Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * handle transition of Linux booting another kernel
  3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt)	"kexec: " fmt
 10
 11#include <linux/mm.h>
 12#include <linux/kexec.h>
 13#include <linux/string.h>
 14#include <linux/gfp.h>
 15#include <linux/reboot.h>
 16#include <linux/numa.h>
 17#include <linux/ftrace.h>
 18#include <linux/io.h>
 19#include <linux/suspend.h>
 20#include <linux/vmalloc.h>
 21
 22#include <asm/init.h>
 23#include <asm/pgtable.h>
 24#include <asm/tlbflush.h>
 25#include <asm/mmu_context.h>
 26#include <asm/io_apic.h>
 27#include <asm/debugreg.h>
 28#include <asm/kexec-bzimage64.h>
 29#include <asm/setup.h>
 30#include <asm/set_memory.h>
 31
 32#ifdef CONFIG_KEXEC_FILE
 33const struct kexec_file_ops * const kexec_file_loaders[] = {
 34		&kexec_bzImage64_ops,
 35		NULL
 36};
 37#endif
 38
 39static void free_transition_pgtable(struct kimage *image)
 40{
 41	free_page((unsigned long)image->arch.p4d);
 42	image->arch.p4d = NULL;
 43	free_page((unsigned long)image->arch.pud);
 44	image->arch.pud = NULL;
 45	free_page((unsigned long)image->arch.pmd);
 46	image->arch.pmd = NULL;
 47	free_page((unsigned long)image->arch.pte);
 48	image->arch.pte = NULL;
 49}
 50
 51static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 52{
 53	p4d_t *p4d;
 54	pud_t *pud;
 55	pmd_t *pmd;
 56	pte_t *pte;
 57	unsigned long vaddr, paddr;
 58	int result = -ENOMEM;
 59
 60	vaddr = (unsigned long)relocate_kernel;
 61	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 62	pgd += pgd_index(vaddr);
 63	if (!pgd_present(*pgd)) {
 64		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
 65		if (!p4d)
 66			goto err;
 67		image->arch.p4d = p4d;
 68		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
 69	}
 70	p4d = p4d_offset(pgd, vaddr);
 71	if (!p4d_present(*p4d)) {
 72		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 73		if (!pud)
 74			goto err;
 75		image->arch.pud = pud;
 76		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
 77	}
 78	pud = pud_offset(p4d, vaddr);
 79	if (!pud_present(*pud)) {
 80		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 81		if (!pmd)
 82			goto err;
 83		image->arch.pmd = pmd;
 84		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 85	}
 86	pmd = pmd_offset(pud, vaddr);
 87	if (!pmd_present(*pmd)) {
 88		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 89		if (!pte)
 90			goto err;
 91		image->arch.pte = pte;
 92		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 93	}
 94	pte = pte_offset_kernel(pmd, vaddr);
 95	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
 96	return 0;
 97err:
 
 98	return result;
 99}
100
101static void *alloc_pgt_page(void *data)
102{
103	struct kimage *image = (struct kimage *)data;
104	struct page *page;
105	void *p = NULL;
106
107	page = kimage_alloc_control_pages(image, 0);
108	if (page) {
109		p = page_address(page);
110		clear_page(p);
111	}
112
113	return p;
114}
115
116static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
117{
118	struct x86_mapping_info info = {
119		.alloc_pgt_page	= alloc_pgt_page,
120		.context	= image,
121		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
122		.kernpg_flag	= _KERNPG_TABLE_NOENC,
123	};
124	unsigned long mstart, mend;
125	pgd_t *level4p;
126	int result;
127	int i;
128
129	level4p = (pgd_t *)__va(start_pgtable);
130	clear_page(level4p);
131
132	if (direct_gbpages)
133		info.direct_gbpages = true;
134
135	for (i = 0; i < nr_pfn_mapped; i++) {
136		mstart = pfn_mapped[i].start << PAGE_SHIFT;
137		mend   = pfn_mapped[i].end << PAGE_SHIFT;
138
139		result = kernel_ident_mapping_init(&info,
140						 level4p, mstart, mend);
141		if (result)
142			return result;
143	}
144
145	/*
146	 * segments's mem ranges could be outside 0 ~ max_pfn,
147	 * for example when jump back to original kernel from kexeced kernel.
148	 * or first kernel is booted with user mem map, and second kernel
149	 * could be loaded out of that range.
150	 */
151	for (i = 0; i < image->nr_segments; i++) {
152		mstart = image->segment[i].mem;
153		mend   = mstart + image->segment[i].memsz;
154
155		result = kernel_ident_mapping_init(&info,
156						 level4p, mstart, mend);
157
158		if (result)
159			return result;
160	}
161
162	return init_transition_pgtable(image, level4p);
163}
164
165static void set_idt(void *newidt, u16 limit)
166{
167	struct desc_ptr curidt;
168
169	/* x86-64 supports unaliged loads & stores */
170	curidt.size    = limit;
171	curidt.address = (unsigned long)newidt;
172
173	__asm__ __volatile__ (
174		"lidtq %0\n"
175		: : "m" (curidt)
176		);
177};
178
179
180static void set_gdt(void *newgdt, u16 limit)
181{
182	struct desc_ptr curgdt;
183
184	/* x86-64 supports unaligned loads & stores */
185	curgdt.size    = limit;
186	curgdt.address = (unsigned long)newgdt;
187
188	__asm__ __volatile__ (
189		"lgdtq %0\n"
190		: : "m" (curgdt)
191		);
192};
193
194static void load_segments(void)
195{
196	__asm__ __volatile__ (
197		"\tmovl %0,%%ds\n"
198		"\tmovl %0,%%es\n"
199		"\tmovl %0,%%ss\n"
200		"\tmovl %0,%%fs\n"
201		"\tmovl %0,%%gs\n"
202		: : "a" (__KERNEL_DS) : "memory"
203		);
204}
205
206#ifdef CONFIG_KEXEC_FILE
207/* Update purgatory as needed after various image segments have been prepared */
208static int arch_update_purgatory(struct kimage *image)
209{
210	int ret = 0;
211
212	if (!image->file_mode)
213		return 0;
214
215	/* Setup copying of backup region */
216	if (image->type == KEXEC_TYPE_CRASH) {
217		ret = kexec_purgatory_get_set_symbol(image,
218				"purgatory_backup_dest",
219				&image->arch.backup_load_addr,
220				sizeof(image->arch.backup_load_addr), 0);
221		if (ret)
222			return ret;
223
224		ret = kexec_purgatory_get_set_symbol(image,
225				"purgatory_backup_src",
226				&image->arch.backup_src_start,
227				sizeof(image->arch.backup_src_start), 0);
228		if (ret)
229			return ret;
230
231		ret = kexec_purgatory_get_set_symbol(image,
232				"purgatory_backup_sz",
233				&image->arch.backup_src_sz,
234				sizeof(image->arch.backup_src_sz), 0);
235		if (ret)
236			return ret;
237	}
238
239	return ret;
240}
241#else /* !CONFIG_KEXEC_FILE */
242static inline int arch_update_purgatory(struct kimage *image)
243{
244	return 0;
245}
246#endif /* CONFIG_KEXEC_FILE */
247
248int machine_kexec_prepare(struct kimage *image)
249{
250	unsigned long start_pgtable;
251	int result;
252
253	/* Calculate the offsets */
254	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
255
256	/* Setup the identity mapped 64bit page table */
257	result = init_pgtable(image, start_pgtable);
258	if (result)
259		return result;
260
261	/* update purgatory as needed */
262	result = arch_update_purgatory(image);
263	if (result)
264		return result;
265
266	return 0;
267}
268
269void machine_kexec_cleanup(struct kimage *image)
270{
271	free_transition_pgtable(image);
272}
273
274/*
275 * Do not allocate memory (or fail in any way) in machine_kexec().
276 * We are past the point of no return, committed to rebooting now.
277 */
278void machine_kexec(struct kimage *image)
279{
280	unsigned long page_list[PAGES_NR];
281	void *control_page;
282	int save_ftrace_enabled;
283
284#ifdef CONFIG_KEXEC_JUMP
285	if (image->preserve_context)
286		save_processor_state();
287#endif
288
289	save_ftrace_enabled = __ftrace_enabled_save();
290
291	/* Interrupts aren't acceptable while we reboot */
292	local_irq_disable();
293	hw_breakpoint_disable();
294
295	if (image->preserve_context) {
296#ifdef CONFIG_X86_IO_APIC
297		/*
298		 * We need to put APICs in legacy mode so that we can
299		 * get timer interrupts in second kernel. kexec/kdump
300		 * paths already have calls to restore_boot_irq_mode()
301		 * in one form or other. kexec jump path also need one.
 
302		 */
303		clear_IO_APIC();
304		restore_boot_irq_mode();
305#endif
306	}
307
308	control_page = page_address(image->control_code_page) + PAGE_SIZE;
309	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
310
311	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
312	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
313	page_list[PA_TABLE_PAGE] =
314	  (unsigned long)__pa(page_address(image->control_code_page));
315
316	if (image->type == KEXEC_TYPE_DEFAULT)
317		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
318						<< PAGE_SHIFT);
319
320	/*
321	 * The segment registers are funny things, they have both a
322	 * visible and an invisible part.  Whenever the visible part is
323	 * set to a specific selector, the invisible part is loaded
324	 * with from a table in memory.  At no other time is the
325	 * descriptor table in memory accessed.
326	 *
327	 * I take advantage of this here by force loading the
328	 * segments, before I zap the gdt with an invalid value.
329	 */
330	load_segments();
331	/*
332	 * The gdt & idt are now invalid.
333	 * If you want to load them you must set up your own idt & gdt.
334	 */
335	set_gdt(phys_to_virt(0), 0);
336	set_idt(phys_to_virt(0), 0);
337
338	/* now call it */
339	image->start = relocate_kernel((unsigned long)image->head,
340				       (unsigned long)page_list,
341				       image->start,
342				       image->preserve_context,
343				       sme_active());
344
345#ifdef CONFIG_KEXEC_JUMP
346	if (image->preserve_context)
347		restore_processor_state();
348#endif
349
350	__ftrace_enabled_restore(save_ftrace_enabled);
351}
352
353void arch_crash_save_vmcoreinfo(void)
354{
355	VMCOREINFO_NUMBER(phys_base);
356	VMCOREINFO_SYMBOL(init_top_pgt);
357	VMCOREINFO_NUMBER(pgtable_l5_enabled);
358
359#ifdef CONFIG_NUMA
360	VMCOREINFO_SYMBOL(node_data);
361	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
362#endif
363	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
364			      kaslr_offset());
365	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
366}
367
368/* arch-dependent functionality related to kexec file-based syscall */
369
370#ifdef CONFIG_KEXEC_FILE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371void *arch_kexec_kernel_image_load(struct kimage *image)
372{
373	vfree(image->arch.elf_headers);
374	image->arch.elf_headers = NULL;
375
376	if (!image->fops || !image->fops->load)
377		return ERR_PTR(-ENOEXEC);
378
379	return image->fops->load(image, image->kernel_buf,
380				 image->kernel_buf_len, image->initrd_buf,
381				 image->initrd_buf_len, image->cmdline_buf,
382				 image->cmdline_buf_len);
383}
384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385/*
386 * Apply purgatory relocations.
387 *
388 * @pi:		Purgatory to be relocated.
389 * @section:	Section relocations applying to.
390 * @relsec:	Section containing RELAs.
391 * @symtabsec:	Corresponding symtab.
392 *
393 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394 */
395int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
396				     Elf_Shdr *section, const Elf_Shdr *relsec,
397				     const Elf_Shdr *symtabsec)
398{
399	unsigned int i;
400	Elf64_Rela *rel;
401	Elf64_Sym *sym;
402	void *location;
 
403	unsigned long address, sec_base, value;
404	const char *strtab, *name, *shstrtab;
405	const Elf_Shdr *sechdrs;
406
407	/* String & section header string table */
408	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
409	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
410	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411
412	rel = (void *)pi->ehdr + relsec->sh_offset;
413
414	pr_debug("Applying relocate section %s to %u\n",
415		 shstrtab + relsec->sh_name, relsec->sh_info);
416
417	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
418
419		/*
420		 * rel[i].r_offset contains byte offset from beginning
421		 * of section to the storage unit affected.
422		 *
423		 * This is location to update. This is temporary buffer
424		 * where section is currently loaded. This will finally be
425		 * loaded to a different address later, pointed to by
426		 * ->sh_addr. kexec takes care of moving it
427		 *  (kexec_load_segment()).
428		 */
429		location = pi->purgatory_buf;
430		location += section->sh_offset;
431		location += rel[i].r_offset;
432
433		/* Final address of the location */
434		address = section->sh_addr + rel[i].r_offset;
435
436		/*
437		 * rel[i].r_info contains information about symbol table index
438		 * w.r.t which relocation must be made and type of relocation
439		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
440		 * these respectively.
441		 */
442		sym = (void *)pi->ehdr + symtabsec->sh_offset;
443		sym += ELF64_R_SYM(rel[i].r_info);
444
445		if (sym->st_name)
446			name = strtab + sym->st_name;
447		else
448			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
449
450		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
451			 name, sym->st_info, sym->st_shndx, sym->st_value,
452			 sym->st_size);
453
454		if (sym->st_shndx == SHN_UNDEF) {
455			pr_err("Undefined symbol: %s\n", name);
456			return -ENOEXEC;
457		}
458
459		if (sym->st_shndx == SHN_COMMON) {
460			pr_err("symbol '%s' in common section\n", name);
461			return -ENOEXEC;
462		}
463
464		if (sym->st_shndx == SHN_ABS)
465			sec_base = 0;
466		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
467			pr_err("Invalid section %d for symbol %s\n",
468			       sym->st_shndx, name);
469			return -ENOEXEC;
470		} else
471			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
472
473		value = sym->st_value;
474		value += sec_base;
475		value += rel[i].r_addend;
476
477		switch (ELF64_R_TYPE(rel[i].r_info)) {
478		case R_X86_64_NONE:
479			break;
480		case R_X86_64_64:
481			*(u64 *)location = value;
482			break;
483		case R_X86_64_32:
484			*(u32 *)location = value;
485			if (value != *(u32 *)location)
486				goto overflow;
487			break;
488		case R_X86_64_32S:
489			*(s32 *)location = value;
490			if ((s64)value != *(s32 *)location)
491				goto overflow;
492			break;
493		case R_X86_64_PC32:
494		case R_X86_64_PLT32:
495			value -= (u64)address;
496			*(u32 *)location = value;
497			break;
498		default:
499			pr_err("Unknown rela relocation: %llu\n",
500			       ELF64_R_TYPE(rel[i].r_info));
501			return -ENOEXEC;
502		}
503	}
504	return 0;
505
506overflow:
507	pr_err("Overflow in relocation type %d value 0x%lx\n",
508	       (int)ELF64_R_TYPE(rel[i].r_info), value);
509	return -ENOEXEC;
510}
511#endif /* CONFIG_KEXEC_FILE */
512
513static int
514kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515{
516	struct page *page;
517	unsigned int nr_pages;
518
519	/*
520	 * For physical range: [start, end]. We must skip the unassigned
521	 * crashk resource with zero-valued "end" member.
522	 */
523	if (!end || start > end)
524		return 0;
525
526	page = pfn_to_page(start >> PAGE_SHIFT);
527	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528	if (protect)
529		return set_pages_ro(page, nr_pages);
530	else
531		return set_pages_rw(page, nr_pages);
532}
533
534static void kexec_mark_crashkres(bool protect)
535{
536	unsigned long control;
537
538	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539
540	/* Don't touch the control code page used in crash_kexec().*/
541	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542	/* Control code page is located in the 2nd page. */
543	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544	control += KEXEC_CONTROL_PAGE_SIZE;
545	kexec_mark_range(control, crashk_res.end, protect);
546}
547
548void arch_kexec_protect_crashkres(void)
549{
550	kexec_mark_crashkres(true);
551}
552
553void arch_kexec_unprotect_crashkres(void)
554{
555	kexec_mark_crashkres(false);
556}
557
558int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
559{
560	/*
561	 * If SME is active we need to be sure that kexec pages are
562	 * not encrypted because when we boot to the new kernel the
563	 * pages won't be accessed encrypted (initially).
564	 */
565	return set_memory_decrypted((unsigned long)vaddr, pages);
566}
567
568void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
569{
570	/*
571	 * If SME is active we need to reset the pages back to being
572	 * an encrypted mapping before freeing them.
573	 */
574	set_memory_encrypted((unsigned long)vaddr, pages);
575}
v4.10.11
  1/*
  2 * handle transition of Linux booting another kernel
  3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt)	"kexec: " fmt
 10
 11#include <linux/mm.h>
 12#include <linux/kexec.h>
 13#include <linux/string.h>
 14#include <linux/gfp.h>
 15#include <linux/reboot.h>
 16#include <linux/numa.h>
 17#include <linux/ftrace.h>
 18#include <linux/io.h>
 19#include <linux/suspend.h>
 20#include <linux/vmalloc.h>
 21
 22#include <asm/init.h>
 23#include <asm/pgtable.h>
 24#include <asm/tlbflush.h>
 25#include <asm/mmu_context.h>
 26#include <asm/io_apic.h>
 27#include <asm/debugreg.h>
 28#include <asm/kexec-bzimage64.h>
 29#include <asm/setup.h>
 
 30
 31#ifdef CONFIG_KEXEC_FILE
 32static struct kexec_file_ops *kexec_file_loaders[] = {
 33		&kexec_bzImage64_ops,
 
 34};
 35#endif
 36
 37static void free_transition_pgtable(struct kimage *image)
 38{
 
 
 39	free_page((unsigned long)image->arch.pud);
 
 40	free_page((unsigned long)image->arch.pmd);
 
 41	free_page((unsigned long)image->arch.pte);
 
 42}
 43
 44static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 45{
 
 46	pud_t *pud;
 47	pmd_t *pmd;
 48	pte_t *pte;
 49	unsigned long vaddr, paddr;
 50	int result = -ENOMEM;
 51
 52	vaddr = (unsigned long)relocate_kernel;
 53	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 54	pgd += pgd_index(vaddr);
 55	if (!pgd_present(*pgd)) {
 
 
 
 
 
 
 
 
 56		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 57		if (!pud)
 58			goto err;
 59		image->arch.pud = pud;
 60		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
 61	}
 62	pud = pud_offset(pgd, vaddr);
 63	if (!pud_present(*pud)) {
 64		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 65		if (!pmd)
 66			goto err;
 67		image->arch.pmd = pmd;
 68		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 69	}
 70	pmd = pmd_offset(pud, vaddr);
 71	if (!pmd_present(*pmd)) {
 72		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 73		if (!pte)
 74			goto err;
 75		image->arch.pte = pte;
 76		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 77	}
 78	pte = pte_offset_kernel(pmd, vaddr);
 79	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
 80	return 0;
 81err:
 82	free_transition_pgtable(image);
 83	return result;
 84}
 85
 86static void *alloc_pgt_page(void *data)
 87{
 88	struct kimage *image = (struct kimage *)data;
 89	struct page *page;
 90	void *p = NULL;
 91
 92	page = kimage_alloc_control_pages(image, 0);
 93	if (page) {
 94		p = page_address(page);
 95		clear_page(p);
 96	}
 97
 98	return p;
 99}
100
101static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
102{
103	struct x86_mapping_info info = {
104		.alloc_pgt_page	= alloc_pgt_page,
105		.context	= image,
106		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
 
107	};
108	unsigned long mstart, mend;
109	pgd_t *level4p;
110	int result;
111	int i;
112
113	level4p = (pgd_t *)__va(start_pgtable);
114	clear_page(level4p);
 
 
 
 
115	for (i = 0; i < nr_pfn_mapped; i++) {
116		mstart = pfn_mapped[i].start << PAGE_SHIFT;
117		mend   = pfn_mapped[i].end << PAGE_SHIFT;
118
119		result = kernel_ident_mapping_init(&info,
120						 level4p, mstart, mend);
121		if (result)
122			return result;
123	}
124
125	/*
126	 * segments's mem ranges could be outside 0 ~ max_pfn,
127	 * for example when jump back to original kernel from kexeced kernel.
128	 * or first kernel is booted with user mem map, and second kernel
129	 * could be loaded out of that range.
130	 */
131	for (i = 0; i < image->nr_segments; i++) {
132		mstart = image->segment[i].mem;
133		mend   = mstart + image->segment[i].memsz;
134
135		result = kernel_ident_mapping_init(&info,
136						 level4p, mstart, mend);
137
138		if (result)
139			return result;
140	}
141
142	return init_transition_pgtable(image, level4p);
143}
144
145static void set_idt(void *newidt, u16 limit)
146{
147	struct desc_ptr curidt;
148
149	/* x86-64 supports unaliged loads & stores */
150	curidt.size    = limit;
151	curidt.address = (unsigned long)newidt;
152
153	__asm__ __volatile__ (
154		"lidtq %0\n"
155		: : "m" (curidt)
156		);
157};
158
159
160static void set_gdt(void *newgdt, u16 limit)
161{
162	struct desc_ptr curgdt;
163
164	/* x86-64 supports unaligned loads & stores */
165	curgdt.size    = limit;
166	curgdt.address = (unsigned long)newgdt;
167
168	__asm__ __volatile__ (
169		"lgdtq %0\n"
170		: : "m" (curgdt)
171		);
172};
173
174static void load_segments(void)
175{
176	__asm__ __volatile__ (
177		"\tmovl %0,%%ds\n"
178		"\tmovl %0,%%es\n"
179		"\tmovl %0,%%ss\n"
180		"\tmovl %0,%%fs\n"
181		"\tmovl %0,%%gs\n"
182		: : "a" (__KERNEL_DS) : "memory"
183		);
184}
185
186#ifdef CONFIG_KEXEC_FILE
187/* Update purgatory as needed after various image segments have been prepared */
188static int arch_update_purgatory(struct kimage *image)
189{
190	int ret = 0;
191
192	if (!image->file_mode)
193		return 0;
194
195	/* Setup copying of backup region */
196	if (image->type == KEXEC_TYPE_CRASH) {
197		ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
 
198				&image->arch.backup_load_addr,
199				sizeof(image->arch.backup_load_addr), 0);
200		if (ret)
201			return ret;
202
203		ret = kexec_purgatory_get_set_symbol(image, "backup_src",
 
204				&image->arch.backup_src_start,
205				sizeof(image->arch.backup_src_start), 0);
206		if (ret)
207			return ret;
208
209		ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
 
210				&image->arch.backup_src_sz,
211				sizeof(image->arch.backup_src_sz), 0);
212		if (ret)
213			return ret;
214	}
215
216	return ret;
217}
218#else /* !CONFIG_KEXEC_FILE */
219static inline int arch_update_purgatory(struct kimage *image)
220{
221	return 0;
222}
223#endif /* CONFIG_KEXEC_FILE */
224
225int machine_kexec_prepare(struct kimage *image)
226{
227	unsigned long start_pgtable;
228	int result;
229
230	/* Calculate the offsets */
231	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
232
233	/* Setup the identity mapped 64bit page table */
234	result = init_pgtable(image, start_pgtable);
235	if (result)
236		return result;
237
238	/* update purgatory as needed */
239	result = arch_update_purgatory(image);
240	if (result)
241		return result;
242
243	return 0;
244}
245
246void machine_kexec_cleanup(struct kimage *image)
247{
248	free_transition_pgtable(image);
249}
250
251/*
252 * Do not allocate memory (or fail in any way) in machine_kexec().
253 * We are past the point of no return, committed to rebooting now.
254 */
255void machine_kexec(struct kimage *image)
256{
257	unsigned long page_list[PAGES_NR];
258	void *control_page;
259	int save_ftrace_enabled;
260
261#ifdef CONFIG_KEXEC_JUMP
262	if (image->preserve_context)
263		save_processor_state();
264#endif
265
266	save_ftrace_enabled = __ftrace_enabled_save();
267
268	/* Interrupts aren't acceptable while we reboot */
269	local_irq_disable();
270	hw_breakpoint_disable();
271
272	if (image->preserve_context) {
273#ifdef CONFIG_X86_IO_APIC
274		/*
275		 * We need to put APICs in legacy mode so that we can
276		 * get timer interrupts in second kernel. kexec/kdump
277		 * paths already have calls to disable_IO_APIC() in
278		 * one form or other. kexec jump path also need
279		 * one.
280		 */
281		disable_IO_APIC();
 
282#endif
283	}
284
285	control_page = page_address(image->control_code_page) + PAGE_SIZE;
286	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
287
288	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
289	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
290	page_list[PA_TABLE_PAGE] =
291	  (unsigned long)__pa(page_address(image->control_code_page));
292
293	if (image->type == KEXEC_TYPE_DEFAULT)
294		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
295						<< PAGE_SHIFT);
296
297	/*
298	 * The segment registers are funny things, they have both a
299	 * visible and an invisible part.  Whenever the visible part is
300	 * set to a specific selector, the invisible part is loaded
301	 * with from a table in memory.  At no other time is the
302	 * descriptor table in memory accessed.
303	 *
304	 * I take advantage of this here by force loading the
305	 * segments, before I zap the gdt with an invalid value.
306	 */
307	load_segments();
308	/*
309	 * The gdt & idt are now invalid.
310	 * If you want to load them you must set up your own idt & gdt.
311	 */
312	set_gdt(phys_to_virt(0), 0);
313	set_idt(phys_to_virt(0), 0);
314
315	/* now call it */
316	image->start = relocate_kernel((unsigned long)image->head,
317				       (unsigned long)page_list,
318				       image->start,
319				       image->preserve_context);
 
320
321#ifdef CONFIG_KEXEC_JUMP
322	if (image->preserve_context)
323		restore_processor_state();
324#endif
325
326	__ftrace_enabled_restore(save_ftrace_enabled);
327}
328
329void arch_crash_save_vmcoreinfo(void)
330{
331	VMCOREINFO_NUMBER(phys_base);
332	VMCOREINFO_SYMBOL(init_level4_pgt);
 
333
334#ifdef CONFIG_NUMA
335	VMCOREINFO_SYMBOL(node_data);
336	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
337#endif
338	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
339			      kaslr_offset());
340	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
341}
342
343/* arch-dependent functionality related to kexec file-based syscall */
344
345#ifdef CONFIG_KEXEC_FILE
346int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
347				  unsigned long buf_len)
348{
349	int i, ret = -ENOEXEC;
350	struct kexec_file_ops *fops;
351
352	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
353		fops = kexec_file_loaders[i];
354		if (!fops || !fops->probe)
355			continue;
356
357		ret = fops->probe(buf, buf_len);
358		if (!ret) {
359			image->fops = fops;
360			return ret;
361		}
362	}
363
364	return ret;
365}
366
367void *arch_kexec_kernel_image_load(struct kimage *image)
368{
369	vfree(image->arch.elf_headers);
370	image->arch.elf_headers = NULL;
371
372	if (!image->fops || !image->fops->load)
373		return ERR_PTR(-ENOEXEC);
374
375	return image->fops->load(image, image->kernel_buf,
376				 image->kernel_buf_len, image->initrd_buf,
377				 image->initrd_buf_len, image->cmdline_buf,
378				 image->cmdline_buf_len);
379}
380
381int arch_kimage_file_post_load_cleanup(struct kimage *image)
382{
383	if (!image->fops || !image->fops->cleanup)
384		return 0;
385
386	return image->fops->cleanup(image->image_loader_data);
387}
388
389#ifdef CONFIG_KEXEC_VERIFY_SIG
390int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
391				 unsigned long kernel_len)
392{
393	if (!image->fops || !image->fops->verify_sig) {
394		pr_debug("kernel loader does not support signature verification.");
395		return -EKEYREJECTED;
396	}
397
398	return image->fops->verify_sig(kernel, kernel_len);
399}
400#endif
401
402/*
403 * Apply purgatory relocations.
404 *
405 * ehdr: Pointer to elf headers
406 * sechdrs: Pointer to section headers.
407 * relsec: section index of SHT_RELA section.
 
408 *
409 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
410 */
411int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
412				     Elf64_Shdr *sechdrs, unsigned int relsec)
 
413{
414	unsigned int i;
415	Elf64_Rela *rel;
416	Elf64_Sym *sym;
417	void *location;
418	Elf64_Shdr *section, *symtabsec;
419	unsigned long address, sec_base, value;
420	const char *strtab, *name, *shstrtab;
 
421
422	/*
423	 * ->sh_offset has been modified to keep the pointer to section
424	 * contents in memory
425	 */
426	rel = (void *)sechdrs[relsec].sh_offset;
427
428	/* Section to which relocations apply */
429	section = &sechdrs[sechdrs[relsec].sh_info];
430
431	pr_debug("Applying relocate section %u to %u\n", relsec,
432		 sechdrs[relsec].sh_info);
433
434	/* Associated symbol table */
435	symtabsec = &sechdrs[sechdrs[relsec].sh_link];
436
437	/* String table */
438	if (symtabsec->sh_link >= ehdr->e_shnum) {
439		/* Invalid strtab section number */
440		pr_err("Invalid string table section index %d\n",
441		       symtabsec->sh_link);
442		return -ENOEXEC;
443	}
444
445	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
446
447	/* section header string table */
448	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
449
450	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
451
452		/*
453		 * rel[i].r_offset contains byte offset from beginning
454		 * of section to the storage unit affected.
455		 *
456		 * This is location to update (->sh_offset). This is temporary
457		 * buffer where section is currently loaded. This will finally
458		 * be loaded to a different address later, pointed to by
459		 * ->sh_addr. kexec takes care of moving it
460		 *  (kexec_load_segment()).
461		 */
462		location = (void *)(section->sh_offset + rel[i].r_offset);
 
 
463
464		/* Final address of the location */
465		address = section->sh_addr + rel[i].r_offset;
466
467		/*
468		 * rel[i].r_info contains information about symbol table index
469		 * w.r.t which relocation must be made and type of relocation
470		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
471		 * these respectively.
472		 */
473		sym = (Elf64_Sym *)symtabsec->sh_offset +
474				ELF64_R_SYM(rel[i].r_info);
475
476		if (sym->st_name)
477			name = strtab + sym->st_name;
478		else
479			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
480
481		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
482			 name, sym->st_info, sym->st_shndx, sym->st_value,
483			 sym->st_size);
484
485		if (sym->st_shndx == SHN_UNDEF) {
486			pr_err("Undefined symbol: %s\n", name);
487			return -ENOEXEC;
488		}
489
490		if (sym->st_shndx == SHN_COMMON) {
491			pr_err("symbol '%s' in common section\n", name);
492			return -ENOEXEC;
493		}
494
495		if (sym->st_shndx == SHN_ABS)
496			sec_base = 0;
497		else if (sym->st_shndx >= ehdr->e_shnum) {
498			pr_err("Invalid section %d for symbol %s\n",
499			       sym->st_shndx, name);
500			return -ENOEXEC;
501		} else
502			sec_base = sechdrs[sym->st_shndx].sh_addr;
503
504		value = sym->st_value;
505		value += sec_base;
506		value += rel[i].r_addend;
507
508		switch (ELF64_R_TYPE(rel[i].r_info)) {
509		case R_X86_64_NONE:
510			break;
511		case R_X86_64_64:
512			*(u64 *)location = value;
513			break;
514		case R_X86_64_32:
515			*(u32 *)location = value;
516			if (value != *(u32 *)location)
517				goto overflow;
518			break;
519		case R_X86_64_32S:
520			*(s32 *)location = value;
521			if ((s64)value != *(s32 *)location)
522				goto overflow;
523			break;
524		case R_X86_64_PC32:
 
525			value -= (u64)address;
526			*(u32 *)location = value;
527			break;
528		default:
529			pr_err("Unknown rela relocation: %llu\n",
530			       ELF64_R_TYPE(rel[i].r_info));
531			return -ENOEXEC;
532		}
533	}
534	return 0;
535
536overflow:
537	pr_err("Overflow in relocation type %d value 0x%lx\n",
538	       (int)ELF64_R_TYPE(rel[i].r_info), value);
539	return -ENOEXEC;
540}
541#endif /* CONFIG_KEXEC_FILE */
542
543static int
544kexec_mark_range(unsigned long start, unsigned long end, bool protect)
545{
546	struct page *page;
547	unsigned int nr_pages;
548
549	/*
550	 * For physical range: [start, end]. We must skip the unassigned
551	 * crashk resource with zero-valued "end" member.
552	 */
553	if (!end || start > end)
554		return 0;
555
556	page = pfn_to_page(start >> PAGE_SHIFT);
557	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
558	if (protect)
559		return set_pages_ro(page, nr_pages);
560	else
561		return set_pages_rw(page, nr_pages);
562}
563
564static void kexec_mark_crashkres(bool protect)
565{
566	unsigned long control;
567
568	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
569
570	/* Don't touch the control code page used in crash_kexec().*/
571	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
572	/* Control code page is located in the 2nd page. */
573	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
574	control += KEXEC_CONTROL_PAGE_SIZE;
575	kexec_mark_range(control, crashk_res.end, protect);
576}
577
578void arch_kexec_protect_crashkres(void)
579{
580	kexec_mark_crashkres(true);
581}
582
583void arch_kexec_unprotect_crashkres(void)
584{
585	kexec_mark_crashkres(false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}