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1165	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1167	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1168	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1169	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1170	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1171	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1172	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1173	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1174	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1175	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ 0, 0, 0, 0 }
1177};
1178
1179/* 82575 register test */
1180static struct igb_reg_test reg_test_82575[] = {
1181	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1183	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1184	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1185	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1186	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1188	/* Enable all four RX queues before testing. */
1189	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1190	  E1000_RXDCTL_QUEUE_ENABLE },
1191	/* RDH is read-only for 82575, only test RDT. */
1192	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1193	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1194	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1195	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1196	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1197	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1198	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1199	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1200	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1201	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1202	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1203	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1204	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1205	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1206	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1207	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1208	{ 0, 0, 0, 0 }
1209};
1210
1211static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1212			     int reg, u32 mask, u32 write)
1213{
1214	struct e1000_hw *hw = &adapter->hw;
1215	u32 pat, val;
1216	static const u32 _test[] = {
1217		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1218	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1219		wr32(reg, (_test[pat] & write));
1220		val = rd32(reg) & mask;
1221		if (val != (_test[pat] & write & mask)) {
1222			dev_err(&adapter->pdev->dev,
1223				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1224				reg, val, (_test[pat] & write & mask));
1225			*data = reg;
1226			return true;
1227		}
1228	}
1229
1230	return false;
1231}
1232
1233static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1234			      int reg, u32 mask, u32 write)
1235{
1236	struct e1000_hw *hw = &adapter->hw;
1237	u32 val;
1238
1239	wr32(reg, write & mask);
1240	val = rd32(reg);
1241	if ((write & mask) != (val & mask)) {
1242		dev_err(&adapter->pdev->dev,
1243			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1244			reg, (val & mask), (write & mask));
1245		*data = reg;
1246		return true;
1247	}
1248
1249	return false;
1250}
1251
1252#define REG_PATTERN_TEST(reg, mask, write) \
1253	do { \
1254		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1255			return 1; \
1256	} while (0)
1257
1258#define REG_SET_AND_CHECK(reg, mask, write) \
1259	do { \
1260		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1261			return 1; \
1262	} while (0)
1263
1264static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1265{
1266	struct e1000_hw *hw = &adapter->hw;
1267	struct igb_reg_test *test;
1268	u32 value, before, after;
1269	u32 i, toggle;
1270
1271	switch (adapter->hw.mac.type) {
1272	case e1000_i350:
1273	case e1000_i354:
1274		test = reg_test_i350;
1275		toggle = 0x7FEFF3FF;
1276		break;
1277	case e1000_i210:
1278	case e1000_i211:
1279		test = reg_test_i210;
1280		toggle = 0x7FEFF3FF;
1281		break;
1282	case e1000_82580:
1283		test = reg_test_82580;
1284		toggle = 0x7FEFF3FF;
1285		break;
1286	case e1000_82576:
1287		test = reg_test_82576;
1288		toggle = 0x7FFFF3FF;
1289		break;
1290	default:
1291		test = reg_test_82575;
1292		toggle = 0x7FFFF3FF;
1293		break;
1294	}
1295
1296	/* Because the status register is such a special case,
1297	 * we handle it separately from the rest of the register
1298	 * tests.  Some bits are read-only, some toggle, and some
1299	 * are writable on newer MACs.
1300	 */
1301	before = rd32(E1000_STATUS);
1302	value = (rd32(E1000_STATUS) & toggle);
1303	wr32(E1000_STATUS, toggle);
1304	after = rd32(E1000_STATUS) & toggle;
1305	if (value != after) {
1306		dev_err(&adapter->pdev->dev,
1307			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1308			after, value);
1309		*data = 1;
1310		return 1;
1311	}
1312	/* restore previous status */
1313	wr32(E1000_STATUS, before);
1314
1315	/* Perform the remainder of the register test, looping through
1316	 * the test table until we either fail or reach the null entry.
1317	 */
1318	while (test->reg) {
1319		for (i = 0; i < test->array_len; i++) {
1320			switch (test->test_type) {
1321			case PATTERN_TEST:
1322				REG_PATTERN_TEST(test->reg +
1323						(i * test->reg_offset),
1324						test->mask,
1325						test->write);
1326				break;
1327			case SET_READ_TEST:
1328				REG_SET_AND_CHECK(test->reg +
1329						(i * test->reg_offset),
1330						test->mask,
1331						test->write);
1332				break;
1333			case WRITE_NO_TEST:
1334				writel(test->write,
1335				    (adapter->hw.hw_addr + test->reg)
1336					+ (i * test->reg_offset));
1337				break;
1338			case TABLE32_TEST:
1339				REG_PATTERN_TEST(test->reg + (i * 4),
1340						test->mask,
1341						test->write);
1342				break;
1343			case TABLE64_TEST_LO:
1344				REG_PATTERN_TEST(test->reg + (i * 8),
1345						test->mask,
1346						test->write);
1347				break;
1348			case TABLE64_TEST_HI:
1349				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1350						test->mask,
1351						test->write);
1352				break;
1353			}
1354		}
1355		test++;
1356	}
1357
1358	*data = 0;
1359	return 0;
1360}
1361
1362static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1363{
1364	struct e1000_hw *hw = &adapter->hw;
1365
1366	*data = 0;
1367
1368	/* Validate eeprom on all parts but flashless */
1369	switch (hw->mac.type) {
1370	case e1000_i210:
1371	case e1000_i211:
1372		if (igb_get_flash_presence_i210(hw)) {
1373			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1374				*data = 2;
1375		}
1376		break;
1377	default:
1378		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1379			*data = 2;
1380		break;
1381	}
1382
1383	return *data;
1384}
1385
1386static irqreturn_t igb_test_intr(int irq, void *data)
1387{
1388	struct igb_adapter *adapter = (struct igb_adapter *) data;
1389	struct e1000_hw *hw = &adapter->hw;
1390
1391	adapter->test_icr |= rd32(E1000_ICR);
1392
1393	return IRQ_HANDLED;
1394}
1395
1396static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1397{
1398	struct e1000_hw *hw = &adapter->hw;
1399	struct net_device *netdev = adapter->netdev;
1400	u32 mask, ics_mask, i = 0, shared_int = true;
1401	u32 irq = adapter->pdev->irq;
1402
1403	*data = 0;
1404
1405	/* Hook up test interrupt handler just for this test */
1406	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1407		if (request_irq(adapter->msix_entries[0].vector,
1408				igb_test_intr, 0, netdev->name, adapter)) {
1409			*data = 1;
1410			return -1;
1411		}
1412	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1413		shared_int = false;
1414		if (request_irq(irq,
1415				igb_test_intr, 0, netdev->name, adapter)) {
1416			*data = 1;
1417			return -1;
1418		}
1419	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1420				netdev->name, adapter)) {
1421		shared_int = false;
1422	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1423		 netdev->name, adapter)) {
1424		*data = 1;
1425		return -1;
1426	}
1427	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1428		(shared_int ? "shared" : "unshared"));
1429
1430	/* Disable all the interrupts */
1431	wr32(E1000_IMC, ~0);
1432	wrfl();
1433	usleep_range(10000, 11000);
1434
1435	/* Define all writable bits for ICS */
1436	switch (hw->mac.type) {
1437	case e1000_82575:
1438		ics_mask = 0x37F47EDD;
1439		break;
1440	case e1000_82576:
1441		ics_mask = 0x77D4FBFD;
1442		break;
1443	case e1000_82580:
1444		ics_mask = 0x77DCFED5;
1445		break;
1446	case e1000_i350:
1447	case e1000_i354:
1448	case e1000_i210:
1449	case e1000_i211:
1450		ics_mask = 0x77DCFED5;
1451		break;
1452	default:
1453		ics_mask = 0x7FFFFFFF;
1454		break;
1455	}
1456
1457	/* Test each interrupt */
1458	for (; i < 31; i++) {
1459		/* Interrupt to test */
1460		mask = BIT(i);
1461
1462		if (!(mask & ics_mask))
1463			continue;
1464
1465		if (!shared_int) {
1466			/* Disable the interrupt to be reported in
1467			 * the cause register and then force the same
1468			 * interrupt and see if one gets posted.  If
1469			 * an interrupt was posted to the bus, the
1470			 * test failed.
1471			 */
1472			adapter->test_icr = 0;
1473
1474			/* Flush any pending interrupts */
1475			wr32(E1000_ICR, ~0);
1476
1477			wr32(E1000_IMC, mask);
1478			wr32(E1000_ICS, mask);
1479			wrfl();
1480			usleep_range(10000, 11000);
1481
1482			if (adapter->test_icr & mask) {
1483				*data = 3;
1484				break;
1485			}
1486		}
1487
1488		/* Enable the interrupt to be reported in
1489		 * the cause register and then force the same
1490		 * interrupt and see if one gets posted.  If
1491		 * an interrupt was not posted to the bus, the
1492		 * test failed.
1493		 */
1494		adapter->test_icr = 0;
1495
1496		/* Flush any pending interrupts */
1497		wr32(E1000_ICR, ~0);
1498
1499		wr32(E1000_IMS, mask);
1500		wr32(E1000_ICS, mask);
1501		wrfl();
1502		usleep_range(10000, 11000);
1503
1504		if (!(adapter->test_icr & mask)) {
1505			*data = 4;
1506			break;
1507		}
1508
1509		if (!shared_int) {
1510			/* Disable the other interrupts to be reported in
1511			 * the cause register and then force the other
1512			 * interrupts and see if any get posted.  If
1513			 * an interrupt was posted to the bus, the
1514			 * test failed.
1515			 */
1516			adapter->test_icr = 0;
1517
1518			/* Flush any pending interrupts */
1519			wr32(E1000_ICR, ~0);
1520
1521			wr32(E1000_IMC, ~mask);
1522			wr32(E1000_ICS, ~mask);
1523			wrfl();
1524			usleep_range(10000, 11000);
1525
1526			if (adapter->test_icr & mask) {
1527				*data = 5;
1528				break;
1529			}
1530		}
1531	}
1532
1533	/* Disable all the interrupts */
1534	wr32(E1000_IMC, ~0);
1535	wrfl();
1536	usleep_range(10000, 11000);
1537
1538	/* Unhook test interrupt handler */
1539	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1540		free_irq(adapter->msix_entries[0].vector, adapter);
1541	else
1542		free_irq(irq, adapter);
1543
1544	return *data;
1545}
1546
1547static void igb_free_desc_rings(struct igb_adapter *adapter)
1548{
1549	igb_free_tx_resources(&adapter->test_tx_ring);
1550	igb_free_rx_resources(&adapter->test_rx_ring);
1551}
1552
1553static int igb_setup_desc_rings(struct igb_adapter *adapter)
1554{
1555	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1556	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1557	struct e1000_hw *hw = &adapter->hw;
1558	int ret_val;
1559
1560	/* Setup Tx descriptor ring and Tx buffers */
1561	tx_ring->count = IGB_DEFAULT_TXD;
1562	tx_ring->dev = &adapter->pdev->dev;
1563	tx_ring->netdev = adapter->netdev;
1564	tx_ring->reg_idx = adapter->vfs_allocated_count;
1565
1566	if (igb_setup_tx_resources(tx_ring)) {
1567		ret_val = 1;
1568		goto err_nomem;
1569	}
1570
1571	igb_setup_tctl(adapter);
1572	igb_configure_tx_ring(adapter, tx_ring);
1573
1574	/* Setup Rx descriptor ring and Rx buffers */
1575	rx_ring->count = IGB_DEFAULT_RXD;
1576	rx_ring->dev = &adapter->pdev->dev;
1577	rx_ring->netdev = adapter->netdev;
1578	rx_ring->reg_idx = adapter->vfs_allocated_count;
1579
1580	if (igb_setup_rx_resources(rx_ring)) {
1581		ret_val = 3;
1582		goto err_nomem;
1583	}
1584
1585	/* set the default queue to queue 0 of PF */
1586	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1587
1588	/* enable receive ring */
1589	igb_setup_rctl(adapter);
1590	igb_configure_rx_ring(adapter, rx_ring);
1591
1592	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1593
1594	return 0;
1595
1596err_nomem:
1597	igb_free_desc_rings(adapter);
1598	return ret_val;
1599}
1600
1601static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1602{
1603	struct e1000_hw *hw = &adapter->hw;
1604
1605	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1606	igb_write_phy_reg(hw, 29, 0x001F);
1607	igb_write_phy_reg(hw, 30, 0x8FFC);
1608	igb_write_phy_reg(hw, 29, 0x001A);
1609	igb_write_phy_reg(hw, 30, 0x8FF0);
1610}
1611
1612static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1613{
1614	struct e1000_hw *hw = &adapter->hw;
1615	u32 ctrl_reg = 0;
1616
1617	hw->mac.autoneg = false;
1618
1619	if (hw->phy.type == e1000_phy_m88) {
1620		if (hw->phy.id != I210_I_PHY_ID) {
1621			/* Auto-MDI/MDIX Off */
1622			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1623			/* reset to update Auto-MDI/MDIX */
1624			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1625			/* autoneg off */
1626			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1627		} else {
1628			/* force 1000, set loopback  */
1629			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1630			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1631		}
1632	} else if (hw->phy.type == e1000_phy_82580) {
1633		/* enable MII loopback */
1634		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1635	}
1636
1637	/* add small delay to avoid loopback test failure */
1638	msleep(50);
1639
1640	/* force 1000, set loopback */
1641	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1642
1643	/* Now set up the MAC to the same speed/duplex as the PHY. */
1644	ctrl_reg = rd32(E1000_CTRL);
1645	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1646	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1647		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1648		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1649		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1650		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1651
1652	if (hw->phy.type == e1000_phy_m88)
1653		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1654
1655	wr32(E1000_CTRL, ctrl_reg);
1656
1657	/* Disable the receiver on the PHY so when a cable is plugged in, the
1658	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1659	 */
1660	if (hw->phy.type == e1000_phy_m88)
1661		igb_phy_disable_receiver(adapter);
1662
1663	msleep(500);
1664	return 0;
1665}
1666
1667static int igb_set_phy_loopback(struct igb_adapter *adapter)
1668{
1669	return igb_integrated_phy_loopback(adapter);
1670}
1671
1672static int igb_setup_loopback_test(struct igb_adapter *adapter)
1673{
1674	struct e1000_hw *hw = &adapter->hw;
1675	u32 reg;
1676
1677	reg = rd32(E1000_CTRL_EXT);
1678
1679	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1680	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1681		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1682		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1683		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1684		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1685		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1686		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1687			/* Enable DH89xxCC MPHY for near end loopback */
1688			reg = rd32(E1000_MPHY_ADDR_CTL);
1689			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1690			E1000_MPHY_PCS_CLK_REG_OFFSET;
1691			wr32(E1000_MPHY_ADDR_CTL, reg);
1692
1693			reg = rd32(E1000_MPHY_DATA);
1694			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1695			wr32(E1000_MPHY_DATA, reg);
1696		}
1697
1698		reg = rd32(E1000_RCTL);
1699		reg |= E1000_RCTL_LBM_TCVR;
1700		wr32(E1000_RCTL, reg);
1701
1702		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1703
1704		reg = rd32(E1000_CTRL);
1705		reg &= ~(E1000_CTRL_RFCE |
1706			 E1000_CTRL_TFCE |
1707			 E1000_CTRL_LRST);
1708		reg |= E1000_CTRL_SLU |
1709		       E1000_CTRL_FD;
1710		wr32(E1000_CTRL, reg);
1711
1712		/* Unset switch control to serdes energy detect */
1713		reg = rd32(E1000_CONNSW);
1714		reg &= ~E1000_CONNSW_ENRGSRC;
1715		wr32(E1000_CONNSW, reg);
1716
1717		/* Unset sigdetect for SERDES loopback on
1718		 * 82580 and newer devices.
1719		 */
1720		if (hw->mac.type >= e1000_82580) {
1721			reg = rd32(E1000_PCS_CFG0);
1722			reg |= E1000_PCS_CFG_IGN_SD;
1723			wr32(E1000_PCS_CFG0, reg);
1724		}
1725
1726		/* Set PCS register for forced speed */
1727		reg = rd32(E1000_PCS_LCTL);
1728		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1729		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1730		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1731		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1732		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1733		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1734		wr32(E1000_PCS_LCTL, reg);
1735
1736		return 0;
1737	}
1738
1739	return igb_set_phy_loopback(adapter);
1740}
1741
1742static void igb_loopback_cleanup(struct igb_adapter *adapter)
1743{
1744	struct e1000_hw *hw = &adapter->hw;
1745	u32 rctl;
1746	u16 phy_reg;
1747
1748	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1749	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1750	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1751	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1752	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1753		u32 reg;
1754
1755		/* Disable near end loopback on DH89xxCC */
1756		reg = rd32(E1000_MPHY_ADDR_CTL);
1757		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1758		E1000_MPHY_PCS_CLK_REG_OFFSET;
1759		wr32(E1000_MPHY_ADDR_CTL, reg);
1760
1761		reg = rd32(E1000_MPHY_DATA);
1762		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1763		wr32(E1000_MPHY_DATA, reg);
1764	}
1765
1766	rctl = rd32(E1000_RCTL);
1767	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1768	wr32(E1000_RCTL, rctl);
1769
1770	hw->mac.autoneg = true;
1771	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1772	if (phy_reg & MII_CR_LOOPBACK) {
1773		phy_reg &= ~MII_CR_LOOPBACK;
1774		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1775		igb_phy_sw_reset(hw);
1776	}
1777}
1778
1779static void igb_create_lbtest_frame(struct sk_buff *skb,
1780				    unsigned int frame_size)
1781{
1782	memset(skb->data, 0xFF, frame_size);
1783	frame_size /= 2;
1784	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1785	skb->data[frame_size + 10] = 0xBE;
1786	skb->data[frame_size + 12] = 0xAF;
1787}
1788
1789static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1790				  unsigned int frame_size)
1791{
1792	unsigned char *data;
1793	bool match = true;
1794
1795	frame_size >>= 1;
1796
1797	data = kmap(rx_buffer->page);
1798
1799	if (data[3] != 0xFF ||
1800	    data[frame_size + 10] != 0xBE ||
1801	    data[frame_size + 12] != 0xAF)
1802		match = false;
1803
1804	kunmap(rx_buffer->page);
1805
1806	return match;
1807}
1808
1809static int igb_clean_test_rings(struct igb_ring *rx_ring,
1810				struct igb_ring *tx_ring,
1811				unsigned int size)
1812{
1813	union e1000_adv_rx_desc *rx_desc;
1814	struct igb_rx_buffer *rx_buffer_info;
1815	struct igb_tx_buffer *tx_buffer_info;
1816	u16 rx_ntc, tx_ntc, count = 0;
1817
1818	/* initialize next to clean and descriptor values */
1819	rx_ntc = rx_ring->next_to_clean;
1820	tx_ntc = tx_ring->next_to_clean;
1821	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1822
1823	while (rx_desc->wb.upper.length) {
1824		/* check Rx buffer */
1825		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1826
1827		/* sync Rx buffer for CPU read */
1828		dma_sync_single_for_cpu(rx_ring->dev,
1829					rx_buffer_info->dma,
1830					size,
1831					DMA_FROM_DEVICE);
1832
1833		/* verify contents of skb */
1834		if (igb_check_lbtest_frame(rx_buffer_info, size))
1835			count++;
1836
1837		/* sync Rx buffer for device write */
1838		dma_sync_single_for_device(rx_ring->dev,
1839					   rx_buffer_info->dma,
1840					   size,
1841					   DMA_FROM_DEVICE);
1842
1843		/* unmap buffer on Tx side */
1844		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1845
1846		/* Free all the Tx ring sk_buffs */
1847		dev_kfree_skb_any(tx_buffer_info->skb);
1848
1849		/* unmap skb header data */
1850		dma_unmap_single(tx_ring->dev,
1851				 dma_unmap_addr(tx_buffer_info, dma),
1852				 dma_unmap_len(tx_buffer_info, len),
1853				 DMA_TO_DEVICE);
1854		dma_unmap_len_set(tx_buffer_info, len, 0);
1855
1856		/* increment Rx/Tx next to clean counters */
1857		rx_ntc++;
1858		if (rx_ntc == rx_ring->count)
1859			rx_ntc = 0;
1860		tx_ntc++;
1861		if (tx_ntc == tx_ring->count)
1862			tx_ntc = 0;
1863
1864		/* fetch next descriptor */
1865		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1866	}
1867
1868	netdev_tx_reset_queue(txring_txq(tx_ring));
1869
1870	/* re-map buffers to ring, store next to clean values */
1871	igb_alloc_rx_buffers(rx_ring, count);
1872	rx_ring->next_to_clean = rx_ntc;
1873	tx_ring->next_to_clean = tx_ntc;
1874
1875	return count;
1876}
1877
1878static int igb_run_loopback_test(struct igb_adapter *adapter)
1879{
1880	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1881	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1882	u16 i, j, lc, good_cnt;
1883	int ret_val = 0;
1884	unsigned int size = IGB_RX_HDR_LEN;
1885	netdev_tx_t tx_ret_val;
1886	struct sk_buff *skb;
1887
1888	/* allocate test skb */
1889	skb = alloc_skb(size, GFP_KERNEL);
1890	if (!skb)
1891		return 11;
1892
1893	/* place data into test skb */
1894	igb_create_lbtest_frame(skb, size);
1895	skb_put(skb, size);
1896
1897	/* Calculate the loop count based on the largest descriptor ring
1898	 * The idea is to wrap the largest ring a number of times using 64
1899	 * send/receive pairs during each loop
1900	 */
1901
1902	if (rx_ring->count <= tx_ring->count)
1903		lc = ((tx_ring->count / 64) * 2) + 1;
1904	else
1905		lc = ((rx_ring->count / 64) * 2) + 1;
1906
1907	for (j = 0; j <= lc; j++) { /* loop count loop */
1908		/* reset count of good packets */
1909		good_cnt = 0;
1910
1911		/* place 64 packets on the transmit queue*/
1912		for (i = 0; i < 64; i++) {
1913			skb_get(skb);
1914			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1915			if (tx_ret_val == NETDEV_TX_OK)
1916				good_cnt++;
1917		}
1918
1919		if (good_cnt != 64) {
1920			ret_val = 12;
1921			break;
1922		}
1923
1924		/* allow 200 milliseconds for packets to go from Tx to Rx */
1925		msleep(200);
1926
1927		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1928		if (good_cnt != 64) {
1929			ret_val = 13;
1930			break;
1931		}
1932	} /* end loop count loop */
1933
1934	/* free the original skb */
1935	kfree_skb(skb);
1936
1937	return ret_val;
1938}
1939
1940static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1941{
1942	/* PHY loopback cannot be performed if SoL/IDER
1943	 * sessions are active
1944	 */
1945	if (igb_check_reset_block(&adapter->hw)) {
1946		dev_err(&adapter->pdev->dev,
1947			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1948		*data = 0;
1949		goto out;
1950	}
1951
1952	if (adapter->hw.mac.type == e1000_i354) {
1953		dev_info(&adapter->pdev->dev,
1954			"Loopback test not supported on i354.\n");
1955		*data = 0;
1956		goto out;
1957	}
1958	*data = igb_setup_desc_rings(adapter);
1959	if (*data)
1960		goto out;
1961	*data = igb_setup_loopback_test(adapter);
1962	if (*data)
1963		goto err_loopback;
1964	*data = igb_run_loopback_test(adapter);
1965	igb_loopback_cleanup(adapter);
1966
1967err_loopback:
1968	igb_free_desc_rings(adapter);
1969out:
1970	return *data;
1971}
1972
1973static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1974{
1975	struct e1000_hw *hw = &adapter->hw;
1976	*data = 0;
1977	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1978		int i = 0;
1979
1980		hw->mac.serdes_has_link = false;
1981
1982		/* On some blade server designs, link establishment
1983		 * could take as long as 2-3 minutes
1984		 */
1985		do {
1986			hw->mac.ops.check_for_link(&adapter->hw);
1987			if (hw->mac.serdes_has_link)
1988				return *data;
1989			msleep(20);
1990		} while (i++ < 3750);
1991
1992		*data = 1;
1993	} else {
1994		hw->mac.ops.check_for_link(&adapter->hw);
1995		if (hw->mac.autoneg)
1996			msleep(5000);
1997
1998		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1999			*data = 1;
2000	}
2001	return *data;
2002}
2003
2004static void igb_diag_test(struct net_device *netdev,
2005			  struct ethtool_test *eth_test, u64 *data)
2006{
2007	struct igb_adapter *adapter = netdev_priv(netdev);
2008	u16 autoneg_advertised;
2009	u8 forced_speed_duplex, autoneg;
2010	bool if_running = netif_running(netdev);
2011
2012	set_bit(__IGB_TESTING, &adapter->state);
2013
2014	/* can't do offline tests on media switching devices */
2015	if (adapter->hw.dev_spec._82575.mas_capable)
2016		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2017	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2018		/* Offline tests */
2019
2020		/* save speed, duplex, autoneg settings */
2021		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2022		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2023		autoneg = adapter->hw.mac.autoneg;
2024
2025		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2026
2027		/* power up link for link test */
2028		igb_power_up_link(adapter);
2029
2030		/* Link test performed before hardware reset so autoneg doesn't
2031		 * interfere with test result
2032		 */
2033		if (igb_link_test(adapter, &data[TEST_LINK]))
2034			eth_test->flags |= ETH_TEST_FL_FAILED;
2035
2036		if (if_running)
2037			/* indicate we're in test mode */
2038			igb_close(netdev);
2039		else
2040			igb_reset(adapter);
2041
2042		if (igb_reg_test(adapter, &data[TEST_REG]))
2043			eth_test->flags |= ETH_TEST_FL_FAILED;
2044
2045		igb_reset(adapter);
2046		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2047			eth_test->flags |= ETH_TEST_FL_FAILED;
2048
2049		igb_reset(adapter);
2050		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2051			eth_test->flags |= ETH_TEST_FL_FAILED;
2052
2053		igb_reset(adapter);
2054		/* power up link for loopback test */
2055		igb_power_up_link(adapter);
2056		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2057			eth_test->flags |= ETH_TEST_FL_FAILED;
2058
2059		/* restore speed, duplex, autoneg settings */
2060		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2061		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2062		adapter->hw.mac.autoneg = autoneg;
2063
2064		/* force this routine to wait until autoneg complete/timeout */
2065		adapter->hw.phy.autoneg_wait_to_complete = true;
2066		igb_reset(adapter);
2067		adapter->hw.phy.autoneg_wait_to_complete = false;
2068
2069		clear_bit(__IGB_TESTING, &adapter->state);
2070		if (if_running)
2071			igb_open(netdev);
2072	} else {
2073		dev_info(&adapter->pdev->dev, "online testing starting\n");
2074
2075		/* PHY is powered down when interface is down */
2076		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2077			eth_test->flags |= ETH_TEST_FL_FAILED;
2078		else
2079			data[TEST_LINK] = 0;
2080
2081		/* Online tests aren't run; pass by default */
2082		data[TEST_REG] = 0;
2083		data[TEST_EEP] = 0;
2084		data[TEST_IRQ] = 0;
2085		data[TEST_LOOP] = 0;
2086
2087		clear_bit(__IGB_TESTING, &adapter->state);
2088	}
2089	msleep_interruptible(4 * 1000);
2090}
2091
2092static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2093{
2094	struct igb_adapter *adapter = netdev_priv(netdev);
2095
2096	wol->wolopts = 0;
2097
2098	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2099		return;
2100
2101	wol->supported = WAKE_UCAST | WAKE_MCAST |
2102			 WAKE_BCAST | WAKE_MAGIC |
2103			 WAKE_PHY;
2104
2105	/* apply any specific unsupported masks here */
2106	switch (adapter->hw.device_id) {
2107	default:
2108		break;
2109	}
2110
2111	if (adapter->wol & E1000_WUFC_EX)
2112		wol->wolopts |= WAKE_UCAST;
2113	if (adapter->wol & E1000_WUFC_MC)
2114		wol->wolopts |= WAKE_MCAST;
2115	if (adapter->wol & E1000_WUFC_BC)
2116		wol->wolopts |= WAKE_BCAST;
2117	if (adapter->wol & E1000_WUFC_MAG)
2118		wol->wolopts |= WAKE_MAGIC;
2119	if (adapter->wol & E1000_WUFC_LNKC)
2120		wol->wolopts |= WAKE_PHY;
2121}
2122
2123static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2124{
2125	struct igb_adapter *adapter = netdev_priv(netdev);
2126
2127	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2128		return -EOPNOTSUPP;
2129
2130	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2131		return wol->wolopts ? -EOPNOTSUPP : 0;
2132
2133	/* these settings will always override what we currently have */
2134	adapter->wol = 0;
2135
2136	if (wol->wolopts & WAKE_UCAST)
2137		adapter->wol |= E1000_WUFC_EX;
2138	if (wol->wolopts & WAKE_MCAST)
2139		adapter->wol |= E1000_WUFC_MC;
2140	if (wol->wolopts & WAKE_BCAST)
2141		adapter->wol |= E1000_WUFC_BC;
2142	if (wol->wolopts & WAKE_MAGIC)
2143		adapter->wol |= E1000_WUFC_MAG;
2144	if (wol->wolopts & WAKE_PHY)
2145		adapter->wol |= E1000_WUFC_LNKC;
2146	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2147
2148	return 0;
2149}
2150
2151/* bit defines for adapter->led_status */
2152#define IGB_LED_ON		0
2153
2154static int igb_set_phys_id(struct net_device *netdev,
2155			   enum ethtool_phys_id_state state)
2156{
2157	struct igb_adapter *adapter = netdev_priv(netdev);
2158	struct e1000_hw *hw = &adapter->hw;
2159
2160	switch (state) {
2161	case ETHTOOL_ID_ACTIVE:
2162		igb_blink_led(hw);
2163		return 2;
2164	case ETHTOOL_ID_ON:
2165		igb_blink_led(hw);
2166		break;
2167	case ETHTOOL_ID_OFF:
2168		igb_led_off(hw);
2169		break;
2170	case ETHTOOL_ID_INACTIVE:
2171		igb_led_off(hw);
2172		clear_bit(IGB_LED_ON, &adapter->led_status);
2173		igb_cleanup_led(hw);
2174		break;
2175	}
2176
2177	return 0;
2178}
2179
2180static int igb_set_coalesce(struct net_device *netdev,
2181			    struct ethtool_coalesce *ec)
2182{
2183	struct igb_adapter *adapter = netdev_priv(netdev);
2184	int i;
2185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2187	    ((ec->rx_coalesce_usecs > 3) &&
2188	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2189	    (ec->rx_coalesce_usecs == 2))
2190		return -EINVAL;
2191
2192	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2193	    ((ec->tx_coalesce_usecs > 3) &&
2194	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2195	    (ec->tx_coalesce_usecs == 2))
2196		return -EINVAL;
2197
2198	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2199		return -EINVAL;
2200
2201	/* If ITR is disabled, disable DMAC */
2202	if (ec->rx_coalesce_usecs == 0) {
2203		if (adapter->flags & IGB_FLAG_DMAC)
2204			adapter->flags &= ~IGB_FLAG_DMAC;
2205	}
2206
2207	/* convert to rate of irq's per second */
2208	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2209		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2210	else
2211		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2212
2213	/* convert to rate of irq's per second */
2214	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2215		adapter->tx_itr_setting = adapter->rx_itr_setting;
2216	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2217		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2218	else
2219		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2220
2221	for (i = 0; i < adapter->num_q_vectors; i++) {
2222		struct igb_q_vector *q_vector = adapter->q_vector[i];
2223		q_vector->tx.work_limit = adapter->tx_work_limit;
2224		if (q_vector->rx.ring)
2225			q_vector->itr_val = adapter->rx_itr_setting;
2226		else
2227			q_vector->itr_val = adapter->tx_itr_setting;
2228		if (q_vector->itr_val && q_vector->itr_val <= 3)
2229			q_vector->itr_val = IGB_START_ITR;
2230		q_vector->set_itr = 1;
2231	}
2232
2233	return 0;
2234}
2235
2236static int igb_get_coalesce(struct net_device *netdev,
2237			    struct ethtool_coalesce *ec)
2238{
2239	struct igb_adapter *adapter = netdev_priv(netdev);
2240
2241	if (adapter->rx_itr_setting <= 3)
2242		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2243	else
2244		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2245
2246	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2247		if (adapter->tx_itr_setting <= 3)
2248			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2249		else
2250			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2251	}
2252
2253	return 0;
2254}
2255
2256static int igb_nway_reset(struct net_device *netdev)
2257{
2258	struct igb_adapter *adapter = netdev_priv(netdev);
2259	if (netif_running(netdev))
2260		igb_reinit_locked(adapter);
2261	return 0;
2262}
2263
2264static int igb_get_sset_count(struct net_device *netdev, int sset)
2265{
2266	switch (sset) {
2267	case ETH_SS_STATS:
2268		return IGB_STATS_LEN;
2269	case ETH_SS_TEST:
2270		return IGB_TEST_LEN;
2271	case ETH_SS_PRIV_FLAGS:
2272		return IGB_PRIV_FLAGS_STR_LEN;
2273	default:
2274		return -ENOTSUPP;
2275	}
2276}
2277
2278static void igb_get_ethtool_stats(struct net_device *netdev,
2279				  struct ethtool_stats *stats, u64 *data)
2280{
2281	struct igb_adapter *adapter = netdev_priv(netdev);
2282	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2283	unsigned int start;
2284	struct igb_ring *ring;
2285	int i, j;
2286	char *p;
2287
2288	spin_lock(&adapter->stats64_lock);
2289	igb_update_stats(adapter);
2290
2291	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2292		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2293		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2294			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2295	}
2296	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2297		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2298		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2299			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2300	}
2301	for (j = 0; j < adapter->num_tx_queues; j++) {
2302		u64	restart2;
2303
2304		ring = adapter->tx_ring[j];
2305		do {
2306			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2307			data[i]   = ring->tx_stats.packets;
2308			data[i+1] = ring->tx_stats.bytes;
2309			data[i+2] = ring->tx_stats.restart_queue;
2310		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2311		do {
2312			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2313			restart2  = ring->tx_stats.restart_queue2;
2314		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2315		data[i+2] += restart2;
2316
2317		i += IGB_TX_QUEUE_STATS_LEN;
2318	}
2319	for (j = 0; j < adapter->num_rx_queues; j++) {
2320		ring = adapter->rx_ring[j];
2321		do {
2322			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2323			data[i]   = ring->rx_stats.packets;
2324			data[i+1] = ring->rx_stats.bytes;
2325			data[i+2] = ring->rx_stats.drops;
2326			data[i+3] = ring->rx_stats.csum_err;
2327			data[i+4] = ring->rx_stats.alloc_failed;
2328		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2329		i += IGB_RX_QUEUE_STATS_LEN;
2330	}
2331	spin_unlock(&adapter->stats64_lock);
2332}
2333
2334static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2335{
2336	struct igb_adapter *adapter = netdev_priv(netdev);
2337	u8 *p = data;
2338	int i;
2339
2340	switch (stringset) {
2341	case ETH_SS_TEST:
2342		memcpy(data, *igb_gstrings_test,
2343			IGB_TEST_LEN*ETH_GSTRING_LEN);
2344		break;
2345	case ETH_SS_STATS:
2346		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2347			memcpy(p, igb_gstrings_stats[i].stat_string,
2348			       ETH_GSTRING_LEN);
2349			p += ETH_GSTRING_LEN;
2350		}
2351		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2352			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2353			       ETH_GSTRING_LEN);
2354			p += ETH_GSTRING_LEN;
2355		}
2356		for (i = 0; i < adapter->num_tx_queues; i++) {
2357			sprintf(p, "tx_queue_%u_packets", i);
2358			p += ETH_GSTRING_LEN;
2359			sprintf(p, "tx_queue_%u_bytes", i);
2360			p += ETH_GSTRING_LEN;
2361			sprintf(p, "tx_queue_%u_restart", i);
2362			p += ETH_GSTRING_LEN;
2363		}
2364		for (i = 0; i < adapter->num_rx_queues; i++) {
2365			sprintf(p, "rx_queue_%u_packets", i);
2366			p += ETH_GSTRING_LEN;
2367			sprintf(p, "rx_queue_%u_bytes", i);
2368			p += ETH_GSTRING_LEN;
2369			sprintf(p, "rx_queue_%u_drops", i);
2370			p += ETH_GSTRING_LEN;
2371			sprintf(p, "rx_queue_%u_csum_err", i);
2372			p += ETH_GSTRING_LEN;
2373			sprintf(p, "rx_queue_%u_alloc_failed", i);
2374			p += ETH_GSTRING_LEN;
2375		}
2376		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2377		break;
2378	case ETH_SS_PRIV_FLAGS:
2379		memcpy(data, igb_priv_flags_strings,
2380		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2381		break;
2382	}
2383}
2384
2385static int igb_get_ts_info(struct net_device *dev,
2386			   struct ethtool_ts_info *info)
2387{
2388	struct igb_adapter *adapter = netdev_priv(dev);
2389
2390	if (adapter->ptp_clock)
2391		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2392	else
2393		info->phc_index = -1;
2394
2395	switch (adapter->hw.mac.type) {
2396	case e1000_82575:
2397		info->so_timestamping =
2398			SOF_TIMESTAMPING_TX_SOFTWARE |
2399			SOF_TIMESTAMPING_RX_SOFTWARE |
2400			SOF_TIMESTAMPING_SOFTWARE;
2401		return 0;
2402	case e1000_82576:
2403	case e1000_82580:
2404	case e1000_i350:
2405	case e1000_i354:
2406	case e1000_i210:
2407	case e1000_i211:
2408		info->so_timestamping =
2409			SOF_TIMESTAMPING_TX_SOFTWARE |
2410			SOF_TIMESTAMPING_RX_SOFTWARE |
2411			SOF_TIMESTAMPING_SOFTWARE |
2412			SOF_TIMESTAMPING_TX_HARDWARE |
2413			SOF_TIMESTAMPING_RX_HARDWARE |
2414			SOF_TIMESTAMPING_RAW_HARDWARE;
2415
2416		info->tx_types =
2417			BIT(HWTSTAMP_TX_OFF) |
2418			BIT(HWTSTAMP_TX_ON);
2419
2420		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2421
2422		/* 82576 does not support timestamping all packets. */
2423		if (adapter->hw.mac.type >= e1000_82580)
2424			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2425		else
2426			info->rx_filters |=
2427				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2428				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2429				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2430
2431		return 0;
2432	default:
2433		return -EOPNOTSUPP;
2434	}
2435}
2436
2437#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2438static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2439				     struct ethtool_rxnfc *cmd)
2440{
2441	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2442	struct igb_nfc_filter *rule = NULL;
2443
2444	/* report total rule count */
2445	cmd->data = IGB_MAX_RXNFC_FILTERS;
2446
2447	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2448		if (fsp->location <= rule->sw_idx)
2449			break;
2450	}
2451
2452	if (!rule || fsp->location != rule->sw_idx)
2453		return -EINVAL;
2454
2455	if (rule->filter.match_flags) {
2456		fsp->flow_type = ETHER_FLOW;
2457		fsp->ring_cookie = rule->action;
2458		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2459			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2460			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2461		}
2462		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2463			fsp->flow_type |= FLOW_EXT;
2464			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2465			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2466		}
2467		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2468			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2469					rule->filter.dst_addr);
2470			/* As we only support matching by the full
2471			 * mask, return the mask to userspace
2472			 */
2473			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2474		}
2475		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2476			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2477					rule->filter.src_addr);
2478			/* As we only support matching by the full
2479			 * mask, return the mask to userspace
2480			 */
2481			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2482		}
2483
2484		return 0;
2485	}
2486	return -EINVAL;
2487}
2488
2489static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2490				   struct ethtool_rxnfc *cmd,
2491				   u32 *rule_locs)
2492{
2493	struct igb_nfc_filter *rule;
2494	int cnt = 0;
2495
2496	/* report total rule count */
2497	cmd->data = IGB_MAX_RXNFC_FILTERS;
2498
2499	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2500		if (cnt == cmd->rule_cnt)
2501			return -EMSGSIZE;
2502		rule_locs[cnt] = rule->sw_idx;
2503		cnt++;
2504	}
2505
2506	cmd->rule_cnt = cnt;
2507
2508	return 0;
2509}
2510
2511static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2512				 struct ethtool_rxnfc *cmd)
2513{
2514	cmd->data = 0;
2515
2516	/* Report default options for RSS on igb */
2517	switch (cmd->flow_type) {
2518	case TCP_V4_FLOW:
2519		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2520		fallthrough;
2521	case UDP_V4_FLOW:
2522		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2523			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2524		fallthrough;
2525	case SCTP_V4_FLOW:
2526	case AH_ESP_V4_FLOW:
2527	case AH_V4_FLOW:
2528	case ESP_V4_FLOW:
2529	case IPV4_FLOW:
2530		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2531		break;
2532	case TCP_V6_FLOW:
2533		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534		fallthrough;
2535	case UDP_V6_FLOW:
2536		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2537			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538		fallthrough;
2539	case SCTP_V6_FLOW:
2540	case AH_ESP_V6_FLOW:
2541	case AH_V6_FLOW:
2542	case ESP_V6_FLOW:
2543	case IPV6_FLOW:
2544		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545		break;
2546	default:
2547		return -EINVAL;
2548	}
2549
2550	return 0;
2551}
2552
2553static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2554			 u32 *rule_locs)
2555{
2556	struct igb_adapter *adapter = netdev_priv(dev);
2557	int ret = -EOPNOTSUPP;
2558
2559	switch (cmd->cmd) {
2560	case ETHTOOL_GRXRINGS:
2561		cmd->data = adapter->num_rx_queues;
2562		ret = 0;
2563		break;
2564	case ETHTOOL_GRXCLSRLCNT:
2565		cmd->rule_cnt = adapter->nfc_filter_count;
2566		ret = 0;
2567		break;
2568	case ETHTOOL_GRXCLSRULE:
2569		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2570		break;
2571	case ETHTOOL_GRXCLSRLALL:
2572		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2573		break;
2574	case ETHTOOL_GRXFH:
2575		ret = igb_get_rss_hash_opts(adapter, cmd);
2576		break;
2577	default:
2578		break;
2579	}
2580
2581	return ret;
2582}
2583
2584#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2585		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2586static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2587				struct ethtool_rxnfc *nfc)
2588{
2589	u32 flags = adapter->flags;
2590
2591	/* RSS does not support anything other than hashing
2592	 * to queues on src and dst IPs and ports
2593	 */
2594	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2595			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2596		return -EINVAL;
2597
2598	switch (nfc->flow_type) {
2599	case TCP_V4_FLOW:
2600	case TCP_V6_FLOW:
2601		if (!(nfc->data & RXH_IP_SRC) ||
2602		    !(nfc->data & RXH_IP_DST) ||
2603		    !(nfc->data & RXH_L4_B_0_1) ||
2604		    !(nfc->data & RXH_L4_B_2_3))
2605			return -EINVAL;
2606		break;
2607	case UDP_V4_FLOW:
2608		if (!(nfc->data & RXH_IP_SRC) ||
2609		    !(nfc->data & RXH_IP_DST))
2610			return -EINVAL;
2611		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2612		case 0:
2613			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2614			break;
2615		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2616			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2617			break;
2618		default:
2619			return -EINVAL;
2620		}
2621		break;
2622	case UDP_V6_FLOW:
2623		if (!(nfc->data & RXH_IP_SRC) ||
2624		    !(nfc->data & RXH_IP_DST))
2625			return -EINVAL;
2626		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2627		case 0:
2628			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2629			break;
2630		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2631			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2632			break;
2633		default:
2634			return -EINVAL;
2635		}
2636		break;
2637	case AH_ESP_V4_FLOW:
2638	case AH_V4_FLOW:
2639	case ESP_V4_FLOW:
2640	case SCTP_V4_FLOW:
2641	case AH_ESP_V6_FLOW:
2642	case AH_V6_FLOW:
2643	case ESP_V6_FLOW:
2644	case SCTP_V6_FLOW:
2645		if (!(nfc->data & RXH_IP_SRC) ||
2646		    !(nfc->data & RXH_IP_DST) ||
2647		    (nfc->data & RXH_L4_B_0_1) ||
2648		    (nfc->data & RXH_L4_B_2_3))
2649			return -EINVAL;
2650		break;
2651	default:
2652		return -EINVAL;
2653	}
2654
2655	/* if we changed something we need to update flags */
2656	if (flags != adapter->flags) {
2657		struct e1000_hw *hw = &adapter->hw;
2658		u32 mrqc = rd32(E1000_MRQC);
2659
2660		if ((flags & UDP_RSS_FLAGS) &&
2661		    !(adapter->flags & UDP_RSS_FLAGS))
2662			dev_err(&adapter->pdev->dev,
2663				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2664
2665		adapter->flags = flags;
2666
2667		/* Perform hash on these packet types */
2668		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2669			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2670			E1000_MRQC_RSS_FIELD_IPV6 |
2671			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2672
2673		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2674			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2675
2676		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2677			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2678
2679		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2680			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2681
2682		wr32(E1000_MRQC, mrqc);
2683	}
2684
2685	return 0;
2686}
2687
2688static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2689					struct igb_nfc_filter *input)
2690{
2691	struct e1000_hw *hw = &adapter->hw;
2692	u8 i;
2693	u32 etqf;
2694	u16 etype;
2695
2696	/* find an empty etype filter register */
2697	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2698		if (!adapter->etype_bitmap[i])
2699			break;
2700	}
2701	if (i == MAX_ETYPE_FILTER) {
2702		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2703		return -EINVAL;
2704	}
2705
2706	adapter->etype_bitmap[i] = true;
2707
2708	etqf = rd32(E1000_ETQF(i));
2709	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2710
2711	etqf |= E1000_ETQF_FILTER_ENABLE;
2712	etqf &= ~E1000_ETQF_ETYPE_MASK;
2713	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2714
2715	etqf &= ~E1000_ETQF_QUEUE_MASK;
2716	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2717		& E1000_ETQF_QUEUE_MASK);
2718	etqf |= E1000_ETQF_QUEUE_ENABLE;
2719
2720	wr32(E1000_ETQF(i), etqf);
2721
2722	input->etype_reg_index = i;
2723
2724	return 0;
2725}
2726
2727static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2728					    struct igb_nfc_filter *input)
2729{
2730	struct e1000_hw *hw = &adapter->hw;
2731	u8 vlan_priority;
2732	u16 queue_index;
2733	u32 vlapqf;
2734
2735	vlapqf = rd32(E1000_VLAPQF);
2736	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2737				>> VLAN_PRIO_SHIFT;
2738	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2739
2740	/* check whether this vlan prio is already set */
2741	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2742	    (queue_index != input->action)) {
2743		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2744		return -EEXIST;
2745	}
2746
2747	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2748	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2749
2750	wr32(E1000_VLAPQF, vlapqf);
2751
2752	return 0;
2753}
2754
2755int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2756{
2757	struct e1000_hw *hw = &adapter->hw;
2758	int err = -EINVAL;
2759
2760	if (hw->mac.type == e1000_i210 &&
2761	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2762		dev_err(&adapter->pdev->dev,
2763			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2764		return -EOPNOTSUPP;
2765	}
2766
2767	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2768		err = igb_rxnfc_write_etype_filter(adapter, input);
2769		if (err)
2770			return err;
2771	}
2772
2773	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2774		err = igb_add_mac_steering_filter(adapter,
2775						  input->filter.dst_addr,
2776						  input->action, 0);
2777		err = min_t(int, err, 0);
2778		if (err)
2779			return err;
2780	}
2781
2782	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2783		err = igb_add_mac_steering_filter(adapter,
2784						  input->filter.src_addr,
2785						  input->action,
2786						  IGB_MAC_STATE_SRC_ADDR);
2787		err = min_t(int, err, 0);
2788		if (err)
2789			return err;
2790	}
2791
2792	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2793		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2794
2795	return err;
2796}
2797
2798static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2799					u16 reg_index)
2800{
2801	struct e1000_hw *hw = &adapter->hw;
2802	u32 etqf = rd32(E1000_ETQF(reg_index));
2803
2804	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2805	etqf &= ~E1000_ETQF_QUEUE_MASK;
2806	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2807
2808	wr32(E1000_ETQF(reg_index), etqf);
2809
2810	adapter->etype_bitmap[reg_index] = false;
2811}
2812
2813static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2814				       u16 vlan_tci)
2815{
2816	struct e1000_hw *hw = &adapter->hw;
2817	u8 vlan_priority;
2818	u32 vlapqf;
2819
2820	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2821
2822	vlapqf = rd32(E1000_VLAPQF);
2823	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2824	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2825						E1000_VLAPQF_QUEUE_MASK);
2826
2827	wr32(E1000_VLAPQF, vlapqf);
2828}
2829
2830int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2831{
2832	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2833		igb_clear_etype_filter_regs(adapter,
2834					    input->etype_reg_index);
2835
2836	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2837		igb_clear_vlan_prio_filter(adapter,
2838					   ntohs(input->filter.vlan_tci));
2839
2840	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2841		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2842					    input->action,
2843					    IGB_MAC_STATE_SRC_ADDR);
2844
2845	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2846		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2847					    input->action, 0);
2848
2849	return 0;
2850}
2851
2852static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2853					struct igb_nfc_filter *input,
2854					u16 sw_idx)
2855{
2856	struct igb_nfc_filter *rule, *parent;
2857	int err = -EINVAL;
2858
2859	parent = NULL;
2860	rule = NULL;
2861
2862	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2863		/* hash found, or no matching entry */
2864		if (rule->sw_idx >= sw_idx)
2865			break;
2866		parent = rule;
2867	}
2868
2869	/* if there is an old rule occupying our place remove it */
2870	if (rule && (rule->sw_idx == sw_idx)) {
2871		if (!input)
2872			err = igb_erase_filter(adapter, rule);
2873
2874		hlist_del(&rule->nfc_node);
2875		kfree(rule);
2876		adapter->nfc_filter_count--;
2877	}
2878
2879	/* If no input this was a delete, err should be 0 if a rule was
2880	 * successfully found and removed from the list else -EINVAL
2881	 */
2882	if (!input)
2883		return err;
2884
2885	/* initialize node */
2886	INIT_HLIST_NODE(&input->nfc_node);
2887
2888	/* add filter to the list */
2889	if (parent)
2890		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2891	else
2892		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2893
2894	/* update counts */
2895	adapter->nfc_filter_count++;
2896
2897	return 0;
2898}
2899
2900static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2901				     struct ethtool_rxnfc *cmd)
2902{
2903	struct net_device *netdev = adapter->netdev;
2904	struct ethtool_rx_flow_spec *fsp =
2905		(struct ethtool_rx_flow_spec *)&cmd->fs;
2906	struct igb_nfc_filter *input, *rule;
2907	int err = 0;
2908
2909	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2910		return -EOPNOTSUPP;
2911
2912	/* Don't allow programming if the action is a queue greater than
2913	 * the number of online Rx queues.
2914	 */
2915	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2916	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2917		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2918		return -EINVAL;
2919	}
2920
2921	/* Don't allow indexes to exist outside of available space */
2922	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2923		dev_err(&adapter->pdev->dev, "Location out of range\n");
2924		return -EINVAL;
2925	}
2926
2927	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2928		return -EINVAL;
2929
 
 
 
 
2930	input = kzalloc(sizeof(*input), GFP_KERNEL);
2931	if (!input)
2932		return -ENOMEM;
2933
2934	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2935		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2936		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2937	}
2938
2939	/* Only support matching addresses by the full mask */
2940	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2941		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2942		ether_addr_copy(input->filter.src_addr,
2943				fsp->h_u.ether_spec.h_source);
2944	}
2945
2946	/* Only support matching addresses by the full mask */
2947	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2948		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2949		ether_addr_copy(input->filter.dst_addr,
2950				fsp->h_u.ether_spec.h_dest);
2951	}
2952
2953	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2954		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2955			err = -EINVAL;
2956			goto err_out;
2957		}
2958		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2959		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2960	}
2961
2962	input->action = fsp->ring_cookie;
2963	input->sw_idx = fsp->location;
2964
2965	spin_lock(&adapter->nfc_lock);
2966
2967	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2968		if (!memcmp(&input->filter, &rule->filter,
2969			    sizeof(input->filter))) {
2970			err = -EEXIST;
2971			dev_err(&adapter->pdev->dev,
2972				"ethtool: this filter is already set\n");
2973			goto err_out_w_lock;
2974		}
2975	}
2976
2977	err = igb_add_filter(adapter, input);
2978	if (err)
2979		goto err_out_w_lock;
2980
2981	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2982
2983	spin_unlock(&adapter->nfc_lock);
2984	return 0;
2985
2986err_out_w_lock:
2987	spin_unlock(&adapter->nfc_lock);
2988err_out:
2989	kfree(input);
2990	return err;
2991}
2992
2993static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2994				     struct ethtool_rxnfc *cmd)
2995{
2996	struct ethtool_rx_flow_spec *fsp =
2997		(struct ethtool_rx_flow_spec *)&cmd->fs;
2998	int err;
2999
3000	spin_lock(&adapter->nfc_lock);
3001	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3002	spin_unlock(&adapter->nfc_lock);
3003
3004	return err;
3005}
3006
3007static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3008{
3009	struct igb_adapter *adapter = netdev_priv(dev);
3010	int ret = -EOPNOTSUPP;
3011
3012	switch (cmd->cmd) {
3013	case ETHTOOL_SRXFH:
3014		ret = igb_set_rss_hash_opt(adapter, cmd);
3015		break;
3016	case ETHTOOL_SRXCLSRLINS:
3017		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3018		break;
3019	case ETHTOOL_SRXCLSRLDEL:
3020		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3021	default:
3022		break;
3023	}
3024
3025	return ret;
3026}
3027
3028static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3029{
3030	struct igb_adapter *adapter = netdev_priv(netdev);
3031	struct e1000_hw *hw = &adapter->hw;
3032	u32 ret_val;
3033	u16 phy_data;
3034
3035	if ((hw->mac.type < e1000_i350) ||
3036	    (hw->phy.media_type != e1000_media_type_copper))
3037		return -EOPNOTSUPP;
3038
3039	edata->supported = (SUPPORTED_1000baseT_Full |
3040			    SUPPORTED_100baseT_Full);
3041	if (!hw->dev_spec._82575.eee_disable)
3042		edata->advertised =
3043			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3044
3045	/* The IPCNFG and EEER registers are not supported on I354. */
3046	if (hw->mac.type == e1000_i354) {
3047		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3048	} else {
3049		u32 eeer;
3050
3051		eeer = rd32(E1000_EEER);
3052
3053		/* EEE status on negotiated link */
3054		if (eeer & E1000_EEER_EEE_NEG)
3055			edata->eee_active = true;
3056
3057		if (eeer & E1000_EEER_TX_LPI_EN)
3058			edata->tx_lpi_enabled = true;
3059	}
3060
3061	/* EEE Link Partner Advertised */
3062	switch (hw->mac.type) {
3063	case e1000_i350:
3064		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3065					   &phy_data);
3066		if (ret_val)
3067			return -ENODATA;
3068
3069		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3070		break;
3071	case e1000_i354:
3072	case e1000_i210:
3073	case e1000_i211:
3074		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3075					     E1000_EEE_LP_ADV_DEV_I210,
3076					     &phy_data);
3077		if (ret_val)
3078			return -ENODATA;
3079
3080		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3081
3082		break;
3083	default:
3084		break;
3085	}
3086
3087	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3088
3089	if ((hw->mac.type == e1000_i354) &&
3090	    (edata->eee_enabled))
3091		edata->tx_lpi_enabled = true;
3092
3093	/* Report correct negotiated EEE status for devices that
3094	 * wrongly report EEE at half-duplex
3095	 */
3096	if (adapter->link_duplex == HALF_DUPLEX) {
3097		edata->eee_enabled = false;
3098		edata->eee_active = false;
3099		edata->tx_lpi_enabled = false;
3100		edata->advertised &= ~edata->advertised;
3101	}
3102
3103	return 0;
3104}
3105
3106static int igb_set_eee(struct net_device *netdev,
3107		       struct ethtool_eee *edata)
3108{
3109	struct igb_adapter *adapter = netdev_priv(netdev);
3110	struct e1000_hw *hw = &adapter->hw;
3111	struct ethtool_eee eee_curr;
3112	bool adv1g_eee = true, adv100m_eee = true;
3113	s32 ret_val;
3114
3115	if ((hw->mac.type < e1000_i350) ||
3116	    (hw->phy.media_type != e1000_media_type_copper))
3117		return -EOPNOTSUPP;
3118
3119	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3120
3121	ret_val = igb_get_eee(netdev, &eee_curr);
3122	if (ret_val)
3123		return ret_val;
3124
3125	if (eee_curr.eee_enabled) {
3126		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3127			dev_err(&adapter->pdev->dev,
3128				"Setting EEE tx-lpi is not supported\n");
3129			return -EINVAL;
3130		}
3131
3132		/* Tx LPI timer is not implemented currently */
3133		if (edata->tx_lpi_timer) {
3134			dev_err(&adapter->pdev->dev,
3135				"Setting EEE Tx LPI timer is not supported\n");
3136			return -EINVAL;
3137		}
3138
3139		if (!edata->advertised || (edata->advertised &
3140		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3141			dev_err(&adapter->pdev->dev,
3142				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3143			return -EINVAL;
3144		}
3145		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3146		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3147
3148	} else if (!edata->eee_enabled) {
3149		dev_err(&adapter->pdev->dev,
3150			"Setting EEE options are not supported with EEE disabled\n");
3151		return -EINVAL;
3152	}
3153
3154	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3155	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3156		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3157		adapter->flags |= IGB_FLAG_EEE;
3158
3159		/* reset link */
3160		if (netif_running(netdev))
3161			igb_reinit_locked(adapter);
3162		else
3163			igb_reset(adapter);
3164	}
3165
3166	if (hw->mac.type == e1000_i354)
3167		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3168	else
3169		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3170
3171	if (ret_val) {
3172		dev_err(&adapter->pdev->dev,
3173			"Problem setting EEE advertisement options\n");
3174		return -EINVAL;
3175	}
3176
3177	return 0;
3178}
3179
3180static int igb_get_module_info(struct net_device *netdev,
3181			       struct ethtool_modinfo *modinfo)
3182{
3183	struct igb_adapter *adapter = netdev_priv(netdev);
3184	struct e1000_hw *hw = &adapter->hw;
3185	u32 status = 0;
3186	u16 sff8472_rev, addr_mode;
3187	bool page_swap = false;
3188
3189	if ((hw->phy.media_type == e1000_media_type_copper) ||
3190	    (hw->phy.media_type == e1000_media_type_unknown))
3191		return -EOPNOTSUPP;
3192
3193	/* Check whether we support SFF-8472 or not */
3194	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3195	if (status)
3196		return -EIO;
3197
3198	/* addressing mode is not supported */
3199	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3200	if (status)
3201		return -EIO;
3202
3203	/* addressing mode is not supported */
3204	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3205		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3206		page_swap = true;
3207	}
3208
3209	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3210		/* We have an SFP, but it does not support SFF-8472 */
3211		modinfo->type = ETH_MODULE_SFF_8079;
3212		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3213	} else {
3214		/* We have an SFP which supports a revision of SFF-8472 */
3215		modinfo->type = ETH_MODULE_SFF_8472;
3216		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3217	}
3218
3219	return 0;
3220}
3221
3222static int igb_get_module_eeprom(struct net_device *netdev,
3223				 struct ethtool_eeprom *ee, u8 *data)
3224{
3225	struct igb_adapter *adapter = netdev_priv(netdev);
3226	struct e1000_hw *hw = &adapter->hw;
3227	u32 status = 0;
3228	u16 *dataword;
3229	u16 first_word, last_word;
3230	int i = 0;
3231
3232	if (ee->len == 0)
3233		return -EINVAL;
3234
3235	first_word = ee->offset >> 1;
3236	last_word = (ee->offset + ee->len - 1) >> 1;
3237
3238	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3239				 GFP_KERNEL);
3240	if (!dataword)
3241		return -ENOMEM;
3242
3243	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3244	for (i = 0; i < last_word - first_word + 1; i++) {
3245		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3246					      &dataword[i]);
3247		if (status) {
3248			/* Error occurred while reading module */
3249			kfree(dataword);
3250			return -EIO;
3251		}
3252
3253		be16_to_cpus(&dataword[i]);
3254	}
3255
3256	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3257	kfree(dataword);
3258
3259	return 0;
3260}
3261
3262static int igb_ethtool_begin(struct net_device *netdev)
3263{
3264	struct igb_adapter *adapter = netdev_priv(netdev);
3265	pm_runtime_get_sync(&adapter->pdev->dev);
3266	return 0;
3267}
3268
3269static void igb_ethtool_complete(struct net_device *netdev)
3270{
3271	struct igb_adapter *adapter = netdev_priv(netdev);
3272	pm_runtime_put(&adapter->pdev->dev);
3273}
3274
3275static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3276{
3277	return IGB_RETA_SIZE;
3278}
3279
3280static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3281			u8 *hfunc)
3282{
3283	struct igb_adapter *adapter = netdev_priv(netdev);
3284	int i;
3285
3286	if (hfunc)
3287		*hfunc = ETH_RSS_HASH_TOP;
3288	if (!indir)
3289		return 0;
3290	for (i = 0; i < IGB_RETA_SIZE; i++)
3291		indir[i] = adapter->rss_indir_tbl[i];
3292
3293	return 0;
3294}
3295
3296void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3297{
3298	struct e1000_hw *hw = &adapter->hw;
3299	u32 reg = E1000_RETA(0);
3300	u32 shift = 0;
3301	int i = 0;
3302
3303	switch (hw->mac.type) {
3304	case e1000_82575:
3305		shift = 6;
3306		break;
3307	case e1000_82576:
3308		/* 82576 supports 2 RSS queues for SR-IOV */
3309		if (adapter->vfs_allocated_count)
3310			shift = 3;
3311		break;
3312	default:
3313		break;
3314	}
3315
3316	while (i < IGB_RETA_SIZE) {
3317		u32 val = 0;
3318		int j;
3319
3320		for (j = 3; j >= 0; j--) {
3321			val <<= 8;
3322			val |= adapter->rss_indir_tbl[i + j];
3323		}
3324
3325		wr32(reg, val << shift);
3326		reg += 4;
3327		i += 4;
3328	}
3329}
3330
3331static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3332			const u8 *key, const u8 hfunc)
3333{
3334	struct igb_adapter *adapter = netdev_priv(netdev);
3335	struct e1000_hw *hw = &adapter->hw;
3336	int i;
3337	u32 num_queues;
3338
3339	/* We do not allow change in unsupported parameters */
3340	if (key ||
3341	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3342		return -EOPNOTSUPP;
3343	if (!indir)
3344		return 0;
3345
3346	num_queues = adapter->rss_queues;
3347
3348	switch (hw->mac.type) {
3349	case e1000_82576:
3350		/* 82576 supports 2 RSS queues for SR-IOV */
3351		if (adapter->vfs_allocated_count)
3352			num_queues = 2;
3353		break;
3354	default:
3355		break;
3356	}
3357
3358	/* Verify user input. */
3359	for (i = 0; i < IGB_RETA_SIZE; i++)
3360		if (indir[i] >= num_queues)
3361			return -EINVAL;
3362
3363
3364	for (i = 0; i < IGB_RETA_SIZE; i++)
3365		adapter->rss_indir_tbl[i] = indir[i];
3366
3367	igb_write_rss_indir_tbl(adapter);
3368
3369	return 0;
3370}
3371
3372static unsigned int igb_max_channels(struct igb_adapter *adapter)
3373{
3374	return igb_get_max_rss_queues(adapter);
3375}
3376
3377static void igb_get_channels(struct net_device *netdev,
3378			     struct ethtool_channels *ch)
3379{
3380	struct igb_adapter *adapter = netdev_priv(netdev);
3381
3382	/* Report maximum channels */
3383	ch->max_combined = igb_max_channels(adapter);
3384
3385	/* Report info for other vector */
3386	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3387		ch->max_other = NON_Q_VECTORS;
3388		ch->other_count = NON_Q_VECTORS;
3389	}
3390
3391	ch->combined_count = adapter->rss_queues;
3392}
3393
3394static int igb_set_channels(struct net_device *netdev,
3395			    struct ethtool_channels *ch)
3396{
3397	struct igb_adapter *adapter = netdev_priv(netdev);
3398	unsigned int count = ch->combined_count;
3399	unsigned int max_combined = 0;
3400
3401	/* Verify they are not requesting separate vectors */
3402	if (!count || ch->rx_count || ch->tx_count)
3403		return -EINVAL;
3404
3405	/* Verify other_count is valid and has not been changed */
3406	if (ch->other_count != NON_Q_VECTORS)
3407		return -EINVAL;
3408
3409	/* Verify the number of channels doesn't exceed hw limits */
3410	max_combined = igb_max_channels(adapter);
3411	if (count > max_combined)
3412		return -EINVAL;
3413
3414	if (count != adapter->rss_queues) {
3415		adapter->rss_queues = count;
3416		igb_set_flag_queue_pairs(adapter, max_combined);
3417
3418		/* Hardware has to reinitialize queues and interrupts to
3419		 * match the new configuration.
3420		 */
3421		return igb_reinit_queues(adapter);
3422	}
3423
3424	return 0;
3425}
3426
3427static u32 igb_get_priv_flags(struct net_device *netdev)
3428{
3429	struct igb_adapter *adapter = netdev_priv(netdev);
3430	u32 priv_flags = 0;
3431
3432	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3433		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3434
3435	return priv_flags;
3436}
3437
3438static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3439{
3440	struct igb_adapter *adapter = netdev_priv(netdev);
3441	unsigned int flags = adapter->flags;
3442
3443	flags &= ~IGB_FLAG_RX_LEGACY;
3444	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3445		flags |= IGB_FLAG_RX_LEGACY;
3446
3447	if (flags != adapter->flags) {
3448		adapter->flags = flags;
3449
3450		/* reset interface to repopulate queues */
3451		if (netif_running(netdev))
3452			igb_reinit_locked(adapter);
3453	}
3454
3455	return 0;
3456}
3457
3458static const struct ethtool_ops igb_ethtool_ops = {
3459	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3460	.get_drvinfo		= igb_get_drvinfo,
3461	.get_regs_len		= igb_get_regs_len,
3462	.get_regs		= igb_get_regs,
3463	.get_wol		= igb_get_wol,
3464	.set_wol		= igb_set_wol,
3465	.get_msglevel		= igb_get_msglevel,
3466	.set_msglevel		= igb_set_msglevel,
3467	.nway_reset		= igb_nway_reset,
3468	.get_link		= igb_get_link,
3469	.get_eeprom_len		= igb_get_eeprom_len,
3470	.get_eeprom		= igb_get_eeprom,
3471	.set_eeprom		= igb_set_eeprom,
3472	.get_ringparam		= igb_get_ringparam,
3473	.set_ringparam		= igb_set_ringparam,
3474	.get_pauseparam		= igb_get_pauseparam,
3475	.set_pauseparam		= igb_set_pauseparam,
3476	.self_test		= igb_diag_test,
3477	.get_strings		= igb_get_strings,
3478	.set_phys_id		= igb_set_phys_id,
3479	.get_sset_count		= igb_get_sset_count,
3480	.get_ethtool_stats	= igb_get_ethtool_stats,
3481	.get_coalesce		= igb_get_coalesce,
3482	.set_coalesce		= igb_set_coalesce,
3483	.get_ts_info		= igb_get_ts_info,
3484	.get_rxnfc		= igb_get_rxnfc,
3485	.set_rxnfc		= igb_set_rxnfc,
3486	.get_eee		= igb_get_eee,
3487	.set_eee		= igb_set_eee,
3488	.get_module_info	= igb_get_module_info,
3489	.get_module_eeprom	= igb_get_module_eeprom,
3490	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3491	.get_rxfh		= igb_get_rxfh,
3492	.set_rxfh		= igb_set_rxfh,
3493	.get_channels		= igb_get_channels,
3494	.set_channels		= igb_set_channels,
3495	.get_priv_flags		= igb_get_priv_flags,
3496	.set_priv_flags		= igb_set_priv_flags,
3497	.begin			= igb_ethtool_begin,
3498	.complete		= igb_ethtool_complete,
3499	.get_link_ksettings	= igb_get_link_ksettings,
3500	.set_link_ksettings	= igb_set_link_ksettings,
3501};
3502
3503void igb_set_ethtool_ops(struct net_device *netdev)
3504{
3505	netdev->ethtool_ops = &igb_ethtool_ops;
3506}