Loading...
1/*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#define pr_fmt(fmt) "kexec: " fmt
10
11#include <linux/mm.h>
12#include <linux/kexec.h>
13#include <linux/string.h>
14#include <linux/gfp.h>
15#include <linux/reboot.h>
16#include <linux/numa.h>
17#include <linux/ftrace.h>
18#include <linux/io.h>
19#include <linux/suspend.h>
20#include <linux/vmalloc.h>
21
22#include <asm/init.h>
23#include <asm/pgtable.h>
24#include <asm/tlbflush.h>
25#include <asm/mmu_context.h>
26#include <asm/io_apic.h>
27#include <asm/debugreg.h>
28#include <asm/kexec-bzimage64.h>
29#include <asm/setup.h>
30#include <asm/set_memory.h>
31
32#ifdef CONFIG_KEXEC_FILE
33const struct kexec_file_ops * const kexec_file_loaders[] = {
34 &kexec_bzImage64_ops,
35 NULL
36};
37#endif
38
39static void free_transition_pgtable(struct kimage *image)
40{
41 free_page((unsigned long)image->arch.p4d);
42 image->arch.p4d = NULL;
43 free_page((unsigned long)image->arch.pud);
44 image->arch.pud = NULL;
45 free_page((unsigned long)image->arch.pmd);
46 image->arch.pmd = NULL;
47 free_page((unsigned long)image->arch.pte);
48 image->arch.pte = NULL;
49}
50
51static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
52{
53 p4d_t *p4d;
54 pud_t *pud;
55 pmd_t *pmd;
56 pte_t *pte;
57 unsigned long vaddr, paddr;
58 int result = -ENOMEM;
59
60 vaddr = (unsigned long)relocate_kernel;
61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
62 pgd += pgd_index(vaddr);
63 if (!pgd_present(*pgd)) {
64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
65 if (!p4d)
66 goto err;
67 image->arch.p4d = p4d;
68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
69 }
70 p4d = p4d_offset(pgd, vaddr);
71 if (!p4d_present(*p4d)) {
72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
73 if (!pud)
74 goto err;
75 image->arch.pud = pud;
76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
77 }
78 pud = pud_offset(p4d, vaddr);
79 if (!pud_present(*pud)) {
80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
81 if (!pmd)
82 goto err;
83 image->arch.pmd = pmd;
84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
85 }
86 pmd = pmd_offset(pud, vaddr);
87 if (!pmd_present(*pmd)) {
88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
89 if (!pte)
90 goto err;
91 image->arch.pte = pte;
92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
93 }
94 pte = pte_offset_kernel(pmd, vaddr);
95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
96 return 0;
97err:
98 return result;
99}
100
101static void *alloc_pgt_page(void *data)
102{
103 struct kimage *image = (struct kimage *)data;
104 struct page *page;
105 void *p = NULL;
106
107 page = kimage_alloc_control_pages(image, 0);
108 if (page) {
109 p = page_address(page);
110 clear_page(p);
111 }
112
113 return p;
114}
115
116static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
117{
118 struct x86_mapping_info info = {
119 .alloc_pgt_page = alloc_pgt_page,
120 .context = image,
121 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
122 .kernpg_flag = _KERNPG_TABLE_NOENC,
123 };
124 unsigned long mstart, mend;
125 pgd_t *level4p;
126 int result;
127 int i;
128
129 level4p = (pgd_t *)__va(start_pgtable);
130 clear_page(level4p);
131
132 if (direct_gbpages)
133 info.direct_gbpages = true;
134
135 for (i = 0; i < nr_pfn_mapped; i++) {
136 mstart = pfn_mapped[i].start << PAGE_SHIFT;
137 mend = pfn_mapped[i].end << PAGE_SHIFT;
138
139 result = kernel_ident_mapping_init(&info,
140 level4p, mstart, mend);
141 if (result)
142 return result;
143 }
144
145 /*
146 * segments's mem ranges could be outside 0 ~ max_pfn,
147 * for example when jump back to original kernel from kexeced kernel.
148 * or first kernel is booted with user mem map, and second kernel
149 * could be loaded out of that range.
150 */
151 for (i = 0; i < image->nr_segments; i++) {
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
154
155 result = kernel_ident_mapping_init(&info,
156 level4p, mstart, mend);
157
158 if (result)
159 return result;
160 }
161
162 return init_transition_pgtable(image, level4p);
163}
164
165static void set_idt(void *newidt, u16 limit)
166{
167 struct desc_ptr curidt;
168
169 /* x86-64 supports unaliged loads & stores */
170 curidt.size = limit;
171 curidt.address = (unsigned long)newidt;
172
173 __asm__ __volatile__ (
174 "lidtq %0\n"
175 : : "m" (curidt)
176 );
177};
178
179
180static void set_gdt(void *newgdt, u16 limit)
181{
182 struct desc_ptr curgdt;
183
184 /* x86-64 supports unaligned loads & stores */
185 curgdt.size = limit;
186 curgdt.address = (unsigned long)newgdt;
187
188 __asm__ __volatile__ (
189 "lgdtq %0\n"
190 : : "m" (curgdt)
191 );
192};
193
194static void load_segments(void)
195{
196 __asm__ __volatile__ (
197 "\tmovl %0,%%ds\n"
198 "\tmovl %0,%%es\n"
199 "\tmovl %0,%%ss\n"
200 "\tmovl %0,%%fs\n"
201 "\tmovl %0,%%gs\n"
202 : : "a" (__KERNEL_DS) : "memory"
203 );
204}
205
206#ifdef CONFIG_KEXEC_FILE
207/* Update purgatory as needed after various image segments have been prepared */
208static int arch_update_purgatory(struct kimage *image)
209{
210 int ret = 0;
211
212 if (!image->file_mode)
213 return 0;
214
215 /* Setup copying of backup region */
216 if (image->type == KEXEC_TYPE_CRASH) {
217 ret = kexec_purgatory_get_set_symbol(image,
218 "purgatory_backup_dest",
219 &image->arch.backup_load_addr,
220 sizeof(image->arch.backup_load_addr), 0);
221 if (ret)
222 return ret;
223
224 ret = kexec_purgatory_get_set_symbol(image,
225 "purgatory_backup_src",
226 &image->arch.backup_src_start,
227 sizeof(image->arch.backup_src_start), 0);
228 if (ret)
229 return ret;
230
231 ret = kexec_purgatory_get_set_symbol(image,
232 "purgatory_backup_sz",
233 &image->arch.backup_src_sz,
234 sizeof(image->arch.backup_src_sz), 0);
235 if (ret)
236 return ret;
237 }
238
239 return ret;
240}
241#else /* !CONFIG_KEXEC_FILE */
242static inline int arch_update_purgatory(struct kimage *image)
243{
244 return 0;
245}
246#endif /* CONFIG_KEXEC_FILE */
247
248int machine_kexec_prepare(struct kimage *image)
249{
250 unsigned long start_pgtable;
251 int result;
252
253 /* Calculate the offsets */
254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
255
256 /* Setup the identity mapped 64bit page table */
257 result = init_pgtable(image, start_pgtable);
258 if (result)
259 return result;
260
261 /* update purgatory as needed */
262 result = arch_update_purgatory(image);
263 if (result)
264 return result;
265
266 return 0;
267}
268
269void machine_kexec_cleanup(struct kimage *image)
270{
271 free_transition_pgtable(image);
272}
273
274/*
275 * Do not allocate memory (or fail in any way) in machine_kexec().
276 * We are past the point of no return, committed to rebooting now.
277 */
278void machine_kexec(struct kimage *image)
279{
280 unsigned long page_list[PAGES_NR];
281 void *control_page;
282 int save_ftrace_enabled;
283
284#ifdef CONFIG_KEXEC_JUMP
285 if (image->preserve_context)
286 save_processor_state();
287#endif
288
289 save_ftrace_enabled = __ftrace_enabled_save();
290
291 /* Interrupts aren't acceptable while we reboot */
292 local_irq_disable();
293 hw_breakpoint_disable();
294
295 if (image->preserve_context) {
296#ifdef CONFIG_X86_IO_APIC
297 /*
298 * We need to put APICs in legacy mode so that we can
299 * get timer interrupts in second kernel. kexec/kdump
300 * paths already have calls to restore_boot_irq_mode()
301 * in one form or other. kexec jump path also need one.
302 */
303 clear_IO_APIC();
304 restore_boot_irq_mode();
305#endif
306 }
307
308 control_page = page_address(image->control_code_page) + PAGE_SIZE;
309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
310
311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
313 page_list[PA_TABLE_PAGE] =
314 (unsigned long)__pa(page_address(image->control_code_page));
315
316 if (image->type == KEXEC_TYPE_DEFAULT)
317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
318 << PAGE_SHIFT);
319
320 /*
321 * The segment registers are funny things, they have both a
322 * visible and an invisible part. Whenever the visible part is
323 * set to a specific selector, the invisible part is loaded
324 * with from a table in memory. At no other time is the
325 * descriptor table in memory accessed.
326 *
327 * I take advantage of this here by force loading the
328 * segments, before I zap the gdt with an invalid value.
329 */
330 load_segments();
331 /*
332 * The gdt & idt are now invalid.
333 * If you want to load them you must set up your own idt & gdt.
334 */
335 set_gdt(phys_to_virt(0), 0);
336 set_idt(phys_to_virt(0), 0);
337
338 /* now call it */
339 image->start = relocate_kernel((unsigned long)image->head,
340 (unsigned long)page_list,
341 image->start,
342 image->preserve_context,
343 sme_active());
344
345#ifdef CONFIG_KEXEC_JUMP
346 if (image->preserve_context)
347 restore_processor_state();
348#endif
349
350 __ftrace_enabled_restore(save_ftrace_enabled);
351}
352
353void arch_crash_save_vmcoreinfo(void)
354{
355 VMCOREINFO_NUMBER(phys_base);
356 VMCOREINFO_SYMBOL(init_top_pgt);
357 VMCOREINFO_NUMBER(pgtable_l5_enabled);
358
359#ifdef CONFIG_NUMA
360 VMCOREINFO_SYMBOL(node_data);
361 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
362#endif
363 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
364 kaslr_offset());
365 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
366}
367
368/* arch-dependent functionality related to kexec file-based syscall */
369
370#ifdef CONFIG_KEXEC_FILE
371void *arch_kexec_kernel_image_load(struct kimage *image)
372{
373 vfree(image->arch.elf_headers);
374 image->arch.elf_headers = NULL;
375
376 if (!image->fops || !image->fops->load)
377 return ERR_PTR(-ENOEXEC);
378
379 return image->fops->load(image, image->kernel_buf,
380 image->kernel_buf_len, image->initrd_buf,
381 image->initrd_buf_len, image->cmdline_buf,
382 image->cmdline_buf_len);
383}
384
385/*
386 * Apply purgatory relocations.
387 *
388 * @pi: Purgatory to be relocated.
389 * @section: Section relocations applying to.
390 * @relsec: Section containing RELAs.
391 * @symtabsec: Corresponding symtab.
392 *
393 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394 */
395int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
396 Elf_Shdr *section, const Elf_Shdr *relsec,
397 const Elf_Shdr *symtabsec)
398{
399 unsigned int i;
400 Elf64_Rela *rel;
401 Elf64_Sym *sym;
402 void *location;
403 unsigned long address, sec_base, value;
404 const char *strtab, *name, *shstrtab;
405 const Elf_Shdr *sechdrs;
406
407 /* String & section header string table */
408 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
409 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
410 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
411
412 rel = (void *)pi->ehdr + relsec->sh_offset;
413
414 pr_debug("Applying relocate section %s to %u\n",
415 shstrtab + relsec->sh_name, relsec->sh_info);
416
417 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
418
419 /*
420 * rel[i].r_offset contains byte offset from beginning
421 * of section to the storage unit affected.
422 *
423 * This is location to update. This is temporary buffer
424 * where section is currently loaded. This will finally be
425 * loaded to a different address later, pointed to by
426 * ->sh_addr. kexec takes care of moving it
427 * (kexec_load_segment()).
428 */
429 location = pi->purgatory_buf;
430 location += section->sh_offset;
431 location += rel[i].r_offset;
432
433 /* Final address of the location */
434 address = section->sh_addr + rel[i].r_offset;
435
436 /*
437 * rel[i].r_info contains information about symbol table index
438 * w.r.t which relocation must be made and type of relocation
439 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
440 * these respectively.
441 */
442 sym = (void *)pi->ehdr + symtabsec->sh_offset;
443 sym += ELF64_R_SYM(rel[i].r_info);
444
445 if (sym->st_name)
446 name = strtab + sym->st_name;
447 else
448 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
449
450 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
451 name, sym->st_info, sym->st_shndx, sym->st_value,
452 sym->st_size);
453
454 if (sym->st_shndx == SHN_UNDEF) {
455 pr_err("Undefined symbol: %s\n", name);
456 return -ENOEXEC;
457 }
458
459 if (sym->st_shndx == SHN_COMMON) {
460 pr_err("symbol '%s' in common section\n", name);
461 return -ENOEXEC;
462 }
463
464 if (sym->st_shndx == SHN_ABS)
465 sec_base = 0;
466 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
467 pr_err("Invalid section %d for symbol %s\n",
468 sym->st_shndx, name);
469 return -ENOEXEC;
470 } else
471 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
472
473 value = sym->st_value;
474 value += sec_base;
475 value += rel[i].r_addend;
476
477 switch (ELF64_R_TYPE(rel[i].r_info)) {
478 case R_X86_64_NONE:
479 break;
480 case R_X86_64_64:
481 *(u64 *)location = value;
482 break;
483 case R_X86_64_32:
484 *(u32 *)location = value;
485 if (value != *(u32 *)location)
486 goto overflow;
487 break;
488 case R_X86_64_32S:
489 *(s32 *)location = value;
490 if ((s64)value != *(s32 *)location)
491 goto overflow;
492 break;
493 case R_X86_64_PC32:
494 case R_X86_64_PLT32:
495 value -= (u64)address;
496 *(u32 *)location = value;
497 break;
498 default:
499 pr_err("Unknown rela relocation: %llu\n",
500 ELF64_R_TYPE(rel[i].r_info));
501 return -ENOEXEC;
502 }
503 }
504 return 0;
505
506overflow:
507 pr_err("Overflow in relocation type %d value 0x%lx\n",
508 (int)ELF64_R_TYPE(rel[i].r_info), value);
509 return -ENOEXEC;
510}
511#endif /* CONFIG_KEXEC_FILE */
512
513static int
514kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515{
516 struct page *page;
517 unsigned int nr_pages;
518
519 /*
520 * For physical range: [start, end]. We must skip the unassigned
521 * crashk resource with zero-valued "end" member.
522 */
523 if (!end || start > end)
524 return 0;
525
526 page = pfn_to_page(start >> PAGE_SHIFT);
527 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528 if (protect)
529 return set_pages_ro(page, nr_pages);
530 else
531 return set_pages_rw(page, nr_pages);
532}
533
534static void kexec_mark_crashkres(bool protect)
535{
536 unsigned long control;
537
538 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539
540 /* Don't touch the control code page used in crash_kexec().*/
541 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542 /* Control code page is located in the 2nd page. */
543 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544 control += KEXEC_CONTROL_PAGE_SIZE;
545 kexec_mark_range(control, crashk_res.end, protect);
546}
547
548void arch_kexec_protect_crashkres(void)
549{
550 kexec_mark_crashkres(true);
551}
552
553void arch_kexec_unprotect_crashkres(void)
554{
555 kexec_mark_crashkres(false);
556}
557
558int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
559{
560 /*
561 * If SME is active we need to be sure that kexec pages are
562 * not encrypted because when we boot to the new kernel the
563 * pages won't be accessed encrypted (initially).
564 */
565 return set_memory_decrypted((unsigned long)vaddr, pages);
566}
567
568void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
569{
570 /*
571 * If SME is active we need to reset the pages back to being
572 * an encrypted mapping before freeing them.
573 */
574 set_memory_encrypted((unsigned long)vaddr, pages);
575}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
6
7#define pr_fmt(fmt) "kexec: " fmt
8
9#include <linux/mm.h>
10#include <linux/kexec.h>
11#include <linux/string.h>
12#include <linux/gfp.h>
13#include <linux/reboot.h>
14#include <linux/numa.h>
15#include <linux/ftrace.h>
16#include <linux/io.h>
17#include <linux/suspend.h>
18#include <linux/vmalloc.h>
19#include <linux/efi.h>
20
21#include <asm/init.h>
22#include <asm/tlbflush.h>
23#include <asm/mmu_context.h>
24#include <asm/io_apic.h>
25#include <asm/debugreg.h>
26#include <asm/kexec-bzimage64.h>
27#include <asm/setup.h>
28#include <asm/set_memory.h>
29
30#ifdef CONFIG_ACPI
31/*
32 * Used while adding mapping for ACPI tables.
33 * Can be reused when other iomem regions need be mapped
34 */
35struct init_pgtable_data {
36 struct x86_mapping_info *info;
37 pgd_t *level4p;
38};
39
40static int mem_region_callback(struct resource *res, void *arg)
41{
42 struct init_pgtable_data *data = arg;
43 unsigned long mstart, mend;
44
45 mstart = res->start;
46 mend = mstart + resource_size(res) - 1;
47
48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
49}
50
51static int
52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53{
54 struct init_pgtable_data data;
55 unsigned long flags;
56 int ret;
57
58 data.info = info;
59 data.level4p = level4p;
60 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 &data, mem_region_callback);
64 if (ret && ret != -EINVAL)
65 return ret;
66
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 &data, mem_region_callback);
70 if (ret && ret != -EINVAL)
71 return ret;
72
73 return 0;
74}
75#else
76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77#endif
78
79#ifdef CONFIG_KEXEC_FILE
80const struct kexec_file_ops * const kexec_file_loaders[] = {
81 &kexec_bzImage64_ops,
82 NULL
83};
84#endif
85
86static int
87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88{
89#ifdef CONFIG_EFI
90 unsigned long mstart, mend;
91
92 if (!efi_enabled(EFI_BOOT))
93 return 0;
94
95 mstart = (boot_params.efi_info.efi_systab |
96 ((u64)boot_params.efi_info.efi_systab_hi<<32));
97
98 if (efi_enabled(EFI_64BIT))
99 mend = mstart + sizeof(efi_system_table_64_t);
100 else
101 mend = mstart + sizeof(efi_system_table_32_t);
102
103 if (!mstart)
104 return 0;
105
106 return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108 return 0;
109}
110
111static void free_transition_pgtable(struct kimage *image)
112{
113 free_page((unsigned long)image->arch.p4d);
114 image->arch.p4d = NULL;
115 free_page((unsigned long)image->arch.pud);
116 image->arch.pud = NULL;
117 free_page((unsigned long)image->arch.pmd);
118 image->arch.pmd = NULL;
119 free_page((unsigned long)image->arch.pte);
120 image->arch.pte = NULL;
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124{
125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126 unsigned long vaddr, paddr;
127 int result = -ENOMEM;
128 p4d_t *p4d;
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *pte;
132
133 vaddr = (unsigned long)relocate_kernel;
134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135 pgd += pgd_index(vaddr);
136 if (!pgd_present(*pgd)) {
137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138 if (!p4d)
139 goto err;
140 image->arch.p4d = p4d;
141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142 }
143 p4d = p4d_offset(pgd, vaddr);
144 if (!p4d_present(*p4d)) {
145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146 if (!pud)
147 goto err;
148 image->arch.pud = pud;
149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150 }
151 pud = pud_offset(p4d, vaddr);
152 if (!pud_present(*pud)) {
153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154 if (!pmd)
155 goto err;
156 image->arch.pmd = pmd;
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158 }
159 pmd = pmd_offset(pud, vaddr);
160 if (!pmd_present(*pmd)) {
161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162 if (!pte)
163 goto err;
164 image->arch.pte = pte;
165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166 }
167 pte = pte_offset_kernel(pmd, vaddr);
168
169 if (sev_active())
170 prot = PAGE_KERNEL_EXEC;
171
172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173 return 0;
174err:
175 return result;
176}
177
178static void *alloc_pgt_page(void *data)
179{
180 struct kimage *image = (struct kimage *)data;
181 struct page *page;
182 void *p = NULL;
183
184 page = kimage_alloc_control_pages(image, 0);
185 if (page) {
186 p = page_address(page);
187 clear_page(p);
188 }
189
190 return p;
191}
192
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
195 struct x86_mapping_info info = {
196 .alloc_pgt_page = alloc_pgt_page,
197 .context = image,
198 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
199 .kernpg_flag = _KERNPG_TABLE_NOENC,
200 };
201 unsigned long mstart, mend;
202 pgd_t *level4p;
203 int result;
204 int i;
205
206 level4p = (pgd_t *)__va(start_pgtable);
207 clear_page(level4p);
208
209 if (sev_active()) {
210 info.page_flag |= _PAGE_ENC;
211 info.kernpg_flag |= _PAGE_ENC;
212 }
213
214 if (direct_gbpages)
215 info.direct_gbpages = true;
216
217 for (i = 0; i < nr_pfn_mapped; i++) {
218 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219 mend = pfn_mapped[i].end << PAGE_SHIFT;
220
221 result = kernel_ident_mapping_init(&info,
222 level4p, mstart, mend);
223 if (result)
224 return result;
225 }
226
227 /*
228 * segments's mem ranges could be outside 0 ~ max_pfn,
229 * for example when jump back to original kernel from kexeced kernel.
230 * or first kernel is booted with user mem map, and second kernel
231 * could be loaded out of that range.
232 */
233 for (i = 0; i < image->nr_segments; i++) {
234 mstart = image->segment[i].mem;
235 mend = mstart + image->segment[i].memsz;
236
237 result = kernel_ident_mapping_init(&info,
238 level4p, mstart, mend);
239
240 if (result)
241 return result;
242 }
243
244 /*
245 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246 * not covered by pfn_mapped.
247 */
248 result = map_efi_systab(&info, level4p);
249 if (result)
250 return result;
251
252 result = map_acpi_tables(&info, level4p);
253 if (result)
254 return result;
255
256 return init_transition_pgtable(image, level4p);
257}
258
259static void load_segments(void)
260{
261 __asm__ __volatile__ (
262 "\tmovl %0,%%ds\n"
263 "\tmovl %0,%%es\n"
264 "\tmovl %0,%%ss\n"
265 "\tmovl %0,%%fs\n"
266 "\tmovl %0,%%gs\n"
267 : : "a" (__KERNEL_DS) : "memory"
268 );
269}
270
271int machine_kexec_prepare(struct kimage *image)
272{
273 unsigned long start_pgtable;
274 int result;
275
276 /* Calculate the offsets */
277 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
278
279 /* Setup the identity mapped 64bit page table */
280 result = init_pgtable(image, start_pgtable);
281 if (result)
282 return result;
283
284 return 0;
285}
286
287void machine_kexec_cleanup(struct kimage *image)
288{
289 free_transition_pgtable(image);
290}
291
292/*
293 * Do not allocate memory (or fail in any way) in machine_kexec().
294 * We are past the point of no return, committed to rebooting now.
295 */
296void machine_kexec(struct kimage *image)
297{
298 unsigned long page_list[PAGES_NR];
299 void *control_page;
300 int save_ftrace_enabled;
301
302#ifdef CONFIG_KEXEC_JUMP
303 if (image->preserve_context)
304 save_processor_state();
305#endif
306
307 save_ftrace_enabled = __ftrace_enabled_save();
308
309 /* Interrupts aren't acceptable while we reboot */
310 local_irq_disable();
311 hw_breakpoint_disable();
312
313 if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315 /*
316 * We need to put APICs in legacy mode so that we can
317 * get timer interrupts in second kernel. kexec/kdump
318 * paths already have calls to restore_boot_irq_mode()
319 * in one form or other. kexec jump path also need one.
320 */
321 clear_IO_APIC();
322 restore_boot_irq_mode();
323#endif
324 }
325
326 control_page = page_address(image->control_code_page) + PAGE_SIZE;
327 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331 page_list[PA_TABLE_PAGE] =
332 (unsigned long)__pa(page_address(image->control_code_page));
333
334 if (image->type == KEXEC_TYPE_DEFAULT)
335 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336 << PAGE_SHIFT);
337
338 /*
339 * The segment registers are funny things, they have both a
340 * visible and an invisible part. Whenever the visible part is
341 * set to a specific selector, the invisible part is loaded
342 * with from a table in memory. At no other time is the
343 * descriptor table in memory accessed.
344 *
345 * I take advantage of this here by force loading the
346 * segments, before I zap the gdt with an invalid value.
347 */
348 load_segments();
349 /*
350 * The gdt & idt are now invalid.
351 * If you want to load them you must set up your own idt & gdt.
352 */
353 native_idt_invalidate();
354 native_gdt_invalidate();
355
356 /* now call it */
357 image->start = relocate_kernel((unsigned long)image->head,
358 (unsigned long)page_list,
359 image->start,
360 image->preserve_context,
361 sme_active());
362
363#ifdef CONFIG_KEXEC_JUMP
364 if (image->preserve_context)
365 restore_processor_state();
366#endif
367
368 __ftrace_enabled_restore(save_ftrace_enabled);
369}
370
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
374void *arch_kexec_kernel_image_load(struct kimage *image)
375{
376 vfree(image->elf_headers);
377 image->elf_headers = NULL;
378
379 if (!image->fops || !image->fops->load)
380 return ERR_PTR(-ENOEXEC);
381
382 return image->fops->load(image, image->kernel_buf,
383 image->kernel_buf_len, image->initrd_buf,
384 image->initrd_buf_len, image->cmdline_buf,
385 image->cmdline_buf_len);
386}
387
388/*
389 * Apply purgatory relocations.
390 *
391 * @pi: Purgatory to be relocated.
392 * @section: Section relocations applying to.
393 * @relsec: Section containing RELAs.
394 * @symtabsec: Corresponding symtab.
395 *
396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397 */
398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399 Elf_Shdr *section, const Elf_Shdr *relsec,
400 const Elf_Shdr *symtabsec)
401{
402 unsigned int i;
403 Elf64_Rela *rel;
404 Elf64_Sym *sym;
405 void *location;
406 unsigned long address, sec_base, value;
407 const char *strtab, *name, *shstrtab;
408 const Elf_Shdr *sechdrs;
409
410 /* String & section header string table */
411 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415 rel = (void *)pi->ehdr + relsec->sh_offset;
416
417 pr_debug("Applying relocate section %s to %u\n",
418 shstrtab + relsec->sh_name, relsec->sh_info);
419
420 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422 /*
423 * rel[i].r_offset contains byte offset from beginning
424 * of section to the storage unit affected.
425 *
426 * This is location to update. This is temporary buffer
427 * where section is currently loaded. This will finally be
428 * loaded to a different address later, pointed to by
429 * ->sh_addr. kexec takes care of moving it
430 * (kexec_load_segment()).
431 */
432 location = pi->purgatory_buf;
433 location += section->sh_offset;
434 location += rel[i].r_offset;
435
436 /* Final address of the location */
437 address = section->sh_addr + rel[i].r_offset;
438
439 /*
440 * rel[i].r_info contains information about symbol table index
441 * w.r.t which relocation must be made and type of relocation
442 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443 * these respectively.
444 */
445 sym = (void *)pi->ehdr + symtabsec->sh_offset;
446 sym += ELF64_R_SYM(rel[i].r_info);
447
448 if (sym->st_name)
449 name = strtab + sym->st_name;
450 else
451 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454 name, sym->st_info, sym->st_shndx, sym->st_value,
455 sym->st_size);
456
457 if (sym->st_shndx == SHN_UNDEF) {
458 pr_err("Undefined symbol: %s\n", name);
459 return -ENOEXEC;
460 }
461
462 if (sym->st_shndx == SHN_COMMON) {
463 pr_err("symbol '%s' in common section\n", name);
464 return -ENOEXEC;
465 }
466
467 if (sym->st_shndx == SHN_ABS)
468 sec_base = 0;
469 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470 pr_err("Invalid section %d for symbol %s\n",
471 sym->st_shndx, name);
472 return -ENOEXEC;
473 } else
474 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476 value = sym->st_value;
477 value += sec_base;
478 value += rel[i].r_addend;
479
480 switch (ELF64_R_TYPE(rel[i].r_info)) {
481 case R_X86_64_NONE:
482 break;
483 case R_X86_64_64:
484 *(u64 *)location = value;
485 break;
486 case R_X86_64_32:
487 *(u32 *)location = value;
488 if (value != *(u32 *)location)
489 goto overflow;
490 break;
491 case R_X86_64_32S:
492 *(s32 *)location = value;
493 if ((s64)value != *(s32 *)location)
494 goto overflow;
495 break;
496 case R_X86_64_PC32:
497 case R_X86_64_PLT32:
498 value -= (u64)address;
499 *(u32 *)location = value;
500 break;
501 default:
502 pr_err("Unknown rela relocation: %llu\n",
503 ELF64_R_TYPE(rel[i].r_info));
504 return -ENOEXEC;
505 }
506 }
507 return 0;
508
509overflow:
510 pr_err("Overflow in relocation type %d value 0x%lx\n",
511 (int)ELF64_R_TYPE(rel[i].r_info), value);
512 return -ENOEXEC;
513}
514#endif /* CONFIG_KEXEC_FILE */
515
516static int
517kexec_mark_range(unsigned long start, unsigned long end, bool protect)
518{
519 struct page *page;
520 unsigned int nr_pages;
521
522 /*
523 * For physical range: [start, end]. We must skip the unassigned
524 * crashk resource with zero-valued "end" member.
525 */
526 if (!end || start > end)
527 return 0;
528
529 page = pfn_to_page(start >> PAGE_SHIFT);
530 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
531 if (protect)
532 return set_pages_ro(page, nr_pages);
533 else
534 return set_pages_rw(page, nr_pages);
535}
536
537static void kexec_mark_crashkres(bool protect)
538{
539 unsigned long control;
540
541 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
542
543 /* Don't touch the control code page used in crash_kexec().*/
544 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
545 /* Control code page is located in the 2nd page. */
546 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
547 control += KEXEC_CONTROL_PAGE_SIZE;
548 kexec_mark_range(control, crashk_res.end, protect);
549}
550
551void arch_kexec_protect_crashkres(void)
552{
553 kexec_mark_crashkres(true);
554}
555
556void arch_kexec_unprotect_crashkres(void)
557{
558 kexec_mark_crashkres(false);
559}
560
561/*
562 * During a traditional boot under SME, SME will encrypt the kernel,
563 * so the SME kexec kernel also needs to be un-encrypted in order to
564 * replicate a normal SME boot.
565 *
566 * During a traditional boot under SEV, the kernel has already been
567 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
568 * order to replicate a normal SEV boot.
569 */
570int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
571{
572 if (sev_active())
573 return 0;
574
575 /*
576 * If SME is active we need to be sure that kexec pages are
577 * not encrypted because when we boot to the new kernel the
578 * pages won't be accessed encrypted (initially).
579 */
580 return set_memory_decrypted((unsigned long)vaddr, pages);
581}
582
583void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
584{
585 if (sev_active())
586 return;
587
588 /*
589 * If SME is active we need to reset the pages back to being
590 * an encrypted mapping before freeing them.
591 */
592 set_memory_encrypted((unsigned long)vaddr, pages);
593}