Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 42#include <asm/pgtable.h>
 43#include <asm/ldt.h>
 44#include <asm/processor.h>
 45#include <asm/fpu/internal.h>
 46#include <asm/desc.h>
 47#ifdef CONFIG_MATH_EMULATION
 48#include <asm/math_emu.h>
 49#endif
 50
 51#include <linux/err.h>
 52
 53#include <asm/tlbflush.h>
 54#include <asm/cpu.h>
 55#include <asm/syscalls.h>
 56#include <asm/debugreg.h>
 57#include <asm/switch_to.h>
 58#include <asm/vm86.h>
 59#include <asm/intel_rdt_sched.h>
 60#include <asm/proto.h>
 61
 62void __show_regs(struct pt_regs *regs, int all)
 63{
 64	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 65	unsigned long d0, d1, d2, d3, d6, d7;
 66	unsigned long sp;
 67	unsigned short ss, gs;
 68
 69	if (user_mode(regs)) {
 70		sp = regs->sp;
 71		ss = regs->ss;
 72		gs = get_user_gs(regs);
 73	} else {
 74		sp = kernel_stack_pointer(regs);
 75		savesegment(ss, ss);
 76		savesegment(gs, gs);
 77	}
 78
 79	printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
 80	printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
 81		raw_smp_processor_id());
 82
 83	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 84		regs->ax, regs->bx, regs->cx, regs->dx);
 85	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 86		regs->si, regs->di, regs->bp, sp);
 87	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
 88	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
 89
 90	if (!all)
 91		return;
 92
 93	cr0 = read_cr0();
 94	cr2 = read_cr2();
 95	cr3 = __read_cr3();
 96	cr4 = __read_cr4();
 97	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 98			cr0, cr2, cr3, cr4);
 99
100	get_debugreg(d0, 0);
101	get_debugreg(d1, 1);
102	get_debugreg(d2, 2);
103	get_debugreg(d3, 3);
104	get_debugreg(d6, 6);
105	get_debugreg(d7, 7);
106
107	/* Only print out debug registers if they are in their non-default state. */
108	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
109	    (d6 == DR6_RESERVED) && (d7 == 0x400))
110		return;
111
112	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
113			d0, d1, d2, d3);
114	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
115			d6, d7);
116}
117
118void release_thread(struct task_struct *dead_task)
119{
120	BUG_ON(dead_task->mm);
121	release_vm86_irqs(dead_task);
122}
123
124int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125	unsigned long arg, struct task_struct *p, unsigned long tls)
126{
127	struct pt_regs *childregs = task_pt_regs(p);
128	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
129	struct inactive_task_frame *frame = &fork_frame->frame;
130	struct task_struct *tsk;
131	int err;
132
133	frame->bp = 0;
134	frame->ret_addr = (unsigned long) ret_from_fork;
135	p->thread.sp = (unsigned long) fork_frame;
136	p->thread.sp0 = (unsigned long) (childregs+1);
137	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
138
139	if (unlikely(p->flags & PF_KTHREAD)) {
140		/* kernel thread */
141		memset(childregs, 0, sizeof(struct pt_regs));
142		frame->bx = sp;		/* function */
143		frame->di = arg;
144		p->thread.io_bitmap_ptr = NULL;
145		return 0;
146	}
147	frame->bx = 0;
148	*childregs = *current_pt_regs();
149	childregs->ax = 0;
150	if (sp)
151		childregs->sp = sp;
152
153	task_user_gs(p) = get_user_gs(current_pt_regs());
154
155	p->thread.io_bitmap_ptr = NULL;
156	tsk = current;
157	err = -ENOMEM;
158
159	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
160		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
161						IO_BITMAP_BYTES, GFP_KERNEL);
162		if (!p->thread.io_bitmap_ptr) {
163			p->thread.io_bitmap_max = 0;
164			return -ENOMEM;
165		}
166		set_tsk_thread_flag(p, TIF_IO_BITMAP);
167	}
168
169	err = 0;
170
171	/*
172	 * Set a new TLS for the child thread?
173	 */
174	if (clone_flags & CLONE_SETTLS)
175		err = do_set_thread_area(p, -1,
176			(struct user_desc __user *)tls, 0);
177
178	if (err && p->thread.io_bitmap_ptr) {
179		kfree(p->thread.io_bitmap_ptr);
180		p->thread.io_bitmap_max = 0;
181	}
182	return err;
183}
184
185void
186start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
187{
188	set_user_gs(regs, 0);
189	regs->fs		= 0;
190	regs->ds		= __USER_DS;
191	regs->es		= __USER_DS;
192	regs->ss		= __USER_DS;
193	regs->cs		= __USER_CS;
194	regs->ip		= new_ip;
195	regs->sp		= new_sp;
196	regs->flags		= X86_EFLAGS_IF;
197	force_iret();
198}
199EXPORT_SYMBOL_GPL(start_thread);
200
201
202/*
203 *	switch_to(x,y) should switch tasks from x to y.
204 *
205 * We fsave/fwait so that an exception goes off at the right time
206 * (as a call from the fsave or fwait in effect) rather than to
207 * the wrong process. Lazy FP saving no longer makes any sense
208 * with modern CPU's, and this simplifies a lot of things (SMP
209 * and UP become the same).
210 *
211 * NOTE! We used to use the x86 hardware context switching. The
212 * reason for not using it any more becomes apparent when you
213 * try to recover gracefully from saved state that is no longer
214 * valid (stale segment register values in particular). With the
215 * hardware task-switch, there is no way to fix up bad state in
216 * a reasonable manner.
217 *
218 * The fact that Intel documents the hardware task-switching to
219 * be slow is a fairly red herring - this code is not noticeably
220 * faster. However, there _is_ some room for improvement here,
221 * so the performance issues may eventually be a valid point.
222 * More important, however, is the fact that this allows us much
223 * more flexibility.
224 *
225 * The return value (in %ax) will be the "prev" task after
226 * the task-switch, and shows up in ret_from_fork in entry.S,
227 * for example.
228 */
229__visible __notrace_funcgraph struct task_struct *
230__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
231{
232	struct thread_struct *prev = &prev_p->thread,
233			     *next = &next_p->thread;
234	struct fpu *prev_fpu = &prev->fpu;
235	struct fpu *next_fpu = &next->fpu;
236	int cpu = smp_processor_id();
237	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
238
239	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
240
241	switch_fpu_prepare(prev_fpu, cpu);
242
243	/*
244	 * Save away %gs. No need to save %fs, as it was saved on the
245	 * stack on entry.  No need to save %es and %ds, as those are
246	 * always kernel segments while inside the kernel.  Doing this
247	 * before setting the new TLS descriptors avoids the situation
248	 * where we temporarily have non-reloadable segments in %fs
249	 * and %gs.  This could be an issue if the NMI handler ever
250	 * used %fs or %gs (it does not today), or if the kernel is
251	 * running inside of a hypervisor layer.
252	 */
253	lazy_save_gs(prev->gs);
254
255	/*
256	 * Load the per-thread Thread-Local Storage descriptor.
257	 */
258	load_TLS(next, cpu);
259
260	/*
261	 * Restore IOPL if needed.  In normal use, the flags restore
262	 * in the switch assembly will handle this.  But if the kernel
263	 * is running virtualized at a non-zero CPL, the popf will
264	 * not restore flags, so it must be done in a separate step.
265	 */
266	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
267		set_iopl_mask(next->iopl);
268
269	/*
270	 * Now maybe handle debug registers and/or IO bitmaps
271	 */
272	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
273		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
274		__switch_to_xtra(prev_p, next_p, tss);
275
276	/*
277	 * Leave lazy mode, flushing any hypercalls made here.
278	 * This must be done before restoring TLS segments so
279	 * the GDT and LDT are properly updated, and must be
280	 * done before fpu__restore(), so the TS bit is up
281	 * to date.
282	 */
283	arch_end_context_switch(next_p);
284
285	/*
286	 * Reload esp0 and cpu_current_top_of_stack.  This changes
287	 * current_thread_info().  Refresh the SYSENTER configuration in
288	 * case prev or next is vm86.
289	 */
290	update_sp0(next_p);
291	refresh_sysenter_cs(next);
292	this_cpu_write(cpu_current_top_of_stack,
293		       (unsigned long)task_stack_page(next_p) +
294		       THREAD_SIZE);
295
296	/*
297	 * Restore %gs if needed (which is common)
298	 */
299	if (prev->gs | next->gs)
300		lazy_load_gs(next->gs);
301
302	switch_fpu_finish(next_fpu, cpu);
303
304	this_cpu_write(current_task, next_p);
305
306	/* Load the Intel cache allocation PQR MSR. */
307	intel_rdt_sched_in();
308
309	return prev_p;
310}
311
312SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
313{
314	return do_arch_prctl_common(current, option, arg2);
315}
v4.10.11
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/fs.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/elfcore.h>
 19#include <linux/smp.h>
 20#include <linux/stddef.h>
 21#include <linux/slab.h>
 22#include <linux/vmalloc.h>
 23#include <linux/user.h>
 24#include <linux/interrupt.h>
 25#include <linux/delay.h>
 26#include <linux/reboot.h>
 27#include <linux/mc146818rtc.h>
 28#include <linux/export.h>
 29#include <linux/kallsyms.h>
 30#include <linux/ptrace.h>
 31#include <linux/personality.h>
 32#include <linux/percpu.h>
 33#include <linux/prctl.h>
 34#include <linux/ftrace.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/kdebug.h>
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/ldt.h>
 41#include <asm/processor.h>
 42#include <asm/fpu/internal.h>
 43#include <asm/desc.h>
 44#ifdef CONFIG_MATH_EMULATION
 45#include <asm/math_emu.h>
 46#endif
 47
 48#include <linux/err.h>
 49
 50#include <asm/tlbflush.h>
 51#include <asm/cpu.h>
 52#include <asm/syscalls.h>
 53#include <asm/debugreg.h>
 54#include <asm/switch_to.h>
 55#include <asm/vm86.h>
 56#include <asm/intel_rdt.h>
 
 57
 58void __show_regs(struct pt_regs *regs, int all)
 59{
 60	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 61	unsigned long d0, d1, d2, d3, d6, d7;
 62	unsigned long sp;
 63	unsigned short ss, gs;
 64
 65	if (user_mode(regs)) {
 66		sp = regs->sp;
 67		ss = regs->ss & 0xffff;
 68		gs = get_user_gs(regs);
 69	} else {
 70		sp = kernel_stack_pointer(regs);
 71		savesegment(ss, ss);
 72		savesegment(gs, gs);
 73	}
 74
 75	printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
 76	printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
 77		smp_processor_id());
 78
 79	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 80		regs->ax, regs->bx, regs->cx, regs->dx);
 81	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 82		regs->si, regs->di, regs->bp, sp);
 83	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
 84	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
 85
 86	if (!all)
 87		return;
 88
 89	cr0 = read_cr0();
 90	cr2 = read_cr2();
 91	cr3 = read_cr3();
 92	cr4 = __read_cr4();
 93	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 94			cr0, cr2, cr3, cr4);
 95
 96	get_debugreg(d0, 0);
 97	get_debugreg(d1, 1);
 98	get_debugreg(d2, 2);
 99	get_debugreg(d3, 3);
100	get_debugreg(d6, 6);
101	get_debugreg(d7, 7);
102
103	/* Only print out debug registers if they are in their non-default state. */
104	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
105	    (d6 == DR6_RESERVED) && (d7 == 0x400))
106		return;
107
108	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
109			d0, d1, d2, d3);
110	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
111			d6, d7);
112}
113
114void release_thread(struct task_struct *dead_task)
115{
116	BUG_ON(dead_task->mm);
117	release_vm86_irqs(dead_task);
118}
119
120int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
121	unsigned long arg, struct task_struct *p, unsigned long tls)
122{
123	struct pt_regs *childregs = task_pt_regs(p);
124	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
125	struct inactive_task_frame *frame = &fork_frame->frame;
126	struct task_struct *tsk;
127	int err;
128
129	frame->bp = 0;
130	frame->ret_addr = (unsigned long) ret_from_fork;
131	p->thread.sp = (unsigned long) fork_frame;
132	p->thread.sp0 = (unsigned long) (childregs+1);
133	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
134
135	if (unlikely(p->flags & PF_KTHREAD)) {
136		/* kernel thread */
137		memset(childregs, 0, sizeof(struct pt_regs));
138		frame->bx = sp;		/* function */
139		frame->di = arg;
140		p->thread.io_bitmap_ptr = NULL;
141		return 0;
142	}
143	frame->bx = 0;
144	*childregs = *current_pt_regs();
145	childregs->ax = 0;
146	if (sp)
147		childregs->sp = sp;
148
149	task_user_gs(p) = get_user_gs(current_pt_regs());
150
151	p->thread.io_bitmap_ptr = NULL;
152	tsk = current;
153	err = -ENOMEM;
154
155	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
156		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
157						IO_BITMAP_BYTES, GFP_KERNEL);
158		if (!p->thread.io_bitmap_ptr) {
159			p->thread.io_bitmap_max = 0;
160			return -ENOMEM;
161		}
162		set_tsk_thread_flag(p, TIF_IO_BITMAP);
163	}
164
165	err = 0;
166
167	/*
168	 * Set a new TLS for the child thread?
169	 */
170	if (clone_flags & CLONE_SETTLS)
171		err = do_set_thread_area(p, -1,
172			(struct user_desc __user *)tls, 0);
173
174	if (err && p->thread.io_bitmap_ptr) {
175		kfree(p->thread.io_bitmap_ptr);
176		p->thread.io_bitmap_max = 0;
177	}
178	return err;
179}
180
181void
182start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
183{
184	set_user_gs(regs, 0);
185	regs->fs		= 0;
186	regs->ds		= __USER_DS;
187	regs->es		= __USER_DS;
188	regs->ss		= __USER_DS;
189	regs->cs		= __USER_CS;
190	regs->ip		= new_ip;
191	regs->sp		= new_sp;
192	regs->flags		= X86_EFLAGS_IF;
193	force_iret();
194}
195EXPORT_SYMBOL_GPL(start_thread);
196
197
198/*
199 *	switch_to(x,y) should switch tasks from x to y.
200 *
201 * We fsave/fwait so that an exception goes off at the right time
202 * (as a call from the fsave or fwait in effect) rather than to
203 * the wrong process. Lazy FP saving no longer makes any sense
204 * with modern CPU's, and this simplifies a lot of things (SMP
205 * and UP become the same).
206 *
207 * NOTE! We used to use the x86 hardware context switching. The
208 * reason for not using it any more becomes apparent when you
209 * try to recover gracefully from saved state that is no longer
210 * valid (stale segment register values in particular). With the
211 * hardware task-switch, there is no way to fix up bad state in
212 * a reasonable manner.
213 *
214 * The fact that Intel documents the hardware task-switching to
215 * be slow is a fairly red herring - this code is not noticeably
216 * faster. However, there _is_ some room for improvement here,
217 * so the performance issues may eventually be a valid point.
218 * More important, however, is the fact that this allows us much
219 * more flexibility.
220 *
221 * The return value (in %ax) will be the "prev" task after
222 * the task-switch, and shows up in ret_from_fork in entry.S,
223 * for example.
224 */
225__visible __notrace_funcgraph struct task_struct *
226__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
227{
228	struct thread_struct *prev = &prev_p->thread,
229			     *next = &next_p->thread;
230	struct fpu *prev_fpu = &prev->fpu;
231	struct fpu *next_fpu = &next->fpu;
232	int cpu = smp_processor_id();
233	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
234
235	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
236
237	switch_fpu_prepare(prev_fpu, cpu);
238
239	/*
240	 * Save away %gs. No need to save %fs, as it was saved on the
241	 * stack on entry.  No need to save %es and %ds, as those are
242	 * always kernel segments while inside the kernel.  Doing this
243	 * before setting the new TLS descriptors avoids the situation
244	 * where we temporarily have non-reloadable segments in %fs
245	 * and %gs.  This could be an issue if the NMI handler ever
246	 * used %fs or %gs (it does not today), or if the kernel is
247	 * running inside of a hypervisor layer.
248	 */
249	lazy_save_gs(prev->gs);
250
251	/*
252	 * Load the per-thread Thread-Local Storage descriptor.
253	 */
254	load_TLS(next, cpu);
255
256	/*
257	 * Restore IOPL if needed.  In normal use, the flags restore
258	 * in the switch assembly will handle this.  But if the kernel
259	 * is running virtualized at a non-zero CPL, the popf will
260	 * not restore flags, so it must be done in a separate step.
261	 */
262	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
263		set_iopl_mask(next->iopl);
264
265	/*
266	 * Now maybe handle debug registers and/or IO bitmaps
267	 */
268	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
269		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
270		__switch_to_xtra(prev_p, next_p, tss);
271
272	/*
273	 * Leave lazy mode, flushing any hypercalls made here.
274	 * This must be done before restoring TLS segments so
275	 * the GDT and LDT are properly updated, and must be
276	 * done before fpu__restore(), so the TS bit is up
277	 * to date.
278	 */
279	arch_end_context_switch(next_p);
280
281	/*
282	 * Reload esp0 and cpu_current_top_of_stack.  This changes
283	 * current_thread_info().
 
284	 */
285	load_sp0(tss, next);
 
286	this_cpu_write(cpu_current_top_of_stack,
287		       (unsigned long)task_stack_page(next_p) +
288		       THREAD_SIZE);
289
290	/*
291	 * Restore %gs if needed (which is common)
292	 */
293	if (prev->gs | next->gs)
294		lazy_load_gs(next->gs);
295
296	switch_fpu_finish(next_fpu, cpu);
297
298	this_cpu_write(current_task, next_p);
299
300	/* Load the Intel cache allocation PQR MSR. */
301	intel_rdt_sched_in();
302
303	return prev_p;
 
 
 
 
 
304}